Science.gov

Sample records for cholesterol oxidase physiological

  1. Microbial cholesterol oxidases: bioconversion enzymes or signal proteins?

    PubMed

    Aparicio, Jesús F; Martín, Juan F

    2008-08-01

    Cholesterol oxidases (3beta-hydroxysterol oxidases; EC 1.1.3.6), serve as catalysts for the initial step in the degradation of cholesterol, and probably other natural sterols, that are used as carbon sources for growth of different bacteria. Because of their suitability for attacking cholesterol they have been widely used for the quantification of cholesterol in clinical and food specimens. Cholesterol oxidase has also found application as a probe for membrane structure, as an insecticide, and has been implicated in bacterial pathogenesis. Recently, we have found that a Streptomyces cholesterol oxidase is required for the biosynthesis of the antifungal polyene pimaricin, apparently acting as an antifungal sensor. Here we describe our current understanding of these fascinating enzymes.

  2. Amperometric determination of serum total cholesterol with nanoparticles of cholesterol esterase and cholesterol oxidase.

    PubMed

    Aggarwal, V; Malik, J; Prashant, A; Jaiwal, P K; Pundir, C S

    2016-05-01

    We describe the preparation of glutaraldehyde cross-linked and functionalized cholesterol esterase nanoparticles (ChENPs) and cholesterol oxidase nanoparticles (ChOxNPs) aggregates and their co-immobilization onto Au electrode for improved amperometric determination of serum total cholesterol. Transmission electron microscope (TEM) images of ChENPs and ChOxNPs showed their spherical shape and average size of 35.40 and 56.97 nm, respectively. Scanning electron microscope (SEM) studies of Au electrode confirmed the co-immobilization of enzyme nanoparticles (ENPs). The biosensor exhibited optimal response at pH 5.5 and 40°C within 5 s when polarized at +0.25 V versus Ag/AgCl. The working/linear range of the biosensor was 10-700 mg/dl for cholesterol. The sensor showed high sensitivity and measured total cholesterol as low as 0.1 mg/dl. The biosensor was evaluated and employed for total cholesterol determination in sera of apparently healthy and diseased persons. The analytical recovery of added cholesterol was 90%, whereas the within-batch and between-batch coefficients of variation (CVs) were less than 2% and less than 3%. There was a good correlation (r = 0.99) between serum cholesterol values as measured by the standard enzymic colorimetric method and the current method. The initial activity of ENPs/working electrode was reduced by 50% during its regular use (200 times) over a period of 60 days when stored dry at 4°C.

  3. Cholesterol oxidase: sources, physical properties and analytical applications.

    PubMed

    MacLachlan, J; Wotherspoon, A T; Ansell, R O; Brooks, C J

    2000-04-01

    Since Flegg (H.M. Flegg, An investigation of the determination of serum cholesterol by an enzymatic method, Ann. Clin. Biochem. 10 (1973) 79-84) and Richmond (W. Richmond, The development of an enzymatic technique for the assay of cholesterol in biological fluids, Scand. J. clin. Lab. Invest. 29 (1972) 25; W. Richmond, Preparation and properties of a bacterial cholesterol oxidase from Nocardia sp. and its application to enzyme assay of total cholesterol in serum, Clinical Chemistry 19 (1973) 1350-1356) first illustrated the suitability of cholesterol oxidase (COD) for the analysis of serum cholesterol, COD has risen to become the most widely used enzyme in clinical laboratories with the exception of glucose oxidase (GOD). The use is widespread because assays incorporating the enzyme are extremely simple, specific, and highly sensitive and thus offer distinct advantages over the Liebermann-Burchard analytical methodologies which employ corrosive reagents and can be prone to unreliable results due to interfering substances such as bilirubin. Individuals can now readily determine their own serum cholesterol levels with a simple disposable test kit. This review discusses COD in some detail and includes the topics: (1) The variety of bacterial sources available; (2) The various extraction/purification protocols utilised in order to obtain protein of sufficient clarification (purity) for use in food/clinical analysis; (3) Significant differences in the properties of the individual enzymes; (4) Substrate specificities of the various enzymes; (5) Examples of biological assays which have employed cholesterol oxidase as an integral part of the analysis, and the various assay protocols; (6) New steroidal products of COD. This review is not a comprehensive description of published work, but is intended to provide an account of recent and current research, and should promote further interest in the application of enzymes to analytical selectivity.

  4. Introducing inducible fluorescent split cholesterol oxidase to mammalian cells.

    PubMed

    Chernov, Konstantin G; Neuvonen, Maarit; Brock, Ivonne; Ikonen, Elina; Verkhusha, Vladislav V

    2017-05-26

    Cholesterol oxidase (COase) is a bacterial enzyme catalyzing the first step in the biodegradation of cholesterol. COase is an important biotechnological tool for clinical diagnostics and production of steroid drugs and insecticides. It is also used for tracking intracellular cholesterol; however, its utility is limited by the lack of an efficient temporal control of its activity. To overcome this we have developed a regulatable fragment complementation system for COase cloned from Chromobacterium sp. The enzyme was split into two moieties that were fused to FKBP (FK506-binding protein) and FRB (rapamycin-binding domain) pair and split GFP fragments. The addition of rapamycin reconstituted a fluorescent enzyme, termed split GFP-COase, the fluorescence level of which correlated with its oxidation activity. A rapid decrease of cellular cholesterol induced by intracellular expression of the split GFP-COase promoted the dissociation of a cholesterol biosensor D4H from the plasma membrane. The process was reversible as upon rapamycin removal, the split GFP-COase fluorescence was lost, and cellular cholesterol levels returned to normal. These data demonstrate that the split GFP-COase provides a novel tool to manipulate cholesterol in mammalian cells. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. An amperometric cholesterol biosensor based on epoxy resin membrane bound cholesterol oxidase

    PubMed Central

    Pundir, C.S.; Narang, Jagriti; Chauhan, Nidhi; Sharma, Preety; Sharma, Renu

    2012-01-01

    Background & objectives: The use of epoxy resin membrane as a support for immobilization of enzyme has resulted into improved sensitivity and stability of biosensors for uric acid, ascorbic acid and polyphenols. The present work was aimed to prepare an improved amperometric biosensor for determination of serum cholesterol required in the diagnostics and management of certain pathological conditions. Methods: Epoxy resin membrane with immobilized cholesterol oxidase was mounted on the cleaned platinum (Pt) electrode with a parafilm to construct a working electrode. This working electrode along with Ag/AgCl as reference and Ag wire as an auxiliary electrode were connected through a three terminal electrometer to construct a cholesterol biosensor. Results: The sensor showed optimum response within 25 sec at pH 7.0 and 45°C. The linear working range of biosensor was 1.0 to 8.0 mM cholesterol. Km and Imax for cholesterol were 5.0 mM and 9.09 μA, respectively. The biosensor measured serum cholesterol. The minimum detection limit of the sensor was 1.0 mM. The mean analytical recoveries of added cholesterol in serum (2.84 and 4.13 mM) were 91.4±2.8 and 92.3±3.1 per cent (n=6), respectively. Within and between assay coefficient of variation (CV) were <2 and <4 per cent, respectively. Biosensor had a storage life of 6 months at 4°C. Interpretation & conclusions: The use of epoxy resin membrane as a support for immobilization of cholesterol oxidase has resulted into an improved amperometric cholesterol biosensor. The present biosensor had an advantage over the existing biosensors as it worked at comparatively lower potential. PMID:23168704

  6. An amperometric cholesterol biosensor based on epoxy resin membrane bound cholesterol oxidase.

    PubMed

    Pundir, C S; Narang, Jagriti; Chauhan, Nidhi; Sharma, Preety; Sharma, Renu

    2012-10-01

    The use of epoxy resin membrane as a support for immobilization of enzyme has resulted into improved sensitivity and stability of biosensors for uric acid, ascorbic acid and polyphenols. The present work was aimed to prepare an improved amperometric biosensor for determination of serum cholesterol required in the diagnostics and management of certain pathological conditions. Epoxy resin membrane with immobilized cholesterol oxidase was mounted on the cleaned platinum (Pt) electrode with a parafilm to construct a working electrode. This working electrode along with Ag/AgCl as reference and Ag wire as an auxiliary electrode were connected through a three terminal electrometer to construct a cholesterol biosensor. The sensor showed optimum response within 25 sec at pH 7.0 and 45°C. The linear working range of biosensor was 1.0 to 8.0 mM cholesterol. K m and I max for cholesterol were 5.0 mM and 9.09 μA, respectively. The biosensor measured serum cholesterol. The minimum detection limit of the sensor was 1.0 mM. The mean analytical recoveries of added cholesterol in serum (2.84 and 4.13 mM) were 91.4 ± 2.8 and 92.3 ± 3.1 per cent (n=6), respectively. Within and between assay coefficient of variation (CV) were <2 and <4 per cent, respectively. Biosensor had a storage life of 6 months at 4 o C. The use of epoxy resin membrane as a support for immobilization of cholesterol oxidase has resulted into an improved amperometric cholesterol biosensor. The present biosensor had an advantage over the existing biosensors as it worked at comparatively lower potential.

  7. Alzheimer disease β-amyloid activity mimics cholesterol oxidase

    PubMed Central

    Puglielli, Luigi; Friedlich, Avi L.; Setchell, Kenneth D.R.; Nagano, Seiichi; Opazo, Carlos; Cherny, Robert A.; Barnham, Kevin J.; Wade, John D.; Melov, Simon; Kovacs, Dora M.; Bush, Ashley I.

    2005-01-01

    The abnormal accumulation of amyloid β-peptide (Aβ) in the form of senile (or amyloid) plaques is one of the main characteristics of Alzheimer disease (AD). Both cholesterol and Cu2+ have been implicated in AD pathogenesis and plaque formation. Aβ binds Cu2+ with very high affinity, forming a redox-active complex that catalyzes H2O2 production from O2 and cholesterol. Here we show that Aβ:Cu2+ complexes oxidize cholesterol selectively at the C-3 hydroxyl group, catalytically producing 4-cholesten-3-one and therefore mimicking the activity of cholesterol oxidase, which is implicated in cardiovascular disease. Aβ toxicity in neuronal cultures correlated with this activity, which was inhibited by Cu2+ chelators including clioquinol. Cell death induced by staurosporine or H2O2 did not elevate 4-cholesten-3-one levels. Brain tissue from AD subjects had 98% more 4-cholesten-3-one than tissue from age-matched control subjects. We observed a similar increase in the brains of Tg2576 transgenic mice compared with nontransgenic littermates; the increase was inhibited by in vivo treatment with clioquinol, which suggests that brain Aβ accumulation elevates 4-cholesten-3-one levels in AD. Cu2+-mediated oxidation of cholesterol may be a pathogenic mechanism common to atherosclerosis and AD. PMID:16127459

  8. Physiological and pathological implications of cholesterol.

    PubMed

    Cortes, Victor A; Busso, Dolores; Maiz, Alberto; Arteaga, Antonio; Nervi, Flavio; Rigotti, Attilio

    2014-01-01

    Cholesterol has evolved to fulfill sophisticated biophysical, cell signaling and endocrine requirements of animal systems. At a cellular level, cholesterol is found in membranes, where it increases both bilayer stiffness and impermeability to water and ions. Furthermore, cholesterol is integrated into specialized lipid-protein membrane microdomains with critical topographical and signaling functions. At an organismal level, cholesterol is the precursor for all steroid hormones, including gluco- and mineralo-corticoids, sex hormones and vitamin D, all of which regulate carbohydrate, sodium, reproductive and bone homeostasis, respectively. This sterol is also the precursor for bile acids, which are important for intestinal absorption of dietary lipids as well as energy and glucose metabolic regulation. Importantly, complex mechanisms maintain cholesterol within physiological ranges and the disregulation of these mechanisms results in embryonic or adult diseases, caused by either excessive or reduced tissue cholesterol levels. The causative role of cholesterol in these diseases has been demonstrated by diverse genetic and pharmacologic animal models that are commented in this review.

  9. Cholesterol oxidase from Bordetella species promotes irreversible cell apoptosis in lung adenocarcinoma by cholesterol oxidation

    PubMed Central

    Liu, J; Xian, G; Li, M; Zhang, Y; Yang, M; Yu, Y; Lv, H; Xuan, S; Lin, Y; Gao, L

    2014-01-01

    Cholesterol oxidase (COD), an enzyme catalyzing the oxidation of cholesterol, has been applied to track the distribution of membrane cholesterol. Little investigations about the effect of COD on tumor cells have been performed. In the present study, we provided evidence that COD from Bordetella species (COD-B), induced apoptosis of lung cancer cells in vitro and in vivo. COD-B treatment inhibited Akt and ERK1/2 phosphorylation in dose- and time-dependent manner, which was not reversed and was even aggravated by cholesterol addition. Further investigation indicated that COD-B treatment promoted the generation of reactive oxygen species (ROS) and that cholesterol addition further elevated ROS levels. Moreover, COD-B treatment resulted in JNK and p38 phosphorylation, downregulation of Bcl-2, upregulation of Bax, activated caspase-3 and cytochrome C release, which likely responded to freshly produced hydrogen peroxide that accompanied cholesterol oxidation. Catalase pretreatment could only partially prevent COD-B-induced events, suggesting that catalase inhibited H2O2-induced signal transduction but had little effect on signal pathways involved in cholesterol depletion. Our results demonstrated that COD-B led to irreversible cell apoptosis by decreasing cholesterol content and increasing ROS level. In addition, COD-B may be a promising candidate for a novel anti-tumor therapy. PMID:25118932

  10. Immobilization of cholesterol oxidase on cellulose acetate membrane for free cholesterol biosensor development.

    PubMed

    Wang, Shenqi; Li, Shipu; Yu, Yaoting

    2004-01-01

    This article describes the immobilization of cholesterol oxidase on a cellulose acetate (CA) membrane activated by Sodium periodate, ethylenediamine, and glutaraldehyde etc. The properties of the immobilized enzyme membrane were investigated. The factors affecting the activity of immobilized enzyme such as the concentration of glutaraldehyde, the concentration of enzyme used during immobilization, temperature, pH, and immobilizing time etc. were also studied. The immobilized COD membrane has been used to construct fibre-optic fluorescent biosensor.

  11. Monomolecular films of cholesterol oxidase and S-Layer proteins

    NASA Astrophysics Data System (ADS)

    Ferraz, Helen Conceição; Guimarães, Juliana Aguilar; Alves, Tito Livio Moitinho; Constantino, Carlos José Leopoldo

    2011-05-01

    Cholesterol oxidase (ChOx) is a flavoenzyme that catalyzes the oxidation of cholesterol to cholest-5-en-3-one and subsequently the isomerization to cholest-4-en-3-one. ChOx has been very commonly studied as the detection element in cholesterol biosensors. In the biosensor development field, a relatively new approach is the use of crystalline bacterial cell surface layers, known as S-Layer proteins. These proteins exhibit the ability of self-assembling at surfaces, opening a vast spectrum of applications, both in basic and applied researches. In our study, monomolecular films of ChOx and mixed films of ChOx/S-Layer proteins and DPPC/S-Layer proteins were produced using the Langmuir technique. Characterization of the films was performed by means of surface pressure-molecular area ( π- A) isotherms. Stable monolayers were obtained, which means that they can be transferred to solid substrates by Langmuir-Blodgett technique. Mixed monolayers showed an ideal like behavior.

  12. Expression and Chloroplast Targeting of Cholesterol Oxidase in Transgenic Tobacco Plants

    PubMed Central

    Corbin, David R.; Grebenok, Robert J.; Ohnmeiss, Thomas E.; Greenplate, John T.; Purcell, John P.

    2001-01-01

    Cholesterol oxidase represents a novel type of insecticidal protein with potent activity against the cotton boll weevil (Anthonomus grandis grandis Boheman). We transformed tobacco (Nicotiana tabacum) plants with the cholesterol oxidase choM gene and expressed cytosolic and chloroplast-targeted versions of the ChoM protein. Transgenic leaf tissues expressing cholesterol oxidase exerted insecticidal activity against boll weevil larvae. Our results indicate that cholesterol oxidase can metabolize phytosterols in vivo when produced cytosolically or when targeted to chloroplasts. The transgenic plants exhibiting cytosolic expression accumulated low levels of saturated sterols known as stanols, and displayed severe developmental aberrations. In contrast, the transgenic plants expressing chloroplast-targeted cholesterol oxidase maintained a greater accumulation of stanols, and appeared phenotypically and developmentally normal. These results are discussed within the context of plant sterol distribution and metabolism. PMID:11457962

  13. Preparation of cholesterol oxidase nanoparticles and their application in amperometric determination of cholesterol

    NASA Astrophysics Data System (ADS)

    Chawla, Sheetal; Rawal, Rachna; Sonia; Ramrati; Pundir, C. S.

    2013-09-01

    The nanoparticle (NP) aggregates of commercial cholesterol oxidase (ChOx) were prepared by desolvation method. The formation and characterization of ChOxNP aggregates were studied by transmission electron microscopy and scanning electron microscopy. NP aggregates were more stable, active and had a higher shelf life than that of free enzyme. An amperometric cholesterol biosensor was constructed by immobilizing ChOxNPs onto Au electrode. The biosensor showed optimum response within 8 s at pH 6.0 and 35 °C, when polarized at +0.27 V versus Ag/AgCl. The biosensor possesses high sensitivity and measures cholesterol concentrations as low as 1.56 mg/dl. The working linear range was 12.5-700 mg/dl for cholesterol. The biosensor was evaluated and employed for measurement of total cholesterol in human serum. The enzyme electrode lost 50 % of its initial activity during its regular use for 180 times over a period of 90 days when stored in 0.1 M sodium phosphate buffer, pH 7.0 at 4 °C.

  14. Cholesterol oxidase with high catalytic activity from Pseudomonas aeruginosa: Screening, molecular genetic analysis, expression and characterization.

    PubMed

    Doukyu, Noriyuki; Nihei, Shyou

    2015-07-01

    An extracellular cholesterol oxidase producer, Pseudomonas aeruginosa strain PA157, was isolated by a screening method to detect 6β-hydroperoxycholest-4-en-3-one-forming cholesterol oxidase. On the basis of a putative cholesterol oxidase gene sequence in the genome sequence data of P. aeruginosa strain PAO1, the cholesterol oxidase gene from strain PA157 was cloned. The mature form of the enzyme was overexpressed in Escherichia coli cells. The overexpressed enzyme formed inclusion bodies in recombinant E. coli cells grown at 20 °C and 30 °C. A soluble and active PA157 enzyme was obtained when the recombinant cells were grown at 10 °C. The purified enzyme was stable at pH 5.5 to 10 and was most active at pH 7.5-8.0, showing optimal activity at pH 7.0 and 70 °C. The enzyme retained about 90% of its activity after incubation for 30 min at 70 °C. The enzyme oxidized 3β-hydroxysteroids such as cholesterol, β-cholestanol, and β-sitosterol at high rates. The Km value and Vmax value for the cholesterol were 92.6 μM and 15.9 μmol/min/mg of protein, respectively. The Vmax value of the enzyme was higher than those of commercially available cholesterol oxidases. This is the first report to characterize a cholesterol oxidase from P. aeruginosa.

  15. Coenzyme-like ligands for affinity isolation of cholesterol oxidase.

    PubMed

    Xin, Yu; Lu, Liushen; Wang, Qing; Zhang, Ling; Tong, Yanjun; Wang, Wu

    2016-05-15

    Two coenzyme-like chemical ligands were designed and synthesized for affinity isolation of cholesterol oxidase (COD). To simulate the structure of natural coenzyme of COD (flavin adenine dinucleotide (FAD)), on Sepharose beads, 5-aminouracil, cyanuric chloride and 1, 4-butanediamine were composed and then modified. The COD gene from Brevibacterium sp. (DQ345780) was expressed in Escherichia coli BL21 (DE3), and then the sorbents were applied to adsorption analysis with the pure enzyme. Subsequently, the captured enzyme was applied to SDS-PAGE and activity analysis. As calculated, the theoretical maximum adsorption (Qmax) of the two affinity sorbents (RL-1 and RL-2) were ∼83.5 and 46.3mg/g wet gel; and the desorption constant Kd of the two sorbents were ∼6.02×10(-4) and 1.19×10(-4)μM. The proteins after cell lysis were applied to affinity isolation, and then after one step of affinity binding on the two sorbents, the protein recoveries of RL-1 and RL-2 were 9.2% and 9.7%; the bioactivity recoveries were 92.7% and 91.3%, respectively. SDS-PAGE analysis revealed that the purities of COD isolated with the two affinity sorbents were approximately 95%.

  16. Cholesterol oxidase-based determination, by continuous-flow analysis, of total and free cholesterol in serum.

    PubMed

    Lie, R F; Schmitz, J M; Pierre, K J; Gochman, N

    1976-10-01

    We describe a continuous-flow, automated determination of total cholesterol in serum, which is based on enzymatic hydrolysis of cholesterol esters, oxidation of cholesterol by cholesterol oxidase, and colorimetric measurement of liberated perioxide with 4-aminoantipyrine, phenol, and peroxidase. Free cholesterol is determined with the same AutoAnalyzer II manifold and reagents, except that cholesterol esterase is omitted from the reagent. Cholesterol-in-serum materials that have been assayed by an established method are used for calibration. We found this approach to be necessary because primary cholesterol standards in organic solvents are incompatible with the aqueous reagent. Results of the enzymatic total cholesterol method correlated well with those by an AutoAnalyzer II method which involves an extraction with isopropanol and the Liebermann-Burchard color reaction (total cholesterol, g/liter, yenz= 0991xlb +0.05;r=0.996). Results of the enzymatic free cholesterol procedure agreed satisfactorily with one in which free cholesterol is precipitated as the digitonide and subsequently analyzed colorimetrically with the Liebermann-Burchard reaction (free cholesterol, %, yenz = 0.982xdig -0.7;r= 0.956).

  17. Cholesterol oxidase is indispensable in the pathogenesis of Mycobacterium tuberculosis.

    PubMed

    Klink, Magdalena; Brzezinska, Marta; Szulc, Izabela; Brzostek, Anna; Kielbik, Michal; Sulowska, Zofia; Dziadek, Jaroslaw

    2013-01-01

    Despite considerable research effort, the molecular mechanisms of Mycobacterium tuberculosis (Mtb) virulence remain unclear. Cholesterol oxidase (ChoD), an extracellular enzyme capable of converting cholesterol to its 3-keto-4-ene derivative, cholestenone, has been proposed to play a role in the virulence of Mtb. Here, we verified the hypothesis that ChoD is capable of modifying the bactericidal and pro-inflammatory activity of human macrophages. We also sought to determine the contribution of complement receptor 3 (CR3)- and Toll-like receptor 2 (TLR2)-mediated signaling pathways in the development of macrophage responses to Mtb. We found that intracellular replication of an Mtb mutant lacking a functional choD gene (ΔchoD) was less efficient in macrophages than that of the wild-type strain. Blocking CR3 and TLR2 with monoclonal antibodies enhanced survival of ΔchoD inside macrophages. We also showed that, in contrast to wild-type Mtb, the ΔchoD strain induced nitric oxide production in macrophages, an action that depended on the TLR2, but not the CR3, signaling pathway. Both wild-type and mutant strains inhibited the production of reactive oxygen species (ROS), but the ΔchoD strain did so to a significantly lesser extent. Blocking TLR2-mediated signaling abolished the inhibitory effect of wild-type Mtb on ROS production by macrophages. Wild-type Mtb, but not the ΔchoD strain, decreased phorbol myristate acetate-induced phosphorylation of extracellular signal-regulated kinases 1 and 2 (ERK1/2), which are involved in both TLR2- and CR3-mediated signaling pathways. Our finding also revealed that the production of interleukin 10 by macrophages was significantly lower in ΔchoD-infected macrophages than in wild-type Mtb-infected macrophages. However, tumor necrosis factor-α production by macrophages was the same after infection with mutant or wild-type strains. In summary, we demonstrate here that ChoD is required for Mtb interference with the TLR2-mediated

  18. Active membrane cholesterol as a physiological effector.

    PubMed

    Lange, Yvonne; Steck, Theodore L

    2016-09-01

    Sterols associate preferentially with plasma membrane sphingolipids and saturated phospholipids to form stoichiometric complexes. Cholesterol in molar excess of the capacity of these polar bilayer lipids has a high accessibility and fugacity; we call this fraction active cholesterol. This review first considers how active cholesterol serves as an upstream regulator of cellular sterol homeostasis. The mechanism appears to utilize the redistribution of active cholesterol down its diffusional gradient to the endoplasmic reticulum and mitochondria, where it binds multiple effectors and directs their feedback activity. We have also reviewed a broad literature in search of a role for active cholesterol (as opposed to bulk cholesterol or lipid domains such as rafts) in the activity of diverse membrane proteins. Several systems provide such evidence, implicating, in particular, caveolin-1, various kinds of ABC-type cholesterol transporters, solute transporters, receptors and ion channels. We suggest that this larger role for active cholesterol warrants close attention and can be tested easily.

  19. Development of cholesterol biosensor based on immobilized cholesterol esterase and cholesterol oxidase on oxygen electrode for the determination of total cholesterol in food samples.

    PubMed

    Basu, Anjan Kumar; Chattopadhyay, Parimal; Roychoudhuri, Utpal; Chakraborty, Runu

    2007-05-01

    The development of a cholesterol biosensor by co-immobilization of cholesterol esterase (ChEt) and cholesterol oxidase (ChOX) on oxygen electrode is described. The electrode consists of gold cathode and Ag/AgCl anode. The enzymes were immobilized by cross-linking with glutaraldehyde and Bovine Serum Albumin (BSA). The immobilized enzymatic membrane was attached to the tip of the electrode by a push cap system. The optimum pH and temperature of the sensor was determined, these are 6 and 25 degrees C respectively. The developed sensor was calibrated from 1-75 mg/dl of cholesterol palmiate and found linear in the range of 2-50 mg/dL. The calibration curve was drawn with V(i) (ppm/min)(initial velocity) vs different concentrations of cholesterol palmiate (mg/dL). The application of the sensor to determine the total cholesterol in different real food samples such as egg, meat was investigated. The immobilized enzymatic layer can be reused over 30 times and the stability of the enzymatic layer was studied up to 9 weeks.

  20. Retracted: Advances in the physiological and pathological implications of cholesterol.

    PubMed

    Cortes, Victor A; Busso, Dolores; Mardones, Pablo; Maiz, Alberto; Arteaga, Antonio; Nervi, Flavio; Rigotti, Attilio

    2013-11-01

    Cholesterol has evolved to fulfill sophisticated biophysical, cell signalling, and endocrine functions in animal systems. At the cellular level, cholesterol is found in membranes where it increases both bilayer stiffness and impermeability to water and ions. Furthermore, cholesterol is integrated into specialized lipid-protein membrane microdomains with critical topographical and signalling functions. At the organismal level, cholesterol is the precursor of all steroid hormones, including gluco- and mineralo-corticoids, sex hormones, and vitamin D, which regulate carbohydrate, sodium, reproductive, and bone homeostasis, respectively. This sterol is also the immediate precursor of bile acids, which are important for intestinal absorption of dietary lipids as well as energy homeostasis and glucose regulation. Complex mechanisms maintain cholesterol within physiological ranges and the dysregulation of these mechanisms results in embryonic or adult diseases, caused by either excessive or reduced tissue cholesterol levels. The causative role of cholesterol in these conditions has been demonstrated by genetic and pharmacological manipulations in animal models of human disease that are discussed herein. Importantly, the understanding of basic aspects of cholesterol biology has led to the development of high-impact pharmaceutical therapies during the past century. The continuing effort to offer successful treatments for prevalent cholesterol-related diseases, such as atherosclerosis and neurodegenerative disorders, warrants further interdisciplinary research in the coming decades.

  1. Lectin-induced activation of plasma membrane NADPH oxidase in cholesterol-depleted human neutrophils.

    PubMed

    Gorudko, Irina V; Mukhortava, Ann V; Caraher, Brendan; Ren, Melody; Cherenkevich, Sergey N; Kelly, Gregory M; Timoshenko, Alexander V

    2011-12-15

    The gp91phox subunit of flavocytochrome b(558) is the catalytic core of the phagocyte plasma membrane NADPH oxidase. Its activation occurs within lipid rafts and requires translocation of four subunits to flavocytochrome b(558). gp91phox is the only glycosylated subunit of NADPH oxidase and no data exist about the structure or function of its glycans. Glycans, however, bind to lectins and this can stimulate NADPH oxidase activity. Given this information, we hypothesized that lectin-gp91phox interactions would facilitate the assembly of a functionally active NADPH oxidase in the absence of lipid rafts. To test this, we used lectins with different carbohydrate-binding specificity to examine the effects on H(2)O(2) generation by human neutrophils treated with the lipid raft disrupting agent methyl-β-cyclodextrin (MβCD). MβCD treatment removed membrane cholesterol, caused changes in cell morphology, inhibited lectin-induced cell aggregation, and delayed lectin-induced assembly of the NADPH oxidase complex. More importantly, MβCD treatment either stimulated or inhibited H(2)O(2) production in a lectin-dependent manner. Together, these results show selectivity in lectin binding to gp91phox, and provide evidence for the biochemical structures of the gp91phox glycans. Furthermore, the data also indicate that in the absence of lipid rafts, neutrophil NADPH oxidase activity can be altered by these select lectins. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Distortion of Flavin Geometry Is Linked to Ligand Binding in Cholesterol Oxidase

    SciTech Connect

    Lyubimov, A.Y.; Heard, K.; Tang, H.; Sampson, N.S.; Vrielink, A.

    2009-06-03

    Two high-resolution structures of a double mutant of bacterial cholesterol oxidase in the presence or absence of a ligand, glycerol, are presented, showing the trajectory of glycerol as it binds in a Michaelis complex-like position in the active site. A group of three aromatic residues forces the oxidized isoalloxazine moiety to bend along the N5-N10 axis as a response to the binding of glycerol in the active site. Movement of these aromatic residues is only observed in the glycerol-bound structure, indicating that some tuning of the FAD redox potential is caused by the formation of the Michaelis complex during regular catalysis. This structural study suggests a possible mechanism of substrate-assisted flavin activation, improves our understanding of the interplay between the enzyme, its flavin cofactor and its substrate, and is of use to the future design of effective cholesterol oxidase inhibitors.

  3. Distortion of flavin geometry is linked to ligand binding in cholesterol oxidase

    PubMed Central

    Lyubimov, Artem Y.; Heard, Kathryn; Tang, Hui; Sampson, Nicole S.; Vrielink, Alice

    2007-01-01

    Two high-resolution structures of a double mutant of bacterial cholesterol oxidase in the presence or absence of a ligand, glycerol, are presented, showing the trajectory of glycerol as it binds in a Michaelis complex-like position in the active site. A group of three aromatic residues forces the oxidized isoalloxazine moiety to bend along the N5-N10 axis as a response to the binding of glycerol in the active site. Movement of these aromatic residues is only observed in the glycerol-bound structure, indicating that some tuning of the FAD redox potential is caused by the formation of the Michaelis complex during regular catalysis. This structural study suggests a possible mechanism of substrate-assisted flavin activation, improves our understanding of the interplay between the enzyme, its flavin cofactor and its substrate, and is of use to the future design of effective cholesterol oxidase inhibitors. PMID:18029419

  4. Surface enhanced Raman scattering as a probe of the cholesterol oxidase enzyme

    NASA Astrophysics Data System (ADS)

    Wojnarowska, R.; Polit, J.; Broda, D.; Gonchar, M.; Sheregii, E. M.

    2015-03-01

    In this work, we present a sensitive method for the determination of the enzyme concentration of cholesterol oxidase, which is one of the most important analytical enzymes. Although the method is affected by sensitivity limitations, recently the Raman scattering experimental data carried out on cholesterol oxidase conjugated via a 16-mercaptohexadecanoic acid organic linker with gold nanoparticles due to the surface plasmon resonance confirmed the observation of surface enhanced Raman scattering, which enables us to detect the vibrational lines belonging to PO and C=C bonds assigned to the flavin prosthetic group. This means there is a stable binding of the enzyme with nanoparticles as well as the enzyme remaining active and substantiates the possibility that prepared bio-nanosystems can be used for analytical purposes as a sensing element.

  5. Polyphenol Oxidases in Crops: Biochemical, Physiological and Genetic Aspects

    PubMed Central

    Taranto, Francesca; Pasqualone, Antonella; Mangini, Giacomo; Tripodi, Pasquale; Miazzi, Monica Marilena; Pavan, Stefano; Montemurro, Cinzia

    2017-01-01

    Enzymatic browning is a colour reaction occurring in plants, including cereals, fruit and horticultural crops, due to oxidation during postharvest processing and storage. This has a negative impact on the colour, flavour, nutritional properties and shelf life of food products. Browning is usually caused by polyphenol oxidases (PPOs), following cell damage caused by senescence, wounding and the attack of pests and pathogens. Several studies indicated that PPOs play a role in plant immunity, and emerging evidence suggested that PPOs might also be involved in other physiological processes. Genomic investigations ultimately led to the isolation of PPO homologs in several crops, which will be possibly characterized at the functional level in the near future. Here, focusing on the botanic families of Poaceae and Solanaceae, we provide an overview on available scientific literature on PPOs, resulting in useful information on biochemical, physiological and genetic aspects. PMID:28208645

  6. Cholesterol Oxidase Functionalised Polyaniline/Carbon Nanotube Hybrids for an Amperometric Biosensor.

    PubMed

    Shukla, Sudheesh K; Turner, Anthony P F; Tiwari, Ashutosh

    2015-05-01

    Functional carbon nanotubes (CNT) have attracted much attention for analytical and biomedical applications. This paper describes the fabrication of a cholesterol oxidase (ChOx) immobilised polyaniline (PANI)/CNT composite electrode for the amperometric detection of cholesterol. The prepared ChOx/PANI/CNT/Au bioelectrode bound ChOx via the available functionalties of PANI (-NH2) and CNT (-COOH). Moreover, the CNT creates a network inside the matrix that strengthens the mechanical property of the bioelectrode. The multifunctional matrix is presumed to provide a 3D-mesoporous surface, which substantially enhances enzyme activity. The linear range of the biosensor for cholesterol oleate was 30-280 μM with a response time of 10 sec.

  7. Identification and statistical optimization of fermentation conditions for a newly isolated extracellular cholesterol oxidase-producing Streptomyces cavourensis strain NEAE-42.

    PubMed

    El-Naggar, Noura El-Ahmady; El-Shweihy, Nancy M; El-Ewasy, Sara M

    2016-09-20

    Due to broad range of clinical and industrial applications of cholesterol oxidase, isolation and screening of bacterial strains producing extracellular form of cholesterol oxidase is of great importance. One hundred and thirty actinomycete isolates were screened for their cholesterol oxidase activity. Among them, a potential culture, strain NEAE-42 is displayed the highest extracellular cholesterol oxidase activity. It was selected and identified as Streptomyces cavourensis strain NEAE-42. The optimization of different process parameters for cholesterol oxidase production by Streptomyces cavourensis strain NEAE-42 using Plackett-Burman experimental design and response surface methodology was carried out. Fifteen variables were screened using Plackett-Burman experimental design. Cholesterol, initial pH and (NH4)2SO4 were the most significant positive independent variables affecting cholesterol oxidase production. Central composite design was chosen to elucidate the optimal concentrations of the selected process variables on cholesterol oxidase production. It was found that, cholesterol oxidase production by Streptomyces cavourensis strain NEAE-42 after optimization process was 20.521U/mL which is higher than result obtained from the basal medium before screening process using Plackett-Burman (3.31 U/mL) with a fold of increase 6.19. The cholesterol oxidase level production obtained in this study (20.521U/mL) by the statistical method is higher than many of the reported values.

  8. Microprojectile Bombardment Transformation of Date Palm Using the Insecticidal Cholesterol Oxidase (ChoA) Gene.

    PubMed

    Allam, Mai A; Saker, Mahmoud M

    2017-01-01

    The overall objective of this work is to optimize the transformation system for date palm as a first step toward production of date palm clones resistant to noxious pests. A construct harboring the cholesterol oxidase (ChoA) gene, which renders plant resistance against insect attack, is introduced into embryogenic date palm callus using the PDS-1000/He particle bombardment system. The process involves the establishment of embryogenic callus cultures as well as immature embryo-derived microcalli that are used as target tissues for shooting and optimization of transformation conditions. This chapter in addition explains molecular and histochemical assays conducted to confirm gene integration and expression.

  9. Bioanalytical device based on cholesterol oxidase-bonded SAM-modified electrodes.

    PubMed

    Parra, A; Casero, E; Pariente, F; Vázquez, L; Lorenzo, E

    2007-07-01

    A rapid, simple and reproducible two-step method for constructing cholesterol biosensors by covalently bonding cholesterol oxidase (ChOx) to a 3,3'-dithiodipropionic acid di(N-succinimidyl ester) (DTSP)-modified gold electrode is described. Exhaustive characterizations of both the immobilization process and the morphological properties of the resulting ChOx monolayer were performed via a quartz crystal microbalance (QCM) and atomic force microscopy (AFM) operated under liquid conditions, respectively. In addition, scanning electrochemical microscopy (SECM) measurements were performed in order to check that the immobilized enzyme retains its catalytic activity. The replacement of the natural electron acceptor (O(2)) in the enzymatic reaction with an artificial mediator, hydroxymethylferrocene (HMF), was also studied. Finally, cholesterol was amperometrically determined by measuring the hydrogen peroxide produced during the enzymatic reaction at +0.5 V. The optimized cholesterol biosensor exhibited a sensitivity of 54 nA mM(-1) and a detection limit of 22 microM.

  10. Improvement of Natamycin Production by Cholesterol Oxidase Overexpression in Streptomyces gilvosporeus.

    PubMed

    Wang, Miao; Wang, Shaohua; Zong, Gongli; Hou, Zhongwen; Liu, Fei; Liao, D Joshua; Zhu, Xiqiang

    2016-02-01

    Natamycin is a widely used antifungal antibiotic. For natamycin biosynthesis, the gene pimE encodes cholesterol oxidase, which acts as a signalling protein. To confirm the positive effect of the gene pimE on natamycin biosynthesis, an additional copy of the gene pimE was inserted into the genome of Streptomyces gilvosporeus 712 under the control of the ermE* promoter (permE*) using intergeneric conjugation. Overexpression of the target protein engendered 72% and 81% increases in the natamycin production and cell productivity, respectively, compared with the control strain. Further improvement in the antibiotic production was achieved in a 1 L fermenter to 7.0 g/l, which was a 153% improvement after 120 h cultivation. Exconjugants highly expressing pimE and pimM were constructed to investigate the effects of both genes on the increase of natamycin production. However, the co-effect of pimE and pimM did not enhance the antibiotic production obviously, compared with the exconjugants highly expressing pimE only. These results suggest not only a new application of cholesterol oxidase but also a useful strategy to genetically engineer natamycin production.

  11. Surface functionalization of silica-coated magnetic nanoparticles for covalent attachment of cholesterol oxidase

    NASA Astrophysics Data System (ADS)

    Šulek, Franja; Drofenik, Miha; Habulin, Maja; Knez, Željko

    2010-01-01

    A systematic approach towards the fabrication of highly functionalized silica shell magnetic nanoparticles, presently used for enzyme immobilization, is herein fully presented. The synthesis of bare maghemite (γ-Fe 2O 3) nanoparticles was accomplished by thermal co-precipitation of iron ions in ammonia alkaline solution at harsh reaction conditions, respectively. Primary surface engineering of maghemite nanoparticles was successfully performed by the proper deposition of silica onto nanoparticles surface under strictly regulated reaction conditions. Next, the secondary surface functionalization of the particles was achieved by coating the particles with organosilane followed by glutaraldehyde activation in order to enhance protein immobilization. Covalent immobilization of cholesterol oxidase was attempted afterwards. The structural and magnetic properties of magnetic silica nanocomposites were characterized by TEM and vibrating sample magnetometer (VSM) instruments. X-ray diffraction measurements confirmed the spinel structure and average size of uncoated maghemite nanoparticles to be around 20 nm in diameter. SEM-EDS spectra indicated a strong signal for Si, implying the coating procedure of silica onto the particles surface to be successfully accomplished. Fourier transform infrared (FT-IR) spectra analysis confirmed the binding of amino silane molecules onto the surface of the maghemite nanoparticles mediated Si-O-Si chemical bonds. Compared to the free enzyme, the covalently bound cholesterol oxidase retained 50% of its activity. Binding of enzyme onto chemically modified magnetic nanoparticles via glutaraldehyde activation is a promising method for developing biosensing components in biomedicine.

  12. On the oxygen reactivity of flavoprotein oxidases: an oxygen access tunnel and gate in brevibacterium sterolicum cholesterol oxidase.

    PubMed

    Piubelli, Luciano; Pedotti, Mattia; Molla, Gianluca; Feindler-Boeckh, Susanne; Ghisla, Sandro; Pilone, Mirella S; Pollegioni, Loredano

    2008-09-05

    The flavoprotein cholesterol oxidase from Brevibacterium sterolicum (BCO) possesses a narrow channel that links the active center containing the flavin to the outside solvent. This channel has been proposed to serve for the access of dioxygen; it contains at its "bottom" a Glu-Arg pair (Glu-475-Arg-477) that was found by crystallographic studies to exist in two forms named "open" and "closed," which in turn was suggested to constitute a gate functioning in the control of oxygen access. Most mutations of residues that flank the channel have minor effects on the oxygen reactivity. Mutations of Glu-311, however, cause a switch in the basic kinetic mechanism of the reaction of reduced BCO with dioxygen; wild-type BCO and most mutants show a saturation behavior with increasing oxygen concentration, whereas for Glu-311 mutants a linear dependence is found that is assumed to reflect a "simple" second order process. This is taken as support for the assumption that residue Glu-311 finely tunes the Glu-475-Arg-477 pair, forming a gate that functions in modulating the access/reactivity of dioxygen.

  13. Structural and kinetic analyses of the H121A mutant of cholesterol oxidase

    PubMed Central

    Molla, Gianluca; Guinn, Nicole; Ghisla, Sandro; Pollegioni, Loredano; Vrielink, Alice

    2006-01-01

    Cholesterol oxidase is a monomeric flavoenzyme that catalyses the oxidation of cholesterol to cholest-5-en-3-one followed by isomerization to cholest-4-en-3-one. The enzyme from Brevibacterium sterolicum contains the FAD cofactor covalently bound to His121. It was previously demonstrated that the H121A substitution results in a ≈100 mV decrease in the midpoint redox potential and a ≈40-fold decrease in turnover number compared to wild-type enzyme [Motteran, Pilone, Molla, Ghisla and Pollegioni (2001) Journal of Biological Chemistry 276, 18024–18030]. A detailed kinetic analysis of the H121A mutant enzyme shows that the decrease in turnover number is largely due to a corresponding decrease in the rate constant of flavin reduction, whilst the re-oxidation reaction is only marginally altered and the isomerization reaction is not affected by the substitution and precedes product dissociation. The X-ray structure of the mutant protein, determined to 1.7 Å resolution (1 Å≡0.1 nm), reveals only minor changes in the overall fold of the protein, namely: two loops have slight movements and a tryptophan residue changes conformation by a rotation of 180° about χ1 compared to the native enzyme. Comparison of the isoalloxazine ring moiety of the FAD cofactor between the structures of the native and mutant proteins shows a change from a non-planar to a planar geometry (resulting in a more tetrahedral-like geometry for N5). This change is proposed to be a major factor contributing to the observed alteration in redox potential. Since a similar distortion of the flavin has not been observed in other covalent flavoproteins, it is proposed to represent a specific mode to facilitate flavin reduction in covalent cholesterol oxidase. PMID:16856877

  14. Reusable and mediator-free cholesterol biosensor based on cholesterol oxidase immobilized onto TGA-SAM modified smart bio-chips.

    PubMed

    Rahman, Mohammed M

    2014-01-01

    A reusable and mediator-free cholesterol biosensor based on cholesterol oxidase (ChOx) was fabricated based on self-assembled monolayer (SAM) of thioglycolic acid (TGA) (covalent enzyme immobilization by dropping method) using bio-chips. Cholesterol was detected with modified bio-chip (Gold/Thioglycolic-acid/Cholesterol-oxidase i.e., Au/TGA/ChOx) by reliable cyclic voltammetric (CV) technique at room conditions. The Au/TGA/ChOx modified bio-chip sensor demonstrates good linearity (1.0 nM to 1.0 mM; R = 0.9935), low-detection limit (∼0.42 nM, SNR∼3), and higher sensitivity (∼74.3 µA µM(-1) cm(-2)), lowest-small sample volume (50.0 μL), good stability, and reproducibility. To the best of our knowledge, this is the first statement with a very high sensitivity, low-detection limit, and low-sample volumes are required for cholesterol biosensor using Au/TGA/ChOx-chips assembly. The result of this facile approach was investigated for the biomedical applications for real samples at room conditions with significant assembly (Au/TGA/ChOx) towards the development of selected cholesterol biosensors, which can offer analytical access to a large group of enzymes for wide range of biomedical applications in health-care fields.

  15. Reusable and Mediator-Free Cholesterol Biosensor Based on Cholesterol Oxidase Immobilized onto TGA-SAM Modified Smart Bio-Chips

    PubMed Central

    Rahman, Mohammed M.

    2014-01-01

    A reusable and mediator-free cholesterol biosensor based on cholesterol oxidase (ChOx) was fabricated based on self-assembled monolayer (SAM) of thioglycolic acid (TGA) (covalent enzyme immobilization by dropping method) using bio-chips. Cholesterol was detected with modified bio-chip (Gold/Thioglycolic-acid/Cholesterol-oxidase i.e., Au/TGA/ChOx) by reliable cyclic voltammetric (CV) technique at room conditions. The Au/TGA/ChOx modified bio-chip sensor demonstrates good linearity (1.0 nM to 1.0 mM; R = 0.9935), low-detection limit (∼0.42 nM, SNR∼3), and higher sensitivity (∼74.3 µAµM−1cm−2), lowest-small sample volume (50.0 μL), good stability, and reproducibility. To the best of our knowledge, this is the first statement with a very high sensitivity, low-detection limit, and low-sample volumes are required for cholesterol biosensor using Au/TGA/ChOx-chips assembly. The result of this facile approach was investigated for the biomedical applications for real samples at room conditions with significant assembly (Au/TGA/ChOx) towards the development of selected cholesterol biosensors, which can offer analytical access to a large group of enzymes for wide range of biomedical applications in health-care fields. PMID:24949733

  16. Enzymatic activity of cholesterol oxidase immobilized onto polymer nanoparticles mediated by Congo red.

    PubMed

    Silva, Rubens A; Carmona-Ribeiro, Ana Maria; Petri, Denise F S

    2013-10-01

    Poly(ethylene glycol), PEG, decorated polystyrene (PS) nanoparticles were synthesized and characterized by means of dynamic light scattering (DLS), zeta (ζ) potential measurements, Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The adsorption of Congo red (CR) onto PS/PEG particles was evidenced by the decrease of ζ potential values and increase in the particles mean diameter in comparison to bare particles. Cholesterol oxidase (ChOx), the main enzyme in the oxidation of cholesterol, adsorbed onto PS/PEG and PS/PEG/CR particles, as revealed by the increase in the particles mean size and spectrophotometry. The enzymatic activity of free and immobilized ChOx was determined as a function of time by means of a coupled reaction with horseradish peroxidase. The activity of free ChOx decreased with time, while the activity of immobilized ChOx increased with time; after 1h reaction the latter was half of the former. Freeze-drying the ChOx covered PS/PEG/CR particles allowed their storage for at least one month under room conditions without loss of enzymatic activity. Conjugation effects between CR and ChOx or cholesterol evidenced by circular dichroism and spectrophotometry rendered a conformational state of ChOx, such that the enzymatic action was favored. ChOx adsorbed onto PS/PEG presents no enzymatic activity, probably due to ChOx denaturation or unfavorable orientation. Freeze-dried and freshly prepared dispersions of ChOx immobilized onto PS/PEG/CR particles yielded linear response in the cholesterol concentration range of 100mgdL(-1) (lowest limit of normal blood concentration) to 300mgdL(-1) (high risk level). Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Performance of cholesterol oxidase sequestered within reverse micelles formed in supercritical carbon dioxide

    SciTech Connect

    Kane, M.A.; Baker, G.A.; Pandey, S.; Bright, F.V.

    2000-05-30

    The authors report the first results on an enzyme-induced reaction within the water core of reverse micelles that have been formed in supercritical CO{sub 2} (scCO{sub 2}). By using a perfluoropolyether ammonium carboxylate (PFPE) surfactant, the authors form reverse micelles in scCO{sub 2} with water cores and the authors show that the oxidation of cholesterol by cholesterol oxidase (ChOx) obeys Michaelis-Menten kinetics. The results of their experiments also show that (1) the optimum ChOx activity occurs when the molar ratio of H{sub 2}O-to-PFPE (R) exceeds {approximately}12, (2) the rate constant describing the conversion of the ChOx-cholesterol complex to product ({kappa}{sub cat,app}) is similar to values reported using reverse micelle systems formed in liquid alkanes, (3) the equilibrium constant that describes the ChOx-cholesterol complex dissociation (K{sub m,app}) is optimal at high R values, (4) the best-case K{sub m,app} is {approximately}2-fold better than the value reported using reverse micelles formed in liquid alkanes, (5) there is little change in the ChOx {kappa}{sub cat,app} and K{sub m,app} as the authors adjust the CO{sub 2} pressure between 100 and 260 bar, and (6) the ChOx was active within the PFPE water pool for at least 5 h; however, after 8 or more hours within the PFPE water pool, ChOx became temporarily inactive.

  18. Amperometric cholesterol biosensor based on the direct electrochemistry of cholesterol oxidase and catalase on a graphene/ionic liquid-modified glassy carbon electrode.

    PubMed

    Gholivand, Mohammad Bagher; Khodadadian, Mehdi

    2014-03-15

    Cholesterol oxidase (ChOx) and catalase (CAT) were co-immobilized on a graphene/ionic liquid-modified glassy carbon electrode (GR-IL/GCE) to develop a highly sensitive amperometric cholesterol biosensor. The H2O2 generated during the enzymatic reaction of ChOx with cholesterol could be reduced electrocatalytically by immobilized CAT to obtain a sensitive amperometric response to cholesterol. The direct electron transfer between enzymes and electrode surface was investigated by cyclic voltammetry. Both enzymes showed well-defined redox peaks with quasi-reversible behaviors. An excellent sensitivity of 4.163 mA mM(-1)cm(-2), a response time less than 6s, and a linear range of 0.25-215 μM (R(2)>0.99) have been observed for cholesterol determination using the proposed biosensor. The apparent Michaelis-Menten constant (KM(app)) was calculated to be 2.32 mM. The bienzymatic cholesterol biosensor showed good reproducibility (RSDs<5%) with minimal interference from the coexisting electroactive compounds such as ascorbic acid and uric acid. The CAT/ChOx/GR-IL/GCE showed excellent analytical performance for the determination of free cholesterol in human serum samples.

  19. Plant sterols, cholesterol precursors and oxysterols: Minute concentrations-Major physiological effects.

    PubMed

    Olkkonen, Vesa M; Gylling, Helena; Ikonen, Elina

    2017-05-01

    Non-cholesterol sterols are present in our body at very low concentrations as compared to cholesterol. Small changes in the structure of sterol molecules confer them highly distinct biological activities. The best-known example are steroid hormones derived from cholesterol. During the past decade, our knowledge of also other biomolecules related to or derived from cholesterol, particularly plant sterols, biosynthetic precursors of cholesterol, and oxysterols, has expanded rapidly. In this review article we recapitulate the latest insights into the properties and physiological activities of these non-cholesterol sterols, as well as their importance in disease processes and potential as diagnostic biomarkers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Artificial Intelligence versus Statistical Modeling and Optimization of Cholesterol Oxidase Production by using Streptomyces Sp.

    PubMed

    Pathak, Lakshmi; Singh, Vineeta; Niwas, Ram; Osama, Khwaja; Khan, Saif; Haque, Shafiul; Tripathi, C K M; Mishra, B N

    2015-01-01

    Cholesterol oxidase (COD) is a bi-functional FAD-containing oxidoreductase which catalyzes the oxidation of cholesterol into 4-cholesten-3-one. The wider biological functions and clinical applications of COD have urged the screening, isolation and characterization of newer microbes from diverse habitats as a source of COD and optimization and over-production of COD for various uses. The practicability of statistical/ artificial intelligence techniques, such as response surface methodology (RSM), artificial neural network (ANN) and genetic algorithm (GA) have been tested to optimize the medium composition for the production of COD from novel strain Streptomyces sp. NCIM 5500. All experiments were performed according to the five factor central composite design (CCD) and the generated data was analysed using RSM and ANN. GA was employed to optimize the models generated by RSM and ANN. Based upon the predicted COD concentration, the model developed with ANN was found to be superior to the model developed with RSM. The RSM-GA approach predicted maximum of 6.283 U/mL COD production, whereas the ANN-GA approach predicted a maximum of 9.93 U/mL COD concentration. The optimum concentrations of the medium variables predicted through ANN-GA approach were: 1.431 g/50 mL soybean, 1.389 g/50 mL maltose, 0.029 g/50 mL MgSO4, 0.45 g/50 mL NaCl and 2.235 ml/50 mL glycerol. The experimental COD concentration was concurrent with the GA predicted yield and led to 9.75 U/mL COD production, which was nearly two times higher than the yield (4.2 U/mL) obtained with the un-optimized medium. This is the very first time we are reporting the statistical versus artificial intelligence based modeling and optimization of COD production by Streptomyces sp. NCIM 5500.

  1. Artificial Intelligence versus Statistical Modeling and Optimization of Cholesterol Oxidase Production by using Streptomyces Sp.

    PubMed Central

    Niwas, Ram; Osama, Khwaja; Khan, Saif; Haque, Shafiul; Tripathi, C. K. M.; Mishra, B. N.

    2015-01-01

    Cholesterol oxidase (COD) is a bi-functional FAD-containing oxidoreductase which catalyzes the oxidation of cholesterol into 4-cholesten-3-one. The wider biological functions and clinical applications of COD have urged the screening, isolation and characterization of newer microbes from diverse habitats as a source of COD and optimization and over-production of COD for various uses. The practicability of statistical/ artificial intelligence techniques, such as response surface methodology (RSM), artificial neural network (ANN) and genetic algorithm (GA) have been tested to optimize the medium composition for the production of COD from novel strain Streptomyces sp. NCIM 5500. All experiments were performed according to the five factor central composite design (CCD) and the generated data was analysed using RSM and ANN. GA was employed to optimize the models generated by RSM and ANN. Based upon the predicted COD concentration, the model developed with ANN was found to be superior to the model developed with RSM. The RSM-GA approach predicted maximum of 6.283 U/mL COD production, whereas the ANN-GA approach predicted a maximum of 9.93 U/mL COD concentration. The optimum concentrations of the medium variables predicted through ANN-GA approach were: 1.431 g/50 mL soybean, 1.389 g/50 mL maltose, 0.029 g/50 mL MgSO4, 0.45 g/50 mL NaCl and 2.235 ml/50 mL glycerol. The experimental COD concentration was concurrent with the GA predicted yield and led to 9.75 U/mL COD production, which was nearly two times higher than the yield (4.2 U/mL) obtained with the un-optimized medium. This is the very first time we are reporting the statistical versus artificial intelligence based modeling and optimization of COD production by Streptomyces sp. NCIM 5500. PMID:26368924

  2. Cholesterol oxidase: ultrahigh-resolution crystal structure and multipolar atom model-based analysis.

    PubMed

    Zarychta, Bartosz; Lyubimov, Artem; Ahmed, Maqsood; Munshi, Parthapratim; Guillot, Benoît; Vrielink, Alice; Jelsch, Christian

    2015-04-01

    Examination of protein structure at the subatomic level is required to improve the understanding of enzymatic function. For this purpose, X-ray diffraction data have been collected at 100 K from cholesterol oxidase crystals using synchrotron radiation to an optical resolution of 0.94 Å. After refinement using the spherical atom model, nonmodelled bonding peaks were detected in the Fourier residual electron density on some of the individual bonds. Well defined bond density was observed in the peptide plane after averaging maps on the residues with the lowest thermal motion. The multipolar electron density of the protein-cofactor complex was modelled by transfer of the ELMAM2 charge-density database, and the topology of the intermolecular interactions between the protein and the flavin adenine dinucleotide (FAD) cofactor was subsequently investigated. Taking advantage of the high resolution of the structure, the stereochemistry of main-chain bond lengths and of C=O···H-N hydrogen bonds was analyzed with respect to the different secondary-structure elements.

  3. Cholesterol Oxidase Binds TLR2 and Modulates Functional Responses of Human Macrophages

    PubMed Central

    Kielbik, Michal; Sulowska, Zofia; Klink, Magdalena

    2014-01-01

    Cholesterol oxidase (ChoD) is considered to be an important virulence factor for Mycobacterium tuberculosis (Mtb), but its influence on macrophage activity is unknown. Here we used Nocardia erythropolis ChoD, which is very similar to the Mtb enzyme (70% identity at the amino-acid level), to evaluate the impact of bacterial ChoD on the activity of THP-1-derived macrophages in vitro. We found that ChoD decreased the surface expression of Toll-like receptor type 2 (TLR2) and complement receptor 3 (CR3) on these macrophages. Flow cytometry and confocal microscopy showed that ChoD competed with lipoteichoic acid for ligand binding sites on TLR2 but not on CR3, suggesting that ChoD signaling is mediated via TLR2. Binding of ChoD to the membrane of macrophages had diverse effects on the activity of macrophages, activating p38 mitogen activated kinase and stimulating production of a large amount of interleukin-10. Moreover, ChoD primed macrophages to enhance the production of reactive oxygen species in response to the phorbol myristate acetate, which was reduced by “switching off” TLR-derived signaling through interleukin-1 receptor-associated kinases 1 and 4 inhibition. Our study revealed that ChoD interacts directly with macrophages via TLR2 and influences the biological activity of macrophages during the development of the initial response to infection. PMID:25120288

  4. Identification and engineering of cholesterol oxidases involved in the initial step of sterols catabolism in Mycobacterium neoaurum.

    PubMed

    Yao, Kang; Wang, Feng-Qing; Zhang, Huai-Cheng; Wei, Dong-Zhi

    2013-01-01

    Mycobacteria have been modified to transform sterols to produce valuable steroids. Here, we demonstrated that the oxidation of sterols to sterones is a rate-limiting step in the catabolic pathway of sterols in Mycobacterium neoaurum. Two cholesterol oxidases ChoM1 and ChoM2 involved in the step were identified in M. neoaurum and the ChoM2 shared up to 45% identity with other cholesterol oxidases. We demonstrated that the combination of ChoM1 and ChoM2 plays a significant role in this step. Accordingly, we developed a strategy to overcome this rate-limiting step by augmenting the activity of cholesterol oxidases in M. neoaurum strains to enhance their transformation productivity of sterols to valuable steroids. Our results indicated that the augmentation of ChoM2 achieved 5.57g/l androst-1,4-diene-3,17-dione in M. neoaurum NwIB-01MS and 6.85g/l androst-4-ene-3,17-dione in M. neoaurum NwIB-R10, greatly higher than the original yield, 3.87g/l androst-1,4-diene-3,17-dione and 4.53g/l androst-4-ene-3,17-dione, respectively. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Cholesterol sulfate in human physiology: what's it all about?

    PubMed

    Strott, Charles A; Higashi, Yuko

    2003-07-01

    Cholesterol sulfate is quantitatively the most important known sterol sulfate in human plasma, where it is present in a concentration that overlaps that of the other abundant circulating steroid sulfate, dehydroepiandrosterone (DHEA) sulfate. Although these sulfolipids have similar production and metabolic clearance rates, they arise from distinct sources and are metabolized by different pathways. While the function of DHEA sulfate remains an enigma, cholesterol sulfate has emerged as an important regulatory molecule. Cholesterol sulfate is a component of cell membranes where it has a stabilizing role, e.g., protecting erythrocytes from osmotic lysis and regulating sperm capacitation. It is present in platelet membranes where it supports platelet adhesion. Cholesterol sulfate can regulate the activity of serine proteases, e.g., those involved in blood clotting, fibrinolysis, and epidermal cell adhesion. As a result of its ability to regulate the activity of selective protein kinase C isoforms and modulate the specificity of phosphatidylinositol 3-kinase, cholesterol sulfate is involved in signal transduction. Cholesterol sulfate functions in keratinocyte differentiation, inducing genes that encode for key components involved in development of the barrier. The accumulating evidence demonstrating a regulatory function for cholesterol sulfate appears solid; the challenge now is to work out the molecular mechanisms whereby this interesting molecule carries out its various roles.

  6. Bioconjugation of lipase and cholesterol oxidase with graphene or graphene oxide

    NASA Astrophysics Data System (ADS)

    Silva, Rubens A.; Souza, Michele L.; Bloisi, Georgia D.; Corio, Paolo; Petri, Denise F. S.

    2015-04-01

    The catalytic behavior of lipase and cholesterol oxidase (ChOx) in the absence and in the presence of graphene (G) or graphene oxide (GO) was investigated at 24 ± 1 °C and pH 6.5. GO flat sheets (0.5-2 μm) were 2-nm thick, while G formed aggregates. The maximum reaction velocity ( V max) values and turnover numbers ( k cat) determined for reactions catalyzed by physical mixtures of lipase (at 0.01 g l-1) or ChOx (at 0.03 g l-1) and G (0.012 g l-1) increased six-fold or doubled, respectively, in comparison to neat enzymes. Circular dichroism (CD) and photoluminescence (PL) spectroscopic measurements revealed the preservation of native secondary structures of enzymes and bioconjugation driven by hydrophobic interaction and energy transfer (redshift) between lipase or ChOx and G, corroborating with the enhanced catalytic behavior. On the other hand, the interactions between GO, which has hydrophilic moieties on the basal plane, and ChOx caused enzyme deactivation, as evidenced by the absence of typical CD signal. At low GO concentration (<0.012 g l-1), bioconjugates of lipases with GO led to V max and k cat values four-fold lower than their counterparts with G, but the GO hydrophilic groups probably favored the affinity for the substrate, because the Michaelis constant (Km) values decreased in comparison to that of neat lipase. Upon increasing the GO concentration, lipases lost secondary structure and the typical lipase PL bands disappeared.

  7. Identification and mutagenesis by allelic exchange of choE, encoding a cholesterol oxidase from the intracellular pathogen Rhodococcus equi.

    PubMed

    Navas, J; González-Zorn, B; Ladrón, N; Garrido, P; Vázquez-Boland, J A

    2001-08-01

    The virulence mechanisms of the facultative intracellular parasite Rhodococcus equi remain largely unknown. Among the candidate virulence factors of this pathogenic actinomycete is a secreted cholesterol oxidase, a putative membrane-damaging toxin. We identified and characterized the gene encoding this enzyme, the choE monocistron. Its protein product, ChoE, is homologous to other secreted cholesterol oxidases identified in Brevibacterium sterolicum and Streptomyces spp. ChoE also exhibits significant similarities to putative cholesterol oxidases encoded by Mycobacterium tuberculosis and Mycobacterium leprae. Genetic tools for use with R. equi are poorly developed. Here we describe the first targeted mutagenesis system available for this bacterium. It is based on a suicide plasmid, a selectable marker (the aacC4 apramycin resistance gene from Salmonella), and homologous recombination. The choE allele was disrupted by insertion of the aacC4 gene, cloned in pUC19 and introduced by electroporation in R. equi. choE recombinants were isolated at frequencies between 10(-2) and 10(-3). Twelve percent of the recombinants were double-crossover choE mutants. The choE mutation was associated with loss of cooperative (CAMP-like) hemolysis with sphingomyelinase-producing bacteria (Listeria ivanovii). Functional complementation was achieved by expression of choE from pVK173-T, a pAL5000 derivative conferring hygromycin resistance. Our data demonstrate that ChoE is an important cytolytic factor for R. equi. The highly efficient targeted mutagenesis procedure that we used to generate choE isogenic mutants will be a valuable tool for the molecular analysis of R. equi virulence.

  8. Physiological performance of quails that underwent dietary and pharmacological manipulation of cholesterol.

    PubMed

    Botelho, G G; Falbo, M K; Ost, P R; Czekoski, Z M; Raviolo, A E; Giotto, F M; Goldoni, E C; Morais, R N

    2015-06-01

    The present work evaluated whether dietary and pharmacological interference on cholesterol synthesis were capable of inducing alterations in blood and yolk cholesterol levels and the secretion of corticosterone metabolites. Forty-five 40-day-old quails were divided into three experimental groups: vegetal fat diet, 2% beef fat (tallow) diet and vegetal fat diet with simvastatin administration (3.13 mg/kg/day). During all experiments, the animal weights and food consumption were recorded and blood and faecal samples (days 0, 15, 30, 45 and 60), as well as eggs (days 30, 45 and 60), were collected. Analysis of serum and yolk cholesterol was performed and faecal corticosterone levels were measured. No differences were observed on blood cholesterol or faecal corticosterone between all treatments, despite a tendency of increased cholesterol in the group with the animal fat diet. However, quails submitted to an animal fat diet displayed an increase in yolk cholesterol at day 30 of the treatment and the egg yolks of quails treated with simvastatin exhibited a decrease in cholesterol content by the end of the treatment at 60 days. These results improved the knowledge regarding the physiology of quails and offered support to other studies concerning the consequences of the pharmacological treatment and the dietary manipulation of cholesterol levels.

  9. The plastid terminal oxidase: its elusive function points to multiple contributions to plastid physiology.

    PubMed

    Nawrocki, Wojciech J; Tourasse, Nicolas J; Taly, Antoine; Rappaport, Fabrice; Wollman, Francis-André

    2015-01-01

    Plastids have retained from their cyanobacterial ancestor a fragment of the respiratory electron chain comprising an NADPH dehydrogenase and a diiron oxidase, which sustain the so-called chlororespiration pathway. Despite its very low turnover rates compared with photosynthetic electron flow, knocking out the plastid terminal oxidase (PTOX) in plants or microalgae leads to severe phenotypes that encompass developmental and growth defects together with increased photosensitivity. On the basis of a phylogenetic and structural analysis of the enzyme, we discuss its physiological contribution to chloroplast metabolism, with an emphasis on its critical function in setting the redox poise of the chloroplast stroma in darkness. The emerging picture of PTOX is that of an enzyme at the crossroads of a variety of metabolic processes, such as, among others, the regulation of cyclic electron transfer and carotenoid biosynthesis, which have in common their dependence on the redox state of the plastoquinone pool, set largely by the activity of PTOX in darkness.

  10. A hydrogen-bonding network is important for oxidation and isomerization in the reaction catalyzed by cholesterol oxidase

    SciTech Connect

    Lyubimov, Artem Y.; Chen, Lin; Sampson, Nicole S.; Vrielink, Alice

    2009-11-01

    The importance of active-site electrostatics for oxidative and reductive half-reactions in a redox flavoenzyme (cholesterol oxidase) have been investigated by a combination of biochemistry and atomic resolution crystallography. A detailed examination of active-site dynamics demonstrates that the oxidation of substrate and the re-oxidation of the flavin cofactor by molecular oxygen are linked by a single active-site asparagine. Cholesterol oxidase is a flavoenzyme that catalyzes the oxidation and isomerization of 3β-hydroxysteroids. Structural and mutagenesis studies have shown that Asn485 plays a key role in substrate oxidation. The side chain makes an NH⋯π interaction with the reduced form of the flavin cofactor. A N485D mutant was constructed to further test the role of the amide group in catalysis. The mutation resulted in a 1800-fold drop in the overall k{sub cat}. Atomic resolution structures were determined for both the N485L and N485D mutants. The structure of the N485D mutant enzyme (at 1.0 Å resolution) reveals significant perturbations in the active site. As predicted, Asp485 is oriented away from the flavin moiety, such that any stabilizing interaction with the reduced flavin is abolished. Met122 and Glu361 form unusual hydrogen bonds to the functional group of Asp485 and are displaced from the positions they occupy in the wild-type active site. The overall effect is to disrupt the stabilization of the reduced FAD cofactor during catalysis. Furthermore, a narrow transient channel that is shown to form when the wild-type Asn485 forms the NH⋯π interaction with FAD and that has been proposed to function as an access route of molecular oxygen, is not observed in either of the mutant structures, suggesting that the dynamics of the active site are altered.

  11. Covalent attachment of cholesterol oxidase and horseradish peroxidase on perlite through silanization: activity, stability and co-immobilization.

    PubMed

    Torabi, Seyed-Fakhreddin; Khajeh, Khosro; Ghasempur, Salehe; Ghaemi, Nasser; Siadat, Seyed-Omid Ranaei

    2007-08-31

    In the present work, co-immobilization of cholesterol oxidase (COD) and horseradish peroxidase (POD) on perlite surface was attempted. The surface of perlite were activated by 3-aminopropyltriethoxysilane and covalently bonded with COD and POD via glutaraldehyde. Enzymes activities have been assayed by spectrophotometric technique. The stabilities of immobilized COD and POD to pH were higher than those of soluble enzymes and immobilization shifted optimum pH of enzymes to the lower pH. Heat inactivation studies showed improved thermostability of the immobilized COD for more than two times, but immobilized POD was less thermostable than soluble POD. Also activity recovery of immobilized COD was about 50% since for immobilized POD was 11%. The K(m) of immobilized enzymes was found slightly lower than that of soluble enzymes. Immobilized COD showed inhibition in its activity at high cholesterol concentration which was not reported for soluble COD before. Co-immobilized enzymes retained 65% of its initial activity after 20 consecutive reactor batch cycles.

  12. Langmuir-Blodgett films of cholesterol oxidase and S-layer proteins onto screen-printed electrodes

    NASA Astrophysics Data System (ADS)

    Guimarães, Juliana Aguilar; Ferraz, Helen Conceição; Alves, Tito Lívio Moitinho

    2014-04-01

    Stable Langmuir monolayers of cholesterol oxidase (ChOx) and S-layer proteins were produced at the water-air interface and subsequently transferred onto the surface of screen-printed carbon electrodes by the Langmuir-Blodgett (LB) technique. The modified electrode surface was characterized by atomic force microscopy (AFM) and cyclic voltammetry (CV). AFM indicated the presence of deposited layers, showing reduction of surface roughness (RMS and Rt parameters). Significant changes in the shape of CVs were observed in modified electrodes compared to bare electrodes. The anodic peaks could be observed in cyclic voltammograms (CV), at a scan rate equal to 25 mV s-1, using electrodes with Z-type LB deposition. The presence of S-layer proteins in the ChOx LB film increases the oxidation peak intensity and reduces the oxidation potential. Altogether, these results demonstrate the feasibility of producing a cholesterol biosensor based on the immobilization of ChOx and S-layer proteins by LB technique.

  13. The pore-lining regions in cytochrome c oxidases: A computational analysis of caveolin, cholesterol and transmembrane helix contributions to proton movement.

    PubMed

    Morrill, Gene A; Kostellow, Adele B; Gupta, Raj K

    2014-11-01

    Cytochrome c oxidase (CcO) is the terminal enzyme in the electron transfer chain. CcO catalyzes a four electron reduction of O2 to water at a catalytic site formed by high-spin heme (a3) and copper atoms (CuB). While it is recognized that proton movement is coupled to oxygen reduction, the proton channel(s) have not been well defined. Using computational methods developed to study protein topology, membrane channels and 3D packing arrangements within transmembrane (TM) helix arrays, we find that subunit-1 (COX-1), subunit-2 (COX-2) and subunit-3 (COX-3) contribute 139, 46 and 25 residues, respectively, to channel formation between the mitochondrial matrix and intermembrane space. Nine of 12 TM helices in COX-1, both helices in COX-2 and 5 of the 6 TM helices in COX-3 are pore-lining regions (possible channel formers). Heme a3 and the CuB sites (as well as the CuA center of COX-2) are located within the channel that includes TM-6, TM-7, TM-10 and TM-11 of COX-1 and are associated with multiple cholesterol and caveolin-binding (CB) motifs. Sequence analysis identifies five CB motifs within COX-1, two within COX-2 and four within COX-3; each caveolin containing a pore-lining helix C-terminal to a TM helix-turn-helix. Channel formation involves interaction between multiple pore-lining regions within protein subunits and/or dimers. PoreWalker analysis lends support to the D-channel model of proton translocation. Under physiological conditions, caveolins may introduce channel formers juxtaposed to those in COX-1, COX-2 and COX-3, which together with cholesterol may form channel(s) essential for proton translocation through the inner mitochondrial membrane.

  14. Cholesterol

    MedlinePlus

    ... from the food you eat (such as eggs, meats, and dairy products). Too much cholesterol can have ... fewer foods with saturated fats (such as red meat and most dairy products). Opt for healthier fats, ...

  15. Biochemistry, Physiology and Pathophysiology of NADPH Oxidases in the Cardiovascular System

    PubMed Central

    Lassègue, Bernard; San Martín, Alejandra; Griendling, Kathy K.

    2012-01-01

    The NADPH oxidase (Nox) enzymes are critical mediators of cardiovascular physiology and pathophysiology. These proteins are expressed in virtually all cardiovascular cells, and regulate such diverse functions as differentiation, proliferation, apoptosis, senescence, inflammatory responses and oxygen sensing. They target a number of important signaling molecules, including kinases, phosphatases, transcription factors, ion channels and proteins that regulate the cytoskeleton. Nox enzymes have been implicated in many different cardiovascular pathologies: atherosclerosis, hypertension, cardiac hypertrophy and remodeling, angiogenesis and collateral formation, stroke and heart failure. In this review, we discuss in detail the biochemistry of Nox enzymes expressed in the cardiovascular system (Nox1, 2, 4 and 5), their roles in cardiovascular cell biology, and their contributions to disease development. PMID:22581922

  16. Biochemistry, physiology, and pathophysiology of NADPH oxidases in the cardiovascular system.

    PubMed

    Lassègue, Bernard; San Martín, Alejandra; Griendling, Kathy K

    2012-05-11

    The NADPH oxidase (Nox) enzymes are critical mediators of cardiovascular physiology and pathophysiology. These proteins are expressed in virtually all cardiovascular cells, and regulate such diverse functions as differentiation, proliferation, apoptosis, senescence, inflammatory responses and oxygen sensing. They target a number of important signaling molecules, including kinases, phosphatases, transcription factors, ion channels, and proteins that regulate the cytoskeleton. Nox enzymes have been implicated in many different cardiovascular pathologies: atherosclerosis, hypertension, cardiac hypertrophy and remodeling, angiogenesis and collateral formation, stroke, and heart failure. In this review, we discuss in detail the biochemistry of Nox enzymes expressed in the cardiovascular system (Nox1, 2, 4, and 5), their roles in cardiovascular cell biology, and their contributions to disease development.

  17. Medium optimization by orthogonal array and response surface methodology for cholesterol oxidase production by Streptomyces lavendulae NCIM 2499.

    PubMed

    Chauhan, Awadesh K; Survase, Shrikant A; Kishenkumar, Jyoti; Annapure, Uday S

    2009-06-01

    This paper deals with the optimization of culture conditions for the production of cholesterol oxidase (COD) by Streptomyces lavendulae NCIM 2499 using the one-factor-at-a-time method, orthogonal array method and response surface methodology (RSM) approaches. The one-factor-at-a-time method was adopted to investigate the effects of medium components (i.e. carbon and nitrogen) and environmental factors (i.e. initial pH) on biomass growth and COD production. Subsequently, an L12 orthogonal matrix was used to evaluate the significance of glycerol, soyabean meal, malt extract, K2HPO4, MgSO4 and NaCl. The effects of media components were ranked according to their effects on the production of COD as malt extract > soyabean meal > K2HPO4 > NaCl > MgSO4 > glycerol. The subsequent optimization of the four most significant factors viz. malt extract, soyabean meal, K2HPO4 and NaCl, was carried out by employing a central composite rotatable design (CCRD) of RSM. There was a 2.48-fold increase in productivity of COD as compared to the unoptimized media by using these statistical approaches.

