Involvement of a Na+/HCO-3 cotransporter in mouse sperm capacitation.
Demarco, Ignacio A; Espinosa, Felipe; Edwards, Jennifer; Sosnik, Julian; De La Vega-Beltran, Jose Luis; Hockensmith, Joel W; Kopf, Gregory S; Darszon, Alberto; Visconti, Pablo E
2003-02-28
Mammalian sperm are incapable of fertilizing eggs immediately after ejaculation; they acquire fertilization capacity after residing in the female tract for a finite period of time. The physiological changes sperm undergo in the female reproductive tract that render sperm able to fertilize constitute the phenomenon of "sperm capacitation." We have demonstrated that capacitation is associated with an increase in the tyrosine phosphorylation of a subset of proteins and that these events are regulated by an HCO(3)(-)/cAMP-dependent pathway involving protein kinase A. Capacitation is also accompanied by hyperpolarization of the sperm plasma membrane. Here we present evidence that, in addition to its role in the regulation of adenylyl cyclase, HCO(3)(-) has a role in the regulation of plasma membrane potential in mouse sperm. Addition of HCO(3)(-) but not Cl(-) induces a hyperpolarizing current in mouse sperm plasma membranes. This HCO(3)(-)-dependent hyperpolarization was not observed when Na(+) was replaced by the non-permeant cation choline(+). Replacement of Na(+) by choline(+) also inhibited the capacitation-associated increase in protein tyrosine phosphorylation as well as the zona pellucida-induced acrosome reaction. The lack of an increase in protein tyrosine phosphorylation was overcome by the presence of cAMP agonists in the incubation medium. The lack of a hyperpolarizing HCO(3)(-) current and the inhibition of the capacitation-dependent increase in protein tyrosine phosphorylation in the absence of Na(+) suggest that a Na(+)/HCO(3)(-) cotransporter is present in mouse sperm and is coupled to events regulating capacitation.
Sodium-bicarbonate cotransport in retinal Müller (glial) cells of the salamander.
Newman, E A
1991-12-01
An electrogenic Na+/HCO3- cotransport system was studied in freshly dissociated Müller cells of the salamander retina. Cotransporter currents were recorded from isolated cells using the whole-cell, voltage-clamp technique following the block of K+ conductance with external Ba2+ and internal Cs+. At constant pHo, an outward current was evoked when extracellular HCO3- concentration was raised by pressure ejecting a HCO3(-)-buffered solution onto the surface of cells bathed in nominally HCO3(-)-free solution. The HCO3(-)-evoked outward current was reduced to 4.4% of control by 0.5 mM DIDS (4,4'-diisothiocyanatostilbene-2,2'-disulfonate), to 28.8% of control by 2 mM DNDS (4,4'-dinitrostilbene-2,2'-disulfonate), and to 28.4% of control by 2 mM harmaline. Substitution of choline for Na+ in bath and ejection solutions reduced the response to 1.3% of control. Bicarbonate-evoked currents of normal magnitude were recorded when methane sulfonate was substituted for Cl- in bath, ejection, and intracellular solutions. Similarly, an outward current was evoked when extracellular Na+ concentration was raised in the presence of HCO3-. The Na(+)-evoked response was reduced to 16.2% of control by 2 mM DNDS and was abolished by removal of HCO3- from bath and ejection solutions. Taken together, these results (block by stilbenes and harmaline, HCO3- and Na+ dependence, Cl- independence) indicate that salamander Müller cells possess an electrogenic Na+/HCO3- cotransport system. Na+/HCO3- cotransporter sites were localized primarily at the endfoot region of Müller cells. Ejection of HCO3- onto the endfoot evoked outward currents 10 times larger than currents evoked by ejections onto the opposite (distal) end of the cell. The reversal potential of the cotransporter was determined by DNDS block of cotransport current. In the absence of a transmembrane HCO3- gradient, the reversal potential varied systematically as a function of the transmembrane Na+ gradient. The reversal potential was -0.1 mV for a [Na+]o:[Na+]i ratio of 1:1 and -25.2 mV for a Na+ gradient ratio of 7.4:1. Based on these values, the estimated stoichiometry of the cotransporter was 2.80 +/- 0.13:1 (HCO3-:Na+). Possible functions of the glial cell Na+/HCO3- cotransporter, including the regulation of CO2 in the retina and the regulation of cerebral blood flow, are discussed.
