Sample records for choline availability alters

  1. Prenatal choline availability alters the context sensitivity of Pavlovian conditioning in adult rats

    PubMed Central

    Lamoureux, Jeffrey A.; Meck, Warren H.; Williams, Christina L.

    2008-01-01

    The effects of prenatal choline availability on Pavlovian conditioning were assessed in adult male rats (3–4 mo). Neither supplementation nor deprivation of prenatal choline affected the acquisition and extinction of simple Pavlovian conditioned excitation, or the acquisition and retardation of conditioned inhibition. However, prenatal choline availability significantly altered the contextual control of these learned behaviors. Both control and choline-deprived rats exhibited context specificity of conditioned excitation as exhibited by a loss in responding when tested in an alternate context after conditioning; in contrast, choline-supplemented rats showed no such effect. When switched to a different context following extinction, however, both choline-supplemented and control rats showed substantial contextual control of responding, whereas choline-deficient rats did not. These data support the view that configural associations that rely on hippocampal function are selectively sensitive to prenatal manipulations of dietary choline during prenatal development. PMID:19050158

  2. Choline availability during embryonic development alters the localization of calretinin in developing and aging mouse hippocampus.

    PubMed

    Albright, Craig D; Siwek, Donald F; Craciunescu, Corneliu N; Mar, Mei-Heng; Kowall, Neil W; Williams, Christina L; Zeisel, Steven H

    2003-04-01

    Choline availability in the diet during pregnancy alters fetal brain biochemistry with resulting behavioral changes that persist throughout the lifetime of the offspring. In the present study, the effects of dietary choline on the onset of GABAergic neuronal differentiation in developing fetal brain, as demarcated by the expression of calcium binding protein calretinin, are described. In these studies, timed-pregnant mice were fed choline supplemented, control or choline deficient AIN-76 diet from day 12-17 of pregnancy and the brains of their fetuses were studied on day 17 of gestation. In the primordial dentate gyrus, we found that pups from choline deficient-dams had more calretinin protein (330% increase), and pups from choline supplemented-dams had less calretinin protein (70% decrease), than did pups from control-dams. Importantly, decreased calretinin protein was still detectable in hippocampus in aged, 24-month-old mice, born of choline supplemented-dams and maintained since birth on a control diet. Thus, alterations in the level of calretinin protein in fetal brain hippocampus could underlie the known, life long effects of maternal dietary choline availability on brain development and behavior.

  3. Prenatal Choline Availability Alters the Context Sensitivity of Pavlovian Conditioning in Adult Rats

    ERIC Educational Resources Information Center

    Lamoureux, Jeffrey A.; Meck, Warren H.; Williams, Christina L.

    2008-01-01

    The effects of prenatal choline availability on Pavlovian conditioning were assessed in adult male rats (3-4 mo). Neither supplementation nor deprivation of prenatal choline affected the acquisition and extinction of simple Pavlovian conditioned excitation, or the acquisition and retardation of conditioned inhibition. However, prenatal choline…

  4. Effects of ingesting soy or egg lecithins on serum choline, brain choline and brain acetylcholine.

    PubMed

    Magil, S G; Zeisel, S H; Wurtman, R J

    1981-01-01

    Rats were fed lecithins, derived from eggs or soybeans, to determine whether the fatty acid composition of the phosphatidylcholine altered choline availability. Rats were fed either a single meal containing 5 g phosphatidylcholine or a lecithin-containing diet for 3 weeks, including approximately 5 g phosphatidylcholine per day. Each form of dietary lecithin elevated blood choline, brain choline and brain acetylcholine significantly (P < 0.05). There was no difference in response to egg- or soy-derived lecithin.

  5. What choline metabolism can tell us about the underlying mechanisms of fetal alcohol spectrum disorders.

    PubMed

    Zeisel, Steven H

    2011-10-01

    The consequences of fetal exposure to alcohol are very diverse and the likely molecular mechanisms involved must be able to explain how so many developmental processes could go awry. If pregnant rat dams are fed alcohol, their pups develop abnormalities characteristic of fetal alcohol spectrum disorders (FASD), but if these rat dams were also treated with choline, the effects from ethanol were attenuated in their pups. Choline is an essential nutrient in humans, and is an important methyl group donor. Alcohol exposure disturbs the metabolism of choline and other methyl donors. Availability of choline during gestation directly influences epigenetic marks on DNA and histones, and alters gene expression needed for normal neural and endothelial progenitor cell proliferation. Maternal diets low in choline alter development of the mouse hippocampus, and decrement memory for life. Women eating low-choline diets have an increased risk of having an infant with a neural tube or orofacial cleft birth defect. Thus, the varied effects of choline could affect the expression of FASD, and studies on choline might shed some light on the underlying molecular mechanisms responsible for FASD.

  6. What Choline Metabolism Can Tell Us About the Underlying Mechanisms of Fetal Alcohol Spectrum Disorders

    PubMed Central

    2013-01-01

    The consequences of fetal exposure to alcohol are very diverse and the likely molecular mechanisms involved must be able to explain how so many developmental processes could go awry. If pregnant rat dams are fed alcohol, their pups develop abnormalities characteristic of fetal alcohol spectrum disorders (FASD), but if these rat dams were also treated with choline, the effects from ethanol were attenuated in their pups. Choline is an essential nutrient in humans, and is an important methyl group donor. Alcohol exposure disturbs the metabolism of choline and other methyl donors. Availability of choline during gestation directly influences epigenetic marks on DNA and histones, and alters gene expression needed for normal neural and endothelial progenitor cell proliferation. Maternal diets low in choline alter development of the mouse hippocampus, and decrement memory for life. Women eating low-choline diets have an increased risk of having an infant with a neural tube or or ofacial cleft birth defect. Thus, the varied effects of choline could affect the expression of FASD, and studies on choline might shed some light on the underlying molecular mechanisms responsible for FASD. PMID:21259123

  7. Choline intake and genetic polymorphisms influence choline metabolite concentrations in human breast milk and plasma123

    PubMed Central

    Fischer, Leslie M; da Costa, Kerry Ann; Galanko, Joseph; Sha, Wei; Stephenson, Brigitte; Vick, Julie; Zeisel, Steven H

    2010-01-01

    Background: Choline is essential for infant nutrition, and breast milk is a rich source of this nutrient. Common single nucleotide polymorphisms (SNPs) change dietary requirements for choline intake. Objective: The aim of this study was to determine whether total choline intake and/or SNPs influence concentrations of choline and its metabolites in human breast milk and plasma. Design: We gave a total of 103 pregnant women supplemental choline or a placebo from 18 wk gestation to 45 d postpartum and genotyped the women for 370 common SNPs. At 45 d postpartum, we measured choline metabolite concentrations in breast milk and plasma and assessed the dietary intake of choline by using a 3-d food record. Results: On average, lactating women in our study ate two-thirds of the recommended intake for choline (Adequate Intake = 550 mg choline/d). Dietary choline intake (no supplement) correlated with breast-milk phosphatidylcholine and plasma choline concentrations. A supplement further increased breast-milk choline, betaine, and phosphocholine concentrations and increased plasma choline and betaine concentrations. We identified 5 SNPs in MTHFR that altered the slope of the intake–metabolite concentration relations, and we identified 2 SNPs in PEMT that shifted these curves upward. Individuals who shared sets of common SNPs were outliers in plots of intake–metabolite concentration curves; we suggest that these SNPs should be further investigated to determine how they alter choline metabolism. Conclusion: Total intake of choline and genotype can influence the concentrations of choline and its metabolites in the breast milk and blood of lactating women and thereby affect the amount of choline available to the developing infant. This study was registered at clinicaltrials.gov as NCT00678925. PMID:20534746

  8. Prenatal choline availability modulates hippocampal neurogenesis and neurogenic responses to enriching experiences in adult female rats

    PubMed Central

    Glenn, Melissa J.; Gibson, Erin M.; Kirby, Elizabeth D.; Mellott, Tiffany J.; Blusztajn, Jan K.; Williams, Christina L.

    2008-01-01

    Increased dietary intake of choline early in life improves performance of adult rats on memory tasks and prevents their age-related memory decline. Because neurogenesis in the adult hippocampus also declines with age, we investigated whether prenatal choline availability affects hippocampal neurogenesis in adult Sprague–Dawley rats and modifies their neurogenic response to environmental stimulation. On embryonic days (ED) 12−17, pregnant rats ate a choline-supplemented (SUP-5 g/kg), choline sufficient (SFF-1.1 g/kg), or choline-free (DEF) semisynthetic diet. Adult offspring either remained in standard housing or were given 21 daily visits to explore a maze. On the last ten exploration days, all rats received daily injections of 5-bromo-2-deoxyuridine (BrdU, 100 mg/kg). The number of BrdU+ cells was significantly greater in the dentate gyrus in SUP rats compared to SFF or DEF rats. While maze experience increased the number of BrdU+ cells in SFF rats to the level seen in the SUP rats, this enriching experience did not alter cell proliferation in DEF rats. Similar patterns of cell proliferation were obtained with immunohistochemical staining for neuronal marker doublecortin, confirming that diet and exploration affected hippocampal neurogenesis. Moreover, hippocampal levels of the brain-derived neurotrophic factor (BDNF) were increased in SUP rats as compared to SFF and DEF animals. We conclude that prenatal choline intake has enduring effects on adult hippocampal neurogenesis, possibly via up-regulation of BDNF levels, and suggest that these alterations of neurogenesis may contribute to the mechanism of life-long changes in cognitive function governed by the availability of choline during gestation. PMID:17445242

  9. Genetic Variation in Choline-Metabolizing Enzymes Alters Choline Metabolism in Young Women Consuming Choline Intakes Meeting Current Recommendations

    PubMed Central

    Ganz, Ariel B.; Cohen, Vanessa V.; Swersky, Camille C.; Stover, Julie; Vitiello, Gerardo A.; Lovesky, Jessica; Chuang, Jasmine C.; Shields, Kelsey; Fomin, Vladislav G.; Lopez, Yusnier S.; Mohan, Sanjay; Ganti, Anita; Carrier, Bradley; Malysheva, Olga V.; Caudill, Marie A.

    2017-01-01

    Single nucleotide polymorphisms (SNPs) in choline metabolizing genes are associated with disease risk and greater susceptibility to organ dysfunction under conditions of dietary choline restriction. However, the underlying metabolic signatures of these variants are not well characterized and it is unknown whether genotypic differences persist at recommended choline intakes. Thus, we sought to determine if common genetic risk factors alter choline dynamics in pregnant, lactating, and non-pregnant women consuming choline intakes meeting and exceeding current recommendations. Women (n = 75) consumed 480 or 930 mg choline/day (22% as a metabolic tracer, choline-d9) for 10–12 weeks in a controlled feeding study. Genotyping was performed for eight variant SNPs and genetic differences in metabolic flux and partitioning of plasma choline metabolites were evaluated using stable isotope methodology. CHKA rs10791957, CHDH rs9001, CHDH rs12676, PEMT rs4646343, PEMT rs7946, FMO3 rs2266782, SLC44A1 rs7873937, and SLC44A1 rs3199966 altered the use of choline as a methyl donor; CHDH rs9001 and BHMT rs3733890 altered the partitioning of dietary choline between betaine and phosphatidylcholine synthesis via the cytidine diphosphate (CDP)-choline pathway; and CHKA rs10791957, CHDH rs12676, PEMT rs4646343, PEMT rs7946 and SLC44A1 rs7873937 altered the distribution of dietary choline between the CDP-choline and phosphatidylethanolamine N-methyltransferase (PEMT) denovo pathway. Such metabolic differences may contribute to disease pathogenesis and prognosis over the long-term. PMID:28134761

  10. Genetic Variation in Choline-Metabolizing Enzymes Alters Choline Metabolism in Young Women Consuming Choline Intakes Meeting Current Recommendations.

    PubMed

    Ganz, Ariel B; Cohen, Vanessa V; Swersky, Camille C; Stover, Julie; Vitiello, Gerardo A; Lovesky, Jessica; Chuang, Jasmine C; Shields, Kelsey; Fomin, Vladislav G; Lopez, Yusnier S; Mohan, Sanjay; Ganti, Anita; Carrier, Bradley; Malysheva, Olga V; Caudill, Marie A

    2017-01-26

    Single nucleotide polymorphisms (SNPs) in choline metabolizing genes are associated with disease risk and greater susceptibility to organ dysfunction under conditions of dietary choline restriction. However, the underlying metabolic signatures of these variants are not well characterized and it is unknown whether genotypic differences persist at recommended choline intakes. Thus, we sought to determine if common genetic risk factors alter choline dynamics in pregnant, lactating, and non-pregnant women consuming choline intakes meeting and exceeding current recommendations. Women ( n = 75) consumed 480 or 930 mg choline/day (22% as a metabolic tracer, choline-d9) for 10-12 weeks in a controlled feeding study. Genotyping was performed for eight variant SNPs and genetic differences in metabolic flux and partitioning of plasma choline metabolites were evaluated using stable isotope methodology. CHKA rs10791957, CHDH rs9001, CHDH rs12676, PEMT rs4646343, PEMT rs7946, FMO3 rs2266782, SLC44A1 rs7873937, and SLC44A1 rs3199966 altered the use of choline as a methyl donor; CHDH rs9001 and BHMT rs3733890 altered the partitioning of dietary choline between betaine and phosphatidylcholine synthesis via the cytidine diphosphate (CDP)-choline pathway; and CHKA rs10791957, CHDH rs12676, PEMT rs4646343, PEMT rs7946 and SLC44A1 rs7873937 altered the distribution of dietary choline between the CDP-choline and phosphatidylethanolamine N -methyltransferase (PEMT) denovo pathway. Such metabolic differences may contribute to disease pathogenesis and prognosis over the long-term.

  11. Choline or CDP-choline alters serum lipid responses to endotoxin in dogs and rats: involvement of the peripheral nicotinic acetylcholine receptors.

    PubMed

    Ilcol, Yesim Ozarda; Yilmaz, Zeki; Cansev, Mehmet; Ulus, Ismail H

    2009-09-01

    We showed previously that choline administration protects dogs from endotoxin-induced multiple organ injury and platelet dysfunctions. Because sepsis/endotoxemia is associated with alterations in lipid metabolism, we have investigated whether choline or cytidine-5'-diphosphate choline, a choline donor, alters serum lipid responses to endotoxin in dogs and rats. In response to endotoxin, serum concentrations of triglycerides, choline-containing phospholipids, total cholesterol, and high-density lipoprotein cholesterol increased in a dose- and time-related manner. Administration of choline (20 mg/kg i.v. in dogs or 90 mg/kg i.p. in rats) or cytidine-5'-diphosphate choline (70 mg/kg i.v. in dogs) 5 min before and 4 and 8 h after endotoxin blocked or attenuated the increases in serum triglycerides, total cholesterol, and nonesterified fatty acids. Endotoxin-induced elevations in serum phospholipid levels did not change in rats and were enhanced in dogs by choline. In rats, serum lipid response to endotoxin was accompanied by severalfold elevations in serum levels of hepatorenal injury markers; their elevations were also blocked by choline. Pretreatment with hexamethonium blocked choline's effects on serum lipids and hepatorenal injury markers. Pretreatment with atropine blocked endotoxin-induced elevations in serum lipid and hepatorenal injury markers, but failed to alter choline's actions on these parameters. Choline treatment improved survival rate of rats in lethal endotoxin shock. In conclusion, these data show that choline treatment alters serum lipid responses to endotoxin and prevents hepatorenal injury during endotoxemia through a nicotinic acetylcholine receptor-mediated mechanism. Hence, choline and choline-containing compounds may have a therapeutic potential in the treatment of endotoxemia/sepsis.

  12. Intestinal transfer of choline in rat and hamster

    PubMed Central

    Sanford, P. A.; Smyth, D. H.

    1971-01-01

    1. The transfer of choline was studied with sacs of everted intestine of rat and hamster. 2. The choline transfer can be divided into two components, a diffusion process and a saturable process. The latter plays a relatively greater part at low concentrations of choline, which include the physiological concentration in the plasma. The saturable process is better seen in the hamster than in the rat. 3. Intestinal transfer of choline is influenced by substances altering the availability of energy in the cell, and by some substances chemically or pharmacologically related to choline. These findings are consistent with some kind of specific mechanism for choline transfer. 4. Part of the choline taken up by the cell appears as a metabolite not yet identified. The formation of the metabolite is a saturable process and is abolished by anaerobic conditions and by homogenization. 5. The results are also discussed in relation to parameters of transfer. PMID:5090994

  13. Spatial memory and hippocampal plasticity are differentially sensitive to the availability of choline in adulthood as a function of choline supply in utero

    PubMed Central

    Wong-Goodrich, Sarah J.E.; Glenn, Melissa J.; Mellott, Tiffany J.; Blusztajn, Jan K.; Meck, Warren H.; Williams, Christina L.

    2009-01-01

    Altered dietary choline availability early in life leads to persistent changes in spatial memory and hippocampal plasticity in adulthood. Developmental programming by early choline nutrition may determine the range of adult choline intake that is optimal for the types of neural plasticity involved in cognitive function. To test this, male Sprague-Dawley rats were exposed to a choline chloride deficient (DEF), sufficient (CON), or supplemented (SUP) diet during embryonic days 12-17 and then returned to a control diet (1.1 g choline chloride/kg). At 70 days of age, we found that DEF and SUP rats required fewer choices to locate 8 baited arms of a 12-arm radial maze than CON rats. When switched to a choline-deficient diet (0 g/kg), SUP rats showed impaired performance while CON and DEF rats were unaffected. In contrast, when switched to a choline-supplemented diet (5.0 g/kg), DEF rats' performance was significantly impaired while CON and SUP rats were less affected. These changes in performance were reversible when the rats were switched back to a control diet. In a second experiment, DEF, CON, and SUP rats were either maintained on a control diet, or the choline-supplemented diet. After 12 weeks, DEF rats were significantly impaired by choline supplementation on a matching-to-place water-maze task, which was also accompanied by a decrease in dentate cell proliferation in DEF rats only. IGF-1 levels were elevated by both prenatal and adult choline supplementation. Taken together, these findings suggest that the in utero availability of an essential nutrient, choline, causes differential behavioral and neuroplastic sensitivity to the adult choline supply. PMID:18778697

  14. Spatial memory and hippocampal plasticity are differentially sensitive to the availability of choline in adulthood as a function of choline supply in utero.

    PubMed

    Wong-Goodrich, Sarah J E; Glenn, Melissa J; Mellott, Tiffany J; Blusztajn, Jan K; Meck, Warren H; Williams, Christina L

    2008-10-27

    Altered dietary choline availability early in life leads to persistent changes in spatial memory and hippocampal plasticity in adulthood. Developmental programming by early choline nutrition may determine the range of adult choline intake that is optimal for the types of neural plasticity involved in cognitive function. To test this, male Sprague-Dawley rats were exposed to a choline chloride deficient (DEF), sufficient (CON), or supplemented (SUP) diet during embryonic days 12-17 and then returned to a control diet (1.1 g choline chloride/kg). At 70 days of age, we found that DEF and SUP rats required fewer choices to locate 8 baited arms of a 12-arm radial maze than CON rats. When switched to a choline-deficient diet (0 g/kg), SUP rats showed impaired performance while CON and DEF rats were unaffected. In contrast, when switched to a choline-supplemented diet (5.0 g/kg), DEF rats' performance was significantly impaired while CON and SUP rats were less affected. These changes in performance were reversible when the rats were switched back to a control diet. In a second experiment, DEF, CON, and SUP rats were either maintained on a control diet, or the choline-supplemented diet. After 12 weeks, DEF rats were significantly impaired by choline supplementation on a matching-to-place water-maze task, which was also accompanied by a decrease in dentate cell proliferation in DEF rats only. IGF-1 levels were elevated by both prenatal and adult choline supplementation. Taken together, these findings suggest that the in utero availability of an essential nutrient, choline, causes differential behavioral and neuroplastic sensitivity to the adult choline supply.

  15. Methyl group balance in brain and liver: role of choline on increased S-adenosyl methionine (SAM) demand by chronic arsenic exposure.

    PubMed

    Ríos, Rosalva; Santoyo, Martha E; Cruz, Daniela; Delgado, Juan Manuel; Zarazúa, Sergio; Jiménez-Capdeville, María E

    2012-11-30

    Arsenic toxicity has been related to its interference with one carbon metabolism, where a high demand of S-adenosylmethionine (SAM) for arsenic methylation as well as a failure of its regeneration would compromise the availability of methyl groups for diverse cellular functions. Since exposed animals show disturbances of methylated products such as methylated arginines, myelin and axon membranes, this work investigates whether alterations of SAM, choline and phosphatidylcholine (PC) in the brain of arsenic exposed rats are associated with myelin alterations and myelin basic protein (MBP) immunoreactivity. Also these metabolites, morphologic and biochemical markers of methyl group alterations were analyzed in the liver, the main site of arsenic methylation. In adult, life-long arsenic exposed rats through drinking water (3 ppm), no changes of SAM, choline and PC concentrations where found in the brain, but SAM and PC were severely decreased in liver accompanied by a significant increase of choline. These results suggest that choline plays an important role as methyl donor in arsenic exposure, which could underlie hepatic affections observed when arsenic exposure is combined with other environmental factors. Also, important myelin and nerve fiber alterations, accompanied by a 75% decrease of MBP immunoreactivity were not associated with a SAM deficit in the brain. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  16. Maternal choline intake alters the epigenetic state of fetal cortisol-regulating genes in humans.

    PubMed

    Jiang, Xinyin; Yan, Jian; West, Allyson A; Perry, Cydne A; Malysheva, Olga V; Devapatla, Srisatish; Pressman, Eva; Vermeylen, Francoise; Caudill, Marie A

    2012-08-01

    The in utero availability of methyl donors, such as choline, may modify fetal epigenetic marks and lead to sustainable functional alterations throughout the life course. The hypothalamic-pituitary-adrenal (HPA) axis regulates cortisol production and is sensitive to perinatal epigenetic programming. As an extension of a 12-wk dose-response choline feeding study conducted in third-trimester pregnant women, we investigated the effect of maternal choline intake (930 vs. 480 mg/d) on the epigenetic state of cortisol-regulating genes, and their expression, in placenta and cord venous blood. The higher maternal choline intake yielded higher placental promoter methylation of the cortisol-regulating genes, corticotropin releasing hormone (CRH; P=0.05) and glucocorticoid receptor (NR3C1; P=0.002); lower placental CRH transcript abundance (P=0.04); lower cord blood leukocyte promoter methylation of CRH (P=0.05) and NR3C1 (P=0.04); and 33% lower (P=0.07) cord plasma cortisol. In addition, placental global DNA methylation and dimethylated histone H3 at lysine 9 (H3K9me2) were higher (P=0.02) in the 930 mg choline/d group, as was the expression of select placental methyltransferases. These data collectively suggest that maternal choline intake in humans modulates the epigenetic state of genes that regulate fetal HPA axis reactivity as well as the epigenomic status of fetal derived tissues.

  17. Raising gestational choline intake alters gene expression in DMBA-evoked mammary tumors and prolongs survival.

    PubMed

    Kovacheva, Vesela P; Davison, Jessica M; Mellott, Tiffany J; Rogers, Adrianne E; Yang, Shi; O'Brien, Michael J; Blusztajn, Jan Krzysztof

    2009-04-01

    Choline is an essential nutrient that serves as a donor of metabolic methyl groups used during gestation to establish the epigenetic DNA methylation patterns that modulate tissue-specific gene expression. Because the mammary gland begins its development prenatally, we hypothesized that choline availability in utero may affect the gland's susceptibility to cancer. During gestational days 11-17, pregnant rats were fed a control, choline-supplemented, or choline-deficient diet (8, 36, and 0 mmol/kg of choline, respectively). On postnatal day 65, the female offspring received 25 mg/kg of a carcinogen 7,12-dimethylbenz[alpha]anthracene. Approximately 70% of the rats developed mammary adenocarcinomas; prenatal diet did not affect tumor latency, incidence, size, and multiplicity. Tumor growth rate was inversely related to choline content in the prenatal diet, resulting in 50% longer survival until euthanasia, determined by tumor size, of the prenatally choline-supplemented rats compared with the prenatally choline-deficient rats. This was accompanied by distinct expression patterns of approximately 70 genes in tumors derived from the three dietary groups. Tumors from the prenatally choline-supplemented rats overexpressed genes that confer favorable prognosis in human cancers (Klf6, Klf9, Nid2, Ntn4, Per1, and Txnip) and underexpressed those associated with aggressive disease (Bcar3, Cldn12, Csf1, Jag1, Lgals3, Lypd3, Nme1, Ptges2, Ptgs1, and Smarcb1). DNA methylation within the tumor suppressor gene, stratifin (Sfn, 14-3-3sigma), was proportional to the prenatal choline supply and correlated inversely with the expression of its mRNA and protein in tumors, suggesting that an epigenetic mechanism may underlie the altered molecular phenotype and tumor growth. Our results suggest a role for adequate maternal choline nutrition during pregnancy in prevention/alleviation of breast cancer in daughters.

  18. Prenatal choline supplementation increases sensitivity to contextual processing of temporal information

    PubMed Central

    Buhusi, Catalin V.; Lamoureux, Jeffrey A.; Meck, Warren H.

    2008-01-01

    The effects of prenatal choline availability on contextual processing in a 30-s peak-interval (PI) procedure with gaps (1, 5, 10, and 15 s) were assessed in adult male rats. Neither supplementation nor deprivation of prenatal choline affected baseline timing performance in the PI procedure. However, prenatal choline availability significantly altered the contextual processing of gaps inserted into the to-be-timed signal (light on). Choline-supplemented rats displayed a high degree of context sensitivity as indicated by clock resetting when presented with a gap in the signal (light off). In contrast, choline-deficient rats showed no such effect and stopped their clocks during the gap. Control rats exhibited an intermediate level of contextual processing in between stop and full reset. When switched to a reversed gap condition in which rats timed the absence of the light and the presence of the light served as a gap, all groups reset their clocks following a gap. Furthermore, when filling the intertrial interval (ITI) with a distinctive stimulus (e.g., sound), both choline-supplemented and control rats rightward shifted their PI functions less on trials with gaps than choline-deficient rats, indicating greater contextual sensitivity and reduced clock resetting under these conditions. Overall, these data support the view that prenatal choline availability affects the sensitivity to the context in which gaps are inserted in the to-be-timed signal, thereby influencing whether rats run, stop, or reset their clocks. PMID:18778696

  19. Prenatal choline deficiency increases choline transporter expression in the septum and hippocampus during postnatal development and in adulthood in rats.

    PubMed

    Mellott, Tiffany J; Kowall, Neil W; Lopez-Coviella, Ignacio; Blusztajn, Jan Krzysztof

    2007-06-02

    Supplementation of maternal diet with the essential nutrient, choline, during the second half of pregnancy in rats causes long-lasting improvements in spatial memory in the offspring and protects them from the memory decline characteristic of old age. In contrast, prenatal choline deficiency is associated with poor performance in certain cognitive tasks. The mechanism by which choline influences learning and memory remains unclear; however, it may involve changes to the hippocampal cholinergic system. Previously, we showed that the hippocampi of prenatally [embryonic days (E) 11-17] choline-deficient animals have increased synthesis of acetylcholine (ACh) from choline transported by the high-affinity choline transporter (CHT) and reduced ACh content relative to the control and to the E11-17 choline-supplemented rats. In the current study, we found that, during postnatal period [postnatal days (P) 18-480], prenatal choline deficiency increased the expression of CHT mRNA in the septum and CHT mRNA and protein levels in the hippocampus and altered the pattern of CHT immunoreactivity in the dentate gyrus. CHT immunoreactivity was more prominent in the inner molecular layer in prenatally choline-deficient rats compared to controls and prenatally choline-supplemented animals. In addition, in all groups, we observed a population of hilar interneurons that were CHT-immunoreactive. These neurons are the likely source of the hippocampal CHT mRNA as their number correlated with the levels of this mRNA. The abundance of hippocampal CHT mRNA rose between P1 and P24 and then declined reaching 60% of the P1 value by P90. These data show that prenatal availability of choline alters its own metabolism (i.e., CHT expression). While the upregulated CHT expression during the period of prenatal choline deficiency may be considered as a compensatory mechanism that could enhance ACh synthesis when choline supply is low, the persistent upregulation of CHT expression subsequent to the brief period of prenatal deprivation of choline in utero might be beneficial during choline deficiency in adulthood.

  20. Dietary Choline Deficiency causes DNA Strand Breaks and Alters Epigenetic Marks on DNA and Histones

    PubMed Central

    Zeisel, Steven H.

    2011-01-01

    Dietary choline is an important modulator of gene expression (via epigenetic marks) and of DNA integrity. Choline was discovered to be an essential nutrient for some humans approximately one decade ago. This requirement is diminished in young women because estrogen drives endogenous synthesis of phosphatidylcholine, from which choline can be derived. Almost half of women have a single nucleotide polymorphism that abrogates estrogen-induction of endogenous synthesis, and these women require dietary choline just as do men. In the US, dietary intake of choline is marginal. Choline deficiency in people is associated with liver and muscle dysfunction and damage, with apoptosis, and with increased DNA strand breaks. Several mechanisms explain these modifications to DNA. Choline deficiency increases leakage of reactive oxygen species from mitochondria consequent to altered mitochondrial membrane composition and enhanced fatty acid oxidation. Choline deficiency impairs folate metabolism, resulting in decreased thymidylate synthesis and increased uracil misincorporation into DNA, with strand breaks resulting during error-prone repair attempts. Choline deficiency alters DNA methylation, which alters gene expression for critical genes involved in DNA mismatch repair, resulting in increased mutation rates. Any dietary deficiency which increases mutation rates should be associated with increased risk of cancers, and this is the case for choline deficiency. In rodent models, diets low in choline and methyl-groups result in spontaneous hepatocarcinomas. In human epidemiological studies, there are interesting data that suggest that this also may be the case for humans, especially those with SNPs that increase the dietary requirement for choline. PMID:22041500

  1. Dietary choline deficiency causes DNA strand breaks and alters epigenetic marks on DNA and histones.

    PubMed

    Zeisel, Steven H

    2012-05-01

    Dietary choline is an important modulator of gene expression (via epigenetic marks) and of DNA integrity. Choline was discovered to be an essential nutrient for some humans approximately one decade ago. This requirement is diminished in young women because estrogen drives endogenous synthesis of phosphatidylcholine, from which choline can be derived. Almost half of women have a single nucleotide polymorphism that abrogates estrogen-induction of endogenous synthesis, and these women require dietary choline just as do men. In the US, dietary intake of choline is marginal. Choline deficiency in people is associated with liver and muscle dysfunction and damage, with apoptosis, and with increased DNA strand breaks. Several mechanisms explain these modifications to DNA. Choline deficiency increases leakage of reactive oxygen species from mitochondria consequent to altered mitochondrial membrane composition and enhanced fatty acid oxidation. Choline deficiency impairs folate metabolism, resulting in decreased thymidylate synthesis and increased uracil misincorporation into DNA, with strand breaks resulting during error-prone repair attempts. Choline deficiency alters DNA methylation, which alters gene expression for critical genes involved in DNA mismatch repair, resulting in increased mutation rates. Any dietary deficiency which increases mutation rates should be associated with increased risk of cancers, and this is the case for choline deficiency. In rodent models, diets low in choline and methyl-groups result in spontaneous hepatocarcinomas. In human epidemiological studies, there are interesting data that suggest that this also may be the case for humans, especially those with SNPs that increase the dietary requirement for choline. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. AF64A depletes hippocampal high-affinity choline uptake but does not alter the density of alpha-bungarotoxin binding sites or modify the effect of exogenous choline.

    PubMed

    Morley, B J; Garner, L L

    1990-06-11

    Sodium-dependent, high-affinity choline uptake (HACU) and the density of alpha-bungarotoxin (BuTX) receptor-binding sites were measured in the hippocampus following the intraventricular infusion of ethylcholine aziridinium ion (AF64A), a neurotoxin that competes with choline at high-affinity choline transport sites and may result in the degeneration of cholinergic axons. Eight days after the infusion of AF64A into the lateral ventricles (2.5 nmol/side), HACU was depleted by 60% in the hippocampus of experimental animals in comparison with controls, but the density of BuTX-binding sites was not altered. The administration of 15 mg/ml of choline chloride in the drinking water increased the density of BuTX-binding sites, as previously reported by this laboratory. The administration of AF64A did not prevent the effect of exogenous choline on the density of binding sites, nor did choline treatment alter the effect of AF64A on HACU. These data indicate that the density of BuTX-binding sites in the hippocampus is not altered following a substantial decrease in HACU and presumed degeneration of cholinergic axons. Since the effect of exogenous choline was not prevented by AF64A treatment, the data are interpreted to support the hypothesis that the increase in the density of BuTX-binding sites following dietary choline supplementation is attributable to a direct effect of choline on receptor sites.

  3. Choline availability modulates human neuroblastoma cell proliferation and alters the methylation of the promoter region of the cyclin-dependent kinase inhibitor 3 gene

    PubMed Central

    Niculescu, Mihai D.; Yamamuro, Yutaka; Zeisel, Steven H.

    2006-01-01

    Choline is an important methyl donor and a component of membrane phospholipids. In this study, we tested the hypothesis that choline availability can modulate cell proliferation and the methylation of genes that regulate cell cycling. In several other model systems, hypomethylation of cytosine bases that are followed by a guanosine (CpG) sites in the promoter region of a gene is associated with increased gene expression. We found that in choline-deficient IMR-32 neuroblastoma cells, the promoter of the cyclin-dependent kinase inhibitor 3 gene (CDKN3) was hypomethylated. This change was associated with increased expression of CDKN3 and increased levels of its gene product, kinase-associated phosphatase (KAP), which inhibits the G1/S transition of the cell cycle by dephosphorylating cyclin-dependent kinases. Choline deficiency also reduced global DNA methylation. The percentage of cells that accumulated bromodeoxyuridine (proportional to cell proliferation) was 1.8 times lower in the choline-deficient cells than in the control cells. Phosphorylated retinoblastoma (p110) levels were 3 times lower in the choline-deficient cells than in control cells. These findings suggest that the mechanism whereby choline deficiency inhibits cell proliferation involves hypomethylation of key genes regulating cell cycling. This may be a mechanism for our previously reported observation that stem cell proliferation in hippocampus neuroepithelium is decreased in choline-deficient rat and mouse fetuses. PMID:15147518

  4. Prenatal choline and the development of schizophrenia

    PubMed Central

    FREEDMAN, Robert; ROSS, Randal G.

    2015-01-01

    Background The primary prevention of illness at the population level, the ultimate aim of medicine, seems out of reach for schizophrenia. Schizophrenia has a strong genetic component, and its pathogenesis begins long before the emergence of psychosis, as early as fetal brain development. Cholinergic neurotransmission at nicotinic receptors is a pathophysiological mechanism related to one aspect of this genetic risk. Choline activates these nicotinic receptors during fetal brain development. Dietary supplementation of maternal choline thus emerges as a possible intervention in pregnancy to alter the earliest developmental course of the illness. Aim Review available literature on the relationship of choline supplementation or choline levels during pregnancy and fetal brain development. Methods A Medline search was used to identify studies assessing effects of choline in human fetal development. Studies of other prenatal risk factors for schizophrenia and the role of cholinergic neurotransmission in its pathophysiology were also identified. Results Dietary requirements for choline are high during pregnancy because of its several uses, including membrane biosynthesis, one-carbon metabolism, and cholinergic neurotransmission. Its ability to act directly at high concentrations as a nicotinic agonist is critical for normal brain circuit development. Dietary supplementation in the second and third trimesters with phosphatidyl-choline supports these functions and is associated generally with better fetal outcome. Improvement in inhibitory neuronal functions whose deficit is associated with schizophrenia and attention deficit disorder has been observed. Conclusion Prenatal dietary supplementation with phosphatidyl-choline and promotion of diets rich in choline-containing foods (meats, soybeans, and eggs) are possible interventions to promote fetal brain development and thereby decrease the risk of subsequent mental illnesses. The low risk and short (sixmonth) duration of the intervention makes it especially conducive to population-wide adoption. Similar findings with folate for the prevention of cleft palate led to recommendations for prenatal pharmacological supplementation and dietary improvement. However, definitive proof of the efficacy of prenatal choline supplementation will not be available for decades (because of the 20-year lag until the onset of schizophrenia), so public health officials need to decide whether or not promoting choline supplementation is justified based on the limited information available. PMID:26120259

  5. Choline, Other Methyl-Donors and Epigenetics

    PubMed Central

    Zeisel, Steven H.

    2017-01-01

    Choline dietary intake varies such that many people do not achieve adequate intakes. Diet intake of choline can modulate methylation because, via betaine homocysteine methyltransferase (BHMT), this nutrient (and its metabolite, betaine) regulate the concentrations of S-adenosylhomocysteine and S-adenosylmethionine. Some of the epigenetic mechanisms that modify gene expression without modifying the genetic code depend on the methylation of DNA or of histones; and diet availability of choline and other methyl-group donors influences both of these methylations. Examples of methyl-donor mediated epigenetic effects include the changes in coat color and body weight in offspring when pregnant agouti mice are fed high choline, high methyl diets; the changes in tail kinking in offspring when pregnant Axin(Fu) mice are fed high choline, high methyl diets; the changes in Cdkn3 methylation and altered brain development that occurs in offspring when pregnant rodents are fed low choline diets. When choline metabolism is disrupted by deleting the gene Bhmt, DNA methylation is affected (especially in a region of chromosome 13), expression of specific genes is suppressed, and liver cancers develop. Better understanding of how nutrients such as choline and methyl-donors influence epigenetic programs has importance for our understanding of not only developmental abnormalities but also for understanding the origins of chronic diseases. PMID:28468239

  6. Choline, Other Methyl-Donors and Epigenetics.

    PubMed

    Zeisel, Steven

    2017-04-29

    Choline dietary intake varies such that many people do not achieve adequate intakes. Diet intake of choline can modulate methylation because, via betaine homocysteine methyltransferase (BHMT), this nutrient (and its metabolite, betaine) regulate the concentrations of S-adenosylhomocysteine and S-adenosylmethionine. Some of the epigenetic mechanisms that modify gene expression without modifying the genetic code depend on the methylation of DNA or of histones; and diet availability of choline and other methyl-group donors influences both of these methylations. Examples of methyl-donor mediated epigenetic effects include the changes in coat color and body weight in offspring when pregnant agouti mice are fed high choline, high methyl diets; the changes in tail kinking in offspring when pregnant Axin(Fu) mice are fed high choline, high methyl diets; the changes in Cdkn3 methylation and altered brain development that occurs in offspring when pregnant rodents are fed low choline diets. When choline metabolism is disrupted by deleting the gene Bhmt, DNA methylation is affected (especially in a region of chromosome 13), expression of specific genes is suppressed, and liver cancers develop. Better understanding of how nutrients such as choline and methyl-donors influence epigenetic programs has importance for our understanding of not only developmental abnormalities but also for understanding the origins of chronic diseases.

  7. Diethanolamine alters proliferation and choline metabolism in mouse neural precursor cells.

    PubMed

    Niculescu, Mihai D; Wu, Renan; Guo, Zhong; da Costa, Kerry Ann; Zeisel, Steven H

    2007-04-01

    Diethanolamine (DEA) is a widely used ingredient in many consumer products and in a number of industrial applications. It has been previously reported that dermal administration of DEA to mice diminished hepatic stores of choline and altered brain development in the fetus. The aim of this study was to use mouse neural precursor cells in vitro to assess the mechanism underlying the effects of DEA. Cells exposed to DEA treatment (3mM) proliferated less (by 5-bromo-2-deoxyuridine incorporation) at 48 h (24% of control [CT]), and had increased apoptosis at 72 h (308% of CT). Uptake of choline into cells was reduced by DEA treatment (to 52% of CT), resulting in diminished intracellular concentrations of choline and phosphocholine (55 and 12% of CT, respectively). When choline concentration in the growth medium was increased threefold (to 210 microM), the effects of DEA exposure on cell proliferation and apoptosis were prevented, however, intracellular phosphocholine concentrations remained low. In choline kinase assays, we observed that DEA can be phosphorylated to phospho-DEA at the expense of choline. Thus, the effects of DEA are likely mediated by inhibition of choline transport into neural precursor cells and by altered metabolism of choline. Our study suggests that prenatal exposure to DEA may have a detrimental effect on brain development.

  8. Diethanolamine Alters Proliferation and Choline Metabolism in Mouse Neural Precursor Cells

    PubMed Central

    Niculescu, Mihai D.; Wu, Renan; Guo, Zhong; da Costa, Kerry Ann; Zeisel, Steven H.

    2008-01-01

    Diethanolamine (DEA) is a widely used ingredient in many consumer products and in a number of industrial applications. It has been previously reported that dermal administration of DEA to mice diminished hepatic stores of choline and altered brain development in the fetus. The aim of this study was to use mouse neural precursor cells in vitro to assess the mechanism underlying the effects of DEA. Cells exposed to DEA treatment (3mM) proliferated less (by 5-bromo-2-deoxyuridine incorporation) at 48 h (24% of control [CT]), and had increased apoptosis at 72 h (308% of CT). Uptake of choline into cells was reduced by DEA treatment (to 52% of CT), resulting in diminished intracellular concentrations of choline and phosphocholine (55 and 12% of CT, respectively). When choline concentration in the growth medium was increased threefold (to 210μM), the effects of DEA exposure on cell proliferation and apoptosis were prevented, however, intracellular phosphocholine concentrations remained low. In choline kinase assays, we observed that DEA can be phosphorylated to phospho-DEA at the expense of choline. Thus, the effects of DEA are likely mediated by inhibition of choline transport into neural precursor cells and by altered metabolism of choline. Our study suggests that prenatal exposure to DEA may have a detrimental effect on brain development. PMID:17204582

  9. Identification of new genetic polymorphisms that alter the dietary requirement for choline and vary in their distribution across ethnic and racial groups

    PubMed Central

    da Costa, Kerry-Ann; Corbin, Karen D.; Niculescu, Mihai D.; Galanko, Joseph A.; Zeisel, Steven H.

    2014-01-01

    Effect alleles (alleles with a polymorphism that is associated with the effect being measured) in a small number of single-nucleotide polymorphisms (SNPs) are known to influence the dietary requirement for choline. In this study, we examined a much larger number of SNPs (n=200) in 10 genes related to choline metabolism for associations with development of organ dysfunction (liver or muscle) when 79 humans were fed a low-choline diet. We confirmed that effect alleles in SNPs such as the C allele of PEMT rs12325817 increase the risk of developing organ dysfunction in women when they consume a diet low in choline, and we identified novel effect alleles, such as the C allele of CHKA SNP rs7928739, that alter dietary choline requirements. When fed a low-choline diet, some people presented with muscle damage rather than liver damage; several effect alleles in SLC44A1 (rs7873937, G allele; rs2771040, G; rs6479313, G; rs16924529, A; and rs3199966, C) and one in CHKB (rs1557502, A) were more common in these individuals. This suggests that pathways related to choline metabolism are more important for normal muscle function than previously thought. In European, Mexican, and Asian Americans, and in individuals of African descent, we examined the prevalence of the effect alleles in SNPs that alter choline requirement and found that they are differentially distributed among people of different ethnic and racial backgrounds. Overall, our study has identified novel genetic variants that modulate choline requirements and suggests that the dietary requirement for choline may be different across racial and ethnic groups.—Da Costa, K.-A., Corbin, K. D., Niculescu, M. D., Galanko, J. A., Zeisel, S. H. Identification of new genetic polymorphisms that alter the dietary requirement for choline and vary in their distribution across ethnic and racial groups. PMID:24671709

  10. Alterations of choline phospholipid metabolism in endometrial cancer are caused by choline kinase alpha overexpression and a hyperactivated deacylation pathway.

    PubMed

    Trousil, Sebastian; Lee, Patrizia; Pinato, David J; Ellis, James K; Dina, Roberto; Aboagye, Eric O; Keun, Hector C; Sharma, Rohini

    2014-12-01

    Metabolic rearrangements subsequent to malignant transformation are not well characterized in endometrial cancer. Identification of altered metabolites could facilitate imaging-guided diagnosis, treatment surveillance, and help to identify new therapeutic options. Here, we used high-resolution magic angle spinning magnetic resonance mass spectroscopy on endometrial cancer surgical specimens and normal endometrial tissue to investigate the key modulators that might explain metabolic changes, incorporating additional investigations using qRT-PCR, Western blotting, tissue microarrays (TMA), and uptake assays of [(3)H]-labeled choline. Lipid metabolism was severely dysregulated in endometrial cancer with various amino acids, inositols, nucleobases, and glutathione also altered. Among the most important lipid-related alterations were increased phosphocholine levels (increased 70% in endometrial cancer). Mechanistic investigations revealed that changes were not due to altered choline transporter expression, but rather due to increased expression of choline kinase α (CHKA) and an activated deacylation pathway, as indicated by upregulated expression of the catabolic enzymes LYPLA1, LYPLA2, and GPCPD1. We confirmed the significance of CHKA overexpression on a TMA, including a large series of endometrial hyperplasia, atypical hyperplasia, and adenocarcinoma tissues, supporting a role for CHKA in malignant transformation. Finally, we documented several-fold increases in the uptake of [(3)H]choline in endometrial cancer cell lines compared with normal endometrial stromal cells. Our results validate deregulated choline biochemistry as an important source of noninvasive imaging biomarkers for endometrial cancer. ©2014 American Association for Cancer Research.

  11. The synthesis and release of acetylcholine by depolarized hippocampal slices is increased by increased choline available in vitro prior to stimulation.

    PubMed

    Wecker, L

    1991-10-01

    The objective of these experiments was to determine whether preincubating hippocampal slices with choline provides precursor that can be used during a subsequent incubation to support or enhance the synthesis of acetylcholine (ACh). Slices were preincubated for 60 min with 0, 10, 25, or 50 microM choline, washed, resuspended, and then incubated for 10 min in choline-free buffer containing 4.74 (Krebs-Ringer bicarbonate, KRB) or 25 mM KCl. The tissue contents of ACh and choline were determined prior to and after the preincubation, as well as after the incubation; the amounts of ACh and choline released were measured, and ACh synthesis was calculated. Preincubation in the absence of choline increased the tissue content of ACh to 242% of original levels; preincubation with 10 microM choline did not lead to a further increase, but preincubation with 25 or 50 microM choline increased the ACh content to 272% of original levels, significantly greater than that of slices preincubated with either 0 or 10 microM choline. When tissues were subsequently incubated for 10 min with either KRB or 25 mM KCl, ACh release from slices preincubated with 50 microM choline was greater than from slices preincubated with 0, 10, or 25 microM choline. Incubation of slices with KRB did not alter the tissue content of ACh, but when tissues were incubated with 25 mM KCl, the ACh content of slices preincubated with 0 or 10 microM choline decreased significantly, whereas that of slices preincubated with 25 or 50 microM choline did not.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Choline Availability During Embryonic Development Alters Progenitor Cell Mitosis in Developing Mouse Hippocampus1,2

    PubMed Central

    Craciunescu, Corneliu N.; Albright, Craig D.; Mar, Mei-Heng; Song, Jiannan; Zeisel, Steven H.

    2006-01-01

    Previously, we reported that dietary choline influences development of the hippocampus in fetal rat brain. It is important to know whether similar effects of choline occur in developing fetal mouse brain because interesting new experimental approaches are now available using several transgenic mouse models. Timed-pregnant mice were fed choline-supplemented (CS), control (CT) or choline-deficient (CD) AIN-76 diet from embryonic day 12 to 17 (E12–17). Fetuses from CD dams had diminished concentrations of phosphocholine and phosphatidylcholine in their brains compared with CT or CS fetuses (P < 0.05). When we analyzed fetal hippocampus on day E17 for cells with mitotic phase–specific expression of phosphorylated histone H3, we detected fewer labeled cells at the ventricular surface of the ventricular zone in the CD group (14.8 ± 1.9) compared with the CT (30.7 ± 1.9) or CS (36.6 ± 2.6) group (P < 0.05). At the same time, we detected more apoptotic cells in E17 hippocampus using morphology in the CD group (11.8 ± 1.4) than in CT (5.6 ± 0.6) or CS (4.2 ± 0.7) group (P < 0.05). This was confirmed using terminal deoxynucleotidyl transferase (TdT)-mediated dUTP-digoxigenin anti-digoxigenin fluorescein conjugate antibody nick end-labeling (TUNEL) and activated caspase-3 immunoreactivity. We conclude that the dietary availability of choline to the mouse dam influences progenitor cell proliferation and apoptosis in the fetal brain. J. Nutr. 133: 3614–3618, 2003. PMID:14608083

  13. Postnatal choline supplementation selectively attenuates hippocampal microRNA alterations associated with developmental alcohol exposure

    PubMed Central

    Balaraman, Sridevi; Idrus, Nirelia M.; Miranda, Rajesh C.; Thomas, Jennifer D.

    2017-01-01

    Prenatal alcohol exposure can result in a range of physical, neuropathological, and behavioral alterations, collectively termed fetal alcohol spectrum disorders (FASD). We have shown that supplementation with the nutrient choline reduces the severity of developmental alcohol-associated deficits in hippocampal-dependent behaviors and normalizes some aspects of hippocampal cholinergic development and DNA methylation patterns. Alcohol’s developmental effects may also be mediated, in part, by altering microRNAs (miRNAs) that serve as negative regulators of gene translation. To determine whether choline supplementation alters ethanol’s long-lasting effects on miRNAs, Sprague-Dawley rats were exposed to 5.25 g/kg/day ethanol from postnatal days (PD) 4–9 via intubation; controls received sham intubations. Subjects were treated with choline chloride (100 mg/kg/day) or saline vehicle subcutaneously (s.c.) from PD 4–21. On PD 22, subjects were sacrificed, and RNA isolated from the hippocampus. MiRNA expression was assessed with TaqMan Human MicroRNA Panel Low-Density Arrays. Ethanol significantly increased miRNA expression variance, an effect that was normalized with choline supplementation. Cluster analysis of stably expressed miRNAs that exceeded an ANOVA p<0.05 criterion indicated that for both male and female offspring, control and ethanol-exposed groups were most dissimilar from each other, with choline-supplemented groups in between. MiRNAs that expressed an average 2-fold change due to ethanol exposure were further analyzed to identify which ethanol-sensitive miRNAs were protected by choline supplementation. We found that at a false discovery rate (FDR)-adjusted criterion of p<0.05, miR-200c was induced by ethanol exposure and that choline prevented this effect. Collectively, our data show that choline supplementation can normalize disturbances in miRNA expression following developmental alcohol exposure and can protect specific miRNAs from induction by ethanol. These findings have important implications for the mechanisms by which choline may serve as a potential treatment for FASD. PMID:28433422

  14. Folate Intake, Mthfr Genotype, and Sex Modulate Choline Metabolism in Mice123

    PubMed Central

    Chew, Tina W.; Jiang, Xinyin; Yan, Jian; Wang, Wei; Lusa, Amanda L.; Carrier, Bradley J.; West, Allyson A.; Malysheva, Olga V.; Brenna, J. Thomas; Gregory, Jesse F.; Caudill, Marie A.

    2011-01-01

    Choline and folate are interrelated in 1-carbon metabolism, mostly because of their shared function as methyl donors for homocysteine remethylation. Folate deficiency and mutations of methylenetetrahydrofolate reductase (MTHFR) reduce the availability of a major methyl donor, 5-methyltetrahydrofolate, which in turn may lead to compensatory changes in choline metabolism. This study investigated the hypothesis that reductions in methyl group supply, either due to dietary folate deficiency or Mthfr gene deletion, would modify tissue choline metabolism in a sex-specific manner. Mthfr wild type (+/+) or heterozygous (+/−) knockout mice were randomized to a folate-deficient or control diet for 8 wk during which time deuterium-labeled choline (d9-choline) was consumed in the drinking water (~10 μmol/d). Mthfr heterozygosity did not alter brain choline metabolite concentrations, but it did enhance their labeling in males (P < 0.05) and tended to do so in females (P < 0.10), a finding consistent with greater turnover of dietary choline in brains of +/− mice. Dietary folate deficiency in females yielded 52% higher (P = 0.027) hepatic glycerophosphocholine, which suggests that phosphatidylcholine (PtdCho) degradation was enhanced. Labeling of the hepatic PtdCho in d3 form was also reduced (P < 0.001) in females, which implies that fewer of the dietary choline-derived methyl groups were used for de novo PtdCho biosynthesis under conditions of folate insufficiency. Males responded to folate restriction with a doubling (P < 0.001) of hepatic choline dehydrogenase transcripts, a finding consistent with enhanced conversion of choline to the methyl donor, betaine. Collectively, these data show that several adaptations in choline metabolism transpire as a result of mild perturbations in folate metabolism, presumably to preserve methyl group homeostasis. PMID:21697299

  15. Pregnancy alters choline dynamics: results of a randomized trial using stable isotope methodology in pregnant and nonpregnant women.

    PubMed

    Yan, Jian; Jiang, Xinyin; West, Allyson A; Perry, Cydne A; Malysheva, Olga V; Brenna, J Thomas; Stabler, Sally P; Allen, Robert H; Gregory, Jesse F; Caudill, Marie A

    2013-12-01

    Although biomarkers of choline metabolism are altered by pregnancy, little is known about the influence of human pregnancy on the dynamics of choline-related metabolic processes. This study used stable isotope methodology to examine the effects of pregnancy on choline partitioning and the metabolic activity of choline-related pathways. Healthy third-trimester pregnant (n = 26; initially week 27 of gestation) and nonpregnant (n = 21) women consumed 22% of their total choline intake (480 or 930 mg/d) as methyl-d9-choline for the final 6 wk of a 12-wk feeding study. Plasma d9-betaine:d9-phosphatidylcholine (PC) was lower (P ≤ 0.04) in pregnant than in nonpregnant women, suggesting greater partitioning of choline into the cytidine diphosphate-choline (CDP-choline) PC biosynthetic pathway relative to betaine synthesis during pregnancy. Pregnant women also used more choline-derived methyl groups for PC synthesis via phosphatidylethanolamine N-methyltransferase (PEMT) as indicated by comparable increases in PEMT-PC enrichment in pregnant and nonpregnant women despite unequal (pregnant > nonpregnant; P < 0.001) PC pool sizes. Pregnancy enhanced the hydrolysis of PEMT-PC to free choline as shown by greater (P < 0.001) plasma d3-choline:d3-PC. Notably, d3-PC enrichment increased (P ≤ 0.011) incrementally from maternal to placental to fetal compartments, signifying the selective transfer of PEMT-PC to the fetus. The enhanced use of choline for PC production via both the CDP-choline and PEMT pathways shows the substantial demand for choline during late pregnancy. Selective partitioning of PEMT-PC to the fetal compartment may imply a unique requirement of PEMT-PC by the developing fetus.

  16. Mechanism of choline deficiency and membrane alteration in postural orthostatic tachycardia syndrome primary skin fibroblasts

    PubMed Central

    Schenkel, Laila C.; Singh, Ratnesh K.; Michel, Vera; Zeisel, Steven H.; da Costa, Kerry-Ann; Johnson, Amy R.; Mudd, Harvey S.; Bakovic, Marica

    2015-01-01

    Fibroblasts from a patient with postural orthostatic tachycardia syndrome (POTS), who presented with low plasma choline and betaine, were studied to determine the metabolic characteristics of the choline deficiency. Choline is required for the synthesis of the phospholipid phosphatidylcholine (PC) and for betaine, an important osmoregulator. Here, choline transport, lipid homeostasis, and mitochondria function were analyzed in skin fibroblasts from POTS and compared with control cells. The choline transporter-like protein 1/solute carrier 44A1 (CTL1/SLC44A1) and mRNA expression were 2–3 times lower in POTS fibroblasts, and choline uptake was reduced 60% (P < 0.05). Disturbances of membrane homeostasis were observed by reduced ratios between PC:phosphatidylethanolamine and sphingomyelin:cholesterol, as well as by modified phospholipid fatty acid composition. Choline deficiency also impaired mitochondria function, which was observed by a reduction in oxygen consumption, mitochondrial potential, and glycolytic activity. When POTS cells were treated with choline, transporter was up-regulated, and uptake of choline increased, offering an option for patient treatment. The characteristics of the POTS fibroblasts described here represent a first model of choline and CTL1/SLC44A1 deficiency, in which choline transport, membrane homeostasis, and mitochondrial function are impaired.—Schenkel, L. C., Singh, R. K., Michel, V., Zeisel, S. H., da Costa, K.-A., Johnson, A. R., Mudd, H. S., Bakovic, M. Mechanism of choline deficiency and membrane alteration in postural orthostatic tachycardia syndrome primary skin fibroblasts. PMID:25466896

  17. The effects of perinatal choline supplementation on hippocampal cholinergic development in rats exposed to alcohol during the brain growth spurt.

    PubMed

    Monk, Bradley R; Leslie, Frances M; Thomas, Jennifer D

    2012-08-01

    Prenatal alcohol exposure leads to long-lasting cognitive and attention deficits, as well as hyperactivity. Using a rat model, we have previously shown that perinatal supplementation with the essential nutrient, choline, can reduce the severity of some fetal alcohol effects, including hyperactivity and deficits in learning and memory. In fact, choline can mitigate alcohol-related learning deficits even when administered after developmental alcohol exposure, during the postnatal period. However, it is not yet known how choline is able to mitigate alcohol-related behavioral alterations. Choline may act by altering cholinergic signaling in the hippocampus. This study examined the effects of developmental alcohol exposure and perinatal choline supplementation on hippocampal M(1) and M(2/4) muscarinic receptors. Sprague-Dawley rat pups were orally intubated with ethanol (5.25 mg/kg/day) from postnatal days (PD) 4-9, a period of brain development equivalent to the human third trimester; control subjects received sham intubations. From PD 4-30, subjects were injected s.c. with choline chloride (100 mg/kg/day) or saline vehicle. Open field activity was assessed from PD 30 through 33, and brain tissue was collected on PD 35 for autoradiographic analysis. Ethanol-exposed subjects were more active compared to controls during the first 2 days of testing, an effect attenuated with choline supplementation. Developmental alcohol exposure significantly decreased the density of muscarinic M(1) receptors in the dorsal hippocampus, an effect that was not altered by choline supplementation. In contrast, developmental alcohol exposure significantly increased M(2/4) receptor density, an effect mitigated by choline supplementation. In fact, M(2/4) receptor density of subjects exposed to alcohol and treated with choline did not differ significantly from that of controls. These data suggest that developmental alcohol exposure can cause long-lasting changes in the hippocampal cholinergic system and that perinatal choline supplementation may attenuate alcohol-related behavioral changes by influencing cholinergic systems. Copyright © 2012 Wiley Periodicals, Inc.

  18. The Effects of Perinatal Choline Supplementation on Hippocampal Cholinergic Development in Rats Exposed to Alcohol During the Brain Growth Spurt

    PubMed Central

    Monk, Bradley R.; Leslie, Frances M.; Thomas, Jennifer D.

    2012-01-01

    Prenatal alcohol exposure leads to long-lasting cognitive and attention deficits, as well as hyperactivity. Using a rat model, we have previously shown that perinatal supplementation with the essential nutrient, choline, can reduce the severity of some fetal alcohol effects, including hyperactivity and deficits in learning and memory. In fact, choline can mitigate alcohol-related learning deficits even when administered after developmental alcohol exposure, during the postnatal period. However, it is not yet known how choline is able to mitigate alcohol-related behavioral alterations. Choline may act by altering cholinergic signaling in the hippocampus. This study examined the effects of developmental alcohol exposure and perinatal choline supplementation on hippocampal M1 and M2/4 muscarinic receptors. Sprague-Dawley rat pups were orally intubated with ethanol (5.25 mg/kg/day) from postnatal days (PD) 4-9, a period of brain development equivalent to the human 3rd trimester; control subjects received sham intubations. From PD 4-30, subjects were injected s.c. with choline chloride (100 mg/kg/day) or saline vehicle. Open field activity was assessed from PD 30-33 and brain tissue was collected on PD 35 for autoradiographic analysis. Ethanol-exposed subjects were more active compared to controls during the first two days of testing, an effect attenuated with choline supplementation. Developmental alcohol exposure significantly decreased the density of muscarinic M1 receptors in the dorsal hippocampus, an effect that was not altered by choline supplementation. In contrast, developmental alcohol exposure significantly increased M2/4 receptor density, an effect mitigated by choline supplementation. In fact, M2/4 receptor density of subjects exposed to alcohol and treated with choline did not differ significantly from that of controls. These data suggest that developmental alcohol exposure can cause long-lasting changes in the hippocampal cholinergic system and that perinatal choline supplementation may attenuate alcohol-related behavioral changes by influencing cholinergic systems. PMID:22431326

  19. Postnatal choline supplementation selectively attenuates hippocampal microRNA alterations associated with developmental alcohol exposure.

    PubMed

    Balaraman, Sridevi; Idrus, Nirelia M; Miranda, Rajesh C; Thomas, Jennifer D

    2017-05-01

    Prenatal alcohol exposure can result in a range of physical, neuropathological, and behavioral alterations, collectively termed fetal alcohol spectrum disorders (FASD). We have shown that supplementation with the nutrient choline reduces the severity of developmental alcohol-associated deficits in hippocampal-dependent behaviors and normalizes some aspects of hippocampal cholinergic development and DNA methylation patterns. Alcohol's developmental effects may also be mediated, in part, by altering microRNAs (miRNAs) that serve as negative regulators of gene translation. To determine whether choline supplementation alters ethanol's long-lasting effects on miRNAs, Sprague-Dawley rats were exposed to 5.25 g/kg/day ethanol from postnatal days (PD) 4-9 via intubation; controls received sham intubations. Subjects were treated with choline chloride (100 mg/kg/day) or saline vehicle subcutaneously (s.c.) from PD 4-21. On PD 22, subjects were sacrificed, and RNA was isolated from the hippocampus. MiRNA expression was assessed with TaqMan Human MicroRNA Panel Low-Density Arrays. Ethanol significantly increased miRNA expression variance, an effect that was attenuated with choline supplementation. Cluster analysis of stably expressed miRNAs that exceeded an ANOVA p < 0.05 criterion indicated that for both male and female offspring, control and ethanol-exposed groups were most dissimilar from each other, with choline-supplemented groups in between. MiRNAs that expressed an average 2-fold change due to ethanol exposure were further analyzed to identify which ethanol-sensitive miRNAs were protected by choline supplementation. We found that at a false discovery rate (FDR)-adjusted criterion of p < 0.05, miR-200c was induced by ethanol exposure and that choline prevented this effect. Collectively, our data show that choline supplementation can normalize disturbances in miRNA expression following developmental alcohol exposure and can protect specific miRNAs from induction by ethanol. These findings have important implications for the mechanisms by which choline may serve as a potential treatment for FASD. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Perinatal choline supplementation attenuates behavioral alterations associated with neonatal alcohol exposure in rats.

    PubMed

    Thomas, Jennifer D; Garrison, Megan; O'Neill, Teresa M

    2004-01-01

    Children exposed to alcohol prenatally suffer from a variety of behavioral alterations, including hyperactivity and learning deficits. Given that women continue to drink alcohol during pregnancy, it is critical that effective interventions and treatments be identified. Previously, we reported that early postnatal choline supplementation can reduce the severity of learning deficits in rats exposed to alcohol prenatally. The present study examined whether choline supplementation can reduce the severity of behavioral alterations associated with alcohol exposure during the third trimester equivalent brain growth spurt. Male neonatal rats were assigned to one of three treatment groups. One group was exposed to alcohol (6.6 g/kg/day) from postnatal days (PD) 4-9 via an artificial rearing procedure. Artificially reared and normally reared control groups were included. One half of subjects from each treatment received daily subcutaneous injections of a choline chloride solution from PD 4-30, whereas the other half received saline vehicle injections. On PD 31-34, after choline treatment was complete, activity level was monitored and, on PD 40-42, subjects were tested on a serial spatial discrimination reversal learning task. Subjects exposed to alcohol were significantly hyperactive compared to controls. The severity of ethanol-induced hyperactivity was attenuated with choline treatment. In addition, subjects exposed to ethanol during the neonatal period committed a significantly greater number of perseverative-type errors on the reversal learning task compared to controls. Exposure to choline significantly reduced the number of ethanol-related errors. Importantly, these behavioral changes were not due to the acute effects of choline, but were related to long-lasting organizational effects of early choline supplementation. These data suggest that early dietary interventions may reduce the severity of fetal alcohol effects.

  1. Inhibition of pneumococcal choline-binding proteins and cell growth by esters of bicyclic amines.

    PubMed

    Maestro, Beatriz; González, Ana; García, Pedro; Sanz, Jesús M

    2007-01-01

    Streptococcus pneumoniae is one of the major pathogens worldwide. The use of currently available antibiotics to treat pneumococcal diseases is hampered by increasing resistance levels; also, capsular polysaccharide-based vaccination is of limited efficacy. Therefore, it is desirable to find targets for the development of new antimicrobial drugs specifically designed to fight pneumococcal infections. Choline-binding proteins are a family of polypeptides, found in all S. pneumoniae strains, that take part in important physiologic processes of this bacterium. Among them are several murein hydrolases whose enzymatic activity is usually inhibited by an excess of choline. Using a simple chromatographic procedure, we have identified several choline analogs able to strongly interact with the choline-binding module (C-LytA) of the major autolysin of S. pneumoniae. Two of these compounds (atropine and ipratropium) display a higher binding affinity to C-LytA than choline, and also increase the stability of the protein. CD and fluorescence spectroscopy analyses revealed that the conformational changes of C-LytA upon binding of these alkaloids are different to those induced by choline, suggesting a different mode of binding. In vitro inhibition assays of three pneumococcal, choline-dependent cell wall lytic enzymes also demonstrated a greater inhibitory efficiency of those molecules. Moreover, atropine and ipratropium strongly inhibited in vitro pneumococcal growth, altering cell morphology and reducing cell viability, a very different response than that observed upon addition of an excess of choline. These results may open up the possibility of the development of bicyclic amines as new antimicrobials for use against pneumococcal pathologies.

  2. Perinatal Dietary Choline Deficiency in Sows Influences Concentrations of Choline Metabolites, Fatty Acids, and Amino Acids in Milk throughout Lactation.

    PubMed

    Mudd, Austin T; Alexander, Lindsey S; Johnson, Stacey K; Getty, Caitlyn M; Malysheva, Olga V; Caudill, Marie A; Dilger, Ryan N

    2016-11-01

    Choline is essential for synthesis of phospholipids, neurodevelopment, and DNA methylation. It is unknown whether dietary perinatal choline deficiency affects maternal milk composition. We examined whether perinatal maternal dietary choline deficiency influences porcine-milk composition. Yorkshire sows were fed choline-deficient (CD) or choline-sufficient (CS) gestation diets [544 or 1887 mg choline/kg dry matter (DM), respectively] from 65 d before to 48 h after parturition and then fed lactation diets (517 or 1591 mg choline/kg DM, respectively) through day 19 of lactation. Milk was collected from 7 sows fed each diet at days 0 (colostrum), 7-9 (mature milk), and 17-19 (preweaning) of lactation. Sow plasma was collected 65 d before and 19 d after parturition. Milk was analyzed for choline metabolite, fatty acid (FA), and amino acid composition. All outcomes were analyzed to assess main and interactive effects of choline intake and time. Plasma choline metabolites did not differ before treatment, but free choline, betaine, and dimethylglycine concentrations were lower in CD-fed than in CS-fed sows at day 19 of lactation (interaction; P < 0.05). Milk betaine concentrations responded similarly, with no differences due to choline intake at day 0 of lactation, but lower concentrations in CD-fed than in CS-fed sows at day 18 of lactation (interaction; P < 0.001). Certain milk long-chain FAs also exhibited no differences at day 0 of lactation but higher concentrations in CD-fed than in CS-fed sows at day 18 of lactation (P < 0.05). These data indicate that, in pigs, dietary choline deficiency induces alterations in plasma choline metabolites that are evident at the end of lactation. Betaine and select FAs in milk are sensitive to maternal dietary choline deficiency and day of lactation. Alterations in concentrations of these nutrients may affect early-life neonatal development. © 2016 American Society for Nutrition.

  3. Choline supplementation alters some amino acid concentrations with no change in homocysteine in children with cystic fibrosis and pancreatic insufficiency.

    PubMed

    Alshaikh, Belal; Schall, Joan I; Maqbool, Asim; Mascarenhas, Maria; Bennett, Michael J; Stallings, Virginia A

    2016-05-01

    The present study determined the plasma amino acid status in children with cystic fibrosis (CF) and pancreatic insufficiency (PI) in the modern medical and nutritional care setting and investigated the effect of choline supplementation on amino acid status. A total of 110 children aged 5 to 18 years with CF and PI were randomized to receive choline-enriched structured lipid (LYM-X-SORB) or placebo with similar energy and fat content. Plasma amino acids were measured at baseline and 3 and 12 months. We hypothesized that choline supplementation would result in lower plasma homocysteine concentrations in children with CF. At baseline, dietary protein intake was high and the amino acid profile was within laboratory reference ranges in most participants. Alanine and cysteine were elevated in 24% and 36% of participants, respectively. Children with baseline alanine above reference range had improved weight, body mass index, and fat-free mass. Low homocysteine was found in 62% of children 11 years and older. After 3 and 12 months, there was no effect of choline supplementation on methionine or homocysteine status. Compared with placebo, choline supplementation resulted in increased glycine and decreased threonine, histidine, valine, and total branch chained amino acids at 12 months. In conclusion, daily choline supplementation with LYM-X-SORB did not alter methionine-homocysteine metabolism but did result in alterations in other amino acids in children with CF and PI. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Choline Supplementation Alters Some Amino Acid Concentrations with No Change in Homocysteine in Children with Cystic Fibrosis and Pancreatic Insufficiency

    PubMed Central

    Alshaikh, Belal; Schall, Joan I.; Maqbool, Asim; Mascarenhas, Maria; Bennett, Michael J.; Stallings, Virginia A.

    2016-01-01

    The present study determined the plasma amino acid status in children with cystic fibrosis (CF) and pancreatic insufficiency (PI) in the modern medical and nutritional care setting and investigated the effect of choline supplementation on amino acid status. A total of 110 children, ages 5 to 18 years, with CF and PI were randomized to receive choline-enriched structured lipid (LYM-X-SORB™, LXS) or placebo with similar calorie and fat content. Plasma amino acids were measured at baseline, 3, and 12 months. We hypothesized that choline supplementation would result in lower plasma homocysteine concentrations in children with CF. At baseline, dietary protein intake was high and the amino acid profile was within laboratory reference ranges in most subjects. Alanine and cysteine were elevated in 24% and 36% of subjects, respectively. Children with baseline alanine above reference range had improved weight, body mass index, and fat-free mass. Low homocysteine was found in 62% of children 11 years and older. After 3 and 12 months, there was no effect of choline supplementation on methionine or homocysteine status. Compared to placebo, choline supplementation resulted in increased glycine and decreased threonine, histidine, valine and total branch chained amino acids at 12 months. In conclusion, daily choline supplementation with LXS did not alter methionine-homocysteine metabolism but did result in alterations in other amino acids in children with CF and PI. PMID:27101760

  5. Lack of effect of oral choline supplement on the concentrations of choline metabolites in human brain.

    PubMed

    Tan, J; Bluml, S; Hoang, T; Dubowitz, D; Mevenkamp, G; Ross, B

    1998-06-01

    Recent reports suggest that oral choline supplement may alter the cerebral choline/creatine (Cho/Cr) ratio and might be used to treat neurodegenerative disorders of cholinergic transmission. Using both 1H and 31P MRS, we reexamined the Cho/Cr ratio and quantified cerebral choline and its major constituents: phosphoethanolamine (PE), phosphorylcholine (PC), glycerophosphorylethanolamine (GPE), and glycerophosphorylcholine (GPC). In the four brain locations examined, no significant increases in Cho/Cr, [Cho], or in its major constituents were found in response to an oral challenge of 50 mg/kg of choline bitartrate. Oral choline did not significantly affect human cerebral metabolism in the short term.

  6. Gene expression profiling of choline-deprived neural precursor cells isolated from mouse brain.

    PubMed

    Niculescu, Mihai D; Craciunescu, Corneliu N; Zeisel, Steven H

    2005-04-04

    Choline is an essential nutrient and an important methyl donor. Choline deficiency alters fetal development of the hippocampus in rodents and these changes are associated with decreased memory function lasting throughout life. Also, choline deficiency alters global and gene-specific DNA methylation in several models. This gene expression profiling study describes changes in cortical neural precursor cells from embryonic day 14 mice, after 48 h of exposure to a choline-deficient medium. Using Significance Analysis of Microarrays, we found the expression of 1003 genes to be significantly changed (from a total of 16,000 total genes spotted on the array), with a false discovery rate below 5%. A total of 846 genes were overexpressed while 157 were underexpressed. Classification by gene ontology revealed that 331 of these genes modulate cell proliferation, apoptosis, neuronal and glial differentiation, methyl metabolism, and calcium-binding protein classes. Twenty-seven genes that had changed expression have previously been reported to be regulated by promoter or intron methylation. These findings support our previous work suggesting that choline deficiency decreases the proliferation of neural precursors and possibly increases premature neuronal differentiation and apoptosis.

  7. Prenatal choline supplementation alters the timing, emotion, and memory performance (TEMP) of adult male and female rats as indexed by differential reinforcement of low-rate schedule behavior

    PubMed Central

    Cheng, Ruey-Kuang; MacDonald, Christopher J.; Williams, Christina L.; Meck, Warren H.

    2008-01-01

    Choline availability in the maternal diet has a lasting effect on brain and behavior of the offspring. To further delineate the impact of early nutritional status, we examined effects of prenatal-choline supplementation on timing, emotion, and memory performance of adult male and female rats. Rats that were given sufficient choline (CON: 1.1 g/kg) or supplemental choline (SUP: 5.0 g/kg) during embryonic days (ED) 12–17 were trained with a differential reinforcement of low-rate (DRL) schedule that was gradually transitioned through 5-, 10-, 18-, 36-, and 72-sec criterion times. We observed that SUP-females emitted more reinforced responses than CON-females, which were more efficient than both groups of males. In addition, SUP-males and SUP-females exhibited a reduction in burst responding (response latencies <2 sec) compared with both groups of CON rats. Furthermore, despite a reduced level of burst responding, the SUP-males made more nonreinforced responses prior to the DRL criterion as a result of maintaining the previous DRL criterion following transition to a new criterion. In summary, long-lasting effects of prenatal-choline supplementation were exhibited by reduced frustrative DRL responding in conjunction with the persistence of temporal memory in SUP-males and enhanced temporal exploration and response efficiency in SUP-females. PMID:18323570

  8. Maternal choline supplementation: a nutritional approach for improving offspring health?

    PubMed

    Jiang, Xinyin; West, Allyson A; Caudill, Marie A

    2014-05-01

    The modulatory role of choline on the fetal epigenome and the impact of in utero choline supply on fetal programming and health are of great interest. Studies in animals and/or humans suggest that maternal choline supplementation during pregnancy benefits important physiologic systems such as offspring cognitive function, response to stress, and cerebral inhibition. Because alterations in offspring phenotype frequently coincide with epigenetic modifications and changes in gene expression, maternal choline supplementation may be a nutritional strategy to improve lifelong health of the child. Future studies are warranted to elucidate further the effect of choline on the fetal epigenome and to determine the level of maternal choline intake required for optimal offspring physiologic function. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Neurochemical alterations in methamphetamine-dependent patients treated with cytidine-5'-diphosphate choline: a longitudinal proton magnetic resonance spectroscopy study.

    PubMed

    Yoon, Sujung J; Lyoo, In Kyoon; Kim, Hengjun J; Kim, Tae-Suk; Sung, Young Hoon; Kim, Namkug; Lukas, Scott E; Renshaw, Perry F

    2010-04-01

    Cytidine-5'-diphosphate choline (CDP-choline), as an important intermediate for major membrane phospholipids, may exert neuroprotective effects in various neurodegenerative disorders. This longitudinal proton magnetic resonance spectroscopy ((1)H-MRS) study aimed to examine whether a 4-week CDP-choline treatment could alter neurometabolite levels in patients with methamphetamine (MA) dependence and to investigate whether changes in neurometabolite levels would be associated with MA use. We hypothesized that the prefrontal levels of N-acetyl-aspartate (NAA), a neuronal marker, and choline-containing compound (Cho), which are related to membrane turnover, would increase with CDP-choline treatment in MA-dependent patients. We further hypothesized that this increase would correlate with the total number of negative urine results. Thirty-one treatment seekers with MA dependence were randomly assigned to receive CDP-choline (n=16) or placebo (n=15) for 4 weeks. Prefrontal NAA and Cho levels were examined using (1)H-MRS before medication, and at 2 and 4 weeks after treatment. Generalized estimating equation regression analyses showed that the rate of change in prefrontal NAA (p=0.005) and Cho (p=0.03) levels were greater with CDP-choline treatment than with placebo. In the CDP-choline-treated patients, changes in prefrontal NAA levels were positively associated with the total number of negative urine results (p=0.03). Changes in the prefrontal Cho levels, however, were not associated with the total number of negative urine results. These preliminary findings suggest that CDP-choline treatment may exert potential neuroprotective effects directly or indirectly because of reductions in drug use by the MA-dependent patients. Further studies with a larger sample size of MA-dependent patients are warranted to confirm a long-term efficacy of CDP-choline in neuroprotection and abstinence.

  10. Alcohol Intoxication Impact on Outcome from Traumatic Injury

    DTIC Science & Technology

    2009-05-01

    victim’s mean arterial blood pressure (MABP) at the time of admittance into the emergency department. Previously we have demonstrated that ICV choline ...increased basal MABP (+17%) and produced a similar increase in basal MABP in alcohol intoxicated, However, ICV choline did not alter the initial...intracerebroventricular (ICV) choline (acetylcholine precursor) administration produced a transient activation of sympathetic nervous system outflow

  11. Alcohol Intoxication Impact on Outcome from Traumatic Injury

    DTIC Science & Technology

    2008-05-01

    emergency department. Previously we have demonstrated that ICV choline increased basal MABP (+17%) and produced a similar increase in basal MABP in...alcohol intoxicated. However, ICV choline did not alter the initial % decrease in blood pressure nor did it improve MABP throughout hemorrhagic...shock or fluid resuscitation in alcohol-treated animals. These studies showed that intracerebroventricular (ICV) choline (acetylcholine precursor

  12. Interaction between total body gamma-irradiation and choline deficiency triggers immediate modulation of choline and choline-containing moieties.

    PubMed

    Batra, Vipen; Kislay, Binita; Devasagayam, Thomas Paul Asir

    2011-12-01

    The objective of this study was to examine the effect of 60Co-gamma (γ) radiation on acute phase modulation, if any, of choline and choline-containing moieties in choline-deficient subjects. Corresponding results could provide information that might be useful in the management of adverse effects of γ-radiation. Male Swiss mice maintained on a choline-sufficient diet (CSD) and choline-free diet (CFD) based on AIN-93M formula, were subjected to whole body γ-irradiation (2-6 Gy). Liver, serum and brain samples from each group were then tested for: (i) Alterations in choline and choline-containing moieties such as phosphatidylcholine (PC) and sphingomyeline (SM); and (ii) modulation of choline profile modulating enzymes such as phospholipase D (PLD) and total sphingomyelinase (t-SMase). Liver and brain samples were also subjected to histo-pathological examinations. No significant changes were observed in folate, choline, choline-containing moieties and choline-modulating enzymes in choline-sufficient mice. In contrast, interaction between cytotoxic effects of γ-radiation and choline deficiency modulated choline and choline-containing moieties. Feeding CFD reduced hepatic concentrations of choline, PC and SM whereas PLD and t-SMase activities were significantly raised. The decrease in liver choline and choline-containing moieties was accompanied by an increase in blood choline concentration. Despite choline deficiency, the level of choline and acetylcholine synthesizing enzyme choline acetyltransfease (ChAT) significantly increased in the brain. We propose that choline deprivation and γ-radiation interact to modulate choline reserves of hepatic tissue, which might release choline to blood. Our studies also clearly showed that interaction between choline deficiency and γ-radiation might substantially enhance liver adipogenesis.

  13. Choline supplementation alleviates fluoride-induced testicular toxicity by restoring the NGF and MEK expression in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jianhai

    Fluoride is known to cause male reproductive toxicity, and the elucidation of its underlying mechanisms is an ongoing research focus in reproductive toxicology and epidemiology. Choline, an essential nutrient, has been extensively studied for its benefits in nervous system yet was rarely discussed for its prospective effect in male reproductive system. This study aims to explore the potential protective role of choline against NaF-induced male reproductive toxicity via MAPK pathway. The male mice were administrated by 150 mg/L NaF in drinking water, 5.75 g/kg choline in diet, and their combination respectively from maternal gestation to postnatal 15 weeks. The resultsmore » showed that fluoride exposure reduced body weight growth, lowered sperm count and survival percentages, altered testicular histology, down-regulated the mRNA expressions of NGF, Ras, Raf, and MEK genes in testes, as well as significantly decreased the expressions of both NGF and phosphor-MEK proteins in testes. Examination of data from choline-treated mice revealed that choline supplementation ameliorated these fluoride-induced changes. Taken together, our findings suggest that choline supplementation alleviates fluoride-induced testicular toxicity by restoring the NGF and phosphor-MEK expression. The suitable dosage and supplementation periods of choline await further exploration. - Highlights: • Fluoride exposure altered the growth and development, sperm count and sperm survival percentages, testicular histology • Fluoride exposure decreased NGF, Ras, and Mek mRNA and NGF and p-MEK protein expressions in testis of mice. • Choline supplementation diminishes fluoride-induced testicular toxicity.« less

  14. Effect of chemical sympathectomy on the content of acetylcholine, choline and choline acetyltransferase activity in the cat spleen and iris.

    PubMed

    Consolo, S; Garattini, S; Ladinsky, H; Thoenen, H

    1972-02-01

    1. Acetylcholine and choline were measured in the spleens and irides of normal and 6-hydroxydopamine-treated cats. In addition, choline acetyltransferase activity was measured in the spleens.2. No acetylcholine or choline acetyltransferase activity were found in spleens of normal or treated cats. The choline content of normal spleens was 12.4 +/- 1.5 mug/g wet wt. (mean +/- S.E. of mean), which was not significantly altered by chemical sympathectomy.3. The acetylcholine and choline contents of the cat iris were 3.0 +/- 0.3 mug/g wet wt. and 7.7 +/- 0.9 mug/g wet wt., respectively. There was no difference in acetylcholine and choline concentrations between left and right or normal and sympathectomized irides.4. These results are discussed in relation to the question of a cholinergic link in post-ganglionic sympathetic transmission.

  15. Exercise and neuromodulators: choline and acetylcholine in marathon runners

    NASA Technical Reports Server (NTRS)

    Conlay, L. A.; Sabounjian, L. A.; Wurtman, R. J.

    1992-01-01

    Certain neurotransmitters (i.e., acetylcholine, catecholamines, and serotonin) are formed from dietary constituents (i.e., choline, tyrosine and tryptophan). Changing the consumption of these precursors alters release of their respective neurotransmitter products. The neurotransmitter acetylcholine is released from the neuromuscular junction and from brain. It is formed from choline, a common constituent in fish, liver, and eggs. Choline is also incorporated into cell membranes; membranes may likewise serve as an alternative choline source for acetylcholine synthesis. In trained athletes, running a 26 km marathon reduced plasma choline by approximately 40%, from 14.1 to 8.4 uM. Changes of similar magnitude have been shown to reduce acetylcholine release from the neuromuscular junction in vivo. Thus, the reductions in plasma choline associated with strenuous exercise may reduce acetylcholine release, and could thereby affect endurance or performance.

  16. Neurochemical Alterations in Methamphetamine-Dependent Patients Treated with Cytidine-5′-Diphosphate Choline: A Longitudinal Proton Magnetic Resonance Spectroscopy Study

    PubMed Central

    Yoon, Sujung J; Lyoo, In Kyoon; Kim, Hengjun J; Kim, Tae-Suk; Sung, Young Hoon; Kim, Namkug; Lukas, Scott E; Renshaw, Perry F

    2010-01-01

    Cytidine-5′-diphosphate choline (CDP-choline), as an important intermediate for major membrane phospholipids, may exert neuroprotective effects in various neurodegenerative disorders. This longitudinal proton magnetic resonance spectroscopy (1H-MRS) study aimed to examine whether a 4-week CDP-choline treatment could alter neurometabolite levels in patients with methamphetamine (MA) dependence and to investigate whether changes in neurometabolite levels would be associated with MA use. We hypothesized that the prefrontal levels of N-acetyl-aspartate (NAA), a neuronal marker, and choline-containing compound (Cho), which are related to membrane turnover, would increase with CDP-choline treatment in MA-dependent patients. We further hypothesized that this increase would correlate with the total number of negative urine results. Thirty-one treatment seekers with MA dependence were randomly assigned to receive CDP-choline (n=16) or placebo (n=15) for 4 weeks. Prefrontal NAA and Cho levels were examined using 1H-MRS before medication, and at 2 and 4 weeks after treatment. Generalized estimating equation regression analyses showed that the rate of change in prefrontal NAA (p=0.005) and Cho (p=0.03) levels were greater with CDP-choline treatment than with placebo. In the CDP-choline-treated patients, changes in prefrontal NAA levels were positively associated with the total number of negative urine results (p=0.03). Changes in the prefrontal Cho levels, however, were not associated with the total number of negative urine results. These preliminary findings suggest that CDP-choline treatment may exert potential neuroprotective effects directly or indirectly because of reductions in drug use by the MA-dependent patients. Further studies with a larger sample size of MA-dependent patients are warranted to confirm a long-term efficacy of CDP-choline in neuroprotection and abstinence. PMID:20043005

  17. Maternal Dietary Choline Status Influences Brain Gray and White Matter Development in Young Pigs

    PubMed Central

    Mudd, Austin T; Getty, Caitlyn M; Dilger, Ryan N

    2018-01-01

    Abstract Background Choline is an essential nutrient that is pivotal to proper brain development. Research in animal models suggests that perinatal choline deficiency influences neuron development in the hippocampus and cortex, yet these observations require invasive techniques. Objective This study aimed to characterize the effects of perinatal choline deficiency on gray and white matter development with the use of noninvasive neuroimaging techniques in young pigs. Methods During the last 64 d of the 114-d gestation period Yorkshire sows were provided with a choline-sufficient (CS) or choline-deficient (CD) diet, analyzed to contain 1214 mg or 483 mg total choline/kg diet, respectively. Upon farrowing, pigs (Sus scrofa domesticus) were allowed colostrum consumption for ≤48 h, were further stratified into postnatal treatment groups, and were provided either CS or CD milk replacers, analyzed to contain 1591 or 518 mg total choline/kg diet, respectively, for 28 d. At 30 d of age, pigs were subjected to MRI procedures to assess brain development. Gray and white matter development was assessed through voxel-based morphometry (VBM) and tract-based spatial statistics (TBSS) to assess the effects of prenatal and postnatal dietary choline status. Results VBM analysis indicated that prenatally CS pigs exhibited increased (P < 0.01) gray matter in the left and right cortex compared with prenatally CD pigs. Analysis of white matter indicated that prenatally CS pigs exhibited increased (P < 0.01) white matter in the internal capsule, putamen–globus pallidus, and right cortex compared with prenatally CD pigs. No postnatal effects (P > 0.05) of choline status were noted for VBM analyses of gray and white matter. TBSS also showed no significant effects (P > 0.05) of prenatal or postnatal choline status for diffusion values along white matter tracts. Conclusions Observations from this study suggest that prenatal choline deficiency results in altered cortical gray matter and reduced white matter in the internal capsule and putamen of young pigs. With the use of noninvasive neuroimaging techniques, results from our study indicate that prenatal choline deficiency greatly alters gray and white matter development in pigs, thereby providing a translational assessment that may be used in clinical populations.

  18. Maternal choline supplementation differentially alters the basal forebrain cholinergic system of young-adult Ts65Dn and disomic mice.

    PubMed

    Kelley, Christy M; Powers, Brian E; Velazquez, Ramon; Ash, Jessica A; Ginsberg, Stephen D; Strupp, Barbara J; Mufson, Elliott J

    2014-04-15

    Down syndrome (DS), trisomy 21, is a multifaceted condition marked by intellectual disability and early presentation of Alzheimer's disease (AD) neuropathological lesions including degeneration of the basal forebrain cholinergic neuron (BFCN) system. Although DS is diagnosable during gestation, there is no treatment option for expectant mothers or DS individuals. Using the Ts65Dn mouse model of DS that displays age-related degeneration of the BFCN system, we investigated the effects of maternal choline supplementation on the BFCN system in adult Ts65Dn mice and disomic (2N) littermates at 4.3-7.5 months of age. Ts65Dn dams were maintained on a choline-supplemented diet (5.1 g/kg choline chloride) or a control, unsupplemented diet with adequate amounts of choline (1 g/kg choline chloride) from conception until weaning of offspring; post weaning, offspring were fed the control diet. Mice were transcardially perfused with paraformaldehyde, and brains were sectioned and immunolabeled for choline acetyltransferase (ChAT) or p75-neurotrophin receptor (p75(NTR) ). BFCN number and size, the area of the regions, and the intensity of hippocampal labeling were determined. Ts65Dn-unsupplemented mice displayed region- and immunolabel-dependent increased BFCN number, larger areas, smaller BFCNs, and overall increased hippocampal ChAT intensity compared with 2N unsupplemented mice. These effects were partially normalized by maternal choline supplementation. Taken together, the results suggest a developmental imbalance in the Ts65Dn BFCN system. Early maternal-diet choline supplementation attenuates some of the genotype-dependent alterations in the BFCN system, suggesting this naturally occurring nutrient as a treatment option for pregnant mothers with knowledge that their offspring is trisomy 21. Copyright © 2013 Wiley Periodicals, Inc.

  19. Prenatal choline supplementation mitigates the adverse effects of prenatal alcohol exposure on development in rats.

    PubMed

    Thomas, Jennifer D; Abou, Elizabeth J; Dominguez, Hector D

    2009-01-01

    Prenatal alcohol exposure can lead to a range of physical, neurological, and behavioral alterations referred to as fetal alcohol spectrum disorders (FASD). Variability in outcome observed among children with FASD is likely related to various pre- and postnatal factors, including nutritional variables. Choline is an essential nutrient that influences brain and behavioral development. Recent animal research indicates that prenatal choline supplementation leads to long-lasting cognitive enhancement, as well as changes in brain morphology, electrophysiology and neurochemistry. The present study examined whether choline supplementation during ethanol exposure effectively reduces fetal alcohol effects. Pregnant dams were exposed to 6.0g/kg/day ethanol via intubation from gestational days (GD) 5-20; pair-fed and lab chow controls were included. During treatment, subjects from each group received choline chloride (250mg/kg/day) or vehicle. Physical development and behavioral development (righting reflex, geotactic reflex, cliff avoidance, reflex suspension and hindlimb coordination) were examined. Subjects prenatally exposed to alcohol exhibited reduced birth weight and brain weight, delays in eye opening and incisor emergence, and alterations in the development of all behaviors. Choline supplementation significantly attenuated ethanol's effects on birth and brain weight, incisor emergence, and most behavioral measures. In fact, behavioral performance of ethanol-exposed subjects treated with choline did not differ from that of controls. Importantly, choline supplementation did not influence peak blood alcohol level or metabolism, indicating that choline's effects were not due to differential alcohol exposure. These data indicate early dietary supplements may reduce the severity of some fetal alcohol effects, findings with important implications for children of women who drink alcohol during pregnancy.

  20. Maternal choline supplementation differentially alters the basal forebrain cholinergic system of young-adult Ts65Dn and disomic mice

    PubMed Central

    Kelley, Christy M.; Powers, Brian E.; Velazquez, Ramon; Ash, Jessica A.; Ginsberg, Stephen D.; Strupp, Barbara J.; Mufson, Elliott J.

    2014-01-01

    Down syndrome (DS), trisomy 21, is a multifaceted condition marked by intellectual disability and early presentation of Alzheimer’s disease (AD) neuropathological lesions including degeneration of the basal forebrain cholinergic neuron (BFCN) system. While DS is diagnosable during gestation, there is no treatment option for expectant mothers or DS individuals. Using the Ts65Dn mouse model of DS that displays age-related degeneration of the BFCN system, we investigated the effects of maternal choline supplementation on the BFCN system in adult Ts65Dn mice and disomic (2N) littermates at 4.3–7.5 mos of age. Ts65Dn dams were maintained on a choline supplemented diet (5.1 g/kg choline chloride) or a control, unsupplemented diet with adequate amounts of choline (1 g/kg choline chloride) from conception until weaning of offspring; postweaning, offspring were fed the control diet. Mice were transcardially perfused with paraformaldehyde, brains were sectioned, and immunolabeled for choline acetyltransferase (ChAT) or p75-neurotrophin receptor (p75NTR). BFCN number and size, the area of the regions, and the intensity of hippocampal labeling were determined. Ts65Dn unsupplemented mice displayed region- and immunolabel-dependent increased BFCN number, larger areas, smaller BFCNs, and overall increased hippocampal ChAT intensity compared with 2N unsupplemented mice. These effects were partially normalized by maternal choline supplementation. Taken together, the results suggest a developmental imbalance in the Ts65Dn BFCN system. Early maternal-diet choline supplementation attenuates some of the genotype-dependent alterations in the BFCN system, suggesting this naturally occurring nutrient as a treatment option for pregnant mothers with knowledge that their offspring is trisomy 21. PMID:24178831

  1. Effect of chemical sympathectomy on the content of acetylcholine, choline and choline acetyltransferase activity in the cat spleen and iris

    PubMed Central

    Consolo, S.; Garattini, S.; Ladinsky, H.; Thoenen, H.

    1972-01-01

    1. Acetylcholine and choline were measured in the spleens and irides of normal and 6-hydroxydopamine-treated cats. In addition, choline acetyltransferase activity was measured in the spleens. 2. No acetylcholine or choline acetyltransferase activity were found in spleens of normal or treated cats. The choline content of normal spleens was 12·4 ± 1·5 μg/g wet wt. (mean ± S.E. of mean), which was not significantly altered by chemical sympathectomy. 3. The acetylcholine and choline contents of the cat iris were 3·0 ± 0·3 μg/g wet wt. and 7·7 ± 0·9 μg/g wet wt., respectively. There was no difference in acetylcholine and choline concentrations between left and right or normal and sympathectomized irides. 4. These results are discussed in relation to the question of a cholinergic link in post-ganglionic sympathetic transmission. PMID:4335730

  2. MTHFR C677T genotype influences the isotopic enrichment of one-carbon metabolites in folate-compromised men consuming d9-choline.

    PubMed

    Yan, Jian; Wang, Wei; Gregory, Jesse F; Malysheva, Olga; Brenna, J Thomas; Stabler, Sally P; Allen, Robert H; Caudill, Marie A

    2011-02-01

    Homozygosity for the variant 677T allele in the methylenetetrahydrofolate reductase (MTHFR) gene increases the requirement for folate and may alter the metabolic use of choline. The choline adequate intake is 550 mg/d for men, although the metabolic consequences of consuming extra choline are unclear. Deuterium-labeled choline (d9-choline) as tracer was used to determine the differential effects of the MTHFR C677T genotype and the effect of various choline intakes on the isotopic enrichment of choline derivatives in folate-compromised men. Mexican American men with the MTHFR 677CC or 677TT genotype consumed a diet providing 300 mg choline/d plus supplemental choline chloride for total choline intakes of 550 (n = 11; 4 with 677CC and 7 with 677TT) or 1100 (n = 12; 4 with 677CC and 8 with 677TT) mg/d for 12 wk. During the last 3 wk, 15% of the total choline intake was provided as d9-choline. Low but measurable enrichments of the choline metabolites were achieved, including that of d3-phosphatidylcholine (d3-PtdCho)--a metabolite produced in the de novo pathway via choline-derived methyl groups. Men with the MTHFR 677TT genotype had a higher urinary enrichment ratio of betaine to choline (P = 0.041), a higher urinary enrichment of sarcosine (P = 0.041), and a greater plasma enrichment ratio of d9-betaine to d9-PtdCho with the 1100 mg choline/d intake (P = 0.033). These data show for the first time in humans that choline itself is a source of methyl groups for de novo PtdCho biosynthesis and indicate that the MTHFR 677TT genotype favors the use of choline as a methyl donor.

  3. Mechanism of choline deficiency and membrane alteration in postural orthostatic tachycardia syndrome primary skin fibroblasts.

    PubMed

    Schenkel, Laila C; Singh, Ratnesh K; Michel, Vera; Zeisel, Steven H; da Costa, Kerry-Ann; Johnson, Amy R; Mudd, Harvey S; Bakovic, Marica

    2015-05-01

    Fibroblasts from a patient with postural orthostatic tachycardia syndrome (POTS), who presented with low plasma choline and betaine, were studied to determine the metabolic characteristics of the choline deficiency. Choline is required for the synthesis of the phospholipid phosphatidylcholine (PC) and for betaine, an important osmoregulator. Here, choline transport, lipid homeostasis, and mitochondria function were analyzed in skin fibroblasts from POTS and compared with control cells. The choline transporter-like protein 1/solute carrier 44A1 (CTL1/SLC44A1) and mRNA expression were 2-3 times lower in POTS fibroblasts, and choline uptake was reduced 60% (P < 0.05). Disturbances of membrane homeostasis were observed by reduced ratios between PC:phosphatidylethanolamine and sphingomyelin:cholesterol, as well as by modified phospholipid fatty acid composition. Choline deficiency also impaired mitochondria function, which was observed by a reduction in oxygen consumption, mitochondrial potential, and glycolytic activity. When POTS cells were treated with choline, transporter was up-regulated, and uptake of choline increased, offering an option for patient treatment. The characteristics of the POTS fibroblasts described here represent a first model of choline and CTL1/SLC44A1 deficiency, in which choline transport, membrane homeostasis, and mitochondrial function are impaired. © FASEB.