  18. Relevance of the flavin binding to the stability and folding of engineered cholesterol oxidase containing noncovalently bound FAD

    PubMed Central

    Caldinelli, Laura; Iametti, Stefania; Barbiroli, Alberto; Fessas, Dimitrios; Bonomi, Francesco; Piubelli, Luciano; Molla, Gianluca; Pollegioni, Loredano

    2008-01-01

    The flavoprotein cholesterol oxidase (CO) from Brevibacterium sterolicum is a monomeric flavoenzyme containing one molecule of FAD cofactor covalently linked to His69. The elimination of the covalent link following the His69Ala substitution was demonstrated to result in a significant decrease in activity, in the midpoint redox potential of the flavin, and in stability with respect to the wild-type enzyme, but does not modify the overall structure of the enzyme. We used CO as a model system to dissect the changes due to the elimination of the covalent link between the flavin and the protein (by comparing the wild-type and H69A CO holoproteins) with those due to the elimination of the cofactor (by comparing the holo- and apoprotein forms of H69A CO). The apoprotein of H69A CO lacks the characteristic tertiary structure of the holoprotein and displays larger hydrophobic surfaces; its urea-induced unfolding does not occur by a simple two-state mechanism and is largely nonreversible. Minor alterations in the flavin binding region are evident between the native and the refolded proteins, and are likely responsible for the low refolding yield observed. A model for the equilibrium unfolding of H69A CO that also takes into consideration the effects of cofactor binding and dissociation, and thus may be of general significance in terms of the relationships between cofactor uptake and folding in flavoproteins, is presented. PMID:18218720

  19. Use of the parallax-quench method to determine the position of the active-site loop of cholesterol oxidase in lipid bilayers.

    PubMed

    Chen, X; Wolfgang, D E; Sampson, N S

    2000-11-07

    To elucidate the cholesterol oxidase-membrane bilayer interaction, a cysteine was introduced into the active site lid at position-81 using the Brevibacterium enzyme. To eliminate the possibility of labeling native cysteine, the single cysteine in the wild-type enzyme was mutated to a serine without any change in activity. The loop-cysteine mutant was then labeled with acrylodan, an environment-sensitive fluorescence probe. The fluorescence increased and blue-shifted upon binding to lipid vesicles, consistent with a change into a more hydrophobic, i.e., lipid, environment. This acrylodan-labeled cholesterol oxidase was used to explore the pH, ionic strength, and headgroup dependence of binding. Between pH 6 and 10, there was no significant change in binding affinity. Incorporation of anionic lipids (phosphatidylserine) into the vesicles did not increase the binding affinity nor did altering the ionic strength. These experiments suggested that the interactions are primarily driven by hydrophobic effects not ionic effects. Using vesicles doped with either 5-doxyl phosphatidylcholine, 10-doxyl phosphatidylcholine, or phosphatidyl-tempocholine, quenching of acrylodan fluorescence was observed upon binding. Using the parallax method of London [Chattopadhyay, A., and London, E. (1987) Biochemistry 26, 39-45], the acrylodan ring is calculated to be 8.1 +/- 2.5 A from the center of the lipid bilayer. Modeling the acrylodan-cysteine residue as an extended chain suggests that the backbone of the loop does not penetrate into the lipid bilayer but interacts with the headgroups, i.e., the choline. These results demonstrate that cholesterol oxidase interacts directly with the lipid bilayer and sits on the surface of the membrane.

  20. The Binding And Release of Oxygen And Hydrogen Peroxide are Directed 1 By a Hydrophobic Tunnel in Cholesterol Oxidase

    SciTech Connect

    Chen, L.; Lyubimov, A.Y.; Brammer, L.; Vrielink, A.; Sampson, N.S.

    2009-05-12

    The usage by enzymes of specific binding pathways for gaseous substrates or products is debated. The crystal structure of the redox enzyme cholesterol oxidase, determined at sub-angstrom resolution, revealed a hydrophobic tunnel that may serve as a binding pathway for oxygen and hydrogen peroxide. This tunnel is formed by a cascade of conformational rearrangements and connects the active site with the exterior surface of the protein. To elucidate the relationship between this tunnel and gas binding and release, three mutant enzymes were constructed to block the tunnel or its putative gate. Mutation of the proposed gating residue Asn485 to Asp or tunnel residue Phe359 or Gly347 to Trp or Asn reduces the catalytic efficiency of oxidation. The K mO 2 increases from 300 +/- 35 microM for the wild-type enzyme to 617 +/- 15 microM for the F359W mutant. The k cat for the F359W mutant-catalyzed reaction decreases 13-fold relative to that of the wild-type-catalyzed reaction. The N485D and G347N mutants could not be saturated with oxygen. Transfer of hydride from the sterol to the flavin prosthetic group is no longer rate-limiting for these tunnel mutants. The steady-state kinetics of both wild-type and tunnel mutant enzymes are consistent with formation of a ternary complex of steroid and oxygen during catalysis. Furthermore, kinetic cooperativity with respect to molecular oxygen is observed with the tunnel mutants, but not with the wild-type enzyme. A rate-limiting conformational change for binding and release of oxygen and hydrogen peroxide, respectively, is consistent with the cooperative kinetics. In the atomic-resolution structure of F359W, the indole ring of the tryptophan completely fills the tunnel and is observed in only a single conformation. The size of the indole is proposed to limit conformational rearrangement of residue 359 that leads to tunnel opening in the wild-type enzyme. Overall, these results substantiate the functional importance of the tunnel for

  1. Diamine Oxidase Activity in Different Physiological Stages of Helianthus tuberosus Tuber.

    PubMed

    Torrigiani, P; Serafini-Fracassini, D; Fara, A

    1989-01-01

    Diamine oxidase (DAO, EC 1.4.3.6) activity was examined in relation to polyamine content in Helianthus tuberosus L. during the first synchronous cell cycle induced in vitro by 2,4,-dichloro-phenoxyacetic acid in tuber slices and during the in vivo formation of the tuber. The optimal pH, buffer and dithiothreitol concentrations for the enzyme extraction and assay were determined. When added in the assay mixture, catalase enhanced DAO activity, while polyvinylpyrrolidone had no effect; both aminoguanidine and hydrazine inhibited enzyme activity. The time course of the reaction, based on the recovery of Delta(1)-pyrroline from labeled putrescine in lipophilic solvents, showed that it was linear up to 30 minutes; the K(m) of the enzyme for putrescine was of the order of 10(-4) molar. During the first cell cycle, DAO activity exhibited a peak at 15 hours of activation while putrescine content gave a peak at 12 hours. During tuber formation (from August till October) DAO activity was relatively high during the first phase of growth (cell division), decreased until flowering (end of September-early October), and then newly increased during the cell enlargement phase preceding the entry into dormancy (November). Maximum putrescine content was observed at the end of October. The increase in DAO activity paralleled the accumulation of putrescine. This indicates a direct correlation between the biosynthesis and oxidation of putrescine which, as already demonstrated in animal systems, occur simultaneously in physiological stages of intense metabolism such as cell division or organ formation.

  2. Diamine Oxidase Activity in Different Physiological Stages of Helianthus tuberosus Tuber 1

    PubMed Central

    Torrigiani, Patrizia; Serafini-Fracassini, Donatella; Fara, Angela

    1989-01-01

    Diamine oxidase (DAO, EC 1.4.3.6) activity was examined in relation to polyamine content in Helianthus tuberosus L. during the first synchronous cell cycle induced in vitro by 2,4,-dichloro-phenoxyacetic acid in tuber slices and during the in vivo formation of the tuber. The optimal pH, buffer and dithiothreitol concentrations for the enzyme extraction and assay were determined. When added in the assay mixture, catalase enhanced DAO activity, while polyvinylpyrrolidone had no effect; both aminoguanidine and hydrazine inhibited enzyme activity. The time course of the reaction, based on the recovery of Δ1-pyrroline from labeled putrescine in lipophilic solvents, showed that it was linear up to 30 minutes; the Km of the enzyme for putrescine was of the order of 10−4 molar. During the first cell cycle, DAO activity exhibited a peak at 15 hours of activation while putrescine content gave a peak at 12 hours. During tuber formation (from August till October) DAO activity was relatively high during the first phase of growth (cell division), decreased until flowering (end of September-early October), and then newly increased during the cell enlargement phase preceding the entry into dormancy (November). Maximum putrescine content was observed at the end of October. The increase in DAO activity paralleled the accumulation of putrescine. This indicates a direct correlation between the biosynthesis and oxidation of putrescine which, as already demonstrated in animal systems, occur simultaneously in physiological stages of intense metabolism such as cell division or organ formation. PMID:16666548

  3. Investigating the role of the physiological isoform switch of cytochrome c oxidase subunits in reversible mitochondrial disease.

    PubMed

    Boczonadi, Veronika; Giunta, Michele; Lane, Maria; Tulinius, Mar; Schara, Ulrike; Horvath, Rita

    2015-06-01

    Reversible infantile respiratory chain deficiency is characterised by spontaneous recovery of mitochondrial myopathy in infants. We studied whether a physiological isoform switch of nuclear cytochrome c oxidase subunits contributes to the age-dependent manifestation and spontaneous recovery in reversible mitochondrial disease. Some nuclear-encoded subunits of cytochrome c oxidase are present as tissue-specific isoforms. Isoforms of subunits COX6A and COX7A expressed in heart and skeletal muscle are different from isoforms expressed in the liver, kidney and brain. Furthermore, in skeletal muscle both the heart and liver isoforms of subunit COX7A have been demonstrated with variable levels, indicating that the tissue-specific expression of nuclear-encoded subunits could provide a basis for the fine-tuning of cytochrome c oxidase activity to the specific metabolic needs of the different tissues. We demonstrate a developmental isoform switch of COX6A and COX7A subunits in human and mouse skeletal muscle. While the liver type isoforms are more present soon after birth, the heart/muscle isoforms gradually increase around 3 months of age in infants, 4 weeks of age in mice, and these isoforms persist in muscle throughout life. Our data in follow-up biopsies of patients with reversible infantile respiratory chain deficiency indicate that the physiological isoform switch does not contribute to the clinical manifestation and to the spontaneous recovery of this disease. However, understanding developmental changes of the different cytochrome c oxidase isoforms may have implications for other mitochondrial diseases. This article is part of a Directed Issue entitled: Energy Metabolism Disorders and Therapies.

  4. Sub-atomic resolution crystal structure of cholesterol oxidase: what atomic resolution crystallography reveals about enzyme mechanism and the role of the FAD cofactor in redox activity.

    PubMed

    Lario, Paula I; Sampson, Nicole; Vrielink, Alice

    2003-03-07

    The crystal structure of cholesterol oxidase, a 56kDa flavoenzyme was anisotropically refined to 0.95A resolution. The final crystallographic R-factor and R(free) value is 11.0% and 13.2%, respectively. The quality of the electron density maps has enabled modeling of alternate conformations for 83 residues in the enzyme, many of which are located in the active site. The additional observed structural features were not apparent in the previous high-resolution structure (1.5A resolution) and have enabled the identification of a narrow tunnel leading directly to the isoalloxazine portion of the FAD prosthetic group. The hydrophobic nature of this narrow tunnel suggests it is the pathway for molecular oxygen to access the isoalloxazine group for the oxidative half reaction. Resolving the alternate conformations in the active site residues provides a model for the dynamics of substrate binding and a potential oxidation triggered gating mechanism involving access to the hydrophobic tunnel. This structure reveals that the NE2 atom of the active site histidine residue, H447, critical to the redox activity of this flavin oxidase, acts as a hydrogen bond donor rather than as hydrogen acceptor. The atomic resolution structure of cholesterol oxidase has revealed the presence of hydrogen atoms, dynamic aspects of the protein and how side-chain conformations are correlated with novel structural features such as the oxygen tunnel. This new structural information has provided us with the opportunity to re-analyze the roles played by specific residues in the mechanism of the enzyme.

  5. Finding New Enzymes from Bacterial Physiology: A Successful Approach Illustrated by the Detection of Novel Oxidases in Marinomonas mediterranea

    PubMed Central

    Sanchez-Amat, Antonio; Solano, Francisco; Lucas-Elío, Patricia

    2010-01-01

    The identification and study of marine microorganisms with unique physiological traits can be a very powerful tool discovering novel enzymes of possible biotechnological interest. This approach can complement the enormous amount of data concerning gene diversity in marine environments offered by metagenomic analysis, and can help to place the activities associated with those sequences in the context of microbial cellular metabolism and physiology. Accordingly, the detection and isolation of microorganisms that may be a good source of enzymes is of great importance. Marinomonas mediterranea, for example, has proven to be one such useful microorganism. This Gram-negative marine bacterium was first selected because of the unusually high amounts of melanins synthesized in media containing the amino acid l-tyrosine. The study of its molecular biology has allowed the cloning of several genes encoding oxidases of biotechnological interest, particularly in white and red biotechnology. Characterization of the operon encoding the tyrosinase responsible for melanin synthesis revealed that a second gene in that operon encodes a protein, PpoB2, which is involved in copper transfer to tyrosinase. This finding made PpoB2 the first protein in the COG5486 group to which a physiological role has been assigned. Another enzyme of interest described in M. mediterranea is a multicopper oxidase encoding a membrane-associated enzyme that shows oxidative activity on a wide range of substrates typical of both laccases and tyrosinases. Finally, an enzyme very specific for l-lysine, which oxidises this amino acid in epsilon position and that has received a new EC number (1.4.3.20), has also been described for M. mediterranea. Overall, the studies carried out on this bacterium illustrate the power of exploring the physiology of selected microorganisms to discover novel enzymes of biotechnological relevance. PMID:20411113

  6. Development and physiological regulation of intestinal lipid absorption. III. Intestinal transporters and cholesterol absorption.

    PubMed

    Hui, David Y; Labonté, Eric D; Howles, Philip N

    2008-04-01

    Intestinal cholesterol absorption is modulated by transport proteins in enterocytes. Cholesterol uptake from intestinal lumen requires several proteins on apical brush-border membranes, including Niemann-Pick C1-like 1 (NPC1L1), scavenger receptor B-I, and CD36, whereas two ATP-binding cassette half transporters, ABCG5 and ABCG8, on apical membranes work together for cholesterol efflux back to the intestinal lumen to limit cholesterol absorption. NPC1L1 is essential for cholesterol absorption, but its function as a cell surface transporter or an intracellular cholesterol transport protein needs clarification. Another ATP transporter, ABCA1, is present in the basolateral membrane to mediate HDL secretion from enterocytes.

  7. Cholesterol favors the anchorage of human dystrophin repeats 16 to 21 in membrane at physiological surface pressure.

    PubMed

    Ameziane-Le Hir, Sarah; Raguénès-Nicol, Céline; Paboeuf, Gilles; Nicolas, Aurélie; Le Rumeur, Elisabeth; Vié, Véronique

    2014-05-01

    Dystrophin (DYS) is a filamentous protein that connects the cytoskeleton and the extracellular matrix via the sarcolemma, conferring resistance to muscular cells. In this study, interactions between the DYS R16-21 fragment and lipids were examined using Langmuir films made of anionic and zwitterionic lipids. The film fluidity was modified by the addition of 15% cholesterol. Whatever the lipid mixture examined, at low surface pressure (20 mN/m) few differences appeared on the protein insertion and the presence of cholesterol did not affect the protein/lipid interactions. At high surface pressure (30 mN/m), the protein insertion was very low and occurred only in zwitterionic films in the liquid-expanded phase. In anionic films, electrostatic interactions prevented the protein insertion outright, and caused accumulation of the protein on the hydrophilic part of the monolayer. Addition of cholesterol to both lipid mixtures drastically modified the protein-lipid interactions: the DYS R16-21 insertion increased and its organization in the monolayer appeared to be more homogeneous. The presence of accessible cholesterol recognition amino-acid consensus sequences in this fragment may enhance the protein/membrane binding at physiological lateral pressure. These results suggest that the anchorage of dystrophin to the membrane in vivo may be stabilized by cholesterol-rich nano-domains in the inner leaflet of sarcolemma. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Investigation of the physiological relationship between the cyanide-insensitive oxidase and cyanide production in Pseudomonas aeruginosa.

    PubMed

    Zlosnik, James E A; Tavankar, Gholam Reza; Bundy, Jacob G; Mossialos, Dimitris; O'Toole, Ronan; Williams, Huw D

    2006-05-01

    Pseudomonas aeruginosa is an opportunistic pathogen which demonstrates considerable respiratory versatility, possessing up to five terminal oxidases. One oxidase, the cyanide-insensitive oxidase (CIO), has been previously shown to be resistant to the potent respiratory inhibitor cyanide, a toxin that is synthesized by this bacterium. This study investigated the physiological relationship between hydrogen cyanide production and the CIO. It was found that cyanide is produced in P. aeruginosa at similar levels irrespective of its complement of CIO, indicating that the CIO is not an obligatory electron sink for cyanide synthesis. However, MICs for cyanide and growth in its presence demonstrated that the CIO provides P. aeruginosa with protection against the effects of exogenous cyanide. Nevertheless, the presence of cyanide did not affect the viability of cio mutant strains compared to the wild-type during prolonged incubation in stationary phase. The detection of the fermentation end products acetate and succinate in stationary-phase culture supernatants suggests that P. aeruginosa, irrespective of its CIO complement, may in part rely upon fermentation for energy generation in stationary phase. Furthermore, the decrease in cyanide levels during incubation in sealed flasks suggested that active breakdown of HCN by the culture was taking place. To investigate the possibility that the CIO may play a role in pathogenicity, wild-type and cio mutant strains were tested in the paralytic killing model of Caenorhabditis elegans, a model in which cyanide is the principal toxic agent leading to nematode death. The CIO mutant had delayed killing kinetics, demonstrating that the CIO is required for full pathogenicity of P. aeruginosa in this animal model.

  9. Cholesterol-rich Fluid Membranes Solubilize Ceramide Domains

    PubMed Central

    Castro, Bruno M.; Silva, Liana C.; Fedorov, Alexander; de Almeida, Rodrigo F. M.; Prieto, Manuel

    2009-01-01

    A uniquely sensitive method for ceramide domain detection allowed us to study in detail cholesterol-ceramide interactions in lipid bilayers with low (physiological) ceramide concentrations, ranging from low or no cholesterol (a situation similar to intracellular membranes, such as endoplasmic reticulum) to high cholesterol (similar to mammalian plasma membrane). Diverse fluorescence spectroscopy and microscopy experiments were conducted showing that for low cholesterol amounts ceramide segregates into gel domains that disappear upon increasing cholesterol levels. This was observed in different raft (sphingomyelin/cholesterol-containing) and non-raft (sphingomyelin-absent) membranes, i.e. mimicking different types of cell membranes. Cholesterol-ceramide interactions have been described mainly as raft sphingomyelin-dependent. Here sphingomyelin independence is demonstrated. In addition, ceramide-rich domains re-appear when either cholesterol is converted by cholesterol oxidase to cholestenone or the temperature is decreased. Ceramide is more soluble in cholesterol-rich fluid membranes than in cholesterol-poor ones, thereby increasing the chemical potential of cholesterol. Ceramide solubility depends on the average gel-fluid transition temperature of the remaining membrane lipids. The inability of cholestenone-rich membranes to dissolve ceramide gel domains shows that the cholesterol ordering and packing properties are fundamental to the mixing process. We also show that the solubility of cholesterol in ceramide domains is low. The results are rationalized by a ternary phospholipid/ceramide/cholesterol phase diagram, providing the framework for the better understanding of biochemical phenomena modulated by cholesterol-ceramide interactions such as cholesterol oxidase activity, lipoprotein metabolism, and lipid targeting in cancer therapy. It also suggests that the lipid compositions of different organelles are such that ceramide gel domains are not formed unless a

  10. Cytotoxic bile acids, but not cytoprotective species, inhibit the ordering effect of cholesterol in model membranes at physiologically active concentrations.

    PubMed

    Mello-Vieira, João; Sousa, Tânia; Coutinho, Ana; Fedorov, Aleksander; Lucas, Susana D; Moreira, Rui; Castro, Rui E; Rodrigues, Cecília M P; Prieto, Manuel; Fernandes, Fábio

    2013-09-01

    Submillimolar concentrations of cytotoxic bile acids (BAs) induce cell death via apoptosis. On the other hand, several cytoprotective BAs were shown to prevent apoptosis in the same concentration range. Still, the mechanisms by which BAs trigger these opposite signaling effects remain unclear. This study was aimed to determine if cytotoxic and cytoprotective BAs, at physiologically active concentrations, are able to modulate the biophysical properties of lipid membranes, potentially translating into changes in the apoptotic threshold of cells. Binding of BAs to membranes was assessed through the variation of fluorescence parameters of suitable derivatized BAs. These derivatives partitioned with higher affinity to liquid disordered than to the cholesterol-enriched liquid ordered domains. Unlabeled BAs were also shown to have a superficial location upon interaction with the lipid membrane. Additionally, the interaction of cytotoxic BAs with membranes resulted in membrane expansion, as concluded from FRET data. Moreover, it was shown that cytotoxic BAs were able to significantly disrupt the ordering of the membrane by cholesterol at physiologically active concentrations of the BA, an effect not associated with cholesterol removal. On the other hand, cytoprotective bile acids had no effect on membrane properties. It was concluded that, given the observed effects on membrane rigidity, the apoptotic activity of cytotoxic BAs could be potentially associated with changes in plasma membrane organization (e.g. modulation of lipid domains) or with an increase in mitochondrial membrane affinity for apoptotic proteins.

  11. The inhibition of mitochondrial cytochrome oxidase by the gases carbon monoxide, nitric oxide, hydrogen cyanide and hydrogen sulfide: chemical mechanism and physiological significance.

    PubMed

    Cooper, Chris E; Brown, Guy C

    2008-10-01

    The four gases, nitric oxide (NO), carbon monoxide (CO), hydrogen sulfide (H(2)S) and hydrogen cyanide (HCN) all readily inhibit oxygen consumption by mitochondrial cytochrome oxidase. This inhibition is responsible for much of their toxicity when they are applied externally to the body. However, recently these gases have all been implicated, to greater or lesser extents, in normal cellular signalling events. In this review we analyse the chemistry of this inhibition, comparing and contrasting mechanism and discussing physiological consequences. The inhibition by NO and CO is dependent on oxygen concentration, but that of HCN and H(2)S is not. NO and H(2)S are readily metabolised by oxidative processes within cytochrome oxidase. In these cases the enzyme may act as a physiological detoxifier of these gases. CO oxidation is much slower and unlikely to be as physiologically important. The evidence for normal physiological levels of these gases interacting with cytochrome oxidase is equivocal, in part because there is little robust data about their steady state concentrations. A reasonable case can be made for NO, and perhaps CO and H(2)S, inhibiting cytochrome oxidase in vivo, but endogenous levels of HCN seem unlikely to be high enough.

  12. Computational prediction and in vitro analysis of potential physiological ligands of the bile acid binding site in cytochrome c oxidase.

    PubMed

    Buhrow, Leann; Hiser, Carrie; Van Voorst, Jeffrey R; Ferguson-Miller, Shelagh; Kuhn, Leslie A

    2013-10-08

    A conserved bile acid site has been crystallographically defined in the membrane domain of mammalian and Rhodobacter sphaeroides cytochrome c oxidase (RsCcO). Diverse amphipathic ligands were shown previously to bind to this site and affect the electron transfer equilibrium between heme a and a3 cofactors by blocking the K proton uptake path. Current studies identify physiologically relevant ligands for the bile acid site using a novel three-pronged computational approach: ROCS comparison of ligand shape and electrostatics, SimSite3D comparison of ligand binding site features, and SLIDE screening of potential ligands by docking. Identified candidate ligands include steroids, nicotinamides, flavins, nucleotides, retinoic acid, and thyroid hormones, which are predicted to make key protein contacts with the residues involved in bile acid binding. In vitro oxygen consumption and ligand competition assays on RsCcO wildtype and its Glu101Ala mutant support regulatory activity and specificity of some of these ligands. An ATP analog and GDP inhibit RsCcO under low substrate conditions, while fusidic acid, cholesteryl hemisuccinate, retinoic acid, and T3 thyroid hormone are more potent inhibitors under both high and low substrate conditions. The sigmoidal kinetics of RsCcO inhibition in the presence of certain nucleotides is reminiscent of previously reported ATP inhibition of mammalian CcO, suggesting regulation involving the conserved core subunits of both mammalian and bacterial oxidases. Ligand binding to the bile acid site is noncompetitive with respect to cytochrome c and appears to arrest CcO in a semioxidized state with some resemblance to the "resting" state of the enzyme.

  13. Physiological Basis for Differential Sensitivities of Plant Species to Protoporphyrinogen Oxidase-Inhibiting Herbicides 1

    PubMed Central

    Sherman, Timothy D.; Becerril, José M.; Matsumoto, Hiroshi; Duke, Mary V.; Jacobs, Judy M.; Jacobs, Nicholas J.; Duke, Stephen O.

    1991-01-01

    With a leaf disc assay, 11 species were tested for effects of the herbicide acifluorfen on porphyrin accumulation in darkness and subsequent electrolyte leakage and photobleaching of chlorophyll after exposure to light. Protoporphyrin IX (Proto IX) was the only porphyrin that was substantially increased by the herbicide in any of the species. However, there was a wide range in the amount of Proto IX accumulation caused by 0.1 millimolar acifluorfen between species. Within species, there was a reduced effect of the herbicide in older tissues. Therefore, direct quantitative comparisons between species are difficult. Nevertheless, when data from different species and from tissues of different age within a species were plotted, there was a curvilinear relationship between the amount of Proto IX caused to accumulate during 20 hours of darkness and the amount of electrolyte leakage or chlorophyll photobleaching caused after 6 and 24 hours of light, respectively, following the dark period. Herbicidal damage plateaued at about 10 nanomoles of Proto IX per gram of fresh weight. Little difference was found between in vitro acifluorfen inhibition of protoporphyrinogen oxidase (Protox) of plastid preparations of mustard, cucumber, and morning glory, three species with large differences in their susceptibility at the tissue level. Mustard, a highly tolerant species, produced little Proto IX in response to the herbicide, despite having a highly susceptible Protox. Acifluorfen blocked carbon flow from δ-aminolevulinic acid to protochlorophyllide in mustard, indicating that it inhibits Protox in vivo. Increasing δ-aminolevulinic acid concentrations (33-333 micromolar) supplied to mustard with 0.1 millimolar acifluorfen increased Proto IX accumulation and herbicidal activity, demonstrating that mustard sensitivity to Proto IX was similar to other species. Differential susceptibility to acifluorfen of the species examined in this study appears to be due in large part to

  14. [A history and review of cholesterol ester transfer protein inhibitors and their contribution to the understanding of the physiology and pathophysiology of high density lipoprotein].

    PubMed

    Corral, Pablo; Schreier, Laura

    2014-01-01

    There is irrefutable evidence that statins reduce the risk of cardiovascular events in a magnitude proportional to the intensity of the decrease in cholesterol transport by the low density lipoproteins. Despite this great advance there is still a residual risk of cardiovascular events. For this reason, an increase in the levels of high density lipoprotein is considered in order to boost the main action of this lipoprotein, which is reverse cholesterol transport. Distinct classes of evidence (epidemiological, genetic, and pathophysiological) show that the inhibition and/or modulation of cholesterol ester transfer protein increases plasma high density lipoprotein-cholesterol levels. The main reason for presenting this review is to look at the physiology of cholesterol ester transfer protein, its interrelationship with high density lipoproteins, and to give an update on the development of different cholesterol ester transfer protein inhibitor/modulator molecules. Copyright © 2013 Elsevier España, S.L. y SEA. All rights reserved.

  15. Production, Purification, and Identification of Cholest-4-en-3-one Produced by Cholesterol Oxidase from Rhodococcus sp. in Aqueous/Organic Biphasic System

    PubMed Central

    Wu, Ke; Li, Wei; Song, Jianrui; Li, Tao

    2015-01-01

    Cholest-4-en-3-one has positive uses against obesity, liver disease, and keratinization. It can be applied in the synthesis of steroid drugs as well. Most related studies are focused on preparation of cholest-4-en-3-one by using whole cells as catalysts, but production of high-quality cholest-4-en-3-one directly from cholesterol oxidase (COD) using an aqueous/organic two-phase system has been rarely explored. This study set up an enzymatic reaction system to produce cholest-4-en-3-one. We developed and optimized the enzymatic reaction system using COD from COX5-6 (a strain of Rhodococcus) instead of whole-cell biocatalyst. This not only simplifies and accelerates the production but also benefits the subsequent separation and purification process. Through extraction, washing, evaporation, column chromatography, and recrystallization, we got cholest-4-en-3-one with purity of 99.78%, which was identified by nuclear magnetic resonance, mass spectroscopy, and infrared spectroscopy. In addition, this optimized process of cholest-4-en-3-one production and purification can be easily scaled up for industrial production, which can largely decrease the cost and guarantee the purity of the product. PMID:25733914

  16. An extended N-H bond, driven by a conserved second-order interaction, orients the flavin N5 orbital in cholesterol oxidase

    PubMed Central

    Golden, Emily; Yu, Li-Juan; Meilleur, Flora; Blakeley, Matthew P.; Duff, Anthony P.; Karton, Amir; Vrielink, Alice

    2017-01-01

    The protein microenvironment surrounding the flavin cofactor in flavoenzymes is key to the efficiency and diversity of reactions catalysed by this class of enzymes. X-ray diffraction structures of oxidoreductase flavoenzymes have revealed recurrent features which facilitate catalysis, such as a hydrogen bond between a main chain nitrogen atom and the flavin redox center (N5). A neutron diffraction study of cholesterol oxidase has revealed an unusual elongated main chain nitrogen to hydrogen bond distance positioning the hydrogen atom towards the flavin N5 reactive center. Investigation of the structural features which could cause such an unusual occurrence revealed a positively charged lysine side chain, conserved in other flavin mediated oxidoreductases, in a second shell away from the FAD cofactor acting to polarize the peptide bond through interaction with the carbonyl oxygen atom. Double-hybrid density functional theory calculations confirm that this electrostatic arrangement affects the N-H bond length in the region of the flavin reactive center. We propose a novel second-order partial-charge interaction network which enables the correct orientation of the hydride receiving orbital of N5. The implications of these observations for flavin mediated redox chemistry are discussed. PMID:28098177

  17. An extended N-H bond, driven by a conserved second-order interaction, orients the flavin N5 orbital in cholesterol oxidase

    NASA Astrophysics Data System (ADS)

    Golden, Emily; Yu, Li-Juan; Meilleur, Flora; Blakeley, Matthew P.; Duff, Anthony P.; Karton, Amir; Vrielink, Alice

    2017-01-01

    The protein microenvironment surrounding the flavin cofactor in flavoenzymes is key to the efficiency and diversity of reactions catalysed by this class of enzymes. X-ray diffraction structures of oxidoreductase flavoenzymes have revealed recurrent features which facilitate catalysis, such as a hydrogen bond between a main chain nitrogen atom and the flavin redox center (N5). A neutron diffraction study of cholesterol oxidase has revealed an unusual elongated main chain nitrogen to hydrogen bond distance positioning the hydrogen atom towards the flavin N5 reactive center. Investigation of the structural features which could cause such an unusual occurrence revealed a positively charged lysine side chain, conserved in other flavin mediated oxidoreductases, in a second shell away from the FAD cofactor acting to polarize the peptide bond through interaction with the carbonyl oxygen atom. Double-hybrid density functional theory calculations confirm that this electrostatic arrangement affects the N-H bond length in the region of the flavin reactive center. We propose a novel second-order partial-charge interaction network which enables the correct orientation of the hydride receiving orbital of N5. The implications of these observations for flavin mediated redox chemistry are discussed.

  18. CHOLESTEROL HOMEOSTASIS AND THE ESCAPE TENDENCY (ACTIVITY) OF PLASMA MEMBRANE CHOLESTEROL

    PubMed Central

    Lange, Yvonne; Steck, Theodore L.

    2008-01-01

    We review evidence that sterols can form stoichiometric complexes with certain bilayer phospholipids, and sphingomyelin in particular. These complexes appear to be the basis for the formation of condensed and ordered liquid phases, (micro)domains and/or rafts in both artificial and biological membranes. The sterol content of a membrane can exceed the complexing capacity of its phospholipids. The excess, uncomplexed membrane sterol molecules have a relatively high escape tendency, also referred to as fugacity or chemical activity (and, here, simply activity). Cholesterol is also activated when certain membrane intercalating amphipaths displace it from the phospholipid complexes. Active cholesterol projects from the bilayer and is therefore highly susceptible to attack by cholesterol oxidase. Similarly, active cholesterol rapidly exits the plasma membrane to extracellular acceptors such as cyclodextrin and high-density lipoproteins. For the same reason, the pool of cholesterol in the ER (endoplasmic reticulum) increases sharply when cell surface cholesterol is incremented above the physiological set-point; i.e., equivalence with the complexing phospholipids. As a result, the escape tendency of the excess cholesterol not only returns the plasma membrane bilayer to its set point but also serves as a feedback signal to intracellular homeostatic elements to down-regulate cholesterol accretion. PMID:18423408

  19. A convenient synthesis of 7 alpha-hydroxycholest-4-en-3-one by the hydroxypropyl-beta-cyclodextrin-facilitated cholesterol oxidase oxidation of 3 beta,7 alpha-cholest-5-ene-3,7-diol.

    PubMed

    Alexander, D L; Fisher, J F

    1995-03-01

    The initial biosynthetic conversions of cholesterol to the bile acids involve sequential 7 alpha-hydroxylation (catalyzed by cholesterol 7 alpha-hydroxylase) followed by C-3 oxidation and concomitant double bond migration (to a delta 4-configuration, catalyzed by 3 beta-delta 5-C27-steroid oxidoreductase) to provide 7 alpha-hydroxycholest-4-en-3-one. A straightforward, and economical, preparation (on a 0.1 g scale) of this pivotal biosynthetic intermediate has been devised. Reduction of 3 beta-(benzoyloxy)-cholest-5-en-7-one with LiB(sec-butyl)3H provided a 4:1 mixture, respectively, of the 7 alpha- and 7 beta-hydroxy diastereomers, which were separated chromatographically. Solvolytic removal of the C-3 benzoyl group gave 3 beta,7 alpha-cholest-5-ene-3,7-diol. A suspension of the 1:1 (v/v) complex (formed by mutual dissolution in MeOH, followed by evaporation of the solvent) of this diol with hydroxypropyl-beta-cyclodextrin, at a concentration of 1 mg mL-1 (in neutral phosphate buffer), was converted by Brevibacterium sp cholesterol oxidase (0.25 U mg-1 of substrate) and catalase (70 U mg-1 of substrate, to recover O2 from the H2O2 produced by the enzymatic oxidation) to a suspension of 7 alpha-hydroxycholest-4-en-3-one and the hydroxypropyl-beta-cyclodextrin. The yield for the enzymatic conversion was in excess of 90%. A much poorer and less reproducible yield (< 20%) was seen in the absence of the hydroxypropyl-beta-cyclodextrin. Routine extraction of this aqueous suspension, and chromatographic purification (85:15 CHCl3/acetone v/v on silica) of the residue, gave pure 7 alpha-hydroxycholest-4-en-3-one in 68% isolated yield. This route is a significant improvement, in terms of reaction scale and convenience, over the previous procedures for the preparation of this steroid.

  20. Changes in D-aspartic acid and D-glutamic acid levels in the tissues and physiological fluids of mice with various D-aspartate oxidase activities.

    PubMed

    Han, Hai; Miyoshi, Yurika; Koga, Reiko; Mita, Masashi; Konno, Ryuichi; Hamase, Kenji

    2015-12-10

    D-Aspartic acid (D-Asp) and D-glutamic acid (D-Glu) are currently paid attention as modulators of neuronal transmission and hormonal secretion. These two D-amino acids are metabolized only by D-aspartate oxidase (DDO) in mammals. Therefore, in order to design and develop new drugs controlling the D-Asp and D-Glu amounts via regulation of the DDO activities, changes in these acidic D-amino acid amounts in various tissues are expected to be clarified in model animals having various DDO activities. In the present study, the amounts of Asp and Glu enantiomers in 6 brain tissues, 11 peripheral tissues and 2 physiological fluids of DDO(+/+), DDO(+/-) and DDO(-/-) mice were determined using a sensitive and selective two-dimensional HPLC system. As a result, the amounts of D-Asp were drastically increased with the decrease in the DDO activity in all the tested tissues and physiological fluids. On the other hand, the amounts of D-Glu were almost the same among the 3 strains of mice. The present results are useful for designing new drug candidates, such as DDO inhibitors, and further studies are expected.

  1. Cost-effective and highly sensitive cholesterol microsensors with fast response based on the enzyme-induced conductivity change of polyaniline

    NASA Astrophysics Data System (ADS)

    Fang, Kuan-Chung; Chu, Chia-Ho; Hsu, Chen-Pin; Kang, Yen-Wen; Fang, Jung-Ying; Hsu, Chia-Hsien; Huang, Yu-Fen; Chen, Chih-Chen; Li, Sheng-Shian; Andrew Yeh, J.; Yao, Da-Jeng; Wang, Yu-Lin

    2014-09-01

    In this study, a cost-effective and highly sensitive cholesterol microsensor, which is consisted of cholesterol oxidase (ChOx), horseradish peroxidase (HRP), and polyaniline (PANI), was developed based on the enzyme-induced conductivity change of PANI with fast response. Hydrogen peroxide is produced via the reaction between cholesterol and ChOx, which was immobilized in a dialysis membrane. The produced hydrogen peroxide can oxidize HRP, which can be reduced by oxidizing PANI, thus resulting in decreased conductivity of the polyaniline thin film. The reduced HRP can be oxidized again by hydrogen peroxide and the cycle of the oxidation/reduction continues until all hydrogen peroxide are reacted, leading to the high sensitivity of the sensor due to the signal contributed from all hydrogen peroxide molecules. Cholesterol was detected near the physiological concentrations ranging from 100 mg/dl to 400 mg/dl with the cholesterol microsensors. The results show linear relation between cholesterol concentration and the conductivity change of the PANI. The microsensor showed no response to cholesterol when the PANI was standalone without cholesterol oxidase immobilized, indicating that the enzymatic reaction is required for cholesterol detection. The simple process of the sensor fabrication allows the sensor to be cost-effective and disposable usage. This electronic cholesterol microsensor is promising for point-of-care health monitoring in cholesterol level with low cost and fast response.

  2. Cost-effective and highly sensitive cholesterol microsensors with fast response based on the enzyme-induced conductivity change of polyaniline

    SciTech Connect

    Fang, Kuan-Chung; Chu, Chia-Ho; Hsu, Chen-Pin; Kang, Yen-Wen; Fang, Jung-Ying; Chen, Chih-Chen; Li, Sheng-Shian; Andrew Yeh, J.; Yao, Da-Jeng; Wang, Yu-Lin; Hsu, Chia-Hsien; Huang, Yu-Fen

    2014-09-15

    In this study, a cost-effective and highly sensitive cholesterol microsensor, which is consisted of cholesterol oxidase (ChOx), horseradish peroxidase (HRP), and polyaniline (PANI), was developed based on the enzyme-induced conductivity change of PANI with fast response. Hydrogen peroxide is produced via the reaction between cholesterol and ChOx, which was immobilized in a dialysis membrane. The produced hydrogen peroxide can oxidize HRP, which can be reduced by oxidizing PANI, thus resulting in decreased conductivity of the polyaniline thin film. The reduced HRP can be oxidized again by hydrogen peroxide and the cycle of the oxidation/reduction continues until all hydrogen peroxide are reacted, leading to the high sensitivity of the sensor due to the signal contributed from all hydrogen peroxide molecules. Cholesterol was detected near the physiological concentrations ranging from 100 mg/dl to 400 mg/dl with the cholesterol microsensors. The results show linear relation between cholesterol concentration and the conductivity change of the PANI. The microsensor showed no response to cholesterol when the PANI was standalone without cholesterol oxidase immobilized, indicating that the enzymatic reaction is required for cholesterol detection. The simple process of the sensor fabrication allows the sensor to be cost-effective and disposable usage. This electronic cholesterol microsensor is promising for point-of-care health monitoring in cholesterol level with low cost and fast response.

  3. Developmental Physiology of Cluster-Root Carboxylate Synthesis and Exudation in Harsh Hakea. Expression of Phosphoenolpyruvate Carboxylase and the Alternative Oxidase1

    PubMed Central

    Shane, Michael W.; Cramer, Michael D.; Funayama-Noguchi, Sachiko; Cawthray, Gregory R.; Millar, A. Harvey; Day, David A.; Lambers, Hans

    2004-01-01

    Harsh hakea (Hakea prostrata R.Br.) is a member of the Proteaceae family, which is highly represented on the extremely nutrient-impoverished soils in southwest Australia. When phosphorus is limiting, harsh hakea develops proteoid or cluster roots that release carboxylates that mobilize sparingly soluble phosphate in the rhizosphere. To investigate the physiology underlying the synthesis and exudation of carboxylates from cluster roots in Proteaceae, we measured O2 consumption, CO2 release, internal carboxylate concentrations and carboxylate exudation, and the abundance of the enzymes phosphoenolpyruvate carboxylase and alternative oxidase (AOX) over a 3-week time course of cluster-root development. Peak rates of citrate and malate exudation were observed from 12- to 13-d-old cluster roots, preceded by a reduction in cluster-root total protein levels and a reduced rate of O2 consumption. In harsh hakea, phosphoenolpyruvate carboxylase expression was relatively constant in cluster roots, regardless of developmental stage. During cluster-root maturation, however, the expression of AOX protein increased prior to the time when citrate and malate exudation peaked. This increase in AOX protein levels is presumably needed to allow a greater flow of electrons through the mitochondrial electron transport chain in the absence of rapid ATP turnover. Citrate and isocitrate synthesis and accumulation contributed in a major way to the subsequent burst of citrate and malate exudation. Phosphorus accumulated by harsh hakea cluster roots was remobilized during senescence as part of their efficient P cycling strategy for growth on nutrient impoverished soils. PMID:15122030

  4. Co-immobilization of glucose oxidase and catalase for enhancing the performance of a membraneless glucose biofuel cell operated under physiological conditions.

    PubMed

    Christwardana, Marcelinus; Chung, Yongjin; Kwon, Yongchai

    2017-02-02

    Glucose oxidase (GOx)-catalase co-immobilized catalyst (CNT/PEI/(GOx-Cat)) was synthesized, and its catalytic activity and electrical performance were investigated and compared, whereas the amount of immobilized catalase was optochemically inspected by chemiluminescence (CL) assay. With the characterizations, it was confirmed that the catalase was well immobilized on the CNT/PEI surface, whereas both the GOx and catalase play their roles well in the catalyst. According to the measurements of the current density peak of the flavin adenine dinucleotide (FAD) redox reaction, electron transfer rate, Michaelis-Menten constants and sensitivity, CNT/PEI/(GOx-Cat) shows the best values, and this is attributed to the excellent catalytic activity of GOx and the H2O2 decomposition capability of the catalase. To evaluate the electrical performance, a membraneless glucose biofuel cell (GBFC) adopting the catalyst was operated under physiological conditions and produced a maximum power density (MPD) of 180.8 ± 22.3 μW cm(-2), which is the highest value compared to MPDs obtained by adoption of other catalysts. With such results, it was clarified that the CNT/PEI/(GOx-Cat) manufactured by co-immobilization of GOx and catalase leads to enhancements in the catalytic activity and GBFC performance due to the synergetic effects of (i) effective removal of harmful H2O2 moiety by catalase and (ii) superior activation of desirable reactions by GOx.

  5. Impact of physiological levels of chenodeoxycholic acid supplementation on intestinal and hepatic bile acid and cholesterol metabolism in Cyp7a1-deficient mice.

    PubMed

    Jones, Ryan D; Lopez, Adam M; Tong, Ernest Y; Posey, Kenneth S; Chuang, Jen-Chieh; Repa, Joyce J; Turley, Stephen D

    2015-01-01

    Mice deficient in cholesterol 7α-hydroxylase (Cyp7a1) have a diminished bile acid pool (BAP) and therefore represent a useful model for investigating the metabolic effects of restoring the pool with a specific BA. Previously we carried out such studies in Cyp7a1(-/-) mice fed physiological levels of cholic acid (CA) and achieved BAP restoration, along with an increased CA enrichment, at a dietary level of just 0.03% (w/w). Here we demonstrate that in Cyp7a1(-/-) mice fed chenodeoxycholic acid (CDCA) at a level of 0.06% (w/w), the BAP was restored to normal size and became substantially enriched with muricholic acid (MCA) (>70%), leaving the combined contribution of CA and CDCA to be <15%. This resulted in a partial to complete reversal of the main changes in cholesterol and BA metabolism associated with Cyp7a1 deficiency such as an elevated rate of intestinal sterol synthesis, an enhanced level of mRNA for Cyp8b1 in the liver, and depressed mRNA levels for Ibabp, Shp and Fgf15 in the distal small intestine. When Cyp7a1(-/-) and matching Cyp7a1(+/+) mice were fed a diet with added cholesterol (0.2%) (w/w), either alone, or also containing CDCA (0.06%) (w/w) or CA (0.03%) (w/w) for 18days, the hepatic total cholesterol concentrations (mg/g) in the Cyp7a1(-/-) mice were 26.9±3.7, 16.4±0.9 and 47.6±1.9, respectively, vs. 4.9±0.4, 5.0±0.7 and 6.4±1.9, respectively in the corresponding Cyp7a1(+/+) controls. These data affirm the importance of using moderate levels of dietary BA supplementation to elicit changes in hepatic cholesterol metabolism through shifts in BAP size and composition.

  6. About Cholesterol

    MedlinePlus

    ... Artery Disease Venous Thromboembolism Aortic Aneurysm More About Cholesterol Updated:Jul 5,2017 Whether you’ve just ... Quiz This content was last reviewed April 2017. Cholesterol • Home • About Cholesterol Introduction Atherosclerosis What Your Cholesterol ...

  7. What's Cholesterol?

    MedlinePlus

    ... Room? What Happens in the Operating Room? What's Cholesterol? KidsHealth > For Kids > What's Cholesterol? A A A ... thing for food to be low in it? Cholesterol and Your Body Cholesterol (say: kuh-LES-tuh- ...

  8. Cholesterol modulates open probability and desensitization of NMDA receptors

    PubMed Central

    Korinek, Miloslav; Vyklicky, Vojtech; Borovska, Jirina; Lichnerova, Katarina; Kaniakova, Martina; Krausova, Barbora; Krusek, Jan; Balik, Ales; Smejkalova, Tereza; Horak, Martin; Vyklicky, Ladislav

    2015-01-01

    NMDA receptors (NMDARs) are glutamate-gated ion channels that mediate excitatory neurotransmission in the CNS. Although these receptors are in direct contact with plasma membrane, lipid–NMDAR interactions are little understood. In the present study, we aimed at characterizing the effect of cholesterol on the ionotropic glutamate receptors. Whole-cell current responses induced by fast application of NMDA in cultured rat cerebellar granule cells (CGCs) were almost abolished (reduced to 3%) and the relative degree of receptor desensitization was increased (by seven-fold) after acute cholesterol depletion by methyl-β-cyclodextrin. Both of these effects were fully reversible by cholesterol repletion. By contrast, the responses mediated by AMPA/kainate receptors were not affected by cholesterol depletion. Similar results were obtained in CGCs after chronic inhibition of cholesterol biosynthesis by simvastatin and acute enzymatic cholesterol degradation to 4-cholesten-3-one by cholesterol oxidase. Fluorescence anisotropy measurements showed that membrane fluidity increased after methyl-β-cyclodextrin pretreatment. However, no change in fluidity was observed after cholesterol enzymatic degradation, suggesting that the effect of cholesterol on NMDARs is not mediated by changes in membrane fluidity. Our data show that diminution of NMDAR responses by cholesterol depletion is the result of a reduction of the open probability, whereas the increase in receptor desensitization is the result of an increase in the rate constant of entry into the desensitized state. Surface NMDAR population, agonist affinity, single-channel conductance and open time were not altered in cholesterol-depleted CGCs. The results of our experiments show that cholesterol is a strong endogenous modulator of NMDARs. Key points NMDA receptors (NMDARs) are tetrameric cation channels permeable to calcium; they mediate excitatory synaptic transmission in the CNS and their excessive activation can lead to

  9. Physiology

    ERIC Educational Resources Information Center

    Kay, Ian

    2008-01-01

    Underlying recent developments in health care and new treatments for disease are advances in basic medical sciences. This edition of "Webwatch" focuses on sites dealing with basic medical sciences, with particular attention given to physiology. There is a vast amount of information on the web related to physiology. The sites that are included here…

  10. Physiology

    ERIC Educational Resources Information Center

    Kay, Ian

    2008-01-01

    Underlying recent developments in health care and new treatments for disease are advances in basic medical sciences. This edition of "Webwatch" focuses on sites dealing with basic medical sciences, with particular attention given to physiology. There is a vast amount of information on the web related to physiology. The sites that are included here…

  11. Development of mediator-type biosensor to wirelessly monitor whole cholesterol concentration in fish.

    PubMed

    Takase, Mai; Murata, Masataka; Hibi, Kyoko; Huifeng, Ren; Endo, Hideaki

    2014-04-01

    We developed a wireless monitoring system to monitor fish condition by tracking the change in whole cholesterol concentration. The whole cholesterol concentration of fish is a source of steroid hormones or indicator of immunity level, which makes its detection important for tracking physiological condition of fish. Wireless monitoring system comprises of mediator-type biosensor and wireless transmission device. Biosensor is implantable to fish body, and transmission device is so light, in that fish is allowed to swim freely during monitoring. Cholesterol esterase and oxidase were fixated on to the detection site of biosensor and used to detect the whole cholesterol concentration. However, cholesterol oxidase incorporates oxidation-reduction reaction of oxygen for detection, which concentration fluctuates easily due to change in environmental condition. Meanwhile, mediator-type biosensor enables monitoring of whole cholesterol concentration by using mediator to substitute that oxidation-reduction reaction of oxygen. Characteristic of fabricated mediator-type biosensor was tested. The sensor output current of mediator-type biosensor remained stable compared to output current of non-mediator-type biosensor under fluctuating oxygen concentration of 0-8 ppm, which implied that this sensor is less affected by change in dissolved oxygen concentration. That biosensor was then implanted into fish for wireless monitoring. As a result, approximately 48 h of real-time monitoring was successful.

  12. Cholesterol self-powered biosensor.

    PubMed

    Sekretaryova, Alina N; Beni, Valerio; Eriksson, Mats; Karyakin, Arkady A; Turner, Anthony P F; Vagin, Mikhail Yu

    2014-10-07

    Monitoring the cholesterol level is of great importance, especially for people with high risk of developing heart disease. Here we report on reagentless cholesterol detection in human plasma with a novel single-enzyme, membrane-free, self-powered biosensor, in which both cathodic and anodic bioelectrocatalytic reactions are powered by the same substrate. Cholesterol oxidase was immobilized in a sol-gel matrix on both the cathode and the anode. Hydrogen peroxide, a product of the enzymatic conversion of cholesterol, was electrocatalytically reduced, by the use of Prussian blue, at the cathode. In parallel, cholesterol oxidation catalyzed by mediated cholesterol oxidase occurred at the anode. The analytical performance was assessed for both electrode systems separately. The combination of the two electrodes, formed on high surface-area carbon cloth electrodes, resulted in a self-powered biosensor with enhanced sensitivity (26.0 mA M(-1) cm(-2)), compared to either of the two individual electrodes, and a dynamic range up to 4.1 mM cholesterol. Reagentless cholesterol detection with both electrochemical systems and with the self-powered biosensor was performed and the results were compared with the standard method of colorimetric cholesterol quantification.

  13. Physiological and biochemical characterisation of watered and drought-stressed barley mutants in the HvDWARF gene encoding C6-oxidase involved in brassinosteroid biosynthesis.

    PubMed

    Janeczko, Anna; Gruszka, Damian; Pociecha, Ewa; Dziurka, Michał; Filek, Maria; Jurczyk, Barbara; Kalaji, Hazem M; Kocurek, Maciej; Waligórski, Piotr

    2016-02-01

    Brassinosteroids (BR) are plant steroid hormones that were discovered more than thirty years ago, but their physiological function has yet to be fully explained. The aim of the study was to answer the question of whether/how disturbances in the production of BR in barley affects the plant's metabolism and development under conditions of optimal watering and drought. Mutants with an impaired production of BR are one of the best tools in research aimed at understanding the mechanisms of action of these hormones. The study used barley cultivars with a normal BR synthesis (wild type) and semi-dwarf allelic mutants with an impaired activity of C6-oxidase (mutation in HvDWARF), which resulted in a decreased BR synthesis. Half of the plants were subjected to drought stress in the seedling stage and the other half were watered optimally. Plants with impaired BR production were characterised by a lower height and developmental retardation. Under both optimal watering and drought, BR synthesis disorders caused the reduced production of ABA and cytokinins, but not auxins. The BR mutants also produced less osmoprotectant (proline). The optimally watered and drought-stressed mutants accumulated less sucrose, which was accompanied by changes in the production of other soluble sugars. The increased content of fructooligosaccharide (kestose) in optimally watered mutants would suggest that BR is a negative regulator of kestose production. The decreased level of nystose in the drought-stressed mutants also suggests BR involvement in the regulation of the production of this fructooligosaccharide. The accumulation of the transcripts of genes associated with stress response (hsp90) was lower in the watered and drought-stressed BR-deficient mutants. In turn, the lower efficiency of photosystem II and the net photosynthetic rate in mutants was revealed only under drought conditions. The presented research allows for the physiological and biochemical traits of two BR-barley mutants to be

  14. Regulation of cholesterol homeostasis.

    PubMed

    van der Wulp, Mariëtte Y M; Verkade, Henkjan J; Groen, Albert K

    2013-04-10

    Hypercholesterolemia is an important risk factor for cardiovascular disease. It is caused by a disturbed balance between cholesterol secretion into the blood versus uptake. The pathways involved are regulated via a complex interplay of enzymes, transport proteins, transcription factors and non-coding RNA's. The last two decades insight into underlying mechanisms has increased vastly but there are still a lot of unknowns, particularly regarding intracellular cholesterol transport. After decades of concentration on the liver, in recent years the intestine has come into focus as an important control point in cholesterol homeostasis. This review will discuss current knowledge of cholesterol physiology, with emphasis on cholesterol absorption, cholesterol synthesis and fecal excretion, and new (possible) therapeutic options for hypercholesterolemia.

  15. Localization of cholesterol in sphingomyelinase-treated fibroblasts.

    PubMed

    Pörn, M I; Slotte, J P

    1995-05-15

    The distribution of cellular unesterified cholesterol was studied in fibroblasts, which had been depleted of plasma membrane sphingomyelin by exposure to exogenous sphingomyelinase. This treatment has previously been shown to induce an increase in cholesterol esterification, a decrease in the biosynthesis of cholesterol, and a decreased susceptibility of cell cholesterol to oxidation with cholesterol oxidase. When the cellular localization of cholesterol was studied with fluorescent filipin staining, sphingomyelin depletion did not cause any visible changes in the filipin-cholesterol staining pattern, suggesting that the major part of cellular cholesterol was retained in the plasma membrane after sphingomyelinase treatment. After the oxidation of cell-surface cholesterol with cholesterol oxidase, the plasma membrane was no longer stained by filipin, but the plasma membrane cholesterol of sphingomyelin-depleted cells appeared to be resistant to oxidation with cholesterol oxidase when sphingomyelinase was used as an oxidation-promoting agent. However, the use of hypotonic buffer or phosphatidylcholine-specific phospholipase C together with cholesterol oxidase resulted in a complete oxidation of the cell-surface cholesterol in sphingomyelin-depleted cells, as evidenced by the filipin-cholesterol staining pattern. Similar results were obtained when [3H]cholesterol-labelled fibroblasts were used for determination of the susceptibility to cholesterol oxidation. The kinetics of [3H]cholesterol oxidation in sphingomyelin-depleted cells with cholesterol oxidase in hypotonic buffer indicated that approximately 85% of the cellular cholesterol still resided in the plasma membrane after sphingomyelin depletion. These results are contradictory to earlier reports on sphingomyelinase-induced changes in cellular cholesterol distribution and suggest that minor changes in the kinetics of cholesterol transport from the plasma membrane to the endoplasmic reticulum may be responsible

  16. Localization of cholesterol in sphingomyelinase-treated fibroblasts.

    PubMed Central

    Pörn, M I; Slotte, J P

    1995-01-01

    The distribution of cellular unesterified cholesterol was studied in fibroblasts, which had been depleted of plasma membrane sphingomyelin by exposure to exogenous sphingomyelinase. This treatment has previously been shown to induce an increase in cholesterol esterification, a decrease in the biosynthesis of cholesterol, and a decreased susceptibility of cell cholesterol to oxidation with cholesterol oxidase. When the cellular localization of cholesterol was studied with fluorescent filipin staining, sphingomyelin depletion did not cause any visible changes in the filipin-cholesterol staining pattern, suggesting that the major part of cellular cholesterol was retained in the plasma membrane after sphingomyelinase treatment. After the oxidation of cell-surface cholesterol with cholesterol oxidase, the plasma membrane was no longer stained by filipin, but the plasma membrane cholesterol of sphingomyelin-depleted cells appeared to be resistant to oxidation with cholesterol oxidase when sphingomyelinase was used as an oxidation-promoting agent. However, the use of hypotonic buffer or phosphatidylcholine-specific phospholipase C together with cholesterol oxidase resulted in a complete oxidation of the cell-surface cholesterol in sphingomyelin-depleted cells, as evidenced by the filipin-cholesterol staining pattern. Similar results were obtained when [3H]cholesterol-labelled fibroblasts were used for determination of the susceptibility to cholesterol oxidation. The kinetics of [3H]cholesterol oxidation in sphingomyelin-depleted cells with cholesterol oxidase in hypotonic buffer indicated that approximately 85% of the cellular cholesterol still resided in the plasma membrane after sphingomyelin depletion. These results are contradictory to earlier reports on sphingomyelinase-induced changes in cellular cholesterol distribution and suggest that minor changes in the kinetics of cholesterol transport from the plasma membrane to the endoplasmic reticulum may be responsible

  17. Enzymic determination of plasma cholesterol on discrete automatic analysers.

    PubMed

    Nobbs, B T; Smith, J M; Walker, A W

    1977-09-01

    Enzymic procedures for the determination of plasma cholesterol, using cholesterol esterase and cholesterol oxidase, have been adapted to the Vickers D-300, Vickers M,-300, and Vitatron AKES discrete analysers. The results obtained by these methods have been compared to those obtained by manual and continuous flow Liebermann-Burchard methods. The enzymic methods were found to be accurate, precise and of adequate sensitivity.

  18. Cholesterol (image)

    MedlinePlus

    Cholesterol is a soft, waxy substance that is present in all parts of the body including the ... and obtained from animal products in the diet. Cholesterol is manufactured in the liver and is needed ...

  19. Cholesterol and lifestyle

    MedlinePlus

    Hyperlipidemia - cholesterol and lifestyle; CAD - cholesterol and lifestyle; Coronary artery disease - cholesterol and lifestyle; Heart disease - cholesterol and lifestyle; Prevention - cholesterol and lifestyle; Cardiovascular disease - ...

  20. Good vs. Bad Cholesterol

    MedlinePlus

    ... Venous Thromboembolism Aortic Aneurysm More Good vs. Bad Cholesterol Updated:Apr 3,2017 Cholesterol can't dissolve ... test . View an animation of cholesterol . LDL (Bad) Cholesterol LDL cholesterol is considered the “bad” cholesterol because ...

  1. What's Cholesterol?

    MedlinePlus

    ... ve ever gone to the grocery store or food market, you've probably seen foods with labels on them that say "low in ... body. You also can get cholesterol from the foods you eat. Meat, fish, eggs, butter, cheese, and whole or low-fat milk all have cholesterol in ...

  2. Physiological role of the D-amino acid oxidase gene, DAO1, in carbon and nitrogen metabolism in the methylotrophic yeast Candida boidinii.

    PubMed

    Yurimoto, H; Hasegawa, T; Sakai, Y; Kato, N

    2000-09-30

    A methylotrophic yeast, Candida boidinii, exhibits D-amino acid oxidase activity (DAO, EC 1.4.3.3) during its growth on D-alanine as a sole carbon or a nitrogen source. The structural gene (DAO1), encoding DAO, was cloned from a genomic library of C. boidinii. The 1035-bp gene encoded 345 amino acids and the predicted amino acid sequence showed significant similarity to those of DAOs from other organisms. The DAO1 gene was disrupted in the C. boidinii genome by one-step gene disruption. The DAO1-deleted strain did not grow on D-alanine as a carbon source but did grow on D-alanine as a sole nitrogen source (with glucose as the carbon source). These results suggested that, while DAO is critically involved in growth on D-alanine as a carbon source, there should be another enzyme system which metabolizes D-alanine as a nitrogen source in C. boidinii. We also showed that the three C-terminal amino acid sequence of DAO, -AKL was necessary and sufficient for the import of DAO into peroxisomes. Copyright 2000 John Wiley & Sons, Ltd.

  3. NADPH Oxidases in Vascular Pathology

    PubMed Central

    Konior, Anna; Schramm, Agata; Czesnikiewicz-Guzik, Marta

    2014-01-01

    Abstract Significance: Reactive oxygen species (ROS) play a critical role in vascular disease. While there are many possible sources of ROS, nicotinamide adenine dinucleotide phosphate (NADPH) oxidases play a central role. They are a source of “kindling radicals,” which affect other enzymes, such as nitric oxide synthase endothelial nitric oxide synthase or xanthine oxidase. This is important, as risk factors for atherosclerosis (hypertension, diabetes, hypercholesterolemia, and smoking) regulate the expression and activity of NADPH oxidases in the vessel wall. Recent Advances: There are seven isoforms in mammals: Nox1, Nox2, Nox3, Nox4, Nox5, Duox1 and Duox2. Nox1, Nox2, Nox4, and Nox5 are expressed in endothelium, vascular smooth muscle cells, fibroblasts, or perivascular adipocytes. Other homologues have not been found or are expressed at very low levels; their roles have not been established. Nox1/Nox2 promote the development of endothelial dysfunction, hypertension, and inflammation. Nox4 may have a role in protecting the vasculature during stress; however, when its activity is increased, it may be detrimental. Calcium-dependent Nox5 has been implicated in oxidative damage in human atherosclerosis. Critical Issues: NADPH oxidase-derived ROS play a role in vascular pathology as well as in the maintenance of normal physiological vascular function. We also discuss recently elucidated mechanisms such as the role of NADPH oxidases in vascular protection, vascular inflammation, pulmonary hypertension, tumor angiogenesis, and central nervous system regulation of vascular function and hypertension. Future Directions: Understanding the role of individual oxidases and interactions between homologues in vascular disease is critical for efficient pharmacological regulation of vascular NADPH oxidases in both the laboratory and clinical practice. Antioxid. Redox Signal. 20, 2794–2814. PMID:24180474

  4. [Alternative oxidase in industrial fungi].

    PubMed

    Gu, Shuai; Liu, Qiang; He, Hao; Li, Shuang

    2015-01-01

    Filamentous fungi have been used in industrial fermentation extensively. Based on non-phosphorylating electron transport process, alternative respiration pathway (ARP) acts as an energy overflow, which can balance carbon metabolism and electron transport, allow the continuance of tricarboxylic acid cycle without the formation of ATP, and permit the turnover of carbon skeletons. Alternative respiration pathway also plays an important role in the stress response of fungi and the physiological function of conditioned pathogen. Alternative oxidase (AOX) is the terminal oxidase responsible for the activity of alternative respiration pathway, which exists widely in higher plants, parts of fungi and algae. Owing to the property that alternative oxidase (AOX) is sensitive to salicylhydroxamic acid (SHAM) and insensitive to conventional inhibitors of cytochrome respiration, alternative respiration pathway by AOX is also named as cyanide-resistant respiration (CRR). In recent years, the study of the alternative respiration pathway and alternative oxidase has been a hot topic in the area involving cellular respiration metabolism. In this review we summarized the latest research advances about the functions of alternative respiration pathway and alternative oxidase in industrial fungi.

  5. Hepatic xanthine oxidase activity and purine nucleosides levels as physiological mediators to analyze a subcutaneous treatment with (PhSe)2 in mice infected by Toxoplasma gondii.

    PubMed

    Doleski, Pedro H; Leal, Daniela B R; Machado, Vanessa S; Bottari, Nathieli B; Casali, Emerson A; Moritz, Cesar E J; Camillo, Giovana; Vogel, Fernanda F; Stefani, Lenita M; da Silva, Aleksandro Schafer

    2017-03-01

    The aim of this study was to evaluate the levels of purine nucleosides and xanthine oxidase (XO) activity in the liver of mice chronically infected by Toxoplasma gondii and treated with diphenyl diselenide (PhSe)2. For this experiment, forty Swiss mice were used. Twenty animals were orally infected by approximately 50 bradizoites of a cystogenic ME-49 strain of T. gondii, and the same number of uninfected mice was used as a control group. Ten infected and ten uninfected mice were subcutaneously treated twice (days 1 and 20 post-infection (PI)) with 5 μmol kg(-1) of (PhSe)2. On day 30 PI, liver samples were collected to measure the levels of hypoxanthine (HYPO), xanthine (XAN), uric acid (UA), and XO activity. Infected animals showed increased (P < 0.05) levels of hepatic XAN and UA, as well as XO activity compared to uninfected animals. The use of (PhSe)2 in healthy mice increased the levels of all nucleosides, but decreased XO activity compared to healthy untreated animals. The group of infected and treated animals showed increased XAN and UA levels, and XO activity compared to the healthy control group, however infected and treated mice showed a decrease in the XO activity compared to the infected untreated group. We conclude that chronic infection caused by T. gondii can induce hepatic changes, such as increased UA levels and XO activity, that can increase the pro-oxidative profile. The (PhSe)2 treatment of healthy animals altered the levels of nucleosides, possibly due to low XO activity that decreased nucleoside degradation. Finally, (PhSe)2 treatment decreased XO activity in the infected group and increased nucleoside levels; however it was unable to reduce the UA levels found during the infection.

  6. Cholesterol Levels

    MedlinePlus

    ... diet or exercise routine. References American Heart Association [Internet]. Dallas (TX): American Heart Association Inc.; c2017. About ... Cholesterol_UCM_001220_Article.jsp American Heart Association [Internet]. Dallas (TX): American Heart Association Inc.; c2017. Good ...

  7. Cholesterol depletion induces autophagy

    SciTech Connect

    Cheng, Jinglei; Ohsaki, Yuki; Tauchi-Sato, Kumi; Fujita, Akikazu; Fujimoto, Toyoshi . E-mail: tfujimot@med.nagoya-u.ac.jp

    2006-12-08

    Autophagy is a mechanism to digest cells' own components, and its importance in many physiological and pathological processes is being recognized. But the molecular mechanism that regulates autophagy is not understood in detail. In the present study, we found that cholesterol depletion induces macroautophagy. The cellular cholesterol in human fibroblasts was depleted either acutely using 5 mM methyl-{beta}-cyclodextrin or 10-20 {mu}g/ml nystatin for 1 h, or metabolically by 20 {mu}M mevastatin and 200 {mu}M mevalonolactone along with 10% lipoprotein-deficient serum for 2-3 days. By any of these protocols, marked increase of LC3-II was detected by immunoblotting and by immunofluorescence microscopy, and the increase was more extensive than that caused by amino acid starvation, i.e., incubation in Hanks' solution for several hours. The induction of autophagic vacuoles by cholesterol depletion was also observed in other cell types, and the LC3-positive membranes were often seen as long tubules, >50 {mu}m in length. The increase of LC3-II by methyl-{beta}-cyclodextrin was suppressed by phosphatidylinositol 3-kinase inhibitors and was accompanied by dephosphorylation of mammalian target of rapamycin. By electron microscopy, autophagic vacuoles induced by cholesterol depletion were indistinguishable from those seen after amino acid starvation. These results demonstrate that a decrease in cholesterol activates autophagy by a phosphatidylinositol 3-kinase-dependent mechanism.

  8. Comparison of 9 methods for the determination of cholesterol.

    PubMed

    Haeckel, R; Sonntag, O; Külpmann, W R; Feldmann, U

    1979-08-01

    Seven enzymatic procedures for the determination of cholesterol in serum were compared with the Liebermann-Burchard- and a gas-chromatographic method. Using a decision matrix all methods could be ranked according to reliability and practicability . With the exception of the cholesterol oxidase-coupled Kageyama principle and the Liebermann-Burchard procedure, all the other methods showed similar reliability.

  9. Cholesterol and Statins

    MedlinePlus

    ... from you cholesterol is important Cholesterol has a bad rap. In reality, your body needs cholesterol to ... low-cholesterol diet should help lower your LDL (bad cholesterol). If it’s not lowered enough by reducing ...

  10. Simple enzymatic assay for determining cholesterol concentrations in bile.

    PubMed

    Luhman, C M; Galloway, S T; Beitz, D C

    1990-02-01

    We use bilirubin oxidase (EC 1.3.3.5) to remove interference by bilirubin in the assay of cholesterol concentration in bile by standard enzymatic methods. Samples are treated for 10 min with nonlimiting amounts of bilirubin oxidase to form biliverdin from bilirubin before the reagent for cholesterol is added. The relatively small interference by biliverdin is easily eliminated by use of sample blanks. The method is simple, convenient, and not hampered by the "chromogen oxidase" activity (the inherent ability of bilirubin oxidase to oxidize some chromogens) that plagues other assays of this type. Using this assay, we have accurately and precisely determined the concentration of cholesterol in bile. Such elimination of bilirubin will also be useful in assays of other biliary constituents or constituents of urine or icteric plasma.

  11. Physiological responses and endogenous cytokinin profiles of tissue-cultured 'Williams' bananas in relation to roscovitine and an inhibitor of cytokinin oxidase/dehydrogenase (INCYDE) treatments.

    PubMed

    Aremu, Adeyemi O; Bairu, Michael W; Novák, Ondřej; Plačková, Lenka; Zatloukal, Marek; Doležal, Karel; Finnie, Jeffrey F; Strnad, Miroslav; Van Staden, Johannes

    2012-12-01

    The effect of supplementing either meta-topolin (mT) or N(6)-benzyladenine (BA) requiring cultures with roscovitine (6-benzylamino-2-[1(R)-(hydroxymethyl)propyl]amino-9-isopropylpurine), a cyclin-dependent kinase (CDK) and N-glucosylation inhibitor, and INCYDE (2-chloro-6-(3-methoxyphenyl)aminopurine), an inhibitor of cytokinin (CK) degradation, on the endogenous CK profiles and physiology of banana in vitro was investigated. Growth parameters including multiplication rate and biomass were recorded after 42 days. Endogenous CK levels were quantified using UPLC-MS/MS while the photosynthetic pigment and phenolic contents were evaluated spectrophotometrically. The highest regeneration rate (93 %) was observed in BA + roscovitine while mT + INCYDE plantlets produced most shoots. Treatment with BA + roscovitine had the highest shoot length and biomass. Although not significant, there was a higher proanthocyanidin level in BA + roscovitine treatments compared to the control (BA). The levels of total phenolics and flavonoids were significantly higher in mT + roscovitine treatment than in the mT-treated regenerants. The presence of roscovitine and/or INCYDE had no significant effect on the photosynthetic pigments of the banana plantlets. Forty-seven aromatic and isoprenoid CKs categorized into nine CK-types were detected at varying concentrations. The presence of mT + roscovitine and/or INCYDE increased the levels of O-glucosides while 9-glucosides were higher in the presence of BA. Generally, the underground parts had higher CK levels than the aerial parts; however, the presence of INCYDE increased the level of CK quantified in the aerial parts. From a practical perspective, the use of roscovitine and INCYDE in micropropagation could be crucial in the alleviation of commonly observed in vitro-induced physiological abnormalities.

  12. [Accuracy of HDL cholesterol measurements].

    PubMed

    Niedmann, P D; Luthe, H; Wieland, H; Schaper, G; Seidel, D

    1983-02-01

    The widespread use of different methods for the determination of HDL-cholesterol (in Europe: sodium phosphotungstic acid/MgCl2) in connection with enzymatic procedures (in the USA: heparin/MnCl2 followed by the Liebermann-Burchard method) but common reference values makes it necessary to evaluate not only accuracy, specificity, and precision of the precipitation step but also of the subsequent cholesterol determination. A high ratio of serum vs. concentrated precipitation reagent (10:1 V/V) leads to the formation of variable amounts of delta-3.5-cholestadiene. This substance is not recognized by cholesterol oxidase but leads to an 1.6 times overestimation by the Liebermann-Burchard method. Therefore, errors in HDL-cholesterol determination should be considered and differences up to 30% may occur between HDL-cholesterol values determined by the different techniques (heparin/MnCl2 - Liebermann-Burchard and NaPW/MgCl2-CHOD-PAP).

  13. LDL Cholesterol Test

    MedlinePlus

    ... Lipoprotein Cholesterol Related tests: Cholesterol ; HDL Cholesterol ; Triglycerides ; Lipid Profile ; Direct LDL Cholesterol ; Cardiac Risk Assessment ; Lp(a) ; ... LDL-C) is used as part of a lipid profile to predict an individual's risk of developing heart ...

  14. Cholesterol IQ Quiz

    MedlinePlus

    ... Peripheral Artery Disease Venous Thromboembolism Aortic Aneurysm More Cholesterol IQ Quiz Updated:Jul 5,2017 Begin the quiz Cholesterol • Home • About Cholesterol Introduction Atherosclerosis What Your Cholesterol ...

  15. Cholesterol and Your Child

    MedlinePlus

    ... Old Feeding Your 1- to 2-Year-Old Cholesterol and Your Child KidsHealth > For Parents > Cholesterol and ... child's risk of developing heart disease later. About Cholesterol Cholesterol is a waxy substance produced by the ...

  16. Women and Cholesterol

    MedlinePlus

    ... Disease Venous Thromboembolism Aortic Aneurysm More Women and Cholesterol Updated:Apr 1,2016 The female sex hormone ... 2014. Related Sites Nutrition Center My Life Check Cholesterol • Home • About Cholesterol • Why Cholesterol Matters • Understand Your ...

  17. Common Misconceptions about Cholesterol

    MedlinePlus

    ... Venous Thromboembolism Aortic Aneurysm More Common Misconceptions about Cholesterol Updated:Apr 3,2017 Cholesterol can be both ... misconceptions about cholesterol. Click on each misconception about cholesterol to see the truth: My choices about diet ...

  18. Lifestyle Changes and Cholesterol

    MedlinePlus

    ... Venous Thromboembolism Aortic Aneurysm More Lifestyle Changes and Cholesterol Updated:Sep 26,2016 As part of a ... to the Terms and Conditions and Privacy Policy Cholesterol • Home • About Cholesterol • Why Cholesterol Matters • Understand Your ...

  19. Protection of membrane cholesterol by sphingomyelin against free radical-mediated oxidation

    PubMed Central

    Sargis, Robert M; Subbaiah, Papasani V.