Pottosin, Igor; Bonales-Alatorre, Edgar; Shabala, Sergey
2014-11-03
Activity of tonoplast slow vacuolar (SV, or TPC1) channels has to be under a tight control, to avoid undesirable leak of cations stored in the vacuole. This is particularly important for salt-grown plants, to ensure efficient vacuolar Na(+) sequestration. In this study we show that choline, a cationic precursor of glycine betaine, efficiently blocks SV channels in leaf and root vacuoles of the two chenopods, Chenopodium quinoa (halophyte) and Beta vulgaris (glycophyte). At the same time, betaine and proline, two major cytosolic organic osmolytes, have no significant effect on SV channel activity. Physiological implications of these findings are discussed. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Hayashizaki-Someya, Yuka; Kurosaki, Eiji; Takasu, Toshiyuki; Mitori, Hikaru; Yamazaki, Shunji; Koide, Kumi; Takakura, Shoji
2015-05-05
Ipragliflozin is a selective sodium glucose cotransporter 2 (SGLT2) inhibitor that increases urinary glucose excretion by inhibiting renal glucose reabsorption and thereby causes a subsequent antihyperglycemic effect. As nonalcoholic fatty liver disease (NAFLD), including nonalcoholic steatohepatitis (NASH), is closely linked to metabolic diseases such as obesity and diabetes, we investigated the effect of ipragliflozin on NAFLD in rats fed a choline-deficient l-amino acid-defined (CDAA) diet. Five weeks after starting the CDAA diet, rats exhibited hepatic triglyceride (TG) accumulation, fibrosis, and mild inflammation. Repeated oral administration of ipragliflozin (3mg/g, once daily for 5 weeks) prevented both hepatic TG accumulation (188 vs.290 mg/g tissue vehicle-treated group; P<0.001) and large lipid droplet formation. Further, ipragliflozin exerted a prophylactic effect on liver fibrosis, as indicated by a marked decrease in hydroxyproline content and fibrosis score. Pioglitazone, which is known to be effective on hepatic fibrosis in CDAA diet-fed rats as well as NASH patients with type 2 diabetes mellitus (T2DM), also exerted a mild prophylactic effect on fibrosis, but not on hepatic TG accumulation or inflammation. In conclusion, ipragliflozin prevented hepatic TG accumulation and fibrosis in CDAA-diet rats. These findings suggest the therapeutic potential of ipragliflozin for patients with NAFLD. Copyright © 2015 Elsevier B.V. All rights reserved.
Pelis, Ryan M.; Zydlewski, Joseph D.; McCormick, Stephen D.
2001-01-01
Na+-K+-2Cl−cotransporter abundance and location was examined in the gills of Atlantic salmon (Salmo salar) during seawater acclimation and smolting. Western blots revealed three bands centered at 285, 160, and 120 kDa. The Na+-K+-2Cl−cotransporter was colocalized with Na+-K+-ATPase to chloride cells on both the primary filament and secondary lamellae. Parr acclimated to 30 parts per thousand seawater had increased gill Na+-K+-2Cl− cotransporter abundance, large and numerous Na+-K+-2Cl− cotransporter immunoreactive chloride cells on the primary filament, and reduced numbers on the secondary lamellae. Gill Na+-K+-2Cl− cotransporter levels were low in presmolts (February) and increased 3.3-fold in smolts (May), coincident with elevated seawater tolerance. Cotransporter levels decreased below presmolt values in postsmolts in freshwater (June). The size and number of immunoreactive chloride cells on the primary filament increased threefold during smolting and decreased in postsmolts. Gill Na+-K+-ATPase activity and Na+-K+-2Cl− cotransporter abundance increased in parallel during both seawater acclimation and smolting. These data indicate a direct role of the Na+-K+-2Cl− cotransporter in salt secretion by gill chloride cells of teleost fish.
1992-01-01
This study is concerned with the relationship between the Na/K/Cl cotransport system and the steady-state volume (MCV) of red blood cells. Cotransport rate was determined in unfractionated and density- separated red cells of different MCV from different donors to see whether cotransport differences contribute to the difference in the distribution of MCVs. Cotransport, studied in cells at their original MCVs, was determined as the bumetanide (10 microM)-sensitive 22Na efflux in the presence of ouabain (50 microM) after adjusting cellular Na (Nai) and Ki to achieve near maximal transport rates. This condition was chosen to rule out MCV-related differences in Nai and Ki that might contribute to differences in the net chemical driving force for cotransport. We found that in both unfractionated and density-separated red cells the cotransport rate was inversely correlated with MCV. MCV was correlated directly with red cell 2,3-diphosphoglycerate (DPG), whereas total red cell Mg was only slightly elevated in cells with high MCV. Thus intracellular free Mg (Mgifree) is evidently lower in red cells with high 2,3-DPG (i.e., high MCV) and vice versa. Results from flux measurements at their original MCVs, after altering Mgifree with the ionophore A23187, indicated a high Mgi sensitivity of cotransport: depletion of Mgifree inhibited and an elevation of Mgifree increased the cotransport rate. The apparent K0.5 for Mgifree was approximately 0.4 mM. Maximizing Mgifree at optimum Nai and Ki minimized the differences in cotransport rates among the different donors. It is concluded that the relative cotransport rate is regulated for cells in the steady state at their original cell volume, not by the number of copies of the cotransporter but by differences in Mgifree. The interindividual differences in Mgifree, determined primarily by differences in the 2,3-DPG content, are responsible for the differences in the relative cotransport activity that results in an inverse relationship with in vivo differences in MCV. Indirect evidence indicates that the relative cotransport rate, as indexed by Mgifree, is determined by the phosphorylated level of the cotransport system. PMID:1607852
Urea inhibits NaK2Cl cotransport in human erythrocytes.