  4. Postnatal choline levels mediate cognitive deficits in a rat model of schizophrenia.

    PubMed

    Corriveau, Jennifer A; Glenn, Melissa J

    2012-11-01

    In the present study, we investigated whether the essential nutrient choline may protect against schizophrenic-like cognitive deficits in a rat model. Theories regarding the etiology of schizophrenia suggest that early life events render an individual more vulnerable to adult challenges, and the combination may precipitate disease onset. To model this, the adult male offspring of dams who either experienced stress during late gestation or did not were given a 5 mg/kg dose of the NMDA antagonist,MK-801. The presence of both the prenatal challenge of stress and the adult challenge of MK-801 was expected to impair memory in these offspring. Memory was not expected to be impaired in rats that did not experience prenatal stress, but did receive MK-801 as adults. To study whether choline levels altered outcomes in these groups, rats were fed a choline-supplemented, -deficient, or standard diet during the period between the two challenges: beginning at weaning and continuing for 25 days. All rats consumed regular rat chow thereafter. The efficacy of the model was confirmed in the standard fed rats in that only those that were prenatally stressed and received MK-801 as adults displayed impaired memory on a novelty preference test of object recognition. Contrary to this finding and consistent with our hypothesis, choline-supplemented rats that were also both prenatally stressed and given MK-801 as adults showed intact memory. Choline deficiency impaired memory in rats that were just prenatally stressed, just given MK-801 as adults, and subjected to both. Thus, a choline deficient diet may render rats vulnerable to either challenge. Taken together, we offer evidence that developmental choline levels modulate the effects of prenatal stress and/or MK-801 and thereby alter the cognitive outcome in a rat model of schizophrenia.

  5. Body composition in patients with classical homocystinuria: body mass relates to homocysteine and choline metabolism.

    PubMed

    Poloni, Soraia; Leistner-Segal, Sandra; Bandeira, Isabel Cristina; D'Almeida, Vânia; de Souza, Carolina Fischinger Moura; Spritzer, Poli Mara; Castro, Kamila; Tonon, Tássia; Nalin, Tatiéle; Imbard, Apolline; Blom, Henk J; Schwartz, Ida V D

    2014-08-10

    Classical homocystinuria is a rare genetic disease caused by cystathionine β-synthase deficiency, resulting in homocysteine accumulation. Growing evidence suggests that reduced fat mass in patients with classical homocystinuria may be associated with alterations in choline and homocysteine pathways. This study aimed to evaluate the body composition of patients with classical homocystinuria, identifying changes in body fat percentage and correlating findings with biochemical markers of homocysteine and choline pathways, lipoprotein levels and bone mineral density (BMD) T-scores. Nine patients with classical homocystinuria were included in the study. Levels of homocysteine, methionine, cysteine, choline, betaine, dimethylglycine and ethanolamine were determined. Body composition was assessed by bioelectrical impedance analysis (BIA) in patients and in 18 controls. Data on the last BMD measurement and lipoprotein profile were obtained from medical records. Of 9 patients, 4 (44%) had a low body fat percentage, but no statistically significant differences were found between patients and controls. Homocysteine and methionine levels were negatively correlated with body mass index (BMI), while cysteine showed a positive correlation with BMI (p<0.05). There was a trend between total choline levels and body fat percentage (r=0.439, p=0.07). HDL cholesterol correlated with choline and ethanolamine levels (r=0.757, p=0.049; r=0.847, p=0.016, respectively), and total cholesterol also correlated with choline levels (r=0.775, p=0.041). There was no association between BMD T-scores and body composition. These results suggest that reduced fat mass is common in patients with classical homocystinuria, and that alterations in homocysteine and choline pathways affect body mass and lipid metabolism. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Postnatal choline levels mediate cognitive deficits in a rat model of schizophrenia

    PubMed Central

    Corriveau, Jennifer A.; Glenn, Melissa J.

    2012-01-01

    In the present study, we investigated whether the essential nutrient choline may protect against schizophrenic-like cognitive deficits in a rat model. Theories regarding the etiology of schizophrenia suggest that early life events render an individual more vulnerable to adult challenges, and the combination may precipitate disease onset. To model this, the adult male offspring of dams who either experienced stress during late gestation or did not were given a 5 mg/kg dose of the NMDA antagonist, MK-801. The presence of both the prenatal challenge of stress and the adult challenge of MK-801 was expected to impair memory in these offspring. Memory was not expected to be impaired in rats that did not experience prenatal stress, but did receive MK-801 as adults. To study whether choline levels altered outcomes in these groups, rats were fed a choline-supplemented, -deficient, or standard diet during the period between the two challenges: beginning at weaning and continuing for 25 days. All rats consumed regular rat chow thereafter. The efficacy of the model was confirmed in the standard fed rats in that only those that were prenatally stressed and received MK-801 as adults displayed impaired memory on a novelty preference test of object recognition. Contrary to this finding and consistent with our hypothesis, choline-supplemented rats that were also both prenatally stressed and given MK-801 as adults showed intact memory. Choline deficiency impaired memory in rats that were just prenatally stressed, just given MK-801 as adults, and subjected to both. Thus, a choline deficient diet may render rats vulnerable to either challenge. Taken together, we offer evidence that developmental choline levels modulate the effects of prenatal stress and/or MK-801 and thereby alter the cognitive outcome in a rat model of schizophrenia. PMID:22917834

  7. Maternal dietary choline deficiency alters angiogenesis in fetal mouse hippocampus.

    PubMed

    Mehedint, Mihai G; Craciunescu, Corneliu N; Zeisel, Steven H

    2010-07-20

    We examined whether maternal dietary choline modulates angiogenesis in fetal brain. Pregnant C57BL/6 mice were fed either a choline-deficient (CD), control (CT), or choline-supplemented diet (CS) from days 12 to 17 (E12-17) of pregnancy and then fetal brains were studied. In CD fetal hippocampus, proliferation of endothelial cells (EC) was decreased by 32% (p < 0.01 vs. CT or CS) while differentiated EC clusters (expressing factor VIII related antigen (RA)) increased by 25% (p < 0.01 vs. CT or CS). These changes were associated with > 25% decrease in the number of blood vessels in CD fetal hippocampus (p < 0.01 vs. CT and CS), with no change in total cross-sectional area of these blood vessels. Expression of genes for the angiogenic signals derived from both endothelial and neuronal progenitor cells (NPC) was increased in CD fetal hippocampus VEGF C (Vegfc), 2.0-fold, p < 0.01 vs. CT and angiopoietin 2 (Angpt2), 2.1-fold, (p < 0.01 vs. CT)). Similar increased expression was observed in NPC isolated from E14 fetal mouse brains and exposed to low (5 microM), CT (70 microM), or high choline (280 microM) media for 72 h (low choline caused a 9.7-fold increase in relative gene expression of Vegfc (p < 0.001 vs. CT and high) and a 3.4-fold increase in expression of Angpt2, (p < 0.05 vs. CT and high). ANGPT2 protein was increased 42.2% (p < 0.01). Cytosine-phosphate-guanine dinucleotide islands in the proximity of the promoter areas of Vegfc and Angpt2 were hypomethylated in low choline NPC compared to CT NPC (p < 0.01). We conclude that maternal dietary choline intake alters angiogenesis in the developing fetal hippocampus.

  8. Choline, Its Potential Role in Nonalcoholic Fatty Liver Disease, and the Case for Human and Bacterial Genes12

    PubMed Central

    Sherriff, Jill L; O’Sullivan, Therese A; Properzi, Catherine; Oddo, Josephine-Lee; Adams, Leon A

    2016-01-01

    Our understanding of the impact of poor hepatic choline/phosphatidylcholine availability in promoting the steatosis characteristic of human nonalcoholic fatty liver disease (NAFLD) has recently advanced and possibly relates to phosphatidylcholine/phosphatidylethanolamine concentrations in various, membranes as well as cholesterol dysregulation. A role for choline/phosphatidylcholine availability in the progression of NAFLD to liver injury and serious hepatic consequences in some individuals requires further elucidation. There are many reasons for poor choline/phosphatidylcholine availability in the liver, including low intake, estrogen status, and genetic polymorphisms affecting, in particular, the pathway for hepatic de novo phosphatidylcholine synthesis. In addition to free choline, phosphatidylcholine has been identified as a substrate for trimethylamine production by certain intestinal bacteria, thereby reducing host choline bioavailability and providing an additional link to the increased risk of cardiovascular disease faced by those with NAFLD. Thus human choline requirements are highly individualized and biomarkers of choline status derived from metabolomics studies are required to predict those at risk of NAFLD induced by choline deficiency and to provide a basis for human intervention trials. PMID:26773011

  9. Choline, Its Potential Role in Nonalcoholic Fatty Liver Disease, and the Case for Human and Bacterial Genes.

    PubMed

    Sherriff, Jill L; O'Sullivan, Therese A; Properzi, Catherine; Oddo, Josephine-Lee; Adams, Leon A

    2016-01-01

    Our understanding of the impact of poor hepatic choline/phosphatidylcholine availability in promoting the steatosis characteristic of human nonalcoholic fatty liver disease (NAFLD) has recently advanced and possibly relates to phosphatidylcholine/phosphatidylethanolamine concentrations in various, membranes as well as cholesterol dysregulation. A role for choline/phosphatidylcholine availability in the progression of NAFLD to liver injury and serious hepatic consequences in some individuals requires further elucidation. There are many reasons for poor choline/phosphatidylcholine availability in the liver, including low intake, estrogen status, and genetic polymorphisms affecting, in particular, the pathway for hepatic de novo phosphatidylcholine synthesis. In addition to free choline, phosphatidylcholine has been identified as a substrate for trimethylamine production by certain intestinal bacteria, thereby reducing host choline bioavailability and providing an additional link to the increased risk of cardiovascular disease faced by those with NAFLD. Thus human choline requirements are highly individualized and biomarkers of choline status derived from metabolomics studies are required to predict those at risk of NAFLD induced by choline deficiency and to provide a basis for human intervention trials. © 2016 American Society for Nutrition.

  10. Diet-gene interactions underlie metabolic individuality and influence brain development: implications for clinical practice derived from studies on choline metabolism.

    PubMed

    Zeisel, Steven H

    2012-01-01

    One of the underlying mechanisms for metabolic individuality is genetic variation. Single nucleotide polymorphisms (SNPs) in genes of metabolic pathways can create metabolic inefficiencies that alter the dietary requirement for, and responses to, nutrients. These SNPs can be detected using genetic profiling and the metabolic inefficiencies they cause can be detected using metabolomic profiling. Studies on the human dietary requirement for choline illustrate how useful these new approaches can be, as this requirement is influenced by SNPs in genes of choline and folate metabolism. In adults, these SNPs determine whether people develop fatty liver, liver damage and muscle damage when eating diets low in choline. Because choline is very important for fetal development, these SNPs may identify women who need to eat more choline during pregnancy. Some of the actions of choline are mediated by epigenetic mechanisms that permit 'retuning' of metabolic pathways during early life. Copyright © 2012 S. Karger AG, Basel.

  11. Diet-gene interactions underlie metabolic individuality and influence brain development: Implications for clinical practice

    PubMed Central

    Zeisel, Steven H.

    2014-01-01

    One of the underlying mechanisms for metabolic individuality is genetic variation. Single nucleotide polymorphisms (SNPs) in genes of metabolic pathways can create metabolic inefficiencies that alter the dietary requirement for, and responses to nutrients. These SNPS can be detected using genetic profiling and the metabolic inefficiencies they cause can be detected using metabolomic profiling. Studies on the human dietary requirement for choline illustrate how useful these new approaches can be, as this requirement is influenced by SNPs in genes of choline and folate metabolism. In adults, these SNPs determine whether people develop fatty liver, liver damage and muscle damage when eating diets low in choline. Because choline is very important for fetal development, these SNPs may identify women who need to eat more choline during pregnancy. Some of the actions of choline are mediated by epigenetic mechanisms that permit “retuning” of metabolic pathways during early life. PMID:22614815

  12. Maternal choline supplementation programs greater activity of the phosphatidylethanolamine N-methyltransferase (PEMT) pathway in adult Ts65Dn trisomic mice.

    PubMed

    Yan, Jian; Ginsberg, Stephen D; Powers, Brian; Alldred, Melissa J; Saltzman, Arthur; Strupp, Barbara J; Caudill, Marie A

    2014-10-01

    Maternal choline supplementation (MCS) induces lifelong cognitive benefits in the Ts65Dn mouse, a trisomic mouse model of Down syndrome and Alzheimer's disease. To gain insight into the mechanisms underlying these beneficial effects, we conducted a study to test the hypothesis that MCS alters choline metabolism in adult Ts65Dn offspring. Deuterium-labeled methyl-d9-choline was administered to adult Ts65Dn and disomic (2N) female littermates born to choline-unsupplemented or choline-supplemented Ts65Dn dams. Enrichment of d9-choline metabolites (derived from intact choline) and d3 + d6-choline metabolites [produced when choline-derived methyl groups are used by phosphatidylethanolamine N-methyltransferase (PEMT)] was measured in harvested tissues. Adult offspring (both Ts65Dn and 2N) of choline-supplemented (vs. choline-unsupplemented) dams exhibited 60% greater (P≤0.007) activity of hepatic PEMT, which functions in de novo choline synthesis and produces phosphatidylcholine (PC) enriched in docosahexaenoic acid. Higher (P<0.001) enrichment of PEMT-derived d3 and d6 metabolites was detected in liver, plasma, and brain in both genotypes but to a greater extent in the Ts65Dn adult offspring. MCS also yielded higher (P<0.05) d9 metabolite enrichments in liver, plasma, and brain. These data demonstrate that MCS exerts lasting effects on offspring choline metabolism, including up-regulation of the hepatic PEMT pathway and enhanced provision of choline and PEMT-PC to the brain. © FASEB.

  13. Dietary Choline Levels Modify the Effects of Prenatal Alcohol Exposure in Rats

    PubMed Central

    Idrus, Nirelia M.; Breit, Kristen R.; Thomas, Jennifer D.

    2018-01-01

    Prenatal alcohol exposure can cause a range of physical and behavioral alterations; however, the outcome among children exposed to alcohol during pregnancy varies widely. Some of this variation may be due to nutritional factors. Indeed, higher rates of fetal alcohol spectrum disorders (FASD) are observed in countries where malnutrition is prevalent. Epidemiological studies have shown that many pregnant women throughout the world may not be consuming adequate levels of choline, an essential nutrient critical for brain development, and a methyl donor. In this study, we examined the influence of dietary choline deficiency on the severity of fetal alcohol effects. Pregnant Sprague-Dawley rats were randomly assigned to receive diets containing 40, 70, or 100% recommended choline levels. A group from each diet condition was exposed to ethanol (6.0 g/kg/day) from gestational day 5 to 20 via intubation. Pair-fed and ad lib lab chow control groups were also included. Physical and behavioral development was measured in the offspring. Prenatal alcohol exposure delayed motor development, and 40% choline altered performance on the cliff avoidance task, independent of one another. However, the combination of low choline and prenatal alcohol produced the most severe impairments in development. Subjects exposed to ethanol and fed the 40% choline diet exhibited delayed eye openings, significantly fewer successes in hind limb coordination, and were significantly overactive compared to all other groups. These data suggest that suboptimal intake of a single nutrient can exacerbate some of ethanol’s teratogenic effects, a finding with important implications for the prevention of FASD. PMID:27888055

  14. Dietary choline levels modify the effects of prenatal alcohol exposure in rats.

    PubMed

    Idrus, Nirelia M; Breit, Kristen R; Thomas, Jennifer D

    Prenatal alcohol exposure can cause a range of physical and behavioral alterations; however, the outcome among children exposed to alcohol during pregnancy varies widely. Some of this variation may be due to nutritional factors. Indeed, higher rates of fetal alcohol spectrum disorders (FASD) are observed in countries where malnutrition is prevalent. Epidemiological studies have shown that many pregnant women throughout the world may not be consuming adequate levels of choline, an essential nutrient critical for brain development, and a methyl donor. In this study, we examined the influence of dietary choline deficiency on the severity of fetal alcohol effects. Pregnant Sprague-Dawley rats were randomly assigned to receive diets containing 40, 70, or 100% recommended choline levels. A group from each diet condition was exposed to ethanol (6.0g/kg/day) from gestational day 5 to 20 via intubation. Pair-fed and ad lib lab chow control groups were also included. Physical and behavioral development was measured in the offspring. Prenatal alcohol exposure delayed motor development, and 40% choline altered performance on the cliff avoidance task, independent of one another. However, the combination of low choline and prenatal alcohol produced the most severe impairments in development. Subjects exposed to ethanol and fed the 40% choline diet exhibited delayed eye openings, significantly fewer successes in hindlimb coordination, and were significantly overactive compared to all other groups. These data suggest that suboptimal intake of a single nutrient can exacerbate some of ethanol's teratogenic effects, a finding with important implications for the prevention of FASD. Copyright © 2016. Published by Elsevier Inc.

  15. cAMP enhances Cx43 gap junction formation and function and reverses choline deficiency apoptosis.

    PubMed

    Albright, C D; Kuo, J; Jeong, S

    2001-08-01

    Previously, it had been shown that acute choline deficiency (CD) induced apoptosis in cultured rat liver epithelial cells, whereas cells that are adapted to survive in low-choline-containing medium acquire resistance to CD apoptosis and undergo malignant transformation. Thus, understanding the mechanisms of action of CD could increase our understanding of the role of choline, an essential nutrient, in the process of malignant transformation. The present experiments were designed to test the hypothesis that CD might function as a pro-apoptotic trigger by altering the localization of connexin 43 gap junction protein and gap junctional intercellular communication (GJIC). Established liver epithelial cells (WB cells; Hep3B cells) were maintained in a defined, serum-free medium control (70 microM choline) or choline deficient medium (CD, 5 microM choline) and the localization of connexin 43 protein (Cx43) was studied by immunocytochemistry and Western blotting. In nontumorigenic WB cells, CD apoptosis was associated with retention of Cx43 in the golgi/ER region of the cytoplasm and decreased GJIC as measured using a preloading fluorescent dye transfer method (calcein AM/DiIC(18)). Cells maintained in CD in the presence of 8-bromoadenosine 3':5'-cyclic monophosphate exhibited restoration of Cx43 at the plasma membrane and increased GJIC and inhibition of apoptosis. These studies show that CD apoptosis in nontumorigenic liver epithelial cells is associated with alterations to Cx43 and GJIC and that an uncoupling of Cx43 localization and GJIC is related to resistance to CD apoptosis in transformed liver epithelial cells. Copyright 2001 Academic Press.

  16. Choline deficiency impairs intestinal lipid metabolism in the lactating rat.

    PubMed

    da Silva, Robin P; Kelly, Karen B; Lewis, Erin D; Leonard, Kelly-Ann; Goruk, Sue; Curtis, Jonathan M; Vine, Donna F; Proctor, Spencer D; Field, Catherine J; Jacobs, René L

    2015-10-01

    Choline is a precursor to phosphatidylcholine (PC), a structural molecule in cellular membranes that is crucial for cell growth and function. PC is also required for the secretion of lipoprotein particles from liver and intestine. Choline requirements are increased during lactation when maternal choline is supplied to the offspring through breast milk. To investigate the effect of dietary choline on intestinal lipid metabolism during lactation, choline-supplemented (CS), phosphatidylcholine-supplemented (PCS) or choline-deficient (CD) diets were fed to dams during the suckling period. CD dams had lower plasma triacylglycerol, cholesterol and apoB in the fasted state and following a fat-challenge (P < .05). There was a higher content of neutral lipids and lower content of PC in the intestine of CD dams, compared with CS and PCS fed animals (P < .05). In addition, there was lower (P < .05) villus height in CD dams, which indicated a reduced absorptive surface area in the intestine. Choline is critical for the absorption of fat in lactating rats and choline deficiency alters intestinal morphology and impairs chylomicron secretion by limiting the supply of PC. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Prenatal choline deficiency decreases the cross-sectional area of cholinergic neurons in the medial septal nucleus.

    PubMed

    McKeon-O'Malley, Catherine; Siwek, Donald; Lamoureux, Jeffrey A; Williams, Christina L; Kowall, Neil W

    2003-07-11

    Levels of dietary choline in utero influence postnatal cognitive performance. To better understand this phenomenon, forebrain cholinergic neurons were studied in the 8-9 month old offspring of dams fed a control or choline-deficient diet from EDs 11-17. Serial sections were immunostained with antibodies against p75, a cholinergic marker. Neuronal morphology was analyzed in the basal forebrain, a heterogeneous area composed of several structures including the medial septal nucleus (MSN), nucleus of the diagonal band (DB), and the nucleus basalis of Meynert (NB). Neuronal cross-sectional areas were selectively reduced in the MSN of choline-deficient animals, compared to controls, but cell counts were not altered. Our findings suggest that cholinergic medial septal neurons may be selectively vulnerable to in utero choline deficiency.

  18. The effect of centrally injected CDP-choline on respiratory system; involvement of phospholipase to thromboxane signaling pathway.

    PubMed

    Topuz, Bora B; Altinbas, Burcin; Yilmaz, Mustafa S; Saha, Sikha; Batten, Trevor F; Savci, Vahide; Yalcin, Murat

    2014-05-01

    CDP-choline is an endogenous metabolite in phosphatidylcholine biosynthesis. Exogenous administration of CDP-choline has been shown to affect brain metabolism and to exhibit cardiovascular, neuroendocrine neuroprotective actions. On the other hand, little is known regarding its respiratory actions and/or central mechanism of its respiratory effect. Therefore the current study was designed to investigate the possible effects of centrally injected CDP-choline on respiratory system and the mediation of the central cholinergic receptors and phospholipase to thromboxane signaling pathway on CDP-choline-induced respiratory effects in anaesthetized rats. Intracerebroventricularly (i.c.v.) administration of CDP-choline induced dose- and time-dependent increased respiratory rates, tidal volume and minute ventilation of male anaesthetized Spraque Dawley rats. İ.c.v. pretreatment with atropine failed to alter the hyperventilation responses to CDP-choline whereas mecamylamine, cholinergic nicotinic receptor antagonist, mepacrine, phospholipase A2 inhibitor, and neomycin phospholipase C inhibitor, blocked completely the hyperventilation induced by CDP-choline. In addition, central pretreatment with furegrelate, thromboxane A2 synthesis inhibitor, also partially blocked CDP-choline-evoked hyperventilation effects. These data show that centrally administered CDP-choline induces hyperventilation which is mediated by activation of central nicotinic receptors and phospholipase to thromboxane signaling pathway. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Improved human visuomotor performance and pupil constriction after choline supplementation in a placebo-controlled double-blind study.

    PubMed

    Naber, Marnix; Hommel, Bernhard; Colzato, Lorenza S

    2015-08-14

    Only few nutrients are known to enhance cognition. Here we explore whether visuomotor performance can be improved through the intake of the nutrient choline, an essential chemical compound in a vertebrate's diet. Choline is abundant in for example eggs and shrimps and many animal studies suggest that it serves as a cognitive enhancer. As choline is important for the communication between motor neurons and the control of skeletal muscles, we assumed that choline supplementation may have positive effects on action coordination in humans. A group of twenty-eight individuals ingested two grams of choline bitartrate or a placebo in two separate sessions. Seventy minutes post ingestion, participants performed a visuomotor aiming task in which they had to rapidly hit the centers of targets. Results showed that participants hit targets more centrally after choline supplementation. Pupil size (a cognition-sensitive biomarker) also significantly decreased after choline intake and correlated positively with the hit distance to the targets and the number of target misses, and negatively with reaction times. These findings point to a choline-induced bias towards action precision in the trade-off between speed and accuracy. The changes in pupil size suggest that choline uptake alters cholinergic functions in the nervous system.

  20. Improved human visuomotor performance and pupil constriction after choline supplementation in a placebo-controlled double-blind study

    PubMed Central

    Naber, Marnix; Hommel, Bernhard; Colzato, Lorenza S.

    2015-01-01

    Only few nutrients are known to enhance cognition. Here we explore whether visuomotor performance can be improved through the intake of the nutrient choline, an essential chemical compound in a vertebrate’s diet. Choline is abundant in for example eggs and shrimps and many animal studies suggest that it serves as a cognitive enhancer. As choline is important for the communication between motor neurons and the control of skeletal muscles, we assumed that choline supplementation may have positive effects on action coordination in humans. A group of twenty-eight individuals ingested two grams of choline bitartrate or a placebo in two separate sessions. Seventy minutes post ingestion, participants performed a visuomotor aiming task in which they had to rapidly hit the centers of targets. Results showed that participants hit targets more centrally after choline supplementation. Pupil size (a cognition-sensitive biomarker) also significantly decreased after choline intake and correlated positively with the hit distance to the targets and the number of target misses, and negatively with reaction times. These findings point to a choline-induced bias towards action precision in the trade-off between speed and accuracy. The changes in pupil size suggest that choline uptake alters cholinergic functions in the nervous system. PMID:26271904

  1. Maternal choline supplementation programs greater activity of the phosphatidylethanolamine N-methyltransferase (PEMT) pathway in adult Ts65Dn trisomic mice

    PubMed Central

    Yan, Jian; Ginsberg, Stephen D.; Powers, Brian; Alldred, Melissa J.; Saltzman, Arthur; Strupp, Barbara J.; Caudill, Marie A.

    2014-01-01

    Maternal choline supplementation (MCS) induces lifelong cognitive benefits in the Ts65Dn mouse, a trisomic mouse model of Down syndrome and Alzheimer's disease. To gain insight into the mechanisms underlying these beneficial effects, we conducted a study to test the hypothesis that MCS alters choline metabolism in adult Ts65Dn offspring. Deuterium-labeled methyl-d9-choline was administered to adult Ts65Dn and disomic (2N) female littermates born to choline-unsupplemented or choline-supplemented Ts65Dn dams. Enrichment of d9-choline metabolites (derived from intact choline) and d3 + d6-choline metabolites [produced when choline-derived methyl groups are used by phosphatidylethanolamine N-methyltransferase (PEMT)] was measured in harvested tissues. Adult offspring (both Ts65Dn and 2N) of choline-supplemented (vs. choline-unsupplemented) dams exhibited 60% greater (P≤0.007) activity of hepatic PEMT, which functions in de novo choline synthesis and produces phosphatidylcholine (PC) enriched in docosahexaenoic acid. Higher (P<0.001) enrichment of PEMT-derived d3 and d6 metabolites was detected in liver, plasma, and brain in both genotypes but to a greater extent in the Ts65Dn adult offspring. MCS also yielded higher (P<0.05) d9 metabolite enrichments in liver, plasma, and brain. These data demonstrate that MCS exerts lasting effects on offspring choline metabolism, including up-regulation of the hepatic PEMT pathway and enhanced provision of choline and PEMT-PC to the brain.—Yan, J., Ginsberg, S. D., Powers, B., Alldred, M. J., Saltzman, A., Strupp, B. J., Caudill, M. A. Maternal choline supplementation programs greater activity of the phosphatidylethanolamine N-methyltransferase (PEMT) pathway in adult Ts65Dn trisomic mice. PMID:24963152

  2. A chick bioassay approach for determining the bioavailable choline concentration in normal and overheated soybean meal, canola meal and peanut meal.

    PubMed

    Emmert, J L; Baker, D H

    1997-05-01

    Our objectives were to use a soy protein isolate (SPI) diet containing 2-amino-2-methyl-1-propanol, an inhibitor of choline biosynthesis, to determine the bioavailable choline content of normal and overheated soybean meal (SBM), canola meal (CM) and peanut meal (PM). In the first four experiments, it was determined that weight gain of chicks fed the basal diet would respond linearly (P < 0.05) to graded levels of crystalline choline and would not respond to betaine, and that when fortified with adequate choline, no weight gain or feed intake response would occur upon addition of 100 g/kg SBM, CM or PM to the basal diet. Furthermore, addition of crystalline amino acids simulating the amino acid composition of 100 g/kg SBM did not alter the utilization of crystalline choline. In Experiment 5, feeding graded doses of choline, SBM, CM or PM resulted in linear (P < 0.05) increases in weight gain. Multiple linear regression analysis indicated bioavailable choline concentrations of 1708, 1545 and 1203 mg/kg for SBM, CM and PM, respectively. In Experiment 6, no differences (P > 0.05) in bioavailable choline concentrations occurred between normal and overheated SBM, CM or PM, and the bioavailable choline concentration of normal SBM, CM and PM was 2002, 1464 and 1320 mg/kg, respectively. Average bioavailable choline levels were 83, 24 and 76% of analytically determined choline levels in SBM, CM and PM, respectively. Canola meal, although three times as rich in total choline as SBM, has less bioavailable choline than SBM. A substantial portion of choline in SBM, CM and PM is unavailable, and overheating does not appear to decrease the bioavailability of choline in these products.

  3. Prenatal choline supplementation attenuates spatial learning deficits of offspring rats exposed to low-protein diet during fetal period.

    PubMed

    Zhu, Cui-Hong; Wu, Ting; Jin, Yu; Huang, Bi-Xia; Zhou, Rui-Fen; Wang, Yi-Qin; Luo, Xiao-Lin; Zhu, Hui-Lian

    2016-06-01

    Prenatal intake of choline has been reported to lead to enhanced cognitive function in offspring, but little is known about the effects on spatial learning deficits. The present study examined the effects of prenatal choline supplementation on developmental low-protein exposure and its potential mechanisms. Pregnant female rats were fed either a normal or low-protein diet containing sufficient choline (1.1g/kg choline chloride) or supplemented choline (5.0g/kg choline chloride) until delivery. The Barnes maze test was performed at postnatal days 31-37. Choline and its metabolites, the synaptic structural parameters of the CA1 region in the brain of the newborn rat, were measured. The Barnes maze test demonstrated that prenatal low-protein pups had significantly greater error scale values, hole deviation scores, strategy scores and spatial search strategy and had lesser random search strategy values than normal protein pups (all P<.05). These alterations were significantly reversed by choline supplementation. Choline supplementation increased the brain levels of choline, betaine, phosphatidylethanolamine and phosphatidylcholine of newborns by 51.35% (P<.05), 33.33% (P<.001), 28.68% (P<.01) and 23.58% (P<.05), respectively, compared with the LPD group. Prenatal choline supplementation reversed the increased width of the synaptic cleft (P<.05) and decreased the curvature of the synaptic interface (P<.05) induced by a low-protein diet. Prenatal choline supplementation could attenuate the spatial learning deficits caused by prenatal protein malnutrition by increasing brain choline, betaine and phospholipids and by influencing the hippocampus structure. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. High dietary folate in pregnant mice leads to pseudo-MTHFR deficiency and altered methyl metabolism, with embryonic growth delay and short-term memory impairment in offspring.

    PubMed

    Bahous, Renata H; Jadavji, Nafisa M; Deng, Liyuan; Cosín-Tomás, Marta; Lu, Jessica; Malysheva, Olga; Leung, Kit-Yi; Ho, Ming-Kai; Pallàs, Mercè; Kaliman, Perla; Greene, Nicholas D E; Bedell, Barry J; Caudill, Marie A; Rozen, Rima

    2017-03-01

    Methylenetetrahydrofolate reductase (MTHFR) generates methyltetrahydrofolate for methylation reactions. Severe MTHFR deficiency results in homocystinuria and neurologic impairment. Mild MTHFR deficiency (677C > T polymorphism) increases risk for complex traits, including neuropsychiatric disorders. Although low dietary folate impacts brain development, recent concerns have focused on high folate intake following food fortification and increased vitamin use. Our goal was to determine whether high dietary folate during pregnancy affects brain development in murine offspring. Female mice were placed on control diet (CD) or folic acid-supplemented diet (FASD) throughout mating, pregnancy and lactation. Three-week-old male pups were evaluated for motor and cognitive function. Tissues from E17.5 embryos, pups and dams were collected for choline/methyl metabolite measurements, immunoblotting or gene expression of relevant enzymes. Brains were examined for morphology of hippocampus and cortex. Pups of FASD mothers displayed short-term memory impairment, decreased hippocampal size and decreased thickness of the dentate gyrus. MTHFR protein levels were reduced in FASD pup livers, with lower concentrations of phosphocholine and glycerophosphocholine in liver and hippocampus, respectively. FASD pup brains showed evidence of altered acetylcholine availability and Dnmt3a mRNA was reduced in cortex and hippocampus. E17.5 embryos and placentas from FASD dams were smaller. MTHFR protein and mRNA were reduced in embryonic liver, with lower concentrations of choline, betaine and phosphocholine. Embryonic brain displayed altered development of cortical layers. In summary, high folate intake during pregnancy leads to pseudo-MTHFR deficiency, disturbed choline/methyl metabolism, embryonic growth delay and memory impairment in offspring. These findings highlight the unintended negative consequences of supplemental folic acid. © The Author 2017. Published by Oxford University Press.

  5. Choline supplementation and measures of choline and betaine status: a randomised, controlled trial in postmenopausal women.

    PubMed

    Wallace, Julie M W; McCormack, Jacqueline M; McNulty, Helene; Walsh, Paula M; Robson, Paula J; Bonham, Maxine P; Duffy, Maresa E; Ward, Mary; Molloy, Anne M; Scott, John M; Ueland, Per M; Strain, J J

    2012-10-01

    Choline is an essential nutrient and can also be obtained by de novo synthesis via an oestrogen responsive pathway. Choline can be oxidised to the methyl donor betaine, with short-term supplementation reported to lower plasma total homocysteine (tHcy); however, the effects of longer-term choline supplementation are less clear. We investigated the effect of choline supplementation on plasma concentrations of free choline, betaine and tHcy and B-vitamin status in postmenopausal women, a group more susceptible to low choline status. We also assessed whether supplementation altered plasma lipid profiles. In this randomised, double-blinded, placebo-controlled study, forty-two healthy postmenopausal women received 1 g choline per d (as choline bitartrate), or an identical placebo supplement with their habitual diet. Fasting blood samples were collected at baseline, week 6 and week 12. Administration of choline increased median choline and betaine concentrations in plasma, with significant effects evident after 6 weeks of supplementation (P<0·001) and remaining significant at 12 weeks (P<0·001); no effect was observed on folate status or on plasma lipids. Choline supplementation induced a median (25th, 75th percentile) change in plasma tHcy concentration at week 6 of -0·9 (-1·6, 0·2) μmol, a change which, when compared to that observed in the placebo group 0·6 (-0·4, 1·9) μmol, approached statistical significance (P=0·058). Choline supplementation at a dose of 1 g/d significantly increases the circulating concentration of free choline, and can also significantly increase the concentration of the methyl donor, betaine, thereby potentially enhancing the betaine-homocysteine methyltransferase-mediated remethylation of tHcy.

  6. Total choline and choline-containing moieties of commercially available pulses.

    PubMed

    Lewis, Erin D; Kosik, Sarah J; Zhao, Yuan-Yuan; Jacobs, René L; Curtis, Jonathan M; Field, Catherine J

    2014-06-01

    Estimating dietary choline intake can be challenging due to missing foods in the current United States Department of Agriculture (USDA) database. The objectives of the study were to quantify the choline-containing moieties and the total choline content of a variety of pulses available in North America and use the expanded compositional database to determine the potential contribution of pulses to dietary choline intake. Commonly consumed pulses (n = 32) were analyzed by hydrophilic interaction liquid chromatography-tandem mass spectrometry (HILIC LC-MS/MS) and compared to the current USDA database. Cooking was found to reduce the relative percent from free choline and increased the contribution of phosphatidylcholine to total choline for most pulses (P < 0.05). Using the expanded database to estimate choline content of recipes using pulses as meat alternatives, resulted in a different estimation of choline content per serving (±30%), compared to the USDA database. These results suggest that when pulses are a large part of a meal or diet, the use of accurate food composition data should be used.

  7. Choline supplementation restores substrate balance and alleviates complications of Pcyt2 deficiency.

    PubMed

    Schenkel, Laila C; Sivanesan, Sugashan; Zhang, Junzeng; Wuyts, Birgitte; Taylor, Adrian; Verbrugghe, Adronie; Bakovic, Marica

    2015-11-01

    Choline plays a critical role in systemic lipid metabolism and hepatic function. Here we conducted a series of experiments to investigate the effect of choline supplementation on metabolically altered Pcyt2(+/-) mice. In Pcyt2(+/-) mice, the membrane phosphatidylethanolamine (PE) turnover is reduced and the formation of fatty acids (FA) and triglycerides (TAG) increased, resulting in hypertriglyceridemia, liver steatosis and obesity. One month of choline supplementation reduced the incorporation of FA into TAG and facilitated TAG degradation in Pcyt2(+/-) adipocytes, plasma and liver. Choline particularly stimulated adipocyte and liver TAG lipolysis by specific lipases (ATGL, LPL and HSL) and inhibited TAG formation by DGAT1 and DGAT2. Choline also activated the liver AMPK and mitochondrial FA oxidation gene PPARα and reduced the FA synthesis genes SREBP1, SCD1 and FAS. Liver (HPLC) and plasma (tandem mass spectroscopy and (1)H-NMR) metabolite profiling established that Pcyt2(+/-) mice have reduced membrane cholesterol/sphingomyelin ratio and the homocysteine/methionine cycle that were improved by choline supplementation. These data suggest that supplementary choline is beneficial for restoring FA and TAG homeostasis under conditions of obesity caused by impaired PE synthesis. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Methionine- and choline-deficient diet induces hepatic changes characteristic of non-alcoholic steatohepatitis.

    PubMed

    Marcolin, Eder; Forgiarini, Luiz Felipe; Tieppo, Juliana; Dias, Alexandre Simões; Freitas, Luiz Antonio Rodrigues de; Marroni, Norma Possa

    2011-01-01

    Non-alcoholic steatohepatitis is a disease with a high incidence, difficult diagnosis, and as yet no effective treatment. So, the use of experimental models for non-alcoholic steatohepatitis induction and the study of its routes of development have been studied. This study was designed to develop an experimental model of non-alcoholic steatohepatitis based on a methionine- and choline-deficient diet that is manufactured in Brazil so as to evaluate the liver alterations resulting from the disorder. Thirty male C57BL6 mice divided in two groups (n = 15) were used: the experimental group fed a methionine- and choline-deficient diet manufactured by Brazilian company PragSoluções®, and the control group fed a normal diet, for a period of 2 weeks. The animals were then killed by exsanguination to sample blood for systemic biochemical analyses, and subsequently submitted to laparotomy with total hepatectomy and preparation of the material for histological analysis. The statistical analysis was done using the Student's t-test for independent samples, with significance level of 5%. The mice that received the methionine- and choline-deficient diet showed weight loss and significant increase in hepatic damage enzymes, as well as decreased systemic levels of glycemia, triglycerides, total cholesterol, HDL and VLDL. The diagnosis of non-alcoholic steatohepatitis was performed in 100% of the mice that were fed the methionine- and choline-deficient diet. All non-alcoholic steatohepatitis animals showed some degree of macrovesicular steatosis, ballooning, and inflammatory process. None of the animals which were fed the control diet presented histological alterations. All non-alcoholic steatohepatitis animals showed significantly increased lipoperoxidation and antioxidant enzyme GSH activity. The low cost and easily accessible methionine- and choline-deficient diet explored in this study is highly effective in inducing steatosis and steatohepatitis in animal model, alterations that are similar to those observed in human livers.

  9. Plasma immune protein analysis in the orange-spotted grouper Epinephelus coioides: Evidence for altered expressions of immune factors associated with a choline-supplemented diet.

    PubMed

    Shiu, Ya-Li; Chiu, Kuo-Hsun; Huynh, Truong-Giang; Liu, Ping-Chung; Liu, Chun-Hung

    2017-06-01

    This study aimed to unravel the regulatory roles of choline in activating immune responses and disease resistance of the orange-spotted grouper Epinephelus coioides. Fish were fed a choline-supplemented diet at 1 g kg -1 of feed for 30 days. Fish fed a fish meal basal diet without choline-supplement served as controls. At the end of the feeding trial, fish were challenged with Vibrio alginolyticus. Meanwhile, plasma proteomics of fish in each group were also evaluated by two-dimensional gel electrophoresis (2-DE), and differentially expressed proteins were identified by tandem mass spectrophotometry (MS/MS), then a Western blot analysis or real-time polymerase chain reaction was used to confirm differential expressions of immune-enhancing proteins. Results showed that choline significantly increased survival of E. coioides 48 days after being injected with V. alginolyticus. From maps of plasma proteins, a comparative analysis between the control and choline groups revealed that 111 spots matched, with 26 altered expression spots in the choline group. Of these 26 spots, 16 were upregulated and 10 downregulated. After protein identification by reverse-phase nano-high-performance liquid chromatography-electrospray ionization MS/MS analysis, eight of 26 proteins were found to be immune-related proteins, all of which were upregulated, including complement 3 (C3), alpha-2-macroglobulin-P-like isoform (A2M), fibrinogen beta chain precursor (FBG), and immunoglobulin heavy constant mu (Ighm) proteins. Expression of the A2M protein and A2M enzyme activity in plasma of fish fed choline significantly increased compared to the control group. Additionally, A2M messenger (m)RNA transcripts were also upregulated in the liver and kidneys. Significantly higher C3 expressions at both the mRNA and protein levels were detected in the liver of fish in the choline group. Moreover, FBG gene expressions in the liver and kidneys significantly increased, while Ighm increased in the kidneys and spleen of fish in the choline group. Our results suggest that dietary administration of choline can protect grouper against bacterial infections through activating the complement system, thereby inducing antiprotease activity and natural antibodies that play important roles in the innate immune system of fish. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Modification by choline of adrenergic transmission in rat mesenteric arteries

    PubMed Central

    Malik, K. U.; McGiff, J. C.

    1971-01-01

    1. The action of choline on the vasoconstrictor responses of the perfused mesenteric arteries of the rat to sympathetic nerve stimulation and to injected noradrenaline has been investigated. 2. The infusion of choline (500 μg/ml), for periods of 15 s, increased the response to sympathetic nerve stimulation, whereas the infusion of the same concentration for 20 min greatly reduced the response to nerve stimulation. Choline (up to 500 μg/ml), infused either for short or long periods, did not alter the response to injected noradrenaline. 3. The inhibitory action of choline on the response to nerve stimulation was abolished either by an increase in the calcium concentration from 1·8 to 5·4 mM or by simultaneous infusion of (+)-amphetamine or atropine. 4. The results suggest that choline in concentrations of 500 μg/ml has the same effect on adrenergic transmission in mesenteric arteries as acetylcholine at concentrations of 5 ng/ml. PMID:4339884

  11. Choline dehydrogenase polymorphism rs12676 is a functional variation and is associated with changes in human sperm cell function.

    PubMed

    Johnson, Amy R; Lao, Sai; Wang, Tongwen; Galanko, Joseph A; Zeisel, Steven H

    2012-01-01

    Approximately 15% of couples are affected by infertility and up to half of these cases arise from male factor infertility. Unidentified genetic aberrations such as chromosomal deletions, translocations and single nucleotide polymorphisms (SNPs) may be the underlying cause of many cases of idiopathic male infertility. Deletion of the choline dehydrogenase (Chdh) gene in mice results in decreased male fertility due to diminished sperm motility; sperm from Chdh(-/-) males have decreased ATP concentrations likely stemming from abnormal sperm mitochondrial morphology and function in these cells. Several SNPs have been identified in the human CHDH gene that may result in altered CHDH enzymatic activity. rs12676 (G233T), a non-synonymous SNP located in the CHDH coding region, is associated with increased susceptibility to dietary choline deficiency and risk of breast cancer. We now report evidence that this SNP is also associated with altered sperm motility patterns and dysmorphic mitochondrial structure in sperm. Sperm produced by men who are GT or TT for rs12676 have 40% and 73% lower ATP concentrations, respectively, in their sperm. rs12676 is associated with decreased CHDH protein in sperm and hepatocytes. A second SNP located in the coding region of IL17BR, rs1025689, is linked to altered sperm motility characteristics and changes in choline metabolite concentrations in sperm.

  12. Choline Dehydrogenase Polymorphism rs12676 Is a Functional Variation and Is Associated with Changes in Human Sperm Cell Function

    PubMed Central

    Johnson, Amy R.; Lao, Sai; Wang, Tongwen; Galanko, Joseph A.; Zeisel, Steven H.

    2012-01-01

    Approximately 15% of couples are affected by infertility and up to half of these cases arise from male factor infertility. Unidentified genetic aberrations such as chromosomal deletions, translocations and single nucleotide polymorphisms (SNPs) may be the underlying cause of many cases of idiopathic male infertility. Deletion of the choline dehydrogenase (Chdh) gene in mice results in decreased male fertility due to diminished sperm motility; sperm from Chdh−/− males have decreased ATP concentrations likely stemming from abnormal sperm mitochondrial morphology and function in these cells. Several SNPs have been identified in the human CHDH gene that may result in altered CHDH enzymatic activity. rs12676 (G233T), a non-synonymous SNP located in the CHDH coding region, is associated with increased susceptibility to dietary choline deficiency and risk of breast cancer. We now report evidence that this SNP is also associated with altered sperm motility patterns and dysmorphic mitochondrial structure in sperm. Sperm produced by men who are GT or TT for rs12676 have 40% and 73% lower ATP concentrations, respectively, in their sperm. rs12676 is associated with decreased CHDH protein in sperm and hepatocytes. A second SNP located in the coding region of IL17BR, rs1025689, is linked to altered sperm motility characteristics and changes in choline metabolite concentrations in sperm. PMID:22558321

  13. Decreased brain choline uptake in older adults. An in vivo proton magnetic resonance spectroscopy study.

    PubMed

    Cohen, B M; Renshaw, P F; Stoll, A L; Wurtman, R J; Yurgelun-Todd, D; Babb, S M

    1995-09-20

    To test the hypothesis that uptake of circulating choline into the brain decreases with age, because alterations in metabolism of choline may be a factor contributing to age-related degenerative changes in the brain. Cohort comparison in younger and older adults. Subjects were chosen consecutively from lists of healthy volunteers screened by medical and psychiatric interviews and laboratory tests. Younger adults (n = 12) were between the ages of 20 and 40 years (mean age, 32 years), and older adults (n = 16) were between the ages of 60 and 85 years (mean age, 73 years). After fasting overnight, subjects received choline, as the bitartrate, to yield free choline equal to 50 mg/kg of body weight. Blood was drawn for determination of plasma choline concentration by high-performance liquid chromatography, and proton magnetic resonance spectroscopy (1H-MRS) was performed to determine the relative concentration of cytosolic choline-containing compounds in the brain at baseline and after ingestion of choline. Plasma choline and cytosolic choline-containing compounds in the brain, estimated as the ratio of the choline resonance to the creatine resonance on 1H-MRS scans of the basal ganglia, were compared following blinded analyses of data from subject cohorts studied at baseline and 3 hours after choline ingestion. Levels of plasma choline and cytosolic choline-containing compounds in brain were similar at baseline in younger and older subjects. Following ingestion of choline, plasma choline concentration increased by similar proportions (76% and 80%) in both younger and older subjects. Brain cytosolic choline--containing compounds increased substantially in younger subjects (mean increase, 60%; P < .001 vs baseline). Older subjects showed a much smaller increase in brain choline-containing compounds (mean, 16%; P < .001 vs the increase in younger subjects). Uptake of circulating choline into the brain decreases with age. Given the key role of choline in neuronal structure and function, this change may be a contributing factor in onset in late life of neurodegenerative, particularly dementing, illnesses in which cholinergic neurons show particular susceptibility to loss.

  14. Functional analysis of [methyl-(3)H]choline uptake in glioblastoma cells: Influence of anti-cancer and central nervous system drugs.

    PubMed

    Taguchi, Chiaki; Inazu, Masato; Saiki, Iwao; Yara, Miki; Hara, Naomi; Yamanaka, Tsuyoshi; Uchino, Hiroyuki

    2014-04-01

    Positron emission tomography (PET) and PET/computed tomography (PET-CT) studies with (11)C- or (18)F-labeled choline derivatives are used for PET imaging in glioblastoma patients. However, the nature of the choline transport system in glioblastoma is poorly understood. In this study, we performed a functional characterization of [methyl-(3)H]choline uptake and sought to identify the transporters that mediate choline uptake in the human glioblastoma cell lines A-172 and U-251MG. In addition, we examined the influence of anti-cancer drugs and central nervous system drugs on the transport of [methyl-(3)H]choline. High- and low-affinity choline transport systems were present in A-172 cells, U-251MG cells and astrocytes, and these were Na(+)-independent and pH-dependent. Cell viability in A-172 cells was not affected by choline deficiency. However, cell viability in U-251MG cells was significantly inhibited by choline deficiency. Both A-172 and U-251MG cells have two different choline transporters, choline transporter-like protein 1 (CTL1) and CTL2. In A-172 cells, CTL1 is predominantly expressed, whereas in U-251MG cells, CTL2 is predominantly expressed. Treatment with anti-cancer drugs such as cisplatin, etoposide and vincristine influenced [methyl-(3)H]choline uptake in U-251MG cells, but not A-172 cells. Central nervous system drugs such as imipramine, fluvoxamine, paroxetine, reboxetine, citalopram and donepezil did not affect cell viability or [methyl-(3)H]choline uptake. The data presented here suggest that CTL1 and CTL2 are functionally expressed in A-172 and U-251MG cells and are responsible for [methyl-(3)H]choline uptake that relies on a directed H(+) gradient as a driving force. Furthermore, while anti-cancer drugs altered [methyl-(3)H]choline uptake, central nervous system drugs did not affect [methyl-(3)H]choline uptake. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Sex and menopausal status influence human dietary requirements for the nutrient choline.

    PubMed

    Fischer, Leslie M; daCosta, Kerry Ann; Kwock, Lester; Stewart, Paul W; Lu, Tsui-Shan; Stabler, Sally P; Allen, Robert H; Zeisel, Steven H

    2007-05-01

    Although humans require dietary choline for methyl donation, membrane function, and neurotransmission, choline can also be derived from the de novo synthesis of phosphatidylcholine, which is up-regulated by estrogen. A recommended Adequate Intake (AI) exists for choline; however, an Estimated Average Requirement has not been set because of a lack of sufficient human data. The objective of the study was to evaluate the dietary requirements for choline in healthy men and women and to investigate the clinical sequelae of choline deficiency. Fifty-seven adult subjects (26 men, 16 premenopausal women, 15 postmenopausal women) were fed a diet containing 550 mg choline x 70 kg(-1) x d(-1) for 10 d followed by <50 mg choline x 70 kg(-1) x d(-1) with or without a folic acid supplement (400 microg/d per randomization) for up to 42 d. Subjects who developed organ dysfunction during this diet had normal organ function restored after incremental amounts of choline were added back to the diet. Blood and urine were monitored for signs of toxicity and metabolite concentrations, and liver fat was assessed by using magnetic resonance imaging. When deprived of dietary choline, 77% of men and 80% of postmenopausal women developed fatty liver or muscle damage, whereas only 44% of premenopausal women developed such signs of organ dysfunction. Moreover, 6 men developed these signs while consuming 550 mg choline x 70 kg(-1) x d(-1), the AI for choline. Folic acid supplementation did not alter the subjects' response. Subject characteristics (eg, menopausal status) modulated the dietary requirement for choline, and a daily intake at the current AI was not sufficient to prevent organ dysfunction in 19 of the subjects.

  16. Sex and menopausal status influence human dietary requirements for the nutrient choline2

    PubMed Central

    Fischer, Leslie M; daCosta, Kerry Ann; Kwock, Lester; Stewart, Paul W; Lu, Tsui-Shan; Stabler, Sally P; Allen, Robert H; Zeisel, Steven H

    2008-01-01

    Background Although humans require dietary choline for methyl donation, membrane function, and neurotransmission, choline can also be derived from the de novo synthesis of phosphatidylcholine, which is up-regulated by estrogen. A recommended Adequate Intake (AI) exists for choline; however, an Estimated Average Requirement has not been set because of a lack of sufficient human data. Objective The objective of the study was to evaluate the dietary requirements for choline in healthy men and women and to investigate the clinical sequelae of choline deficiency. Design Fifty-seven adult subjects (26 men, 16 premenopausal women, 15 postmenopausal women) were fed a diet containing 550 mg choline · 70 kg−1 · d−1 for 10 d followed by <50 mg choline · 70 kg−1 · d−1 with or without a folic acid supplement (400 μg/d per randomization) for up to 42 d. Subjects who developed organ dysfunction during this diet had normal organ function restored after incremental amounts of choline were added back to the diet. Blood and urine were monitored for signs of toxicity and metabolite concentrations, and liver fat was assessed by using magnetic resonance imaging. Results When deprived of dietary choline, 77% of men and 80% of postmenopausal women developed fatty liver or muscle damage, whereas only 44% of premenopausal women developed such signs of organ dysfunction. Moreover, 6 men developed these signs while consuming 550 mg choline · 70 kg−1 · d−1, the AI for choline. Folic acid supplementation did not alter the subjects’ response. Conclusion Subject characteristics (eg, menopausal status) modulated the dietary requirement for choline, and a daily intake at the current AI was not sufficient to prevent organ dysfunction in 19 of the subjects. PMID:17490963

  17. Choline-mediated modulation of hippocampal sharp wave-ripple complexes in vitro.

    PubMed

    Fischer, Viktoria; Both, Martin; Draguhn, Andreas; Egorov, Alexei V

    2014-06-01

    The cholinergic system is critically involved in the modulation of cognitive functions, including learning and memory. Acetylcholine acts through muscarinic (mAChRs) and nicotinic receptors (nAChRs), which are both abundantly expressed in the hippocampus. Previous evidence indicates that choline, the precursor and degradation product of Acetylcholine, can itself activate nAChRs and thereby affects intrinsic and synaptic neuronal functions. Here, we asked whether the cellular actions of choline directly affect hippocampal network activity. Using mouse hippocampal slices we found that choline efficiently suppresses spontaneously occurring sharp wave-ripple complexes (SPW-R) and can induce gamma oscillations. In addition, choline reduces synaptic transmission between hippocampal subfields CA3 and CA1. Surprisingly, these effects are mediated by activation of both mAChRs and α7-containing nAChRs. Most nicotinic effects became only apparent after local, fast application of choline, indicating rapid desensitization kinetics of nAChRs. Effects were still present following block of choline uptake and are, therefore, likely because of direct actions of choline at the respective receptors. Together, choline turns out to be a potent regulator of patterned network activity within the hippocampus. These actions may be of importance for understanding state transitions in normal and pathologically altered neuronal networks. In this study we asked whether choline, the precursor and degradation product of acetylcholine, directly affects hippocampal network activity. Using mouse hippocampal slices we found that choline efficiently suppresses spontaneously occurring sharp wave-ripple complexes (SPW-R). In addition, choline reduces synaptic transmission between hippocampal subfields. These effects are mediated by direct activation of muscarinic as well as nicotinic cholinergic pathways. Together, choline turns out to be a potent regulator of patterned activity within hippocampal networks. © 2014 International Society for Neurochemistry.

  18. Choline-phospholipids inter-conversion is altered in elderly patients with prostate cancer.

    PubMed

    Awwad, Hussain Mohamad; Ohlmann, Carsten-Henning; Stoeckle, Michael; Aziz, Rasul; Geisel, Juergen; Obeid, Rima

    2016-07-01

    Choline is an important source of phospholipids and methyl groups in mammalian cells. High demands for methyl and phospholipids in malignant cells suggest that choline metabolism may be disturbed in patients with cancer. This case-control study investigated differences in concentrations of choline metabolites between 80 elderly men (age ≥ 65 years) with prostate cancer (PCa) and 51 men with benign prostatic hyperplasia (BPH). Plasma/serum concentrations of free choline, betaine, dimethylglycine, folate, total homocysteine (tHcy), cystathionine, methylmalonic acid, S-adenosyl homocysteine (SAH), S-adenosyl methionine (SAM), and phospholipids were measured. Men with BPH and those with PCa showed no significant differences in the concentrations of free choline (median = 9.7 vs. 10.0 μmol/L), folate (17.4 vs. 19.8 nmol/L), tHcy (16.0 vs. 16.2 μmol/L), SAH (18.8 vs. 18.2 nmol/L), and phosphatidylcholine (1634 vs. 1610 μmol/L). The concentrations of methylmalonic acid were lower in men with PCa (203 vs. 228 nmol/L) but the difference was not significant after adjusting for age. Sphingomyelin species (16:0, 18:0, 18:1, 20:0, 22:0, 22; 1, 23:0, 23:1, 24:0, 24:1, and 24:2) were significantly lower in men with PCa than in the controls (6-16% differences). Multiple regression analyses showed that the presence of PCa, statin use, choline, age, cystathionine, and methylmalonic acid were significant negative determinant of sphingomyelins, whereas phosphatidylcholine was a strong positive determinant. The current results support systemic alterations in phospholipids metabolism in PCa. We report on a significant decrease in plasma concentrations of sphingomyelin in elderly patients with PCa and in users of statins. The PCa-associated low sphingomyelin showed a synergy with the effect of statins. The presence of PCa was not associated with significant changes in plasma concentrations of choline or methyl metabolites. However, changes in choline absorption and tissue uptake cannot be ruled out in this study. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  19. [Characteristics of fatty acid composition of phosphatidyl cholines and sphingomyelins of low-density lipoproteins in the plasma of native inhabitants of Chukotka].

    PubMed

    Gerasimova, E N; Levachev, M M; Perova, N V; Nikitin, Iu P; Ozerova, I N

    1986-01-01

    Contents of cholesterol, triglycerides, high density lipoproteins (HDL) cholesterol as well as phospholipid and fatty acid compositions of phosphatidyl cholines and sphingomyelins in low density lipoproteins (LDL) were studied in blood plasma of Chukot aborigenes--Eskimos as compared with Moscow inhabitants. In Eskimos content of HDL cholesterol was higher but concentration of cholesterol and triglycerides was lower in blood plasma. In LDL concentration of sphingomyelins was increased and fatty acid composition of phosphatidyl cholines and sphingomyelins was altered where amount of polyunsaturated fatty acids was elevated (20:5 + 22:5 + 22:6). The specific characteristics of the LDL phospholipids observed in Eskimos might be responsible for the higher liquid properties of the surface monolayer in the lipoproteins; this alteration might be important for the lipoprotein properties and transformation as well as for the properties of membrane-bound enzymes, for synthesis of thromboxane and prostacyclins.

  20. Long-lasting effects of prenatal dietary choline availability on object recognition memory ability in adult rats.

    PubMed

    Moreno, Hayarelis C; de Brugada, Isabel; Carias, Diamela; Gallo, Milagros

    2013-11-01

    Choline is an essential nutrient required for early development. Previous studies have shown that prenatal choline availability influences adult memory abilities depending on the medial temporal lobe integrity. The relevance of prenatal choline availability on object recognition memory was assessed in adult Wistar rats. Three groups of pregnant Wistar rats were fed from E12 to E18 with choline-deficient (0 g/kg choline chloride), standard (1.1 g/kg choline chloride), or choline-supplemented (5 g/kg choline chloride) diets. The offspring was cross-fostered to rat dams fed a standard diet during pregnancy and tested at the age of 3 months in an object recognition memory task applying retention tests 24 and 48 hours after acquisition. Although no significant differences have been found in the performance of the three groups during the first retention test, the supplemented group exhibited improved memory compared with both the standard and the deficient group in the second retention test, 48 hours after acquisition. In addition, at the second retention test the deficient group did not differ from chance. Taken together, the results support the notion of a long-lasting beneficial effect of prenatal choline supplementation on object recognition memory which is evident when the rats reach adulthood. The results are discussed in terms of their relevance for improving the understanding of the cholinergic involvement in object recognition memory and the implications of the importance of maternal diet for lifelong cognitive abilities.

  1. Maternal Choline Status, but Not Fetal Genotype, Influences Cord Plasma Choline Metabolite Concentrations.

    PubMed

    Visentin, Carly E; Masih, Shannon; Plumptre, Lesley; Malysheva, Olga; Nielsen, Daiva E; Sohn, Kyoung-Jin; Ly, Anna; Lausman, Andrea Y; Berger, Howard; Croxford, Ruth; El-Sohemy, Ahmed; Caudill, Marie A; O'Connor, Deborah L; Kim, Young-In

    2015-07-01

    Choline deficiency during pregnancy can lead to adverse birth outcomes, including impaired neurodevelopment and birth defects. Genetic variants of choline and one-carbon metabolism may also influence birth outcomes by altering plasma choline concentrations. The effects of maternal ad libitum choline intake during pregnancy and fetal genetic variants on maternal and cord concentrations of choline and its metabolites are unknown. This prospective study sought to assess the effect of 1) maternal dietary choline intake on maternal and cord plasma concentrations of choline and its metabolites, and 2) fetal genetic polymorphisms on cord plasma concentrations. The dietary choline intake of 368 pregnant Canadian women was assessed in early (0-16 wk) and late (23-37 wk) pregnancy with the use of a food frequency questionnaire. Plasma concentrations of free choline and its metabolites were measured in maternal samples at recruitment and delivery, and in the cord blood. Ten fetal genetic variants in choline and one-carbon metabolism were assessed for their association with cord plasma concentrations of free choline and its metabolites. Mean maternal plasma free choline, dimethylglycine, and trimethylamine N-oxide (TMAO) concentrations increased during pregnancy by 49%, 17%, and 13%, respectively (P < 0.005), whereas betaine concentrations decreased by 21% (P < 0.005). Cord plasma concentrations of free choline, betaine, dimethylglycine, and TMAO were 3.2, 2.0, 1.3, and 0.88 times corresponding maternal concentrations at delivery, respectively (all P < 0.005). Maternal plasma concentrations of betaine, dimethylglycine, and TMAO (r(2) = 0.19-0.51; P < 0.0001) at delivery were moderately strong, whereas maternal concentrations of free choline were not significant (r(2) = 0.12; P = 0.06), predictors of cord plasma concentrations of these metabolites. Neither maternal dietary intake nor fetal genetic variants predicted maternal or cord plasma concentrations of choline and its metabolites. These data collectively indicate that maternal choline status, but not fetal genotype, influences cord plasma concentrations of choline metabolites. This trial was registered at clinicaltrials.gov as NCT02244684. © 2015 American Society for Nutrition.

  2. Deletion of murine choline dehydrogenase results in diminished sperm motility

    PubMed Central

    Johnson, Amy R.; Craciunescu, Corneliu N.; Guo, Zhong; Teng, Ya-Wen; Thresher, Randy J.; Blusztajn, Jan K.; Zeisel, Steven H.

    2010-01-01

    Choline dehydrogenase (CHDH) catalyzes the conversion of choline to betaine, an important methyl donor and organic osmolyte. We have previously identified single nucleotide polymorphisms (SNPs) in the human CHDH gene that, when present, seem to alter the activity of the CHDH enzyme. These SNPs occur frequently in humans. We created a Chdh−/− mouse to determine the functional effects of mutations that result in decreased CHDH activity. Chdh deletion did not affect fetal viability or alter growth or survival of these mice. Only one of eleven Chdh−/− males was able to reproduce. Loss of CHDH activity resulted in decreased testicular betaine and increased choline and PCho concentrations. Chdh+/+ and Chdh−/− mice produced comparable amounts of sperm; the impaired fertility was due to diminished sperm motility in the Chdh−/− males. Transmission electron microscopy revealed abnormal mitochondrial morphology in Chdh−/− sperm. ATP content, total mitochondrial dehydrogenase activity and inner mitochondrial membrane polarization were all significantly reduced in sperm from Chdh−/− animals. Mitochondrial changes were also detected in liver, kidney, heart, and testis tissues. We suggest that men who have SNPs in CHDH that decrease the activity of the CHDH enzyme could have decreased sperm motility and fertility.—Johnson, A. R., Craciunescu, C. N., Guo, Z., Teng, Y.-W., Thresher, R. J., Blusztajn, J. K., Zeisel, S. H. Deletion of murine choline dehydrogenase results in diminished sperm motility. PMID:20371614

  3. Differential expression of choline kinase isoforms in skeletal muscle explains the phenotypic variability in the rostrocaudal muscular dystrophy mouse.

    PubMed

    Wu, Gengshu; Sher, Roger B; Cox, Gregory A; Vance, Dennis E

    2010-04-01

    Choline kinase in mammals is encoded by two genes, Chka and Chkb. Disruption of murine Chka leads to embryonic lethality, whereas a spontaneous genomic deletion in murine Chkb results in neonatal forelimb bone deformity and hindlimb muscular dystrophy. Surprisingly, muscular dystrophy isn't significantly developed in the forelimb. We have investigated the mechanism by which a lack of choline kinase beta, encoded by Chkb, results in minimal muscular dystrophy in forelimbs. We have found that choline kinase beta is the major isoform in hindlimb muscle and contributes more to choline kinase activity, while choline kinase alpha is predominant in forelimb muscle and contributes more to choline kinase activity. Although choline kinase activity is decreased in forelimb muscles of Chkb(-/-) mice, the activity of CTP:phosphocholine cytidylyltransferase is increased, resulting in enhanced phosphatidylcholine biosynthesis. The activity of phosphatidylcholine phospholipase C is up-regulated while the activity of phospholipase A(2) in forelimb muscle is not altered. Regeneration of forelimb muscles of Chkb(-/-) mice is normal when challenged with cardiotoxin. In contrast to hindlimb muscle, mega-mitochondria are not significantly formed in forelimb muscle of Chkb(-/-) mice. We conclude that the relative lack of muscle degeneration in forelimbs of Chkb(-/-) mice is due to abundant choline kinase alpha and the stable homeostasis of phosphatidylcholine. 2009 Elsevier B.V. All rights reserved.

  4. A choline-deficient diet exacerbates fatty liver but attenuates insulin resistance and glucose intolerance in mice fed a high-fat diet.

    PubMed

    Raubenheimer, Peter J; Nyirenda, Moffat J; Walker, Brian R

    2006-07-01

    Liver fat accumulation is proposed to link obesity and insulin resistance. To dissect the role of liver fat in the insulin resistance of diet-induced obesity, we altered liver fat using a choline-deficient diet. C57Bl/6 mice were fed a low-fat (10% of calories) or high-fat (45% of calories) diet for 8 weeks; during the final 4 weeks, diets were either choline deficient or choline supplemented. In choline replete animals, high-fat feeding induced weight gain, elevated liver triglycerides (171%), hyperinsulinemia, and glucose intolerance. Choline deficiency did not affect body or adipose depot weights but amplified liver fat accumulation with high-fat diet (281%, P < 0.01). However, choline deficiency lowered fasting plasma insulin (from 983 +/- 175 to 433 +/- 36 pmol/l, P < 0.01) and improved glucose tolerance on a high-fat diet. In mice on 30% fat diet, choline deficiency increased liver mRNA levels of the rate-limiting enzyme in phosphatidylcholine synthesis and of enzymes involved in free fatty acid esterification, without affecting those of de novo lipogenesis or fatty acid oxidation. We conclude that liver fat accumulation per se does not cause insulin resistance during high-fat feeding and that choline deficiency may shunt potentially toxic free fatty acids toward innocuous storage triglyceride in the liver.

  5. Maternal Choline Supplementation Alters Fetal Growth Patterns in a Mouse Model of Placental Insufficiency.

    PubMed

    King, Julia H; Kwan, Sze Ting Cecilia; Yan, Jian; Klatt, Kevin C; Jiang, Xinyin; Roberson, Mark S; Caudill, Marie A

    2017-07-18

    Impairments in placental development can adversely affect pregnancy outcomes. The bioactive nutrient choline may mitigate some of these impairments, as suggested by data in humans, animals, and human trophoblasts. Herein, we investigated the effects of maternal choline supplementation (MCS) on parameters of fetal growth in a Dlx3 +/- (distal-less homeobox 3) mouse model of placental insufficiency. Dlx3 +/- female mice were assigned to 1X (control), 2X, or 4X choline intake levels during gestation. Dams were sacrificed at embryonic days E10.5, 12.5, 15.5, and 18.5. At E10.5, placental weight, embryo weight, and placental efficiency were higher in 4X versus 1X choline. Higher concentrations of hepatic and placental betaine were detected in 4X versus 1X choline, and placental betaine was positively associated with embryo weight. Placental mRNA expression of Igf1 was downregulated by 4X (versus 1X) choline at E10.5. No differences in fetal growth parameters were detected at E12.5 and 15.5, whereas a small but significant reduction in fetal weight was detected at E18.5 in 4X versus 1X choline. MCS improved fetal growth during early pregnancy in the Dlx3 +/- mice with the compensatory downregulation of Igf1 to slow growth as gestation progressed. Placental betaine may be responsible for the growth-promoting effects of choline.

  6. Choline and betaine in health and disease.

    PubMed

    Ueland, Per Magne

    2011-02-01

    Choline is an essential nutrient, but is also formed by de novo synthesis. Choline and its derivatives serve as components of structural lipoproteins, blood and membrane lipids, and as a precursor of the neurotransmitter acetylcholine. Pre-and postnatal choline availability is important for neurodevelopment in rodents. Choline is oxidized to betaine that serves as an osmoregulator and is a substrate in the betaine-homocysteine methyltransferase reaction, which links choline and betaine to the folate-dependent one-carbon metabolism. Choline and betaine are important sources of one-carbon units, in particular, during folate deficiency. Choline or betaine supplementation in humans reduces concentration of total homocysteine (tHcy), and plasma betaine is a strong predictor of plasma tHcy in individuals with low plasma concentration of folate and other B vitamins (B₂, B₆, and B₁₂) in combination TT genotype of the methylenetetrahydrofolate reductase 677 C->T polymorphism. The link to one-carbon metabolism and the recent availability of food composition data have motivated studies on choline and betaine as risk factors of chronic diseases previously studied in relation to folate and homocysteine status. High intake and plasma level of choline in the mother seems to afford reduced risk of neural tube defects. Intake of choline and betaine shows no consistent relation to cancer or cardiovascular risk or risk factors, whereas an unfavorable cardiovascular risk factor profile was associated with high choline and low betaine concentrations in plasma. Thus, choline and betaine showed opposite relations with key components of metabolic syndrome, suggesting a disruption of mitochondrial choline oxidation to betaine as part of the mitochondrial dysfunction in metabolic syndrome.

  7. Moderate Perinatal Choline Deficiency Elicits Altered Physiology and Metabolomic Profiles in the Piglet.

    PubMed

    Getty, Caitlyn M; Dilger, Ryan N

    2015-01-01

    Few studies have evaluated the impact of dietary choline on the health and well-being of swine, and those pivotal papers were aimed at determining dietary requirements for sows and growing pigs. This is of importance as the piglet is becoming a widely accepted model for human infant nutrition, but little is known about the impacts of perinatal choline status on overall health and metabolism of the growing piglet. In the present study, sows were provided either a choline deficient (CD, 625 mg choline/kg dry matter) or choline sufficient (CS, 1306 mg choline/kg dry matter) diet for the last 65 d of gestation (prenatal intervention). Piglets were weaned from the sow 48 h after farrowing and provided either a CD (477 mg choline/kg dry matter) or CS (1528 mg choline/kg dry matter) milk replacer (postnatal intervention) for 29 ± 2 d, resulting in a factorial arrangement of 4 treatment (prenatal/postnatal) groups: CS/CS, CS/CD, CD/CS, and CD/CD. Piglet growth was normal for artificially-reared piglets, and was not impacted by perinatal choline status. Piglets receiving the postnatal CD treatment had lower (P < 0.01) plasma choline and choline-containing phospholipid concentrations and higher (P < 0.05) liver enzyme (alkaline phosphatase and gamma-glutamyl transferase) values compared with piglets receiving the postnatal CS treatment. Hepatic lipid content of piglets receiving the postnatal CD treatment was higher (P < 0.01) compared with piglets receiving the postnatal CS treatment. Additionally, postnatally CD piglets had lower (P = 0.01) plasma cholesterol than postnatally CS piglets. Brain development was also impacted by perinatal choline status, with brains of piglets exposed to prenatal CD being smaller (P = 0.01) than those of prenatally CS piglets. These findings support the hypothesis that the piglet is a sensitive model for choline deficiency during the perinatal period. In the present study, piglets exhibited similarities in health markers and metabolomic profiles to rodents and humans when exposed to moderate choline deficiency.

  8. Lesion-induced plasticity of high affinity choline uptake in the developing rat fascia dentata.

    PubMed

    Nadler, J V; Shelton, D L; Cotman, C W

    1979-03-23

    After removal of the perforant path input to the rat fascia dentata at the age of 11 days, cholinergic septohippocampal fibers invade the denervated area. We have examined the effect of this lesion on hemicholinium-sensitive, high affinity choline uptake and its coupling to acetylcholine synthesis, specific properties of the septohippocampal input. Removal of the ipsilateral perforant path fibers increased the velocity of high affinity choline uptake by dentate particulate preparations, usually within 1 day. Studies conducted 5--104 days after operation showed a consistent 50--65% elevation in the molecular (denervated) layer. In contrast, the choline uptake rate in the granular layer eventually decreased slightly. Calculation of choline uptake rates independently of protein (per whole region) revealed that fasciae dentatae from operated and control sides accumulated choline at approximately equal rates, but on the operated side a greater percentage was transported by structures from the molecular layer and a lesser percentage by those from the granular layer. The rate of acetylcholine synthesis from exogenous choline increased to the same extent as high affinity choline uptake from 3 days after operation onwards. The changes in high affinity choline uptake and acetylcholine synthesis coincided spatially and temporally with the reactive growth of septohippocampal fibers. Our results support the view that a perforant path lesion during development permanently alters the distribution of functional septohippocampal boutons in the fascia dentata. Acetylcholine synthesis is regulated to the same extent by high affinity choline uptake in the anomalous boutons as in normally located boutons.

  9. Choline supplementation alleviates fluoride-induced testicular toxicity by restoring the NGF and MEK expression in mice.

    PubMed

    Zhang, Jianhai; Zhang, Yufang; Liang, Chen; Wang, Nasui; Zheng, Heping; Wang, Jundong

    2016-11-01

    Fluoride is known to cause male reproductive toxicity, and the elucidation of its underlying mechanisms is an ongoing research focus in reproductive toxicology and epidemiology. Choline, an essential nutrient, has been extensively studied for its benefits in nervous system yet was rarely discussed for its prospective effect in male reproductive system. This study aims to explore the potential protective role of choline against NaF-induced male reproductive toxicity via MAPK pathway. The male mice were administrated by 150mg/L NaF in drinking water, 5.75g/kg choline in diet, and their combination respectively from maternal gestation to postnatal 15weeks. The results showed that fluoride exposure reduced body weight growth, lowered sperm count and survival percentages, altered testicular histology, down-regulated the mRNA expressions of NGF, Ras, Raf, and MEK genes in testes, as well as significantly decreased the expressions of both NGF and phosphor-MEK proteins in testes. Examination of data from choline-treated mice revealed that choline supplementation ameliorated these fluoride-induced changes. Taken together, our findings suggest that choline supplementation alleviates fluoride-induced testicular toxicity by restoring the NGF and phosphor-MEK expression. The suitable dosage and supplementation periods of choline await further exploration. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Autoregulation of Neuromuscular Transmission by Nerve Terminals

    DTIC Science & Technology

    1985-12-01

    converted to choline by AChE (EC 3.1.1.7); second, choline 24 is converted to betaine and H2 02 by choline oxidase (ChOx) (EC 1.1.3.17); and finally, H2...obtained that choline avail- ability can influence ACh release. Low levels of choline decrease release. However, this modulatory mechanism appears to...fects of various toxic agents on the axonal transport of these binding sites. The effects of organophosphate agents in vitro and in vivo on choline efflux

  11. Alterations in hepatic one-carbon metabolism and related pathways following a high-fat dietary intervention.

    PubMed

    Rubio-Aliaga, Isabel; Roos, Baukje de; Sailer, Manuela; McLoughlin, Gerard A; Boekschoten, Mark V; van Erk, Marjan; Bachmair, Eva-Maria; van Schothorst, Evert M; Keijer, Jaap; Coort, Susan L; Evelo, Chris; Gibney, Michael J; Daniel, Hannelore; Muller, Michael; Kleemann, Robert; Brennan, Lorraine

    2011-04-27

    Obesity frequently leads to insulin resistance and the development of hepatic steatosis. To characterize the molecular changes that promote hepatic steatosis, transcriptomics, proteomics, and metabolomics technologies were applied to liver samples from C57BL/6J mice obtained from two independent intervention trials. After 12 wk of high-fat feeding the animals became obese, hyperglycemic, and insulin resistant, had elevated levels of blood cholesterol and VLDL, and developed hepatic steatosis. Nutrigenomic analysis revealed alterations of key metabolites and enzyme transcript levels of hepatic one-carbon metabolism and related pathways. The hepatic oxidative capacity and the lipid milieu were significantly altered, which may play a key role in the development of insulin resistance. Additionally, high choline levels were observed after the high-fat diet. Previous studies have linked choline levels with insulin resistance and hepatic steatosis in conjunction with changes of certain metabolites and enzyme levels of one-carbon metabolism. The present results suggest that the coupling of high levels of choline and low levels of methionine plays an important role in the development of insulin resistance and liver steatosis. In conclusion, the complexities of the alterations induced by high-fat feeding are multifactorial, indicating that the interplay between several metabolic pathways is responsible for the pathological consequences.

  12. Deletion of murine choline dehydrogenase results in diminished sperm motility.

    PubMed

    Johnson, Amy R; Craciunescu, Corneliu N; Guo, Zhong; Teng, Ya-Wen; Thresher, Randy J; Blusztajn, Jan K; Zeisel, Steven H

    2010-08-01

    Choline dehydrogenase (CHDH) catalyzes the conversion of choline to betaine, an important methyl donor and organic osmolyte. We have previously identified single nucleotide polymorphisms (SNPs) in the human CHDH gene that, when present, seem to alter the activity of the CHDH enzyme. These SNPs occur frequently in humans. We created a Chdh(-/-) mouse to determine the functional effects of mutations that result in decreased CHDH activity. Chdh deletion did not affect fetal viability or alter growth or survival of these mice. Only one of eleven Chdh(-/-) males was able to reproduce. Loss of CHDH activity resulted in decreased testicular betaine and increased choline and PCho concentrations. Chdh(+/+) and Chdh(-/-) mice produced comparable amounts of sperm; the impaired fertility was due to diminished sperm motility in the Chdh(-/-) males. Transmission electron microscopy revealed abnormal mitochondrial morphology in Chdh(-/-) sperm. ATP content, total mitochondrial dehydrogenase activity and inner mitochondrial membrane polarization were all significantly reduced in sperm from Chdh(-/-) animals. Mitochondrial changes were also detected in liver, kidney, heart, and testis tissues. We suggest that men who have SNPs in CHDH that decrease the activity of the CHDH enzyme could have decreased sperm motility and fertility.

  13. Common Genetic Variants Alter Metabolism and Influence Dietary Choline Requirements.

    PubMed

    Ganz, Ariel B; Klatt, Kevin C; Caudill, Marie A

    2017-08-04

    Nutrient needs, including those of the essential nutrient choline, are a population wide distribution. Adequate Intake (AI) recommendations for dietary choline (put forth by the National Academies of Medicine to aid individuals and groups in dietary assessment and planning) are grouped to account for the recognized unique needs associated with age, biological sex, and reproductive status (i.e., pregnancy or lactation). Established and emerging evidence supports the notion that common genetic variants are additional factors that substantially influence nutrient requirements. This review summarizes the genetic factors that influence choline requirements and metabolism in conditions of nutrient deprivation, as well as conditions of nutrient adequacy, across biological sexes and reproductive states. Overall, consistent and strong associative evidence demonstrates that common genetic variants in choline and folate pathway enzymes impact the metabolic handling of choline and the risk of nutrient inadequacy across varied dietary contexts. The studies characterized in this review also highlight the substantial promise of incorporating common genetic variants into choline intake recommendations to more precisely target the unique nutrient needs of these subgroups within the broader population. Additional studies are warranted to facilitate the translation of this evidence to nutrigenetics-based dietary approaches.

  14. Common Genetic Variants Alter Metabolism and Influence Dietary Choline Requirements

    PubMed Central

    Ganz, Ariel B.; Klatt, Kevin C.; Caudill, Marie A.

    2017-01-01

    Nutrient needs, including those of the essential nutrient choline, are a population wide distribution. Adequate Intake (AI) recommendations for dietary choline (put forth by the National Academies of Medicine to aid individuals and groups in dietary assessment and planning) are grouped to account for the recognized unique needs associated with age, biological sex, and reproductive status (i.e., pregnancy or lactation). Established and emerging evidence supports the notion that common genetic variants are additional factors that substantially influence nutrient requirements. This review summarizes the genetic factors that influence choline requirements and metabolism in conditions of nutrient deprivation, as well as conditions of nutrient adequacy, across biological sexes and reproductive states. Overall, consistent and strong associative evidence demonstrates that common genetic variants in choline and folate pathway enzymes impact the metabolic handling of choline and the risk of nutrient inadequacy across varied dietary contexts. The studies characterized in this review also highlight the substantial promise of incorporating common genetic variants into choline intake recommendations to more precisely target the unique nutrient needs of these subgroups within the broader population. Additional studies are warranted to facilitate the translation of this evidence to nutrigenetics-based dietary approaches. PMID:28777294

  15. Role of Lipotropes in Mammary Carcinogenesis

    DTIC Science & Technology

    1996-09-01

    preneoplastic hepatocyte nodules and a 51% incidence of hepatocellular carcinoma (19). To date, the exact mechanism responsible for the effects of lipotrope...rats fed choline deficient diets exhibit an altered liver response to DL-ethionine which leads to an early and enhanced induction of hepatocellular ... carcinoma (37). In addition to the promoting action of lipotropes on chemically induced carcinomas, dietary deficiencies of choline and methionine have

  16. Maternal Choline Supplementation Alters Fetal Growth Patterns in a Mouse Model of Placental Insufficiency

    PubMed Central

    Kwan, Sze Ting (Cecilia); Yan, Jian; Klatt, Kevin C.; Jiang, Xinyin; Roberson, Mark S.; Caudill, Marie A.

    2017-01-01

    Impairments in placental development can adversely affect pregnancy outcomes. The bioactive nutrient choline may mitigate some of these impairments, as suggested by data in humans, animals, and human trophoblasts. Herein, we investigated the effects of maternal choline supplementation (MCS) on parameters of fetal growth in a Dlx3+/− (distal-less homeobox 3) mouse model of placental insufficiency. Dlx3+/− female mice were assigned to 1X (control), 2X, or 4X choline intake levels during gestation. Dams were sacrificed at embryonic days E10.5, 12.5, 15.5, and 18.5. At E10.5, placental weight, embryo weight, and placental efficiency were higher in 4X versus 1X choline. Higher concentrations of hepatic and placental betaine were detected in 4X versus 1X choline, and placental betaine was positively associated with embryo weight. Placental mRNA expression of Igf1 was downregulated by 4X (versus 1X) choline at E10.5. No differences in fetal growth parameters were detected at E12.5 and 15.5, whereas a small but significant reduction in fetal weight was detected at E18.5 in 4X versus 1X choline. MCS improved fetal growth during early pregnancy in the Dlx3+/− mice with the compensatory downregulation of Igf1 to slow growth as gestation progressed. Placental betaine may be responsible for the growth-promoting effects of choline. PMID:28718809

  17. Metabolic Imaging of Pancreatic Ductal Adenocarcinoma Detects Altered Choline Metabolism

    PubMed Central

    Penet, Marie-France; Shah, Tariq; Bharti, Santosh; Krishnamachary, Balaji; Artemov, Dmitri; Mironchik, Yelena; Wildes, Flonné; Maitra, Anirban; Bhujwalla, Zaver M.

    2014-01-01

    Purpose Pancreatic ductal adenocarcinoma (PDAC) is an aggressive and lethal disease that develops relatively symptom-free and is therefore advanced at the time of diagnosis. The absence of early symptoms and effective treatments has created a critical need for identifying and developing new noninvasive biomarkers and therapeutic targets. Experimental Design We investigated the metabolism of a panel of PDAC cell lines in culture and noninvasively in vivo with 1H magnetic resonance spectroscopic imaging (MRSI) to identify noninvasive biomarkers and uncover potential metabolic targets. Results We observed elevated choline-containing compounds in the PDAC cell lines and tumors. These elevated choline-containing compounds were easily detected by increased total choline (tCho) in vivo, in spectroscopic images obtained from tumors. Principal component analysis of the spectral data identified additional differences in metabolites between HPNE and neoplastic PDAC cells. Molecular characterization revealed overexpression of choline kinase (Chk)-α, choline transporter 1 (CHT1), and choline transporter-like protein 1 (CTL1) in the PDAC cell lines and tumors. Conclusions Collectively, these data identify new metabolic characteristics of PDAC and reveal potential metabolic targets. Total choline detected with 1H MRSI may provide an intrinsic, imaging-probe independent biomarker to complement existing techniques in detecting PDAC. The expression of Chk-α, CHT1, and CTL1 may provide additional molecular markers in aspirated cytological samples. PMID:25370468

  18. Maternal dietary intake of choline in mice regulates development of the cerebral cortex in the offspring

    PubMed Central

    Wang, Yanyan; Surzenko, Natalia; Friday, Walter B.; Zeisel, Steven H.

    2015-01-01

    Maternal diets low in choline, an essential nutrient, increase the risk of neural tube defects and lead to low performance on cognitive tests in children. However, the consequences of maternal dietary choline deficiency for the development and structural organization of the cerebral cortex remain unknown. In this study, we fed mouse dams either control (CT) or low-choline (LC) diets and investigated the effects of choline on cortical development in the offspring. As a result of a low choline supply between embryonic day (E)11 and E17 of gestation, the number of 2 types of cortical neural progenitor cells (NPCs)—radial glial cells and intermediate progenitor cells—was reduced in fetal brains (P < 0.01). Furthermore, the number of upper layer cortical neurons was decreased in the offspring of dams fed an LC diet at both E17 (P < 0.001) and 4 mo of age (P < 0.001). These effects of LC maternal diet were mediated by a decrease in epidermal growth factor receptor (EGFR) signaling in NPCs related to the disruption of EGFR posttranscriptional regulation. Our findings describe a novel mechanism whereby low maternal dietary intake of choline alters brain development.—Wang, Y., Surzenko, N., Friday, W. B., Zeisel, S. H. Maternal dietary intake of choline in mice regulates development of the cerebral cortex in the offspring. PMID:26700730

  19. Maternal dietary intake of choline in mice regulates development of the cerebral cortex in the offspring.

    PubMed

    Wang, Yanyan; Surzenko, Natalia; Friday, Walter B; Zeisel, Steven H

    2016-04-01

    Maternal diets low in choline, an essential nutrient, increase the risk of neural tube defects and lead to low performance on cognitive tests in children. However, the consequences of maternal dietary choline deficiency for the development and structural organization of the cerebral cortex remain unknown. In this study, we fed mouse dams either control (CT) or low-choline (LC) diets and investigated the effects of choline on cortical development in the offspring. As a result of a low choline supply between embryonic day (E)11 and E17 of gestation, the number of 2 types of cortical neural progenitor cells (NPCs)-radial glial cells and intermediate progenitor cells-was reduced in fetal brains (P< 0.01). Furthermore, the number of upper layer cortical neurons was decreased in the offspring of dams fed an LC diet at both E17 (P< 0.001) and 4 mo of age (P< 0.001). These effects of LC maternal diet were mediated by a decrease in epidermal growth factor receptor (EGFR) signaling in NPCs related to the disruption of EGFR posttranscriptional regulation. Our findings describe a novel mechanism whereby low maternal dietary intake of choline alters brain development.-Wang, Y., Surzenko, N., Friday, W. B., Zeisel, S. H. Maternal dietary intake of choline in mice regulates development of the cerebral cortex in the offspring. © FASEB.

  20. Choline-Based Amino Acid ILs-Collagen Interaction: Enunciating Its Role in Stabilization/Destabilization Phenomena.

    PubMed

    Tarannum, Aafiya; Rao, J Raghava; Fathima, N Nishad

    2018-01-25

    Given the potential of productive interaction between choline-based amino acid ionic liquids (CAAILs) and collagen, we investigated the role of four CAAILs, viz., choline serinate, threoninate, lysinate, and phenylalaninate, and the changes mediated by them in the structure of collagen at different hierarchical orderings, that is, at molecular and fibrillar levels. The rheological, dielectric behavior and the secondary structural changes signify the alteration in the triple helical structure of collagen at higher concentrations of CAAILs. A marginal swelling and slight decrease in the thermal stability of rat tail tendon collagen fibers were observed for choline serinate and threoninate, albeit distortions in banding patterns were noticed for choline lysinate and phenylalaninate, suggesting chaotropicity of the ions at the fibrillar level. This signifies the changes in the hydrogen-bonding environment of collagen with increasing concentrations of CAAILs, which could be due to competitive hydrogen bonding between the carbonyl group of amino acid ionic liquids and the hydroxyl groups of collagen.

  1. Neuroprotective Actions of Dietary Choline

    PubMed Central

    Blusztajn, Jan Krzysztof; Slack, Barbara E.; Mellott, Tiffany J.

    2017-01-01

    Choline is an essential nutrient for humans. It is a precursor of membrane phospholipids (e.g., phosphatidylcholine (PC)), the neurotransmitter acetylcholine, and via betaine, the methyl group donor S-adenosylmethionine. High choline intake during gestation and early postnatal development in rat and mouse models improves cognitive function in adulthood, prevents age-related memory decline, and protects the brain from the neuropathological changes associated with Alzheimer’s disease (AD), and neurological damage associated with epilepsy, fetal alcohol syndrome, and inherited conditions such as Down and Rett syndromes. These effects of choline are correlated with modifications in histone and DNA methylation in brain, and with alterations in the expression of genes that encode proteins important for learning and memory processing, suggesting a possible epigenomic mechanism of action. Dietary choline intake in the adult may also influence cognitive function via an effect on PC containing eicosapentaenoic and docosahexaenoic acids; polyunsaturated species of PC whose levels are reduced in brains from AD patients, and is associated with higher memory performance, and resistance to cognitive decline. PMID:28788094

  2. Neuroprotective Actions of Dietary Choline.

    PubMed

    Blusztajn, Jan Krzysztof; Slack, Barbara E; Mellott, Tiffany J

    2017-07-28

    Choline is an essential nutrient for humans. It is a precursor of membrane phospholipids (e.g., phosphatidylcholine (PC)), the neurotransmitter acetylcholine, and via betaine, the methyl group donor S -adenosylmethionine. High choline intake during gestation and early postnatal development in rat and mouse models improves cognitive function in adulthood, prevents age-related memory decline, and protects the brain from the neuropathological changes associated with Alzheimer's disease (AD), and neurological damage associated with epilepsy, fetal alcohol syndrome, and inherited conditions such as Down and Rett syndromes. These effects of choline are correlated with modifications in histone and DNA methylation in brain, and with alterations in the expression of genes that encode proteins important for learning and memory processing, suggesting a possible epigenomic mechanism of action. Dietary choline intake in the adult may also influence cognitive function via an effect on PC containing eicosapentaenoic and docosahexaenoic acids; polyunsaturated species of PC whose levels are reduced in brains from AD patients, and is associated with higher memory performance, and resistance to cognitive decline.

  3. Genetic impairments in folate enzymes increase dependence on dietary choline for phosphatidylcholine production at the expense of betaine synthesis

    PubMed Central

    Ganz, Ariel B.; Shields, Kelsey; Fomin, Vlad G.; Lopez, Yusnier S.; Mohan, Sanjay; Lovesky, Jessica; Chuang, Jasmine C.; Ganti, Anita; Carrier, Bradley; Yan, Jian; Taeswuan, Siraphat; Cohen, Vanessa V.; Swersky, Camille C.; Stover, Julie A.; Vitiello, Gerardo A.; Malysheva, Olga V.; Mudrak, Erika; Caudill, Marie A.

    2016-01-01

    Although single nucleotide polymorphisms (SNPs) in folate-mediated pathways predict susceptibility to choline deficiency during severe choline deprivation, it is unknown if effects persist at recommended intakes. Thus, we used stable isotope liquid chromatography-mass spectrometry (LC-MS) methodology to examine the impact of candidate SNPs on choline metabolism in a long-term, randomized, controlled feeding trial among pregnant, lactating, and nonpregnant (NP) women consuming 480 or 930 mg/d choline (22% as choline-d9, with d9 indicating a deuterated trimethyl amine group) and meeting folate-intake recommendations. Variants impairing folate metabolism, methylenetetrahydrofolate reductase (MTHFR) rs1801133, methionine synthase (MTR) rs1805087 [wild-type (WT)], MTR reductase (MTRR) rs1801394, and methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase-formyltetrahydrofolate synthetase (MTHFD1) rs2236225, influenced choline dynamics, frequently through interactions with reproductive state and choline intake, with fewer genotypic alterations observed among pregnant women. Women with these variants partitioned more dietary choline toward phosphatidylcholine (PC) biosynthesis via the cytidine diphosphate (CDP)-choline pathway at the expense of betaine synthesis even when use of betaine as a methyl donor was increased. Choline intakes of 930 mg/d restored partitioning of dietary choline between betaine and CDP-PC among NP (MTHFR rs1801133 and MTR rs1805087 WT) and lactating (MTHFD1 rs2236225) women with risk genotypes. Overall, our findings indicate that loss-of-function variants in folate-metabolizing enzymes strain cellular PC production, possibly via impaired folate-dependent phosphatidylethanolamine-N-methyltransferase (PEMT)-PC synthesis, and suggest that women with these risk genotypes may benefit from choline intakes exceeding current recommendations.—Ganz, A. B., Shields, K., Fomin, V. G., Lopez, Y. S., Mohan, S., Lovesky, J., Chuang, J. C., Ganti, A., Carrier, B., Yan, J., Taeswuan, S., Cohen, V. V., Swersky, C. C., Stover, J. A., Vitiello, G. A., Malysheva, O. V., Mudrak, E., Caudill, M. A. Genetic impairments in folate enzymes increase dependence on dietary choline for phosphatidylcholine production at the expense of betaine synthesis. PMID:27342765

  4. Genetic impairments in folate enzymes increase dependence on dietary choline for phosphatidylcholine production at the expense of betaine synthesis.

    PubMed

    Ganz, Ariel B; Shields, Kelsey; Fomin, Vlad G; Lopez, Yusnier S; Mohan, Sanjay; Lovesky, Jessica; Chuang, Jasmine C; Ganti, Anita; Carrier, Bradley; Yan, Jian; Taeswuan, Siraphat; Cohen, Vanessa V; Swersky, Camille C; Stover, Julie A; Vitiello, Gerardo A; Malysheva, Olga V; Mudrak, Erika; Caudill, Marie A

    2016-10-01

    Although single nucleotide polymorphisms (SNPs) in folate-mediated pathways predict susceptibility to choline deficiency during severe choline deprivation, it is unknown if effects persist at recommended intakes. Thus, we used stable isotope liquid chromatography-mass spectrometry (LC-MS) methodology to examine the impact of candidate SNPs on choline metabolism in a long-term, randomized, controlled feeding trial among pregnant, lactating, and nonpregnant (NP) women consuming 480 or 930 mg/d choline (22% as choline-d 9 , with d 9 indicating a deuterated trimethyl amine group) and meeting folate-intake recommendations. Variants impairing folate metabolism, methylenetetrahydrofolate reductase (MTHFR) rs1801133, methionine synthase (MTR) rs1805087 [wild-type (WT)], MTR reductase (MTRR) rs1801394, and methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase-formyltetrahydrofolate synthetase (MTHFD1) rs2236225, influenced choline dynamics, frequently through interactions with reproductive state and choline intake, with fewer genotypic alterations observed among pregnant women. Women with these variants partitioned more dietary choline toward phosphatidylcholine (PC) biosynthesis via the cytidine diphosphate (CDP)-choline pathway at the expense of betaine synthesis even when use of betaine as a methyl donor was increased. Choline intakes of 930 mg/d restored partitioning of dietary choline between betaine and CDP-PC among NP (MTHFR rs1801133 and MTR rs1805087 WT) and lactating (MTHFD1 rs2236225) women with risk genotypes. Overall, our findings indicate that loss-of-function variants in folate-metabolizing enzymes strain cellular PC production, possibly via impaired folate-dependent phosphatidylethanolamine-N-methyltransferase (PEMT)-PC synthesis, and suggest that women with these risk genotypes may benefit from choline intakes exceeding current recommendations.-Ganz, A. B., Shields, K., Fomin, V. G., Lopez, Y. S., Mohan, S., Lovesky, J., Chuang, J. C., Ganti, A., Carrier, B., Yan, J., Taeswuan, S., Cohen, V. V., Swersky, C. C., Stover, J. A., Vitiello, G. A., Malysheva, O. V., Mudrak, E., Caudill, M. A. Genetic impairments in folate enzymes increase dependence on dietary choline for phosphatidylcholine production at the expense of betaine synthesis. © FASEB.