    2006-01-01

    Although the free radical-mediated oxidation of free cholesterol (FC) is critical in the generation of regulatory sterols and in atherogenesis, the physiological regulation of this process is poorly understood. We tested the hypothesis that sphingomyelin (SM), a major phospholipid of cell membranes, which is closely associated with FC, protects FC against oxidation, because of its unique structure, and affinity to the sterol. We employed phosphatidylcholine (PC) liposomes containing varying amounts of SM, and either radioactive FC or a fluorescent analog, dehydroergosterol (DHE), and determined the oxidative decay of the sterol in presence of 2,2′ azo bis(2-amidinopropane hydrochloride) (AAPH). Incorporation of 25 mol% of SM in the liposomes inhibited the oxidation of FC or DHE by up to 50%. This inhibition was specific for SM among phospholipids, and was abolished by sphingomyelinase treatment. SM was not degraded during the oxidation reaction, and its effect was not dependent upon the nature of the oxidizing agent, because it also inhibited sterol oxidation by FeSO4/ascorbate, and by cholesterol oxidase. These studies show that SM plays a physiological role in the regulation of cholesterol oxidation by free radicals. PMID:16785023

  20. Oxysterols as non-genomic regulators of cholesterol homeostasis

    PubMed Central

    Bielska, Agata; Schlesinger, Paul; Covey, Douglas F.; Ory, Daniel S.

    2011-01-01

    Tight regulation of cellular and plasma cholesterol is crucial to proper cellular functioning because excess free cholesterol is toxic to cells and is associated with atherosclerosis and heart disease. Cellular cholesterol homeostasis is regulated by enzymatically formed oxygenated cholesterol derivatives termed oxysterols. Although the effects of oxysterols on transcriptional pathways are well described, the non-transcriptional mechanisms through which oxysterols acutely modulate cellular cholesterol levels are less well understood. We present emerging evidence suggesting that the membrane biophysical properties of oxysterols underlie their acute cholesterol-regulatory functions and discuss the relevance of these acute effects to cholesterol overload in physiological and pathophysiological states. PMID:22244444

  1. PKCβ: Expanding role in hepatic adaptation of cholesterol homeostasis to dietary fat/cholesterol.

    PubMed

    Mehta, Devina; Mehta, Kamal D

    2017-03-01

    Cholesterol homeostasis relies on an intricate network of cellular processes whose deregulation in response to Western type high-fat/cholesterol diets can lead to several life-threatening pathologies. Significant advances have been made in resolving the molecular identity and regulatory function of transcription factors sensitive to fat, cholesterol, or bile acids, but whether body senses the presence of both fat and cholesterol simultaneously is not known. Assessing the impact of a high-fat/cholesterol load, rather than an individual component alone, on cholesterol homeostasis is more physiologically relevant because Western diets deliver both fat and cholesterol at the same time. Moreover, dietary fat and dietary cholesterol are reported to act synergistically to impair liver cholesterol homeostasis. A key insight into the role of protein kinase C-β (PKCβ) in hepatic adaptation to high-fat/cholesterol diets was gained recently through the use of knockout mice. The emerging evidence indicates that PKCβ is an important regulator of cholesterol homeostasis that ensures normal adaptation to high-fat/cholesterol intake. Consistent with this function, high-fat/cholesterol diets induce PKCβ expression and signaling in the intestine and liver, while systemic PKCβ deficiency promotes accumulation of cholesterol in the liver and bile. PKCβ disruption results in profound dysregulation of hepatic cholesterol and bile homeostasis and imparts sensitivity to cholesterol gallstone formation. The available results support involvement of a two-pronged mechanism by which intestine and liver PKCβ signaling converge on liver ERK1/2 to dictate diet-induced cholesterol and bile acid homeostasis. Collectively, PKCβ is an integrator of dietary fat/cholesterol signal and mediates changes to cholesterol homeostasis.

  2. Cholesterol metabolism and homeostasis in the brain.

    PubMed

    Zhang, Juan; Liu, Qiang

    2015-04-01

    Cholesterol is an essential component for neuronal physiology not only during development stage but also in the adult life. Cholesterol metabolism in brain is independent from that in peripheral tissues due to blood-brain barrier. The content of cholesterol in brain must be accurately maintained in order to keep brain function well. Defects in brain cholesterol metabolism has been shown to be implicated in neurodegenerative diseases, such as Alzheimer's disease (AD), Huntington's disease (HD), Parkinson's disease (PD), and some cognitive deficits typical of the old age. The brain contains large amount of cholesterol, but the cholesterol metabolism and its complex homeostasis regulation are currently poorly understood. This review will seek to integrate current knowledge about the brain cholesterol metabolism with molecular mechanisms.

  3. Monensin and brefeldin A inhibit high density lipoprotein-mediated cholesterol efflux from cholesterol-enriched cells. Implications for intracellular cholesterol transport.

    PubMed

    Mendez, A J

    1995-03-17

    Mechanisms and pathways of excess cholesterol removal from intracellular sites of accumulation to extracellular cholesterol acceptors remain poorly defined. To gain further insights, compounds known to affect cellular protein transport pathways were tested for their effects on high density lipoprotein (HDL)-mediated cholesterol efflux from cultured cells enriched with cholesterol. Monensin, nigericin, and brefeldin A inhibited the ability of HDL to decrease cellular cholesterol esterification, stimulate sterol biosynthesis, and promote the efflux of labeled cholesterol and cholesterol mass from fibroblasts and smooth muscle cells. HDL-mediated decrease in cell cholesterol esterification was inhibited up to 80% by these compounds compared with control incubations over an HDL concentration of 5-100 micrograms/ml and up to 18 h of incubation. Up-regulation of sterol biosynthesis after depletion of cell cholesterol by HDL increased over 10-fold; however, inclusion of monensin or brefeldin A during the incubation completely prevented the increase of sterol biosynthesis by HDL. Efflux of [3H]cholesterol to HDL from prelabeled cells was inhibited up to 40% by these compounds, and this effect persisted when cholesterol esterification was blocked. Similarly, monensin and brefeldin A inhibited up to 50% of HDL-mediated cholesterol mass efflux relative to controls. Treatment of cells with cholesterol oxidase demonstrated an increase of intracellular cholesterol after exposure to monensin or nigericin and to a lesser extent with brefeldin A. These data show that monensin, nigericin, and brefeldin A sequester cholesterol from sites normally available for efflux by HDL. Since these compounds act by disruption of Golgi complex structure and function, a role for this intracellular organelle in transport of cholesterol between intracellular sites and the plasma membrane for eventual removal by extracellular acceptors such as HDL is suggested.

  4. What Is Cholesterol?

    MedlinePlus

    ... Can I Help Someone Who's Being Bullied? Volunteering Cholesterol KidsHealth > For Teens > Cholesterol Print A A A ... High Cholesterol? en español ¿Qué es el colesterol? Cholesterol Is a Fat in the Blood Cholesterol (kuh- ...

  5. What Is Cholesterol?

    MedlinePlus

    ... Loss Surgery? A Week of Healthy Breakfasts Shyness Cholesterol KidsHealth > For Teens > Cholesterol A A A What's ... High Cholesterol? en español ¿Qué es el colesterol? Cholesterol Is a Fat in the Blood Cholesterol (kuh- ...

  6. Natural Compounds as Modulators of NADPH Oxidases

    PubMed Central

    2013-01-01

    Reactive oxygen species (ROS) are cellular signals generated ubiquitously by all mammalian cells, but their relative unbalance triggers also diseases through intracellular damage to DNA, RNA, proteins, and lipids. NADPH oxidases (NOX) are the only known enzyme family with the sole function to produce ROS. The NOX physiological functions concern host defence, cellular signaling, regulation of gene expression, and cell differentiation. On the other hand, increased NOX activity contributes to a wide range of pathological processes, including cardiovascular diseases, neurodegeneration, organ failure, and cancer. Therefore targeting these enzymatic ROS sources by natural compounds, without affecting the physiological redox state, may be an important tool. This review summarizes the current state of knowledge of the role of NOX enzymes in physiology and pathology and provides an overview of the currently available NADPH oxidase inhibitors derived from natural extracts such as polyphenols. PMID:24381714

  7. [Basic mechanisms: absorption and excretion of cholesterol and other sterols].

    PubMed

    Cofan Pujol, Montserrat

    2014-01-01

    Cholesterol is of vital importance for vertebrate cell membrane structure and function. It is obvious that adequate regulation of cholesterol homeostasis is essential. Hypercholesterolemia promotes atherosclerosis and thereby represents a major risk factor for cardiovascular disease. The liver has been considered the major site of control in maintenance of cholesterol homeostasis. The liver facilitates clearance of (very) low density lipoprotein particles and cholesterol-containing chylomicron remnants, synthesizes cholesterol, synthesizes and secretes (nascent) high density lipoprotein particles, secretes cholesterol and bile salts to bile, and is involved in reverse cholesterol transport. In recent years, however, the importance of the intestine in many aspects of cholesterol physiology is increasingly recognized. It has become apparent that direct secretion of cholesterol from the blood compartment into the intestine, or transintestinal cholesterol excretion, plays a major role in disposal of cholesterol via the feces. This review will discuss current knowledge on the physiology of cholesterol homeostasis, with emphasis on cholesterol absorption, cholesterol synthesis and fecal excretion, and therapeutic options for hypercholesterolemia. Copyright © 2013 Elsevier España, S.L. y SEA. All rights reserved.

  8. HDL Cholesterol Test

    MedlinePlus

    ... Lipoprotein Cholesterol Related tests: Cholesterol ; LDL Cholesterol ; Triglycerides ; Lipid Profile ; Cardiac Risk Assessment ; Lp-PLA2 All content on ... HDL-C) is used as part of a lipid profile to screen for unhealthy levels of lipids and ...

  9. Causes of High Cholesterol

    MedlinePlus

    ... Venous Thromboembolism Aortic Aneurysm More Causes of High Cholesterol Updated:Jul 5,2017 If you have high ... and procedures related to heart disease and stroke. Cholesterol • Home • About Cholesterol • HDL, LDL, and Triglycerides • Causes ...

  10. Common Misconceptions about Cholesterol

    MedlinePlus

    ... Do My Cholesterol Levels Mean? | Spanish Your Cholesterol Score Explained What Are High Blood Cholesterol and Triglycerides? ... Pressure? 7 All About Heart Rate (Pulse) 8 Warning Signs of a Heart Attack 9 Tachycardia | Fast ...

  11. Cell Cholesterol Homeostasis: Mediation by Active Cholesterol

    PubMed Central

    Steck, Theodore L.; Lange, Yvonne

    2010-01-01

    Recent evidence suggests that the major pathways mediating cell cholesterol homeostasis respond to a common signal: active membrane cholesterol. Active cholesterol is that fraction which exceeds the complexing capacity of the polar bilayer lipids. Increments in plasma membrane cholesterol exceeding this threshold have an elevated chemical activity (escape tendency) and redistribute via diverse transport proteins to both circulating plasma lipoproteins and intracellular organelles. Active cholesterol prompts several feedback responses thereby. It is the substrate for its own esterification and for the synthesis of regulatory side-chain oxysterols. It also stimulates manifold pathways that down-regulate the biosynthesis, curtail the ingestion and increase the export of cholesterol. Thus, the abundance of cholesterol is tightly coupled to that of its polar lipid partners through active cholesterol. PMID:20843692

  12. igr Genes and Mycobacterium tuberculosis cholesterol metabolism.

    PubMed

    Chang, Jennifer C; Miner, Maurine D; Pandey, Amit K; Gill, Wendy P; Harik, Nada S; Sassetti, Christopher M; Sherman, David R

    2009-08-01

    Recently, cholesterol was identified as a physiologically important nutrient for Mycobacterium tuberculosis survival in chronically infected mice. However, it remained unclear precisely when cholesterol is available to the bacterium and what additional bacterial functions are required for its metabolism. Here, we show that the igr locus, which we previously found to be essential for intracellular growth and virulence of M. tuberculosis, is required for cholesterol metabolism. While igr-deficient strains grow identically to the wild type in the presence of short- and long-chain fatty acids, the growth of these bacteria is completely inhibited in the presence of cholesterol. Interestingly, this mutant is still able to respire under cholesterol-dependent growth inhibition, suggesting that the bacteria can metabolize other carbon sources during cholesterol toxicity. Consistent with this hypothesis, we found that the growth-inhibitory effect of cholesterol in vitro depends on cholesterol import, as mutation of the mce4 sterol uptake system partially suppresses this effect. In addition, the Delta igr mutant growth defect during the early phase of disease is completely suppressed by mutating mce4, implicating cholesterol intoxication as the primary mechanism of attenuation. We conclude that M. tuberculosis metabolizes cholesterol throughout infection.

  13. A novel alkyne cholesterol to trace cellular cholesterol metabolism and localization[S

    PubMed Central

    Hofmann, Kristina; Thiele, Christoph; Schött, Hans-Frieder; Gaebler, Anne; Schoene, Mario; Kiver, Yuriy; Friedrichs, Silvia; Lütjohann, Dieter; Kuerschner, Lars

    2014-01-01

    Cholesterol is an important lipid of mammalian cells and plays a fundamental role in many biological processes. Its concentration in the various cellular membranes differs and is tightly regulated. Here, we present a novel alkyne cholesterol analog suitable for tracing both cholesterol metabolism and localization. This probe can be detected by click chemistry employing various reporter azides. Alkyne cholesterol is accepted by cellular enzymes from different biological species (Brevibacterium, yeast, rat, human) and these enzymes include cholesterol oxidases, hydroxylases, and acyl transferases that generate the expected metabolites in in vitro and in vivo assays. Using fluorescence microscopy, we studied the distribution of cholesterol at subcellular resolution, detecting the lipid in the Golgi and at the plasma membrane, but also in the endoplasmic reticulum and mitochondria. In summary, alkyne cholesterol represents a versatile, sensitive, and easy-to-use tool for tracking cellular cholesterol metabolism and localization as it allows for manifold detection methods including mass spectrometry, thin-layer chromatography/fluorography, and fluorescence microscopy. PMID:24334219

  14. The complex roles of NADPH oxidases in fungal infection

    PubMed Central

    Hogan, Deborah; Wheeler, Robert T.

    2014-01-01

    Summary NADPH oxidases play key roles in immunity and inflammation that go beyond the production of microbicidal reactive oxygen species (ROS). The past decade has brought a new appreciation for the diversity of roles played by ROS in signaling associated with inflammation and immunity. NADPH oxidase activity affects disease outcome during infections by human pathogenic fungi, an important group of emerging and opportunistic pathogens that includes Candida, Aspergillus and Cryptococcus species. Here we review how alternative roles of NADPH oxidase activity impact fungal infection and how ROS signaling affects fungal physiology. Particular attention is paid to roles for NADPH oxidase in immune migration, immunoregulation in pulmonary infection, neutrophil extracellular trap formation, autophagy and inflammasome activity. These recent advances highlight the power and versatility of spatiotemporally controlled redox regulation in the context of infection, and point to a need to understand the molecular consequences of NADPH oxidase activity in the cell. PMID:24905433

  15. Metabolism of adrenal cholesterol in man

    PubMed Central

    Borkowski, Abraham; Delcroix, Claude; Levin, Sam

    1972-01-01

    The kinetics of plasma and adrenal cholesteral equilibration were analyzed in patients undergoing bilateral adrenalectomy for generalized mammary carcinoma. A biological model is proposed to help in the understanding of adrenal cholesterol physiology. It comprises two intracellular compartments: (1) A compartment of free adrenal cholesterol which is small (of the order of 17 mg) but turns over very fast; it is renewed approximately 8 times per day: 3 times by the inflow of free plasma cholesterol, and 5 times by the hydrolysis of esterified adrenal cholesterol, the contribution of adrenal cholesterol synthesis appearing to be relatively small. (2) A compartment of esterified adrenal cholesterol which is 20 times larger; it is constantly renewed by in situ esterification and hydrolysis with a daily fractional turnover rate of the order of 0.25. The direct and selective accumulation of plasma cholesteryl esters is practically absent. Only free adrenal cholesterol returns to plasma, mostly after conversion into steroid “hormones.” However small the synthesis of adrenal cholesterol may be, it seems more important in the zona “reticularis.” On the other hand, the inflow of plasma cholesterol and the turnover of the free adrenal compartment tend to be faster in the zona “fasciculata.” The equilibration of plasma and adrenal cholesterol can proceed unmodified under conditions of ACTH suppression. In one patient with Cushing's disease the size of the two adrenal compartments was clearly increased but their equilibration with plasma cholesterol proceeded normally. In another patient the kinetics of hydrocortisone corresponded to those of free adrenal cholesterol in the control studies. PMID:4338119

  16. A biochemical approach to study the role of the terminal oxidases in aerobic respiration in Shewanella oneidensis MR-1.

    PubMed

    Le Laz, Sébastien; Kpebe, Arlette; Bauzan, Marielle; Lignon, Sabrina; Rousset, Marc; Brugna, Myriam

    2014-01-01

    The genome of the facultative anaerobic γ-proteobacterium Shewanella oneidensis MR-1 encodes for three terminal oxidases: a bd-type quinol oxidase and two heme-copper oxidases, a A-type cytochrome c oxidase and a cbb 3-type oxidase. In this study, we used a biochemical approach and directly measured oxidase activities coupled to mass-spectrometry analysis to investigate the physiological role of the three terminal oxidases under aerobic and microaerobic conditions. Our data revealed that the cbb 3-type oxidase is the major terminal oxidase under aerobic conditions while both cbb 3-type and bd-type oxidases are involved in respiration at low-O2 tensions. On the contrary, the low O2-affinity A-type cytochrome c oxidase was not detected in our experimental conditions even under aerobic conditions and would therefore not be required for aerobic respiration in S. oneidensis MR-1. In addition, the deduced amino acid sequence suggests that the A-type cytochrome c oxidase is a ccaa 3-type oxidase since an uncommon extra-C terminal domain contains two c-type heme binding motifs. The particularity of the aerobic respiratory pathway and the physiological implication of the presence of a ccaa 3-type oxidase in S. oneidensis MR-1 are discussed.

  17. Cholesterol-lowering effect of plant sterols.

    PubMed

    AbuMweis, Suhad S; Jones, Peter J H

    2008-12-01

    Plant sterols are plant components that have a chemical structure similar to cholesterol except for the addition of an extra methyl or ethyl group; however, plant sterol absorption in humans is considerably less than that of cholesterol. In fact, plant sterols reduce cholesterol absorption and thus reduce circulating levels of cholesterol. Earlier studies that have tested the efficacy of plant sterols as cholesterol-lowering agents incorporated plant sterols into fat spreads. Later on, plant sterols were added to other food matrices, including juices, nonfat beverages, milk and yogurt, cheese, meat, croissants and muffins, and cereal and chocolate bars. The beneficial physiologic effects of plant sterols could be further enhanced by combining them with other beneficial substances, such as olive and fish oils, fibers, and soy proteins, or with exercise. The addition of plant sterols to the diet is suggested by health experts as a safe and effective way to reduce the risk of coronary heart disease.

  18. C3N4 Nanosheet Modified Microwell Array with Enhanced Electrochemiluminescence for Total Analysis of Cholesterol at Single Cells.

    PubMed

    Xu, Jingjing; Jiang, Depeng; Qin, Yanling; Xia, Juan; Jiang, Dechen; Chen, Hong-Yuan

    2017-02-21

    Here, a g-C3N4 nanosheet modified microwell array providing enhanced electrochemiluminescence (ECL) and better visible sensitivity was prepared to simultaneously analyze total (membrane and intracellular) cholesterol at single cells. The detection limit for ECL visualization of hydrogen peroxide at microwell array was improved to be 500 nM that guaranteed the detection of low concentration cholesterol at single cells in parallel. To achieve single cell cholesterol analysis, the individual cells cultured at the microwell array were exposed to cholesterol oxidase generating hydrogen peroxide for luminescence analysis of membrane cholesterol, and then treated with triton X-100, cholesterol esterase, and cholesterol oxidase to produce hydrogen peroxide from intracellular cholesterol for luminescence determination. The observation of the luminescence spots at microwells in these two steps confirmed the codetection of membrane and intracellular cholesterol at single cells. The inhibition of intracellular acyl-coA/cholesterol acyltransferase (ACAT) resulted in less intracellular cholesterol storage (less luminescence) and more membrane cholesterol (more luminescence). The correlation of the luminescence intensity with the amount of cholesterol confirmed that our assay could simultaneously monitor membrane and intracellular cholesterol pools at different cellular states, which should offer more information for the study of cholesterol-related pathways at single cells.

  19. Multifunctional sensing film used for fiber optic cholesterol sensor

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Huang, Jun; Li, Mingtian; Zhou, Xuan

    2008-12-01

    In this paper, by using ethyl silicate, ethanol and fluorescence indicator as the precursors, the multifunctional optic biosensing (MOBS) film containing cholesterol oxidase and the fluorescence indicator was prepared by sol-gel method. This biosensing film has both the function of biocatalyst and oxygen biosensing and can be used as the effective biosensing materials for fiber optic cholesterol sensor. The fiber optical cholesterol sensor based on fluorescence quenching was designed and fabricated using lock-in amplifying technology to realize the detection of cholesterol concentration. The experimental results showed that the best precursor proportion in volume ratio is: ethyl silicate: ethanol: 0.01 M HCl = 5: 8: 1.6. The drying rate of the sol could be controlled by using formamide as the controlling drier. When 16% of formamide were added in the mixing system, the cracks of the film could be reduced greatly and the immobilization of cholesterol oxidase and the fluorescence indicator could be improved effectively. A linear relationship between phase delay φ and the cholesterol concentration was observed in the range of 100 to 500 mg/dL. Since the cholesterol concentration is in the range of 140 to 200 mg/dL in the blood of healthy people, it will be possible for the sensor to be used in clinical detection. The biosensor with MOBS film has the response time of about 30 s, which is rather fast for a biosensor, and the relative deviation of +/-5.03%. This biosensor also has good stability.

  20. A DNA-Assembled Fe3O4@Ag Nanorod in Silica Matrix for Cholesterol Biosensing

    NASA Astrophysics Data System (ADS)

    Satvekar, R. K.; Tiwari, A. P.; Rohiwal, S. S.; Tiwale, B. M.; Pawar, S. H.

    2015-12-01

    A novel nanocomposite having DNA-assembled Fe3O4@Ag nanorods in silica matrix has been proposed for fabrication of bienzymatic cholesterol nanobiosensor. Cholesterol oxidase and horseradish peroxidase have been co-encapsulated in Silica/Fe3O4@Ag-DNA nanocomposite deposited on the indium tin oxide electrode. Cyclic voltammetry was employed for the electrochemical behavior of proposed biosensor and used to estimate cholesterol with a linear range of 5-195 mg/dL.

  1. STABILITY AND STOICHIOMETRY OF BILAYER PHOSPHOLIPID-CHOLESTEROL COMPLEXES: RELATIONSHIP TO CELLULAR STEROL DISTRIBUTION AND HOMEOSTASIS&

    PubMed Central

    Lange, Yvonne; Ali Tabei, S. M.; Ye, Jin; Steck, Theodore L.

    2013-01-01

    Does cholesterol distribute among intracellular compartments by passive equilibration down its chemical gradient? If so, its distribution should reflect the relative cholesterol affinity of the constituent membrane phospholipids as well as their ability to form stoichiometric cholesterol complexes. We tested this hypothesis by analyzing the reactivity to cholesterol oxidase of large unilamellar vesicles (LUVs) containing biological phospholipids plus varied cholesterol. The rates of cholesterol oxidation differed among the various phospholipid environments by roughly four orders of magnitude. Furthermore, accessibility to the enzyme increased by orders of magnitude at cholesterol thresholds that suggested stoichiometries of association of 1:1, 2:3 or 1:2 cholesterol:phospholipid (mol:mol). Cholesterol accessibility above the threshold was still constrained by its particular phospholipid environment. One phospholipid, 1-stearoyl-2-oleoyl-sn-glycero-3-phosphatidylserine, exhibited no threshold. The analysis suggested values for the relative stabilities of the cholesterol-phospholipid complexes and for the fractions of bilayer cholesterol not in complexes at the threshold equivalence points; predictably, the saturated phosphorylcholine species had the lowest stoichiometries and the strongest affinities for cholesterol. These results were in general agreement with the equilibrium distribution of cholesterol between the various LUVs and methyl-β-cyclodextrin. In addition, the properties of the cholesterol in intact human red blood cells matched predictions made from LUVs of the corresponding composition. These results support a passive mechanism for the intracellular distribution of cholesterol that can provide a signal for its homeostatic regulation. PMID:24000774

  2. Get Your Cholesterol Checked

    MedlinePlus

    ... cholesterol levels with a blood test called a lipid profile. For the test, a nurse will take a ... blood tests that can check cholesterol, but a lipid profile gives the most information. Find out more about ...

  3. Cholesterol - Multiple Languages

    MedlinePlus

    ... Supplements Videos & Tools You Are Here: Home → Multiple Languages → All Health Topics → Cholesterol URL of this page: https://medlineplus.gov/languages/cholesterol.html Other topics A-Z Expand Section ...

  4. The First Mammalian Aldehyde Oxidase Crystal Structure

    PubMed Central

    Coelho, Catarina; Mahro, Martin; Trincão, José; Carvalho, Alexandra T. P.; Ramos, Maria João; Terao, Mineko; Garattini, Enrico; Leimkühler, Silke; Romão, Maria João

    2012-01-01

    Aldehyde oxidases (AOXs) are homodimeric proteins belonging to the xanthine oxidase family of molybdenum-containing enzymes. Each 150-kDa monomer contains a FAD redox cofactor, two spectroscopically distinct [2Fe-2S] clusters, and a molybdenum cofactor located within the protein active site. AOXs are characterized by broad range substrate specificity, oxidizing different aldehydes and aromatic N-heterocycles. Despite increasing recognition of its role in the metabolism of drugs and xenobiotics, the physiological function of the protein is still largely unknown. We have crystallized and solved the crystal structure of mouse liver aldehyde oxidase 3 to 2.9 Å. This is the first mammalian AOX whose structure has been solved. The structure provides important insights into the protein active center and further evidence on the catalytic differences characterizing AOX and xanthine oxidoreductase. The mouse liver aldehyde oxidase 3 three-dimensional structure combined with kinetic, mutagenesis data, molecular docking, and molecular dynamics studies make a decisive contribution to understand the molecular basis of its rather broad substrate specificity. PMID:23019336

  5. Activation Mobilizes the Cholesterol in the Late Endosomes-Lysosomes of Niemann Pick Type C Cells

    PubMed Central

    Lange, Yvonne; Ye, Jin; Steck, Theodore L.

    2012-01-01

    A variety of intercalating amphipaths increase the chemical activity of plasma membrane cholesterol. To test whether intracellular cholesterol can be similarly activated, we examined NPC1 and NPC2 fibroblasts, since they accumulate large amounts of cholesterol in their late endosomes and lysosomes (LE/L). We gauged the mobility of intracellular sterol from its appearance at the surface of the intact cells, as determined by its susceptibility to cholesterol oxidase and its isotope exchange with extracellular 2-(hydroxypropyl)-β-cyclodextrin-cholesterol. The entire cytoplasmic cholesterol pool in these cells was mobile, exchanging with the plasma membrane with an apparent half-time of ∼3–4 hours, ∼4–5 times slower than that for wild type human fibroblasts (half-time ∼0.75 hours). The mobility of the intracellular cholesterol was increased by the membrane-intercalating amphipaths chlorpromazine and 1-octanol. Chlorpromazine also promoted the net transfer of LE/L cholesterol to serum and cyclodextrin. Surprisingly, the mobility of LE/L cholesterol was greatly stimulated by treating intact NPC cells with glutaraldehyde or formaldehyde. Similar effects were seen with wild type fibroblasts in which the LE/L cholesterol pool had been expanded using U18666A. We also showed that the cholesterol in the intracellular membranes of fixed wild-type fibroblasts was mobile; it was rapidly oxidized by cholesterol oxidase and was rapidly replenished by exogenous sterol. We conclude that a) the cholesterol in NPC cells can exit the LE/L (and the extensive membranous inclusions therein) over a few hours; b) this mobility is stimulated by the activation of the cholesterol with intercalating amphipaths; c) intracellular cholesterol is even more mobile in fixed cells; and d) amphipaths that activate cholesterol might be useful in treating NPC disease. PMID:22276143

  6. Reversible effects of sphingomyelin degradation on cholesterol distribution and metabolism in fibroblasts and transformed neuroblastoma cells.

    PubMed Central

    Pörn, M I; Slotte, J P

    1990-01-01

    Plasma-membrane sphingomyelin appears to be one of the major determinants of the preferential allocation of cell cholesterol into the plasma-membrane compartment, since removal of sphingomyelin leads to a dramatic redistribution of cholesterol within the cell [Slotte & Bierman (1988) Biochem. J. 250, 653-658]. In the present study we examined the long-term effects of sphingomyelin degradation on cholesterol redistribution in cells and determined the reversibility of the process. In a human lung fibroblast-cell line, removal of 80% of the sphingomyelin led to a rapid and transient up-regulation (3-fold) of acyl-CoA:cholesterol acyltransferase (ACAT) activity, and also, within 30 h, to the translocation of about 50% of the cell non-esterified cholesterol from a cholesterol oxidase-susceptible compartment (i.e. the cell surface) to oxidase-resistant compartments. At 49 h after the initial sphingomyelin degradation, the cell sphingomyelin level was back to 45% of the control level, and the direction of cell cholesterol flow was toward the cell surface, although the original distribution was not achieved. In a transformed neuroblastoma cell line (SH-SY5Y), the depletion of sphingomyelin led to a similarly rapid and transient up-regulation of ACAT activity, and to the translocation of about 25% of cell-surface cholesterol into internal membranes (within 3 h). The flow of cholesterol back to the cholesterol oxidase-susceptible pool was rapid, and a pretreatment cholesterol distribution was reached within 20-49 h. Also, the resynthesis of sphingomyelin was faster in SH-SY5Y neuroblastoma cells and reached control levels within 24 h. The findings of the present study show that the cellular redistribution of cholesterol, as induced by sphingomyelin degradation, is reversible and suggest that the normalization of cellular cholesterol distribution is linked to the re-synthesis of sphingomyelin. PMID:2222406

  7. All about Cholesterol

    MedlinePlus

    Toolkit No. 6 All About Cholesterol Managing your cholesterol and other blood fats (also called blood lipids) can help you prevent health problems. ... it’s likely that your cholesterol may be off. All of these are risk factors for diabetes, heart ...

  8. Detecting Elevated Cholesterol Levels

    PubMed Central

    Reimer, H.L.; Elford, R.W.; Shumak, S.

    1991-01-01

    To assess accuracy of blood cholesterol measurements in the office, fingerprick blood cholesterol assays by a dry reagent chemistry analyzer were compared in 151 patients with simultaneous venipuncture cholesterol assays by standard laboratory methods. Compared with the laboratory assay, seven of eight analyzers had total absolute biases less than 5%. Variability in results was comparable to that of community laboratories. PMID:21229050

  9. Cholesterol and Plants

    ERIC Educational Resources Information Center

    Behrman, E. J.; Gopalan, Venkat

    2005-01-01

    There is a widespread belief among the public and even among chemist that plants do not contain cholesterol. This wrong belief is the result of the fact that plants generally contain only small quantities of cholesterol and that analytical methods for the detection of cholesterol in this range were not developed until recently.

  10. Cholesterol and Plants

    ERIC Educational Resources Information Center

    Behrman, E. J.; Gopalan, Venkat

    2005-01-01

    There is a widespread belief among the public and even among chemist that plants do not contain cholesterol. This wrong belief is the result of the fact that plants generally contain only small quantities of cholesterol and that analytical methods for the detection of cholesterol in this range were not developed until recently.

  11. Stability and stoichiometry of bilayer phospholipid-cholesterol complexes: relationship to cellular sterol distribution and homeostasis.

    PubMed

    Lange, Yvonne; Tabei, S M Ali; Ye, Jin; Steck, Theodore L

    2013-10-08

    Is cholesterol distributed among intracellular compartments by passive equilibration down its chemical gradient? If so, its distribution should reflect the relative cholesterol affinity of the constituent membrane phospholipids as well as their capacity for association with the sterol. We examined this issue by analyzing the reactivity to cholesterol oxidase of large unilamellar vesicles (LUVs) containing phospholipids and varied levels of cholesterol. The rates of cholesterol oxidation differed among the various phospholipid environments by roughly 4 orders of magnitude. Furthermore, accessibility to the enzyme increased by orders of magnitude at cholesterol thresholds that suggested cholesterol:phospholipid association ratios of 1:1, 2:3, or 1:2 (moles:moles). The accessibility of cholesterol above these thresholds was still constrained by its particular phospholipid environment. One phospholipid, 1-stearoyl-2-oleoyl-sn-glycero-3-phosphatidylserine, exhibited no threshold. The analysis suggested values for the stoichiometries of the putative cholesterol-phospholipid complexes, their relative stabilities, and the fractions of bilayer cholesterol not in complexes at the threshold equivalence points. Predictably, the saturated phosphorylcholine species had the lowest apparent stoichiometric ratios and the strongest associations with cholesterol. These results are in general agreement with the equilibrium distribution of cholesterol between the various LUVs and methyl-β-cyclodextrin. In addition, the behavior of the cholesterol in intact human red blood cells matched predictions made from LUVs of the corresponding composition. These results support a passive mechanism for the intracellular distribution of cholesterol that can provide a signal for its homeostatic regulation.

  12. What Your Cholesterol Levels Mean

    MedlinePlus

    ... Disease Venous Thromboembolism Aortic Aneurysm More What Your Cholesterol Levels Mean Updated:Jul 5,2017 Keeping your ... stroke. This content was last reviewed April 2017. Cholesterol • Home • About Cholesterol Introduction Atherosclerosis What Your Cholesterol ...

  13. Home-Use Tests - Cholesterol

    MedlinePlus

    ... Medical Procedures In Vitro Diagnostics Home Use Tests Cholesterol Share Tweet Linkedin Pin it More sharing options ... a home-use test kit to measure total cholesterol. What cholesterol is: Cholesterol is a fat (lipid) ...

  14. Isolated sulfite oxidase deficiency.

    PubMed

    Rupar, C A; Gillett, J; Gordon, B A; Ramsay, D A; Johnson, J L; Garrett, R M; Rajagopalan, K V; Jung, J H; Bacheyie, G S; Sellers, A R

    1996-12-01

    Isolated sulfite oxidase (SO) deficiency is an autosomal recessively inherited inborn error of sulfur metabolism. In this report of a ninth patient the clinical history, laboratory results, neuropathological findings and a mutation in the sulfite oxidase gene are described. The data from this patient and previously published patients with isolated sulfite oxidase deficiency and molybdenum cofactor deficiency are summarized to characterize this rare disorder. The patient presented neonatally with intractable seizures and did not progress developmentally beyond the neonatal stage. Dislocated lenses were apparent at 2 months. There was increased urine excretion of sulfite and S-sulfocysteine and a decreased concentration of plasma cystine. A lactic acidemia was present for 6 months. Liver sulfite oxidase activity was not detectable but xanthine dehydrogenase activity was normal. The boy died of respiratory failure at 32 months. Neuropathological findings of cortical necrosis and extensive cavitating leukoencephalopathy were reminiscent of those seen in severe perinatal asphyxia suggesting an etiology of energy deficiency. A point mutation that resulted in a truncated protein missing the molybdenum-binding site has been identified.

  15. 7-Keto-cholesterol and 25-hydroxy-1 cholesterol rapidly enhance ROS production in human neutrophils.

    PubMed

    Alba, Gonzalo; Reyes-Quiróz, María Edith; Sáenz, Javier; Geniz, Isabel; Jiménez, Juan; Martín-Nieto, José; Pintado, Elizabeth; Sobrino, Francisco; Santa-María, Consuelo

    2016-12-01

    Oxysterols are cholesterol-oxygenated derivatives generated in the organism and also present in foods because of cholesterol oxidation during processing and storage. They are the natural ligands of liver X receptors (LXRs) and are generally recognized as hypocholesterolemic and anti-inflammatory molecules although this latter property is still controversial. Most oxysterol studies have been performed in macrophages, whereas the effects of oxysterols in neutrophils are poorly known. In this study, human neutrophils were exposed to two different oxysterols, 7-keto-cholesterol (7-k-chol) and 25-hydroxy-cholesterol (25-OH-chol), and their possible participation in inflammatory process was evaluated. Human neutrophils were incubated with 7-k-chol and 25-OH-chol, and ROS production, translocation of the NADPH oxidase cytosolic components, hemoxygenase-1 (HO-1) expression and lysozyme secretion were analyzed. An increase in ROS production was observed within a short period of time (minutes) with both molecules. These oxysterols also stimulated the cellular membrane translocation of the NADPH oxidase cytosolic components, p47phox and p67phox. On the other hand, HO-1 expression, a cytoprotector enzyme, is inhibited in human neutrophils upon oxysterols treatment. Moreover, both oxysterols were associated with high lysozyme enzyme secretion at 5 and 18 h of incubation. The present paper describes for the first time that two oxysterols (7-k-chol and 25-OH-chol) enhance the ROS production within a short period of time in human neutrophils, stimulate the translocation of the cytosolic components of NADPH oxidase to the cellular membrane and increase lysozyme secretion. These data suggest that both oxysterols are able to activate pro-inflammatory effects in human neutrophils which contrasts with the role assigned to the oxysterols when they act through LXR at long time of incubation.

  16. [Plant sterols, cholesterol precursors and oxysterols: small amounts, big effects].

    PubMed

    Olkkonen, Vesa M; Gylling, Helena; Ikonen, Elina

    2015-01-01

    Noncholesterol sterols are present in the body in very low concentrations compared with cholesterol. Minor structural changes in sterols give them completely individual biological activities. Steroid hormones are the best known example of this. The knowledge of other relatives of cholesterol, particularly plant sterols, cholesterol precursors and oxysterols, their properties, physiological effects, significance in disease processes and diagnostic applications has recently undergone a rapid increase.

  17. Succinate oxidase in Neurospora.

    PubMed

    West, D J; Woodward, D O

    1973-02-01

    Two kinetically distinct states of succinate oxidase have been detected in the mitochondria of Neruospora crassa. One state has a K(m) for succinate of 4.1 x 10(-3)m, and the other has a K(m) for succinate of 3.5 x 10(-4)m. The high K(m) state was found in freshly extracted mitochondria from either 20- or 72-hr mycelium. However, the succinate oxidase activity in mitochondria from 20-hr mycelium rapidly deteriorated in vitro, leaving a stable residual activity with the lower K(m) for succinate. Adenosine triphosphate (ATP) plus Mg(2+) stabilized the high K(m) state in these preparations. The high K(m) state of succinate oxidase was further characterized by a two- to threefold increase in activity over the pH range 6.6 to 8.0 and by classical competitive inhibition by fumarate and malonate. By contrast, the low K(m) state of succinate oxidase showed a relatively flat response to pH over the range 6.6 to 8.0 and a nonclassical pattern of inhibition by fumarate and malonate, as shown by nonlinear plots of reciprocal velocity versus reciprocal substrate concentration in the presence of inhibitor or reciprocal velocity versus inhibitor concentration at fixed substrate concentrations. The relationship of mycelial age to the in vitro stability of succinate oxidase is considered with reference to probable changes in the relative pool sizes of extra- and intramitochondrial ATP in response to changes in the rate of glycolysis.

  18. Expression of terminal oxidases under nutrient-starved conditions in Shewanella oneidensis: detection of the A-type cytochrome c oxidase

    PubMed Central

    Le Laz, Sébastien; kpebe, Arlette; Bauzan, Marielle; Lignon, Sabrina; Rousset, Marc; Brugna, Myriam

    2016-01-01

    Shewanella species are facultative anaerobic bacteria that colonize redox-stratified habitats where O2 and nutrient concentrations fluctuate. The model species Shewanella oneidensis MR-1 possesses genes coding for three terminal oxidases that can perform O2 respiration: a bd-type quinol oxidase and cytochrome c oxidases of the cbb3-type and the A-type. Whereas the bd- and cbb3-type oxidases are routinely detected, evidence for the expression of the A-type enzyme has so far been lacking. Here, we investigated the effect of nutrient starvation on the expression of these terminal oxidases under different O2 tensions. Our results reveal that the bd-type oxidase plays a significant role under nutrient starvation in aerobic conditions. The expression of the cbb3-type oxidase is also modulated by the nutrient composition of the medium and increases especially under iron-deficiency in exponentially growing cells. Most importantly, under conditions of carbon depletion, high O2 and stationary-growth, we report for the first time the expression of the A-type oxidase in S. oneidensis, indicating that this terminal oxidase is not functionally lost. The physiological role of the A-type oxidase in energy conservation and in the adaptation of S. oneidensis to redox-stratified environments is discussed. PMID:26815910

  19. Fluorometric enzymatic determination of total cholesterol in serum.

    PubMed

    Huang, H; Kauan, J W; Guilbault, G G

    1975-10-01

    We describe a fluorometric enzymatic method for determining total serum cholesterol, based on hydrolysis of cholesterol esters to free cholesterol by cholesterol ester hydrolase (EC 3.1.1.13). The free cholesterol formed, as well as that initially present, is then oxidized by cholesterol oxidase (EC 1.1.3.6) to cholest-4-en-3-one with simultaneous production of hydrogen peroxide. The latter catalytically oxidizes homovanillic acid in the presence of peroxidase (EC 1.11.1.7) to form the highly fluorescent 2,2'-dihydroxy-3,3'-dimethoxy-biphenyl-5,5'-diacetic acid. A calibration curve is constructed from data on a series of standard cholesterol solutions vs. the corresponding fluorescence change (deltaf/5 min). This curve is linear up to 4.0 g of total serum cholesterol per liter of serum. The method is specific, precise, accurate, rapid, and simple, and results correlate well with those obtained by both the Liebermann-Burchard procedure and the colorimetric enzymatic method (correlation coefficients, 0.984 and 0.981, respectively).

  20. NADPH Oxidases in Lung Health and Disease

    PubMed Central

    Bernard, Karen; Hecker, Louise; Luckhardt, Tracy R.; Cheng, Guangjie

    2014-01-01

    Abstract Significance: The evolution of the lungs and circulatory systems in vertebrates ensured the availability of molecular oxygen (O2; dioxygen) for aerobic cellular metabolism of internal organs in large animals. O2 serves as the physiologic terminal acceptor of mitochondrial electron transfer and of the NADPH oxidase (Nox) family of oxidoreductases to generate primarily water and reactive oxygen species (ROS), respectively. Recent advances: The purposeful generation of ROS by Nox family enzymes suggests important roles in normal physiology and adaptation, most notably in host defense against invading pathogens and in cellular signaling. Critical issues: However, there is emerging evidence that, in the context of chronic stress and/or aging, Nox enzymes contribute to the pathogenesis of a number of lung diseases. Future Directions: Here, we review evolving functions of Nox enzymes in normal lung physiology and emerging pathophysiologic roles in lung disease. Antioxid. Redox Signal. 20, 2838–2853. PMID:24093231

  1. The mechanism of cytochrome C oxidase inhibition by nitric oxide.

    PubMed

    Antunes, Fernando; Cadenas, Enrique

    2007-01-01

    The basic biochemistry of the inhibition of cytochrome oxidase by NO is reviewed. Three possible mechanisms that include the binding of NO to the fully reduced Fe(a3)-Cu(B) site, to the semi-reduced Fe(a3)-Cu(B) site, and to the fully oxidized Fe(a3)-Cu(B) site are confronted with the experimental data. Mathematical models are used to facilitate the analysis and to solve puzzling observations concerning the NO inhibition of cytochrome oxidase. It is concluded that the inhibition of cytochrome oxidase by NO is mixed, having both competitive and uncompetitive components, but under physiological electron flows the competitive component is largely predominant. The physiological and pathological relevance of this inhibition is briefly discussed.

  2. Isolated sulfite oxidase deficiency.

    PubMed

    Relinque, B; Bardallo, L; Granero, M; Jiménez, P J; Luna, S

    2015-03-10

    Sulfite oxidase deficiency is an uncommon metabolic disease. Only few cases of its isolated form have been reported in the literature. We report a case of severe neonatal onset. A newborn baby of 41 weeks gestational age, weighted at birth of 3240 grams and had an Apgar score of 6-10-10. Fifty-three hours after being born, the baby started with seizures that were refractory to antiepileptic treatment. Brain function was monitored using a-EEG. Laboratory and imaging tests were performed. All of them were consistent with sulfite oxidase deficiency. The diagnosis was confirmed by genetic testing. We highlight the importance of this disease as part of the differential diagnosis of seizures during the neonatal period, as well as the importance of the therapeutic support based on dietary restrictions. It's also remarkable the possibility of prenatal diagnosis by quantifying enzyme activity and it's also possible carrying out DNA mutational analysis.

  3. Regulation of hepatic cholesterol synthesis by a novel protein (SPF) that accelerates cholesterol biosynthesis.

    PubMed

    Shibata, Norihito; Jishage, Kou-ichi; Arita, Makoto; Watanabe, Miho; Kawase, Yosuke; Nishikawa, Kiyotaka; Natori, Yasuhiro; Inoue, Hiroyasu; Shimano, Hitoshi; Yamada, Nobuhiro; Tsujimoto, Masafumi; Arai, Hiroyuki

    2006-12-01

    Supernatant protein factor (SPF) is a novel cholesterol biosynthesis-accelerating protein expressed in liver and small intestine. Here, we report on the physiological role of SPF by using Spf-deficient mice. Although plasma cholesterol levels were similar in chow-fed Spf-/- and wild-type (WT) mice, fasting significantly decreased plasma cholesterol levels in Spf-/- mice but not in WT mice. While fasting reduced hepatic cholesterol synthesis rate in WT mice, a more pronounced reduction was observed in Spf-/- mice. The expression of cholesterogenic enzymes was dramatically suppressed by fasting both in WT and Spf-/- mice. In contrast, hepatic SPF expression of WT mice was up-regulated by fasting in peroxisome proliferator-activated receptor alpha (PPAR-alpha)-dependent manner. These results indicate that in WT mice, the decrease of hepatic cholesterol synthesis under fasting conditions is at least in part compensated by SPF up-regulation. Fibrates, which function as a PPAR-alpha agonist and are widely used as hypotriglycemic drugs, reduced hepatic cholesterol synthesis and plasma cholesterol levels by approximately one-half in Spf-/- mice but not in WT mice. These findings suggest that co-administration of fibrates and an SPF inhibitor may reduce not only plasma triglyceride but also cholesterol levels, indicating that SPF is a promising hypocholesterolemic drug target.

  4. High blood cholesterol levels

    MedlinePlus

    Lipid disorders; Hyperlipoproteinemia; Hyperlipidemia; Dyslipidemia; Hypercholesterolemia ... A cholesterol test is done to diagnose a lipid disorder. Different experts recommend different starting ages. Recommended ...

  5. Cholesterol in the retina: the best is yet to come

    PubMed Central

    Pikuleva, Irina A.; Curcio, Christine A.

    2014-01-01

    Historically understudied, cholesterol in the retina is receiving more attention now because of genetic studies showing that several cholesterol-related genes are risk factors for age-related macular degeneration (AMD) and because eye pathology studies showing high cholesterol content of drusen, aging Bruch's membrane, and newly found subretinal lesions. The challenge before us is determining how the cholesterol-AMD link is realized. Meeting this challenge will require an excellent understanding these genes’ roles in retinal physiology and how chorioretinal cholesterol is maintained. In the first half of this review, we will succinctly summarize physico-chemical properties of cholesterol, its distribution in the human body, general principles of maintenance and metabolism, and differences in cholesterol handling in human and mouse that impact on experimental approaches. This information will provide a backdrop to the second part of the review focusing on unique aspects of chorioretinal cholesterol homeostasis, aging in Bruch's membrane, cholesterol in AMD lesions, a model for lesion biogenesis, a model for macular vulnerability based on vascular biology, and alignment of AMD-related genes and pathobiology using cholesterol and an atherosclerosis-like progression as unifying features. We conclude with recommendations for the most important research steps we can take towards delineating the cholesterol-AMD link. PMID:24704580

  6. Use of a quantitative oxidase test for characterizing oxidative metabolism in bacteria.

    PubMed Central

    Jurtshuk, P; McQuitty, D N

    1976-01-01

    It was possible to quantitate the terminal oxidase(s) reaction using bacterial resting-cell suspensions and demonstrate the usefulness of this reaction for taxonomic purposes. Resting-cell suspensions of physiologically diverse bacteria were examined for their capabilities of oxidizing N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) using a manometric assay. For organisms having this capability, it was possible to calculate the conventional TMPD oxidase Q(O2) value (microliters of O2 consumed per hour per milligram [dry weight]). All cultures were grown heterotrophically at 30 C, under identical nutritional conditions, and were harvested at the late-logarithmic growth phase. The TMPD oxidase Q(O2) values showed perfect correlation with the Kovacs oxidase test and, in addition, it was possible to define quantitatively that point which separated oxidase-positive from oxidase-negative bacteria. Oxidase-negative bacteria exhibited a TMPD oxidase Q(O2) value (after correcting for the endogenous by substraction) of less than or equal 33 and had an uncorrected TMPD/endogenous ratio of less than or equal 5. The TMPD oxidase Q(O2) values were also correlated with the data obtained for the Hugh-Leifson Oxferm test. In general, bacteria that exhibited a respiratory mechanism had high TMPD oxidase values, whereas fermentative organsims had low TMPD oxidase activity. All exceptions to this are noted. This quantitative study also demonstrated that organisms that (i) lack a type c cytochrome, or (ii) lack a cytochrome-containing electron transport system, like the lactic acid bacteria, exhibited low or negligible TMPD oxidase Q(O2) values. From the 79 bacterial species (36 genera) examined, it appears that this quantitative oxidase test has taxonomic value that can differentiate the oxidative relationships between bacteria at the subspecies, species, and genera levels. PMID:1275489

  7. Cholesterol - what to ask your doctor

    MedlinePlus

    ... your doctor; What to ask your doctor about cholesterol ... What is my cholesterol level? What should my cholesterol level be? What are HDL ("good") cholesterol and LDL ("bad") cholesterol? Does my cholesterol ...

  8. NADPH OXIDASE: STRUCTURE AND ACTIVATION MECHANISMS (REVIEW). NOTE I.

    PubMed

    Filip-Ciubotaru, Florina; Manciuc, Carmen; Stoleriu, Gabriela; Foia, Liliana

    2016-01-01

    NADPH oxidase (nicotinamide adenine dinucleotide phosphate-oxidase), with its generically termed NOX isoforms, is the major source of ROS (reactive oxigen species) in biological systems. ROS are small oxygen-derived molecules with an important role in various biological processes (physiological or pathological). If under physiological conditions some processes are beneficial and necessary for life, under pathophysiological conditions they are noxious, harmful. NADPH oxidases are present in phagocytes and in a wide variety of nonphagocytic cells. The enzyme generates superoxide by transferring electrons from NADPH inside the cell across the membrane and coupling them to molecular oxygen to produce superoxide anion, a reactive free-radical. Structurally, NADPH oxidase is a multicomponent enzyme which includes two integral membrane proteins, glycoprotein gp9 1 Phox and adaptor protein p22(phox), which together form the heterodimeric flavocytochrome b558 that constitutes the core of the enzyme. During the resting state, the multidomain regulatory subunits p40P(phox), p47(phox), p67(Phox) are located in the cytosol organized as a complex. The activation of phagocytic NADPH oxidase occurs through a complex series of protein interactions.

  9. Kids and Cholesterol.

    ERIC Educational Resources Information Center

    Ficklen, Ellen

    1992-01-01

    According to a 1991 National Cholesterol Education Program report, the best way to avoid heart trouble is to take early preventive measures. This means that children over age two should follow the same low-fat, low-cholesterol guidelines already recommended for adults. Sidebars contain a fat glossary and tips for cutting fat in school lunches.…

  10. Cholesterol and Kir channels

    PubMed Central

    Levitan, Irena

    2009-01-01

    To date, most of the major types of Kir channels, Kir2s, Kir3s, Kir4s and Kir6s, have been found to partition into cholesterol-rich membrane domains and/or to be regulated by changes in the level of membrane cholesterol. Surprisingly, however, in spite of the structural similarities between different Kirs, effects of cholesterol on different types of Kir channels vary from cholesterol-induced decrease in the current density (Kir2 channels) to the loss of channel activity by cholesterol depletion (Kir4 channels) and loss of channel coupling by different mediators (Kir3 and Kir6 channels). Recently, we have gained initial insights into the mechanisms responsible for cholesterol-induced suppression Kir2 channels, but mechanisms underlying cholesterol sensitivity of other Kir channels are mostly unknown. The goal of this review is to present a summary of the current knowledge of the distinct effects of cholesterol on different types of Kir channels in vitro and in vivo. PMID:19548316

  11. Electrochemical oxidation of cholesterol

    PubMed Central

    2015-01-01

    Summary Indirect cholesterol electrochemical oxidation in the presence of various mediators leads to electrophilic addition to the double bond, oxidation at the allylic position, oxidation of the hydroxy group, or functionalization of the side chain. Recent studies have proven that direct electrochemical oxidation of cholesterol is also possible and affords different products depending on the reaction conditions. PMID:25977713

  12. Cholesterol and prostate cancer.

    PubMed

    Freeman, Michael R; Solomon, Keith R

    2004-01-01

    Cholesterol is a neutral lipid that accumulates in liquid-ordered, detergent-resistant membrane domains called lipid rafts. Lipid rafts serve as membrane platforms for signal transduction mechanisms that mediate cell growth, survival, and a variety of other processes relevant to cancer. A number of studies, going back many years, demonstrate that cholesterol accumulates in solid tumors and that cholesterol homeostasis breaks down in the prostate with aging and with the transition to the malignant state. This review summarizes the established links between cholesterol and prostate cancer (PCa), with a focus on how accumulation of cholesterol within the lipid raft component of the plasma membrane may stimulate signaling pathways that promote progression to hormone refractory disease. We propose that increases in cholesterol in prostate tumor cell membranes, resulting from increases in circulating levels or from dysregulation of endogenous synthesis, results in the coalescence of raft domains. This would have the effect of sequestering positive regulators of oncogenic signaling within rafts, while maintaining negative regulators in the liquid-disordered membrane fraction. This approach toward examining the function of lipid rafts in prostate cancer cells may provide insight into the role of circulating cholesterol in malignant growth and on the potential relationship between diet and aggressive disease. Large-scale characterization of proteins that localize to cholesterol-rich domains may help unveil signaling networks and pathways that will lead to identification of new biomarkers for disease progression and potentially to novel targets for therapeutic intervention.

  13. Mitochondrial cholesterol: mechanisms of import and effects on mitochondrial function.

    PubMed

    Martin, Laura A; Kennedy, Barry E; Karten, Barbara

    2016-04-01

    Mitochondria require cholesterol for biogenesis and membrane maintenance, and for the synthesis of steroids, oxysterols and hepatic bile acids. Multiple pathways mediate the transport of cholesterol from different subcellular pools to mitochondria. In steroidogenic cells, the steroidogenic acute regulatory protein (StAR) interacts with a mitochondrial protein complex to mediate cholesterol delivery to the inner mitochondrial membrane for conversion to pregnenolone. In non-steroidogenic cells, several members of a protein family defined by the presence of a StAR-related lipid transfer (START) domain play key roles in the delivery of cholesterol to mitochondrial membranes. Subdomains of the endoplasmic reticulum (ER), termed mitochondria-associated ER membranes (MAM), form membrane contact sites with mitochondria and may contribute to the transport of ER cholesterol to mitochondria, either independently or in conjunction with lipid-transfer proteins. Model systems of mitochondria enriched with cholesterol in vitro and mitochondria isolated from cells with (patho)physiological mitochondrial cholesterol accumulation clearly demonstrate that mitochondrial cholesterol levels affect mitochondrial function. Increased mitochondrial cholesterol levels have been observed in several diseases, including cancer, ischemia, steatohepatitis and neurodegenerative diseases, and influence disease pathology. Hence, a deeper understanding of the mechanisms maintaining mitochondrial cholesterol homeostasis may reveal additional targets for therapeutic intervention. Here we give a brief overview of mitochondrial cholesterol import in steroidogenic cells, and then focus on cholesterol trafficking pathways that deliver cholesterol to mitochondrial membranes in non-steroidogenic cells. We also briefly discuss the consequences of increased mitochondrial cholesterol levels on mitochondrial function and their potential role in disease pathology.

  14. Bile acid sequestrants for cholesterol

    MedlinePlus

    ... ency/patientinstructions/000787.htm Bile acid sequestrants for cholesterol To use the sharing features on this page, ... are medicines that help lower your LDL (bad) cholesterol . Too much cholesterol in your blood can stick ...

  15. Molecular pathophysiology and physical chemistry of cholesterol gallstones.

    PubMed

    Wang, Helen H; Portincasa, Piero; Wang, David Q-H

    2008-01-01

    Cholesterol gallstones are one of the most prevalent and most costly digestive diseases in the developed countries. Although precipitation of cholesterol from supersaturated bile is the first irreversible physical-chemical step in cholesterol gallstone formation, hepatic hypersecretion of biliary cholesterol is the primary defect in the formation of cholesterol gallstones. The other common abnormalities of the hepatobiliary system in gallstone patients include accelerated cholesterol nucleation/crystallization, gallbladder hypomotility, hypersecretion and accumulation of mucins, high efficiency of intestinal cholesterol absorption and slow intestinal motility. Family and twin studies in humans as well as gallstone prevalence investigations in different strains of inbred mice have clearly demonstrated that a complex genetic basis could determine individual predisposition to develop cholesterol gallstones in response to environmental factors such as high dietary cholesterol. In this review, we summarize progress in understanding the molecular pathophysiology of cholesterol gallstone formation with particular reference to most recent advances in the physical-chemistry of bile and the physiology of biliary lipid secretion.

  16. Cholesterol and Ion Channels

    PubMed Central

    Levitan, Irena; Fang, Yun; Rosenhouse-Dantsker, Avia; Romanenko, Victor

    2010-01-01

    A variety of ion channels, including members of all major ion channel families, have been shown to be regulated by changes in the level of membrane cholesterol and partition into cholesterol-rich membrane domains. In general, several types of cholesterol effects have been described. The most common effect is suppression of channel activity by an increase in membrane cholesterol, an effect that was described for several types of inwardly-rectifying K+ channels, voltage-gated K+ channels, Ca+2 sensitive K+ channels, voltage-gated Na+ channels, N-type voltage-gated Ca+2 channels and volume-regulated anion channels. In contrast, several types of ion channels, such as epithelial amiloride-sensitive Na+ channels and Transient Receptor Potential channels, as well as some of the types of inwardly-rectifying and voltage-gated K+ channels were shown to be inhibited by cholesterol depletion. Cholesterol was also shown to alter the kinetic properties and current-voltage dependence of several voltage-gated channels. Finally, maintaining membrane cholesterol level is required for coupling ion channels to signalling cascades. In terms of the mechanisms, three general mechanisms have been proposed: (i) specific interactions between cholesterol and the channel protein, (ii) changes in the physical properties of the membrane bilayer and (iii) maintaining the scaffolds for protein-protein interactions. The goal of this review is to describe systematically the role of cholesterol in regulation of the major types of ion channels and to discuss these effects in the context of the models proposed. PMID:20213557

  17. Detecting Elevated Cholesterol Levels

    PubMed Central

    Reimer, H.L.; Elford, R.W.; Shumak, S.

    1991-01-01

    The Reflotron dry chemistry reflectance photometer was studied as a case-finding method in physicians' offices. A total of 713 adult patients had their risk factor profiles determined along with fingerprick blood cholesterol measurements. Blood cholesterol levels were classified into three categories, (<5.2 mmol/L), 51%; borderline high (5.2 to 6.1 mmol/L), 28%; and high (≥6.2 mmol/L), 21%. The physicians' predictions from clinical risk factor profiles of which patients had elevated serum cholesterol levels were inaccurate. PMID:21229051

  18. Diiron centre mutations in Ciona intestinalis alternative oxidase abolish enzymatic activity and prevent rescue of cytochrome oxidase deficiency in flies.

    PubMed

    Andjelković, Ana; Oliveira, Marcos T; Cannino, Giuseppe; Yalgin, Cagri; Dhandapani, Praveen K; Dufour, Eric; Rustin, Pierre; Szibor, Marten; Jacobs, Howard T

    2015-12-17

    The mitochondrial alternative oxidase, AOX, carries out the non proton-motive re-oxidation of ubiquinol by oxygen in lower eukaryotes, plants and some animals. Here we created a modified version of AOX from Ciona instestinalis, carrying mutations at conserved residues predicted to be required for chelation of the diiron prosthetic group. The modified protein was stably expressed in mammalian cells or flies, but lacked enzymatic activity and was unable to rescue the phenotypes of flies knocked down for a subunit of cytochrome oxidase. The mutated AOX transgene is thus a potentially useful tool in studies of the physiological effects of AOX expression.

  19. Colorimetric determination of free and total cholesterol by flow injection analysis with a fiber optic detector.

    PubMed

    Krug, A; Suleiman, A A; Guilbault, G G; Kellner, R

    1992-04-01

    A flow injection method for the determination of total and free cholesterol is presented. Cholesterol esterase and cholesterol oxidase are immobilized on aminoalkyl glass beads. The beads are packed into a tubular glass reactor. The cholesterol esters traversing through the esterase reactor are cleaved to cholesterol and fatty acids. The oxidase reactor converts cholesterol to cholest-4-en-3-one and hydrogen peroxide is generated. The sample stream is merged with reagent streams consisting of a peroxidase solution and a solution of 2,2'-azino-bis-(3-ethyl-benzthiazoline-6-sulfonic acid) diammonium salt, and a hydrogen peroxide-dependent color reaction takes place in a short coiled reactor. The signal is monitored by means of fiber optic instrumentation. Cholesterol concentration can be related to the absorption of the oxidized dye form at a wavelength of 425 nm. The working range is 0.5-0.8 mmol l-1, and the sample throughputs are 60 and 30 h-1 for free and total cholesterol, respectively.

  20. Cellular stress from excitatory neurotransmission contributes to cholesterol loss in hippocampal neurons aging in vitro.

    PubMed

    Sodero, Alejandro O; Weissmann, Carina; Ledesma, Maria Dolores; Dotti, Carlos G

    2011-06-01

    After approximately 3 weeks in vitro, hippocampal neurons present many of the typical hallmarks accompanying neuronal aging in vivo, including accumulation of reactive oxygen species (ROS), lipofuscin granules, heterochromatic foci, and activation of the Jun N-terminal protein kinase (pJNK) and p53/p21 pathways. In addition, hippocampal neurons in vitro undergo a gradual loss of cholesterol, which is important for the activation of the prosurvival tyrosine kinase receptor TrkB. Here, we used the hippocampal in vitro system to investigate the possible cause of age-accompanying cholesterol loss. We report that cholesterol loss during in vitro aging is paralleled by upregulation and translocation to the neuronal surface of cholesterol-24-hydroxylase (Cyp46), the enzyme responsible for cholesterol removal from neurons. Chronic reduction of electrical activity diminished cholesterol loss in aged neurons and precluded the upregulation of cholesterol-24-hydroxylase. In agreement with a cause-effect relationship, stimulation of excitatory neurotransmission in young neurons led to cholesterol loss. Mechanistically, N-methyl-D-aspartate (NMDA)-mediated excitatory neurotransmission leads to cholesterol loss through generation of reactive oxygen species derived from the activation of the stress-responsive enzyme NADPH oxidase. Supporting the relevance of the in vitro data, reduced cholesterol was also detected in synaptic membranes from old mice brains. Furthermore, excitatory neurotransmission via the nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase pathway induced cholesterol loss in purified brain synaptosomes. The current studies highlight excitatory neurotransmission as 1 of the mechanisms involved in cholesterol loss during aging. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Complementary probes reveal that phosphatidylserine is required for the proper transbilayer distribution of cholesterol.

    PubMed

    Maekawa, Masashi; Fairn, Gregory D

    2015-04-01

    Cholesterol is an essential component of metazoan cellular membranes and it helps to maintain the structural integrity and fluidity of the plasma membrane. Here, we developed a cholesterol biosensor, termed D4H, based on the fourth domain of Clostridium perfringens theta-toxin, which recognizes cholesterol in the cytosolic leaflet of the plasma membrane and organelles. The D4H probe disassociates from the plasma membrane upon cholesterol extraction and after perturbations in cellular cholesterol trafficking. When used in combination with a recombinant version of the biosensor, we show that plasmalemmal phosphatidylserine is essential for retaining cholesterol in the cytosolic leaflet of the plasma membrane. In vitro experiments reveal that 1-stearoy-2-oleoyl phosphatidylserine can induce phase separation in cholesterol-containing lipid bilayers and shield cholesterol from cholesterol oxidase. Finally, the altered transbilayer distribution of cholesterol causes flotillin-1 to relocalize to endocytic organelles. This probe should be useful in the future to study pools of cholesterol in the cytosolic leaflet of the plasma membrane and organelles.

  2. Cholesterol testing and results

    MedlinePlus

    ... VLDL test results; HDL test results; Coronary risk profile results; Hyperlipidemia-results; Lipid disorder test results ... in your blood. You may also have a lipid (or coronary risk) profile, which includes: Total cholesterol Low density lipoprotein (LDL ...

  3. Compounds affecting cholesterol absorption

    NASA Technical Reports Server (NTRS)

    Hua, Duy H. (Inventor); Koo, Sung I. (Inventor); Noh, Sang K. (Inventor)

    2004-01-01

    A class of novel compounds is described for use in affecting lymphatic absorption of cholesterol. Compounds of particular interest are defined by Formula I: ##STR1## or a pharmaceutically acceptable salt thereof.

  4. Transport of cholesterol.

    PubMed

    Norum, K R; Berg, T; Helgerud, P; Drevon, C A

    1983-10-01

    .ur current model for cholesterol transport is summarized in Figure 10. In this figure we have put together the various steps in cholesterol transport that were described previously in this review. Under normal conditions, cholesterol metabolism and transport are well regulated. If the transport system is overloaded for a long time, however, hypercholesterolemia caused mainly by increased plasma LDL may develop in several species, including humans. Under such circumstances reverse transport of cholesterol may also fail, giving rise to deposits of cholesterol. Tissue macrophages may be responsible for this lipid accumulation, because receptor-mediated (adsorptive) endocytosis of lipoprotein-associated cholesterol in these cells is not under negative-feedback control. The deposits are mainly found in tissues poorly supplied with blood and lymph: the skin, tendons, the cornea, and arteries. Overload of cholesterol transport may be the result of too much fat and cholesterol in the diet, giving rise to cholesterol-rich lipoproteins from the gut and to increased production of liver (formula; see text) VLDL, which in humans ends up as LDL. In many individuals, however, no hypercholesterolemia is seen, even after eating large amounts of a "western" diet for decades; others may develop increased LDL on a relatively "prudent" diet. Obviously many of the factors and mechanisms in cholesterol transport are influenced by genetic factors. Although studies of several inborn errors of lipid metabolism have given information about some mechanisms, the quantitatively more important differences in genetic patterns, which determine whether or not a western diet will result in hyperlipidemia, are not well known. Perhaps studies of different forms of apoB and apoE and of HDL subgroups and hyper-alpha-lipoproteinemia will explain why certain individuals develop hypercholesterolemia and premature atherosclerosis. All the recent information related to cholesterol metabolism and transport

  5. Oxidation of polymines by diamine oxidase from human seminal plasma.

    PubMed Central

    Hölttä, E; Pulkkinen, P; Elfving, K; Jänne, J

    1975-01-01

    1. Diamine oxidase [amine-oxygen oxidoreductase (deaminating)(pyridoxal-containing), EC 1.4.3.6] was purified from human seminal plasma more than 1,700-fold. The enzyme appeared to be homogeneous on polyacrylamide-gel electrophoresis at two different pH values. 2. The general properties of the enzyme were comparable with those described for other diamine oxidases from different mammalian sources. The molecular weight of the enzyme was calculated to be about 182,000. 3. The enzyme had highest affinity for diamines, but polyamines spermidine and spermine were also degraded at concentrations that can be considered physiological in human semen. 3. The possible degradation of spermine by diamine oxidase in human semen in vivo may give rise to the formation of cytotoxic aldehydes that conceivably can influence the motility and survival of the spermatozoa. PMID:239684

  6. MD-2 binds cholesterol.

    PubMed

    Choi, Soo-Ho; Kim, Jungsu; Gonen, Ayelet; Viriyakosol, Suganya; Miller, Yury I

    2016-02-19

    Cholesterol is a structural component of cellular membranes, which is transported from liver to peripheral cells in the form of cholesterol esters (CE), residing in the hydrophobic core of low-density lipoprotein. Oxidized CE (OxCE) is often found in plasma and in atherosclerotic lesions of subjects with cardiovascular disease. Our earlier studies have demonstrated that OxCE activates inflammatory responses in macrophages via toll-like receptor-4 (TLR4). Here we demonstrate that cholesterol binds to myeloid differentiation-2 (MD-2), a TLR4 ancillary molecule, which is a binding receptor for bacterial lipopolysaccharide (LPS) and is indispensable for LPS-induced TLR4 dimerization and signaling. Cholesterol binding to MD-2 was competed by LPS and by OxCE-modified BSA. Furthermore, soluble MD-2 in human plasma and MD-2 in mouse atherosclerotic lesions carried cholesterol, the finding supporting the biological significance of MD-2 cholesterol binding. These results help understand the molecular basis of TLR4 activation by OxCE and mechanisms of chronic inflammation in atherosclerosis.

  7. Europium tetracycline biosensor for the determination of cholesterol

    NASA Astrophysics Data System (ADS)

    Courrol, Lilia Coronato; Silva, Flávia Rodrigues de Oliveira; Samad, Ricardo Elgul; Mansano, Ronaldo Domingues; Vieira, Nilson Dias, Jr.

    2007-02-01

    Development of cholesterol biosensors is of great importance in clinical analysis because the concentration of cholesterol in blood is a fundamental parameter for the prevention and diagnosis of a number of clinical disorders such as heart disease, hypertension and arteriosclerosis. In general, determination of cholesterol is based on spectrophotometry; but this method involves complicated procedures and the cost is high because expensive enzyme must be used in each assay. We report here the observation, for the first time, of the enhancement of Europium-Tetracycline complex emission in cholesterol solutions. This enhancement was initially observed with the addition of the enzyme cholesterol oxidase, which produces H IIO II, the agent driver of the Europium tetracycline complex, to the solution. However, it was found that the enzyme is not needed to enhance the luminescence. A calibration curve was determined, resulting in an easy-handling immobilization method with a cheap stable material. This method shows that the complex can be used as a sensor to determine cholesterol in biological systems with good selectivity, fast response, miniature size, and reproducible results.

  8. Cholesterol biosensors based on oxygen sensing alginate-silica microspheres.

    PubMed

    Prasad, Janak; Joshi, Abhijeet; Jayant, Rahul Dev; Srivastava, Rohit

    2011-09-01

    Cholesterol determination in body is important in diagnosis of diseases like coronary heart disease, arteriosclerosis, diabetes, and obstructive jaundice. This research aims at developing fluorimetric cholesterol biosensors based on self-assembled mesoporous alginate-silica (Algilica) microspheres. For preparing the biosensor, Pt-(II)-octaethylporphine (PtOEP; oxygen sensitive metalloporphyrin) dye has been loaded in the Algilica microspheres using the solvent-mediated precipitation method. Cholesterol oxidase (ChOx) was then covalently conjugated to PtOEP/Algilica microspheres using EDC and NHS reagents. PtOEP dye and enzyme encapsulation, activity and stability were then analyzed. Layer-by-layer self-assembly was finally performed using PAH and PSS polyelectrolytes to minimize leaching of the biosensor components. The prepared biosensor exhibited linearity over a range of 0.77-2.5 mM O(2) (K(SV) : 0.097/mM of O(2) ) obtained using from Stern-Volmer plots. The biosensor response to standard cholesterol displayed a linear analytical range from 1.25 to 10 mM of cholesterol with regression coefficient of 0.996 (1.25-3.75 mM), 0.976 (1.25-6 mM), and 0.959 (1.25-10 mM) and response time of 10 min. Thus, the prepared cholesterol biosensor shows great potential in the diagnosis of hypercholesterolemia. Copyright © 2011 Wiley Periodicals, Inc.

  9. Transintestinal and Biliary Cholesterol Secretion Both Contribute to Macrophage Reverse Cholesterol Transport in Rats-Brief Report.

    PubMed

    de Boer, Jan Freark; Schonewille, Marleen; Dikkers, Arne; Koehorst, Martijn; Havinga, Rick; Kuipers, Folkert; Tietge, Uwe J F; Groen, Albert K

    2017-04-01

    Reverse cholesterol transport comprises efflux of cholesterol from macrophages and its subsequent removal from the body with the feces and thereby protects against formation of atherosclerotic plaques. Because of lack of suitable animal models that allow for evaluation of the respective contributions of biliary cholesterol secretion and transintestinal cholesterol excretion (TICE) to macrophage reverse cholesterol transport under physiological conditions, the relative importance of both pathways in this process has remained controversial. To separate cholesterol traffic via the biliary route from TICE, bile flow was mutually diverted between rats, continuously, for 3 days. Groups of 2 weight-matched rats were designated as a pair, and both rats were equipped with cannulas in the bile duct and duodenum. Bile from rat 1 was diverted to the duodenum of rat 2, whereas bile from rat 2 was rerouted to the duodenum of rat 1. Next, rat 1 was injected with [(3)H]cholesterol-loaded macrophages. [(3)H]Cholesterol secreted via the biliary route was consequently diverted to rat 2 and could thus be quantified from the feces of that rat. On the other hand, [(3)H]cholesterol tracer in the feces of rat 1 reflected macrophage-derived cholesterol excreted via TICE. Using this setup, we found that 63% of the label secreted with the fecal neutral sterols had travelled via the biliary route, whereas 37% was excreted via TICE. TICE and biliary cholesterol secretion contribute to macrophage reverse cholesterol transport in rats. The majority of macrophage-derived cholesterol is however excreted via the hepatobiliary route. © 2017 American Heart Association, Inc.

  10. Cholesterol through the Looking Glass

    PubMed Central

    Kristiana, Ika; Luu, Winnie; Stevenson, Julian; Cartland, Sian; Jessup, Wendy; Belani, Jitendra D.; Rychnovsky, Scott D.; Brown, Andrew J.