Lim, J; Gasson, C; Kaji, D M
1995-01-01
We examined the effect of urea on NaK2Cl cotransport in human erythrocytes. In erythrocytes from nine normal subjects, the addition of 45 mM urea, a concentration commonly encountered in uremic subjects, inhibited NaK2Cl cotransport by 33 +/- 7%. Urea inhibited NaK2Cl cotransport reversibly, and in a concentration-dependent fashion with half-maximal inhibition at 63 +/- 10 mM. Acute cell shrinkage increased, and acute cell swelling decreased NaK2Cl cotransport in human erythrocytes. Okadaic acid (OA), a specific inhibitor of protein phosphatase 1 and 2A, increased NaK2Cl cotransport by nearly 80%, suggesting an important role for these phosphatases in the regulation of NaK2Cl cotransport. Urea inhibited bumetanide-sensitive K influx even when protein phosphatases were inhibited with OA, suggesting that urea acted by inhibiting a kinase. In cells subjected to shrinking and OA pretreatment, maneuvers expected to increase the net phosphorylation, urea inhibited cotransport only minimally, suggesting that urea acted by causing a net dephosphorylation of the cotransport protein, or some key regulatory protein. The finding that concentrations of urea found in uremic subjects inhibited NaK2Cl cotransport, a widespread transport pathway with important physiological functions, suggests that urea is not only a marker for accumulation of other uremic toxins, but may be a significant uremic toxin itself. PMID:7593597
KCl cotransport regulation and protein kinase G in cultured vascular smooth muscle cells.
Adragna, N C; Zhang, J; Di Fulvio, M; Lincoln, T M; Lauf, P K
2002-05-15
K-Cl cotransport is activated by vasodilators in erythrocytes and vascular smooth muscle cells and its regulation involves putative kinase/phosphatase cascades. N-ethylmaleimide (NEM) activates the system presumably by inhibiting a protein kinase. Nitrovasodilators relax smooth muscle via cGMP-dependent activation of protein kinase G (PKG), a regulator of membrane channels and transporters. We investigated whether PKG regulates K-Cl cotransport activity or mRNA expression in normal, PKG-deficient-vector-only-transfected (PKG-) and PKG-catalytic-domain-transfected (PKG+) rat aortic smooth muscle cells. K-Cl cotransport was calculated as the Cl-dependent Rb influx, and mRNA was determined by semiquantitative RT-PCR. Baseline K-Cl cotransport was higher in PKG+ than in PKG- cells (p <0.01). At 0.5 mM, NEM stimulated K-Cl cotransport by 5-fold in PKG- but not in PKG+ cells. However, NEM was more potent although less effective to activate K-Cl cotransport in normal (passage 1-3) and PKG+ than in PKG- cells. In PKG- cells, [(dihydroindenyl) oxy] alkanoic acid (300 mM) but not furosemide (1 mM) inhibited K-Cl cotransport. Furthermore, no difference in K-Cl cotransport mRNA expression was observed between these cells. In conclusion, this study shows that manipulation of PKG expression in vascular smooth muscle cells affects K-Cl cotransport activity and its activation by NEM.
Zeuthen*, Thomas; Belhage, Bo; Zeuthen, Emil
2006-01-01
The relation between substrate and water transport was studied in Na+-coupled cotransporters of glucose (SGLT1) and of iodide (NIS) expressed in Xenopus oocytes. The water transport was monitored from changes in oocyte volume at a resolution of 20 pl, more than one order of magnitude better than previous investigations. The rate of cotransport was monitored as the clamp current obtained from two-electrode voltage clamp. The high resolution data demonstrated a fixed ratio between the turn-over of the cotransporter and the rate of water transport. This applied to experiments in which the rate of cotransport was changed by isosmotic application of substrate, by rapid changes in clamp voltage, or by poisoning. Transport of larger substrates gave rise to less water transport. For the rabbit SGLT1, 378 ± 20 (n = 18 oocytes) water molecules were cotransported along with the 2 Na+ ions and the glucose-analogue α-MDG (MW 194); using the larger sugar arbutin (MW 272) this number was reduced by a factor of at least 0.86 ± 0.03 (15). For the human SGLT1 the respective numbers were 234 ± 12 (18) and 0.85 ± 0.8 (7). For NIS, 253 ± 16 (12) water molecules were cotransported for each 2 Na+ and 1 thiocyanate (SCN−, MW 58), with I− as anion (MW 127) only 162 ± 11 (19) water molecules were cotransported. The effect of substrate size suggests a molecular mechanism for water cotransport and is opposite to what would be expected from unstirred layer effects. Data were analysed by a model which combined cotransport and osmosis at the membrane with diffusion in the cytoplasm. The combination of high resolution measurements and precise modelling showed that water transport across the membrane can be explained by cotransport of water in the membrane proteins and that intracellular unstirred layers effects are minute. PMID:16322051
Petrezselyova, Silvia; Dominguez, Angel; Herynkova, Pavla; Macias, Juan F; Sychrova, Hana
2013-10-01
Cation–chloride co-transporters serve to transport Cl– and alkali metal cations. Whereas a large family of these exists in higher eukaryotes, yeasts only possess one cation–chloride co-transporter, Vhc1, localized to the vacuolar membrane. In this study, the human cation–chloride co-transporter NKCC2 complemented the phenotype of VHC1 deletion in Saccharomyces cerevisiae and its activity controlled the growth of salt-sensitive yeast cells in the presence of high KCl, NaCl and LiCl. A S. cerevisiae mutant lacking plasma-membrane alkali–metal cation exporters Nha1 and Ena1-5 and the vacuolar cation–chloride co-transporter Vhc1 is highly sensitive to increased concentrations of alkali–metal cations, and it proved to be a suitable model for characterizing the substrate specificity and transport activity of human wild-type and mutated cation–chloride co-transporters. Copyright © 2013 John Wiley & Sons, Ltd.