  5. Choline nutrition programs brain development via DNA and histone methylation.

    PubMed

    Blusztajn, Jan Krzysztof; Mellott, Tiffany J

    2012-06-01

    Choline is an essential nutrient for humans. Metabolically choline is used for the synthesis of membrane phospholipids (e.g. phosphatidylcholine), as a precursor of the neurotransmitter acetylcholine, and, following oxidation to betaine, choline functions as a methyl group donor in a pathway that produces S-adenosylmethionine. As a methyl donor choline influences DNA and histone methylation--two central epigenomic processes that regulate gene expression. Because the fetus and neonate have high demands for choline, its dietary intake during pregnancy and lactation is particularly important for normal development of the offspring. Studies in rodents have shown that high choline intake during gestation improves cognitive function in adulthood and prevents memory decline associated with old age. These behavioral changes are accompanied by electrophysiological, neuroanatomical, and neurochemical changes and by altered patterns of expression of multiple cortical and hippocampal genes including those encoding key proteins that contribute to the biochemical mechanisms of learning and memory. These actions of choline are observed long after the exposure to the nutrient ended (months) and correlate with fetal hepatic and cerebral cortical choline-evoked changes in global- and gene-specific DNA cytosine methylation and with dramatic changes of the methylation pattern of lysine residues 4, 9 and 27 of histone H3. Moreover, gestational choline modulates the expression of DNA (Dnmt1, Dnmt3a) and histone (G9a/Ehmt2/Kmt1c, Suv39h1/Kmt1a) methyltransferases. In addition to the central role of DNA and histone methylation in brain development, these processes are highly dynamic in adult brain, modulate the expression of genes critical for synaptic plasticity, and are involved in mechanisms of learning and memory. A recent study documented that in a cohort of normal elderly people, verbal and visual memory function correlated positively with the amount of dietary choline consumption. It will be important to determine if these actions of choline on human cognition are mediated by epigenomic mechanisms or by its influence on acetylcholine or phospholipid synthesis.

  6. Choline nutrition programs brain development via DNA and histone methylation

    PubMed Central

    Blusztajn, Jan Krzysztof; Mellott, Tiffany J.

    2017-01-01

    Choline is an essential nutrient for humans. Metabolically choline is used for the synthesis of membrane phospholipids (e.g. phosphatidylcholine), as a precursor of the neurotransmitter acetylcholine, and, following oxidation to betaine, choline functions as a methyl group donor in a pathway that produces S-adenosylmethionine. As a methyl donor choline influences DNA and histone methylation – two central epigenomic processes that regulate gene expression. Because the fetus and neonate have high demands for choline, its dietary intake during pregnancy and lactation is particularly important for normal development of the offspring. Studies in rodents have shown that high choline intake during gestation improves cognitive function in adulthood and prevents memory decline associated with old age. These behavioral changes are accompanied by electrophysiological, neuroanatomical, and neurochemical changes and by altered patterns of expression of multiple cortical and hippocampal genes including those encoding key proteins that contribute to the biochemical mechanisms of learning and memory. These actions of choline are observed long after the exposure to the nutrient ended (months) and correlate with fetal hepatic and cerebral cortical choline-evoked changes in global- and gene-specific DNA cytosine methylation and with dramatic changes of the methylation pattern of lysine residues 4, 9 and 27 of histone H3. Moreover, gestational choline modulates the expression of DNA (Dnmt1, Dnmt3a) and histone (G9a/Ehmt2/Kmt1c, Suv39h1/Kmt1a) methyltransferases. In addition to the central role of DNA and histone methylation in brain development, these processes are highly dynamic in adult brain, modulate the expression of genes critical for synaptic plasticity, and are involved in mechanisms of learning and memory. A recent study documented that in a cohort of normal elderly people, verbal and visual memory function correlated positively with the amount of dietary choline consumption. It will be important to determine if these actions of choline on human cognition are mediated by epigenomic mechanisms or by its influence on acetylcholine or phospholipid synthesis. PMID:22483275

  7. CDP-choline circumvents mercury-induced mitochondrial damage and renal dysfunction.

    PubMed

    Buelna-Chontal, Mabel; Franco, Martha; Hernández-Esquivel, Luz; Pavón, Natalia; Rodríguez-Zavala, José S; Correa, Francisco; Jasso, Ricardo; Pichardo-Ramos, Gregorio; Santamaría, José; González-Pacheco, Héctor; Soto, Virgilia; Díaz-Ruíz, Jorge L; Chávez, Edmundo

    2017-12-01

    Heavy metal ions are known to produce harmful alterations on kidney function. Specifically, the accumulation of Hg 2+ in kidney tissue may induce renal failure. In this work, the protective effect of CDP-choline against the deleterious effects induced by Hg 2+ on renal function was studied. CDP-choline administered ip at a dose of 125 mg/kg body weight prevented the damage induced by Hg 2+ administration at a dose of 3 mg/kg body weight. The findings indicate that CDP-choline guards mitochondria against Hg 2+ -toxicity by preserving their ability to retain matrix content, such as accumulated Ca 2+ . This nucleotide also protected mitochondria from Hg 2+ -induced loss of the transmembrane electric gradient and from the generation of hydrogen peroxide and membrane TBARS. In addition, CDP-choline avoided the oxidative damage of mtDNA and inhibited the release of the interleukins IL-1 and IL6, recognized as markers of acute inflammatory reaction. After the administration of Hg 2+ and CDP, CDP-choline maintained nearly normal levels of renal function and creatinine clearance, as well as blood urea nitrogen (BUN) and serum creatinine. © 2017 International Federation for Cell Biology.

  8. Dimethylaminoethanol (deanol) metabolism in rat brain and its effect on acetylcholine synthesis.

    PubMed

    Jope, R S; Jenden, D J

    1979-12-01

    Specific methods utilizing combined gas chromatography mass spectrometry were used to measure the metabolism of [2H6] deanol and its effects on acetylcholine concentration in vitro and in vivo. In vitro [2H6]deanol was rapidly taken up by rat brain synaptosomes, but was neither methylated nor acetylated. [2H6]Deanol was a weak competitive inhibitor of the high affinity transport of [2H4]choline, thus reducing the synthesis of [2H4]acetylcholine. In vivo [2H6]deanol was present in the brain after i.p. or p.o. administration, but was not methylated or acetylated. Treatment of rats with [2H6]deanol significantly increased the concentration of choline in the plasma and brain but did not alter the concentration of acetylcholine in the brain. Treatment of rats with atropine (to stimulate acetylcholine turnover) or with hemicholinium-3 (to inhibit the high affinity transport of choline) did not reveal any effect of [2H6]deanol on acetylcholine synthesis in vivo. However, since [2H6]deanol did increase brain choline, it may prove therapeutically useful when the production of choline is reduced or when the utilization of choline for the synthesis of acetylcholine is impaired.

  9. Choline Ameliorates Disease Phenotypes in Human iPSC Models of Rett Syndrome.

    PubMed

    Chin, Eunice W M; Marcy, Guillaume; Yoon, Su-In; Ma, Dongliang; Rosales, Francisco J; Augustine, George J; Goh, Eyleen L K

    2016-09-01

    Rett syndrome (RTT) is a postnatal neurodevelopmental disorder that primarily affects girls. Mutations in the methyl-CpG-binding protein 2 (MECP2) gene account for approximately 95 % of all RTT cases. To model RTT in vitro, we generated induced pluripotent stem cells (iPSCs) from fibroblasts of two RTT patients with different mutations (MECP2 (R306C) and MECP2 (1155Δ32)) in their MECP2 gene. We found that these iPSCs were capable of differentiating into functional neurons. Compared to control neurons, the RTT iPSC-derived cells had reduced soma size and a decreased amount of synaptic input, evident both as fewer Synapsin 1-positive puncta and a lower frequency of spontaneous excitatory postsynaptic currents. Supplementation of the culture media with choline rescued all of these defects. Choline supplementation may act through changes in the expression of choline acetyltransferase, an important enzyme in cholinergic signaling, and also through alterations in the lipid metabolite profiles of the RTT neurons. Our study elucidates the possible mechanistic pathways for the effect of choline on human RTT cell models, thereby illustrating the potential for using choline as a nutraceutical to treat RTT.

  10. Role of Choline Deficiency in the Fatty Liver Phenotype of Mice Fed a Low Protein, Very Low Carbohydrate Ketogenic Diet

    PubMed Central

    Schugar, Rebecca C.; Huang, Xiaojing; Moll, Ashley R.; Brunt, Elizabeth M.; Crawford, Peter A.

    2013-01-01

    Though widely employed for clinical intervention in obesity, metabolic syndrome, seizure disorders and other neurodegenerative diseases, the mechanisms through which low carbohydrate ketogenic diets exert their ameliorative effects still remain to be elucidated. Rodent models have been used to identify the metabolic and physiologic alterations provoked by ketogenic diets. A commonly used rodent ketogenic diet (Bio-Serv F3666) that is very high in fat (~94% kcal), very low in carbohydrate (~1% kcal), low in protein (~5% kcal), and choline restricted (~300 mg/kg) provokes robust ketosis and weight loss in mice, but through unknown mechanisms, also causes significant hepatic steatosis, inflammation, and cellular injury. To understand the independent and synergistic roles of protein restriction and choline deficiency on the pleiotropic effects of rodent ketogenic diets, we studied four custom diets that differ only in protein (5% kcal vs. 10% kcal) and choline contents (300 mg/kg vs. 5 g/kg). C57BL/6J mice maintained on the two 5% kcal protein diets induced the most significant ketoses, which was only partially diminished by choline replacement. Choline restriction in the setting of 10% kcal protein also caused moderate ketosis and hepatic fat accumulation, which were again attenuated when choline was replete. Key effects of the 5% kcal protein diet – weight loss, hepatic fat accumulation, and mitochondrial ultrastructural disarray and bioenergetic dysfunction – were mitigated by choline repletion. These studies indicate that synergistic effects of protein restriction and choline deficiency influence integrated metabolism and hepatic pathology in mice when nutritional fat content is very high, and support the consideration of dietary choline content in ketogenic diet studies in rodents to limit hepatic mitochondrial dysfunction and fat accumulation. PMID:24009777

  11. Role of choline deficiency in the Fatty liver phenotype of mice fed a low protein, very low carbohydrate ketogenic diet.

    PubMed

    Schugar, Rebecca C; Huang, Xiaojing; Moll, Ashley R; Brunt, Elizabeth M; Crawford, Peter A

    2013-01-01

    Though widely employed for clinical intervention in obesity, metabolic syndrome, seizure disorders and other neurodegenerative diseases, the mechanisms through which low carbohydrate ketogenic diets exert their ameliorative effects still remain to be elucidated. Rodent models have been used to identify the metabolic and physiologic alterations provoked by ketogenic diets. A commonly used rodent ketogenic diet (Bio-Serv F3666) that is very high in fat (~94% kcal), very low in carbohydrate (~1% kcal), low in protein (~5% kcal), and choline restricted (~300 mg/kg) provokes robust ketosis and weight loss in mice, but through unknown mechanisms, also causes significant hepatic steatosis, inflammation, and cellular injury. To understand the independent and synergistic roles of protein restriction and choline deficiency on the pleiotropic effects of rodent ketogenic diets, we studied four custom diets that differ only in protein (5% kcal vs. 10% kcal) and choline contents (300 mg/kg vs. 5 g/kg). C57BL/6J mice maintained on the two 5% kcal protein diets induced the most significant ketoses, which was only partially diminished by choline replacement. Choline restriction in the setting of 10% kcal protein also caused moderate ketosis and hepatic fat accumulation, which were again attenuated when choline was replete. Key effects of the 5% kcal protein diet - weight loss, hepatic fat accumulation, and mitochondrial ultrastructural disarray and bioenergetic dysfunction - were mitigated by choline repletion. These studies indicate that synergistic effects of protein restriction and choline deficiency influence integrated metabolism and hepatic pathology in mice when nutritional fat content is very high, and support the consideration of dietary choline content in ketogenic diet studies in rodents to limit hepatic mitochondrial dysfunction and fat accumulation.

  12. The widespread plant-colonizing bacterial species Pseudomonas syringae detects and exploits an extracellular pool of choline in hosts.

    PubMed

    Chen, Chiliang; Li, Shanshan; McKeever, Dana R; Beattie, Gwyn A

    2013-09-01

    The quaternary ammonium compound (QAC) choline is a major component of membrane lipids in eukaryotes and, if available to microbial colonists of plants, could provide benefits for growth and protection from stress. Free choline is found in homogenized plant tissues, but its subcellular location and availability to plant microbes are not known. Whole-cell bacterial bioreporters of the phytopathogen Pseudomonas syringae were constructed that couple a QAC-responsive transcriptional fusion with well-characterized bacterial QAC transporters. These bioreporters demonstrated the presence of abundant free choline compounds released from germinating seeds and seedlings of the bean Phaseolus vulgaris, and a smaller but consistently detectable amount of QACs, probably choline, from leaves. The localization of P. syringae bioreporter cells to the surface and intercellular sites of plant tissues demonstrated the extracellular location of these QAC pools. Moreover, P. syringae mutants that were deficient in the uptake of choline compounds exhibited reduced fitness on leaves, highlighting the importance of extracellular choline to P. syringae on leaves. Our data support a model in which this choline pool is derived from the phospholipid phosphatidylcholine through plant-encoded phospholipases that release choline into the intercellular spaces of plant tissues, such as for membrane lipid recycling. The consequent extracellular release of choline compounds enables their interception and exploitation by plant-associated microbes, and thus provides a selective advantage for microbes such as P. syringae that are adapted to maximally exploit choline. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  13. Characterization of choline transporters in the human placenta over gestation.

    PubMed

    Baumgartner, Heidi K; Trinder, Kinsey M; Galimanis, Carly E; Post, Annalisa; Phang, Tzu; Ross, Randal G; Winn, Virginia D

    2015-12-01

    The developing fetus relies on the maternal blood supply to provide the choline it requires for making membrane lipids, synthesizing acetylcholine, and performing important methylation reactions. It is vital, therefore, that the placenta is efficient at transporting choline from the maternal to the fetal circulation. Although choline transporters have been found in term placenta samples, little is known about what cell types express specific choline transporters and how expression of the transporters may change over gestation. The objective of this study was to characterize choline transporter expression levels and localization in the human placenta throughout placental development. We analyzed CTL1 and -2 expression over gestation in human placental biopsies from 6 to 40 weeks gestation (n = 6-10 per gestational window) by immunoblot analysis. To determine the cellular expression pattern of the choline transporters throughout gestation, immunofluorescence analysis was then performed. Both CTL1 and CTL2 were expressed in the chorionic villi from 6 weeks gestation to term. Labor did not alter expression levels of either transporter. CTL1 localized to the syncytial trophoblasts and the endothelium of the fetal vasculature within the chorionic villous structure. CTL2 localized mainly to the stroma early in gestation and by the second trimester co-localized with CTL1 at the fetal vasculature. The differential expression pattern of CTL1 and CTL2 suggests that CTL1 is the key transporter involved in choline transport from maternal circulation and both transporters are likely involved in stromal and endothelial cell choline transport. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Characterization of Choline Transporters in the Human Placenta over Gestation

    PubMed Central

    Baumgartner, Heidi K.; Trinder, Kinsey M.; Galimanis, Carly E.; Post, Annalisa; Phang, Tzu; Ross, Randal G.; Winn, Virginia D.

    2015-01-01

    INTRODUCTION The developing fetus relies on the maternal blood supply to provide the choline it requires for making membrane lipids, synthesizing acetylcholine, and performing important methylation reactions. It is vital, therefore, that the placenta is efficient at transporting choline from maternal to fetal circulation. Although choline transporters have been found in term placenta samples, little is known about what cell types express specific choline transporters and how expression of the transporters may change over gestation. The objective of this study was to characterize choline transporter expression levels and localization in the human placenta throughout placental development. METHODS We analyzed CTL1 and −2 expression over gestation in human placental biopsies from 6 to 40 weeks gestation (n=6–10 per gestational window) by immunoblot analysis. To determine the cellular expression pattern of the choline transporters throughout gestation, immunofluorescence analysis was then performed. RESULTS Both CTL1 and CTL2 were expressed in the chorionic villi from 6 weeks gestation to term. Labor did not alter expression levels of either transporter. CTL1 localized to the syncytial trophoblasts and the endothelium of the fetal vasculature within the chorionic villous structure. CTL2 localized mainly to the stroma early in gestation and by the second trimester co-localized with CTL1 at the fetal vasculature. DISCUSSION The differential expression pattern of CTL1 and CTL2 suggests that CTL1 is the key transporter involved in choline transport from maternal circulation and both transporters are likely involved in stromal and endothelial cell choline transport. PMID:26601765

  15. A pharmacokinetic comparison of choline magnesium trisalicylate and soluble aspirin.

    PubMed

    Helliwell, M; Gibson, T; Berry, D; Volans, G

    1984-11-01

    Claims that twice-daily dosage of choline magnesium trisalicylate (CMT) may alter salicylate disposal kinetics and result in sustained plasma levels were examined. Plasma levels, urine excretion and pharmacokinetics of salicylate were estimated in six men following the recommended twice-daily dose of CMT and a smaller dose of soluble aspirin. The plasma salicylate levels achieved with CMT were lower than those seen in previous studies but this probably reflected differences of methodology. Salicylate levels were not sustained between doses and elimination rates and half-life were similar for both preparations. No major alteration of disposal kinetics could be demonstrated for CMT with the dose used in the present study.

  16. Acute toxicity assessment of choline by inhalation, intraperitoneal and oral routes in Balb/c mice.

    PubMed

    Mehta, Amit Kumar; Arora, Naveen; Gaur, Shailendra Nath; Singh, Bhanu Pratap

    2009-08-01

    Studies suggest that choline has potential to be used as a dietary supplement and a drug for immune inflammatory diseases like asthma and rhinitis. But there are apprehensions regarding adverse effects of choline when given orally in high doses. To address this knowledge gap, toxicity assessment of choline chloride was carried out by intranasal (i.n.), oral and intraperitoneal (i.p.) routes in Balb/c mice for 28days. Body weight, food and water consumption of mice were recorded daily. Hematology and clinical chemistry were assessed to check hepatocellular functions and morphological alterations of the cells. Splenocyte counts were analysed for evaluating cellular immunity. Liver function test was performed by assaying different enzyme systems in serum such as, urea, blood urea nitrogen (BUN), creatinine, alanine aminotransferase (ALT), and aspartate aminotransferase (AST). Body weight, food and water consumption did not differ between mice treated with choline and the saline control group. Hematologic and biochemical variables were not affected with any increase in serum toxicity marker enzymes indicating normal liver functioning. Choline administration did not affect total cholesterol and high density lipoprotein levels as compared to their respective controls. Urea and blood urea nitrogen levels in choline treated mice were not different than controls. Creatinine level was, however, higher than control in i.p. treatment group, but other parameters were normal. In conclusion, the repeated consumption of choline chloride via i.n. and oral or i.p. routes did not cause toxicity in mice in the toxicological endpoints examined.

  17. Perinatal Choline Supplementation Reduces Amyloidosis and Increases Choline Acetyltransferase Expression in the Hippocampus of the APPswePS1dE9 Alzheimer's Disease Model Mice.

    PubMed

    Mellott, Tiffany J; Huleatt, Olivia M; Shade, Bethany N; Pender, Sarah M; Liu, Yi B; Slack, Barbara E; Blusztajn, Jan K

    2017-01-01

    Prevention of Alzheimer's disease (AD) is a major goal of biomedical sciences. In previous studies we showed that high intake of the essential nutrient, choline, during gestation prevented age-related memory decline in a rat model. In this study we investigated the effects of a similar treatment on AD-related phenotypes in a mouse model of AD. We crossed wild type (WT) female mice with hemizygous APPswe/PS1dE9 (APP.PS1) AD model male mice and maintained the pregnant and lactating dams on a control AIN76A diet containing 1.1 g/kg of choline or a choline-supplemented (5 g/kg) diet. After weaning all offspring consumed the control diet. As compared to APP.PS1 mice reared on the control diet, the hippocampus of the perinatally choline-supplemented APP.PS1 mice exhibited: 1) altered levels of amyloid precursor protein (APP) metabolites-specifically elevated amounts of β-C-terminal fragment (β-CTF) and reduced levels of solubilized amyloid Aβ40 and Aβ42 peptides; 2) reduced number and total area of amyloid plaques; 3) preserved levels of choline acetyltransferase protein (CHAT) and insulin-like growth factor II (IGF2) and 4) absence of astrogliosis. The data suggest that dietary supplementation of choline during fetal development and early postnatal life may constitute a preventive strategy for AD.

  18. Perinatal Choline Supplementation Reduces Amyloidosis and Increases Choline Acetyltransferase Expression in the Hippocampus of the APPswePS1dE9 Alzheimer's Disease Model Mice

    PubMed Central

    Mellott, Tiffany J.; Huleatt, Olivia M.; Shade, Bethany N.; Pender, Sarah M.; Liu, Yi B.; Slack, Barbara E.; Blusztajn, Jan K.

    2017-01-01

    Prevention of Alzheimer's disease (AD) is a major goal of biomedical sciences. In previous studies we showed that high intake of the essential nutrient, choline, during gestation prevented age-related memory decline in a rat model. In this study we investigated the effects of a similar treatment on AD-related phenotypes in a mouse model of AD. We crossed wild type (WT) female mice with hemizygous APPswe/PS1dE9 (APP.PS1) AD model male mice and maintained the pregnant and lactating dams on a control AIN76A diet containing 1.1 g/kg of choline or a choline-supplemented (5 g/kg) diet. After weaning all offspring consumed the control diet. As compared to APP.PS1 mice reared on the control diet, the hippocampus of the perinatally choline-supplemented APP.PS1 mice exhibited: 1) altered levels of amyloid precursor protein (APP) metabolites–specifically elevated amounts of β-C-terminal fragment (β-CTF) and reduced levels of solubilized amyloid Aβ40 and Aβ42 peptides; 2) reduced number and total area of amyloid plaques; 3) preserved levels of choline acetyltransferase protein (CHAT) and insulin-like growth factor II (IGF2) and 4) absence of astrogliosis. The data suggest that dietary supplementation of choline during fetal development and early postnatal life may constitute a preventive strategy for AD. PMID:28103298

  19. Choline, myo-inositol and mood in bipolar disorder: a proton magnetic resonance spectroscopic imaging study of the anterior cingulate cortex.

    PubMed

    Moore, C M; Breeze, J L; Gruber, S A; Babb, S M; Frederick, B B; Villafuerte, R A; Stoll, A L; Hennen, J; Yurgelun-Todd, D A; Cohen, B M; Renshaw, P F

    2000-09-01

    Alterations in choline and myo-inositol metabolism have been noted in bipolar disorder, and the therapeutic efficacy of lithium in mania may be related to these effects. We wished to determine the relationship between anterior cingulate cortex choline and myo-inositol levels, assessed using proton magnetic resonance spectroscopic imaging (MRSI), and mood state in subjects with bipolar disorder. Serial assessments of anterior cingulate cortex choline and myo-inositol metabolism were performed in nine subjects with bipolar disorder, taking either lithium or valproate, and 14 controls. Each bipolar subject was examined between one and four times (3.1 +/- 1.3). On the occasion of each examination, standardized ratings of both depression and mania were recorded. In the left cingulate cortex, the bipolar subjects' depression ratings correlated positively with MRSI measures of Cho/Cr-PCr. In the right cingulate cortex, the Cho/Cr-PCr ratio was significantly higher in subjects with bipolar disorder compared with control subjects. In addition, bipolar subjects not taking antidepressants had a significantly higher right cingulate cortex Cho/Cr-PCr ratio compared with patients taking antidepressants or controls. No clinical or drug-related changes were observed for the Ino/Cr-PCr ratio. The results of this study suggest that bipolar disorder is associated with alterations in the metabolism of cytosolic, choline-containing compounds in the anterior cingulate cortex. As this resonance arises primarily from phosphocholine and glycerophosphocholine, both of which are metabolites of phosphatidylcholine, these results are consistent with impaired intraneuronal signaling mechanisms.

  20. Altered activity of lysophospholipase D, which produces bioactive lysophosphatidic acid and choline, in serum from women with pathological pregnancy.

    PubMed

    Tokumura, A; Kume, T; Taira, S; Yasuda, K; Kanzaki, H

    2009-05-01

    Altered lipid metabolism is associated with human abnormal pregnancy, such as pre-eclampsia and preterm labor, and potentially leads to fetus loss. A causative factor for the onset and progress of the systemic multifactorial syndromes associated with the pathological pregnancy is oxidized low-density lipoprotein, an active identity of which was postulated to be lysophosphatidic acid (LPA). We previously found that LPA is produced extracellularly by plasma lysophospholipase D (lysoPLD) activity of autotaxin, a tumor cell motility-stimulating protein. In this study, a convenient assay based on the choline released from endogenous substrate or exogenous lysophosphatidylcholine (LPC) was used for comparison of serum lysoPLD activity among patients with normal and abnormal pregnancy. The serum choline-producing activity was found to be mainly due to autotaxin, and dependent on its dilution rate. There was some association between low dilution dependency of serum lysoPLD activity toward an exogenous LPC and high lysoPLD activity toward endogenous substrates in cases of patients with preterm labor and pre-eclampsia. However, there was no difference in the serum level of LPC between women with normal pregnancy and those with pathological pregnancy. These results indicate that production of bioactive LPA by lysoPLD activity is elevated by an unknown mechanism that may be related to increased availability of endogenous substrates LPC, but not its concentration in human serum. If the level of LPA in blood circulation is elevated in the pathological pregnancies in vivo, it may play a role in induction and/or progression of systemic vascular dysfunction seen patients with preterm labor or pre-eclampsia.

  1. Prenatal choline supplementation ameliorates the long-term neurobehavioral effects of fetal-neonatal iron deficiency in rats.

    PubMed

    Kennedy, Bruce C; Dimova, Jiva G; Siddappa, Asha J M; Tran, Phu V; Gewirtz, Jonathan C; Georgieff, Michael K

    2014-11-01

    Gestational iron deficiency in humans and rodents produces long-term deficits in cognitive and socioemotional function and alters expression of plasticity genes in the hippocampus that persist despite iron treatment. Prenatal choline supplementation improves cognitive function in other rodent models of developmental insults. The objective of this study was to determine whether prenatal choline supplementation prevents the long-term effects of fetal-neonatal iron deficiency on cognitive and social behaviors and hippocampal gene expression. Pregnant rat dams were administered an iron-deficient (2-6 g/kg iron) or iron-sufficient (IS) (200 g/kg iron) diet from embryonic day (E) 3 to postnatal day (P) 7 with or without choline supplementation (5 g/kg choline chloride, E11-18). Novel object recognition (NOR) in the test vs. acquisition phase, social approach (SA), and hippocampal mRNA expression were compared at P65 in 4 male adult offspring groups: formerly iron deficient (FID), FID with choline supplementation (FID-C), IS, and IS with choline supplementation. Relative to the intact NOR in IS rats (acquisition: 47.9%, test: 60.2%, P < 0.005), FID adult rats had impaired recognition memory at the 6-h delay (acquisition: 51.4%, test: 55.1%, NS), accompanied by a 15% reduction in hippocampal expression of brain-derived neurotrophic factor (Bdnf) (P < 0.05) and myelin basic protein (Mbp) (P < 0.05). Prenatal choline supplementation in FID rats restored NOR (acquisition: 48.8%, test: 64.4%, P < 0.0005) and increased hippocampal gene expression (FID-C vs. FID group: Bdnf, Mbp, P < 0.01). SA was also reduced in FID rats (P < 0.05 vs. IS rats) but was only marginally improved by prenatal choline supplementation. Deficits in recognition memory, but not social behavior, resulting from gestational iron deficiency are attenuated by prenatal choline supplementation, potentially through preservation of hippocampal Bdnf and Mbp expression. Prenatal choline supplementation may be a promising adjunct treatment for fetal-neonatal iron deficiency. © 2014 American Society for Nutrition.

  2. Choline supplementation protects against liver damage by normalizing cholesterol metabolism in Pemt/Ldlr knockout mice fed a high-fat diet.

    PubMed

    Al Rajabi, Ala; Castro, Gabriela S F; da Silva, Robin P; Nelson, Randy C; Thiesen, Aducio; Vannucchi, Helio; Vine, Donna F; Proctor, Spencer D; Field, Catherine J; Curtis, Jonathan M; Jacobs, René L

    2014-03-01

    Dietary choline is required for proper structure and dynamics of cell membranes, lipoprotein synthesis, and methyl-group metabolism. In mammals, choline is synthesized via phosphatidylethanolamine N-methyltransferase (Pemt), which converts phosphatidylethanolamine to phosphatidylcholine. Pemt(-/-) mice have impaired VLDL secretion and developed fatty liver when fed a high-fat (HF) diet. Because of the reduction in plasma lipids, Pemt(-/-)/low-density lipoprotein receptor knockout (Ldlr(-/-)) mice are protected from atherosclerosis. The goal of this study was to investigate the importance of dietary choline in the metabolic phenotype of Pemt(-/-)/Ldlr(-/-) male mice. At 10-12 wk of age, Pemt(+/+)/Ldlr(-/-) (HF(+/+)) and half of the Pemt(-/-)/Ldlr(-/-) (HF(-/-)) mice were fed an HF diet with normal (1.3 g/kg) choline. The remaining Pemt(-/-)/Ldlr(-/-) mice were fed an HF diet supplemented (5 g/kg) with choline (HFCS(-/-) mice). The HF diet contained 60% of calories from fat and 1% cholesterol, and the mice were fed for 16 d. HF(-/-) mice lost weight and developed hepatomegaly, steatohepatitis, and liver damage. Hepatic concentrations of free cholesterol, cholesterol-esters, and triglyceride (TG) were elevated by 30%, 1.1-fold and 3.1-fold, respectively, in HF(-/-) compared with HF(+/+) mice. Choline supplementation normalized hepatic cholesterol, but not TG, and dramatically improved liver function. The expression of genes involved in cholesterol transport and esterification increased by 50% to 5.6-fold in HF(-/-) mice when compared with HF(+/+) mice. Markers of macrophages, oxidative stress, and fibrosis were elevated in the HF(-/-) mice. Choline supplementation normalized the expression of these genes. In conclusion, HF(-/-) mice develop liver failure associated with altered cholesterol metabolism when fed an HF/normal choline diet. Choline supplementation normalized cholesterol metabolism, which was sufficient to prevent nonalcoholic steatohepatitis development and improve liver function. Our data suggest that choline can promote liver health by maintaining cholesterol homeostasis.

  3. Crystal structures of CbpF complexed with atropine and ipratropium reveal clues for the design of novel antimicrobials against Streptococcus pneumoniae.

    PubMed

    Silva-Martín, Noella; Retamosa, M Gracia; Maestro, Beatriz; Bartual, Sergio G; Rodes, María J; García, Pedro; Sanz, Jesús M; Hermoso, Juan A

    2014-01-01

    Streptococcus pneumoniae is a major pathogen responsible of important diseases worldwide such as pneumonia and meningitis. An increasing resistance level hampers the use of currently available antibiotics to treat pneumococcal diseases. Consequently, it is desirable to find new targets for the development of novel antimicrobial drugs to treat pneumococcal infections. Surface choline-binding proteins (CBPs) are essential in bacterial physiology and infectivity. In this sense, esters of bicyclic amines (EBAs) such as atropine and ipratropium have been previously described to act as choline analogs and effectively compete with teichoic acids on binding to CBPs, consequently preventing in vitro pneumococcal growth, altering cell morphology and reducing cell viability. With the aim of gaining a deeper insight into the structural determinants of the strong interaction between CBPs and EBAs, the three-dimensional structures of choline-binding protein F (CbpF), one of the most abundant proteins in the pneumococcal cell wall, complexed with atropine and ipratropium, have been obtained. The choline analogs bound both to the carboxy-terminal module, involved in cell wall binding, and, unexpectedly, also to the amino-terminal module, that possesses a regulatory role in pneumococcal autolysis. Analysis of the complexes confirmed the importance of the tropic acid moiety of the EBAs on the strength of the binding, through π-π interactions with aromatic residues in the binding site. These results represent the first example describing the molecular basis of the inhibition of CBPs by EBA molecules and pave the way for the development of new generations of antipneumococcal drugs. © 2013.

  4. Prenatal Choline Supplementation Diminishes Early-Life Iron Deficiency–Induced Reprogramming of Molecular Networks Associated with Behavioral Abnormalities in the Adult Rat Hippocampus123

    PubMed Central

    Tran, Phu V; Kennedy, Bruce C; Pisansky, Marc T; Won, Kyoung-Jae; Gewirtz, Jonathan C; Simmons, Rebecca A; Georgieff, Michael K

    2016-01-01

    Background: Early-life iron deficiency is a common nutrient deficiency worldwide. Maternal iron deficiency increases the risk of schizophrenia and autism in the offspring. Postnatal iron deficiency in young children results in cognitive and socioemotional abnormalities in adulthood despite iron treatment. The rat model of diet-induced fetal-neonatal iron deficiency recapitulates the observed neurobehavioral deficits. Objectives: We sought to establish molecular underpinnings for the persistent psychopathologic effects of early-life iron deficiency by determining whether it permanently reprograms the hippocampal transcriptome. We also assessed the effects of maternal dietary choline supplementation on the offspring’s hippocampal transcriptome to identify pathways through which choline mitigates the emergence of long-term cognitive deficits. Methods: Male rat pups were made iron deficient (ID) by providing pregnant and nursing dams an ID diet (4 g Fe/kg) from gestational day (G) 2 through postnatal day (PND) 7 and an iron-sufficient (IS) diet (200 g Fe/kg) thereafter. Control pups were provided IS diet throughout. Choline (5 g/kg) was given to half the pregnant dams in each group from G11 to G18. PND65 hippocampal transcriptomes were assayed by next generation sequencing (NGS) and analyzed with the use of knowledge-based Ingenuity Pathway Analysis. Real-time polymerase chain reaction was performed to validate a subset of altered genes. Results: Formerly ID rats had altered hippocampal expression of 619 from >10,000 gene loci sequenced by NGS, many of which map onto molecular networks implicated in psychological disorders, including anxiety, autism, and schizophrenia. There were significant interactions between iron status and prenatal choline treatment in influencing gene expression. Choline supplementation reduced the effects of iron deficiency, including those on gene networks associated with autism and schizophrenia. Conclusions: Fetal-neonatal iron deficiency reprograms molecular networks associated with the pathogenesis of neurologic and psychological disorders in adult rats. The positive response to prenatal choline represents a potential adjunctive therapeutic supplement to the high-risk group. PMID:26865644

  5. Prenatal Choline Supplementation Diminishes Early-Life Iron Deficiency-Induced Reprogramming of Molecular Networks Associated with Behavioral Abnormalities in the Adult Rat Hippocampus.

    PubMed

    Tran, Phu V; Kennedy, Bruce C; Pisansky, Marc T; Won, Kyoung-Jae; Gewirtz, Jonathan C; Simmons, Rebecca A; Georgieff, Michael K

    2016-03-01

    Early-life iron deficiency is a common nutrient deficiency worldwide. Maternal iron deficiency increases the risk of schizophrenia and autism in the offspring. Postnatal iron deficiency in young children results in cognitive and socioemotional abnormalities in adulthood despite iron treatment. The rat model of diet-induced fetal-neonatal iron deficiency recapitulates the observed neurobehavioral deficits. We sought to establish molecular underpinnings for the persistent psychopathologic effects of early-life iron deficiency by determining whether it permanently reprograms the hippocampal transcriptome. We also assessed the effects of maternal dietary choline supplementation on the offspring's hippocampal transcriptome to identify pathways through which choline mitigates the emergence of long-term cognitive deficits. Male rat pups were made iron deficient (ID) by providing pregnant and nursing dams an ID diet (4 g Fe/kg) from gestational day (G) 2 through postnatal day (PND) 7 and an iron-sufficient (IS) diet (200 g Fe/kg) thereafter. Control pups were provided IS diet throughout. Choline (5 g/kg) was given to half the pregnant dams in each group from G11 to G18. PND65 hippocampal transcriptomes were assayed by next generation sequencing (NGS) and analyzed with the use of knowledge-based Ingenuity Pathway Analysis. Real-time polymerase chain reaction was performed to validate a subset of altered genes. Formerly ID rats had altered hippocampal expression of 619 from >10,000 gene loci sequenced by NGS, many of which map onto molecular networks implicated in psychological disorders, including anxiety, autism, and schizophrenia. There were significant interactions between iron status and prenatal choline treatment in influencing gene expression. Choline supplementation reduced the effects of iron deficiency, including those on gene networks associated with autism and schizophrenia. Fetal-neonatal iron deficiency reprograms molecular networks associated with the pathogenesis of neurologic and psychological disorders in adult rats. The positive response to prenatal choline represents a potential adjunctive therapeutic supplement to the high-risk group. © 2016 American Society for Nutrition.

  6. Serum Trimethylamine N-oxide, Carnitine, Choline and Betaine in Relation to Colorectal Cancer Risk in the Alpha Tocopherol and Beta Carotene Study

    PubMed Central

    Guertin, Kristin A.; Li, Xinmin S.; Graubard, Barry I.; Albanes, Demetrius; Weinstein, Stephanie J.; Goedert, James J.; Wang, Zeneng; Hazen, Stanley L.; Sinha, Rashmi

    2017-01-01

    Background TMAO, a choline-derived metabolite produced by gut microbiota, and its biomarker precursors have not been adequately evaluated in relation to colorectal cancer risk. Methods We investigated the relationship between serum concentrations of TMAO and its biomarker precursors (choline, carnitine and betaine) and incident colorectal cancer risk in a nested case-control study of male smokers in the Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) Study. We measured biomarker concentrations in baseline fasting serum samples from 644 incident colorectal cancer cases and 644 controls using LC-MS/MS. Logistic regression models estimated the odds ratio (OR) and 95% confidence interval (CI) for colorectal cancer by quartile (Q) of serum TMAO, choline, carnitine and betaine concentrations. Results Men with higher serum choline at ATBC baseline had approximately 3-fold greater risk of developing colorectal cancer over the ensuing (median ± IQR) 14 ±10 years (in fully adjusted models, Q4 vs. Q1 OR, 3.22; 95% CI, 2.24–4.61; P trend<0.0001). The prognostic value of serum choline for prediction of incident colorectal cancer development was similarly robust for proximal, distal and rectal colon cancers (all P<0.0001). The association between serum TMAO, carnitine, or betaine and colorectal cancer risk was not statistically significant (P=0.25, P=0.71 and P=0.61, respectively). Conclusions Higher serum choline concentration (but not TMAO, carnitine, or betaine) was associated with increased risk of colorectal cancer. Impact Serum choline levels showed strong prognostic value for prediction of incident colorectal cancer risks across all anatomical subsites, suggesting a role of altered choline metabolism in colorectal cancer pathogenesis. PMID:28077427

  7. Stress-induced stimulation of choline transport in cultured choroid plexus epithelium exposed to low concentrations of cadmium.

    PubMed

    Young, Robin K; Villalobos, Alice R A

    2014-03-01

    The choroid plexus epithelium forms the blood-cerebrospinal fluid barrier and accumulates essential minerals and heavy metals. Choroid plexus is cited as being a "sink" for heavy metals and excess minerals, serving to minimize accumulation of these potentially toxic agents in the brain. An understanding of how low doses of contaminant metals might alter transport of other solutes in the choroid plexus is limited. Using primary cultures of epithelial cells isolated from neonatal rat choroid plexus, our objective was to characterize modulation of apical uptake of the model organic cation choline elicited by low concentrations of the contaminant metal cadmium (CdCl₂). At 50-1,000 nM, cadmium did not directly decrease or increase 30-min apical uptake of 10 μM [(3)H]choline. However, extended exposure to 250-500 nM cadmium increased [(3)H]choline uptake by as much as 75% without marked cytotoxicity. In addition, cadmium induced heat shock protein 70 and heme oxygenase-1 protein expression and markedly induced metallothionein gene expression. The antioxidant N-acetylcysteine attenuated stimulation of choline uptake and induction of stress proteins. Conversely, an inhibitor of glutathione synthesis l-buthionine-sulfoximine (BSO) enhanced stimulation of choline uptake and induction of stress proteins. Cadmium also activated ERK1/2 MAP kinase. The MEK1 inhibitor PD98059 diminished ERK1/2 activation and attenuated stimulation of choline uptake. Furthermore, inhibition of ERK1/2 activation abated stimulation of choline uptake in cells exposed to cadmium with BSO. These data indicate that in the choroid plexus, exposure to low concentrations of cadmium may induce oxidative stress and consequently stimulate apical choline transport through activation of ERK1/2 MAP kinase.

  8. Stress-induced stimulation of choline transport in cultured choroid plexus epithelium exposed to low concentrations of cadmium

    PubMed Central

    Young, Robin K.

    2013-01-01

    The choroid plexus epithelium forms the blood-cerebrospinal fluid barrier and accumulates essential minerals and heavy metals. Choroid plexus is cited as being a “sink” for heavy metals and excess minerals, serving to minimize accumulation of these potentially toxic agents in the brain. An understanding of how low doses of contaminant metals might alter transport of other solutes in the choroid plexus is limited. Using primary cultures of epithelial cells isolated from neonatal rat choroid plexus, our objective was to characterize modulation of apical uptake of the model organic cation choline elicited by low concentrations of the contaminant metal cadmium (CdCl2). At 50–1,000 nM, cadmium did not directly decrease or increase 30-min apical uptake of 10 μM [3H]choline. However, extended exposure to 250–500 nM cadmium increased [3H]choline uptake by as much as 75% without marked cytotoxicity. In addition, cadmium induced heat shock protein 70 and heme oxygenase-1 protein expression and markedly induced metallothionein gene expression. The antioxidant N-acetylcysteine attenuated stimulation of choline uptake and induction of stress proteins. Conversely, an inhibitor of glutathione synthesis l-buthionine-sulfoximine (BSO) enhanced stimulation of choline uptake and induction of stress proteins. Cadmium also activated ERK1/2 MAP kinase. The MEK1 inhibitor PD98059 diminished ERK1/2 activation and attenuated stimulation of choline uptake. Furthermore, inhibition of ERK1/2 activation abated stimulation of choline uptake in cells exposed to cadmium with BSO. These data indicate that in the choroid plexus, exposure to low concentrations of cadmium may induce oxidative stress and consequently stimulate apical choline transport through activation of ERK1/2 MAP kinase. PMID:24401988

  9. Serum Trimethylamine N-oxide, Carnitine, Choline, and Betaine in Relation to Colorectal Cancer Risk in the Alpha Tocopherol, Beta Carotene Cancer Prevention Study.

    PubMed

    Guertin, Kristin A; Li, Xinmin S; Graubard, Barry I; Albanes, Demetrius; Weinstein, Stephanie J; Goedert, James J; Wang, Zeneng; Hazen, Stanley L; Sinha, Rashmi

    2017-06-01

    Background: Trimethylamine N-oxide (TMAO), a choline-derived metabolite produced by gut microbiota, and its biomarker precursors have not been adequately evaluated in relation to colorectal cancer risk. Methods: We investigated the relationship between serum concentrations of TMAO and its biomarker precursors (choline, carnitine, and betaine) and incident colorectal cancer risk in a nested case-control study of male smokers in the Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) Study. We measured biomarker concentrations in baseline fasting serum samples from 644 incident colorectal cancer cases and 644 controls using LC/MS-MS. Logistic regression models estimated the ORs and 95% confidence interval (CI) for colorectal cancer by quartile (Q) of serum TMAO, choline, carnitine, and betaine concentrations. Results: Men with higher serum choline at ATBC baseline had approximately 3-fold greater risk of developing colorectal cancer over the ensuing (median ± IQR) 14 ± 10 years (in fully adjusted models, Q4 vs. Q1, OR, 3.22; 95% CI, 2.24-4.61; P trend < 0.0001). The prognostic value of serum choline for prediction of incident colorectal cancer was similarly robust for proximal, distal, and rectal colon cancers (all P < 0.0001). The association between serum TMAO, carnitine, or betaine and colorectal cancer risk was not statistically significant ( P = 0.25, 0.71, and 0.61, respectively). Conclusions: Higher serum choline concentration (but not TMAO, carnitine, or betaine) was associated with increased risk of colorectal cancer. Impact: Serum choline levels showed strong prognostic value for prediction of incident colorectal cancer risk across all anatomical subsites, suggesting a role of altered choline metabolism in colorectal cancer pathogenesis. Cancer Epidemiol Biomarkers Prev; 26(6); 945-52. ©2017 AACR . ©2017 American Association for Cancer Research.

  10. Perfluorooctane Sulfonate-Induced Hepatic Steatosis in Male Sprague Dawley Rats Is Not Attenuated by Dietary Choline Supplementation.

    PubMed

    Bagley, Bradford D; Chang, Shu-Ching; Ehresman, David J; Eveland, Alan; Zitzow, Jeremiah D; Parker, George A; Peters, Jeffrey M; Wallace, Kendall B; Butenhoff, John L

    2017-12-01

    Perfluorooctane sulfonate (PFOS) is an environmentally persistent chemical. Dietary 100 ppm PFOS fed to male mice and rats for 4 weeks caused hepatic steatosis through an unknown mechanism. Choline deficient diets can cause hepatic steatosis. A hepatic choline:PFOS ion complex was hypothesized to cause this effect in mice. This study tested whether dietary choline supplementation attenuates PFOS-induced hepatic steatosis in rats. Sprague Dawley rats (12/sex/group) were fed control, choline supplemented (CS), 100 ppm PFOS, or 100 ppm PFOS + CS diets for 3 weeks. Male rats fed both PFOS-containing diets had decreased serum cholesterol and triglycerides (TGs) on days 9, 16, and/or 23 and increased hepatic free fatty acids and TG (ie, steatosis). Female rats fed both PFOS diets had decreased serum cholesterol on days 9 and 16 and decreased hepatic free fatty acid and TG at termination (ie, no steatosis). Liver PFOS concentrations were similar for both sexes. Liver choline concentrations were increased in male rats fed PFOS (±CS), but the increase was lower in the PFOS + CS group. Female liver choline concentrations were not altered by any diet. These findings demonstrate a clear sex-related difference in PFOS-induced hepatic steatosis in the rat. Additional evaluated mechanisms (ie, nuclear receptor activation, mRNA upregulation, and choline kinase activity inhibition) did not appear to be involved in the hepatic steatosis. Dietary PFOS (100 ppm) induced hepatic steatosis in male, but not female, rats that was not attenuated by choline supplementation. The mechanism of lipid accumulation and the sex-related differences warrant further investigation. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. High maternal choline consumption during pregnancy and nursing alleviates deficits in social interaction and improves anxiety-like behaviors in the BTBR T+Itpr3tf/J mouse model of autism.

    PubMed

    Langley, Erika A; Krykbaeva, Marina; Blusztajn, Jan Krzysztof; Mellott, Tiffany J

    2015-02-01

    Autism is a neurodevelopmental disorder with multiple genetic and environmental risk factors. Choline is a fundamental nutrient for brain development and high choline intake during prenatal and/or early postnatal periods is neuroprotective. We examined the effects of perinatal choline supplementation on social behavior, anxiety, and repetitive behaviors in the BTBR T+Itpr3tf/J (BTBR) mouse model of autism. The BTBR or the more "sociable" C57BL/6J (B6) strain females were fed a control or choline-supplemented diet from mating, throughout pregnancy and lactation. After weaning to a control diet, all offspring were evaluated at one or two ages [postnatal days 33-36 and 89-91] using open field (OF), elevated plus maze (EPM), marble burying (MB), and three-chamber social interaction tests. As expected, control-diet BTBR mice displayed higher OF locomotor activity, impaired social preference, and increased digging behavior during the MB test compared to control-diet B6 mice. Choline supplementation significantly decreased digging behavior, elevated the percentage of open arm entries and time spent in open arms in the EPM by BTBR mice, but had no effect on locomotion. Choline supplementation did not alter social interaction in B6 mice but remarkably improved impairments in social interaction in BTBR mice at both ages, indicating that the benefits of supplementation persist long after dietary choline returns to control levels. In conclusion, our results suggest that high choline intake during early development can prevent or dramatically reduce deficits in social behavior and anxiety in an autistic mouse model, revealing a novel strategy for the treatment/prevention of autism spectrum disorders. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Concentrations of Water-Soluble Forms of Choline in Human Milk from Lactating Women in Canada and Cambodia

    PubMed Central

    Wiedeman, Alejandra M.; March, Kaitlin M.; Chen, Nancy N.; Kroeun, Hou; Sokhoing, Ly; Sophonneary, Prak; Dyer, Roger A.; Xu, Zhaoming; Kitts, David D.; Innis, Sheila M.

    2018-01-01

    Choline has critical roles during periods of rapid growth and development, such as infancy. In human milk, choline is mostly present in water-soluble forms (free choline, phosphocholine, and glycerophosphocholine). It is thought that milk choline concentration is influenced by maternal choline intake, and the richest food sources for choline are of animal origin. Scarce information exists on milk choline from countries differing in animal-source food availability. In this secondary analysis of samples from previous trials, the concentrations of the water-soluble forms of choline were quantified by liquid chromatography-tandem mass spectrometry in mature milk samples collected from lactating women in Canada (n = 301) and in Cambodia (n = 67). None of the water-soluble forms of choline concentrations in milk differed between Canada and Cambodia. For all milk samples (n = 368), free choline, phosphocholine, glycerophosphocholine, and the sum of water-soluble forms of choline concentrations in milk were (mean (95%CI)) 151 (141, 160, 540 (519, 562), 411 (396, 427), and 1102 (1072, 1133) µmol/L, respectively. Theoretically, only 19% of infants would meet the current Adequate Intake (AI) for choline. Our findings suggest that the concentrations in milk of water-soluble forms of choline are similar in Canada and Cambodia, and that the concentration used to set the infant AI might be inaccurate. PMID:29558412

  13. Concentrations of Water-Soluble Forms of Choline in Human Milk from Lactating Women in Canada and Cambodia.

    PubMed

    Wiedeman, Alejandra M; Whitfield, Kyly C; March, Kaitlin M; Chen, Nancy N; Kroeun, Hou; Sokhoing, Ly; Sophonneary, Prak; Dyer, Roger A; Xu, Zhaoming; Kitts, David D; Green, Timothy J; Innis, Sheila M; Barr, Susan I

    2018-03-20

    Choline has critical roles during periods of rapid growth and development, such as infancy. In human milk, choline is mostly present in water-soluble forms (free choline, phosphocholine, and glycerophosphocholine). It is thought that milk choline concentration is influenced by maternal choline intake, and the richest food sources for choline are of animal origin. Scarce information exists on milk choline from countries differing in animal-source food availability. In this secondary analysis of samples from previous trials, the concentrations of the water-soluble forms of choline were quantified by liquid chromatography-tandem mass spectrometry in mature milk samples collected from lactating women in Canada ( n = 301) and in Cambodia ( n = 67). None of the water-soluble forms of choline concentrations in milk differed between Canada and Cambodia. For all milk samples ( n = 368), free choline, phosphocholine, glycerophosphocholine, and the sum of water-soluble forms of choline concentrations in milk were (mean (95%CI)) 151 (141, 160, 540 (519, 562), 411 (396, 427), and 1102 (1072, 1133) µmol/L, respectively. Theoretically, only 19% of infants would meet the current Adequate Intake (AI) for choline. Our findings suggest that the concentrations in milk of water-soluble forms of choline are similar in Canada and Cambodia, and that the concentration used to set the infant AI might be inaccurate.

  14. Metabolomic analysis reveals metabolic changes caused by bisphenol A in rats.

    PubMed

    Chen, Minjian; Zhou, Kun; Chen, Xiaojiao; Qiao, Shanlei; Hu, Yanhui; Xu, Bo; Xu, Bin; Han, Xiumei; Tang, Rong; Mao, Zhilei; Dong, Congcong; Wu, Di; Wang, Yubang; Wang, Shoulin; Zhou, Zuomin; Xia, Yankai; Wang, Xinru

    2014-04-01

    Bisphenol A (BPA) is a widely used material known to cause adverse effects in humans and other mammals. To date, little is known about the global metabolomic alterations caused by BPA using urinalysis. Sprague-Dawley rats were orally administrated BPA at the levels of 0, 0.5 μg/kg/day and 50 mg/kg/day covering a low dose and a reference dose for 8 weeks. We conducted a capillary electrophoresis in tandem with electrospray ionization time-of-flight mass spectrometry based nontargeted metabolomic analysis using rat urine. To verify the metabolic alteration at both low and high doses, reverse transcription-polymerase chain reaction (RT-PCR) and western blotting were further conducted to analyze hepatic expression of methionine adenosyltransferase Iα (Mat1a) and methionine adenosyltransferase IIα (Mat2a). Hepatic S-adenosylmethionine (SAMe) was also analyzed. A total of 199 metabolites were profiled. Statistical analysis and pathway mapping indicated that the most significant metabolic perturbations induced by BPA were the increased biotin and riboflavin excretion, increased synthesis of methylated products, elevated purine nucleotide catabolism, and increased flux through the choline metabolism pathway. We found significantly higher mRNA and protein levels of Mat1a and Mat2a, and significantly higher SAMe levels in rat liver at both low and high doses. These two genes encode critical isoenzymes that catalyze the formation of SAMe, the principal biological methyl donor involved in the choline metabolism. In conclusion, an elevated choline metabolism is underlying the mechanism of highly methylated environment and related metabolic alterations caused by BPA. The data of BPA-elevated accepted biomarkers of injury indicate that BPA induces DNA methylation damage and broad protein degradation, and the increased deleterious metabolites in choline pathway may also be involved in the toxicity of BPA.

  15. Role of white adipose lipolysis in the development of NASH induced by methionine-and choline-deficient diet

    PubMed Central

    Tanaka, Naoki; Takahashi, Shogo; Fang, Zhong-Ze; Matsubara, Tsutomu; Krausz, Kristopher W.; Qu, Aijuan; Gonzalez, Frank J.

    2014-01-01

    Methionine- and choline-deficient diet (MCD) is a model for nonalcoholic steatohepatitis (NASH) in rodents. However, the mechanism of NASH development by dietary methionine/choline deficiency remains undetermined. To elucidate the early metabolic changes associated with MCD-NASH, serum metabolomic analysis was performed using mice treated with MCD and control diet for three days and one week, revealing significant increases in oleic and linoleic acids after MCD treatment. These increases were correlated with reduced body weight and white adipose tissue (WAT) mass, increased phosphorylation of hormone-sensitive lipase, and up-regulation of genes encoding carboxylesterase 3 and β2-adrenergic receptor in WAT, indicating accelerated lipolysis in adipocytes. The changes in serum fatty acids and WAT by MCD treatment were reversed by methionine supplementation, and similar alterations were detected in mice fed a methionine-deficient diet (MD), thus demonstrating that dietary methionine deficiency enhances lipolysis in WAT. MD treatment decreased glucose and increased fibroblast growth factor 21 in serum, thus exhibiting a similar metabolic phenotype as the fasting response. Comparison between MCD and choline-deficient diet (CD) treatments suggested that the addition of MD-induced metabolic alterations, such as WAT lipolysis, to CD-induced hepatic steatosis promotes liver injury. Collectively, these results demonstrate an important role for dietary methionine deficiency and WAT lipolysis in the development of MCD-NASH. PMID:25178843

  16. Dipsogenic and feeding influences of intraventricularly infused anionic choline solutions.

    PubMed

    Mandal, M B; Badgaiyan, R D

    1991-10-01

    Chloride and bicarbonate solutions of choline were infused into the anteroventral part of the third ventricle of two different groups of rats through chronically implanted stainless steel cannulae. Dipsogenic and feeding responses elicited by these solutions were studied by observations taken at half hour intervals up to two h and then, after 24 h of infusions. Results were compared with the control response evoked by similar infusion of artificial cerebrospinal fluid (aCSF). Food and water intakes were recorded in different groups (n = 18 each) of rats. Dipsogenic response elicited by choline chloride solution in the observation taken 24 h after infusion, however, was higher only as compared to the control. Dipsogenic effect of bicarbonate solution was not significantly different from the control in the first two observations (30 and 60 min), but in the later observations (90, 120 min and 24 h), it was significantly higher. None of the choline solutions significantly alter feeding response within 2 h of infusions. However, in the observation taken 24 h after infusion, the response evoked by choline chloride was greater than that elicited by aCSF. The results support our earlier observation that chloride concentration of third ventricular CSF significantly influences water and food consumption. Intraventricularly administered choline also appears to have positive influence on these behaviors.

  17. Effect of diisopropanolamine upon choline uptake and phospholipid synthesis in Chinese hamster ovary cells.

    PubMed

    Stott, W T; Kleinert, K M

    2008-02-01

    Aminoalcohols differ in mammalian toxicity at least in part based upon their ability to alter the metabolism of phospholipids and to cause depletion of the essential nutrient choline in animals. This study examined the incorporation of diisopropanolamine (DIPA) into phospholipids (PLs) and effects of DIPA upon choline uptake and phospholipid synthesis in Chinese hamster ovary (CHO) cells. Results were compared to those of a related secondary alcohol amine, diethanolamine (DEA), whose systemic toxicity is closely associated with its metabolic incorporation into PLs and depletion of choline pools. DIPA caused a dose-related inhibition of (3)H-choline uptake by CHO cells that was approximately 3-4 fold less potent, based upon an IC50, than that reported for DEA. DIPA, in contrast to DEA, did not cause changes in the synthesis rates of (33)P-phosphatidylethanolamine, (33)P-phosphatidylcholine or (33)P-sphingomyelin at either non-toxic or moderately toxic concentrations. Only approximately 0.004%, of administered (14)C-DIPA was metabolically incorporated into PLs, over 30-fold less than the incorporation of (14)C-DEA under similar conditions. Overall, these data and previous pharmacokinetic and toxicity data obtained in vivo suggests that DIPA is distinct from DEA and lacks significant choline and PL metabolism related toxicity in animals.

  18. Effects on transport of rapidly penetrating, competing substrates: activation and inhibition of the choline carrier in erythrocytes by imidazole.

    PubMed

    Devés, R; Krupka, R M

    1987-01-01

    The properties of the choline transport system are fundamentally altered in saline solution containing 5 mM imidazole buffer instead of 5 mM phosphate: (i) The system no longer exhibits accelerated exchange. (ii) Choline in the external compartment fails to increase the rate of inactivation of the carrier by N-ethylmaleimide. (iii) Depending on the relative concentrations of choline and imidazole, transport may be activated or inhibited. The maximum rates are increased more than fivefold by imidazole, but at moderate substrate concentrations activation is observed with low concentrations of imidazole and inhibition with high concentrations. (iv) The imidazole effect is asymmetric, there being a greater tendency to activate exit than entry. All this behavior is predicted by the carrier model if imidazole is a substrate of the choline carrier having a high maximum transport rate but a relatively low affinity, and if imidazole rapidly enters the cell by simple diffusion, so that it can add to carrier sites on both sides of the membrane. Addition at the cis side inhibits, and at the trans side activates. According to the carrier model, asymmetry is a necessary consequence of the potassium ion gradient in red cells, potassium ion being another substrate of the choline system.

  19. Detection of increased choline compounds with proton nuclear magnetic resonance spectroscopy subsequent to malignant transformation of human prostatic epithelial cells.

    PubMed

    Ackerstaff, E; Pflug, B R; Nelson, J B; Bhujwalla, Z M

    2001-05-01

    In this study, a panel of normal human prostate cells (HPCs) and tumor cells derived from metastases were studied by (1)H NMR spectroscopy to determine whether the malignant transformation of HPCs results in the elevation of choline compounds. Although an elevated choline signal has been observed previously in clinical studies, the contribution of the different Cho compounds to this elevation, as well as their quantification, has not been established until now. Here we have shown that HPCs derived from metastases exhibit significantly higher phosphocholine as well as glycerophosphocholine levels compared with normal prostate epithelial and stromal cells. Thus the elevation of the choline peak observed clinically in prostate cancer is attributable to an alteration of phospholipid metabolism and not simply to increased cell density, doubling time, or other nonspecific effects. Androgen deprivation of the androgen receptor-positive cell lines resulted in a significant increase of choline compounds after chronic androgen deprivation of the LNCaP cell line and in a decrease of choline compounds after a more acute androgen deprivation of the LAPC-4 cell line. These data strongly support the use of proton magnetic resonance spectroscopic imaging to detect the presence of prostate cancer for diagnosis, to detect response subsequent to androgen ablation therapy, and to detect recurrence.

  20. Perinatal choline supplementation does not mitigate motor coordination deficits associated with neonatal alcohol exposure in rats.

    PubMed

    Thomas, Jennifer D; O'Neill, Teresa M; Dominguez, Hector D

    2004-01-01

    Prenatal alcohol exposure can disrupt brain development, leading to a variety of behavioral alterations including learning deficits, hyperactivity, and motor dysfunction. We have been investigating the possibility that perinatal choline supplementation may effectively reduce the severity of alcohol's adverse effects on behavioral development. We previously reported that perinatal choline supplementation can ameliorate alcohol-induced learning deficits and hyperactivity in rats exposed to alcohol during development. The present study examined whether perinatal choline supplementation could also reduce the severity of motor deficits induced by alcohol exposure during the third trimester equivalent brain growth spurt. Male neonatal rats were assigned to one of three treatment groups. One group was exposed to alcohol (6.6 g/kg/day) from postnatal days (PD) 4 to 9 via an artificial rearing procedure. Artificially and normally reared control groups were included. One half of subjects from each treatment received daily subcutaneous injections of a choline chloride solution from PD 4 to 30, whereas the other half received saline vehicle injections. On PD 35-37, subjects were tested on a parallel bar motor task, which requires both balance and fine motor coordination. Ethanol-exposed subjects exhibited significant motor impairments compared to both control groups whose performance did not differ significantly from one another. Perinatal choline treatment did not affect motor performance in either ethanol or control subjects. These data indicate that the beneficial effects of perinatal choline supplementation in ethanol-treated subjects are task specific and suggest that choline is more effective in mitigating cognitive deficits compared to motor deficits associated with developmental alcohol exposure.

  1. Pre- and postnatal health: evidence of increased choline needs.

    PubMed

    Caudill, Marie A

    2010-08-01

    Choline, a micronutrient found in food, serves as the starting material for several important metabolites that play key roles in fetal development, particularly the brain. Although human beings' requirement for choline is unknown, an Adequate Intake level of 425 mg/day was established for women with upward adjustments to 450 and 550 mg/day during pregnancy and lactation, respectively. The importance of choline in human development is supported by observations that a human fetus receives a large supply of choline during gestation; pregnancy causes depletion of hepatic choline pools in rats consuming a normal diet; human neonates are born with blood levels that are three times higher than maternal blood concentrations; and large amounts of choline are present in human milk. The development of the central nervous system is particularly sensitive to choline availability with evidence of effects on neural tube closure and cognition. Existing data show that the majority of pregnant (and presumably lactating) women are not achieving the target intake levels and that certain common genetic variants may increase requirements for choline beyond current recommendations. Because choline is not found in most varieties of prenatal vitamins (or regular multivitamins), increased consumption of choline-rich foods may be needed to meet the high pre- and postnatal demands for choline. 2010 American Dietetic Association. Published by Elsevier Inc. All rights reserved.

  2. 75 FR 760 - Choline chloride; Exemption from the Requirement of a Tolerance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-06

    ... addition to dietary consumption of choline and chloride, choline is made endogenously in the human body... and the relationship of this information to human risk. EPA has also considered available information... component of the human diet and acts as a precursor to acetylcholine, phospholipids, and the methyl donor...

  3. Low plasma vitamin B-12 is associated with a lower pregnancy-associated rise in plasma free choline in Canadian pregnant women and lower postnatal growth rates in their male infants.

    PubMed

    Wu, Brian Tf; Innis, Sheila M; Mulder, Kelly A; Dyer, Roger A; King, D Janette

    2013-11-01

    Choline needs are increased in pregnancy. Choline can be used as a source of methyl for homocysteine remethylation to methionine, but choline synthesis requires methyls from methionine. Vitamin B-12 deficiency increases choline use for homocysteine methylation. We investigated whether poor vitamin B-12 status occurs and contributes to low plasma choline and altered biomarkers of choline synthesis in pregnant women. With the use of a post hoc analysis, we addressed the association of maternal plasma vitamin B-12 status with postnatal growth rates in term infants. Blood was analyzed for a prospective study of 264 and 220 pregnant women at 16 and 36 wk of gestation, respectively, and 88 nonpregnant women as a reference. The proportion of women with a plasma total vitamin B-12 concentration <148 pmol/L (deficient) or 148-220 pmol/L (marginal) increased with pregnancy and pregnancy duration, which affected 3% and 9% of nonpregnant women, 10% and 21% of women at 16 wk of gestation, and 23% and 35% of women at 36 wk of gestation, respectively. Plasma free choline, betaine, and dimethylglycine were lower in women at 36 wk of gestation with a deficient or marginal compared with sufficient plasma total vitamin B-12 concentration (>220 pmol/L). Plasma total vitamin B-12 was positively associated with the increase in plasma free choline from midgestation to late gestation (P < 0.001). The postnatal growth rate to 9 mo was lower in infant boys of women classified as total vitamin B-12 deficient compared with sufficient. This study shows that maternal vitamin B-12 status is related to choline status in late gestation in a folate-replete population and may be a determinant of infant growth even in the absence of undernutrition.

  4. Evaluation of the potential of triethanolamine to alter hepatic choline levels in female B6C3F1 mice.

    PubMed

    Stott, W T; Radtke, B J; Linscombe, V A; Mar, M-H; Zeisel, S H

    2004-06-01

    Triethanolamine (TEA), a widely used nongenotoxic alcohol-amine, has recently been reported to cause an increased incidence of liver tumors in female B6C3F1 mice, but not in males nor in Fischer 344 rats. Choline deficiency induces liver cancer in rodents, and TEA could compete with choline uptake into tissues. The potential of TEA to cause choline deficiency in the liver of these mice as a mode of tumorigenesis was investigated. Groups of female B6C3F1 mice were administered 0 (vehicle) or a maximum tolerated dosage (MTD) of 1000 mg/kg/day TEA (Trial I) and 0, 10, 100, 300, or 1000 mg/kg/day TEA (Trial II) in acetone vehicle via skin painting 5 days/week for 3 weeks. Female CDF(R) rats were also administered 0 or an MTD dosage of 250 mg/kg/day TEA (Trial II) in a similar manner. No clinical signs of toxicity were noted, and upon sacrifice, levels of hepatic choline, its primary storage form, phosphocholine (PCho), and its primary oxidation product, betaine, were determined. A statistically significant decrease in PCho and betaine, was observed at the high dosage (26-42%) relative to controls and a dose-related, albeit variable, decrease was noted in PCho levels. Choline levels were also decreased 13-35% at the high dose level in mice. No changes in levels of choline or metabolites were noted in treated rats. A subsequent evaluation of the potential of TEA to inhibit the uptake of (3)H-choline by cultured Chinese Hamster Ovary Cells revealed a dose-related effect upon uptake. It was concluded that TEA may cause liver tumors in mice via a choline-depletion mode of action and that this effect is likely caused by the inhibition of choline uptake by cells.

  5. Evaluation of the Potential of Triethanolamine to Alter Hepatic Choline Levels in Female B6C3F1 Mice

    PubMed Central

    Stott, W. T.; Radtke, B. J.; Linscombe, V. A.; Mar, M-H; Zeisel, S. H.

    2006-01-01

    Triethanolamine (TEA), a widely used nongenotoxic alcoholamine, has recently been reported to cause an increased incidence of liver tumors in female B6C3F1 mice, but not in males nor in Fischer 344 rats. Choline deficiency induces liver cancer in rodents, and TEA could compete with choline uptake into tissues. The potential of TEA to cause choline deficiency in the liver of these mice as a mode of tumorigenesis was investigated. Groups of female B6C3F1 mice were administered 0 (vehicle) or a maximum tolerated dosage (MTD) of 1000 mg/kg/day TEA (Trial I) and 0, 10, 100, 300, or 1000 mg/kg/day TEA (Trial II) in acetone vehicle via skin painting 5 days/week for 3 weeks. Female CDF® rats were also administered 0 or an MTD dosage of 250 mg/kg/day TEA (Trial II) in a similar manner. No clinical signs of toxicity were noted, and upon sacrifice, levels of hepatic choline, its primary storage form, phosphocholine (PCho), and its primary oxidation product, betaine, were determined. A statistically significant decrease in PCho and betaine, was observed at the high dosage (26–42%) relative to controls and a dose-related, albeit variable, decrease was noted in PCho levels. Choline levels were also decreased 13–35% at the high dose level in mice. No changes in levels of choline or metabolites were noted in treated rats. A subsequent evaluation of the potential of TEA to inhibit the uptake of 3H-choline by cultured Chinese Hamster Ovary Cells revealed a dose-related effect upon uptake. It was concluded that TEA may cause liver tumors in mice via a choline-depletion mode of action and that this effect is likely caused by the inhibition of choline uptake by cells. PMID:15056812

  6. Adolescent Choline Supplementation Attenuates Working Memory Deficits in Rats Exposed to Alcohol During the Third Trimester Equivalent

    PubMed Central

    Schneider, Ronald D.; Thomas, Jennifer D.

    2018-01-01

    Background Children exposed to alcohol prenatally may suffer from behavioral and cognitive alterations that adversely affect their quality of life. Animal studies have shown that perinatal supplementation with the nutrient choline can attenuate ethanol’s adverse effects on development; however, it is not clear how late in development choline can be administered and still effectively reduce the consequences of prenatal alcohol exposure. Using a rodent model, this study examined whether choline supplementation is effective in mitigating alcohol’s teratogenic effects when administered during adolescence/young adulthood. Methods Sprague–Dawley rats were exposed to alcohol (5.25 g/kg/d) during the third trimester equivalent brain growth spurt, which occurs from postnatal day (PD) 4 to 9, via oral intubation. Sham-intubated and nontreated controls were included. Subjects were treated with 100 mg/kg/d choline chloride or vehicle from PD 40 to 60, a period equivalent to young adulthood in the rat. After the choline treatment had ceased, subjects were tested on a series of behavioral tasks: open field activity (PD 61 to 64), Morris water maze spatial learning (PD 65 to 73), and spatial working memory (PD 87 to 91). Results Ethanol-exposed subjects were overactive in the activity chambers and impaired on both the spatial and the working memory versions of the Morris water maze. Choline treatment failed to attenuate alcohol-related overactivity in the open field and deficits in Morris water maze performance. In contrast, choline supplementation significantly mitigated alcohol-related deficits in working memory, which may suggest that choline administration at this later developmental time affects functioning of the prefrontal cortex. Conclusions The results indicate that adolescent choline supplementation can attenuate some, but not all, of the behavioral deficits associated with early developmental alcohol exposure. The results of this study indicate that dietary intervention may reduce some fetal alcohol effects, even when administered later in life, findings with important implications for adolescents and young adults with fetal alcohol spectrum disorders. PMID:27038598

  7. Editor's Highlight: Perfluorooctane Sulfonate-Choline Ion Pair Formation: A Potential Mechanism Modulating Hepatic Steatosis and Oxidative Stress in Mice.

    PubMed

    Zhang, Limin; Krishnan, Prasad; Ehresman, David J; Smith, Philip B; Dutta, Mainak; Bagley, Bradford D; Chang, Shu-Ching; Butenhoff, John L; Patterson, Andrew D; Peters, Jeffrey M

    2016-09-01

    The mechanisms underlying perfluorooctane sulfonate (PFOS)-induced steatosis remain unclear. The hypothesis that PFOS causes steatosis and other hepatic effects by forming an ion pair with choline was examined. C57BL/6 mice were fed either a control diet or a marginal methionine/choline-deficient (mMCD) diet, with and without 0.003, 0.006, or 0.012% potassium PFOS. Dietary PFOS caused a dose-dependent decrease in body weight, and increases in the relative liver weight, hepatic triglyceride concentration and serum markers of liver toxicity and oxidative stress. Some of these effects were exacerbated in mice fed the mMCD diet supplemented with 0.012% PFOS compared with those fed the control diet supplemented with 0.012% PFOS. Surprisingly, serum PFOS concentrations were higher while liver PFOS concentrations were lower in mMCD-fed mice compared with corresponding control-fed mice. To determine if supplemental dietary choline could prevent PFOS-induced hepatic effects, C57BL/6 mice were fed a control diet, or a choline supplemental diet (1.2%) with or without 0.003% PFOS. Lipidomic analysis demonstrated that PFOS caused alterations in hepatic lipid metabolism in the PFOS-fed mice compared with controls, and supplemental dietary choline prevented these PFOS-induced changes. Interestingly, dietary choline supplementation also prevented PFOS-induced oxidative damage. These studies are the first to suggest that PFOS may cause hepatic steatosis and oxidative stress by effectively reducing the choline required for hepatic VLDL production and export by forming an ion pair with choline, and suggest that choline supplementation may prevent and/or treat PFOS-induced hepatic steatosis and oxidative stress. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Mandibular bone remodeling under a choline-deficient diet: a histomorphometric study in rats.

    PubMed

    Gorustovich, Alejandro A; Espósito, María A; Guglielmotti, María B; Giglio, Máximo J

    2003-06-01

    A deficiency of lipotropic factors in the rat induces renal, hepatic, and/or hematic damage. The aim of the present study was to evaluate the effect of a choline-deficient diet and refeeding on mandibular bone remodeling. Fifty Wistar rats were divided into 5 groups: group 1 (G1): control diet for 15 days; group 2 (G2): choline-deficient diet for 15 days; group 3 (G3): control diet for 30 days; group 4 (G4): choline-deficient diet for 30 days; and group 5 (G5): choline-deficient diet for 15 days and control diet for 15 days. All animals were sacrificed by ether overdose. The mandibles were resected, radiographed, decalcified, processed, and embedded in paraffin. Bucco-lingually oriented sections were obtained at the level of the interradicular bone of the medial roots of the left first molar, and stained with hematoxylin and eosin (H & E). Bone tissue density and bone remodeling were determined histomorphometrically. Body weight, food intake, hematocrit, and hemoglobinemia were also recorded. Microscopic observation revealed that osteogenesis was lower in rats fed a choline-deficient diet, at both 15 and 30 days, and that this decrease did not revert with a control diet. Histomorphometric evaluation showed 37% and 27% reduction in bone tissue density at 15 and 30 days, respectively, and a 30% decrease in bone formation at 30 days, compared to controls. In this experimental model, a choline-deficient diet led to altered bone remodeling as observed by a marked reduction in osteogenesis.

  9. Glycine Betaine: Reserve Form of Choline in Penicillium fellutanum in Low-Sulfate Medium

    PubMed Central

    Park, Yong-Il; Buszko, Marian L.; Gander, John E.

    1999-01-01

    In spite of choline’s importance in fungal metabolism, its sources in cytoplasm have not been fully established. 13C nuclear magnetic resonance analysis of mycelial extracts from day-5 Penicillium fellutanum cultures showed that, as well as choline-O-sulfate, intracellular glycine betaine is another reserve form of choline, depending on the availability of sulfate in the culture medium. These observations are discussed relative to the multiple roles of choline and its precursors in P. fellutanum. PMID:10049905

  10. CHOLINE TRANSPORTER-LIKE1 is required for sieve plate development to mediate long-distance cell-to-cell communication.

    PubMed

    Dettmer, Jan; Ursache, Robertas; Campilho, Ana; Miyashima, Shunsuke; Belevich, Ilya; O'Regan, Seana; Mullendore, Daniel Leroy; Yadav, Shri Ram; Lanz, Christa; Beverina, Luca; Papagni, Antonio; Schneeberger, Korbinian; Weigel, Detlef; Stierhof, York-Dieter; Moritz, Thomas; Knoblauch, Michael; Jokitalo, Eija; Helariutta, Ykä

    2014-07-10

    Phloem, a plant tissue responsible for long-distance molecular transport, harbours specific junctions, sieve areas, between the conducting cells. To date, little is known about the molecular framework related to the biogenesis of these sieve areas. Here we identify mutations at the CHER1/AtCTL1 locus of Arabidopsis thaliana. The mutations cause several phenotypic abnormalities, including reduced pore density and altered pore structure in the sieve areas associated with impaired phloem function. CHER1 encodes a member of a poorly characterized choline transporter-like protein family in plants and animals. We show that CHER1 facilitates choline transport, localizes to the trans-Golgi network, and during cytokinesis is associated with the phragmoplast. Consistent with its function in the elaboration of the sieve areas, CHER1 has a sustained, polar localization in the forming sieve plates. Our results indicate that the regulation of choline levels is crucial for phloem development and conductivity in plants.

  11. Influence of gene dosage and autoregulation of the regulatory genes INO2 and INO4 on inositol/choline-repressible gene transcription in the yeast Saccharomyces cerevisiae.

    PubMed

    Schwank, S; Hoffmann, B; Sch-uller, H J

    1997-06-01

    Expression of structural genes of phospholipid biosynthesis in yeast is mediated by the inositol/choline-responsive element (ICRE). ICRE-dependent gene activation, requiring the regulatory genes INO2 and INO4, is repressed in the presence of the phospholipid precursors inositol and choline. INO2 and, to a less extent, INO4 are positively autoregulated by functional ICRE sequences in the respective upstream regions. However, an INO2 allele devoid of its ICRE functionally complemented an ino2 mutation and completely restored inositol/choline regulation of Ino2p-dependent reporter genes. Low-level expression of INO2 and INO4 genes, each under control of the heterologous MET25 promoter, did not alter the regulatory pattern of target genes. Thus, upstream regions of INO2 and INO4 are not crucial for transcriptional control of ICRE-dependent genes by inositol and choline. Interestingly, over-expression of INO2, but not of INO4, counteracted repression by phospholipid precursors. Possibly, a functional antagonism between INO2 and a negative regulator is the key event responsible for repression or de-repression.

  12. Neither short-term nor long-term administration of oral choline alters metabolite concentrations in human brain.

    PubMed

    Dechent, P; Pouwels, P J; Frahm, J

    1999-08-01

    This study reexamined conflicting proton magnetic resonance spectroscopy (MRS) reports of increased or unaffected choline-containing compounds (Cho) in human brain in response to a single dose of 50 mg/kg choline bitartrate. The present work was based on a well-established strategy for quantitative proton MRS (2.0 T, STEAM localization sequence, TR/TE/TM = 6000/20/10 ms, LCModel automated spectral evaluation) that allows the determination of cerebral metabolite concentrations rather than T1-weighted resonance intensity ratios. Moreover, the investigations were extended to a possible long-term effect of oral choline by monitoring the continuous ingestion of 2 x 16 g of lecithin per day for 4 weeks. Six young healthy volunteers participated in each study and metabolite concentrations were determined in standardized locations in gray matter, white matter, cerebellum, and thalamus. Neither for short-term nor for long-term administration of choline do the data reveal statistically significant deviations from the basal concentrations of Cho, total N-acetyl-containing compounds (neuronal markers), total creatine, and myo-inositol (glial marker) in any of the investigated brain regions. Previous reports of increased Cho are not confirmed.

  13. Homeostasis and catabolism of choline and glycine betaine: lessons from Pseudomonas aeruginosa.

    PubMed

    Wargo, Matthew J

    2013-04-01

    Most sequenced bacteria possess mechanisms to import choline and glycine betaine (GB) into the cytoplasm. The primary role of choline in bacteria appears to be as the precursor to GB, and GB is thought to primarily act as a potent osmoprotectant. Choline and GB may play accessory roles in shaping microbial communities, based on their limited availability and ability to enhance survival under stress conditions. Choline and GB enrichment near eukaryotes suggests a role in the chemical relationships between these two kingdoms, and some of these interactions have been experimentally demonstrated. While many bacteria can convert choline to GB for osmoprotection, a variety of soil- and water-dwelling bacteria have catabolic pathways for the multistep conversion of choline, via GB, to glycine and can thereby use choline and GB as sole sources of carbon and nitrogen. In these choline catabolizers, the GB intermediate represents a metabolic decision point to determine whether GB is catabolized or stored as an osmo- and stress protectant. This minireview focuses on this decision point in Pseudomonas aeruginosa, which aerobically catabolizes choline and can use GB as an osmoprotectant and a nutrient source. P. aeruginosa is an experimentally tractable and ecologically relevant model to study the regulatory pathways controlling choline and GB homeostasis in choline-catabolizing bacteria. The study of P. aeruginosa associations with eukaryotes and other bacteria also makes this a powerful model to study the impact of choline and GB, and their associated regulatory and catabolic pathways, on host-microbe and microbe-microbe relationships.

  14. Age-related declines in exploratory behavior and markers of hippocampal plasticity are attenuated by prenatal choline supplementation in rats

    PubMed Central

    Glenn, Melissa J.; Kirby, Elizabeth D.; Gibson, Erin M.; Wong-Goodrich, Sarah; Mellott, Tiffany J.; Blusztajn, Jan K.; Williams, Christina L.

    2008-01-01

    Supplemental choline in the maternal diet produces a lasting enhancement in memory in offspring that resists age-related decline and is accompanied by neuroanatomical, neurophysiological and neurochemical changes in the hippocampus. The present study was designed to examine: 1) if prenatal choline supplementation alters behaviors that contribute to risk or resilience in cognitive aging, and 2) whether, at old age (25 months), prenatally choline supplemented rats show evidence of preserved hippocampal plasticity. A longitudinal design was used to look at exploration of an open field, with and without objects, at 1 and 24 months of age in male and female rats whose mothers were fed a diet supplemented with choline (SUP; 5 mg/kg choline chloride) or not supplemented (CON; 1.1 mg/kg choline chloride) on embryonic days 12–17. Aging caused a significant decline in open field exploration that was more pronounced in males but interest in novel objects was maintained in both sexes. Prenatal choline supplementation attenuated, but did not prevent age-related decline in exploration in males and increased object exploration in young females. Following behavioral assessment, rats were euthanized to assess markers of hippocampal plasticity. Aged SUP males and females had more newly proliferated cells in the hippocampal dentate gyrus and protein levels of vascular-endothelial growth factor (VEGF) and neurotrophin-3 (NT-3) were significantly elevated in female SUP rats in comparison to all other groups. Taken together, these findings provide the first evidence that prenatal cholinesupplementation causes changes in exploratory behaviors over the lifespan and preserves some features of hippocampal plasticity that can be seen even at 2 years of age. PMID:18786518

  15. Plasma choline metabolites associate with metabolic stress among young overweight men in a genotype-specific manner

    PubMed Central

    Yan, J; Winter, L B; Burns-Whitmore, B; Vermeylen, F; Caudill, M A

    2012-01-01

    OBJECTIVES: We aimed to test the hypotheses that (i) plasma choline metabolites differ between normal (body mass index (BMI)<25 kg m−2) and overweight (BMI ⩾25 kg m−2) men, and (ii) an elevated BMI alters associations between plasma choline metabolites and indicators of metabolic stress. DESIGN: This was a cross-sectional study. A one-time fasting blood sample was obtained for measurements of the choline metabolites and metabolic stress indicators (that is, serum alanine aminotransferase (ALT), glucose, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triglycerides and homocysteine), and for genotype determination. SUBJECTS: The analysis was conducted with 237 Mexican American men with a median age of 22 years. RESULTS: Compared with men with a normal BMI (n=98), those with an elevated BMI (n=139) had 6% lower (P=0.049) plasma betaine and an 11% lower (P=0.002) plasma betaine to choline ratio. Among men with an elevated BMI, plasma betaine and the plasma betaine to choline ratio positively associated (P⩽0.044) with a favorable serum cholesterol profile, and inversely associated (P=0.001) with serum ALT, a marker of liver dysfunction. The phosphatidylethanolamine N-methyltransferase (PEMT) 5465G→A (rs7946) genotype interacted (P⩽0.007) with the plasma betaine to choline ratio to modulate indicators of metabolic stress with stronger inverse associations observed among overweight men with the PEMT 5465GG genotype. CONCLUSIONS: Plasma choline metabolites predict metabolic stress among overweight men often in a genotype-specific manner. The diminished betaine among overweight men coupled with the inverse association between betaine and metabolic stress suggest that betaine supplementation may be effective in mitigating some of the metabolic insults arising from lipid overload. PMID:23169489

  16. Prenatal Choline Supplementation Ameliorates the Long-Term Neurobehavioral Effects of Fetal-Neonatal Iron Deficiency in Rats123

    PubMed Central

    Kennedy, Bruce C.; Dimova, Jiva G.; Siddappa, Asha J. M.; Tran, Phu V.; Gewirtz, Jonathan C.; Georgieff, Michael K.

    2014-01-01

    Background: Gestational iron deficiency in humans and rodents produces long-term deficits in cognitive and socioemotional function and alters expression of plasticity genes in the hippocampus that persist despite iron treatment. Prenatal choline supplementation improves cognitive function in other rodent models of developmental insults. Objective: The objective of this study was to determine whether prenatal choline supplementation prevents the long-term effects of fetal-neonatal iron deficiency on cognitive and social behaviors and hippocampal gene expression. Methods: Pregnant rat dams were administered an iron-deficient (2–6 g/kg iron) or iron-sufficient (IS) (200 g/kg iron) diet from embryonic day (E) 3 to postnatal day (P) 7 with or without choline supplementation (5 g/kg choline chloride, E11–18). Novel object recognition (NOR) in the test vs. acquisition phase, social approach (SA), and hippocampal mRNA expression were compared at P65 in 4 male adult offspring groups: formerly iron deficient (FID), FID with choline supplementation (FID-C), IS, and IS with choline supplementation. Results: Relative to the intact NOR in IS rats (acquisition: 47.9%, test: 60.2%, P < 0.005), FID adult rats had impaired recognition memory at the 6-h delay (acquisition: 51.4%, test: 55.1%, NS), accompanied by a 15% reduction in hippocampal expression of brain-derived neurotrophic factor (Bdnf) (P < 0.05) and myelin basic protein (Mbp) (P < 0.05). Prenatal choline supplementation in FID rats restored NOR (acquisition: 48.8%, test: 64.4%, P < 0.0005) and increased hippocampal gene expression (FID-C vs. FID group: Bdnf, Mbp, P < 0.01). SA was also reduced in FID rats (P < 0.05 vs. IS rats) but was only marginally improved by prenatal choline supplementation. Conclusions: Deficits in recognition memory, but not social behavior, resulting from gestational iron deficiency are attenuated by prenatal choline supplementation, potentially through preservation of hippocampal Bdnf and Mbp expression. Prenatal choline supplementation may be a promising adjunct treatment for fetal-neonatal iron deficiency. PMID:25332485

  17. A maternal methyl-containing diet alters learning ability in the Morris swimming test in adult rats.

    PubMed

    Plyusnina, I Z; Os'kina, I N; Shchepina, O A; Prasolova, L A; Trut, L N

    2007-06-01

    Maternal choline diet is known to affect the processes of spatial learning. We report here our studies of learning ability in the Morris swimming test in the adult offspring of maternal rats given a methyl-containing supplement enriched with choline and betaine during pregnancy and lactation. Increases in the time taken to find the invisible platform and the duration of swimming close to the vessel walls were seen, these demonstrating worsening of learning ability in response to the maternal diet. Changes in the platform search strategy were not associated with increases in anxiety in male rats. The possible role of a maternal methyl-containing diet in altering the expression of genes controlling the development of the nervous system is discussed.

  18. Time-course microarrays reveal early activation of the immune transcriptome in a choline-deficient mouse model of liver injury.

    PubMed

    Mitsumoto, Koji; Watanabe, Rina; Nakao, Katsuki; Yonenaka, Hisaki; Hashimoto, Takao; Kato, Norihisa; Kumrungsee, Thanutchaporn; Yanaka, Noriyuki

    2017-09-01

    Choline-deficient diet is extensively used as a model of nonalcoholic fatty liver disease (NAFLD). In this study, we explored genes in the liver for which the expression changed in response to the choline-deficient (CD) diet. Male CD-1 mice were divided into two groups and fed a CD diet with or without 0.2% choline bitartrate for one or three weeks. Hepatic levels of choline metabolites were analyzed by using liquid chromatography mass spectrometry and hepatic gene expression profiles were examined by DNA microarray analysis. The CD diet lowered liver choline metabolites after one week and exacerbated fatty liver between one and three weeks. We identified >300 genes whose expression was significantly altered in the livers of mice after consumption of this CD diet for one week and showed that liver gene expression profiles could be classified into six distinct groups. This study showed that STAT1 and interferon-regulated genes was up-regulated after the CD diet consumption and that the Stat1 mRNA level was negatively correlated with liver phosphatidylcholine level. Stat1 mRNA expression was actually up-regulated in isolated hepatocytes from the mouse liver with the CD diet. This study provides insight into the genomic effects of the CD diet through the Stat1 expression, which might be involved in NAFLD development. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Choline and vitamin B12 deficiencies are interrelated in folate-replete long-term total parenteral nutrition patients.

    PubMed

    Compher, Charlene W; Kinosian, Bruce P; Stoner, Nancy E; Lentine, Deborah C; Buzby, Gordon P

    2002-01-01

    Choline has recently been recognized as an essential nutrient, in part based on deficiency data in long-term home total parenteral nutrition (TPN) patients. Choline, a methyl donor in the metabolism of homocysteine, is intricately related to folate status, but little is known about choline and vitamin B12 status. Long-term TPN patients are also subject to vitamin B12 deficiency. The objective of the study was to evaluate any interaction between choline, vitamin B12, and folate in patients with severe malabsorption syndromes, requiring long-term TPN. Plasma free choline, serum and red blood cell (RBC) folate, serum vitamin B12 methylmalonic acid, B6, and plasma total homocysteine concentrations were assayed by standard methods. Low choline was defined as values that fall 1 to < or =3 and marked low choline concentration as >3 SD below the control mean. Both low choline concentrations (52% were marked low, 33% low, 14% normal) and elevated methylmalonic acid concentrations (47%) were prevalent. Choline concentration was significantly lower and RBC folate higher in patients with elevated methylmalonic acid. Total homocysteine elevations were rare (3 of 21) and mild. These data suggest a strong interaction between vitamin B12 and choline deficiencies and folate status in this population, which may be due in part to variations in vitamin and choline delivery by TPN. Folate adequacy may increase B12 use for homocysteine metabolism, thus limiting B12 availability for methylmaIonic acid metabolism. Choline use may also increase, and choline deficiency may worsen if choline substitutes when the vitamin B12 side of the homocysteine metabolic pathway cannot be used.

  20. Effect of choline supplementation on fatigue in trained cyclists.

    PubMed

    Spector, S A; Jackman, M R; Sabounjian, L A; Sakkas, C; Landers, D M; Willis, W T

    1995-05-01

    The availability of choline, the precurser of the neurotransmitter, acetylcholine, in the diet is sufficient to provide the body's requirements under normal conditions. However, preliminary evidence indicates that depletion of choline may limit performance, while oral supplementation may delay fatigue during prolonged efforts. A double-blind cross-over design was used to determine the relationship between plasma choline and fatigue during supramaximal brief and submaximal prolonged activities. Twenty male cyclists (ages 23-29) with maximal aerobic power (VO2max) between 58 and 81 ml.min-1.kg-1 were randomly divided into BRIEF (N = 10) and PROLONGED (N = 10) groups. One hour after drinking a beverage with or without choline bitartrate (2.43 g), cyclists began riding at a power output equivalent to approximately 150% (BRIEF) and 70% (PROLONGED) of VO2max at a cadence of 80-90 rpm. Time to exhaustion, indirect calorimetry and serum choline, lactate, and glucose were measured. Increases in choline levels of 37 and 52% were seen within one hour of ingestion for BRIEF and PROLONGED groups, respectively. Neither group depleted choline during exercise under the choline or placebo conditions. Fatigue times and work performed under either test condition for the BRIEF or PROLONGED groups were similar. Consequently, trained cyclists do not deplete choline during supramaximal brief or prolonged submaximal exercise, nor do they benefit from choline supplementation to delay fatigue under these conditions.

  1. CHOLINE SUPPLEMENTATION AND DNA METHYLATION IN THE HIPPOCAMPUS AND PREFRONTAL CORTEX OF RATS EXPOSED TO ALCOHOL DURING DEVELOPMENT

    PubMed Central

    Otero, Nicha K. H.; Thomas, Jennifer D.; Saski, Christopher A.; Xia, Xiaoxia; Kelly, Sandra J.

    2012-01-01

    Background Some of the most frequent deficits seen in children with FASD and in animal models of FASD are spatial memory impairments and impaired executive functioning, which are likely related to alcohol-induced alterations of the hippocampus and prefrontal cortex (PFC), respectively. Choline, a nutrient supplement, has been shown in a rat model to ameliorate some of alcohol's teratogenic effects and this effect may be mediated through choline' effects on DNA methylation. Methods Alcohol was given by intragastric intubation to rat pups during the neonatal period (postnatal days 2–10) (ET group), which is equivalent to the third trimester in humans and a period of heightened vulnerability of the brain to alcohol exposure. Control groups included an intubated control group given the intubation procedure without alcohol (IC) and a non-treated control group (NC). Choline or saline was administered subcutaneously to each subject from postnatal day 2 to 20. On postnatal day 21, the brains of the subjects were removed and assayed for global DNA methylation patterning as measured by chemiluminescence using the cpGlobal assay in both the hippocampal region and PFC. Results Alcohol exposure caused hypermethylation in the hippocampus and PFC, which was significantly reduced after choline supplementation. In contrast, control animals showed increases in DNA methylation in both regions after choline supplementation, suggesting that choline supplementation has different effects depending upon the initial state of the brain. Conclusions This study is the first to show changes in global DNA methylation of the hippocampal region and PFC after neonatal alcohol exposure. Choline supplementation impacts global DNA methylation in these two brain regions in alcohol-exposed and control animals in a differential manner. The current findings suggest that both alcohol and choline have substantial impact on the epigenome in the prefrontal cortex and hippocampus and future studies will be needed to describe which gene families are impacted in such a way that function of the nervous system is changed. PMID:22509990

  2. Perinatal choline deficiency delays brain development and alters metabolite concentrations in the young pig.

    PubMed

    Mudd, Austin T; Getty, Caitlyn M; Sutton, Brad P; Dilger, Ryan N

    2016-12-01

    Adequate choline supply during the perinatal period is critical for proper brain formation, when robust neurogenesis and neuronal maturation occur. Therefore, the objective of this study was to examine the impact of perinatal choline status on neurodevelopment. Sows were fed a choline-deficient (CD) or choline-sufficient (CS) diet during the last half of the gestational period. At 2 days of age, piglets from sows within each prenatal treatment group were further stratified into postnatal treatment groups and provided either a CD or CS milk replacer, resulting in four treatment groups. At 30 days of age, piglets underwent magnetic resonance imaging (MRI) procedures to analyze structural and metabolite differences. Single-voxel spectroscopy (SVS) analysis revealed postnatally CS piglets had higher (P < 0.001) concentrations of glycerophosphocholine-phosphocholine than postnatally CD piglets. Volumetric analysis indicated smaller (P < 0.006) total brain volumes in prenatally CD piglets compared with prenatally CS piglets. Differences (P < 0.05) in the corpus callosum, pons, midbrain, thalamus, and right hippocampus, were observed as larger region-specific volumes proportional to total brain size in prenatally CD piglets compared with CS piglets. Diffusion tensor imaging (DTI) suggested interactions (P < 0.05) between prenatal and postnatal choline status in fractional anisotropy values of the thalamus and right hippocampus. Prenatally CS piglets had lower cerebellar radial diffusivity (P = 0.045) compared with prenatally CD piglets. This study demonstrates that prenatal choline deficiency has profound effects by delaying neurodevelopment as evidenced by structural and metabolic MRI assessments.

  3. Effects of dietary choline availability on latent inhibition of flavor aversion learning.

    PubMed

    Gámiz, Fernando; Recio, Sergio Andrés; Iliescu, Adela Florentina; Gallo, Milagros; de Brugada, Isabel

    2015-08-01

    It has been previously reported that dietary choline supplementation might affect latent inhibition (LI) using a conditioned suppression procedure in rats. We have assessed the effect of dietary choline on LI of flavor aversion learning. Adult male Wistar rats received a choline supplemented (5 g/kg), deficient (0 g/kg), or standard (1.1 g/kg) diet for 3 months. After this supplementation period, all rats went through a conditioned taste aversion (CTA) procedure, half of them being pre-exposed to the conditioned stimulus before the conditioning. The results indicated that choline deficiency prevents LI of conditioned flavor aversion to cider vinegar (3%) induced by a LiCl (0.15 M; 2% body weight) intraperitoneal injection, while choline supplementation enhances CTA leading to slower extinction. The role of the brain systems modulating attentional processes is discussed.

  4. Homeostasis and Catabolism of Choline and Glycine Betaine: Lessons from Pseudomonas aeruginosa

    PubMed Central

    2013-01-01

    Most sequenced bacteria possess mechanisms to import choline and glycine betaine (GB) into the cytoplasm. The primary role of choline in bacteria appears to be as the precursor to GB, and GB is thought to primarily act as a potent osmoprotectant. Choline and GB may play accessory roles in shaping microbial communities, based on their limited availability and ability to enhance survival under stress conditions. Choline and GB enrichment near eukaryotes suggests a role in the chemical relationships between these two kingdoms, and some of these interactions have been experimentally demonstrated. While many bacteria can convert choline to GB for osmoprotection, a variety of soil- and water-dwelling bacteria have catabolic pathways for the multistep conversion of choline, via GB, to glycine and can thereby use choline and GB as sole sources of carbon and nitrogen. In these choline catabolizers, the GB intermediate represents a metabolic decision point to determine whether GB is catabolized or stored as an osmo- and stress protectant. This minireview focuses on this decision point in Pseudomonas aeruginosa, which aerobically catabolizes choline and can use GB as an osmoprotectant and a nutrient source. P. aeruginosa is an experimentally tractable and ecologically relevant model to study the regulatory pathways controlling choline and GB homeostasis in choline-catabolizing bacteria. The study of P. aeruginosa associations with eukaryotes and other bacteria also makes this a powerful model to study the impact of choline and GB, and their associated regulatory and catabolic pathways, on host-microbe and microbe-microbe relationships. PMID:23354714

  5. Recirculation and reutilization of micellar bile lecithin.

    PubMed

    Robins, S J

    1975-09-01

    Bile lecithins, solubilized in micellar bile salt and radiolabeled in the 1-acyl fatty acid, phosphorus, and choline positions, were infused in the small bowel of fasted rats. Absorption of each label was virtually complete after 24 h. However, these lecithins were extensively hydrolyzed in the bowel lumen as well as after absorption, and neither the fatty acid nor phosphorus was significantly retained in the enterohepatic circulation or reutilized for biliary lecithin synthesis. In contrast, while choline was also dissociated from absorbed lecithin, choline was instead retained in the liver, reincorporated into newly synthesized hepatic lecithin, and sercreted in biliary lecithin in 10-fold greater amounts than either the fatty acid or phosphorus. However, the extent of choline incorporation into bile lecithin was limited and was not further increased when free choline was directly injected into the portal vein. The data therefore suggest that although only choline of absorbed lecithin is retained in the enterohepatic circulation and preserved for new biliary lecithin synthesis, exogenous choline utilization is regulated by the size of the available hepatic pool.