    2012-01-01

    How cholesterol is sensed to maintain homeostasis has been explained by direct binding to a specific protein, Scap, or through altering the physical properties of the membrane. The enantiomer of cholesterol (ent-cholesterol) is a valuable tool in distinguishing between these two models because it shares nonspecific membrane effects with native cholesterol (nat-cholesterol), but not specific binding interactions. This is the first study to compare ent- and nat-cholesterol directly on major molecular parameters of cholesterol homeostasis. We found that ent-cholesterol suppressed activation of the master transcriptional regulator of cholesterol metabolism, SREBP-2, almost as effectively as nat-cholesterol. Importantly, ent-cholesterol induced a conformational change in the cholesterol-sensing protein Scap in isolated membranes in vitro, even when steps were taken to eliminate potential confounding effects from endogenous cholesterol. Ent-cholesterol also accelerated proteasomal degradation of the key cholesterol biosynthetic enzyme, squalene monooxygenase. Together, these findings provide compelling evidence that cholesterol maintains its own homeostasis not only via direct protein interactions, but also by altering membrane properties. PMID:22869373

  11. Reverse cholesterol transport: its contribution to cholesterol catabolism in normal and disease states.

    PubMed

    Loh, K C; Tan, M H

    1996-10-01

    To review the reverse cholesterol transport (RCT) model and its contribution to cholesterol catabolism in normal and disease states. Pertinent articles were identified through a MEDLINE search of the English language literature from 1983 to 1995, followed by a manual search of the bibliographies of pertinent articles. Review articles, laboratory and clinical studies and case reports. The physiology of the RCT pathway as well as alterations observed in individuals with diseases or lifestyle changes were reviewed. Data were derived mainly from laboratory studies and clinical observations. The RCT model is proposed to explain the removal of excess cholesterol from extrahepatic tissues and its delivery to liver for catabolism. This involves several regulated steps mediated by the plasma apolipoproteins and two key enzymes, lecithin:cholesterol acyltransferase (LCAT) and cholesteryl ester transfer protein (CETP). In essence free cholesterol in peripheral tissues is taken up by nascent high density lipoprotein (HDL) particles, converted to cholesteryl esters (by LCAT), and then transferred to apo B-containing lipoproteins (by CETP) for hepatic removal. Altered cholesterol catabolism may occur in individuals with disorders of a genetic or acquired nature as well as lifestyle changes, as a result of alterations in one of several of the putative steps or enzymes involved in RCT. The proposed antiatherogenic role of RCT remains to be validated as a review of the possible alterations noted in various disorders showed conflicting results in atherogenic propensity.

  12. Xanthine Oxidase Inhibition by Febuxostat Attenuates Experimental Atherosclerosis in Mice

    PubMed Central

    Nomura, Johji; Busso, Nathalie; Ives, Annette; Matsui, Chieko; Tsujimoto, Syunsuke; Shirakura, Takashi; Tamura, Mizuho; Kobayashi, Tsunefumi; So, Alexander; Yamanaka, Yoshihiro

    2014-01-01

    Atherosclerosis is a chronic inflammatory disease due to lipid deposition in the arterial wall. Multiple mechanisms participate in the inflammatory process, including oxidative stress. Xanthine oxidase (XO) is a major source of reactive oxygen species (ROS) and has been linked to the pathogenesis of atherosclerosis, but the underlying mechanisms remain unclear. Here, we show enhanced XO expression in macrophages in the atherosclerotic plaque and in aortic endothelial cells in ApoE−/− mice, and that febuxostat, a highly potent XO inhibitor, suppressed plaque formation, reduced arterial ROS levels and improved endothelial dysfunction in ApoE−/− mice without affecting plasma cholesterol levels. In vitro, febuxostat inhibited cholesterol crystal-induced ROS formation and inflammatory cytokine release in murine macrophages. These results demonstrate that in the atherosclerotic plaque, XO-mediated ROS formation is pro-inflammatory and XO-inhibition by febuxostat is a potential therapy for atherosclerosis. PMID:24686534

  13. Essentially All Excess Fibroblast Cholesterol Moves from Plasma Membranes to Intracellular Compartments

    PubMed Central

    Lange, Yvonne; Ye, Jin; Steck, Theodore L.

    2014-01-01

    It has been shown that modestly increasing plasma membrane cholesterol beyond its physiological set point greatly increases the endoplasmic reticulum and mitochondrial pools, thereby eliciting manifold feedback responses that return cell cholesterol to its resting state. The question arises whether this homeostatic mechanism reflects the targeting of cell surface cholesterol to specific intracellular sites or its general equilibration among the organelles. We now show that human fibroblast cholesterol can be increased as much as two-fold from 2-hydroxypropyl-β-cyclodextrin without changing the size of the cell surface pool. Rather, essentially all of the added cholesterol disperses rapidly among cytoplasmic membranes, increasing their overall cholesterol content by as much as five-fold. We conclude that the level of plasma membrane cholesterol is normally at capacity and that even small increments above this physiological set point redistribute essentially entirely to intracellular membranes, perhaps down their chemical activity gradients. PMID:25014655

  14. An enzyme thermistor-based assay for total and free cholesterol.

    PubMed

    Raghavan, V; Ramanathan, K; Sundaram, P V; Danielsson, B

    1999-11-01

    A method to evaluate the free (FC) and total cholesterol (TC) in human serum, bile and gallstone extract using an enzyme thermistor (ET)-based flow injection analysis (FIA) is presented. The cholesterol in high-density (HDL-C) and low density lipoprotein (LDL-C) have also been evaluated. A heparin functionalized Sepharose column was employed for the isolation of HDL and LDL fractions from serum. The estimation of cholesterol and its esters was based on their reaction with cholesterol oxidase (CO), cholesterol esterase (CE) and catalase (CAT). Three different enzyme columns, i.e. co-immobilized CO/CAT (column A), only CE (column B) and co-immobilized CO/CE/CAT (column C) were prepared by cross-linking the enzymes on glass beads using glutaraldehyde. Column A was used for estimating FC and column C was used for estimating total cholesterol (cholesterol plus esterified cholesterol). Column B was used as a pre-column which could be switched 'in' or 'out' in conjunction with column A for the estimation of TC or FC, respectively. A calibration between 1.0 and 8.0 mmol/l for FC and 0. 25 and 4.0 mmol/l for TC was obtained. For more than 2000 assays with the ET device a C.V. of less than 4% was obtained. The assay time was approximately 4 min per assay. The cholesterol estimations on the ET correlated well with similar estimations using a commercially available cholesterol diagnostic kit.

  15. Can Cholesterol Metabolism Modulation Affect Brain Function and Behavior?

    PubMed

    Cartocci, Veronica; Servadio, Michela; Trezza, Viviana; Pallottini, Valentina

    2017-02-01

    Cholesterol is an important component for cell physiology. It regulates the fluidity of cell membranes and determines the physical and biochemical properties of proteins. In the central nervous system, cholesterol controls synapse formation and function and supports the saltatory conduction of action potential. In recent years, the role of cholesterol in the brain has caught the attention of several research groups since a breakdown of cholesterol metabolism has been associated with different neurodevelopmental and neurodegenerative diseases, and interestingly also with psychiatric conditions. The aim of this review is to summarize the current knowledge about the connection between cholesterol dysregulation and various neurologic and psychiatric disorders based on clinical and preclinical studies. J. Cell. Physiol. 232: 281-286, 2017. © 2016 Wiley Periodicals, Inc.

  16. [The food cholesterol controversy].

    PubMed

    Cichosz, Grazyna; Czeczot, Hanna

    2012-07-01

    Arteriosclerosis of blood vessels, the main cause of heart attack and stroke, is a disease of multifactor pathogenesis. Multiple experimental, clinical and epidemiologic studies indicate that free radicals and lipid oxidation products take part in aterogenesis process. Homocysteine possess also cytotoxic activity leading to degradation of elastine of internal membrane of blood vessels. Deficiency of vitamin folic acid, B12 and B6 cause homocysteine accumulation in human organism. Identifying the arteriosclerosis with oxidation of LDL-cholesterol results with faulty conclusions. Metabolism of cholesterol in human organism depends on content of n-6 and n-3 polyunsaturated fatty acids, phospholipids, fitosterols, food fiber, Lactobacillus and antioxidants in the diet. In aterogenesis antioxidant defficiency, especially long-lasting ones, are more important then amount of fat itself. Considering cholesterol intake with average food and its absorption amounting 25-30%, one can conclude that amount of cholesterol in intestine originates in 90% from liver synthesis, which is excreted with bile, and in more than ten percent--from food. This is why reduction of cholesterol intake with food only little improves blood lipid indexes.

  17. Lysyl oxidase in colorectal cancer.

    PubMed

    Cox, Thomas R; Erler, Janine T

    2013-11-15

    Colorectal cancer is the third most prevalent form of cancer worldwide and fourth-leading cause of cancer-related mortality, leading to ~600,000 deaths annually, predominantly affecting the developed world. Lysyl oxidase is a secreted, extracellular matrix-modifying enzyme previously suggested to act as a tumor suppressor in colorectal cancer. However, emerging evidence has rapidly implicated lysyl oxidase in promoting metastasis of solid tumors and in particular colorectal cancer at multiple stages, affecting tumor cell proliferation, invasion, and angiogenesis. This emerging research has stimulated significant interest in lysyl oxidase as a strong candidate for developing and deploying inhibitors as functional efficacious cancer therapeutics. In this review, we discuss the rapidly expanding body of knowledge concerning lysyl oxidase in solid tumor progression, highlighting recent advancements in the field of colorectal cancer.

  18. Nox NADPH Oxidases and the Endoplasmic Reticulum

    PubMed Central

    Araujo, Thaís L.S.; Abrahão, Thalita B.

    2014-01-01

    Abstract Significance: Understanding isoform- and context-specific subcellular Nox reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase compartmentalization allows relevant functional inferences. This review addresses the interplay between Nox NADPH oxidases and the endoplasmic reticulum (ER), an increasingly evident player in redox pathophysiology given its role in redox protein folding and stress responses. Recent Advances: Catalytic/regulatory transmembrane subunits are synthesized in the ER and their processing includes folding, N-glycosylation, heme insertion, p22phox heterodimerization, as shown for phagocyte Nox2. Dual oxidase (Duox) maturation also involves the regulation by ER-resident Duoxa2. The ER is the activation site for some isoforms, typically Nox4, but potentially other isoforms. Such location influences redox/Nox-mediated calcium signaling regulation via ER targets, such as sarcoendoplasmic reticulum calcium ATPase (SERCA). Growing evidence suggests that Noxes are integral signaling elements of the unfolded protein response during ER stress, with Nox4 playing a dual prosurvival/proapoptotic role in this setting, whereas Nox2 enhances proapoptotic signaling. ER chaperones such as protein disulfide isomerase (PDI) closely interact with Noxes. PDI supports growth factor-dependent Nox1 activation and mRNA expression, as well as migration in smooth muscle cells, and PDI overexpression induces acute spontaneous Nox activation. Critical Issues: Mechanisms of PDI effects include possible support of complex formation and RhoGTPase activation. In phagocytes, PDI supports phagocytosis, Nox activation, and redox-dependent interactions with p47phox. Together, the results implicate PDI as possible Nox organizer. Future Directions: We propose that convergence between Noxes and ER may have evolutive roots given ER-related functional contexts, which paved Nox evolution, namely calcium signaling and pathogen killing. Overall, the interplay between

  19. Nox NADPH oxidases and the endoplasmic reticulum.

    PubMed

    Laurindo, Francisco R M; Araujo, Thaís L S; Abrahão, Thalita B

    2014-06-10

    Understanding isoform- and context-specific subcellular Nox reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase compartmentalization allows relevant functional inferences. This review addresses the interplay between Nox NADPH oxidases and the endoplasmic reticulum (ER), an increasingly evident player in redox pathophysiology given its role in redox protein folding and stress responses. Catalytic/regulatory transmembrane subunits are synthesized in the ER and their processing includes folding, N-glycosylation, heme insertion, p22phox heterodimerization, as shown for phagocyte Nox2. Dual oxidase (Duox) maturation also involves the regulation by ER-resident Duoxa2. The ER is the activation site for some isoforms, typically Nox4, but potentially other isoforms. Such location influences redox/Nox-mediated calcium signaling regulation via ER targets, such as sarcoendoplasmic reticulum calcium ATPase (SERCA). Growing evidence suggests that Noxes are integral signaling elements of the unfolded protein response during ER stress, with Nox4 playing a dual prosurvival/proapoptotic role in this setting, whereas Nox2 enhances proapoptotic signaling. ER chaperones such as protein disulfide isomerase (PDI) closely interact with Noxes. PDI supports growth factor-dependent Nox1 activation and mRNA expression, as well as migration in smooth muscle cells, and PDI overexpression induces acute spontaneous Nox activation. Mechanisms of PDI effects include possible support of complex formation and RhoGTPase activation. In phagocytes, PDI supports phagocytosis, Nox activation, and redox-dependent interactions with p47phox. Together, the results implicate PDI as possible Nox organizer. We propose that convergence between Noxes and ER may have evolutive roots given ER-related functional contexts, which paved Nox evolution, namely calcium signaling and pathogen killing. Overall, the interplay between Noxes and the ER may provide relevant insights in Nox-related (patho)physiology.

  20. Respiratory burst oxidase of fertilization.

    PubMed Central

    Heinecke, J W; Shapiro, B M

    1989-01-01

    Partially reduced oxygen species are toxic, yet sea urchin eggs synthesize H2O2 in a "respiratory burst" at fertilization, as an extracellular oxidant to crosslink their protective surface envelopes. To study the biochemical mechanism for H2O2 production, we have isolated an NADPH-specific oxidase fraction from homogenates of unfertilized Strongylocentrotus purpuratus eggs that produces H2O2 when stimulated with Ca2+ and MgATP2-. Concentrations of free Ca2+ previously implicated in regulation of egg activation modulate the activity of the oxidase. Inhibitors were used to test the relevance of this oxidase to the respiratory burst of fertilization. Procaine, two phenothiazines, and N-ethylmaleimide (but not iodoacetamide) inhibited H2O2 production by the oxidase fraction and oxygen consumption by activated eggs. The ATP requirement suggested that protein kinase activity might regulate the respiratory burst of fertilization; consonant with this hypothesis, H-7 and staurosporine were inhibitory. The respiratory burst oxidase of fertilization is an NADPH:O2 oxidoreductase that appears to be regulated by a protein kinase; although it bears a remarkable resemblance to the neutrophil oxidase, unlike the latter it does not form O2- as its initial product. PMID:2537493

  1. Lysosomes, cholesterol and atherosclerosis

    PubMed Central

    Jerome, W Gray

    2011-01-01

    Cholesterol-engorged macrophage foam cells are a critical component of the atherosclerotic lesion. Reducing the sterol deposits in lesions reduces clinical events. Sterol accumulations within lysosomes have proven to be particularly hard to mobilize out of foam cells. Moreover, excess sterol accumulation in lysosomes has untoward effects, including a complete disruption of lysosome function. Recently, we demonstrated that treatment of sterol-engorged macrophages in culture with triglyceride-containing particles can reverse many of the effects of cholesterol on lysosomes and dramatically reduce the sterol burden in these cells. This article describes what is known about lysosomal sterol engorgement, discusses the possible mechanisms by which triglyceride could produce its effects, and evaluates the possible positive and negative effects of reducing the lysosomal cholesterol levels in foam cells. PMID:21643524

  2. Cholesterol Metabolism in CKD.

    PubMed

    Reiss, Allison B; Voloshyna, Iryna; De Leon, Joshua; Miyawaki, Nobuyuki; Mattana, Joseph

    2015-12-01

    Patients with chronic kidney disease (CKD) have a substantial risk of developing coronary artery disease. Traditional cardiovascular disease (CVD) risk factors such as hypertension and hyperlipidemia do not adequately explain the high prevalence of CVD in CKD. Both CVD and CKD are inflammatory states and inflammation adversely affects lipid balance. Dyslipidemia in CKD is characterized by elevated triglyceride levels and high-density lipoprotein levels that are both decreased and dysfunctional. This dysfunctional high-density lipoprotein becomes proinflammatory and loses its atheroprotective ability to promote cholesterol efflux from cells, including lipid-overloaded macrophages in the arterial wall. Elevated triglyceride levels result primarily from defective clearance. The weak association between low-density lipoprotein cholesterol level and coronary risk in CKD has led to controversy over the usefulness of statin therapy. This review examines disrupted cholesterol transport in CKD, presenting both clinical and preclinical evidence of the effect of the uremic environment on vascular lipid accumulation. Preventative and treatment strategies are explored.

  3. Cholesterol and prostate cancer.

    PubMed

    Pelton, Kristine; Freeman, Michael R; Solomon, Keith R

    2012-12-01

    Prostate cancer risk can be modified by environmental factors, however the molecular mechanisms affecting susceptibility to this disease are not well understood. As a result of a series of recently published studies, the steroidal lipid, cholesterol, has emerged as a clinically relevant therapeutic target in prostate cancer. This review summarizes the findings from human studies as well as animal and cell biology models, which suggest that high circulating cholesterol increases risk of aggressive prostate cancer, while cholesterol lowering strategies may confer protective benefit. Relevant molecular processes that have been experimentally tested and might explain these associations are described. We suggest that these promising results now could be applied prospectively to attempt to lower risk of prostate cancer in select populations.

  4. Restoration of Deoxycholate-Disrupted Membrane Oxidases of Micrococcus lysodeikticus1

    PubMed Central

    Eisenberg, R. C.

    1971-01-01

    Membrane-associated l-malate and reduced nicotinamide adenine dinucleotide (NADH) oxidase complexes of Micrococcus lysodeikticus were inactivated with deoxycholate. Reactivation of NADH oxidase by addition of Mg2+ occurred in these detergent-membrane mixtures, but reactivation of l-malate oxidase did not occur in the presence of deoxycholate. Removal of detergent by gel filtration allowed Mg2+-dependent restoration of both l-malate and NADH oxidases. Maximal NADH and l-malate oxidase restoration required 10 min and 40 min, respectively, at 30 mm MgSO4. Maximal restoration of both oxidases required at least 12 mm MgSO4 in an incubation period of 1 hr. Reduced-minus-oxidized difference spectra of Mg2+-restored membrane oxidases showed participation of cytochromes b, c, and a when either l-malate or NADH served as reductant; addition of dithionite did not increase the α- and β-region absorbancy maxima of these hemoproteins when restored membranes were first reduced with the physiological substrates l-malate or NADH. Not all divalent cations tested were equally effective for reactivation of both oxidases. l-Malate oxidase was restored by both Mn2+ and Ca2+. NADH oxidase was not activated by Mn2+ and only slightly stimulated by Ca2+. Separation of deoxycholate-disrupted membranes (detergent removed) into soluble and particulate fractions showed that both fractions were required for Mg2+-dependent oxidase activities. Electron micrographs indicated conditions of detergent treatment did not destroy the vesicular nature of protoplast ghost membranes. Images PMID:4109869

  5. Cholesterol homeostasis failure in the brain: implications for synaptic dysfunction and cognitive decline.

    PubMed

    Segatto, Marco; Leboffe, Loris; Trapani, Laura; Pallottini, Valentina

    2014-01-01

    Cholesterol is one of the most important molecules in cell physiology because of its involvement in several biological processes: for instance, it determines both physical and biochemical properties of cell membranes and proteins. Disruption to cholesterol homeostasis leads to coronary heart disease, atherosclerosis and metabolic syndrome. Strong evidence suggests that cholesterol also has a crucial role in the brain as various neurological and neurodegenerative disorders, including Alzheimer's, Huntington's and Parkinson diseases are associated with disruptions to cholesterol homeostasis. Here, we summarize the current knowledge about the role cholesterol plays at synaptic junctions and the pathological consequences caused by disruptions in the homeostatic maintenance of this compound.

  6. Whole body and tissue cholesterol turnover in the baboon

    SciTech Connect

    Dell, R.B.; Mott, G.E.; Jackson, E.M.; Ramakrishnan, R.; Carey, K.D.; McGill, H.C. Jr.; Goodman, D.S.

    1985-03-01

    Cholesterol turnover was studied in four baboons by injecting (/sup 14/C)cholesterol 186 days and (/sup 3/H)cholesterol 4 days before necropsy, and fitting a two- or three-pool model to the resulting specific activity-time data. At necropsy, cholesterol mass and specific activity were determined for the total body and for many tissues. The principal aim of this study was to estimate the extent of cholesterol synthesis in the side pools of the model, by computing the amount of side pool synthesis needed to equal the measured total body cholesterol. Central pool synthesis varied from 61 to 89% of the total cholesterol production rate. Moreover, the finding that the measured total body cholesterol fell within the range obtained from the kinetic analysis by using reasonable assumptions, provides evidence for the physiological validity of the model. A second aim of this study was to explore cholesterol turnover in various tissues. A pool model predicts that rapidly turning over tissues will have higher specific activities at early times and lower specific activities at later times after injection of tracer relative to slowly turning over tissues, except where significant synthesis occurs. Results in all four baboons were similar. Turnover rates for the different tissues loosely fell into three groups which were turning over at fast, intermediate, and slow rates. Finally, the magnitude of variation of cholesterol specific activity was moderate for several distributed tissues (fat, muscle, arteries, and the alimentary tract), but was small for liver. Cholesterol turnover in serial biopsies of skin, muscle, and fat could, however, be fitted with a single pool to estimate tissue turnover rates.

  7. Cholesterol, inflammasomes, and atherogenesis

    USDA-ARS?s Scientific Manuscript database

    Plasma cholesterol levels have been strongly associated with atherogenesis, underscoring the role of lipid metabolism in defining cardiovascular disease risk. However, atherosclerotic plaque is highly dynamic and contains elements of both the innate and adaptive immune system that respond to the abe...

  8. Cholesterol: Up in Smoke.

    ERIC Educational Resources Information Center

    Raloff, Janet

    1991-01-01

    Discussed is the contribution cooked meat makes to air pollution. The dozens of compounds, including cholesterol, that are released when a hamburger is grilled are described. The potential effects of these emissions on humans and the urban environment are discussed. (KR)

  9. Cholesterol: Up in Smoke.

    ERIC Educational Resources Information Center

    Raloff, Janet

    1991-01-01

    Discussed is the contribution cooked meat makes to air pollution. The dozens of compounds, including cholesterol, that are released when a hamburger is grilled are described. The potential effects of these emissions on humans and the urban environment are discussed. (KR)

  10. Purification and characterization of sulfite oxidase from goat liver.

    PubMed

    Ahmad, Ausaf; Ahmad, Sarfraz; Baig, Masroor A

    2008-12-01

    Sulfite oxidase (EC 1.8.3.1) catalyzes the physiologically vital oxidation of sulfite to sulfate, the terminal reaction in the degradation of sulfur containing amino acids. Genetic deficiency related to human sulfite oxidase is associated with the severe clinical abnormalities with no effective therapies known, making the enzyme of immense biomedical importance. In the present study, sulfite oxidase was been purified from the goat tissues, a hitherto unexplored source, in particular from the liver, and its physico and biochemical properties were characterized. The liver was chosen as it showed the highest activity, compared to kidney and muscle. The enzyme was purified to homogeneity by salting out, gel filtration and ion-exchange chromatography. It was a dimer (113 kDa) having two identical subunits (56 kDa) and did not contain free sulfhydryl groups. Its spectral analysis showed the presence of heme and molybdenum. circular dichroism (CD) spectra in near and far-UV regions showed the presence of significant amounts of secondary structures (45% alpha helix, 9% beta structure and 26% beta turn and remaining random coil) in the native molecule. The kinetic and hydrodynamic properties of the enzyme were also determined. Results also showed that ferricyanide was 8-times more effective electron acceptor than its physiological acceptor cytochrome c. The limited N-terminal analysis of the enzyme revealed the sequence up to six amino acids Trp-Glu-Pro-Ser-Gly-Ala. Together, these results suggested the liver was a major source of sulfite oxidase in goat and most of its physico-chemical, except secondary structure and amino acid sequence from N-terminal and biological properties were fairly similar to the sulfite oxidase isolated from other mammalian species/organs.

  11. Cholesterol biosynthesis in normocholesterolemic patients after cholesterol removal by plasmapheresis.

    PubMed

    Feillet, C; Cristol, J P; Michel, F; Kanouni, T; Navarro, R; Navarro, M; Monnier, L; Descomps, B

    1997-01-01

    Plasmapheresis and low-density lipoprotein (LDL)-apheresis are recognized procedures for the treatment of hyperlipidemia resistant to diet and lipid-lowering drugs and provide information on cholesterol synthesis in hypercholesterolemic patients. However, cholesterol synthesis after acute cholesterol removal from plasma has never been investigated in normocholesterolemic patients. In this study, cholesterol synthesis was evaluated in three normocholesterolemic patients by determination of plasma lathosterol, lathosterol-to-cholesterol ratio, and plasma mevalonic acid. In a short-term kinetic study, samples were collected before and after plasmapheresis and every 6 hours during 24 hours. In the second part of the study, cholesterol synthesis was evaluated daily for 3 days. In normocholesterolemic patients, cholesterol returns to basal levels in 3 days. However, cholesterol removal did not result in a significant increase in lathosterol-to-cholesterol ratio or in plasma mevalonic acid, despite a slight increase in lathosterol. In contrast, when repeated plasma exchanges induced a dramatic hypocholesterolemia (< 1 mmol/liter), an acute but transient stimulation of cholesterol synthesis was observed (lathosterol/cholesterol ratio and MVA, respectively, increase from 8.2 to 22.3 and from 28 nmol/liter to 98 nmol/liter). This study shows that cholesterol synthesis is not stimulated by plasmapheresis in normocholesterolemic patients but is enhanced in dramatic hypocholesterolemic patients (< 1 mmol/liter).

  12. Luminol electrochemiluminescence for the analysis of active cholesterol at the plasma membrane in single mammalian cells.

    PubMed

    Ma, Guangzhong; Zhou, Junyu; Tian, Chunxiu; Jiang, Dechen; Fang, Danjun; Chen, Hongyuan

    2013-04-16

    A luminol electrochemiluminescence assay was reported to analyze active cholesterol at the plasma membrane in single mammalian cells. The cellular membrane cholesterol was activated by the exposure of the cells to low ionic strength buffer or the inhibition of intracellular acyl-coA/cholesterol acyltransferase (ACAT). The active membrane cholesterol was reacted with cholesterol oxidase in the solution to generate a peak concentration of hydrogen peroxide on the electrode surface, which induced a measurable luminol electrochemiluminescence. Further treatment of the active cells with mevastatin decreased the active membrane cholesterol resulting in a drop in luminance. No change in the intracellular calcium was observed in the presence of luminol and voltage, which indicated that our analysis process might not interrupt the intracellular cholesterol trafficking. Single cell analysis was performed by placing a pinhole below the electrode so that only one cell was exposed to the photomultiplier tube (PMT). Twelve single cells were analyzed individually, and a large deviation on luminance ratio observed exhibited the cell heterogeneity on the active membrane cholesterol. The smaller deviation on ACAT/HMGCoA inhibited cells than ACAT inhibited cells suggested different inhibition efficiency for sandoz 58035 and mevastatin. The new information obtained from single cell analysis might provide a new insight on the study of intracellular cholesterol trafficking.

  13. Cholesterol regulates multiple forms of vesicle endocytosis at a mammalian central synapse.

    PubMed

    Yue, Hai-Yuan; Xu, Jianhua

    2015-07-01

    Endocytosis in synapses sustains neurotransmission by recycling vesicle membrane and maintaining the homeostasis of synaptic membrane. A role of membrane cholesterol in synaptic endocytosis remains controversial because of conflicting observations, technical limitations in previous studies, and potential interference from non-specific effects after cholesterol manipulation. Furthermore, it remains unclear whether cholesterol participates in distinct forms of endocytosis that function under different activity levels. In this study, applying the whole-cell membrane capacitance measurement to monitor endocytosis in real time at the rat calyx of Held terminals, we found that disrupting cholesterol with dialysis of cholesterol oxidase or methyl-β-cyclodextrin impaired three different forms of endocytosis, including slow endocytosis, rapid endocytosis, and endocytosis of the retrievable membrane that exists at the surface before stimulation. The effects were observed when disruption of cholesterol was mild enough not to change Ca(2+) channel current or vesicle exocytosis, indicative of stringent cholesterol requirement in synaptic endocytosis. Extracting cholesterol with high concentrations of methyl-β-cyclodextrin reduced exocytosis, mainly by decreasing the readily releasable pool and the vesicle replenishment after readily releasable pool depletion. Our study suggests that cholesterol is an important, universal regulator in multiple forms of vesicle endocytosis at mammalian central synapses.

  14. Prokaryotic orthologues of mitochondrial alternative oxidase and plastid terminal oxidase.

    PubMed

    McDonald, Allison E; Amirsadeghi, Sasan; Vanlerberghe, Greg C

    2003-12-01

    The mitochondrial alternative oxidase (AOX) and the plastid terminal oxidase (PTOX) are two similar members of the membrane-bound diiron carboxylate group of proteins. AOX is a ubiquinol oxidase present in all higher plants, as well as some algae, fungi, and protists. It may serve to dampen reactive oxygen species generation by the respiratory electron transport chain. PTOX is a plastoquinol oxidase in plants and some algae. It is required in carotenoid biosynthesis and may represent the elusive oxidase in chlororespiration. Recently, prokaryotic orthologues of both AOX and PTOX proteins have appeared in sequence databases. These include PTOX orthologues present in four different cyanobacteria as well as an AOX orthologue in an alpha-proteobacterium. We used PCR, RT-PCR and northern analyses to confirm the presence and expression of the PTOX gene in Anabaena variabilis PCC 7120. An extensive phylogeny of newly found prokaryotic and eukaryotic AOX and PTOX proteins supports the idea that AOX and PTOX represent two distinct groups of proteins that diverged prior to the endosymbiotic events that gave rise to the eukaryotic organelles. Using multiple sequence alignment, we identified residues conserved in all AOX and PTOX proteins. We also provide a scheme to readily distinguish PTOX from AOX proteins based upon differences in amino acid sequence in motifs around the conserved iron-binding residues. Given the presence of PTOX in cyanobacteria, we suggest that this acronym now stand for plastoquinol terminal oxidase. Our results have implications for the photosynthetic and respiratory metabolism of these prokaryotes, as well as for the origin and evolution of eukaryotic AOX and PTOX proteins.

  15. Cholesterol transformations during heat treatment.

    PubMed

    Derewiaka, D; Molińska née Sosińska, E

    2015-03-15

    The aim of the study was to characterise products of cholesterol standard changes during thermal processing. Cholesterol was heated at 120°C, 150°C, 180°C and 220°C from 30 to 180 min. The highest losses of cholesterol content were found during thermal processing at 220°C, whereas the highest content of cholesterol oxidation products was observed at temperature of 150°C. The production of volatile compounds was stimulated by the increase of temperature. Treatment of cholesterol at higher temperatures i.e. 180°C and 220°C led to the formation of polymers and other products e.g. cholestadienes and fragmented cholesterol molecules. Further studies are required to identify the structure of cholesterol oligomers and to establish volatile compounds, which are markers of cholesterol transformations, mainly oxidation.

  16. What Causes High Blood Cholesterol?

    MedlinePlus

    ... this page from the NHLBI on Twitter. What Causes High Blood Cholesterol? Many factors can affect the ... in families. An inherited condition called familial hypercholesterolemia causes very high LDL cholesterol. (“Inherited” means the condition ...

  17. Peroxisomal polyamine oxidase and NADPH-oxidase cross-talk for ROS homeostasis which affects respiration rate in Arabidopsis thaliana

    PubMed Central

    Andronis, Efthimios A.; Moschou, Panagiotis N.; Toumi, Imene; Roubelakis-Angelakis, Kalliopi A.

    2014-01-01

    Homeostasis of reactive oxygen species (ROS) in the intracellular compartments is of critical importance as ROS have been linked with nearly all cellular processes and more importantly with diseases and aging. PAs are nitrogenous molecules with an evolutionary conserved role in the regulation of metabolic and energetic status of cells. Recent evidence also suggests that polyamines (PA) are major regulators of ROS homeostasis. In Arabidopsis the backconversion of the PAs spermidine (Spd) and spermine to putrescine and Spd, respectively, is catalyzed by two peroxisomal PA oxidases (AtPAO). However, the physiological role of this pathway remains largely elusive. Here we explore the role of peroxisomal PA backconversion and in particular that catalyzed by the highly expressed AtPAO3 in the regulation of ROS homeostasis and mitochondrial respiratory burst. Exogenous PAs exert an NADPH-oxidase dependent stimulation of oxygen consumption, with Spd exerting the strongest effect. This increase is attenuated by treatment with the NADPH-oxidase blocker diphenyleneiodonium iodide (DPI). Loss-of-function of AtPAO3 gene results to increased NADPH-oxidase-dependent production of superoxide anions (O2•− ), but not H2O2, which activate the mitochondrial alternative oxidase pathway (AOX). On the contrary, overexpression of AtPAO3 results to an increased but balanced production of both H2O2 and O2•− . These results suggest that the ratio of O2•− /H2O2 regulates respiratory chain in mitochondria, with PA-dependent production of O2•− by NADPH-oxidase tilting the balance of electron transfer chain in favor of the AOX pathway. In addition, AtPAO3 seems to be an important component in the regulating module of ROS homeostasis, while a conserved role for PA backconversion and ROS across kingdoms is discussed. PMID:24765099

  18. Cholesterol excretion and colon cancer.

    PubMed

    Broitman, S A

    1981-09-01

    Populations consuming diets high in fat and cholesterol exhibit a greater incidence of colon cancer than those consuming less fat and cholesterol. Lowering elevated serum cholesterol levels experimentally or clinically is associated with increased large-bowel tumorigenesis. Thus, cholesterol lost to the gut, either dietary or endogenously synthesized, appears to have a role in large-bowel cancer. Whether the effect(s) is mediated by increases in fecal bile acid excretion or some other mechanism is not clear.

  19. Recombinant human serum amyloid A (apoSAAp) binds cholesterol and modulates cholesterol flux.

    PubMed

    Liang, J S; Sipe, J D

    1995-01-01

    During acute inflammation, the serum amyloid A (apoSAA) proteins apoSAA1 and apoSAA2 are transiently associated with high density lipoproteins (HDL) in concentrations of as much as 1000-fold more than their concentrations during homeostasis; however, their effect on HDL function is unclear. Recombinant apoSAAp, a hybrid of the closely related human apoSAA1 and apoSAA2 isoforms, was found to exhibit a high affinity for cholesterol. The adsorption of apoSAAp to polystyrene microtiter wells at physiological pH, temperature, and salt concentration was inhibited and reversed by cholesterol. ApoSAAp, to a greater extent than apoA-I, albumin, or fetal bovine serum, enhanced diffusion of cholesterol from HDL across a membrane that retained molecules > 3.5 kDa. Cholesterol from 25 nM to 125 microM inhibited binding of [3H]cholesterol to 167 nM apoSAAp. A cholesterol binding assay was developed to determine the dissociation constant for binding of [3H]cholesterol to apoSAAp; Kd = 1.7 +/- 0.3 x 10(-7) M and the maximum binding capacity (Bmax) is 1.1 +/- 0.1 mol/mol. After binding cholesterol, the apparent size of apoSAAp as determined by gel filtration on Sephacryl S-100 was increased from 12 to 23 kDa. ApoSAAp enhanced free [14C]cholesterol uptake from tissue culture medium by HepG2 cells, an effect that was dose dependent and blocked by polyclonal antibodies to human apoSAA1 and apoSAA2. ApoSAAp, unlike apoA-I, was taken up from serum-free medium by HepG2 cells and appeared to be degraded by cell-associated enzymes. Unlike peritoneal exudate cells, human HepG2 hepatoma cells do not secrete an enzyme that degrades apoSAAp. These results suggest that apoSAA can potentially serve as a transient cholesterol-binding protein.

  20. Amperometric cholesterol biosensors based on the electropolymerization of pyrrole and aniline in sulphuric Acid for the determination of cholesterol in serum.

    PubMed

    Muhammet, Sinan M; Cete, Servet; Arslan, Fatma; Yaşar, Ahmet

    2009-01-01

    A new amperometric cholesterol biosensor was prepared by immobilizing cholesterol oxidase by a glutaraldehyde crosslinking procedure on polypyrrole-polyaniline (ppy-pani) composite film on the surface of a platinum electrode. In order to prepare a biosensor for the determination of cholesterol, electropolymerization of pyrrole and aniline on Pt surface was performed with an electrochemical cell containing pyrrole and aniline in sulphuric acid by cyclic voltammetry between 0.0 and 0,7 V (vs.Ag/AgCl) at a scan rate of 50 mV upon Pt electrode. The amperometric determination is based on the electrochemical detection of H(2)O(2), which is generated in enzymatic reaction of cholesterol. The cholesterol determined by the oxidation of enzymatically generated H(2)O(2) at 0.7 V vs. Ag/AgCl. The optimized cholesterol oxidase biosensor displayed linear working range and a response time of 300 s. The effects of pH and temperature were investigated and optimum parameters were found to be 7.0, 25 degrees C, respectively. In addition to this, the stability and reproducibility of biosensor were tried. Operational stability of the proposed cholesterol biosensor was obtained by periodical measurements of the biosensor response. Biosensor at optimum activity conditions was used in 30 activity assays in one day to determine the operational stability. The results show that 82% of the response current was retained after 30 activity assays. The electrode was stored in a refrigerator at 4 degrees C after the measurements. The storage stability of the biosensor was determined by performing activity assays within 23 days. The results demonstrate that 60% of the response current was retained after 23 days. Preparing biosensor is used for the analysis of cholesterol in serum.

  1. Facts about Blood Cholesterol. Revised.

    ERIC Educational Resources Information Center

    National Heart, Lung, and Blood Inst. (DHHS/NIH), Bethesda, MD.

    This fact sheet offers information on blood cholesterol and its implications for a healthy heart. An explanation is given of the known facts about cholesterol and how it affects the body. A chart is provided that lists various foods and their fat and cholesterol contents. (JD)

  2. How to Get Your Cholesterol Tested

    MedlinePlus

    ... Thromboembolism Aortic Aneurysm More How To Get Your Cholesterol Tested Updated:Apr 3,2017 Cholesterol plays a ... factors for heart disease and stroke . How is cholesterol tested? A cholesterol screening measures your level of ...

  3. Increased steroid hormone secretion in mouse Leydig tumor cells after induction of cholesterol translocation by sphingomyelin degradation.

    PubMed

    Pörn, M I; Tenhunen, J; Slotte, J P

    1991-06-07

    The effects of sphingomyelin degradation on [3H]cholesterol transfer from the cell surface to mitochondria were examined in mouse Leydig tumor cells. These cells were used since they utilize cholesterol for steroid hormone synthesis in the mitochondria, and also possess acyl-CoA: cholesterol acyl transferase (ACAT) activity in the endoplasmic reticulum. Exposure of glutaraldehyde-fixed mouse Leydig tumor cells to sphingomyelinase (50 mU/ml, 60 min) resulted in the degradation of about 50% of cell sphingomyelin, suggesting that only half of the sphingomyelin mass in these cells was located in the exoleaflet of the plasma membrane. The partial sphingomyelin degradation resulted in the translocation of cellular unesterified [3H]cholesterol from plasma membranes (cholesterol oxidase-susceptible) to intracellular compartments (oxidase-resistant). The fraction of [3H]cholesterol that was translocated, i.e., between 20 and 50%, varied with different [3H]cholesterol-labeling methods. Cholesterol translocation induced by sphingomyelin degradation subsequently led to the stimulation of ACAT activity, suggesting that a fraction of cell surface cholesterol was transported to the endoplasmic reticulum. The sphingomyelinase-induced [3H]cholesterol flow from the cell surface to the cell interior was also in part directed to the mitochondria, as evidenced by the increased secretion of [3H]steroid hormones. In addition, the cyclic AMP-induced activation of steroidogenesis was further enhanced by the sphingomyelinase-induced cholesterol translocation. Based on the current results, it seems evident that a significant portion of the translocated [3H]cholesterol made its way from plasma membranes into the mitochondria for steroidogenesis.

  4. Ultrasensitive cholesterol biosensor based on enzymatic silver deposition on gold nanoparticles modified screen-printed carbon electrode.

    PubMed

    Huang, Yong; Cui, Lijie; Xue, Yewei; Zhang, Songbai; Zhu, Nixuan; Liang, Jintao; Li, Guiyin

    2017-08-01

    Cholesterol is one of the essential structural constituents of cell membranes. Determination of cholesterol is of great importance in clinical analysis because the level of cholesterol in serum is an indicator in the diagnosis and prevention of heart diseases. In this work, a simple and ultrasensitive cholesterol biosensor based on enzymatic silver deposition was designed by immobilizing cholesterol oxidase (CHOD) and cholesterol esterase (CHER) onto the surface of gold nanoparticles (Au NPs) modified screen-printed carbon electrode (SPE). By the catalytic action of CHER and CHOD, the cholesterol was hydrolyzed to generate hydrogen peroxide (H2O2) which can reduced the silver (Ag) ions in the solution for the deposition of metallic Ag on the surface of Au NPs modified SPE. The ultrasensitive detection of cholesterol was achieved by anodic stripping voltammetry (ASV) measurement of the enzymatically deposited Ag. The influence of relevant experimental variables was optimized. The anodic stripping peak current of Ag depended linearly on the concentration of cholesterol in the range of 5-5000μg/mL with the regression correlation coefficient of 0.9983. A detection limit of 3.0μg/mL was attained by 3 sigma-rule. In addition, the ultrasensitive cholesterol biosensor exhibited higher specificity, acceptable reproducibility and excellent recoveries for cholesterol detection. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Estimation and correlation of stress and cholesterol levels in college teachers and housewives of Hyderabad-Pakistan.

    PubMed

    Wattoo, Feroza Hamid; Memon, Muhammad Saleh; Memon, Allah Nawaz; Wattoo, Muhammad Hamid Sarwar; Tirmizi, Syed Ahmed; Iqbal, Javed

    2008-01-01

    To evaluate environmental, psychological and physiological stresses in college teachers and housewives, and to correlate with their serum total cholesterol, HDL cholesterol, and LDL cholesterol, and triglyceride levels. This cohort study was performed at the Institute of Biochemistry, University of Sindh, Jamshoro, Pakistan during 2003-2005. Eighty females from middle socioeconomic groups, college teachers (40) and housewives (40) aged between 25-45 years participated in this study and subjects were selected from Hyderabad and its adjoining areas. Environmental, psychological and physiological stress levels were measured with Likert scale. Total cholesterol, LDL cholesterol and HDL cholesterol were measured by CHOD-PAP method and triglyceride levels were measured by GPO method. Housewives had high levels of total cholesterol, LDL cholesterol and triglyceride but low levels of HDL cholesterol were found in college teachers. Environmental, psychological and physiological stresses were significantly higher in housewives as compared to college teachers. Housewives were under more stress than college teachers. High levels of total cholesterol, LDL cholesterol and triglyceride but low levels of HDL cholesterol were found in housewives compared to college teachers.

  6. Expression of alternative oxidase in tomato

    SciTech Connect

    Kakefuda, M.; McIntosh, L. )

    1990-05-01

    Tomato fruit ripening is characterized by an increase in ethylene biosynthesis, a burst in respiration (i.e. the climacteric), fruit softening and pigmentation. As whole tomatoes ripened from mature green to red, there was an increase in the alternative oxidase capacity. Aging pink tomato slices for 24 and 48 hrs also showed an increase of alternative oxidase and cytochrome oxidase capacities. Monoclonal antibodies prepared to the Sauromatum guttatum alternative oxidase were used to follow the appearance of alternative oxidase in tomato fruits. There is a corresponding increase in a 36kDa protein with an increase in alternative oxidase capacity. Effects of ethylene and norbornadiene on alternative oxidase capacity were also studied. We are using an alternative oxidase cDNA clone from potato to study the expression of mRNA in ripening and wounded tomatoes to determine if the gene is transcriptionally regulated.

  7. Cholesterol crystal embolism (atheroembolism)

    PubMed Central

    VENTURELLI, CHIARA; JEANNIN, GUIDO; SOTTINI, LAURA; DALLERA, NADIA; SCOLARI, FRANCESCO

    2006-01-01

    Cholesterol crystal embolism, known as atheroembolic disease, is caused by showers of cholesterol crystals from an atherosclerotic plaque that occludes small arteries. Embolization can occur spontaneously or as an iatrogenic complication from an invasive vascular procedure (angiography or vascular surgery) and after anticoagulant therapy. The atheroembolism can give rise to different degrees of renal impairment. Some patients show a moderate loss of renal function, others severe renal failure requiring dialysis. Renal outcome can be variable: some patients deteriorate or remain on dialysis, some improve and some remain with chronic renal impairment. Clinically, three types of atheroembolic renal disease have been described: acute, subacute or chronic. More frequently a progressive loss of renal function occurs over weeks. Atheroembolization can involve the skin, gastrointestinal system and central nervous system. The diagnosis is difficult and controversial for the protean extrarenal manifestations. In the past, the diagnosis was often made post-mortem. In the last 10 yrs, awareness of atheroembolic renal disease has improved. The correct diagnosis requires the clinician to be alert. The typical patient is a white male aged >60 yrs with a history of hypertension, smoking and arterial disease. The presence of a classic triad (precipitating event, renal failure and peripheral cholesterol crystal embolization) suggests the diagnosis. This can be confirmed by a biopsy of the target organs. A specific treatment is lacking; however, it is an important diagnosis to make because an aggressive therapeutic approach can be associated with a more favorable clinical outcome. PMID:21977265

  8. Cholesterol crystal embolism (atheroembolism).

    PubMed

    Venturelli, Chiara; Jeannin, Guido; Sottini, Laura; Dallera, Nadia; Scolari, Francesco

    2006-01-01

    Cholesterol crystal embolism, known as atheroembolic disease, is caused by showers of cholesterol crystals from an atherosclerotic plaque that occludes small arteries. Embolization can occur spontaneously or as an iatrogenic complication from an invasive vascular procedure (angiography or vascular surgery) and after anticoagulant therapy. The atheroembolism can give rise to different degrees of renal impairment. Some patients show a moderate loss of renal function, others severe renal failure requiring dialysis. Renal outcome can be variable: some patients deteriorate or remain on dialysis, some improve and some remain with chronic renal impairment. Clinically, three types of atheroembolic renal disease have been described: acute, subacute or chronic. More frequently a progressive loss of renal function occurs over weeks. Atheroembolization can involve the skin, gastrointestinal system and central nervous system. The diagnosis is difficult and controversial for the protean extrarenal manifestations. In the past, the diagnosis was often made post-mortem. In the last 10 yrs, awareness of atheroembolic renal disease has improved. The correct diagnosis requires the clinician to be alert. The typical patient is a white male aged >60 yrs with a history of hypertension, smoking and arterial disease. The presence of a classic triad (precipitating event, renal failure and peripheral cholesterol crystal embolization) suggests the diagnosis. This can be confirmed by a biopsy of the target organs. A specific treatment is lacking; however, it is an important diagnosis to make because an aggressive therapeutic approach can be associated with a more favorable clinical outcome.

  9. Modulation of endothelial inward-rectifier K+ current by optical isomers of cholesterol.

    PubMed Central

    Romanenko, Victor G; Rothblat, George H; Levitan, Irena

    2002-01-01

    Membrane potential of aortic endothelial cells under resting conditions is dominated by inward-rectifier K(+) channels belonging to the Kir 2 family. Regulation of endothelial Kir by membrane cholesterol was studied in bovine aortic endothelial cells by altering the sterol composition of the cell membrane. Our results show that enriching the cells with cholesterol decreases the Kir current density, whereas depleting the cells of cholesterol increases the density of the current. The dependence of the Kir current density on the level of cellular cholesterol fits a sigmoid curve with the highest sensitivity of the Kir current at normal physiological levels of cholesterol. To investigate the mechanism of Kir regulation by cholesterol, endogenous cholesterol was substituted by its optical isomer, epicholesterol. Substitution of approximately 50% of cholesterol by epicholesterol results in an early and significant increase in the Kir current density. Furthermore, substitution of cholesterol by epicholesterol has a stronger facilitative effect on the current than cholesterol depletion. Neither single channel properties nor membrane capacitance were significantly affected by the changes in the membrane sterol composition. These results suggest that 1) cholesterol modulates cellular K(+) conductance by changing the number of the active channels and 2) that specific cholesterol-protein interactions are critical for the regulation of endothelial Kir. PMID:12496090

  10. Enzymic determination of free and esterified cholesterol in serum by microcalorimetry.

    PubMed

    Rehak, N N; Young, D S

    1982-11-01

    Concentrations of free and esterified cholesterol in serum can be determined simultaneously by measuring, with a batch-type microcalorimeter, the heat released during the coupled cholesterol esterase/cholesterol oxidase/catalase enzymic reaction. To differentiate the two forms of cholesterol, we used kinetic calorimetry: the rate of heat output due to enzymic hydrolysis of esterified cholesterol (the rate-determining reaction) was subtracted from the measured heat, the difference being the heat released during the enzymic oxidation of free cholesterol (the fast reaction). Results obtained by the kinetic calorimetric method agreed with those obtained by separate sequential end-point calorimetric determinations of free and total cholesterol. We also compared the kinetic calorimetric method with the cholesterol method of Abell and Kendall and a continuous-flow modification of the Liebermann-Burchard method (Technicon SMAC). De-biased linear-regression analysis of the data indicates acceptable agreement between the calorimetric and the Abell-Kendall methods (y = 0.98x + 11.5). The correlation between results by calorimetric and SMAC methods shows a significant proportional error (y = 1.17x - 159.4). Bilirubin (up to 200 mg/L) does not interfere with the calorimetry.

  11. Cytotoxic cholesterol is generated by the hydrolysis of cytoplasmic cholesteryl ester and transported to the plasma membrane.

    PubMed

    Kellner-Weibel, G; Geng, Y J; Rothblat, G H

    1999-10-01

    The present study examines the fate and effects of free cholesterol (FC) generated by the hydrolysis of cytoplasmic cholesteryl esters (CE) in model macrophage foam cells. J774 or elicited mouse peritoneal macrophages (MPM) were enriched with CE by incubating with acetylated low density lipoprotein (acLDL) and FC/phospholipid dispersions, thus creating model foam cells. Treatment of the foam cells with the acyl coenzyme-A:cholesterol acyltransferase (ACAT) inhibitor, CP-113,818, in the absence of any extracellular cholesterol acceptors, resulted in cellular toxicity. This was accompanied by an increase in the amount of FC available for oxidation by an exogenous cholesterol oxidase. Furthermore, cellular toxicity was proportional to the size of the oxidase susceptible pool of FC over time. Morphological analysis and in situ DNA fragmentation assay demonstrated the occurrence of apoptosis in the ACAT inhibited cells. Co-treatment with the hydrophobic amine U18666A, an intracellular cholesterol transport inhibitor, led to a dose dependent reduction in cytotoxicity and apoptosis, and blocked the movement of FC into the oxidase susceptible pool. In addition, treating model foam cells with CP-113,818 plus chloroquine, a compound that inhibits the function of acidic vesicles, also diminished cellular toxicity. Staining with the cholesterol binding dye filipin revealed that the macrophages treated with CP-113,818 contained a cholesterol oxidase accessible pool of FC in the plasma membrane. These results suggest that FC generated by the hydrolysis of cytoplasmic CE is transported through acidic vesicles to the plasma membrane, and accumulation of FC in this pool triggers cell death by necrosis and apoptosis.

  12. NADPH oxidase-derived reactive oxygen species in cardiac pathophysiology

    PubMed Central

    Cave, Alison; Grieve, David; Johar, Sofian; Zhang, Min; Shah, Ajay M

    2005-01-01

    Chronic heart failure, secondary to left ventricular hypertrophy or myocardial infarction, is a condition with increasing morbidity and mortality. Although the mechanisms underlying the development and progression of this condition remain a subject of intense interest, there is now growing evidence that redox-sensitive pathways play an important role. This article focuses on the involvement of reactive oxygen species derived from a family of superoxide-generating enzymes, termed NADPH oxidases (NOXs), in the pathophysiology of ventricular hypertrophy, the accompanying interstitial fibrosis and subsequent heart failure. In particular, the apparent ability of the different NADPH oxidase isoforms to define the response of a cell to a range of physiological and pathophysiological stimuli is reviewed. If confirmed, these data would suggest that independently targeting different members of the NOX family may hold the potential for therapeutic intervention in the treatment of cardiac disease. PMID:16321803

  13. Cholesterol metabolism in Huntington disease.

    PubMed

    Karasinska, Joanna M; Hayden, Michael R

    2011-09-06

    The CNS is rich in cholesterol, which is essential for neuronal development and survival, synapse maturation, and optimal synaptic activity. Alterations in brain cholesterol homeostasis are linked to neurodegeneration. Studies have demonstrated that Huntington disease (HD), a progressive and fatal neurodegenerative disorder resulting from polyglutamine expansion in the huntingtin protein, is associated with changes in cellular cholesterol metabolism. Emerging evidence from human and animal studies indicates that attenuated brain sterol synthesis and accumulation of cholesterol in neuronal membranes represent two distinct mechanisms occurring in the presence of mutant huntingtin that influence neuronal survival. Increased knowledge of how changes in intraneuronal cholesterol metabolism influence the pathogenesis of HD will provide insights into the potential application of brain cholesterol regulation as a therapeutic strategy for this devastating disease.

  14. Aurone synthase is a catechol oxidase with hydroxylase activity and provides insights into the mechanism of plant polyphenol oxidases

    PubMed Central

    Molitor, Christian; Mauracher, Stephan Gerhard

    2016-01-01

    Tyrosinases and catechol oxidases belong to the family of polyphenol oxidases (PPOs). Tyrosinases catalyze the o-hydroxylation and oxidation of phenolic compounds, whereas catechol oxidases were so far defined to lack the hydroxylation activity and catalyze solely the oxidation of o-diphenolic compounds. Aurone synthase from Coreopsis grandiflora (AUS1) is a specialized plant PPO involved in the anabolic pathway of aurones. We present, to our knowledge, the first crystal structures of a latent plant PPO, its mature active and inactive form, caused by a sulfation of a copper binding histidine. Analysis of the latent proenzyme’s interface between the shielding C-terminal domain and the main core provides insights into its activation mechanisms. As AUS1 did not accept common tyrosinase substrates (tyrosine and tyramine), the enzyme is classified as a catechol oxidase. However, AUS1 showed hydroxylase activity toward its natural substrate (isoliquiritigenin), revealing that the hydroxylase activity is not correlated with the acceptance of common tyrosinase substrates. Therefore, we propose that the hydroxylase reaction is a general functionality of PPOs. Molecular dynamics simulations of docked substrate–enzyme complexes were performed, and a key residue was identified that influences the plant PPO’s acceptance or rejection of tyramine. Based on the evidenced hydroxylase activity and the interactions of specific residues with the substrates during the molecular dynamics simulations, a novel catalytic reaction mechanism for plant PPOs is proposed. The presented results strongly suggest that the physiological role of plant catechol oxidases were previously underestimated, as they might hydroxylate their—so far unknown—natural substrates in vivo. PMID:26976571

  15. Aurone synthase is a catechol oxidase with hydroxylase activity and provides insights into the mechanism of plant polyphenol oxidases.

    PubMed

    Molitor, Christian; Mauracher, Stephan Gerhard; Rompel, Annette

    2016-03-29

    Tyrosinases and catechol oxidases belong to the family of polyphenol oxidases (PPOs). Tyrosinases catalyze theo-hydroxylation and oxidation of phenolic compounds, whereas catechol oxidases were so far defined to lack the hydroxylation activity and catalyze solely the oxidation of o-diphenolic compounds. Aurone synthase from Coreopsis grandiflora (AUS1) is a specialized plant PPO involved in the anabolic pathway of aurones. We present, to our knowledge, the first crystal structures of a latent plant PPO, its mature active and inactive form, caused by a sulfation of a copper binding histidine. Analysis of the latent proenzyme's interface between the shielding C-terminal domain and the main core provides insights into its activation mechanisms. As AUS1 did not accept common tyrosinase substrates (tyrosine and tyramine), the enzyme is classified as a catechol oxidase. However, AUS1 showed hydroxylase activity toward its natural substrate (isoliquiritigenin), revealing that the hydroxylase activity is not correlated with the acceptance of common tyrosinase substrates. Therefore, we propose that the hydroxylase reaction is a general functionality of PPOs. Molecular dynamics simulations of docked substrate-enzyme complexes were performed, and a key residue was identified that influences the plant PPO's acceptance or rejection of tyramine. Based on the evidenced hydroxylase activity and the interactions of specific residues with the substrates during the molecular dynamics simulations, a novel catalytic reaction mechanism for plant PPOs is proposed. The presented results strongly suggest that the physiological role of plant catechol oxidases were previously underestimated, as they might hydroxylate their--so far unknown--natural substrates in vivo.

  16. Recent advances in cholesterol chemistry.

    PubMed

    Morzycki, Jacek W

    2014-05-01

    This review article presents advances in cholesterol chemistry since 2000. Various transformations (chemical, enzymatic, electrochemical, etc.) of cholesterol are presented. A special emphasis is given to cholesterol oxidation reactions, but also substitution of the 3β-hydroxyl group, addition to the C5-C6 double bond, C-H functionalization, and C-C bond forming reactions are discussed. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Food prices and blood cholesterol.

    PubMed

    Rahkovsky, Ilya; Gregory, Christian A

    2013-01-01

    Cardiovascular diseases (CVD) cost Americans billions of dollars per year. High cholesterol levels, which are closely related to dietary habits, are a major contributor to CVD. In this article, we study whether changes in food prices are related to cholesterol levels and whether taxes or subsidies on particular foods would be effective in lowering cholesterol levels and, consequently, CVD costs. We find that prices of vegetables, processed foods, whole milk and whole grains are significantly associated with blood cholesterol levels. Having analyzed the costs and benefits of government interventions, we find that a subsidy of vegetables and whole grains would be an efficient way to reduce CVD expenditures.

  18. [Alternative oxidase - never ending story].

    PubMed

    Szal, Bożena; Rychter, Anna M

    2016-01-01

    Investigations of plant cyanide resistant respiration lead to the discovery in mitochondrial respiratory chain of the second terminal oxidase, alternative oxidase (AOX). AOX transfers electrons from reduced ubiquinone to oxygen omitting two coupling places thus lowering energetic efficiency of respiration. The presence of AOX was shown in all plants and also in some fungi, mollusca and protista. In termogenic plants the activity of AOX is connected with heat production. In other organisms AOX activity is important for maintaining metabolic homeostasis (carbon metabolism, cell redox state and energy demand) and ROS homeostasis. In this article structure of plant AOX protein and the regulation on molecular levels was described. Possible role of AOX as stress marker was pointed and the possibility of using AOX in human gene therapy was discussed.

  19. [The real measurement of non-HDL-cholesterol: Atherogenic cholesterol].

    PubMed

    Millán, Jesús; Hernández-Mijares, Antonio; Ascaso, Juan F; Blasco, Mariano; Brea, Angel; Díaz, Ángel; González-Santos, Pedro; Mantilla, Teresa; Pedro-Botet, Juan; Pintó, Xavier

    Lowe density lipoproteins (LDL) are the causal agent of cardiovascular diseases. In practice, we identify LDL with cholesterol transported in LDL (cLDL). So, cLDL has become the major target for cardiovascular prevention. Howewer, we have progressive evidences about the role of triglycerides rich lipoproteins, particularly those very low density lipoprotein (VLDL) in promotion and progression of atherosclerosis, that leads cholesterol in VLDL and its remanents as a potential therapeutic target. This feature is particularly important and of a great magnitude, in patients with hypertiglyceridemia. We can to considere, that the non-HDL cholesterol -cLDL+cVLDL+c-remmants+Lp(a)- is the real measurement of atherogenic cholesterol. In addition, non-HDL-cholesterol do not show any variations between postprandial states. In fact, non-HDL-cholesterol should be an excellent marker of atherogenic cholesterol, and an major therapeutic target in patients with atherogenic dyslipidaemia. According with different clinical trials and with the epidemiological and mendelian studies, in patients with high cardiovascular risk, optimal level of cLDL will be under 70mg/dl, and under 100 ng/dl for non-HDL-cholesterol; and in high risk patients, 100mg/dl and 130mg/dl, respectively. Copyright © 2016. Publicado por Elsevier España, S.L.U.

  20. Lysyl oxidase in cancer research.

    PubMed

    Perryman, Lara; Erler, Janine T

    2014-01-01

    Metastasis is the main reason for cancer-associated deaths and therapies are desperately needed to target the progression of cancer. Lysyl oxidase (LOX) plays a pivotal role in cancer progression, including metastasis, and is therefore is an attractive therapeutic target. In this review we will breakdown the process of cancer progression and the various roles that LOX plays has in the advancement of cancer. We will highlight why LOX is an exciting therapeutic target for the future.

  1. [Effect of high-density lipoproteins on cholesterol biosynthesis in rat liver].

    PubMed

    Rudnev, V I; Titov, V N

    1984-01-01

    Under the conditions of long-term intravenous perfusion to recipient rats of a solution of rat high density lipoproteins at a concentration exceeding the physiological one and in the absence of stressor components, the animals' liver tissue manifested a significant decrease in free cholesterol. Since the rate of the label incorporation in liver cholesterol increased concurrently, it is suggested that a considerable rise in the content of high density lipoproteins in the blood of rats under the physiological conditions may lead to a fall in liver cholesterol because of which the developing hypocholesterolemia gives rise to the activation of the synthesis of this sterol.

  2. The terminal oxidases of Paracoccus denitrificans.

    PubMed

    de Gier, J W; Lübben, M; Reijnders, W N; Tipker, C A; Slotboom, D J; van Spanning, R J; Stouthamer, A H; van der Oost, J

    1994-07-01

    Three distinct types of terminal oxidases participate in the aerobic respiratory pathways of Paracoccus denitrificans. Two alternative genes encoding subunit I of the aa3-type cytochrome c oxidase have been isolated before, namely ctaDI and ctaDII. Each of these genes can be expressed separately to complement a double mutant (delta ctaDI, delta ctaDII), indicating that they are isoforms of subunit I of the aa3-type oxidase. The genomic locus of a quinol oxidase has been isolated: cyoABC. This protohaem-containing oxidase, called cytochrome bb3, is the only quinol oxidase expressed under the conditions used. In a triple oxidase mutant (delta ctaDI, delta ctaDII, cyoB::KmR) an alternative cytochrome c oxidase has been characterized; this cbb3-type oxidase has been partially purified. Both cytochrome aa3 and cytochrome bb3 are redox-driven proton pumps. The proton-pumping capacity of cytochrome cbb3 has been analysed; arguments for and against the active transport of protons by this novel oxidase complex are discussed.

  3. Food combinations for cholesterol lowering.

    PubMed

    Harland, Janice I

    2012-12-01

    Reducing elevated LDL-cholesterol is a key public health challenge. There is substantial evidence from randomised controlled trials (RCT) that a number of foods and food components can significantly reduce LDL-cholesterol. Data from RCT have been reviewed to determine whether effects are additive when two or more of these components are consumed together. Typically components, such as plant stanols and sterols, soya protein, β-glucans and tree nuts, when consumed individually at their target rate, reduce LDL-cholesterol by 3-9 %. Improved dietary fat quality, achieved by replacing SFA with unsaturated fat, reduces LDL-cholesterol and can increase HDL-cholesterol, further improving blood lipid profile. It appears that the effect of combining these interventions is largely additive; however, compliance with multiple changes may reduce over time. Food combinations used in ten 'portfolio diet' studies have been reviewed. In clinical efficacy studies of about 1 month where all foods were provided, LDL-cholesterol is reduced by 22-30 %, whereas in community-based studies of >6 months' duration, where dietary advice is the basis of the intervention, reduction in LDL-cholesterol is about 15 %. Inclusion of MUFA into 'portfolio diets' increases HDL-cholesterol, in addition to LDL-cholesterol effects. Compliance with some of these dietary changes can be achieved more easily compared with others. By careful food component selection, appropriate to the individual, the effect of including only two components in the diet with good compliance could be a sustainable 10 % reduction in LDL-cholesterol; this is sufficient to make a substantial impact on cholesterol management and reduce the need for pharmaceutical intervention.

  4. Cholesterol in brain disease: sometimes determinant and frequently implicated

    PubMed Central

    Martín, Mauricio G; Pfrieger, Frank; Dotti, Carlos G

    2014-01-01

    Cholesterol is essential for neuronal physiology, both during development and in the adult life: as a major component of cell membranes and precursor of steroid hormones, it contributes to the regulation of ion permeability, cell shape, cell–cell interaction, and transmembrane signaling. Consistently, hereditary diseases with mutations in cholesterol-related genes result in impaired brain function during early life. In addition, defects in brain cholesterol metabolism may contribute to neurological syndromes, such as Alzheimer's disease (AD), Huntington's disease (HD), and Parkinson's disease (PD), and even to the cognitive deficits typical of the old age. In these cases, brain cholesterol defects may be secondary to disease-causing elements and contribute to the functional deficits by altering synaptic functions. In the first part of this review, we will describe hereditary and non-hereditary causes of cholesterol dyshomeostasis and the relationship to brain diseases. In the second part, we will focus on the mechanisms by which perturbation of cholesterol metabolism can affect synaptic function. PMID:25223281

  5. Neuronal membrane cholesterol loss enhances amyloid peptide generation

    PubMed Central

    Abad-Rodriguez, Jose; Ledesma, Maria Dolores; Craessaerts, Katleen; Perga, Simona; Medina, Miguel; Delacourte, Andre; Dingwall, Colin; De Strooper, Bart; Dotti, Carlos G.

    2004-01-01

    Recent experimental and clinical retrospective studies support the view that reduction of brain cholesterol protects against Alzheimer's disease (AD). However, genetic and pharmacological evidence indicates that low brain cholesterol leads to neurodegeneration. This apparent contradiction prompted us to analyze the role of neuronal cholesterol in amyloid peptide generation in experimental systems that closely resemble physiological and pathological situations. We show that, in the hippocampus of control human and transgenic mice, only a small pool of endogenous APP and its β-secretase, BACE 1, are found in the same membrane environment. Much higher levels of BACE 1–APP colocalization is found in hippocampal membranes from AD patients or in rodent hippocampal neurons with a moderate reduction of membrane cholesterol. Their increased colocalization is associated with elevated production of amyloid peptide. These results suggest that loss of neuronal membrane cholesterol contributes to excessive amyloidogenesis in AD and pave the way for the identification of the cause of cholesterol loss and for the development of specific therapeutic strategies. PMID:15583033

  6. Electrochemiluminescence imaging for parallel single-cell analysis of active membrane cholesterol.

    PubMed

    Zhou, Junyu; Ma, Guangzhong; Chen, Yun; Fang, Danjun; Jiang, Dechen; Chen, Hong-Yuan

    2015-08-18

    Luminol electrochemiluminescence (ECL) imaging was developed for the parallel measurement of active membrane cholesterol at single living cells, thus establishing a novel electrochemical detection technique for single cells with high analysis throughput and low detection limit. In our strategy, the luminescence generated from luminol and hydrogen peroxide upon the potential was recorded in one image so that hydrogen peroxide at the surface of multiple cells could be simultaneously analyzed. Compared with the classic microelectrode array for the parallel single-cell analysis, the plat electrode only was needed in our ECL imaging, avoiding the complexity of electrode fabrication. The optimized ECL imaging system showed that hydrogen peroxide as low as 10 μM was visible and the efflux of hydrogen peroxide from cells could be determined. Coupled with the reaction between active membrane cholesterol and cholesterol oxidase to generate hydrogen peroxide, active membrane cholesterol at cells on the electrode was analyzed at single-cell level. The luminescence intensity was correlated with the amount of active membrane cholesterol, validating our system for single-cell cholesterol analysis. The relative high standard deviation on the luminescence suggested high cellular heterogeneities on hydrogen peroxide efflux and active membrane cholesterol, which exhibited the significance of single-cell analysis. This success in ECL imaging for single-cell analysis opens a new field in the parallel measurement of surface molecules at single cells.

  7. Membrane cholesterol oxidation in live cells enhances the function of serotonin1A receptors.

    PubMed

    Jafurulla, Md; Nalli, Aswan; Chattopadhyay, Amitabha

    2017-03-01

    The serotonin1A (5-HT1A) receptor is an important neurotransmitter receptor that belongs to the G protein-coupled receptor (GPCR) family. It is implicated in a variety of cognitive and behavioral functions and serves as an important drug target for neuropsychiatric disorders such as anxiety and depression. Previous work from our laboratory has demonstrated that membrane cholesterol plays an important role in the function of the serotonin1A receptor. Our earlier results highlighted several structural features of cholesterol essential for receptor function. In order to explore the importance of the hydroxyl group of cholesterol in the function of the serotonin1A receptor, we utilized cholesterol oxidase to oxidize the hydroxyl group of cholesterol to keto group. Our results show that the oxidation of the hydroxyl group of cholesterol in live cells resulted in enhancement of agonist binding and G-protein coupling to the receptor with no appreciable change in overall membrane order. These results extend our understanding of the structural requirements of cholesterol for receptor function. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Relationship between serum cholesterol and body mass index in Nigeria schoolchildren aged 2-15 years.

    PubMed

    Nwaiwu, Obiyo; Ibe, Bede C

    2015-04-01

    Non-communicable disease is becoming a public health problem that it is already present in more affluent countries. The aim of this study was to determine the relationship between body mass index (BMI) and total serum cholesterol with its lipoprotein fractions in children aged 2-15 years. Serum cholesterol was estimated using the enzymatic spectrophotometer cholesterol oxidase/peroxidase method. BMI was calculated as weight (kg)/height (m(2)). Total cholesterol and low-density lipoprotein were positively co-related with BMI (p < 0.05). Using linear regression, equations that can be used to predict serum total cholesterol from known BMI values were developed. There is a positive correlation between BMI and serum cholesterol. BMI which is non-invasive is recommended as a screening tool for cardiovascular risk in settings where serum cholesterol cannot be routinely estimated. © The Author [2015]. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Two-dimensional crystallization of monomeric bovine cytochrome c oxidase with bound cytochrome c in reconstituted lipid membranes.

    PubMed

    Osuda, Yukiho; Shinzawa-Itoh, Kyoko; Tani, Kazutoshi; Maeda, Shintaro; Yoshikawa, Shinya; Tsukihara, Tomitake; Gerle, Christoph

    2016-06-01

    Mitochondrial cytochrome c oxidase utilizes electrons provided by cytochrome c for the active vectorial transport of protons across the inner mitochondrial membrane through the reduction of molecular oxygen to water. Direct structural evidence on the transient cytochrome c oxidase-cytochrome c complex thus far, however, remains elusive and its physiological relevant oligomeric form is unclear. Here, we report on the 2D crystallization of monomeric bovine cytochrome c oxidase with tightly bound cytochrome c at a molar ratio of 1:1 in reconstituted lipid membranes at the basic pH of 8.5 and low ionic strength.

  10. Serum cholesterol in cerebral malignancies.

    PubMed

    Grieb, P; Ryba, M S; Jagielski, J; Gackowski, W; Paczkowski, P; Chrapusta, S J

    1999-01-01

    Reduced blood cholesterol levels were reported in patients with a variety of malignant peripheral tumors. This fact is likely related to increased cholesterol demand by proliferating tumor cells. The question arises whether this 'tumor-associated hypocholesterolemia' occurs also in patients with brain tumors, and--if it does not--whether its absence can be related to the location of the tumors. We have compared fasting serum total cholesterol levels among three groups of patients: 52 patients with gliomas, 56 patients with symptomatic metastatic brain tumors, and 50 patients harboring malignant tumors of peripheral location but showing no clinical signs of brain metastases. Patients in the last group, despite being--on an average--more age-advanced, had lower total serum cholesterol levels than either the patients with gliomas, or the patients with brain metastases. No difference in the cholesterol levels was found between the two latter groups, and a majority of these patients had borderline or elevated cholesterol levels. This apparent absence of 'tumor-associated hypocholesterolemia' in brain tumor patients may be related to either brain tumors' ability to synthesize cholesterol de novo and their reduced dependence on peripheral cholesterol supply, the existence of brain tumor-blood barrier, effect of medications used to counteract brain edema and seizures, or a combination of these factors.

  11. Glucose oxidase from Penicillium amagasakiense. Primary structure and comparison with other glucose-methanol-choline (GMC) oxidoreductases.

    PubMed

    Kiess, M; Hecht, H J; Kalisz, H M

    1998-02-15

    The complete amino acid sequence of glucose oxidase from Penicillium amagasakiense was determined by Edman degradation and mass spectrometry of peptide fragments derived from three different specific proteolytic digests and a cyanogen bromide cleavage. The complete sequence of each monomer comprises 587 amino acid residues, contains three cysteine residues, and seven potential N-glycosylation sites, of which at least five were confirmed to be glycosylated. Glucose oxidase from P. amagasakiense shows a high degree of identity (66%) and 79% similarity to glucose oxidase from Aspergillus niger, and is a member of the glucose-methanol-choline (GMC) oxidoreductase family. The tertiary structures of glucose oxidase from A. niger and cholesterol oxidase from Brevibacterium sterolicum were superimposed to provide a template for the sequence comparison of members of the GMC family. The general topology of the GMC oxidoreductases is conserved, with the exception of the presence of an active site lid in cholesterol oxidase and the insertion of additional structural elements in the substrate-binding domain of alcohol oxidase. The overall structure can be divided into five distinct sequence regions: FAD-binding domain, extended FAD-binding domain, flavin attachment loop and intermediate region, FAD covering lid, and substrate-binding domain. The FAD-binding and the extended FAD-binding domains are composed of several separate sequence regions. The other three regions each comprise a single contiguous sequence. Four major consensus patterns have been identified, including the nucleotide-binding consensus sequence close to their N-termini. The functions of the two motifs recently selected by the Genetics Computer Group, Madison, Wisconsin, as additional signature patterns of the GMC oxidoreductases are discussed. The other consensus patterns belong to either the FAD-binding or the extended FAD-binding domain. In addition, the roles of conserved residues are discussed wherever

  12. Epigenetic regulation of cholesterol homeostasis

    PubMed Central

    Meaney, Steve

    2014-01-01

    Although best known as a risk factor for cardiovascular disease, cholesterol is a vital component of all mammalian cells. In addition to key structural roles, cholesterol is a vital biochemical precursor for numerous biologically important compounds including oxysterols and bile acids, as well as acting as an activator of critical morphogenic systems (e.g., the Hedgehog system). A variety of sophisticated regulatory mechanisms interact to coordinate the overall level of cholesterol in cells, tissues and the entire organism. Accumulating evidence indicates that in additional to the more “traditional” regulatory schemes, cholesterol homeostasis is also under the control of epigenetic mechanisms such as histone acetylation and DNA methylation. The available evidence supporting a role for these mechanisms in the control of cholesterol synthesis, elimination, transport and storage are the focus of this review. PMID:25309573

  13. Rice Physiology

    Treesearch

    P.A. Counce; Davidi R. Gealy; Shi-Jean Susana Sung

    2002-01-01

    Physiology occurs tn physical space through chemical reactions constrained by anatomy and morphology, yet guided by genetics. Physiology has been called the logic of life. Genes encode structural and fimcdonal proteins. These proteins are subsequently processed to produce enzymes that direct and govern the biomechanical processes involved in the physiology of the...

  14. Induction of reactive oxygen species and the potential role of NADPH oxidase in hyperhydricity of garlic plantlets in vitro.

    PubMed

    Tian, Jie; Cheng, Yaqi; Kong, Xiangyu; Liu, Min; Jiang, Fangling; Wu, Zhen

    2017-01-01

    Hyperhydricity is a physiological disorder associated with oxidative stress. Reactive oxygen species (ROS) generation in plants is initiated by various enzymatic sources, including plasma membrane-localized nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, cell wall-bound peroxidase (POD), and apoplastic polyamine oxidase (PAO). The origin of the oxidative burst associated with hyperhydricity remains unknown. To investigate the role of NADPH oxidases, POD, and PAO in ROS production and hyperhydricity, exogenous hydrogen peroxide (H2O2) and inhibitors of each ROS-producing enzyme were applied to explore the mechanism of oxidative stress induction in garlic plantlets in vitro. A concentration of 1.5 mM H2O2 increased endogenous ROS production and hyperhydricity occurrence and enhanced the activities of NADPH oxidases, POD, and PAO. During the entire treatment period, NADPH oxidase activity increased continuously, whereas POD and PAO activities exhibited a transient increase and subsequently declined. Histochemical and cytochemical visualization demonstrated that specific inhibitors of each enzyme effectively suppressed ROS accumulation. Moreover, superoxide anion generation, H2O2 content, and hyperhydric shoot frequency in H2O2-stressed plantlets decreased significantly. The NADPH oxidase inhibitor was the most effective at suppressing superoxide anion production. The results suggested that NADPH oxidases, POD, and PAO were responsible for endogenous ROS induction. NADPH oxidase activation might play a pivotal role in the oxidative burst in garlic plantlets in vitro during hyperhydricity.