Impacts of sodium-glucose co-transporter type 2 inhibitors on central blood pressure.
Takenaka, Tsuneo; Ohno, Yoichi; Suzuki, Hiromichi
2018-03-01
To assess the effects of sodium-glucose co-transporter type 2 inhibitors on central blood pressure, an important determinant of cardiovascular events. Canagliflozin, Empagliflozin or Luseogliflozin was given for 102 type 2 diabetic patients with hypertension and nephropathy. Central blood pressure was evaluated by radial tonometry. Clinical parameters were followed for 6 months. Three differing sodium-glucose co-transporter type 2 inhibitors similarly reduced brachial and central blood pressures, casual blood sugar, haemoglobin A1c, estimated glomerular filtration rate and albuminuria without significant changes in pulse rate and lipid profiles. Central systolic blood pressure was associated with the decreases in albuminuria by sodium-glucose co-transporter type 2 inhibitors. Comparable influences of various sodium-glucose co-transporter type 2 inhibitors on central blood pressure suggest class effects.
Takenaka, Tsuneo; Kishimoto, Miyako; Ohta, Mari; Tomonaga, Osamu; Suzuki, Hiromichi
2017-05-01
The effects of sodium-glucose co-transporter type 2 inhibitors on home blood pressure were examined in type 2 diabetes with nephropathy. The patients with diabetic nephropathy were screened from medical records in our hospitals. Among them, 52 patients who measured home blood pressure and started to take sodium-glucose co-transporter type 2 inhibitors were selected. Clinical parameters including estimated glomerular filtration rate, albuminuria and home blood pressure for 6 months were analysed. Sodium-glucose co-transporter type 2 inhibitors (luseogliflozin 5 mg/day or canagliflozin 100 mg/day) reduced body weight, HbA1c, albuminuria, estimated glomerular filtration rate and office blood pressure. Although sodium-glucose co-transporter type 2 inhibitors did not alter morning blood pressure, it reduced evening systolic blood pressure. Regression analyses revealed that decreases in evening blood pressure predicted decrements in albuminuria. The present data suggest that sodium-glucose co-transporter type 2 inhibitors suppress sodium overload during daytime to reduce evening blood pressure and albuminuria.
Batra, Vipen; Kislay, Binita; Devasagayam, Thomas Paul Asir
2011-12-01
The objective of this study was to examine the effect of 60Co-gamma (γ) radiation on acute phase modulation, if any, of choline and choline-containing moieties in choline-deficient subjects. Corresponding results could provide information that might be useful in the management of adverse effects of γ-radiation. Male Swiss mice maintained on a choline-sufficient diet (CSD) and choline-free diet (CFD) based on AIN-93M formula, were subjected to whole body γ-irradiation (2-6 Gy). Liver, serum and brain samples from each group were then tested for: (i) Alterations in choline and choline-containing moieties such as phosphatidylcholine (PC) and sphingomyeline (SM); and (ii) modulation of choline profile modulating enzymes such as phospholipase D (PLD) and total sphingomyelinase (t-SMase). Liver and brain samples were also subjected to histo-pathological examinations. No significant changes were observed in folate, choline, choline-containing moieties and choline-modulating enzymes in choline-sufficient mice. In contrast, interaction between cytotoxic effects of γ-radiation and choline deficiency modulated choline and choline-containing moieties. Feeding CFD reduced hepatic concentrations of choline, PC and SM whereas PLD and t-SMase activities were significantly raised. The decrease in liver choline and choline-containing moieties was accompanied by an increase in blood choline concentration. Despite choline deficiency, the level of choline and acetylcholine synthesizing enzyme choline acetyltransfease (ChAT) significantly increased in the brain. We propose that choline deprivation and γ-radiation interact to modulate choline reserves of hepatic tissue, which might release choline to blood. Our studies also clearly showed that interaction between choline deficiency and γ-radiation might substantially enhance liver adipogenesis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franklin, C.C.