  6. Adolescent Choline Supplementation Attenuates Working Memory Deficits in Rats Exposed to Alcohol During the Third Trimester Equivalent.

    PubMed

    Schneider, Ronald D; Thomas, Jennifer D

    2016-04-01

    Children exposed to alcohol prenatally may suffer from behavioral and cognitive alterations that adversely affect their quality of life. Animal studies have shown that perinatal supplementation with the nutrient choline can attenuate ethanol's adverse effects on development; however, it is not clear how late in development choline can be administered and still effectively reduce the consequences of prenatal alcohol exposure. Using a rodent model, this study examined whether choline supplementation is effective in mitigating alcohol's teratogenic effects when administered during adolescence/young adulthood. Sprague-Dawley rats were exposed to alcohol (5.25 g/kg/d) during the third trimester equivalent brain growth spurt, which occurs from postnatal day (PD) 4 to 9, via oral intubation. Sham-intubated and nontreated controls were included. Subjects were treated with 100 mg/kg/d choline chloride or vehicle from PD 40 to 60, a period equivalent to young adulthood in the rat. After the choline treatment had ceased, subjects were tested on a series of behavioral tasks: open field activity (PD 61 to 64), Morris water maze spatial learning (PD 65 to 73), and spatial working memory (PD 87 to 91). Ethanol-exposed subjects were overactive in the activity chambers and impaired on both the spatial and the working memory versions of the Morris water maze. Choline treatment failed to attenuate alcohol-related overactivity in the open field and deficits in Morris water maze performance. In contrast, choline supplementation significantly mitigated alcohol-related deficits in working memory, which may suggest that choline administration at this later developmental time affects functioning of the prefrontal cortex. The results indicate that adolescent choline supplementation can attenuate some, but not all, of the behavioral deficits associated with early developmental alcohol exposure. The results of this study indicate that dietary intervention may reduce some fetal alcohol effects, even when administered later in life, findings with important implications for adolescents and young adults with fetal alcohol spectrum disorders. Copyright © 2016 by the Research Society on Alcoholism.

  7. Cystathionine beta-synthase deficiency alters hepatic phospholipid and choline metabolism: Post-translational repression of phosphatidylethanolamine N-methyltransferase is a consequence rather than a cause of liver injury in homocystinuria.

    PubMed

    Jacobs, René L; Jiang, Hua; Kennelly, John P; Orlicky, David J; Allen, Robert H; Stabler, Sally P; Maclean, Kenneth N

    2017-04-01

    Classical homocystinuria (HCU) due to inactivating mutation of cystathionine β-synthase (CBS) is a poorly understood life-threatening inborn error of sulfur metabolism. A previously described cbs-/- mouse model exhibits a semi-lethal phenotype due to neonatal liver failure. The transgenic HO mouse model of HCU exhibits only mild liver injury and recapitulates multiple aspects of the disease as it occurs in humans. Disruption of the methionine cycle in HCU has the potential to impact multiple aspect of phospholipid (PL) metabolism by disruption of both the Kennedy pathway and phosphatidylethanolamine N-methyltransferase (PEMT) mediated synthesis of phosphatidylcholine (PC). Comparative metabolomic analysis of HO mouse liver revealed decreased levels of choline, and choline phosphate indicating disruption of the Kennedy pathway. Alterations in the relative levels of multiple species of PL included significant increases in PL degradation products consistent with enhanced membrane PL turnover. A significant decrease in PC containing 20:4n6 which primarily formed by the methylation of phosphatidylethanolamine to PC was consistent with decreased flux through PEMT. Hepatic expression of PEMT in both the cbs-/- and HO models is post-translationally repressed with decreased levels of PEMT protein and activity that inversely-correlates with the scale of liver injury. Failure to induce further repression of PEMT in HO mice by increased homocysteine, methionine and S-adenosylhomocysteine or depletion of glutathione combined with examination of multiple homocysteine-independent models of liver injury indicated that repression of PEMT in HCU is a consequence rather than a cause of liver injury. Collectively, our data show significant alteration of a broad range of hepatic PL and choline metabolism in HCU with the potential to contribute to multiple aspects of pathogenesis in this disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Glycerophosphocholine catabolism as a new route for choline formation for phosphatidylcholine synthesis by the Kennedy pathway.

    PubMed

    Fernández-Murray, J Pedro; McMaster, Christopher R

    2005-11-18

    In eukaryotes, neuropathy target esterase (Nte1p in yeast) deacylates phosphatidylcholine derived exclusively from the CDP-choline pathway to produce glycerophosphocholine (GroPCho) and release two fatty acids. The metabolic fate of GroPCho in eukaryotic cells is currently not known. Saccharomyces cerevisiae contains two open reading frames predicted to contain glycerophosphodiester phosphodiesterase domains, YPL110c and YPL206c. Pulse-chase experiments were conducted to monitor GroPCho metabolic fate under conditions known to alter CDP-choline pathway flux and consequently produce different rates of formation of GroPCho. From this analysis, it was revealed that GroPCho was metabolized to choline, with this choline serving as substrate for renewed synthesis of phosphatidylcholine. YPL110c played the major role in this metabolic pathway. To extend and confirm the metabolic studies, the ability of the ypl110cDelta and ypl206cDelta strains to utilize exogenous GroPCho or glycerophosphoinositol as the sole source of phosphate was analyzed. Consistent with our metabolic profiling, the ypl206cDelta strain grew on both substrates with a similar rate to wild type, whereas the ypl110cDelta strain grew very poorly on GroPCho and with moderately reduced growth on glycerophosphoinositol.

  9. Methamidophos Exposure During the Early Postnatal Period of Mice: Immediate and Late-Emergent Effects on the Cholinergic and Serotonergic Systems and Behavior

    PubMed Central

    Abreu-Villaça, Yael

    2013-01-01

    Organophosphates (OPs) are among the most used pesticides. Although some OPs have had their use progressively more restricted, other OPs are being used without sufficient investigation of their effects. Here, we investigated the immediate neurochemical and delayed neurochemical and behavioral actions of the OP methamidophos to verify whether there are concerns regarding exposure during early postnatal development. From the third to the nineth postnatal day (PN), Swiss mice were sc injected with methamidophos (1mg/kg). At PN10, we assessed cholinergic and serotonergic biomarkers in the cerebral cortex and brainstem. From PN60 to PN63, mice were submitted to a battery of behavioral tests and subsequently to biochemical analyses. At PN10, the effects were restricted to females and to the cholinergic system: Methamidophos promoted increased choline transporter binding in the brainstem. At PN63, in the brainstem, there was a decrease in choline transporter, a female-only decrease in 5HT1A and a male-only increase in 5HT2 receptor binding. In the cortex, choline acetyltransferase activity was decreased and 5HT2 receptor binding was increased both in males and females. Methamidophos elicited behavioral alterations, suggestive of increased depressive-like behavior and impaired decision making. There were no significant alterations on anxiety-related measures and on memory/learning. Methamidophos elicited cholinergic and serotonergic alterations that depended on brain region, sex, and age of the animals. These outcomes, together with the behavioral effects, indicate that this OP is deleterious to the developing brain and that alterations are indeed identified long after the end of exposure. PMID:23596261

  10. Methamidophos exposure during the early postnatal period of mice: immediate and late-emergent effects on the cholinergic and serotonergic systems and behavior.

    PubMed

    Lima, Carla S; Dutra-Tavares, Ana C; Nunes, Fernanda; Nunes-Freitas, André L; Ribeiro-Carvalho, Anderson; Filgueiras, Cláudio C; Manhães, Alex C; Meyer, Armando; Abreu-Villaça, Yael

    2013-07-01

    Organophosphates (OPs) are among the most used pesticides. Although some OPs have had their use progressively more restricted, other OPs are being used without sufficient investigation of their effects. Here, we investigated the immediate neurochemical and delayed neurochemical and behavioral actions of the OP methamidophos to verify whether there are concerns regarding exposure during early postnatal development. From the third to the nineth postnatal day (PN), Swiss mice were sc injected with methamidophos (1mg/kg). At PN10, we assessed cholinergic and serotonergic biomarkers in the cerebral cortex and brainstem. From PN60 to PN63, mice were submitted to a battery of behavioral tests and subsequently to biochemical analyses. At PN10, the effects were restricted to females and to the cholinergic system: Methamidophos promoted increased choline transporter binding in the brainstem. At PN63, in the brainstem, there was a decrease in choline transporter, a female-only decrease in 5HT1A and a male-only increase in 5HT2 receptor binding. In the cortex, choline acetyltransferase activity was decreased and 5HT2 receptor binding was increased both in males and females. Methamidophos elicited behavioral alterations, suggestive of increased depressive-like behavior and impaired decision making. There were no significant alterations on anxiety-related measures and on memory/learning. Methamidophos elicited cholinergic and serotonergic alterations that depended on brain region, sex, and age of the animals. These outcomes, together with the behavioral effects, indicate that this OP is deleterious to the developing brain and that alterations are indeed identified long after the end of exposure.

  11. Nutritional genomics: defining the dietary requirement and effects of choline.

    PubMed

    Zeisel, Steven H

    2011-03-01

    As it becomes evident that single nucleotide polymorphisms (SNPs) in humans can create metabolic inefficiencies, it is reasonable to ask if such SNPs influence dietary requirements. Epidemiologic studies that examine SNPs relative to risks for diseases are common, but there are few examples of clinically sized nutrition studies that examine how SNPs influence metabolism. Studies on how SNPs influence the dietary requirement for choline provide a model for how we might begin examining the effects of SNPs on nutritional phenotypes using clinically sized studies (clinical nutrigenomics). Most men and postmenopausal women develop liver or muscle dysfunction when deprived of dietary choline. More than one-half of premenopausal women may be resistant to choline deficiency-induced organ dysfunction, because estrogen induces the gene [phosphatidylethanolamine-N-methyltransferase (PEMT)] that catalyzes endogenous synthesis of phosphatidylcholine, which can subsequently yield choline. Those premenopausal women that do require a dietary source of choline have a SNP in PEMT, making them unresponsive to estrogen induction of PEMT. It is important to recognize differences in dietary requirements for choline in women, because during pregnancy, maternal dietary choline modulates fetal brain development in rodent models. Because choline metabolism and folate metabolism intersect at the methylation of homocysteine, manipulations that limit folate availability also increase the use of choline as a methyl donor. People with a SNPs in MTHFD1 (a gene of folate metabolism that controls the use of folate as a methyl donor) are more likely to develop organ dysfunction when deprived of choline; their dietary requirement is increased because of increased need for choline as a methyl donor.

  12. Estimation of usual intake and food sources of choline and betaine in New Zealand reproductive age women.

    PubMed

    Mygind, Vanessa L; Evans, Sophie E; Peddie, Meredith C; Miller, Jody C; Houghton, Lisa A

    2013-01-01

    Recently, choline has been associated with neurodevelopment, cognitive function and neural tube defect incidence. However, data on usual intakes are limited, and estimates of dietary intakes of choline and its metabolite betaine, are not available for New Zealanders. The objective of the present study was to determine usual intake and food sources of choline and betaine in a group of New Zealand reproductive age women. Dietary intake data were collected from a sample of 125 women, aged 18-40 years, by means of a 3-day weighed food record, and usual choline and betaine intake distributions were determined. The mean (SD) daily intakes of choline and betaine were 316 (66) mg and 178 (66) mg, respectively. The total choline intake relative to energy intake and body weight was 0.18 mg/kcal and 5.1 mg/kg, respectively. Only 16% of participants met or exceeded the Adequate Intake (AI) for adult women of 425 mg of choline. The top five major food contributors of choline were eggs, red meat, milk, bread and chicken; and of betaine were bread, breakfast cereal, pasta, grains and root vegetables (carrots, parsnips, beetroot, swedes). Our findings contribute towards the recent emergence of published reports on the range of dietary choline and betaine intakes consumed by free-living populations. In our sample of New Zealand women, few participants were meeting or exceeding the AI level. Given recent epidemiological evidence suggesting health benefits of increased choline and betaine intakes, recommendations should be made to encourage the consumption of choline and betaine-rich foods.

  13. Pathways of acetylcholine synthesis, transport and release as targets for treatment of adult-onset cognitive dysfunction.

    PubMed

    Amenta, F; Tayebati, S K

    2008-01-01

    Acetylcholine (ACh) is a neurotransmitter widely diffused in central, peripheral, autonomic and enteric nervous system. This paper has reviewed the main mechanisms of ACh synthesis, storage, and release. Presynaptic choline transport supports ACh production and release, and cholinergic terminals express a unique transporter critical for neurotransmitter release. Neurons cannot synthesize choline, which is ultimately derived from the diet and is delivered through the blood stream. ACh released from cholinergic synapses is hydrolyzed by acetylcholinesterase into choline and acetyl coenzyme A and almost 50% of choline derived from ACh hydrolysis is recovered by a high-affinity choline transporter. Parallel with the development of cholinergic hypothesis of geriatric memory dysfunction, cholinergic precursor loading strategy was tried for treating cognitive impairment occurring in Alzheimer's disease. Controlled clinical studies denied clinical usefulness of choline and lecithin (phosphatidylcholine), whereas for other phospholipids involved in choline biosynthetic pathways such as cytidine 5'-diphosphocholine (CDP-choline) or alpha-glyceryl-phosphorylcholine (choline alphoscerate) a modest improvement of cognitive dysfunction in adult-onset dementia disorders is documented. These inconsistencies have probably a metabolic explanation. Free choline administration increases brain choline availability but it does not increase ACh synthesis/or release. Cholinergic precursors to serve for ACh biosynthesis should be incorporate and stored into phospholipids in brain. It is probable that appropriate ACh precursors and other correlated molecules (natural or synthesized) could represent a tool for developing therapeutic strategies by revisiting and updating treatments/supplementations coming out from this therapeutic stalemate.

  14. The choline transporter-like family SLC44: properties and roles in human diseases.

    PubMed

    Traiffort, Elisabeth; O'Regan, Seana; Ruat, Martial

    2013-01-01

    The Na(+)-independent, high affinity choline carrier system proposed to supply choline for the synthesis of cell membrane phospholipids was recently associated with SLC44 family members (SLC44A1-5) also called choline-like transporter family. SLC44A1 is widely expressed throughout the nervous system in both neurons and oligodendrocytes, while SLC44A2-4 are mainly detected in peripheral tissues. The subcellular localization of the proteins was mainly addressed for SLC44A1 through the development of specific antibodies. SLC44A1 is detected in both the plasma and mitochondrial membranes where the protein is able to transport choline at high affinity and in a Na(+)-independent manner. The physiological relevance of SLC44A1 as a choline carrier is indicated by its likely involvement in membrane synthesis for cell growth or repair, and also by its role in phospholipid production for the generation of lung surfactant. Moreover, an autoimmune disease has been related to the blockade of SLC44A2 function, which results in the alteration of hair cells in the inner ear and leads to autoimmune hearing loss. In the alloimmune syndrome called transfusion-related acute lung injury, antibodies to SLC44A2 cause a deleterious aggregation of granulocytes. Therefore transporters of the SLC44 family represent attractive and promising targets for therapeutic and diagnostic applications regarding both immune and degenerative diseases. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Gestational choline supplementation normalized fetal alcohol-induced alterations in histone modifications, DNA methylation and POMC gene expression in β-endorphin-producing POMC neurons of the hypothalamus

    PubMed Central

    Bekdash, Rola A.; Zhang, Changqing; Sarkar, Dipak K.

    2013-01-01

    Background Prenatal exposure to ethanol reduces the expression of hypothalamic proopiomelanocortin (POMC) gene, known to control various physiological functions including the organismal stress response. In this study, we determined whether the changes in POMC neuronal functions are associated with altered expressions of histone-modifying and DNA-methylating enzymes in POMC-producing neurons, since these enzymes are known to be involved in regulation of gene expression. In addition, we tested whether gestational choline supplementation prevents the adverse effects of ethanol on these neurons. Methods Pregnant rat dams were fed with alcohol-containing liquid diet or control diet during gestational days 7 and 21 with or without choline, and their male offspring rats were used during the adult period. Using double-immunohistochemistry, real-time reverse transcription polymerase chain reaction (RT-PCR) and methylation specific RT-PCR, we determined protein and mRNA levels of histone-modifying and DNA-methylating enzymes, and the changes in POMC gene methylation and expression in the hypothalamus of adult male offspring rats. Additionally, we measured the basal and lipopolysaccharide (LPS)-induced corticosterone levels in plasma by enzyme-linked immunoabsorbent assay. Results Prenatal ethanol treatment suppressed hypothalamic levels of protein and mRNA of histone activation marks (H3K4me3, Set7/9, acetylated H3K9, phosphorylated H3S10) increased the repressive marks (H3K9me2, G9a, Setdb1) and DNA methylating enzyme (Dnmt1) and the methyl-CpG-binding protein (MeCP2). The treatment also elevated the level of POMC gene methylation, while it reduced levels of POMC mRNA and β-EP, and elevated corticosterone response to LPS. Gestational choline normalized the ethanol-altered protein and the mRNA levels of H3K4me3, Set7/9, H3K9me2, G9a, Setdb1, Dnmt1 and MeCP2. It also normalizes the changes in POMC gene methylation and gene expression, β-EP production and the corticosterone response to LPS. Conclusions These data suggest that prenatal ethanol modulates histone and DNA methylation in POMC neurons that may be resulting in hypermethylation of POMC gene and reduction of POMC gene expression. Gestational choline supplementation prevents the adverse effects of ethanol on these neurons. PMID:23413810

  16. Effects of postnatal dietary choline manipulation against MK-801 neurotoxicity in pre- and postadolescent rats.

    PubMed

    Biasi, Elisabetta

    2010-11-29

    Prenatal supplementation of rat dams with dietary choline has been shown to provide their offspring with neuroprotection against N-methyl-d-aspartate (NMDA) antagonist-mediated neurotoxicity. This study investigated whether postnatal dietary choline supplementation exposure for 30 and 60 days of rats starting in a pre-puberty age would also induce neuroprotection (without prenatal exposure). Male and female Sprague-Dawley rats (postnatal day 30 of age) were reared for 30 or 60 concurrent days on one of the four dietary levels of choline: 1) fully deficient choline, 2) 1/3 the normal level, 3) the normal level, or 4) seven times the normal level. After diet treatment, the rats received one injection of MK-801 (dizocilpine 3mg/kg) or saline control. Seventy-two hours later, the rats were anesthetized and transcardially perfused. Their brains were then postfixed for histology with Fluorojade-C (FJ-C) staining. Serial coronal sections were prepared from a rostrocaudal direction from 1.80 to 4.2mm posterior to the bregma to examine cell degeneration in the retrosplenial and piriform regions. MK-801, but not control saline, produced significant numbers of FJ-C positive neurons, indicating considerable neuronal degeneration. Dietary choline supplementation or deprivation in young animals reared for 30-60days did not alter NMDA antagonist-induced neurodegeneration in the retrosplenial region. An interesting finding is the absence of the piriform cortex involvement in young male rats and the complete absence of neurotoxicity in both hippocampus regions and DG. However, neurotoxicity in the piriform cortex of immature females treated for 60days appeared to be suppressed by low levels of dietary choline. Published by Elsevier B.V.

  17. N-methyl-D-aspartate increases acetylcholine release from rat striatum and cortex: its effect is augmented by choline

    NASA Technical Reports Server (NTRS)

    Ulus, I. H.; Buyukuysal, R. L.; Wurtman, R. J.

    1992-01-01

    We examined the effects of N-methyl-D-aspartate (NMDA), a glutamate agonist, and of glutamate itself, on acetylcholine (ACh) release from superfused rat striatal slices. In a Mg(++)-free medium, NMDA (32-1000 microM) as well as glutamate (1 mM) increased basal ACh release by 35 to 100% (all indicated differences, P less than .05), without altering tissue ACh or choline contents. This augmentation was blocked by Mg++ (1.2 mM) or by MK-801 (10 microM). Electrical stimulation (15 Hz, 75 mA) increased ACh release 9-fold (from 400 to 3660 pmol/mg of protein): this was enhanced (to 4850 pmol/mg of protein) by NMDA (100 microM). ACh levels in stimulated slices fell by 50 or 65% depending on the absence or presence of NMDA. The addition of choline (40 microM) increased ACh release both basally (570 pmol/mg of protein) and with electrical stimulation (6900 pmol/mg of protein). In stimulated slices choline acted synergistically with NMDA, raising ACh release to 10,520 pmol/mg of protein. The presence of choline also blocked the fall in tissue ACh. No treatment affected tissue phospholipid or protein levels. NMDA (32-320 microM) also augmented basal ACh release from cortical but not hippocampal slices. Choline efflux from striatal and cortical (but not hippocampal) slices decreased by 34 to 50% in Mg(++)-free medium. These data indicate that NMDA-like drugs may be useful, particularly in combination with choline, to enhance striatal and cortical cholinergic activity. ACh release from rat hippocampus apparently is not affected by NMDA receptors.

  18. Altered Arachidonate Distribution in Macrophages from Caveolin-1 Null Mice Leading to Reduced Eicosanoid Synthesis*

    PubMed Central

    Astudillo, Alma M.; Pérez-Chacón, Gema; Meana, Clara; Balgoma, David; Pol, Albert; del Pozo, Miguel A.; Balboa, María A.; Balsinde, Jesús

    2011-01-01

    In this work we have studied the effect of caveolin-1 deficiency on the mechanisms that regulate free arachidonic acid (AA) availability. The results presented here demonstrate that macrophages from caveolin-1-deficient mice exhibit elevated fatty acid incorporation and remodeling and a constitutively increased CoA-independent transacylase activity. Mass spectrometry-based lipidomic analyses reveal stable alterations in the profile of AA distribution among phospholipids, manifested by reduced levels of AA in choline glycerophospholipids but elevated levels in ethanolamine glycerophospholipids and phosphatidylinositol. Furthermore, macrophages from caveolin-1 null mice show decreased AA mobilization and prostaglandin E2 and LTB4 production upon cell stimulation. Collectively, these results provide insight into the role of caveolin-1 in AA homeostasis and suggest an important role for this protein in the eicosanoid biosynthetic response. PMID:21852231

  19. Dietary choline and betaine intakes vary in an adult multiethnic population.

    PubMed

    Yonemori, Kim M; Lim, Unhee; Koga, Karin R; Wilkens, Lynne R; Au, Donna; Boushey, Carol J; Le Marchand, Loïc; Kolonel, Laurence N; Murphy, Suzanne P

    2013-06-01

    Choline and betaine are important nutrients for human health, but reference food composition databases for these nutrients became available only recently. We tested the feasibility of using these databases to estimate dietary choline and betaine intakes among ethnically diverse adults who participated in the Multiethnic Cohort (MEC) Study. Of the food items (n = 965) used to quantify intakes for the MEC FFQ, 189 items were exactly matched with items in the USDA Database for the Choline Content of Common Foods for total choline, choline-containing compounds, and betaine, and 547 items were matched to the USDA National Nutrient Database for Standard Reference for total choline (n = 547) and 148 for betaine. When a match was not found, choline and betaine values were imputed based on the same food with a different form (124 food items for choline, 300 for choline compounds, 236 for betaine), a similar food (n = 98, 284, and 227, respectively) or the closest item in the same food category (n = 6, 191, and 157, respectively), or the values were assumed to be zero (n = 1, 1, and 8, respectively). The resulting mean intake estimates for choline and betaine among 188,147 MEC participants (aged 45-75) varied by sex (372 and 154 mg/d in men, 304 and 128 mg/d in women, respectively; P-heterogeneity < 0.0001) and by race/ethnicity among Caucasians, African Americans, Japanese Americans, Latinos, and Native Hawaiians (P-heterogeneity < 0.0001), largely due to the variation in energy intake. Our findings demonstrate the feasibility of assessing choline and betaine intake and characterize the variation in intake that exists in a multiethnic population.

  20. Dietary Choline and Betaine Intakes Vary in an Adult Multiethnic Population123

    PubMed Central

    Yonemori, Kim M.; Lim, Unhee; Koga, Karin R.; Wilkens, Lynne R.; Au, Donna; Boushey, Carol J.; Le Marchand, Loïc; Kolonel, Laurence N.; Murphy, Suzanne P.

    2013-01-01

    Choline and betaine are important nutrients for human health, but reference food composition databases for these nutrients became available only recently. We tested the feasibility of using these databases to estimate dietary choline and betaine intakes among ethnically diverse adults who participated in the Multiethnic Cohort (MEC) Study. Of the food items (n = 965) used to quantify intakes for the MEC FFQ, 189 items were exactly matched with items in the USDA Database for the Choline Content of Common Foods for total choline, choline-containing compounds, and betaine, and 547 items were matched to the USDA National Nutrient Database for Standard Reference for total choline (n = 547) and 148 for betaine. When a match was not found, choline and betaine values were imputed based on the same food with a different form (124 food items for choline, 300 for choline compounds, 236 for betaine), a similar food (n = 98, 284, and 227, respectively) or the closest item in the same food category (n = 6, 191, and 157, respectively), or the values were assumed to be zero (n = 1, 1, and 8, respectively). The resulting mean intake estimates for choline and betaine among 188,147 MEC participants (aged 45–75) varied by sex (372 and 154 mg/d in men, 304 and 128 mg/d in women, respectively; P-heterogeneity < 0.0001) and by race/ethnicity among Caucasians, African Americans, Japanese Americans, Latinos, and Native Hawaiians (P-heterogeneity < 0.0001), largely due to the variation in energy intake. Our findings demonstrate the feasibility of assessing choline and betaine intake and characterize the variation in intake that exists in a multiethnic population. PMID:23616508

  1. Effect of antacid and ascorbic acid on serum salicylate concentration.

    PubMed

    Hansten, P D; Hayton, W L

    1980-01-01

    To determine the effect of antacid or ascorbic acid administration on plateau serum salicylate concentrations, nine healthy subjects were given each of the following treatments by balanced block design: choline salicylate (equivalent to 3.76 or 5.62 Gm/day of aspirin); choline salicylate plus magnesium-aluminum hydroxide (120 ml/day); or choline salicylate plus ascorbic acid (3 Gm/day). In subjects developing a control serum salicylate level above 10 mg/dl, antacid administration produced a decrease in serum salicylate level (mean 19.8 mg/dl vs. 15.8 mg/dl) (P less than 0.01). Ascorbic acid administration was not associated with a significant change in serum salicylate. The reduction in serum salicylate following antacid appears to be due to antacid-induced alkalinization of the urine with resultant increase in renal salicylate clearance. Antacid administration should be considered a potential cause of altered serum salicylate concentration in patients receiving large doses of salicylate.

  2. Plasma choline metabolites and colorectal cancer risk in the Women’s Health Initiative Observational Study

    PubMed Central

    Bae, Sajin; Ulrich, Cornelia M.; Neuhouser, Marian L.; Malysheva, Olga; Bailey, Lynn B.; Xiao, Liren; Brown, Elissa C.; Cushing-Haugen, Kara L.; Zheng, Yingye; Cheng, Ting-Yuan David; Miller, Joshua W.; Green, Ralph; Lane, Dorothy S.; Beresford, Shirley A. A.; Caudill, Marie A.

    2014-01-01

    Few studies have examined associations between plasma choline metabolites and risk of colorectal cancer (CRC). Therefore, we investigated associations between plasma biomarkers of choline metabolism [choline, betaine, dimethylglycine and trimethylamine N-oxide (TMAO)] and CRC risk among postmenopausal women in a case-control study nested within the Women’s Health Initiative Observational Study. We selected 835 matched case-control pairs, and cases were further stratified by tumor site (proximal, distal, or rectal) and stage (local/regional or metastatic). CRC was assessed by self-report and confirmed by medical records over the mean 5.2y of follow-up. Baseline plasma choline metabolites were measured by liquid chromatography-tandem mass spectrometry. In multivariable-adjusted conditional logistic regression models, plasma choline tended to be positively associated with rectal cancer risk [OR (95% CI)highest vs. lowest quartile=2.44 (0.93–6.40);P-trend=0.08], while plasma betaine was inversely associated with CRC overall [0.68 (0.47–0.99);P-trend=0.01] and with local/regional tumors [0.64 (0.42–0.99);P-trend=0.009]. Notably, the plasma betaine:choline ratio was inversely associated with CRC overall [0.56 (0.39–0.82);P-trend=0.004] as well as with proximal [0.66 (0.41–1.06);P-trend=0.049], rectal [0.27 (0.10–0.78);P-trend=0.02] and local/regional [0.50 (0.33–0.76);P-trend=0.001] tumors. Finally, plasma TMAO, an oxidative derivative of choline produced by intestinal bacteria, was positively associated with rectal cancer [3.38 (1.25–9.16);P-trend=0.02] and with overall CRC risk among women with lower (vs. higher) plasma vitamin B12 levels (P-interaction=0.003). Collectively, these data suggest that alterations in choline metabolism, which may arise early in disease development, may be associated with higher risk of CRC. The positive association between plasma TMAO and CRC risk is consistent with an involvement of the gut microbiome in CRC pathogenesis. PMID:25336191

  3. Plasma choline metabolites and colorectal cancer risk in the Women's Health Initiative Observational Study.

    PubMed

    Bae, Sajin; Ulrich, Cornelia M; Neuhouser, Marian L; Malysheva, Olga; Bailey, Lynn B; Xiao, Liren; Brown, Elissa C; Cushing-Haugen, Kara L; Zheng, Yingye; Cheng, Ting-Yuan David; Miller, Joshua W; Green, Ralph; Lane, Dorothy S; Beresford, Shirley A A; Caudill, Marie A

    2014-12-15

    Few studies have examined associations between plasma choline metabolites and risk of colorectal cancer. Therefore, we investigated associations between plasma biomarkers of choline metabolism [choline, betaine, dimethylglycine, and trimethylamine N-oxide (TMAO)] and colorectal cancer risk among postmenopausal women in a case-control study nested within the Women's Health Initiative Observational Study. We selected 835 matched case-control pairs, and cases were further stratified by tumor site (proximal, distal, or rectal) and stage (local/regional or metastatic). Colorectal cancer was assessed by self-report and confirmed by medical records over the mean of 5.2 years of follow-up. Baseline plasma choline metabolites were measured by LC/MS-MS. In multivariable-adjusted conditional logistic regression models, plasma choline tended to be positively associated with rectal cancer risk [OR (95% confidence interval, CI)(highest vs. lowest quartile) = 2.44 (0.93-6.40); P trend = 0.08], whereas plasma betaine was inversely associated with colorectal cancer overall [0.68 (0.47-0.99); P trend = 0.01] and with local/regional tumors [0.64 (0.42-0.99); P trend = 0.009]. Notably, the plasma betaine:choline ratio was inversely associated with colorectal cancer overall [0.56 (0.39-0.82); P trend = 0.004] as well as with proximal [0.66 (0.41-1.06); P trend = 0.049], rectal [0.27 (0.10-0.78); P trend = 0.02], and local/regional [0.50 (0.33-0.76); P trend = 0.001] tumors. Finally, plasma TMAO, an oxidative derivative of choline produced by intestinal bacteria, was positively associated with rectal cancer [3.38 (1.25-9.16); P trend = 0.02] and with overall colorectal cancer risk among women with lower (vs. higher) plasma vitamin B12 levels (P interaction = 0.003). Collectively, these data suggest that alterations in choline metabolism, which may arise early in disease development, may be associated with higher risk of colorectal cancer. The positive association between plasma TMAO and colorectal cancer risk is consistent with an involvement of the gut microbiome in colorectal cancer pathogenesis. ©2014 American Association for Cancer Research.

  4. Choline supplementation and DNA methylation in the hippocampus and prefrontal cortex of rats exposed to alcohol during development.

    PubMed

    Otero, Nicha K H; Thomas, Jennifer D; Saski, Christopher A; Xia, Xiaoxia; Kelly, Sandra J

    2012-10-01

    Some of the most frequent deficits seen in children with fetal alcohol spectrum disorders (FASD) and in animal models of FASD are spatial memory impairments and impaired executive functioning, which are likely related to alcohol-induced alterations of the hippocampus and prefrontal cortex (PFC), respectively. Choline, a nutrient supplement, has been shown in a rat model to ameliorate some of alcohol's teratogenic effects, and this effect may be mediated through choline's effects on DNA methylation. Alcohol was given by intragastric intubation to rat pups during the neonatal period (postnatal days 2 to 10) (ET group), which is equivalent to the third trimester in humans and a period of heightened vulnerability of the brain to alcohol exposure. Control groups included an intubated control group given the intubation procedure without alcohol (IC) and a nontreated control group (NC). Choline or saline was administered subcutaneously to each subject from postnatal days 2 to 20. On postnatal day 21, the brains of the subjects were removed and assayed for global DNA methylation patterning as measured by chemiluminescence using the cpGlobal assay in both the hippocampal region and PFC. Alcohol exposure caused hypermethylation in the hippocampus and PFC, which was significantly reduced after choline supplementation. In contrast, control animals showed increases in DNA methylation in both regions after choline supplementation, suggesting that choline supplementation has different effects depending upon the initial state of the brain. This study is the first to show changes in global DNA methylation of the hippocampal region and PFC after neonatal alcohol exposure. Choline supplementation impacts global DNA methylation in these 2 brain regions in alcohol-exposed and control animals in a differential manner. The current findings suggest that both alcohol and choline have substantial impact on the epigenome in the PFC and hippocampus, and future studies will be needed to describe which gene families are impacted in such a way that function of the nervous system is changed. Copyright © 2012 by the Research Society on Alcoholism.

  5. Hepatic Activity and Transcription of Betaine-Homocysteine Methyltransferase, Methionine Synthase, and Cystathionine Synthase in Periparturient Dairy Cows Are Altered to Different Extents by Supply of Methionine and Choline.

    PubMed

    Zhou, Zheng; Garrow, Timothy A; Dong, Xianwen; Luchini, Daniel N; Loor, Juan J

    2017-01-01

    Compared with choline, Met enhances milk yield and feed intake, and elicits a better immuno-metabolic status in periparturient cows. It is unknown whether hepatic activity and transcription of betaine-homocysteine methyltransferase (BHMT), 5-methyltetrahydrofolate-homocysteine methyltransferase (MTR), and cystathionine β-synthase (CBS) are responsive to Met and choline supply. This study sought to characterize hepatic BHMT, MTR, and CBS transcription and activity in response to Met and choline supplementation. Forty multiparous cows were used in a 2 × 2 factorial design from -21 d through 30 d around parturition to assess effects of dietary rumen-protected Met (0% or 0.08% dry matter basis) or rumen-protected choline (0 or 60 g · cow -1 · d -1 ). Liver tissue obtained on days -10, 7, 20, and 30 was used for analyses. Met-supplemented cows had greater methionine adenosyltransferase 1A (MAT1A) (0.38 compared with 0.27; SEM = 0.05; P = 0.02) and phosphatidylethanolamine methyltransferase (PEMT) (0.74 compared with 0.58; SEM = 0.08; P = 0.05) expression. Greater S-adenosylhomocysteine hydrolase (SAHH) (0.93 compared with 0.74; SEM = 0.05; P = 0.01) and CBS (1.16 compared with 1.02; SEM = 0.07; P = 0.04), as well as lower MTR activity (23.4 compared with 29.7 nmol product · h -1 · mg protein -1 ; SEM = 2.9; P = 0.04), also were detected in Met- but not choline-supplemented cows. Although BHMT and MTR expression and BHMT enzyme activity did not change (P > 0.05), MTR enzyme activity was lower in choline-supplemented cows (23.5 compared with 29.6 nmol product · h -1 · mg protein -1 ; SEM = 2.9; P = 0.05). These findings indicate that greater synthesis of phosphatidylcholine and antioxidants contribute to the better performance and immuno-metabolic status in Met-supplemented cows. Failure to generate a comparable amount of endogenous Met from choline could be one reason that choline-fed cows fail to achieve comparable performance and health benefits during the periparturient period. © 2017 American Society for Nutrition.

  6. Maternal Choline Supplementation Modulates Placental Nutrient Transport and Metabolism in Late Gestation of Mouse Pregnancy.

    PubMed

    Kwan, Sze Ting Cecilia; King, Julia H; Yan, Jian; Wang, Zhen; Jiang, Xinyin; Hutzler, Jason S; Klein, Hallie R; Brenna, J Thomas; Roberson, Mark S; Caudill, Marie A

    2017-11-01

    Background: Fetal growth is dependent on placental nutrient supply, which is influenced by placental perfusion and transporter abundance. Previous research indicates that adequate choline nutrition during pregnancy improves placental vascular development, supporting the hypothesis that choline may affect placental nutrient transport. Objective: The present study sought to determine the impact of maternal choline supplementation (MCS) on placental nutrient transporter abundance and nutrient metabolism during late gestation. Methods: Female non-Swiss albino mice were randomly assigned to the 1×, 2×, or 4× choline diet (1.4, 2.8, and 5.6 g choline chloride/kg diet, respectively) 5 d before mating ( n = 16 dams/group). The placentas and fetuses were harvested on gestational day (E) 15.5 and E18.5. The placental abundance of macronutrient, choline, and acetylcholine transporters and glycogen metabolic enzymes, and the placental concentration of glycogen were quantified. Choline metabolites and docosahexaenoic acid (DHA) concentrations were measured in the placentas and/or fetal brains. Data were stratified by gestational day and fetal sex and were analyzed by using mixed linear models. Results: At E15.5, MCS downregulated the placental transcript and protein abundance of glucose transporter 1 (GLUT1) (-40% to -73%, P < 0.05) and the placental transcript abundance of glycogen-synthesizing enzymes (-24% to -50%, P ≤ 0.05). At E18.5, MCS upregulated GLUT3 protein abundance (+55%, P = 0.016) and the transcript abundance of glycogen-synthesizing enzymes only in the female placentas (+36% to +60%, P < 0.05), resulting in a doubling ( P = 0.01) of the glycogen concentration. A higher placental transcript abundance of the transporters for DHA, choline, and acetylcholine was also detected in response to MCS, consequently altering their concentrations in the placentas or fetal brains ( P ≤ 0.05). Conclusions: These data suggest that MCS modulates placental nutrient transporter abundance and nutrient metabolism in late gestation of mouse pregnancy, with subsequent effects on nutrient supply for the developing fetus. © 2017 American Society for Nutrition.

  7. Glycerophosphodiester phosphodiesterase domain containing 5 (GDPD5) expression correlates with malignant choline phospholipid metabolite profiles in human breast cancer

    PubMed Central

    Cao, Maria D.; Döpkens, Mailin; Krishnamachary, Balaji; Vesuna, Farhad; Gadiya, Mayur M.; Loenning, Per E.; Bhujwalla, Zaver M.; Gribbestad, Ingrid S.; Glunde, Kristine

    2012-01-01

    Altered choline phospholipid metabolism is a hallmark of cancer, leading to malignant choline metabolite profiles consisting of low glycerophosphocholine (GPC) and high phosphocholine (PC) in human breast cancers. Glycerophosphocholine phosphodiesterase (GPC-PDE) catalyzes the degradation of GPC to free choline and glycerol-3-phosphate. The gene(s) encoding for the GPC-PDE(s) responsible for GPC degradation in breast cancers have not yet been identified. Here we have demonstrated for the first time that the GPC-PDE encoded by glycerophosphodiester phosphodiesterase domain containing 5 (GDPD5) is associated with breast cancer malignancy. Two human breast cancer cell lines (n=8 and 10) and primary human breast tumor samples (n=19) were studied with combined magnetic resonance spectroscopy (MRS) and qRT-PCR to investigate several isoforms of GDPD expression with respect to choline phospholipid metabolite levels. Out of five GDPDs tested, GDPD5 was found to be significantly overexpressed in highly malignant estrogen receptor negative (ER−) compared to weakly malignant estrogen receptor positive (ER+) human breast cancer cells (P=0.027) and breast tumors from patients (P=0.015). GDPD5 showed significantly positive correlations with PC (P<0.001), total choline (tCho) (P=0.007) and PC/GPC (P<0.001) levels in human breast tumors. GDPD5 showed a trend towards negative correlation with GPC levels (P=0.130). Human breast cancers with malignant choline metabolite profiles consisting of low GPC and high PC levels highly co-expressed GDPD5, choline kinase alpha (CHKA), and phosphatidylcholine-specific phospholipase D1 (PLD1), while cancers containing high GPC and relatively low PC levels displayed low co-expression of GDPD5, CHKA, and PLD1. GDPD5, CHKA and PLD1 were significantly overexpressed in highly malignant ER− tumors in our patient cohort. Our study identified GDPD5 as a GPC-PDE that likely participates in regulating choline phospholipid metabolism in breast cancer, which possibly occurs in cooperation with CHKA and PLD1. PMID:22279038

  8. Serum butyrylcholinesterase and paraoxonase 1 in a canine model of endotoxemia: effects of choline administration.

    PubMed

    Tvarijonaviciute, Asta; Kocaturk, Meric; Cansev, Mehmet; Tecles, Fernando; Ceron, Jose J; Yilmaz, Zeki

    2012-10-01

    Butyrylcholinesterase (BChE) and paraoxonase 1 (PON1) are two serum enzymes synthesized by the liver that are related with inflammation. The main objectives of this study were to determine changes in serum BChE and PON1 by using a canine model of endotoxemia, and to evaluate whether choline alters BChE and PON1 activities during inflammation. For this purpose, a total of 20 mongrel dogs were divided into four groups: control, choline (C), lipopolysaccharide (LPS), and LPS+C. Dogs in the control group were injected with 0.9% NaCl (0.2 ml/kg, i.v.). Dogs in C and LPS+C groups received choline chloride (20 mg/kg, i.v., three times with 4 h intervals). Endotoxin was injected (0.02 mg/kg, i.v., once) to the dogs of LPS and LPS+C groups. Statistically significant decreases in BChE and PON1 activities in LPS group were detected 24 and 48 h post injection, respectively. No statistically significant changes in BChE and PON1 activities at different times were detected in control, C, or LPS+C groups. In conclusion, the data obtained in present study revealed a decrease in serum BChE and PON1 activities in dogs during experimentally induced endotoxemia and that choline administration attenuates these changes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Choline and Cystine Deficient Diets in Animal Models with Hepatocellular Injury: Evaluation of Oxidative Stress and Expression of RAGE, TNF-α, and IL-1β.

    PubMed

    Santos, Juliana Célia F; de Araújo, Orlando R P; Valentim, Iara B; de Andrade, Kívia Queiroz; Moura, Fabiana Andréa; Smaniotto, Salete; dos Santos, John Marques; Gasparotto, Juciano; Gelain, Daniel P; Goulart, Marília O F

    2015-01-01

    This study aims to evaluate the effects of diets deficient in choline and/or cystine on hepatocellular injury in animal models (young male Wistar rats, aged 21 days), by monitoring some of the oxidative stress biomarkers and the expression of RAGE, TNF-α, and IL-1β. The animals were divided into 6 groups (n = 10) and submitted to different diets over 30 days: AIN-93 diet (standard, St), AIN-93 choline deficient (CD) diet and AIN-93 choline and cystine deficient (CCD) diet, in the pellet (pl) and powder (pw) diet forms. Independently of the diet form, AIN-93 diet already led to hepatic steatosis and CD/CCD diets provoked hepatic damage. The increase of lipid peroxidation, represented by the evaluation of thiobarbituric acid reactive species, associated with the decrease of levels of antioxidant enzymes, were the parameters with higher significance toward redox profile in this model of hepatic injury. Regarding inflammation, in relation to TNF-α, higher levels were evidenced in CD(pl), while, for IL-1β, no significant alteration was detected. RAGE expression was practically the same in all groups, with exception of CCD(pw) versus CCD(pl). These results together confirm that AIN-93 causes hepatic steatosis and choline and/or cysteine deficiencies produce important hepatic injury associated with oxidative stress and inflammatory profiles.

  10. Higher Dietary Choline and Betaine Intakes Are Associated with Better Body Composition in the Adult Population of Newfoundland, Canada.

    PubMed

    Gao, Xiang; Wang, Yongbo; Randell, Edward; Pedram, Pardis; Yi, Yanqing; Gulliver, Wayne; Sun, Guang

    2016-01-01

    Choline is an essential nutrient and betaine is an osmolyte and methyl donor. Both are important to maintain health including adequate lipid metabolism. Supplementation of dietary choline and betaine increase muscle mass and reduce body fat in animals. However, little data is available regarding the role of dietary choline and betaine on body composition in humans. To investigate the association between dietary choline and betaine intakes with body composition in a large population based cross-sectional study. A total of 3214 subjects from the CODING (Complex Disease in Newfoundland population: Environment and Genetics) study were assessed. Dietary choline and betaine intakes were computed from the Willett Food Frequency questionnaire. Body composition was measured using dual-energy X-ray absorptiometry following a 12-hour fast. Major confounding factors including age, sex, total calorie intake and physical activity level were controlled in all analyses. Significantly inverse correlations were found between dietary choline and betaine intakes, with all obesity measurements: total percent body fat (%BF), percent trunk fat (%TF), percent android fat (%AF), percent gynoid fat (%GF) and anthropometrics: weight, body mass index, waist circumference, waist-to-hip ratio in both women and men (r range from -0.13 to -0.47 for choline and -0.09 to -0.26 for betaine, p<0.001 for all). Dietary choline intake had stronger association than betaine. Moreover, obese subjects had the lowest dietary choline and betaine intakes, with overweight subjects in the middle, and normal weight subjects consumed the highest dietary choline and betaine (p<0.001). Vice versa, when subjects were ranked according to dietary choline and betaine intakes, subjects with the highest intake of both had the lowest %TF, %AF, %GF, %BF and highest %LM among the groups in both sexes. Our findings indicate that high dietary choline and betaine intakes are significantly associated with favorable body composition in humans.

  11. Higher Dietary Choline and Betaine Intakes Are Associated with Better Body Composition in the Adult Population of Newfoundland, Canada

    PubMed Central

    Gao, Xiang; Wang, Yongbo; Randell, Edward; Pedram, Pardis; Yi, Yanqing; Gulliver, Wayne; Sun, Guang

    2016-01-01

    Background Choline is an essential nutrient and betaine is an osmolyte and methyl donor. Both are important to maintain health including adequate lipid metabolism. Supplementation of dietary choline and betaine increase muscle mass and reduce body fat in animals. However, little data is available regarding the role of dietary choline and betaine on body composition in humans. Objective To investigate the association between dietary choline and betaine intakes with body composition in a large population based cross-sectional study. Design A total of 3214 subjects from the CODING (Complex Disease in Newfoundland population: Environment and Genetics) study were assessed. Dietary choline and betaine intakes were computed from the Willett Food Frequency questionnaire. Body composition was measured using dual-energy X-ray absorptiometry following a 12-hour fast. Major confounding factors including age, sex, total calorie intake and physical activity level were controlled in all analyses. Result Significantly inverse correlations were found between dietary choline and betaine intakes, with all obesity measurements: total percent body fat (%BF), percent trunk fat (%TF), percent android fat (%AF), percent gynoid fat (%GF) and anthropometrics: weight, body mass index, waist circumference, waist-to-hip ratio in both women and men (r range from -0.13 to -0.47 for choline and -0.09 to -0.26 for betaine, p<0.001 for all). Dietary choline intake had stronger association than betaine. Moreover, obese subjects had the lowest dietary choline and betaine intakes, with overweight subjects in the middle, and normal weight subjects consumed the highest dietary choline and betaine (p<0.001). Vice versa, when subjects were ranked according to dietary choline and betaine intakes, subjects with the highest intake of both had the lowest %TF, %AF, %GF, %BF and highest %LM among the groups in both sexes. Conclusion Our findings indicate that high dietary choline and betaine intakes are significantly associated with favorable body composition in humans. PMID:27166611

  12. Dietary choline and betaine assessed by food-frequency questionnaire in relation to plasma total homocysteine concentration in the Framingham Offspring Study2

    PubMed Central

    Cho, Eunyoung; Zeisel, Steven H; Jacques, Paul; Selhub, Jacob; Dougherty, Lauren; Colditz, Graham A; Willett, Walter C

    2008-01-01

    Background: Epidemiologic studies of choline and betaine intakes have been sparse because a food-composition database was not available until recently. The physiologic relevance of a variation in dietary choline and betaine in the general population and the validity of intake assessed by food-frequency questionnaire (FFQ) have not been evaluated. Objective: This study was conducted to examine the physiologic relevance and validity of choline and betaine intakes measured by an FFQ. Design: We examined the relations between choline and betaine intakes measured by FFQ and plasma total homocysteine (tHcy) concentrations in 1960 participants from the Framingham Offspring Study. Results: Higher intakes of dietary choline and betaine were related to lower tHcy concentrations independent of other determinants, including folate and other B vitamins. For the lowest and highest quintiles of dietary choline plus betaine, the multivariate geometric means for tHcy were 10.9 and 9.9 μmol/L (P for trend < 0.0001). The inverse association was manifested primarily in participants with low folate intakes (P for interaction < 0.0001). Among participants with folate intakes ≤250 μg/d, the geometric mean tHcy concentrations in the lowest and highest quintiles of choline plus betaine intakes were 12.4 and 10.2 μmol/L (P for trend < 0.0001). Except for choline from phosphatidylcholine, individual forms of choline were inversely associated with tHcy concentrations. Conclusions: Our findings provide support for a physiologically important variation in choline and betaine intakes in the general population and for the validity of intake measured by FFQ. PMID:16600945

  13. High dietary choline and betaine intake is associated with low insulin resistance in the Newfoundland population.

    PubMed

    Gao, Xiang; Wang, Yongbo; Sun, Guang

    2017-01-01

    Dietary betaine supplement could ameliorate insulin resistance (IR) in animals, but no data are available for choline. Reports on humans are rare. The aim of this study was to investigate the association between dietary choline and betaine intake and IR in humans. We assessed 2394 adults from the CODING (Complex Diseases in the Newfoundland population: Environment and Genetics) study. Intake of dietary choline and betaine was evaluated from the Willett Food Frequency Questionnaire. IR was estimated by homeostatic model assessment (HOMA-IR) and the quantitative insulin-sensitivity check index (QUICKI). Partial correlation analysis was used to determine the correlations of dietary choline and betaine intake with IR adjusted for major confounding factors. Dietary choline and betaine intake was inversely correlated with levels of fasting glucose and insulin, HOMA-IR, HOMA-β (r = -0.08 to -0.27 for choline and r = -0.06 to -0.16 for betaine; P < 0.05) and positively related to QUICKI (r = 0.16-0.25 for choline and r = 0.11-0.16 for betaine; P < 0.01) in both sexes after controlling for age, total calorie intake, and physical activity level. The significant associations disappeared in men after percent trunk fat was added as a confounding factor. Furthermore, individuals with the highest tertile of dietary choline and betaine intake had the lowest IR severity. Dietary choline and betaine intake, however, was the lowest in the high IR group, intermediate in the medium group, and the highest in the low IR group. This study demonstrated that higher intake of dietary choline and betaine is associated with lower IR in the general population. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Fetal iron deficiency induces chromatin remodeling at the Bdnf locus in adult rat hippocampus.

    PubMed

    Tran, Phu V; Kennedy, Bruce C; Lien, Yu-Chin; Simmons, Rebecca A; Georgieff, Michael K

    2015-02-15

    Fetal and subsequent early postnatal iron deficiency causes persistent impairments in cognitive and affective behaviors despite prompt postnatal iron repletion. The long-term cognitive impacts are accompanied by persistent downregulation of brain-derived neurotrophic factor (BDNF), a factor critical for hippocampal plasticity across the life span. This study determined whether early-life iron deficiency epigenetically modifies the Bdnf locus and whether dietary choline supplementation during late gestation reverses these modifications. DNA methylation and histone modifications were assessed at the Bdnf-IV promoter in the hippocampus of rats [at postnatal day (PND) 65] that were iron-deficient (ID) during the fetal-neonatal period. Iron deficiency was induced in rat pups by providing pregnant and nursing dams an ID diet (4 mg/kg Fe) from gestational day (G) 2 through PND7, after which iron deficiency was treated with an iron-sufficient (IS) diet (200 mg/kg Fe). This paradigm resulted in about 60% hippocampal iron loss on PND15 with complete recovery by PND65. For choline supplementation, pregnant rat dams were given dietary choline (5 g/kg) from G11 through G18. DNA methylation was determined by quantitative sequencing of bisulfite-treated DNA, revealing a small alteration at the Bdnf-IV promoter. Chromatin immunoprecipitation analysis showed increased HDAC1 binding accompanied by reduced binding of RNA polymerase II and USF1 at the Bdnf-IV promoter in formerly ID rats. These changes were correlated with altered histone methylations. Prenatal choline supplementation reverses these epigenetic modifications. Collectively, the findings identify epigenetic modifications as a potential mechanism to explicate the long-term repression of Bdnf following fetal and early postnatal iron deficiency. Copyright © 2015 the American Physiological Society.

  15. Fetal iron deficiency induces chromatin remodeling at the Bdnf locus in adult rat hippocampus

    PubMed Central

    Kennedy, Bruce C.; Lien, Yu-Chin; Simmons, Rebecca A.; Georgieff, Michael K.

    2014-01-01

    Fetal and subsequent early postnatal iron deficiency causes persistent impairments in cognitive and affective behaviors despite prompt postnatal iron repletion. The long-term cognitive impacts are accompanied by persistent downregulation of brain-derived neurotrophic factor (BDNF), a factor critical for hippocampal plasticity across the life span. This study determined whether early-life iron deficiency epigenetically modifies the Bdnf locus and whether dietary choline supplementation during late gestation reverses these modifications. DNA methylation and histone modifications were assessed at the Bdnf-IV promoter in the hippocampus of rats [at postnatal day (PND) 65] that were iron-deficient (ID) during the fetal-neonatal period. Iron deficiency was induced in rat pups by providing pregnant and nursing dams an ID diet (4 mg/kg Fe) from gestational day (G) 2 through PND7, after which iron deficiency was treated with an iron-sufficient (IS) diet (200 mg/kg Fe). This paradigm resulted in about 60% hippocampal iron loss on PND15 with complete recovery by PND65. For choline supplementation, pregnant rat dams were given dietary choline (5 g/kg) from G11 through G18. DNA methylation was determined by quantitative sequencing of bisulfite-treated DNA, revealing a small alteration at the Bdnf-IV promoter. Chromatin immunoprecipitation analysis showed increased HDAC1 binding accompanied by reduced binding of RNA polymerase II and USF1 at the Bdnf-IV promoter in formerly ID rats. These changes were correlated with altered histone methylations. Prenatal choline supplementation reverses these epigenetic modifications. Collectively, the findings identify epigenetic modifications as a potential mechanism to explicate the long-term repression of Bdnf following fetal and early postnatal iron deficiency. PMID:25519736

  16. Neuroprotective effect of oral choline administration after global brain ischemia in rats.

    PubMed

    Borges, Andrea Aurélio; El-Batah, Philipe Nicolas; Yamashita, Lilia Fumie; Santana, Aline dos Santos; Lopes, Antonio Carlos; Freymuller-Haapalainen, Edna; Coimbra, Cicero Galli; Sinigaglia-Coimbra, Rita

    2015-08-01

    Choline - now recognized as an essential nutrient - is the most common polar group found in the outer leaflet of the plasma membrane bilayer. Brain ischemia-reperfusion causes lipid peroxidation triggering multiple cell death pathways involving necrosis and apoptosis. Membrane breakdown is, therefore, a major pathophysiologic event in brain ischemia. The ability to achieve membrane repair is a critical step for survival of ischemic neurons following reperfusion injury. The availability of choline is a rate-limiting factor in phospholipid synthesis and, therefore, may be important for timely membrane repair and cell survival. This work aimed at verifying the effects of 7-day oral administration with different doses of choline on survival of CA1 hippocampal neurons following transient global forebrain ischemia in rats. The administration of 400 mg/kg/day divided into two daily doses for 7 consecutive days significantly improved CA1 pyramidal cell survival, indicating that the local availability of this essential nutrient may limit postischemic neuronal survival.

  17. Dietary choline deficiency and excess induced intestinal inflammation and alteration of intestinal tight junction protein transcription potentially by modulating NF-κB, STAT and p38 MAPK signaling molecules in juvenile Jian carp.

    PubMed

    Wu, Pei; Jiang, Wei-Dan; Jiang, Jun; Zhao, Juan; Liu, Yang; Zhang, Yong-An; Zhou, Xiao-Qiu; Feng, Lin

    2016-11-01

    This study investigated the effects of choline on intestinal mucosal immune and the possible mechanisms in fish by feeding juvenile Jian carp (Cyprinus carpio var. Jian) with graded levels of dietary choline (165-1820 mg/kg diet) for 65 days. The results firstly showed that choline deficiency induced inflammatory infiltration in the proximal intestine (PI), mid intestine (MI) and distal intestine (DI) of fish. Meanwhile, compared with the optimal choline group, choline deficiency decreased the activities of lysozyme and acid phosphatase, contents of complement 3 and IgM in the intestine, downregulated the mRNA levels of antimicrobial peptides (liver-expressed antimicrobial peptide (LEAP) 2A and defensin-3 in the PI and MI, LEAP-2B and hepcidin in the PI, MI and DI), anti-inflammatory cytokines (interleukin (IL) 10 and transforming growth factor β2 in the PI, MI and DI), and signaling molecule IκB in the PI, MI and DI; while upregulated the mRNA levels of pro-inflammatory cytokines (IL-6a and tumor necrosis factor α in the MI and DI, interferon γ2b in the PI and MI, IL-1β and IL-6b in the PI, MI and DI), and signaling molecules (Toll-like receptor 4 in the MI, myeloid differentiation primary response 88 in the PI and MI, Janus kinase 3 and tyrosine kinase 2 in the MI and DI, nuclear factor kappa B (NF-κB), signal transducers and activators of transcription (STAT) 4 and STAT5 in the PI, MI and DI) of juvenile Jian carp, further indicating that choline deficiency caused inflammation and immunity depression in the intestine of fish. But choline deficiency decreased the PI IL-6a mRNA level, and increased the DI LEAP-2A and defensin-3 mRNA levels with unknown reasons. Furthermore, dietary choline deficiency downregulated mRNA levels of tight junction (TJ) proteins (claudin 3c in the PI and MI, claudin 7, claudin 11 and occludin in the PI, MI and DI) and signaling molecule mitogen-activated protein kinases p38 in the PI, MI and DI of juvenile Jian carp, whereas upregulated the mRNA levels of claudin 3b in the MI and DI, and claudin 3c in the DI. Moreover, the excessive choline exhibited negative effects on intestinal immunity and TJ proteins that were similar to the choline deficiency. In summary, dietary choline deficiency or excess caused the depression of intestinal mucosal immune by inducing inflammation and dysfunction of the intestinal physical barrier, and regulating related signaling molecules of fish. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Dimethylaminoethanol (deanol): effect on apomorphine-induced stereotypy and an animal model of tardive dyskinesia.

    PubMed

    Davis, K L; Hollister, L E; Vento, A L; Beilstein, B A; Rosekind, G R

    1979-05-25

    Dimethylaminoethanol (DMAE) was administered acutely to rats subsequently injected with spomorphine. A dose of 80 mg of DMAE had no effect on the severity of apomorphine-induced stereotypy. However, 160 mg of DMAE significantly diminished the severity of apomorphine-induced stereotypy. This dose of DMAE did not significantly alter spontaneous locomotor activity. DMAE did not reduced apomorphine-induced stereotypy in animals previously exposed to haloperidol and presumed to have postsynaptic dopamine receptor supersensitivity. These results with DMAE are contrasted with the effects of choline chloride, and suggest that choline chloride may be more effective than DMAE at augmenting striatal cholinergic activity.

  19. Gestational choline supplementation normalized fetal alcohol-induced alterations in histone modifications, DNA methylation, and proopiomelanocortin (POMC) gene expression in β-endorphin-producing POMC neurons of the hypothalamus.

    PubMed

    Bekdash, Rola A; Zhang, Changqing; Sarkar, Dipak K

    2013-07-01

    Prenatal exposure to ethanol (EtOH) reduces the expression of hypothalamic proopiomelanocortin (POMC) gene, known to control various physiological functions including the organismal stress response. In this study, we determined whether the changes in POMC neuronal functions are associated with altered expressions of histone-modifying and DNA-methylating enzymes in POMC-producing neurons, because these enzymes are known to be involved in regulation of gene expression. In addition, we tested whether gestational choline supplementation prevents the adverse effects of EtOH on these neurons. Pregnant rat dams were fed with alcohol-containing liquid diet or control diet during gestational days 7 and 21 with or without choline, and their male offspring rats were used during the adult period. Using double-immunohistochemistry, real-time reverse transcription polymerase chain reaction (RT-PCR) and methylation-specific RT-PCR, we determined protein and mRNA levels of histone-modifying and DNA-methylating enzymes and the changes in POMC gene methylation and expression in the hypothalamus of adult male offspring rats. Additionally, we measured the basal- and lipopolysaccharide (LPS)-induced corticosterone levels in plasma by enzyme-linked immunosorbent assay. Prenatal EtOH treatment suppressed hypothalamic levels of protein and mRNA of histone activation marks (H3K4me3, Set7/9, acetylated H3K9, phosphorylated H3S10), and increased the repressive marks (H3K9me2, G9a, Setdb1), DNA-methylating enzyme (Dnmt1), and the methyl-CpG-binding protein (MeCP2). The treatment also elevated the level of POMC gene methylation, while it reduced levels of POMC mRNA and β-EP and elevated corticosterone response to LPS. Gestational choline normalized the EtOH-altered protein and the mRNA levels of H3K4me3, Set7/9, H3K9me2, G9a, Setdb1, Dnmt1, and MeCP2. It also normalizes the changes in POMC gene methylation and gene expression, β-EP production, and the corticosterone response to LPS. These data suggest that prenatal EtOH modulates histone and DNA methylation in POMC neurons that may be resulting in hypermethylation of POMC gene and reduction in POMC gene expression. Gestational choline supplementation prevents the adverse effects of EtOH on these neurons. Copyright © 2013 by the Research Society on Alcoholism.

  20. Energy for Wild-Type Acetylcholine Receptor Channel Gating from Different Choline Derivatives

    PubMed Central

    Bruhova, Iva; Gregg, Timothy; Auerbach, Anthony

    2013-01-01

    Agonists, including the neurotransmitter acetylcholine (ACh), bind at two sites in the neuromuscular ACh receptor channel (AChR) to promote a reversible, global change in protein conformation that regulates the flow of ions across the muscle cell membrane. In the synaptic cleft, ACh is hydrolyzed to acetate and choline. Replacement of the transmitter’s ester acetyl group with a hydroxyl (ACh→choline) results in a +1.8 kcal/mol reduction in the energy for gating generated by each agonist molecule from a low- to high-affinity change of the transmitter binding site (ΔGB). To understand the distinct actions of structurally related agonist molecules, we measured ΔGB for 10 related choline derivatives. Replacing the hydroxyl group of choline with different substituents, such as hydrogen, chloride, methyl, or amine, increased the energy for gating (i.e., it made ΔGB more negative relative to choline). Extending the ethyl hydroxide tail of choline to propyl and butyl hydroxide also increased this energy. Our findings reveal the amount of energy that is available for the AChR conformational change provided by different, structurally related agonists. We speculate that a hydrogen bond between the choline hydroxyl and the backbone carbonyl of αW149 positions this agonist’s quaternary ammonium group so as to reduce the cation-π interaction between this moiety and the aromatic groups at the binding site. PMID:23442907

  1. The metabolic advantage of tumor cells

    PubMed Central

    2011-01-01

    1- Oncogenes express proteins of "Tyrosine kinase receptor pathways", a receptor family including insulin or IGF-Growth Hormone receptors. Other oncogenes alter the PP2A phosphatase brake over these kinases. 2- Experiments on pancreatectomized animals; treated with pure insulin or total pancreatic extracts, showed that choline in the extract, preserved them from hepatomas. Since choline is a methyle donor, and since methylation regulates PP2A, the choline protection may result from PP2A methylation, which then attenuates kinases. 3- Moreover, kinases activated by the boosted signaling pathway inactivate pyruvate kinase and pyruvate dehydrogenase. In addition, demethylated PP2A would no longer dephosphorylate these enzymes. A "bottleneck" between glycolysis and the oxidative-citrate cycle interrupts the glycolytic pyruvate supply now provided via proteolysis and alanine transamination. This pyruvate forms lactate (Warburg effect) and NAD+ for glycolysis. Lipolysis and fatty acids provide acetyl CoA; the citrate condensation increases, unusual oxaloacetate sources are available. ATP citrate lyase follows, supporting aberrant transaminations with glutaminolysis and tumor lipogenesis. Truncated urea cycles, increased polyamine synthesis, consume the methyl donor SAM favoring carcinogenesis. 4- The decrease of butyrate, a histone deacetylase inhibitor, elicits epigenic changes (PETEN, P53, IGFBP decrease; hexokinase, fetal-genes-M2, increase) 5- IGFBP stops binding the IGF - IGFR complex, it is perhaps no longer inherited by a single mitotic daughter cell; leading to two daughter cells with a mitotic capability. 6- An excess of IGF induces a decrease of the major histocompatibility complex MHC1, Natural killer lymphocytes should eliminate such cells that start the tumor, unless the fever prostaglandin PGE2 or inflammation, inhibit them... PMID:21649891

  2. Gut microbiota metabolites, amino acid metabolites and improvements in insulin sensitivity and glucose metabolism: the POUNDS Lost trial.

    PubMed

    Heianza, Yoriko; Sun, Dianjianyi; Li, Xiang; DiDonato, Joseph A; Bray, George A; Sacks, Frank M; Qi, Lu

    2018-06-02

    Alterations in gut microbiota have been linked to host insulin resistance, diabetes and impaired amino acid metabolism. We investigated whether changes in gut microbiota-dependent metabolite of trimethylamine N-oxide (TMAO) and its nutrient precursors (choline and L-carnitine) were associated with improvements in glucose metabolism and diabetes-related amino acids in a weight-loss diet intervention. We included 504 overweight and obese adults who were randomly assigned to one of four energy-reduced diets varying in macronutrient intake. The 6-month changes (Δ) in TMAO, choline and L-carnitine levels after the intervention were calculated. Greater decreases in choline and L-carnitine were significantly (p<0.05) associated with greater improvements in fasting insulin concentrations and homeostasis model assessment of insulin resistance (HOMA-IR) at 6 months. The reduction of choline was significantly related to 2-year improvements in glucose and insulin resistance. We found significant linkages between dietary fat intake and ΔTMAO for changes in fasting glucose, insulin and HOMA-IR (p interaction <0.05); a greater increase in TMAO was related to lesser improvements in the outcomes among participants who consumed a high-fat diet. In addition, ΔL-carnitine and Δcholine were significantly related to changes in amino acids (including branched-chain and aromatic amino acids). Interestingly, the associations of ΔTMAO, Δcholine and ΔL-carnitine with diabetes-related traits were independent of the changes in amino acids. Our findings underscore the importance of changes in TMAO, choline and L-carnitine in improving insulin sensitivity during a weight-loss intervention for obese patients. Dietary fat intake may modify the associations of TMAO with insulin sensitivity and glucose metabolism. NCT00072995. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  3. Pleiotropic Alterations in Lipid Metabolism in Yeast sac1 Mutants: Relationship to “Bypass Sec14p” and Inositol Auxotrophy

    PubMed Central

    Rivas, Marcos P.; Kearns, Brian G.; Xie, Zhigang; Guo, Shuling; Sekar, M. Chandra; Hosaka, Kohei; Kagiwada, Satoshi; York, John D.; Bankaitis, Vytas A.

    1999-01-01

    SacIp dysfunction results in bypass of the requirement for phosphatidylinositol transfer protein (Sec14p) function in yeast Golgi processes. This effect is accompanied by alterations in inositol phospholipid metabolism and inositol auxotrophy. Elucidation of how sac1 mutants effect “bypass Sec14p” will provide insights into Sec14p function in vivo. We now report that, in addition to a dramatic accumulation of phosphatidylinositol-4-phosphate, sac1 mutants also exhibit a specific acceleration of phosphatidylcholine biosynthesis via the CDP-choline pathway. This phosphatidylcholine metabolic phenotype is sensitive to the two physiological challenges that abolish bypass Sec14p in sac1 strains; i.e. phospholipase D inactivation and expression of bacterial diacylglycerol (DAG) kinase. Moreover, we demonstrate that accumulation of phosphatidylinositol-4-phosphate in sac1 mutants is insufficient to effect bypass Sec14p. These data support a model in which phospholipase D activity contributes to generation of DAG that, in turn, effects bypass Sec14p. A significant fate for this DAG is consumption by the CDP-choline pathway. Finally, we determine that CDP-choline pathway activity contributes to the inositol auxotrophy of sac1 strains in a novel manner that does not involve obvious defects in transcriptional expression of the INO1 gene. PMID:10397762

  4. Maternal Choline Supplementation during Normal Murine Pregnancy Alters the Placental Epigenome: Results of an Exploratory Study.

    PubMed

    Kwan, Sze Ting Cecilia; King, Julia H; Grenier, Jennifer K; Yan, Jian; Jiang, Xinyin; Roberson, Mark S; Caudill, Marie A

    2018-03-28

    The placental epigenome regulates processes that affect placental and fetal development, and could be mediating some of the reported effects of maternal choline supplementation (MCS) on placental vascular development and nutrient delivery. As an extension of work previously conducted in pregnant mice, the current study sought to explore the effects of MCS on various epigenetic markers in the placenta. RNA and DNA were extracted from placentas collected on embryonic day 15.5 from pregnant mice fed a 1X or 4X choline diet, and were subjected to genome-wide sequencing procedures or mass-spectrometry-based assays to examine placental imprinted gene expression, DNA methylation patterns, and microRNA (miRNA) abundance. MCS yielded a higher (fold change = 1.63-2.25) expression of four imprinted genes ( Ampd3 , Tfpi2 , Gatm and Aqp1 ) in the female placentas and a lower (fold change = 0.46-0.62) expression of three imprinted genes ( Dcn , Qpct and Tnfrsf23 ) in the male placentas (false discovery rate (FDR) ≤ 0.05 for both sexes). Methylation in the promoter regions of these genes and global placental DNA methylation were also affected ( p ≤ 0.05). Additionally, a lower (fold change = 0.3; P unadjusted = 2.05 × 10 -4 ; FDR = 0.13) abundance of miR-2137 and a higher (fold change = 1.25-3.92; p < 0.05) expression of its target genes were detected in the 4X choline placentas. These data demonstrate that the placental epigenome is responsive to maternal choline intake during murine pregnancy and likely mediates some of the previously described choline-induced effects on placental and fetal outcomes.

  5. Change of choline compounds in sodium selenite-induced apoptosis of rats used as quantitative analysis by in vitro 9.4T MR spectroscopy.

    PubMed

    Cao, Zhen; Wu, Lin-Ping; Li, Yun-Xia; Guo, Yu-Bo; Chen, Yao-Wen; Wu, Ren-Hua

    2008-06-28

    To study liver cell apoptosis caused by the toxicity of selenium and observe the alteration of choline compounds using in vitro 9.4T high resolution magnetic resonance spectroscopy. Twenty male Wistar rats were randomly divided into two groups. The rats in the treatment group were intraperitoneally injected with sodium selenite and the control group with distilled water. All rats were sacrificed and the livers were dissected. (1)H-MRS data were collected using in vitro 9.4T high resolution magnetic resonance spectrometer. Spectra were processed using XWINNMR and MestRe-c 4.3. HE and TUNEL staining was employed to detect and confirm the change of liver cells. Good (1)H-MR spectra of perchloric acid extract from liver tissue of rats were obtained. The conventional metabolites were detected and assigned. Concentrations of different ingredient choline compounds in treatment group vs control group were as follows: total choline compounds, 5.08 +/- 0.97 mmol/L vs 3.81 +/- 1.16 mmol/L (P = 0.05); and free choline, 1.07 +/- 0.23 mmol/L vs 0.65 +/- 0.20 mmol/L (P = 0.00). However, there was no statistical significance between the two groups. The hepatic sinus and cellular structure of hepatic cells in treatment group were abnormal. Apoptosis of hepatic cells was confirmed by TUNEL assay. High dose selenium compounds can cause the rat liver lesion and induce cell apoptosis in vivo. High resolution (1)H-MRS in vitro can detect diversified metabolism. The changing trend for different ingredient of choline compounds is not completely the same at early period of apoptosis.

  6. Usual choline and betaine dietary intake and incident coronary heart disease: the Atherosclerosis Risk in Communities (ARIC) Study

    PubMed Central

    Bidulescu, Aurelian; Chambless, Lloyd E; Siega-Riz, Anna Maria; Zeisel, Steven H; Heiss, Gerardo

    2007-01-01

    Background Low dietary intake of the essential nutrient choline and its metabolite betaine may increase atherogenesis both through effects on homocysteine methylation pathways as well as through choline's antioxidants properties. Nutrient values for many common foods for choline and betaine have recently become available in the U.S. nutrient composition database. Our objective was to assess the association of dietary intake of choline and betaine with incident coronary heart disease (CHD), adjusting for dietary intake measurement error. Methods We conducted a prospective investigation of the relation between usual intake of choline and betaine with the risk of CHD in 14,430 middle-aged men and women of the biethnic Atherosclerosis Risk in Communities study. A semi-quantitative food frequency questionnaire was used to assess nutrient intake. Proportional hazard regression models were used to calculate the risk of incident CHD. A regression calibration method was used to adjust for measurement error. Results During an average 14 years of follow-up (1987–2002), 1,072 incident CHD events were documented. Compared with the lowest quartile of intake, incident CHD risk was slightly and non-significantly higher in the highest quartile of choline and choline plus betaine, HR = 1.22 (0.91, 1.64) and HR = 1.14 (0.85, 1.53), controlling for age, sex, education, total energy intake, dietary intakes of folate, methionine and vitamin B6. No association was found between dietary choline intake and incident CHD when correcting for measurement error. Conclusion Higher intakes of choline and betaine were not protective for incident CHD. Similar investigations in other populations are of interest. PMID:17629908

  7. Synergistic interaction between choline and aspirin against acute inflammation induced by carrageenan and lipopolysaccharide.

    PubMed

    Pan, Zhi-Yuan; Wang, Hai

    2014-05-01

    The simultaneous use of drugs with different mechanisms of anti-inflammatory action is a strategy for achieving effective control of inflammation while minimizing dose-related side effects. Choline was described to potentiate the antinociceptive action of aspirin at small doses in several inflammatory pain models. However, these findings are only limited to alleviating pain, more associated data are required to confirm the effectiveness of the combined choline and aspirin therapy against inflammatory disorders. Moreover, no report is available regarding the mechanism responsible for their synergism. Here, we first investigated the anti-inflammatory activity and pharmacological mechanisms of co-administration of choline and aspirin in 2 commonly studied inflammation models, carrageenan-induced paw edema and lipopolysaccharide (LPS)-induced sepsis in mice. Isobolographic analysis revealed that combined choline and aspirin administration exhibited a strong synergistic interaction in reducing carrageenan-mediated edema, and the estimated combination index values at 50%, 75%, and 90% effective dose (ED50, ED75, and ED90) were 0.25, 0.32, and 0.44. Drug co-administration also afforded synergistic protection against LPS-induced sepsis and mortality, since aspirin or choline alone was inadequate to improve survival. The effects of choline-aspirin co-administration were blocked by methyllycaconitine, suggesting that activation of alpha 7 nicotinic acetylcholine receptor participates in the interaction between choline and aspirin. Furthermore, co-administration of choline and aspirin was more likely to inhibit the production of pro-inflammatory mediators induced by LPS. Our results indicated that combined choline and aspirin therapy represented a significant synergistic interaction in attenuating acute inflammatory response. This preclinical relevant evidence provides a promising approach to treat inflammation-based diseases such as arthritis and sepsis. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. MTHFR deficiency or reduced intake of folate or choline in pregnant mice results in impaired short-term memory and increased apoptosis in the hippocampus of wild-type offspring.

    PubMed

    Jadavji, N M; Deng, L; Malysheva, O; Caudill, M A; Rozen, R

    2015-08-06

    Genetic or nutritional disturbances in one-carbon metabolism, with associated hyperhomocysteinemia, can result in complex disorders including pregnancy complications and neuropsychiatric diseases. In earlier work, we showed that mice with a complete deficiency of methylenetetrahydrofolate reductase (MTHFR), a critical enzyme in folate and homocysteine metabolism, had cognitive impairment with disturbances in choline metabolism. Maternal demands for folate and choline are increased during pregnancy and deficiencies of these nutrients result in several negative outcomes including increased resorption and delayed development. The goal of this study was to investigate the behavioral and neurobiological impact of a maternal genetic deficiency in MTHFR or maternal nutritional deficiency of folate or choline during pregnancy on 3-week-old Mthfr(+/+) offspring. Mthfr(+/+) and Mthfr(+/-) females were placed on control diets (CD); and Mthfr(+/+) females were placed on folate-deficient diets (FD) or choline-deficient diets (ChDD) throughout pregnancy and lactation until their offspring were 3weeks of age. Short-term memory was assessed in offspring, and hippocampal tissue was evaluated for morphological changes, apoptosis, proliferation and choline metabolism. Maternal MTHFR deficiency resulted in short-term memory impairment in offspring. These dams had elevated levels of plasma homocysteine when compared with wild-type dams. There were no differences in plasma homocysteine in offspring. Increased apoptosis and proliferation was observed in the hippocampus of offspring from Mthfr(+/-) mothers. In the maternal FD and ChDD study, offspring also showed short-term memory impairment with increased apoptosis in the hippocampus; increased neurogenesis was observed in ChDD offspring. Choline acetyltransferase protein was increased in the offspring hippocampus of both dietary groups and betaine was decreased in the hippocampus of FD offspring. Our results reveal short-term memory deficits in the offspring of dams with MTHFR deficiency or dietary deficiencies of critical methyl donors. We suggest that deficiencies in maternal one-carbon metabolism during pregnancy can contribute to hippocampal dysfunction in offspring through apoptosis or altered choline metabolism. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. Plasma trimethylamine N-oxide concentration is associated with choline, phospholipids, and methyl metabolism.

    PubMed

    Obeid, Rima; Awwad, Hussain M; Rabagny, Yannick; Graeber, Stefan; Herrmann, Wolfgang; Geisel, Juergen

    2016-03-01

    Elevated plasma concentrations of the gut bacteria choline metabolite trimethylamine N-oxide (TMAO) are associated with atherosclerosis. However, the determinants of TMAO in humans require additional assessment. We examined cardiometabolic risk factors and pathways associated with TMAO concentrations in humans. A total of 283 individuals (mean ± SD age: 66.7 ± 9.0 y) were included in this observational study. Plasma concentrations of trimethylamine, TMAO, choline, lipids, phospholipids, and methyl metabolites were measured. Study participants were divided into 4 groups by median concentrations of TMAO and choline (4.36 and 9.7 μmol/L, respectively). Compared with the group with TMAO and choline concentrations that were less than the median (n = 82), the group with TMAO and choline concentrations that were at least the median (n = 83) was older and had lower high-density lipoprotein (HDL) cholesterol, phospholipids, and methylation potential, higher creatinine, betaine, S-adenosylhomocysteine (SAH), and S-adenosylmethionine (SAM), and higher percentages of men and subjects with diabetes. The difference in plasma TMAO concentrations between men and women (7.3 ± 10.0 compared with 5.4 ± 5.6 μmol/L, respectively) was NS after adjustment for age and creatinine (P = 0.455). The TMAO:trimethylamine ratio was higher in men (P < 0.001). Diabetes was associated with significantly higher plasma TMAO concentration (8.6 ± 12.2 compared with 5.4 ± 5.2 μmol/L) even after adjustments. Sex and diabetes showed an interactive effect on trimethylamine concentrations (P = 0.010) but not on TMAO concentrations (P = 0.950). Positive determinants of TMAO in a stepwise regression model that applied to the whole group were SAH, trimethylamine, choline, and female sex, whereas plasma phosphatidylcholine was a negative determinant. High TMAO and choline concentrations are associated with an advanced cardiometabolic risk profile. Diabetes is related to higher plasma TMAO concentrations but also to alterations in interrelated pathways such as lipids, phospholipids, and methylation. Elevated plasma TMAO concentrations likely reflect a specific metabolic pattern characterized by low HDL and phospholipids in addition to hypomethylation. This trial was registered at clinicaltrials.gov as NCT02586181 and NCT02588898. © 2016 American Society for Nutrition.

  10. Neurochemical Changes after Acute Binge Toluene Inhalation in Adolescent and Adult Rats: A High-Resolution Magnetic Resonance Spectroscopy Study

    PubMed Central

    O'Leary-Moore, Shonagh K.; Galloway, Matthew P.; McMechan, Andrew P.; Irtenkauf, Susan; Hannigan, John H.; Bowen, Scott E.

    2009-01-01

    Inhalant abuse in young people is a growing public health concern. We reported previously that acute toluene intoxication in young rats, using a pattern of exposures that approximate abuse patterns of inhalant use in humans, significantly altered neurochemical measures in select brain regions. In this study, adolescent and young adult rats were exposed similarly to an acute (2 × 15 min), high dose (8000 − 12000 ppm) of toluene and high-resolution magic angle spinning proton magnetic resonance spectroscopy (HR-MAS 1H-MRS) was used to assess neurochemical profiles of tissue samples from a number of brain regions collected immediately following solvent exposure. The current investigation focused on N-acetyl-aspartate (NAA), choline-containing compounds, creatine, glutamate, GABA, and glutamine. Contrary to our predictions, no significant alterations were found in levels of NAA, choline, creatine, glutamate, or glutamine in adolescent animals. In contrast to these minimal effects in adolescents, binge toluene exposure altered several neurochemical parameters in young adult rats, including decreased levels of choline and GABA in the frontal cortex and striatum and lowered glutamine and NAA levels in the frontal cortex. One of the more robust findings was a wide-ranging increase in lactate after toluene exposure in adult animals, an effect not observed in adolescents. These age-dependent effects of toluene are distinct from those reported previously in juvenile rats and suggest a developmental difference in vulnerability to the effects of inhalants. Specifically, the results suggest that the neurochemical response to toluene in adolescents is attenuated compared to adults, and imply an association between these neurochemical differences and age-influenced differences in solvent abuse in humans. PMID:19628036

  11. Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis

    PubMed Central

    Wang, Zeneng; Roberts, Adam B.; Buffa, Jennifer A.; Levison, Bruce S.; Zhu, Weifei; Org, Elin; Gu, Xiaodong; Huang, Ying; Zamanian-Daryoush, Maryam; Culley, Miranda K.; DiDonato, Anthony J.; Fu, Xiaoming; Hazen, Jennie E.; Krajcik, Daniel; DiDonato, Joseph A.; Lusis, Aldons J.; Hazen, Stanley L.

    2016-01-01

    SUMMARY Trimethylamine N-oxide (TMAO), a gut microbiota dependent metabolite, both enhances atherosclerosis in animal models and is associated with cardiovascular risks in clinical studies. Here we investigate the impact of targeted inhibition of the first step in TMAO generation, commensal microbial trimethylamine (TMA) production, on diet-induced atherosclerosis. A structural analogue of choline, 3,3-dimethyl-1-butanol (DMB), is shown to non-lethally inhibit TMA formation from cultured microbes, to inhibit distinct microbial TMA lyases, and to both inhibit TMA production from physiologic polymicrobial cultures (eg intestinal contents, human feces) and reduce TMAO levels in mice fed a high choline or carnitine diet. DMB inhibited choline diet-enhanced endogenous macrophage foam cell formation and atherosclerotic lesion development in apolipoprotein e−/− mice without alterations in circulating cholesterol levels. The present studies suggest gut microbial production of TMA specifically, and non-lethal microbial inhibitors in general, may serve as a potential therapeutic approach for the treatment of cardiometabolic diseases. PMID:26687352

  12. The timing and location of GDNF expression determines enteric nervous system structure and function

    PubMed Central

    Wang, Hongtao; Hughes, Inna; Planer, William; Parsadanian, Alexander; Grider, John R.; Vohra, Bhupinder P.S.; Keller-Peck, Cynthia; Heuckeroth, Robert O.

    2010-01-01

    Ret signaling is critical for formation of the enteric nervous system (ENS) because Ret activation promotes ENS precursor survival, proliferation, and migration and provides trophic support for mature enteric neurons. While these roles are well established, we now provide evidence that increasing levels of the Ret ligand GDNF in mice causes alterations in ENS structure and function that are critically dependent on the time and location of increased GDNF availability. This is demonstrated using two different strains of transgenic mice and by injecting newborn mice with GDNF. Furthermore, because different subclasses of ENS precursors withdraw from the cell cycle at different times during development, increases in GDNF at specific times alter the ratio of neuronal subclasses in the mature ENS. In addition, we confirm that esophageal neurons are GDNF responsive and demonstrate that the location of GDNF production influences neuronal process projection for NADPH diaphorase expressing, but not acetylcholinesterase, choline acetyltransferase, or tryptophan hydroxylase expressing small bowel myenteric neurons. We further demonstrate that changes in GDNF availability influence intestinal function in vitro and in vivo. Thus, changes in GDNF expression can create a wide variety of alterations in ENS structure and function and may in part contribute to human motility disorders. PMID:20107080

  13. The timing and location of glial cell line-derived neurotrophic factor expression determine enteric nervous system structure and function.

    PubMed

    Wang, Hongtao; Hughes, Inna; Planer, William; Parsadanian, Alexander; Grider, John R; Vohra, Bhupinder P S; Keller-Peck, Cynthia; Heuckeroth, Robert O

    2010-01-27

    Ret signaling is critical for formation of the enteric nervous system (ENS) because Ret activation promotes ENS precursor survival, proliferation, and migration and provides trophic support for mature enteric neurons. Although these roles are well established, we now provide evidence that increasing levels of the Ret ligand glial cell line-derived neurotrophic factor (GDNF) in mice causes alterations in ENS structure and function that are critically dependent on the time and location of increased GDNF availability. This is demonstrated using two different strains of transgenic mice and by injecting newborn mice with GDNF. Furthermore, because different subclasses of ENS precursors withdraw from the cell cycle at different times during development, increases in GDNF at specific times alter the ratio of neuronal subclasses in the mature ENS. In addition, we confirm that esophageal neurons are GDNF responsive and demonstrate that the location of GDNF production influences neuronal process projection for NADPH diaphorase-expressing, but not acetylcholinesterase-, choline acetyltransferase-, or tryptophan hydroxylase-expressing, small bowel myenteric neurons. We further demonstrate that changes in GDNF availability influence intestinal function in vitro and in vivo. Thus, changes in GDNF expression can create a wide variety of alterations in ENS structure and function and may in part contribute to human motility disorders.

  14. In vivo functional neurochemistry of human cortical cholinergic function during visuospatial attention

    PubMed Central

    Lindner, Michael; Bell, Tiffany; Iqbal, Somya; Mullins, Paul Gerald

    2017-01-01

    Cortical acetylcholine is involved in key cognitive processes such as visuospatial attention. Dysfunction in the cholinergic system has been described in a number of neuropsychiatric disorders. Levels of brain acetylcholine can be pharmacologically manipulated, but it is not possible to directly measure it in vivo in humans. However, key parts of its biochemical cascade in neural tissue, such as choline, can be measured using magnetic resonance spectroscopy (MRS). There is evidence that levels of choline may be an indirect but proportional measure of acetylcholine availability in brain tissue. In this study, we measured relative choline levels in the parietal cortex using functional (event-related) MRS (fMRS) during performance of a visuospatial attention task, with a modelling approach verified using simulated data. We describe a task-driven interaction effect on choline concentration, specifically driven by contralateral attention shifts. Our results suggest that choline MRS has the potential to serve as a proxy of brain acetylcholine function in humans. PMID:28192451

  15. A Call to Action to Bring Safer Parenteral Micronutrient Products to the U.S. Market.

    PubMed

    Vanek, Vincent W; Borum, Peggy; Buchman, Alan; Fessler, Theresa A; Howard, Lyn; Shenkin, Alan; Valentine, Christina J

    2015-08-01

    The American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.) started an intensive review of commercially available parenteral vitamin and trace element (TE) products in 2009. The chief findings were that adult multi-TE products currently available in the United States (U.S.) provide potentially toxic amounts of manganese, copper, and chromium, and neonatal/pediatric multi-TE products provide potentially toxic amounts of manganese and chromium. The multivitamin products appeared safe and effective; however, a separate parenteral vitamin D product is needed for those patients on standard therapy who continue to be vitamin D depleted and are unresponsive to oral supplements. The review process also extended to parenteral choline and carnitine. Although choline and carnitine are not technically vitamins or trace elements, choline is an essential nutrient in all age groups, and carnitine is an essential nutrient in infants, according to the Food and Nutrition Board of the Institute of Medicine. A parenteral choline product needs to be developed and available. Efforts are currently under way to engage the U.S. Food and Drug Administration (FDA) and the parenteral nutrient industry so A.S.P.E.N.'s recommendations can become a commercial reality. © 2015 American Society for Parenteral and Enteral Nutrition.

  16. PET/CT with 18F-choline: Physiological whole bio-distribution in male and female subjects and diagnostic pitfalls on 1000 prostate cancer patients: 18F-choline PET/CT bio-distribution and pitfalls. A southern Italian experience.

    PubMed

    Calabria, Ferdinando; Chiaravalloti, Agostino; Cicciò, Carmelo; Gangemi, Vincenzo; Gullà, Domenico; Rocca, Federico; Gallo, Gianpasquale; Cascini, Giuseppe Lucio; Schillaci, Orazio

    2017-08-01

    The 11 C/ 18 F-choline is a PET/CT radiopharmaceutical useful in detecting tumors with high lipogenesis. 11 C/ 18 F-choline uptake can occur in physiological conditions or tumors. The knowledge of its bio-distribution is essential to recognize physiologic variants or diagnostic pitfalls. Moreover, few information are available on the bio-distribution of this tracer in female patients. Our aim was to discuss some documented 18 F-choline PET/CT pitfalls in prostate cancer patients. Our secondary aim was to describe the 18 F-choline bio-distribution in the female body. We collected diagnostic pitfalls in three PET centers examining 1000 prostate cancer by 18 F-choline PET/CT. All pitfalls were ensured by follow-up, imaging and/or histology. We also performed whole body 18 F-choline PET/CT in 5 female patients. 169/1000 (16.9%) patients showed pitfalls not owing to prostate cancer. These findings were due to inflammation, benign tumors while, in 1% of examined patients, a concomitant neoplasm was found. In the female body, the breast showed low physiological uptake. The accurate knowledge of 18 F-choline PET/CT bio-distribution and diagnostic pitfalls is essential. Correlative imaging and histological exam are often necessary to depict pitfalls. In women, the uptake in the breast is due to the physiological gradient of 18 F-choline uptake in the exocrine glands. Our results confirm the possibility of 18 F-choline uptake in several diseases other than prostate cancer. However, our experience was acquired on a large population and shows that a conspicuous amount of 18 F-choline diagnostic pitfalls are easily recognizable and attributable to inflammation. A new advance in knowledge is the minimal difference in terms of physiological tracer bio-distribution between male and female patients. The knowledge of the physiological bio-distribution and of the potential pitfalls linked of a tracer could help physicians to choose the best diagnostic and therapeutic approaches for a better patient quality of life. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Is choline PET useful for identifying intraprostatic tumour lesions? A literature review.

    PubMed

    Chan, Joachim; Syndikus, Isabel; Mahmood, Shelan; Bell, Lynn; Vinjamuri, Sobhan

    2015-09-01

    More than 80% of patients with intermediate-risk or high-risk localized prostate cancer are cured with radiation doses of 74-78 Gy, but high doses increase the risk for late bowel and bladder toxicity among long-term survivors. Dose painting, defined as dose escalation to areas in the prostate containing the tumour, rather than to the whole gland, minimizes dose to normal tissues and hence toxicity. It requires accurate identification of the location and size of these lesions, for which functional MRI is the current gold standard. Many studies have assessed the use of choline PET in staging newly diagnosed patients. This review will discuss important imaging variables affecting the accuracy of choline PET scans, how choline PET contributes to tumour identification and is used in radiotherapy planning and how PET can improve the patient pathway involving prostate radiotherapy. In summary, the available literature shows that the accuracy of choline PET improves with higher tracer doses and delayed imaging (although the optimal uptake time is unclear), and tumour identification by MRI is improved by the addition of PET imaging. We propose future research with prolonged choline uptake time and multiphase imaging, which may further improve accuracy.

  18. Oscillatory bands, neuronal synchrony and hippocampal function: implications of the effects of prenatal choline supplementation for sleep-dependent memory consolidation.

    PubMed

    Cheng, Ruey-Kuang; Williams, Christina L; Meck, Warren H

    2008-10-27

    Choline supplementation of the maternal diet has long-term facilitative effects on spatial and temporal memory processes in the offspring. To further delineate the impact of early nutritional status on brain and behavior, we examined effects of prenatal-choline availability on hippocampal oscillatory frequency bands in 12 month-old male and female rats. Adult offspring of time-pregnant dams that were given a deficient level of choline (DEF=0.0 g/kg), sufficient choline (CON=1.1 g/kg) or supplemental choline (SUP=3.5 g/kg) in their chow during embryonic days (ED) 12-17 were implanted with an electroencephalograph (EEG) electrode in the hippocampal dentate gyrus in combination with an electromyograph (EMG) electrode patch implanted in the nuchal muscle. Five consecutive 8-h recording sessions revealed differential patterns of EEG activity as a function of awake, slow-wave sleep (SWS) and rapid-eye movement (REM) sleep states and prenatal choline status. The main finding was that SUP rats displayed increased power levels of gamma (30-100 Hz) band oscillations during all phases of the sleep/wake cycle. These findings are discussed within the context of a general review of neuronal oscillations (e.g., delta, theta, and gamma bands) and synchronization across multiple brain regions in relation to sleep-dependent memory consolidation in the hippocampus.

  19. Oral choline decreases brain purine levels in lithium-treated subjects with rapid-cycling bipolar disorder: a double-blind trial using proton and lithium magnetic resonance spectroscopy.

    PubMed

    Lyoo, In Kyoon; Demopulos, Christina M; Hirashima, Fuyuki; Ahn, Kyung Heup; Renshaw, Perry F

    2003-08-01

    Oral choline administration has been reported to increase brain phosphatidylcholine levels. As phospholipid synthesis for maintaining membrane integrity in mammalian brain cells consumes approximately 10-15% of the total adenosine triphosphate (ATP) pool, an increased availability of brain choline may lead to an increase in ATP consumption. Given reports of genetic studies, which suggest mitochondrial dysfunction, and phosphorus (31P) magnetic resonance spectroscopy (MRS) studies, which report dysfunction in high-energy phosphate metabolism in patients with bipolar disorder, the current study is designed to evaluate the role of oral choline supplementation in modifying high-energy phosphate metabolism in subjects with bipolar disorder. Eight lithium-treated patients with DSM-IV bipolar disorder, rapid cycling type were randomly assigned to 50 mg/kg/day of choline bitartrate or placebo for 12 weeks. Brain purine, choline and lithium levels were assessed using 1H- and 7Li-MRS. Patients received four to six MRS scans, at baseline and weeks 2, 3, 5, 8, 10 and 12 of treatment (n = 40 scans). Patients were assessed using the Clinical Global Impression Scale (CGIS), the Young Mania Rating Scale (YRMS) and the Hamilton Depression Rating Scale (HDRS) at each MRS scan. There were no significant differences in change-from-baseline measures of CGIS, YMRS, and HDRS, brain choline/creatine ratios, and brain lithium levels over a 12-week assessment period between the choline and placebo groups or within each group. However, the choline treatment group showed a significant decrease in purine metabolite ratios from baseline (purine/n-acetyl aspartate: coef = -0.08, z = -2.17, df = 22, p = 0.030; purine/choline: coef = -0.12, z = -1.97, df = 22, p = 0.049) compared to the placebo group, controlling for brain lithium level changes. Brain lithium level change was not a significant predictor of purine ratios. The current study reports that oral choline supplementation resulted in a significant decrease in brain purine levels over a 12-week treatment period in lithium-treated patients with DSM-IV bipolar disorder, rapid-cycling type, which may be related to the anti-manic effects of adjuvant choline. This result is consistent with mitochondrial dysfunction in bipolar disorder inadequately meeting the demand for increased ATP production as exogenous oral choline administration increases membrane phospholipid synthesis.