  15. Roles of the Mevalonate Pathway and Cholesterol Trafficking in Pulmonary Host Defense.

    PubMed

    Gabor, Kristin A; Fessler, Michael B

    2017-01-01

    The mevalonic acid synthesis pathway, cholesterol, and lipoproteins play fundamental roles in lung physiology and the innate immune response. Recent literature investigating roles for cholesterol synthesis and trafficking in host defense against respiratory infection was critically reviewed. The innate immune response and the cholesterol biosynthesis/trafficking network regulate one another, with important implications for pathogen invasion and host defense in the lung. The activation of pathogen recognition receptors and downstream cellular host defense functions are critically sensitive to cellular cholesterol. Conversely, microorganisms can co-opt the sterol/lipoprotein network in order to facilitate replication and evade immunity. Emerging literature suggests the potential for harnessing these insights towards therapeutic development. Given that >50% of adults in the U.S. have serum cholesterol abnormalities and pneumonia remains a leading cause of death, the potential impact of cholesterol on pulmonary host defense is of tremendous public health significance and warrants further mechanistic and translational investigation.

  16. [Screening and functional properties of cholesterol-degrading lactic acid bacteria from Jiangshui].

    PubMed

    Li, Xueping; Li, Jianhong; Li, Minquan; Meng, Xiangang

    2015-08-04

    We intended to obtain and characterize lactic acid bacteria with high capacity of cholesterol-degrading. We chose Jiangshui as the experimental material, screened lactic acid bacteria by the culture medium with high cholesterol, and studied other features of lactic acid bacteria like salt-tolerant, acid resistance, then identified the species of lactic acid bacteria by combining physiological and biochemical methods and 16S rDNA sequence. All lactic acid bacteria isolated had the capacity of cholesterol-degrading to some extent. There were 4 strains had high cholesterol-degrading rate (> 75%). Four strains were Lactococcus lactis subsp. lactis, two were Brevibacterium casei, and one was Lactococcus raffinolactis. Cholesterol-degrading lactic acid bacteria were screened from Jiangshui, with application potential for cholesterol degradation.

  17. Xanthine oxidase inhibition attenuates ischemic-reperfusion lung injury

    SciTech Connect

    Lynch, M.J.; Grum, C.M.; Gallagher, K.P.; Bolling, S.F.; Deeb, G.M.; Morganroth, M.L.

    1988-05-01

    Ischemic-reperfusion lung injury is a factor potentially limiting the usefulness of distant organ procurement for heart-lung transplantation. Toxic oxygen metabolites are considered a major etiologic factor in reperfusion injury. Although oxygen-free radicals may be generated by many mechanisms, we investigated the role of xanthine oxidase in this injury process by using lodoxamide, a xanthine oxidase inhibitor, to inhibit ischemic-reperfusion injury in an isolated rat lung model. Isolated rat lungs were perfused with physiologic salt solution (PSS) osmotically stabilized with Ficoll until circulating blood elements were nondetectable in the pulmonary venous effluent. Lungs were rendered ischemic by interrupting ventilation and perfusion for 2 hr at 37/sup 0/C. After the ischemic interval, the lungs were reperfused with whole blood and lung injury was determined by measuring the accumulation of /sup 125/I-bovine serum albumin in lung parenchyma and alveolar lavage fluid as well as by gravimetric measurements. Lung effluent was collected immediately pre- and postischemia for analysis of uric acid by high-pressure liquid chromatography. Lodoxamide (1 mM) caused significant attenuation of postischemic lung injury. Uric acid levels in the lung effluent confirmed inhibition of xanthine oxidase. Protection from injury was not complete, however, implying that additional mechanisms may contribute to ischemic-reperfusion injury in the lung.

  18. Ectopic Expression of Pumpkin Gibberellin Oxidases Alters Gibberellin Biosynthesis and Development of Transgenic Arabidopsis Plants1

    PubMed Central

    Radi, Abeer; Lange, Theo; Niki, Tomoya; Koshioka, Masaji; Lange, Maria João Pimenta

    2006-01-01

    Immature pumpkin (Cucurbita maxima) seeds contain gibberellin (GA) oxidases with unique catalytic properties resulting in GAs of unknown function for plant growth and development. Overexpression of pumpkin GA 7-oxidase (CmGA7ox) in Arabidopsis (Arabidopsis thaliana) resulted in seedlings with elongated roots, taller plants that flower earlier with only a little increase in bioactive GA4 levels compared to control plants. In the same way, overexpression of the pumpkin GA 3-oxidase1 (CmGA3ox1) resulted in a GA overdose phenotype with increased levels of endogenous GA4. This indicates that, in Arabidopsis, 7-oxidation and 3-oxidation are rate-limiting steps in GA plant hormone biosynthesis that control plant development. With an opposite effect, overexpression of pumpkin seed-specific GA 20-oxidase1 (CmGA20ox1) in Arabidopsis resulted in dwarfed plants that flower late with reduced levels of GA4 and increased levels of physiological inactive GA17 and GA25 and unexpected GA34 levels. Severe dwarfed plants were obtained by overexpression of the pumpkin GA 2-oxidase1 (CmGA2ox1) in Arabidopsis. This dramatic change in phenotype was accompanied by a considerable decrease in the levels of bioactive GA4 and an increase in the corresponding inactivation product GA34 in comparison to control plants. In this study, we demonstrate the potential of four pumpkin GA oxidase-encoding genes to modulate the GA plant hormone pool and alter plant stature and development. PMID:16384902

  19. Involvement of phospholipase D and NADPH-oxidase in salicylic acid signaling cascade.

    PubMed

    Kalachova, Tetiana; Iakovenko, Oksana; Kretinin, Sergii; Kravets, Volodymyr

    2013-05-01

    Salicylic acid is associated with the primary defense responses to biotic stress and formation of systemic acquired resistance. However, molecular mechanisms of early cell reactions to phytohormone application are currently undisclosed. The present study investigates the participation of phospholipase D and NADPH-oxidase in salicylic acid signal transduction cascade. The activation of lipid signaling enzymes within 15 min of salicylic acid application was shown in Arabidopsis thaliana plants by measuring the phosphatidic acid accumulation. Adding of primary alcohol (1-butanol) to the incubation medium led to phosphatidylbutanol accumulation as a result of phospholipase D (PLD) action in wild-type and NADPH-oxidase RbohD deficient plants. Salicylic acid induced rapid increase in NADPH-oxidase activity in histochemical assay with nitroblue tetrazolium but the reaction was not observed in presence of 1-butanol and NADPH-oxidase inhibitor diphenylene iodide (DPI). The further physiological effect of salicylic acid and inhibitory analysis of the signaling cascade were made in the guard cell model. Stomatal closure induced by salicylic acid was inhibited by 1-butanol and DPI treatment. rbohD transgenic plants showed impaired stomatal reaction upon phytohormone effect, while the reaction to H2O2 did not differ from that of wild-type plants. Thus a key role of NADPH-oxidase D-isoform in the process of stomatal closure in response to salicylic acid has been postulated. It has enabled to predict a cascade implication of PLD and NADPH oxidase to salicylic acid signaling pathway.

  20. Sulfhydryl oxidases: sources, properties, production and applications.

    PubMed

    Faccio, Greta; Nivala, Outi; Kruus, Kristiina; Buchert, Johanna; Saloheimo, Markku

    2011-08-01

    The formation of disulfide bonds in proteins and small molecules can greatly affect their functionality. Sulfhydryl oxidases (SOXs) are enzymes capable of oxidising the free sulfhydryl groups in proteins and thiol-containing small molecules by using molecular oxygen as an electron acceptor. SOXs have been isolated from the intracellular compartments of many organisms, but also secreted SOXs are known. These latter enzymes are generally active on small compounds and their physiological role is unknown, whereas the intracellular enzymes prefer proteins as substrates and are involved in protein folding. An increasing number of scientific publications and patent applications on SOXs have been published in recent years. The present mini-review provides an up-to-date summary of SOXs from various families, their production and their actual or suggested applications. The sequence features and domain organisation of the characterised SOXs are reviewed, and special attention is paid to the physicochemical features of the enzymes. A review of patents and patent applications regarding this class of enzymes is also provided.

  1. Structural and functional analysis of aa3-type and cbb3-type cytochrome c oxidases of Paracoccus denitrificans reveals significant differences in proton-pump design.

    PubMed

    de Gier, J W; Schepper, M; Reijnders, W N; van Dyck, S J; Slotboom, D J; Warne, A; Saraste, M; Krab, K; Finel, M; Stouthamer, A H; van Spanning, R J; van der Oost, J

    1996-06-01

    In Paracoccus denitrificans the aa3-type cytochrome c oxidase and the bb3-type quinol oxidase have previously been characterized in detail, both biochemically and genetically. Here we report on the isolation of a genomic locus that harbours the gene cluster ccoNOOP, and demonstrate that it encodes an alternative cbb3-type cytochrome c oxidase. This oxidase has previously been shown to be specifically induced at low oxygen tensions, suggesting that its expression is controlled by an oxygen-sensing mechanism. This view is corroborated by the observation that the ccoNOOP gene cluster is preceded by a gene that encodes an FNR homologue and that its promoter region contains an FNR-binding motif. Biochemical and physiological analyses of a set of oxidase mutants revealed that, at least under the conditions tested, cytochromes aa3, bb3 and cbb3 make up the complete set of terminal oxidases in P. denitrificans. Proton-translocation measurements of these oxidase mutants indicate that all three oxidase types have the capacity to pump protons. Previously, however, we have reported decreased H+/e- coupling efficiencies of the cbb3-type oxidase under certain conditions. Sequence alignment suggests that many residues that have been proposed to constitute the chemical and pumped proton channels in cytochrome aa3 (and probably also in cytochrome bb3) are not conserved in cytochrome cbb3. It is concluded that the design of the proton pump in cytochrome cbb3 differs significantly from that in the other oxidase types.

  2. Lateral organization of cholesterol molecules in lipid-cholesterol assemblies.

    SciTech Connect

    Singh, Rajiv R. P.; Slepoy, Alexander; Sengupta, Pinaki; Cox, Daniel L.

    2005-05-01

    We present results of an off-lattice simulation of a two-component planar system, as a model for lateral organization of cholesterol molecules in lipid-cholesterol assemblies. We explore the existence of 'superlattice' structures even in fluid systems, in the absence of an underlying translational long-range order, and study their coupling to hexatic or bond-orientational order. We discuss our results in context of geometric superlattice theories and 'condensation complexes' in understanding a variety of experiments in artificial lipid-cholesterol assemblies.

  3. Cholesterol metabolism, LDL, and the LDL receptor

    SciTech Connect

    Myant, N.B. )

    1990-01-01

    This book covers cholesterol and metabolism. Paper include: The LDL Receptor in Perspective, Cholesterol in Animal Tissues, HMG-CoA Reductase. acetyl-CoA: Cholesterol Acyltransferase, and LDL: Physical and Chemical Characteristics.

  4. Understand Your Risk for High Cholesterol

    MedlinePlus

    ... Aortic Aneurysm More Understand Your Risk for High Cholesterol Updated:Apr 1,2016 LDL (bad) cholesterol is ... content was last reviewed on 04/21/2014. Cholesterol Guidelines: Putting the pieces together Myth vs. Truth – ...

  5. NADPH oxidases, reactive oxygen species, and hypertension: clinical implications and therapeutic possibilities.

    PubMed

    Paravicini, Tamara M; Touyz, Rhian M

    2008-02-01

    Reactive oxygen species (ROS) influence many physiological processes including host defense, hormone biosynthesis, fertilization, and cellular signaling. Increased ROS production (termed "oxidative stress") has been implicated in various pathologies, including hypertension, atherosclerosis, diabetes, and chronic kidney disease. A major source for vascular and renal ROS is a family of nonphagocytic NAD(P)H oxidases, including the prototypic Nox2 homolog-based NAD(P)H oxidase, as well as other NAD(P)H oxidases, such as Nox1 and Nox4. Other possible sources include mitochondrial electron transport enzymes, xanthine oxidase, cyclooxygenase, lipoxygenase, and uncoupled nitric oxide synthase. NAD(P)H oxidase-derived ROS plays a physiological role in the regulation of endothelial function and vascular tone and a pathophysiological role in endothelial dysfunction, inflammation, hypertrophy, apoptosis, migration, fibrosis, angiogenesis, and rarefaction, important processes underlying cardiovascular and renal remodeling in hypertension and diabetes. These findings have evoked considerable interest because of the possibilities that therapies against nonphagocytic NAD(P)H oxidase to decrease ROS generation and/or strategies to increase nitric oxide (NO) availability and antioxidants may be useful in minimizing vascular injury and renal dysfunction and thereby prevent or regress target organ damage associated with hypertension and diabetes. Here we highlight current developments in the field of reactive oxygen species and cardiovascular disease, focusing specifically on the recently identified novel Nox family of NAD(P)H oxidases in hypertension. We also discuss the potential role of targeting ROS as a therapeutic possibility in the management of hypertension and cardiovascular disease.

  6. Cholesterol metabolism and colon cancer.

    PubMed

    Broitman, S A; Cerda, S; Wilkinson, J

    1993-01-01

    While epidemiologic and concordant experimental data indicate a direct relationship between dietary fat (and presumably caloric) intake and the development of colon cancer, the effect of dietary cholesterol on this disease is still not clear. However, there appears to be a developing literature concerning an inverse relationship between serum and plasma cholesterol levels, and the risk for colon cancer. Findings that low serum cholesterol levels are apparent as early as ten years prior to the detection of colon cancer implies that sub clinical disease is probably not involved initially in this process. The possibility of low serum cholesterol as a bio-marker was considered in epidemiologic studies which focused upon obese men with lower than normal serum cholesterol levels who were found to be at increased risk to colon cancer. While the relationship between low serum cholesterol and colonic or intestinal cholesterol metabolism is presently not understood, current genetic studies provide a promising though as yet unexplored potential association. Alterations which occur during the developmental progression of colonic cancer include changes in chromosome 5, which also carries two genes vital to the biosynthesis and regulation of systemic and cellular cholesterol metabolism, 3-hydroxy-3-methylglutaryl coenzyme A synthase, and 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCoA R). Regulation of cholesterol metabolism in intestinal cells in vivo and in vitro varies from that seen in normal fibroblasts or hepatocytes in terms of exogenous sources of cholesterol and how these sources regulate internal synthesis. Colonic cancer cells have been used to assess small bowel enterocyte cholesterol metabolism, which has been possible because of their ability to differentiate in culture, however information regarding true colonic enterocyte cholesterol metabolism is relatively scarce. Colonic cancer cells have been shown to possess a diminished or nonexistent ability to use

  7. THE EQUILIBRIUM BETWEEN CYTOCHROME OXIDASE AND CARBON MONOXIDE

    PubMed Central

    Wald, George; Allen, David W.

    1957-01-01

    An evolution argument which attempted to trace the development of hemoglobins from such respiratory pigments as cytochrome oxidase presupposed that the latter possesses, in addition to its high affinity for oxygen, an approximately hyperbolic equilibrium function, and little if any Bohr effect (decline in affinity for oxygen with rise in acidity). Since cytochrome oxidase, unlike hemoglobin, is irreversibly oxidized by oxygen, the present experiments examine its combination with carbon monoxide, with which, like hemoglobin, it yields a true equilibrium. In all known hemoglobins the form of the equilibrium function and the vigor of the Bohr effect are similar with carbon monoxide and with oxygen, so that observations involving the former gas are relevant to the relations of the latter. The equilibrium function of cytochrome oxidase with carbon monoxide—percentage saturation vs. partial pressure of CO—is slightly inflected (in the Hill equation n = 1.26; for a hyperbola, n = 1). No Bohr effect is present in the range of pH 7–8. The pressure of carbon monoxide at which half-saturation occurs (p50) is about 0.17 mm. at 10–13°C. The affinity for carbon monoxide is therefore higher than commonly supposed. These properties are consistent with the evolution argument. They are important also for the physiological functioning of cytochrome oxidase, the nearly hyperbolic equilibrium function facilitating a high degree of saturation, and the lack of Bohr effect making this enzyme impervious to hyperacidity. The slight inflection of the equilibrium function shows that the Fe-porphyrin units of cytochrome oxidase interact to a degree, hence that the enzyme must contain more than one such unit per molecule. It is suggested that in cytochrome oxidase two Fe-porphyrin groups may unite with one oxygen in the manner Fe++-O2-Fe++; and that the evolution of hemoglobins proceeded over a first stage in which the hemes were separated so that each combines with only one molecule

  8. Female mice lacking active nadph-oxidase enzymes are protected against “western diet”--induced obesity and metabolic syndrome

    USDA-ARS?s Scientific Manuscript database

    NADPH oxidase (Nox) enzymes have been implicated in regulation of adipocyte differentiation and inflammation in a variety of tissues. We examined the effects of feeding AIN-93G or a “Western diet” (WD) (45% fat, 0.5% cholesterol) on development of obesity and “metabolic syndrome” in wild type (WT) m...

  9. Augmented cholesterol absorption and sarcolemmal sterol enrichment slow small intestinal transit in mice, contributing to cholesterol cholelithogenesis

    PubMed Central

    Xie, Meimin; Kotecha, Vijay R; Andrade, Jon David P; Fox, James G; Carey, Martin C

    2012-01-01

    Cholesterol gallstones are associated with slow intestinal transit in humans as well as in animal models, but the molecular mechanism is unknown. We investigated in C57L/J mice whether the components of a lithogenic diet (LD; 1.0% cholesterol, 0.5% cholic acid and 17% triglycerides), as well as distal intestinal infection with Helicobacter hepaticus, influence small intestinal transit time. By quantifying the distribution of 3H-sitostanol along the length of the small intestine following intraduodenal instillation, we observed that, in both sexes, the geometric centre (dimensionless) was retarded significantly (P < 0.05) by LD but not slowed further by helicobacter infection (males, 9.4 ± 0.5 (uninfected), 9.6 ± 0.5 (infected) on LD compared with 12.5 ± 0.4 and 11.4 ± 0.5 on chow). The effect of the LD was reproduced only by the binary combination of cholesterol and cholic acid. We inferred that the LD-induced cholesterol enrichment of the sarcolemmae of intestinal smooth muscle cells produced hypomotility from signal-transduction decoupling of cholecystokinin (CCK), a physiological agonist for small intestinal propulsion in mice. Treatment with ezetimibe in an amount sufficient to block intestinal cholesterol absorption caused small intestinal transit time to return to normal. In most cholesterol gallstone-prone humans, lithogenic bile carries large quantities of hepatic cholesterol into the upper small intestine continuously, thereby reproducing this dietary effect in mice. Intestinal hypomotility promotes cholelithogenesis by augmenting formation of deoxycholate, a pro-lithogenic secondary bile salt, and increasing the fraction of intestinal cholesterol absorbed. PMID:22331417

  10. Activation of the Liver X Receptor Stimulates Trans-intestinal Excretion of Plasma Cholesterol*

    PubMed Central

    van der Veen, Jelske N.; van Dijk, Theo H.; Vrins, Carlos L. J.; van Meer, Hester; Havinga, Rick; Bijsterveld, Klaas; Tietge, Uwe J. F.; Groen, Albert K.; Kuipers, Folkert

    2009-01-01

    Recent studies have indicated that direct intestinal secretion of plasma cholesterol significantly contributes to fecal neutral sterol loss in mice. The physiological relevance of this novel route, which represents a part of the reverse cholesterol transport pathway, has not been directly established in vivo as yet. We have developed a method to quantify the fractional and absolute contributions of several cholesterol fluxes to total fecal neutral sterol loss in vivo in mice, by assessing the kinetics of orally and intravenously administered stable isotopically labeled cholesterol combined with an isotopic approach to assess the fate of de novo synthesized cholesterol. Our results show that trans-intestinal cholesterol excretion significantly contributes to removal of blood-derived free cholesterol in C57Bl6/J mice (33% of 231 μmol/kg/day) and that pharmacological activation of LXR with T0901317 strongly stimulates this pathway (63% of 706 μmol/kg/day). Trans-intestinal cholesterol excretion is impaired in mice lacking Abcg5 (−4%), suggesting that the cholesterol transporting Abcg5/Abcg8 heterodimer is involved in this pathway. Our data demonstrate that intestinal excretion represents a quantitatively important route for fecal removal of neutral sterols independent of biliary secretion in mice. This pathway is sensitive to pharmacological activation of the LXR system. These data support the concept that the intestine substantially contributes to reverse cholesterol transport. PMID:19416968

  11. Use of cyclodextrins to manipulate plasma membrane cholesterol content: evidence, misconceptions and control strategies

    PubMed Central

    Zidovetzki, Raphael

    2007-01-01

    The physiological importance of cholesterol in the cell plasma membrane has attracted increased attention in recent years. Consequently, the use of methods of controlled manipulation of membrane cholesterol content has also increased sharply, especially as a method of studying putative cholesterol-enriched cell membrane domains (rafts). The most common means of modifying the cholesterol content of cell membranes is the incubation of cells or model membranes with cyclodextrins, a family of compounds, which, due to the presence of relatively hydrophobic cavity, can be used to extract cholesterol from cell membranes. However, the mechanism of this activity of cyclodextrins is not completely established. Moreover, under conditions commonly used for cholesterol extraction, cyclodextrins may remove cholesterol from both raft and non-raft domains of the membrane as well as alter the distribution of cholesterol between plasma and intracellular membranes. In addition, other hydrophobic molecules such as phospholipids may also be extracted from the membranes by cyclodextrins. We review the evidence for the specific and non-specific effects of cyclodextrins and what is known about the mechanisms for cyclodextrin-induced cholesterol and phospholipid extraction. Finally, we discuss useful control strategies that may help to verify that the observed effects are due specifically to cyclodextrin-induced changes in cellular cholesterol. PMID:17493580

  12. Monoamine Oxidase Inhibitors: Clinical Review

    PubMed Central

    Remick, Ronald A.; Froese, Colleen

    1990-01-01

    Monoamine oxidase inhibitors (MAOIs) are effective antidepressant agents. They are increasingly and effectively used in a number of other psychiatric and non-psychiatric medical syndromes. Their potential for serious toxicity (i.e., hypertensive reaction) is far less than original reports suggest, and newer reversible substrate-specific MAOIs may offer even less toxicity. The author reviews the pharmacology, mechanism of action, clinical indications, and dosing strategies of MAOIs. The common MAOI side-effects (hypotension, weight gain, sexual dysfunction, insomnia, daytime sedation, myoclonus, and hypertensive episodes) are described and management techniques suggested. Recent clinical developments involving MAOIs are outlined. PMID:21233984

  13. 7-Dehydrocholesterol Enhances Ultraviolet A-Induced Oxidative Stress in Keratinocytes: Roles of Nadph Oxidase, Mitochondria and Lipid Rafts

    PubMed Central

    Valencia, Antonio; Rajadurai, Anpuchchelvi; Carle, A. Bjorn; Kochevar, Irene E.

    2006-01-01

    Long wavelength solar UVA radiation stimulates formation of reactive oxygen species (ROS) and prostaglandin E2 (PGE2), which are involved in skin photosensitivity and tumor promotion. High levels of 7-dehydrocholesterol (7-DHC), the precursor to cholesterol, cause exaggerated photosensitivity to UVA in patients with Smith-Lemli-Opitz syndrome (SLOS). Partially replacing cholesterol with 7-DHC in keratinocytes rapidly (<5 min) increased UVA-induced ROS, intracellular calcium, phospholipase A2 activity, PGE2, and NADPH oxidase activity. UVA-induced ROS and PGE2 production were inhibited in these cells by depleting the Nox1 subunit of NADPH oxidase using siRNA or using a mitochondrial radical quencher, MitoQ. Partial replacement of cholesterol with 7-DHC also disrupted membrane lipid raft domains, although depletion of cholesterol, which also disrupts lipid rafts, did not affect UVA-induced increases in ROS and PGE2. Phospholipid liposomes containing 7-DHC were more rapidly oxidized by a free radical mechanism than those containing cholesterol. These results indicate that 7-DHC enhances rapid UVA-induced ROS and PGE2 formation by enhancing free radical-mediated membrane lipid oxidation and suggests that this mechanism might underlie the UVA-photosensitivity in SLOS. PMID:17145559

  14. 7-Dehydrocholesterol enhances ultraviolet A-induced oxidative stress in keratinocytes: roles of NADPH oxidase, mitochondria, and lipid rafts.

    PubMed

    Valencia, Antonio; Rajadurai, Anpuchchelvi; Carle, A Bjorn; Kochevar, Irene E

    2006-12-01

    Long wavelength solar UVA radiation stimulates formation of reactive oxygen species (ROS) and prostaglandin E(2) (PGE(2)), which are involved in skin photosensitivity and tumor promotion. High levels of 7-dehydrocholesterol (7-DHC), the precursor to cholesterol, cause exaggerated photosensitivity to UVA in patients with Smith-Lemli-Opitz syndrome (SLOS). Partially replacing cholesterol with 7-DHC in keratinocytes rapidly (<5 min) increased UVA-induced ROS, intracellular calcium, phospholipase A(2) activity, PGE(2), and NADPH oxidase activity. UVA-induced ROS and PGE(2) production were inhibited in these cells by depleting the Nox1 subunit of NADPH oxidase using siRNA or using a mitochondrial radical quencher, MitoQ. Partial replacement of cholesterol with 7-DHC also disrupted membrane lipid raft domains, although depletion of cholesterol, which also disrupts lipid rafts, did not affect UVA-induced increases in ROS and PGE(2). Phospholipid liposomes containing 7-DHC were more rapidly oxidized by a free radical mechanism than those containing cholesterol. These results indicate that 7-DHC enhances rapid UVA-induced ROS and PGE(2) formation by enhancing free radical-mediated membrane lipid oxidation and suggests that this mechanism might underlie the UVA photosensitivity in SLOS.

  15. Think Again About Cholesterol Survey.

    PubMed

    Catapano, Alberico L; Wiklund, Olov

    2015-12-01

    Cardiovascular disease (CVD) is still the main cause of death in Europe. Elevated plasma cholesterol, specifically low-density lipoprotein cholesterol (LDL-C), is the main causative risk factor for CVD, most prominently associated with coronary heart disease. A widespread disinformation about cholesterol and CVD is one factor underlying a poor compliance to lipid-lowering therapy. To investigate how cholesterol, CVD and cholesterol reduction is perceived in the population, a survey was commissioned by the European Atherosclerosis Society (EAS). Nearly half of people above 25 years of age are most worried about cancer (45%), compared to just over one in four who are worried about heart disease (27%). A majority believe being overweight (72%), blood pressure (70%) and smoking (67%) most affect heart health, far more than note cholesterol (59%) and family history (39%). The majority of adults recognize that high LDL (or "bad") cholesterol should be a health priority for everyone, including those younger than 40 and those who are not overweight. However, 1 in 4 (25%) incorrectly believe that it does not need to be a concern until someone shows signs or symptoms. Although 89% of adults surveyed agreed it is important for people to know whether or not they have high LDL-C, an overwhelming 92% did not know their LDL-C levels or had never had their cholesterol levels tested. A high 63% had never heard of familial hypercholesterolemia: France had the lowest level of awareness (41%) to Denmark with a high 80%, and the association of the disease with high levels of LDL-C is quite poor (only 36%), with Sweden only at 22% versus a high in Spain of 54%. A large part of the people participating in the survey were quite uncertain about the modality of transmission for familial hypercholesterolemia in the family. All in all, this survey highlights the need for more information among citizens for the role of cholesterol in determining CVD.

  16. HDL Cholesterol: How to Boost Your 'Good' Cholesterol

    MedlinePlus

    ... are better. By Mayo Clinic Staff High-density lipoprotein (HDL) is known as the "good" cholesterol because ... bloodstream attached to proteins. These proteins are called lipoproteins. Low-density lipoprotein. High levels of low-density ...

  17. Targeting cancer using cholesterol conjugates

    PubMed Central

    Radwan, Awwad A.; Alanazi, Fares K.

    2013-01-01

    Conjugation of cholesterol moiety to active compounds for either cancer treatment or diagnosis is an attractive approach. Cholesterol derivatives are widely studied as cancer diagnostic agents and as anticancer derivatives either in vitro or in vivo using animal models. In largely growing studies, anticancer agents have been chemically conjugated to cholesterol molecules, to enhance their pharmacokinetic behavior, cellular uptake, target specificity, and safety. To efficiently deliver anticancer agents to the target cells and tissues, many different cholesterol–anticancer conjugates were synthesized and characterized, and their anticancer efficiencies were tested in vitro and in vivo. PMID:24493968

  18. Cholesterol perturbs lipid bilayers nonuniversally.

    PubMed

    Pan, Jianjun; Mills, Thalia T; Tristram-Nagle, Stephanie; Nagle, John F

    2008-05-16

    Cholesterol is well known to modulate the physical properties of biomembranes. Using modern x-ray scattering methods, we have studied the effects of cholesterol on the bending modulus K(C), the thickness D(HH), and the orientational order parameter S(xray) of lipid bilayers. We find that the effects are different for at least three classes of phospholipids characterized by different numbers of saturated hydrocarbon chains. Most strikingly, cholesterol strongly increases K(C) when both chains of the phospholipid are fully saturated but not at all when there are two monounsaturated chains.

  19. Cholesterol Perturbs Lipid Bilayers Nonuniversally

    SciTech Connect

    Pan Jianjun; Mills, Thalia T.; Tristram-Nagle, Stephanie; Nagle, John F.

    2008-05-16

    Cholesterol is well known to modulate the physical properties of biomembranes. Using modern x-ray scattering methods, we have studied the effects of cholesterol on the bending modulus K{sub C}, the thickness D{sub HH}, and the orientational order parameter S{sub xray} of lipid bilayers. We find that the effects are different for at least three classes of phospholipids characterized by different numbers of saturated hydrocarbon chains. Most strikingly, cholesterol strongly increases K{sub C} when both chains of the phospholipid are fully saturated but not at all when there are two monounsaturated chains.

  20. Analysis of a Chinese hamster ovary cell mutant with defective mobilization of cholesterol from the plasma membrane to the endoplasmic reticulum.

    PubMed

    Jacobs, N L; Andemariam, B; Underwood, K W; Panchalingam, K; Sternberg, D; Kielian, M; Liscum, L

    1997-10-01

    The factors involved in shuttling cholesterol among cellular membranes have not been defined. Using amphotericin B selection, we previously isolated Chinese hamster ovary cell mutants expressing defects in intracellular cholesterol transport. Complementation analysis among seven mutants identified one cell line, mutant 3-6, with a unique defect. The present analysis revealed three key features of mutant 3-6. First, the movement of cholesterol both from the endoplasmic reticulum and through lysosomes to the plasma membrane was normal. However, when intact 3-6 cells were treated with sphingomyelinase, movement of plasma membrane cholesterol to acyl CoA:cholesterol acyltransferase in the endoplasmic reticulum was defective. Cellular cholesterol was mobilized to this enzyme upon activation by 25-hydroxycholesterol. Second, mutant 3-6 did not utilize endogenously synthesized sterol or low density lipoprotein-derived cholesterol for growth as effectively as parental Chinese hamster ovary cells. Finally, despite normal movement of cholesterol to the plasma membrane, mutant 3-6 was amphotericin B resistant. The plasma membrane cholesterol content was normal as assessed by cholesterol oxidase treatment and Semliki Forest virus fusion, which suggests that the 3-6 mutation alters the organization of cholesterol in the plasma membrane. Our characterization of this mutant cell line should facilitate the identification of gene(s) required for this transport pathway.

  1. Mitochondrial cytochrome c oxidase deficiency.

    PubMed

    Rak, Malgorzata; Bénit, Paule; Chrétien, Dominique; Bouchereau, Juliette; Schiff, Manuel; El-Khoury, Riyad; Tzagoloff, Alexander; Rustin, Pierre

    2016-03-01

    As with other mitochondrial respiratory chain components, marked clinical and genetic heterogeneity is observed in patients with a cytochrome c oxidase deficiency. This constitutes a considerable diagnostic challenge and raises a number of puzzling questions. So far, pathological mutations have been reported in more than 30 genes, in both mitochondrial and nuclear DNA, affecting either structural subunits of the enzyme or proteins involved in its biogenesis. In this review, we discuss the possible causes of the discrepancy between the spectacular advances made in the identification of the molecular bases of cytochrome oxidase deficiency and the lack of any efficient treatment in diseases resulting from such deficiencies. This brings back many unsolved questions related to the frequent delay of clinical manifestation, variable course and severity, and tissue-involvement often associated with these diseases. In this context, we stress the importance of studying different models of these diseases, but also discuss the limitations encountered in most available disease models. In the future, with the possible exception of replacement therapy using genes, cells or organs, a better understanding of underlying mechanism(s) of these mitochondrial diseases is presumably required to develop efficient therapy. © 2016 Authors; published by Portland Press Limited.

  2. Immunological comparison of sulfite oxidase

    SciTech Connect

    Pollock, V.; Barber, M.J. )

    1991-03-11

    Polyclonal antibodies (rabbit), elicited against FPLC-purified chicken and rat liver sulfite oxidase (SO), have been examined for inhibition and binding to purified chicken (C), rat (R), bovine (B), alligator (A) and shark (S) liver enzymes. Anti-CSO IgG cross-reacted with all five enzymes, with varying affinities, in the order CSO=ASO{gt}RSO{gt}BSO{gt}SSO. Anti-ROS IgG also cross-reacted with all five enzymes in the order RSO{gt}CSO=ASO{gt}BSO{gt}SSO. Anti-CSO IgG inhibited sulfite:cyt. c reductase (S:CR), sulfite:ferricyanide reductase (S:FR) and sulfite:dichlorophenolindophenol reductase (S:DR) activities of CSO to different extents (S:CR{gt}S:FR=S:DR). Similar differential inhibition was found for anti-ROS IgG and RSO S:CR, S:FR and S:DR activities. Anti-CSO IgG inhibited S:CR activities in the order CSO=ASO{much gt}SSO{gt}BSO. RSO was uninhibited. For anti-RSO IgG the inhibition order was RSO{gt}SSO{gt}BSO{gt}ASO. CSO was uninhibited. Anti-CSO and RSO IgGs partially inhibited Chlorella nitrate reductase (NR). Minor cross-reactivity was found for xanthine oxidase. Common antigenic determinants for all five SO's and NR are indicated.

  3. Mitochondrial Cytochrome c Oxidase Deficiency

    PubMed Central

    Rak, Malgorzata; Bénit, Paule; Chrétien, Dominique; Bouchereau, Juliette; Schiff, Manuel; El-Khoury, Riyad; Tzagoloff, Alexander; Rustin, Pierre

    2016-01-01

    As with other mitochondrial respiratory chain components, marked clinical and genetic heterogeneity is observed in patients with a cytochrome c oxidase deficiency. This constitutes a considerable diagnostic challenge and raises a number of puzzling questions. So far, pathological mutations have been reported in more than 30 genes, in both mitochondrial and nuclear DNA, affecting either structural subunits of the enzyme or proteins involved in its biogenesis. In this review, we discuss the possible causes of the discrepancy between the spectacular advances made in the identification of the molecular bases of cytochrome oxidase deficiency and the lack of any efficient treatment in diseases resulting from such deficiencies. This brings back many unsolved questions related to the frequent delay of clinical manifestation, variable course and severity, and tissue-involvement often associated with these diseases. In this context, we stress the importance to study different models of these diseases, but also discuss the limitations encountered in most available disease models. In the future, with the possible exception of replacement therapy using genes, cells or organs, a better understanding of underlying mechanism(s) of these mitochondrial diseases is presumably required to develop efficient therapy. PMID:26846578

  4. From cholesterol to consciousness.

    PubMed

    Torday, John S

    2017-08-19

    The nature of consciousness has been debated for centuries. It can be understood as part and parcel of the natural progression of life from unicellular to multicellular, calcium fluxes mediating communication within and between cells. Consciousness is the vertical integration of calcium fluxes, mediated by the Target of Rapamycin gene integrated with the cytoskeleton. The premise of this paper is that there is a fundamental physiologic integration of the organism with the environment that constitutes consciousness. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Physiological Waterfalls

    ERIC Educational Resources Information Center

    Leith, David E.

    1976-01-01

    Provides background information, defining areas within organ systems where physiological waterfalls exist. Describes pressure-flow relationships of elastic tubes (blood vessels, airways, renal tubules, various ducts). (CS)

  6. Physiological Waterfalls

    ERIC Educational Resources Information Center

    Leith, David E.

    1976-01-01

    Provides background information, defining areas within organ systems where physiological waterfalls exist. Describes pressure-flow relationships of elastic tubes (blood vessels, airways, renal tubules, various ducts). (CS)

  7. Regulation of the high-affinity choline transporter activity and trafficking by its association with cholesterol-rich lipid rafts.

    PubMed

    Cuddy, Leah K; Winick-Ng, Warren; Rylett, Rebecca Jane

    2014-03-01

    The sodium-coupled, hemicholinium-3-sensitive, high-affinity choline transporter (CHT) is responsible for transport of choline into cholinergic nerve terminals from the synaptic cleft following acetylcholine release and hydrolysis. In this study, we address regulation of CHT function by plasma membrane cholesterol. We show for the first time that CHT is concentrated in cholesterol-rich lipid rafts in both SH-SY5Y cells and nerve terminals from mouse forebrain. Treatment of SH-SY5Y cells expressing rat CHT with filipin, methyl-β-cyclodextrin (MβC) or cholesterol oxidase significantly decreased choline uptake. In contrast, CHT activity was increased by addition of cholesterol to membranes using cholesterol-saturated MβC. Kinetic analysis of binding of [(3)H]hemicholinium-3 to CHT revealed that reducing membrane cholesterol with MβC decreased both the apparent binding affinity (KD) and maximum number of binding sites (Bmax ); this was confirmed by decreased plasma membrane CHT protein in lipid rafts in cell surface protein biotinylation assays. Finally, the loss of cell surface CHT associated with lipid raft disruption was not because of changes in CHT internalization. In summary, we provide evidence that CHT association with cholesterol-rich rafts is critical for transporter function and localization. Alterations in plasma membrane cholesterol cholinergic nerve terminals could diminish cholinergic transmission by reducing choline availability for acetylcholine synthesis. The sodium-coupled choline transporter CHT moves choline into cholinergic nerve terminals to serve as substrate for acetylcholine synthesis. We show for the first time that CHT is concentrated in cholesterol-rich lipid rafts, and decreasing membrane cholesterol significantly reduces both choline uptake activity and cell surface CHT protein levels. CHT association with cholesterol-rich rafts is critical for its function, and alterations in plasma membrane cholesterol could diminish cholinergic

  8. Cholesterol's location in lipid bilayers

    SciTech Connect

    Marquardt, Drew; Kučerka, Norbert; Wassall, Stephen R.; Harroun, Thad A.; Katsaras, John

    2016-04-04

    It is well known that cholesterol modifies the physical properties of lipid bilayers. For example, the much studied liquid-ordered Lo phase contains rapidly diffusing lipids with their acyl chains in the all trans configuration, similar to gel phase bilayers. Moreover, the Lo phase is commonly associated with cholesterol-enriched lipid rafts, which are thought to serve as platforms for signaling proteins in the plasma membrane. Cholesterol's location in lipid bilayers has been studied extensively, and it has been shown – at least in some bilayers – to align differently from its canonical upright orientation, where its hydroxyl group is in the vicinity of the lipid–water interface. In this study we review recent works describing cholesterol's location in different model membrane systems with emphasis on results obtained from scattering, spectroscopic and molecular dynamics studies.

  9. Cholesterol's location in lipid bilayers

    DOE PAGES

    Marquardt, Drew; Kučerka, Norbert; Wassall, Stephen R.; ...

    2016-04-04

    It is well known that cholesterol modifies the physical properties of lipid bilayers. For example, the much studied liquid-ordered Lo phase contains rapidly diffusing lipids with their acyl chains in the all trans configuration, similar to gel phase bilayers. Moreover, the Lo phase is commonly associated with cholesterol-enriched lipid rafts, which are thought to serve as platforms for signaling proteins in the plasma membrane. Cholesterol's location in lipid bilayers has been studied extensively, and it has been shown – at least in some bilayers – to align differently from its canonical upright orientation, where its hydroxyl group is in themore » vicinity of the lipid–water interface. In this study we review recent works describing cholesterol's location in different model membrane systems with emphasis on results obtained from scattering, spectroscopic and molecular dynamics studies.« less

  10. Cholesterol confusion and statin controversy.

    PubMed

    DuBroff, Robert; de Lorgeril, Michel

    2015-07-26

    The role of blood cholesterol levels in coronary heart disease (CHD) and the true effect of cholesterol-lowering statin drugs are debatable. In particular, whether statins actually decrease cardiac mortality and increase life expectancy is controversial. Concurrently, the Mediterranean diet model has been shown to prolong life and reduce the risk of diabetes, cancer, and CHD. We herein review current data related to both statins and the Mediterranean diet. We conclude that the expectation that CHD could be prevented or eliminated by simply reducing cholesterol appears unfounded. On the contrary, we should acknowledge the inconsistencies of the cholesterol theory and recognize the proven benefits of a healthy lifestyle incorporating a Mediterranean diet to prevent CHD.

  11. Americans' Cholesterol Levels Keep Falling

    MedlinePlus

    ... and 2013-2014, the CDC reported. Dr. David Friedman is chief of heart failure services at Long ... for cholesterol treatment, all seem to be working," Friedman said. The study was published online Nov. 30 ...

  12. Self assembled monolayer based liquid crystal biosensor for free cholesterol detection

    NASA Astrophysics Data System (ADS)

    Tyagi, Mukta; Chandran, Achu; Joshi, Tilak; Prakash, Jai; Agrawal, V. V.; Biradar, A. M.

    2014-04-01

    A unique cholesterol oxidase (ChOx) liquid crystal (LC) biosensor, based on the disruption of orientation in LCs, is developed for cholesterol detection. A self-assembled monolayer (SAM) of Dimethyloctadecyl[3-(trimethoxysilyl)propyl]ammonium chloride (DMOAP) and (3-Aminopropyl)trimethoxy-silane (APTMS) is prepared on a glass plate by adsorption. The enzyme (ChOx) is immobilized on SAM surface for 12 h before utilizing the film for biosensing purpose. LC based biosensing study is conducted on SAM/ChOx/LC (5CB) cells for cholesterol concentrations ranging from 10 mg/dl to 250 mg/dl. The sensing mechanism has been verified through polarizing optical microscopy, scanning electron microscopy, and spectrometric techniques.

  13. Cholesterol biosensor based on rf sputtered zinc oxide nanoporous thin film

    SciTech Connect

    Singh, S. P.; Arya, Sunil K.; Pandey, Pratibha; Malhotra, B. D.; Saha, Shibu; Sreenivas, K.; Gupta, Vinay

    2007-08-06

    Cholesterol oxidase (ChOx) has been immobilized onto zinc oxide (ZnO) nanoporous thin films grown on gold surface. A preferred c-axis oriented ZnO thin film with porous surface morphology has been fabricated by rf sputtering under high pressure. Optical studies and cyclic voltammetric measurements show that the ChOx/ZnO/Au bioelectrode is sensitive to the detection of cholesterol in 25-400 mg/dl range. A relatively low value of enzyme's kinetic parameter (Michaelis-Menten constant) {approx}2.1 mM indicates enhanced enzyme affinity of ChOx to cholesterol. The observed results show promising application of nanoporous ZnO thin film for biosensing application without any functionalization.

  14. Self assembled monolayer based liquid crystal biosensor for free cholesterol detection

    SciTech Connect

    Tyagi, Mukta; Agrawal, V. V.; Chandran, Achu; Joshi, Tilak; Prakash, Jai; Biradar, A. M.

    2014-04-14

    A unique cholesterol oxidase (ChOx) liquid crystal (LC) biosensor, based on the disruption of orientation in LCs, is developed for cholesterol detection. A self-assembled monolayer (SAM) of Dimethyloctadecyl[3-(trimethoxysilyl)propyl]ammonium chloride (DMOAP) and (3-Aminopropyl)trimethoxy-silane (APTMS) is prepared on a glass plate by adsorption. The enzyme (ChOx) is immobilized on SAM surface for 12 h before utilizing the film for biosensing purpose. LC based biosensing study is conducted on SAM/ChOx/LC (5CB) cells for cholesterol concentrations ranging from 10 mg/dl to 250 mg/dl. The sensing mechanism has been verified through polarizing optical microscopy, scanning electron microscopy, and spectrometric techniques.

  15. Nanostructured anatase-titanium dioxide based platform for application to microfluidics cholesterol biosensor

    NASA Astrophysics Data System (ADS)

    Azahar Ali, Md.; Srivastava, Saurabh; Solanki, Pratima R.; Varun Agrawal, Ved; John, Renu; Malhotra, Bansi D.

    2012-08-01

    We report results of studies relating to the fabrication of a microfluidics cholesterol sensor based on nanocrystalline anatase-titanium dioxide (ant-TiO2) film deposited onto indium tin oxide (ITO) glass. The results of response studies (optimized under the flow rate of 30 μl/min) conducted on cholesterol oxidase (ChOx) immobilized onto crystalline ant-TiO2 nanoparticles (˜27 nm)/ITO microfluidics electrode reveal linearity as 1.3 to 10.3 mM and improved sensitivity of 94.65 μA/mM/cm2. The observed low value of Km (0.14 mM) indicates high affinity of ChOx to cholesterol. No significant changes in current response of this microfluidics sensor are measured in the presence of different interferents.

  16. Formation of Cholesterol Bilayer Domains Precedes Formation of Cholesterol Crystals in Cholesterol/Dimyristoylphosphatidylcholine Membranes: EPR and DSC Studies

    PubMed Central

    Mainali, Laxman; Raguz, Marija; Subczynski, Witold K.

    2013-01-01

    Saturation-recovery EPR along with DSC were used to determine the cholesterol content at which pure cholesterol bilayer domains (CBDs) and cholesterol crystals begin to form in dimyristoylphosphatidylcholine (DMPC) membranes. To preserve compositional homogeneity throughout the membrane suspension, lipid multilamellar dispersions were prepared using a rapid solvent exchange method. The cholesterol content increased from 0 to 75 mol%. With spin-labeled cholesterol analogs it was shown that the CBDs begin to form at ~50 mol% cholesterol. It was confirmed by DSC that the cholesterol solubility threshold for DMPC membranes is detected at ~66 mol% cholesterol. At levels above this cholesterol content, monohydrate cholesterol crystals start to form. The major finding is that formation of CBDs precedes formation of cholesterol crystals. The region of the phase diagram for cholesterol contents between 50 and 66 mol% is described as a structured one-phase region in which CBDs have to be supported by the surrounding DMPC bilayer saturated with cholesterol. Thus, the phase boundary located at 66 mol% cholesterol separates the structured one-phase region (liquid-ordered phase of DMPC with CBDs) from the two-phase region where the structured liquid-ordered phase of DMPC coexists with cholesterol crystals. It is likely that CBDs are precursors of monohydrate cholesterol crystals. PMID:23834375

  17. Cholesterol and Benign Prostate Disease

    PubMed Central

    Freeman, Michael R.; Solomon, Keith R.

    2014-01-01

    The origins of benign prostatic diseases, such as benign prostatic hyperplasia (BPH) and chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS), are poorly understood. Patients suffering from benign prostatic symptoms report a substantially reduced quality of life, and the relationship between benign prostate conditions and prostate cancer is uncertain. Epidemiologic data for BPH and CP/CPPS are limited, however an apparent association bet ween BPH symptoms and cardiovascular disease (CVD) has been consistently reported. The prostate synthesizes and stores large amounts of cholesterol and prostate tissues may be particularly sensitive to perturbations in cholesterol metabolism. Hypercholesterolemi, a major risk factor for CVD, is also a risk factor for BPH. Animal model and clinical trial findings suggest that agents that inhibit cholesterol absorption from the intestine, such as the class of compounds known as polyene macrolides, can reduce prostate gland size and improve lower urinary tract symptoms (LUTS). Observational studies indicate that cholesterol-lowering drugs reduce the risk of aggressive prostate cancer, while prostate cancer cell growth and survival pathways depend in part on cholesterol-sensitive biochemical mechanisms. Here we review the evidence that cholesterol metabolism plays a role in the incidence of benign prostate disease and we highlight possible therapeutic approaches based on this concept. PMID:21862201

  18. Cholesterol and benign prostate disease.

    PubMed

    Freeman, Michael R; Solomon, Keith R

    2011-01-01

    The origins of benign prostatic diseases, such as benign prostatic hyperplasia (BPH) and chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS), are poorly understood. Patients suffering from benign prostatic symptoms report a substantially reduced quality of life, and the relationship between benign prostate conditions and prostate cancer is uncertain. Epidemiologic data for BPH and CP/CPPS are limited, however an apparent association between BPH symptoms and cardiovascular disease (CVD) has been consistently reported. The prostate synthesizes and stores large amounts of cholesterol and prostate tissues may be particularly sensitive to perturbations in cholesterol metabolism. Hypercholesterolemia, a major risk factor for CVD, is also a risk factor for BPH. Animal model and clinical trial findings suggest that agents that inhibit cholesterol absorption from the intestine, such as the class of compounds known as polyene macrolides, can reduce prostate gland size and improve lower urinary tract symptoms (LUTS). Observational studies indicate that cholesterol-lowering drugs reduce the risk of aggressive prostate cancer, while prostate cancer cell growth and survival pathways depend in part on cholesterol-sensitive biochemical mechanisms. Here we review the evidence that cholesterol metabolism plays a role in the incidence of benign prostate disease and we highlight possible therapeutic approaches based on this concept.

  19. Colorimetric cholesterol sensor based on peroxidase like activity of zinc oxide nanoparticles incorporated carbon nanotubes.

    PubMed

    Hayat, Akhtar; Haider, Waqar; Raza, Yousuf; Marty, Jean Louis

    2015-10-01

    A sensitive and selective colorimetric method based on the incorporation of zinc oxide nanoparticles (ZnO NPs) on the surface of carbon nanotubes (CNTs) was shown to posses synergistic peroxidase like activity for the detection of cholesterol. The proposed nanocomposite catalyzed the oxidation of 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid (ABTS) in the presence of hydrogen peroxide (H2O2) to produce a green colored product which can be monitored at 405 nm. H2O2 is the oxidative product of cholesterol in the presence of cholesterol oxidase. Therefore, the oxidation of cholesterol can be quantitatively related to the colorimetric response by combining these two reactions. Under the optimal experimental conditions, the colorimetric response was proportional to the concentration of cholesterol in the range of 0.5-500 nmol/L, with a detection limit of 0.2 nmol/L. The applicability of the proposed assays was demonstrated for the determination of cholesterol in milk powder samples with good recovery results.

  20. Al:ZnO thin film: An efficient matrix for cholesterol detection

    NASA Astrophysics Data System (ADS)

    Batra, Neha; Tomar, Monika; Gupta, Vinay

    2012-12-01

    Al doped ZnO thin film (Al:ZnO) has been realized as a potential matrix for the development of efficient cholesterol biosensor. The correlation between the structural and electrical properties of ZnO thin film with varying Al doping concentration (1% to 5%) and their cyclic voltammetric (CV) response has been studied. 2% Al doped ZnO films were found to give the best CV response and were further utilized for immobilization of cholesterol oxidase (ChOx) to detect cholesterol. Amperometric and photometric studies reveal that the prepared bioelectrode based on 2% Al doped ZnO matrix (ChOx/Al:ZnO/Pt/glass) is highly sensitive (sensitivity = 173 μAmM-1 cm-2) to the detection of cholesterol in the wide range from 0.6-12.9 mM (25-500 mg/dl). A relatively low value of enzyme's kinetic parameter (Michaelis menten constant, 2.53 mM) indicates enhanced affinity of the immobilized ChOx toward cholesterol. The prepared bioelectrode is found to be exhibiting high shelf life (10 weeks) having negligible interference with the presence of other biomolecules in human serum indicating promising application of Al doped ZnO thin films for cholesterol biosensing.

  1. Gene delivery by dendrimers operates via a cholesterol dependent pathway.

    PubMed

    Manunta, Maria; Tan, Peng Hong; Sagoo, Pervinder; Kashefi, Kirk; George, Andrew J T

    2004-01-01

    Understanding the cellular uptake and intracellular trafficking of dendrimer-DNA complexes is an important prerequisite for improving the transfection efficiency of non-viral vector-mediated gene delivery. Dendrimers are synthetic polymers used for gene transfer. Although these cationic molecules show promise as versatile DNA carriers, very little is known about the mechanism of gene delivery. This paper investigates how the uptake occurs, using an endothelial cell line as model, and evaluates whether the internalization of dendriplexes takes place randomly on the cell surface or at preferential sites such as membrane rafts. Following extraction of plasma membrane cholesterol, the transfection efficiency of the gene delivered by dendrimers was drastically decreased. Replenishment of membrane cholesterol restored the gene expression. The binding and especially internalization of dendriplexes was strongly reduced by cholesterol depletion before transfection. However, cholesterol removal after transfection did not inhibit expression of the delivered gene. Fluorescent dendriplexes co-localize with the ganglioside GM1 present into membrane rafts in both an immunoprecipitation assay and confocal microscopy studies. These data strongly suggest that membrane cholesterol and raft integrity are physiologically relevant for the cellular uptake of dendrimer-DNA complexes. Hence these findings provide evidence that membrane rafts are important for the internalization of non-viral vectors in gene therapy.

  2. Physiological Networks: towards systems physiology

    NASA Astrophysics Data System (ADS)

    Bartsch, Ronny P.; Bashan, Amir; Kantelhardt, Jan W.; Havlin, Shlomo; Ivanov, Plamen Ch.

    2012-02-01

    The human organism is an integrated network where complex physiologic systems, each with its own regulatory mechanisms, continuously interact, and where failure of one system can trigger a breakdown of the entire network. Identifying and quantifying dynamical networks of diverse systems with different types of interactions is a challenge. Here, we develop a framework to probe interactions among diverse systems, and we identify a physiologic network. We find that each physiologic state is characterized by a specific network structure, demonstrating a robust interplay between network topology and function. Across physiologic states the network undergoes topological transitions associated with fast reorganization of physiologic interactions on time scales of a few minutes, indicating high network flexibility in response to perturbations. The proposed system-wide integrative approach may facilitate new dimensions to the field of systems physiology.

  3. Rowing Physiology.

    ERIC Educational Resources Information Center

    Spinks, W. L.

    This review of the literature discusses and examines the methods used in physiological assessment of rowers, results of such assessments, and future directions emanating from research in the physiology of rowing. The first section discusses the energy demands of rowing, including the contribution of the energy system, anaerobic metabolism, and the…

  4. Cholesterol Translocation in a Phospholipid Membrane

    NASA Astrophysics Data System (ADS)

    Choubey, Amit; Kalia, Rajiv; Malmstadt, Noah; Nakano, Aiichiro; Vashistha, Priya

    2013-03-01

    Cholesterol (CHOL) molecules play a key role in modulating the rigidity of cell membranes, and controlling intracellular transport and signal transduction. Using all-atom molecular dynamics and the parallel replica approach, we study the process of CHOL interleaflet transport (flip-flop) in a dipalmitoylphosphatidycholine (DPPC)-CHOL bilayer, the effect of this process on mechanical stress across the bilayer, and the role of CHOL in inducing molecular order in the respective bilayer leaflets. The simulations are carried out at physiologically relevant CHOL concentration (30%), temperature 323 K and pressure 1 bar. CHOL flip-flop events are observed with a rate constant of 3 ×104 s-1. Once a flip-flop event is triggered, a CHOL molecule takes an average of 73 nanoseconds to migrate from one bilayer leaflet to the other.

  5. Spatiotemporal Localization of d-Amino Acid Oxidase and d-Aspartate Oxidases during Development in Caenorhabditis elegans

    PubMed Central

    Saitoh, Yasuaki; Katane, Masumi; Kawata, Tomonori; Maeda, Kazuhiro; Sekine, Masae; Furuchi, Takemitsu; Kobuna, Hiroyuki; Sakamoto, Taro; Inoue, Takao; Arai, Hiroyuki; Nakagawa, Yasuhito

    2012-01-01

    Recent investigations have shown that a variety of d-amino acids are present in living organisms and that they possibly play important roles in physiological functions in the body. d-Amino acid oxidase (DAO) and d-aspartate oxidase (DDO) are degradative enzymes stereospecific for d-amino acids. They have been identified in various organisms, including mammals and the nematode Caenorhabditis elegans, although the significance of these enzymes and the relevant functions of d-amino acids remain to be elucidated. In this study, we investigated the spatiotemporal localization of C. elegans DAO and DDOs (DDO-1, DDO-2, and DDO-3) and measured the levels of several d- and l-amino acids in wild-type C. elegans and four mutants in which each gene for DAO and the DDOs was partially deleted and thereby inactivated. Furthermore, several phenotypes of these mutant strains were characterized. The results reported in this study indicate that C. elegans DAO and DDOs are involved in egg-laying events and the early development of C. elegans. In particular, DDOs appear to play important roles in the development and maturation of germ cells. This work provides novel and useful insights into the physiological functions of these enzymes and d-amino acids in multicellular organisms. PMID:22393259

  6. Spatiotemporal localization of D-amino acid oxidase and D-aspartate oxidases during development in Caenorhabditis elegans.

    PubMed

    Saitoh, Yasuaki; Katane, Masumi; Kawata, Tomonori; Maeda, Kazuhiro; Sekine, Masae; Furuchi, Takemitsu; Kobuna, Hiroyuki; Sakamoto, Taro; Inoue, Takao; Arai, Hiroyuki; Nakagawa, Yasuhito; Homma, Hiroshi

    2012-05-01

    Recent investigations have shown that a variety of D-amino acids are present in living organisms and that they possibly play important roles in physiological functions in the body. D-Amino acid oxidase (DAO) and D-aspartate oxidase (DDO) are degradative enzymes stereospecific for D-amino acids. They have been identified in various organisms, including mammals and the nematode Caenorhabditis elegans, although the significance of these enzymes and the relevant functions of D-amino acids remain to be elucidated. In this study, we investigated the spatiotemporal localization of C. elegans DAO and DDOs (DDO-1, DDO-2, and DDO-3) and measured the levels of several D- and L-amino acids in wild-type C. elegans and four mutants in which each gene for DAO and the DDOs was partially deleted and thereby inactivated. Furthermore, several phenotypes of these mutant strains were characterized. The results reported in this study indicate that C. elegans DAO and DDOs are involved in egg-laying events and the early development of C. elegans. In particular, DDOs appear to play important roles in the development and maturation of germ cells. This work provides novel and useful insights into the physiological functions of these enzymes and D-amino acids in multicellular organisms.

  7. Facts about...Blood Cholesterol. Revised.

    ERIC Educational Resources Information Center

    National Heart, Lung, and Blood Inst. (DHHS/NIH), Bethesda, MD.

    This fact sheet on blood cholesterol examines the connection between cholesterol and heart disease, lists risk factors for heart disease that can and cannot be controlled, points out who can benefit from lowering blood cholesterol, distinguishes between blood and dietary cholesterol, describes low density lipoprotein and high density lipoprotein…

  8. Niacin to Boost Your HDL "Good" Cholesterol

    MedlinePlus

    Niacin can boost 'good' cholesterol Niacin is a B vitamin that may raise your HDL ("good") cholesterol. But side effects might outweigh benefits for most ... been used to increase high-density lipoprotein (HDL) cholesterol — the "good" cholesterol that helps remove low-density ...

  9. Membrane cholesterol selectively modulates the activity of the human ABCG2 multidrug transporter.

    PubMed

    Telbisz, Agnes; Müller, Marianna; Ozvegy-Laczka, Csilla; Homolya, László; Szente, Lajos; Váradi, András; Sarkadi, Balázs

    2007-11-01

    The human ABCG2 multidrug transporter provides protection against numerous toxic compounds and causes multidrug resistance in cancer. Here we examined the effects of changes in membrane cholesterol on the function of this protein. Human ABCG2 was expressed in mammalian and in Sf9 insect cells, and membrane cholesterol depletion or enrichment was achieved by preincubation with beta cyclodextrin or its cholesterol-loaded form. We found that mild cholesterol depletion of intact mammalian cells inhibited ABCG2-dependent dye and drug extrusion in a reversible fashion, while the membrane localization of the transporter protein was unchanged. Cholesterol enrichment of cholesterol-poor Sf9 cell membrane vesicles greatly increased ABCG2-driven substrate uptake, substrate-stimulated ATPase activity, as well as the formation of a catalytic cycle intermediate (nucleotide trapping). Interestingly, modulation of membrane cholesterol did not significantly affect the function of the R482G or R482T substrate mutant ABCG2 variants, or that of the MDR1 transporter. The selective, major effect of membrane cholesterol on the wild-type ABCG2 suggests a regulation of the activity of this multidrug transporter during processing or in membrane micro-domain interactions. The experimental recognition of physiological and pharmacological substrates of ABCG2, as well as the fight against cancer multidrug resistance may be facilitated by demonstrating the key role of membrane cholesterol in this transport activity.

  10. Metabolism, Energetics, and Lipid Biology in the Podocyte – Cellular Cholesterol-Mediated Glomerular Injury

    PubMed Central

    Merscher, Sandra; Pedigo, Christopher E.; Mendez, Armando J.

    2014-01-01

    Chronic kidney disease (CKD) is associated with a high risk of death. Dyslipidemia is commonly observed in patients with CKD and is accompanied by a decrease in plasma high-density lipoprotein, and an increase in plasma triglyceride-rich lipoproteins and oxidized lipids. The observation that statins may decrease albuminuria but do not stop the progression of CKD indicates that pathways other than the cholesterol synthesis contribute to cholesterol accumulation in the kidneys of patients with CKD. Recently, it has become clear that increased lipid influx and impaired reverse cholesterol transport can promote glomerulosclerosis, and tubulointerstitial damage. Lipid-rafts are cholesterol-rich membrane domains with important functions in regulating membrane fluidity, membrane protein trafficking, and in the assembly of signaling molecules. In podocytes, which are specialized cells of the glomerulus, they contribute to the spatial organization of the slit diaphragm (SD) under physiological and pathological conditions. The discovery that podocyte-specific proteins such as podocin can bind and recruit cholesterol contributing to the formation of the SD underlines the importance of cholesterol homeostasis in podocytes and suggests cholesterol as an important regulator in the development of proteinuric kidney disease. Cellular cholesterol accumulation due to increased synthesis, influx, or decreased efflux is an emerging concept in podocyte biology. This review will focus on the role of cellular cholesterol accumulation in the pathogenesis of kidney diseases with a focus on glomerular diseases. PMID:25352833

  11. An Isocratic High-Performance Liquid Chromatography Assay for CYP7A1-Catalyzed Cholesterol 7α-Hydroxylation.

    PubMed

    Waxman, David J; Chang, Thomas K H

    2006-01-01

    A normal-phase, isocratic high-performance liquid chromatography assay is described for cholesterol 7α-hydroxylation catalyzed by CYP7A1, which corresponds to the first and rate-limiting step in the conversion of cholesterol into bile acids. This method is based on the conversion of the primary cytochrome P450 metabolite, 7α-hydroxycholesterol, into 7α-hydroxy-4-cholesten-3-one in a reaction catalyzed by exogenous cholesterol oxidase, followed by chromatographic separation with monitoring at 254 nm. This technique is applicable to enzymatic studies for determination of cholesterol 7α- hydroxylation activity catalyzed by cDNA-expressed CYP7A1 and animal or human liver microsomes.

  12. Phosphatidylcholine: Greasing the Cholesterol Transport Machinery

    PubMed Central

    Lagace, Thomas A.

    2015-01-01

    Negative feedback regulation of cholesterol metabolism in mammalian cells ensures a proper balance of cholesterol with other membrane lipids, principal among these being the major phospholipid phosphatidylcholine (PC). Processes such as cholesterol biosynthesis and efflux, cholesteryl ester storage in lipid droplets, and uptake of plasma lipoproteins are tuned to the cholesterol/PC ratio. Cholesterol-loaded macrophages in atherosclerotic lesions display increased PC biosynthesis that buffers against elevated cholesterol levels and may also facilitate cholesterol trafficking to enhance cholesterol sensing and efflux. These same mechanisms could play a generic role in homeostatic responses to acute changes in membrane free cholesterol levels. Here, I discuss the established and emerging roles of PC metabolism in promoting intracellular cholesterol trafficking and membrane lipid homeostasis. PMID:27081313

  13. Contribution of aldehyde oxidase, xanthine oxidase, and aldehyde dehydrogenase on the oxidation of aromatic aldehydes.

    PubMed

    Panoutsopoulos, Georgios I; Kouretas, Demetrios; Beedham, Christine

    2004-10-01

    Aliphatic aldehydes have a high affinity toward aldehyde dehydrogenase activity but are relatively poor substrates of aldehyde oxidase and xanthine oxidase. In addition, the oxidation of xenobiotic-derived aromatic aldehydes by the latter enzymes has not been studied to any great extent. The present investigation compares the relative contribution of aldehyde dehydrogenase, aldehyde oxidase, and xanthine oxidase activities in the oxidation of substituted benzaldehydes in separate preparations. The incubation of vanillin, isovanillin, and protocatechuic aldehyde with either guinea pig liver aldehyde oxidase, bovine milk xanthine oxidase, or guinea pig liver aldehyde dehydrogenase demonstrated that the three aldehyde oxidizing enzymes had a complementary substrate specificity. Incubations were also performed with specific inhibitors of each enzyme (isovanillin for aldehyde oxidase, allopurinol for xanthine oxidase, and disulfiram for aldehyde dehydrogenase) to determine the relative contribution of each enzyme in the oxidation of these aldehydes. Under these conditions, vanillin was rapidly oxidized by aldehyde oxidase, isovanillin was predominantly metabolized by aldehyde dehydrogenase activity, and protocatechuic aldehyde was slowly oxidized, possibly by all three enzymes. Thus, aldehyde oxidase activity may be a significant factor in the oxidation of aromatic aldehydes generated from amines and alkyl benzenes during drug metabolism. In addition, this enzyme may also have a role in the catabolism of biogenic amines such as dopamine and noradrenaline where 3-methoxyphenylacetic acids are major metabolites.

  14. Statins increase hepatic cholesterol synthesis and stimulate fecal cholesterol elimination in mice.

    PubMed

    Schonewille, Marleen; de Boer, Jan Freark; Mele, Laura; Wolters, Henk; Bloks, Vincent W; Wolters, Justina C; Kuivenhoven, Jan A; Tietge, Uwe J F; Brufau, Gemma; Groen, Albert K

    2016-08-01

    Statins are competitive inhibitors of HMG-CoA reductase, the rate-limiting enzyme of cholesterol synthesis. Statins reduce plasma cholesterol levels, but whether this is actually caused by inhibition of de novo cholesterol synthesis has not been clearly established. Using three different statins, we investigated the effects on cholesterol metabolism in mice in detail. Surprisingly, direct measurement of whole body cholesterol synthesis revealed that cholesterol synthesis was robustly increased in statin-treated mice. Measurement of organ-specific cholesterol synthesis demonstrated that the liver is predominantly responsible for the increase in cholesterol synthesis. Excess synthesized cholesterol did not accumulate in the plasma, as plasma cholesterol decreased. However, statin treatment led to an increase in cholesterol removal via the feces. Interestingly, enhanced cholesterol excretion in response to rosuvastatin and lovastatin treatment was mainly mediated via biliary cholesterol secretion, whereas atorvastatin mainly stimulated cholesterol removal via the transintestinal cholesterol excretion pathway. Moreover, we show that plasma cholesterol precursor levels do not reflect cholesterol synthesis rates during statin treatment in mice. In conclusion, cholesterol synthesis is paradoxically increased upon statin treatment in mice. However, statins potently stimulate the excretion of cholesterol from the body, which sheds new light on possible mechanisms underlying the cholesterol-lowering effects of statins. Copyright © 2016 by the American Society for Biochemistry and Molecular Biology, Inc.

  15. Dietary inhibitors of monoamine oxidase A.

    PubMed

    Dixon Clarke, Sarah E; Ramsay, Rona R

    2011-07-01

    Inhibition of monoamine oxidase is one way to treat depression and anxiety. The information now available on the pharmacokinetics of flavonoids and of the components of tobacco prompted an exploration of whether a healthy diet (with or without smoking) provides active compounds in amounts sufficient to partially inhibit monoamine oxidase. A literature search was used to identify dietary monoamine oxidase inhibitors, the levels of these compounds in foods, the pharmacokinetics of the absorption and distribution, and tissue levels observed. An estimated daily intake and the expected tissue concentrations were compared with the measured efficacies of the compounds as inhibitors of monoamine oxidases. Norharman, harman and quercetin dietary presence, pharmacokinetics, and tissue levels were consistent with significant levels reaching neuronal monoamine oxidase from the diet or smoking; 1,2,3,4-tetrahydroisoquinoline, eugenol, 1-piperoylpiperidine, and coumarin were not. Quercetin was equipotent with norharman as a monoamine oxidase A inhibitor and its metabolite, isorhamnetin, also inhibits. Total quercetin was the highest of the compounds in the sample diet. Although bioavailability was variable depending on the source, a healthy diet contains amounts of quercetin that might give sufficient amounts in brain to induce, by monoamine oxidase A inhibition, a small decrease in neurotransmitter breakdown.

  16. Pentamines as substrate for human spermine oxidase

    PubMed Central

    Takao, Koichi; Shirahata, Akira; Samejima, Keijiro; Casero, Robert A.; Igarashi, Kazuei; Sugita, Yoshiaki

    2013-01-01

    Substrate activities of various linear polyamines to human spermine oxidase (hSMO) were investigated. The activities were evaluated by monitoring the amount of H2O2 released from sample polyamines by hSMO. H2O2 was measured by a HPLC method that analyzed fluorescent dimers derived from the oxidation of homovanillic acid in the presence of horseradish peroxidase. Six triamines were tested and were found not to be hSMO substrates. Of sixteen tetramines tested, spermine (Spm) was the most active substrate, followed by homospermine and N-butylated Spm. Pentamines showed a characteristic pattern of substrate activity. Of thirteen pentamines tested, 3343 showed higher substrate activity than Spm, and 4343 showed similar activity to Spm. The activities of the other pentamines were as follows: 3443, 4443, 4344, 3344, 4334, 4444, and 3334 (in decreasing order). Product amines released from these pentamines by hSMO were then analyzed by HPLC. Triamine was the only observed product, and the amount of triamine was nearly equivalent to that of released H2O2. A marked difference in the pH dependency curves between tetramines and pentamines suggested that hSMO favored reactions with a non-protonated secondary nitrogen at the cleavage site. The Km and Vmax values for Spm and 3343 at pH 7.0 and 9.0 were consistent with the higher substrate activity of 3343 compared to Spm, as well as with the concept of a non-protonated secondary nitrogen at the cleavage site being preferred, and 3343 was well degraded at a physiological pH by hSMO. PMID:23449327

  17. Cellular cholesterol delivery, intracellular processing and utilization for biosynthesis of steroid hormones

    PubMed Central

    2010-01-01

    Steroid hormones regulate diverse physiological functions such as reproduction, blood salt balance, maintenance of secondary sexual characteristics, response to stress, neuronal function and various metabolic processes. They are synthesized from cholesterol mainly in the adrenal gland and gonads in response to tissue-specific tropic hormones. These steroidogenic tissues are unique in that they require cholesterol not only for membrane biogenesis, maintenance of membrane fluidity and cell signaling, but also as the starting material for the biosynthesis of steroid hormones. It is not surprising, then, that cells of steroidogenic tissues have evolved with multiple pathways to assure the constant supply of cholesterol needed to maintain optimum steroid synthesis. The cholesterol utilized for steroidogenesis is derived from a combination of sources: 1) de novo synthesis in the endoplasmic reticulum (ER); 2) the mobilization of cholesteryl esters (CEs) stored in lipid droplets through cholesteryl ester hydrolase; 3) plasma lipoprotein-derived CEs obtained by either LDL receptor-mediated endocytic and/or SR-BI-mediated selective uptake; and 4) in some cultured cell systems from plasma membrane-associated free cholesterol. Here, we focus on recent insights into the molecules and cellular processes that mediate the uptake of plasma lipoprotein-derived cholesterol, events connected with the intracellular cholesterol processing and the role of crucial proteins that mediate cholesterol transport to mitochondria for its utilization for steroid hormone production. In particular, we discuss the structure and function of SR-BI, the importance of the selective cholesterol transport pathway in providing cholesterol substrate for steroid biosynthesis and the role of two key proteins, StAR and PBR/TSO in facilitating cholesterol delivery to inner mitochondrial membrane sites, where P450scc (CYP11A) is localized and where the conversion of cholesterol to pregnenolone (the common

  18. Structural Insights into Sulfite Oxidase Deficiency

    SciTech Connect

    Karakas,E.; Wilson, H.; Graf, T.; Xiang, S.; Jaramillo-Busquets, S.; Rajagopalan, K.; Kisker, C.

    2005-01-01

    Sulfite oxidase deficiency is a lethal genetic disease that results from defects either in the genes encoding proteins involved in molybdenum cofactor biosynthesis or in the sulfite oxidase gene itself. Several point mutations in the sulfite oxidase gene have been identified from patients suffering from this disease worldwide. Although detailed biochemical analyses have been carried out on these mutations, no structural data could be obtained because of problems in crystallizing recombinant human and rat sulfite oxidases and the failure to clone the chicken sulfite oxidase gene. We synthesized the gene for chicken sulfite oxidase de novo, working backward from the amino acid sequence of the native chicken liver enzyme by PCR amplification of a series of 72 overlapping primers. The recombinant protein displayed the characteristic absorption spectrum of sulfite oxidase and exhibited steady state and rapid kinetic parameters comparable with those of the tissue-derived enzyme. We solved the crystal structures of the wild type and the sulfite oxidase deficiency-causing R138Q (R160Q in humans) variant of recombinant chicken sulfite oxidase in the resting and sulfate-bound forms. Significant alterations in the substrate-binding pocket were detected in the structure of the mutant, and a comparison between the wild type and mutant protein revealed that the active site residue Arg-450 adopts different conformations in the presence and absence of bound sulfate. The size of the binding pocket is thereby considerably reduced, and its position relative to the cofactor is shifted, causing an increase in the distance of the sulfur atom of the bound sulfate to the molybdenum.