The effects of insulin on glucose transport and metabolism were examined in cultured HT29 human colonic adenocarcinoma cells. The presence of glucose transporters was verified by D-glucose displaceable ({sup 3}H) cytochalasin B binding. Moreover, two classes of insulin binding sites were detected in radioligand binding experiments. Despite the presence of both glucose transporters and insulin receptors, insulin failed to stimulate glucose transport. However, insulin was found to activate glycolysis. These findings suggest that insulin directly influences substrate utilization through the glycolytic pathway in HT29 cells without activating the glucose transport pathway. A Na{sup +}/K{sup +}/Cl{sup {minus}} cotransport pathway was alsomore » detected in HT29 cells using {sup 86}Rb{sup +} as a K{sup +} congener. The identity of this pathway as a Na{sup +}/K{sup +}/Cl{sup {minus}} cotransporter has been deduced from the following findings: (1) {sup 86}Rb{sup +} influx was inhibited by loop diuretics, (2) {sup 86}Rb{sup +} influx ceased in the absence of any one of the transported ions, and (3) cotransport exhibited a stoichiometry approaching 1Na{sup +}:1K{sup +}:2Cl{sup {minus}}. Na{sup +}/K{sup +}/Cl{sup {minus}} cotransport was found to be exquisitely sensitive to cellular ATP and cyclic AMP levels. These results suggest that HT29 cells contain a Na{sup +}/K{sup +}/Cl{sup {minus}} cotransport pathway that can be regulated by the second messenger cyclic AMP and is highly sensitive to the metabolic state of the cell. The involvement of protein kinase C in the regulation of Na{sup +}/K{sup +}/Cl{sup {minus}} cotransport was also investigated. Phorbol 12-myristate 13-acetate (PMA), which stimulated protein kinase C activity, produced a transient increase in cotransport followed by a near abolition of cotransport by 2 h.« less
Hartmann, Anna-Maria; Pisella, Lucie I; Medina, Igor; Nothwang, Hans Gerd
2017-01-01
Cation Chloride Cotransporters (CCCs) comprise secondary active membrane proteins mainly mediating the symport of cations (Na+, K+) coupled with chloride (Cl-). They are divided into K+-Cl- outward transporters (KCCs), the Na+-K+-Cl- (NKCCs) and Na+-Cl- (NCCs) inward transporters, the cation chloride cotransporter interacting protein CIP1, and the polyamine transporter CCC9. KCCs and N(K)CCs are established in the genome since eukaryotes and metazoans, respectively. Most of the physiological and functional data were obtained from vertebrate species. To get insights into the basal functional properties of KCCs and N(K)CCs in the metazoan lineage, we cloned and characterized KCC and N(K)CC from the cnidarian Hydra vulgaris. HvKCC is composed of 1,032 amino-acid residues. Functional analyses revealed that hvKCC mediates a Na+-independent, Cl- and K+ (Tl+)-dependent cotransport. The classification of hvKCC as a functional K-Cl cotransporter is furthermore supported by phylogenetic analyses and a similar structural organization. Interestingly, recently obtained physiological analyses indicate a role of cnidarian KCCs in hyposmotic volume regulation of nematocytes. HvN(K)CC is composed of 965 amino-acid residues. Phylogenetic analyses and structural organization suggest that hvN(K)CC is a member of the N(K)CC subfamily. However, no inorganic ion cotransport function could be detected using different buffer conditions. Thus, hvN(K)CC is a N(K)CC subfamily member without a detectable inorganic ion cotransporter function. Taken together, the data identify two non-bilaterian solute carrier 12 (SLC12) gene family members, thereby paving the way for a better understanding of the evolutionary paths of this important cotransporter family.
Davenport, Crystal; Yan, Jian; Taesuwan, Siraphat; Shields, Kelsey; West, Allyson A; Jiang, Xinyin; Perry, Cydne A; Malysheva, Olga V; Stabler, Sally P; Allen, Robert H; Caudill, Marie A
2015-09-01
Demand for the vital nutrient choline is high during lactation; however, few studies have examined choline metabolism and requirements in this reproductive state. The present study sought to discern the effects of lactation and varied choline intake on maternal biomarkers of choline metabolism and breast milk choline content. Lactating (n=28) and control (n=21) women were randomized to 480 or 930 mg choline/day for 10-12 weeks as part of a controlled feeding study. During the last 4-6 weeks, 20% of the total choline intake was provided as an isotopically labeled choline tracer (methyl-d9-choline). Blood, urine and breast milk samples were collected for choline metabolite quantification, enrichment measurements, and gene expression analysis of choline metabolic genes. Lactating (vs. control) women exhibited higher (P < .001) plasma choline concentrations but lower (P ≤ .002) urinary excretion of choline metabolites, decreased use of choline as a methyl donor (e.g., lower enrichment of d6-dimethylglycine, P ≤ .08) and lower (P ≤ .02) leukocyte expression of most choline-metabolizing genes. A higher choline intake during lactation differentially influenced breast milk d9- vs. d3-choline metabolite enrichment. Increases (P ≤ .03) were detected among the d3-metabolites, which are generated endogenously via the hepatic phosphatidylethanolamine N-methyltransferase (PEMT), but not among the d9-metabolites generated from intact exogenous choline. These data suggest that lactation induces metabolic adaptations that increase the supply of intact choline to the mammary epithelium, and that extra maternal choline enhances breast milk choline content by increasing supply of PEMT-derived choline metabolites. This trial was registered at clinicaltrials.gov as NCT01127022. Copyright © 2015 Elsevier Inc. All rights reserved.