  20. Choline-modulated arsenic trioxide-induced prolongation of cardiac repolarization in Guinea pig.

    PubMed

    Sun, Hong-Li; Chu, Wen-Feng; Dong, De-Li; Liu, Yan; Bai, Yun-Long; Wang, Xiao-Hui; Zhou, Jin; Yang, Bao-Feng

    2006-04-01

    Arsenic trioxide (As(2)O(3)) has been found to be effective for relapsed or refractory acute promyelocytic leukaemia, but its clinical use is burdened by QT prolongation, Torsade de pointes tachycardias, and sudden cardiac death. The aim of the present study was to elucidate the ionic mechanisms of As(2)O(3)-induced abnormalities of cardiac electrophysiology and the therapeutic action of choline on As(2)O(3)-caused QT prolongation in guinea pig. Intravenous administration of As(2)O(3) prolonged the QT interval in a dose- and time-dependent manner in guinea pig hearts, and the QT prolongation could be modulated by choline. By using whole-cell patch clamp technique and confocal laser scanning microscopy, we found that As(2)O(3) significantly lengthened action potential duration measured at 50 and 90% of repolarization, enhanced L-type calcium currents (I(Ca-L)), inhibited delayed rectifier potassium currents (I(K)), and increased intracellular calcium concentration ([Ca(2+)](i)) in guinea pig ventricular myocytes. Choline corrected As(2)O(3)-mediated alterations of action potential duration, I(Ca-L) and [Ca(2+)](i), but had no effect on the I(K) inhibition. As(2)O(3) markedly disturbed the normal equilibrium of transmembrane currents (increasing I(Ca-L) and suppressing I(K)) in guinea pig cardiomyocyte, and induced prolongation of action potential duration, further degenerated into QT prolongation. Choline normalized QT interval abnormality and corrected lengthened action potential duration by inhibiting the elevated I(Ca-L) and [Ca(2+)](i) in ventricular myocytes during As(2)O(3) application.

  1. Inositol induces a profound alteration in the pattern and rate of synthesis and turnover of membrane lipids in Saccharomyces cerevisiae.

    PubMed

    Gaspar, Maria L; Aregullin, Manuel A; Jesch, Stephen A; Henry, Susan A

    2006-08-11

    The addition of inositol to actively growing yeast cultures causes a rapid increase in the rate of synthesis of phosphatidylinositol and, simultaneously, triggers changes in the expression of hundreds of genes. We now demonstrate that the addition of inositol to yeast cells growing in the presence of choline leads to a dramatic reprogramming of cellular lipid synthesis and turnover. The response to inositol includes a 5-6-fold increase in cellular phosphatidylinositol content within a period of 30 min. The increase in phosphatidylinositol content appears to be dependent upon fatty acid synthesis. Phosphatidylcholine turnover increased rapidly following inositol addition, a response that requires the participation of Nte1p, an endoplasmic reticulum-localized phospholipase B. Mass spectrometry revealed that the acyl species composition of phosphatidylinositol is relatively constant regardless of supplementation with inositol or choline, whereas phosphatidylcholine acyl species composition is influenced by both inositol and choline. In medium containing inositol, but lacking choline, high levels of dimyristoylphosphatidylcholine were detected. Within 60 min following the addition of inositol, dimyristoylphosphatidylcholine levels had decreased from approximately 40% of total phosphatidylcholine to a basal level of less than 5%. nte1Delta cells grown in the absence of inositol and in the presence of choline exhibited lower levels of dimyristoylphosphatidylcholine than wild type cells grown under these same conditions, but these levels remained largely constant after the addition of inositol. These results are discussed in relationship to transcriptional regulation known to be linked to lipid metabolism in yeast.

  2. Potential nutritional and physiological functions of betaine in livestock.

    PubMed

    Eklund, M; Bauer, E; Wamatu, J; Mosenthin, R

    2005-06-01

    The present review summarises the potential nutritional and physiological functions of betaine as a feed additive in relation to performance criteria in livestock production. Betaine, the trimethyl derivative of the amino acid glycine, is a metabolite of plant and animal tissues. In plants, betaine is particularly synthesised and accumulated as an osmoprotectant against salt and temperature stress. In animals, betaine is the product of choline oxidation or it originates from nutritional sources. Over the past decades, numerous studies have been carried out to investigate the potential effects of betaine supplementation on animal performance. Due to its chemical structure, betaine shows the characteristics of a dipolar zwitterion resulting in osmoprotective properties. Promoting effects on the intestinal tract against osmotic stress occurring during diarrhoea or coccidiosis have been reported following betaine supplementation in pigs and poultry. There is also some evidence that dietary betaine may improve the digestibility of specific nutrients. As a product of choline oxidation, betaine is involved in transmethylation reactions of the organism. Betaine as a methyl donor provides its labile methyl groups for the synthesis of several metabolically active substances such as creatine and carnitine. Supplementation with betaine may decrease the requirement for other methyl donors such as methionine and choline. There is also some evidence for enhanced methionine availability after dietary supplementation of betaine resulting in improved animal performance. Alterations in the distribution pattern of protein and fat in the body have been reported following betaine supplementation. A more efficient use of dietary protein may result from a methionine-sparing effect of betaine, but also direct interactions of betaine with metabolism-regulating factors have to be considered. Though the mode of action of betaine as a carcass modifier remains open, there is, however, growing evidence that betaine could have a positive impact both on animal performance and carcass quality.

  3. Choline and methionine differentially alter methyl carbon metabolism in bovine neonatal hepatocytes

    PubMed Central

    Chandler, Tawny L.

    2017-01-01

    Intersections in hepatic methyl group metabolism pathways highlights potential competition or compensation of methyl donors. The objective of this experiment was to examine the expression of genes related to methyl group transfer and lipid metabolism in response to increasing concentrations of choline chloride (CC) and DL-methionine (DLM) in primary neonatal hepatocytes that were or were not exposed to fatty acids (FA). Primary hepatocytes isolated from 4 neonatal Holstein calves were maintained as monolayer cultures for 24 h before treatment with CC (61, 128, 2028, and 4528 μmol/L) and DLM (16, 30, 100, 300 μmol/L), with or without a 1 mmol/L FA cocktail in a factorial arrangement. After 24 h of treatment, media was collected for quantification of reactive oxygen species (ROS) and very low-density lipoprotein (VLDL), and cell lysates were collected for quantification of gene expression. No interactions were detected between CC, DLM, or FA. Both CC and DLM decreased the expression of methionine adenosyltransferase 1A (MAT1A). Increasing CC did not alter betaine-homocysteine S-methyltranferase (BHMT) but did increase 5-methyltetrahydrofolate-homocysteine methyltransferase (MTR) and methylenetetrahydrofolate reductase (MTHFR) expression. Increasing DLM decreased expression of BHMT and MTR, but did not affect MTHFR. Expression of both phosphatidylethanolamine N-methyltransferase (PEMT) and microsomal triglyceride transfer protein (MTTP) were decreased by increasing CC and DLM, while carnitine palmitoyltransferase 1A (CPT1A) was unaffected by either. Treatment with FA decreased the expression of MAT1A, MTR, MTHFR and tended to decrease PEMT but did not affect BHMT and MTTP. Treatment with FA increased CPT1A expression. Increasing CC increased secretion of VLDL and decreased the accumulation of ROS in media. Within neonatal bovine hepatocytes, choline and methionine differentially regulate methyl carbon pathways and suggest that choline may play a critical role in donating methyl groups to support methionine regeneration. Stimulating VLDL export and decreasing ROS accumulation suggests that increasing CC is hepato-protective. PMID:28152052

  4. Altered molecular specificity of surfactant phosphatidycholine synthesis in patients with acute respiratory distress syndrome.

    PubMed

    Dushianthan, Ahilanandan; Goss, Victoria; Cusack, Rebecca; Grocott, Michael P W; Postle, Anthony D

    2014-11-07

    Acute respiratory distress syndrome (ARDS) is a life-threatening critical illness, characterised by qualitative and quantitative surfactant compositional changes associated with premature airway collapse, gas-exchange abnormalities and acute hypoxic respiratory failure. The underlying mechanisms for this dysregulation in surfactant metabolisms are not fully explored. Lack of therapeutic benefits from clinical trials, highlight the importance of detailed in-vivo analysis and characterisation of ARDS patients according to patterns of surfactant synthesis and metabolism. Ten patients with moderate to severe ARDS were recruited. Most (90%) suffered from pneumonia. They had an infusion of methyl-D9-choline chloride and small volume bronchoalveolar lavage fluid (BALF) was obtained at 0,6,12,24,48,72 and 96 hours. Controls were healthy volunteers, who had BALF at 24 and 48 hours after methyl-D9-choline infusion. Compositional analysis and enrichment patterns of stable isotope labelling of surfactant phosphatidylcholine (PC) was determined by electrospray ionisation mass spectrometry. BALF of patients with ARDS consisted of diminished total PC and fractional PC16:0/16:0 concentrations compared to healthy controls. Compositional analysis revealed, reductions in fractional compositions of saturated PC species with elevated levels of longer acyl chain unsaturated PC species. Molecular specificity of newly synthesised PC fraction showed time course variation, with lower PC16:0/16:0 composition at earlier time points, but achieved near equilibrium with endogenous composition at 48 hours after methyl-D9-choline infusion. The enrichment of methyl-D9-choline into surfactant total PC is nearly doubled in patients, with considerable variation between individuals. This study demonstrate significant alterations in composition and kinetics of surfactant PC extracted from ARDS patients. This novel approach may facilitate biochemical phenotyping of ARDS patients according to surfactant synthesis and metabolism, enabling individualised treatment approaches for the management of ARDS patients in the future.

  5. Serum betaine but not choline is inversely associated with breast cancer risk: a case-control study in China.

    PubMed

    Du, Yu-Feng; Lin, Fang-Yu; Long, Wei-Qing; Luo, Wei-Ping; Yan, Bo; Xu, Ming; Mo, Xiong-Fei; Zhang, Cai-Xia

    2017-04-01

    Choline and betaine are important for DNA methylation and synthesis, and may affect tumor carcinogenesis. To our knowledge, no previous study has examined the association between serum choline and betaine and breast cancer risk. This study aimed to examine whether serum choline and betaine were inversely associated with breast cancer risk among Chinese women. This hospital-based case-control study consecutively recruited 510 breast cancer cases and 518 frequency-matched (age and residence) controls, and blood samples were available for 500 cases and 500 controls. Serum choline and betaine were assayed by high-performance liquid chromatography-tandem mass spectrometry. Multiple unconditional logistic regression was used to estimate odds ratios (ORs) and 95 % confidence intervals (CIs). An inverse association with breast cancer risk was observed for serum betaine (fourth vs first quartile adjusted OR 0.68, 95 % CI 0.47-0.97) and for the ratio of serum betaine to choline (fourth vs first quartile adjusted OR 0.70, 95 % CI 0.48-1.00), but not for serum choline (fourth vs first quartile adjusted OR 0.80, 95 % CI 0.56-1.15). Serum betaine was inversely associated with breast cancer risk in subjects with below-median dietary folate intake (fourth vs first quartile adjusted OR 0.48, 95 % CI 0.30-0.77). This study suggested that serum betaine but not choline was inversely associated with breast cancer risk. This result needed to be further confirmed by the prospective studies.

  6. Intestinal Microbiota Composition Modulates Choline Bioavailability from Diet and Accumulation of the Proatherogenic Metabolite Trimethylamine-N-Oxide

    PubMed Central

    Romano, Kymberleigh A.; Vivas, Eugenio I.

    2015-01-01

    ABSTRACT Choline is a water-soluble nutrient essential for human life. Gut microbial metabolism of choline results in the production of trimethylamine (TMA), which upon absorption by the host is converted in the liver to trimethylamine-N-oxide (TMAO). Recent studies revealed that TMAO exacerbates atherosclerosis in mice and positively correlates with the severity of this disease in humans. However, which microbes contribute to TMA production in the human gut, the extent to which host factors (e.g., genotype) and diet affect TMA production and colonization of these microbes, and the effects TMA-producing microbes have on the bioavailability of dietary choline remain largely unknown. We screened a collection of 79 sequenced human intestinal isolates encompassing the major phyla found in the human gut and identified nine strains capable of producing TMA from choline in vitro. Gnotobiotic mouse studies showed that TMAO accumulates in the serum of animals colonized with TMA-producing species, but not in the serum of animals colonized with intestinal isolates that do not generate TMA from choline in vitro. Remarkably, low levels of colonization by TMA-producing bacteria significantly reduced choline levels available to the host. This effect was more pronounced as the abundance of TMA-producing bacteria increased. Our findings provide a framework for designing strategies aimed at changing the representation or activity of TMA-producing bacteria in the human gut and suggest that the TMA-producing status of the gut microbiota should be considered when making recommendations about choline intake requirements for humans. PMID:25784704

  7. Intestinal microbiota composition modulates choline bioavailability from diet and accumulation of the proatherogenic metabolite trimethylamine-N-oxide.

    PubMed

    Romano, Kymberleigh A; Vivas, Eugenio I; Amador-Noguez, Daniel; Rey, Federico E

    2015-03-17

    Choline is a water-soluble nutrient essential for human life. Gut microbial metabolism of choline results in the production of trimethylamine (TMA), which upon absorption by the host is converted in the liver to trimethylamine-N-oxide (TMAO). Recent studies revealed that TMAO exacerbates atherosclerosis in mice and positively correlates with the severity of this disease in humans. However, which microbes contribute to TMA production in the human gut, the extent to which host factors (e.g., genotype) and diet affect TMA production and colonization of these microbes, and the effects TMA-producing microbes have on the bioavailability of dietary choline remain largely unknown. We screened a collection of 79 sequenced human intestinal isolates encompassing the major phyla found in the human gut and identified nine strains capable of producing TMA from choline in vitro. Gnotobiotic mouse studies showed that TMAO accumulates in the serum of animals colonized with TMA-producing species, but not in the serum of animals colonized with intestinal isolates that do not generate TMA from choline in vitro. Remarkably, low levels of colonization by TMA-producing bacteria significantly reduced choline levels available to the host. This effect was more pronounced as the abundance of TMA-producing bacteria increased. Our findings provide a framework for designing strategies aimed at changing the representation or activity of TMA-producing bacteria in the human gut and suggest that the TMA-producing status of the gut microbiota should be considered when making recommendations about choline intake requirements for humans. Cardiovascular disease (CVD) is the leading cause of death and disability worldwide, and increased trimethylamine N-oxide (TMAO) levels have been causally linked with CVD development. This work identifies members of the human gut microbiota responsible for both the accumulation of trimethylamine (TMA), the precursor of the proatherogenic compound TMAO, and subsequent decreased choline bioavailability to the host. Understanding how to manipulate the representation and function of choline-consuming, TMA-producing species in the intestinal microbiota could potentially lead to novel means for preventing or treating atherosclerosis and choline deficiency-associated diseases. Copyright © 2015 Romano et al.

  8. Reduced MTHFD1 activity in male mice perturbs folate- and choline-dependent one-carbon metabolism as well as transsulfuration.

    PubMed

    Field, Martha S; Shields, Kelsey S; Abarinov, Elena V; Malysheva, Olga V; Allen, Robert H; Stabler, Sally P; Ash, Jessica A; Strupp, Barbara J; Stover, Patrick J; Caudill, Marie A

    2013-01-01

    Impaired utilization of folate is caused by insufficient dietary intake and/or genetic variation and has been shown to prompt changes in related pathways, including choline and methionine metabolism. These pathways have been shown to be sensitive to variation within the Mthfd1 gene, which codes for a folate-metabolizing enzyme responsible for generating 1-carbon (1-C)-substituted folate derivatives. The Mthfd1(gt/+) mouse serves as a potential model of human Mthfd1 loss-of-function genetic variants that impair MTHFD1 function. This study investigated the effects of the Mthfd1(gt/+) genotype and folate intake on markers of choline, folate, methionine, and transsulfuration metabolism. Male Mthfd1(gt/+) and Mthfd1(+/+) mice were randomly assigned at weaning (3 wk of age) to either a control (2 mg/kg folic acid) or folate-deficient (0 mg/kg folic acid) diet for 5 wk. Mice were killed at 8 wk of age following 12 h of food deprivation; blood and liver samples were analyzed for choline, methionine, and transsulfuration biomarkers. Independent of folate intake, mice with the Mthfd1(gt/+) genotype had higher hepatic concentrations of choline (P = 0.005), betaine (P = 0.013), and dimethylglycine (P = 0.004) and lower hepatic concentrations of glycerophosphocholine (P = 0.002) relative to Mthfd1(+/+) mice. Mthfd1(gt/+) mice also had higher plasma concentrations of homocysteine (P = 0.0016) and cysteine (P < 0.001) as well as lower plasma concentrations of methionine (P = 0.0003) and cystathionine (P = 0.011). The metabolic alterations observed in Mthfd1(gt/+) mice indicate perturbed choline and folate-dependent 1-C metabolism and support the future use of Mthfd1(gt/+) mice as a tool to investigate the impact of impaired 1-C metabolism on disease outcomes.

  9. Short-term treatment with citicoline (CDP-choline) attenuates some measures of craving in cocaine-dependent subjects: a preliminary report.

    PubMed

    Renshaw, P F; Daniels, S; Lundahl, L H; Rogers, V; Lukas, S E

    1999-02-01

    The administration of cytidine-5'-diphosphate choline (CDP-choline, citicoline) to animals increases the rate of membrane phospholipid synthesis and elevates brain dopamine levels. Because cocaine dependence has been associated with increases in brain phospholipid precursors, as well as depletion of dopamine within the central nervous system, the present outpatient study was conducted to assess the safety of citicoline (500 mg bid) and to determine if short-term treatment alters mood states and cocaine craving in subjects with a history of cocaine dependence. In addition, measures of drug craving and mood states after presentation of cocaine-related cues were collected on two occasions: before and after 14 days of double-blind treatment with either citicoline or placebo. Subjects did not experience any side effects and citicoline treatment was associated with decreases in self-reported mood states associated with cocaine craving. These preliminary data are encouraging and suggest that citicoline warrants further study as a promising potential treatment for cocaine abuse and dependence that is devoid of side effects.

  10. The relationship of choline acetyltransferase activity at the neuromuscular junction to changes in muscle mass and function

    PubMed Central

    Diamond, Ivan; Franklin, Gary M.; Milfay, Dale

    1974-01-01

    1. The role of muscle mass and function in the regulation of choline acetyltransferase activity at the neuromuscular junction has been investigated in the rat. 2. Choline acetyltransferase (ChAc) is located in presynaptic nerve terminals and is a specific enzymatic marker of cholinergic innervation in muscle. 3. ChAc activity increased co-ordinately with developmental growth of the soleus muscle. However, another form of muscle growth, work hypertrophy, did not produce an increase in ChAc. 4. Growth arrest of muscle by hypophysectomy did not alter the normal development of ChAc activity, and cortisone-induced muscle atrophy did not reduce ChAc activity in the soleus or plantaris. 5. Tenotomy-induced muscle atrophy provoked a significant fall in ChAc in the soleus and plantaris. 6. The tonic soleus had significantly greater ChAc activity than the phasic plantaris. 7. These observations suggest that muscle mass per se does not influence the development and regulation of ChAc in muscle but that the quality of muscle contraction may modulate enzyme activity. PMID:4818500

  11. Fluorescence of the Flavin group in choline oxidase. Insights and analytical applications for the determination of choline and betaine aldehyde.

    PubMed

    Ortega, E; de Marcos, S; Sanz-Vicente, I; Ubide, C; Ostra, M; Vidal, M; Galbán, J

    2016-01-15

    Choline oxidase (ChOx) is a flavoenzyme catalysing the oxidation of choline (Ch) to betaine aldehyde (BA) and glycine betaine (GB). In this paper a fundamental study of the intrinsic fluorescence properties of ChOx due to Flavin Adenine Dinucleotide (FAD) is presented and some analytical applications are studied in detail. Firstly, an unusual alteration in the excitation spectra, in comparison with the absorption spectra, has been observed as a function of the pH. This is ascribed to a change of polarity in the excited state. Secondly, the evolution of the fluorescence spectra during the reaction seems to indicate that the reaction takes place in two consecutive, but partially overlapped, steps and each of them follows a different mechanism. Thirdly, the chemical system can be used to determine the Ch concentration in the range from 5×10(-6)M to 5×10(-5)M (univariate and multivariate calibration) in the presence of BA as interference, and the joint Ch+BA concentration in the range 5×10(-6)-5×10(-4)M (multivariate calibration) with mean errors under 10%; a semiquantitative determination of the BA concentration can be deduced by difference. Finally, Ch has been successfully determined in an infant milk sample. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Impact of Gut Microbiota and Diet on the Development of Atherosclerosis in Apoe-/- Mice.

    PubMed

    Lindskog Jonsson, Annika; Caesar, Robert; Akrami, Rozita; Reinhardt, Christoph; Fåk Hållenius, Frida; Borén, Jan; Bäckhed, Fredrik

    2018-06-14

    To investigate the effect of gut microbiota and diet on atherogenesis. Here, we investigated the interaction between the gut microbiota and diet on atherosclerosis by feeding germ-free or conventionally raised Apoe -/- mice chow or Western diet alone or supplemented with choline (which is metabolized by the gut microbiota and host enzymes to trimethylamine N-oxide) for 12 weeks. We observed smaller aortic lesions and lower plasma cholesterol levels in conventionally raised mice compared with germ-free mice on a chow diet; these differences were not observed in mice on a Western diet. Choline supplementation increased plasma trimethylamine N-oxide levels in conventionally raised mice but not in germ-free mice. However, this treatment did not affect the size of aortic lesions or plasma cholesterol levels. Gut microbiota composition was analyzed by sequencing of 16S rRNA genes. As expected, the global community structure and relative abundance of many taxa differed between mice fed chow or a Western diet. Choline supplementation had minor effects on the community structure although the relative abundance of some taxa belonging to Clostridiales was altered. In conclusion, the impact of the gut microbiota on atherosclerosis is dietary dependent and is associated with plasma cholesterol levels. Furthermore, the microbiota was required for trimethylamine N-oxide production from dietary choline, but this process could not be linked to increased atherosclerosis in this model. © 2018 The Authors.

  13. Plasma trimethylamine-N-oxide following supplementation with vitamin D or D plus B vitamins.

    PubMed

    Obeid, Rima; Awwad, Hussain M; Kirsch, Susanne H; Waldura, Christiane; Herrmann, Wolfgang; Graeber, Stefan; Geisel, Juergen

    2017-02-01

    We compared the effect of supplementation with vitamin D + B or vitamin D on plasma trimethylamine N-oxide (TMAO) and choline metabolites. This is a randomized single-blinded nonplacebo-controlled study. Twenty-seven participants received 1200 IU vitamin D3 and 800 mg calcium, and 25 participants received additionally 0.5 mg folic acid, 50 mg B6, and 0.5 mg B12 for 1 year. Plasma homocysteine (Hcy), TMAO, and choline metabolites were measured at baseline and 12 months later. TMAO declined in the vitamin D arm by 0.5 versus 2.8 μmol/L in the D + B arm (p = 0.005). Hcy decreased and betaine increased in the D + B compared to the D arm. Within-subject levels of plasma choline and dimethylglycine and urine betaine increased in both arms and changes did not differ between the arms. TMAO reduction was predicted by higher baseline TMAO and lowering Hcy in stepwise regression analysis. The test-retest variations of TMAO were greater in the D + B arm compared to vitamin D arm. B vitamins plus vitamin D lowered plasma fasting TMAO compared to vitamin D. Vitamin D caused alterations in choline metabolism, which may reflect the metabolic flexibility of C1-metabolism. The molecular mechanisms and health implications of these changes are currently unknown. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Deficits in acetylcholine homeostasis, receptors and behaviors in choline transporter heterozygous mice.

    PubMed

    Bazalakova, M H; Wright, J; Schneble, E J; McDonald, M P; Heilman, C J; Levey, A I; Blakely, R D

    2007-07-01

    Cholinergic neurons elaborate a hemicholinium-3 (HC-3) sensitive choline transporter (CHT) that mediates presynaptic, high-affinity choline uptake (HACU) in support of acetylcholine (ACh) synthesis and release. Homozygous deletion of CHT (-/-) is lethal shortly after birth (Ferguson et al. 2004), consistent with CHT as an essential component of cholinergic signaling, but precluding functional analyses of CHT contributions in adult animals. In contrast, CHT+/- mice are viable, fertile and display normal levels of synaptosomal HACU, yet demonstrate reduced CHT protein and increased sensitivity to HC-3, suggestive of underlying cholinergic hypofunction. We find that CHT+/- mice are equivalent to CHT+/+ siblings on measures of motor co-ordination (rotarod), general activity (open field), anxiety (elevated plus maze, light/dark paradigms) and spatial learning and memory (Morris water maze). However, CHT+/- mice display impaired performance as a result of physical challenge in the treadmill paradigm, as well as reduced sensitivity to challenge with the muscarinic receptor antagonist scopolamine in the open field paradigm. These behavioral alterations are accompanied by significantly reduced brain ACh levels, elevated choline levels and brain region-specific decreased expression of M1 and M2 muscarinic acetylcholine receptors. Our studies suggest that CHT hemizygosity results in adequate baseline ACh stores, sufficient to sustain many phenotypes, but normal sensitivities to physical and/or pharmacological challenge require full cholinergic signaling capacity.

  15. Genetic control of osmoadaptive glycine betaine synthesis in Bacillus subtilis through the choline-sensing and glycine betaine-responsive GbsR repressor.

    PubMed

    Nau-Wagner, Gabriele; Opper, Daniela; Rolbetzki, Anne; Boch, Jens; Kempf, Bettina; Hoffmann, Tamara; Bremer, Erhard

    2012-05-01

    Synthesis of the compatible solute glycine betaine confers a considerable degree of osmotic stress tolerance to Bacillus subtilis. This osmoprotectant is produced through the uptake of the precursor choline via the osmotically inducible OpuB and OpuC ABC transporters and a subsequent two-step oxidation process by the GbsB and GbsA enzymes. We characterized a regulatory protein, GbsR, controlling the transcription of both the structural genes for the glycine betaine biosynthetic enzymes (gbsAB) and those for the choline-specific OpuB transporter (opuB) but not of that for the promiscuous OpuC transporter. GbsR acts genetically as a repressor and functions as an intracellular choline sensor. Spectroscopic analysis of the purified GbsR protein showed that it binds the inducer choline with an apparent K(D) (equilibrium dissociation constant) of approximately 165 μM. Based on the X-ray structure of a protein (Mj223) from Methanococcus jannaschii, a homology model for GbsR was derived. Inspection of this GbsR in silico model revealed a possible ligand-binding pocket for choline resembling those of known choline-binding sites present in solute receptors of microbial ABC transporters, e.g., that of the OpuBC ligand-binding protein of the OpuB ABC transporter. GbsR was not only needed to control gbsAB and opuB expression in response to choline availability but also required to genetically tune down glycine betaine production once cellular adjustment to high osmolarity has been achieved. The GbsR regulatory protein from B. subtilis thus records and integrates cellular and environmental signals for both the onset and the repression of the synthesis of the osmoprotectant glycine betaine.

  16. Genetic Control of Osmoadaptive Glycine Betaine Synthesis in Bacillus subtilis through the Choline-Sensing and Glycine Betaine-Responsive GbsR Repressor

    PubMed Central

    Nau-Wagner, Gabriele; Opper, Daniela; Rolbetzki, Anne; Boch, Jens; Kempf, Bettina; Hoffmann, Tamara

    2012-01-01

    Synthesis of the compatible solute glycine betaine confers a considerable degree of osmotic stress tolerance to Bacillus subtilis. This osmoprotectant is produced through the uptake of the precursor choline via the osmotically inducible OpuB and OpuC ABC transporters and a subsequent two-step oxidation process by the GbsB and GbsA enzymes. We characterized a regulatory protein, GbsR, controlling the transcription of both the structural genes for the glycine betaine biosynthetic enzymes (gbsAB) and those for the choline-specific OpuB transporter (opuB) but not of that for the promiscuous OpuC transporter. GbsR acts genetically as a repressor and functions as an intracellular choline sensor. Spectroscopic analysis of the purified GbsR protein showed that it binds the inducer choline with an apparent KD (equilibrium dissociation constant) of approximately 165 μM. Based on the X-ray structure of a protein (Mj223) from Methanococcus jannaschii, a homology model for GbsR was derived. Inspection of this GbsR in silico model revealed a possible ligand-binding pocket for choline resembling those of known choline-binding sites present in solute receptors of microbial ABC transporters, e.g., that of the OpuBC ligand-binding protein of the OpuB ABC transporter. GbsR was not only needed to control gbsAB and opuB expression in response to choline availability but also required to genetically tune down glycine betaine production once cellular adjustment to high osmolarity has been achieved. The GbsR regulatory protein from B. subtilis thus records and integrates cellular and environmental signals for both the onset and the repression of the synthesis of the osmoprotectant glycine betaine. PMID:22408163

  17. DNA methylation potential: Dietary intake and blood concentrations of one-carbon metabolites and cofactors in rural African women

    USDA-ARS?s Scientific Manuscript database

    Animal models show that periconceptional supplementation with folic acid, vitamin B-12, choline, and betaine can induce differences in offspring phenotype mediated by epigenetic changes in DNA. In humans, altered DNA methylation patterns have been observed in offspring whose mothers were exposed to ...

  18. Dioctanoylglycerol stimulates accumulation of [methyl-14C]choline and its incorporation into acetylcholine and phosphatidylcholine in a human cholinergic neuroblastoma cell line

    NASA Technical Reports Server (NTRS)

    Slack, B. E.; Richardson, U. I.; Nitsch, R. M.; Wurtman, R. J.

    1992-01-01

    Dioctanoylglycerol, a synthetic diacylglycerol, stimulated [14C]choline uptake in cultured human neuroblastoma (LA-N-2) cells. As this effect has not, to our knowledge, been reported before, it was of interest to characterize it in more detail. In the presence of 500 microM dioctanoylglycerol the levels of [14C]choline attained during a 2 hour labeling period were elevated by 78 +/- 12%, while [14C]acetylcholine and long fatty acyl chain [14C]phosphatidylcholine levels increased by 26 +/- 2% and 19 +/- 5%, respectively (mean +/- S.E.M.). Total (long chain plus dioctanoyl-) [14C]phosphatidylcholine was increased by 198 +/- 33%. Kinetic analysis showed that dioctanoylglycerol reduced the apparent Km for choline uptake to 56 +/- 9% of control (n = 4). The Vmax was not significantly altered. The stimulation of [14C]choline accumulation by dioctanoylglycerol was not dependent on protein kinase C activation; the effect was not mimicked by phorbol ester or by 1-oleoyl-2-acetylglycerol, and was not inhibited by the protein kinase C inhibitors H-7 or staurosporine, or by prolonged pretreatment with phorbol 12-myristate 13-acetate. The effect of dioctanoylglycerol was slightly (but not significantly) reduced by EGTA and strongly inhibited by the cell-permeant calcium chelator bis(o-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid, tetra(acetoxymethyl)ester. Although these results implicate elevated intracellular calcium in the response, dioctanoylglycerol did not increase phosphatidylinositol hydrolysis in LA-N-2 cells, and its effect was not inhibited by the diacylglycerol kinase inhibitor R 59 022 (which blocks the conversion of diacylglycerol to phosphatidic acid, a known stimulator of phosphatidylinositol hydrolysis).(ABSTRACT TRUNCATED AT 250 WORDS).

  19. Adult emotionality and neural plasticity as a function of adolescent nutrient supplementation in male rats.

    PubMed

    McCall, Nora; Mahadevia, Darshini; Corriveau, Jennifer A; Glenn, Melissa J

    2015-03-14

    The present study explored the effects of supplementing male rats with either choline, omega-3 fatty acids, or phytoestrogens, from weaning into early adulthood, on emotionality and hippocampal plasticity. Because of the neuroprotective properties of these nutrients, we hypothesized that they would positively affect both behavior and hippocampal function when compared to non-supplemented control rats. To test this hypothesis, male Sprague Dawley rats were assigned to one of four nutrient conditions after weaning: 1) control (normal rat chow); 2) choline (supplemented in drinking water); 3) omega 3 fatty acids (daily oral supplements); or 4) phytoestrogens (supplemented in chow). After 4weeks on their respective diets, a subset of rats began 3weeks of behavioral testing, while the remaining behaviorally naïve rats were sacrificed after 6weeks on the diets to assess numbers of adult-born hippocampal neurons using the immature neuron marker, doublecortin. The results revealed that choline supplementation affected emotional functioning; compared to rats in other diet conditions, rats in this group were less anxious in an open field and after exposure to predator odor and showed less behavioral despair after forced swimming. Similar behavioral findings were evident following supplementation with omega-3 fatty acids and phytoestrogen supplementation, though not on all tests and not to the same magnitude. Histological findings followed a pattern consistent with the behavioral findings: choline supplementation, followed by omega-3 fatty acid supplementation, but not phytoestrogen supplementation, significantly increased the numbers of new-born hippocampal neurons. Choline and omega-3 fatty acids have similar biological functions-affecting cell membranes, growth factor levels, and epigenetically altering gene transcription. Thus, the present findings suggest that targeting nutrients with these effects may be a viable strategy to combat adult psychopathologies. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Severe methylenetetrahydrofolate reductase deficiency in mice results in behavioral anomalies with morphological and biochemical changes in hippocampus.

    PubMed

    Jadavji, Nafisa M; Deng, Liyuan; Leclerc, Daniel; Malysheva, Olga; Bedell, Barry J; Caudill, Marie A; Rozen, Rima

    2012-06-01

    The brain is particularly sensitive to folate metabolic disturbances, since methyl groups are critical for its functions. Methylenetetrahydrofolate reductase (MTHFR) generates the primary circulatory form of folate required for homocysteine remethylation to methionine. Neurological disturbances have been described in homocystinuria caused by severe MTHFR deficiency. The goal of this study was to determine if behavioral anomalies are present in severe Mthfr-deficient (Mthfr(-/-)) mice and to identify neurobiological changes that could contribute to these anomalies. Adult male mice of 3 Mthfr genotypes (+/+, +/-, -/-) were tested on motor, anxiety, exploratory and cognitive tasks. Volumes (whole brain and hippocampus) and morphology, global DNA methylation, apoptosis, expression of choline acetyltransferase (ChAT) and glucocorticoid receptor (GR), and concentrations of choline metabolites were assessed in hippocampus. Mthfr(-/-) mice had impairments in motor function and in short- and long-term memory, increased exploratory behavior and decreased anxiety. They showed decreased whole brain and hippocampal volumes, reduced thickness of the pyramidal cell layer of CA1 and CA3, and increased apoptosis in hippocampus. There was a disturbance in choline metabolism as manifested by differences in acetylcholine, betaine or glycerophosphocholine concentrations, and by increased ChAT levels. Mthfr(-/-) mice also had increased GR mRNA and protein. Our study has revealed significant anomalies in affective behavior and impairments in memory of Mthfr(-/-) mice. We identified structural changes, increased apoptosis, altered choline metabolism and GR dysregulation in hippocampus. These findings, as well as some similar observations in cerebellum, could contribute to the behavioral changes and suggest that choline is a critical metabolite in homocystinuria. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Dynamic alterations in the gut microbiota and metabolome during the development of methionine-choline-deficient diet-induced nonalcoholic steatohepatitis.

    PubMed

    Ye, Jian-Zhong; Li, Ya-Ting; Wu, Wen-Rui; Shi, Ding; Fang, Dai-Qiong; Yang, Li-Ya; Bian, Xiao-Yuan; Wu, Jing-Jing; Wang, Qing; Jiang, Xian-Wan; Peng, Cong-Gao; Ye, Wan-Chun; Xia, Peng-Cheng; Li, Lan-Juan

    2018-06-21

    To investigate changes in gut microbiota and metabolism during nonalcoholic steatohepatitis (NASH) development in mice fed a methionine-choline-deficient (MCD) diet. Twenty-four male C57BL/6J mice were equally divided into four groups and fed a methionine-choline-sufficient diet for 2 wk (Control 2w group, n = 6) or 4 wk (Control 4w group, n = 6) or the MCD diet for 2 wk (MCD 2w group, n = 6) or 4 wk (MCD 4w group, n = 6). Liver injury, fibrosis, and intestinal barrier function were evaluated after 2 and 4 wk of feeding. The fecal microbiome and metabolome were studied using 16s rRNA deep sequencing and gas chromatography-mass spectrometry. The mice fed the MCD diet presented with simple hepatic steatosis and slight intestinal barrier deterioration after 2 wk. After 4 wk of feeding with the MCD diet, however, the mice developed prominent NASH with liver fibrosis, and the intestinal barrier was more impaired. Compared with the control diet, the MCD diet induced gradual gut microbiota dysbiosis, as evidenced by a marked decrease in the abundance of Alistipes and the ( Eubacterium ) coprostanoligenes group ( P < 0.001 and P < 0.05, respectively) and a significant increase in Ruminococcaceae UCG 014 abundance ( P < 0.05) after 2 wk. At 4 wk, the MCD diet significantly reduced the promising probiotic Bifidobacterium levels and markedly promoted Bacteroides abundance ( P < 0.05, and P < 0.01, respectively). The fecal metabolomic profile was also substantially altered by the MCD diet: At 2 wk, arachidic acid, hexadecane, palmitic acid, and tetracosane were selected as potential biomarkers that were significantly different in the corresponding control group, and at 4 wk, cholic acid, cholesterol, arachidic acid, tetracosane, and stearic acid were selected. The MCD diet induced persistent alterations in the gut microbiota and metabolome.

  2. Dynamic alterations in the gut microbiota and metabolome during the development of methionine-choline-deficient diet-induced nonalcoholic steatohepatitis

    PubMed Central

    Ye, Jian-Zhong; Li, Ya-Ting; Wu, Wen-Rui; Shi, Ding; Fang, Dai-Qiong; Yang, Li-Ya; Bian, Xiao-Yuan; Wu, Jing-Jing; Wang, Qing; Jiang, Xian-Wan; Peng, Cong-Gao; Ye, Wan-Chun; Xia, Peng-Cheng; Li, Lan-Juan

    2018-01-01

    AIM To investigate changes in gut microbiota and metabolism during nonalcoholic steatohepatitis (NASH) development in mice fed a methionine-choline-deficient (MCD) diet. METHODS Twenty-four male C57BL/6J mice were equally divided into four groups and fed a methionine-choline-sufficient diet for 2 wk (Control 2w group, n = 6) or 4 wk (Control 4w group, n = 6) or the MCD diet for 2 wk (MCD 2w group, n = 6) or 4 wk (MCD 4w group, n = 6). Liver injury, fibrosis, and intestinal barrier function were evaluated after 2 and 4 wk of feeding. The fecal microbiome and metabolome were studied using 16s rRNA deep sequencing and gas chromatography-mass spectrometry. RESULTS The mice fed the MCD diet presented with simple hepatic steatosis and slight intestinal barrier deterioration after 2 wk. After 4 wk of feeding with the MCD diet, however, the mice developed prominent NASH with liver fibrosis, and the intestinal barrier was more impaired. Compared with the control diet, the MCD diet induced gradual gut microbiota dysbiosis, as evidenced by a marked decrease in the abundance of Alistipes and the (Eubacterium) coprostanoligenes group (P < 0.001 and P < 0.05, respectively) and a significant increase in Ruminococcaceae UCG 014 abundance (P < 0.05) after 2 wk. At 4 wk, the MCD diet significantly reduced the promising probiotic Bifidobacterium levels and markedly promoted Bacteroides abundance (P < 0.05, and P < 0.01, respectively). The fecal metabolomic profile was also substantially altered by the MCD diet: At 2 wk, arachidic acid, hexadecane, palmitic acid, and tetracosane were selected as potential biomarkers that were significantly different in the corresponding control group, and at 4 wk, cholic acid, cholesterol, arachidic acid, tetracosane, and stearic acid were selected. CONCLUSION The MCD diet induced persistent alterations in the gut microbiota and metabolome. PMID:29930468

  3. Saccharomyces Cerevisiae Cho2 Mutants Are Deficient in Phospholipid Methylation and Cross-Pathway Regulation of Inositol Synthesis

    PubMed Central

    Summers, E. F.; Letts, V. A.; McGraw, P.; Henry, S. A.

    1988-01-01

    Five allelic Saccharomyces cerevisiae mutants deficient in the methylation of phosphatidylethanolamine (PE) have been isolated, using two different screening techniques. Biochemical analysis suggested that these mutants define a locus, designated CHO2, that may encode a methyltransferase. Membranes of cho2 mutant cells grown in defined medium contain approximately 10% phosphatidylcholine (PC) and 40-50% PE as compared to wild-type levels of 40-45% PC and 15-20% PE. In spite of this greatly altered phospholipid composition, cho2 mutant cells are viable in defined medium and are not auxotrophic for choline or other phospholipid precursors such as monomethylethanolamine (MME). However, analysis of yeast strains carrying more than one mutation affecting phospholipid biosynthesis indicated that some level of methylated phospholipid is essential for viability. The cho2 locus was shown by tetrad analysis to be unlinked to other loci affecting phospholipid synthesis. Interestingly, cho2 mutants and other mutant strains that produce reduced levels of methylated phospholipids are unable to properly repress synthesis of the cytoplasmic enzyme inositol-1-phosphate synthase. This enzyme was previously shown to be regulated at the level of mRNA abundance in response to inositol and choline in the growth medium. We cloned the CHO2 gene on a 3.6-kb genomic DNA fragment and created a null allele of cho2 by disrupting the CHO2 gene in vivo. The cho2 disruptant, like all other cho2 mutants, is viable, exhibits altered regulation of inositol biosynthesis and is not auxotrophic for choline or MME. PMID:3066687

  4. Review of the carcinogenic activity of diethanolamine and evidence of choline deficiency as a plausible mode of action.

    PubMed

    Leung, Hon-Wing; Kamendulis, Lisa M; Stott, William T

    2005-12-01

    Diethanolamine (DEA) is a chemical used widely in a number of industries and is present in many consumer products. Studies by the National Toxicology Program (NTP) have indicated that lifetime dermal exposure to DEA increased the incidence and multiplicity of liver tumors in mice, but not in rats. In addition, DEA was not carcinogenic when tested in the Tg.Ac transgenic mouse model. Short-term genotoxicity tests have yielded negative results. In view of these apparent inconsistencies, we have critically evaluated the NTP studies and other data relevant to assessing the carcinogenic potential of DEA. The available data indicate that DEA induces mouse liver tumors by a non-genotoxic mode of action that involves its ability to cause choline deficiency. The following experimental evidence supports this hypothesis. DEA decreased the hepatic choline metabolites and S-adenosylmethionine levels in mice, similar to those observed in choline-deficient mice. In contrast, DEA had no effect in the rat, a species in which it was not carcinogenic at a maximum tolerated dose level. In addition, a consistent dose-effect relationship had been established between choline deficiency and carcinogenic activity since all DEA dosages that induced tumors in the NTP studies were also shown to cause choline deficiency. DEA decreased phosphatidylcholine synthesis by blocking the cellular uptake of choline in vitro, but these events did not occur in the presence of excess choline. Finally, DEA induced transformation in the Syrian hamster embryo cells, increased S-phase DNA synthesis in mouse hepatocytes, and decreased gap junctional intracellular communication in primary cultured mouse and rat hepatocytes, but all these events were prevented with choline supplementation. Since choline is an essential nutrient in mammals, this mode of action is qualitatively applicable to humans. However, there are marked species differences in susceptibility to choline deficiency, with rats and mice being far more susceptible than other mammalian species including humans. These differences are attributed to quantitative differences in the enzyme kinetics controlling choline metabolism. The fact that DEA was carcinogenic in mice but not in rats also has important implications for human risk assessment. DEA has been shown to be less readily absorbed across rat and human skin than mouse skin. Since a no observed effect level for DEA-induced choline deficiency in mice has been established to be 10 mg/kg/d, this indicates that there is a critical level of DEA that must be attained in order to affect choline homeostasis. The lack of a carcinogenic response in rats suggests that exposure to DEA did not reach this critical level. Since rodents are far more sensitive to choline deficiency than humans, it can be concluded that the hepatocarcinogenic effect of DEA in mice is not predictive of similar susceptibility in humans.

  5. Synergistic Effects of Human Milk Nutrients in the Support of Infant Recognition Memory: An Observational Study

    PubMed Central

    Cheatham, Carol L.; Sheppard, Kelly Will

    2015-01-01

    The aim was to explore the relation of human milk lutein; choline; and docosahexaenoic acid (DHA) with recognition memory abilities of six-month-olds. Milk samples obtained three to four months postpartum were analyzed for fatty acids, lutein, and choline. At six months, participants were invited to an electrophysiology session. Recognition memory was tested with a 70–30 oddball paradigm in a high-density 128-lead event-related potential (ERP) paradigm. Complete data were available for 55 participants. Data were averaged at six groupings (Frontal Right; Frontal Central; Frontal Left; Central; Midline; and Parietal) for latency to peak, peak amplitude, and mean amplitude. Difference scores were calculated as familiar minus novel. Final regression models revealed the lutein X free choline interaction was significant for the difference in latency scores at frontal and central areas (p < 0.05 and p < 0.001; respectively). Higher choline levels with higher lutein levels were related to better recognition memory. The DHA X free choline interaction was also significant for the difference in latency scores at frontal, central, and midline areas (p < 0.01; p < 0.001; p < 0.05 respectively). Higher choline with higher DHA was related to better recognition memory. Interactions between human milk nutrients appear important in predicting infant cognition, and there may be a benefit to specific nutrient combinations. PMID:26540073

  6. Synergistic Effects of Human Milk Nutrients in the Support of Infant Recognition Memory: An Observational Study.

    PubMed

    Cheatham, Carol L; Sheppard, Kelly Will

    2015-11-03

    The aim was to explore the relation of human milk lutein; choline; and docosahexaenoic acid (DHA) with recognition memory abilities of six-month-olds. Milk samples obtained three to four months postpartum were analyzed for fatty acids, lutein, and choline. At six months, participants were invited to an electrophysiology session. Recognition memory was tested with a 70-30 oddball paradigm in a high-density 128-lead event-related potential (ERP) paradigm. Complete data were available for 55 participants. Data were averaged at six groupings (Frontal Right; Frontal Central; Frontal Left; Central; Midline; and Parietal) for latency to peak, peak amplitude, and mean amplitude. Difference scores were calculated as familiar minus novel. Final regression models revealed the lutein X free choline interaction was significant for the difference in latency scores at frontal and central areas (p < 0.05 and p < 0.001; respectively). Higher choline levels with higher lutein levels were related to better recognition memory. The DHA X free choline interaction was also significant for the difference in latency scores at frontal, central, and midline areas (p < 0.01; p < 0.001; p < 0.05 respectively). Higher choline with higher DHA was related to better recognition memory. Interactions between human milk nutrients appear important in predicting infant cognition, and there may be a benefit to specific nutrient combinations.

  7. CDP-choline as a biological supplement during neurorecovery: a focused review.

    PubMed

    Arenth, Patricia M; Russell, Kathryn C; Ricker, Joseph H; Zafonte, Ross D

    2011-06-01

    Cytidine 5'-diphosphocholine (CDP-choline or citicoline) is a highly bioavailable compound with potential benefits for aiding neural repair and increasing acetylcholine levels in the central and peripheral nervous system. As a result, many researchers have investigated the use of CDP-choline for various types of neurological insult or conditions, including stroke, traumatic brain injury, and Alzheimer disease. Despite the fact that the safety of the compound has been verified across multiple international studies, evidence for efficacy remains less clear. This may be attributable, at least in part, to several issues, including a lack of randomized clinical trials, a lack of availability of the compound in the United States, and statistical power issues in reported trials. In addition, the fact that CDP-choline has multiple potential points of therapeutic impact makes it an exciting treatment option in theory but also complicates the analysis of efficacy in the sense that multiple mechanisms and time points must be evaluated. Although some clinical conditions do not appear to benefit from CDP-choline treatment, the majority of findings to date have suggested at least minor benefits of treatment. In this review we will examine the evidence in the published literature pertaining to use of CDP-choline in rehabilitation populations and briefly consider the work yet to be done. Copyright © 2011 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  8. Does Choline PET/CT Change the Management of Prostate Cancer Patients With Biochemical Failure?

    PubMed

    Goldstein, Jeffrey; Even-Sapir, Einat; Ben-Haim, Simona; Saad, Akram; Spieler, Benjamin; Davidson, Tima; Berger, Raanan; Weiss, Ilana; Appel, Sarit; Lawrence, Yaacov R; Symon, Zvi

    2017-06-01

    The FDA approved C-11 choline PET/computed tomography (CT) for imaging patients with recurrent prostate cancer in 2012. Subsequently, the 2014 NCCN guidelines have introduced labeled choline PET/CT in the imaging algorithm of patients with suspected recurrent disease. However, there is only scarce data on the impact of labeled choline PET/CT findings on disease management. We hypothesized that labeled-choline PET/CT studies showing local or regional recurrence or distant metastases will have a direct role in selection of appropriate patient management and improve radiation planning in patients with disease that can be controlled using this mode of therapy. This retrospective study was approved by the Tel Aviv Sourasky and Sheba Medical Center's Helsinki ethical review committees. Patient characteristics including age, PSA, stage, prior treatments, and pre-PET choline treatment recommendations based on NCCN guidelines were recorded. Patients with biochemical failure and without evidence of recurrence on physical examination or standard imaging were offered the option of additional imaging with labeled choline PET/CT. Treatment recommendations post-PET/CT were compared with pre-PET/CT ones. Pathologic confirmation was obtained before prostate retreatment. A nonparametric χ test was used to compare the initial and final treatment recommendations following choline PET/CT. Between June 2010 and January 2014, 34 labeled-choline PET/CT studies were performed on 33 patients with biochemical failure following radical prostatectomy (RP) (n=6), radiation therapy (RT) (n=6), brachytherapy (n=2), RP+salvage prostate fossa RT (n=14), and RP+salvage prostate fossa/lymph node RT (n=6). Median PSA level before imaging was 2 ng/mL (range, 0.16 to 79). Labeled choline PET/CT showed prostate, prostate fossa, or pelvic lymph node increased uptake in 17 studies, remote metastatic disease in 9 studies, and failed to identify the cause for biochemical failure in 7 scans.PET/CT altered treatment approach in 18 of 33 (55%) patients (P=0.05). Sixteen of 27 patients (59%) treated previously with radiation were retreated with RT and delayed or eliminated androgen deprivation therapy: 1 received salvage brachytherapy, 10 received salvage pelvic lymph node or prostate fossa irradiation, 2 brachytherapy failures received salvage prostate and lymph nodes IMRT, and 3 with solitary bone metastasis were treated with radiosurgery. Eleven of 16 patients retreated responded to salvage therapy with a significant PSA response (<0.2 ng/mL), 2 patients had partial biochemical responses, and 3 patients failed. The median duration of response was 500±447 days. Two of 6 patients with no prior RT were referred for salvage prostatic fossa RT: 1 received dose escalation for disease identified in the prostate fossa and another had inclusion of "hot" pelvic lymph nodes in the treatment volume. These early results suggest that labeled choline PET/CT imaging performed according to current NCCN guidelines may change management and improve care in prostate cancer patients with biochemical failure by identifying patients for referral for salvage radiation therapy, improving radiation planning, and delaying or avoiding use of androgen deprivation therapy.

  9. Blood Cholinesterase as a Function of Physostigmine.

    DTIC Science & Technology

    1981-07-01

    organophosphates to serum cholines - terase and brain homogenate are similar, indicating that the en- zymes are the same in blood and brain, although...organophosphate insult to the organism. Little research is available on the time course of cholin - esterase inactivation and/or reactivation after...administration. Nine animals received a .05, .07, .09, .11, or .13 mg/kg dose of physostigmine salicylate or a placebo injection on two occasions, and four

  10. [Maternal methyl-containing dietary supplementation alters the ability to learn in adult rats in swimming Morris test].

    PubMed

    Pliusnina, I Z; Os'kina, I N; Shchepina, O A; Prasolova, L A; Trut, L N

    2006-01-01

    Maternal choline diet influences the spatial learning processes. In this work, the learning ability of adult progeny of mothers who had received methyl diet enriched with choline and betain during pregnancy and lactation was studied in Morris test. The introduction of the diet to pregnant rats resulted in an increase in the time of search for invisible platform and time of swimming near the pool walls in offsprings, which meant a worsening of their learning ability. It was also found that change in platform searching strategy was not associated with an increase in anxiety of male rats. Possible involvement of maternal methyl diet in the change of expression of genes which control development of the nervous system is discussed.

  11. Choline intakes exceeding recommendations during human lactation improve breast milk choline content by increasing PEMT pathway metabolites.

    PubMed

    Davenport, Crystal; Yan, Jian; Taesuwan, Siraphat; Shields, Kelsey; West, Allyson A; Jiang, Xinyin; Perry, Cydne A; Malysheva, Olga V; Stabler, Sally P; Allen, Robert H; Caudill, Marie A

    2015-09-01

    Demand for the vital nutrient choline is high during lactation; however, few studies have examined choline metabolism and requirements in this reproductive state. The present study sought to discern the effects of lactation and varied choline intake on maternal biomarkers of choline metabolism and breast milk choline content. Lactating (n=28) and control (n=21) women were randomized to 480 or 930 mg choline/day for 10-12 weeks as part of a controlled feeding study. During the last 4-6 weeks, 20% of the total choline intake was provided as an isotopically labeled choline tracer (methyl-d9-choline). Blood, urine and breast milk samples were collected for choline metabolite quantification, enrichment measurements, and gene expression analysis of choline metabolic genes. Lactating (vs. control) women exhibited higher (P < .001) plasma choline concentrations but lower (P ≤ .002) urinary excretion of choline metabolites, decreased use of choline as a methyl donor (e.g., lower enrichment of d6-dimethylglycine, P ≤ .08) and lower (P ≤ .02) leukocyte expression of most choline-metabolizing genes. A higher choline intake during lactation differentially influenced breast milk d9- vs. d3-choline metabolite enrichment. Increases (P ≤ .03) were detected among the d3-metabolites, which are generated endogenously via the hepatic phosphatidylethanolamine N-methyltransferase (PEMT), but not among the d9-metabolites generated from intact exogenous choline. These data suggest that lactation induces metabolic adaptations that increase the supply of intact choline to the mammary epithelium, and that extra maternal choline enhances breast milk choline content by increasing supply of PEMT-derived choline metabolites. This trial was registered at clinicaltrials.gov as NCT01127022. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Elevated Choline-Containing Compound Levels in Rapid Cycling Bipolar Disorder.

    PubMed

    Cao, Bo; Stanley, Jeffrey A; Passos, Ives Cavalcante; Mwangi, Benson; Selvaraj, Sudhakar; Zunta-Soares, Giovana B; Soares, Jair C

    2017-10-01

    Previous studies have found increased levels of choline-containing compounds (ie, glycerophosphocholine plus phosphocholine (GPC+PC)) in bipolar disorder using in vivo proton magnetic resonance spectroscopy ( 1 H MRS), especially in bipolar I disorder (BD-I). Increased levels of GPC+PC suggest alterations in the membrane phospholipids metabolism in bipolar disorder. Rapid cycling (RC) bipolar disorder is considered as a severe course of bipolar disorder, but it is unclear whether rapid cycling bipolar disorder is linked to highly altered membrane phospholipid metabolism. The purpose of this study was to investigate whether the regional extent of elevated GPC+PC were greater in BD-I patients with rapid cycling compared to BD-I patients without rapid cycling and healthy controls. Using a multi-voxel 1 H MRS approach at 3 Tesla with high spatial resolution and absolute quantification, GPC+PC levels from the anterior cingulate cortex (ACC), caudate and putamen of 16 RC BD-I, 34 non-RC BD-I and 44 healthy controls were assessed. We found significantly elevated GPC+PC levels in ACC, putamen and caudate of RC BD-I patients compared to healthy controls (P<0.005) and in ACC compared to non-RC BD-I patients (P<0.05). These results suggest greater alteration of membrane phospholipid metabolisms in rapid cycling BD-I compared to non-rapid-cycling BD-I.

  13. Brain morphological alterations and cellular metabolic changes in patients with generalized anxiety disorder: A combined DARTEL-based VBM and (1)H-MRS study.

    PubMed

    Moon, Chung-Man; Jeong, Gwang-Woo

    2016-05-01

    Generalized anxiety disorder (GAD) is characterized by emotional dysregulation and cognitive deficit in conjunction with brain morphometric and metabolic alterations. This study assessed the combined neural morphological deficits and metabolic abnormality in patients with GAD. Thirteen patients with GAD and 13 healthy controls matched for age, sex, and education level underwent high-resolution T1-weighted MRI and proton magnetic resonance spectroscopy ((1)H-MRS) at 3Tesla. In this study, the combination of voxel-based morphometry (VBM) and (1)H-MRS was used to assess the brain morphometric and metabolic alterations in GAD. The patients showed significantly reduced white matter (WM) volumes in the midbrain (MB), precentral gyrus (PrG), dorsolateral prefrontal cortex (DLPFC) and anterior limb of the internal capsule (ALIC) compared to the controls. In MRS study, the choline/creatine (Cho/Cr) and choline/N-acetylaspartate (Cho/NAA) ratios in the DLPFC were significantly lower in the patients. Particularly, the WM volume variation of the DLPFC was positively correlated with both of the Cho/Cr and Cho/NAA ratios in patients with GAD. This study provides an evidence for the association between the morphometric deficit and metabolic changes in GAD. This finding would be helpful to understand the neural dysfunction and pathogenesis in connection with cognitive impairments in GAD. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Cloning, Expression, and Purification of Choline Dehydrogenase from the Moderate Halophile Halomonas elongata

    PubMed Central

    Gadda, Giovanni; McAllister-Wilkins, Elien Elizabeth

    2003-01-01

    Choline dehydrogenase (EC 1.1.99.1) catalyzes the four-electron oxidation of choline to glycine-betaine via a betaine-aldehyde intermediate. Such a reaction is of considerable interest for biotechnological applications in that transgenic plants engineered with bacterial glycine-betaine-synthesizing enzymes have been shown to have enhanced tolerance towards various environmental stresses, such as hypersalinity, freezing, and high temperatures. To date, choline dehydrogenase has been poorly characterized in its biochemical and kinetic properties, mainly because its purification has been hampered by instability of the enzyme in vitro. In the present report, we cloned and expressed in Escherichia coli the betA gene from the moderate halophile Halomonas elongata which codes for a hypothetical choline dehydrogenase. The recombinant enzyme was purified to more than 70% homogeneity as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and by treatment with 30 to 50% saturation of ammonium sulfate followed by column chromatography using DEAE-Sepharose. The purified enzyme showed similar substrate specificities with either choline or betaine-aldehyde as the substrate, as indicated by the apparent V/K values (where V is the maximal velocity and K is the Michaelis constant) of 0.9 and 0.6 μmol of O2 min−1 mg−1 mM−1 at pH 7 and 25°C, respectively. With 1 mM phenazine methosulfate as the primary electron acceptor, the apparent Vmax values for choline and betaine-aldehyde were 10.9 and 5.7 μmol of O2 min−1 mg−1, respectively. These Vmax values decreased four- to sevenfold when molecular oxygen was used as the electron acceptor. Altogether, the kinetic data are consistent with the conclusion that H. elongata betA codes for a choline dehydrogenase that can also act as an oxidase when electron acceptors other than molecular oxygen are not available. PMID:12676692

  15. Folate intake and the MTHFR C677T genotype influence choline status in young Mexican American women☆

    PubMed Central

    Abratte, Christian M.; Wang, Wei; Li, Rui; Moriarty, David J.; Caudill, Marie A.

    2009-01-01

    Numerous studies have reported a relationship between folate status, the methylenetetrahydrofolate reductase (MTHFR) 677C→T variant and disease risk. Although folate and choline metabolism are inter-related, only limited data are available on the relationship between choline and folate status in humans. This study sought to examine the influences of folate intake and the MTHFR 677C→T variant on choline status. Mexican-American women (n =43; 14 CC, 12 CT and 17 TT) consumed 135 μg/day as dietary folate equivalents (DFE) for 7 weeks followed by randomization to 400 or 800 μg DFE/day for 7 weeks. Throughout the study, total choline intake remained unchanged at ∼350 mg/day. Plasma concentrations of betaine, choline, glycerophosphocholine, phosphatidylcholine and sphingomyelin were measured via LC-MS/MS for Weeks 0, 7 and 14. Phosphatidylcholine and sphingomyelin declined ( P=.001, P=.009, respectively) in response to folate restriction and increased ( P=.08, P=.029, respectively) in response to folate treatment. The increase in phosphatidylcholine occurred in response to 800 ( P=.03) not 400 ( P=.85) μg DFE/day (week×folate interaction, P=.017). The response of phosphatidylcholine to folate intake appeared to be influenced by MTHFR C677T genotype. The decline in phosphatidylcholine during folate restriction occurred primarily in women with the CC or CT genotype and not in the TT genotype (week×genotype interaction, P=.089). Moreover, when examined independent of folate status, phosphatidylcholine was higher ( P <.05) in the TT genotype relative to the CT genotype. These data suggest that folate intake and the MTHFR C677T genotype influence choline status in humans. PMID:17588738

  16. Plasma choline and betaine and their relation to plasma homocysteine in normal pregnancy.

    PubMed

    Velzing-Aarts, Francien V; Holm, Pål I; Fokkema, M Rebecca; van der Dijs, Fey P; Ueland, Per M; Muskiet, Frits A

    2005-06-01

    Plasma concentrations of total homocysteine (tHcy) decrease during pregnancy. This reduction has been investigated in relation to folate status, but no study has addressed the possible role of betaine and its precursor choline. We investigated the courses of plasma choline and betaine during normal human pregnancy and their relations to plasma tHcy. Blood samples were obtained monthly; the initial samples were taken at gestational week (GW) 9, and the last samples were taken approximately 3 mo postpartum. The study population comprised 50 women of West African descent. Most of the subjects took folic acid irregularly. Plasma choline (geometric x; 95% reference interval) increased continuously during pregnancy, from 6.6 (4.5, 9.7) micromol/L at GW 9 to 10.8 (7.4, 15.6) micromol/L at GW 36. Plasma betaine decreased in the first half of pregnancy, from 16.3 (8.6, 30.8) micromol/L at GW 9 to 10.3 (6.6, 16.2) micromol/L at GW 20 and remained constant thereafter. We confirmed a reduction in plasma tHcy, and the lowest concentration was found in the second trimester. From GW 16 onward, an inverse relation between plasma tHcy and betaine was observed. Multiple regression analysis showed that plasma betaine was a strong predictor of plasma tHcy from GW 20 onward. The steady increase in choline throughout gestation may ensure choline availability for placental transfer with subsequent use by the growing fetus. Betaine becomes a strong predictor of tHcy during the course of pregnancy. Both of these findings emphasize the importance of choline and betaine status during normal human pregnancy.

  17. Foods and food constituents that affect the brain and human behavior

    NASA Technical Reports Server (NTRS)

    Lieberman, Harris R.; Wurtman, Richard J.

    1986-01-01

    Until recently, it was generally believed that brain function was usually independent of day-to-day metabolic changes associated with consumption of food. Although it was acknowledged that peripheral metabolic changes associated with hunger or satiety might affect brain function, other effects of foods on the brain were considered unlikely. However, in 1971, Fernstrom and Wurtman discovered that under certain conditions, the protein-to-carbohydrate ratio of a meal could affect the concentration of a particular brain neurotransmitter. That neurotransmitter, serotonin, participates in the regulation of a variety of central nervous system (CNS) functions including sleep, pain sensitivity, aggression, and patterns of nutrient selection. The activity of other neurotransmitter systems has also been shown to be, under certain conditions, affected by dietary constituents which are given either as ordinary foods or in purified form. For example, the CNS turnover of two catecholamine neurotransmitters, dopamine and norepinephrine, can be altered by ingestion of their amino acid precursor, tyrosine, when neurons that release these monoamines are firing frequently. Similarly, lecithin, a dietary source of choline, and choline itself have been shown to increase the synthesis of acetylcholine when cholinergic neurons are very active. It is possible that other neurotransmitters could also be affected by precursor availability or other, as yet undiscovered peripheral factors governed by food consumption. The effects of food on neurotransmitters and behavior are discussed.

  18. Comparative plasma salicylate and urine salicylurate levels following administration of aspirin, magnesium salicylate, and choline magnesium trisalicylate.

    PubMed

    Mason, W D

    1980-11-01

    Eighteen healthy volunteers were administered single doses of commercially available solid dosage forms of aspirin, magnesium salicylate (I), and choline magnesium trisalicylate (II), equivalent to approximately 500 mg of salicylic acid, in a randomized, complete crossover design. Plasma salicylate and urine salicylurate levels were measured by high-pressure liquid chromatography at frequent intervals following dosing; the resultant profiles, areas under the curve (AUC), and percentages of dose excreted as salicylurate were statistically analyzed by an analysis of variance. The plasma salicylate levels following the two dosage forms containing I and II were virtually identical when corrected for small differences in the dose. The plasma salicylic acid level following aspirin was approximately 10% lower during the 1.5--3.0-hr interval due to a portion of unhydrolyzed aspirin, but the dose-corrected AUC for the products tested did not differ significantly (p < 0.05). During the 24 hr following dosing, 66.5 +/- 12.1 68.4 +/- 7.1, and 60.9 +/- 14.1% of the salicylic acid were excreted as urine salicylurate for aspirin, I, and II, respectively, with no significant difference (p < 0.05). Based on this study, there are no significant differences in the rate and extent of absorption of salicylate following the three dosage forms tested, and the elimination kinetics of salicylic acid are not altered by these dosage forms.

  19. Choline absorption and evaluation of bioavailability markers when supplementing choline to lactating dairy cows.

    PubMed

    de Veth, M J; Artegoitia, V M; Campagna, S R; Lapierre, H; Harte, F; Girard, C L

    2016-12-01

    The metabolites of choline have a central role in many mammalian biological processes, and choline supplementation to the periparturient dairy cow improves hepatic lipid metabolism. However, variability in responses to choline supplementation has highlighted a lack of understanding of choline absorption in the lactating dairy cow. Our objective was to determine net choline absorption by measuring net portal fluxes of choline and choline metabolites in cows receiving either dietary supplements of rumen-protected choline (RPC) or abomasal delivery of choline (ADC). We also evaluated markers for choline bioavailability by examining relationships between net portal absorption of choline and choline metabolites in plasma and milk. Five late-lactation Holstein cows were used in a 5×5 Latin square design, with 5-d treatment periods and a 2-d interval between periods. Treatments were (1) control (0g/d of choline), (2) 12.5g/d of choline fed as RPC, (3) 25g/d of choline fed as RPC, (4) 12.5g/d of choline provided as ADC, and (5) 25g/d of choline provided as ADC. At the end of each 5-d period, milk was sampled and 9 blood samples were collected simultaneously from an artery and portal vein at 30-min intervals. Plasma, milk, and feed ingredient concentrations of acetylcholine, betaine, free choline, glycerophosphocholine, lysophosphatidylcholine, phosphatidylcholine, phosphocholine, and sphingomyelin were quantified by hydrophilic interaction liquid chromatography-tandem mass spectrometry. With an increasing dose of ADC, the net portal flux of free choline increased and regression analysis indicated 61% net absorption of the infused dose. Among the choline metabolites, only concentrations of betaine, free choline, and phosphocholine increased in both arterial plasma (3.9, 1.9, and 0.4 times, respectively) and milk (2.5, 1.4, and 1.0 times, respectively) with 25g/d of ADC relative to the control. For RPC, the net portal flux of free choline was low relative to ADC (13%), which was similar to the relative difference observed in the concentrations and yields of milk free choline and betaine (averaged 21%). When evaluating markers for choline bioavailability, betaine was the leading candidate. Betaine in plasma and milk (alone or in combination with phosphocholine) was strongly associated with net free choline portal flux (coefficient of determination ranging from 0.64 to 0.79). In summary, free choline supply to the lactating dairy cow increases only specific choline metabolites in plasma and milk, which can be potential markers for choline bioavailability. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. Physiologic and biochemical aspects of skeletal muscle denervation and reinnervation

    NASA Technical Reports Server (NTRS)

    Max, S. R.; Mayer, R. F.

    1984-01-01

    Some of the physiologic and biochemical changes that occur in mammalian skeletal muscle following denervation and reinnervation are considered and some comparisons are made with changes observed following altered motor function. The nature of the trophic influence by which nerves control muscle properties are discussed, including the effects of choline acetyltransferase and acetylcholinesterase and the role of the acetylcholine receptor.

  1. Maternal choline intake modulates maternal and fetal biomarkers of choline metabolism in humans.

    PubMed

    Yan, Jian; Jiang, Xinyin; West, Allyson A; Perry, Cydne A; Malysheva, Olga V; Devapatla, Srisatish; Pressman, Eva; Vermeylen, Francoise; Stabler, Sally P; Allen, Robert H; Caudill, Marie A

    2012-05-01

    In 1998 choline Adequate Intakes of 425 and 450 mg/d were established for nonpregnant and pregnant women, respectively. However, to our knowledge, no dose-response studies have been conducted to evaluate the effects of pregnancy or maternal choline intake on biomarkers of choline metabolism. We sought to quantify the effects of pregnancy and maternal choline intake on maternal and fetal indicators of choline metabolism. Healthy pregnant (n = 26; 27 wk gestation) and nonpregnant (n = 21) women were randomly assigned to receive 480 or 930 mg choline/d for 12 wk. Fasting blood samples and placental tissue and umbilical cord venous blood were collected and analyzed for choline and its metabolites. Regardless of the choline intake, pregnant women had higher circulating concentrations of choline (30%; P < 0.001) but lower concentrations of betaine, dimethylglycine, sarcosine, and methionine (13-55%; P < 0.001). Obligatory losses of urinary choline and betaine in pregnant women were ∼2-4 times as high (P ≤ 0.02) as those in nonpregnant women. A higher choline intake yielded higher concentrations of choline, betaine, dimethylglycine, and sarcosine (12-46%; P ≤ 0.08) in both pregnant and nonpregnant women without affecting urinary choline excretion. The higher maternal choline intake also led to a doubling of dimethylglycine in cord plasma (P = 0.002). These data suggest that an increment of 25 mg choline/d to meet the demands of pregnancy is insufficient and show that a higher maternal choline intake increases the use of choline as a methyl donor in both maternal and fetal compartments. This trial was registered at clinicaltrials.gov as NCT01127022.

  2. Brief Report: Biochemical correlates of clinical impairment in high functioning autism and Asperger’s disorder

    PubMed Central

    Kleinhans, Natalia M.; Richards, Todd; Weaver, Kurt E.; Liang, Olivia; Dawson, Geraldine; Aylward, Elizabeth

    2014-01-01

    Amygdala dysfunction has been proposed as a critical contributor to social impairment in autism spectrum disorders (ASD). The current study investigated biochemical abnormalities in the amygdala in 20 high functioning adults with autistic disorder or Asperger’s disorder and 19 typically developing adults matched on age and IQ. Magnetic resonance spectroscopy was used to measure n-acetyl aspartate (NAA), creatine/phosphocreatine (Cre), choline/choline containing compounds (Cho), and Myoinositol (mI) in the right and left amygdala. There were no significant between-group differences in any of the metabolites. However, NAA and Cre levels were significantly correlated to clinical ratings on the Autism Diagnostic Interview-Revised. This suggests that altered metabolite levels in the amygdala may be associated with a more severe early developmental course in ASD. PMID:19234776

  3. The Metabolic Burden of Methyl Donor Deficiency with Focus on the Betaine Homocysteine Methyltransferase Pathway

    PubMed Central

    Obeid, Rima

    2013-01-01

    Methyl groups are important for numerous cellular functions such as DNA methylation, phosphatidylcholine synthesis, and protein synthesis. The methyl group can directly be delivered by dietary methyl donors, including methionine, folate, betaine, and choline. The liver and the muscles appear to be the major organs for methyl group metabolism. Choline can be synthesized from phosphatidylcholine via the cytidine-diphosphate (CDP) pathway. Low dietary choline loweres methionine formation and causes a marked increase in S-adenosylmethionine utilization in the liver. The link between choline, betaine, and energy metabolism in humans indicates novel functions for these nutrients. This function appears to goes beyond the role of the nutrients in gene methylation and epigenetic control. Studies that simulated methyl-deficient diets reported disturbances in energy metabolism and protein synthesis in the liver, fatty liver, or muscle disorders. Changes in plasma concentrations of total homocysteine (tHcy) reflect one aspect of the metabolic consequences of methyl group deficiency or nutrient supplementations. Folic acid supplementation spares betaine as a methyl donor. Betaine is a significant determinant of plasma tHcy, particularly in case of folate deficiency, methionine load, or alcohol consumption. Betaine supplementation has a lowering effect on post-methionine load tHcy. Hypomethylation and tHcy elevation can be attenuated when choline or betaine is available. PMID:24022817

  4. Cortical choline transporter function measured in vivo using choline-sensitive microelectrodes: clearance of endogenous and exogenous choline and effects of removal of cholinergic terminals.

    PubMed

    Parikh, V; Sarter, M

    2006-04-01

    The capacity of the high-affinity choline transporter (CHT) to import choline into presynaptic terminals is essential for acetylcholine synthesis. Ceramic-based microelectrodes, coated at recording sites with choline oxidase to detect extracellular choline concentration changes, were attached to multibarrel glass micropipettes and implanted into the rat frontoparietal cortex. Pressure ejections of hemicholinium-3 (HC-3), a selective CHT blocker, dose-dependently reduced the uptake rate of exogenous choline as well as that of choline generated in response to terminal depolarization. Following the removal of CHTs, choline signal recordings confirmed that the demonstration of potassium-induced choline signals and HC-3-induced decreases in choline clearance require the presence of cholinergic terminals. The results obtained from lesioned animals also confirmed the selectivity of the effects of HC-3 on choline clearance in intact animals. Residual cortical choline clearance correlated significantly with CHT-immunoreactivity in lesioned and intact animals. Finally, synaptosomal choline uptake assays were conducted under conditions reflecting in vivo basal extracellular choline concentrations. Results from these assays confirmed the capacity of CHTs measured in vivo and indicated that diffusion of substrate away from the electrode did not confound the in vivo findings. Collectively, these results indicate that increases in extracellular choline concentrations, irrespective of source, are rapidly cleared by CHTs.

  5. Free choline and phospholipid-bound choline concentrations in serum and dialysate during peritoneal dialysis in children and adults.

    PubMed

    Ilcol, Yesim Ozarda; Dönmez, Osman; Yavuz, Mahmut; Dilek, Kamil; Yurtkuran, Mustafa; Ulus, Ismail H

    2002-06-01

    This study tested whether continuous ambulatory peritoneal dialysis (CAPD) changes free or phospholipid-bound choline concentrations in serum or peritoneal dialysis fluid of patients with end stage renal disease (ESRD). Serum and dialysate choline and phospholipid-bound choline were measured before, during and after 6 h CAPD. Serum choline concentrations were higher in patients with ESRD compared with age-matched controls. CAPD lowered serum choline concentrations significantly although it did not influence phospholipid-bound choline. Choline accumulated in the dialysate, reaching 28.4 +/- 2.7 microM in children and 18.2 +/- 1.4 microM in adults, during six hours CAPD; phospholipid-bound choline increased to 22.9 +/- 2.5 microM and 10.8 +/- 1.4 microM in children and adults, respectively. The total daily loss of choline into the dialysate was 181 +/- 20 micromoles in children and 260 +/- 18 micromoles in adults. CAPD causes a substantial loss of choline into peritoneal dialysates and reduces serum choline concentrations significantly.

  6. Transgenic overexpression of the presynaptic choline transporter elevates acetylcholine levels and augments motor endurance

    PubMed Central

    Holmstrand, Ericka C.; Lund, David; Cherian, Ajeesh Koshy; Wright, Jane; Martin, Rolicia F.; Ennis, Elizabeth A.; Stanwood, Gregg D.; Sarter, Martin; Blakely, Randy D.

    2014-01-01

    The hemicholinium-3 (HC-3) sensitive, high-affinity choline transporter (CHT) sustains cholinergic signaling via the presynaptic uptake of choline derived from dietary sources or from acetylcholinesterase (AChE)-mediated hydrolysis of acetylcholine (ACh). Loss of cholinergic signaling capacity is associated with cognitive and motor deficits in humans and in animal models. Whereas genetic elimination of CHT has revealed the critical nature of CHT in maintaining ACh stores and sustaining cholinergic signaling, the consequences of elevating CHT expression have yet to be studied. Using bacterial artificial chromosome (BAC)-mediated transgenic methods, we generated mice with integrated additional copies of the mouse Slc5a7 gene. BAC–CHT mice are viable, appear to develop normally, and breed at wild-type (WT) rates. Biochemical studies revealed a 2 to 3-fold elevation in CHT protein levels in the CNS and periphery, paralleled by significant increases in [3H]HC-3 binding and synaptosomal choline transport activity. Elevations of ACh in the BAC–CHT mice occurred without compensatory changes in the activity of either choline acetyltransferase (ChAT) or AChE. Immunohistochemistry for CHT in BAC–CHT brain sections revealed markedly elevated CHT expression in the cell bodies of cholinergic neurons and in axons projecting to regions known to receive cholinergic innervation. Behaviorally, BAC–CHT mice exhibited diminished fatigue and increased speeds on the treadmill test without evidence of increased strength. Finally, BAC–CHT mice displayed elevated horizontal activity in the open field test, diminished spontaneous alteration in the Y-maze, and reduced time in the open arms of the elevated plus maze. Together, these studies provide biochemical, pharmacological and behavioral evidence that CHT protein expression and activity can be elevated beyond that seen in wild-type animals. BAC–CHT mice thus represent a novel tool to examine both the positive and negative impact of constitutively elevated cholinergic signaling capacity. PMID:24274995

  7. [The role of structural heterogeneity of circulating lipids in the regulation of lipoprotein metabolism in the plasma and lymph in hypercholesterolemia in dogs].

    PubMed

    Kosukhin, A B; Akhmetova, B S

    1986-01-01

    Fatty acid spectrum of lipoproteins was studied in intestinal steam lymph and blood plasma of dogs with alimentary hypercholesterolemia. Mechanism of cholesterol accumulation in blood plasma appears to relate to increase in content of cholesterol palmitate which is secreted from intestine into lymph and hydrolyzed slowly in liver tissue. Alterations in composition of fatty acid acyls of cholesterol esters, of phosphatidyl cholines and triacyl glycerides as well as effect of these alterations on the lecithin-cholesterol acyl-transferase reaction and lipoprotein lipolysis are discussed.

  8. Reexamining the role of choline transporter-like (Ctlp) proteins in choline transport.

    PubMed

    Zufferey, Rachel; Santiago, Teresa C; Brachet, Valerie; Ben Mamoun, Choukri

    2004-02-01

    In Saccharomyces cerevisiae, choline enters the cell via a single high-affinity transporter, Hnmlp. hnm1delta cells lacking HNM1 gene are viable. However, they are unable to transport choline suggesting that no additional active choline transporters are present in this organism. A complementation study of a choline auxotrophic mutant, ctrl-ise (hnm1-ise), using a cDNA library from Torpedo marmorata electric lobe identified a membrane protein named Torpedo marmorata choline transporter-like, tCtl1p. tCtllp was proposed to mediate a high-affinity choline transport (O'Regan et al., 1999, Proc. Natl. Acad. Sci.). Homologs of tCtl1p have been identified in other organisms, including yeast (Pns1p, YOR161c) and are postulated to function as choline transporters. Here we provide several lines of evidence indicating that Ctlp proteins are not involved in choline transport. Loss of PNS1 has no effect on choline transport and overexpression of either PNS1 or tCTL1 does not restore choline uptake activity of choline transport-defective mutants. The data presented here call into question the role of proteins of the CTL family in choline transport and suggest that the mechanism by which tCTL1 complements hnm1-ise mutant is independent of its ability to transport choline.

  9. Effects of lateral fluid percussion injury on cholinergic markers in the newborn piglet brain.

    PubMed

    Donat, Cornelius K; Walter, Bernd; Kayser, Tanja; Deuther-Conrad, Winnie; Schliebs, Reinhard; Nieber, Karen; Bauer, Reinhard; Härtig, Wolfgang; Brust, Peter

    2010-02-01

    Traumatic brain injury is a leading cause of death and disability in children. Studies using adult animal models showed alterations of the central cholinergic neurotransmission as a result of trauma. However, there is a lack of knowledge about consequences of brain trauma on cholinergic function in the immature brain. It is hypothesized that trauma affects the relative acetylcholine esterase activity and causes a loss of cholinergic neurons in the immature brain. Severe fluid percussion trauma (FP-TBI, 3.8+/-0.3atm) was induced in 15 female newborn piglets, monitored for 6h and compared with 12 control animals. The hemispheres ipsilateral to FP-TBI obtained from seven piglets were used for acetylcholine esterase histochemistry on frozen sagittal slices, while regional cerebral blood flow and oxygen availability was determined in the remaining eight FP-TBI animals. Post-fixed slices were immunohistochemically labelled for choline acetyltransferase as well as for low-affinity neurotrophin receptor in order to characterize cholinergic neurons in the basal forebrain. Regional cerebral blood flow and brain oxygen availability were reduced during the first 2h after FP-TBI (P<0.05). In addition, acetylcholine esterase activity was significantly increased in the neocortex, basal forebrain, hypothalamus and medulla after trauma (P<0.05), whereas the number of choline acetyltransferase and low-affinity neurotrophin receptor positive cells in the basal forebrain were unaffected by the injury. Thus, traumatic brain injury evoked an increased relative activity of the acetylcholine esterase in the immature brain early after injury, without loss of cholinergic neurons in the basal forebrain. These changes may contribute to developmental impairments after immature traumatic brain injury. Copyright 2009 ISDN. Published by Elsevier Ltd. All rights reserved.

  10. High folic acid consumption leads to pseudo-MTHFR deficiency, altered lipid metabolism, and liver injury in mice.

    PubMed

    Christensen, Karen E; Mikael, Leonie G; Leung, Kit-Yi; Lévesque, Nancy; Deng, Liyuan; Wu, Qing; Malysheva, Olga V; Best, Ana; Caudill, Marie A; Greene, Nicholas D E; Rozen, Rima

    2015-03-01

    Increased consumption of folic acid is prevalent, leading to concerns about negative consequences. The effects of folic acid on the liver, the primary organ for folate metabolism, are largely unknown. Methylenetetrahydrofolate reductase (MTHFR) provides methyl donors for S-adenosylmethionine (SAM) synthesis and methylation reactions. Our goal was to investigate the impact of high folic acid intake on liver disease and methyl metabolism. Folic acid-supplemented diet (FASD, 10-fold higher than recommended) and control diet were fed to male Mthfr(+/+) and Mthfr(+/-) mice for 6 mo to assess gene-nutrient interactions. Liver pathology, folate and choline metabolites, and gene expression in folate and lipid pathways were examined. Liver and spleen weights were higher and hematologic profiles were altered in FASD-fed mice. Liver histology revealed unusually large, degenerating cells in FASD Mthfr(+/-) mice, consistent with nonalcoholic fatty liver disease. High folic acid inhibited MTHFR activity in vitro, and MTHFR protein was reduced in FASD-fed mice. 5-Methyltetrahydrofolate, SAM, and SAM/S-adenosylhomocysteine ratios were lower in FASD and Mthfr(+/-) livers. Choline metabolites, including phosphatidylcholine, were reduced due to genotype and/or diet in an attempt to restore methylation capacity through choline/betaine-dependent SAM synthesis. Expression changes in genes of one-carbon and lipid metabolism were particularly significant in FASD Mthfr(+/-) mice. The latter changes, which included higher nuclear sterol regulatory element-binding protein 1, higher Srepb2 messenger RNA (mRNA), lower farnesoid X receptor (Nr1h4) mRNA, and lower Cyp7a1 mRNA, would lead to greater lipogenesis and reduced cholesterol catabolism into bile. We suggest that high folic acid consumption reduces MTHFR protein and activity levels, creating a pseudo-MTHFR deficiency. This deficiency results in hepatocyte degeneration, suggesting a 2-hit mechanism whereby mutant hepatocytes cannot accommodate the lipid disturbances and altered membrane integrity arising from changes in phospholipid/lipid metabolism. These preliminary findings may have clinical implications for individuals consuming high-dose folic acid supplements, particularly those who are MTHFR deficient.

  11. High folic acid consumption leads to pseudo-MTHFR deficiency, altered lipid metabolism, and liver injury in mice12345

    PubMed Central

    Christensen, Karen E; Mikael, Leonie G; Leung, Kit-Yi; Lévesque, Nancy; Deng, Liyuan; Wu, Qing; Malysheva, Olga V; Best, Ana; Caudill, Marie A; Greene, Nicholas DE

    2015-01-01

    Background: Increased consumption of folic acid is prevalent, leading to concerns about negative consequences. The effects of folic acid on the liver, the primary organ for folate metabolism, are largely unknown. Methylenetetrahydrofolate reductase (MTHFR) provides methyl donors for S-adenosylmethionine (SAM) synthesis and methylation reactions. Objective: Our goal was to investigate the impact of high folic acid intake on liver disease and methyl metabolism. Design: Folic acid–supplemented diet (FASD, 10-fold higher than recommended) and control diet were fed to male Mthfr+/+ and Mthfr+/− mice for 6 mo to assess gene-nutrient interactions. Liver pathology, folate and choline metabolites, and gene expression in folate and lipid pathways were examined. Results: Liver and spleen weights were higher and hematologic profiles were altered in FASD-fed mice. Liver histology revealed unusually large, degenerating cells in FASD Mthfr+/− mice, consistent with nonalcoholic fatty liver disease. High folic acid inhibited MTHFR activity in vitro, and MTHFR protein was reduced in FASD-fed mice. 5-Methyltetrahydrofolate, SAM, and SAM/S-adenosylhomocysteine ratios were lower in FASD and Mthfr+/− livers. Choline metabolites, including phosphatidylcholine, were reduced due to genotype and/or diet in an attempt to restore methylation capacity through choline/betaine-dependent SAM synthesis. Expression changes in genes of one-carbon and lipid metabolism were particularly significant in FASD Mthfr+/− mice. The latter changes, which included higher nuclear sterol regulatory element-binding protein 1, higher Srepb2 messenger RNA (mRNA), lower farnesoid X receptor (Nr1h4) mRNA, and lower Cyp7a1 mRNA, would lead to greater lipogenesis and reduced cholesterol catabolism into bile. Conclusions: We suggest that high folic acid consumption reduces MTHFR protein and activity levels, creating a pseudo-MTHFR deficiency. This deficiency results in hepatocyte degeneration, suggesting a 2-hit mechanism whereby mutant hepatocytes cannot accommodate the lipid disturbances and altered membrane integrity arising from changes in phospholipid/lipid metabolism. These preliminary findings may have clinical implications for individuals consuming high-dose folic acid supplements, particularly those who are MTHFR deficient. PMID:25733650

  12. Measurement of the abundance of choline and the distribution of choline-containing moieties in meat.

    PubMed

    Lewis, Erin D; Zhao, Yuan-Yuan; Richard, Caroline; Bruce, Heather L; Jacobs, René L; Field, Catherine J; Curtis, Jonathan M

    2015-01-01

    Epidemiological studies identify meat as a major source of choline; however, the most comprehensive reference for food choline content, the United States Department of Agriculture (USDA) database for dietary choline, does not include values for meats of importance in some regions. In this work, the total choline and choline-containing moieties of 20 samples of meat were analyzed by LC-MS/MS; 16 samples analyzed are absent from the USDA database and 4 samples included for comparison. Average total choline for one serving (75 g) was 50 ± 12 mg, which was 82.6% ± 5.5% phosphatidylcholine. There was general agreement between total choline levels in the meats analyzed in this work and USDA values. A strong negative correlation (r = -0.777, p < 0.001) between total choline and fat content was found. This research added choline composition data to a food group that is a major source of choline and ultimately this data will assist in obtaining more accurate estimates of dietary choline.

  13. Dietary choline requirement of juvenile hybrid striped bass.

    PubMed

    Griffin, M E; Wilson, K A; White, M R; Brown, P B

    1994-09-01

    Two experiments were conducted to estimate the dietary choline requirement and to determine the effects of dietary choline on liver lipid deposition in juvenile hybrid striped bass (Monrone saxatilis x M. chrysops). Experimental diets contained 0.73 g total sulfur amino acids/100 g diet (0.47 g methionine + 0.26 g cyst(e)ine/100 g diet), thus meeting, but not exceeding, the requirement. Graded levels of choline bitartrate in Experiment 1 and choline chloride in Experiment 2 were added to the basal diet, resulting in eight dietary treatments in each experiment. Dietary treatments were 0, 250, 500, 1000, 2000, 4000, 6000 and 8000 mg choline/kg dry diet. Diets were fed for 12 and 10 wk in Experiments 1 and 2, respectively. Dietary choline concentrations significantly affected weight gain, feed efficiency, survival and total liver lipid concentrations in each experiment. Weight gain and feed efficiency were greatest in fish fed 500 mg choline/kg dry diet as choline bitartrate. Total liver lipid concentrations were variable but tended to be lowest in fish fed diets containing at least 2000 mg choline/kg diet. Survival was significantly lower in the group of fish fed 8000 mg choline/kg diet supplied by choline bitartrate. Weight gain and feed efficiency were greatest and total liver lipid concentration was lowest in groups of fish fed at least 500 mg choline/kg diet as choline chloride; survival was unaffected by dietary treatment. Therefore, choline chloride seems to be a better source of dietary choline than choline bitartrate and 500 mg choline/kg diet is adequate for maximum weight gain and prevention of increased liver lipid concentration in juvenile hybrid striped bass.

  14. Cereal foods are the major source of betaine in the Western diet--analysis of betaine and free choline in cereal foods and updated assessments of betaine intake.

    PubMed

    Ross, Alastair B; Zangger, Alicia; Guiraud, Seu Ping

    2014-02-15

    Betaine and its precursor choline are important components of one-carbon metabolism, remethylating homocysteine into methionine and providing methyl groups for DNA methylation. Cereals are the main source of betaine in the diet, though there is little literature available on the content of betaine in cereal products, nor on betaine intake from cereals. Betaine and free-choline concentrations were measured by liquid-chromatography with tandem mass spectrometry in a wide range of commercially available cereal foods and cereal fractions. Whole grain wheat and related fractions were the best overall common source of betaine, while the pseudocereal quinoa had the highest amount of betaine measured (3900 μg/g). Based on estimates of dietary intake data cereal foods provide approximately 60-67% of betaine in Western diets, and 20-40% of betaine in South-East Asian diets. Average intake of betaine was 131 mg/d, well below those used in intervention studies using betaine to lower blood homocysteine. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Functional analysis of choline transporters in rheumatoid arthritis synovial fibroblasts.

    PubMed

    Seki, Masayuki; Kawai, Yuiko; Ishii, Chikanao; Yamanaka, Tsuyoshi; Odawara, Masato; Inazu, Masato

    2017-11-01

    In this study, we examined the functional characteristics of choline uptake and sought to identify the transporters in rheumatoid arthritis synovial fibroblasts (RASFs). The expression of choline transporters was evaluated by quantitative real-time PCR, western blotting, and immunocytochemistry. Time course, Na + -dependency, and kinetics of [ 3 H]choline uptake were investigated. Effects of cationic drugs on the uptake of [ 3 H]choline, cell viability, and caspase-3/7 activity were also examined. Finally, we investigated the influence of choline uptake inhibitor, hemicholinium-3 (HC-3), and choline deficiency on cell viability and caspase-3/7 activity. Choline transporter-like protein 1 (CTL1) and CTL2 mRNA and protein were highly expressed in RASFs and were localized to the plasma membrane. [ 3 H]Choline uptake occurred via a Na + -independent and pH-dependent transport system. The cells have two different [ 3 H]choline transport systems, high- and low-affinity. Various organic cations, HC-3 and choline deficiency inhibited both [ 3 H]choline uptake and cell viability, and enhanced the caspase-3/7 activity. The functional inhibition of choline transporters could promote apoptotic cell death. In RASFs, [ 3 H]choline uptake was significantly increased compared with that in OASFs without a change in gene expression. These results suggest that CTL1 (high-affinity) and CTL2 (low-affinity) are highly expressed in RASFs and choline may be transported by a choline/H +  antiport system. Identification of this CTL1- and CTL2-mediated choline transport system should provide a potential new target for RA therapy.

  16. Maternal choline supplementation during the third trimester of pregnancy improves infant information processing speed: a randomized, double-blind, controlled feeding study.

    PubMed

    Caudill, Marie A; Strupp, Barbara J; Muscalu, Laura; Nevins, Julie E H; Canfield, Richard L

    2018-04-01

    Rodent studies demonstrate that supplementing the maternal diet with choline during pregnancy produces life-long cognitive benefits for the offspring. In contrast, the two experimental studies examining cognitive effects of maternal choline supplementation in humans produced inconsistent results, perhaps because of poor participant adherence and/or uncontrolled variation in intake of choline or other nutrients. We examined the effects of maternal choline supplementation during pregnancy on infant cognition, with intake of choline and other nutrients tightly controlled. Women entering their third trimester were randomized to consume, until delivery, either 480 mg choline/d ( n = 13) or 930 mg choline/d ( n = 13). Infant information processing speed and visuospatial memory were tested at 4, 7, 10, and 13 mo of age ( n = 24). Mean reaction time averaged across the four ages was significantly faster for infants born to mothers in the 930 ( vs. 480) mg choline/d group. This result indicates that maternal consumption of approximately twice the recommended amount of choline during the last trimester improves infant information processing speed. Furthermore, for the 480-mg choline/d group, there was a significant linear effect of exposure duration (infants exposed longer showed faster reaction times), suggesting that even modest increases in maternal choline intake during pregnancy may produce cognitive benefits for offspring.-Caudill, M. A., Strupp, B. J., Muscalu, L., Nevins, J. E. H., Canfield, R. L. Maternal choline supplementation during the third trimester of pregnancy improves infant information processing speed: a randomized, double-blind, controlled feeding study.

  17. Choline metabolism-based molecular diagnosis of cancer: an update

    PubMed Central

    Glunde, Kristine; Penet, Marie-France; Jiang, Lu; Jacobs, Michael A; Bhujwalla, Zaver M

    2016-01-01

    Abnormal choline metabolism continues to be identified in multiple cancers. Molecular causes of abnormal choline metabolism are changes in choline kinase-α, ethanolamine kinase-α, phosphatidylcholine-specific phospholipase C and -D and glycerophosphocholine phosphodiesterases, as well as several choline transporters. The net outcome of these enzymatic changes is an increase in phosphocholine and total choline (tCho) and, in some cancers, a relative decrease of glycerophosphocholine. The increased tCho signal detected by 1H magnetic resonance spectroscopy is being evaluated as a diagnostic marker in multiple cancers. Increased expression and activity of choline transporters and choline kinase-α have spurred the development of radiolabeled choline analogs as PET imaging tracers. Both tCho 1H magnetic resonance spectroscopy and choline PET are being investigated to detect response to treatment. Enzymes mediating the abnormal choline metabolism are being explored as targets for cancer therapy. This review highlights recent molecular, therapeutic and clinical advances in choline metabolism in cancer. PMID:25921026

  18. The association of serum choline with linear growth failure in young children from rural Malawi.

    PubMed

    Semba, Richard D; Zhang, Pingbo; Gonzalez-Freire, Marta; Moaddel, Ruin; Trehan, Indi; Maleta, Kenneth M; Ordiz, M Isabel; Ferrucci, Luigi; Manary, Mark J

    2016-07-01

    Choline is an essential nutrient for cell structure, cell signaling, neurotransmission, lipid transport, and bone formation. Choline can be irreversibly converted to betaine, a major source of methyl groups. Trimethylene N-oxide (TMAO), a proatherogenic molecule, is produced from the metabolism of dietary choline by the gut microbiome. The relation between serum choline and its closely related metabolites with linear growth in children is unknown. The aim was to characterize the relation between serum choline and its closely related metabolites, betaine and TMAO, with linear growth and stunting in young children. We measured serum choline, betaine, and TMAO concentrations by using liquid chromatography isotopic dilution tandem mass spectrometry in a cross-sectional study in 325 Malawian children, aged 12-59 mo, of whom 62% were stunted. Median (25th, 75th percentile) serum choline, betaine, and TMAO concentrations were 6.4 (4.8, 8.3), 12.4 (9.1, 16.3), and 1.2 (0.7, 1.8) μmol/L, respectively. Spearman correlation coefficients of age with serum choline, betaine, and TMAO were -0.57 (P < 0.0001), -0.26 (P < 0.0001), and -0.10 (P = 0.07), respectively. Correlation coefficients of height-for-age z score with serum choline, betaine-to-choline ratio, and TMAO-to-choline ratio were 0.31 (P < 0.0001), -0.24 (P < 0.0001), and -0.29 (P < 0.0001), respectively. Serum choline concentrations were strongly and significantly associated with stunting. Children with and without stunting had median (25th, 75th percentile) serum choline concentrations of 5.6 (4.4, 7.4) and 7.3 (5.9, 9.1) μmol/L (P < 0.0001). Linear growth failure in young children is associated with low serum choline and elevated betaine-to-choline and TMAO-to-choline ratios. Further work is needed to understand whether low dietary choline intake explains low circulating choline among stunted children living in low-income countries and whether increasing choline intake may correct choline deficiency and improve growth and development. This trial was registered in the ISRCTN registry (www.isrctn.com) as ISRCTN14597012. © 2016 American Society for Nutrition.