  19. Structural insights into sulfite oxidase deficiency.

    PubMed

    Karakas, Erkan; Wilson, Heather L; Graf, Tyler N; Xiang, Song; Jaramillo-Busquets, Sandra; Rajagopalan, K V; Kisker, Caroline

    2005-09-30

    Sulfite oxidase deficiency is a lethal genetic disease that results from defects either in the genes encoding proteins involved in molybdenum cofactor biosynthesis or in the sulfite oxidase gene itself. Several point mutations in the sulfite oxidase gene have been identified from patients suffering from this disease worldwide. Although detailed biochemical analyses have been carried out on these mutations, no structural data could be obtained because of problems in crystallizing recombinant human and rat sulfite oxidases and the failure to clone the chicken sulfite oxidase gene. We synthesized the gene for chicken sulfite oxidase de novo, working backward from the amino acid sequence of the native chicken liver enzyme by PCR amplification of a series of 72 overlapping primers. The recombinant protein displayed the characteristic absorption spectrum of sulfite oxidase and exhibited steady state and rapid kinetic parameters comparable with those of the tissue-derived enzyme. We solved the crystal structures of the wild type and the sulfite oxidase deficiency-causing R138Q (R160Q in humans) variant of recombinant chicken sulfite oxidase in the resting and sulfate-bound forms. Significant alterations in the substrate-binding pocket were detected in the structure of the mutant, and a comparison between the wild type and mutant protein revealed that the active site residue Arg-450 adopts different conformations in the presence and absence of bound sulfate. The size of the binding pocket is thereby considerably reduced, and its position relative to the cofactor is shifted, causing an increase in the distance of the sulfur atom of the bound sulfate to the molybdenum.

  20. Cholesterol as a co-solvent and a ligand for membrane proteins

    PubMed Central

    Song, Yuanli; Kenworthy, Anne K; Sanders, Charles R

    2014-01-01

    As of mid 2013 a Medline search on “cholesterol” yielded over 200,000 hits, reflecting the prominence of this lipid in numerous aspects of animal cell biology and physiology under conditions of health and disease. Aberrations in cholesterol homeostasis underlie both a number of rare genetic disorders and contribute to common sporadic and complex disorders including heart disease, stroke, type II diabetes, and Alzheimer's disease. The corresponding author of this review and his lab stumbled only recently into the sprawling area of cholesterol research when they discovered that the amyloid precursor protein (APP) binds cholesterol, a topic covered by the Hans Neurath Award lecture at the 2013 Protein Society Meeting. Here, we first provide a brief overview of cholesterol-protein interactions and then offer our perspective on how and why binding of cholesterol to APP and its C99 domain (β-CTF) promotes the amyloidogenic pathway, which is closely related to the etiology of Alzheimer's disease. PMID:24155031

  1. [Determination of HDL-cholesterol].

    PubMed

    Herrmann, W; Schütz, C; Reuter, W

    1983-01-01

    For the clinical practice methods of the determination of HDL-cholesterol made their way which are based on the precipitation of apolipoprotein-B-containing lipoproteins and a determination of cholesterol following. The expensive methods of the ultracentrifugation serve as reference methods. The most-spread precipitation techniques (heparin/MCl2, dextran sulphate/CaCl2 or MgCl2 photungstic acid/MgCl2) are comparatively observed with regard to their effectiveness, practicability and methodical and technical conditions (influence of the concentration of the precipitation reagents, pH-value, temperature, incubation and centrifugation conditions). Results of own investigations as well as data from literature are presented to the problem of the harmonization of the cholesterol determination with the precipitation technique. According to the opinion of the authors for the enzymatic determination of cholesterol by means of the CHOD-PAP-method the phosphotungstic acid precipitation well stood the test, whereas for the chemical determination of cholesterol after Liebermann-Burchard in manual or automatized works the precipitation by means of dextran sulphate/CaCl2 (40 g/l, 2.0 mol/l) is to be recommended. The superabundant precipitations with phosphotungstic acid and dextran sulphate/MgCl2 (20 g/l, 2.0 mol/l) achieve higher results in Liebermann-Burchard's reaction likely on account of interferences.

  2. RADIOAUTOGRAPHY OF CHOLESTEROL IN LUNG

    PubMed Central

    Darrah, Hilary K.; Hedley-Whyte, John; Hedley-Whyte, E. Tessa

    1971-01-01

    30 Swiss albino mice aged 8 days were injected intraperitoneally with 0.2 ml of a solution of 4% N,N-dimethyl-formamide in 5% dextrose in water containing cholesterol-1,2-3H (∼1 mCi/ml). Lung tissue was embedded in an Epon mixture after either acetone and propylene oxide dehydration, partial ethanol and Epon 812 dehydration, or the precipitation of cholesterol by digitonin succeeded by partial dehydration. The distribution of cholesterol-1,2-3H in lung parenchyma in 1µ Epon section radioautograms was compared with that in frozen section radioautograms and was found to be independent of the manner of tissue processing. Grain distribution in the tissue was essentially the same whether 16, 63, 93, or 100% radioactivity was retained in the lung. However, grain distribution in the alveolar spaces differed, presumably due to displacement of pulmonary surfactant, which contains cholesterol. Intracellular distribution of cholesterol, in electron microscope radioautograms, was the same with either 51% or 93% retention of radioactivity in the lung. Loss of radioactivity into the various processing solutions was monitored. The various processing techniques have different drawbacks. PMID:19866763

  3. Genistein effect on xanthine oxidase activity.

    PubMed

    Sumbayev, V V

    2001-01-01

    Genistein was defined to be an allosteric xanthine oxidase inhibitor in the concentrations 0.1-4.0 microM and xanthine oxidase activator with superoxide scavenging activity in the concentrations 5.0 microM and higher. But the most effective allosteric binding with the highest affinity was observed in the genistein concentrations 0.1-1.0 microM. Intraperitoneum injections of genistein (500 micrograms/kg) during three days with the interval 24 hours decrease xanthine oxidase activity in the liver, lung and brain of the Vistar rats.

  4. Turnover of xanthoma cholesterol in hyperlipoproteinemia patients.

    PubMed

    Bhattacharyya, A K; Connor, W E; Mausolf, F A; Flatt, A D

    1976-03-01

    The turnover of xanthoma cholesterol was measured in 9 hyperlipidemic and one normocholesterolemic patients. Sequential biopsies of the xanthomas were obtained 13 to 364 days after the administration of isotopic cholesterol and were then analyzed for cholesterol specific activity. A total of 34 xanthomas of 3 different types - 10 tendon xanthomas, 3 tuberous xanthomas, and 21 xanthelasmas - comprised the material for analysis. The cholesterol specific activity ratio of tendron xanthomas to that of the plasma varied from 11 per cent at 21 days to a maximum of 543 per cent at 122 days after the intravenous administration of isotopic cholesterol. This ratio declined to 426 per cent at 182 days and was still 131 per cent at 364 days. Similarly, the cholesterol specific activity of xanthelasmas increased gradually. In most instances, the xanthelasma cholesterol attained isotopic equilibration with plasma cholesterol by about 50 days but varied from patient to patient (minimum time, 46 days and maximum time, 91 days). The cholesterol content of xanthomas ranged from 10.7 to 197.0 mg per gram of dry weight of the tissue. Sixty-one to 87 per cent of the total xanthoma cholesterol was esterified. No other sterols were identified in these xanthomas. Thus, the cholesterol of 3 types of xanthoma readily attained isotopic equilibration with the plasma cholesterol which suggested total exchangeability of cholesterol between plasma and xanthomas. The uptake of cholesterol by the xanthomas from plasma was rapid considering the large mass of cholesterol in the lesions. The turnover of xanthoma cholesterol was intermediate between that of the rapidly exchangeable pool and of the slowly exchangeable pool of body cholesterol. Comparison of these results with those obtained in human advanced atheroma suggest that the turnover of xanthoma cholesterol and atheroma cholesterol are quite different.

  5. Nanomaterial-based Electrochemical Sensors for the Detection of Glucose and Cholesterol

    NASA Astrophysics Data System (ADS)

    Ahmadalinezhad, Asieh

    properties, we fabricated a highly sensitive and mediator-free electrochemical biosensor for the determination of total cholesterol. The developed biosensor possessed high selectivity and sensitivity (29.33 microA mM--1cm --2). The apparent Michaelis--Menten constant, KappM of this biosensor was very low (0.64 mM), which originated from both the effective immobilization process and the nanoporous structure of the substrate. The biosensor exhibited a wide linear range, up to 300 mg dL--1 , in a physiological environment (pH 7.4); making it a promising candidate for the clinical determination of cholesterol. The fabricated biosensor was tested further by utilizing actual food samples (e.g., margarine, butter and fish oil). The results indicated that it has the potential capacity to be employed as a facile cholesterol detection tool in the food industry and for supplement quality control. To enhance the stability of the biosensors in the continuous monitoring of glucose, we designed a novel platform that was based on buckypaper. The fabricated biosensor responded to glucose with a considerable functional lifetime of over 80 days and detected glucose with a dynamic linear range of over 9 mM with a detection limit of 0.01 mM. To investigate the effects of the physical dimensions of nanomaterials on electrochemical biosensing, we synthesized TiO2 nanowires with controllable dimensions via a facile thermal oxidation treatment of a Ti substrate. To improve the conductivity of the TiO2 nanowires and to facilitate the immobilization of enzymes, a thin layer of carbon was deposited onto the TiO2 nanowires via a chemical vapour deposition method. Upon the immobilization of glucose oxidase as a model protein, direct electron transfer was observed in a mediator-free biosensing environment. Our electrochemical studies have revealed that the electron transfer rate of the immobilized glucose oxidase is strongly dependent on the dimensions of the carbonized TiO 2 nanowires, and that the

  6. Assessing Gibberellins Oxidase Activity by Anion Exchange/Hydrophobic Polymer Monolithic Capillary Liquid Chromatography-Mass Spectrometry

    PubMed Central

    Liu, Jiu-Feng; Wu, Yan; Feng, Yu-Qi; Yuan, Bi-Feng

    2013-01-01

    Bioactive gibberellins (GAs) play a key regulatory role in plant growth and development. In the biosynthesis of GAs, GA3-oxidase catalyzes the final step to produce bioactive GAs. Thus, the evaluation of GA3-oxidase activity is critical for elucidating the regulation mechanism of plant growth controlled by GAs. However, assessing catalytic activity of endogenous GA3-oxidase remains challenging. In the current study, we developed a capillary liquid chromatography – mass spectrometry (cLC-MS) method for the sensitive assay of in-vitro recombinant or endogenous GA3-oxidase by analyzing the catalytic substrates and products of GA3-oxidase (GA1, GA4, GA9, GA20). An anion exchange/hydrophobic poly([2-(methacryloyloxy)ethyl]trimethylammonium-co-divinylbenzene-co-ethylene glycol dimethacrylate)(META-co-DVB-co-EDMA) monolithic column was successfully prepared for the separation of all target GAs. The limits of detection (LODs, Signal/Noise = 3) of GAs were in the range of 0.62–0.90 fmol. We determined the kinetic parameters (Km) of recombinant GA3-oxidase in Escherichia coli (E. coli) cell lysates, which is consistent with previous reports. Furthermore, by using isotope labeled substrates, we successfully evaluated the activity of endogenous GA3-oxidase that converts GA9 to GA4 in four types of plant samples, which is, to the best of our knowledge, the first report for the quantification of the activity of endogenous GA3-oxidase in plant. Taken together, the method developed here provides a good solution for the evaluation of endogenous GA3-oxidase activity in plant, which may promote the in-depth study of the growth regulation mechanism governed by GAs in plant physiology. PMID:23922762

  7. Assessing gibberellins oxidase activity by anion exchange/hydrophobic polymer monolithic capillary liquid chromatography-mass spectrometry.

    PubMed

    Chen, Ming-Luan; Su, Xin; Xiong, Wei; Liu, Jiu-Feng; Wu, Yan; Feng, Yu-Qi; Yuan, Bi-Feng

    2013-01-01

    Bioactive gibberellins (GAs) play a key regulatory role in plant growth and development. In the biosynthesis of GAs, GA3-oxidase catalyzes the final step to produce bioactive GAs. Thus, the evaluation of GA3-oxidase activity is critical for elucidating the regulation mechanism of plant growth controlled by GAs. However, assessing catalytic activity of endogenous GA3-oxidase remains challenging. In the current study, we developed a capillary liquid chromatography--mass spectrometry (cLC-MS) method for the sensitive assay of in-vitro recombinant or endogenous GA3-oxidase by analyzing the catalytic substrates and products of GA3-oxidase (GA1, GA4, GA9, GA20). An anion exchange/hydrophobic poly([2-(methacryloyloxy)ethyl]trimethylammonium-co-divinylbenzene-co-ethylene glycol dimethacrylate)(META-co-DVB-co-EDMA) monolithic column was successfully prepared for the separation of all target GAs. The limits of detection (LODs, Signal/Noise = 3) of GAs were in the range of 0.62-0.90 fmol. We determined the kinetic parameters (K m) of recombinant GA3-oxidase in Escherichia coli (E. coli) cell lysates, which is consistent with previous reports. Furthermore, by using isotope labeled substrates, we successfully evaluated the activity of endogenous GA3-oxidase that converts GA9 to GA4 in four types of plant samples, which is, to the best of our knowledge, the first report for the quantification of the activity of endogenous GA3-oxidase in plant. Taken together, the method developed here provides a good solution for the evaluation of endogenous GA3-oxidase activity in plant, which may promote the in-depth study of the growth regulation mechanism governed by GAs in plant physiology.

  8. Polarizable multipolar electrostatics for cholesterol

    NASA Astrophysics Data System (ADS)

    Fletcher, Timothy L.; Popelier, Paul L. A.

    2016-08-01

    FFLUX is a novel force field under development for biomolecular modelling, and is based on topological atoms and the machine learning method kriging. Successful kriging models have been obtained for realistic electrostatics of amino acids, small peptides, and some carbohydrates but here, for the first time, we construct kriging models for a sizeable ligand of great importance, which is cholesterol. Cholesterol's mean total (internal) electrostatic energy prediction error amounts to 3.9 kJ mol-1, which pleasingly falls below the threshold of 1 kcal mol-1 often cited for accurate biomolecular modelling. We present a detailed analysis of the error distributions.

  9. Prokaryotic origins for the mitochondrial alternative oxidase and plastid terminal oxidase nuclear genes.

    PubMed

    Finnegan, Patrick M; Umbach, Ann L; Wilce, Jackie A

    2003-12-18

    The mitochondrial alternative oxidase is a diiron carboxylate quinol oxidase (Dox) found in plants and some fungi and protists, but not animals. The plastid terminal oxidase is distantly related to alternative oxidase and is most likely also a Dox protein. Database searches revealed that the alpha-proteobacterium Novosphingobium aromaticivorans and the cyanobacteria Nostoc sp. PCC7120, Synechococcus sp. WH8102 and Prochlorococcus marinus subsp. pastoris CCMP1378 each possess a Dox homolog. Each prokaryotic protein conforms to the current structural models of the Dox active site and phylogenetic analyses suggest that the eukaryotic Dox genes arose from an ancestral prokaryotic gene.

  10. Disruption of Cholesterol 7α-Hydroxylase Gene in Mice

    PubMed Central

    Schwarz, Margrit; Lund, Erik G.; Setchell, Kenneth D. R.; Kayden, Herbert J.; Zerwekh, Joseph E.; Björkhem, Ingemar; Herz, Joachim; Russell, David W.

    2015-01-01

    Past experiments and current paradigms of cholesterol homeostasis suggest that cholesterol 7α-hydroxylase plays a crucial role in sterol metabolism by controlling the conversion of cholesterol into bile acids. Consistent with this conclusion, we show in the accompanying paper that mice deficient in cholesterol 7α-hydroxylase (Cyp7−/− mice) exhibit a complex phenotype consisting of abnormal lipid excretion, skin pathologies, and behavioral irregularities (Ishibashi, S., Schwarz, M., Frykman, P. K., Herz, J., and Russell, D. W. (1996) J. Biol. Chem. 261, 18017–18023). Aspects of lipid metabolism in the Cyp7−/− mice are characterized here to deduce the physiological basis of this phenotype. Serum lipid, cholesterol, and lipoprotein contents are indistinguishable between wild-type and Cyp7−/− mice. Vitamin D3 and E levels are low to undetectable in knockout animals. Stool fat content is significantly elevated in newborn Cyp7−/− mice and gradually declines to wild-type levels at 28 days of age. Several species of 7α-hydroxylated bile acids are detected in the bile and stool of adult Cyp7−/− animals. A hepatic oxysterol 7α-hydroxylase enzyme activity that may account for the 7α-hydroxylated bile acids is induced between days 21 and 30 in both wild-type and deficient mice. An anomalous oily coat in the Cyp7−/− animals is due to the presence of excess monoglyceride esters in the fur. These data show that 7α-hydroxylase and the pathway of bile acid synthesis initiated by this enzyme are essential for proper absorption of dietary lipids and fat-soluble vitamins in newborn mice, but not for the maintenance of serum cholesterol and lipid levels. In older animals, an alternate pathway of bile acid synthesis involving an inducible oxysterol 7α-hydroxylase plays a crucial role in lipid and bile acid metabolism. PMID:8663430

  11. REGULATION OF NADPH OXIDASES IN SKELETAL MUSCLE

    PubMed Central

    Ferreira, Leonardo F.; Laitano, Orlando

    2016-01-01

    The only known function of NAD(P)H oxidases is to produce reactive oxygen species (ROS). Skeletal muscles express three isoforms of NAD(P)H oxidases (Nox1, Nox2, and Nox4) that have been identified as critical modulators of redox homeostasis. Nox2 acts as the main source of skeletal muscle ROS during contractions, participates insulin signaling and glucose transport, and mediates the myocyte response to osmotic stress. Nox2 and Nox4 contribute to skeletal muscle abnormalities elicited by angiotensin II, muscular dystrophy, heart failure, and high fat diet. Our review addresses the expression and regulation of NAD(P)H oxidases with emphasis on aspects that are relevant to skeletal muscle. We also summarize: i) the most widely used NAD(P)H oxidases activity assays and inhibitors, and ii) studies that have defined Nox enzymes as protagonists of skeletal muscle redox homeostasis in a variety of health and disease conditions. PMID:27184955

  12. Activation of polyphenol oxidase of chloroplasts.

    PubMed

    Tolbert, N E

    1973-02-01

    Polyphenol oxidase of leaves is located mainly in chloroplasts isolated by differential or sucrose density gradient centrifugation. This activity is part of the lamellar structure that is not lost on repeated washing of the plastids. The oxidase activity was stable during prolonged storage of the particles at 4 C or -18 C. The Km (dihydroxyphenylalanine) for spinach leaf polyphenol oxidase was 7 mm by a spectrophotometric assay and 2 mm by the manometric assay. Polyphenol oxidase activity in the leaf peroxisomal fraction, after isopycnic centrifugation on a linear sucrose gradient, did not coincide with the peroxisomal enzymes but was attributed to proplastids at nearly the same specific density.Plants were grouped by the latency properties for polyphenol oxidase in their isolated chloroplasts. In a group including spinach, Swiss chard, and beet leaves the plastids immediately after preparation from fresh leaves required a small amount of light for maximal rates of oxidation of dihydroxyphenylalanine. Polyphenol oxidase activity in the dark or light increased many fold during aging of these chloroplasts for 1 to 5 days. Soluble polyphenol oxidase of the cytoplasm was not so stimulated. Chloroplasts prepared from stored leaves were also much more active than from fresh leaves. Maximum rates of dihydroxyphenylalanine oxidation were 2 to 6 mmoles x mg(-1) chlorophyll x hr(-1). Equal stimulation of latent polyphenol oxidase in fresh or aged chloroplasts in this group was obtained by either light, an aged trypsin digest, 3-(4-chlorophenyl)-1, 1-dimethylurea, or antimycin A. A variety of other treatments did not activate or had little effect on the oxidase, including various peptides, salts, detergents, and other proteolytic enzymes.Activation of latent polyphenol oxidase in spinach chloroplasts by trypsin amounted to as much as 30-fold. The trypsin activation occurred even after the trypsin had been treated with 10% trichloroacetic acid, 1.0 n HCl or boiled for 30

  13. Genetics Home Reference: cytochrome c oxidase deficiency

    MedlinePlus

    ... DNA in specialized structures in the cell called mitochondria . This type of DNA is known as mitochondrial ... oxidase deficiency are involved in energy production in mitochondria through a process called oxidative phosphorylation . The gene ...

  14. Activation of Polyphenol Oxidase of Chloroplasts 1

    PubMed Central

    Tolbert, N. E.

    1973-01-01

    Polyphenol oxidase of leaves is located mainly in chloroplasts isolated by differential or sucrose density gradient centrifugation. This activity is part of the lamellar structure that is not lost on repeated washing of the plastids. The oxidase activity was stable during prolonged storage of the particles at 4 C or —18 C. The Km (dihydroxyphenylalanine) for spinach leaf polyphenol oxidase was 7 mm by a spectrophotometric assay and 2 mm by the manometric assay. Polyphenol oxidase activity in the leaf peroxisomal fraction, after isopycnic centrifugation on a linear sucrose gradient, did not coincide with the peroxisomal enzymes but was attributed to proplastids at nearly the same specific density. Plants were grouped by the latency properties for polyphenol oxidase in their isolated chloroplasts. In a group including spinach, Swiss chard, and beet leaves the plastids immediately after preparation from fresh leaves required a small amount of light for maximal rates of oxidation of dihydroxyphenylalanine. Polyphenol oxidase activity in the dark or light increased many fold during aging of these chloroplasts for 1 to 5 days. Soluble polyphenol oxidase of the cytoplasm was not so stimulated. Chloroplasts prepared from stored leaves were also much more active than from fresh leaves. Maximum rates of dihydroxyphenylalanine oxidation were 2 to 6 mmoles × mg−1 chlorophyll × hr−1. Equal stimulation of latent polyphenol oxidase in fresh or aged chloroplasts in this group was obtained by either light, an aged trypsin digest, 3-(4-chlorophenyl)-1, 1-dimethylurea, or antimycin A. A variety of other treatments did not activate or had little effect on the oxidase, including various peptides, salts, detergents, and other proteolytic enzymes. Activation of latent polyphenol oxidase in spinach chloroplasts by trypsin amounted to as much as 30-fold. The trypsin activation occurred even after the trypsin had been treated with 10% trichloroacetic acid, 1.0 n HCl or boiled for 30

  15. Effect of ezetimibe on plasma cholesterol levels, cholesterol absorption and secretion of biliary cholesterol in laboratory opossums with high and low responses to dietary cholesterol

    PubMed Central

    Chan, Jeannie; Kushwaha, Rampratap S.; VandeBerg, Jane F.; VandeBerg, John L.

    2008-01-01

    Partially inbred lines of laboratory opossums differ in plasma LDL cholesterol concentration and cholesterol absorption on a high cholesterol diet. The aim of the present studies was to determine whether ezetimibe inhibits cholesterol absorption and eliminates the differences in plasma cholesterol and hepatic cholesterol metabolism between high and low responders on a high cholesterol diet. Initially, we determined that the optimum dose of ezetimibe was 5 mg/kg/day, and treated six high and six low responding opossums with this dose (with equal numbers of controls) for 3 weeks while opossums consumed a high cholesterol and low fat (HCLF) diet. Plasma and LDL cholesterol concentrations decreased significantly (P<0.05) in treated but not in untreated high responding opossums. Plasma cholesterol concentrations of untreated low responders increased slightly (P<0.05) but not in treated low responders. Percent cholesterol absorption was significantly higher in untreated high responders than in other groups. Livers from high responders with or without treatment were significantly (P <0.01) heavier than livers from low responders with or without treatment. Hepatic cholesterol concentrations in untreated high responders were significantly (P<0.05) higher than in low responders with or without treatment (P<0.001). The gall bladder bile cholesterol concentrations in untreated high responders were significantly (P<0.05) lower than in other groups. A decrease in biliary cholesterol in low responders treated with ezetimibe was associated with a decrease in hepatic expression of ABCG5 and ABCG8. These studies suggest that ezetimibe decreases plasma cholesterol levels in high responders mainly by decreasing cholesterol absorption and increasing biliary cholesterol concentrations. Since ezetimibe’s target is NPC1L1 and NPC1L1 is expressed in the intestine of opossums, its effect on cholesterol absorption may be mediated by inhibiting NPC1L1 function in the intestine. PMID

  16. Effect of ezetimibe on plasma cholesterol levels, cholesterol absorption, and secretion of biliary cholesterol in laboratory opossums with high and low responses to dietary cholesterol.

    PubMed

    Chan, Jeannie; Kushwaha, Rampratap S; Vandeberg, Jane F; Vandeberg, John L

    2008-12-01

    Partially inbred lines of laboratory opossums differ in plasma low-density lipoprotein cholesterol concentration and cholesterol absorption on a high-cholesterol diet. The aim of the present studies was to determine whether ezetimibe inhibits cholesterol absorption and eliminates the differences in plasma cholesterol and hepatic cholesterol metabolism between high and low responders on a high-cholesterol diet. Initially, we determined that the optimum dose of ezetimibe was 5 mg/(kg d) and treated 6 high- and 6 low-responding opossums with this dose (with equal numbers of controls) for 3 weeks while the opossums consumed a high-cholesterol and low-fat diet. Plasma and low-density lipoprotein cholesterol concentrations decreased significantly (P < .05) in treated but not in untreated high-responding opossums. Plasma cholesterol concentrations increased slightly (P < .05) in untreated low responders but not in treated low responders. The percentage of cholesterol absorption was significantly higher in untreated high responders than in other groups. Livers from high responders with or without treatment were significantly (P < .01) heavier than livers from low responders with or without treatment. Hepatic cholesterol concentrations in untreated high responders were significantly (P < .05) higher than those in low responders with or without treatment (P < .001). The gall bladder bile cholesterol concentrations in untreated high responders were significantly (P < .05) lower than those in other groups. A decrease in biliary cholesterol in low responders treated with ezetimibe was associated with a decrease in hepatic expression of ABCG5 and ABCG8. These studies suggest that ezetimibe decreases plasma cholesterol levels in high responders mainly by decreasing cholesterol absorption and increasing biliary cholesterol concentrations. Because ezetimibe's target is NPC1L1 and NPC1L1 is expressed in the intestine of opossums, its effect on cholesterol absorption may be mediated

  17. Coordination chemistry controls the thiol oxidase activity of the B12-trafficking protein CblC.

    PubMed

    Li, Zhu; Shanmuganathan, Aranganathan; Ruetz, Markus; Yamada, Kazuhiro; Lesniak, Nicholas A; Kräutler, Bernhard; Brunold, Thomas C; Koutmos, Markos; Banerjee, Ruma

    2017-06-09

    The cobalamin or B12 cofactor supports sulfur and one-carbon metabolism and the catabolism of odd-chain fatty acids, branched-chain amino acids, and cholesterol. CblC is a B12-processing enzyme involved in an early cytoplasmic step in the cofactor-trafficking pathway. It catalyzes the glutathione (GSH)-dependent dealkylation of alkylcobalamins and the reductive decyanation of cyanocobalamin. CblC from Caenorhabditis elegans (ceCblC) also exhibits a robust thiol oxidase activity, converting reduced GSH to oxidized GSSG with concomitant scrubbing of ambient dissolved O2 The mechanism of thiol oxidation catalyzed by ceCblC is not known. In this study, we demonstrate that novel coordination chemistry accessible to ceCblC-bound cobalamin supports its thiol oxidase activity via a glutathionyl-cobalamin intermediate. Deglutathionylation of glutathionyl-cobalamin by a second molecule of GSH yields GSSG. The crystal structure of ceCblC provides insights into how architectural differences at the α- and β-faces of cobalamin promote the thiol oxidase activity of ceCblC but mute it in wild-type human CblC. The R161G and R161Q mutations in human CblC unmask its latent thiol oxidase activity and are correlated with increased cellular oxidative stress disease. In summary, we have uncovered key architectural features in the cobalamin-binding pocket that support unusual cob(II)alamin coordination chemistry and enable the thiol oxidase activity of ceCblC. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Rapid turn-over of plasma membrane sphingomyelin and cholesterol in baby hamster kidney cells after exposure to sphingomyelinase.

    PubMed

    Slotte, J P; Härmälä, A S; Jansson, C; Pörn, M I

    1990-12-14

    Plasma membrane sphingomyelin in baby hamster kidney (BHK-21) cells was hydrolyzed with sphingomyelinase (Staphylococcus aureus) and the effects on membrane cholesterol translocation and the properties of membrane bound adenylate cyclase and Na+/K(+)-ATPase were determined. Exposure of confluent BHK-21 cells to 0.1 U/ml of sphingomyelinase led to the degradation (at 37 degrees C) of about 60% of cell sphingomyelin. No simultaneous hydrolysis of phosphatidylcholine occurred. The hydrolysis of sphingomyelin subsequently led to the translocation (within 40 min) of about 50-60% of cell [3H]cholesterol from a cholesterol oxidase susceptible pool to an oxidase resistant compartment. The translocation of [3H]cholesterol from the cell surface to intracellular membranes was accompanied by a paralleled increase in [3H]cholesterol ester formation. When cells were first exposed to sphingomyelinase (to degrade sphingomyelin) and then incubated without the enzyme in serum-free media, the mass of cell sphingomyelin decreased initially (by 60%), but then began to increase and reached control levels within 3-4 h. The rapid re-synthesis of sphingomyelin was accompanied by an equally rapid normalization of cell [3H]cholesterol distribution. The re-formation of cell sphingomyelin also led to a decreased content of cellular [3H]cholesterol esters, indicating that unesterified [3H]cholesterol was pulled out of the cholesterol ester cycle and transported to the cell surface. Exposure of BHK-21 cells to sphingomyelinase further led to a dramatically decreased activity of ouabain-sensitive Na+/K(+)-ATPase, whereas forskolin-stimulated adenylate cyclase activity was not affected. The activity of Na+/K(+)-ATPase returned to normal in parallel with the normalization of cell sphingomyelin mass and cholesterol distribution. We conclude that sphingomyelin has profound effects on the steady-state distribution of cell cholesterol, and that manipulations of cell sphingomyelin levels directly and

  19. Azide inhibition of urate oxidase.

    PubMed

    Gabison, Laure; Colloc'h, Nathalie; Prangé, Thierry

    2014-07-01

    The inhibition of urate oxidase (UOX) by azide was investigated by X-ray diffraction techniques and compared with cyanide inhibition. Two well characterized sites for reagents are present in the enzyme: the dioxygen site and the substrate-binding site. To examine the selectivity of these sites towards azide inhibition, several crystallization conditions were developed. UOX was co-crystallized with azide (N3) in the presence or absence of either uric acid (UA, the natural substrate) or 8-azaxanthine (8AZA, a competitive inhibitor). In a second set of experiments, previously grown orthorhombic crystals of the UOX-UA or UOX-8AZA complexes were soaked in sodium azide solutions. In a third set of experiments, orthorhombic crystals of UOX with the exchangeable ligand 8-nitroxanthine (8NXN) were soaked in a solution containing uric acid and azide simultaneously (competitive soaking). In all assays, the soaking periods were either short (a few hours) or long (one or two months). These different experimental conditions showed that one or other of the sites, or the two sites together, could be inhibited. This also demonstrated that azide not only competes with dioxygen as cyanide does but also competes with the substrate for its enzymatic site. A model in agreement with experimental data would be an azide in equilibrium between two sites, kinetically in favour of the dioxygen site and thermodynamically in favour of the substrate-binding site.

  20. Azide inhibition of urate oxidase

    PubMed Central

    Gabison, Laure; Colloc’h, Nathalie; Prangé, Thierry

    2014-01-01

    The inhibition of urate oxidase (UOX) by azide was investigated by X-ray diffraction techniques and compared with cyanide inhibition. Two well characterized sites for reagents are present in the enzyme: the dioxygen site and the substrate-binding site. To examine the selectivity of these sites towards azide inhibition, several crystallization conditions were developed. UOX was co-crystallized with azide (N3) in the presence or absence of either uric acid (UA, the natural substrate) or 8-azaxanthine (8AZA, a competitive inhibitor). In a second set of experiments, previously grown orthorhombic crystals of the UOX–UA or UOX–8AZA complexes were soaked in sodium azide solutions. In a third set of experiments, orthorhombic crystals of UOX with the exchangeable ligand 8-nitroxanthine (8NXN) were soaked in a solution containing uric acid and azide simultaneously (competitive soaking). In all assays, the soaking periods were either short (a few hours) or long (one or two months). These different experimental conditions showed that one or other of the sites, or the two sites together, could be inhibited. This also demonstrated that azide not only competes with dioxygen as cyanide does but also competes with the substrate for its enzymatic site. A model in agreement with experimental data would be an azide in equilibrium between two sites, kinetically in favour of the dioxygen site and thermodynamically in favour of the substrate-binding site. PMID:25005084

  1. A biosensor for cholesterol based on gold nanoparticles-catalyzed luminol electrogenerated chemiluminescence.

    PubMed

    Zhang, Meihe; Yuan, Ruo; Chai, Yaqin; Chen, Shihong; Zhong, Huaan; Wang, Cun; Cheng, Yinfeng

    2012-02-15

    A novel cholesterol biosensor was prepared based on gold nanoparticles-catalyzed luminol electrogenerated chemiluminescence (ECL). Firstly, l-cysteine-reduced graphene oxide composites were modified on the surface of a glassy carbon electrode. Then, gold nanoparticles (AuNPs) were self-assembled on it. Subsequently, cholesterol oxidase (ChOx) was adsorbed on the surface of AuNPs to construct a cholesterol biosensor. The stepwise fabrication processes were characterized with cyclic voltammetry and atomic force microscopy. The ECL behaviors of the biosensor were also investigated. It was found that AuNPs not only provided larger surface area for higher ChOx loading but also formed the nano-structured interface on the electrode surface to improve the analytical performance of the ECL biosensor for cholesterol. Besides, based on the efficient catalytic ability of AuNPs to luminol ECL, the response of the biosensor to cholesterol was linear range from 3.3 μM to 1.0 mM with a detection limit of 1.1 μM (S/N=3). In addition, the prepared ECL biosensor exhibited satisfying reproducibility, stability and selectivity. Taking into account the advantages of ECL, we confidently expect that ECL would have potential applications in biotechnology and clinical diagnosis.

  2. Utility of dried blood spots for measurement of cholesterol and triglycerides in a surveillance study.

    PubMed

    Lakshmy, Ramakrishnan; Gupta, Ruby; Prabhakaran, Dorairaj; Snehi, Uma; Reddy, K Srinath

    2010-03-01

    Developing countries are facing a rise in noncommunicable diseases (NCD), which is a cause for concern. The World Health Organization has recommended a stepwise approach for NCD risk factor surveillance. Screening for risk factors in remote populations is difficult due to lack of resources and technical expertise, including standardized laboratory facilities. The collection of samples on filter paper for the assessment of risk factors circumvents the need for blood processing, storage, and shipment at ultralow temperatures. Samples were collected on 3-mm Whatman filter paper from one industry (National Thermal Power Corporation) located in the periphery of Delhi as part of a surveillance carried out in industries from different parts of India. Total cholesterol was measured in serum and dried blood by the cholesterol oxidase/p-aminophenazone method and triglycerides by the glycerophosphate oxidase-peroxidase/aminophenazone method. Values obtained by the two methods were compared using Pearson correlation, and Bland-Altman plots were prepared to assess bias. The correlation coefficient "r" was 0.78 for cholesterol and 0.94 for triglycerides between dried blood spots and serum. Bland-Altman plots suggest that differences in values obtained by the two methods were within two standard deviations for most of the samples. Blood samples dried on filter paper can be a successful option for population screening in remote areas, provided preanalytical variations arising due to the method of blood spot preparation and storage are well controlled. (c) 2010 Diabetes Technology Society.

  3. Hepatic cholesterol metabolism following a chronic ingestion of cesium-137 starting at fetal stage in rats.

    PubMed

    Racine, Radjini; Grandcolas, Line; Blanchardon, Eric; Gourmelon, Patrick; Veyssiere, Georges; Souidi, Maamar

    2010-01-01

    The Chernobyl accident released many radionuclides in the environment. Some are still contaminating the ground and thus the people through dietary intake. The long-term sanitary consequences of this disaster are still unclear and several biological systems remain to be investigated. Cholesterol metabolism is of particular interest, with regard to the link established between atherosclerosis and exposure to high-dose ionizing radiations. This study assesses the effect of cesium-137 on cholesterol metabolism in rats, after a chronic exposure since fetal life. To achieve this, rat dams were contaminated with cesium-137-supplemented water from two weeks before mating until the weaning of the pups. Thereafter, the weaned rats were given direct access to the contaminated drinking water until the age of 9 months. After the sacrifice, cholesterol metabolism was investigated in the liver at gene expression and protein level. The cholesterolemia was preserved, as well as the cholesterol concentration in the liver. At molecular level, the gene expressions of ACAT 2 (a cholesterol storage enzyme), of Apolipoprotein A-I and of RXR (a nuclear receptor involved in cholesterol metabolism) were significantly decreased. In addition, the enzymatic activity of CYP27A1, which catabolizes cholesterol, was increased. The results indicate that the rats seem to adapt to the cesium-137 contamination and display modifications of hepatic cholesterol metabolism only at molecular level and within physiological range.

  4. Imaging approaches for analysis of cholesterol distribution and dynamics in the plasma membrane.

    PubMed

    Wüstner, Daniel; Modzel, Maciej; Lund, Frederik W; Lomholt, Michael A

    2016-09-01

    Cholesterol is an important lipid component of the plasma membrane (PM) of mammalian cells, where it is involved in control of many physiological processes, such as endocytosis, cell migration, cell signalling and surface ruffling. In an attempt to explain these functions of cholesterol, several models have been put forward about cholesterol's lateral and transbilayer organization in the PM. In this article, we review imaging techniques developed over the last two decades for assessing the distribution and dynamics of cholesterol in the PM of mammalian cells. Particular focus is on fluorescence techniques to study the lateral and inter-leaflet distribution of suitable cholesterol analogues in the PM of living cells. We describe also several methods for determining lateral cholesterol dynamics in the PM including fluorescence recovery after photobleaching (FRAP), fluorescence correlation spectroscopy (FCS), single particle tracking (SPT) and spot variation FCS coupled to stimulated emission depletion (STED) microscopy. For proper interpretation of such measurements, we provide some background in probe photophysics and diffusion phenomena occurring in cell membranes. In particular, we show the equivalence of the reaction-diffusion approach, as used in FRAP and FCS, and continuous time random walk (CTRW) models, as often invoked in SPT studies. We also discuss mass spectrometry (MS) based imaging of cholesterol in the PM of fixed cells and compare this method with fluorescence imaging of sterols. We conclude that evidence from many experimental techniques converges towards a model of a homogeneous distribution of cholesterol with largely free and unhindered diffusion in both leaflets of the PM.

  5. MicroRNA: a connecting road between apoptosis and cholesterol metabolism.

    PubMed

    Adlakha, Yogita K; Saini, Neeru

    2016-07-01

    Resistance to apoptosis leads to tumorigenesis and failure of anti-cancer therapy. Recent studies also highlight abrogated lipid/cholesterol metabolism as one of the root causes of cancer that can lead to metastatic transformations. Cancer cells are dependent on tremendous supply of cellular cholesterol for the formation of new membranes and continuation of cell signaling. Cholesterol homeostasis network tightly regulates this metabolic need of cancer cells on cholesterol and other lipids. Genetic landscape is also shared between apoptosis and cholesterol metabolism. MicroRNAs (miRNAs) are the new fine tuners of signaling pathways and cellular processes and are known for their ability to post-transcriptionally repress gene expression in a targeted manner. This review summarizes the current knowledge about the cross talk between apoptosis and cholesterol metabolism via miRNAs. In addition, we also emphasize herein recent therapeutic modulations of specific miRNAs and their promising potential for the treatment of deadly diseases including cancer and cholesterol related pathologies. Understanding of the impact of miRNA-based regulation of apoptosis and metabolic processes is still at its dawn and needs further research for the development of future miRNA-based therapies. As both these physiological processes affect cellular homeostasis, we believe that this comprehensive summary of miRNAs modulating both apoptosis and cholesterol metabolism will open uncharted territory for scientific exploration and will provide the foundation for discovering novel drug targets for cancer and metabolic diseases.

  6. Effect of Cholesterol on the Stability and Lubrication Efficiency of Phosphatidylcholine Surface Layers.

    PubMed

    Sorkin, Raya; Kampf, Nir; Klein, Jacob

    2017-08-01

    The lubrication properties of saturated PC lipid vesicles containing high cholesterol content under high loads were examined by detailed surface force balance measurements of normal and shear forces between two surface-attached lipid layers. Forces between two opposing mica surfaces bearing distearoylphosphatidylcholine (PC) (DSPC) small unilamellar vesicles (SUVs, or liposomes), or bilayers, with varying cholesterol content were measured across water, whereas dimyristoyl PC (DMPC), dipalmitoyl PC (DPPC), and DSPC SUVs containing 40% cholesterol were measured across liposome dispersions of SUVs of the same lipid composition as in the adsorbed layers. The results clearly demonstrate decreased stability and resistance to normal load with the increase in cholesterol content of DSPC SUVs. Friction coefficients between two 10% cholesterol PC-bilayers were in the same range as for 40% cholesterol bilayers (μ ≈ 10(-3)), indicating that cholesterol has a more substantial effect on the mechanical properties of a bilayer than on its lubrication performance. We further find that the lubrication efficiency of DMPC and DPPC with 40% cholesterol is superior to that of DSPC 40% cholesterol, most likely because of enhanced hydration-lubrication in these systems. We previously found that when experiments are performed in the presence of a lipid reservoir, layers can self-heal and therefore their robustness is less important under such conditions. We conclude that the effect of cholesterol in decreasing the stability is more pronounced than its effect on hydration, but the stability is, in turn, less important when a lipid reservoir is present. This study complements our previous work and sheds light on the effect of cholesterol, a prominent and important physiological lipid, on the mechanical and lubrication properties of gel-phase lipid layers.

  7. Regulatory Physiology

    NASA Technical Reports Server (NTRS)

    Lane, Helen W.; Whitson, Peggy A.; Putcha, Lakshmi; Baker, Ellen; Smith, Scott M.; Stewart, Karen; Gretebeck, Randall; Nimmagudda, R. R.; Schoeller, Dale A.; Davis-Street, Janis

    1999-01-01

    As noted elsewhere in this report, a central goal of the Extended Duration Orbiter Medical Project (EDOMP) was to ensure that cardiovascular and muscle function were adequate to perform an emergency egress after 16 days of spaceflight. The goals of the Regulatory Physiology component of the EDOMP were to identify and subsequently ameliorate those biochemical and nutritional factors that deplete physiological reserves or increase risk for disease, and to facilitate the development of effective muscle, exercise, and cardiovascular countermeasures. The component investigations designed to meet these goals focused on biochemical and physiological aspects of nutrition and metabolism, the risk of renal (kidney) stone formation, gastrointestinal function, and sleep in space. Investigations involved both ground-based protocols to validate proposed methods and flight studies to test those methods. Two hardware tests were also completed.

  8. Membrane Cholesterol Modulates Superwarfarin Toxicity

    SciTech Connect

    Marangoni, M. Natalia; Martynowycz, Michael W.; Kuzmenko, Ivan; Braun, David; Polak, Paul E.; Weinberg, Guy; Rubinstein, Israel; Gidalevitz, David; Feinstein, Douglas L.

    2016-04-26

    Superwarfarins are modified analogs of warfarin with additional lipophilic aromatic rings, up to 100-fold greater potency, and longer biological half-lives. We hypothesized that increased hydrophobicity allowed interactions with amphiphilic membranes and modulation of biological responses. We find that superwarfarins brodifacoum and difenacoum increase lactate production and cell death in neuroblastoma cells. In contrast, neither causes changes in glioma cells that have higher cholesterol content. After choleterol depletion, lactate production was increased and cell viability was reduced. Drug-membrane interactions were examined by surface X-ray scattering using Langmuir monolayers of dipalmitoylphosphatidylcholine and/or cholesterol. Specular X-ray reflectivity data revealed that superwarfarins, but not warfarin, intercalate between dipalmitoylphosphatidylcholine molecules, whereas grazing incidence X-ray diffraction demonstrated changes in lateral crystalline order of the film. Neither agent showed significant interactions with monolayers containing >20% cholesterol. These findings demonstrate an affinity of superwarfarins to biomembranes and suggest that cellular responses to these agents are regulated by cholesterol content.

  9. Community Guide to Cholesterol Resources.

    ERIC Educational Resources Information Center

    National Heart and Lung Inst. (DHHS/NIH), Bethesda, MD.

    This guide is divided into two sections, one for physicians and the other for patients. The physician section lists different resources including continuing medical education opportunities on the medical and scientific aspects of cholesterol and heart disease and on the physician's role in diagnosis and patient management. Additional materials on…

  10. Early steps in steroidogenesis: intracellular cholesterol trafficking

    PubMed Central

    Miller, Walter L.; Bose, Himangshu S.

    2011-01-01

    Steroid hormones are made from cholesterol, primarily derived from lipoproteins that enter cells via receptor-mediated endocytosis. In endo-lysosomes, cholesterol is released from cholesterol esters by lysosomal acid lipase (LAL; disordered in Wolman disease) and exported via Niemann-Pick type C (NPC) proteins (disordered in NPC disease). These diseases are characterized by accumulated cholesterol and cholesterol esters in most cell types. Mechanisms for trans-cytoplasmic cholesterol transport, membrane insertion, and retrieval from membranes are less clear. Cholesterol esters and “free” cholesterol are enzymatically interconverted in lipid droplets. Cholesterol transport to the cholesterol-poor outer mitochondrial membrane (OMM) appears to involve cholesterol transport proteins. Cytochrome P450scc (CYP11A1) then initiates steroidogenesis by converting cholesterol to pregnenolone on the inner mitochondrial membrane (IMM). Acute steroidogenic responses are regulated by cholesterol delivery from OMM to IMM, triggered by the steroidogenic acute regulatory protein (StAR). Chronic steroidogenic capacity is determined by CYP11A1 gene transcription. StAR mutations cause congenital lipoid adrenal hyperplasia, with absent steroidogenesis, potentially lethal salt loss, and 46,XY sex reversal. StAR mutations initially destroy most, but not all steroidogenesis; low levels of StAR-independent steroidogenesis are lost later due to cellular damage, explaining the clinical findings. Rare P450scc mutations cause a similar syndrome. This review addresses these early steps in steroid biosynthesis. PMID:21976778

  11. Remnant cholesterol and ischemic heart disease.

    PubMed

    Varbo, Anette; Nordestgaard, Børge G

    2014-08-01

    To review recent advances in the field of remnant cholesterol as a contributor to the development of ischemic heart disease (IHD). Epidemiologic, mechanistic, and genetic studies all support a role for elevated remnant cholesterol (=cholesterol in triglyceride-rich lipoproteins) as a contributor to the development of atherosclerosis and IHD. Observational studies show association between elevated remnant cholesterol and IHD, and mechanistic studies show remnant cholesterol accumulation in the arterial wall like LDL-cholesterol (LDL-C) accumulation. Furthermore, large genetic studies show evidence of remnant cholesterol as a causal risk factor for IHD independent of HDL-cholesterol levels. Genetic studies also show that elevated remnant cholesterol is associated with low-grade inflammation, whereas elevated LDL-C is not. There are several pharmacologic ways of lowering remnant cholesterol levels; however, it remains to be seen in large randomized clinical intervention trials if lowering of remnant cholesterol, in individuals with elevated levels, will reduce the risk of IHD. Evidence is emerging for elevated remnant cholesterol being a causal risk factor for IHD. Elevated remnant cholesterol levels likely are part of the explanation of the residual risk of IHD observed after LDL-C has been lowered to recommended levels.

  12. Cholesterol autoxidation in phospholipid membrane bilayers

    SciTech Connect

    Sevanian, A.; McLeod, L.L.

    1987-09-01

    Lipid peroxidation in unilamellar liposomes of known cholesterol-phospholipid composition was monitored under conditions of autoxidation or as induced by a superoxide radical generating system, gamma-irradiation or cumene hydroperoxide. Formation of cholesterol oxidation products was indexed to the level of lipid peroxidation. The major cholesterol oxidation products identified were 7-keto-cholesterol, isomeric cholesterol 5,6-epoxides, isomeric 7-hydroperoxides and isomeric 3,7-cholestane diols. Other commonly encountered products included 3,5-cholestadiene-7-one and cholestane-3 beta, 5 alpha, 6 beta-triol. Superoxide-dependent peroxidation required iron and produced a gradual increase in 7-keto-cholesterol and cholesterol epoxides. Cholesterol oxidation was greatest in liposomes containing high proportions of unsaturated phospholipid to cholesterol (4:1 molar ratio), intermediate with low phospholipid to cholesterol ratios (2:1) and least in liposomes prepared with dipalmitoylphosphatidylcholine and cholesterol. This relationship held regardless of the oxidizing conditions used. Cumene hydroperoxide-dependent lipid peroxidation and/or more prolonged oxidations with other oxidizing systems yielded a variety of products where cholesterol-5 beta,6 beta-epoxide, 7-ketocholesterol and the 7-hydroperoxides were most consistently elevated. Oxyradical initiation of lipid peroxidation produced a pattern of cholesterol oxidation products distinguishable from the pattern derived by cumene hydroperoxide-dependent peroxidation.

  13. Cholesterol Influences Voltage-Gated Calcium Channels and BK-Type Potassium Channels in Auditory Hair Cells

    PubMed Central

    Purcell, Erin K.; Liu, Liqian; Thomas, Paul V.; Duncan, R. Keith

    2011-01-01

    The influence of membrane cholesterol content on a variety of ion channel conductances in numerous cell models has been shown, but studies exploring its role in auditory hair cell physiology are scarce. Recent evidence shows that cholesterol depletion affects outer hair cell electromotility and the voltage-gated potassium currents underlying tall hair cell development, but the effects of cholesterol on the major ionic currents governing auditory hair cell excitabilityare unknown. We investigated the effects of a cholesterol-depleting agent (methyl beta cyclodextrin, MβCD) on ion channels necessary for the early stages of sound processing. Large-conductance BK-type potassium channels underlie temporal processing and open in a voltage- and calcium-dependent manner. Voltage-gated calcium channels (VGCCs) are responsible for calcium-dependent exocytosis and synaptic transmission to the auditory nerve. Our results demonstrate that cholesterol depletion reduced peak steady-state calcium-sensitive (BK-type) potassiumcurrent by 50% in chick cochlear hair cells. In contrast, MβCD treatment increased peak inward calcium current (∼30%), ruling out loss of calcium channel expression or function as a cause of reduced calcium-sensitive outward current. Changes in maximal conductance indicated a direct impact of cholesterol on channel number or unitary conductance. Immunoblotting following sucrose-gradient ultracentrifugation revealed BK expression in cholesterol-enriched microdomains. Both direct impacts of cholesterol on channel biophysics, as well as channel localization in the membrane, may contribute to the influence of cholesterol on hair cell physiology. Our results reveal a new role for cholesterol in the regulation of auditory calcium and calcium-activated potassium channels and add to the growing evidence that cholesterol is a key determinant in auditory physiology. PMID:22046269

  14. Dissipative dynamics of fluid lipid membranes enriched in cholesterol.

    PubMed

    Arriaga, Laura R; Rodríguez-García, Ruddi; Moleiro, Lara H; Prévost, Sylvain; López-Montero, Iván; Hellweg, Thomas; Monroy, Francisco

    2017-09-01

    Cholesterol is an intriguing component of fluid lipid membranes: It makes them stiffer but also more fluid. Despite the enormous biological significance of this complex dynamical behavior, which blends aspects of membrane elasticity with viscous friction, their mechanical bases remain however poorly understood. Here, we show that the incorporation of physiologically relevant contents of cholesterol in model fluid membranes produces a fourfold increase in the membrane bending modulus. However, the increase in the compression rigidity that we measure is only twofold; this indicates that cholesterol increases coupling between the two membrane leaflets. In addition, we show that although cholesterol makes each membrane leaflet more fluid, it increases the friction between the membrane leaflets. This dissipative dynamics causes opposite but advantageous effects over different membrane motions: It allows the membrane to rearrange quickly in the lateral dimension, and to simultaneously dissipate out-of-plane stresses through friction between the two membrane leaflets. Moreover, our results provide a clear correlation between coupling and friction of membrane leaflets. Furthermore, we show that these rigid membranes are optimal to resist slow deformations with minimum energy dissipation; their optimized stability might be exploited to design soft technological microsystems with an encoded mechanics, vesicles or capsules for instance, useful beyond classical applications as model biophysical systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Effects of cholesterol and PIP2 on membrane domain formation

    NASA Astrophysics Data System (ADS)

    Janmey, Paul; Byfield, Fitzroy; Christian, David; Levental, Ilya

    2009-03-01

    Lipid head group size, acyl chain saturation, the relative amounts of cholesterol, phospholipids and sphingolipids, and electrostatic effects due to highly charged anionic lipids such as phosphatidylinositol bisphosphate (PIP2) all contribute to the force balance that determines the conditions at which domains form as well as their size, shape and stability. Giant plasma membrane vesicles derived from intact cells reveal lipid phase separation in a system with appropriate biological complexity. Formation of liquid ordered domains large enough to visualize by light microscopy form under physiologically realistic conditions in cell-derived vesicles, and their dependence on cholesterol content and temperature are consistent with studies of purified lipids. Compared to the effects of cholesterol, PIP2 has a smaller but still significant effect on liquid ordered / liquid disordered domain formation, but compared to other lipids, PIP2 is much more strongly segregated in the liquid disordered domains, away from those enriched in cholesterol. These results suggest physical mechanisms by which the cell can rapidly alter local PIP2 concentration to trigger cellular signals.

  16. Sericin reduces serum cholesterol in rats and cholesterol uptake into Caco-2 cells.

    PubMed

    Limpeanchob, Nanteetip; Trisat, Kanittaporn; Duangjai, Acharaporn; Tiyaboonchai, Waree; Pongcharoen, Sutatip; Sutheerawattananonda, Manote

    2010-12-08

    A cholesterol lowering effect of sericin was investigated both in vivo and in vitro. Rats were dosed with cholesterol with and without sericin for 14 days. Non-high-density lipoprotein (HDL) and total serum cholesterols were reduced in rats fed high-cholesterol diet with all three tested doses of sericin (10, 100, and 1000 mg kg(-1) day(-1)). The potential mechanism of actions was determined by measuring the uptake of radiolabeled cholesterol into differentiated Caco-2 cells and cholesterol solubility in mixed lipid micelles. Concentration of sericin as low as 25 and 50 μg/mL inhibited 30% of cholesterol uptake into Caco-2 cells whereas no effect was found at higher concentration. Cholesterol micellar solubility was reduced in the presence of sericin. This study suggests the cholesterol lowering effect of sericin results from its inhibition of cholesterol absorption in intestinal cells and its reduction of cholesterol solubility in lipid micelles.

  17. Plant sulfite oxidase as novel producer of H2O2: combination of enzyme catalysis with a subsequent non-enzymatic reaction step.

    PubMed

    Hänsch, Robert; Lang, Christina; Riebeseel, Erik; Lindigkeit, Rainer; Gessler, Arthur; Rennenberg, Heinz; Mendel, Ralf R

    2006-03-10

    Sulfite oxidase (EC 1.8.3.1) from the plant Arabidopsis thaliana is the smallest eukaryotic molybdenum enzyme consisting of a molybdenum cofactor-binding domain but lacking the heme domain that is known from vertebrate sulfite oxidase. While vertebrate sulfite oxidase is a mitochondrial enzyme with cytochrome c as the physiological electron acceptor, plant sulfite oxidase is localized in peroxisomes and does not react with cytochrome c. Here we describe results that identified oxygen as the terminal electron acceptor for plant sulfite oxidase and hydrogen peroxide as the product of this reaction in addition to sulfate. The latter finding might explain the peroxisomal localization of plant sulfite oxidase. 18O labeling experiments and the use of catalase provided evidence that plant sulfite oxidase combines its catalytic reaction with a subsequent non-enzymatic step where its reaction product hydrogen peroxide oxidizes another molecule of sulfite. In vitro, for each catalytic cycle plant SO will bring about the oxidation of two molecules of sulfite by one molecule of oxygen. In the plant, sulfite oxidase could be responsible for removing sulfite as a toxic metabolite, which might represent a means to protect the cell against excess of sulfite derived from SO2 gas in the atmosphere (acid rain) or during the decomposition of sulfur-containing amino acids. Finally we present a model for the metabolic interaction between sulfite and catalase in the peroxisome.

  18. New Cholesterol Fighting Meds Target Key Gene

    MedlinePlus

    ... page: https://medlineplus.gov/news/fullstory_165942.html New Cholesterol Fighting Meds Target Key Gene Two trials ... 25, 2017 THURSDAY, May 25, 2017 (HealthDay News) -- New gene-based therapies appear to significantly decrease cholesterol ...

  19. High Cholesterol: Medicines to Help You

    MedlinePlus

    ... Consumer Information by Audience For Women High Cholesterol--Medicines To Help You Share Tweet Linkedin Pin it ... Test to check your cholesterol (LDL-C) Combination Medicines Brand Name Generic Name Advicor Niacin and Lovastatin ...

  20. Do You Know Your Cholesterol Levels?

    MedlinePlus

    ... Selected Audiences Contact The Health Information Center Do You Know Your Cholesterol Levels? Print-friendly Version (PDF, ... Your Heart: Get Moving and Eat Smart Did you know that high blood cholesterol is a serious ...

  1. Healthy Dietary Fats Help Beat High Cholesterol

    MedlinePlus

    ... https://medlineplus.gov/news/fullstory_166625.html Healthy Dietary Fats Help Beat High Cholesterol Eating them can reduce ... and Human Services. More Health News on Cholesterol Dietary Fats Heart Diseases--Prevention Recent Health News Related MedlinePlus ...

  2. What You Need to Know about Cholesterol

    MedlinePlus

    ... 164304.html What You Need to Know About Cholesterol Heart expert explains the difference between good and ... 28, 2017 MONDAY, March 27, 2017 (HealthDay News) -- Cholesterol plays a vital role in your health, so ...

  3. Reproductive physiology

    USGS Publications Warehouse

    Gee, G.F.; Russman, S.E.; Ellis, David H.; Gee, George F.; Mirande, Claire M.

    1996-01-01

    Conclusions: Although the general pattern of avian physiology applies to cranes, we have identified many physiological mechanisms (e.g., effects of disturbance) that need further study. Studies with cranes are expensive compared to those done with domestic fowl because of the crane's larger size, low reproductive rate, and delayed sexual maturity. To summarize, the crane reproductive system is composed of physiological and anatomical elements whose function is controlled by an integrated neural-endocrine system. Males generally produce semen at a younger age than when females lay eggs. Eggs are laid in clutches of two (1 to 3), and females will lay additional clutches if the preceding clutches are removed. Both sexes build nests and incubate the eggs. Molt begins during incubation and body molt may be completed annually in breeding pairs. However, remiges are replaced sequentially over 2 to 3 years, or abruptly every 2 to 3 years in other species. Most immature birds replace their juvenal remiges over a 2 to 3 year period. Stress interferes with reproduction in cranes by reducing egg production or terminating the reproductive effort. In other birds, stress elevates corticosterone levels and decreases LHRH release. We know little about the physiological response of cranes to stress.

  4. Alternative Oxidases (AOX1a and AOX2) Can Functionally Substitute for Plastid Terminal Oxidase in Arabidopsis Chloroplasts[W

    PubMed Central

    Fu, Aigen; Liu, Huiying; Yu, Fei; Kambakam, Sekhar; Luan, Sheng; Rodermel, Steve

    2012-01-01

    The immutans (im) variegation mutant of Arabidopsis thaliana is caused by an absence of PTOX, a plastid terminal oxidase bearing similarity to mitochondrial alternative oxidase (AOX). In an activation tagging screen for suppressors of im, we identified one suppression line caused by overexpression of AOX2. AOX2 rescued the im defect by replacing the activity of PTOX in the desaturation steps of carotenogenesis. Similar results were obtained when AOX1a was reengineered to target the plastid. Chloroplast-localized AOX2 formed monomers and dimers, reminiscent of AOX regulation in mitochondria. Both AOX2 and AOX1a were present in higher molecular weight complexes in plastid membranes. The presence of these proteins did not generally affect steady state photosynthesis, aside from causing enhanced nonphotochemical quenching in both lines. Because AOX2 was imported into chloroplasts using its own transpeptide, we propose that AOX2 is able to function in chloroplasts to supplement PTOX activity during early events in chloroplast biogenesis. We conclude that the ability of AOX1a and AOX2 to substitute for PTOX in the correct physiological and developmental contexts is a striking example of the capacity of a mitochondrial protein to replace the function of a chloroplast protein and illustrates the plasticity of the photosynthetic apparatus. PMID:22534126

  5. Redox-mediated signal transduction by cardiovascular Nox NADPH oxidases.

    PubMed

    Brandes, Ralf P; Weissmann, Norbert; Schröder, Katrin

    2014-08-01

    The only known function of the Nox family of NADPH oxidases is the production of reactive oxygen species (ROS). Some Nox enzymes show high tissue-specific expression and the ROS locally produced are required for synthesis of hormones or tissue components. In the cardiovascular system, Nox enzymes are low abundant and function as redox-modulators. By reacting with thiols, nitric oxide (NO) or trace metals, Nox-derived ROS elicit a plethora of cellular responses required for physiological growth factor signaling and the induction and adaptation to pathological processes. The interactions of Nox-derived ROS with signaling elements in the cardiovascular system are highly diverse and will be detailed in this article, which is part of a Special Issue entitled "Redox Signalling in the Cardiovascular System".

  6. Hypoxanthine induces cholesterol accumulation and incites atherosclerosis in apolipoprotein E-deficient mice and cells.

    PubMed

    Ryu, Hye-Myung; Kim, You-Jin; Oh, Eun-Joo; Oh, Se-Hyun; Choi, Ji-Young; Cho, Jang-Hee; Kim, Chan-Duck; Park, Sun-Hee; Kim, Yong-Lim

    2016-11-01

    Reactive oxygen species (ROS) generation during purine metabolism is associated with xanthine oxidase and uric acid. However, the direct effect of hypoxanthine on ROS generation and atherosclerosis has not been evaluated. Smoking and heavy drinking are associated with elevated levels of hypoxanthine. In this study, we investigated the role of hypoxanthine on cholesterol synthesis and atherosclerosis development, particularly in apolipoprotein E (APOE)-deficient mice. The effect of hypoxanthine on the regulation of cholesterol synthesis and atherosclerosis were evaluated in Apoe knockout (KO) mice and cultured HepG2 cells. Hypoxanthine markedly increased serum cholesterol levels and the atherosclerotic plaque area in Apoe KO mice. In HepG2 cells, hypoxanthine increased intracellular ROS production. Hypoxanthine increased cholesterol accumulation and decreased APOE and ATP-binding cassette transporter A1 (ABCA1) mRNA and protein expression in HepG2 cells. Furthermore, H2 O2 also increased cholesterol accumulation and decreased APOE and ABCA1 expression. This effect was partially reversible by treatment with the antioxidant N-acetyl cysteine and allopurinol. Hypoxanthine and APOE knockdown using APOE-siRNA synergistically induced cholesterol accumulation and reduced APOE and ABCA1 expression. Hypoxanthine induces cholesterol accumulation in hepatic cells through alterations in enzymes that control lipid transport and induces atherosclerosis in APOE-deficient cells and mice. These effects are partially mediated through ROS produced in response to hypoxanthine. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  7. Thermostable Xanthine Oxidase Activity from Bacillus pumilus RL-2d Isolated from Manikaran Thermal Spring: Production and Characterization.

    PubMed

    Sharma, Nirmal Kant; Thakur, Shikha; Thakur, Neerja; Savitri; Bhalla, Tek Chand

    2016-03-01

    Xanthine oxidase is an important enzyme of purine metabolism that catalyzes the hydroxylation of hypoxanthine to xanthine and then xanthine to uric acid. A thermostable xanthine oxidase is being reported from a thermophilic organism RL-2d isolated from the Manikaran (Kullu) hot spring of Himachal Pradesh (India). Based on the morphology, physiological tests, and 16S rDNA gene sequence, RL-2d was identified as Bacillus pumilus. Optimization of physiochemical parameters resulted into 4.1-fold increase in the xanthine oxidase activity from 0.051 U/mg dcw (dry cell weight) to 0.209 U/mg dcw. The xanthine oxidase of B. pumilus RL-2d has exhibited very good thermostability and its t1/2 at 70 and 80 °C were 5 and 1 h, respectively. Activity of this enzyme was strongly inhibited by Hg(2+), Ag(+) and allopurinol. The investigation showed that B. pumilus RL-2d exhibited highest xanthine oxidase activity and remarkable thermostability among the other xanthine oxidases reported so far.

  8. Quercetin regulates hepatic cholesterol metabolism by promoting cholesterol-to-bile acid conversion and cholesterol efflux in rats.

    PubMed

    Zhang, Min; Xie, Zongkai; Gao, Weina; Pu, Lingling; Wei, Jingyu; Guo, Changjiang

    2016-03-01

    Quercetin, a common member of the flavonoid family, is widely present in plant kingdom. Despite that quercetin is implicated in regulating cholesterol metabolism, the molecular mechanism is poorly understood. We hypothesized that quercetin regulates cholesterol homeostasis through regulating the key enzymes involved in hepatic cholesterol metabolism. To test this hypothesis, we compared the profile of key enzymes and transcription factors involved in the hepatic cholesterol metabolism in rats with or without quercetin supplementation. Twenty male Wistar rats were randomly divided into control and quercetin-supplemented groups. Serum total cholesterol, triglyceride, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and total bile acids in feces and bile were measured. Hepatic enzymatic activities were determined by activity assay kit and high-performance liquid chromatography-based analyses. The messenger RNA (mRNA) and protein expressions were determined by reverse transcriptase polymerase chain reaction and Western blot analyses, respectively. The results showed that the activity of hepatic cholesterol 7α-hydroxylase, a critical enzyme in the conversion of cholesterol to bile acids, was significantly elevated by quercetin. The expression of cholesterol 7α-hydroxylase, as well as liver X receptor α, an important transcription factor, was also increased at both mRNA and protein levels by quercetin. However, quercetin exposure had no impact on the activity of hepatic HMG-CoA reductase, a rate-limiting enzyme in the biosynthesis of cholesterol. We also found that quercetin treatment significantly increased ATP binding cassette transporter G1 mRNA and protein expression in the liver, suggesting that quercetin may increase hepatic cholesterol efflux. Collectively, the results presented here indicate that quercetin regulates hepatic cholesterol metabolism mainly through the pathways that promote cholesterol-to-bile acid conversion and

  9. Milk xanthine oxidase type D (dehydrogenase) and type O (oxidase). Purification, interconversion and some properties

    PubMed Central

    Battelli, Maria Giulia; Lorenzoni, E.; Stirpe, F.

    1973-01-01

    1. The xanthine oxidase of cow's milk, crude or purified, appears as an oxidase (type O), and can be converted almost completely into a NAD+-dependent dehydrogenase (type D) by treatment with dithioerythritol or dihydrolipoic acid, but only to a small extent by other thiols. 2. The D form of the enzyme is inhibited by NADH, which competes with NAD+. 3. The kinetic constants of the two forms of the enzyme are similar to those of the corresponding forms of rat liver xanthine oxidase. 4. Milk xanthine oxidase is converted into an irreversible O form by pretreatment with chymotrypsin, papain or subtilisin, but only partially with trypsin. 5. The enzyme as purified shows a major faster band and a minor slower band on gel electrophoresis. The slower band is greatly reinforced after xanthine oxidase is converted into the irreversible O form by chymotrypsin. ImagesFig. 5. PMID:4352904

  10. Helicobacter pylori lipopolysaccharide modification, Lewis antigen expression, and gastric colonization are cholesterol-dependent.

    PubMed

    Hildebrandt, Ellen; McGee, David J

    2009-12-14

    Helicobacter pylori specifically takes up cholesterol and incorporates it into the bacterial membrane, yet little is currently known about cholesterol's physiological roles. We compared phenotypes and in vivo colonization ability of H. pylori grown in a defined, serum-free growth medium, F12 with 1 mg/ml albumin containing 0 to 50 mug/ml cholesterol. While doubling times were largely unaffected by cholesterol, other overt phenotypic changes were observed. H. pylori strain SS1 grown in defined medium with cholesterol successfully colonized the stomach of gerbils, whereas SS1 grown without cholesterol failed to colonize. H. pylori lipopolysaccharide often displays Lewis X and/or Y antigens. Expression of these antigens measured by whole-cell ELISA was markedly enhanced in response to growth of strain SS1, 26695, or G27 in cholesterol. In addition, electrophoretic analysis of lipopolysaccharide in wild type G27 and in mutants lacking the O-chain revealed structural changes within the oligosaccharide core/lipid A moieties. These responses in Lewis antigen levels and in lipopolysaccharide profiles to cholesterol availability were highly specific, because no changes took place when cholesterol was substituted by beta-sitosterol or bile salts. Disruption of the genes encoding cholesterol alpha-glucosyltransferase or lipid A phosphoethanolamine transferase had no effect on Lewis expression, nor on lipopolysaccharide profiles, nor on the cholesterol responsiveness of these properties. Disruption of the lipid A 1-phosphatase gene eliminated the effect of cholesterol on lipopolysaccharide profiles but not its effect on Lewis expression. Together these results suggest that cholesterol depletion leads to aberrant forms of LPS that are dependent upon dephosphorylation of lipid A at the 1-position. A tentative model for the observed effects of cholesterol is discussed in which sequential steps of lipopolysaccharide biogenesis and, independently, presentation of Lewis antigen at

  11. Non-cholesterol sterols and cholesterol metabolism in sitosterolemia.

    PubMed

    Othman, Rgia A; Myrie, Semone B; Jones, Peter J H

    2013-12-01

    Sitosterolemia (STSL) is a rare autosomal recessive disease, manifested by extremely elevated plant sterols (PS) in plasma and tissue, leading to xanthoma and premature atherosclerotic disease. Therapeutic approaches include limiting PS intake, interrupting enterohepatic circulation of bile acid using bile acid binding resins such as cholestyramine, and/or ileal bypass, and inhibiting intestinal sterol absorption by ezetimibe (EZE). The objective of this review is to evaluate sterol metabolism in STSL and the impact of the currently available treatments on sterol trafficking in this disease. The role of PS in initiation of xanthomas and premature atherosclerosis is also discussed. Blocking sterols absorption with EZE has revolutionized STSL patient treatment as it reduces circulating levels of non-cholesterol sterols in STSL. However, none of the available treatments including EZE have normalized plasma PS concentrations. Future studies are needed to: (i) explore where cholesterol and non-cholesterol sterols accumulate, (ii) assess to what extent these sterols in tissues can be mobilized after blocking their absorption, and (iii) define the factors governing sterol flux. Copyright © 2013. Published by Elsevier Ireland Ltd.

  12. Transfer of cholesterol by the NPC team.

    PubMed

    Vance, Jean E

    2010-08-04

    The mechanisms of intracellular cholesterol transport are largely unknown. In this issue of Cell Metabolism, Wang et al. (2010) identify amino acid residues on the lumenal lysosomal protein Niemann-Pick C2 (NPC2) that are required for intralysosomal transfer of endocytosed cholesterol to membrane-bound NPC1 via a process that avoids movement of hydrophobic cholesterol through the aqueous phase.

  13. Isolation of Cholesterol from an Egg Yolk

    ERIC Educational Resources Information Center

    Taber, Douglass F.; Li, Rui; Anson, Cory M.

    2011-01-01

    A simple procedure for the isolation of the cholesterol, by hydrolysis and extraction followed by column chromatography, is described. The cholesterol can be further purified by complexation with oxalic acid. It can also be oxidized and conjugated to cholestenone. The source of the cholesterol is one egg yolk, which contains about 200 mg of…

  14. Isolation of Cholesterol from an Egg Yolk

    ERIC Educational Resources Information Center

    Taber, Douglass F.; Li, Rui; Anson, Cory M.

    2011-01-01

    A simple procedure for the isolation of the cholesterol, by hydrolysis and extraction followed by column chromatography, is described. The cholesterol can be further purified by complexation with oxalic acid. It can also be oxidized and conjugated to cholestenone. The source of the cholesterol is one egg yolk, which contains about 200 mg of…

  15. Cholesterol Screening: A Practical Guide to Implementation.

    ERIC Educational Resources Information Center

    Kingery, Paul M.

    1995-01-01

    Dry-chemistry cholesterol analysis has made screening feasible in a variety of settings. The article provides practical tips for the implementation of mass cholesterol screening using a portable dry-chemistry analyzer and discusses issues involved in conducting effective cholesterol screening programs from start to finish. (SM)

  16. A sensitive assay for ABCA1-mediated cholesterol efflux using BODIPY -cholesterol

    USDA-ARS?s Scientific Manuscript database

    Studies have shown a negative association between cellular cholesterol efflux and coronary artery disease (CAD). Standard protocol for quantifying cholesterol efflux involves labeling cells with [(3)H]cholesterol and measuring release of the labeled sterol. Using [(3)H]cholesterol is not ideal for...

  17. Oxidases and reactive oxygen species during hematopoiesis: a focus on megakaryocytes

    PubMed Central

    Eliades, Alexia; Matsuura, Shinobu; Ravid, Katya

    2012-01-01

    Reactive oxygen species (ROS), generated as a result of various reactions, control an array of cellular processes. The role of ROS during megakaryocyte (MK) development has been a subject of interest and research. The bone marrow niche is the major site of MK differentiation and maturation. In this environment, a gradient of oxygen tension, from normoxia to hypoxia results in different levels of ROS, impacting cellular physiology. This article provides an overview of major sources of ROS, their implication in different signaling pathways, and their effect on cellular physiology, with a focus on megakaryopoiesis. The importance of ROS-generating oxidases in MK biology and pathology, including myelofibrosis, is also described. PMID:22331622

  18. PLATELET-ASSOCIATED NAD(P)H OXIDASE CONTRIBUTES TO THE THROMBOGENIC PHENOTYPE INDUCED BY HYPERCHOLESTEROLEMIA

    PubMed Central

    Stokes, Karen Y.; Russell, Janice M.; Jennings, Merilyn H.; Alexander, J. Steven; Granger., D. Neil

    2007-01-01

    Elevated cholesterol levels promote pro-inflammatory and prothrombogenic responses in venules and impaired endothelium-dependent arteriolar dilation. Although NAD(P)H oxidase-derived superoxide has been implicated in the altered vascular responses to hypercholesterolemia, it remains unclear whether this oxidative pathway mediates the associated arteriolar dysfunction and platelet adhesion in venules. Platelet and leukocyte adhesion in cremasteric postcapillary venules, and arteriolar dilation responses to acetylcholine were monitored in wild-type (WT), Cu,Zn-superoxide dismutase transgenic (SOD-TgN) and NAD(P)H oxidase-knockout (gp91phox-/-) mice placed on normal (ND) or high cholesterol (HC) diet for 2 wk. HC elicited increased platelet and leukocyte adhesion in WT mice, versus ND. Cytosolic subunits of NAD(P)H oxidase (p47phox and p67phox) were expressed in platelets. This was not altered by hypercholesterolemia, however platelets and leukocytes from HC mice exhibited elevated generation of reactive oxygen species when compared to ND mice. Hypercholesterolemia-induced leukocyte recruitment was attenuated in SOD-TgN-HC and gp91phox-/--HC mice. Recruitment of platelets derived from WT-HC mice in venules of SOD-TgN-HC or gp91phox-/--HC recipients was comparable to ND levels. Adhesion of SOD-TgN-HC platelets paralleled the leukocyte response and was attenuated in SOD-TgN-HC recipients, but not in WT-HC recipients. However, gp91phox-/--HC platelets exhibited low levels of adhesion comparable to WT-ND in both hypercholesterolemic gp91phox-/- and WT recipients. Arteriolar dysfunction was evident in WT-HC mice, compared to WT-ND. Overexpression of SOD or, to a lesser extent, gp91phox deficiency, restored arteriolar vasorelaxation responses towards WT-ND levels. These findings reveal a novel role for platelet-associated NAD(P)H oxidase in producing the thrombogenic phenotype in hypercholesterolemia and demonstrate that NAD(P)H oxidase-derived superoxide mediates the HC

  19. Cholesterol Depletion from a Ceramide/Cholesterol Mixed Monolayer: A Brewster Angle Microscope Study

    NASA Astrophysics Data System (ADS)

    Mandal, Pritam; Noutsi, Pakiza; Chaieb, Sahraoui

    2016-06-01

    Cholesterol is crucial to the mechanical properties of cell membranes that are important to cells’ behavior. Its depletion from the cell membranes could be dramatic. Among cyclodextrins (CDs), methyl beta cyclodextrin (MβCD) is the most efficient to deplete cholesterol (Chol) from biomembranes. Here, we focus on the depletion of cholesterol from a C16 ceramide/cholesterol (C16-Cer/Chol) mixed monolayer using MβCD. While the removal of cholesterol by MβCD depends on the cholesterol concentration in most mixed lipid monolayers, it does not depend very much on the concentration of cholesterol in C16-Cer/Chol monolayers. The surface pressure decay during depletion were described by a stretched exponential that suggested that the cholesterol molecules are unable to diffuse laterally and behave like static traps for the MβCD molecules. Cholesterol depletion causes morphology changes of domains but these disrupted monolayers domains seem to reform even when cholesterol level was low.