Water Permeation through the Sodium-Dependent Galactose Cotransporter vSGLT
Choe, Seungho; Rosenberg, John M.; Abramson, Jeff; Wright, Ernest M.; Grabe, Michael
2010-01-01
It is well accepted that cotransporters facilitate water movement by two independent mechanisms: osmotic flow through a water channel in the protein and flow driven by ion/substrate cotransport. However, the molecular mechanism of transport-linked water flow is controversial. Some researchers believe that it occurs via cotransport, in which water is pumped along with the transported cargo, while others believe that flow is osmotic in response to an increase in intracellular osmolarity. In this letter, we report the results of a 200-ns molecular dynamics simulation of the sodium-dependent galactose cotransporter vSGLT. Our simulation shows that a significant number of water molecules cross the protein through the sugar-binding site in the presence as well as the absence of galactose, and 70–80 water molecules accompany galactose as it moves from the binding site into the intracellular space. During this event, the majority of water molecules in the pathway are unable to diffuse around the galactose, resulting in water in the inner half of the transporter being pushed into the intracellular space and replaced by extracellular water. Thus, our simulation supports the notion that cotransporters act as both passive water channels and active water pumps with the transported substrate acting as a piston to rectify the motion of water. PMID:20923633
Lauf, P K; Adragna, N C
1996-10-01
Swelling-induced human erythrocyte K-Cl cotransport is membrane potential independent and capable of uphill transport. However, a complete thermodynamic analysis of basal and stimulated K-Cl cotransport, at constant cell volume, is missing. This study was performed in low K sheep red blood cells before and after reducing cellular free Mg into the nanomolar range with the divalent cation ionophore A23187 and a chelator, an intervention known to stimulate K-Cl cotransport. The anion exchange inhibitor 4,4'diisothiocyanato-2,2'disulfonic stilbene was used to clamp intracellular pH and Cl or NO3 concentrations. Cell volume was maintained constant as external and internal pH differed by more than two units. K-Cl cotransport was calculated from the K effluxes and Rb (as K congener) influxes measured in Cl and NO3, at constant internal K and external anions, and variable concentrations of extracellular Rb and internal anions, respectively. The external Rb concentration at which net K-Cl cotransport is zero was defined as flux reversal point which changed with internal pH and hence Cl. Plots of the ratio of external Rb concentrations corresponding to the flux reversal points and the internal K concentration versus the ratio of the internal and external Cl concentrations (i.e., the Donnan ratio of the transported ions) yielded slopes near unity for both control and low internal Mg cells. Thus, basal as well as low internal Mg-stimulated net K-Cl cotransport depends on the electrochemical potential gradient of KCl.
1996-01-01
Swelling-induced human erythrocyte K-Cl cotransport is membrane potential independent and capable of uphill transport. However, a complete thermodynamic analysis of basal and stimulated K-Cl cotransport, at constant cell volume, is missing. This study was performed in low K sheep red blood cells before and after reducing cellular free Mg into the nanomolar range with the divalent cation ionophore A23187 and a chelator, an intervention known to stimulate K- Cl cotransport. The anion exchange inhibitor 4,4'diisothiocyanato- 2,2'disulfonic stilbene was used to clamp intracellular pH and Cl or NO3 concentrations. Cell volume was maintained constant as external and internal pH differed by more than two units. K-Cl cotransport was calculated from the K effluxes and Rb (as K congener) influxes measured in Cl and NO3, at constant internal K and external anions, and variable concentrations of extracellular Rb and internal anions, respectively. The external Rb concentration at which net K-Cl cotransport is zero was defined as flux reversal point which changed with internal pH and hence Cl. Plots of the ratio of external Rb concentrations corresponding to the flux reversal points and the internal K concentration versus the ratio of the internal and external Cl concentrations (i.e., the Donnan ratio of the transported ions) yielded slopes near unity for both control and low internal Mg cells. Thus, basal as well as low internal Mg-stimulated net K-Cl cotransport depends on the electrochemical potential gradient of KCl. PMID:8894982
de Veth, M J; Artegoitia, V M; Campagna, S R; Lapierre, H; Harte, F; Girard, C L
2016-12-01
The metabolites of choline have a central role in many mammalian biological processes, and choline supplementation to the periparturient dairy cow improves hepatic lipid metabolism. However, variability in responses to choline supplementation has highlighted a lack of understanding of choline absorption in the lactating dairy cow. Our objective was to determine net choline absorption by measuring net portal fluxes of choline and choline metabolites in cows receiving either dietary supplements of rumen-protected choline (RPC) or abomasal delivery of choline (ADC). We also evaluated markers for choline bioavailability by examining relationships between net portal absorption of choline and choline metabolites in plasma and milk. Five late-lactation Holstein cows were used in a 5×5 Latin square design, with 5-d treatment periods and a 2-d interval between periods. Treatments were (1) control (0g/d of choline), (2) 12.5g/d of choline fed as