  19. Use of canonical variate analysis biplot in examination of choline content data of some foods.

    PubMed

    Alkan, Baris; Atakan, Cemal

    2011-03-01

    Adequate intake (AI) of choline as part of the daily diet can help prevent major diseases. Low choline intake is a major risk factor for liver and several neurological disorders. Extreme choline consumption may cause diseases such as hypotension, sweating, diarrhea, and fishy body odor. The AI of choline is 425 mg/day for adult women; higher for pregnant and lactating women. The AI for adult men is 550 mg/day. The total choline content of foods is calculated as the sum of free choline, glycerophosphocholine, phosphocholine, phosphatidylcholine and sphingomyelin. These are called the choline variables. Observed values of choline variables may be different in amounts of nutrients. So different food groups in terms of choline variables are useful to compare. The present paper shows the advantages of using canonical variate analysis biplot to optimally separate groups and explore the differentiality of choline variables amounts in foods.

  20. Phosphatidylcholine and the CDP-Choline Cycle

    PubMed Central

    Fagone, Paolo; Jackowski, Suzanne

    2012-01-01

    The CDP-choline pathway of phosphatidylcholine (PtdCho) biosynthesis was first described more than 50 years ago. Investigation of the CDP-choline pathway in yeast provides a basis for understanding the CDP-choline pathway in mammals. PtdCho is considered as an intermediate in a cycle of synthesis and degradation, and the activity of a CDP-choline cycle is linked to subcellular membrane lipid movement. The components of the mammalian CDP-choline pathway include choline transport, choline kinase, phosphocholine cytidylyltransferase, and choline phosphotransferase activities. The protein isoforms and biochemical mechanisms of regulation of the pathway enzymes are related to their cell and tissue-specific functions. Regulated PtdCho turnover mediated by phospholipases or neuropathy target esterase participates in the mammalian CDP-choline cycle. Knockout mouse models define the biological functions of the CDP-choline cycle in mammalian cells and tissues. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism. PMID:23010477

  1. Metabolism and transfer of choline in hamster small intestine

    PubMed Central

    Flower, R. J.; Pollitt, R. J.; Sanford, P. A.; Smyth, D. H.

    1972-01-01

    1. The transfer and metabolism of choline was studied with sacs of everted intestine of hamster. 2. Approximately half the choline transferred from the mucosal fluid may be metabolized. High voltage electrophoresis, paper chromatography and ion exchange chromatography have been used to identify this meta bolite as betaine. 3. The concentration of choline and betaine together accumulating in the gut wall and serosal fluid are greater than that of choline present initially in the mucosal fluid indicating some kind of specific mechanism for choline transport. 4. A detailed analysis of choline transfer suggests that the movement of choline cannot be accounted for by simple diffusion. The concentration of choline accumulating in the gut wall and serosal fluid, the inhibitory effects of hemicholinium-3 and α-methylglucoside on choline transfer, and the insensitivity of betaine transfer to hemicholinium-3 suggest a specific active transport process for choline independent of active betaine transport. PMID:5085340

  2. (18)F-FACBC (anti1-amino-3-(18)F-fluorocyclobutane-1-carboxylic acid) versus (11)C-choline PET/CT in prostate cancer relapse: results of a prospective trial.

    PubMed

    Nanni, Cristina; Zanoni, Lucia; Pultrone, Cristian; Schiavina, Riccardo; Brunocilla, Eugenio; Lodi, Filippo; Malizia, Claudio; Ferrari, Matteo; Rigatti, Patrizio; Fonti, Cristina; Martorana, Giuseppe; Fanti, Stefano

    2016-08-01

    To compare the accuracy of (18)F-FACBC and (11)C-choline PET/CT in patients radically treated for prostate cancer presenting with biochemical relapse. This prospective study enrolled 100 consecutive patients radically treated for prostate cancer and presenting with rising PSA. Of these 100 patients, 89 were included in the analysis. All had biochemical relapse after radical prostatectomy (at least 3 months previously), had (11)C-choline and (18)F-FACBC PET/CT performed within 1 week and were off hormonal therapy at the time of the scans. The two tracers were compared directly in terms of overall positivity/negativity on both a per-patient basis and a per-site basis. Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and accuracy were calculated for both the tracers; follow-up at 1 year (including correlative imaging, PSA trend and pathology when available) was considered as the standard of reference. In 51 patients the results were negative and in 25 patients positive with both the tracers, in eight patients the results were positive with (18)F-FACBC but negative with (11)C-choline, and in five patients the results were positive with (11)C-choline but negative with (18)F-FACBC. Overall in 49 patients the results were false-negative (FN), in two true-negative, in 24 true-positive (TP) and in none false-positive (FP) with both tracers. In terms of discordances between the tracers: (1) in one patient, the result was FN with (11)C-choline but FP with (18)F-FACBC (lymph node), (2) in seven, FN with (11)C-choline but TP with (18)F-FACBC (lymph node in five, bone in one, local relapse in one), (3) in one, FP with (11)C-choline (lymph node) but TP with (18)F-FACBC (local relapse), (4) in two, FP with (11)C-choline (lymph nodes in one, local relapse in one) but FN with (18)F-FACBC, and (5) in three, TP with (11)C-choline (lymph nodes in two, bone in one) but FN with (18)F-FACBC. With (11)C-choline and (18)F-FACBC, sensitivities were 32 % and 37 %, specificities 40 % and 67 %, accuracies 32 % and 38 %, PPVs 90 % and 97 %, and NPVs 3 % and 4 %, respectively. Categorizing patients by PSA level (<1 ng/ml 28 patients, 1 - <2 ng/ml 28 patients, 2 - <3 ng/ml 11 patients, ≥3 ng/ml 22 patients), the number (percent) of patients with TP findings were generally higher with (18)F-FACBC than with (11)C-choline: six patients (21 %) and four patients (14 %), eight patients (29 %) and eight patients (29 %), five patients (45 %) and four patients (36 %), and 13 patients (59 %) and 11 patients (50 %), respectively. (18)F-FACBC can be considered an alternative tracer superior to (11)C-choline in the setting of patients with biochemical relapse after radical prostatectomy.

  3. Analytical approaches to determination of total choline in foods and dietary supplements.

    PubMed

    Phillips, Melissa M

    2012-06-01

    Choline is a quaternary amine that is synthesized in the body or consumed through the diet. Choline is critical for cell membrane structure and function and in synthesis of the neurotransmitter acetylcholine. Although the human body produces this micronutrient, dietary supplementation of choline is necessary for good health. The major challenge in the analysis of choline in foods and dietary supplements is in the extraction and/or hydrolysis approach. In many products, choline is present as choline esters, which can be quantitated individually or treated with acid, base, or enzymes in order to release choline ions for analysis. A critical review of approaches based on extraction and quantitation of each choline ester as well as hydrolysis-based methods for determination of total choline in foods and dietary supplements is presented.

  4. Elevated prefrontal myo-inositol and choline following breast cancer chemotherapy.

    PubMed

    Kesler, Shelli R; Watson, Christa; Koovakkattu, Della; Lee, Clement; O'Hara, Ruth; Mahaffey, Misty L; Wefel, Jeffrey S

    2013-12-01

    Breast cancer survivors are at increased risk for cognitive dysfunction, which reduces quality of life. Neuroimaging studies provide critical insights regarding the mechanisms underlying these cognitive deficits as well as potential biologic targets for interventions. We measured several metabolite concentrations using (1)H magnetic resonance spectroscopy as well as cognitive performance in 19 female breast cancer survivors and 17 age-matched female controls. Women with breast cancer were all treated with chemotherapy. Results indicated significantly increased choline (Cho) and myo-inositol (mI) with correspondingly decreased N-acetylaspartate (NAA)/Cho and NAA/mI ratios in the breast cancer group compared to controls. The breast cancer group reported reduced executive function and memory, and subjective memory ability was correlated with mI and Cho levels in both groups. These findings provide preliminary evidence of an altered metabolic profile that increases our understanding of neurobiologic status post-breast cancer and chemotherapy.

  5. Telmisartan prevents hepatic fibrosis and enzyme-altered lesions in liver cirrhosis rat induced by a choline-deficient L-amino acid-defined diet.

    PubMed

    Jin, Haiyan; Yamamoto, Naoki; Uchida, Koichi; Terai, Shuji; Sakaida, Isao

    2007-12-28

    Rennin-angiotensin system is involved in liver fibrogenesis through activating hepatic stellate cells (HSCs). Telmisartan (Tel) is an angiotensin II type 1 receptor antagonist, could function as a selective peroxisome proliferator-activated receptor gamma activator. Here we studied the effect of Tel on liver fibrosis, pre-neoplastic lesions in vivo and primary HSCs in vitro. In vivo study, we used the choline-deficient L-amino acid-defined (CDAA)-diet induced rat NASH model. The rats were fed the CDAA diet for 8 weeks to induce liver fibrosis and pre-neoplastic lesions, and then co-administrated with Tel for another 10 weeks. Tel prevented liver fibrogenesis and pre-neoplastic lesions by down-regulating TGFbeta1 and TIMP-1, 2 and increasing MMP-13 expression. Tel inhibited HSCs activation and proliferation. These results suggested that Tel could be a promising drug for NASH related liver fibrosis.

  6. Elevated prefrontal myo-inositol and choline following breast cancer chemotherapy

    PubMed Central

    Watson, Christa; Koovakkattu, Della; Lee, Clement; O’Hara, Ruth; Mahaffey, Misty L.; Wefel, Jeffrey S.

    2013-01-01

    Breast cancer survivors are at increased risk for cognitive dysfunction, which reduces quality of life. Neuroimaging studies provide critical insights regarding the mechanisms underlying these cognitive deficits as well as potential biologic targets for interventions. We measured several metabolite concentrations using 1H magnetic resonance spectroscopy as well as cognitive performance in 19 female breast cancer survivors and 17 age-matched female controls. Women with breast cancer were all treated with chemotherapy. Results indicated significantly increased choline (Cho) and myo-inositol (mI) with correspondingly decreased N-acetylaspartate (NAA)/Cho and NAA/mI ratios in the breast cancer group compared to controls. The breast cancer group reported reduced executive function and memory, and subjective memory ability was correlated with mI and Cho levels in both groups. These findings provide preliminary evidence of an altered metabolic profile that increases our understanding of neurobiologic status post-breast cancer and chemotherapy. PMID:23536015

  7. Choline Supplementation With a Structured Lipid in Children With Cystic Fibrosis: A Randomized Placebo-Controlled Trial.

    PubMed

    Schall, Joan I; Mascarenhas, Maria R; Maqbool, Asim; Dougherty, Kelly A; Elci, Okan; Wang, Dah-Jyuu; Altes, Talissa A; Hommel, Kevin A; Shaw, Walter; Moore, Jeff; Stallings, Virginia A

    2016-04-01

    Choline depletion is seen in cystic fibrosis (CF) and pancreatic insufficiency in spite of enzyme treatment and may result in liver, fatty acid, and muscle abnormalities. This study evaluated the efficacy and safety of an easily absorbed choline-rich structured lipid (LYM-X-SORB™ [LXS]) to improve choline status. Children with CF and pancreatic insufficiency were randomized to LXS or placebo in a 12-month double blind trial. Dietary choline intake, plasma cholines, plasma and fecal phospholipids, coefficient of fat absorption, pulmonary function, growth status, body composition, and safety measures were assessed. Magnetic resonance spectroscopy for calf muscle choline and liver fat were assessed in a subgroup and compared with a healthy comparison group matched for age, sex, and body size. A total of 110 subjects were enrolled (age 10.4 ± 3.0 years). Baseline dietary choline, 88% recommended, increased 3-fold in the LXS group. Plasma choline, betaine, and dimethylglycine increased in the LXS but not placebo (P = 0.007). Plasma lysophosphatidylcholine and phosphatidylcholine increased, and fecal phosphatidylcholine/phosphatidylethanolamine ratio decreased (P ≤ 0.05) in LXS only, accompanied by a 6% coefficient of fat absorption increase (P = 0.001). Children with CF had higher liver fat than healthy children and depleted calf muscle choline at baseline. Muscle choline concentration increased in LXS and was associated with improvement in plasma choline status. No relevant changes in safety measures were evident. LXS had improved choline intake, plasma choline status, and muscle choline stores compared with placebo group. The choline-rich supplement was safe, accepted by participants, and improved choline status in children with CF.

  8. Choline Supplementation with a Structured Lipid in Children with Cystic Fibrosis: A Randomized Placebo-Controlled Trial

    PubMed Central

    Schall, Joan I.; Mascarenhas, Maria R.; Maqbool, Asim; Dougherty, Kelly A.; Elci, Okan; Wang, Dah-Jyuu; Altes, Talissa A.; Hommel, Kevin A.; Shaw, Walter; Moore, Jeff; Stallings, Virginia A.

    2015-01-01

    Background Choline depletion is seen in cystic fibrosis (CF) and pancreatic insufficiency (PI) in spite of enzyme treatment and may result in liver, fatty acid and muscle abnormalities. This study evaluated the efficacy and safety of an easily absorbed choline-rich structured lipid (LYM-X-SORB™ [LXS]) to improve choline status. Methods Children with CF and PI were randomized to LXS or placebo in a 12-month double blind trial. Dietary choline intake, plasma cholines, plasma and fecal phospholipids, coefficient of fat absorption (CFA), pulmonary function, growth status, body composition, and safety measures were assessed. Magnetic resonance spectroscopy for calf muscle choline and liver fat were assessed in a subgroup and compared to a healthy comparison group matched for age, sex and body size. Results 110 subjects were enrolled (age 10.4±3.0 years). Baseline dietary choline, 88% recommended, increased 3-fold in the LXS group. Plasma choline, betaine, and dimethylglycine increased in the LXS but not placebo (P=0.007). Plasma lysophosphatidylcholine and phosphatidylcholine (PC) increased and fecal PC/phosphatidylethanolamine ratio decreased (P≤0.05) in LXS only, accompanied by a 6% CFA increase (P=0.001). Children with CF had higher liver fat than healthy children and depleted calf muscle choline at baseline. Muscle choline concentration increased in LXS and was associated with improvement in plasma choline status. No relevant changes in safety measures were evident. Conclusions LXS had improved choline intake, plasma choline status and muscle choline stores, compared with placebo. The choline-rich supplement was safe, accepted by participants and improved choline status in children with CF. PMID:26465792

  9. Abnormalities in metabolite concentrations in tourette's disorder and obsessive-compulsive disorder-A proton magnetic resonance spectroscopy study.

    PubMed

    Fan, Siyan; Cath, Danielle C; van den Heuvel, Odile A; van der Werf, Ysbrand D; Schöls, Caroline; Veltman, Dick J; Pouwels, Petra J W

    2017-03-01

    Abnormal glutamatergic transmission in cortico-striato-thalamo-cortical (CSTC) circuits is thought to be involved in the pathophysiology of Tourette's disorder (TD) and obsessive-compulsive disorder (OCD). Using proton magnetic resonance spectroscopy, the current study aimed to investigate regional concentrations of glutamatergic compounds in TD and OCD patients in comparison to healthy control subjects (HC). Twenty-three TD patients, 20 OCD patients and 22 HC were included. Short echo-time single-voxel 3T MRS was obtained from dorsal anterior cingulate cortex (dACC) and midline bilateral thalamus. The 3-group comparison showed a significant difference in choline concentration in the thalamus. Thalamic choline was highest in OCD patients, showing a significant difference with TD, and a trend compared to HC (post-hoc analyses). Glutamine in dACC correlated negatively with tic severity scores in TD patients, while glutamate in thalamus correlated positively with anxiety severity scores in OCD patients. These findings suggest subtle differences in metabolites in CSTC areas between TD and OCD. Alterations of choline concentrations seem to be both regional (only in thalamus, not in dACC) and disease specific in OCD pathology. The findings need replication in larger groups, but encourage further research into glutamatergic metabolites in TD and OCD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Fiber optic choline biosensor

    NASA Astrophysics Data System (ADS)

    Wang, Hong; Cao, Xiaojian; Jia, Ke; Chai, Xueting; Lu, Hua; Lu, Zuhong

    2001-10-01

    A fiber optic fluorescence biosensor for choline is introduced in this paper. Choline is an important neurotransmitter in mammals. Due to the growing needs for on-site clinical monitoring of the choline, much effect has been devoted to develop choline biosensors. Fiber-optic fluorescence biosensors have many advantages, including miniaturization, flexibility, and lack of electrical contact and interference. The choline fiber-optic biosensor we designed implemented a bifurcated fiber to perform fluorescence measurements. The light of the blue LED is coupled into one end of the fiber as excitation and the emission spectrum from sensing film is monitored by fiber-spectrometer (S2000, Ocean Optics) through the other end of the fiber. The sensing end of the fiber is coated with Nafion film dispersed with choline oxidase and oxygen sensitive luminescent Ru(II) complex (Tris(2,2'-bipyridyl)dichlororuthenium(II), hexahydrate). Choline oxidase catalyzes the oxidation of choline to betaine and hydrogen peroxide while consuming oxygen. The fluorescence intensity of oxygen- sensitive Ru(II) are related to the choline concentration. The response of the fiber-optic sensor in choline solution is represented and discussed. The result indicates a low-cost, high-performance, portable choline biosensor.

  11. Deanol affects choline metabolism in peripheral tissues of mice.

    PubMed

    Haubrich, D R; Gerber, N H; Pflueger, A B

    1981-08-01

    Administration of 2-dimethylaminoethanol (deanol) to mice induced an increase in both the concentration and the rate of turnover of free choline in blood. Treatment with deanol also caused an increase in the concentration of choline in kidneys, and markedly inhibited the rates of oxidation and phosphorylation of intravenously administered [3H-methyl]choline. In the liver, deanol inhibited the rate of phosphorylation of [3H-methyl]choline, but did not inhibit its rate of oxidation or cause an increase in the level of free choline. These findings suggest that deanol increases the choline concentration in blood by inhibition of its metabolism in tissues. Deanol may ultimately produce its central cholinergic effects by inhibition of choline metabolism in peripheral tissues, causing free choline choline to accumulate in blood, enter the brain, and stimulate cholinergic receptors.

  12. The choline-depleted type II pneumonocyte. A model for investigating the synthesis of surfactant lipids.

    PubMed Central

    Anceschi, M M; Di Renzo, G C; Venincasa, M D; Bleasdale, J E

    1984-01-01

    When type II pneumonocytes from adult rats were maintained in a medium that lacked choline, the incorporation of [14C]glycerol into phosphatidylcholine was not greatly diminished during the period that the cells displayed characteristics of type II pneumonocytes. Cells that were maintained in choline-free medium that contained choline oxidase and catalase, however, became depleted of choline and subsequent synthesis of phosphatidylcholine by these cells was responsive to choline in the extracellular medium. Incorporation of [14C]glycerol into phosphatidylcholine by choline-depleted cells was stimulated maximally (approx. 6-fold) by extracellular choline at a concentration (0.05 mM) that also supported the greatest incorporation into phosphatidylglycerol. The incorporation of [14C]glycerol into other glycerophospholipids by choline-depleted cells was not increased by extracellular choline. When cells were incubated in the presence of [3H]cytidine, the choline-dependent stimulation of the synthesis of phosphatidylcholine and phosphatidylglycerol was accompanied by an increased recovery of [3H]CMP. This increased recovery of [3H]CMP reflected an increase in the intracellular amount of CMP from 48 +/- 9 to 76 +/- 16 pmol/10(6) cells. Choline-depleted cells that were exposed to [3H]choline contained [3H]CDP-choline as the principal water-soluble choline derivative. As the extracellular concentration of choline was increase, however, the amount of 3H in phosphocholine greatly exceeded that in all other water-soluble derivatives. Choline-depletion of cells resulted in an increase in the specific activity of CTP:phosphocholine cytidylyltransferase in cell homogenates (from 0.40 +/- 0.15 to 1.31 +/- 0.20 nmol X min-1 X mg of protein-1). These data are indicative that the biosynthesis of phosphatidylcholine is integrated with that of phosphatidylglycerol and are consistent with the proposed involvement of CMP in this integration. The choline-depleted type II pneumonocyte provides a new model for investigating the regulation of CTP:phosphocholine cytidylyltransferase activity. PMID:6548908

  13. The association of serum choline with linear growth failure in young children from rural Malawi12

    PubMed Central

    Semba, Richard D; Zhang, Pingbo; Gonzalez-Freire, Marta; Moaddel, Ruin; Trehan, Indi; Maleta, Kenneth M; Ordiz, M Isabel; Ferrucci, Luigi; Manary, Mark J

    2016-01-01

    Background: Choline is an essential nutrient for cell structure, cell signaling, neurotransmission, lipid transport, and bone formation. Choline can be irreversibly converted to betaine, a major source of methyl groups. Trimethylene N-oxide (TMAO), a proatherogenic molecule, is produced from the metabolism of dietary choline by the gut microbiome. The relation between serum choline and its closely related metabolites with linear growth in children is unknown. Objective: The aim was to characterize the relation between serum choline and its closely related metabolites, betaine and TMAO, with linear growth and stunting in young children. Design: We measured serum choline, betaine, and TMAO concentrations by using liquid chromatography isotopic dilution tandem mass spectrometry in a cross-sectional study in 325 Malawian children, aged 12–59 mo, of whom 62% were stunted. Results: Median (25th, 75th percentile) serum choline, betaine, and TMAO concentrations were 6.4 (4.8, 8.3), 12.4 (9.1, 16.3), and 1.2 (0.7, 1.8) μmol/L, respectively. Spearman correlation coefficients of age with serum choline, betaine, and TMAO were −0.57 (P < 0.0001), −0.26 (P < 0.0001), and −0.10 (P = 0.07), respectively. Correlation coefficients of height-for-age z score with serum choline, betaine-to-choline ratio, and TMAO-to-choline ratio were 0.31 (P < 0.0001), −0.24 (P < 0.0001), and −0.29 (P < 0.0001), respectively. Serum choline concentrations were strongly and significantly associated with stunting. Children with and without stunting had median (25th, 75th percentile) serum choline concentrations of 5.6 (4.4, 7.4) and 7.3 (5.9, 9.1) μmol/L (P < 0.0001). Conclusions: Linear growth failure in young children is associated with low serum choline and elevated betaine-to-choline and TMAO-to-choline ratios. Further work is needed to understand whether low dietary choline intake explains low circulating choline among stunted children living in low-income countries and whether increasing choline intake may correct choline deficiency and improve growth and development. This trial was registered in the ISRCTN registry (www.isrctn.com) as ISRCTN14597012. PMID:27281303

  14. Oral choline supplementation in children with intestinal failure.

    PubMed

    Guerrerio, Anthony L; Mattis, Lynn; Conner, Kim G; Hampsey, Jenifer; Stasinopoulos, D Mikis; DeJong, Robert; Boctor, Emad M; Sheth, Shelia; Hamper, Ulrike M; Scheimann, Ann O

    2011-07-01

    Choline deficiency leads to steatohepatitis, elevated transaminases, susceptibility to septic shock, and an increased risk of central catheter thrombosis. Children with intestinal failure (IF) are at risk for choline deficiency. In an unblinded, open-label study, we studied 7 children with IF on parenteral nutrition, measured their plasma free choline level, and, if low, supplemented enterally with adequate intake (AI) doses of choline. Four to 6 weeks later we remeasured their plasma free choline. Unlike adults, infants did not respond to oral choline supplementation at AI doses. Additionally, we have calculated plasma free choline percentiles versus age for normal children.

  15. Structure and biological function of ENPP6, a choline-specific glycerophosphodiester-phosphodiesterase

    PubMed Central

    Morita, Junko; Kano, Kuniyuki; Kato, Kazuki; Takita, Hiroyuki; Sakagami, Hideki; Yamamoto, Yasuo; Mihara, Emiko; Ueda, Hirofumi; Sato, Takanao; Tokuyama, Hidetoshi; Arai, Hiroyuki; Asou, Hiroaki; Takagi, Junichi; Ishitani, Ryuichiro; Nishimasu, Hiroshi; Nureki, Osamu; Aoki, Junken

    2016-01-01

    Choline is an essential nutrient for all living cells and is produced extracellularly by sequential degradation of phosphatidylcholine (PC). However, little is known about how choline is produced extracellularly. Here, we report that ENPP6, a choline-specific phosphodiesterase, hydrolyzes glycerophosphocholine (GPC), a degradation product of PC, as a physiological substrate and participates in choline metabolism. ENPP6 is highly expressed in liver sinusoidal endothelial cells and developing oligodendrocytes, which actively incorporate choline and synthesize PC. ENPP6-deficient mice exhibited fatty liver and hypomyelination, well known choline-deficient phenotypes. The choline moiety of GPC was incorporated into PC in an ENPP6-dependent manner both in vivo and in vitro. The crystal structure of ENPP6 in complex with phosphocholine revealed that the choline moiety of the phosphocholine is recognized by a choline-binding pocket formed by conserved aromatic and acidic residues. The present study provides the molecular basis for ENPP6-mediated choline metabolism at atomic, cellular and tissue levels. PMID:26888014

  16. Choline transporter-like proteins CTLs/SLC44 family as a novel molecular target for cancer therapy.

    PubMed

    Inazu, Masato

    2014-11-01

    Choline is essential for the synthesis of the major membrane phospholipid phosphatidylcholine (PC), the methyl donor betaine and the neurotransmitter acetylcholine (ACh). Elevated levels of choline and up-regulated choline kinase activity have been detected in various cancers. Thus, the intracellular accumulation of choline through choline transporters is the rate-limiting step in phospholipid metabolism and a prerequisite for cancer cell proliferation. Previous studies have demonstrated abnormalities in choline uptake and choline phospholipid metabolism in cancer cells using the imaging of cancer with positron emission tomography (PET) and magnetic resonance spectroscopy (MRS). The aberrant choline metabolism in cancer cells is strongly correlated with their malignant progression. Using quantitative real-time PCR, the mRNA expression of choline transporters was measured, and it was found that choline transporter-like proteins CTLs/SLC44 family are highly expressed in various cancer cell lines. Choline uptake through CTLs is associated with cell viability, and the functional inhibition of CTLs could promote apoptotic cell death. Furthermore, non-neuronal cholinergic systems that include CTLs-mediated choline transport are associated with cell proliferation and their inhibition promotes apoptotic cell death in colon cancer, small cell lung cancer and human leukemic T-cells. The identification of this new CTLs-mediated choline transport system provides a potential new target for cancer therapy. Copyright © 2014 John Wiley & Sons, Ltd.

  17. Effect of dietary choline levels on growth performance, lipid deposition and metabolism in juvenile yellow catfish Pelteobagrus fulvidraco.

    PubMed

    Luo, Zhi; Wei, Chuan-Chuan; Ye, Han-Mei; Zhao, Hai-Ping; Song, Yu-Feng; Wu, Kun

    2016-12-01

    The present experiment was conducted to determine the effect and mechanism of dietary choline levels on growth performance and lipid deposition of yellow catfish Pelteobagrus fulvidraco. Dietary choline was included at three levels of 239.2 (control (without extra choline addition), 1156.4 and 2273.6mg choline per kg diet, respectively) and fed to yellow catfish (mean initial weight: 3.45±0.02g mean±standard errors of mean (SEM)) for 8weeks. Fish fed the diet containing 1156.4mgkg -1 choline showed the higher weight gain (WG), specific growth rate (SGR) and feed intake (FI), but the lower feed conversion rate (FCR), than those in control and highest choline group. Hepatosomatic index (HSI) and hepatic lipid content declined with increasing dietary choline levels. Muscle lipid content was the lowest for fish fed adequate choline diets and showed no significant difference between other two groups. Choline contents in liver and muscle increased with increasing dietary choline levels. Dietary choline levels significantly influenced mRNA levels of genes involved in lipid homeostasis in muscle and liver, such as CTP:phosphocholine cytidylyltransferase a (CCTa), phosphatidylethanolamine N-methyl-transferase (PEMT), microsomal triglyceride transfer protein (MTP), apolipoprotein b (APOBb), apolipoprotein E (ApoE) and lipoprotein lipase (LPL), and effects of dietary choline levels on lipid deposition and metabolism were tissue-specific. Different responses of these genes at the mRNA levels partially explained the profiles of lipid deposition in liver and muscle for fish fed different choline diets. To our knowledge, this is the first to explore the effect of dietary choline level on mRNA expression of these genes, which provides new insights into choline nutrition in fish. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Unresponsive Choline Transporter as a Trait Neuromarker and a Causal Mediator of Bottom-Up Attentional Biases

    PubMed Central

    Yegla, Brittney; Valuskova, Paulina; Gurnani, Sarika; Lindsley, Craig W.

    2017-01-01

    Some rats [sign-trackers (STs)] are prone to attribute incentive salience to reward cues, which can manifest as a propensity to approach and contact pavlovian cues, and for addiction-like behavior. STs also exhibit poor attentional performance, relative to goal-trackers (GTs), which is associated with attenuated acetylcholine (ACh) levels in prefrontal cortex (Paolone et al., 2013). Here, we demonstrate a cellular mechanism, linked to ACh synthesis, that accounts for attenuated cholinergic capacity in STs. First, we found that electrical stimulation of the basal forebrain increased cortical choline transporter (CHT)-mediated choline transport in GTs, paralleled by a redistribution of CHTs to the synaptic plasma membrane. Neither increases in choline uptake nor translocation of CHTs occurred in STs. Second, and consistent with uptake/translocation alterations, STs demonstrated a reduced ability to support cortical ACh release in vivo compared with GTs after reverse-dialysis to elevate extracellular potassium levels. Third, rats were significantly more likely to develop sign-tracking behavior if treated systemically before pavlovian conditioned approach training with the CHT inhibitor VU6001221. Consistent with its proposed mechanisms, administration of VU6001221 attenuated potassium-evoked ACh levels in prefrontal cortex measured with in vivo microdialysis. We propose that loss of CHT-dependent activation of cortical cholinergic activity in STs degrades top-down executive control over behavior, producing a bias for bottom-up or stimulus-driven attention. Such an attentional bias contributes to nonadaptive reward processing and thus identifies a novel mechanism that can support psychopathology, including addiction. SIGNIFICANCE STATEMENT The vulnerability for addiction-like behavior has been associated with psychological traits, such as the propensity to attribute incentive salience to reward cues that is modeled in rats by sign-tracking behavior. Sign-trackers tend to approach and contact cues associated with reward, whereas their counterparts, the goal-trackers, have a preference for approaching the location of the reward. Here, we show that the capacity of presynaptic cholinergic synapses to respond to stimulation by elevating presynaptic choline uptake and releasing acetylcholine is attenuated in sign-trackers. Furthermore, pharmacological inhibition of choline transport induced sign-tracking behavior. Our findings suggest that reduced levels of cholinergic neuromodulation can mediate an attentional bias toward reward-related cues, thereby allowing such cues to exert relatively greater control over behavior. PMID:28193693

  19. Osmotic stress response in Acinetobacter baylyi: identification of a glycine-betaine biosynthesis pathway and regulation of osmoadaptive choline uptake and glycine-betaine synthesis through a choline-responsive BetI repressor.

    PubMed

    Scholz, Anica; Stahl, Julia; de Berardinis, Veronique; Müller, Volker; Averhoff, Beate

    2016-04-01

    Acinetobacter baylyi, a ubiquitous soil bacterium, can cope with high salinity by uptake of choline as precursor of the compatible solute glycine betaine. Here, we report on the identification of a choline dehydrogenase (BetA) and a glycine betaine aldehyde dehydrogenase (BetB) mediating the oxidation of choline to glycine betaine. The betAB genes were found to form an operon together with the potential transcriptional regulator betI. The transcription of the betIBA operon and the two recently identified choline transporters was upregulated in response to choline and choline plus salt. The finding that the osmo-independent transporter BetT1 undergoes a higher upregulation in response to choline alone than betT2 suggests that BetT1 does not primarily function in osmoadaptation. Electrophoretic mobility shift assays led to the conclusion that BetI mediates transcriptional regulation of both, the betIBA gene operon and the choline transporters. BetI was released from the DNA in response to choline which together with the transcriptional upregulation of the bet genes in the presence of choline suggests that BetI is a choline sensing transcriptional repressor. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  20. Determination of picomole quantities of acetylcholine and choline in physiologic salt solutions.

    PubMed

    Gilberstadt, M L; Russell, J A

    1984-04-01

    An assay capable of detecting tens-of-picomole quantities of choline and acetylcholine in milliliter volumes of a physiological salt solution has been developed. Silica column chromatography was used to bind and separate 10-3000 pmol [14C]choline and [14C]acetylcholine standards made up in 3 ml of a bicarbonate-buffered Krebs-Ringer solution. The silica columns bound 95-98% of both choline and acetylcholine. Of the bound choline 84-87% was eluted in 1.5 ml of 0.075 N HCl, whereas 95-98% of the bound acetylcholine was eluted in a subsequent wash with 1.5 ml of 0.030 N HCl in 10% 2-butanone. Vacuum centrifugation of the eluants yielded small white pellets with losses of choline and acetylcholine of only 1%. Dried pellets of unlabeled choline and acetylcholine standards were assayed radioenzymatically using [gamma-32P]ATP, choline kinase, and acetylcholinesterase. The net disintegrations per minute of choline[32P]phosphate product was proportional to both the acetylcholine (10-3000 pmol) and choline (30-3000 pmol) standards. The "limit sensitivity" was 8.5 pmol for acetylcholine and 11.4 pmol for choline. Cross-contamination of the choline assay by acetylcholine averaged 1.3%, whereas contamination of the acetylcholine assay by choline averaged 3.1%.

  1. Choline distribution and metabolism in pregnant rats and fetuses are influenced by the choline content of the maternal diet.

    PubMed

    Garner, S C; Mar, M H; Zeisel, S H

    1995-11-01

    Choline supplementation of pregnant rats between d 12 and 17 of pregnancy permanently enhances the spatial memory of offspring; however, the mechanism is unknown. We examined the effect of choline supplementation on metabolism of orally ingested choline by nonmated rats and pregnant rats and their fetuses. We studied the metabolism of an acute oral dose of 14C-choline chloride in pregnant and nonmated rats with and without choline supplementation (25 mmol/L choline chloride in water) on d 12-17 of pregnancy. During the first 2 h after oral dosing, plasma radiolabeled choline was detectable, whereas plasma choline metabolites contributed little to total radioactivity at any time. The pattern of accumulation of label in placentas was similar in all groups. Fetal tissues (i.e., brain, liver and carcass remnant) contained primarily 14C-phosphatidylcholine and 14C-phosphorylcholine. Also, we examined the fetal tissue distribution of isotopically labeled (deuterated) choline derived from the diet and from the dietary choline supplement. The distribution patterns for radiolabeled choline metabolites in fetuses of supplemented dams accumulated significantly (P < 0.01) more of their total choline and its metabolites than fetuses of control dams during d 12-17 of gestation (50 vs. 20%). In fetuses from supplemented dams, betaine concentrations were greater than in fetuses from control dams in all organs assayed (by 36-57%). Phosphorylcholine concentrations in brain of fetuses from supplemented dams were also greater. These experiments identify potential metabolites of choline that might mediate the observed effects on brain development in the rats.

  2. Direct renal tubular effects of choline on electrolyte excretion in the chicken.

    PubMed

    Besseghir, K; Rennick, B

    1981-03-01

    Direct local effects of choline on electrolyte effects did not reappear. Acetylcholine was more potent than choline in producing the electrolyte effects. These results suggest that choline-induced changes in renal electrolyte excretion are mediated by a muscarinic receptor completely separate from the choline transport system. These effects imply that choline is not an "inert" cation.

  3. Membrane transport mechanisms of choline in human intestinal epithelial LS180 cells.

    PubMed

    Horie, Asuka; Ishida, Kazuya; Watanabe, Yuri; Shibata, Kaito; Hashimoto, Yukiya

    2014-12-01

    The aim of the present study was to investigate the membrane transport mechanisms of choline using human intestinal epithelial LS180 cells. The mRNA of choline transporter-like proteins (CTLs) was expressed significantly in LS180 cells, and the rank order was CTL1 > CTL4 > CTL3 > CTL2 > CTL5. In contrast, the mRNA expression of other choline transporters, organic cation transporter (OCT) 1, OCT2 and high-affinity choline transporter 1 (CHT1), was considerably lower in LS180 cells. Five mm unlabelled choline, hemicolinium-3 and guanidine, but not tetraethylammonium, inhibited the cellular uptake of 100 µm choline in LS180 cells. The uptake of choline into LS180 cells was virtually Na(+)-independent. The uptake of choline was significantly decreased by acidification of the extracellular pH; however, it was not increased by alkalization of the extracellular pH. In addition, both acidification and alkalization of intracellular pH decreased the uptake of choline, indicating that the choline uptake in LS180 cells is not stimulated by the outward H(+) gradient. On the other hand, the uptake of choline was decreased by membrane depolarization along with increasing extracellular K(+) concentration. In addition, the Na(+)-independent uptake of choline was saturable, and the Km value was estimated to be 108 µm. These findings suggest that the uptake of choline into LS180 cells is membrane potential-dependent, but not outward H(+) gradient-dependent. Copyright © 2014 John Wiley & Sons, Ltd.

  4. Comparison of HR MAS MR spectroscopic profiles of breast cancer tissue with clinical parameters.

    PubMed

    Sitter, Beathe; Lundgren, Steinar; Bathen, Tone F; Halgunset, Jostein; Fjosne, Hans E; Gribbestad, Ingrid S

    2006-02-01

    Breast cancer is the most frequent form of cancer in women and improved diagnostic methods are desirable. Malignant cells have altered metabolism and metabolic mapping might become a tool in cancer diagnostics. High-resolution magic angle spinning (HR MAS) MR spectroscopy of tissue biopsies provides detailed information on metabolic composition. The 600 MHz 1H HR MAS spectra were acquired of breast cancer tissue from 85 patients and adjacent non-involved tissue from 18 of these patients. Tissue specimens were investigated by microscopy after MR analysis. The resulting spectra were examined by three different approaches. Relative intensities of glycerophosphocholine (GPC), phosphocholine (PC) and choline were compared for cancerous and non-involved specimens. Eight metabolites, choline, creatine, beta-glucose, GPC, glycine, myo-inositol, PC and taurine, were quantified from the recorded spectra and compared with tumor histological type and size, patient's lymph node status and tissue composition of sample. The spectra were also compared with tumor histological type and size, lymph node status and tissue composition of samples using principal component analysis (PCA). Tumor samples could be distinguished from non-involved samples (82% sensitivity, 100% specificity) based on relative intensities of signals from GPC, PC and choline in 1H HR MAS spectra. Tissue concentrations of metabolites showed few differences between groups of samples, which can be caused by limitations in the quantification procedure. Choline and glycine concentrations were found to be significantly higher in tumors larger than 2 cm compared with smaller tumors. PCA of MAS spectra from patients with invasive ductal carcinomas indicated a possible prediction of spread to axillary lymph nodes. Metabolite estimates and PCA of MAS spectra were influenced by the percentage of tumor cells in the investigated specimens. 2006 John Wiley & Sons, Ltd.

  5. NMR ({sup 1}H and {sup 13}C) based signatures of abnormal choline metabolism in oral squamous cell carcinoma with no prominent Warburg effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bag, Swarnendu, E-mail: Swarna.bag@gmail.com; Banerjee, Deb Ranjan, E-mail: debranjan2@gmail.com; Basak, Amit, E-mail: absk@chem.iitkgp.ernet.in

    At functional levels, besides genes and proteins, changes in metabolome profiles are instructive for a biological system in health and disease including malignancy. It is understood that metabolomic alterations in association with proteomic and transcriptomic aberrations are very fundamental to unravel malignant micro-ambient criticality and oral cancer is no exception. Hence deciphering intricate dimensions of oral cancer metabolism may be contributory both for integrated appreciation of its pathogenesis and to identify any critical but yet unexplored dimension of this malignancy with high mortality rate. Although several methods do exist, NMR provides higher analytical precision in identification of cancer metabolomic signature.more » Present study explored abnormal signatures in choline metabolism in oral squamous cell carcinoma (OSCC) using {sup 1}H and {sup 13}C NMR analysis of serum. It has demonstrated down-regulation of choline with concomitant up-regulation of its break-down product in the form of trimethylamine N-oxide in OSCC compared to normal counterpart. Further, no significant change in lactate profile in OSCC possibly indicated that well-known Warburg effect was not a prominent phenomenon in such malignancy. Amongst other important metabolites, malonate has shown up-regulation but D-glucose, saturated fatty acids, acetate and threonine did not show any significant change. Analyzing these metabolomic findings present study proposed trimethyl amine N-oxide and malonate as important metabolic signature for oral cancer with no prominent Warburg effect. - Highlights: • NMR ({sup 1}H and {sup 13}C) study of Oral Squamous cell Carcinoma Serum. • Abnormal Choline metabolomic signatures. • Up-regulation of Trimethylamine N-oxide. • Unchanged lactate profile indicates no prominent Warburg effect. • Proposed alternative glucose metabolism path through up-regulation of malonate.« less

  6. Creatine supplementation prevents fatty liver in rats fed choline-deficient diet: a burden of one-carbon and fatty acid metabolism.

    PubMed

    Deminice, Rafael; de Castro, Gabriela Salim Ferreira; Francisco, Lucas Vieira; da Silva, Lilian Eslaine Costa Mendes; Cardoso, João Felipe Rito; Frajacomo, Fernando Tadeu Trevisan; Teodoro, Bruno Gonzaga; Dos Reis Silveira, Leonardo; Jordao, Alceu Afonso

    2015-04-01

    To examine the effects of creatine (Cr) supplementation on liver fat accumulation in rats fed a choline-deficient diet. Twenty-four rats were divided into 3 groups of 8 based on 4 weeks of feeding an AIN-93 control diet (C), a choline-deficient diet (CDD) or a CDD supplemented with 2% Cr. The CDD diet was AIN-93 without choline. The CDD significantly increased plasma homocysteine and TNFα concentration, as well as ALT activity. In liver, the CDD enhanced concentrations of total fat (55%), cholesterol (25%), triglycerides (87%), MDA (30%), TNFα (241%) and decreased SAM concentrations (25%) and the SAM/SAH ratio (33%). Cr supplementation prevented all these metabolic changes, except for hepatic SAM and the SAM/SAH ratio. However, no changes in PEMT gene expression or liver phosphatidylcholine levels were observed among the three experimental groups, and there were no changes in hepatic triglyceride transfer protein (MTP) mRNA level. On the contrary, Cr supplementation normalized expression of the transcription factors PPARα and PPARγ that were altered by the CDD. Further, the downstream targets and fatty acids metabolism genes, UCP2, LCAD and CPT1a, were also normalized in the Cr group as compared to CDD-fed rats. Cr supplementation prevented fat liver accumulation and hepatic injures in rats fed with a CDD for 4 weeks. Our results demonstrated that one-carbon metabolism may have a small role in mitigating hepatic fat accumulation by Cr supplementation. The modulation of key genes related to fatty acid oxidation pathway suggests a new mechanism by which Cr prevents liver fat accumulation. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. The effects of noradrenaline and adenosine 5'-triphosphate on polyphosphoinositide and phosphatidylcholine hydrolysis in arterial smooth muscle.

    PubMed Central

    Nally, J. E.; Muir, T. C.; Guild, S. B.

    1992-01-01

    1. The effects of noradrenaline and alpha,beta,methylene adenosine 5'-triphosphate (alpha,beta,methylene ATP) on polyphosphoinositide metabolism, phosphatidylcholine hydrolysis and contraction in rabbit saphenous arteries were investigated. The effect of noradrenaline upon polyphosphoinositide metabolism was also investigated in the rat tail artery. 2. Noradrenaline (10(-7)-10(-4) M) evoked a concentration-dependent increase in total inositol phosphate accumulation in the rat tail but not in the rabbit saphenous artery. Propranolol (3 x 10(-6) M) did not alter this result in the rabbit saphenous artery. In addition, alpha,beta,methylene ATP (10(-6) M) significantly increased total inositol phosphate accumulation in the rabbit saphenous artery, while potassium chloride (8 x 10(-2) M) was ineffective. 3. Phorbol 1,2-myristate 1,3-acetate (3 x 10(-8) M) enhanced noradrenaline (10(-2)-10(-4) M)-evoked contractions in rabbit saphenous artery. The contractile responses to potassium chloride (1- 16 x 10(-2) M) in tissues treated with 6-hydroxydopamine (5 x 10(-4) M), in vitro, were unaffected by these concentrations of the phorbol ester. 4. Noradrenaline (10(-6)-10(-4) M) evoked a concentration-dependent increase in the levels of choline and choline phosphate, but not in those of glycerophosphocholine, in the rabbit saphenous artery. Choline levels increased significantly over the first 15-30 s then declined to control levels within 2 min of addition of noradrenaline (10(-5) M). A smaller initial rise in choline phosphate levels (15-30 s) was followed by a larger secondary rise at 2-4 min.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1327389

  8. Choline kinase-alpha by regulating cell aggressiveness and drug sensitivity is a potential druggable target for ovarian cancer.

    PubMed

    Granata, A; Nicoletti, R; Tinaglia, V; De Cecco, L; Pisanu, M E; Ricci, A; Podo, F; Canevari, S; Iorio, E; Bagnoli, M; Mezzanzanica, D

    2014-01-21

    Aberrant choline metabolism has been proposed as a novel cancer hallmark. We recently showed that epithelial ovarian cancer (EOC) possesses an altered MRS-choline profile, characterised by increased phosphocholine (PCho) content to which mainly contribute over-expression and activation of choline kinase-alpha (ChoK-alpha). To assess its biological relevance, ChoK-alpha expression was downmodulated by transient RNA interference in EOC in vitro models. Gene expression profiling by microarray analysis and functional analysis was performed to identify the pathway/functions perturbed in ChoK-alpha-silenced cells, then validated by in vitro experiments. In silenced cells, compared with control, we observed: (I) a significant reduction of both CHKA transcript and ChoK-alpha protein expression; (II) a dramatic, proportional drop in PCho content ranging from 60 to 71%, as revealed by (1)H-magnetic spectroscopy analysis; (III) a 35-36% of cell growth inhibition, with no evidences of apoptosis or modification of the main cellular survival signalling pathways; (IV) 476 differentially expressed genes, including genes related to lipid metabolism. Ingenuity pathway analysis identified cellular functions related to cell death and cellular proliferation and movement as the most perturbed. Accordingly, CHKA-silenced cells displayed a significant delay in wound repair, a reduced migration and invasion capability were also observed. Furthermore, although CHKA silencing did not directly induce cell death, a significant increase of sensitivity to platinum, paclitaxel and doxorubicin was observed even in a drug-resistant context. We showed for the first time in EOC that CHKA downregulation significantly decreased the aggressive EOC cell behaviour also affecting cells' sensitivity to drug treatment. These observations open the way to further analysis for ChoK-alpha validation as a new EOC therapeutic target to be used alone or in combination with conventional drugs.

  9. Deanol acetamidobenzoate inhibits the blood-brain barrier transport of choline.

    PubMed

    Millington, W R; McCall, A L; Wurtman, R J

    1978-10-01

    Competition by deanol (dimethylaminoethanol) with choline for uptake from the bloodstream into the brain was demonstrated by simultaneous intracarotid administration of carbon 14-labeled choline with deanol (plus tritiated water and indium 113m, to calculate a brain uptake index) and by measuring the brain uptake of 14C-labeled choline mixed with sera from rats pretreated with deanol (300 or 500 mg/kg 8 or 30 minutes earlier). The inhibition constant for inhibition of choline uptake by deanol (159 micrograms) was actually lower than the Michaelis constant for choline itself (442 micrograms); hence, the affinity of the carrier mechanism for deanol is at least as great as it is for choline. Deanol administration also elevated blood choline levels; thus, the effect of the drug on brain choline (and acetylcholine) levels is the result of the increase it produces in blood choline and the suppression it causes in choline uptake. These findings may explain discrepant results from laboratories seeking increases in brain acetylcholine or clinical improvement in patients with tardive dyskinesia after deanol treatment.

  10. Concentrations of choline-containing compounds and betaine in common foods.

    PubMed

    Zeisel, Steven H; Mar, Mei-Heng; Howe, Juliette C; Holden, Joanne M

    2003-05-01

    Choline is important for normal membrane function, acetylcholine synthesis and methyl group metabolism; the choline requirement for humans is 550 mg/d for men (Adequate Intake). Betaine, a choline derivative, is important because of its role in the donation of methyl groups to homocysteine to form methionine. In tissues and foods, there are multiple choline compounds that contribute to total choline concentration (choline, glycerophosphocholine, phosphocholine, phosphatidylcholine and sphingomyelin). In this study, we collected representative food samples and analyzed the choline concentration of 145 common foods using liquid chromatography-mass spectrometry. Foods with the highest total choline concentration (mg/100 g) were: beef liver (418), chicken liver (290), eggs (251), wheat germ (152), bacon (125), dried soybeans (116) and pork (103). The foods with the highest betaine concentration (mg/100 g) were: wheat bran (1339), wheat germ (1241), spinach (645), pretzels (237), shrimp (218) and wheat bread (201). A number of epidemiologic studies have examined the relationship between dietary folic acid and cancer or heart disease. It may be helpful to also consider choline intake as a confounding factor because folate and choline methyl donation can be interchangeable.

  11. Fine-tuning of choline metabolism is important for pneumococcal colonization.

    PubMed

    Johnston, Calum; Hauser, Christoph; Hermans, Peter W M; Martin, Bernard; Polard, Patrice; Bootsma, Hester J; Claverys, Jean-Pierre

    2016-06-01

    The human pathogen Streptococcus pneumoniae (the pneumococcus) is rare in having a strict requirement for the amino alcohol choline, which decorates pneumococcal teichoic acids. This process relies on the lic locus, containing the lic1 and lic2 operons. These operons produce eight proteins that import and metabolize choline, generate teichoic acid precursors and decorate these with choline. Three promoters control expression of lic operons, with Plic1P1 and Plic1P2 controlling lic1 and Plic2 controlling lic2. To investigate the importance of lic regulation for pneumococci, we assayed the activity of transcriptional fusions of the three lic promoters to the luciferase reporter gene. Plic1P1 , whose activity depends on the response regulator CiaR, responded to fluctuations in extracellular choline, with activity increasing greatly upon choline depletion. We uncovered a complex regulatory mechanism controlling Plic1P1 , involving activity driven by CiaR, repression by putative repressor LicR in the presence of choline, and derepression upon choline depletion mediated by LicC, a choline metabolism enzyme. Finally, the ability to regulate Plic1P1 in response to choline was important for pneumococcal colonization. We suggest that derepression of Plic1P1 upon choline depletion maximizing choline internalization constitutes an adaptive response mechanism allowing pneumococci to optimize growth and survival in environments where choline is scarce. © 2016 John Wiley & Sons Ltd.

  12. Uptake of Free Choline by Isolated Perfused Rat Liver

    NASA Astrophysics Data System (ADS)

    Zeisel, Steven H.; Story, David L.; Wurtman, Richard J.; Brunengraber, Henri

    1980-08-01

    The uptake of free choline by isolated perfused rat liver was characterized. A saturable uptake mechanism [Ka=0.17± 0.07 mM (SD); Vmax=0.84± 0.16\\ μ mol/min × g dry weight] and a nonsaturable mechanism (through which uptake is proportional to choline concentration in the perfusate) were identified. Most of the choline transported into hepatocytes was converted to betaine, phosphorylcholine, or lecithin. Free choline also accumulated within the intracellular space, suggesting that choline oxidase activity does not always limit choline's uptake by the liver.

  13. A comparison of choline:urea and choline:oxalic acid deep eutectic solvents at 338 K

    NASA Astrophysics Data System (ADS)

    Gilmore, Mark; Moura, Leila M.; Turner, Adam H.; Swadźba-Kwaśny, Małgorzata; Callear, Samantha K.; McCune, Jade A.; Scherman, Oren A.; Holbrey, John D.

    2018-05-01

    1:2 choline chloride:urea and 1:1 choline chloride:oxalic acid deep eutectic solvents are compared at 338 K using liquid-phase neutron diffraction with H/D isotopic substitution to obtain differential neutron scattering cross sections and fitting of models to the experimental data using Empirical Potential Structure Refinement. In comparison to the previously reported study of choline chloride:urea at 303 K, we observed significant weakening and lengthening of choline-OH⋯Cl- and choline-OH⋯hydrogen-bond acceptor correlations.

  14. Betaine can partially spare choline in chicks but only when added to diets containing a minimal level of choline.

    PubMed

    Dilger, Ryan N; Garrow, Timothy A; Baker, David H

    2007-10-01

    The ability of betaine to serve as a methyl donor in chicks was assessed in 3 bioassays using a choline-free purified diet that contained adequate methionine (Met). In assay 1, choline and betaine were each supplemented at 300 mg/kg in a 2 x 2 factorial arrangement of diets. Supplemental choline improved (P < 0.05) growth performance over the 9-d growth period, whereas betaine alone had no effect. In assay 2, graded supplements of choline produced a linear increase (P < 0.05) in growth performance criteria over a 9-d growth period. Additionally, hepatic betaine-homocysteine (Hcy) methyltransferase (BHMT) activity decreased linearly (P < 0.05), whereas plasma total Hcy remained unchanged. Addition of 260 or 600 mg/kg betaine to the choline-free basal diet did not affect growth performance or BHMT activity, but 600 mg/kg betaine reduced (P < 0.05) plasma total Hcy. Assay 3 was designed to quantify the ability of betaine to spare choline. Minimal supplemental choline requirements of 20.8 +/- 1.50 mg/d (722 mg/kg diet) and 10.5 +/- 1.03 mg/d (412 mg/kg diet) were estimated in the absence and presence of 1000 mg/kg supplemental betaine, respectively. Based on these estimates, 50% of the dietary choline requirement must be supplied as choline per se, but the remaining 50% can be replaced by betaine. Collectively, these data suggest betaine and Met have minimal choline-sparing activity in chicks fed purified diets devoid of preformed choline. However, addition of betaine to diets containing minimal choline allows a marked reduction in the total dietary choline requirement.

  15. Uptake of choline by rat mammary-gland epithelial cells.

    PubMed Central

    Chao, C K; Pomfret, E A; Zeisel, S H

    1988-01-01

    The neonatal mammal requires especially large amounts of choline to sustain growth. Much of this choline is derived from the newborn's only source of food, milk. The concentration of choline in rat milk [182 +/- 24 microM (S.E.M.)] was much higher than that in maternal serum (11.6 +/- 0.9 microM), suggesting that a mechanism capable of concentrating choline into milk must exist. We characterized choline uptake by mammary epithelial cells (the site of milk production) of the lactating rat. We observed two uptake processes, one saturable and obeying Michaelis-Menten kinetics, and the other non-saturable and linear. At physiological blood choline concentrations, the saturable component of choline uptake predominated. The saturable component had Kapp. = 35 +/- 16 microM, and Vmax. = 1.24 +/- 0.19 nmol/h per mg of protein. Saturable uptake of choline was inhibited by hemicholinium-3. Ca2+ was required for uptake, but Mg2+ was not. Replacement Na+ with K+, Li+ or sucrose inhibited transport. Ouabain did not inhibit choline uptake. Choline concentration in epithelial cells was 67.7 +/- 1.9 nmol/g wet wt. at the start of incubation at 37 degrees C and rose to 80.9 +/- 6.5 nmol/g wet wt. over 30 min. Much of the choline accumulated by the mammary gland (in the presence of endogenous concentrations of choline) remained in the form of choline (50 +/- 1.2%), phosphatidylcholine (12 +/- 2.3%), lysophosphatidylcholine (0.1 +/- 0.03%), betaine (7 +/- 0.3% and phosphocholine (6 +/- 0.5%). In addition, we isolated 25 +/- 1.2% of choline-derived radiolabel in an unidentified compound. Images Fig. 1. Fig. 3. PMID:3178755

  16. Breast milk choline contents are associated with inflammatory status of breastfeeding women.

    PubMed

    Ozarda, Yesim; Cansev, Mehmet; Ulus, Ismail H

    2014-05-01

    Choline is an important component of human breast milk and its content varies considerably among breastfeeding women and lactation periods. The aim of this study was to assess the relationship between breast milk choline contents and inflammatory status in breastfeeding women. Breast milk choline compounds and serum C-reactive protein (CRP) concentrations were determined in breastfeeding women at 1 to 3 (n = 53) or 22 to 180 (n = 54) days postpartum, expressing colostrum or mature milk, respectively. Median concentrations of free choline, phosphocholine, glycerophosphocholine, phospholipid-bound choline, and total choline were 71, 38, 96, 194, and 407 µmol/L or 93, 351, 958, 186, and 1532 µmol/L in colostrum or mature milk, respectively. Median serum CRP concentrations were 4.13 mg/L and 0.33 mg/L at 1 to 3 days and 22 to 180 days postpartum, respectively. At 1 to 3 days postpartum, milk free choline, phosphocholine, glycerophosphocholine, and total choline as well as serum CRP concentrations were significantly higher in breastfeeding women who delivered by cesarean section than those who delivered via the vaginal route. Serum CRP concentration was positively correlated with colostrum free choline (r = 0.703; P < .001), phosphocholine (r = 0.759; P < .001), glycerophosphocholine (r = 0.706; P < .001), and total choline (r = 0.693; P < .001), whereas it was negatively correlated (r = -0.442; P < .001) with colostrum phospholipid-bound choline. Serum CRP was also negatively correlated with mature milk free choline (r = -0.278; P < .05), but no correlation was found between serum CRP and other choline compounds in mature milk. These data show that the concentrations of milk choline compounds are associated with inflammatory status of breastfeeding women, particularly during the first few days after delivery.

  17. Genetic variation of folate-mediated one-carbon transfer pathway predicts susceptibility to choline deficiency in humans.

    PubMed

    Kohlmeier, Martin; da Costa, Kerry-Ann; Fischer, Leslie M; Zeisel, Steven H

    2005-11-01

    Choline is a required nutrient, and some humans deplete quickly when fed a low-choline diet, whereas others do not. Endogenous choline synthesis can spare some of the dietary requirement and requires one-carbon groups derived from folate metabolism. We examined whether major genetic variants of folate metabolism modify susceptibility of humans to choline deficiency. Fifty-four adult men and women were fed diets containing adequate choline and folate, followed by a diet containing almost no choline, with or without added folate, until they were clinically judged to be choline-deficient, or for up to 42 days. Criteria for clinical choline deficiency were a more than five times increase in serum creatine kinase activity or a >28% increase of liver fat after consuming the low-choline diet that resolved when choline was returned to the diet. Choline deficiency was observed in more than half of the participants, usually within less than a month. Individuals who were carriers of the very common 5,10-methylenetetrahydrofolate dehydrogenase-1958A gene allele were more likely than noncarriers to develop signs of choline deficiency (odds ratio, 7.0; 95% confidence interval, 2.0-25; P < 0.01) on the low-choline diet unless they were also treated with a folic acid supplement. The effects of the C677T and A1298C polymorphisms of the 5,10-methylene tetrahydrofolate reductase gene and the A80C polymorphism of the reduced folate carrier 1 gene were not statistically significant. The most remarkable finding was the strong association in premenopausal women of the 5,10-methylenetetrahydrofolate dehydrogenase-1958A gene allele polymorphism with 15 times increased susceptibility to developing organ dysfunction on a low-choline diet.

  18. Effects of Egg Consumption and Choline Supplementation on Plasma Choline and Trimethylamine-N-Oxide in a Young Population.

    PubMed

    Lemos, Bruno S; Medina-Vera, Isabel; Malysheva, Olga V; Caudill, Marie A; Fernandez, Maria Luz

    2018-05-15

    Plasma trimethylamine-N-oxide (TMAO) concentrations have been associated with cardiovascular disease risk. Eggs are a rich source of choline, which is a precursor of TMAO. The effects of egg intake versus daily choline supplementation were evaluated on plasma choline and TMAO in a young, healthy population. Thirty participants (14 males, 16 females; 25.6 ± 2.3 years; body mass index = 24.3 ± 2.9 kg/m 2 ) were enrolled in this 13-week crossover intervention. After a 2-week washout, participants were randomized to consume either 3 eggs/d or a choline bitartrate supplement (∼ 400 mg choline total in eggs or supplement) for 4 weeks. Following a 3-week washout, participants were switched to the alternate treatment. Dietary records were measured at the end of each period. Plasma TMAO and choline were measured at baseline and at the end of each dietary intervention. Gene expression of scavenger receptors associated with plasma TMAO were quantified at the end of each intervention. Compared to the choline supplement, intake of total fat, cholesterol, selenium, and vitamin E were higher (p < 0.05), whereas carbohydrate intake was lower (p < 0.001) with consumption of 3 eggs/d. Fasting plasma choline increased 20% (p = 0.023) with egg intake, while no changes were observed with choline supplementation. Plasma TMAO levels were not different between dietary treatments or compared to baseline. Dietary choline appears to be more bioavailable via egg consumption when compared to a choline supplement. Plasma TMAO concentrations were not affected in healthy participants after 4 weeks of taking ∼400 mg/d choline either via eggs or choline supplementation.

  19. Novel channel-mediated choline transport in cholinergic neurons of the mouse retina.

    PubMed

    Ishii, Toshiyuki; Homma, Kohei; Mano, Asuka; Akagi, Takumi; Shigematsu, Yasuhide; Shimoda, Yukio; Inoue, Hiroyoshi; Kakinuma, Yoshihiko; Kaneda, Makoto

    2017-10-01

    Choline uptake into the presynaptic terminal of cholinergic neurons is mediated by the high-affinity choline transporter and is essential for acetylcholine synthesis. In a previous study, we reported that P2X 2 purinoceptors are selectively expressed in OFF-cholinergic amacrine cells of the mouse retina. Under specific conditions, P2X 2 purinoceptors acquire permeability to large cations, such as N -methyl-d-glucamine, and therefore potentially could act as a noncanonical pathway for choline entry into neurons. We tested this hypothesis in OFF-cholinergic amacrine cells of the mouse retina. ATP-induced choline currents were observed in OFF-cholinergic amacrine cells, but not in ON-cholinergic amacrine cells, in mouse retinal slice preparations. High-affinity choline transporters are expressed at higher levels in ON-cholinergic amacrine cells than in OFF-cholinergic amacrine cells. In dissociated preparations of cholinergic amacrine cells, ATP-activated cation currents arose from permeation of extracellular choline. We also examined the pharmacological properties of choline currents. Pharmacologically, α,β-methylene ATP did not produce a cation current, whereas ATPγS and benzoyl-benzoyl-ATP (BzATP) activated choline currents. However, the amplitude of the choline current activated by BzATP was very small. The choline current activated by ATP was strongly inhibited by pyridoxalphosphate-6-azophenyl-2',4'-sulfonic acid. Accordingly, P2X 2 purinoceptors expressed in HEK-293T cells were permeable to choline and similarly functioned as a choline uptake pathway. Our physiological and pharmacological findings support the hypothesis that P2 purinoceptors, including P2X 2 purinoceptors, function as a novel choline transport pathway and may provide a new regulatory mechanism for cholinergic signaling transmission at synapses in OFF-cholinergic amacrine cells of the mouse retina. NEW & NOTEWORTHY Choline transport across the membrane is exerted by both the high-affinity and low-affinity choline transporters. We found that choline can permeate P2 purinergic receptors, including P2X 2 purinoceptors, in cholinergic neurons of the retina. Our findings show the presence of a novel choline transport pathway in cholinergic neurons. Our findings also indicate that the permeability of P2X 2 purinergic receptors to choline observed in the heterologous expression system may have a physiological relevance in vivo. Copyright © 2017 the American Physiological Society.

  20. [Folate metabolism--epigenetic role of choline and vitamin B12 during pregnancy].

    PubMed

    Drews, Krzysztof

    2015-12-01

    Adequate choline intake during pregnancy is essential for proper fetal development. Nowadays studies suggest that even in high income countries regular pregnant women diet does not provide the satisfactory amount of choline. Choline demand during pregnancy is high and it seems to exceed present choline intake recommendations. Moreover lactation period also demands choline supplementation because of its high concentration in female milk. Numerous studies on animal model proved correlation between choline supplementation during pregnancy and proper fetal cognitive function development. Despite increased synthesis in maternal liver during pregnancy choline demand is much higher than common dietary uptake. Nowadays studies as to the nutritional recommendations during pregnancy concern also vitamin B12 supplementation. Vitamin B12 deficiency may be an important risk factor of neural tube defects development. Presented article contains a review of data on proper choline and vitamin B12 uptake during pregnancy and lactation and potential results of choline and vitamin B12 poor maternal status.

  1. A single-vial biphasic liquid extraction assay for choline acetyltransferease using (/sup 3/H)choline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rand, J.B.; Johnson, C.D.

    1981-09-15

    A single-vial liquid extraction assay for choline acetyltransferase that uses (/sup 3/H)choline as the labeled substrate has been devised. (/sup 3/H)Choline is incubated with an excess of acetyl-CoA in a small reaction vial which also serves as a scintillation vial. After a suitable reaction period, unreacted (/sup 3/H)choline is quickly and quantitatively converted to phosphoryl-(/sup 3/H)choline by the addition of an excess of choline kinase. This treatment is followed by the addition of scintillation fluid containing sodium tetraphenylboron after which the vial is capped, shaken, and counted. A two-phase system is produced in which product (/sup 3/H)choline is selectively extractedmore » into the scintillation fluid, where is is counted. Phosphoryl-(/sup 3/H)choline remains in the aqueous phase and is not counted. This assay is rapid, simple, and quite sensitive. In comparison to assays using acetyl-CoA as the labeled substrate, it is less sensitive to interference by other enzymes and thus more suitable for measuring choline acetyltransferase in crude extracts and in the initial stages of purificaton. Similar single-vial radiometric assays are described for choline kinase and acetyl-CoA hydrolases.« less

  2. Choline oxidation by intact spinach chloroplasts. [Spinacia oleracea L

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weigel, P.; Lerma, C.; Hanson, A.D.

    1988-01-01

    Plants synthesize betaine by a two-step oxidation of choline (choline ..-->.. betaine aldehyde ..-->.. betaine). Protoplast-derived chloroplasts of spinach (Spinacia oleracea L.) carry out both reactions, more rapidly in light than in darkness. We investigated the light-stimulated oxidation of choline, using spinach chloroplasts isolated directly from leaves. The rates of choline oxidation obtained (dark and light rates: 10-50 and 100-300 nanomoles per hour per milligram chlorophyll, respectively) were approximately 20-fold higher than for protoplast-derived chloroplasts. Betaine aldehyde was the main product. Choline oxidation in darkness and light was suppressed by hypoxia. Neither uncouplers not the Calvin cycle inhibitor glyceraldehyde greatlymore » affected choline oxidation in the light, and maximal choline oxidation was attained far below light saturation of CO/sub 2/ fixation. The light stimulation of choline oxidation was abolished by the PSII inhibitors DCMU and dibromothymoquinone, and was partially restored by adding reduced diaminodurene, an electron donor to PSI. Both methyl viologen and phenazine methosulfate prevented choline oxidation. Adding dihydroxyacetone phosphate, which can generate NADPH in organello, doubled the dark rate of choline oxidation. These results indicate that choline oxidation in chloroplasts requires oxygen, and reducing power generated from PSI. Enzymic reactions consistent with these requirements are discussed.« less

  3. Small-Molecule Inhibition of Choline Catabolism in Pseudomonas aeruginosa and Other Aerobic Choline-Catabolizing Bacteria ▿ †

    PubMed Central

    Fitzsimmons, Liam F.; Flemer, Stevenson; Wurthmann, A. Sandy; Deker, P. Bruce; Sarkar, Indra Neil; Wargo, Matthew J.

    2011-01-01

    Choline is abundant in association with eukaryotes and plays roles in osmoprotection, thermoprotection, and membrane biosynthesis in many bacteria. Aerobic catabolism of choline is widespread among soil proteobacteria, particularly those associated with eukaryotes. Catabolism of choline as a carbon, nitrogen, and/or energy source may play important roles in association with eukaryotes, including pathogenesis, symbioses, and nutrient cycling. We sought to generate choline analogues to study bacterial choline catabolism in vitro and in situ. Here we report the characterization of a choline analogue, propargylcholine, which inhibits choline catabolism at the level of Dgc enzyme-catalyzed dimethylglycine demethylation in Pseudomonas aeruginosa. We used genetic analyses and 13C nuclear magnetic resonance to demonstrate that propargylcholine is catabolized to its inhibitory form, propargylmethylglycine. Chemically synthesized propargylmethylglycine was also an inhibitor of growth on choline. Bioinformatic analysis suggests that there are genes encoding DgcA homologues in a variety of proteobacteria. We examined the broader utility of propargylcholine and propargylmethylglycine by assessing growth of other members of the proteobacteria that are known to grow on choline and possess putative DgcA homologues. Propargylcholine showed utility as a growth inhibitor in P. aeruginosa but did not inhibit growth in other proteobacteria tested. In contrast, propargylmethylglycine was able to inhibit choline-dependent growth in all tested proteobacteria, including Pseudomonas mendocina, Pseudomonas fluorescens, Pseudomonas putida, Burkholderia cepacia, Burkholderia ambifaria, and Sinorhizobium meliloti. We predict that chemical inhibitors of choline catabolism will be useful for studying this pathway in clinical and environmental isolates and could be a useful tool to study proteobacterial choline catabolism in situ. PMID:21602374

  4. Roles of Three Transporters, CbcXWV, BetT1, and BetT3, in Pseudomonas aeruginosa Choline Uptake for Catabolism ▿ †

    PubMed Central

    Malek, Adel A.; Chen, Chiliang; Wargo, Matthew J.; Beattie, Gwyn A.; Hogan, Deborah A.

    2011-01-01

    Pseudomonas aeruginosa uses the quaternary amine choline as a carbon source, osmoprotectant, and macromolecular precursor. The importance of choline in P. aeruginosa physiology is highlighted by the presence of multiple known and putative choline transporters encoded within its genome. This report describes the relative roles of three choline transporters, the ABC transporter CbcXWV and two symporters, BetT1 and BetT3, in P. aeruginosa growth on choline under osmotic conditions that are physiologically relevant to eukaryotic hosts. The increased lag phases exhibited by the ΔbetT1 and ΔbetT1 ΔbetT3 mutants relative to the wild type upon transfer to medium with choline as a sole carbon source suggested roles for BetT1 and BetT3 in cells newly exposed to choline. BetT3 and CbcXWV, but not BetT1, were sufficient to support growth on choline. betT1 and betT3 expression was regulated by the repressor BetI and choline, whereas cbcXWV expression was induced by the activator GbdR and glycine betaine. The data support a model in which, upon transfer to a choline-based medium, the glycine betaine derived from choline taken up by BetT1 and BetT3 promotes subsequent GbdR-mediated cbcXWV induction. Furthermore, growth data indicated that the relative contributions of each transporter varied under different conditions, as BetT1 and CbcXWV were the primary choline transporters under hypo-osmolar conditions whereas BetT3 was the major choline transporter under hyperosmolar conditions. This work represents the first systematic approach to unravel the mechanisms of choline uptake in P. aeruginosa, which has the most complex bacterial choline uptake systems characterized to date. PMID:21478341

  5. Escherichia coli O157:H7 Converts Plant-Derived Choline to Glycine Betaine for Osmoprotection during Pre- and Post-harvest Colonization of Injured Lettuce Leaves

    PubMed Central

    Scott, Russell A.; Thilmony, Roger; Harden, Leslie A.; Zhou, Yaguang; Brandl, Maria T.

    2017-01-01

    Plant injury is inherent to the production and processing of fruit and vegetables. The opportunistic colonization of damaged plant tissue by human enteric pathogens may contribute to the occurrence of outbreaks of foodborne illness linked to produce. Escherichia coli O157:H7 (EcO157) responds to physicochemical stresses in cut lettuce and lettuce lysates by upregulation of several stress response pathways. We investigated the tolerance of EcO157 to osmotic stress imposed by the leakage of osmolytes from injured lettuce leaf tissue. LC-MS analysis of bacterial osmoprotectants in lettuce leaf lysates and wound washes indicated an abundant natural pool of choline, but sparse quantities of glycine betaine and proline. Glycine betaine was a more effective osmoprotectant than choline in EcO157 under osmotic stress conditions in vitro. An EcO157 mutant with a deletion of the betTIBA genes, which are required for biosynthesis of glycine betaine from imported choline, achieved population sizes twofold lower than those of the parental strain (P < 0.05) over the first hour of colonization of cut lettuce in modified atmosphere packaging (MAP). The cell concentrations of the betTIBA mutant also were 12-fold lower than those of the parental strain (P < 0.01) when grown in hypertonic lettuce lysate, indicating that lettuce leaf cellular contents provide choline for osmoprotection of EcO157. To demonstrate the utilization of available choline by EcO157 for osmoadaptation in injured leaf tissue, deuterated (D-9) choline was introduced to wound sites in MAP lettuce; LC-MS analysis revealed the conversion of D9-choline to D-9 glycine betaine in the parental strain, but no significant amounts were observed in the betTIBA mutant. The EcO157 ΔbetTIBA-ΔotsBA double mutant, which is additionally deficient in de novo synthesis of the compatible solute trehalose, was significantly less fit than the parental strain after their co-inoculation onto injured lettuce leaves and MAP cut lettuce. However, its competitive fitness followed a different time-dependent trend in MAP lettuce, likely due to differences in O2 content, which modulates betTIBA expression. Our study demonstrates that damaged lettuce leaf tissue does not merely supply EcO157 with substrates for proliferation, but also provides the pathogen with choline for its survival to osmotic stress experienced at the site of injury. PMID:29276506

  6. 21 CFR 172.370 - Iron-choline citrate complex.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Iron-choline citrate complex. 172.370 Section 172... CONSUMPTION Special Dietary and Nutritional Additives § 172.370 Iron-choline citrate complex. Iron-choline citrate complex made by reacting approximately equimolecular quantities of ferric hydroxide, choline, and...

  7. Choline Transport Activity Regulates Phosphatidylcholine Synthesis through Choline Transporter Hnm1 Stability*

    PubMed Central

    Fernández-Murray, J. Pedro; Ngo, Michael H.; McMaster, Christopher R.

    2013-01-01

    Choline is a precursor for the synthesis of phosphatidylcholine through the CDP-choline pathway. Saccharomyces cerevisiae expresses a single high affinity choline transporter at the plasma membrane, encoded by the HNM1 gene. We show that exposing cells to increasing levels of choline results in two different regulatory mechanisms impacting Hnm1 activity. Initial exposure to choline results in a rapid decrease in Hnm1-mediated transport at the level of transporter activity, whereas chronic exposure results in Hnm1 degradation through an endocytic mechanism that depends on the ubiquitin ligase Rsp5 and the casein kinase 1 redundant pair Yck1/Yck2. We present details of how the choline transporter is a major regulator of phosphatidylcholine synthesis. PMID:24187140

  8. Choline in the treatment of rapid-cycling bipolar disorder: clinical and neurochemical findings in lithium-treated patients.

    PubMed

    Stoll, A L; Sachs, G S; Cohen, B M; Lafer, B; Christensen, J D; Renshaw, P F

    1996-09-01

    This study examined choline augmentation of lithium for rapid-cycling bipolar disorder. Choline bitartrate was given openly to 6 consecutive lithium-treated outpatients with rapid-cycling bipolar disorder. Five patients also underwent brain proton magnetic resonance spectroscopy. Five of 6 rapid-cycling patients had a substantial reduction in manic symptoms, and 4 patients had a marked reduction in all mood symptoms during choline therapy. The patients who responded to choline all exhibited a substantial rise in the basal ganglia concentration of choline-containing compounds. Choline was well tolerated in all cases. Choline, in the presence of lithium, was a safe and effective treatment for 4 of 6 rapid-cycling patients in our series. A hypothesis is suggested to explain both lithium refractoriness in patients with bipolar disorder and the action of choline in mania, which involves the interaction between phosphatidylinositol and phosphatidylcholine second-messenger systems.

  9. Increased choline kinase activity in 1,2-dimethylhydrazine-induced rat colon cancer.

    PubMed

    Nakagami, K; Uchida, T; Ohwada, S; Koibuchi, Y; Morishita, Y

    1999-11-01

    Cancer cells acquire particular characteristics that benefit their proliferation. We previously reported that human colon cancers examined had increased choline kinase activity and phosphocholine levels. The elevated phosphocholine levels were in part due to both activation of choline kinase and increased choline kinase alpha protein levels. In this report, we analyzed choline kinase, which catalyzes the phosphorylation of choline to produce phosphocholine, in rat 1,2-dimethylhydrazine (DMH)-induced colon cancer. This study is the first to demonstrate increased choline kinase alpha enzymatic activity, protein levels, and mRNA levels in DMH-induced colon cancer as well as human colon cancer, although phosphocholine was not increased in DMH-induced rat cancer. The increase in the mRNA level was partly due to an increase in the transcription of the choline kinase alpha gene. The increased choline kinase activity may be a specific characteristic acquired by cancer cells that benefits their proliferation.

  10. Choline and betaine intakes are associated with reduced risk of nasopharyngeal carcinoma in adults: a case-control study.

    PubMed

    Zeng, F-f; Xu, C-h; Liu, Y-t; Fan, Y-y; Lin, X-l; Lu, Y-k; Zhang, C-x; Chen, Y-m

    2014-02-04

    Intakes of choline and betaine have been inversely related to the risk of various neoplasms, but scant data exist on nasopharyngeal carcinoma (NPC). We examined the association between consumption of choline and betaine and risk of NPC. We conducted a case-control study with 600 incident NPC patients and 600 controls 1 : 1 matched by age, sex and household type in Guangdong, China. Dietary intake was assessed by a food frequency questionnaire through face-to-face interview. Intakes of total choline, betaine and choline+betaine were inversely related to NPC after adjustment for various lifestyle and dietary factors (all P-trend <0.001). Adjusted odds ratios (95% CI) for quartile 4 (vs quartile 1) were 0.42 (0.29, 0.61) for total choline, 0.50 (0.35, 0.72) for betaine and 0.44 (0.30, 0.64) for betaine+total choline. Regarding various sources of choline, lower NPC risk was associated with greater intakes of choline from phosphatidylcholine, free choline, glycerophosphocholine and phosphocholine, but not sphingomyelin. These findings are consistent with a beneficial effect of choline and betaine intakes on carcinogenesis.

  11. Choline and betaine intakes are associated with reduced risk of nasopharyngeal carcinoma in adults: a case–control study

    PubMed Central

    Zeng, F-f; Xu, C-h; Liu, Y-t; Fan, Y-y; Lin, X-l; Lu, Y-k; Zhang, C-x; Chen, Y-m

    2014-01-01

    Background: Intakes of choline and betaine have been inversely related to the risk of various neoplasms, but scant data exist on nasopharyngeal carcinoma (NPC). We examined the association between consumption of choline and betaine and risk of NPC. Methods: We conducted a case–control study with 600 incident NPC patients and 600 controls 1 : 1 matched by age, sex and household type in Guangdong, China. Dietary intake was assessed by a food frequency questionnaire through face-to-face interview. Results: Intakes of total choline, betaine and choline+betaine were inversely related to NPC after adjustment for various lifestyle and dietary factors (all P-trend <0.001). Adjusted odds ratios (95% CI) for quartile 4 (vs quartile 1) were 0.42 (0.29, 0.61) for total choline, 0.50 (0.35, 0.72) for betaine and 0.44 (0.30, 0.64) for betaine+total choline. Regarding various sources of choline, lower NPC risk was associated with greater intakes of choline from phosphatidylcholine, free choline, glycerophosphocholine and phosphocholine, but not sphingomyelin. Conclusion: These findings are consistent with a beneficial effect of choline and betaine intakes on carcinogenesis. PMID:24169354

  12. Expression of the high-affinity choline transporter, CHT1, in the neuronal and non-neuronal cholinergic system of human and rat skin.

    PubMed

    Haberberger, Rainer Viktor; Pfeil, Uwe; Lips, Katrin Susanne; Kummer, Wolfgang

    2002-10-01

    Choline is an essential component in acetylcholine biosynthesis, and is involved in cell signaling. It is unable to permeate the cell membrane and requires a transporter to enter the cell. Neurons that synthesize acetylcholine take up choline by a recently cloned high-affinity choline transporter (choline transporter 1) that is Na+-dependent and can be blocked by hemicholinium-3. The aim of this study was to determine the expression and to analyze the distribution of choline transporter 1 in human and rat skin. The mRNA for choline transporter 1 was detected in rat and human skin and in the human keratinocyte cell line HaCaT. A polyclonal anti-serum was developed against the N-terminal region of the human and rat protein. In rat and human skin, choline transporter 1 immunoreactivity was present in nerve fibers. In addition, keratinocytes, HaCaT cells and cells of the internal root sheath of the hair follicle contained choline transporter 1 immunoreactivity. The labeling patterns of nonconfluent vs confluent cultured cells and the distribution of choline transporter 1 along the epidermal layer suggest an association of choline transporter 1 with keratinocyte differentiation. In conclusion, this study shows the presence of the high-affinity choline transporter choline transporter 1 in nerve fibers and epithelial cells in the human and rat skin supporting the pivotal role of this transporter in both the neuronal and non-neuronal cholinergic system of the skin.

  13. Uptake and output of various forms of choline by organs of the conscious chronically catheterized sheep.

    PubMed Central

    Robinson, B S; Snoswell, A M; Runciman, W B; Upton, R N

    1984-01-01

    The net uptake and output of plasma unesterified choline, glycerophosphocholine, phosphocholine and lipid choline by organs of the conscious chronically catheterized sheep were measured. There was significant production of plasma unesterified choline by the upper- and lower-body regions and the alimentary tract and uptake by the liver, lungs and kidneys. The upper- and lower-body regions drained by the venae cavae provided the bulk (about 82%) of the total body venous return of plasma unesterified choline. Production of plasma unesterified choline by the alimentary tract was approximately balanced by the plasma unesterified choline taken up by the liver, and was almost equal to the amount of choline secreted in the bile. There was a considerable amount of glycerophosphocholine in the liver and there was production of plasma glycerophosphocholine by the liver and uptake by the lungs and kidneys. Glycerophosphocholine was higher in the plasma of sheep than in that of rats. Plasma phosphocholine was produced by the alimentary tract and kidneys. There was production of plasma lipid choline by the upper- and lower-body regions drained by the venae cavae. The results suggest that the sheep synthesizes substantial amounts of choline in ectrahepatic tissues and has the capacity for extensive retention and recycling of bile choline. These observations, coupled with a slow turnover of the endogenous choline body pool, explain the low requirement of sheep for dietary choline in contrast with non-ruminant species. PMID:6696739

  14. Denervation and reinnervation of skeletal muscle

    NASA Technical Reports Server (NTRS)

    Mayer, R. F.; Max, S. R.

    1983-01-01

    A review is presented of the physiological and biochemical changes that occur in mammalian skeletal muscle after denervation and reinnervation. These changes are compared with those observed after altered motor function. Also considered is the nature of the trophic influence by which nerves control muscle properties. Topics examined include the membrane and contractile properties of denervated and reinnervated muscle; the cholinergic proteins, such as choline acetyltransferase, acetylcholinesterase, and the acetylcholine receptor; and glucose-6-phosphate dehydrogenase.

  15. Choline Metabolites: Gene by Diet Interactions

    PubMed Central

    Smallwood, Tangi; Allayee, Hooman; Bennett, Brian J.

    2015-01-01

    Purpose of review This review highlights recent advances in our understanding of the interactions between genetic polymorphisms in genes that metabolize choline and the dietary requirements of choline and how these interactions relate to human health and disease. Recent findings The importance of choline as an essential nutrient has been well established but our appreciation of the interaction between our underlying genetic architecture and dietary choline requirements is only beginning. It has been shown in both human and animal studies that choline deficiencies contribute to diseases such as non-alcoholic fatty liver disease and various neurodegenerative diseases. An adequate supply of dietary choline is important for optimum development, highlighted by the increased maternal requirements during fetal development and in breast-fed infants. We discuss recent studies investigating variants in PEMT and MTHFR1 that are associated with a variety of birth defects. In addition to genetic interactions, we discuss several recent studies that uncover changes in fetal global methylation patterns in response to maternal dietary choline intake that result in changes in gene expression in the offspring. In contrast to the developmental role of adequate choline, there is now an appreciation of the role choline has in cardiovascular disease through the gut microbiota-mediated metabolite trimethylamine N-oxide. This pathway highlights some of our understanding of how the microbiome affects nutrient processing and bioavailability. Finally, in order to better characterize the genetic architecture regulating choline requirements, we discuss recent results focused on identifying polymorphisms that regulate choline and its derivative products. Summary Here we discuss recent studies that have advanced our understanding of how specific alleles in key choline metabolism genes are related to dietary choline requirements and human disease. PMID:26655287

  16. Evidence for negative selection of gene variants that increase dependence on dietary choline in a Gambian cohort

    PubMed Central

    Silver, Matt J.; Corbin, Karen D.; Hellenthal, Garrett; da Costa, Kerry-Ann; Dominguez-Salas, Paula; Moore, Sophie E.; Owen, Jennifer; Prentice, Andrew M.; Hennig, Branwen J.; Zeisel, Steven H.

    2015-01-01

    Choline is an essential nutrient, and the amount needed in the diet is modulated by several factors. Given geographical differences in dietary choline intake and disparate frequencies of single-nucleotide polymorphisms (SNPs) in choline metabolism genes between ethnic groups, we tested the hypothesis that 3 SNPs that increase dependence on dietary choline would be under negative selection pressure in settings where choline intake is low: choline dehydrogenase (CHDH) rs12676, methylenetetrahydrofolate reductase 1 (MTHFD1) rs2236225, and phosphatidylethanolamine-N-methyltransferase (PEMT) rs12325817. Evidence of negative selection was assessed in 2 populations: one in The Gambia, West Africa, where there is historic evidence of a choline-poor diet, and the other in the United States, with a comparatively choline-rich diet. We used 2 independent methods, and confirmation of our hypothesis was sought via a comparison with SNP data from the Maasai, an East African population with a genetic background similar to that of Gambians but with a traditional diet that is higher in choline. Our results show that frequencies of SNPs known to increase dependence on dietary choline are significantly reduced in the low-choline setting of The Gambia. Our findings suggest that adequate intake levels of choline may have to be reevaluated in different ethnic groups and highlight a possible approach for identifying novel functional SNPs under the influence of dietary selective pressure.—Silver, M. J., Corbin, K. D., Hellenthal, G., da Costa, K.-A., Dominguez-Salas, P., Moore, S. E., Owen, J., Prentice, A. M., Hennig, B. J., Zeisel, S. H. Evidence for negative selection of gene variants that increase dependence on dietary choline in a Gambian cohort. PMID:25921832

  17. Four-week dietary supplementation with 10- and/or 15-fold basal choline caused decreased body weight in Sprague Dawley rats.

    PubMed

    Bagley, Bradford D; Chang, Shu-Ching; Ehresman, David J; Eveland, Alan; Parker, George A; Peters, Jeffrey M; Butenhoff, John L

    2017-10-01

    Choline is an essential nutrient utilized for phosphatidylcholine biosynthesis and lipoprotein packaging and secretion. Recently, choline supplementation has been used by athletes and the public for weight loss. However, the potential toxicological impact of choline dietary supplementation requires further investigation. This study examined the effects of choline dietary supplementation in Sprague Dawley rats for 4 weeks. Rats were fed diets containing basal choline levels (control) or 5-, 10-, or 15-fold (5×, 10×, or 15×) basal diet concentration. In groups fed choline-supplemented diets, there were no toxicologically relevant findings in clinical observations, food intake, clinical chemistry, liver weights, or liver histopathology. However, decreased mean body weights (8.5-10.2%) and body weight gains (24-31%) were noted for the 10× choline-supplemented (females only) and 15× choline-supplemented (both sexes) groups relative to the control groups from day 3 onward. These body weight effects were not related to a persistent reduction in average food intake. Serum cholesterol was increased in the 15× choline-supplemented male rats relative to the controls, an expected effect of choline supplementation; however, there were no changes in the serum cholesterol of female rats. Serum choline concentrations were increased in female rats relative to the male rats across all treatment groups. The maximum tolerated dose for male and female rats were the 15× and 10× choline supplements, respectively, based on decreased mean body weight and body weight gains. This study supported the conclusions of a clinical trial that showed a high choline diet can decrease body weight in humans.

  18. Choline transport via choline transporter-like protein 1 in conditionally immortalized rat syncytiotrophoblast cell lines TR-TBT.

    PubMed

    Lee, N-Y; Choi, H-M; Kang, Y-S

    2009-04-01

    Choline is an essential nutrient for phospholipids and acetylcholine biosynthesis in normal development of fetus. In the present study, we investigated the functional characteristics of choline transport system and inhibitory effect of cationic drugs on choline transport in rat conditionally immortalized syncytiotrophoblast cell line (TR-TBT). Choline transport was weakly Na(+) dependent and significantly influenced by extracellular pH and by membrane depolarization. The transport process of choline is saturable with Michaelis-Menten constants (K(m)) of 68microM and 130microM in TR-TBT 18d-1 and TR-TBT 18d-2 respectively. Choline uptake in the cells was inhibited by unlabeled choline and hemicholinium-3 as well as various organic cations including guanidine, amiloride and acetylcholine. However, the prototypical organic cation tetraethylammonium and cimetidine showed very little inhibitory effect of choline uptake in TR-TBT cells. RT-PCR revealed that choline transporter-like protein 1 (CTL1) and organic cation transporter 2 (OCT2) are expressed in TR-TBT cells. The transport properties of choline in TR-TBT cells were similar or identical to that of CTL1 but not OCT2. CTL1 was also detected in human placenta. In addition, several cationic drugs such as diphenhydramine and verapamil competitively inhibited choline uptake in TR-TBT 18d-1 with K(i) of 115microM and 55microM, respectively. Our results suggest that choline transport system, which has intermediate affinity and weakly Na(+) dependent, in TR-TBT seems to occur through a CTL1 and this system may have relevance with the uptake of pharmacologically important organic cation drugs.

  19. Serial Plasma Choline Measurements after Cardiac Arrest in Patients Undergoing Mild Therapeutic Hypothermia: A Prospective Observational Pilot Trial

    PubMed Central

    Storm, Christian; Danne, Oliver; Ueland, Per Magne; Leithner, Christoph; Hasper, Dietrich; Schroeder, Tim

    2013-01-01

    Objective Choline is related to phospholipid metabolism and is a marker for global ischaemia with a small reference range in healthy volunteers. The aim of our study was to characterize the early kinetics of plasma free choline in patients after cardiac arrest. Additionally, we investigated the potential of plasma free choline to predict neurological outcome. Methods Twenty patients admitted to our medical intensive care unit were included in this prospective, observational trial. All patients were enrolled between May 2010 and May 2011. They received post cardiac arrest treatment including mild therapeutic hypothermia which was initiated with a combination of cold fluid and a feedback surface cooling device according to current guidelines. Sixteen blood samples per patient were analysed for plasma free choline levels within the first week after resuscitation. Choline was detected by liquid chromatography-tandem mass spectrometry. Results Most patients showed elevated choline levels on admission (median 14.8 µmol/L; interquartile range; IQR 9.9-20.1) which subsequently decreased. 48 hours after cardiac arrest choline levels in all patients reached subnormal levels at a median of 4.0 µmol/L (IQR 3-4.9; p = 0.001). Subsequently, choline levels normalized within seven days. There was no significant difference in choline levels when groups were analyzed in relation to neurological outcome. Conclusions Our data indicate a choline deficiency in the early postresucitation phase. This could potentially result in impaired cell membrane recovery. The detailed characterization of the early choline time course may aid in planning of choline supplementation trials. In a limited number of patients, choline was not promising as a biomarker for outcome prediction. PMID:24098804

  20. Serial plasma choline measurements after cardiac arrest in patients undergoing mild therapeutic hypothermia: a prospective observational pilot trial.

    PubMed

    Storm, Christian; Danne, Oliver; Ueland, Per Magne; Leithner, Christoph; Hasper, Dietrich; Schroeder, Tim

    2013-01-01

    Choline is related to phospholipid metabolism and is a marker for global ischaemia with a small reference range in healthy volunteers. The aim of our study was to characterize the early kinetics of plasma free choline in patients after cardiac arrest. Additionally, we investigated the potential of plasma free choline to predict neurological outcome. Twenty patients admitted to our medical intensive care unit were included in this prospective, observational trial. All patients were enrolled between May 2010 and May 2011. They received post cardiac arrest treatment including mild therapeutic hypothermia which was initiated with a combination of cold fluid and a feedback surface cooling device according to current guidelines. Sixteen blood samples per patient were analysed for plasma free choline levels within the first week after resuscitation. Choline was detected by liquid chromatography-tandem mass spectrometry. Most patients showed elevated choline levels on admission (median 14.8 µmol/L; interquartile range; IQR 9.9-20.1) which subsequently decreased. 48 hours after cardiac arrest choline levels in all patients reached subnormal levels at a median of 4.0 µmol/L (IQR 3-4.9; p = 0.001). Subsequently, choline levels normalized within seven days. There was no significant difference in choline levels when groups were analyzed in relation to neurological outcome. Our data indicate a choline deficiency in the early postresucitation phase. This could potentially result in impaired cell membrane recovery. The detailed characterization of the early choline time course may aid in planning of choline supplementation trials. In a limited number of patients, choline was not promising as a biomarker for outcome prediction.

  1. Nano interfaced biosensor for detection of choline in triple negative breast cancer cells.

    PubMed

    Thiagarajan, Vignesh; Madhurantakam, Sasya; Sethuraman, Swaminathan; Balaguru Rayappan, John Bosco; Maheswari Krishnan, Uma

    2016-01-15

    Choline, a type of Vitamin B, is an important nutrient in the human body and is involved in key metabolic pathways. Abnormal levels of choline leads to diseased conditions. The levels of choline and its associated compounds are found to be elevated in triple negative breast cancer (TNBC) patients. The choline level ranges from 0.4 to 4.9mmol/kg in TNBC. Thus the detection of choline levels in cells can aid in diagnosing breast cancer. The present work aims to develop a nano-interfaced electrochemical biosensor for the rapid detection of choline in cancer cells. For electrochemical detection, glassy carbon electrode coated with a zinc oxide nano-interface was used as the working electrode. Zinc oxide synthesized by hydrothermal method was characterized using SEM and XRD. The choline oxidase (ChOx) enzyme was immobilized on the nano-interface by drop-casting. Choline oxidase (ChOx) converts choline to betaine and H2O2 in the presence of oxygen. The H2O2 produced was determined amperometrically. The amount of H2O2 produced is directly proportional to concentration of choline present. The sensitivity, selectivity, stability and concentration studies were carried out and quantification of choline in TNBC was also carried out. The results demonstrate that this biosensor has the potential to be developed as a clinical tool for breast cancer detection. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Transport and phosphorylation of choline in higher plant cells. Phosphorus-31 nuclear magnetic resonance studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bligny, R.; Foray, M.F.; Roby, C.

    1989-03-25

    When sycamore cells were suspended in basal medium containing choline, the latter was taken up by the cells very rapidly. A facilitated diffusion system appertained at low concentrations of choline and exhibited Michaelis-Menten kinetics. At higher choline concentrations simple diffusion appeared to be the principal mode of uptake. Addition of choline to the perfusate of compressed sycamore cells monitored by /sup 31/P NMR spectroscopy resulted in a dramatic accumulation of P-choline in the cytoplasmic compartment containing choline kinase and not in the vacuole. The total accumulation of P-choline over a 10-h period exhibited Michaelis-Menten kinetics. During this period, in themore » absence of Pi in the perfusion medium there was a marked depletion of glucose-6-P, and the cytoplasmic Pi resonance disappeared almost completely. When a threshold of cytoplasmic Pi was attained, the phosphorylation of choline was sustained by the continuous release of Pi from the vacuole although at a much lower rate. However, when 100 microM inorganic phosphate was present in the perfusion medium, externally added Pi was preferentially used to sustain P-choline synthesis. It is clear, therefore, that cytosolic choline kinase associated with a carrier-mediated transport system for choline uptake appeared as effective systems for continuously trapping cytoplasmic Pi including vacuolar Pi entering the cytoplasm.« less

  3. 75 FR 53577 - Choline hydroxide; Exemption from the Requirement of a Tolerance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-01

    ... endogenously in the human body. Humans are currently exposed to choline on a daily basis through commonly eaten... dietary consumption of choline, choline is made endogenously in the human body. Choline is a precursor to... human health. In order to determine the risks from aggregate exposure to pesticide inert ingredients...

  4. Choline incorporation by Schistosoma mansoni: distribution of choline metabolites during development and after sexual differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ancelin, M.L.; Torpier, G.; Vial, H.J.

    1987-06-01

    Choline metabolism was investigated in Schistosoma mansoni during the main phases of its development, namely, schistosomula, 11- and 15-day-old worms, and adults. At the physiological choline concentration used in the assay (20 microM), betaine was, along with phosphatidylcholine, one of the most abundant choline metabolites, revealing considerable choline oxidation activity. Very little radioactivity was associated with CDP-choline, whereas a sustained incorporation into phosphocholine occurred. These results provide good evidence that CTP:phosphocholine cytidylyltransferase plays a regulatory role in the de novo pathway of phosphatidylcholine biosynthesis. During development, the incorporation of choline into its various metabolites was maximal in 11-day-old worms. Atmore » this stage, the oxidative pathway predominated over the Kennedy pathway, whereas at all other stages the de novo phosphatidylcholine biosynthesis was predominant. Furthermore, choline incorporation into betaine was much more important in the adult female worm than in the male, indicating a major difference in choline incorporation and distribution between the 2 sexes of the adult worms.« less

  5. Choline metabolism in malignant transformation

    PubMed Central

    Glunde, Kristine; Bhujwalla, Zaver M.; Ronen, Sabrina M.