  20. D38-cholesterol as a Raman active probe for imaging intracellular cholesterol storage

    PubMed Central

    Alfonso-García, Alba; Pfisterer, Simon G.; Riezman, Howard; Ikonen, Elina; Potma, Eric O.

    2015-01-01

    Abstract. We generated a highly deuterated cholesterol analog (D38-cholesterol) and demonstrated its use for selective vibrational imaging of cholesterol storage in mammalian cells. D38-cholesterol produces detectable signals in stimulated Raman scattering (SRS) imaging, is rapidly taken up by cells, and is efficiently metabolized by acyl-CoA cholesterol acyltransferase to form cholesteryl esters. Using hyperspectral SRS imaging of D38-cholesterol, we visualized cholesterol storage in lipid droplets. We found that some lipid droplets accumulated preferentially unesterified D38-cholesterol, whereas others stored D38-cholesteryl esters. In steroidogenic cells, D38-cholesteryl esters and triacylglycerols were partitioned into distinct sets of lipid droplets. Thus, hyperspectral SRS imaging of D38-cholesterol demonstrates a heterogeneous incorporation of neutral lipid species, i.e., free cholesterol, cholesteryl esters, and triacylglycerols, between individual lipid droplets in a cell. PMID:26719944

  1. The Drosophila DHR96 nuclear receptor binds cholesterol and regulates cholesterol homeostasis

    PubMed Central

    Horner, Michael A.; Pardee, Keith; Liu, Suya; King-Jones, Kirst; Lajoie, Gilles; Edwards, Aled; Krause, Henry M.; Thummel, Carl S.

    2009-01-01

    Cholesterol homeostasis is required to maintain normal cellular function and avoid the deleterious effects of hypercholesterolemia. Here we show that the Drosophila DHR96 nuclear receptor binds cholesterol and is required for the coordinate transcriptional response of genes that are regulated by cholesterol and involved in cholesterol uptake, trafficking, and storage. DHR96 mutants die when grown on low levels of cholesterol and accumulate excess cholesterol when maintained on a high-cholesterol diet. The cholesterol accumulation phenotype can be attributed to misregulation of npc1b, an ortholog of the mammalian Niemann-Pick C1-like 1 gene NPC1L1, which is essential for dietary cholesterol uptake. These studies define DHR96 as a central regulator of cholesterol homeostasis. PMID:19952106

  2. The Drosophila DHR96 nuclear receptor binds cholesterol and regulates cholesterol homeostasis.

    PubMed

    Horner, Michael A; Pardee, Keith; Liu, Suya; King-Jones, Kirst; Lajoie, Gilles; Edwards, Aled; Krause, Henry M; Thummel, Carl S

    2009-12-01

    Cholesterol homeostasis is required to maintain normal cellular function and avoid the deleterious effects of hypercholesterolemia. Here we show that the Drosophila DHR96 nuclear receptor binds cholesterol and is required for the coordinate transcriptional response of genes that are regulated by cholesterol and involved in cholesterol uptake, trafficking, and storage. DHR96 mutants die when grown on low levels of cholesterol and accumulate excess cholesterol when maintained on a high-cholesterol diet. The cholesterol accumulation phenotype can be attributed to misregulation of npc1b, an ortholog of the mammalian Niemann-Pick C1-like 1 gene NPC1L1, which is essential for dietary cholesterol uptake. These studies define DHR96 as a central regulator of cholesterol homeostasis.

  3. D38-cholesterol as a Raman active probe for imaging intracellular cholesterol storage

    NASA Astrophysics Data System (ADS)

    Alfonso-García, Alba; Pfisterer, Simon G.; Riezman, Howard; Ikonen, Elina; Potma, Eric O.

    2016-06-01

    We generated a highly deuterated cholesterol analog (D38-cholesterol) and demonstrated its use for selective vibrational imaging of cholesterol storage in mammalian cells. D38-cholesterol produces detectable signals in stimulated Raman scattering (SRS) imaging, is rapidly taken up by cells, and is efficiently metabolized by acyl-CoA cholesterol acyltransferase to form cholesteryl esters. Using hyperspectral SRS imaging of D38-cholesterol, we visualized cholesterol storage in lipid droplets. We found that some lipid droplets accumulated preferentially unesterified D38-cholesterol, whereas others stored D38-cholesteryl esters. In steroidogenic cells, D38-cholesteryl esters and triacylglycerols were partitioned into distinct sets of lipid droplets. Thus, hyperspectral SRS imaging of D38-cholesterol demonstrates a heterogeneous incorporation of neutral lipid species, i.e., free cholesterol, cholesteryl esters, and triacylglycerols, between individual lipid droplets in a cell.

  4. Dietary cholesterol and plasma lipoprotein profiles: Randomized controlled trials

    USDA-ARS?s Scientific Manuscript database

    Early work suggested that dietary cholesterol increased plasma total cholesterol concentrations in humans. Given the relationship between elevated plasma cholesterol concentrations and cardiovascular disease risk, dietary guidelines have consistently recommended limiting food sources of cholesterol....

  5. PCSK9 function and physiology.

    PubMed

    Peterson, Andrew S; Fong, Loren G; Young, Stephen G

    2008-07-01

    PCSK9 has exploded onto center stage plasma cholesterol metabolism, raising hopes for a new strategy to treat hypercholesterolemia. PCSK9 in a plasma protein that triggers increased degradation of the LDL receptor. Gain-of-function mutations in PCSK9 reduce LDL receptor levels in the liver, resulting in high levels of LDL cholesterol in the plasma and increased susceptibility to coronary heart disease. Loss-of-function mutations lead to higher levels of the LDL receptor, lower LDL cholesterol levels and protection from coronary heart disease. Two papers in this issue of the Journal of Lipid Research exemplify the rapid pace of progress in understanding PCSK9 molecular interactions and physiology. Dr. Shilpa Pandit and coworkers from Merck Research Laboratories describe the functional basis for the hypercholesterolemia associated with gain-of-function missense mutations in PCSK9. Dr. Jay Horton's group at UT Southwestern describe the kinetics and metabolism of PCSK9 and the impact of PCSK9 on LDL receptors in the liver and adrenal gland.

  6. Fish protein hydrolysates affect cholesterol metabolism in rats fed non-cholesterol and high-cholesterol diets.

    PubMed

    Hosomi, Ryota; Fukunaga, Kenji; Arai, Hirofumi; Kanda, Seiji; Nishiyama, Toshimasa; Yoshida, Munehiro

    2012-03-01

    Fish consumption is well known to provide health benefits in both experimental animals and human subjects. Numerous studies have demonstrated the beneficial effects of various protein hydrolysates on lipid metabolism. In this context, this study examined the effect of fish protein hydrolysates (FPH) on cholesterol metabolism compared with the effect of casein. FPHs were prepared from Alaska pollock meat using papain as a protease. Male Wistar rats were divided into the following four dietary groups of seven rats each: either casein (20%) or FPH (10%) + casein (10%), with or without 0.5% cholesterol and 0.1% sodium cholate. Serum and liver lipid levels, fecal cholesterol and bile acid excretions, and the hepatic expression of genes encoding proteins involved in cholesterol homeostasis were examined. In rats fed the FPH diets compared with casein diets with or without cholesterol and sodium cholate, the indexes of cholesterol metabolism-namely, serum cholesterol, triglyceride, and low-density lipoprotein-cholesterol levels-were significantly lower, whereas fecal cholesterol and bile acid excretions were higher. Rats fed the FPH diets compared with casein with cholesterol exhibited a lower liver cholesterol level via an increased liver cholesterol 7α-hydroxylase (CYP7A1) expression level. This study demonstrates that the intake of FPH has hypocholesterolemic effects through the enhancement of fecal cholesterol and bile acid excretions and CYP7A1 expression levels. Therefore, fish peptides prepared by papain digestion might provide health benefits by decreasing the cholesterol content in the blood, which would contribute to the prevention of circulatory system diseases such as arteriosclerosis.

  7. Peptide mediators of cholesterol efflux

    DOEpatents

    Bielicki, John K.; Johansson, Jan

    2013-04-09

    The present invention provides a family of non-naturally occurring polypeptides having cholesterol efflux activity that parallels that of full-length apolipoproteins (e.g., Apo AI and Apo E), and having high selectivity for ABAC1 that parallels that of full-length apolipoproteins. The invention also provides compositions comprising such polypeptides, methods of identifying, screening and synthesizing such polypeptides, and methods of treating, preventing or diagnosing diseases and disorders associated with dyslipidemia, hypercholesterolemia and inflammation.

  8. Indoleacetic Acid Oxidase: A Dual Catalytic Enzyme?

    PubMed Central

    Hoyle, M. C.

    1972-01-01

    The isolation of a unique enzyme capable of oxidizing indoleacetic acid, but devoid of peroxidase activity, has been reported for preparations from tobacco roots and commercial horseradish peroxidase. Experiments were made to verify these results using enzyme obtained from Betula leaves and commercial horseradish peroxidase. Both indoleacetic acid oxidase and guaiacol peroxidase activity appeared at 2.5 elution volumes from sulfoethyl-Sephadex. These results were obtained with both sources of enzyme. In no case was a separate peak of indoleacetic acid oxidase activity obtained at 5.4 elution volumes as reported for the tobacco enzyme using the same chromatographic system. Both types of activity, from both sources of enzyme, also eluted together during gel filtration. Successful column chromatography of Betula enzyme was dependent upon previous purification by membrane ultrafiltration. These results indicate indoleacetic acid oxidase activity and guaiacol peroxidase activity are dual catalytic functions of a single enzyme. PMID:16658111

  9. Effect of naphthalene on cytochrome oxidase activity

    SciTech Connect

    Harmon, H.J.

    1988-01-01

    Previous reports have demonstrated that naphthalene inhibits oxygen consumption in Daphnia magna tissue culture cells, and intact mitochondria and submitochondrial particles. These studies were extended to algal mitochondrial respiration as well as photosynthetic activity. The authors were able to demonstrate the specific site of apparent respiratory inhibition to be coenzyme Q (ubiquinone, UQ) and later to demonstrate the molecular basis of this inhibition at ubiquinone. The authors previously could not demonstrate an effect of naphthalene on cytochrome oxidase activity. However, the observation that naphthalene can stimulate respiration in algae prompted the reinvestigation of the effect of naphthalene on the kinetics of cytochrome oxidase. Cytochrome oxidase is a multi-subunit membranous protein responsible for the oxidation of cytochrome c and the reduction of molecular oxygen to water. Because of the complicated nature and mechanism of this enzyme, the potential exists for multiple and possibly opposite effects of naphthalene on its function.

  10. Evaluating computational models of cholesterol metabolism.

    PubMed

    Paalvast, Yared; Kuivenhoven, Jan Albert; Groen, Albert K

    2015-10-01

    Regulation of cholesterol homeostasis has been studied extensively during the last decades. Many of the metabolic pathways involved have been discovered. Yet important gaps in our knowledge remain. For example, knowledge on intracellular cholesterol traffic and its relation to the regulation of cholesterol synthesis and plasma cholesterol levels is incomplete. One way of addressing the remaining questions is by making use of computational models. Here, we critically evaluate existing computational models of cholesterol metabolism making use of ordinary differential equations and addressed whether they used assumptions and make predictions in line with current knowledge on cholesterol homeostasis. Having studied the results described by the authors, we have also tested their models. This was done primarily by testing the effect of statin treatment in each model. Ten out of eleven models tested have made assumptions in line with current knowledge of cholesterol metabolism. Three out of the ten remaining models made correct predictions, i.e. predicting a decrease in plasma total and LDL cholesterol or increased uptake of LDL upon treatment upon the use of statins. In conclusion, few models on cholesterol metabolism are able to pass a functional test. Apparently most models have not undergone the critical iterative systems biology cycle of validation. We expect modeling of cholesterol metabolism to go through many more model topologies and iterative cycles and welcome the increased understanding of cholesterol metabolism these are likely to bring.

  11. Piperine prevents cholesterol gallstones formation in mice.

    PubMed

    Song, Xiu-Yun; Xu, Shuang; Hu, Jin-Feng; Tang, Jia; Chu, Shi-Feng; Liu, Hang; Han, Ning; Li, Jing-Wei; Zhang, Dong-Ming; Li, Yue-Ting; Chen, Nai-Hong

    2015-03-15

    Biliary cholesterol may contribute to the formation of cholesterol gallstones, and regulation of these levels could be a useful therapeutic strategy for gallstones disease. Piperine (PA) is a potential cholesterol lowering agent. In this study, we assessed the effect and mechanism of PA in preventing cholesterol gallstones formation induced by feeding lithogenic diet containing high cholesterol levels to mice. C57BL/6 inbred mice were fed lithogenic or chow diets for 10 weeks, with or without PA (15, 30 and 60 mg/kg) or ursodeoxycholic acid (UDCA, 60 mg/kg) administration. Cholesterol, phospholipids and crystals in bile, the lipid in serum, pathological changes and proteins expression in liver were analyzed. The results showed that PA could decrease the cholesterol potency and crystals in bile, reduce total cholesterol (TC), triglycerides (TG) and increase high-density lipoprotein/low-density lipoprotein (HDL/LDL) levels in serum. Furthermore, PA treatment reduced liver lipid peroxidation and protected hepatobiliary cells from liver injury by decreasing malondialdehyde (MDA) and increasing superoxide dismutase (SOD). In addition, PA inhibited the expression of ATP-binding cassette transporters G5/8 (ABCG5/8) and liver X receptor (LXR) in liver, and reduced cholesterol transport from the hepatocytes to the gallbladder. It may be the mechanism of PA in preventing cholesterol gallstones formation. PA as a potential drug for prevention cholesterol gallstones merits further investigation.

  12. Portable cholesterol detection with polyaniline-carbon nanotube film based interdigitated electrodes

    NASA Astrophysics Data System (ADS)

    Nguyen, Le Huy; Binh Nguyen, Hai; Thinh Nguyen, Ngoc; Dung Nguyen, Tuan; Tran, Dai Lam

    2012-03-01

    Polyaniline-carboxylic multiwalled carbon nanotubes composite film (PANi-MWCNT) has been polymerized on the surface of interdigitated platinum electrode (fabricated by MEMS technology) which was compatibly connected to Autolab interface via universal serial bus (USB). An amperometric biosensor based on covalent immobilization of cholesterol oxidase (ChOx) on PANi-MWCNT film with potassium ferricyanide (FeCN) as the redox mediator was developed. The mediator helps to shuttle the electrons between the immobilized ChOx and the PANi-MWCNT electrode, therefore operating at a low potential of -0.3 V compared to the saturated calomel electrode (SCE). This potential precludes the interfering compounds from oxidization. The bio-electrode exhibits good linearity from 0.02 to 1.2 mM cholesterol concentration with a correlation coefficient of 0.9985.

  13. Sulfite Oxidase Catalyzes Single-Electron Transfer at Molybdenum Domain to Reduce Nitrite to Nitric Oxide

    PubMed Central

    Wang, Jun; Krizowski, Sabina; Fischer-Schrader, Katrin; Niks, Dimitri; Tejero, Jesús; Sparacino-Watkins, Courtney; Wang, Ling; Ragireddy, Venkata; Frizzell, Sheila; Kelley, Eric E.; Zhang, Yingze; Basu, Partha; Hille, Russ

    2015-01-01

    Abstract Aims: Recent studies suggest that the molybdenum enzymes xanthine oxidase, aldehyde oxidase, and mARC exhibit nitrite reductase activity at low oxygen pressures. However, inhibition studies of xanthine oxidase in humans have failed to block nitrite-dependent changes in blood flow, leading to continued exploration for other candidate nitrite reductases. Another physiologically important molybdenum enzyme—sulfite oxidase (SO)—has not been extensively studied. Results: Using gas-phase nitric oxide (NO) detection and physiological concentrations of nitrite, SO functions as nitrite reductase in the presence of a one-electron donor, exhibiting redox coupling of substrate oxidation and nitrite reduction to form NO. With sulfite, the physiological substrate, SO only facilitates one turnover of nitrite reduction. Studies with recombinant heme and molybdenum domains of SO indicate that nitrite reduction occurs at the molybdenum center via coupled oxidation of Mo(IV) to Mo(V). Reaction rates of nitrite to NO decreased in the presence of a functional heme domain, mediated by steric and redox effects of this domain. Using knockdown of all molybdopterin enzymes and SO in fibroblasts isolated from patients with genetic deficiencies of molybdenum cofactor and SO, respectively, SO was found to significantly contribute to hypoxic nitrite signaling as demonstrated by activation of the canonical NO-sGC-cGMP pathway. Innovation: Nitrite binds to and is reduced at the molybdenum site of mammalian SO, which may be allosterically regulated by heme and molybdenum domain interactions, and contributes to the mammalian nitrate-nitrite-NO signaling pathway in human fibroblasts. Conclusion: SO is a putative mammalian nitrite reductase, catalyzing nitrite reduction at the Mo(IV) center. Antioxid. Redox Signal. 23, 283–294. PMID:25314640

  14. Sulfite Oxidase Catalyzes Single-Electron Transfer at Molybdenum Domain to Reduce Nitrite to Nitric Oxide.

    PubMed

    Wang, Jun; Krizowski, Sabina; Fischer-Schrader, Katrin; Niks, Dimitri; Tejero, Jesús; Sparacino-Watkins, Courtney; Wang, Ling; Ragireddy, Venkata; Frizzell, Sheila; Kelley, Eric E; Zhang, Yingze; Basu, Partha; Hille, Russ; Schwarz, Guenter; Gladwin, Mark T

    2015-08-01

    Recent studies suggest that the molybdenum enzymes xanthine oxidase, aldehyde oxidase, and mARC exhibit nitrite reductase activity at low oxygen pressures. However, inhibition studies of xanthine oxidase in humans have failed to block nitrite-dependent changes in blood flow, leading to continued exploration for other candidate nitrite reductases. Another physiologically important molybdenum enzyme—sulfite oxidase (SO)—has not been extensively studied. Using gas-phase nitric oxide (NO) detection and physiological concentrations of nitrite, SO functions as nitrite reductase in the presence of a one-electron donor, exhibiting redox coupling of substrate oxidation and nitrite reduction to form NO. With sulfite, the physiological substrate, SO only facilitates one turnover of nitrite reduction. Studies with recombinant heme and molybdenum domains of SO indicate that nitrite reduction occurs at the molybdenum center via coupled oxidation of Mo(IV) to Mo(V). Reaction rates of nitrite to NO decreased in the presence of a functional heme domain, mediated by steric and redox effects of this domain. Using knockdown of all molybdopterin enzymes and SO in fibroblasts isolated from patients with genetic deficiencies of molybdenum cofactor and SO, respectively, SO was found to significantly contribute to hypoxic nitrite signaling as demonstrated by activation of the canonical NO-sGC-cGMP pathway. Nitrite binds to and is reduced at the molybdenum site of mammalian SO, which may be allosterically regulated by heme and molybdenum domain interactions, and contributes to the mammalian nitrate-nitrite-NO signaling pathway in human fibroblasts. SO is a putative mammalian nitrite reductase, catalyzing nitrite reduction at the Mo(IV) center.

  15. Cholesterol crystallization from a dilute bile salt-rich model bile

    NASA Astrophysics Data System (ADS)

    Konikoff, Fred M.; Carey, Martin C.

    1994-11-01

    crystals or a new cholesterol polymorph that transforms slowly at physiologic temperature (37°C) into classic plate-like cholesterol monohydrate crystals. Clearly, cholesterol crystallization in model bile is more complex and heterogenous than hitherto believed and monitoring metastable intermediate forms, habits and possibly polymorphs should provide a better framework for studying the physical chemistry of nucleation and crystal growth in native bile as well as promoters and inhibitors of these processes.

  16. NETosis and NADPH oxidase: at the intersection of host defense, inflammation, and injury

    PubMed Central

    Almyroudis, Nikolaos G.; Grimm, Melissa J.; Davidson, Bruce A.; Röhm, Marc; Urban, Constantin F.; Segal, Brahm H.

    2013-01-01

    Neutrophils are armed with both oxidant-dependent and -independent pathways for killing pathogens. Activation of the phagocyte nicotinamide adenine dinucleotide phosphate (NADPH) oxidase constitutes an emergency response to infectious threat and results in the generation of antimicrobial reactive oxidants. In addition, NADPH oxidase activation in neutrophils is linked to activation of granular proteases and generation of neutrophil extracellular traps (NETs). NETosis involves the release of nuclear and granular components that can target extracellular pathogens. NETosis is activated during microbial threat and in certain conditions mimicking sepsis, and can result in both augmented host defense and inflammatory injury. In contrast, apoptosis, the physiological form of neutrophil death, not only leads to non-inflammatory cell death but also contributes to alleviate inflammation. Although there are significant gaps in knowledge regarding the specific contribution of NETs to host defense, we speculate that the coordinated activation of NADPH oxidase and NETosis maximizes microbial killing. Work in engineered mice and limited patient experience point to varying susceptibility of bacterial and fungal pathogens to NADPH oxidase versus NET constituents. Since reactive oxidants and NET constituents can injure host tissue, it is important that these pathways be tightly regulated. Recent work supports a role for NETosis in both acute lung injury and in autoimmunity. Knowledge gained about mechanisms that modulate NETosis may lead to novel therapeutic approaches to limit inflammation-associated injury. PMID:23459634

  17. Cytochrome c oxidase loses catalytic activity and structural integrity during the aging process in Drosophila melanogaster

    SciTech Connect

    Ren, Jian-Ching; Rebrin, Igor; Klichko, Vladimir; Orr, William C.; Sohal, Rajindar S.

    2010-10-08

    Research highlights: {yields} Cytochrome c oxidase loses catalytic activity during the aging process. {yields} Abundance of seven nuclear-encoded subunits of cytochrome c oxidase decreased with age in Drosophila. {yields} Cytochrome c oxidase is specific intra-mitochondrial site of age-related deterioration. -- Abstract: The hypothesis, that structural deterioration of cytochrome c oxidase (CcO) is a causal factor in the age-related decline in mitochondrial respiratory activity and an increase in H{sub 2}O{sub 2} generation, was tested in Drosophila melanogaster. CcO activity and the levels of seven different nuclear DNA-encoded CcO subunits were determined at three different stages of adult life, namely, young-, middle-, and old-age. CcO activity declined progressively with age by 33%. Western blot analysis, using antibodies specific to Drosophila CcO subunits IV, Va, Vb, VIb, VIc, VIIc, and VIII, indicated that the abundance these polypeptides decreased, ranging from 11% to 40%, during aging. These and previous results suggest that CcO is a specific intra-mitochondrial site of age-related deterioration, which may have a broad impact on mitochondrial physiology.

  18. Purification of a polyphenol oxidase isoform from potato (Solanum tuberosum) tubers.

    PubMed

    Marri, Costanza; Frazzoli, Alessandra; Hochkoeppler, Alejandro; Poggi, Valeria

    2003-08-01

    A different expression pattern of polyphenol oxidases has been observed during storage in cultivars of potato (Solanum tuberosum L.) featuring different length of dormancy: a short-dormant cultivar showed, at the end of the dormancy, both the highest polyphenol oxidase activity and the largest number of enzyme isoforms. An isoform of polyphenol oxidase isolated at the end of the physiological dormancy from a short-dormant cultivar has been purified to homogeneity by means of column chromatography on phenyl Sepharose and on Superdex 200. The purification factor has been determined equal to 88, and the molecular mass of the purified isoform has been estimated to be 69 and 340 kDa by SDS polyacrylamide gel electrophoresis and gel filtration on Superdex 200, respectively, indicating this PPO isoform as a multimer. The corresponding zymogram features a diffused single band at the cathodic region of the gel and the pI of this polyphenol oxidase has been calculated equal to 6.5.

  19. Role of the NADPH Oxidases DUOX and NOX4 in Thyroid Oxidative Stress.

    PubMed

    Carvalho, Denise P; Dupuy, Corinne

    2013-09-01

    Somatic mutations are present at high levels in the rat thyroid gland, indicating that the thyrocyte is under oxidative stress, a state in which cellular oxidant levels are high. The most important class of free radicals, or reactive metabolites, is reactive oxygen species (ROS), such as superoxide anion (O2 (-)), hydroxyl radical (OH) and hydrogen peroxide (H2O2). The main source of ROS in every cell type seems to be mitochondrial respiration; however, recent data support the idea that NADPH:O(2) oxidoreductase flavoproteins or simply NADPH oxidases (NOX) are enzymes specialized in controlled ROS generation at the subcellular level. Several decades ago, high concentrations of H2O2 were detected at the apical surface of thyrocytes, where thyroid hormone biosynthesis takes place. Only in the last decade has the enzymatic source of H2O2 involved in thyroid hormone biosynthesis been well characterized. The cloning of two thyroid genes encoding NADPH oxidases dual oxidases 1 and 2 (DUOX1 and DUOX2) revealed that DUOX2 mutations lead to hereditary hypothyroidism in humans. Recent reports have also described the presence of NOX4 in the thyroid gland and have suggested a pathophysiological role of this member of the NOX family. In the present review, we describe the participation of NADPH oxidases not only in thyroid physiology but also in gland pathophysiology, particularly the involvement of these enzymes in the regulation of thyroid oxidative stress.

  20. Role of the NADPH Oxidases DUOX and NOX4 in Thyroid Oxidative Stress

    PubMed Central

    Carvalho, Denise P.; Dupuy, Corinne

    2013-01-01

    Somatic mutations are present at high levels in the rat thyroid gland, indicating that the thyrocyte is under oxidative stress, a state in which cellular oxidant levels are high. The most important class of free radicals, or reactive metabolites, is reactive oxygen species (ROS), such as superoxide anion (O2-), hydroxyl radical (OH) and hydrogen peroxide (H2O2). The main source of ROS in every cell type seems to be mitochondrial respiration; however, recent data support the idea that NADPH:O(2) oxidoreductase flavoproteins or simply NADPH oxidases (NOX) are enzymes specialized in controlled ROS generation at the subcellular level. Several decades ago, high concentrations of H2O2 were detected at the apical surface of thyrocytes, where thyroid hormone biosynthesis takes place. Only in the last decade has the enzymatic source of H2O2 involved in thyroid hormone biosynthesis been well characterized. The cloning of two thyroid genes encoding NADPH oxidases dual oxidases 1 and 2 (DUOX1 and DUOX2) revealed that DUOX2 mutations lead to hereditary hypothyroidism in humans. Recent reports have also described the presence of NOX4 in the thyroid gland and have suggested a pathophysiological role of this member of the NOX family. In the present review, we describe the participation of NADPH oxidases not only in thyroid physiology but also in gland pathophysiology, particularly the involvement of these enzymes in the regulation of thyroid oxidative stress. PMID:24847449

  1. In vivo oxalate degradation by liposome encapsulated oxalate oxidase in rat model of hyperoxaluria

    PubMed Central

    Dahiya, Tulika; Pundir, C.S.

    2013-01-01

    Background & objectives: High level of urinary oxalate substantially increases the risk of hyperoxaluria, a significant risk factor for urolithiasis. The primary goal of this study was to reduce urinary oxalate excretion employing liposome encapsulated oxalate oxidase in animal model. Methods: A membrane bound oxalate oxidase was purified from Bougainvillea leaves. The enzyme in its native form was less effective at the physiological pH of the recipient animal. To increase its functional viability, the enzyme was immobilized on to ethylene maleic anhydride (EMA). Rats were injected with liposome encapsulated EMA- oxalate oxidase and the effect was observed on degradation of oxalic acid. Results: The enzyme was purified to apparent homogeneity with 60-fold purification and 31 per cent yield. The optimum pH of EMA-derivative enzyme was 6.0 and it showed 70 per cent of its optimal activity at pH 7.0. The EMA-bound enzyme encapsulated into liposome showed greater oxalate degradation in 15 per cent casein vitamin B6 deficient fed rats as compared with 30 per cent casein vitamin B6 deficient fed rats and control rats. Interpretation & conclusions: EMA-oxalate oxidase encapsulated liposome caused oxalate degradation in experimental hyperoxaluria indicating that the enzyme could be used as a therapeutic agent in hyperoxaluria leading to urinary stones. PMID:23481063

  2. Acid sphingomyelinase activity is regulated by membrane lipids and facilitates cholesterol transfer by NPC2[S

    PubMed Central

    Oninla, Vincent O.; Breiden, Bernadette; Babalola, Jonathan O.; Sandhoff, Konrad

    2014-01-01

    During endocytosis, membrane components move to intraluminal vesicles of the endolysosomal compartment for digestion. At the late endosomes, cholesterol is sorted out mainly by two sterol-binding proteins, Niemann-Pick protein type C (NPC)1 and NPC2. To study the NPC2-mediated intervesicular cholesterol transfer, we developed a liposomal assay system. (Abdul-Hammed, M., B. Breiden, M. A. Adebayo, J. O. Babalola, G. Schwarzmann, and K. Sandhoff. 2010. Role of endosomal membrane lipids and NPC2 in cholesterol transfer and membrane fusion. J. Lipid Res. 51: 1747–1760.) Anionic lipids stimulate cholesterol transfer between liposomes while SM inhibits it, even in the presence of anionic bis(monoacylglycero)phosphate (BMP). Preincubation of vesicles containing SM with acid sphingomyelinase (ASM) (SM phosphodiesterase, EC 3.1.4.12) results in hydrolysis of SM to ceramide (Cer), which enhances cholesterol transfer. Besides SM, ASM also cleaves liposomal phosphatidylcholine. Anionic phospholipids derived from the plasma membrane (phosphatidylglycerol and phosphatidic acid) stimulate SM and phosphatidylcholine hydrolysis by ASM more effectively than BMP, which is generated during endocytosis. ASM-mediated hydrolysis of liposomal SM was also stimulated by incorporation of diacylglycerol (DAG), Cer, and free fatty acids into the liposomal membranes. Conversely, phosphatidylcholine hydrolysis was inhibited by incorporation of cholesterol, Cer, DAG, monoacylglycerol, and fatty acids. Our data suggest that SM degradation by ASM is required for physiological secretion of cholesterol from the late endosomal compartment, and is a key regulator of endolysosomal lipid digestion. PMID:25339683

  3. Thyroid hormone induction of human cholesterol 7 alpha-hydroxylase (Cyp7a1) in vitro.

    PubMed

    Lammel Lindemann, Jan A; Angajala, Anusha; Engler, David A; Webb, Paul; Ayers, Stephen D

    2014-05-05

    Thyroid hormone (TH) modulates serum cholesterol by acting on TH receptor β1 (TRβ1) in liver to regulate metabolic gene sets. In rodents, one important TH regulated step involves induction of Cyp7a1, an enzyme in the cytochrome P450 family, which enhances cholesterol to bile acid conversion and plays a crucial role in regulation of serum cholesterol levels. Current models suggest, however, that Cyp7a1 has lost the capacity to respond to THs in humans. We were prompted to re-examine TH effects on cholesterol metabolic genes in human liver cells by a recent study of a synthetic TH mimetic which showed that serum cholesterol reductions were accompanied by increases in a marker for bile acid synthesis in humans. Here, we show that TH effects upon cholesterol metabolic genes are almost identical in mouse liver, mouse and human liver primary cells and human hepatocyte cell lines. Moreover, Cyp7a1 is a direct TR target gene that responds to physiologic TR levels through a set of distinct response elements in its promoter. These findings suggest that THs regulate cholesterol to bile acid conversion in similar ways in humans and rodent experimental models and that manipulation of hormone signaling pathways could provide a strategy to enhance Cyp7a1 activity in human patients.

  4. Effect of mixed micellar lipid on the absorption of cholesterol and vitamin D3 into lymph

    PubMed Central

    Thompson, Gilbert R.; Ockner, Robert K.; Isselbacher, Kurt J.

    1969-01-01

    The absorption of endogenous cholesterol, labeled with tracer doses of cholesterol 14C or cholesterol-3H and of near physiological doses of vitamin D3-3H was studied in rats with cannulated intestinal lymphatics. The effects of administering mixed micellar solutions of fatty acid, monoglyceride, and bile salt on the absorption of these labeled sterols was determined. It was observed that the specific activity of free cholesterol and the amounts of vitamin D3 appearing in lymph were significantly increased during the intraduodenal administration of mixed micellar solutions of either linoleic or palmitic acid, in contrast to control rats receiving a micellar solution of taurocholate. These increases were related linearly to the lymph triglyceride level. In addition it was observed that when the linoleic acid solution was administered there was a more marked increase in the ratio of the specific activities of free and esterified cholesterol in lymph than with either the palmitic acid or taurocholate solutions. Additional studies in rats with intact lymphatics showed that the uptake of labeled cholesterol and vitamin D3 from the intestinal lumen into the wall was similar whether the sterols were administered in taurocholate or in mixed micellar solution. These findings suggest that mixed micellar lipid increased the rate of appearance of labeled free cholesterol and vitamin D3 in lymph by enhancing their transport out of the intestinal mucosa, rather than by an effect on uptake. PMID:4303790

  5. Decrease in cholesterol levels during the immunotherapy of cancer with interleukin-2.

    PubMed Central

    Lissoni, P.; Brivio, F.; Pittalis, S.; Perego, M. S.; Ardizzoia, A.; Mauri, O.; Barni, S.; Crispino, S.; Tancini, G.

    1991-01-01

    IL-2, in addition to its immunomodulating and antitumour properties, induces important systemic actions, including cardiovascular, neuroendocrine and metabolic effects. The present study was carried out to evaluate IL-2 effects on cholesterol metabolism. The study included 14 advanced cancer patients (renal carcinoma: ten; colon carcinoma: four), who received IL-2 subcutaneously at a dose of 1.8 x 10(6) IU ml-2 twice daily for 5 days/week for 6 weeks. Venous blood samples were collected 7 days before, on days 0, 3, 7, 14, 21, 42 of IL-2 therapy, and on days 14 and 28 of the rest-period. IL-2 induced a rapid and evident decrease in cholesterol levels, with a normalisation of its concentrations within 7 days in 10/10 hypercholesterolemic patients. The lowest mean levels of cholesterol were reached within the first 2 weeks; after that they still slowly increased. LDL-/HDL-cholesterol ratio was significantly reduced by IL-2 therapy. Cholesterol fall was associated with a marked increase in conjugated biliary acid levels. Finally, triglyceride values increased during IL-2 therapy, but not in a significant manner. These results, by showing that IL-2 exerts an evident and very rapid cholesterol-lowering activity, would represent a further demonstration of the physiological importance of cytokines in the control of cholesterol metabolism. PMID:1931624

  6. Modulation of Chemokine Receptor Function by Cholesterol: New Prospects for Pharmacological Intervention.

    PubMed

    Legler, Daniel F; Matti, Christoph; Laufer, Julia M; Jakobs, Barbara D; Purvanov, Vladimir; Uetz-von Allmen, Edith; Thelen, Marcus

    2017-04-01

    Chemokine receptors are seven transmembrane-domain receptors belonging to class A of G-protein-coupled receptors (GPCRs). The receptors together with their chemokine ligands constitute the chemokine system, which is essential for directing cell migration and plays a crucial role in a variety of physiologic and pathologic processes. Given the importance of orchestrating cell migration, it is vital that chemokine receptor signaling is tightly regulated to ensure appropriate responses. Recent studies highlight a key role for cholesterol in modulating chemokine receptor activities. The steroid influences the spatial organization of GPCRs within the membrane bilayer, and consequently can tune chemokine receptor signaling. The effects of cholesterol on the organization and function of chemokine receptors and GPCRs in general include direct and indirect effects (Fig. 1). Here, we review how cholesterol and some key metabolites modulate functions of the chemokine system in multiple ways. We emphasize the role of cholesterol in chemokine receptor oligomerization, thereby promoting the formation of a signaling hub enabling integration of distinct signaling pathways at the receptor-membrane interface. Moreover, we discuss the role of cholesterol in stabilizing particular receptor conformations and its consequence for chemokine binding. Finally, we highlight how cholesterol accumulation, its deprivation, or cholesterol metabolites contribute to modulating cell orchestration during inflammation, induction of an adaptive immune response, as well as to dampening an anti-tumor immune response.

  7. A novel chemiluminescence sensor for sensitive detection of cholesterol based on the peroxidase-like activity of copper nanoclusters

    PubMed Central

    Xu, Shuangjiao; Wang, Yanqin; Zhou, Dayun; Kuang, Meng; Fang, Dan; Yang, Weihua; Wei, Shoujun; Ma, Lei

    2016-01-01

    A sensitive and selective chemiluminescence (CL) sensor based on the peroxidase-like activity of copper nanoclusters was established for the detection of cholesterol. Copper nanoclusters catalyse the CL reaction between luminol and H2O2. Because H2O2 is the oxidative product of cholesterol in the presence of cholesterol oxidase, the oxidation of cholesterol can be quantitatively converted to a CL response by combining the two reactions. The proposed method is simple and can be completed in a few minutes with high sensitivity. Under the optimal conditions, the CL intensity was proportional to the concentration of cholesterol over a wide range of 0.05–10 mM, with a detection limit of 1.5 μM. Furthermore, the method was successfully applied to determine cholesterol in milk powder and human serum with satisfactory accuracy and precision. This method expands the applications of nano-mimic enzymes in the field of CL-based sensors. PMID:27966650

  8. Regulation of biliary cholesterol secretion in the rat. Role of hepatic cholesterol esterification.

    PubMed Central

    Nervi, F; Bronfman, M; Allalón, W; Depiereux, E; Del Pozo, R

    1984-01-01

    Although the significance of the enterohepatic circulation of bile salts in the solubilization and biliary excretion of cholesterol is well established, little is known about the intrahepatic determinants of biliary cholesterol output. Studies were undertaken to elucidate some of these determinants in the rat. Feeding 1% diosgenin for 1 wk increased biliary cholesterol output and saturation by 400%. Bile flow, biliary bile salt, phospholipid and protein outputs remained in the normal range. When ethynyl estradiol (EE) was injected into these animals, biliary cholesterol output decreased to almost normal levels under circumstances of minor changes in the rates of biliary bile salt and phospholipid outputs. Similarly, when chylomicron cholesterol was intravenously injected into diosgenin-fed animals, biliary cholesterol output significantly decreased as a function of the dose of chylomicron cholesterol administered. Relative rates of hepatic cholesterol synthesis and esterification were measured in isolated hepatocytes. Although hepatic cholesterogenesis increased 300% in diosgenin-fed animals, the contribution of newly synthesized cholesterol to total biliary cholesterol output was only 19 +/- 9%, compared with 12 +/- 6% in control and 15 +/- 5% in diosgenin-fed and EE-injected rats. The rate of oleate incorporation into hepatocytic cholesterol esters was 30% inhibited in diosgenin-fed rats. When EE was injected into these animals, the rate of cholesterol esterification increased to almost 300%. To investigate further the interrelationship between hepatic cholesterol esterification and biliary cholesterol output, we studied 21 diosgenin-fed rats. Six of them received in addition EE and 10 received chylomicron cholesterol. The relationships between biliary cholesterol output as a function of both microsomal acyl-CoA:cholesterol acyltransferase (ACAT) activity and hepatic cholesterol ester concentration were significantly correlated in a reciprocal manner. From these

  9. Beyond cholesterol: the enigma of atherosclerosis revisited.

    PubMed

    Bhakdi, Sucharit; Lackner, Karl J; Han, Shan-Rui; Torzewski, Michael; Husmann, Matthias

    2004-04-01

    Atherosclerosis is widely regarded as a chronic inflammatory disease that develops as a consequence of entrapment of low density lipoprotein (LDL) in the arterial intima. Native LDL lacks inflammatory properties, so the lipoprotein must undergo biochemical alterations in order to become atherogenic. Modification is commonly regarded as being dangerous because it bestows inflammatory properties onto the lipoprotein. Most current models consider oxidation to be the decisive modifying event. Here, we submit a different concept for discussion. We propose that modification of tissue-entrapped LDL is required because it enables the lipoprotein to signal to the immune system and effect its own removal. Oxidation would be too haphazard to fulfill this function. We summarize the evidence indicating that modification occurs through the action of ubiquitous hydrolytic enzymes. Enzymatically remodeled LDL binds C-reactive protein. C-reactive protein bound to remodeled LDL not only activates complement but also regulates it by inhibiting activation of the terminal complement cascade. Simultaneously, epitopes are exposed to enable the lipoprotein to be recognized and taken up by macrophages. The high density lipoprotein-dependent reverse transport pathway concludes the sequence of events that clear tissues of cholesterol in a non-inflammatory manner very similar to what has been described for the removal of apoptotic cells. It is proposed that these physiological processes occur throughout life without harm, pathology evolving only when the machinery suffers overload. Detrimental effects are then evoked primarily by the unreigned activation of complement, macrophages, and other effectors of the immune system in the lesions.

  10. Unending saga of fighting cholesterol: Evacetrapib is another fallen warrior.

    PubMed

    Simko, V

    2016-01-01

    Despite an enormous success in reducing morbidity and mortality in cardiovascular disease (CVD), statins and modern antihypertensive medications are not universally effective. Research has focused on potential molecular targets in dyslipidemia. Decades-long, expensive trial with CETP (cholesterylester transfer protein) inhibitor evacetrapib, came in April 2016 to crash landing. Despite dramatic improvement in "good" HDL-cholesterol and decline in "bad" LDL-C, the effect of evacetrapib in CVD patients was comparable to placebo. Notwithstanding failure in this molecular target field, results with another agent the PCSK9 inhibitor, may identify the molecular site that would normalize dyslipidemia, without harming physiologically essential lipids (Fig. 2, Ref. 19).

  11. Development of the layer-by-layer biosensor using graphene films: application for cholesterol determination

    NASA Astrophysics Data System (ADS)

    Binh Nguyen, Hai; Chuc Nguyen, Van; Nguyen, Van Tu; Doan Le, Huu; Quynh Nguyen, Van; Thanh Tam Ngo, Thi; Phuc Do, Quan; Nghia Nguyen, Xuan; Phan, Ngoc Minh; Tran, Dai Lam

    2013-03-01

    The preparation and characterization of graphene films for cholesterol determination are described. The graphene films were synthesized by thermal chemical vapor deposition (CVD) method. Methane gas (CH4) and copper tape were used as carbon source and catalyst in the graphene growth process, respectively. The intergrated array was fabricated by using micro-electro-mechanical systems (MEMS) technology in which Fe3O4-doped polyaniline (PANi) film was electropolymerized on Pt/Gr electrodes. The properties of the Pt/Gr/PANi/Fe3O4 films were investigated by field-emission scanning electron microscopy (FE-SEM), Raman spectroscopy and electrochemical techniques. Cholesterol oxidase (ChOx) has been immobilized onto the working electrode with glutaraldehyde agent. The cholesterol electrochemical biosensor shows high sensitivity (74 μA mM-1 cm-2) and fast response time (<5 s). A linear calibration plot was obtained in the wide cholesterol concentration range from 2 to 20 mM and correlation coefficient square (R2) of 0.9986. This new layer-by-layer biosensor based on graphene films promises many practical applications.

  12. Highly-sensitive cholesterol biosensor based on platinum-gold hybrid functionalized ZnO nanorods.

    PubMed

    Wang, Chengyan; Tan, Xingrong; Chen, Shihong; Yuan, Ruo; Hu, Fangxin; Yuan, Dehua; Xiang, Yun

    2012-05-30

    A novel scheme for the fabrication of gold/platinum hybrid functionalized ZnO nanorods (Pt-Au@ZnONRs) and multiwalled carbon nanotubes (MWCNTs) modified electrode is presented and its application for cholesterol biosensor is investigated. Firstly, Pt-Au@ZnONRs was prepared by the method of chemical synthesis. Then, the Pt-Au@ZnONRs suspension was dropped on the MWCNTs modified glass carbon electrode, and followed with cholesterol oxidase (ChOx) immobilization by the adsorbing interaction between the nano-material and ChOx as well as the electrostatic interaction between ZnONRs and ChOx molecules. The combination of MWCNTs and Pt-Au@ZnONRs provided a favorable environment for ChOx and resulted in the enhanced analytical response of the biosensor. The resulted biosensor exhibited a linear response to cholesterol in the wide range of 0.1-759.3 μM with a low detection limit of 0.03 μM and a high sensitivity of 26.8 μA mM(-1). The calculated apparent Michaelis constant K(M)(app) was 1.84 mM, indicating a high affinity between ChOx and cholesterol.

  13. Molecular Organization and Dynamics of Cholesterol Nanodomains in Fluid Lipid Bilayers

    NASA Astrophysics Data System (ADS)

    Cheng, Kwan; Cannon, Brian; Zhu, Qing; Vaughn, Mark; Huang, Juyang

    2007-03-01

    The molecular organization and dynamics of cholesterol nanodomains in lipid bilayers containing phospholipid (PL) and cholesterol (CHOL) were examined using FTIR, time-resolved fluorescence and surface-acting cholesterol oxidase enzyme (COD). In binary PL/CHOL system, abrupt changes in the PL C=O frequency, fluorescence lifetime and rotation rate of chain labeled PL, and the rate of cholesterol oxidation by COD were observed at ˜ 40 mole% of CHO. For ternary PL1/PL2/CHOL system composed of two dissimilar PL's of different chain lengths or headgroup sizes, abrupt changes at PL1/PL2˜ 2 were found. The above critical lipid compositions agree favorably with the theoretical compositions predicted by the lipid superlattice model, suggesting that PL of different structures and CHOL can form regularly distributed, or superlattice-like, nanodomains at the polar headgroup and the acyl chain levels, respectively. The feasibility of the coexistence of headgroup and acyl chain nanodomains was demonstrated by a spacing filling model and MD simulations. We speculate that lipid superlattice domains may play an important role in the regulation of protein/lipid interaction in cells.

  14. Fabrication and characterization of junctionless carbon nanotube field effect transistor for cholesterol detection

    SciTech Connect

    Barik, Md. Abdul Dutta, Jiten Ch.

    2014-08-04

    We have reported fabrication and characterization of polyaniline (PANI)/zinc oxide (ZnO) membrane-based junctionless carbon nanotube field effect transistor deposited on indium tin oxide glass plate for the detection of cholesterol (0.5–22.2 mM). Cholesterol oxidase (ChOx) has been immobilized on the PANI/ZnO membrane by physical adsorption technique. Electrical response has been recorded using digital multimeter (Agilent 3458A) in the presence of phosphate buffer saline of 50 mM, pH 7.0, and 0.9% NaCl contained in a glass pot. The results of response studies for cholesterol reveal linearity as 0.5–16.6 mM and improved sensitivity of 60 mV/decade in good agreement with Nernstian limit ∼59.2 mV/decade. The life time of this sensor has been found up to 5 months and response time of 1 s. The limit of detection with regression coefficient (r) ∼ 0.998 and Michaelis-Menten constant (K{sub m}) were found to be ∼0.25 and 1.4 mM, respectively, indicating high affinity of ChOx to cholesterol. The results obtained in this work show negligible interference with glucose and urea.

  15. Fabrication and characterization of junctionless carbon nanotube field effect transistor for cholesterol detection

    NASA Astrophysics Data System (ADS)

    Barik, Md. Abdul; Dutta, Jiten Ch.

    2014-08-01

    We have reported fabrication and characterization of polyaniline (PANI)/zinc oxide (ZnO) membrane-based junctionless carbon nanotube field effect transistor deposited on indium tin oxide glass plate for the detection of cholesterol (0.5-22.2 mM). Cholesterol oxidase (ChOx) has been immobilized on the PANI/ZnO membrane by physical adsorption technique. Electrical response has been recorded using digital multimeter (Agilent 3458A) in the presence of phosphate buffer saline of 50 mM, pH 7.0, and 0.9% NaCl contained in a glass pot. The results of response studies for cholesterol reveal linearity as 0.5-16.6 mM and improved sensitivity of 60 mV/decade in good agreement with Nernstian limit ˜59.2 mV/decade. The life time of this sensor has been found up to 5 months and response time of 1 s. The limit of detection with regression coefficient (r) ˜ 0.998 and Michaelis-Menten constant (Km) were found to be ˜0.25 and 1.4 mM, respectively, indicating high affinity of ChOx to cholesterol. The results obtained in this work show negligible interference with glucose and urea.

  16. Impurity-induced peroxidase mimicry of nanoclay and its potential for the spectrophotometric determination of cholesterol.

    PubMed

    Aneesh, K; Vusa, Chiranjeevi Srinivasa Rao; Berchmans, Sheela

    2016-09-01

    A green version of the "Fe" impurity-induced peroxidase mimicry exhibited by simple and cheap substrate "nanoclay (NC)" along with the highly sensitive amperometric and spectrophotometric determination of cholesterol is demonstrated. The "Fe" impurity can act as the catalyst center for hydrogen peroxide reduction similar to the horseradish peroxidase (HRP)-catalyzed reaction. The Michaelis-Menten constant for the NC-catalyzed reaction is found to be lower than that of the HRP-catalyzed reaction indicating high affinity for the substrate. The NC-modulated peroxidase-like catalytic activity originates from the electron transfer between the reducing substrate in the catalyst center and H2O2 with the intermediate generation of hydroxyl radicals. The peroxidase mimicry is successfully applied for the low-potential electrochemical detection of H2O2 (linear detection range 1.96-10.71 mM, R (2) = 0.97). The H2O2 sensing platform is further modified with cholesterol oxidase (CHOx) for the spectrophotometric (linear detection range 50-244 μM, R (2) = 0.99) and amperometric detection of cholesterol (linear detection range 0.099-1.73 mM, R (2) = 0.998). Graphical abstract Peroxidase mimicry of nanoclay for the determination of cholesterol.

  17. Flower like Bi structures on Pt surface facilitating effective cholesterol biosensing.

    PubMed

    V C, Soorya; Berchmans, Sheela

    2016-07-01

    This work demonstrates effective biosensing of cholesterol with the help of an efficient inorganic H2O2 transducer based on Pt-Bi combined with the organic enzyme platform. It could be shown that the Bi (bismuth) adatoms modified Pt (platinum) surface displays enhanced catalytic oxidation of H2O2 at neutral pH and the catalytic oxidation of H2O2 occurs at a lower potential of 0.25V vs NCE (normal calomel electrode). The sensing platform is highly sensitive and shows linear response towards [H2O2] in the absence of any redox mediator or enzyme. The H2O2 sensing platform, further modified with cholesterol oxidase led to cholesterol biosensing with a sensitivity of 3.41μAmM(-1)cm(-2). The apparent Michaelis-Menten constant (Km(app)) was calculated to be 0.43mM which indicates high binding affinity with the substrate. The cholesterol biosensor does not suffer from the interferences due to other common electroactive species and is highly stable.

  18. Cholesterol, the central lipid of mammalian cells

    PubMed Central

    Maxfield, Frederick R.; van Meer, Gerrit

    2010-01-01

    Summary of recent advances Despite its importance for mammalian cell biology and human health, there are many basic aspects of cholesterol homeostasis that are not well understood. Even for the well-characterized delivery of cholesterol to cells via lipoproteins, a novel regulatory mechanism has been discovered recently, involving a serum protein called PCSK9, which profoundly affects lipoproteins and their receptors. Cells can export cholesterol by processes that require the activity of ABC transporters, but the molecular mechanisms for cholesterol transport remain unclear. Cholesterol levels in different organelles vary by 5–10 fold, and the mechanisms for maintaining these differences are now partially understood. Several proteins have been proposed to play a role in the inter-organelle movement of cholesterol, but many aspects of the mechanisms for regulating intracellular transport and distribution of cholesterol remain to be worked out. The endoplasmic reticulum is the main organelle responsible for regulation of cholesterol synthesis, and careful measurements have shown that the proteins responsible for sterol sensing respond over a very narrow range of cholesterol concentrations to provide very precise, switch-like control over cholesterol synthesis. PMID:20627678

  19. Liver X receptors regulate adrenal cholesterol balance

    PubMed Central

    Cummins, Carolyn L.; Volle, David H.; Zhang, Yuan; McDonald, Jeffrey G.; Sion, Benoît; Lefrançois-Martinez, Anne-Marie; Caira, Françoise; Veyssière, Georges; Mangelsdorf, David J.; Lobaccaro, Jean-Marc A.

    2006-01-01

    Cholesterol is the obligate precursor to adrenal steroids but is cytotoxic at high concentrations. Here, we show the role of the liver X receptors (LXRα and LXRβ) in preventing accumulation of free cholesterol in mouse adrenal glands by controlling expression of genes involved in all aspects of cholesterol utilization, including the steroidogenic acute regulatory protein, StAR, a novel LXR target. Under chronic dietary stress, adrenal glands from Lxrαβ–/– mice accumulated free cholesterol. In contrast, wild-type animals maintained cholesterol homeostasis through basal expression of genes involved in cholesterol efflux and storage (ABC transporter A1 [ABCA1], apoE, SREBP-1c) while preventing steroidogenic gene (StAR) expression. Upon treatment with an LXR agonist that mimics activation by oxysterols, expression of these target genes was increased. Basally, Lxrαβ–/– mice exhibited a marked decrease in ABCA1 and a derepression of StAR expression, causing a net decrease in cholesterol efflux and an increase in steroidogenesis. These changes occurred under conditions that prevented the acute stress response and resulted in a phenotype more specific to the loss of LXRα, including hypercorticosteronemia, cholesterol ester accumulation, and adrenomegaly. These results imply LXRα provides a safety valve to limit free cholesterol levels as a basal protective mechanism in the adrenal gland, where cholesterol is under constant flux. PMID:16823488

  20. Regulation of Cholesterol Metabolism in the Dog

    PubMed Central

    Pertsemlidis, Demetrius; Kirchman, Ernest H.; Ahrens, E. H.

    1973-01-01

    In six adult pedigreed dogs the effects of high-cholesterol diets or bile diversion on the sizes of body cholesterol pools were studied at autopsy. Total body cholesterol was determined by measuring the cholesterol content of discrete organs and of the eviscerated carcass: neither cholesterol feeding nor bile diversion had altered total body cholesterol or the cholesterol content of individual organs and tissues. These results validated the conclusion based on sterol balance data obtained during life, that high-cholesterol feeding did not lead to substantial expansion of tissue cholesterol pools. The total amount of exchangeable cholesterol in the animals with an intact enterohepatic circulation, when estimated from isotopic data, was essentially the same as that measured chemically: this indicated that there was little or no nonexchangeable cholesterol in these dogs, except in skin and nervous tissue, regardless of the cholesterol content of the diet. This correspondence of estimates was not obtained in the bile-diverted dogs: we propose that the defect in the isotopic estimates was due to the accelerated rate of cholesterol synthesis in these animals. Gross and microscopic morphology of all organs and tissues was examined. Abnormal findings were limited to the biliary tract and the urinary collecting system of the two bile-diverted dogs: multiple bilirubinate gallstones were found, and mild pyelitis and ureteritis were present on the side of the bilio-renal shunt, but the urinary bladder was normal. Histologic evidence of moderate degree of cholangitis was found in one of the two bile-shunted dogs, but in neither dog was there evidence of impedance of bile flow. PMID:4727465

  1. 21 CFR 866.2420 - Oxidase screening test for gonorrhea.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Section 866.2420 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2420 Oxidase... ingredient that will react with cytochrome oxidase. When cytochrome oxidase is present, the swab turns a...

  2. 21 CFR 866.2420 - Oxidase screening test for gonorrhea.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Section 866.2420 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2420 Oxidase... ingredient that will react with cytochrome oxidase. When cytochrome oxidase is present, the swab turns a...

  3. 21 CFR 866.2420 - Oxidase screening test for gonorrhea.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Section 866.2420 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2420 Oxidase... ingredient that will react with cytochrome oxidase. When cytochrome oxidase is present, the swab turns a...

  4. 21 CFR 866.2420 - Oxidase screening test for gonorrhea.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Section 866.2420 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2420 Oxidase... ingredient that will react with cytochrome oxidase. When cytochrome oxidase is present, the swab turns a...

  5. 21 CFR 866.2420 - Oxidase screening test for gonorrhea.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Section 866.2420 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2420 Oxidase... ingredient that will react with cytochrome oxidase. When cytochrome oxidase is present, the swab turns a...

  6. Thiols as myeloperoxidase-oxidase substrates.

    PubMed Central

    Svensson, B E

    1988-01-01

    Nine low-Mr thiols were compared with regard to their ability to function as myeloperoxidase-oxidase substrates under conditions where no auto-oxidation of the thiols could be observed. The methyl and ethyl esters of cysteine were found to be about twice as active as cysteamine at pH 7.0, in terms of increased O2 consumption. Cysteine itself was poorly active, whereas glutathione, N-acetylcysteine and penicillamine were completely inactive as myeloperoxidase-oxidase substrates under these conditions. The structure-activity relationships indicated that both a free thiol and free amino group were required for peroxidase-oxidase activity, and also that a free carboxy group abolished activity. In analogy with cysteamine, the activities of both cysteine esters were inhibited by superoxide dismutase (less than 5 micrograms/ml) and by catalase and not by the hydroxyl-radical scavenger mannitol. In contrast with cysteamine, the activities of both cysteine esters were stimulated more than 2-fold by high concentrations (greater than 5 micrograms/ml) of superoxide dismutase. The activities of both cysteine esters exhibited broad pH optima at pH 7. A mechanism for the myeloperoxidase-oxidase oxidation of the cysteine esters is proposed, which is partly different from that previously proposed for cysteamine. PMID:2845919

  7. Exploiting algal NADPH oxidase for biophotovoltaic energy

    DOE PAGES

    Anderson, Alexander; Laohavisit, Anuphon; Blaby, Ian K.; ...

    2015-01-29

    Photosynthetic microbes exhibit light-dependent electron export across the cell membrane, which can generate electricity in biological photovoltaic (BPV) devices. How electrons are exported remains to be determined; the identification of mechanisms would help selection or generation of photosynthetic microbes capable of enhanced electrical output. We show that plasma membrane NADPH oxidase activity is a significant component of light-dependent generation of electricity by the unicellular green alga Chlamydomonas reinhardtii. NADPH oxidases export electrons across the plasma membrane to form superoxide anion from oxygen. The C. reinhardtii mutant lacking the NADPH oxidase encoded by RBO1 is impaired in both extracellular superoxide anionmore » production and current generation in a BPV device. Complementation with the wild-type gene restores both capacities, demonstrating the role of the enzyme in electron export. Monitoring light-dependent extracellular superoxide production with a colorimetric assay is shown to be an effective way of screening for electrogenic potential of candidate algal strains. Furthermore, the results show that algal NADPH oxidases are important for superoxide anion production and open avenues for optimizing the biological component of these devices.« less

  8. Exploiting algal NADPH oxidase for biophotovoltaic energy.

    PubMed

    Anderson, Alexander; Laohavisit, Anuphon; Blaby, Ian K; Bombelli, Paolo; Howe, Christopher J; Merchant, Sabeeha S; Davies, Julia M; Smith, Alison G

    2016-01-01

    Photosynthetic microbes exhibit light-dependent electron export across the cell membrane, which can generate electricity in biological photovoltaic (BPV) devices. How electrons are exported remains to be determined; the identification of mechanisms would help selection or generation of photosynthetic microbes capable of enhanced electrical output. We show that plasma membrane NADPH oxidase activity is a significant component of light-dependent generation of electricity by the unicellular green alga Chlamydomonas reinhardtii. NADPH oxidases export electrons across the plasma membrane to form superoxide anion from oxygen. The C. reinhardtii mutant lacking the NADPH oxidase encoded by RBO1 is impaired in both extracellular superoxide anion production and current generation in a BPV device. Complementation with the wild-type gene restores both capacities, demonstrating the role of the enzyme in electron export. Monitoring light-dependent extracellular superoxide production with a colorimetric assay is shown to be an effective way of screening for electrogenic potential of candidate algal strains. The results show that algal NADPH oxidases are important for superoxide anion production and open avenues for optimizing the biological component of these devices.

  9. An oxidase road to platelet adhesion.

    PubMed

    Krause, Diane S

    2016-03-17

    Platelet adhesion to collagen via collagen receptors is an important part of thrombosis. In this issue of Blood, Matsuura et al identify collagen receptors as previously unrecognized targets of the extracellular enzyme lysyl oxidase (LOX), the level of which is increased in myeloproliferative neoplasms (MPNs) and other conditions associated with pathological thromboses.

  10. Polyphenol oxidase activity in annual forage clovers

    USDA-ARS?s Scientific Manuscript database

    Polyphenol oxidase (PPO)-mediated phenol reactions in red clover (Trifolium pratense L.) bind forage protein and reduce proteolysis, producing beneficial effects on forage protein degradability, silage fermentation, and soil-N cycling. We evaluated PPO activity in seven previously untested annual c...

  11. A colorimetric assay for cytokinin oxidase.

    PubMed

    Libreros-Minotta, C A; Tipton, P A

    1995-11-01

    A simple and rapid colorimetric assay for cytokinin oxidase is described. The assay is based on the formation of a Schiff base between the enzymatic reaction product 3-methyl-2-butenal and p-aminophenol. The assay is effective in the submicromolar concentration range and can be used in crude plant extracts as well as in more highly purified preparations.

  12. Metabolism of xenobiotics by aldehyde oxidase.

    PubMed

    Dalvie, Deepak; Zientek, Michael

    2015-02-02

    Aldehyde oxidase (AO) is a cytosolic molybdoflavoprotein whose contribution to the metabolism and clearance of xenobiotics-containing heterocyclic rings has attracted increased interest in recent years. This unit details methods for identification and confirmation of AO as a metabolic pathway as well as a method for estimating clearance of compounds that are AO substrates. Copyright © 2015 John Wiley & Sons, Inc.

  13. Reduction of blood serum cholesterol

    NASA Technical Reports Server (NTRS)

    Winitz, M. (Inventor)

    1974-01-01

    By feeding a human subject as the sole source of sustenance a defined diet wherein the carbohydrate consists substantially entirely of glucose, maltose or a polysaccharide of glucose, the blood serum cholesterol level of the human subject is substantially reduced. If 25 percent of the carbohydrate is subsequently supplied in the form of sucrose, an immediate increase from the reduced level is observed. The remainder of the defined diet normally includes a source of amino acids, such as protein or a protein hydrolysate, vitamins, minerals and a source of essential fatty acid.

  14. Microvascular display of xanthine oxidase and NADPH oxidase in the spontaneously hypertensive rat.

    PubMed

    DeLano, Frank A; Parks, Dale A; Ruedi, Julie M; Babior, Bernard M; Schmid-Schönbein, Geert W

    2006-01-01

    Oxygen free radical production in hypertension may be associated with elevated arteriolar tone and organ injury. Previous results suggest an enhanced level of oxygen free radical formation in microvascular endothelium and in circulating neutrophils associated with xanthine oxidase activity in the spontaneously hypertensive rats (SHR) compared with their normotensive controls, the Wistar Kyoto rats (WKY). The aim of this study was to gain more detailed understanding of where oxidative enzymes are located in the microcirculation. An approach was developed to delineate the cellular distribution of two selected oxidative enzymes, xanthine oxidase and nicotinamide adenine dinucleotide phosphate (NADPH) dependent oxidase (protein 67-kDa fraction). Immunolabeling with peroxidase substrate was utilized, which permits full delineation of the primary antibody in all microvascular structures of the mesentery. Xanthine oxidase is present in the endothelium of all segments of the microcirculation, in mast cells, and in parenchymal cells of the mesentery. NADPH oxidase can be detected in the endothelium, leukocytes, and mast cells and with lower levels in parenchymal cells. The mesentery of WKY and SHR has similar enzyme distributions with enhancements on the arteriolar and venular side of the microcirculation that coincide with the sites of enhanced free radical production recently reported. Immune label measurements under standardized conditions indicate that both enzymes are significantly enhanced in the SHR. Adrenalectomy, which serves to reduce the blood pressure and free radical production of the SHR to normotensive levels, leads to a reduction of NADPH and xanthine oxidase to normotensive levels, while supplementation of adrenalectomized SHR with dexamethasone significantly increases the oxidase expression in several parts of the microcirculation to levels above the WKY rats. The results indicate that enhanced expression of NADPH and xanthine oxidase in the SHR depends on

  15. The Insertion and Transport of Anandamide in Synthetic Lipid Membranes Are Both Cholesterol-Dependent

    PubMed Central

    Di Pasquale, Eric; Chahinian, Henri; Sanchez, Patrick; Fantini, Jacques

    2009-01-01

    Background Anandamide is a lipid neurotransmitter which belongs to a class of molecules termed the endocannabinoids involved in multiple physiological functions. Anandamide is readily taken up into cells, but there is considerable controversy as to the nature of this transport process (passive diffusion through the lipid bilayer vs. involvement of putative proteic transporters). This issue is of major importance since anandamide transport through the plasma membrane is crucial for its biological activity and intracellular degradation. The aim of the present study was to evaluate the involvement of cholesterol in membrane uptake and transport of anandamide. Methodology/Principal Findings Molecular modeling simulations suggested that anandamide can adopt a shape that is remarkably complementary to cholesterol. Physicochemical studies showed that in the nanomolar concentration range, anandamide strongly interacted with cholesterol monolayers at the air-water interface. The specificity of this interaction was assessed by: i) the lack of activity of structurally related unsaturated fatty acids (oleic acid and arachidonic acid at 50 nM) on cholesterol monolayers, and ii) the weak insertion of anandamide into phosphatidylcholine or sphingomyelin monolayers. In agreement with these data, the presence of cholesterol in reconstituted planar lipid bilayers triggered the stable insertion of anandamide detected as an increase in bilayer capacitance. Kinetics transport studies showed that pure phosphatidylcholine bilayers were weakly permeable to anandamide. The incorporation of cholesterol in phosphatidylcholine bilayers dose-dependently stimulated the translocation of anandamide. Conclusions/Significance Our results demonstrate that cholesterol stimulates both the insertion of anandamide into synthetic lipid monolayers and bilayers, and its transport across bilayer membranes. In this respect, we suggest that besides putative anandamide protein-transporters, cholesterol could

  16. ACAT-2, a second mammalian acyl-CoA:cholesterol acyltransferase. Its cloning, expression, and characterization.

    PubMed

    Cases, S; Novak, S; Zheng, Y W; Myers, H M; Lear, S R; Sande, E; Welch, C B; Lusis, A J; Spencer, T A; Krause, B R; Erickson, S K; Farese, R V

    1998-10-09

    The synthesis of cholesterol esters by acyl-CoA:cholesterol acyltransferase (ACAT, EC 2.3.1.26) is an important component of cellular cholesterol homeostasis. Cholesterol ester formation also is hypothesized to be important in several physiologic processes, including intestinal cholesterol absorption, hepatic lipoprotein production, and macrophage foam cell formation in atherosclerotic lesions. Mouse tissue expression studies and the disruption of the mouse ACAT gene (Acact) have indicated that more than one ACAT exists in mammals and specifically that another enzyme is important in mouse liver and intestine. We now describe a second mammalian ACAT enzyme, designated ACAT-2, that is 44% identical to the first cloned mouse ACAT (henceforth designated ACAT-1). Infection of H5 insect cells with an ACAT-2 recombinant baculovirus resulted in expression of a approximately 46-kDa protein in cell membranes that was associated with high levels of cholesterol esterification activity. Both ACAT-1 and ACAT-2 also catalyzed the esterification of the 3beta-hydroxyl group of a variety of oxysterols. Cholesterol esterification activities for ACAT-1 and ACAT-2 exhibited different IC50 values when assayed in the presence of several ACAT-specific inhibitors, demonstrating that ACAT inhibitors can selectively target specific forms of ACAT. ACAT-2 was expressed primarily in mouse liver and small intestine, supporting the hypothesis that ACAT-2 contributes to cholesterol esterification in these tissues. The mouse ACAT-2 gene (Acact2) maps to chromosome 15 in a region containing a quantitative trait locus influencing plasma cholesterol levels. The identification and cloning of ACAT-2 will facilitate molecular approaches to understanding the role of ACAT enzymes in mammalian biology.

  17. Structure–function characterization reveals new catalytic diversity in the galactose oxidase and glyoxal oxidase family

    PubMed Central

    Yin, DeLu (Tyler); Urresti, Saioa; Lafond, Mickael; Johnston, Esther M.; Derikvand, Fatemeh; Ciano, Luisa; Berrin, Jean-Guy; Henrissat, Bernard; Walton, Paul H.; Davies, Gideon J.; Brumer, Harry

    2015-01-01

    Alcohol oxidases, including carbohydrate oxidases, have a long history of research that has generated fundamental biological understanding and biotechnological applications. Despite a long history of study, the galactose 6-oxidase/glyoxal oxidase family of mononuclear copper-radical oxidases, Auxiliary Activity Family 5 (AA5), is currently represented by only very few characterized members. Here we report the recombinant production and detailed structure–function analyses of two homologues from the phytopathogenic fungi Colletotrichum graminicola and C. gloeosporioides, CgrAlcOx and CglAlcOx, respectively, to explore the wider biocatalytic potential in AA5. EPR spectroscopy and crystallographic analysis confirm a common active-site structure vis-à-vis the archetypal galactose 6-oxidase from Fusarium graminearum. Strikingly, however, CgrAlcOx and CglAlcOx are essentially incapable of oxidizing galactose and galactosides, but instead efficiently catalyse the oxidation of diverse aliphatic alcohols. The results highlight the significant potential of prospecting the evolutionary diversity of AA5 to reveal novel enzyme specificities, thereby informing both biology and applications. PMID:26680532

  18. Structure-function characterization reveals new catalytic diversity in the galactose oxidase and glyoxal oxidase family.

    PubMed

    Yin, DeLu Tyler; Urresti, Saioa; Lafond, Mickael; Johnston, Esther M; Derikvand, Fatemeh; Ciano, Luisa; Berrin, Jean-Guy; Henrissat, Bernard; Walton, Paul H; Davies, Gideon J; Brumer, Harry

    2015-12-18

    Alcohol oxidases, including carbohydrate oxidases, have a long history of research that has generated fundamental biological understanding and biotechnological applications. Despite a long history of study, the galactose 6-oxidase/glyoxal oxidase family of mononuclear copper-radical oxidases, Auxiliary Activity Family 5 (AA5), is currently represented by only very few characterized members. Here we report the recombinant production and detailed structure-function analyses of two homologues from the phytopathogenic fungi Colletotrichum graminicola and C. gloeosporioides, CgrAlcOx and CglAlcOx, respectively, to explore the wider biocatalytic potential in AA5. EPR spectroscopy and crystallographic analysis confirm a common active-site structure vis-à-vis the archetypal galactose 6-oxidase from Fusarium graminearum. Strikingly, however, CgrAlcOx and CglAlcOx are essentially incapable of oxidizing galactose and galactosides, but instead efficiently catalyse the oxidation of diverse aliphatic alcohols. The results highlight the significant potential of prospecting the evolutionary diversity of AA5 to reveal novel enzyme specificities, thereby informing both biology and applications.

  19. Inhibition of rat fat cell lipolysis by monoamine oxidase and semicarbazide-sensitive amine oxidase substrates.

    PubMed

    Visentin, Virgile; Prévot, Danielle; Marti, Luc; Carpéné, Christian

    2003-04-18

    It has been demonstrated that amine oxidase substrates stimulate glucose transport in cardiomyocytes and adipocytes, promote adipogenesis in pre-adipose cell lines and lower blood glucose in diabetic rats. These insulin-like effects are dependent on amine oxidation by semicarbazide-sensitive amine oxidase or by monoamine oxidase. The present study aimed to investigate whether amine oxidase substrates also exhibit another insulin-like property, the inhibition of lipolysis. We therefore tested the influence of tyramine and benzylamine on lipolytic activity in rat adipocytes. These amines did not modify basal lipolysis but dose-dependently counteracted the stimulation induced by lipolytic agents. The response to 10 nM isoprenaline was totally inhibited by tyramine 1 mM. The blockade produced by inhibition of amine oxidase activity or by 1 mM glutathione suggested that the generation of oxidative species, which occurs during amine oxidation, was involved in tyramine antilipolytic effect. Among the products resulting from amine oxidation, only hydrogen peroxide was antilipolytic in a manner that was potentiated by vanadate, as for tyramine or benzylamine. Antilipolytic responses to tyramine and to insulin were sensitive to wortmannin. These data suggest that inhibition of lipolysis is a novel insulin-like effect of amine oxidase substrates which is mediated by hydrogen peroxide generated during amine oxidation.

  20. Physiological Acoustics

    NASA Astrophysics Data System (ADS)

    Young, Eric D.

    The analysis of physiological sound in the peripheral auditory system solves three important problems. First, sound energy impinging on the head must be captured and presented to the transduction apparatus in the ear as a suitable mechanical signal; second, this mechanical signal needs to be transduced into a neural representation that can be used by the brain; third, the resulting neural representation needs to be analyzed by central neurons to extract information useful to the animal. This chapter provides an overview of some aspects of the first two of these processes. The description is entirely focused on the mammalian auditory system, primarily on human hearing and on the hearing of a few commonly used laboratory animals (mainly rodents and carnivores). Useful summaries of non-mammalian hearing are available [1]. Because of the large size of the literature, review papers are referenced wherever possible.

  1. [Diagnostic importance of HDL cholesterol determination].

    PubMed

    Reissner, J; Herrmann, W

    1990-01-01

    The present paper describes the sensitivity to quantification of changes of HDL-cholesterol in serum by two different precipitation and analytical techniques during the treatment of patients. After the precipitation of VLDL and LDL by phosphotungstic acid/magnesium chloride the chemical determination of HDL-cholesterol in serum with the Liebermann-Burchard reaction yields different results in comparison to enzymatic HDL-cholesterol determined in serum supernatant after the precipitation by polyethylene glycol 20.000. Correlation analyses of apolipoprotein A-I with enzymatic HDL-, HDL2-, HDL3-cholesterol or electrophoretic alpha-cholesterol demonstrate that the therapeutically induced changes (by training and diet) of lipid composition are more correctly reflected by the enzymatic determination of HDL-cholesterol after serum precipitation by polyethylene glycol.