RPC, (3) 25g/d of choline fed as RPC, (4) 12.5g/d of choline provided as ADC, and (5) 25g/d of choline provided as ADC. At the end of each 5-d period, milk was sampled and 9 blood samples were collected simultaneously from an artery and portal vein at 30-min intervals. Plasma, milk, and feed ingredient concentrations of acetylcholine, betaine, free choline, glycerophosphocholine, lysophosphatidylcholine, phosphatidylcholine, phosphocholine, and sphingomyelin were quantified by hydrophilic interaction liquid chromatography-tandem mass spectrometry. With an increasing dose of ADC, the net portal flux of free choline increased and regression analysis indicated 61% net absorption of the infused dose. Among the choline metabolites, only concentrations of betaine, free choline, and phosphocholine increased in both arterial plasma (3.9, 1.9, and 0.4 times, respectively) and milk (2.5, 1.4, and 1.0 times, respectively) with 25g/d of ADC relative to the control. For RPC, the net portal flux of free choline was low relative to ADC (13%), which was similar to the relative difference observed in the concentrations and yields of milk free choline and betaine (averaged 21%). When evaluating markers for choline bioavailability, betaine was the leading candidate. Betaine in plasma and milk (alone or in combination with phosphocholine) was strongly associated with net free choline portal flux (coefficient of determination ranging from 0.64 to 0.79). In summary, free choline supply to the lactating dairy cow increases only specific choline metabolites in plasma and milk, which can be potential markers for choline bioavailability. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Isotonic transport by the Na+-glucose cotransporter SGLT1 from humans and rabbit
Zeuthen, T; Meinild, A-K; Loo, D D F; Wright, E M; Klaerke, D A
2001-01-01
In order to study its role in steady state water transport, the Na+-glucose cotransporter (SGLT1) was expressed in Xenopus laevis oocytes; both the human and the rabbit clones were tested. The transport activity was monitored as a clamp current and the flux of water followed optically as the change in oocyte volume. SGLT1 has two modes of water transport. First, it acts as a molecular water pump: for each 2 Na+ and 1 sugar molecule 264 water molecules were cotransported in the human SGLT1 (hSGLT1), 424 for the rabbit SGLT1 (rSGLT1). Second, it acts as a water channel. The cotransport of water was tightly coupled to the sugar-induced clamp current. Instantaneous changes in clamp current induced by changes in clamp voltage were accompanied by instantaneous changes in the rate of water transport. The cotransported solution was predicted to be hypertonic, and an osmotic gradient built up across the oocyte membrane with continued transport; this resulted in an additional osmotic influx of water. After 5-10 min a steady state was achieved in which the total influx was predicted to be isotonic with the intracellular solution. With the given expression levels, the steady state water transport was divided about equally between cotransport, osmosis across the SGLT1 and osmosis across the native oocyte membrane. Coexpression of AQP1 with the SGLT1 increased the water permeability more than 10-fold and steady state isotonic transport was achieved after less than 2 s of sugar activation. One-third of the water was cotransported, and the remainder was osmotically driven through the AQP1. The data suggest that SGLT1 has three roles in isotonic water transport: it cotransports water directly, it supplies a passive pathway for osmotic water transport, and it generates an osmotic driving force that can be employed by other pathways, for example aquaporins. PMID:11251046
Maternal choline intake modulates maternal and fetal biomarkers of choline metabolism in humans.
Yan, Jian; Jiang, Xinyin; West, Allyson A; Perry, Cydne A; Malysheva, Olga V; Devapatla, Srisatish; Pressman, Eva; Vermeylen, Francoise; Stabler, Sally P; Allen, Robert H; Caudill, Marie A
2012-05-01
In 1998 choline Adequate Intakes of 425 and 450 mg/d were established for nonpregnant and pregnant women, respectively. However, to our knowledge, no dose-response studies have been conducted to evaluate the effects of pregnancy or maternal choline intake on biomarkers of choline metabolism. We sought to quantify the effects of pregnancy and maternal choline intake on maternal and fetal indicators of choline metabolism. Healthy pregnant (n = 26; 27 wk gestation) and nonpregnant (n = 21) women were randomly assigned to receive 480 or 930 mg choline/d for 12 wk. Fasting blood samples and placental tissue and umbilical cord venous blood were collected and analyzed for choline and its metabolites. Regardless of the choline intake, pregnant women had higher circulating concentrations of choline (30%; P < 0.001) but lower concentrations of betaine, dimethylglycine, sarcosine, and methionine (13-55%; P < 0.001). Obligatory losses of urinary choline and betaine in pregnant women were ∼2-4 times as high (P ≤ 0.02) as those in nonpregnant women. A higher choline intake yielded higher concentrations of choline, betaine, dimethylglycine, and sarcosine (12-46%; P ≤ 0.08) in both pregnant and nonpregnant women without affecting urinary choline excretion. The higher maternal choline intake also led to a doubling of dimethylglycine in cord plasma (P = 0.002). These data suggest that an increment of 25 mg choline/d to meet the demands of pregnancy is insufficient and show that a higher maternal choline intake increases the use of choline as a methyl donor in both maternal and fetal compartments. This trial was registered at clinicaltrials.gov as NCT01127022.