    2015-01-01

    Abnormal choline metabolism is emerging as a metabolic hallmark that is associated with oncogenesis and tumour progression. Following transformation, the modulation of enzymes that control anabolic and catabolic pathways causes increased levels of choline-containing precursors and breakdown products of membrane phospholipids. These increased levels are associated with proliferation, and recent studies emphasize the complex reciprocal interactions between oncogenic signalling and choline metabolism. Because choline-containing compounds are detected by non-invasive magnetic resonance spectroscopy (MRS), increased levels of these compounds provide a non-invasive biomarker of transformation, staging and response to therapy. Furthermore, enzymes of choline metabolism, such as choline kinase, present novel targets for image-guided cancer therapy. PMID:22089420

  6. Choline: Dietary Requirements and Role in Brain Development.

    PubMed

    Sanders, Lisa M; Zeisel, Steven H

    2007-01-01

    Choline is needed for the maintenance of the structural integrity and signaling functions of cell membranes, for neurotransmission, and for transport of lipids and as a source of methyl groups. Choline can be made de novo in the body, but some individuals must also obtain choline in the diet to prevent deficiency symptoms. A number of environmental and genetic factors influence dietary requirements for choline, and average intakes in the population vary widely. Therefore, certain individuals may be at greater risk of choline deficiency. Choline is critical during fetal development, particularly during the development of the brain, where it can influence neural tube closure and lifelong memory and learning functions.

  7. Specificity and rate of human and mouse liver and plasma phosphatidylcholine synthesis analyzed in vivo[S

    PubMed Central

    Pynn, Christopher J.; Henderson, Neil G.; Clark, Howard; Koster, Grielof; Bernhard, Wolfgang; Postle, Anthony D.

    2011-01-01

    Phosphatidylcholine (PC) synthesis by the direct cytidine diphosphate choline (CDP-choline) pathway in rat liver generates predominantly mono- and di-unsaturated molecular species, while polyunsaturated PC species are synthesized largely by the phosphatidylethanolamine-N-methyltransferase (PEMT) pathway. Although altered PC synthesis has been suggested to contribute to development of hepatocarcinoma and nonalcoholic steatohepatitis, analysis of the specificity of hepatic PC metabolism in human patients has been limited by the lack of sensitive and safe methodologies. Here we incorporated a deuterated methyl-d9-labled choline chloride, to quantify biosynthesis fluxes through both of the PC synthetic pathways in vivo in human volunteers and compared these fluxes with those in mice. Rates and molecular specificities of label incorporated into mouse liver and plasma PC were very similar and strongly suggest that label incorporation into human plasma PC can provide a direct measure of hepatic PC synthesis in human subjects. Importantly, we demonstrate for the first time that the PEMT pathway in human liver is selective for polyunsaturated PC species, especially those containing docosahexaenoic acid. Finally, we present a multiple isotopomer distribution analysis approach, based on transfer of deuterated methyl groups to S-adenosylmethionine and subsequent sequential methylations of PE, to quantify absolute flux rates through the PEMT pathway that are applicable to studies of liver dysfunction in clinical studies. PMID:21068006

  8. Molecular pathology of acute kidney injury in a choline-deficient model and fish oil protective effect.

    PubMed

    Denninghoff, Valeria; Ossani, Georgina; Uceda, Ana; Rugnone, Matias; Fernández, Elmer; Fresno, Cristóbal; González, German; Díaz, Maria Luisa; Avagnina, Alejandra; Elsner, Boris; Monserrat, Alberto

    2014-04-01

    The aim of this work was to investigate the potential protective effects of fish oil on the basis of kidney transcriptomic data on a nutritional experimental model. Male weanling Wistar rats were divided into four groups and fed choline-deficient (CD) and choline-supplemented (CS) diets with vegetable oil (VO) and menhaden oil (MO): CSVO, CDVO, CSMO and CDMO. Animals were killed after receiving the diets for 6 days. Total RNA was purified from the right kidney and hybridized to Affymetrix GeneChip Rat Gene 1.0 ST Array. Differentially expressed genes were analyzed. All CSVO, CSMO and CDMO rats showed no renal alterations, while all CDVO rats showed renal cortical necrosis. A thorough analysis of the differential expression between groups CSMO and CDMO was carried out. There were no differential genes for p < 0.01. The analysis of the differential expression between groups CSVO and CSMO revealed 32 genes, 11 were over-expressed and 21 were under-expressed in CSMO rats. This work was part of a large set of experiments and was used in a hypothesis-generating manner. The comprehensive analysis of genetic expression allowed confirming that menhaden oil has a protective effect on this nutritional experimental model and identifying 32 genes that could be responsible for that protection, including Gstp1. These results reveal that gene changes could play a role in renal injury.

  9. Pharmacological action of choline and aspirin coadministration on acute inflammatory pain.

    PubMed

    Yong-Ping, Shi; Jin-Da, Wang; Ru-Huan, Wang; Xiang-Di, Zhao; Hai-Tao, Yu; Hai, Wang

    2011-09-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) are effective for relieving pain but undesirable side effects limit their clinical usefulness. Choline is a α7 nicotinic receptor agonist that has antinociceptive effects in a variety of pain models. Drug combination is a strategy in the management of pain to reduce side effects. The aim of the study was to evaluate the nature of the interaction between choline and aspirin in two distinct inflammatory pain models. The analgesic mechanism of choline was also investigated. In the writhing test, intravenous administration of choline or aspirin showed dose-dependent antinociceptive activity, and isobolographic analysis revealed a synergistic nature of the interaction between choline and aspirin. More importantly, coadministration choline with aspirin could significantly shorten the antinociceptive latency of aspirin and prolong the antinociceptive duration of aspirin in the writhing test. In the carrageenan test, single administration of choline or aspirin significantly attenuated carrageenan-induced thermal hyperalgesia in a dose-dependent relationship. Coadministration of non-analgesic doses of aspirin with choline significantly suppressed the thermal hyperalgesia, with a longer duration efficacy. Furthermore, we found that α7 nicotinic, muscarinic, and opioid-receptors are involved in the antinociceptive effect of choline in the writhing test and the antinociceptive effect produced by systemically administered choline may be via a peripheral mechanism. In conclusion, coadministration of choline and aspirin holds promise for development as a safe analgesic drug combination for inflammatory pain, with a higher potency and longer duration than either aspirin or choline alone. Copyright © 2011 European Federation of International Association for the Study of Pain Chapters. Published by Elsevier Ltd. All rights reserved.

  10. Effects of CDP-choline on striatal dopamine level and behavior in rats.

    PubMed

    Shibuya, M; Kageyama, N; Taniguchi, T; Hidaka, H; Fujiwara, M

    1981-02-01

    To further assess the effects of CDP (cytidine diphosphate)-choline on Parkinsonian symptoms, striatal dopamine (DA) was measured fluorometrically in rats after injection of CDP-choline. CDP-choline (300 mg/kg, i.p.) increased the DA content in the striatum (p less than 0.05) one hour after injection. The behavioral effect of CDP-choline was then tested in rats in which the unilateral nigro-striatal DA neurons had degenerated following an intranigral injection of 6-hydroxydopamine (6-OHDA). CDP-choline alone did not produce behavioral changes in these rats. However, pretreatment with a single dose of CDP-choline (900 mg/kg, i.p.) suppressed both the apomorphine-induced contralateral and the d-amphetamine-induced ipsilateral circling. The same dose of CDP-choline suppressed the number of treadmill revolutions in mice. On the other hand, a 7-day consecutive treatment with 300 mg/kg of CDP-choline enhanced the apomorphine-induced contralateral circling (by 42%, p less than 0.05). The same treatment with CDP-choline raised the striatal DA content by 29% (p less than 0.05) on the intact side, but not on the 6-OHDA injected side. These results indicate that CDP-choline has either a direct nor an indirect DA agonistic effect. The increase in DA content, decrease in locomotion and enhancement of the effect of apomorphine can be explained on the hypothesis that CDP-choline may act as an antagonist on the DA neurons and receptors. The validity of this apparently paradoxical use of CDP-choline with antagonistic effect on DA neurons in the treatment of Parkinson's disease is discussed.

  11. [Anti-platelet actions of salicylates: in vivo, ex vivo and in vitro effects of choline salicylate].

    PubMed

    Irino, O; Saitoh, K; Ohkubo, K

    1985-07-01

    Effects of choline salicylate, sodium salicylate, choline chloride and acetylsalicylic acid on platelet aggregation in vivo, ex vivo and in vitro in mice were studied. These drugs all inhibited adenosine diphosphate (ADP)-induced respiratory depression, which is closely related to platelet aggregation in vivo, with choline salicylate showing the strongest inhibitory effect. Choline salicylate had a tendency to reduce the mortality of animals injected intravenously with endotoxin, but the other drugs had no such effect. The inhibitory effects of these drugs on ADP-induced platelet aggregation ex vivo were in the order of choline salicylate greater than acetylsalicylic acid congruent to sodium salicylate greater than choline chloride congruent to no effect, and plasma concentrations of protein-unbound salicylic acid at 1 hr after oral administration of drugs were in the order of choline salicylate greater than acetylsalicylic acid congruent to sodium salicylate. The in vitro effects of these drugs were in the order of choline salicylate congruent to sodium salicylate greater than choline chloride congruent to acetylsalicylic acid congruent to no effect. Therefore, it was considered that salicylic acid played an important role on the in vivo, ex vivo and in vitro effects of choline salicylate and that choline increased plasma concentrations of salicylic acid and consequently enhanced the in vivo and ex vivo effects of salicylic acid. Furthermore, the ex vivo effects of choline salicylate were found when ADP-induced platelet aggregation was measured with platelet-rich plasma prepared from blood collected with heparin as anti-coagulant, but not when blood was collected with citrate.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Comparative genomics and mutagenesis analyses of choline metabolism in the marine R oseobacter clade

    PubMed Central

    Lidbury, Ian; Kimberley, George; Scanlan, David J.; Murrell, J. Colin

    2015-01-01

    Summary Choline is ubiquitous in marine eukaryotes and appears to be widely distributed in surface marine waters; however, its metabolism by marine bacteria is poorly understood. Here, using comparative genomics and molecular genetic approaches, we reveal that the capacity for choline catabolism is widespread in marine heterotrophs of the marine Roseobacter clade (MRC). Using the model bacterium R uegeria pomeroyi, we confirm that the bet A, bet B and bet C genes, encoding choline dehydrogenase, betaine aldehyde dehydrogenase and choline sulfatase, respectively, are involved in choline metabolism. The bet T gene, encoding an organic solute transporter, was essential for the rapid uptake of choline but not glycine betaine (GBT). Growth of choline and GBT as a sole carbon source resulted in the re‐mineralization of these nitrogen‐rich compounds into ammonium. Oxidation of the methyl groups from choline requires formyltetrahydrofolate synthetase encoded by fhs in R . pomeroyi, deletion of which resulted in incomplete degradation of GBT. We demonstrate that this was due to an imbalance in the supply of reducing equivalents required for choline catabolism, which can be alleviated by the addition of formate. Together, our results demonstrate that choline metabolism is ubiquitous in the MRC and reveal the role of Fhs in methyl group oxidation in R . pomeroyi. PMID:26058574

  13. Identification and functional analysis of choline transporter in tongue cancer: A novel molecular target for tongue cancer therapy.

    PubMed

    Nishiyama, Ryohta; Nagashima, Fumiaki; Iwao, Beniko; Kawai, Yuiko; Inoue, Kana; Midori, Arisa; Yamanaka, Tsuyoshi; Uchino, Hiroyuki; Inazu, Masato

    2016-06-01

    We examined the functional characteristics of choline uptake in human tongue carcinoma using the cell line HSC-3. Furthermore, we explored the possible correlation between the inhibition of choline uptake and apoptotic cell death. Both choline transporter-like protein 1 (CTL1) and CTL2 mRNAs and proteins were expressed, and were located in plasma membrane and mitochondria, respectively. Choline uptake was saturable and mediated by a single transport system, which is pH-dependent. Several cationic drugs inhibited cell viability and [(3)H]choline uptake. Choline uptake inhibitors and choline deficiency inhibited cell viability and increased caspase-3/7 activity. We conclude that extracellular choline is mainly transported via a CTL1 that relies on a directed H(+) gradient as a driving force. The functional inhibition of CTL1 by cationic drugs could promote apoptotic cell death. Furthermore, CTL2 may be the major site for the control of choline oxidation in mitochondria and hence for the supply of endogenous betaine and S-adenosyl methionine, which serves as a major methyl donor. Identification of this CTL1- and CTL2-mediated choline transport system provides a potential new target for tongue cancer therapy. Copyright © 2016 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  14. Conductive choline transport by alveolar epithelial plasma membrane vesicles.

    PubMed

    Oelberg, D G; Xu, F

    1998-11-01

    Choline is an important substrate in alveolar epithelia for both surfactant production and cellular maintenance. The underlying mechanisms of uptake and sites of membrane transport remain uncertain. To test the hypothesis that choline transport occurs at the basolateral side of alveolar epithelia by both Na+-independent and -dependent mechanisms, plasma membrane vesicles were prepared from the apical and basolateral membranes of mature porcine type II pneumocytes. Choline+ transport was assayed by uptake of [3H]choline+ by enriched apical or basolateral vesicles. In the presence of imposed, inside-negative charge gradients, basolateral vesicles exhibited early overshoot of [3H]choline+ uptake unaffected by the presence or absence of external Na+ (541 +/- 53 vs 564 +/- 79 pmol/mg protein (NS)). High sensitivity to hemicholinium-3 was observed in the presence or absence of Na+. In the absence of inside-negative charge gradients, uptake was reduced 12-fold in the presence or absence of Na+, and external choline+ induced internal alkalization of acidified basolateral vesicles. Accumulative [3H]choline+ uptakes by apical vesicles in the presence or absence of inside-negative charge gradients and Na+ were insignificant. We conclude that predominant choline+ uptake by type II pneumocytes occurs at the basolateral membrane by Na+-independent, electrogenic choline+ conductance. The presence of electroneutral choline+/H+ exchange is suggested. Copyright 1998 Academic Press.

  15. Dietary Choline Intake Is Directly Associated with Bone Mineral Density in the Hordaland Health Study.

    PubMed

    Øyen, Jannike; Gjesdal, Clara Gram; Karlsson, Therese; Svingen, Gard Ft; Tell, Grethe S; Strand, Elin; Drevon, Christian A; Vinknes, Kathrine J; Meyer, Klaus; Ueland, Per Magne; Nygård, Ottar

    2017-04-01

    Background: Choline is an important nutrient either obtained from a variety of foods or synthesized endogenously, and it is the precursor of betaine. We previously reported positive associations between plasma free choline and bone mineral density (BMD). Animal studies suggest an impact of dietary choline on bone metabolism, but the role of dietary intake of choline and betaine for human bone health is unknown. Objectives: The main aims were to examine the associations of dietary choline, choline species, and betaine with BMD and to study the relations between dietary and plasma free choline and betaine. Methods: Study subjects were participants in the Hordaland Health Study, including 2649 women and 1983 men (aged 46-49 or 71-74 y). BMD was measured by dual-energy X-ray absorptiometry, and dietary intake was obtained by using a validated 169-item food-frequency questionnaire. Risk associations were assessed by logistic regression and correlations by ρ (Spearman's bivariate rank order correlation). Results: Subjects in the lowest compared with the highest tertile of dietary total choline, free choline, glycerophosphocholine, phosphocholine, phosphatidylcholine, and sphingomyelin had a higher risk of low-femoral neck BMD, defined as the lowest BMD quintile. Particularly strong associations were found among middle-aged men for intake of free choline (OR: 1.83; 95% CI: 1.24, 2.69; P = 0.002) and glycerophosphocholine (OR: 2.13; 95% CI: 1.43, 3.16; P < 0.001) and among elderly women for total choline (OR: 1.96; 95% CI: 1.33, 2.88; P = 0.001) and phosphatidylcholine (OR: 1.94; 95% CI: 1.33, 2.84: P = 0.001) intake. No significant associations were observed between dietary betaine and BMD. Dietary total choline, free choline, glycerophosphocholine, phosphatidylcholine, and sphingomyelin correlated weakly with plasma free choline (ρ: 0.07, 0.05, 0.07, 0.07, and 0.05, respectively; P < 0.01). Dietary betaine correlated with plasma betaine (ρ: 0.23; P < 0.001). Conclusion: Dietary choline was positively associated with BMD in middle-aged and elderly participants. © 2017 American Society for Nutrition.

  16. Choline deficiency causes reversible hepatic abnormalities in patients receiving parenteral nutrition: proof of a human choline requirement: a placebo-controlled trial.

    PubMed

    Buchman, A L; Ament, M E; Sohel, M; Dubin, M; Jenden, D J; Roch, M; Pownall, H; Farley, W; Awal, M; Ahn, C

    2001-01-01

    Previous studies have shown that plasma free choline concentrations are significantly decreased in many long-term home total parenteral nutrition (TPN) patients. Furthermore, low choline status has been associated with both hepatic morphologic and hepatic aminotransferase abnormalities. A preliminary pilot study suggested choline-supplemented TPN may be useful in reversal of these hepatic abnormalities. Fifteen patients (10 M, 5 F) who had required TPN for > or =80% of their nutritional needs were randomized to receive their usual TPN (n = 8), or TPN to which 2 g choline chloride had been added (n = 7) for 24 weeks. Baseline demographic data were similar between groups. Patients had CT scans of the liver and spleen, and blood for plasma free and phospholipid-bound choline, alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase, gamma glutamyl transferase (GGT), bilirubin, serum lipids, complete blood count (CBC), and chemistry profile obtained at baseline, and weeks 2, 4, 6, 12, 16, 20, 24, and 34. CT scans were analyzed for Hounsfield unit (HU) densities. There were no significant differences in any measured parameters after 2 weeks. However, at 4 weeks, a significant difference in liver HU between groups was observed (13.3+/-5.0 HU [choline] vs 5.8+/-5.2 HU [placebo], p = .04). This significant trend continued through week 24. Recurrent hepatic steatosis and decreased HU were observed at week 34, 10 weeks after choline supplementation had been discontinued. A significant increase in the liver-spleen differential HU was also observed in the choline group (10.6+/-6.2 HU [choline] vs 1.3+/-3.3 HU [placebo], p = .01). Serum ALT decreased significantly (p = .01 to .05) in the choline group vs placebo at weeks 6,12, 20, and 24. Serum AST was significantly decreased in the choline group by week 24 (p = .02). The serum alkaline phosphatase was significantly reduced in the choline group at weeks 2, 12, 20, 24, and 34 (p = .02 to 0.07). Total bilirubin was normal in these patients and remained unchanged during the study. Serum GGT tended to decrease more in the choline group, but the greater decrease was not statistically significant. Choline deficiency is a significant contributor to the development of TPN-associated liver disease. The data suggest choline is a required nutrient for long-term home TPN patients.

  17. Manipulation of sinapine, choline and betaine accumulation in Arabidopsis seed: towards improving the nutritional value of the meal and enhancing the seedling performance under environmental stresses in oilseed crops.

    PubMed

    Huang, Jun; Rozwadowski, Kevin; Bhinu, V S; Schäfer, Ulrike; Hannoufa, Abdelali

    2008-07-01

    Sinapoylcholine (sinapine) is the most abundant antinutritional phenolic compound in cruciferous seeds. The quaternary ammonium compounds, choline, betaine and N,N-dimethylglycine, reside along a biosynthetic pathway linked to the synthesis of membrane phospholipids and neurotransmitters with various biological functions. In chicken, choline intake is required for optimal egg-laying performance and a choline supplement in diet is positively correlated with weight gains. A key step in sinapine biosynthesis is catalyzed by sinapoylglucose: choline sinapoyltransferase (SCT; EC 2.3.1.91) to form an ester linkage with sinapoylglucose and choline. The objective of this work was to reduce the sinapine content and simultaneously enhance free choline levels in cruciferous seeds. We report here the characterization of an Arabidopsis T-DNA insertion mutant lacking SCT activity in the seed. The sct mutant seeds contain less than 1% of sinapine and a more than 2-fold increase in free choline compared with wild type. We further expressed a choline oxidase (COX; EC 1.1.3.17) gene from Arthrobacter pascens in the Arabidopsis sct mutant and wild-type background using a napin gene promoter to convert free choline into betaine, an effective stress-alleviating compound in plants. Betaine was not detected in WT or sct mutant seeds. The sct+COX seeds contain nearly 2-fold greater levels of betaine relative to WT+COX seeds, demonstrating a positive correlation between endogenous choline and betaine production. In contrast, stable comparable levels of free choline were detected between sct+COX and WT+COX plants suggesting choline homeostasis likely prevent high levels of betaine production in the seed of transgenic COX plants.

  18. Choline and betaine intake is inversely associated with breast cancer risk: a two-stage case-control study in China.

    PubMed

    Zhang, Cai-Xia; Pan, Mei-Xia; Li, Bin; Wang, Lian; Mo, Xiong-Fei; Chen, Yu-Ming; Lin, Fang-Yu; Ho, Suzanne C

    2013-02-01

    Few epidemiological studies have evaluated the association of choline and betaine intake with breast cancer risk and the results remain inconsistent. This study aimed to assess the relationship between dietary intake of choline and betaine and the risk of breast cancer among Chinese women. A two-stage case-control study was conducted, with 807 cases and 807 age- (5-year interval) and residence (rural/urban)-matched controls. A validated food frequency questionnaire was used to assess dietary intake by face-to-face interview. An unconditional logistic regression model was used to calculate multivariate-adjusted odds ratios (OR) and 95% confidence intervals (CI). A significant inverse association was found between dietary choline and betaine consumption and breast cancer risk. The adjusted OR for the highest quartile of intake compared with the lowest were 0.40 (95% CI = 0.28-0.57, P(trend) < 0.001) for total choline intake, 0.58 (95% CI = 0.42-0.80, P(trend) < 0.001) for betaine intake and 0.38 (0.27-0.53, P(trend) < 0.001) for choline plus betaine intake, respectively. Intakes of individual choline compouds, choline from glycerophosphocholine, phosphocholine, phosphatidylcholine, sphingomyelin and free choline were also negatively associated with breast cancer risk. The inverse association between choline intake and breast cancer risk was primarily confined to participants with low folate level (<242 g/day), with an OR (95% CI) of 0.46 (0.23-0.91) comparing the fourth quartile with the first quartile of choline intake (P(trend) = 0.005). The present study suggests that consumption of choline and betaine is inversely associated with the risk of breast cancer. The association of choline intake with breast cancer risk is probably modified by folate intake. © 2012 Japanese Cancer Association.

  19. Maternal choline concentrations during pregnancy and choline-related genetic variants as risk factors for neural tube defects.

    PubMed

    Mills, James L; Fan, Ruzong; Brody, Lawrence C; Liu, Aiyi; Ueland, Per M; Wang, Yifan; Kirke, Peadar N; Shane, Barry; Molloy, Anne M

    2014-10-01

    Low maternal choline intake and blood concentration may be risk factors for having a child with a neural tube defect (NTD); however, the data are inconsistent. This is an important question to resolve because choline, if taken periconceptionally, might add to the protective effect currently being achieved by folic acid. We examined the relation between NTDs, choline status, and genetic polymorphisms reported to influence de novo choline synthesis to investigate claims that taking choline periconceptionally could reduce NTD rates. Two study groups of pregnant women were investigated: women who had a current NTD-affected pregnancy (AP; n = 71) and unaffected controls (n = 214) and women who had an NTD in another pregnancy but not in the current pregnancy [nonaffected pregnancy (NAP); n = 98] and unaffected controls (n = 386). Blood samples to measure betaine and total choline concentrations and single nucleotide polymorphisms related to choline metabolism were collected at their first prenatal visit. Mean (±SD) plasma total choline concentrations in the AP (2.8 ± 1.0 mmol/L) and control (2.9 ± 0.9 mmol/L) groups did not differ significantly. Betaine concentrations were not significantly different between the 2 groups. Total choline and betaine in the NAP group did not differ from controls. Cases were significantly more likely to have the G allele of phosphatidylethanolamine-N-methyltransferase (PEMT; V175M, +5465 G>A) rs7946 (P = 0.02). Our results indicate that maternal betaine and choline concentrations are not strongly associated with NTD risk. The association between PEMT rs7946 and NTDs requires confirmation. The addition of choline to folic acid supplements may not further reduce NTD risk. © 2014 American Society for Nutrition.

  20. Maternal choline concentrations during pregnancy and choline-related genetic variants as risk factors for neural tube defects123

    PubMed Central

    Mills, James L; Fan, Ruzong; Brody, Lawrence C; Liu, Aiyi; Ueland, Per M; Wang, Yifan; Kirke, Peadar N; Shane, Barry; Molloy, Anne M

    2014-01-01

    Background: Low maternal choline intake and blood concentration may be risk factors for having a child with a neural tube defect (NTD); however, the data are inconsistent. This is an important question to resolve because choline, if taken periconceptionally, might add to the protective effect currently being achieved by folic acid. Objective: We examined the relation between NTDs, choline status, and genetic polymorphisms reported to influence de novo choline synthesis to investigate claims that taking choline periconceptionally could reduce NTD rates. Design: Two study groups of pregnant women were investigated: women who had a current NTD-affected pregnancy (AP; n = 71) and unaffected controls (n = 214) and women who had an NTD in another pregnancy but not in the current pregnancy [nonaffected pregnancy (NAP); n = 98] and unaffected controls (n = 386). Blood samples to measure betaine and total choline concentrations and single nucleotide polymorphisms related to choline metabolism were collected at their first prenatal visit. Results: Mean (±SD) plasma total choline concentrations in the AP (2.8 ± 1.0 mmol/L) and control (2.9 ± 0.9 mmol/L) groups did not differ significantly. Betaine concentrations were not significantly different between the 2 groups. Total choline and betaine in the NAP group did not differ from controls. Cases were significantly more likely to have the G allele of phosphatidylethanolamine-N-methyltransferase (PEMT; V175M, +5465 G>A) rs7946 (P = 0.02). Conclusions: Our results indicate that maternal betaine and choline concentrations are not strongly associated with NTD risk. The association between PEMT rs7946 and NTDs requires confirmation. The addition of choline to folic acid supplements may not further reduce NTD risk. PMID:25240073

  1. Choline concentrations are lower in postnatal plasma of preterm infants than in cord plasma.

    PubMed

    Bernhard, Wolfgang; Raith, Marco; Kunze, Rebecca; Koch, Vera; Heni, Martin; Maas, Christoph; Abele, Harald; Poets, Christian F; Franz, Axel R

    2015-08-01

    Choline is essential to human development, particularly of the brain in the form of phosphatidylcholine, sphingomyelin and acetylcholine, for bile and lipoprotein formation, and as a methyl group donator. Choline is actively transported into the fetus, and maternal supply correlates with cognitive outcome. Interruption of placental supply may therefore impair choline homeostasis in preterm infants. Determination of postnatal plasma concentrations of choline and its derivatives betaine and dimethylglycine (DMG) in preterm infants compared to cord and maternal blood matched for postmenstrual age (PMA). We collected plasma of very low-birth-weight infants undergoing neonatal intensive care (n = 162), cord plasma of term and preterm infants (n = 176, 24-42-week PMA), serum of parturients (n = 36), and plasma of healthy premenopausal women (n = 40). Target metabolites were analyzed with tandem mass spectrometry and reported as median (25th/75th percentiles). Cord plasma choline concentration was 41.4 (31.8-51.2) µmol/L and inversely correlated with PMA. In term but not in preterm infants, cord plasma choline was lower in girls than in boys. Prenatal glucocorticoid treatment did not affect choline levels in cord plasma, whereas betaine was decreased and DMG increased. In parturients and non-pregnant women, choline concentrations were 14.1 (10.3-16.9) and 8.8 (5.7-11.2) µmol/L, respectively, whereas betaine was lowest in parturients. After delivery, preterm infant plasma choline decreased to 20.8 (16.0-27.6) µmol/L within 48 h. Betaine and DMG correlated with plasma choline in all groups. In preterm infants, plasma choline decreases to 50 % of cord plasma concentrations, reflecting choline undernourishment and postnatal metabolic adaptation, and potentially contributing to impaired outcome.

  2. Influence of chain length and double bond on the aqueous behavior of choline carboxylate soaps.

    PubMed

    Rengstl, Doris; Diat, Olivier; Klein, Regina; Kunz, Werner

    2013-02-26

    In preceding studies, we demonstrated that choline carboxylates ChC(m) with alkyl chain lengths of m = 12 - 18 are highly water-soluble (for m = 12, soluble up to 93 wt % soap and 0 °C). In addition, choline soaps are featured by an extraordinary lyotropic phase behavior. With decreasing water concentration, the following phases were found: micellar phase (L(1)), discontinuous cubic phase (I(1)' and I(1)"), hexagonal phase (H(1)), bicontinuous cubic phase (V(1)), and lamellar phase (L(α)). The present work is also focused on the lyotropic phase behavior of choline soaps but with shorter alkyl chains or different alkyl chain properties. We have investigated the aqueous phase behavior of choline soaps with C(8) and C(10) chain-lengths (choline octanoate and choline decanoate) and with a C(18) chain-length with a cis-double bond (choline oleate). We found that choline decanoate follows the lyotropic phase behavior of the longer-chain homologues mentioned above. Choline octanoate in water shows no discontinuous cubic phases, but an extended, isotropic micellar solution phase. In addition, choline octanoate is at the limit between a surfactant and a hydrotrope. The double bond in choline oleate leads also to a better solubility in water and a decrease of the solubilization temperature. It also influences the Gaussian curvature of the aggregates which results in a loss of discontinuous cubic phases in the binary phase diagram. The different lyotropic mesophases were identified by the penetration scan technique with polarizing light microscope and visual observations. To clarify the structural behavior small (SAXS) and wide (WAXS) angle X-ray scattering were performed. To further characterize the extended, isotropic micellar solution phase in the binary phase diagram of choline octanoate viscosity and conductivity measurements were also carried out.

  3. A new vesicle trafficking regulator CTL1 plays a crucial role in ion homeostasis.

    PubMed

    Gao, Yi-Qun; Chen, Jiu-Geng; Chen, Zi-Ru; An, Dong; Lv, Qiao-Yan; Han, Mei-Ling; Wang, Ya-Ling; Salt, David E; Chao, Dai-Yin

    2017-12-01

    Ion homeostasis is essential for plant growth and environmental adaptation, and maintaining ion homeostasis requires the precise regulation of various ion transporters, as well as correct root patterning. However, the mechanisms underlying these processes remain largely elusive. Here, we reported that a choline transporter gene, CTL1, controls ionome homeostasis by regulating the secretory trafficking of proteins required for plasmodesmata (PD) development, as well as the transport of some ion transporters. Map-based cloning studies revealed that CTL1 mutations alter the ion profile of Arabidopsis thaliana. We found that the phenotypes associated with these mutations are caused by a combination of PD defects and ion transporter misregulation. We also established that CTL1 is involved in regulating vesicle trafficking and is thus required for the trafficking of proteins essential for ion transport and PD development. Characterizing choline transporter-like 1 (CTL1) as a new regulator of protein sorting may enable researchers to understand not only ion homeostasis in plants but also vesicle trafficking in general.

  4. A new vesicle trafficking regulator CTL1 plays a crucial role in ion homeostasis

    PubMed Central

    Gao, Yi-Qun; Chen, Jiu-Geng; Chen, Zi-Ru; An, Dong; Lv, Qiao-Yan; Han, Mei-Ling; Wang, Ya-Ling; Salt, David E.; Chao, Dai-Yin

    2017-01-01

    Ion homeostasis is essential for plant growth and environmental adaptation, and maintaining ion homeostasis requires the precise regulation of various ion transporters, as well as correct root patterning. However, the mechanisms underlying these processes remain largely elusive. Here, we reported that a choline transporter gene, CTL1, controls ionome homeostasis by regulating the secretory trafficking of proteins required for plasmodesmata (PD) development, as well as the transport of some ion transporters. Map-based cloning studies revealed that CTL1 mutations alter the ion profile of Arabidopsis thaliana. We found that the phenotypes associated with these mutations are caused by a combination of PD defects and ion transporter misregulation. We also established that CTL1 is involved in regulating vesicle trafficking and is thus required for the trafficking of proteins essential for ion transport and PD development. Characterizing choline transporter-like 1 (CTL1) as a new regulator of protein sorting may enable researchers to understand not only ion homeostasis in plants but also vesicle trafficking in general. PMID:29284002

  5. Telmisartan prevents hepatic fibrosis and enzyme-altered lesions in liver cirrhosis rat induced by a choline-deficient L-amino acid-defined diet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin Haiyan; Department of Gastroenterology and Hepatology, Yanbian University Hospital, Yanji, Jilin; Yamamoto, Naoki

    2007-12-28

    Rennin-angiotensin system is involved in liver fibrogenesis through activating hepatic stellate cells (HSCs). Telmisartan (Tel) is an angiotensin II type 1 receptor antagonist, could function as a selective peroxisome proliferator-activated receptor {gamma} activator. Here we studied the effect of Tel on liver fibrosis, pre-neoplastic lesions in vivo and primary HSCs in vitro. In vivo study, we used the choline-deficient L-amino acid-defined (CDAA)-diet induced rat NASH model. The rats were fed the CDAA diet for 8 weeks to induce liver fibrosis and pre-neoplastic lesions, and then co-administrated with Tel for another 10 weeks. Tel prevented liver fibrogenesis and pre-neoplastic lesions bymore » down-regulating TGF{beta}1 and TIMP-1, 2 and increasing MMP-13 expression. Tel inhibited HSCs activation and proliferation. These results suggested that Tel could be a promising drug for NASH related liver fibrosis.« less

  6. Prenatal choline supplementation attenuates neuropathological response to status epilepticus in the adult rat hippocampus

    PubMed Central

    Wong-Goodrich, Sarah J. E.; Mellott, Tiffany J.; Glenn, Melissa J.; Blusztajn, Jan K.; Williams, Christina L.

    2008-01-01

    Prenatal choline supplementation (SUP) protects adult rats against spatial memory deficits observed after excitotoxin-induced status epilepticus (SE). To examine the mechanism underlying this neuroprotection, we determined the effects of SUP on a variety of hippocampal markers known to change in response to SE and thought to underlie ensuing cognitive deficits. Adult offspring from rat dams that received either a Control or SUP diet on embryonic days 12–17 were administered saline or kainic acid (i.p.) to induce SE and were euthanized 16 days later. SUP markedly attenuated seizure-induced hippocampal neurodegeneration, dentate cell proliferation, hippocampal GFAP mRNA expression levels, prevented the loss of hippocampal GAD65 protein and mRNA expression, and altered growth factor expression patterns. SUP also enhanced pre-seizure hippocampal levels of BDNF, NGF, and IGF-1, which may confer a neuroprotective hippocampal microenvironment that dampens the neuropathological response to and/or helps facilitate recovery from SE to protect cognitive function. PMID:18353663

  7. Modulation of TNF Release by Choline Requires α7 Subunit Nicotinic Acetylcholine Receptor-Mediated Signaling

    PubMed Central

    Parrish, William R; Rosas-Ballina, Mauricio; Gallowitsch-Puerta, Margot; Ochani, Mahendar; Ochani, Kanta; Yang, Li-Hong; Hudson, LaQueta; Lin, Xinchun; Patel, Nirav; Johnson, Sarah M; Chavan, Sangeeta; Goldstein, Richard S; Czura, Christopher J; Miller, Edmund J; Al-Abed, Yousef; Tracey, Kevin J; Pavlov, Valentin A

    2008-01-01

    The α7 subunit-containing nicotinic acetylcholine receptor (α7nAChR) is an essential component in the vagus nerve-based cholinergic anti-inflammatory pathway that regulates the levels of TNF, high mobility group box 1 (HMGB1), and other cytokines during inflammation. Choline is an essential nutrient, a cell membrane constituent, a precursor in the biosynthesis of acetylcholine, and a selective natural α7nAChR agonist. Here, we studied the anti-inflammatory potential of choline in murine endotoxemia and sepsis, and the role of the α7nAChR in mediating the suppressive effect of choline on TNF release. Choline (0.1–50 mM) dose-dependently suppressed TNF release from endotoxin-activated RAW macrophage-like cells, and this effect was associated with significant inhibition of NF-κB activation. Choline (50 mg/kg, intraperitoneally [i.p.]) treatment prior to endotoxin administration in mice significantly reduced systemic TNF levels. In contrast to its TNF suppressive effect in wild type mice, choline (50 mg/kg, i.p.) failed to inhibit systemic TNF levels in α7nAChR knockout mice during endotoxemia. Choline also failed to suppress TNF release from endotoxin-activated peritoneal macrophages isolated from α7nAChR knockout mice. Choline treatment prior to endotoxin resulted in a significantly improved survival rate as compared with saline-treated endotoxemic controls. Choline also suppressed HMGB1 release in vitro and in vivo, and choline treatment initiated 24 h after cecal ligation and puncture (CLP)-induced polymicrobial sepsis significantly improved survival in mice. In addition, choline suppressed TNF release from endotoxin-activated human whole blood and macrophages. Collectively, these data characterize the anti-inflammatory efficacy of choline and demonstrate that the modulation of TNF release by choline requires α7nAChR-mediated signaling. PMID:18584048

  8. A novel Na+/HCO3--codependent choline transporter in the syncytial epithelium of the cestode Hymenolepis diminuta.

    PubMed

    Webb, R A; Xue, L

    1998-02-01

    Absorption of exogenous choline by the cestode Hymenolepis diminuta was found to be both Na+- and HCO3--dependent and, at pH 6 to 7, accounted for up to 65% of the total choline uptake. Na+/HCO3- dependent choline uptake was activated at approximately 6 mM HCO3- (EC50 approximately 9 mM), and, above 100 mM Na+, the rate of uptake was directly proportional to the Na+ concentration. Atempts to uncouple Na+-dependent uptake from HCO3--dependent uptake were not successful: K+-depolarization was without effect on HCO3--dependent choline uptake, and use of valinoomycin to hyperpolarize the brush-border membrane resulted in inhibition of uptake. Na-/HCO3--dependent choline uptake was not associated with solvent drag. The Na+/HCO3--dependent choline uptake displayed a Q10 of 6.4 (27 degrees to 37 degrees) and a relatively high activation energy of 126 kJ x mol(-1). At pH 6.0 and 7.0, Na-/HCO3--dependent choline uptake rates were similar, but Na+/HCO3--dependent choline uptake was reduced at pH 5.0. The Na+/HCO3--dependent choline uptake, at pH 7.0, displayed a Kt of approximately 500 microM and a Vmax of 4.01 pmol x mg wet weight(-1) x min(-1). The Na+/HCO3--dependent choline uptake was hemicholinium-3 sensitive, but not significantly inhibited by 200 microM bumetanide, 100 microM amiloride, benzamil, or EIPA or by 1 mM 4,4'-diisothiocyano-2,2'-stilbene disulfonate (DIDS) or 4-acetamido-4'-isothiocvanostilbene-2,2'-disulfonic acid (SITS). Although it remains to be shown that HCO3- uptake is coupled directly to both choline and Na+ uptake, the data suggest that choline up take occurs via choline/Na+/HCO3--co-trans porter.

  9. Repression of choline kinase by inositol and choline in Saccharomyces cerevisiae.

    PubMed Central

    Hosaka, K; Murakami, T; Kodaki, T; Nikawa, J; Yamashita, S

    1990-01-01

    The regulation of choline kinase (EC 2.7.1.32), the initial enzyme in the CDP-choline pathway, was examined in Saccharomyces cerevisiae. The addition of myo-inositol to a culture of wild-type cells resulted in a significant decrease in choline kinase activity. Additional supplementation of choline caused a further reduction in the activity. The coding frame of the choline kinase gene, CK1, was joined to the carboxyl terminus of lacZ and expressed in Escherichia coli as a fusion protein, which was then used to prepare an anti-choline kinase antibody. Upon Western (immuno-) and Northern (RNA) blot analyses using the antibody and a CK1 probe, respectively, the decrease in the enzyme activity was found to be correlated with decreases in the enzyme amount and mRNA abundance. The molecular mass of the enzyme was estimated to be 66 kilodaltons, in agreement with the value predicted previously from the nucleotide sequence of the gene. The coding region of CK1 was replaced with that of lacZ, and CK1 expression was measured by assaying beta-galactosidase. The expression of beta-galactosidase from this fusion was repressed by myo-inositol and choline and derepressed in a time-dependent manner upon their removal. The present findings indicate that yeast choline kinase is regulated by myo-inositol and choline at the level of mRNA abundance. Images FIG. 3 FIG. 4 PMID:2156807

  10. Label-free colorimetric sensor for sensitive detection of choline based on DNAzyme-choline oxidase coupling.

    PubMed

    Nikzad, Nasrin; Karami, Zahra

    2018-04-14

    Changes in choline levels can be associated with diseases such as Alzheimer, Parkinson, Huntington, fatty liver, interstitial lung abnormalities, autism and so on. Therefore, quantitative determination of choline is important in the biological and clinical analysis. So far, several methods have been investigated for measuring choline in the body fluids, each of which has disadvantages such as the need for specialist ability, complexity, and high cost. For this purpose, a facile and sensitive colorimetric biosensor based on DNAzyme-choline oxidase coupling used for the determination of choline. In this method, the first, choline oxidase produces H 2 O 2 and betaine in the presence of choline and oxygen, then, the DNAzyme converts colorless ABTS into green ABTS + radicals. Compared to the previous methods, the linear range and the limit of detection of this talented biosensor were 0.1-25 μM and 22 nM. Choline measurement using this biosensor has shown satisfactory selectivity and repeatability. Its recovery was 96.9-103.7%, which shows the reliability of biosensor assay in biological samples. Simplicity, low cost, naked eye, high sensitivity, and precision are the benefits of this biosensor. Taken to gather, the proposed system can be considered as a great biosensor for measuring choline levels especially in point of care diagnostic. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. The Essential tacF Gene Is Responsible for the Choline-Dependent Growth Phenotype of Streptococcus pneumoniae▿

    PubMed Central

    Damjanovic, Marlen; Kharat, Arun S.; Eberhardt, Alice; Tomasz, Alexander; Vollmer, Waldemar

    2007-01-01

    Streptococcus pneumoniae has an absolute nutritional requirement for choline, and the choline molecules are known to incorporate exclusively into the cell wall and membrane teichoic acids of the bacterium. We describe here the isolation of a mutant of strain R6 in which a single G→T point mutation in the gene tacF (formerly designated spr1150) is responsible for generating a choline-independent phenotype. The choline-independent phenotype could be transferred to the laboratory strain R6 and to the encapsulated strain D39 by genetic transformation with a PCR product or with a plasmid carrying the mutated tacF gene. The tacF gene product belongs to the protein family of polysaccharide transmembrane transporters (flippases). A model is presented in which TacF is required for the transport of the teichoic acid subunits across the cytoplasmic membrane. According to this model, wild-type TacF has a strict specificity for choline-containing subunits, whereas the TacF present in the choline-independent mutant strain is able to transport both choline-containing and choline-free teichoic acid chains. The proposed transport specificity of parental-type TacF for choline-containing subunits would ensure the loading of the cell wall with teichoic acid chains decorated with choline residues, which appear to be essential for the virulence of this pathogen. PMID:17660291

  12. The addition of choline to parenteral nutrition.

    PubMed

    Buchman, Alan L

    2009-11-01

    Choline is a quaternary amine endogenously synthesized from the amino acid methionine or absorbed via the portal circulation. It is ubiquitous in the diet, although it has a greater presence in organ meats. Choline is an essential component of all cell membranes, and has been considered a required dietary nutrient since 1998 by the US Institute of Medicine's Food and Nutrition Board. Choline is necessary for DNA repair, mediated by its role as a methyl donor. It also serves as the precursor for the neurotransmitter acetylcholine. Evidence has accumulated that hepatic steatosis, which occurs during parenteral nutrition therapy, develops as a result of choline deficiency because endogenous production of choline from parenterally infused methionine is deficient. In addition, memory deficits and skeletal muscle abnormalities have been described, and choline deficiency appears to activate cellular apoptosis. Provision of intravenous choline ameliorates hepatic steatosis associated with parenteral nutrition infusion.

  13. Caffeine potentiates the enhancement by choline of striatal acetylcholine release

    NASA Technical Reports Server (NTRS)

    Johnson, D. A.; Ulus, I. H.; Wurtman, R. J.

    1992-01-01

    We investigated the effect of peripherally administered caffeine (50 mg/kg), choline (30, 60, or 120 mg/kg) or combinations of both drugs on the spontaneous release of acetylcholine (ACh) from the corpus striatum of anesthetized rats using in vivo microdialysis. Caffeine alone or choline in the 30 or 60 mg/kg dose failed to increase ACh in microdialysis samples; the 120 mg/kg choline dose significantly enhanced ACh during the 80 min following drug administration. Coadministration of caffeine with choline significantly increased ACh release after each of the choline doses tested. Peak microdialysate levels with the 120 mg/kg dose were increased 112% when caffeine was additionally administered, as compared with 54% without caffeine. These results indicate that choline administration can enhance spontaneous ACh release from neurons, and that caffeine, a drug known to block adenosine receptors on these neurons, can amplify the choline effect.

  14. Different response to choline deficiency of the serum ornithine carbamoyltransferase activity in four strains of rats.

    PubMed

    Nocianitri, K A; Aoyama, Y

    2001-04-01

    Rats of the Donryu, Wistar, Fischer, and Sprague-Dawley strains were examined for the effects of choline deficiency on liver lipids, serum lipids, and serum ornithine carbamoyltransferase. The liver total lipid, triacylglycerol, cholesterol and phospholipid contents in the choline-deficient rats were significantly higher than those in choline-sufficient rats. The contents of total lipids and phospholipids in the liver of the Wistar and Fischer rats fed on a choline-deficient diet were significantly higher than those of the Donryu and Sprague-Dawley rats. The levels of triacylglycerol, cholesterol and phospholipids in the serum were significantly decreased by feeding with the choline-deficient diet. The serum ornithine carbamoyltransferase activity was increased in the Wistar and Fischer strains by feeding with the choline-deficient diet. The Wistar and Fischer strains were consequently the most sensitive to both lipid accumulation and liver lesions induced by the choline deficiency.

  15. The role of positron emission tomography/computed tomography imaging with radiolabeled choline analogues in prostate cancer.

    PubMed

    Navarro-Pelayo Láinez, M M; Rodríguez-Fernández, A; Gómez-Río, M; Vázquez-Alonso, F; Cózar-Olmo, J M; Llamas-Elvira, J M

    2014-11-01

    prostate cancer is the most frequent solid malignant tumor in Western Countries. Positron emission tomography/x-ray computed tomography imaging with radiolabeled choline analogues is a useful tool for restaging prostate cancer in patients with rising prostate-specific antigen after radical treatment (in whom conventional imaging techniques have important limitations) as well as in the initial assessment of a selected group of prostate cancer patients. For this reason a literature review is necessary in order to evaluate the usefulness of this imaging test for the diagnosis and treatment of prostate cancer. a MEDLINE (PubMed way) literature search was performed using the search parameters: «Prostate cancer» and «Choline-PET/CT». Other search terms were «Biochemical failure» and/or «Staging» and/or «PSA kinetics». English and Spanish papers were selected; original articles, reviews, systematic reviews and clinical guidelines were included. according to available data, radiolabeled choline analogues plays an important role in the management of prostate cancer, especially in biochemical relapse because technique accuracy is properly correlated with prostate-specific antigen values and kinetics. Although is an emerging diagnostic technique useful in treatment planning of prostate cancer, final recommendations have not been submitted. Copyright © 2013 AEU. Published by Elsevier Espana. All rights reserved.

  16. α7 Nicotinic acetylcholine receptors and temporal memory: Synergistic effects of combining prenatal choline and nicotine on reinforcement-induced resetting of an interval clock

    PubMed Central

    Cheng, Ruey-Kuang; Meck, Warren H.; Williams, Christina L.

    2006-01-01

    We previously showed that prenatal choline supplementation could increase the precision of timing and temporal memory and facilitate simultaneous temporal processing in mature and aged rats. In the present study, we investigated the ability of adult rats to selectively control the reinforcement-induced resetting of an internal clock as a function of prenatal drug treatments designed to affect the α7 nicotinic acetylcholine receptor (α7 nAChR). Male Sprague-Dawley rats were exposed to prenatal choline (CHO), nicotine (NIC), methyllycaconitine (MLA), choline + nicotine (CHO + NIC), choline + nicotine + methyllycaconitine (CHO + NIC + MLA), or a control treatment (CON). Beginning at 4-mo-of-age, rats were trained on a peak-interval timing procedure in which food was available at 10-, 30-, and 90-sec criterion durations. At steady-state performance there were no differences in timing accuracy, precision, or resetting among the CON, MLA, and CHO + NIC + MLA treatments. It was observed that the CHO and NIC treatments produced a small, but significant increase in timing precision, but no change in accuracy or resetting. In contrast, the CHO + NIC prenatal treatment produced a dramatic increase in timing precision and selective control of the resetting mechanism with no change in overall timing accuracy. The synergistic effect of combining prenatal CHO and NIC treatments suggests an organizational change in α7 nAChR function that is dependent upon a combination of selective and nonselective nAChR stimulation during early development. PMID:16547161

  17. Unique response of lung acetyl-CoA carboxylase to inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patterson, C.E.; Davis, K.S.; Rhoades, R.A.

    1986-05-01

    Fatty acid synthesis (FAS) in lung is not inhibited by c-AMP analogs or aminophylline although these agents inhibit FAS in other lipogenic tissues. To further characterize FAS in lung, the authors examined the response of cultured fetal lung explants to known inhibitors of FAS in liver: t-butyl benzoic acid (tBB-which binds CoA and inhibits acetyl-CoA carboxylase) and palmitate (an allosteric effector of acetyl-CoA carboxylase). Explants derived from d18 fetuses (term=22d) were cultured 2d in F12k media containing 10mM lactate, 2mM glucose, and 10mM Hepes. At 48h, FAS was determined by incubation with /sup 3/H/sub 2/O (control = 3892 +/- 755more » nmoles C2 units/g/h) and surfactant lipid production estimated by incorporation of /sup 14/C-choline into DSPC (control = 35.8 +/- 9.0 nmoles/g/h). Addition of tBB (50uM) did not significantly alter FAS or choline incorporation. Addition of palmitate (0.15mM) in either ethanol (1% final conc.) or albumin (3% final conc.) did not result in diminished FAS. Palmitate did increase DSPC labeling 20%, indicating that in these cultures the rate of surfactant synthesis is partially dependent upon palmitate availability. These data show that lung is unique in its unresponsiveness to various inhibitors of FAS which act at the level acetyl-CoA carboxylase and suggest that FAS is maintained in order to insure a de novo palmitate supply for surfactant lipid synthesis.« less

  18. Overexpression of ALDH10A8 and ALDH10A9 Genes Provides Insight into Their Role in Glycine Betaine Synthesis and Affects Primary Metabolism in Arabidopsis thaliana.

    PubMed

    Missihoun, Tagnon D; Willée, Eva; Guegan, Jean-Paul; Berardocco, Solenne; Shafiq, Muhammad R; Bouchereau, Alain; Bartels, Dorothea

    2015-09-01

    Betaine aldehyde dehydrogenases oxidize betaine aldehyde to glycine betaine in species that accumulate glycine betaine as a compatible solute under stress conditions. In contrast, the physiological function of betaine aldehyde dehydrogenase genes is at present unclear in species that do not accumulate glycine betaine, such as Arabidopsis thaliana. To address this question, we overexpressed the Arabidopsis ALDH10A8 and ALDH10A9 genes, which were identified to code for betaine aldehyde dehydrogenases, in wild-type A. thaliana. We analysed changes in metabolite contents of transgenic plants in comparison with the wild type. Using exogenous or endogenous choline, our results indicated that ALDH10A8 and ALDH10A9 are involved in the synthesis of glycine betaine in Arabidopsis. Choline availability seems to be a factor limiting glycine betaine synthesis. Moreover, the contents of diverse metabolites including sugars (glucose and fructose) and amino acids were altered in fully developed transgenic plants compared with the wild type. The plant metabolic response to salt and the salt stress tolerance were impaired only in young transgenic plants, which exhibited a delayed growth of the seedlings early after germination. Our results suggest that a balanced expression of the betaine aldehyde dehydrogenase genes is important for early growth of A. thaliana seedlings and for salt stress mitigation in young seedlings. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  19. Identification and Characterization of a High-Affinity Choline Uptake System of Brucella abortus

    PubMed Central

    Herrmann, Claudia K.; Bukata, Lucas; Melli, Luciano; Marchesini, M. Ines; Caramelo, Julio J.

    2013-01-01

    Phosphatidylcholine (PC), a common phospholipid of the eukaryotic cell membrane, is present in the cell envelope of the intracellular pathogen Brucella abortus, the etiological agent of bovine brucellosis. In this pathogen, the biosynthesis of PC proceeds mainly through the phosphatidylcholine synthase pathway; hence, it relies on the presence of choline in the milieu. These observations imply that B. abortus encodes an as-yet-unknown choline uptake system. Taking advantage of the requirement of choline uptake for PC synthesis, we devised a method that allowed us to identify a homologue of ChoX, the high-affinity periplasmic binding protein of the ABC transporter ChoXWV. Disruption of the choX gene completely abrogated PC synthesis at low choline concentrations in the medium, thus indicating that it is a high-affinity transporter needed for PC synthesis via the PC synthase (PCS) pathway. However, the synthesis of PC was restored when the mutant was incubated in media with higher choline concentrations, suggesting the presence of an alternative low-affinity choline uptake activity. By means of a fluorescence-based equilibrium-binding assay and using the kinetics of radiolabeled choline uptake, we show that ChoX binds choline with an extremely high affinity, and we also demonstrate that its activity is inhibited by increasing choline concentrations. Cell infection assays indicate that ChoX activity is required during the first phase of B. abortus intracellular traffic, suggesting that choline concentrations in the early and intermediate Brucella-containing vacuoles are limited. Altogether, these results suggest that choline transport and PC synthesis are strictly regulated in B. abortus. PMID:23161032

  20. Choline induces opposite changes in pyramidal neuron excitability and synaptic transmission through a nicotinic receptor-independent process in hippocampal slices.

    PubMed

    Albiñana, E; Luengo, J G; Baraibar, A M; Muñoz, M D; Gandía, L; Solís, J M; Hernández-Guijo, J M

    2017-06-01

    Choline is present at cholinergic synapses as a product of acetylcholine degradation. In addition, it is considered a selective agonist for α5 and α7 nicotinic acetylcholine receptors (nAChRs). In this study, we determined how choline affects action potentials and excitatory synaptic transmission using extracellular and intracellular recording techniques in CA1 area of hippocampal slices obtained from both mice and rats. Choline caused a reversible depression of evoked field excitatory postsynaptic potentials (fEPSPs) in a concentration-dependent manner that was not affected by α7 nAChR antagonists. Moreover, this choline-induced effect was not mimicked by either selective agonists or allosteric modulators of α7 nAChRs. Additionally, this choline-mediated effect was not prevented by either selective antagonists of GABA receptors or hemicholinium, a choline uptake inhibitor. The paired pulse facilitation paradigm, which detects whether a substance affects presynaptic release of glutamate, was not modified by choline. On the other hand, choline induced a robust increase of population spike evoked by orthodromic stimulation but did not modify that evoked by antidromic stimulation. We also found that choline impaired recurrent inhibition recorded in the pyramidal cell layer through a mechanism independent of α7 nAChR activation. These choline-mediated effects on fEPSP and population spike observed in rat slices were completely reproduced in slices obtained from α7 nAChR knockout mice, which reinforces our conclusion that choline modulates synaptic transmission and neuronal excitability by a mechanism independent of nicotinic receptor activation.

  1. Metabolism of acetylcholine in human erythrocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapman, E.S.

    1990-01-01

    In order to examine the possible role of erythrocyte acetylcholinesterase in the maintenance of membrane phospholipid content and membrane fluidity, experiments were performed to monitor the activity of the enzyme and follow the fate of one of its hydrolytic products, choline. Intact human erythrocytes were incubated with acetylcholine (choline methyl-{sup 14}C). The incubation resulted in the hydrolysis of acetylcholine to acetate and choline; the reaction was catalyzed by membrane acetylcholinesterase. The studies demonstrate the further metabolism of choline. Experiments were carried out to determine rate of hydrolysis of acetylcholine, uptake of choline, identification of intracellular metabolites of choline, and identificationmore » of radiolabeled membrane components. Erythrocytes at a 25% hematocrit were incubated in an isoosmotic bicarbonate buffer pH 7.4, containing glucose, adenosine, streptomycin and penicillin with 0.3 {mu}Ci of acetylcholine (choline methyl-{sup 14}C), for 24 hours. Aliquots of the erythrocyte suspension were taken throughout for analysis. Erythrocytes were washed free of excess substrate, lysed, and the hemolysate was extracted for choline and its metabolites. Blank samples containing incubation buffer and radiolabeled acetylcholine only, and erythrocyte hemolysate extracts were analyzed for choline content, the difference between blank samples and hemolysate extracts was the amount of choline originating from acetylcholine and attributable to acetylcholinesterase activity. The conversion of choline to {sup 14}C-betaine is noted after several minutes of incubation; at 30 minutes, more than 80% of {sup 14}C-choline is taken up and after several hours, detectable levels of radiolabeled S-adenosylmethionine were present in the hemolysate extract.« less

  2. Choline deficiency increases lymphocyte apoptosis and DNA damage in humans.

    PubMed

    da Costa, Kerry-Ann; Niculescu, Mihai D; Craciunescu, Corneliu N; Fischer, Leslie M; Zeisel, Steven H

    2006-07-01

    Whereas deficiency of the essential nutrient choline is associated with DNA damage and apoptosis in cell and rodent models, it has not been shown in humans. The objective was to ascertain whether lymphocytes from choline-deficient humans had greater DNA damage and apoptosis than did those from choline-sufficient humans. Fifty-one men and women aged 18-70 y were fed a diet containing the recommended adequate intake of choline (control) for 10 d. They then were fed a choline-deficient diet for up to 42 d before repletion with 138-550 mg choline/d. Blood was collected at the end of each phase, and peripheral lymphocytes were isolated. DNA damage and apoptosis were then assessed by activation of caspase-3, terminal deoxynucleotide transferase-mediated dUTP nick end-labeling, and single-cell gel electrophoresis (COMET) assays. All subjects fed the choline-deficient diet had lymphocyte DNA damage, as assessed by COMET assay, twice that found when they were fed the control diet. The subjects who developed organ dysfunction (liver or muscle) when fed the choline-deficient diet had significantly more apoptotic lymphocytes, as assessed by the activated caspase-3 assay, than when fed the control diet. A choline-deficient diet increased DNA damage in humans. Subjects in whom these diets induced liver or muscle dysfunction also had higher rates of apoptosis in their peripheral lymphocytes than did subjects who did not develop organ dysfunction. Assessment of DNA damage and apoptosis in lymphocytes appears to be a clinically useful measure in humans (such as those receiving parenteral nutrition) in whom choline deficiency is suspected.

  3. CDP-choline liposomes provide significant reduction in infarction over free CDP-choline in stroke

    PubMed Central

    Adibhatla, Rao Muralikrishna; Hatcher, J.F.; Tureyen, K.

    2007-01-01

    Cytidine-5′-diphosphocholine (CDP-choline, Citicoline, Somazina) is in clinical use (intravenous administration) for stroke treatment in Europe and Japan, while USA phase III stroke clinical trials (oral administration) were disappointing. Others showed that CDP-choline liposomes significantly increased brain uptake over the free drug in cerebral ischemia models. Liposomes were formulated as DPPC, DPPS, cholesterol, GM1 ganglioside; 7/4/7/1.57 molar ratio or 35.8/20.4/35.8/8.0 mol%. GM1 ganglioside confers long-circulating properties to the liposomes by suppressing phagocytosis. CDP-choline liposomes deliver the agent intact to the brain, circumventing the rate-limiting, cytidine triphosphate:phosphocholine cytidylyltransferase in phosphatidylcholine synthesis. Our data show that CDP-choline liposomes significantly ( P < 0.01) decreased cerebral infarction (by 62%) compared to the equivalent dose of free CDP-choline (by 26%) after 1 h focal cerebral ischemia and 24 h reperfusion in spontaneously hypertensive rats. Beneficial effects of CDP-choline liposomes in stroke may derive from a synergistic effect between the phospholipid components of the liposomes and the encapsulated CDP-choline. PMID:16153613

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macnaught, Gillian, E-mail: gillian.macnaught@ed.ac.uk; Ananthakrishnan, G., E-mail: a.radiology@gmail.com; Hinksman, L., E-mail: laurahinksman@nhs.net

    PurposeAbsence of contrast on contrast enhanced MRI (CEMRI) and reduction in uterine volume at 6 months post-uterine artery embolisation (UAE) currently indicate the successful disruption of the fibroid blood supply by UAE. This study assesses whether {sup 1}H MR spectroscopy ({sup 1}H MRS) can also indicate the success of UAE.Method20 patients with symptomatic fibroids were randomised 1:1 to undergo UAE with either Gelfoam or Embospheres. CEMRI and spectra (1.5 T) were acquired pre-, 24-h and 6 months post-UAE. LCModel was used to detect significant levels of choline, creatine and lactate in fibroid spectra. Uterine volumes were measured and paired t tests (p < 0.05) assessedmore » volume reduction over time. Qualitative assessments of CEMRI were performed.ResultsCholine was detected in 17/18 spectra pre-UAE, 12/14 at 24-h and 6/16 at 6 months post-UAE. Choline was not detected in the 7/7 spectra available for the Embospheres group at 6 months. These fibroids were non-enhancing on CEMRI and associated with a significant reduction in mean uterine volume at 6 months (mean/min/max 396.5/84.1/997.5 cm{sup 3}, p = 0.003). Choline was detected in 6/9 fibroid spectra available for the Gelfoam group at 6 months. Of these fibroids, four demonstrated persistent enhancement on CEMRI and two were non-enhancing. This group did not demonstrate significant uterine volume reduction (mean/min/max 117.2/−230.6/382.6 cm{sup 3}, p = 0.15). The negative minimum value indicates fibroid growth.ConclusionsThis study has demonstrated the potential of {sup 1}H MRS to provide an additional marker of the success of UAE.« less

  5. The substrate oxidation mechanism of pyranose 2-oxidase and other related enzymes in the glucose-methanol-choline superfamily.

    PubMed

    Wongnate, Thanyaporn; Chaiyen, Pimchai

    2013-07-01

    Enzymes in the glucose-methanol-choline (GMC) oxidoreductase superfamily catalyze the oxidation of an alcohol moiety to the corresponding aldehyde. In this review, the current understanding of the sugar oxidation mechanism in the reaction of pyranose 2-oxidase (P2O) is highlighted and compared with that of other enzymes in the GMC family for which structural and mechanistic information is available, including glucose oxidase, choline oxidase, cholesterol oxidase, cellobiose dehydrogenase, aryl-alcohol oxidase, and pyridoxine 4-oxidase. Other enzymes in the family that have been newly discovered or for which less information is available are also discussed. A large primary kinetic isotope effect was observed for the flavin reduction when 2-d-D-glucose was used as a substrate, but no solvent kinetic isotope effect was detected for the flavin reduction step. The reaction of P2O is consistent with a hydride transfer mechanism in which there is stepwise formation of d-glucose alkoxide prior to the hydride transfer. Site-directed mutagenesis of P2O and pH-dependence studies indicated that His548 is a catalytic base that facilitates the deprotonation of C2-OH in D-glucose. This finding agrees with the current mechanistic model for aryl-alcohol oxidase, glucose oxidase, cellobiose dehydrogenase, methanol oxidase, and pyridoxine 4-oxidase, but is different from that of cholesterol oxidase and choline oxidase. Although all of the GMC enzymes share similar structural folding and use the hydride transfer mechanism for flavin reduction, they appear to have subtle differences in the fine-tuned details of how they catalyze substrate oxidation. © 2013 The Authors Journal compilation © 2013 FEBS.

  6. Some actions of substituted choline phenyl ethers, particularly of choline 2:6-xylyl ether

    PubMed Central

    Edge, N. D.; Mason, D. F. J.; Wyllie, J. H.

    1957-01-01

    Marked nicotine-like stimulant properties are possessed by choline phenyl ether and choline o-tolyl ether, and to a decreasing extent by choline 2:6-xylyl ether and choline 2:4:6-mesityl ether. The compounds all show neuromuscular blocking properties, which are of short duration and pass from mainly decamethonium-like to mainly curare-like as more methyl groups are added to the phenyl nucleus. This series of compounds also possesses muscarinic, weak anti-adrenaline and vasodilator properties, as well as long-lasting local anaesthetic effects in the two compounds tested by intradermal injection. PMID:13460236

  7. Novel choline esterase based sensor for monitoring of organophosphorus pollutants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilkins, E.S.; Ghindilis, A.L.; Atanasov, P.

    1996-12-31

    Organophosphorus compounds are significant major environmental pollutants due to their intensive use as pesticides. The modern techniques based on inhibition of choline esterase enzyme activity are discussed. Potentiometric electrodes based on detection of choline esterase inhibition by analytes has been developed. The detection of choline esterase activity is based on the novel principle of molecular transduction. Immobilized peroxidase acting as the molecular transducer, catalyzes the electroreduction of hydrogen peroxide by direct (mediatorless) electron transfer. The sensing element consists of a carbon based electrode containing an assembly of co-immobilized enzymes: choline esterase, choline oxidase and peroxidase.

  8. Anaerobic choline metabolism in microcompartments promotes growth and swarming of Proteus mirabilis.

    PubMed

    Jameson, Eleanor; Fu, Tiantian; Brown, Ian R; Paszkiewicz, Konrad; Purdy, Kevin J; Frank, Stefanie; Chen, Yin

    2016-09-01

    Gammaproteobacteria are important gut microbes but only persist at low levels in the healthy gut. The ecology of Gammaproteobacteria in the gut environment is poorly understood. Here, we demonstrate that choline is an important growth substrate for representatives of Gammaproteobacteria. Using Proteus mirabilis as a model, we investigate the role of choline metabolism and demonstrate that the cutC gene, encoding a choline-trimethylamine lyase, is essential for choline degradation to trimethylamine by targeted mutagenesis of cutC and subsequent complementation experiments. Proteus mirabilis can rapidly utilize choline to enhance growth rate and cell yield in broth culture. Importantly, choline also enhances swarming-associated colony expansion of P. mirabilis under anaerobic conditions on a solid surface. Comparative transcriptomics demonstrated that choline not only induces choline-trimethylamine lyase but also genes encoding shell proteins for the formation of bacterial microcompartments. Subsequent analyses by transmission electron microscopy confirmed the presence of such novel microcompartments in cells cultivated in liquid broth and hyper-flagellated swarmer cells from solid medium. Together, our study reveals choline metabolism as an adaptation strategy for P. mirabilis and contributes to better understand the ecology of this bacterium in health and disease. © 2015 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  9. Combined Supplementation of Choline and Docosahexaenoic Acid during Pregnancy Enhances Neurodevelopment of Fetal Hippocampus.

    PubMed

    Thomas Rajarethnem, Huban; Megur Ramakrishna Bhat, Kumar; Jc, Malsawmzuali; Kumar Gopalkrishnan, Siva; Mugundhu Gopalram, Ramesh Babu; Rai, Kiranmai Sesappa

    2017-01-01

    Choline is an essential nutrient for humans which plays an important role in structural integrity and signaling functions. Docosahexaenoic acid (DHA) is a polyunsaturated fatty acid, highly enriched in cell membranes of the brain. Dietary intake of choline or DHA alone by pregnant mothers directly affects fetal brain development and function. But no studies show the efficacy of combined supplementation of choline and DHA on fetal neurodevelopment. The aim of the present study was to analyze fetal neurodevelopment on combined supplementation of pregnant dams with choline and DHA. Pregnant dams were divided into five groups: normal control [NC], saline control [SC], choline [C], DHA, and C + DHA. Saline, choline, and DHA were given as supplements to appropriate groups of dams. NC dams were undisturbed during entire gestation. On postnatal day (PND) 40, brains were processed for Cresyl staining. Pups from choline or DHA supplemented group showed significant ( p < 0.05) increase in number of neurons in hippocampus when compared to the same in NC and SC groups. Moreover, pups from C + DHA supplemented group showed significantly higher number of neurons ( p < 0.001) in hippocampus when compared to the same in NC and SC groups. Thus combined supplementation of choline and DHA during normal pregnancy enhances fetal hippocampal neurodevelopment better than supplementation of choline or DHA alone.

  10. Contents of lecithin and choline in crude drugs.

    PubMed

    Yamasaki, K; Kikuoka, M; Nishi, H; Kokusenya, Y; Miyamoto, T; Matsuo, M; Sato, T

    1994-01-01

    The determination of lecithin and choline in crude drugs was established by a combination of high performance liquid chromatography (HPLC) with electrochemical detector (ECD) and enzyme reaction. Lecithin in crude drugs extracted with a mixture of chloroform-methanol (2:1) at room temperature was hydrolyzed by phospholipase D. The hydrolyzate was injected to HPLC, and choline was separated from impurities by reverse phase column. The choline was converted to betaine and hydrogen peroxide by passing through column packed with immobilized choline oxidase. This hydrogen peroxide was detected by ECD. The peak area of hydrogen peroxide derived from lecithin was proportional to the concentration of lecithin from 0.10 to 1.52 microgram/ml. Choline in crude drugs was extracted with ethanol under reflux and determined under the same HPLC conditions as lecithin. The peak area of hydrogen peroxide derived from choline was proportional to the concentration of choline from 0.01 to 0.45 microgram/ml. The contents of lecithin and choline in 31 kinds of crude drugs were determined by these established methods. The results showed that Cervi Parvum Cornu, Kokurozin, Foenigraeci Semen and Psoraleae Semen contained more lecithin than other crude drugs, while Angelicae Radix, Foenigraeci Semen, Psoraleae Semen, and especially Hippocampus were found to contain more choline than other crude drugs.

  11. Cellular choline and glycine betaine pools impact osmoprotection and phospholipase C production in Pseudomonas aeruginosa.

    PubMed

    Fitzsimmons, Liam F; Hampel, Ken J; Wargo, Matthew J

    2012-09-01

    Choline is abundantly produced by eukaryotes and plays an important role as a precursor of the osmoprotectant glycine betaine. In Pseudomonas aeruginosa, glycine betaine has additional roles as a nutrient source and an inducer of the hemolytic phospholipase C, PlcH. The multiple functions for glycine betaine suggested that the cytoplasmic pool of glycine betaine is regulated in P. aeruginosa. We used (13)C nuclear magnetic resonance ((13)C-NMR) to demonstrate that P. aeruginosa maintains both choline and glycine betaine pools under a variety of conditions, in contrast to the transient glycine betaine pool reported for most bacteria. We were able to experimentally manipulate the choline and glycine betaine pools by overexpression of the cognate catabolic genes. Depletion of either the choline or glycine betaine pool reduced phospholipase production, a result unexpected for choline depletion. Depletion of the glycine betaine pool, but not the choline pool, inhibited growth under conditions of high salt with glucose as the primary carbon source. Depletion of the choline pool inhibited growth under high-salt conditions with choline as the sole carbon source, suggesting a role for the choline pool under these conditions. Here we have described the presence of a choline pool in P. aeruginosa and other pseudomonads that, with the glycine betaine pool, regulates osmoprotection and phospholipase production and impacts growth under high-salt conditions. These findings suggest that the levels of both pools are actively maintained and that perturbation of either pool impacts P. aeruginosa physiology.

  12. Molecular and functional characterization of choline transporter in the human trophoblastic cell line JEG-3 cells.

    PubMed

    Yara, M; Iwao, B; Hara, N; Yamanaka, T; Uchino, H; Inazu, M

    2015-06-01

    Choline is essential for the synthesis of the major membrane phospholipid phosphatidylcholine (PC), the methyl donor betaine and the neurotransmitter acetylcholine (ACh), which is involved in several vital biological functions that play key roles in fetal development. In this study, we examined the molecular and functional characteristics of choline uptake in the human trophoblastic cell line JEG-3. We examined [(3)H]choline uptake in the human trophoblastic cell line JEG-3. The expression of CTL1 and CTL2 was evaluated by quantitative real-time PCR, western blotting and immunocytochemistry. We demonstrated that JEG-3 cells take up [(3)H] choline by a saturable process that is mediated by a Na(+)-independent and pH-dependent transport system. The cells have two different [(3)H] choline transport systems, high- and low-affinity, with Km values of 28.4 ± 5.0 μM and 210.6 ± 55.1 μM, respectively. Cationic compounds and hemicholinium-3 (HC-3) inhibited choline uptake. Choline transporter-like protein 1 (CTL1) and CTL2 mRNA and protein were highly expressed in JEG-3 cells and were localized to the plasma membrane. The present results suggest that choline is mainly transported via a high-affinity choline transport system (CTL1) and a low-affinity choline transport system (CTL2) in human trophoblastic JEG-3 cells. These transporters play an important role in the growth of the fetus. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Effects of choline on health across the life course: a systematic review.

    PubMed

    Leermakers, Elisabeth T M; Moreira, Eduardo M; Kiefte-de Jong, Jessica C; Darweesh, Sirwan K L; Visser, Thirsa; Voortman, Trudy; Bautista, Paula K; Chowdhury, Rajiv; Gorman, Donal; Bramer, Wichor M; Felix, Janine F; Franco, Oscar H

    2015-08-01

    Choline is a precursor of both betaine and acetylcholine and might, therefore, influence cardiovascular and cognitive outcomes. There has been concern, however, that it may influence blood lipid levels because it is an essential component of very-low-density lipoproteins. The aim was to systematically review, using PRISMA guidelines, the literature pertaining to the effects of choline on body composition and on metabolic, cardiovascular, respiratory, and neurological outcomes in different life stages. The MEDLINE, Embase, Cochrane Central, Web of Science, PubMed, and Google Scholar databases were searched up to July 2014. Fifty relevant articles were identified. These comprised trials and cohort, case-control, and cross-sectional studies that assessed blood levels of choline, dietary intake of choline, and supplementation with choline in a population free of diseases at baseline. There is some observational evidence that choline during pregnancy may be beneficial for the neurological health of the child. In adults, choline may have beneficial effects on cognition, but high-quality (intervention) studies are lacking. Results on the effects of choline on body composition, blood lipids, and cardiovascular health were inconsistent. Evidence to confirm the suggested effects of choline on health in different stages of life is scarce. Potential effects of choline need to be confirmed by intervention studies. Possible harmful effects on cardiometabolic health need careful evaluation. © The Author(s) 2015. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. The supply of choline is important for fetal progenitor cells

    PubMed Central

    Zeisel, Steven H.

    2011-01-01

    Fetal progenitor cells proliferate, migrate, differentiate and undergo apoptosis at specific times during fetal development. Choline is needed by these cells for membrane synthesis and for methylation. There is growing evidence that this nutrient also modulates epigenetic regulation of gene expression in both neuronal and endothelial progenitor cells, thereby modifying brain development. It is likely that these mechanisms explain why, in rodent models, maternal dietary intake of choline influences both angiogenesis and neurogenesis in fetal hippocampus, and results in life-long changes in memory function. This also may explain why women eating diets low in choline have a greater risk of having a baby with a birth defect. Choline is mainly found in foods that contain fat and cholesterol, and intake of such foods has diminished in response dietary advice from nutritionists and physicians. Forty years ago, diets commonly contained choline-rich foods but now women in the USA tend to eat diets low in choline content. Premenopausal women normally may require less choline in their diet than do men and postmenopausal women, because estrogen induces the gene for the enzyme catalyzing endogenous biosynthesis of the choline-containing phospholipid phosphatidylcholine. However, many women have a single nucleotide polymorphism (SNP) that blocks the induction of endogenous biosynthesis, thereby making them require more dietary choline. When these women eat diets low in choline, the supply of this nutrient to the fetus is likely to be inadequate, and may perturb progenitor cell proliferation, migration, differentiation and apoptosis. PMID:21693194

  15. Cellular Choline and Glycine Betaine Pools Impact Osmoprotection and Phospholipase C Production in Pseudomonas aeruginosa

    PubMed Central

    Fitzsimmons, Liam F.; Hampel, Ken J.

    2012-01-01

    Choline is abundantly produced by eukaryotes and plays an important role as a precursor of the osmoprotectant glycine betaine. In Pseudomonas aeruginosa, glycine betaine has additional roles as a nutrient source and an inducer of the hemolytic phospholipase C, PlcH. The multiple functions for glycine betaine suggested that the cytoplasmic pool of glycine betaine is regulated in P. aeruginosa. We used 13C nuclear magnetic resonance (13C-NMR) to demonstrate that P. aeruginosa maintains both choline and glycine betaine pools under a variety of conditions, in contrast to the transient glycine betaine pool reported for most bacteria. We were able to experimentally manipulate the choline and glycine betaine pools by overexpression of the cognate catabolic genes. Depletion of either the choline or glycine betaine pool reduced phospholipase production, a result unexpected for choline depletion. Depletion of the glycine betaine pool, but not the choline pool, inhibited growth under conditions of high salt with glucose as the primary carbon source. Depletion of the choline pool inhibited growth under high-salt conditions with choline as the sole carbon source, suggesting a role for the choline pool under these conditions. Here we have described the presence of a choline pool in P. aeruginosa and other pseudomonads that, with the glycine betaine pool, regulates osmoprotection and phospholipase production and impacts growth under high-salt conditions. These findings suggest that the levels of both pools are actively maintained and that perturbation of either pool impacts P. aeruginosa physiology. PMID:22753069

  16. Influence of dietary protein and excess methionine on choline needs for young bobwhite quail

    USGS Publications Warehouse

    Serafin, J.A.

    1982-01-01

    Experiments were conducted with young Bobwhite quail (Colinus virginianus) to investigate the effect of differing dietary protein levels and nondetrimental amounts of excess methionine on choline needs. Growth and feed consumption of quail fed an adequate (27.3%) protein purified diet supplemented with 2000 mg/kg of choline were unaffected by increasing the level of excess methionine to 1.75%; however, greater amounts (2.0%, 2.25%) of excess methionine depressed growth (P less than .01), reduced feed consumption (P less than .01), and decreased feed utilization (P less than .05). Quail fed a purified diet containing 13.85% protein and 515 mg/kg of choline grew poorly. Growth was unaffected by additional choline in this diet. Growth was suboptimal among quail fed purified diets containing adequate or high (41.55%) levels of protein in which choline was limiting; however, a high level of protein did not in itself affect performance. Growth was improved by supplemental choline in these diets. Growth of quail fed purified diets with up to 1.35% excess methionine which were limiting (531 mg/kg) in choline was less than that of groups fed 2000 mg/kg of added dietary choline (P less than .01); however, excess methionine did not significantly influence growth of quail fed choline-deficient diets. These experiments indicate that neither high dietary protein nor excess methionine, fed at non-growth-depressing levels, increases dietary choline needs for young Bobwhite quail.

  17. Egg n-3 fatty acid composition modulates biomarkers of choline metabolism in free-living lacto-ovo-vegetarian women of reproductive age.

    PubMed

    West, Allyson A; Shih, Yun; Wang, Wei; Oda, Keiji; Jaceldo-Siegl, Karen; Sabaté, Joan; Haddad, Ella; Rajaram, Sujatha; Caudill, Marie A; Burns-Whitmore, Bonny

    2014-10-01

    The lacto-ovo-vegetarian (LOV) dietary regimen allows eggs, which are a rich source of choline. Consumption of eggs by LOV women may be especially important during pregnancy and lactation when demand for choline is high. The aim of this single blind, randomized, crossover-feeding study was to determine how near-daily egg consumption influenced biomarkers of choline metabolism in healthy LOV women of reproductive age (n=15). Because long-chain n-3 fatty acids could influence choline metabolism, the effect of n-3-enriched vs nonenriched eggs on choline metabolites was also investigated. Three 8-week dietary treatments consisting of six n-3-enriched eggs per week, six nonenriched eggs per week, and an egg-free control phase were separated by 4-week washout periods. Choline metabolites were quantified in fasted plasma collected before and after each treatment and differences in posttreatment choline metabolite concentrations were determined with linear mixed models. The n-3-enriched and nonenriched egg treatments produced different choline metabolite profiles compared with the egg-free control; however, response to the eggs did not differ (P>0.1). Consumption of the n-3-enriched egg treatment yielded higher plasma free choline (P=0.02) and betaine (P<0.01) (vs egg-free control) concentrations, whereas consumption of the nonenriched egg treatment yielded borderline higher (P=0.06) plasma phosphatidylcholine (vs egg-free control) levels. Neither egg treatment increased levels of plasma trimethylamine oxide, a gut-flora-dependent oxidative choline metabolite implicated as a possible risk factor for cardiovascular disease. Overall these data suggest that egg fatty-acid composition modulates the metabolic use of choline. Copyright © 2014 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.

  18. Choline Ameliorates Deficits in Balance Caused by Acute Neonatal Ethanol Exposure.

    PubMed

    Bearer, Cynthia F; Wellmann, Kristen A; Tang, Ningfeng; He, Min; Mooney, Sandra M

    2015-08-01

    Fetal alcohol spectrum disorder (FASD) is estimated to occur in 1 % of all live births. The developing cerebellum is vulnerable to the toxic effects of alcohol. People with FASD have cerebellar hypoplasia and developmental deficits associated with cerebellar injury. Choline is an essential nutrient, but many diets in the USA are choline deficient. In rats, choline given with or following alcohol exposure reduces many alcohol-induced neurobehavioral deficits but not those associated with cerebellar function. Our objective was to determine if choline supplementation prior to alcohol exposure would ameliorate the impact of ethanol on a cerebellar-associated behavioral test in mice. Pregnant C57Bl6/J mice were maintained on a choline-deficient diet from embryonic day 4.5. On postnatal day 1 (P1), pups were assigned to one of eight treatment groups: choline (C) or saline (S) pre-treatment from P1 to P5, ethanol (6 g/kg) or Intralipid(®) on P5, C and or S post-treatment from P6 to P20. On P30, balance and coordination were tested using the dowel crossing test. Overall, there was a significant effect of treatment and females crossed longer distances than males. Ethanol exposure significantly reduced the total distance crossed. Choline pre-treatment increased the distance crossed by males, and both pre- and post-treatment with choline significantly increased total distance crossed for females and males. There was no effect of choline on Intralipid®-exposed animals. This is the first study to show that choline ameliorates ethanol-induced effects on balance and coordination when given before ethanol exposure. Choline fortification of common foodstuffs may reduce the effects of alcohol.

  19. Increased choline uptake in macrophages and prostate cancer cells does not allow for differentiation between benign and malignant prostate pathologies.

    PubMed

    Schwarz, Timo; Seidl, Christof; Schiemann, Matthias; Senekowitsch-Schmidtke, Reingard; Krause, Bernd Joachim

    2016-06-01

    Inflammatory cells may contribute to the choline uptake in different prostate pathologies. The aim of this study was (i) to assess if inflammatory cells incorporate choline and (ii) to potentially detect differences compared to FDG uptake. Therefore we investigated the uptake of [(3)H]choline and [(18)F]FDG in human prostate carcinoma cells and human inflammatory cells. Macrophages were cultured from isolated mononuclear cells, gained by density gradient centrifugation of human buffy coats. T-lymphocytes, B-lymphocytes and granulocytes were enriched by density gradient centrifugation before cell sorting by means of flow cytometry was performed. [(3)H]choline and [(18)F]FDG uptake of isolated inflammatory cells as well as of LNCaP and PC-3 human prostate carcinoma cells was assessed simultaneously in dual tracer uptake experiments. Macrophages showed highest [(3)H]choline and [(18)F]FDG uptake compared to the tracer uptake rates of leukocytes. [(3)H]choline uptake of macrophages was in the same range as in prostate cancer cells. Lipopolysaccharide stimulation of macrophages resulted in an increase of [(18)F]FDG uptake in macrophages, but not in an increased [(3)H]choline uptake. The high [(3)H]choline uptake in macrophages may be a source of false-positive PET results in diagnosis of prostate cancer by choline-PET/CT. As already known from FDG-PET, discrimination between tumor and inflammation in prostate cancer patients is not possible via choline-PET. The application of choline-PET for reliable primary prostate cancer detection and delineation has to be queried. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Dietary choline and betaine intake, choline-metabolising genetic polymorphisms and breast cancer risk: a case-control study in China.

    PubMed

    Du, Yu-Feng; Luo, Wei-Ping; Lin, Fang-Yu; Lian, Zhen-Qiang; Mo, Xiong-Fei; Yan, Bo; Xu, Ming; Huang, Wu-Qing; Huang, Jing; Zhang, Cai-Xia

    2016-09-01

    Choline and betaine are essential nutrients involved in one-carbon metabolism and have been hypothesised to affect breast cancer risk. Functional polymorphisms in genes encoding choline-related one-carbon metabolism enzymes, including phosphatidylethanolamine N-methyltransferase (PEMT), choline dehydrogenase (CHDH) and betaine-homocysteine methyltransferase (BHMT), have important roles in choline metabolism and may thus interact with dietary choline and betaine intake to modify breast cancer risk. This study aimed to investigate the interactive effect of polymorphisms in PEMT, BHMT and CHDH genes with choline/betaine intake on breast cancer risk among Chinese women. This hospital-based case-control study consecutively recruited 570 cases with histologically confirmed breast cancer and 576 age-matched (5-year interval) controls. Choline and betaine intakes were assessed by a validated FFQ, and genotyping was conducted for PEMT rs7946, CHDH rs9001 and BHMT rs3733890. OR and 95 % CI were estimated using unconditional logistic regression. Compared with the highest quartile of choline intake, the lowest intake quartile showed a significant increased risk of breast cancer. The SNP PEMT rs7946, CHDH rs9001 and BHMT rs3733890 had no overall association with breast cancer, but a significant risk reduction was observed among postmenopausal women with AA genotype of BHMT rs3733890 (OR 0·49; 95 % CI 0·25, 0·98). Significant interactions were observed between choline intake and SNP PEMT rs7946 (P interaction=0·029) and BHMT rs3733890 (P interaction=0·006) in relation to breast cancer risk. Our results suggest that SNP PEMT rs7946 and BHMT rs3733890 may interact with choline intake on breast cancer risk.

  1. Choline Inhibits Ischemia-Reperfusion-Induced Cardiomyocyte Autophagy in Rat Myocardium by Activating Akt/mTOR Signaling.

    PubMed

    Hang, Pengzhou; Zhao, Jing; Su, Zhenli; Sun, Hanqi; Chen, Tingting; Zhao, Lihui; Du, Zhimin

    2018-01-01

    Backgroud/Aims: Growing evidence suggests that both cardiomyocyte apoptosis and excessive autophagy exacerbates cardiac dysfunction during myocardial ischemia-reperfusion (IR). As a precursor of acetylcholine, choline has been found to protect the heart by repressing ischemic cardiomyocyte apoptosis. However, the relationship between choline and cardiomyocyte autophagy is unclear. The present study aimed to investigate whether autophagy was involved in the cardioprotection of choline during IR. Rats were subjected to 30 min reversible ischemia by ligation of left anterior descending coronary artery followed by reperfusion for 2 h. Choline (5 mg/kg, i.v.) alone or along with rapamycin (5 mg/ kg, i.p.) were injected 30 min before ischemia. Transmission electron microscopy, hematoxylin and eosin (HE) and TUNEL staining were conducted to evaluate the effect of choline on cardiac apoptosis and autophagy. Protein levels of autophagic markers including LC3, beclin-1 and p62 as well as Akt and mammalian target of rapamycin (mTOR) were examined by Western blotting. Myocardial IR-induced cardiac apoptosis and accumulation of autophagosomes was attenuated by choline. Choline treatment significantly ameliorated myocardial IR-induced autophagic activity characterized by repression of beclin-1 over-activation, the reduction of autophagosomes, the LC3-II/LC3-I ratio, and p62 protein abundance. In addition, IR-induced downregulation of p-Akt/mTOR cascade was increased by choline. However, the above functions of choline were abolished by rapamycin. These findings suggest that choline plays a protective role against myocardial IR injury by inhibiting excessive autophagy, which might be associated with the activation of Akt/mTOR pathway. This study provides new mechanistic understanding of cardioprotective effect of choline and suggests novel potential therapeutic targets for cardiac IR injury. © 2018 The Author(s). Published by S. Karger AG, Basel.

  2. Choline supply of preterm infants: assessment of dietary intake and pathophysiological considerations.

    PubMed

    Bernhard, Wolfgang; Full, Anna; Arand, Jörg; Maas, Christoph; Poets, Christian F; Franz, Axel R

    2013-04-01

    Choline forms the head group of phosphatidylcholines, comprising 40-50 % of cellular membranes and 70-95 % of phospholipids in surfactant, bile, and lipoproteins. Moreover, choline serves as the precursor of acetylcholine and is important for brain differentiation and function. While accepted as essential for fetal and neonatal development, its role in preterm infant nutrition has not yet gained much attention. The adequate intake of choline of preterm infants was estimated from international recommendations for infants, children, and adults. Choline intake relative to other nutrients was determined retrospectively in all inborn infants below 1,000 g (extremely low birth weight) or below 28 weeks gestational age, admitted to our department in 2006 and 2007 (N = 93). Estimation of adequate intake showed that children with 290 g body weight need more choline than those with 1,200 g (31.4 and 25.2 mg/kg/day, respectively). Day-by-day variability was high for all nutrient intakes including choline. In contrast to the continuous intrauterine choline delivery, median supply reached a plateau at d11 (21.7 mg/kg/day; 25th/75th percentile: 19.6; 23.9). Individual choline supply at d0-d1 and d2-d3 was <10 mg/kg/day in 100 and 69 % of infants, respectively. Furthermore, intakes <10 mg/kg/day were frequently observed beyond day 11. Median adequate intakes (27.4 mg/kg/day at 735 g body weight) were achieved in <2 %. Nutritional intake of choline in this cohort of preterm infants was frequently less than the estimated adequate intake, with particular shortage until postnatal d10. Because choline is important for brain development, future studies are needed to investigate the effects of adequate nutritional choline intake on long-term neurodevelopment in VLBW infants.

  3. CHOLINE AMELIORATES DEFICITS IN BALANCE CAUSED BY ACUTE NEONATAL ETHANOL EXPOSURE

    PubMed Central

    Bearer, Cynthia F.; Wellmann, Kristen A.; Tang, Ningfeng; He, Min; Mooney, Sandra M.

    2015-01-01

    Fetal alcohol spectrum disorder (FASD) is estimated to occur in 1% of all live births. The developing cerebellum is vulnerable to the toxic effects of alcohol. People with FASD have cerebellar hypoplasia and developmental deficits associated with cerebellar injury. Choline is an essential nutrient but many diets in the USA are choline deficient. In rats, choline given with or following alcohol exposure reduces many alcohol-induced neurobehavioral deficits, but not those associated with cerebellar function. Our objective was to determine if choline supplementation prior to alcohol exposure would ameliorate the impact of ethanol on a cerebellar-associated behavioral test in mice. Pregnant C57Bl6/J mice were maintained on a choline deficient diet from embryonic day 4.5. On postnatal day 1 (P1), pups were assigned to one of 8 treatment groups: choline (C) or saline (S) pre-treatment from P1-5, ethanol (6 g/kg) or Intralipid® on P5, C or S post-treatment from P6-20. On P30, balance and coordination were tested using the dowel crossing test. Overall, there was a significant effect of treatment and females crossed longer distances than males. Ethanol exposure significantly reduced the total distance crossed. Choline pre-treatment increased the distance crossed by males, and both pre- and post-treatment with choline significantly increased total distance crossed for females and males. There was no effect of choline on Intralipid®-exposed animals. This is the first study to show that choline ameliorates ethanol-induced effects on balance and coordination when given before ethanol exposure. Choline fortification of common foodstuffs may reduce the effects of alcohol. PMID:26085462

  4. Choline deficiency increases lymphocyte apoptosis and DNA damage in humans2,3

    PubMed Central

    da Costa, Kerry-Ann; Niculescu, Mihai D; Craciunescu, Corneliu N; Fischer, Leslie M; Zeisel, Steven H

    2008-01-01

    Background: Whereas deficiency of the essential nutrient choline is associated with DNA damage and apoptosis in cell and rodent models, it has not been shown in humans. Objective: The objective was to ascertain whether lymphocytes from choline-deficient humans had greater DNA damage and apoptosis than did those from choline-sufficient humans. Design: Fifty-one men and women aged 18–70 y were fed a diet containing the recommended adequate intake of choline (control) for 10 d. They then were fed a choline-deficient diet for up to 42 d before repletion with 138–550 mg choline/d. Blood was collected at the end of each phase, and peripheral lymphocytes were isolated. DNA damage and apoptosis were then assessed by activation of caspase-3, terminal deoxynucleotide transferase–mediated dUTP nick end-labeling, and single-cell gel electrophoresis (COMET) assays. Results: All subjects fed the choline-deficient diet had lymphocyte DNA damage, as assessed by COMET assay, twice that found when they were fed the control diet. The subjects who developed organ dysfunction (liver or muscle) when fed the choline-deficient diet had significantly more apoptotic lymphocytes, as assessed by the activated caspase-3 assay, than when fed the control diet. Conclusions: A choline-deficient diet increased DNA damage in humans. Subjects in whom these diets induced liver or muscle dys-function also had higher rates of apoptosis in their peripheral lymphocytes than did subjects who did not develop organ dysfunction. Assessment of DNA damage and apoptosis in lymphocytes appears to be a clinically useful measure in humans (such as those receiving parenteral nutrition) in whom choline deficiency is suspected. PMID:16825685

  5. Dietary choline requirements of women: effects of estrogen and genetic variation.

    PubMed

    Fischer, Leslie M; da Costa, Kerry-Ann; Kwock, Lester; Galanko, Joseph; Zeisel, Steven H

    2010-11-01

    Choline is obtained from the diet and from the biosynthesis of phosphatidylcholine. Phosphatidylcholine is catalyzed by the enzyme phosphatidylethanolamine-N-methyltransferase (PEMT), which is induced by estrogen. Because they have lower estrogen concentrations, postmenopausal women are more susceptible to the risk of organ dysfunction in response to a low-choline diet. A common genetic polymorphism (rs12325817) in the PEMT gene can also increase this risk. The objective was to determine whether the risk of low choline-related organ dysfunction increases with the number of alleles of rs12325817 in premenopausal women and whether postmenopausal women (with or without rs12325817) treated with estrogen are more resistant to developing such symptoms. Premenopausal women (n = 27) consumed a choline-sufficient diet followed by a very-low-choline diet until they developed organ dysfunction (or for 42 d), which was followed by a high-choline diet. Postmenopausal women (n = 22) were placed on the same diets but were first randomly assigned to receive estrogen or a placebo. The women were monitored for organ dysfunction and plasma choline metabolites and were genotyped for rs12325817. A dose-response effect of rs12325817 on the risk of choline-related organ dysfunction was observed in premenopausal women: 80%, 43%, and 13% of women with 2, 1, or 0 alleles, respectively, developed organ dysfunction. Among postmenopausal women, 73% who received placebo but only 18% who received estrogen developed organ dysfunction during the low-choline diet. Because of their lower estrogen concentrations, postmenopausal women have a higher dietary requirement for choline than do premenopausal women. Choline requirements for both groups of women are further increased by rs12325817. This trial was registered at clinicaltrials.gov as NCT00065546.

  6. Stachybotrys chartarum alters surfactant-related phospholipid synthesis and CTP:cholinephosphate cytidylyltransferase activity in isolated fetal rat type II cells.

    PubMed

    Hastings, C; Rand, T; Bergen, H T; Thliveris, J A; Shaw, A R; Lombaert, G A; Mantsch, H H; Giles, B L; Dakshinamurti, S; Scott, J E

    2005-03-01

    Stachybotry chartarum, a fungal contaminant of water-damaged buildings commonly grows on damp cellulose-containing materials. It produces a complex array of mycotoxins. Their mechanisms of action on the pulmonary system are not entirely clear. Previous studies suggest spore products may depress formation of disaturated phosphatidylcholine (DSPC), the major surface-active component of pulmonary surfactant (PS). If S. chartarum can indeed affect formation of this phospholipid, then mold exposure may be a significant issue for pulmonary function in both mature lung and developing fetal lung. To address this possibility, fetal rat type II cells, the principal source of DSPC, were used to assess effects of S. chartarum extract on formation of DSPC. Isolated fetal rat lung type II cells prelabeled with 3H-choline and incubated with spore extract showed decreased incorporation of 3H-choline into DSPC. The activity of CTP:cholinephosphate cytidylyltransferase (CPCT), the rate-limiting enzyme in phosphatidylcholine synthesis was reduced by approximately 50% by a 1:10 dilution of spore extract. Two different S. chartarum extracts (isolates from S. chartarum (Cleveland) and S. chartarum (Hawaiian)) were used to compare activity of CPCT in the presence of phosphatidylglycerol (PG), a known activator. PG produced an approximate two-fold increase in CPCT activity. The spore isolate from Hawaii did not alter enzyme activity. S. chartarum (Cleveland) eliminated the PG-induced activation of CPCT. These results support previous observations that mold products alter PS metabolism and may pose a risk in developing lung, inhibiting surfactant synthesis. Different isolates of the same species of fungus are not equivalent in terms of potential exposure risks.