  2. microRNAs and cholesterol metabolism

    PubMed Central

    Moore, Kathryn J.; Rayner, Katey J.; Suárez, Yajaira; Fernández-Hernando, Carlos

    2010-01-01

    Cholesterol metabolism is tightly regulated at the cellular level. In addition to classic transcriptional regulation of cholesterol metabolism (e.g., by SREBP and LXR), members of a class of non-coding RNAs termed microRNAs (miRNAs) have recently been identified to be potent post-transcriptional regulators of lipid metabolism genes, including cholesterol homeostasis. We and others have recently shown that miR-33 regulates cholesterol efflux and HDL biogenesis by downregulating the expression of the ABC transporters, ABCA1 and ABCG1. In addition to miR-33, miR-122 and miR-370 have been shown to play important roles in regulating cholesterol and fatty acid metabolism. These new data suggest important roles of microRNAs in the epigenetic regulation of cholesterol metabolism and have opened new avenues for the treatment of dyslipidemias. PMID:20880716

  3. Molecular Mechanism of Cyclodextrin Mediated Cholesterol Extraction

    PubMed Central

    López, Cesar A.; de Vries, Alex H.; Marrink, Siewert J.

    2011-01-01

    The depletion of cholesterol from membranes, mediated by β-cyclodextrin (β-CD) is well known and documented, but the molecular details of this process are largely unknown. Using molecular dynamics simulations, we have been able to study the CD mediated extraction of cholesterol from model membranes, in particular from a pure cholesterol monolayer, at atomic resolution. Our results show that efficient cholesterol extraction depends on the structural distribution of the CDs on the surface of the monolayer. With a suitably oriented dimer, cholesterol is extracted spontaneously on a nanosecond time scale. Additional free energy calculations reveal that the CDs have a strong affinity to bind to the membrane surface, and, by doing so, destabilize the local packing of cholesterol molecules making their extraction favorable. Our results have implications for the interpretation of experimental measurements, and may help in the rational design of efficient CD based nano-carriers. PMID:21455285

  4. Cholesterol Oxidation in Fish and Fish Products.

    PubMed

    Dantas, Natalie Marinho; Sampaio, Geni Rodrigues; Ferreira, Fernanda Silva; Labre, Tatiana da Silva; Torres, Elizabeth Aparecida Ferraz da Silva; Saldanha, Tatiana

    2015-12-01

    Fish and fish products are important from a nutritional point of view due to the presence of high biological value proteins and the high content of polyunsaturated fatty acids, especially those of the n-3 series, and above all eicosapentaenoic acid and docosahexaenoic acid. However, these important food products also contain significant amounts of cholesterol. Although cholesterol participates in essential functions in the human body, it is unstable, especially in the presence of light, oxygen, radiation, and high temperatures that can cause the formation of cholesterol oxidation products or cholesterol oxides, which are prejudicial to human health. Fish processing involves high and low temperatures, as well as other methods for microbiological control, which increases shelf life and consequently added value; however, such processes favor the formation of cholesterol oxidation products. This review brings together data on the formation of cholesterol oxides during the preparation and processing of fish into food products which are recognized and recommended for their nutritional properties.

  5. Imbalanced cholesterol metabolism in Alzheimer's disease.

    PubMed

    Xue-shan, Zhao; Juan, Peng; Qi, Wu; Zhong, Ren; Li-hong, Pan; Zhi-han, Tang; Zhi-sheng, Jiang; Gui-xue, Wang; Lu-shan, Liu

    2016-05-01

    Alzheimer's disease (AD) is a complex and multifactorial neurodegenerative disease that is mainly caused by β-amyloid accumulation. A large number of studies have shown that elevated cholesterol levels may perform a function in AD pathology, and several cholesterol-related gene polymorphisms are associated with this disease. Although numerous studies have shown the important function of cholesterol in AD pathogenesis and development, the underlying mechanism remains unclear. To further elucidate cholesterol metabolism disorder and AD, we first, review metabolism and regulation of the cholesterol in the brain. Second, we summarize the literature stating that hypercholesterolemia is one of the risk factors of AD. Third, we discuss the main mechanisms of abnormal cholesterol metabolism that increase the risk of AD. Finally, the relationships between AD and apolipoprotein E, PCSK9, and LRP1 are discussed in this article.

  6. Hypertriglyceridaemia, postprandial lipaemia and non-HDL cholesterol.

    PubMed

    Stefanutti, Claudia; Labbadia, Giancarlo; Athyros, Vasilios G

    2014-01-01

    Maintaining total cholesterol (TC), low density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C) and triglyceride (TG) levels within healthy limits decreases the risk of atherosclerotic vascular disease (AVD) and cardiovascular (CV) events. The predictive value of elevated TG levels for coronary artery disease (CAD) seen in univariate analysis tends to disappear on multivariate analyses, especially when correction is made for HDL-C. The relationship between TG and HDL-C is complex and not fully understood. Hydrolysis of TG by lipoprotein lipase converts HDL subclass 3 to a larger lipoprotein enriched in both phospholipid and TG. This process occurs in postprandial lipaemia (PPL). An additional factor for the complex relationship between TGs and CV risk is that the lipoproteins which transport plasma TG (chylomicrons, very low density lipoproteins and their remnants) are heterogeneous particles. Therefore, they may differ in their level of atherogenicity. PPL is a physiological process during which plasma lipoproteins and their subclasses undergo variations in concentration and composition following consumption of food, particularly fatty food. "Postprandial hyperlipidaemia" is the quantitative/qualitative alteration of this normal process. These lipoprotein alterations could play a role in the development of CV disease (CVD). However, lipid levels used to evaluate CV risk are usually measured in the fasting state. This review focuses on TG, PPL, postprandial hyperlipidaemia and non-HDL-C, their relationships and potential predictive role in atherogenesis and CVD.

  7. Copper-Containing Amine Oxidases and FAD-Dependent Polyamine Oxidases Are Key Players in Plant Tissue Differentiation and Organ Development

    PubMed Central

    Tavladoraki, Paraskevi; Cona, Alessandra; Angelini, Riccardo

    2016-01-01

    Plant polyamines are catabolized by two classes of amine oxidases, the copper amine oxidases (CuAOs) and the flavin adenine dinucleotide (FAD)-dependent polyamine oxidases (PAOs). These enzymes differ to each other in substrate specificity, catalytic mechanism and subcellular localization. CuAOs and PAOs contribute to several physiological processes both through the control of polyamine homeostasis and as sources of biologically-active reaction products. CuAOs and PAOs have been found at high level in the cell-wall of several species belonging to Fabaceae and Poaceae families, respectively, especially in tissues fated to undertake extensive wall loosening/stiffening events and/or in cells undergoing programmed cell death (PCD). Apoplastic CuAOs and PAOs have been shown to play a key role as a source of H2O2 in light- or developmentally-regulated differentiation events, thus influencing cell-wall architecture and maturation as well as PCD. Moreover, growing evidence suggests a key role of intracellular CuAOs and PAOs in several facets of plant development. Here, we discuss recent advances in understanding the contribution of different CuAOs/PAOs, as well as their cross-talk with different intracellular and apoplastic metabolic pathways, in tissue differentiation and organ development. PMID:27446096

  8. Copper-Containing Amine Oxidases and FAD-Dependent Polyamine Oxidases Are Key Players in Plant Tissue Differentiation and Organ Development.

    PubMed

    Tavladoraki, Paraskevi; Cona, Alessandra; Angelini, Riccardo

    2016-01-01

    Plant polyamines are catabolized by two classes of amine oxidases, the copper amine oxidases (CuAOs) and the flavin adenine dinucleotide (FAD)-dependent polyamine oxidases (PAOs). These enzymes differ to each other in substrate specificity, catalytic mechanism and subcellular localization. CuAOs and PAOs contribute to several physiological processes both through the control of polyamine homeostasis and as sources of biologically-active reaction products. CuAOs and PAOs have been found at high level in the cell-wall of several species belonging to Fabaceae and Poaceae families, respectively, especially in tissues fated to undertake extensive wall loosening/stiffening events and/or in cells undergoing programmed cell death (PCD). Apoplastic CuAOs and PAOs have been shown to play a key role as a source of H2O2 in light- or developmentally-regulated differentiation events, thus influencing cell-wall architecture and maturation as well as PCD. Moreover, growing evidence suggests a key role of intracellular CuAOs and PAOs in several facets of plant development. Here, we discuss recent advances in understanding the contribution of different CuAOs/PAOs, as well as their cross-talk with different intracellular and apoplastic metabolic pathways, in tissue differentiation and organ development.

  9. Effects of dietary cholesterol and simvastatin on cholesterol synthesis in Smith-Lemli-Opitz syndrome (SLOS)

    PubMed Central

    Chan, Yen-Ming; Merkens, Louise S.; Connor, William E.; Roullet, Jean-Baptiste; Penfield, Jennifer A.; Jordan, Julia M.; Steiner, Robert D.; Jones, Peter J.H.

    2009-01-01

    Deficient cholesterol and/or excessive 7-dehydrocholesterol (7-DHC) may be responsible for the pathology of Smith-Lemli-Opitz syndrome (SLOS). Both high cholesterol diets given to ameliorate cholesterol deficiency while decreasing 7-DHC, and cholesterol-enriched diets plus simvastatin to further decrease sterol synthesis, have been used as potential therapies. However, the effect of dietary cholesterol and simvastatin on cholesterol synthesis in SLOS has not been reported. Twelve SLOS subjects enrolled in the study: Nine had received a high cholesterol diet (HI) for 3 years, and three were studied after 4 weeks on a low cholesterol diet (LO). Cholesterol fractional synthesis rate (FSR) was measured after oral administration of deuterium oxide, using gas-chromatography-isotope ratio mass spectrometry. FSR was lower in HI compared with LO (HI: 1.46±0.62%/d; LO: 4.77±0.95%/d; P<0.001). Three HI subjects were re-tested after 0.8 years taking simvastatin (HI+ST). Simvastatin tended to reduce FSR and significantly decreased (P<0.01) plasma 7-DHC compared to cholesterol supplementation alone. The study demonstrates the utility of the deuterium incorporation method to understand the effect of therapeutic interventions in SLOS. The data suggest that dietary cholesterol supplementation reduces cholesterol synthesis in SLOS and further support the rationale for the combined treatment of SLOS with a cholesterol-enriched diet and simvastatin. PMID:19430384

  10. Cholesterol metabolism and serum non-cholesterol sterols: summary of 13 plant stanol ester interventions.

    PubMed

    Hallikainen, Maarit; Simonen, Piia; Gylling, Helena

    2014-04-27

    The efficacy and safety of plant stanols added to food products as serum cholesterol lowering agents have been demonstrated convincingly, but their effects on cholesterol metabolism and on serum non-cholesterol sterols is less evaluated. The aim of this study was to assess the validity of serum non-cholesterol sterols and squalene as bioindices of cholesterol synthesis and absorption, and to examine how the individual serum non-cholesterol sterols respond to consumption of plant stanols. We collected all randomized, controlled plant stanol ester (STAEST) interventions in which serum cholestanol, plant sterols campesterol and sitosterol, and at least two serum cholesterol precursors had been analysed. According to these criteria, there was a total of 13 studies (total 868 subjects without lipid-lowering medication; plant stanol doses varied from 0.8 to 8.8 g/d added in esterified form; the duration of the studies varied from 4 to 52 weeks). Serum non-cholesterol sterols were assayed with gas-liquid chromatography, cholesterol synthesis with the sterol balance technique, and fractional cholesterol absorption with the dual continuous isotope feeding method. The results demonstrated that during the control and the STAEST periods, the serum plant sterol/cholesterol- and the cholestanol/cholesterol-ratios reflected fractional cholesterol absorption, and the precursor sterol/cholesterol-ratios reflected cholesterol synthesis. Plant sterol levels were dose-dependently reduced by STAEST so that 2 g of plant stanols reduced serum campesterol/cholesterol-ratio on average by 32%. Serum cholestanol/cholesterol-ratio was reduced less frequently than those of the plant sterols by STAEST, and the cholesterol precursor sterol ratios did not change consistently in the individual studies emphasizing the importance of monitoring more than one surrogate serum marker. Serum non-cholesterol sterols are valid markers of cholesterol absorption and synthesis even during cholesterol

  11. Cholesterol metabolism and serum non-cholesterol sterols: summary of 13 plant stanol ester interventions

    PubMed Central

    2014-01-01

    Background The efficacy and safety of plant stanols added to food products as serum cholesterol lowering agents have been demonstrated convincingly, but their effects on cholesterol metabolism and on serum non-cholesterol sterols is less evaluated. The aim of this study was to assess the validity of serum non-cholesterol sterols and squalene as bioindices of cholesterol synthesis and absorption, and to examine how the individual serum non-cholesterol sterols respond to consumption of plant stanols. Methods We collected all randomized, controlled plant stanol ester (STAEST) interventions in which serum cholestanol, plant sterols campesterol and sitosterol, and at least two serum cholesterol precursors had been analysed. According to these criteria, there was a total of 13 studies (total 868 subjects without lipid-lowering medication; plant stanol doses varied from 0.8 to 8.8 g/d added in esterified form; the duration of the studies varied from 4 to 52 weeks). Serum non-cholesterol sterols were assayed with gas–liquid chromatography, cholesterol synthesis with the sterol balance technique, and fractional cholesterol absorption with the dual continuous isotope feeding method. Results The results demonstrated that during the control and the STAEST periods, the serum plant sterol/cholesterol- and the cholestanol/cholesterol-ratios reflected fractional cholesterol absorption, and the precursor sterol/cholesterol-ratios reflected cholesterol synthesis. Plant sterol levels were dose-dependently reduced by STAEST so that 2 g of plant stanols reduced serum campesterol/cholesterol-ratio on average by 32%. Serum cholestanol/cholesterol-ratio was reduced less frequently than those of the plant sterols by STAEST, and the cholesterol precursor sterol ratios did not change consistently in the individual studies emphasizing the importance of monitoring more than one surrogate serum marker. Conclusions Serum non-cholesterol sterols are valid markers of cholesterol absorption

  12. The Dynamic Disulfide Relay of Quiescin Sulfhydryl Oxidase

    PubMed Central

    Alon, Assaf; Grossman, Iris; Gat, Yair; Kodali, Vamsi K.; DiMaio, Frank; Mehlman, Tevie; Haran, Gilad; Baker, David; Thorpe, Colin; Fass, Deborah

    2012-01-01

    Protein stability, assembly, localization, and regulation often depend on formation of disulfide cross-links between cysteine side chains. Enzymes known as sulfhydryl oxidases catalyze de novo disulfide formation and initiate intra- and intermolecular dithiol/disulfide relays to deliver the disulfides to substrate proteins1,2. Quiescin sulfhydryl oxidase (QSOX) is a unique, multi-domain disulfide catalyst that is localized primarily to the Golgi apparatus and secreted fluids3 and has attracted attention due to its over-production in tumors4,5. In addition to its physiological importance, QSOX is a mechanistically intriguing enzyme, encompassing functions typically carried out by a series of proteins in other disulfide formation pathways. How disulfides are relayed through the multiple redox-active sites of QSOX and whether there is a functional benefit to concatenating these sites on a single polypeptide are open questions. We determined the first crystal structure of an intact QSOX enzyme, derived from a trypanosome parasite. Notably, sequential sites in the disulfide relay were found more than 40 Å apart in this structure, too far for direct disulfide transfer. To resolve this puzzle, we trapped and crystallized an intermediate in the disulfide hand-off, which showed a 165° domain rotation relative to the original structure, bringing the two active sites within disulfide bonding distance. The comparable structure of a mammalian QSOX enzyme, also presented herein, reveals additional biochemical features that facilitate disulfide transfer in metazoan orthologs. Finally, we quantified the contribution of concatenation to QSOX activity, providing general lessons for the understanding of multi-domain enzymes and the design of novel catalytic relays. PMID:22801504

  13. NADPH oxidase 4 regulates homocysteine metabolism and protects against acetaminophen-induced liver damage in mice.

    PubMed

    Murray, Thomas V A; Dong, Xuebin; Sawyer, Greta J; Caldwell, Anna; Halket, John; Sherwood, Roy; Quaglia, Alberto; Dew, Tracy; Anilkumar, Narayana; Burr, Simon; Mistry, Rajesh K; Martin, Daniel; Schröder, Katrin; Brandes, Ralf P; Hughes, Robin D; Shah, Ajay M; Brewer, Alison C

    2015-12-01

    Glutathione is the major intracellular redox buffer in the liver and is critical for hepatic detoxification of xenobiotics and other environmental toxins. Hepatic glutathione is also a major systemic store for other organs and thus impacts on pathologies such as Alzheimer's disease, Sickle Cell Anaemia and chronic diseases associated with aging. Glutathione levels are determined in part by the availability of cysteine, generated from homocysteine through the transsulfuration pathway. The partitioning of homocysteine between remethylation and transsulfuration pathways is known to be subject to redox-dependent regulation, but the underlying mechanisms are not known. An association between plasma Hcy and a single nucleotide polymorphism within the NADPH oxidase 4 locus led us to investigate the involvement of this reactive oxygen species- generating enzyme in homocysteine metabolism. Here we demonstrate that NADPH oxidase 4 ablation in mice results in increased flux of homocysteine through the betaine-dependent remethylation pathway to methionine, catalysed by betaine-homocysteine-methyltransferase within the liver. As a consequence NADPH oxidase 4-null mice display significantly lowered plasma homocysteine and the flux of homocysteine through the transsulfuration pathway is reduced, resulting in lower hepatic cysteine and glutathione levels. Mice deficient in NADPH oxidase 4 had markedly increased susceptibility to acetaminophen-induced hepatic injury which could be corrected by administration of N-acetyl cysteine. We thus conclude that under physiological conditions, NADPH oxidase 4-derived reactive oxygen species is a regulator of the partitioning of the metabolic flux of homocysteine, which impacts upon hepatic cysteine and glutathione levels and thereby upon defence against environmental toxins.

  14. NADPH oxidase 4 regulates homocysteine metabolism and protects against acetaminophen-induced liver damage in mice

    PubMed Central

    Murray, Thomas V.A.; Dong, Xuebin; Sawyer, Greta J.; Caldwell, Anna; Halket, John; Sherwood, Roy; Quaglia, Alberto; Dew, Tracy; Anilkumar, Narayana; Burr, Simon; Mistry, Rajesh K.; Martin, Daniel; Schröder, Katrin; Brandes, Ralf P.; Hughes, Robin D.; Shah, Ajay M.; Brewer, Alison C.

    2015-01-01

    Glutathione is the major intracellular redox buffer in the liver and is critical for hepatic detoxification of xenobiotics and other environmental toxins. Hepatic glutathione is also a major systemic store for other organs and thus impacts on pathologies such as Alzheimer's disease, Sickle Cell Anaemia and chronic diseases associated with aging. Glutathione levels are determined in part by the availability of cysteine, generated from homocysteine through the transsulfuration pathway. The partitioning of homocysteine between remethylation and transsulfuration pathways is known to be subject to redox-dependent regulation, but the underlying mechanisms are not known. An association between plasma Hcy and a single nucleotide polymorphism within the NADPH oxidase 4 locus led us to investigate the involvement of this reactive oxygen species- generating enzyme in homocysteine metabolism. Here we demonstrate that NADPH oxidase 4 ablation in mice results in increased flux of homocysteine through the betaine-dependent remethylation pathway to methionine, catalysed by betaine-homocysteine-methyltransferase within the liver. As a consequence NADPH oxidase 4-null mice display significantly lowered plasma homocysteine and the flux of homocysteine through the transsulfuration pathway is reduced, resulting in lower hepatic cysteine and glutathione levels. Mice deficient in NADPH oxidase 4 had markedly increased susceptibility to acetaminophen-induced hepatic injury which could be corrected by administration of N-acetyl cysteine. We thus conclude that under physiological conditions, NADPH oxidase 4-derived reactive oxygen species is a regulator of the partitioning of the metabolic flux of homocysteine, which impacts upon hepatic cysteine and glutathione levels and thereby upon defence against environmental toxins. PMID:26472193

  15. Extracellular oxidases of the lignin-degrading fungus Panus tigrinus.

    PubMed

    Cadimaliev, D A; Revin, V V; Atykyan, N A; Samuilov, V D

    2005-06-01

    Two extracellular oxidases (laccases) were isolated from the extracellular fluid of the fungus Panus (Lentinus) tigrinus cultivated in low-nitrogen medium supplemented with birch sawdust. The enzymes were purified by successive chromatography on columns with TEAE-cellulose and DEAE-Toyopearl 650M. Both oxidases catalyze oxidation of pyrocatechol and ABTS. Moreover, oxidase 1 also catalyzes oxidation of guaiacol, o-phenylenediamine, and syringaldazine. The enzymes have identical pH (7.0) and temperature (60-65 degrees C) optimums. Absorption spectra of the oxidases differ from the spectra of typical "blue" laccases and are similar to the spectrum of yellow oxidase.

  16. Effect of gamma irradiation on the physiological activity of Korean soybean fermented foods, Chungkookjang and Doenjang

    NASA Astrophysics Data System (ADS)

    Byun, Myung-Woo; Son, Jun-Ho; Yook, Hong-Sun; Jo, Cheorun; Kim, Dong-Ho

    2002-06-01

    Effects of gamma irradiation on the physiological activity of Korean soybean fermented foods were investigated. Chungkookjang, the whole cooked soybean product and Doenjang, soybean paste were purchased and irradiated at 5, 10 and 20 kGy of absorbed doses. The physiological activity was evaluated by angiotensin converting enzyme inhibition, xanthine oxidase inhibition, tyrosinase inhibition and radical scavenging ability and results indicated that at 10 kGy or below did not show any significant change on physiological activities by irradiation.

  17. Macrophage-mediated cholesterol handling in atherosclerosis.

    PubMed

    Chistiakov, Dimitry A; Bobryshev, Yuri V; Orekhov, Alexander N

    2016-01-01

    Formation of foam cells is a hallmark at the initial stages of atherosclerosis. Monocytes attracted by pro-inflammatory stimuli attach to the inflamed vascular endothelium and penetrate to the arterial intima where they differentiate to macrophages. Intimal macrophages phagocytize oxidized low-density lipoproteins (oxLDL). Several scavenger receptors (SR), including CD36, SR-A1 and lectin-like oxLDL receptor-1 (LOX-1), mediate oxLDL uptake. In late endosomes/lysosomes of macrophages, oxLDL are catabolysed. Lysosomal acid lipase (LAL) hydrolyses cholesterol esters that are enriched in LDL to free cholesterol and free fatty acids. In the endoplasmic reticulum (ER), acyl coenzyme A: cholesterol acyltransferase-1 (ACAT1) in turn catalyses esterification of cholesterol to store cholesterol esters as lipid droplets in the ER of macrophages. Neutral cholesteryl ester hydrolases nCEH and NCEH1 are involved in a secondary hydrolysis of cholesterol esters to liberate free cholesterol that could be then out-flowed from macrophages by cholesterol ATP-binding cassette (ABC) transporters ABCA1 and ABCG1 and SR-BI. In atherosclerosis, disruption of lipid homoeostasis in macrophages leads to cholesterol accumulation and formation of foam cells.

  18. Structure of Cholesterol in Lipid Rafts

    NASA Astrophysics Data System (ADS)

    Toppozini, Laura; Meinhardt, Sebastian; Armstrong, Clare L.; Yamani, Zahra; Kučerka, Norbert; Schmid, Friederike; Rheinstädter, Maikel C.

    2014-11-01

    Rafts, or functional domains, are transient nano-or mesoscopic structures in the plasma membrane and are thought to be essential for many cellular processes such as signal transduction, adhesion, trafficking, and lipid or protein sorting. Observations of these membrane heterogeneities have proven challenging, as they are thought to be both small and short lived. With a combination of coarse-grained molecular dynamics simulations and neutron diffraction using deuterium labeled cholesterol molecules, we observe raftlike structures and determine the ordering of the cholesterol molecules in binary cholesterol-containing lipid membranes. From coarse-grained computer simulations, heterogenous membranes structures were observed and characterized as small, ordered domains. Neutron diffraction was used to study the lateral structure of the cholesterol molecules. We find pairs of strongly bound cholesterol molecules in the liquid-disordered phase, in accordance with the umbrella model. Bragg peaks corresponding to ordering of the cholesterol molecules in the raftlike structures were observed and indexed by two different structures: a monoclinic structure of ordered cholesterol pairs of alternating direction in equilibrium with cholesterol plaques, i.e., triclinic cholesterol bilayers.

  19. Regulation of Plasma Cholesterol by Lipoprotein Receptors

    NASA Astrophysics Data System (ADS)

    Brown, Michael S.; Kovanen, Petri T.; Goldstein, Joseph L.

    1981-05-01

    The lipoprotein transport system holds the key to understanding the mechanisms by which genes, diet, and hormones interact to regulate the plasma cholesterol level in man. Crucial components of this system are lipoprotein receptors in the liver and extrahepatic tissues that mediate the uptake and degradation of cholesterol-carrying lipoproteins. The number of lipoprotein receptors, and hence the efficiency of disposal of plasma cholesterol, can be increased by cholesterol-lowering drugs. Regulation of lipoprotein receptors can be exploited pharmacologically in the therapy of hypercholesterolemia and atherosclerosis in man.

  20. Cholesterol modulates Orai1 channel function

    PubMed Central

    Derler, Isabella; Jardin, Isaac; Stathopulos, Peter B.; Muik, Martin; Fahrner, Marc; Zayats, Vasilina; Pandey, Saurabh K.; Poteser, Michael; Lackner, Barbara; Absolonova, Marketa; Schindl, Rainer; Groschner, Klaus; Ettrich, Rüdiger; Ikura, Mitsu; Romanin, Christoph

    2017-01-01

    STIM1 (stromal interaction molecule 1) and Orai proteins are the essential components of Ca2+ release–activated Ca2+ (CRAC) channels. We focused on the role of cholesterol in the regulation of STIM1-mediated Orai1 currents. Chemically induced cholesterol depletion enhanced store-operated Ca2+ entry (SOCE) and Orai1 currents. Furthermore, cholesterol depletion in mucosal-type mast cells augmented endogenous CRAC currents, which were associated with increased degranulation, a process that requires calcium influx. Single point mutations in the Orai1 amino terminus that would be expected to abolish cholesterol binding enhanced SOCE to a similar extent as did cholesterol depletion. The increase in Orai1 activity in cell expressing these cholesterol-binding–deficient mutants occurred without affecting the amount in the plasma membrane or the coupling of STIM1 to Orai1. We detected cholesterol binding to an Orai1 amino-terminal fragment in vitro and to full-length Orai1 in cells. Thus, our data showed that Orai1 senses the amount of cholesterol in the plasma membrane and that the interaction of Orai1 with cholesterol inhibits its activity, thereby limiting SOCE. PMID:26814231

  1. Cholesterol and late-life cognitive decline.

    PubMed

    van Vliet, Peter

    2012-01-01

    High cholesterol levels are a major risk factor for cardiovascular disease, but their role in dementia and cognitive decline is less clear. This review highlights current knowledge on the role of cholesterol in late-life cognitive function, cognitive decline, and dementia. When measured in midlife, high cholesterol levels associate with an increased risk of late-life dementia and cognitive decline. However, when measured in late-life, high cholesterol levels show no association with cognitive function, or even show an inverse relation. Although statin treatment has been shown to associate with a lower risk of dementia and cognitive decline in observational studies, randomized controlled trials show no beneficial effect of statin treatment on late-life cognitive function. Lowering cholesterol levels may impair brain function, since cholesterol is essential for synapse formation and maturation and plays an important role in the regulation of signal transduction through its function as a component of the cell membrane. However, membrane cholesterol also plays a role in the formation and aggregation of amyloid-β. Factors that influence cholesterol metabolism, such as dietary intake, are shown to play a role in late-life cognitive function and the risk of dementia. In conclusion, cholesterol associates with late-life cognitive function, but the association is strongly age-dependent. There is no evidence that treatment with statins in late-life has a beneficial effect on cognitive function.

  2. Dietary plant sterols and cholesterol metabolism.

    PubMed

    Ellegård, Lars H; Andersson, Susan W; Normén, A Lena; Andersson, Henrik A

    2007-01-01

    Plant sterols, naturally occurring in foods of plant origin, reduce cholesterol absorption. Experimental studies show plant sterols to be an important part of the serum-cholesterol lowering effect of certain diets and dietary components. Epidemiological data show that individuals with higher intakes of plant sterols from their habitual diets have lower serum-cholesterol levels. To date, the role of naturally occurring plant sterols for lowering serum cholesterol has probably been underestimated. The consumption of dietary plant sterols should be a part of dietary advice to patients with hypercholesterolemia and the general public for the prevention and management of coronary heart disease.

  3. Impact of cholesterol on disease progression.

    PubMed

    Lin, Chun-Jung; Lai, Cheng-Kuo; Kao, Min-Chuan; Wu, Lii-Tzu; Lo, U-Ging; Lin, Li-Chiung; Chen, Yu-An; Lin, Ho; Hsieh, Jer-Tsong; Lai, Chih-Ho; Lin, Chia-Der

    2015-06-01

    Cholesterol-rich microdomains (also called lipid rafts), where platforms for signaling are provided and thought to be associated with microbe-induced pathogenesis and lead to cancer progression. After treatment of cells with cholesterol disrupting or usurping agents, raft-associated proteins and lipids can be dissociated, and this renders the cell structure nonfunctional and therefore mitigates disease severity. This review focuses on the role of cholesterol in disease progression including cancer development and infectious diseases. Understanding the molecular mechanisms of cholesterol in these diseases may provide insight into the development of novel strategies for controlling these diseases in clinical scenarios.

  4. Crystalline domain structure and cholesterol crystal nucleation in single hydrated DPPC:cholesterol:POPC bilayers.

    PubMed

    Ziblat, Roy; Leiserowitz, Leslie; Addadi, Lia

    2010-07-21

    Grazing incidence X-ray diffraction measurements were performed on single hydrated bilayers and monolayers of DPPC:Cholesterol:POPC at varying concentrations. There are substantial differences in the phase and structure behavior of the crystalline domains formed within the bilayers relative to the corresponding monolayers, due to interactions between the opposing leaflets. Depending on the lipid composition, these interactions led to phase separation, changes in molecular tilt angle, or formation of cholesterol crystals. In monolayers, DPPC and cholesterol form a single crystalline phase at all compositions studied. In bilayers, a second crystalline phase appears when cholesterol levels are increased: domains of cholesterol and DPPC form monolayer thick crystals where each of the lipid leaflets diffracts independently, whereas excess cholesterol forms cholesterol bilayer thick crystals at a DPPC:Chol ratio < 46:54 +/- 2 mol %. The nucleation of the cholesterol crystals occurs at concentrations relevant to the actual cell plasma membrane composition.

  5. Hypothalamic reactive oxygen species are required for insulin-induced food intake inhibition: an NADPH oxidase-dependent mechanism.

    PubMed

    Jaillard, Tristan; Roger, Michael; Galinier, Anne; Guillou, Pascale; Benani, Alexandre; Leloup, Corinne; Casteilla, Louis; Pénicaud, Luc; Lorsignol, Anne

    2009-07-01

    Insulin plays an important role in the hypothalamic control of energy balance, especially by reducing food intake. Emerging data point to a pivotal role of reactive oxygen species (ROS) in energy homeostasis regulation, but their involvement in the anorexigenic effect of insulin is unknown. Furthermore, ROS signal derived from NADPH oxidase activation is required for physiological insulin effects in peripheral cells. In this study, we investigated the involvement of hypothalamic ROS and NADPH oxidase in the feeding behavior regulation by insulin. We first measured hypothalamic ROS levels and food intake after acute intracerebroventricular injection of insulin. Second, effect of pretreatment with a ROS scavenger or an NADPH oxidase inhibitor was evaluated. Third, we examined the consequences of two nutritional conditions of central insulin unresponsiveness (fasting or short-term high-fat diet) on the ability of insulin to modify ROS level and food intake. In normal chow-fed mice, insulin inhibited food intake. At the same dose, insulin rapidly and transiently increased hypothalamic ROS levels by 36%. The pharmacological suppression of this insulin-stimulated ROS elevation, either by antioxidant or by an NADPH oxidase inhibitor, abolished the anorexigenic effect of insulin. Finally, in fasted and short-term high-fat diet-fed mice, insulin did not promote elevation of ROS level and food intake inhibition, likely because of an increase in hypothalamic diet-induced antioxidant defense systems. A hypothalamic ROS increase through NADPH oxidase is required for the anorexigenic effect of insulin.

  6. Action of lecithin:cholesterol acyltransferase on model lipoproteins. Preparation and characterization of model nascent high density lipoprotein.

    PubMed

    Pownall, H J; Van Winkle, W B; Pao, Q; Rohde, M; Gotto, A M

    1982-12-13

    Apolipoprotein A-I, the major protein of human plasma high density lipoprotein, is the primary activator of plasma lecithin:cholesterol acyltransferase. In vitro, the association of apolipoprotein A-I with physiological phosphatidylcholines can be catalyzed by mixing the protein and lipid with sodium cholate, which is removed by chromatography. The apolipoprotein A-I/phospholipid complex has the physical properties of an HDL, and when cholesterol is present the complex is a highly reactive substrate in the lecithin:cholesterol acyltransferase-catalyzed reaction. The relative reactivity of this complex compared with a number of other lipid-protein complexes is presented and discussed.

  7. The role of amine oxidases in xenobiotic metabolism.

    PubMed

    Gong, Bin; Boor, Paul J

    2006-08-01

    The amine oxidases of mammalian tissues are a heterogeneous family of enzymes that metabolise various monoamines, diamines and polyamines produced endogenously, or being absorbed as dietary or xenobiotic substances. The heterogeneous class of amine oxidases can be divided on an arbitrary basis of the chemical nature of their cofactors into two types. Monoamine oxidase (MAO) and an intracellular form of polyamine oxidase (PAO) contain flavin adenine dinucleotide (FAD) as their cofactor, whereas a second group of amine oxidases without FAD contain a cofactor possessing one or more carbonyl groups, making them sensitive to inhibition by carbonyl reagents such as semicarbazide; this group includes semicarbazide-sensitive amine oxidase (SSAO) and the connective tissue enzyme, lysyl oxidase. This article focuses on the general aspects of MAO's contribution to the metabolism of foreign toxic substances including toxins and illegal drugs. Another main objective of this review is to discuss the properties of PAO and SSAO and their involvement in the metabolism of xenobiotics.

  8. Cholesterol inhibits the insertion of the Alzheimer's peptide Abeta(25-35) in lipid bilayers.

    PubMed

    Dante, Silvia; Hauss, Thomas; Dencher, Norbert A

    2006-08-01

    The physiological relationship between brain cholesterol content and the action of amyloid beta (Abeta) peptide in Alzheimer's disease (AD) is a highly controversially discussed topic. Evidences for modulations of the Abeta/membrane interaction induced by plasma membrane cholesterol have already been observed. We have recently reported that Abeta(25-35) is capable of inserting in lipid membranes and perturbing their structure. Applying neutron diffraction and selective deuteration, we now demonstrate that cholesterol alters, at the molecular level, the capability of Abeta(25-35) to penetrate into the lipid bilayers; in particular, a molar weight content of 20% of cholesterol hinders the intercalation of monomeric Abeta(25-35) completely. At very low cholesterol content (about 1% molar weight) the location of the C-terminal part of Abeta(25-35) has been unequivocally established in the hydrocarbon region of the membrane, in agreement with our previous results on pure phospholipids membrane. These results link a structural property to a physiological and functional behavior and point to a therapeutical approach to prevent the AD by modulation of membrane properties.

  9. Hyperspectral imaging for detection of cholesterol in human skin

    NASA Astrophysics Data System (ADS)

    Milanič, Matija; Bjorgan, Asgeir; Larsson, Marcus; Marraccini, Paolo; Strömberg, Tomas; Randeberg, Lise L.

    2015-03-01

    Hypercholesterolemia is characterized by high levels of cholesterol in the blood and is associated with an increased risk of atherosclerosis and coronary heart disease. Early detection of hypercholesterolemia is necessary to prevent onset and progress of cardiovascular disease. Optical imaging techniques might have a potential for early diagnosis and monitoring of hypercholesterolemia. In this study, hyperspectral imaging was investigated for this application. The main aim of the study was to identify spectral and spatial characteristics that can aid identification of hypercholesterolemia in facial skin. The first part of the study involved a numerical simulation of human skin affected by hypercholesterolemia. A literature survey was performed to identify characteristic morphological and physiological parameters. Realistic models were prepared and Monte Carlo simulations were performed to obtain hyperspectral images. Based on the simulations optimal wavelength regions for differentiation between normal and cholesterol rich skin were identified. Minimum Noise Fraction transformation (MNF) was used for analysis. In the second part of the study, the simulations were verified by a clinical study involving volunteers with elevated and normal levels of cholesterol. The faces of the volunteers were scanned by a hyperspectral camera covering the spectral range between 400 nm and 720 nm, and characteristic spectral features of the affected skin were identified. Processing of the images was done after conversion to reflectance and masking of the images. The identified features were compared to the known cholesterol levels of the subjects. The results of this study demonstrate that hyperspectral imaging of facial skin can be a promising, rapid modality for detection of hypercholesterolemia.

  10. Oxytocin receptors: ligand binding, signalling and cholesterol dependence.

    PubMed

    Gimpl, Gerald; Reitz, Julian; Brauer, Sabine; Trossen, Conny

    2008-01-01

    The G protein coupled oxytocin receptor (OTR) reveals some specific molecular and physiological characteristics. Ligand-receptor interaction has been analysed by photoaffinity labelling, site-directed mutagenesis, the construction of receptor chimeras and molecular modelling. Major results of these studies will be summarized. The N-terminus of the OTR is mainly involved in agonist binding. Notably, antagonists that are derived from the ground structure of oxytocin, bind the receptor at distinct sites partly non-overlapping with the agonist binding site. OTRs are able to couple to different G proteins, with a subsequent stimulation of phospholipase C-beta isoforms. In dependence on G protein coupling, OTRs can transduce growth-inhibitory or proliferatory signals. Some evidence is provided that OTRs are also present in form of dimeric or oligomeric complexes at the cell surface. The affinity of the receptor for ligands is strongly dependent on the presence of divalent cations (Mg(2+)) and cholesterol that both act like positive allosteric modulators. While the high-affinity state of the receptor for agonists requires divalent cations and cholesterol, the high-affinity state for antagonists is only dependent on a sufficient amount of cholesterol. Cholesterol affects ligand-binding affinity, receptor signalling and stability. Since the purification of the OTR has never been achieved, alternative methods to study the receptor in its native environment are necessary. Promising strategies for the site-specific labelling of the OTR will be presented. The employment of diverse reporter molecules introduced at different positions within the OTR might allow us in the near future to measure conformational changes of the receptor in its native lipid environment.

  11. Ectopic Expression of Maize Polyamine Oxidase and Pea Copper Amine Oxidase in the Cell Wall of Tobacco Plants1

    PubMed Central

    Rea, Giuseppina; de Pinto, Maria Concetta; Tavazza, Raffaela; Biondi, Stefania; Gobbi, Valentina; Ferrante, Paola; De Gara, Laura; Federico, Rodolfo; Angelini, Riccardo; Tavladoraki, Paraskevi

    2004-01-01

    To test the feasibility of altering polyamine levels by influencing their catabolic pathway, we obtained transgenic tobacco (Nicotiana tabacum) plants constitutively expressing either maize (Zea mays) polyamine oxidase (MPAO) or pea (Pisum sativum) copper amine oxidase (PCuAO), two extracellular and H2O2-producing enzymes. Despite the high expression levels of the transgenes in the extracellular space, the amount of free polyamines in the homozygous transgenic plants was similar to that in the wild-type ones, suggesting either a tight regulation of polyamine levels or a different compartmentalization of the two recombinant proteins and the bulk amount of endogenous polyamines. Furthermore, no change in lignification levels and plant morphology was observed in the transgenic plants compared to untransformed plants, while a small but significant change in reactive oxygen species-scavenging capacity was verified. Both the MPAO and the PCuAO tobacco transgenic plants produced high amounts of H2O2 only in the presence of exogenously added enzyme substrates. These observations provided evidence for the limiting amount of freely available polyamines in the extracellular space in tobacco plants under physiological conditions, which was further confirmed for untransformed maize and pea plants. The amount of H2O2 produced by exogenously added polyamines in cell suspensions from the MPAO transgenic plants was sufficient to induce programmed cell death, which was sensitive to catalase treatment and required gene expression and caspase-like activity. The MPAO and PCuAO transgenic plants represent excellent tools to study polyamine secretion and conjugation in the extracellular space, as well as to determine when and how polyamine catabolism actually intervenes both in cell wall development and in response to stress. PMID:15064377

  12. Pleurotus mushrooms. Part II. Chemical composition, nutritional value, post-harvest physiology, preservation, and role as human food.

    PubMed

    Bano, Z; Rajarathnam, S

    1988-01-01

    The fruit bodies of Pleurotus species as a class of "Edible Fungal Foods" have been discovered to have definite nutritive and medicinal values. They are a good source of nonstarchy carbohydrates, dietary fiber (that can help in reducing the plasma cholesterol), most of the essential amino acids, minerals and vitamins of B group, and folic acid (necessary to counteract pernicious anaemia) in particular. Considering the essential amino acid index, biological value, in vitro digestibility, nutritional index, and protein score, Pleurotus species fall between high grade vegetables and low grade meats. Fractions of water-soluble polysaccharides are reported to possess antitumor activity. The physiological processes such as changes in water content, respiratory rate, texture, color, and activities of enzymes like proteases and polyphenol oxidases during the after-harvest life are delineated. The problems and prospects of processing the fruit bodies by various methods are discussed. Potentialities for production and consumption of the fruit bodies in different parts of the world are brought out.

  13. Neonatal dietary cholesterol and alleles of cholesterol 7-alpha hydroxylase affect piglet cerebrum weight, cholesterol concentration, and behavior

    USDA-ARS?s Scientific Manuscript database

    This experiment was designed to test the effect of polymorphism in the cholesterol 7-alpha hydroxylase (CYP7) gene locus, and dietary cholesterol (C) on cerebrum C in neonatal pigs fed sow's milk formulas. Thirty-six pigs (18 male and 18 female) genetically selected for high (HG), or low (LG) plasma...

  14. Space Physiology within an Exercise Physiology Curriculum

    ERIC Educational Resources Information Center

    Carter, Jason R.; West, John B.

    2013-01-01

    Compare and contrast strategies remain common pedagogical practices within physiological education. With the support of an American Physiological Society Teaching Career Enhancement Award, we have developed a junior- or senior-level undergraduate curriculum for exercise physiology that compares and contrasts the physiological adaptations of…

  15. Space Physiology within an Exercise Physiology Curriculum

    ERIC Educational Resources Information Center

    Carter, Jason R.; West, John B.

    2013-01-01

    Compare and contrast strategies remain common pedagogical practices within physiological education. With the support of an American Physiological Society Teaching Career Enhancement Award, we have developed a junior- or senior-level undergraduate curriculum for exercise physiology that compares and contrasts the physiological adaptations of…

  16. Potassium physiology.

    PubMed

    Thier, S O

    1986-04-25

    Potassium is the most abundant exchangeable cation in the body. It exists predominantly in the intracellular fluid at concentrations of 140 to 150 meq/liter and in the extracellular fluid at concentrations of 3.5 to 5 meq/liter. The maintenance of the serum potassium concentration is a complex bodily function and results from the balance between intake, excretion, and distribution between intracellular and extracellular space. Ingested potassium is virtually completely absorbed from and minimally excreted through the intestine under nonpathologic circumstances. Renal excretion of potassium, which is the major chronic protective mechanism against abnormalities in potassium balance, depends on filtration, reabsorption, and a highly regulated distal nephron secretory process. Factors regulating potassium secretion include prior potassium intake, intracellular potassium, delivery of sodium chloride and poorly reabsorbable anions to the distal nephron, the urine flow rate, hormones such as aldosterone and beta-catecholamines, and the integrity of the renal tubular cell. The maintenance of distribution between the inside and outside of cells depends on the integrity of the cell membrane and its pumps, osmolality, pH, and the hormones insulin, aldosterone, beta 2-catecholamines, alpha-catecholamines, and prostaglandins. Both distribution across cell membranes and/or renal excretion of potassium may be altered by pharmacologic agents such as diuretics, alpha- and beta-catechol antagonists and agonists, depolarizing agents, and digitalis. Problems with hypokalemia and hyperkalemia can be analyzed on the basis of potassium physiology and pharmacology; proper treatment depends on an accurate analysis.

  17. ACAT inhibitors: the search for novel cholesterol lowering agents.

    PubMed

    Pal, Palash; Gandhi, Hardik; Giridhar, Rajani; Yadav, Mange Ram

    2013-06-01

    Increased level of serum cholesterol (hyperlipidemia) is the most significant risk factor for the development of atherosclerosis. Cholesterol levels are affected by factors such as rate of endogenous cholesterol synthesis, biliary cholesterol excretion and dietary cholesterol absorption. Acyl CoA: Cholesterol O-acyl transferases (ACAT) are a small family of enzymes that catalyze cholesterol esterification and cholesterol absorption in intestinal mucosal cells and maintain the cholesterol homeostasis in the blood. Inhibition of the ACAT enzymes is one of the attractive targets to treat hyperlipidemia. Literature survey shows that structurally diverse compounds possess ACAT inhibitory properties. In this review, a comprehensive presentation of the literature on diverse ACAT inhibitors has been given.

  18. Selective cholesterol adsorption by molecular imprinted polymeric nanospheres and application to GIMS.

    PubMed

    Inanan, Tülden; Tüzmen, Nalan; Akgöl, Sinan; Denizli, Adil

    2016-11-01

    Molecular imprinted polymers (MIPs) are tailor-made materials with selective recognition to the target. The goals of this study were to prepare cholesterol imprinted polymeric nanospheres (CIPNs) and optimize their adsorption parameters and also to use CIPNs for adsorption of cholesterol (CHO), which is an important physiological biomacromolecule, from gastrointestinal mimicking solution (GIMS). Pre-polymerization complex was prepared using CHO as template and N-methacryloylamido-(l)-phenylalanine methyl ester (MAPA). This complex was polymerized with 2-hydroxyethyl methacrylate (HEMA). CHO was removed by MeOH and tetrahydrofuran (THF). Adsorption studies were performed after chacterization studies to interrogate the effects of time, initial concentration, temperature, and ionic strength on CHO adsorption onto CIPNs. Maximum adsorption capacity (714.17mg/g) was higher than that of cholesterol imprinted polymers in literature. Pseudo-second-order kinetics and Langmuir isotherm fitted best with the adsorption onto CIPNs. 86% of adsorbed cholesterol was desorbed with MeOH:HAc (80:20, v/v) and CIPNs were used in adsorption-desorption cycle for 5-times with a decrease as 12.28%. CHO analogues; estron, estradiol, testosterone, and progesterone were used for competitive adsorption. The relative selectivity coefficients of CINPs for cholesterol/estron and cholesterol/testosterone were 3.84 and 10.47 times greater than the one of non-imprinted polymeric nanospheres (NIPNs) in methanol, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Characteristics and Functional Relevance of Apolipoprotein-A1 and Cholesterol Binding in Mammary Gland Tissues and Epithelial Cells

    PubMed Central

    Ontsouka, Edgar Corneille; Huang, Xiao; Stieger, Bruno; Albrecht, Christiane

    2013-01-01

    Cholesterol in milk is derived from the circulating blood through a complex transport process involving the mammary alveolar epithelium. Details of the mechanisms involved in this transfer are unclear. Apolipoprotein-AI (apoA-I) is an acceptor of cellular cholesterol effluxed by the ATP-binding cassette (ABC) transporter A1 (ABCA1). We aimed to 1) determine the binding characteristics of 125I-apoA-I and 3H-cholesterol to enriched plasma membrane vesicles (EPM) isolated from lactating and non-lactating bovine mammary glands (MG), 2) optimize the components of an in vitro model describing cellular 3H-cholesterol efflux in primary bovine mammary epithelial cells (MeBo), and 3) assess the vectorial cholesterol transport in MeBo using Transwell® plates. The amounts of isolated EPM and the maximal binding capacity of 125I-apoA-I to EPM differed depending on the MG’s physiological state, while the kinetics of 3H-cholesterol and 125I-apoA-I binding were similar. 3H-cholesterol incorporated maximally to EPM after 25±9 min. The time to achieve the half-maximum binding of 125I-apoA-I at equilibrium was 3.3±0.6 min. The dissociation constant (KD) of 125I-apoA-I ranged between 40–74 nmol/L. Cholesterol loading to EPM increased both cholesterol content and 125I-apoA-I binding. The ABCA1 inhibitor Probucol displaced 125I-apoA-I binding to EPM and reduced 3H-cholesterol efflux in MeBo. Time-dependent 3H-cholesterol uptake and efflux showed inverse patterns. The defined binding characteristics of cholesterol and apoA-I served to establish an efficient and significantly shorter cholesterol efflux protocol that had been used in MeBo. The application of this protocol in Transwell® plates with the upper chamber mimicking the apical (milk-facing) and the bottom chamber corresponding to the basolateral (blood-facing) side of cells showed that the degree of 3H-cholesterol efflux in MeBo differed significantly between the apical and basolateral aspects. Our findings support the

  20. Characteristics and functional relevance of apolipoprotein-A1 and cholesterol binding in mammary gland tissues and epithelial cells.

    PubMed

    Ontsouka, Edgar Corneille; Huang, Xiao; Stieger, Bruno; Albrecht, Christiane

    2013-01-01

    Cholesterol in milk is derived from the circulating blood through a complex transport process involving the mammary alveolar epithelium. Details of the mechanisms involved in this transfer are unclear. Apolipoprotein-AI (apoA-I) is an acceptor of cellular cholesterol effluxed by the ATP-binding cassette (ABC) transporter A1 (ABCA1). We aimed to 1) determine the binding characteristics of (125)I-apoA-I and (3)H-cholesterol to enriched plasma membrane vesicles (EPM) isolated from lactating and non-lactating bovine mammary glands (MG), 2) optimize the components of an in vitro model describing cellular (3)H-cholesterol efflux in primary bovine mammary epithelial cells (MeBo), and 3) assess the vectorial cholesterol transport in MeBo using Transwell(®) plates. The amounts of isolated EPM and the maximal binding capacity of (125)I-apoA-I to EPM differed depending on the MG's physiological state, while the kinetics of (3)H-cholesterol and (125)I-apoA-I binding were similar. (3)H-cholesterol incorporated maximally to EPM after 25±9 min. The time to achieve the half-maximum binding of (125)I-apoA-I at equilibrium was 3.3±0.6 min. The dissociation constant (KD) of (125)I-apoA-I ranged between 40-74 nmol/L. Cholesterol loading to EPM increased both cholesterol content and (125)I-apoA-I binding. The ABCA1 inhibitor Probucol displaced (125)I-apoA-I binding to EPM and reduced (3)H-cholesterol efflux in MeBo. Time-dependent (3)H-cholesterol uptake and efflux showed inverse patterns. The defined binding characteristics of cholesterol and apoA-I served to establish an efficient and significantly shorter cholesterol efflux protocol that had been used in MeBo. The application of this protocol in Transwell(®) plates with the upper chamber mimicking the apical (milk-facing) and the bottom chamber corresponding to the basolateral (blood-facing) side of cells showed that the degree of (3)H-cholesterol efflux in MeBo differed significantly between the apical and basolateral aspects

  1. Lysyl Oxidase and the Tumor Microenvironment

    PubMed Central

    Wang, Tong-Hong; Hsia, Shih-Min; Shieh, Tzong-Ming

    2016-01-01

    The lysyl oxidase (LOX) family of oxidases contains a group of extracellular copper-dependent enzymes that catalyze the cross-linking of collagen and elastin by oxidation, thus maintaining the rigidity and structural stability of the extracellular matrix (ECM). Aberrant expression or activation of LOX alters the cellular microenvironment, leading to many diseases, including atherosclerosis, tissue fibrosis, and cancer. Recently, a number of studies have shown that LOX is overexpressed in most cancers and that it is involved in the regulation of tumor progression and metastasis. In contrast, a few reports have also indicated the tumor-suppressing role of LOX. In this short review, we discuss recent research on the correlations between LOX and cancer. Further, the role of LOX in tumor microenvironment remodeling, tumorigenesis, and metastasis and the underlying mechanisms have also been elucidated. PMID:28036074

  2. Towards rational therapy with monoamine oxidase inhibitors.

    PubMed

    Tyrer, P

    1976-04-01

    A rational approach to the use of monoamine oxidase inhibitors (MAOIs) is outlined. Patients suitable for treatment cannot be classified adequately using conventional diagnostic labels. They include those with primary symptoms of hypochondriasis, agoraphobia and social phobias, irritability, somatic anxiety and anergia; those with primary depressed mood, guilt, ideas of reference and personality disorders seldom respond. There is great variation in the interval between the first administration of these drugs and clinical response, and this may account for the inconsistencies in published trials. The type of drug and its dose may affect rate of response, as may biochemical factors, including acetylator and monoamine oxidase status. To obtain maximum benefit, a course of therapy with MAOIs should last for several months.

  3. Role of membrane cholesterol in spontaneous exocytosis at frog neuromuscular synapses: reactive oxygen species-calcium interplay.

    PubMed

    Petrov, Alexey M; Yakovleva, Anastasiya A; Zefirov, Andrey L

    2014-11-15

    Using electrophysiological and optical techniques, we studied the mechanisms by which cholesterol depletion stimulates spontaneous transmitter release by exocytosis at the frog neuromuscular junction. We found that methyl-β-cyclodextrin (MCD, 10 mM)-mediated exhaustion of cholesterol resulted in the enhancement of reactive oxygen species (ROS) production, which was prevented by the antioxidant N-acetyl cysteine (NAC) and the NADPH oxidase inhibitor apocynin. An increase in ROS levels occurred both extra- and intracellularly, and it was associated with lipid peroxidation in synaptic regions. Cholesterol depletion provoked a rise in the intracellular Ca(2+) concentration, which was diminished by NAC and transient receptor potential vanilloid (TRPV) channel blockers (ruthenium red and capsazepine). By contrast, the MCD-induced rise in [Ca(2+)]i remained unaffected if Ca(2+) release from endoplasmic stores was blocked by TMB8 (8-(diethylamino)octyl-3,4,5-trimethoxybenzoate hydrochloride). The effects of cholesterol depletion on spontaneous release and exocytosis were significantly reduced by the antioxidant, intracellular Ca(2+) chelation with BAPTA-AM and blockers of TRPV channels. Bath application of the calcineurin antagonist cyclosporine A blocked MCD-induced enhancement of spontaneous release/exocytosis, whereas okadaic acid, an inhibitor of phosphatases PP1 and PP2A, had no effect. Thus, our findings indicate that enhancement of spontaneous exocytosis induced by cholesterol depletion may depend on ROS generation, leading to an influx of Ca(2+) via TRPV channels and, subsequently, activation of calcineurin.

  4. Role of membrane cholesterol in spontaneous exocytosis at frog neuromuscular synapses: reactive oxygen species–calcium interplay

    PubMed Central

    Petrov, Alexey M; Yakovleva, Anastasiya A; Zefirov, Andrey L

    2014-01-01

    Using electrophysiological and optical techniques, we studied the mechanisms by which cholesterol depletion stimulates spontaneous transmitter release by exocytosis at the frog neuromuscular junction. We found that methyl-β-cyclodextrin (MCD, 10 mm)-mediated exhaustion of cholesterol resulted in the enhancement of reactive oxygen species (ROS) production, which was prevented by the antioxidant N-acetyl cysteine (NAC) and the NADPH oxidase inhibitor apocynin. An increase in ROS levels occurred both extra- and intracellularly, and it was associated with lipid peroxidation in synaptic regions. Cholesterol depletion provoked a rise in the intracellular Ca2+ concentration, which was diminished by NAC and transient receptor potential vanilloid (TRPV) channel blockers (ruthenium red and capsazepine). By contrast, the MCD-induced rise in [Ca2+]i remained unaffected if Ca2+ release from endoplasmic stores was blocked by TMB8 (8-(diethylamino)octyl-3,4,5-trimethoxybenzoate hydrochloride). The effects of cholesterol depletion on spontaneous release and exocytosis were significantly reduced by the antioxidant, intracellular Ca2+ chelation with BAPTA-AM and blockers of TRPV channels. Bath application of the calcineurin antagonist cyclosporine A blocked MCD-induced enhancement of spontaneous release/exocytosis, whereas okadaic acid, an inhibitor of phosphatases PP1 and PP2A, had no effect. Thus, our findings indicate that enhancement of spontaneous exocytosis induced by cholesterol depletion may depend on ROS generation, leading to an influx of Ca2+ via TRPV channels and, subsequently, activation of calcineurin. PMID:25326454

  5. Cholesterol efflux is differentially regulated in neurons and astrocytes: implications for brain cholesterol homeostasis

    PubMed Central

    Chen, Jing; Zhang, Xiaolu; Kusumo, Handojo; Costa, Lucio G.; Guizzetti, Marina

    2012-01-01

    Disruption of cholesterol homeostasis in the central nervous system (CNS) has been associated with neurological, neurodegenerative, and neurodevelopmental disorders. The CNS is a closed system with regard to cholesterol homeostasis, as cholesterol-delivering lipoproteins from the periphery cannot pass the blood-brain-barrier and enter the brain. Different cell types in the brain have different functions in the regulation of cholesterol homeostasis, with astrocytes producing and releasing apolipoprotein E and lipoproteins, and neurons metabolizing cholesterol to 24(S)-hydroxycholesterol. We present evidence that astrocytes and neurons adopt different mechanisms also in regulating cholesterol efflux. We found that in astrocytes cholesterol efflux is induced by both lipid-free apolipoproteins and lipoproteins, while cholesterol removal from neurons is triggered only by lipoproteins. The main pathway by which apolipoproteins induce cholesterol efflux is through ABCA1. By upregulating ABCA1 levels and by inhibiting its activity and silencing its expression, we show that ABCA1 is involved in cholesterol efflux from astrocytes but not from neurons. Furthermore, our results suggest that ABCG1 is involved in cholesterol efflux to apolipoproteins and lipoproteins from astrocytes but not from neurons, while ABCG4, whose expression is much higher in neurons than astrocytes, is involved in cholesterol efflux from neurons but not astrocytes. These results indicate that different mechanisms regulate cholesterol efflux from neurons and astrocytes, reflecting the different roles that these cell types play in brain cholesterol homeostasis. These results are important in understanding cellular targets of therapeutic drugs under development for the treatments of conditions associated with altered cholesterol homeostasis in the CNS. PMID:23010475

  6. Role of cholesterol in Mycobacterium tuberculosis infection.

    PubMed

    Miner, Maurine D; Chang, Jennifer C; Pandey, Amit K; Sassetti, Christopher M; Sherman, David R

    2009-06-01

    Mycobacterium tuberculosis (MTB) acquisition and utilization of nutrients within the host cell is poorly understood, although it has been hypothesized that host lipids probably play an important role in MTB survival. Cholesterol has recently been identified as an important lipid for mycobacterial infection. The mce4 transport system is required for cholesterol import into bacterial cells, and deletion of mce4 locus resulted in severe attenuation in a chronic mouse model of infection. However, it has remained unclear what additional bacterial functions were required for utilization of this sterol. We have found that the igr locus, which was previously found essential for intracellular growth and virulence of MTB, is required for cholesterol metabolism: igr-deficient bacteria cannot grow using cholesterol as a primary carbon source. The growth-inhibitory effect of cholesterol in vitro depends on cholesterol import, as the delta igr mutant growth defect during the early phase of disease is completely suppressed by mutating mce4, implicating cholesterol intoxication as the primary mechanism of attenuation. We conclude that M. tuberculosis metabolizes cholesterol throughout the course of infection, and that degradation of this sterol is crucial for bacterial persistence.

  7. Cholesterol: An Achilles' Heel for Glioblastoma?

    PubMed

    An, Zhenyi; Weiss, William A

    2016-11-14

    In this issue of Cancer Cell, Villa et al. report that survival of glioblastoma cells is dependent on uptake of cholesterol. A synthetic agonist of the Liver X receptor depleted cholesterol in GBM cells, slowing growth of GBM xenografts.

  8. What Do My Cholesterol Levels Mean?

    MedlinePlus

    ... to write your own questions for the next time you see your healthcare provider. For example: How can I reduce my cholesterol? How often should I have my cholesterol checked? ©2015, American Heart Association Multi-language Fact Sheet Topics Heart-related Conditions What is ...

  9. Cholesterol-lowering nutraceuticals and functional foods.

    PubMed

    Chen, Zhen-Yu; Jiao, Rui; Ma, Ka Ying

    2008-10-08

    Epidemiological studies have demonstrated that elevated levels of plasma total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) are the major risk factors for coronary heart disease (CHD), whereas high concentrations of plasma high-density lipoprotein cholesterol (HDL-C) and a low ratio of TC to HDL-C are protective against CHD. A relationship between plasma TC and the risk of CHD is well established at concentrations above 240 mg/dL. In addition to the use of three main classes of cholesterol-lowering medications, including HMG-CoA reductase inhibitors, anion-exchange resins, and fibrates, a nutritionally balanced diet that reduces saturated fat and cholesterol intake has traditionally been the first goal of dietary therapy in lowering plasma TC. In recent years, nutraceuticals and functional foods have attracted much interest as possible alternative therapies for lowering plasma TC, especially for hypercholesterolemia patients, whose blood cholesterol level is marginally high (200-240 mg/dL) but not high enough to warrant the prescription of cholesterol-lowering medications. This review summarizes the findings of recent studies on the production, application, efficacy, and mechanisms of popular cholesterol-lowering nutraceuticals and functional foods.

  10. MicroRNA-223 coordinates cholesterol homeostasis

    PubMed Central

    Vickers, Kasey C.; Landstreet, Stuart R.; Levin, Michael G.; Shoucri, Bassem M.; Toth, Cynthia L.; Taylor, Robert C.; Palmisano, Brian T.; Tabet, Fatiha; Cui, Huanhuan L.; Rye, Kerry-Anne; Sethupathy, Praveen; Remaley, Alan T.

    2014-01-01

    MicroRNAs (miRNAs) regulate a wide variety of biological processes and contribute to metabolic homeostasis. Here, we demonstrate that microRNA-223 (miR-223), an miRNA previously associated with inflammation, also controls multiple mechanisms associated with cholesterol metabolism. miR-223 promoter activity and mature levels were found to be linked to cellular cholesterol states in hepatoma cells. Moreover, hypercholesterolemia was associated with increased hepatic miR-223 levels in athero-prone mice. miR-223 was found to regulate high-density lipoprotein-cholesterol (HDL-C) uptake, through direct targeting and repression of scavenger receptor BI, and to inhibit cholesterol biosynthesis through the direct repression of sterol enzymes 3-hydroxy-3-methylglutaryl-CoA synthase 1 and methylsterol monooxygenase 1 in humans. Additionally, miR-223 was found to indirectly promote ATP-binding cassette transporter A1 expression (mRNA and protein) through Sp3, thereby enhancing cellular cholesterol efflux. Finally, genetic ablation of miR-223 in mice resulted in increased HDL-C levels and particle size, as well as increased hepatic and plasma total cholesterol levels. In summary, we identified a critical role for miR-223 in systemic cholesterol regulation by coordinated posttranscriptional control of multiple genes in lipoprotein and cholesterol metabolism. PMID:25246565

  11. Tetrazolium Oxidase Polymorphism in Rainbow Trout

    PubMed Central

    Cederbaum, Stephen D.; Yoshida, Akira

    1972-01-01

    Tetrazolium oxidase from the blood and liver of rainbow trout was found to be genetically polymorphic. The inheritance pattern of the liver enzyme was compatible only with a one locus-two allele hypothesis. The enzymes in the blood while having an electrophoretically identical polymorphism could differ genotypically from that of the liver in a given fish. The significance of these findings to the understanding of the evolution of the salmonid genome is discussed. PMID:4675090

  12. Platelet monoamine oxidase in early childhood autism.

    PubMed

    Cohen, D J; Young, J G; Roth, J A

    1977-05-01

    Platelet monoamine oxidase (MAO) activity was studied in 31 individuals suffering from early childhood autism and was not significantly different from that found in normal children or adults. In the autistic children, MAO activity decreased with age, and there was a trend toward greater platelet MAO activity in prepubertal and pubertal male autistic children relative to normal male children. Total platelet counts were not elevated in autistic children.

  13. Ligand interactions with galactose oxidase: mechanistic insights.

    PubMed Central

    Whittaker, M M; Whittaker, J W

    1993-01-01

    Interactions between galactose oxidase and small molecules have been explored using a combination of optical absorption, circular dichroism, and electron paramagnetic resonance (EPR) spectroscopies to detect complex formation and characterize the products. Anions bind directly to the cupric center in both active and inactive galactose oxidase, converting to complexes with optical and EPR spectra that are distinctly different from those of the starting aquo enzyme. Azide binding is coupled to stoichiometric proton uptake by the enzyme, reflecting the generation of a strong base (pKa > 9) in the active site anion adduct. At low temperature, the aquo enzyme converts to a form that exhibits the characteristic optical and EPR spectra of an anion complex, apparently reflecting deprotonation of the coordinated water. Anion binding results in a loss of the optical transition arising from coordinated tyrosine, implying displacement of the axial tyrosine ligand on forming the adduct. Nitric oxide binds to galactose oxidase, forming a specific complex exhibiting an unusual EPR spectrum with all g values below 2. The absence of Cu splitting in this spectrum and the observation that the cupric EPR signal from the active site metal ion is not significantly decreased in the complex suggest a nonmetal interaction site for NO in galactose oxidase. These results have been interpreted in terms of a mechanistic scheme where substrate binding displaces a tyrosinate ligand from the active site cupric ion, generating a base that may serve to deprotonate the coordinated hydroxyl group of the substrate, activating it for oxidation. The protein-NO interactions may probe a nonmetal O2 binding site in this enzyme. PMID:8386015

  14. Imaging Monoamine Oxidase in the Human Brain

    SciTech Connect

    Fowler, J. S.; Volkow, N. D.; Wang, G-J.; Logan, Jean

    1999-11-10

    Positron emission tomography (PET) studies mapping monoamine oxidase in the human brain have been used to measure the turnover rate for MAO B; to determine the minimum effective dose of a new MAO inhibitor drug lazabemide and to document MAO inhibition by cigarette smoke. These studies illustrate the power of PET and radiotracer chemistry to measure normal biochemical processes and to provide information on the effect of drug exposure on specific molecular targets.

  15. Lysyl oxidase mediates hypoxic control of metastasis.

    PubMed

    Erler, Janine T; Giaccia, Amato J

    2006-11-01

    Hypoxic cancer cells pose a great challenge to the oncologist because they are especially aggressive, metastatic, and resistant to therapy. Recently, we showed that elevation of the extracellular matrix protein lysyl oxidase (LOX) correlates with metastatic disease and is essential for hypoxia-induced metastasis. In an orthotopic rodent model of breast cancer, a small-molecule or antibody inhibitor of LOX abolished metastasis, offering preclinical validation of this enzyme as a therapeutic target.

  16. Why orange Guaymas Basin Beggiatoa spp. are orange: single-filament-genome-enabled identification of an abundant octaheme cytochrome with hydroxylamine oxidase, hydrazine oxidase, and nitrite reductase activities.

    PubMed

    MacGregor, Barbara J; Biddle, Jennifer F; Siebert, Jason R; Staunton, Eric; Hegg, Eric L; Matthysse, Ann G; Teske, Andreas

    2013-02-01

    Orange, white, and yellow vacuolated Beggiatoaceae filaments are visually dominant members of microbial mats found near sea floor hydrothermal vents and cold seeps, with orange filaments typically concentrated toward the mat centers. No marine vacuolate Beggiatoaceae are yet in pure culture, but evidence to date suggests they are nitrate-reducing, sulfide-oxidizing bacteria. The nearly complete genome sequence of a single orange Beggiatoa ("Candidatus Maribeggiatoa") filament from a microbial mat sample collected in 2008 at a hydrothermal site in Guaymas Basin (Gulf of California, Mexico) was recently obtained. From this sequence, the gene encoding an abundant soluble orange-pigmented protein in Guaymas Basin mat samples (collected in 2009) was identified by microcapillary reverse-phase high-performance liquid chromatography (HPLC) nano-electrospray tandem mass spectrometry (μLC-MS-MS) of a pigmented band excised from a denaturing polyacrylamide gel. The predicted protein sequence is related to a large group of octaheme cytochromes whose few characterized representatives are hydroxylamine or hydrazine oxidases. The protein was partially purified and shown by in vitro assays to have hydroxylamine oxidase, hydrazine oxidase, and nitrite reductase activities. From what is known of Beggiatoaceae physiology, nitrite reduction is the most likely in vivo role of the octaheme protein, but future experiments are required to confirm this tentative conclusion. Thus, while present-day genomic and proteomic techniques have allowed precise identification of an abundant mat protein, and its potential activities could be assayed, proof of its physiological role remains elusive in the absence of a pure culture that can be genetically manipulated.

  17. Why Orange Guaymas Basin Beggiatoa spp. Are Orange: Single-Filament-Genome-Enabled Identification of an Abundant Octaheme Cytochrome with Hydroxylamine Oxidase, Hydrazine Oxidase, and Nitrite Reductase Activities

    PubMed Central

    Biddle, Jennifer F.; Siebert, Jason R.; Staunton, Eric; Hegg, Eric L.; Matthysse, Ann G.; Teske, Andreas

    2013-01-01

    Orange, white, and yellow vacuolated Beggiatoaceae filaments are visually dominant members of microbial mats found near sea floor hydrothermal vents and cold seeps, with orange filaments typically concentrated toward the mat centers. No marine vacuolate Beggiatoaceae are yet in pure culture, but evidence to date suggests they are nitrate-reducing, sulfide-oxidizing bacteria. The nearly complete genome sequence of a single orange Beggiatoa (“Candidatus Maribeggiatoa”) filament from a microbial mat sample collected in 2008 at a hydrothermal site in Guaymas Basin (Gulf of California, Mexico) was recently obtained. From this sequence, the gene encoding an abundant soluble orange-pigmented protein in Guaymas Basin mat samples (collected in 2009) was identified by microcapillary reverse-phase high-performance liquid chromatography (HPLC) nano-electrospray tandem mass spectrometry (μLC–MS-MS) of a pigmented band excised from a denaturing polyacrylamide gel. The predicted protein sequence is related to a large group of octaheme cytochromes whose few characterized representatives are hydroxylamine or hydrazine oxidases. The protein was partially purified and shown by in vitro assays to have hydroxylamine oxidase, hydrazine oxidase, and nitrite reductase activities. From what is known of Beggiatoaceae physiology, nitrite reduction is the most likely in vivo role of the octaheme protein, but future experiments are required to confirm this tentative conclusion. Thus, while present-day genomic and proteomic techniques have allowed precise identification of an abundant mat protein, and its potential activities could be assayed, proof of its physiological role remains elusive in the absence of a pure culture that can be genetically manipulated. PMID:23220958

  18. Cholesterol up-regulates neuronal G protein-gated inwardly rectifying potassium (GIRK) channel activity in the hippocampus.

    PubMed

    Bukiya, Anna N; Durdagi, Serdar; Noskov, Sergei; Rosenhouse-Dantsker, Avia

    2017-04-14

    Hypercholesterolemia is a well known risk factor for the development of neurodegenerative disease. However, the underlying mechanisms are mostly unknown. In recent years, it has become increasingly evident that cholesterol-driven effects on physiology and pathophysiology derive from its ability to alter the function of a variety of membrane proteins including ion channels. Yet, the effect of cholesterol on G protein-gated inwardly rectifying potassium (GIRK) channels expressed in the brain is unknown. GIRK channels mediate the actions of inhibitory brain neurotransmitters. As a result, loss of GIRK function can enhance neuron excitability, whereas gain of GIRK function can reduce neuronal activity. Here we show that in rats on a high-cholesterol diet, cholesterol levels in hippocampal neurons are increased. We also demonstrate that cholesterol plays a critical role in modulating neuronal GIRK currents. Specifically, cholesterol enrichment of rat hippocampal neurons resulted in enhanced channel activity. In accordance, elevated currents upon cholesterol enrichment were also observed in Xenopus oocytes expressing GIRK2 channels, the primary GIRK subunit expressed in the brain. Furthermore, using planar lipid bilayers, we show that although cholesterol did not affect the unitary conductance of GIRK2, it significantly enhanced the frequency of channel openings. Last, combining computational and functional approaches, we identified two putative cholesterol-binding sites in the transmembrane domain of GIRK2. These findings establish that cholesterol plays a critical role in modulating GIRK activity in the brain. Because up-regulation of GIRK function can reduce neuronal activity, our findings may lead to novel approaches for prevention and therapy of cholesterol-driven neurodegenerative disease. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Hydrogen peroxide inhibition of bicupin oxalate oxidase

    PubMed Central

    Goodwin, John M.; Rana, Hassan; Ndungu, Joan; Chakrabarti, Gaurab

    2017-01-01

    Oxalate oxidase is a manganese containing enzyme that catalyzes the oxidation of oxalate to carbon dioxide in a reaction that is coupled with the reduction of oxygen to hydrogen peroxide. Oxalate oxidase from Ceriporiopsis subvermispora (CsOxOx) is the first fungal and bicupin enzyme identified that catalyzes this reaction. Potential applications of oxalate oxidase for use in pancreatic cancer treatment, to prevent scaling in paper pulping, and in biofuel cells have highlighted the need to understand the extent of the hydrogen peroxide inhibition of the CsOxOx catalyzed oxidation of oxalate. We apply a membrane inlet mass spectrometry (MIMS) assay to directly measure initial rates of carbon dioxide formation and oxygen consumption in the presence and absence of hydrogen peroxide. This work demonstrates that hydrogen peroxide is both a reversible noncompetitive inhibitor of the CsOxOx catalyzed oxidation of oxalate and an irreversible inactivator. The build-up of the turnover-generated hydrogen peroxide product leads to the inactivation of the enzyme. The introduction of catalase to reaction mixtures protects the enzyme from inactivation allowing reactions to proceed to completion. Circular dichroism spectra indicate that no changes in global protein structure take place in the presence of hydrogen peroxide. Additionally, we show that the CsOxOx catalyzed reaction with the three carbon substrate mesoxalate consumes oxygen which is in contrast to previous proposals that it catalyzed a non-oxidative decarboxylation with this substrate. PMID:28486485

  20. Arabidopsis alternative oxidase sustains Escherichia coli respiration.

    PubMed Central

    Kumar, A M; Söll, D

    1992-01-01

    Glutamyl-tRNA reductase, encoded by the hemA gene, is the first enzyme in porphyrin biosynthesis in many organisms. Hemes, important porphyrin derivatives, are essential components of redox enzymes, such as cytochromes. Thus a hemA Escherichia coli strain (SASX41B) is deficient in cytochrome-mediated aerobic respiration. Upon complementation of this strain with an Arabidopsis thaliana cDNA library, we isolated a clone which permitted the SASX41B strain to grow aerobically. The clone encodes the gene for Arabidopsis alternative oxidase, whose deduced amino acid sequence was found to have 71% identity with that of the enzyme from the voodoo lily, Sauromatum guttatum. The Arabidopsis protein is expressed as a 31-kDa protein in E. coli and confers on this organism cyanide-resistant growth, which in turn is sensitive to salicylhydroxamate. This implies that a single polypeptide is sufficient for alternative oxidase activity. Based on these observations we propose that a cyanide-insensitive respiratory pathway operates in the transformed E. coli hemA strain. Introduction of this pathway now opens the way to genetic/molecular biological investigations of alternative oxidase and its cofactor. Images PMID:1438286