  7. Neuropsychiatric development: two case reports about the use of dietary fish oils and/or choline supplementation in children.

    PubMed

    Woodbury, M M; Woodbury, M A

    1993-06-01

    Choline supplementation has been used with moderate success in subgroups of adult patients with neuropsychiatric and medical problems. The dietary fish oils have also been used in adults with hypercholesterolemia. We report on two young children with multiple neurodevelopmental delays, one who responded to choline and eicosapentaenoic acid, and the other to choline alone. A brief discussion about choline's metabolic pathways and benefits is included.

  8. Estimation of choline intake from 24 h dietary intake recalls and contribution of egg and milk consumption to intake among pregnant and lactating women in Alberta.

    PubMed

    Lewis, Erin D; Subhan, Fatheema B; Bell, Rhonda C; McCargar, Linda J; Curtis, Jonathan M; Jacobs, René L; Field, Catherine J

    2014-07-14

    Despite recommendations for higher choline intakes during pregnancy and lactation, there is limited research regarding maternal intake during these important periods. In the present study, we estimated dietary choline intake during pregnancy and lactation in a population of Albertan women and the contribution of egg and milk consumption to intake. Dietary intake data were collected from the first 600 women enrolled in a prospective cohort study carried out in Alberta, Canada. During the first and/or second trimester, the third trimester and 3 months postpartum, 24 h dietary intake recall data were collected. A database was constructed including foods consumed by the cohort and used to estimate dietary choline intake. The mean total choline intake value during pregnancy was 347 (SD 149) mg/d, with 23% of the participants meeting the adequate intake (AI) recommendation. During lactation, the mean total choline intake value was 346 (SD 151) mg/d, with 10% of the participants meeting the AI recommendation. Phosphatidylcholine was the form of choline consumed in the highest proportion and the main dietary sources of choline were dairy products, eggs and meat. Women who consumed at least one egg in a 24 h period had higher (P< 0·001) total choline intake and were eight times more likely (95% CI 5·2, 12·6) to meet choline intake recommendations compared with those who did not consume eggs during pregnancy. Women who reported consuming ≥ 500 ml of milk in a 24 h period were 2·8 times more likely (95 % CI 1·7, 4·8) to meet daily choline intake recommendations compared with those consuming < 250 ml of milk/d during pregnancy. Choline intake is below the recommendation levels in this population and the promotion of both egg and milk consumption may assist in meeting the daily choline intake recommendations.

  9. Choline is required in the diet of lactating dams to maintain maternal immune function.

    PubMed

    Dellschaft, Neele S; Ruth, Megan R; Goruk, Susan; Lewis, Erin D; Richard, Caroline; Jacobs, René L; Curtis, Jonathan M; Field, Catherine J

    2015-06-14

    Choline demands during lactation are high; however, detailed knowledge is lacking regarding the optimal dietary intake during this critical period. The present study was designed to determine the effects of varying intakes of choline on maternal immune function during lactation. Primiparous Sprague-Dawley rats (n 42) were randomised 24-48 h before birth and fed the following diets for 21 d: choline-devoid (0 g choline/kg diet; D, n 10); 1·0 g choline/kg diet (C1, n 11); 2·5 g choline/kg diet (C2·5, n 10); 6·2 g choline/kg diet (C6, n 11). Splenocytes were isolated and stimulated ex vivo with concanavalin A, lipopolysaccharide (LPS) or CD3/CD28. D and C6 dams had lower final body weight, spleen weight and average pup weight than C1 dams (P< 0·05). There was a linear relationship between free choline concentration in pup stomach contents with maternal dietary choline content (P< 0·001, r² 0·415). Compared with C1 and C2·5, D spleens had a lower proportion of mature T cells and activated suppressor cells, and this resulted in reduced cytokine production after stimulation (P< 0·05). Feeding 6·2 g choline/kg diet resulted in a higher cytokine production after stimulation with CD3/CD28 (P< 0·05). Except for a higher IL-6 production after LPS stimulation with cells from the C2·5 dams (P< 0·05), there were no differences between the C1 and C2·5 dams. For the first time, we show that feeding lactating mothers a diet free of choline has substantial effects on their immune function and on offspring growth. Additionally, excess dietary choline had adverse effects on maternal and offspring body weight but only minimal effects on maternal immune function.

  10. Hyperhomocysteinemia induced by guanidinoacetic acid is effectively suppressed by choline and betaine in rats.

    PubMed

    Setoue, Minoru; Ohuchi, Seiya; Morita, Tatsuya; Sugiyama, Kimio

    2008-07-01

    Rats were fed 25% casein (25C) diets differing in choline levels (0-0.5%) with and without 0.5% guanidinoacetic acid (GAA) or 0.75% L-methionine for 7 d to determine the effects of dietary choline level on experimental hyperhomocysteinemia. The effects of dietary choline (0.30%) and betaine (0.34%) on GAA- and methionine-induced hyperhomocysteinemia were also compared. Dietary choline suppressed hyperhomocysteinemia induced by GAA, but not by methionine, in a dose-dependent manner. GAA-induced enhancement of the plasma homocysteine concentration was suppressed by choline and betaine to the same degree, but the effects of these compounds were relatively small on methionine-induced hyperhomocysteinemia. Dietary supplementation with choline and betaine significantly increased the hepatic betaine concentration in rats fed a GAA diet, but not in rats fed a methionine diet. These results indicate that choline and betaine are effective at relatively low levels in reducing plasma homocysteine, especially under the condition of betaine deficiency without a loading of homocysteine precursor.

  11. Perinatal choline deficiency produces abnormal sensory inhibition in Sprague-Dawley rats

    PubMed Central

    Stevens, Karen E.; Adams, Catherine E.; Mellott, Tiffany J.; Robbins, Emily; Kisley, Michael A.

    2008-01-01

    Adequate choline levels in rodents during gestation have been shown to be critical to several functions, including certain learning and memory functions, when tested at adulthood. Choline is a selective agonist for the α7 nicotinic receptor which appears in development before acetylcholine is present. Normal sensory inhibition is dependent, in part, upon sufficient numbers of this receptor in the hippocampus. The present study assessed sensory inhibition in Sprague-Dawley rats gestated on normal (1.1 g/kg), deficient (0 g/kg) or supplemented (5 g/kg) choline in the maternal diet during the critical period for cholinergic cell development (E12-18). Rats gestated on deficient choline showed abnormal sensory inhibition when tested at adulthood, while rats gestated on normal or supplemented choline showed normal sensory inhibition. Assessment of hippocampal α-bungarotoxin to visualize nicotinic α7 receptors revealed no difference between the gestational choline levels. These data suggest that attention to maternal choline levels for human pregnancy may be important to the normal functioning of the offspring. PMID:18778692

  12. Effect of addition of Proline, ionic liquid [Choline][Pro] on CO2 separation properties of poly(amidoamine) dendrimer / poly(ethylene glycol) hybrid membranes

    NASA Astrophysics Data System (ADS)

    Duan, S. H.; Kai, T.; Chowdhury, F. A.; Taniguchi, I.; Kazama, S.

    2018-01-01

    Poly(amidoamine) (PAMAM) dendrimers were incorporated into cross-linked poly(ethylene glycol) (PEGDMA) matrix to improve carbon dioxide (CO2) separation performance at elevated pressures. In our previous studies, PAMAM/PEGDMA hybrid membranes showed high CO2 separation properties from CO2/H2 mixed gases. In this study, proline, choline and ionic liquid [Choline][Pro] compounds were selected as rate promoters that were used to prepare PAMAM/PEGDMA hybrid membranes. The effect of addition of proline, choline, IL [Choline][Pro] on separation performance of PAMAM/PEGDMA) hybrid membranes for CO2/H2 separation was investigated. Amino acid proline, choline, and IL [Choline][Pro] were used to promote CO2 and amine reaction. With the addition of [Choline][Pro] into PAMAM/PEG membrane, CO2 permeance of PAMAM/PEG hybrid membranes are increased up to 46% without any change of selectivity of membrane for CO2.

  13. Perinatal choline deficiency produces abnormal sensory inhibition in Sprague-Dawley rats.

    PubMed

    Stevens, Karen E; Adams, Catherine E; Mellott, Tiffany J; Robbins, Emily; Kisley, Michael A

    2008-10-27

    Adequate choline levels in rodents during gestation have been shown to be critical to several functions, including certain learning and memory functions, when tested at adulthood. Choline is a selective agonist for the alpha7 nicotinic receptor which appears in development before acetylcholine is present. Normal sensory inhibition is dependent, in part, upon sufficient numbers of this receptor in the hippocampus. The present study assessed sensory inhibition in Sprague-Dawley rats gestated on normal (1.1 g/kg), deficient (0 g/kg) or supplemented (5 g/kg) choline in the maternal diet during the critical period for cholinergic cell development (E12-18). Rats gestated on deficient choline showed abnormal sensory inhibition when tested at adulthood, while rats gestated on normal or supplemented choline showed normal sensory inhibition. Assessment of hippocampal alpha-bungarotoxin to visualize nicotinic alpha7 receptors revealed no difference between the gestational choline levels. These data suggest that attention to maternal choline levels for human pregnancy may be important to the normal functioning of the offspring.

  14. Biosynthesis and accumulation of osmoprotective compounds by halophytic plants of the genus Limonium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanson, A.D.; Rathinasabapathi, B.; Gage, D.A.

    1991-05-01

    Analyses of quaternary ammonium compounds in leaf and root tissues of halophytic Limonium spp. using fast atom bombardment mass spectrometry revealed that only 3 out of 21 spp. accumulated glycine betaine, the common angiosperm osmolyte. The 18 other spp. accumulated {beta}-alanine betaine instead. However, all the Limonium spp. studied accumulated choline-O-sulfate and their leaf disks metabolized ({sup 14}C) choline to choline-O-sulfate. Only the glycine betaine accumulators oxidized ({sup 14}C) choline to glycine betaine and only {beta}-alanine betaine accumulators converted {beta}-({sup 14}C)alanine to {beta}-alanine betaine. When {beta}-alanine betaine and glycine betaine accumulators were salinized with NaCl, the levels of their respectivemore » betaines and of choline sulfate were closely correlated with solute potential. Glycine betaine accumulators had less choline-O-sulfate than {beta}-alanine betaine accumulators and increasing the SO{sub 4}{sup 2}/Cl ratio in the medium increased choline-O-sulfate and caused a matching decrease in glycine betaine. Thus, it appears that {beta}-alanine betaine has replaced glycine betaine in most members of this genus, eliminating a possible competition between glycine betaine and choline-O-sulfate for choline.« less

  15. Safety assessment of bacterial choline oxidase protein introduced in transgenic crops for tolerance against abiotic stress.

    PubMed

    Singh, Abinav K; Singh, Bhanu P; Prasad, G B K S; Gaur, Shailendra N; Arora, Naveen

    2008-12-24

    Genetically modified crops have resistance to abiotic stress by introduction of choline oxidase protein. In the present study, the safety of choline oxidase protein derived from Arthrobacter globiformis was assessed for toxicity and allergenicity. The protein was stable at 90 degrees C for 1 h. Toxicity studies of choline oxidase in mice showed no significant difference (p > 0.05) from control in terms of growth, body weight, food consumption, and blood biochemical indices. Histology of gut tissue of mice fed protein showed normal gastric mucosal lining and villi in jejunum and ileum sections. Specific IgE in serum and IL-4 release in splenic culture supernatant were low in choline oxidase treated mice, comparable to control. Intravenous challenge with choline oxidase did not induce any adverse reaction, unlike ovalbumin group mice. Histology of lung tissues from choline oxidase sensitized mice showed normal airways, whereas ovalbumin-sensitized mice showed inflamed airways with eosinophilic infiltration and bronchoconstriction. ELISA carried out with food allergic patients' sera revealed no significant IgE affinity with choline oxidase. Also, choline oxidase did not show any symptoms of toxicity and allergenicity in mice.

  16. Crocodile choline from Crocodylus siamensis induces apoptosis of human gastric cancer.

    PubMed

    Mao, Xiao-Mei; Fu, Qi-Rui; Li, Hua-Liang; Zheng, Ya-Hui; Chen, Shu-Ming; Hu, Xin-Yi; Chen, Qing-Xi; Chen, Qiong-Hua

    2017-03-01

    Crocodile choline, an active compound isolated from Crocodylus siamensis, was found to exert potent anti-cancer activities against human gastric cancer cells in vitro and in vivo. Our study revealed that crocodile choline led to cell cycle arrest at the G2/M phase through attenuating the expressions of cyclins, Cyclin B1, and CDK-1. Furthermore, crocodile choline accelerated apoptosis through the mitochondrial apoptotic pathway with the decrease in mitochondrial membrane potential, the increase in reactive oxygen species production and Bax/Bcl-2 ratio, and the activation of caspase-3 along with the release of cytochrome c. In addition, this study, for the first time, shows that Notch pathway is remarkably deregulated by crocodile choline. The combination of crocodile choline and Notch1 short interfering RNA led to dramatically increased cytotoxicity than observed with either agent alone. Notch1 short interfering RNA sensitized and potentiated the capability of crocodile choline to suppress the cell progression and invasion of gastric cancer. Taken together, these data suggested that crocodile choline was a potent progression inhibitor of gastric cancer cells, which was correlated with mitochondrial apoptotic pathway and Notch pathway. Combining Notch1 inhibitors with crocodile choline might represent a novel approach for gastric cancer.

  17. Basolateral choline transport in isolated rabbit renal proximal tubules.

    PubMed

    Dantzler, W H; Evans, K K; Wright, S H

    1998-11-01

    Choline can undergo both net secretion and net reabsorption by renal proximal tubules, but at physiological plasma levels net reabsorption occurs. During this process, choline enters the cells at the luminal side down an electrochemical gradient via a specific transporter with a high affinity for choline. It appeared likely that choline was then transported out of the cells against an electrochemical gradient at the basolateral membrane by countertransport for another organic cation. This possibility was examined by studying net transepithelial reabsorption and basolateral uptake and efflux of [14C]choline in isolated S2 segments of rabbit renal proximal tubules. Basolateral uptake, which was inhibited by other organic cations such as tetraethylammonium (TEA), appeared to occur by the standard organic cation transport pathway. However, the addition of TEA to the bathing medium not only failed to trans-stimulate net transepithelial reabsorption and basolateral efflux of [14C]choline but it actually inhibited transepithelial reabsorption by @60%. The results do not support the presence of a countertransport step for choline against an electrochemical gradient at the basolateral membrane. Instead, they suggest that choline crosses this membrane by some form of carrier-mediated diffusion even during the reabsorptive process.

  18. Repeatability and measurement error in the assessment of choline and betaine dietary intake: the Atherosclerosis Risk in Communities (ARIC) study.

    PubMed

    Bidulescu, Aurelian; Chambless, Lloyd E; Siega-Riz, Anna Maria; Zeisel, Steven H; Heiss, Gerardo

    2009-02-20

    The repeatability of a risk factor measurement affects the ability to accurately ascertain its association with a specific outcome. Choline is involved in methylation of homocysteine, a putative risk factor for cardiovascular disease, to methionine through a betaine-dependent pathway (one-carbon metabolism). It is unknown whether dietary intake of choline meets the recommended Adequate Intake (AI) proposed for choline (550 mg/day for men and 425 mg/day for women). The Estimated Average Requirement (EAR) remains to be established in population settings. Our objectives were to ascertain the reliability of choline and related nutrients (folate and methionine) intakes assessed with a brief food frequency questionnaire (FFQ) and to estimate dietary intake of choline and betaine in a bi-ethnic population. We estimated the FFQ dietary instrument reliability for the Atherosclerosis Risk in Communities (ARIC) study and the measurement error for choline and related nutrients from a stratified random sample of the ARIC study participants at the second visit, 1990-92 (N = 1,004). In ARIC, a population-based cohort of 15,792 men and women aged 45-64 years (1987-89) recruited at four locales in the U.S., diet was assessed in 15,706 baseline study participants using a version of the Willett 61-item FFQ, expanded to include some ethnic foods. Intraindividual variability for choline, folate and methionine were estimated using mixed models regression. Measurement error was substantial for the nutrients considered. The reliability coefficients were 0.50 for choline (0.50 for choline plus betaine), 0.53 for folate, 0.48 for methionine and 0.43 for total energy intake. In the ARIC population, the median and the 75th percentile of dietary choline intake were 284 mg/day and 367 mg/day, respectively. 94% of men and 89% of women had an intake of choline below that proposed as AI. African Americans had a lower dietary intake of choline in both genders. The three-year reliability of reported dietary intake was similar for choline and related nutrients, in the range as that published in the literature for other micronutrients. Using a brief FFQ to estimate intake, the majority of individuals in the ARIC cohort had an intake of choline below the values proposed as AI.

  19. Repeatability and measurement error in the assessment of choline and betaine dietary intake: the Atherosclerosis Risk in Communities (ARIC) Study

    PubMed Central

    Bidulescu, Aurelian; Chambless, Lloyd E; Siega-Riz, Anna Maria; Zeisel, Steven H; Heiss, Gerardo

    2009-01-01

    Background The repeatability of a risk factor measurement affects the ability to accurately ascertain its association with a specific outcome. Choline is involved in methylation of homocysteine, a putative risk factor for cardiovascular disease, to methionine through a betaine-dependent pathway (one-carbon metabolism). It is unknown whether dietary intake of choline meets the recommended Adequate Intake (AI) proposed for choline (550 mg/day for men and 425 mg/day for women). The Estimated Average Requirement (EAR) remains to be established in population settings. Our objectives were to ascertain the reliability of choline and related nutrients (folate and methionine) intakes assessed with a brief food frequency questionnaire (FFQ) and to estimate dietary intake of choline and betaine in a bi-ethnic population. Methods We estimated the FFQ dietary instrument reliability for the Atherosclerosis Risk in Communities (ARIC) study and the measurement error for choline and related nutrients from a stratified random sample of the ARIC study participants at the second visit, 1990–92 (N = 1,004). In ARIC, a population-based cohort of 15,792 men and women aged 45–64 years (1987–89) recruited at four locales in the U.S., diet was assessed in 15,706 baseline study participants using a version of the Willett 61-item FFQ, expanded to include some ethnic foods. Intraindividual variability for choline, folate and methionine were estimated using mixed models regression. Results Measurement error was substantial for the nutrients considered. The reliability coefficients were 0.50 for choline (0.50 for choline plus betaine), 0.53 for folate, 0.48 for methionine and 0.43 for total energy intake. In the ARIC population, the median and the 75th percentile of dietary choline intake were 284 mg/day and 367 mg/day, respectively. 94% of men and 89% of women had an intake of choline below that proposed as AI. African Americans had a lower dietary intake of choline in both genders. Conclusion The three-year reliability of reported dietary intake was similar for choline and related nutrients, in the range as that published in the literature for other micronutrients. Using a brief FFQ to estimate intake, the majority of individuals in the ARIC cohort had an intake of choline below the values proposed as AI. PMID:19232103

  20. Liposomes with polyribonucleotides as model of precellular systems

    NASA Technical Reports Server (NTRS)

    Baeza, Isabel; Ibanez, Miguel; Santiago, Carlos; Lazcano, Antonio; Arguello, Carlos

    1987-01-01

    Three types of liposomes were prepared under anoxic conditions: from dipalmitoyl phosphatidyl choline (DPPC), from egg yolk phosphatidyl choline (PC), and from PC with cholesterol (PC:Chol). These were used for encapsulation of poly(U) and poly(C). It was found that 36 to 70 percent of the available liposome lipids and 2 to 5 percent of the polyribonucleotides could be entrapped. An enhanced encapsulation of poly(U) and poly(C) by all three types of liposomes was observed in the presence of 0.001 to 0.01 M Zn(2+), with the effect being greatest with DPPC. The presence of 1.0 M urea inhibited the formation of PC liposomes.

  1. 21 CFR 182.8252 - Choline chloride.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Choline chloride. 182.8252 Section 182.8252 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8252 Choline chloride. (a) Product. Choline chloride. (b) Conditions of use. This substance is generally recognized as...

  2. 21 CFR 182.8252 - Choline chloride.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Choline chloride. 182.8252 Section 182.8252 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8252 Choline chloride. (a) Product. Choline chloride. (b) Conditions of use. This substance is generally recognized as...

  3. 21 CFR 182.8250 - Choline bitartrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Choline bitartrate. 182.8250 Section 182.8250 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8250 Choline bitartrate. (a) Product. Choline bitartrate. (b) Conditions of use. This substance is generally recognized as...

  4. 21 CFR 182.8250 - Choline bitartrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Choline bitartrate. 182.8250 Section 182.8250 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8250 Choline bitartrate. (a) Product. Choline bitartrate. (b) Conditions of use. This substance is generally recognized as...

  5. 21 CFR 182.8252 - Choline chloride.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Choline chloride. 182.8252 Section 182.8252 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8252 Choline chloride. (a) Product. Choline chloride. (b) Conditions of use. This substance is generally recognized as...

  6. 21 CFR 182.8252 - Choline chloride.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Choline chloride. 182.8252 Section 182.8252 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8252 Choline chloride. (a) Product. Choline chloride. (b...

  7. 21 CFR 182.8250 - Choline bitartrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Choline bitartrate. 182.8250 Section 182.8250 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8250 Choline bitartrate. (a) Product. Choline bitartrate. (b) Conditions of use. This substance is generally recognized as...

  8. 21 CFR 182.8250 - Choline bitartrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Choline bitartrate. 182.8250 Section 182.8250 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8250 Choline bitartrate. (a) Product. Choline bitartrate. (b...

  9. 21 CFR 182.8250 - Choline bitartrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Choline bitartrate. 182.8250 Section 182.8250 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8250 Choline bitartrate. (a) Product. Choline bitartrate. (b) Conditions of use. This substance is generally recognized as...

  10. Choline and betaine intake and the risk of colorectal cancer in men.

    PubMed

    Lee, Jung Eun; Giovannucci, Edward; Fuchs, Charles S; Willett, Walter C; Zeisel, Steven H; Cho, Eunyoung

    2010-03-01

    Dietary choline and betaine have been hypothesized to decrease the risk of cancer because of their role as methyl donors in the one-carbon metabolism. However, it remains unknown whether dietary intake of choline and betaine is associated with colorectal cancer risk. We prospectively examined the associations between dietary choline and betaine intake and risk of colorectal cancer in men in the Health Professionals Follow-up Study. We followed 47,302 men and identified a total of 987 incident colorectal cancer cases from 1986 to 2004. We assessed dietary and supplemental choline and betaine intake every 4 years using a validated semiquantitative food frequency questionnaire. The Cox proportional hazards model was used to estimate multivariate relative risks and 95% confidence intervals. All statistical tests were two-sided. We did not find any statistically significant associations between choline intake or betaine intake and risk of colorectal cancer. Comparing the top quintile with bottom quintile, multivariate relative risks (95% confidence interval) were 0.97 (0.79-1.20; P(trend) = 0.87) for choline intake and 0.94 (0.77-1.16; P(trend) = 0.79) for betaine intake. Similarly, we observed no associations between colorectal cancer risk and choline from free choline, glycerophosphocholine, phosphocholine, phosphatidylcholine, or sphingomyelin. Our data do not support the hypothesis that choline and betaine intake is inversely associated with colorectal cancer risk.

  11. Choline and betaine intake and the risk of colorectal cancer in men

    PubMed Central

    Lee, Jung Eun; Giovannucci, Edward; Fuchs, Charles S.; Willett, Walter C.; Zeisel, Steven H.; Cho, Eunyoung

    2010-01-01

    Dietary choline and betaine have been hypothesized to decrease the risk of cancer because of their role as methyl donors in the one-carbon metabolism. However, it remains unknown whether dietary intake of choline and betaine is associated with colorectal cancer risk. We prospectively examined the associations between dietary choline and betaine intake and risk of colorectal cancer in men in the Health Professionals Follow-up Study. We followed 47,302 men and identified a total of 987 incident colorectal cancer cases from 1986 to 2004. We assessed dietary and supplemental choline and betaine intake every four years using a validated semi-quantitative food frequency questionnaire. The Cox proportional hazards model was used to estimate multivariate relative risks (RRs) and 95% confidence intervals (95% CIs). All statistical tests were two-sided. We did not find any statistically significant associations between choline intake or betaine intake and risk of colorectal cancer. Comparing the top quintile with bottom quintile, multivariate RRs (95% CI) were 0.97 (0.79-1.20; Ptrend = 0.87) for choline intake and 0.94 (0.77-1.16; Ptrend = 0.79) for betaine intake. Similarly, we observed no associations between colorectal cancer risk and choline from free choline, glycerophosphocholine, phosphocholine, phosphatidylcholine, or sphingomyelin. Our data do not support that choline and betaine intake is inversely associated with colorectal cancer risk. PMID:20160273

  12. Exogenous fatty acids affect CDP-choline pathway to increase phosphatidylcholine synthesis in granular pneumocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chander, A.; Gullo, J.; Reicherter, J.

    1987-05-01

    Regulation of phosphatidylcholine (PC) synthesis in rat granular pneumocytes isolated by tryptic digestion of lungs and maintained in primary culture for 24 h was investigated by following effects of exogenous fatty acids on (/sup 3/H-methyl)choline incorporation into PC and disaturated PC (DSPC). At 0.1 mM choline, the rate of choline incorporation into PC and DSPC was 440 +/- and 380 +/- 50 pmol/h/ug Pi (mean +/- SE, n=3-5), respectively, and was linear for up to 3 h. PC synthesis was significantly increased by 0.1 mM each of palmitic, oleic, linoleic, or linolenic acid. However, synthesis of DSPC was increased onlymore » by palmitic acid and this increase was prevented by addition of oleic acid suggesting lack of effect on the remodeling pathway. Pulse-chase experiments with choline in absence or presence of palmitic or oleic acid showed that the label declined in choline phosphate and increased in PC more rapidly in presence of either of the fatty acids, suggesting rapid conversion of choline phosphate to PC. Microsomal choline phosphate cytidyltransferase activity in cells preincubated without or with palmitic acid for 3 h was 0.81 +/- 0.07 and 1.81 +/- 0.09 nmol choline phosphate converted/min/mg protein (n=4). These results suggest that in granular pneumocytes, exogenous fatty acids modulate PC synthesis by increasing choline phosphate cytidyltransferase activity.« less

  13. Dietary S-methylmethionine, a component of foods, has choline-sparing activity in chickens.

    PubMed

    Augspurger, Nathan R; Scherer, Colleen S; Garrow, Timothy A; Baker, David H

    2005-07-01

    Acid hydrolysis of dehulled soybean meal (SBM) and corn gluten meal (CGM) followed by chromatographic amino acid analysis (ninhydrin detection) revealed substantial quantities of S-methylmethionine (SMM) in both ingredients (1.65 g SMM/kg SBM; 0.5 g SMM/kg CGM). Young chicks were used to quantify the methionine- (Met) and choline-sparing bioactivity of crystalline L-SMM, relative to L-Met and choline chloride standards in 3 assays. A soy isolate basal diet was developed that could be made markedly deficient in Met, choline, or both. When singly deficient in choline or in both choline and Met, dietary SMM addition produced a significant (P < 0.01) growth response. In Assay 2, dietary SMM did not affect (P > 0.10) growth of chicks fed a Met-deficient, choline-adequate diet. A standard-curve growth assay revealed choline bioactivity values (wt:wt) of 14.2 +/- 0.8 and 25.9 +/- 5.1 g/100 g SMM based on weight gain and gain:food responses, respectively. A fourth assay, using standard-curve procedures, showed choline bioactivity values of 20.1 +/- 1.1 and 22.9 +/- 1.7 g/100 g SMM based on weight gain and gain:food responses, respectively. It is apparent that SMM in foods and feeds has methylation bioactivity, and this has implications for proper assessment of dietary Met and choline requirements as well as their bioavailability in foods and feeds.

  14. Adaptations to excess choline in insulin resistant and Pcyt2 deficient skeletal muscle.

    PubMed

    Taylor, Adrian; Schenkel, Laila Cigana; Yokich, Maiya; Bakovic, Marica

    2017-04-01

    It was hypothesized that choline supplementation in insulin resistant (IR) CTP:phosphoethanolamine cytidylyltransferase deficient (Pcyt2 +/- ) mice would ameliorate muscle function by remodeling glucose and fatty acid (FA) metabolism. Pcyt2 +/- mice either received no treatment or were allowed access to 2 mg/mL choline in drinking water for 4 weeks. Skeletal muscle was harvested from choline treated and untreated mice. Lipid analysis and metabolic gene expression and signaling pathways were compared between untreated Pcyt2 +/- mice, treated Pcyt2 +/- mice, and Pcyt2 +/+ mice. The major positive effect of choline supplementation on IR muscle was the reduction of glucose utilization for FA and triglyceride (TAG) synthesis and increased muscle glucose storage as glycogen. Choline reduced the expression of genes for FA and TAG formation (Scd1, Fas, Srebp1c, Dgat1/2), upregulated the genes for FA oxidation (Cpt1, Pparα, Pgc1α), and had minor effects on phospholipid and lipolysis genes. Pcyt2 +/- muscle had reduced insulin signaling (IRS1), autophagy (LC3), and choline transport (CTL1) proteins that were restored by choline treatment. Additionally, choline activated AMPK and Akt while inhibiting mTORC1 phosphorylation. These data established that choline supplementation could restore muscle glucose metabolism by reducing lipogenesis and improving mitochondrial and intracellular signaling for protein and energy metabolism in insulin resistant Pcyt2 deficient mice.

  15. Hepatotoxicity and endothelial dysfunction induced by high choline diet and the protective effects of phloretin in mice.

    PubMed

    Ren, Daoyuan; Liu, Yafei; Zhao, Yan; Yang, Xingbin

    2016-08-01

    The involvement of choline and its metabolite trimethylamine-N-oxide (TMAO) in endothelial dysfunction and atherosclerosis has been repeatedly confirmed. Phloretin, a dihydrochalcone flavonoid usually present in apples, possesses a variety of biological activities including vascular nutrition. This study was designed to investigate whether phloretin could alleviate or prevent high choline-induced vascular endothelial dysfunction and liver injury in mice. Mice were provided with 3% high choline water and given phloretin orally daily for 10 weeks. The high choline-treated mice showed the significant dyslipidemia and hyperglycemia with the impaired liver and vascular endothelium (p < 0.01). Administration of phloretin at 200 and 400 mg/kg bw significantly reduced the choline-induced elevation of serum TC, TG, LDL-C, AST, ALT, ET-1 and TXA2 (p < 0.01), and markedly antagonized the choline-induced decrease of serum PGI2, HDL-C and NO levels. Furthermore, phloretin elevated hepatic SOD and GSH-Px activities and decreased hepatic MDA levels of the mice exposed to high choline water. Moreover, histopathological test with the H&E and Oil Red O staining of liver sections confirmed the high choline diet-caused liver steatosis and the hepatoprotective effect of phloretin. These findings suggest that high choline causes oxidative damage, and phloretin alleviate vascular endothelial dysfunction and liver injury. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Carnitine modulates crucial myocardial adenosine triphosphatases and acetylcholinesterase enzyme activities in choline-deprived rats.

    PubMed

    Strilakou, Athina A; Tsakiris, Stylianos T; Kalafatakis, Konstantinos G; Stylianaki, Aikaterini T; Karkalousos, Petros L; Koulouris, Andreas V; Mourouzis, Iordanis S; Liapi, Charis A

    2014-01-01

    Choline is an essential nutrient, and choline deficiency has been associated with cardiovascular morbidity. Choline is also the precursor of acetylcholine (cholinergic component of the heart's autonomic nervous system), whose levels are regulated by acetylcholinesterase (AChE). Cardiac contraction-relaxation cycles depend on ion gradients established by pumps like the adenosine triphosphatases (ATPases) Na(+)/K(+)-ATPase and Mg(2+)-ATPase. This study aimed to investigate the impact of dietary choline deprivation on the activity of rat myocardial AChE (cholinergic marker), Na(+)/K(+)-ATPase, and Mg(2+)-ATPase, and the possible effects of carnitine supplementation (carnitine, structurally relevant to choline, is used as an adjunct in treating cardiac diseases). Adult male albino Wistar rats were distributed among 4 groups, and were fed a standard or choline-deficient diet for one month with or without carnitine in their drinking water (0.15% w/v). The enzyme activities were determined spectrophotometrically in the myocardium homogenate. Choline deficiency seems to affect the activity of the aforementioned parameters, but only the combination of choline deprivation and carnitine supplementation increased myocardial Na(+)/K(+)-ATPase activity along with a concomitant decrease in the activities of Mg(2+)-ATPase and AChE. The results suggest that carnitine, in the setting of choline deficiency, modulates cholinergic myocardial neurotransmission and the ATPase activity in favour of cardiac work efficiency.

  17. High affinity choline uptake (HACU) and choline acetyltransferase (ChAT) activity in neuronal cultures for mechanistic and drug discovery studies

    PubMed Central

    Ray, Balmiki; Bailey, Jason A.; Simon, Jay R.; Lahiri, Debomoy K.

    2012-01-01

    Acetylcholine (ACh) is the neurotransmitter used by cholinergic neurons at the neuromuscular junction and in parasympathetic nerve terminals in the periphery, as well as important memory-related circuits in the brain and also takes part in several critical functions. ACh is synthesized from choline and acetyl coenzyme-A by the enzyme choline acetyltransferase (ChAT). The formation of acetylcholine in cholinergic nerve terminals requires both the transport of choline into the cells from the extracellular space, and the activity of ChAT. High affinity choline uptake (HACU) represents the majority of choline uptake into the nerve terminal, and is the acutely regulated, rate-limiting step in ACh synthesis. The HACU component of choline uptake can be differentiated from non-specific choline uptake by inhibition of the choline transporter with hemicholinium. Several methods have been described previously to measure HACU and ChAT simultaneously in synaptosomes, but a well-documented protocol for cultured cells is lacking. We describe a procedure to simultaneously measure HACU and ChAT in cultured cells by simple radionuclide-based techniques. In this procedure we have quantitatively determined HACU and ChAT activity in cholinergically differentiated human neuroblastoma (SK-N-SH) cells. These simple methods can be used for neurochemical and drug discovery studies relevant to several disorders including Alzheimer’s disease, myasthenia gravis, and cardiovascular disease. PMID:22752895

  18. Molecular structure and differential function of choline kinases CHKα and CHKβ in musculoskeletal system and cancer.

    PubMed

    Chen, Xi; Qiu, Heng; Wang, Chao; Yuan, Yu; Tickner, Jennifer; Xu, Jiake; Zou, Jun

    2017-02-01

    Choline, a hydrophilic cation, has versatile physiological roles throughout the body, including cholinergic neurotransmission, memory consolidation and membrane biosynthesis and metabolism. Choline kinases possess enzyme activity that catalyses the conversion of choline to phosphocholine, which is further converted to cytidine diphosphate-coline (CDP-choline) in the biosynthesis of phosphatidylcholine (PC). PC is a major constituent of the phospholipid bilayer which constitutes the eukaryotic cell membrane, and regulates cell signal transduction. Choline Kinase consists of three isoforms, CHKα1, CHKα2 and CHKβ, encoded by two separate genes (CHKA(Human)/Chka(Mouse) and CHKB(Human)/Chkb(Mouse)). Both isoforms have similar structures and enzyme activity, but display some distinct molecular structural domains and differential tissue expression patterns. Whilst Choline Kinase was discovered in early 1950, its pivotal role in the development of muscular dystrophy, bone deformities, and cancer has only recently been identified. CHKα has been proposed as a cancer biomarker and its inhibition as an anti-cancer therapy. In contrast, restoration of CHKβ deficiency through CDP-choline supplements like citicoline may be beneficial for the treatment of muscular dystrophy, bone metabolic diseases, and cognitive conditions. The molecular structure and expression pattern of Choline Kinase, the differential roles of Choline Kinase isoforms and their potential as novel therapeutic targets for muscular dystrophy, bone deformities, cognitive conditions and cancer are discussed. Copyright © 2016. Published by Elsevier Ltd.

  19. Influence of androgen deprivation therapy on choline PET/CT in recurrent prostate cancer.

    PubMed

    Dost, Rutger J; Glaudemans, Andor W J M; Breeuwsma, Anthonius J; de Jong, Igle J

    2013-07-01

    Recurrent prostate cancer is usually treated by combining radiotherapy and androgen deprivation therapy. To stage the cancer, choline positron emission tomography (PET)/CT can be performed. It is generally thought that androgen deprivation therapy does not influence choline PET/CT. In this article we focus on the molecular backgrounds of choline and androgens, and the results of preclinical and clinical studies performed using PET/CT. Using PubMed, we looked for the relevant articles about androgen deprivation therapy and choline PET/CT. During ADT, a tendency of decreased uptake of choline in prostate cancer was observed, in particular in hormone-naïve patients. We conclude that in order to prevent false-negative choline PET/CT scans androgen deprivation should be withheld prior to scanning, especially in hormone-naïve patients.

  20. Plasma choline and betaine correlate with serum folate, plasma S-adenosyl-methionine and S-adenosyl-homocysteine in healthy volunteers.

    PubMed

    Imbard, Apolline; Smulders, Yvo M; Barto, Rob; Smith, Desiree E C; Kok, Robert M; Jakobs, Cornelis; Blom, Henk J

    2013-03-01

    Choline is essential for mammalian cell function. It plays a critical role in cell membrane integrity, neurotransmission, cell signaling and lipid metabolism. Moreover, choline is involved in methylation in two ways: a) its synthesis requires methyl groups donated by S-adenosyl-methionine (AdoMet); and b) choline oxidation product betaine methylates homocysteine (Hcy) to methionine (Met) and produces dimethylglycine. This later donates one carbon units to tetrahydrofolate (THF). To evaluate the correlations of choline and betaine with folate, AdoMet, S-anenosyl-homocysteine (AdoHcy), total homocysteine (tHcy), and DNA methylation, choline, betaine and dimethylglycine were measured by LC-MS/MS in plasma of 109 healthy volunteers, in whom folate, AdoMet, AdoHcy, tHcy, and DNA methylation have previously been reported. Using a bivariate model, choline and betaine showed strong positive correlations with folate (r = 0.346 and r = 0.226), AdoHcy (r = 0.468 and r = 0.296), and correlated negatively with AdoMet/AdoHcy ratio (r = – 0.246 and r = – 0.379). Only choline was positively correlated with AdoMet (r = 0.453). Using a multivariate linear regression model, choline correlated strongly with folate ( β = 17.416), AdoMet ( β = 61.272), and AdoHcy ( β = 9.215). Betaine correlated positively with folate ( β = 0.133) and negatively with tHcy ( β = – 0.194) ratio. Choline is an integral part of folate and methylation pathways. Our data highlight the importance of integrating choline in studies concerning addressing pathological conditions related to folate, homocysteine and methylation metabolism.

  1. Studies on choline permeation through the plasma membrane and its incorporation into phosphatidyl choline of Ehrlich-Lettré-ascites tumor cells in vitro.

    PubMed

    Haeffner, E W

    1975-02-03

    The initial rate of incorporation of 14C or 3H-labeled choline into Ehrlich-Lettre ascites cells of the glycogen-free strain seven days after inoculation was investigated in vitro. 1. At choline concentrations in the medium between 6 to 30 muM and 100 to 500 muM the choline uptake by the cells followed Michaelis-Menton Kinetics with V values between 31 to 100 and 59 to 500 pmol per minute at a given cell density, and average Q10-values of 2.1 at the high and of 2.4 at the low choline molarity. The K-m-values increased from 27 muM to 58.8 muM at low and from 0.11 mM to 0.22 mM at high choline concentrations over a temperature range between 15 degrees C and 37 degrees C. Arrhenius plot of the V values gave two lines, one with a transition temperature at 25 degrees C at low and one straight line at high choline concentrations, from which the energy of activation for choline uptake was determined to be 16 kcal/mol. 2. It is assumed that two systems exist for the choline uptake by the ascites cells. One, operative at low substrate concentrations, which is saturable and probably is to be classified as a carrier-mediated facilitated diffusion process, can be strongly inhibited by deoxyglucose or 2,4-dinitrophenol and also by substrate analogues such as chlorocholine or benzoylcholine. Ouabain affects this system to a lesser extent. The other system functioning at high choline concentrations may be a simple diffusion process, which is little inhibited by substrate analogues, ouabain and deoxyglucose; however, it is also inhibited by 2,4-dinitrophenol and p-chloromercuribenzoate. 3. Choline incorporation into the acid-insoluble material (lecithin) gave linear Michaelis-Menton kinetics at the low and the high substrate concentration respectively. K-m-values decreased with an increase in temperature at low and increased with rising temperature at high substrate concentrations thus reflecting a close relationship between choline uptake and its metabolism. Labeling of lecithin choline in the various subcellular fractions under the conditions of the functioning of a carrier-mediated process was in the order: mitochondria (50%) greater than plasma membranes (25%) greater nuclei (14%) greater than microsomes (9%) greater than supernatant (1.5%). 4. Treatment of the cells with p-chloromercuribenzoate or heat shock at 50 degrees C markedly reduced the cholinee uptake and concomitantly its conversion into lecithin. Kinetic analysis revealed that the inhibitory effect of p-chloromercuribenzoate was competitive and that of the heat shock non-competitive in nature. Further the choline uptake by the cells was found to be the rate-limiting step, since the rate of choline phosphorylation was determined by the extracellular choline concentration. Pulse chase experiments showed a rapid turnover of the choline moiety with a concomitant increase in activity of the lecithin fraction and little change within the choline phosphate pool.

  2. Chunggan extract (CGX), methionine-and choline-deficient (MCD) diet-induced hepatosteatosis and oxidative stress in C57BL/6 mice.

    PubMed

    Park, H-J; Han, J-M; Kim, H-G; Choi, M-K; Lee, J-S; Lee, H-W; Son, C-G

    2013-12-01

    In the present study, we aimed to evaluate the hepatoprotective and antioxidant effects of Chunggan extract (CGX) in an animal model of hepatosteatosis. The C57BL/6N mice were fed either methionine- and choline-sufficient (MCS) diet (n = 10) or a methionine- and choline-deficient (MCD) diet (n = 50) for 4 weeks, and then they were treated orally with CGX (100 or 200 mg/kg), ursodeoxycholic acid (80 mg/kg, as a positive control), or distilled water (DW, MCS diet group, and MCD diet group) for the final 2 weeks (once per day). The MCD diet induced severe hepatic injury with the typical features of hepatosteatosis in both serum and hepatic tissues. CGX treatment significantly attenuated these alterations in the serum levels including triglyceride (TG), aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, and total bilirubin. Moreover, CGX also efficiently prevented from the hepatic TG accumulation in the hepatic tissue, evidenced by histopathological findings, compared with the MCD diet. In addition, CGX treatment significantly ameliorated the excessive oxidative stress and antioxidant markers in the serum as well as the hepatic levels of reactive oxygen species, the levels of malondialdehyde, the protein carbonyl, and total antioxidant capacity, and the activities of superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase. In conclusion, our results indicate the experimental relevance of CGX for potential clinical application in patients with hepatosteatotic disorders and a possible mechanism related to its antioxidant properties.

  3. Structure of the choline-binding domain of Spr1274 in Streptococcus pneumoniae.

    PubMed

    Zhang, Zhenyi; Li, Wenzhe; Frolet, Cecile; Bao, Rui; di Guilmi, Anne Marie; Vernet, Thierry; Chen, Yuxing

    2009-08-01

    Spr1274 is a putative choline-binding protein that is bound to the cell wall of Streptococcus pneumoniae through noncovalent interactions with the choline moieties of teichoic and lipoteichoic acids. Its function is still unknown. The crystal structure of the choline-binding domain of Spr1274 (residues 44-129) was solved at 2.38 A resolution with three molecules in the asymmetric unit. It may provide a structural basis for functional analysis of choline-binding proteins.

  4. Choline and Inositol Distribution in Algae and Fungi1

    PubMed Central

    Ikawa, Miyoshi; Borowski, Paul T.; Chakravarti, Ashima

    1968-01-01

    Inositol and choline were present in varying amounts among the species of Rhodophyta, Phaeophyta, Chlorophyta, and Euglenophyta examined. However, in the two members of the order Fucales (division Phaeophyta) examined, no detectable amounts of choline were found. In contrast, the species of Cyanophyta examined contained no detectable amounts of either choline or inositol. All species of the fungal classes Phycomyceteae, Ascomyceteae, and Basidiomyceteae collected contained both inositol and choline in varying amounts. The red, brown, and blue-green algae usually contained much less inositol and choline than do plant and animals sources, but the fungi and the algae Chlorella and Euglena contained amounts comparable to those present in plant sources. PMID:5647522

  5. Radiolabeled choline PET/CT before salvage lymphadenectomy dissection: a systematic review and meta-analysis.

    PubMed

    Evangelista, Laura; Zattoni, Fabio; Karnes, Robert J; Novara, Giacomo; Lowe, Val

    2016-12-01

    To provide a systematic review of recently published reports and carry out a meta-analysis on the use of radiolabeled choline PET/computed tomography (CT) as a guide for salvage lymph node dissection (sLND) in prostate cancer patients with biochemical recurrence after primary treatments. Bibliographic database searches, from 2005 to May 2015, including Pubmed, Web of Science, and TripDatabase, were performed to find studies that included only patients who underwent sLND after radiolabeled choline PET/CT alone or in combination with other imaging modalities. For the qualitative assessment, all studies including the selected population were considered. Conversely, for the quantitative assessment, articles were included only if absolute numbers of true positive, true negative, false positive, and false negative test results were available or derivable from the text for lymph node metastases. Reviews, clinical reports, and editorial articles were excluded from analyses. Eighteen studies fulfilled the inclusion criteria and were assessed qualitatively. A total of 750 patients underwent radiolabeled choline (such as C-choline or F-choline) PET/CT before sLND. A quantitative evaluation was performed in nine studies. A patient-based, a lesion-based, and a site-based analysis was carried out in nine, four, and five studies, respectively. The pooled sensitivities were 85.3% [95% confidence interval (CI): 78.5-90.3%], 56.2% (95% CI: 41.6-69.7%), 75.3% (95% CI: 56.6-87.7%), and 63.7% (95% CI: 41-81.6%), respectively, for patient-based, lesion-based, pelvic site-based, and retroperitoneal site-based analysis. The pooled positive predictive values (PPVs) were 75% (95% CI: 68-80.9%), 85.8% (95% CI: 66.8-94.8%), 81.2% (95% CI: 70.1-88.9%), and 75.2% (95% CI: 58.7-86.7%), respectively, in the same analyses. High heterogeneities among the studies were found for sensitivities and PPVs ranging between 61.7-93.3% and 60.6-94.5%, respectively. Radiolabeled choline PET/CT has only a moderate sensitivity for the detection of metastatic lymph nodes in patients who are candidates for sLND, although the pooled PPVs ranged between 75 and 85.8% for all type of subanalyses. The presence of high heterogeneity among the studies should be considered carefully.

  6. Effect of choline carboxylate ionic liquids on biological membranes

    PubMed Central

    Rengstl, Doris; Kraus, Birgit; Van Vorst, Matthew; Elliott, Gloria D.; Kunz, Werner

    2015-01-01

    Choline carboxylates, ChCm, with m = 2–10 and choline oleate are known as biocompatible substances, yet their influence on biological membranes is not well-known, and the effect on human skin has not previously been investigated. The short chain choline carboxylates ChCm with m = 2, 4, 6 act as hydrotropes, solubilizing hydrophobic compounds in aqueous solution, while the longer chain choline carboxylates ChCm with m = 8,10 and oleate are able to form micelles. In the present study, the cytotoxicity of choline carboxylates was tested using HeLa and SK-MEL-28 cells. The influence of these substances on liposomes prepared from dipalmitoylphosphatidylcholine (DPPC) was also evaluated to provide insights on membrane interactions. It was observed that the choline carboxylates with a chain length of m > 8 distinctly influence the bilayer, while the shorter ones had minimal interaction with the liposomes. PMID:25444662

  7. An introduction to the nutrition and metabolism of choline.

    PubMed

    Hollenbeck, Clarie B

    2012-06-01

    Choline is a ubiquitous water soluble nutrient, often associated with the B vitamins; however, not yet officially defined as a B vitamin. It is important in the synthesis of phospholipid components of cell membranes, and plasma lipoproteins, providing structural integrity as well as being important in cell signaling; it is also important in the synthesis of the neurotransmitter acetylcholine, and the oxidized form of choline, glycine betaine, serves as an important methyl donor in the methionine cycle. It is present in a wide variety of foods, and is endogenously synthesized in humans through the sequential methylation of phosphatidylethanolamine. The present article represents an introduction to the nutrition, metabolism, and physiological functions of choline and choline derivatives in humans. The association of choline and choline derivatives in risk of chronic disease, including: neural tube defects, coronary artery disease, cancer, Alzheimer's disease, dementia, and memory, and cystic fibrosis is reviewed.

  8. Alteration in cellular acetylcholine influences dauer formation in Caenorhabditis elegans.

    PubMed

    Lee, Jeeyong; Kim, Kwang-Youl; Paik, Young-Ki

    2014-02-01

    Altered acetylcholine (Ach) homeostasis is associated with loss of viability in flies, developmental defects in mice, and cognitive deficits in human. Here, we assessed the importance of Ach in Caenorhabditis elegans development, focusing on the role of Ach during dauer formation. We found that dauer formation was disturbed in choline acetyltransferase (cha-1) and acetylcholinesterase (ace) mutants defective in Ach biosynthesis and degradation, respectively. When examined the potential role of G-proteins in dauer formation, goa-1 and egl-30 mutant worms, expressing mutated versions of mammalian G(o) and G(q) homolog, respectively, showed some abnormalities in dauer formation. Using quantitative mass spectrometry, we also found that dauer larvae had lower Ach content than did reproductively grown larvae. In addition, a proteomic analysis of acetylcholinesterase mutant worms, which have excessive levels of Ach, showed differential expression of metabolic genes. Collectively, these results indicate that alterations in Ach release may influence dauer formation in C. elegans.

  9. Choline and its metabolites are differently associated with cardiometabolic risk factors, cardiovascular history and MRI documented cerebrovascular disease in older adults

    USDA-ARS?s Scientific Manuscript database

    Background: There is a potential role of choline in cardiovascular and cerebrovascular disease through its involvement in lipid and one-carbon metabolism. Objective: We evaluated the associations of plasma choline and choline-related compounds with cardiometabolic risk factors, history of cardiovas...

  10. 21 CFR 573.580 - Iron-choline citrate complex.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.580 Iron-choline citrate complex. Iron-choline citrate complex made by... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Iron-choline citrate complex. 573.580 Section 573...

  11. 21 CFR 573.580 - Iron-choline citrate complex.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.580 Iron-choline citrate complex. Iron-choline citrate complex made by... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Iron-choline citrate complex. 573.580 Section 573...

  12. 21 CFR 573.580 - Iron-choline citrate complex.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.580 Iron-choline citrate complex. Iron-choline citrate complex made by... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Iron-choline citrate complex. 573.580 Section 573...

  13. 21 CFR 573.580 - Iron-choline citrate complex.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.580 Iron-choline citrate complex. Iron-choline citrate complex made by... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Iron-choline citrate complex. 573.580 Section 573...

  14. 21 CFR 573.580 - Iron-choline citrate complex.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.580 Iron-choline citrate complex. Iron-choline citrate complex made by... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Iron-choline citrate complex. 573.580 Section 573...

  15. Selective binding of choline by a phosphate-coordination-based triple helicate featuring an aromatic box.

    PubMed

    Jia, Chuandong; Zuo, Wei; Yang, Dong; Chen, Yanming; Cao, Liping; Custelcean, Radu; Hostaš, Jiří; Hobza, Pavel; Glaser, Robert; Wang, Yao-Yu; Yang, Xiao-Juan; Wu, Biao

    2017-10-16

    In nature, proteins have evolved sophisticated cavities tailored for capturing target guests selectively among competitors of similar size, shape, and charge. The fundamental principles guiding the molecular recognition, such as self-assembly and complementarity, have inspired the development of biomimetic receptors. In the current work, we report a self-assembled triple anion helicate (host 2) featuring a cavity resembling that of the choline-binding protein ChoX, as revealed by crystal and density functional theory (DFT)-optimized structures, which binds choline in a unique dual-site-binding mode. This similarity in structure leads to a similarly high selectivity of host 2 for choline over its derivatives, as demonstrated by the NMR and fluorescence competition experiments. Furthermore, host 2 is able to act as a fluorescence displacement sensor for discriminating choline, acetylcholine, L-carnitine, and glycine betaine effectively.The choline-binding protein ChoX exhibits a synergistic dual-site binding mode that allows it to discriminate choline over structural analogues. Here, the authors design a biomimetic triple anion helicate receptor whose selectivity for choline arises from a similar binding mechanism.

  16. Hemicholinium-3 sensitive choline transport in human T lymphocytes: Evidence for use as a proxy for brain choline transporter (CHT) capacity.

    PubMed

    Koshy Cherian, Ajeesh; Parikh, Vinay; Wu, Qi; Mao-Draayer, Yang; Wang, Qin; Blakely, Randy D; Sarter, Martin

    2017-09-01

    The synaptic uptake of choline via the high-affinity, hemicholinium-3-dependent choline transporter (CHT) strongly influences the capacity of cholinergic neurons to sustain acetylcholine (ACh) synthesis and release. To advance research on the impact of CHT capacity in humans, we established the presence of the neuronal CHT protein in human T lymphocytes. Next, we demonstrated CHT-mediated choline transport in human T cells. To address the validity of T cell-based choline uptake as a proxy for brain CHT capacity, we isolated T cells from the spleen, and synaptosomes from cortex and striatum, of wild type and CHT-overexpressing mice (CHT-OXP). Choline uptake capacity in T cells from CHT-OXP mice was two-fold higher than in wild type mice, mirroring the impact of CHT over-expression on synaptosomal CHT-mediated choline uptake. Monitoring T lymphocyte CHT protein and activity may be useful for estimating human CNS cholinergic capacity and for testing hypotheses concerning the contribution of CHT and, more generally, ACh signaling in cognition, neuroinflammation and disease. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. The choline requirement of broiler chicks during the seventh week of life.

    PubMed

    Molitoris, B A; Baker, D H

    1976-01-01

    Male crossbred chicks were used to quantify the choline requirement and choline-sparing value of methionine and betaine for broiler chicks during the seventh week of life. The sulfur amino acid (SAA) requirement of male and female chicks was also determined. In all assays a crystalline amino acid diet containing 14.9% protein equivalent and 3400 kcal. M.E./kg, was employed. Increasing increments (0.08%) of SAA (equal mixture of DL-methionine and L-cystine) were fed from 0.38 to 0.70% of the diet. Least squares analysis indicated SAA requirements for maximal weight gain of 0.61 and 0.62% of the diet for males and females, respectively. The choline requirement was determined by feeding six levels of choline in the presence of 0.62% SAA. Gain but not gain/feed responded linearly to choline addition. Least squares analysis of gain indicated a dietary choline requirement of 358 p.p.m. of 30.6 mg./day. The choline-replacement value of methionine and betaine was found to be minimal.

  18. Self-assembly of myristic acid in the presence of choline hydroxide: effect of molar ratio and temperature.

    PubMed

    Arnould, Audrey; Perez, Adrian A; Gaillard, Cédric; Douliez, Jean-Paul; Cousin, Fabrice; Santiago, Liliana G; Zemb, Thomas; Anton, Marc; Fameau, Anne-Laure

    2015-05-01

    Salt-free catanionic systems based on fatty acids exhibit a broad polymorphism by simply tuning the molar ratio between the two components. For fatty acid combined with organic amino counter-ions, very few data are available on the phase behavior obtained as a function of the molar ratio between the counter-ion and the fatty acid. We investigated the choline hydroxide/myristic acid system by varying the molar ratio, R=n(choline hydroxide)/n(myristic acid), and the temperature. Myristic acid ionization state was determined by coupling pH, conductivity and infra-red spectroscopy measurements. Self-assemblies were characterized by small angle neutron scattering and microscopy experiments. Self-assembly thermal behavior was investigated by differential scanning calorimetry, wide angle X-ray scattering and nuclear magnetic resonance. For R<1, ionized and protonated myristic acid molecules coexisted leading to the formation of facetted self-assemblies and lamellar phases. The melting process between the gel and the fluid state of these bilayers induced a structural change from facetted or lamellar objects to spherical vesicles. For R>1, myristic acid molecules were ionized and formed spherical micelles. Our study highlights that both R and temperature are two key parameters to finely control the self-assembly structure formed by myristic acid in the presence of choline hydroxide. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Restriction of dietary methyl donors limits methionine availability and affects the partitioning of dietary methionine for creatine and phosphatidylcholine synthesis in the neonatal piglet.

    PubMed

    Robinson, Jason L; McBreairty, Laura E; Randell, Edward W; Brunton, Janet A; Bertolo, Robert F

    2016-09-01

    Methionine is required for protein synthesis and provides a methyl group for >50 critical transmethylation reactions including creatine and phosphatidylcholine synthesis as well as DNA and protein methylation. However, the availability of methionine depends on dietary sources as well as remethylation of demethylated methionine (i.e., homocysteine) by the dietary methyl donors folate and choline (via betaine). By restricting dietary methyl supply, we aimed to determine the extent that dietary methyl donors contribute to methionine availability for protein synthesis and transmethylation reactions in neonatal piglets. Piglets 4-8 days of age were fed a diet deficient (MD-) (n=8) or sufficient (MS+) (n=7) in folate, choline and betaine. After 5 days, dietary methionine was reduced to 80% of requirement in both groups to elicit a response. On day 8, animals were fed [(3)H-methyl]methionine for 6h to measure methionine partitioning into hepatic protein, phosphatidylcholine, creatine and DNA. MD- feeding reduced plasma choline, betaine and folate (P<.05) and increased homocysteine ~3-fold (P<.05). With MD- feeding, hepatic phosphatidylcholine synthesis was 60% higher (P<.05) at the expense of creatine synthesis, which was 30% lower during MD- feeding (P<.05); protein synthesis as well as DNA and protein methylation were unchanged. In the liver, ~30% of dietary label was traced to phosphatidylcholine and creatine together, with ~50% traced to methylation of proteins and ~20% incorporated in synthesized protein. Dietary methyl donors are integral to neonatal methionine requirements and can affect methionine availability for transmethylation pathways. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Choline requirements of White Pekin ducks from hatch to 21 days of age.

    PubMed

    Wen, Z G; Tang, J; Hou, S S; Guo, Y M; Huang, W; Xie, M

    2014-12-01

    A dose-response experiment with 8 dietary choline levels (302, 496, 778, 990, 1,182, 1,414, 1,625, and 1,832 mg/kg) was conducted with male White Pekin ducks to estimate the choline requirement from hatch to 21 d of age. Three hundred eighty-four 1-d-old male White Pekin ducks were randomly assigned to 8 dietary treatments, each containing 6 replicate pens with 8 birds per pen. At 21 d of age, weight gain, feed intake, and feed/gain from each pen were calculated for feeding period, and 2 ducks selected randomly from each pen were euthanized and the liver was collected to determine total lipids, triglycerides, and phospholipids. In our study, perosis, poor growth, and high liver fat were all observed in choline-deficient ducks and incidence of perosis was zero when dietary choline was 1,182 mg/kg. As dietary choline increased, the weight gain and feed intake increased linearly or quadratically (P < 0.05). On the other hand, as dietary choline increased, the total lipid and triglyceride in liver decreased linearly and liver phospholipid increased linearly (P < 0.05), and the lipotropic activity of choline may be associated with increasing phospholipid at a high dietary choline level. According to broken-line regression, the choline requirements for weight gain and feed intake were 810 and 823 mg/kg, respectively, but higher requirement should be considered to prevent perosis and excess liver lipid deposition completely. ©2014 Poultry Science Association Inc.

  1. [11C]choline uptake in regenerating liver after partial hepatectomy or CCl4-administration.

    PubMed

    Sasaki, Toru

    2004-02-01

    To characterize [methyl-(11)C]choline ([(11)C]choline) as an oncologic PET radiopharmaceutical, [(11)C]choline uptake in regenerating livers after partial hepatectomy as a model of typical proliferating tissue and after CCl(4) insult as that of proliferating tissue with inflammation, was studied in rats. [(11)C]Choline, [(18)F]2-fluoro-2-deoxy-D-glucose ([(18)F]FDG) and [2-(14)C]thymidine ([(14)C]TdR) uptake was studied in regenerating rat liver after 70% partial hepatectomy or CCl(4)-administration. [(11)C]Choline uptake in regenerating liver after partial hepatectomy was significantly increased with [(14)C]TdR uptake as a marker of DNA synthesis at 18 hours after surgery. On the other hand, the uptake was not accelerated by CCl(4)-administration, though it significantly increased [(14)C]TdR uptake. There were no differences of [(11)C]choline uptake acceleration following partial hepatectomy among the three parts of the regenerating liver. [(18)F]FDG uptake was accelerated in the regenerating liver on either partial hepatectomy or CCl(4)-administration. The magnitude of the increase in [(18)F]FDG uptake in the regenerating liver induced by partial hepatectomy was greater than that for [(11)C]choline. [(11)C]Choline uptake in the liver was accelerated by partial hepatectomy, but not by CCl(4)-administration. This might be expected given that the differentiation between proliferating tissues such as tumor and inflammatory tissue was possible by [(11)C]choline-PET.

  2. The effect of cytidine-diphosphate choline (CDP-choline) on brain lipid changes during aging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Medio, G.E.; Trovarelli, G.; Piccinin, G.L.

    1984-01-01

    Lipid synthesis has been tested in vivo in different brain areas of 12-month-old male rats. Cortex, striatum, brainstem, and subcortex of brain have been examined. The cerebellum was discarded. Mixtures of (2-/sup 3/H)glycerol and (Me-/sup 14/C)choline were injected into the lateral ventricle of the brain as lipid precursors, and their incorporation into total lipid, water-soluble intermediates and choline-containing phospholipids was examined 1 hr after isotope injection. In another series of experiments cytidine-5'-diphosphate choline (CDP-choline) was injected intraventricularly to the aged rats 10 min before sacrifice with a simultaneous injection, and radioactivity assays were performed as above. Distribution of radioactivity contentmore » of CDP-choline among brain areas 10 min after its administration showed a noticeable enrichment of the nucleotide and water-soluble-related compounds in the examined areas, but to a lesser degree in the cerebral cortex. The incorporation of labelled glycerol, which is severely depressed in aged rats in all four areas (Gaiti et al, 1982, 1983), was increased only in the cortex, and apparently decreased in the other areas. This last result is probably due to a dilution effect brought about by the administered cold CDP-choline upon the (/sup 14/C)-containing water-soluble metabolites. As a consequence, the (/sup 3/H)/(/sup 14/C) ratio in total lipid and in isolated phosphatidylcholine and choline plasmalogen increased after CDP-choline treatment.« less

  3. The association between betaine and choline intakes and the plasma concentrations of homocysteine in women.

    PubMed

    Chiuve, Stephanie E; Giovannucci, Edward L; Hankinson, Susan E; Zeisel, Steven H; Dougherty, Lauren W; Willett, Walter C; Rimm, Eric B

    2007-10-01

    Elevated total homocysteine (tHcy), a risk factor for many chronic diseases, can be remethylated to methionine by folate. Alternatively, tHcy can be metabolized by other 1-carbon nutrients, ie, betaine and its precursor, choline. We aimed to assess the association between the dietary intakes of betaine and choline and the concentration of tHcy. We conducted a cross-sectional analysis in 1477 women by using linear regression models to predict mean fasting tHcy by intakes of of betaine and choline. tHcy was 8% lower in the highest quintile of total betaine + choline intake than in the lowest quintile, even after control for folate intake (P for trend = 0.07). Neither choline nor betaine intake individually was significantly associated with tHcy. Choline from 2 choline-containing compounds, glycerophosphocholine and phosphocholine, was inversely associated with tHcy. These inverse associations were more pronounced in women with folate intake < 400 mug/d than in those with intakes >or=400 microg/d (P for interaction = 0.03 for phosphocholine) and in moderate alcohol drinkers (>or=15 g/d) than in nondrinkers or light drinkers (<15 g/d) (P for interaction = 0.02 for glycerophosphocholine and 0.04 for phosphocholine). The strongest dose response was seen in women with a low-methyl diet (high alcohol and low folate intake) (P for interaction = 0.002 for glycerophosphocholine and 0.001 for phosphocholine). Total choline + betaine intake was inversely associated with tHcy, as was choline from 2 water-soluble choline-containing compounds. Remethylation of tHcy may be more dependent on the betaine pathway when methyl sources are low as a result of either inadequate folate intake or heavier alcohol consumption.

  4. Choline intake influences phosphatidylcholine DHA enrichment in nonpregnant women but not in pregnant women in the third trimester.

    PubMed

    West, Allyson A; Yan, Jian; Jiang, Xinyin; Perry, Cydne A; Innis, Sheila M; Caudill, Marie A

    2013-04-01

    Phosphatidylcholine (PC) produced via the S-adenosylmethionine-dependent phosphatidylethanolamine (PE) N-methyltransferase (PEMT) pathway is enriched with docosahexaenoic acid (DHA). DHA plays a critical role in fetal development and is linked to health endpoints in adulthood. It is unknown whether choline, which can serve as a source of S-adenosylmethionine methyl groups, influences PC-DHA or the PC:PE ratio in pregnant and nonpregnant women. This study tested whether choline intake affects indicators of choline-related lipid metabolism, including erythrocyte and plasma PC-DHA and PC:PE ratios, in pregnant women in the third trimester and nonpregnant women. Pregnant (n = 26) and nonpregnant (n = 21) women consumed 480 or 930 mg choline/d and a daily DHA supplement for 12 wk. Blood was collected at baseline and at the midpoint and end of the study. PC-DHA was analyzed as the proportion of total PC fatty acids. Pregnant women had greater (P = 0.002) PC-DHA concentrations than did nonpregnant women at baseline. The proportion of erythrocyte and plasma PC-DHA increased (P ≤ 0.002) in pregnant and nonpregnant women regardless of choline intake. However, in nonpregnant women, consumption of 930 mg choline/d led to greater (P < 0.001) erythrocyte PC-DHA and a more rapid increase (P < 0.001) in plasma PC-DHA. Lower (P = 0.001-0.024) erythrocyte and plasma PC:PE in pregnant women was not modified by choline intake. A higher choline intake may increase PEMT activity, resulting in greater PC-DHA enrichment of the PC molecule in nonpregnant women. Increased production of PC-DHA during pregnancy indicates elevated PEMT activity and a higher demand for methyl donors. This trial was registered at clinicaltrials.gov as NCT01127022.

  5. Choline Alleviates Parenteral Nutrition-Associated Duodenal Motility Disorder in Infant Rats.

    PubMed

    Zhu, Jie; Wu, Yang; Guo, Yonggao; Tang, Qingya; Lu, Ting; Cai, Wei; Huang, Haiyan

    2016-09-01

    Parenteral nutrition (PN) has been found to influence duodenal motility in animals. Choline is an essential nutrient, and its deficiency is related to PN-associated organ diseases. Therefore, this study was aimed to investigate the role of choline supplementation in an infant rat model of PN-associated duodenal motility disorder. Three-week-old Sprague-Dawley male rats were fed chow and water (controls), PN solution (PN), or PN plus intravenous choline (600 mg/kg) (PN + choline). Rats underwent jugular vein cannulation for infusion of PN solution or 0.9% saline (controls) for 7 days. Duodenal oxidative stress status, concentrations of plasma choline, phosphocholine, and betaine and serum tumor necrosis factor (TNF)-α were assayed. The messenger RNA (mRNA) and protein expression of c-Kit proto-oncogene protein (c-Kit) and membrane-bound stem cell factor (mSCF) together with the electrophysiological features of slow waves in the duodenum were also evaluated. Rats on PN showed increased reactive oxygen species; decreased total antioxidant capacity in the duodenum; reduced plasma choline, phosphocholine, and betaine; and enhanced serum TNF-α concentrations, which were reversed by choline intervention. In addition, PN reduced mRNA and protein expression of mSCF and c-Kit, which were inversed under choline administration. Moreover, choline attenuated depolarized resting membrane potential and declined the frequency and amplitude of slow waves in duodenal smooth muscles of infant rats induced by PN, respectively. The addition of choline to PN may alleviate the progression of duodenal motor disorder through protecting smooth muscle cells from injury, promoting mSCF/c-Kit signaling, and attenuating impairment of interstitial cells of Cajal in the duodenum during PN feeding. © 2015 American Society for Parenteral and Enteral Nutrition.

  6. The association between betaine and choline intakes and the plasma concentrations of homocysteine in women2

    PubMed Central

    Chiuve, Stephanie E; Giovannucci, Edward L; Hankinson, Susan E; Zeisel, Steven H; Dougherty, Lauren W; Willett, Walter C; Rimm, Eric B

    2008-01-01

    Background Elevated total homocysteine (tHcy), a risk factor for many chronic diseases, can be remethylated to methionine by folate. Alternatively, tHcy can be metabolized by other 1-carbon nutrients, ie, betaine and its precursor, choline. Objective We aimed to assess the association between the dietary intakes of betaine and choline and the concentration of tHcy. Design We conducted a cross-sectional analysis in 1477 women by using linear regression models to predict mean fasting tHcy by intakes of of betaine and choline. Results tHcy was 8% lower in the highest quintile of total betaine + choline intake than in the lowest quintile, even after control for folate intake (P for trend = 0.07). Neither choline nor betaine intake individually was significantly associated with tHcy. Choline from 2 choline-containing compounds, glycerophosphocholine and phosphocholine, was inversely associated with tHcy. These inverse associations were more pronounced in women with folate intake < 400 μg/d than in those with intakes ≥400 μg/d (P for interaction = 0.03 for phosphocholine) and in moderate alcohol drinkers (≥15 g/d) than in nondrinkers or light drinkers (<15 g/d) (P for interaction = 0.02 for glycerophosphocholine and 0.04 for phosphocholine). The strongest dose response was seen in women with a low-methyl diet (high alcohol and low folate intake) (P for interaction = 0.002 for glycerophosphocholine and 0.001 for phosphocholine). Conclusions Total choline + betaine intake was inversely associated with tHcy, as was choline from 2 water-soluble choline-containing compounds. Remethylation of tHcy may be more dependent on the betaine pathway when methyl sources are low as a result of either inadequate folate intake or heavier alcohol consumption. PMID:17921386

  7. Effects of choline on blood metabolites associated with lipid metabolism and digestion by steers fed corn-based diets.

    PubMed

    Bindel, D J; Titgemeyer, E C; Drouillard, J S; Ives, S E

    2005-07-01

    Ruminally cannulated steers (281 +/- 18 kg) were used to evaluate effects of choline on digestion and metabolism. Four steers were implanted with 24 mg of estradiol and 120 mg of trenbolone acetate, and four steers were not implanted. Cattle were assigned to concurrent 4 x 4 Latin squares. Dietary treatments were a 2 x 2 factorial: 0 or 4% tallow (DM basis) in corn-based diets, and 0 or 5 g/d supplemental choline administered abomasally. Blood collected before and 6 h after the initial choline infusion was used to assess acute responses to choline. Digestibility and blood metabolites were measured after adaptation to choline, as well as after an abomasal dose of 100 g of lipid. Digestibilities of dietary DM (P = 0.29) and of dietary total fatty acids (P = 0.42) were not affected by choline. Apparent digestibilities of C18:0 and C18:1 fatty acids were greater (P < 0.05) when diets contained 4% tallow. Digestibilities of fatty acids in the lipid dose were less than those in the diet, and no biologically important differences in fatty acid disappearance resulted from the treatments. No significant acute responses to choline were detected. After adaptation to choline, no important differences in plasma metabolites occurred in response to choline infusion. Plasma urea was less (P < 0.05) for implanted cattle, reflecting increased deposition of protein. Plasma cholesterol was greater (P < 0.05) for steers fed 4% tallow. Changes in plasma triglycerides in response to an abomasal lipid dose were less (P < 0.05) for steers fed 4% tallow, probably due to greater triglyceride concentrations at the time of lipid dosing. In summary, few responses to abomasally infused choline were observed in either digestion or plasma metabolites.

  8. Dietary choline requirements of women: effects of estrogen and genetic variation123

    PubMed Central

    Fischer, Leslie M; da Costa, Kerry-Ann; Kwock, Lester; Galanko, Joseph

    2010-01-01

    Background: Choline is obtained from the diet and from the biosynthesis of phosphatidylcholine. Phosphatidylcholine is catalyzed by the enzyme phosphatidylethanolamine-N-methyltransferase (PEMT), which is induced by estrogen. Because they have lower estrogen concentrations, postmenopausal women are more susceptible to the risk of organ dysfunction in response to a low-choline diet. A common genetic polymorphism (rs12325817) in the PEMT gene can also increase this risk. Objective: The objective was to determine whether the risk of low choline–related organ dysfunction increases with the number of alleles of rs12325817 in premenopausal women and whether postmenopausal women (with or without rs12325817) treated with estrogen are more resistant to developing such symptoms. Design: Premenopausal women (n = 27) consumed a choline-sufficient diet followed by a very-low-choline diet until they developed organ dysfunction (or for 42 d), which was followed by a high-choline diet. Postmenopausal women (n = 22) were placed on the same diets but were first randomly assigned to receive estrogen or a placebo. The women were monitored for organ dysfunction and plasma choline metabolites and were genotyped for rs12325817. Results: A dose-response effect of rs12325817 on the risk of choline-related organ dysfunction was observed in premenopausal women: 80%, 43%, and 13% of women with 2, 1, or 0 alleles, respectively, developed organ dysfunction. Among postmenopausal women, 73% who received placebo but only 18% who received estrogen developed organ dysfunction during the low-choline diet. Conclusions: Because of their lower estrogen concentrations, postmenopausal women have a higher dietary requirement for choline than do premenopausal women. Choline requirements for both groups of women are further increased by rs12325817. This trial was registered at clinicaltrials.gov as NCT00065546. PMID:20861172

  9. Prognostic value of choline and betaine depends on intestinal microbiota-generated metabolite trimethylamine-N-oxide.

    PubMed

    Wang, Zeneng; Tang, W H Wilson; Buffa, Jennifer A; Fu, Xiaoming; Britt, Earl B; Koeth, Robert A; Levison, Bruce S; Fan, Yiying; Wu, Yuping; Hazen, Stanley L

    2014-04-01

    Recent metabolomics and animal model studies show trimethylamine-N-oxide (TMAO), an intestinal microbiota-dependent metabolite formed from dietary trimethylamine-containing nutrients such as phosphatidylcholine (PC), choline, and carnitine, is linked to coronary artery disease pathogenesis. Our aim was to examine the prognostic value of systemic choline and betaine levels in stable cardiac patients. We examined the relationship between fasting plasma choline and betaine levels and risk of major adverse cardiac events (MACE = death, myocardial infraction, stroke) in relation to TMAO over 3 years of follow-up in 3903 sequential stable subjects undergoing elective diagnostic coronary angiography. In our study cohort, median (IQR) TMAO, choline, and betaine levels were 3.7 (2.4-6.2)μM, 9.8 (7.9-12.2)μM, and 41.1 (32.5-52.1)μM, respectively. Modest but statistically significant correlations were noted between TMAO and choline (r = 0.33, P < 0.001) and less between TMAO and betaine (r = 0.09, P < 0.001). Higher plasma choline and betaine levels were associated with a 1.9-fold and 1.4-fold increased risk of MACE, respectively (Quartiles 4 vs. 1; P < 0.01, each). Following adjustments for traditional cardiovascular risk factors and high-sensitivity C-reactive protein, elevated choline [1.34 (1.03-1.74), P < 0.05], and betaine levels [1.33 (1.03-1.73), P < 0.05] each predicted increased MACE risk. Neither choline nor betaine predicted MACE risk when TMAO was added to the adjustment model, and choline and betaine predicted future risk for MACE only when TMAO was elevated. Elevated plasma levels of choline and betaine are each associated with incident MACE risk independent of traditional risk factors. However, high choline and betaine levels are only associated with higher risk of future MACE with concomitant increase in TMAO.

  10. Prognostic value of choline and betaine depends on intestinal microbiota-generated metabolite trimethylamine-N-oxide

    PubMed Central

    Wang, Zeneng; Tang, W. H. Wilson; Buffa, Jennifer A.; Fu, Xiaoming; Britt, Earl B.; Koeth, Robert A.; Levison, Bruce S.; Fan, Yiying; Wu, Yuping; Hazen, Stanley L.

    2014-01-01

    Aims Recent metabolomics and animal model studies show trimethylamine-N-oxide (TMAO), an intestinal microbiota-dependent metabolite formed from dietary trimethylamine-containing nutrients such as phosphatidylcholine (PC), choline, and carnitine, is linked to coronary artery disease pathogenesis. Our aim was to examine the prognostic value of systemic choline and betaine levels in stable cardiac patients. Methods and results We examined the relationship between fasting plasma choline and betaine levels and risk of major adverse cardiac events (MACE = death, myocardial infraction, stroke) in relation to TMAO over 3 years of follow-up in 3903 sequential stable subjects undergoing elective diagnostic coronary angiography. In our study cohort, median (IQR) TMAO, choline, and betaine levels were 3.7 (2.4–6.2)μM, 9.8 (7.9–12.2)μM, and 41.1 (32.5–52.1)μM, respectively. Modest but statistically significant correlations were noted between TMAO and choline (r = 0.33, P < 0.001) and less between TMAO and betaine (r = 0.09, P < 0.001). Higher plasma choline and betaine levels were associated with a 1.9-fold and 1.4-fold increased risk of MACE, respectively (Quartiles 4 vs. 1; P < 0.01, each). Following adjustments for traditional cardiovascular risk factors and high-sensitivity C-reactive protein, elevated choline [1.34 (1.03–1.74), P < 0.05], and betaine levels [1.33 (1.03–1.73), P < 0.05] each predicted increased MACE risk. Neither choline nor betaine predicted MACE risk when TMAO was added to the adjustment model, and choline and betaine predicted future risk for MACE only when TMAO was elevated. Conclusion Elevated plasma levels of choline and betaine are each associated with incident MACE risk independent of traditional risk factors. However, high choline and betaine levels are only associated with higher risk of future MACE with concomitant increase in TMAO. PMID:24497336

  11. Early second trimester maternal plasma choline and betaine are related to measures of early cognitive development in term infants.

    PubMed

    Wu, Brian T F; Dyer, Roger A; King, D Janette; Richardson, Kelly J; Innis, Sheila M

    2012-01-01

    The importance of maternal dietary choline for fetal neural development and later cognitive function has been well-documented in experimental studies. Although choline is an essential dietary nutrient for humans, evidence that low maternal choline in pregnancy impacts neurodevelopment in human infants is lacking. We determined potential associations between maternal plasma free choline and its metabolites betaine and dimethylglycine in pregnancy and infant neurodevelopment at 18 months of age. This was a prospective study of healthy pregnant women and their full-term, single birth infants. Maternal blood was collected at 16 and 36 weeks of gestation and infant neurodevelopment was assessed at 18 months of age for 154 mother-infant pairs. Maternal plasma choline, betaine, dimethylglycine, methionine, homocysteine, cysteine, total B12, holotranscobalamin and folate were quantified. Infant neurodevelopment was evaluated using the Bayley Scales of Infant Development-III. Multivariate regression, adjusting for covariates that impact development, was used to determine the associations between maternal plasma choline, betaine and dimethylglycine and infant neurodevelopment. The maternal plasma free choline at 16 and 36 weeks gestation was median (interquartile range) 6.70 (5.78-8.03) and 9.40 (8.10-11.3) µmol/L, respectively. Estimated choline intakes were (mean ± SD) 383 ± 98.6 mg/day, and lower than the recommended 450 mg/day. Betaine intakes were 142 ± 70.2 mg/day. Significant positive associations were found between infant cognitive test scores and maternal plasma free choline (B=6.054, SE=2.283, p=0.009) and betaine (B=7.350, SE=1.933, p=0.0002) at 16 weeks of gestation. Maternal folate, total B12, or holotranscobalamin were not related to infant development. We show that choline status in the first half of pregnancy is associated with cognitive development among healthy term gestation infants. More work is needed on the potential limitation of choline or betaine in the diets of pregnant women.

  12. Non-invasive Optical Molecular Imaging for Cancer Detection

    NASA Astrophysics Data System (ADS)

    Luo, Zhen

    Cancer is a leading cause of death worldwide. It remains the second most common cause of death in the US, accounting for nearly 1 out of every 4 deaths. Improved fundamental understanding of molecular processes and pathways resulting in cancer development has catalyzed a shift towards molecular analysis of cancer using imaging technologies. It is expected that the non-invasive or minimally invasive molecular imaging analysis of cancer can significantly aid in improving the early detection of cancer and will result in reduced mortality and morbidity associated with the disease. The central hypothesis of the proposed research is that non-invasive imaging of changes in metabolic activity of individual cells, and extracellular pH within a tissue will improve early stage detection of cancer. The specific goals of this research project were to: (a) develop novel optical imaging probes to image changes in choline metabolism and tissue pH as a function of progression of cancer using clinically isolated tissue biopsies; (b) correlate changes in tissue extracellular pH and metabolic activity of tissues as a function of disease state using clinically isolated tissue biopsies; (c) provide fundamental understanding of relationship between tumor hypoxia, acidification of the extracellular space and altered cellular metabolism with progression of cancer. Three novel molecular imaging probes were developed to detect changes in choline and glucose metabolism and extracellular pH in model systems and clinically isolated cells and biopsies. Glucose uptake and metabolism was measured using a fluorescence analog of glucose, 2-NBDG (2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-D-glucose), while choline metabolism was measured using a click chemistry analog of choline, propargyl choline, which can be in-situ labeled with a fluorophore Alexa-488 azide via a click chemistry reaction. Extracellular pH in tissue were measured by Alexa-647 labeled pHLIP (pH low insertion peptide), which can selectively target plasma membrane of cells based on lower extracellular pH. 20 pairs of clinically normal and abnormal biopsies were obtained from consenting patients at UCDMC. Fluorescence intensity of tissue biopsies before and after topical delivery of 2-NBDG and Alexa-647 labeled pHLIP was measured non-invasively by widefield imaging and confocal microscope. Uptake of propargyl choline was measured after topical delivery using confocal microscope. The results of all three molecular imagine probes were further correlated with pathological diagnosis. The imaging results of clinical biopsies demonstrated that 2-NBDG, propargyl choline and pHLIP peptide can accurately distinguish the pathologically normal and abnormal biopsies. Topical application of the contrast agents generated significantly higher fluorescence signal intensity in all neoplastic tissues as compared to clinically normal biopsies irrespective of the anatomic location or patient. This unpaired comparison across all the cancer patients in this study highlights the specificity of the imaging approach. Furthermore, the results indicated that changes in intracellular glucose, choline metabolism and cancer acidosis are initiated in the early stages of cancer and these changes are correlated with the progression of the disease. In conclusion, these novel optical molecular imaging approaches to measure multiple biomarkers in cancer have significant potential to be a useful tool for improving early detection and prognostic evaluation of oral neoplasia.

  13. Randomized, double-blind, placebo-controlled clinical trial of choline supplementation in school-aged children with fetal alcohol spectrum disorders.

    PubMed

    Nguyen, Tanya T; Risbud, Rashmi D; Mattson, Sarah N; Chambers, Christina D; Thomas, Jennifer D

    2016-12-01

    Prenatal alcohol exposure results in a broad range of cognitive and behavioral impairments. Because of the long-lasting problems that are associated with fetal alcohol spectrum disorders (FASDs), the development of effective treatment programs is critical. Preclinical animal studies have shown that choline, which is an essential nutrient, can attenuate the severity of alcohol-related cognitive impairments. We aimed to translate preclinical findings to a clinical population to investigate whether choline supplementation can ameliorate the severity of memory, executive function, and attention deficits in children with FASDs. In the current study, which was a randomized, double-blind, placebo-controlled clinical trial, we explored the effectiveness of a choline intervention for children with FASDs who were aged 5-10 y. Fifty-five children with confirmed histories of heavy prenatal alcohol exposure were randomly assigned to either the choline (n = 29) or placebo (n = 26) treatment arms. Participants in the choline group received 625 mg choline/d for 6 wk, whereas subjects in the placebo group received an equivalent dose of an inactive placebo treatment. Primary outcomes, including the performance on neuropsychological measures of memory, executive function, and attention and hyperactivity, were assessed at baseline and postintervention. Compared with the placebo group, participants in the choline group did not differentially improve in cognitive performance in any domain. Treatment compliance and mean dietary choline intake were not predictive of treatment outcomes. Findings of the current study do not support that choline, administered at a dose of 625 mg/d for 6 wk, is an effective intervention for school-aged (5-10 y old) children with FASDs. This research provides important information about choline's therapeutic window. Combined with other studies of choline and nutritional interventions in this population, this study emphasizes a further need for the continued study of the role of nutritional status and supplementation in children with FASDs and the contributions of nutrition to neurocognition. This trial was registered at clinicaltrials.gov as NCT01911299. © 2016 American Society for Nutrition.

  14. CDP-choline: pharmacological and clinical review.

    PubMed

    Secades, J J; Frontera, G

    1995-10-01

    Cytidine 5'-diphosphocholine, CDP-choline or citicoline, is an essential intermediate in the biosynthetic pathway of the structural phospholipids of cell membranes, especially in that of phosphatidylcholine. Upon oral or parenteral administration, CDP-choline releases its two principle components, cytidine and choline. When administered orally, it is absorbed almost completely, and its bioavailability is approximately the same as when administered intravenously. Once absorbed, the cytidine and choline disperse widely throughout the organism, cross the blood-brain barrier and reach the central nervous system (CNS), where they are incorporated into the phospholipid fraction of the membrane and microsomes. CDP-choline activates the biosynthesis of structural phospholipids in the neuronal membranes, increases cerebral metabolism and acts on the levels of various neurotransmitters. Thus, it has been experimentally proven that CDP-choline increases noradrenaline and dopamine levels in the CNS. Due to these pharmacological activities, CDP-choline has a neuroprotective effect in situations of hypoxia and ischemia, as well as improved learning and memory performance in animal models of brain aging. Furthermore, it has been demonstrated that CDP-choline restores the activity of mitochondrial ATPase and of membranal Na+/K+ ATPase, inhibits the activation of phospholipase A2 and accelerates the reabsorption of cerebral edema in various experimental models. CDP-choline is a safe drug, as toxicological tests have shown; it has no serious effects on the cholinergic system and it is perfectly tolerated. These pharmacological characteristics, combined with CDP-choline's mechanisms of action, suggest that this drug may be suitable for the treatment of cerebral vascular disease, head trauma of varying severity and cognitive disorders of diverse etiology. In studies carried out on the treatment of patients with head trauma, CDP-choline accelerated the recovery from post-traumatic coma and the recuperation of walking ability, achieved a better final functional result and reduced the hospital stay of these patients, in addition to improving the cognitive and memory disturbances which are observed after a head trauma of lesser severity and which constitute the disorder known as postconcussion syndrome. In the treatment of patients with acute cerebral vascular disease of the ischemic type, CDP-choline accelerated the recovery of consciousness and motor deficit, attaining a better final result and facilitating the rehabilitation of these patients. The other important use for CDP-choline is in the treatment of senile cognitive impairment, which is secondary to degenerative diseases (e.g., Alzheimer's disease) and to chronic cerebral vascular disease. In patients with chronic cerebral ischemia, CDP-choline improves scores on cognitive evaluation scales, while in patients with senile dementia of the Alzheimer's type, it slows the disease's evolution. Beneficial neuroendocrine, neuroimmunomodulatory and neurophysiological effects have been described. CDP-choline has also been shown to be effective as co-therapy for Parkinson's disease. No serious side effects have been found in any of the groups of patients treated with CDP-choline, which demonstrates the safety of the treatment.

  15. Dietary intake and food sources of choline in European populations.

    PubMed

    Vennemann, Francy B C; Ioannidou, Sofia; Valsta, Liisa M; Dumas, Céline; Ocké, Marga C; Mensink, Gert B M; Lindtner, Oliver; Virtanen, Suvi M; Tlustos, Christina; D'Addezio, Laura; Mattison, Irene; Dubuisson, Carine; Siksna, Inese; Héraud, Fanny

    2015-12-28

    Choline is an important nutrient for humans. Choline intake of the European population was assessed considering the European Food Safety Authority European Comprehensive Food Consumption Database and the United States Department of Agriculture Nutrient Database. Average choline intake ranges were 151-210 mg/d among toddlers (1 to ≤3 years old), 177-304 mg/d among other children (3 to ≤10 years old), 244-373 mg/d among adolescents (10 to ≤18 years old), 291-468 mg/d among adults (18 to ≤65 years old), 284-450 mg/d among elderly people (65 to ≤75 years old) and 269-444 mg/d among very elderly people (≥75 years old). The intakes were higher among males compared with females, mainly due to larger quantities of food consumed per day. In most of the population groups considered, the average choline intake was below the adequate intake (AI) set by the Institute of Medicine in the USA. The main food groups contributing to choline intake were meat, milk, grain, egg and their derived products, composite dishes and fish. The main limitations of this study are related to the absence of choline composition data of foods consumed by the European population and the subsequent assumption made to assess their intake levels. Given the definition of AI, no conclusion on the adequacy of choline intake can be drawn for most European population groups. Such results improve the knowledge on choline intake in Europe that could be further refined by the collection of choline composition data for foods as consumed in Europe.

  16. Choline and betaine intake and colorectal cancer risk in Chinese population: a case-control study.

    PubMed

    Lu, Min-Shan; Fang, Yu-Jing; Pan, Zhi-Zhong; Zhong, Xiao; Zheng, Mei-Chun; Chen, Yu-Ming; Zhang, Cai-Xia

    2015-01-01

    Few studies have examined the association of choline and betaine intake with colorectal cancer risk, although they might play an important role in colorectal cancer development because of their role as methyl donors. The aim of this study was to examine the relationship between consumption of choline and betaine and colorectal cancer risk in a Chinese population. A case-control study was conducted between July 2010 and December 2013 in Guangzhou, China. Eight hundred and ninety consecutively recruited colorectal cancer cases were frequency matched to 890 controls by age (5-year interval) and sex. Dietary information was assessed with a validated food frequency questionnaire by face-to-face interviews. The logistic regression model was used to estimate multivariate odds ratios (ORs) and 95% confidence intervals (CIs). Total choline intake was inversely associated with colorectal cancer risk after adjustment for various lifestyle and dietary factors. The multivariate-adjusted OR was 0.54 (95%CI = 0.37-0.80, Ptrend <0.01) comparing the highest with the lowest quartile. No significant associations were observed for betaine or total choline+betaine intakes. For choline-containing compounds, lower colorectal cancer risk was associated with higher intakes of choline from phosphatidylcholine, glycerophosphocholine and sphingomyelin but not for free choline and phosphocholine. The inverse association of total choline intake with colorectal cancer risk was observed in both men and women, colon and rectal cancer. These inverse associations were not modified by folate intake. These results indicate that high intake of total choline is associated with a lower risk of colorectal cancer.

  17. Choline and Betaine Intake and Colorectal Cancer Risk in Chinese Population: A Case-Control Study

    PubMed Central

    Pan, Zhi-Zhong; Zhong, Xiao; Zheng, Mei-Chun; Chen, Yu-Ming; Zhang, Cai-Xia

    2015-01-01

    Background Few studies have examined the association of choline and betaine intake with colorectal cancer risk, although they might play an important role in colorectal cancer development because of their role as methyl donors. The aim of this study was to examine the relationship between consumption of choline and betaine and colorectal cancer risk in a Chinese population. Methodology/Principal Findings A case-control study was conducted between July 2010 and December 2013 in Guangzhou, China. Eight hundred and ninety consecutively recruited colorectal cancer cases were frequency matched to 890 controls by age (5-year interval) and sex. Dietary information was assessed with a validated food frequency questionnaire by face-to-face interviews. The logistic regression model was used to estimate multivariate odds ratios (ORs) and 95% confidence intervals (CIs). Total choline intake was inversely associated with colorectal cancer risk after adjustment for various lifestyle and dietary factors. The multivariate-adjusted OR was 0.54 (95%CI = 0.37-0.80, Ptrend <0.01) comparing the highest with the lowest quartile. No significant associations were observed for betaine or total choline+betaine intakes. For choline-containing compounds, lower colorectal cancer risk was associated with higher intakes of choline from phosphatidylcholine, glycerophosphocholine and sphingomyelin but not for free choline and phosphocholine. The inverse association of total choline intake with colorectal cancer risk was observed in both men and women, colon and rectal cancer. These inverse associations were not modified by folate intake. Conclusions These results indicate that high intake of total choline is associated with a lower risk of colorectal cancer. PMID:25785727

  18. Choline+ is a low-affinity ligand for alpha 1-adrenoceptors.

    PubMed

    Unelius, L; Cannon, B; Nedergaard, J

    1994-10-07

    The effect of choline+, a commonly used Na+ substitute, on ligand binding to alpha 1-adrenoceptors was investigated. It was found that replacement of 25% of the Na+ in a Krebs-Ringer bicarbonate buffer with choline+ led to a 3-fold decrease in the apparent affinity of [3H]prazosin for its binding site (i.e. the alpha 1-receptor) in a membrane preparation from brown adipose tissue, while no decrease in the total number of binding sites was observed. Similar effects were seen in membrane preparations from liver and brain. In competition experiments, it was found that choline+ could inhibit [3H]prazosin binding; from the inhibition curve, an affinity (Ki) of 31 mM choline+ for the [3H]prazosin-binding site could be calculated. In fully choline(+)-substituted buffers, where the level of [3H]prazosin binding was substantially reduced, both phentolamine and norepinephrine could still compete with [3H]prazosin for its binding site, with virtually unaltered affinity; thus choline+ did not substantially affect the characteristics of those receptors to which it did not bind. Choline+ did not affect the binding characteristics of the beta 1/beta 2 radioligand [3H]CGP-12177; thus, the effect on alpha 1-receptors was not due to general, unspecific effects on the membrane preparations. It is concluded that choline+ possesses characteristics similar to those of a competitive ligand for the alpha 1-adrenoceptor; it has a low affinity but the competitive type of interaction of choline may nonetheless under experimental conditions interfere with agonist interaction with the alpha 1-receptor.

  19. Choline as an agonist: determination of its agonistic potency on cholinergic receptors.

    PubMed

    Ulus, I H; Millington, W R; Buyukuysal, R L; Kiran, B K

    1988-07-15

    These experiments examined the potency of choline as a cholinergic agonist at both muscarinic and nicotinic receptors in rat brain and peripheral tissues. Choline stimulated the contraction of isolated smooth muscle preparations of the stomach fundus, urinary bladder and trachea and reduced the frequency of spontaneous contractions of the right atrium at high micromolar and low millimolar concentrations. The potency of choline to elicit a biological response varied markedly among these tissues; EC50 values ranged between 0.41 mM in the fundus to 14.45 mM in the atrium. Choline also displaced [3H]quinuclidinyl benzilate binding in a concentration-dependent manner although, again, its potency varied among different brain regions (Ki = 1.2 to 3.5 mM) and peripheral tissues (Ki = 0.28 to 3.00 mM). Choline exhibited a comparable affinity for nicotinic receptors. It stimulated catecholamine release from the vascularly perfused adrenal gland (EC50 = 1.3 mM) and displaced L-[3H]nicotine binding to membrane preparations of brain and peripheral tissues (Ki = 0.38 to 1.17 mM). However, the concentration of choline required to bind to cholinergic receptors in most tissues was considerably higher than serum levels either in controls (8-13 microM) or following the administration of choline chloride (200 microM). These results clearly demonstrate that choline is a weak cholinergic agonist. Its potency is too low to account for the central nervous system effects produced by choline administration, although the direct activation of cholinergic receptors in several peripheral tissues may explain some of its side effects.

  20. CDP-choline modulates matrix metalloproteinases in rat sciatic injury.

    PubMed

    Gundogdu, Elif Basaran; Bekar, Ahmet; Turkyilmaz, Mesut; Gumus, Abdullah; Kafa, Ilker Mustafa; Cansev, Mehmet

    2016-02-01

    CDP-choline (cytidine-5'-diphosphocholine) improves functional recovery, promotes nerve regeneration, and decreases perineural scarring in rat peripheral nerve injury. The aim of the present study was to investigate the mechanism of action of CDP-choline with regard to matrix metalloproteinase (MMP) activity in the rat-transected sciatic nerve injury model. Male Wistar rats were randomized into Sham, Saline, and CDP-choline groups. Rats in Sham group received Sham surgery, whereas rats in Saline and CDP-choline groups underwent right sciatic nerve transection followed by immediate primary saturation and injected intraperitoneally with 0.9% NaCl (1 mL/kg) and CDP-choline (600 μg/kg), respectively. Sciatic nerve samples were obtained 1, 3, and 7 d after the surgery and analyzed for levels and activities of MMP-2 and MMP-9, levels of tissue inhibitor of metalloproteinases-1 (TIMP-1) and TIMP-3, and axonal regeneration. CDP-choline treatment decreased the levels and activities of MMP-2 and MMP-9, whereas increasing levels of TIMP-1 and TIMP-3 significantly on the third and seventh day after injury compared to Saline group. In addition, CDP-choline administration resulted in new axon formation and formation and advancement of myelination on newly formed islets (compartments) of axonal regrowth. Our data show, for the first time, that CDP-choline modulates MMP activity and promotes the expression of TIMPs to stimulate axonal regeneration. These data help to explain one mechanism by which CDP-choline provides neuroprotection in peripheral nerve injury. Copyright © 2016 Elsevier Inc. All rights reserved.

Top