Yan, Jian; Wang, Wei; Gregory, Jesse F; Malysheva, Olga; Brenna, J Thomas; Stabler, Sally P; Allen, Robert H; Caudill, Marie A
2011-02-01
Homozygosity for the variant 677T allele in the methylenetetrahydrofolate reductase (MTHFR) gene increases the requirement for folate and may alter the metabolic use of choline. The choline adequate intake is 550 mg/d for men, although the metabolic consequences of consuming extra choline are unclear. Deuterium-labeled choline (d9-choline) as tracer was used to determine the differential effects of the MTHFR C677T genotype and the effect of various choline intakes on the isotopic enrichment of choline derivatives in folate-compromised men. Mexican American men with the MTHFR 677CC or 677TT genotype consumed a diet providing 300 mg choline/d plus supplemental choline chloride for total choline intakes of 550 (n = 11; 4 with 677CC and 7 with 677TT) or 1100 (n = 12; 4 with 677CC and 8 with 677TT) mg/d for 12 wk. During the last 3 wk, 15% of the total choline intake was provided as d9-choline. Low but measurable enrichments of the choline metabolites were achieved, including that of d3-phosphatidylcholine (d3-PtdCho)--a metabolite produced in the de novo pathway via choline-derived methyl groups. Men with the MTHFR 677TT genotype had a higher urinary enrichment ratio of betaine to choline (P = 0.041), a higher urinary enrichment of sarcosine (P = 0.041), and a greater plasma enrichment ratio of d9-betaine to d9-PtdCho with the 1100 mg choline/d intake (P = 0.033). These data show for the first time in humans that choline itself is a source of methyl groups for de novo PtdCho biosynthesis and indicate that the MTHFR 677TT genotype favors the use of choline as a methyl donor.
Jentsch, T J; Keller, S K; Koch, M; Wiederholt, M
1984-01-01
Using intracellular microelectrode technique, the response of the voltage V across the plasma membrane of cultured bovine corneal endothelial cells to changes in sodium and bicarbonate concentrations was investigated. (1) The electrical response to changes in [HCO3-]o (depolarization upon lowering and hyperpolarization upon raising [HCO3-]o) was dependent on sodium. Lithium could fairly well be substituted for sodium, whereas potassium or choline were much less effective. (2) Removal of external sodium caused a depolarization, while a readdition led to a hyperpolarization, which increased with time of preincubation in the sodium-depleted medium. (3) The response to changes in [Na+]o was dependent on bicarbonate. In a nominally bicarbonate-free medium, its amplitude was decreased or even reversed in sign. (4) Application of SITS or DIDS (10(-3) M) had a similar effect on the response to sodium as bicarbonate-depleted medium. (5) At [Na+]o = 151 mM and [HCO3-]o = 46 mM, the transients of V depended, with 39.0 +/- 9.0 (SD) mV/decade, on bicarbonate and, with 15.3 +/- 5.8 (SD) mV/decade, on sodium. (6) After the preincubation of cells with lithium, replacement of Li by choline led to similar effects as the replacement of sodium by choline, though the response of V was smaller with Li. This response could be reduced or reversed by the removal of bicarbonate or by the application of SITS. (7) Amiloride (10(-3) M) caused a reversible hyperpolarization of the steady-state potential by 8.5 +/- 2.6 mV (SD). It did not affect the immediate response to changes in [Na+]o or [HCO3-]o, but reduced the speed of regaining the steady-state potential after a change in [HCO3-]o. (8) Ouabain (10(-4) M) caused a fast depolarization of -6.8 +/- 1.1 (SD) mV, which was followed by a continuing slower depolarization. The effect was almost identical at 10(-5) M. (9) It is suggested, that corneal endothelial cells possess a cotransport for sodium and bicarbonate, which transports net negative charge with these ions. It is inhibitable by stilbenes, but not directly affected by amiloride or ouabain. Lithium is a good substitute for sodium with respect to bicarbonate transport and is transported itself. In addition, the effect of amiloride provides indirect evidence for the existence of a Na+/H+-antiport. A model for the transepithelial transport of bicarbonate across the corneal endothelium is proposed.
Fischer, Leslie M; da Costa, Kerry Ann; Galanko, Joseph; Sha, Wei; Stephenson, Brigitte; Vick, Julie; Zeisel, Steven H
2010-01-01
Background: Choline is essential for infant nutrition, and breast milk is a rich source of this nutrient. Common single nucleotide polymorphisms (SNPs) change dietary requirements for choline intake. Objective: The aim of this study was to determine whether total choline intake and/or SNPs influence concentrations of choline and its metabolites in human breast milk and plasma. Design: We gave a total of 103 pregnant women supplemental choline or a placebo from 18 wk gestation to 45 d postpartum and genotyped the women for 370 common SNPs. At 45 d postpartum, we measured choline metabolite concentrations in breast milk and plasma and assessed the dietary intake of choline by using a 3-d food record. Results: On average, lactating women in our study ate two-thirds of the recommended intake for choline (Adequate Intake = 550 mg choline/d). Dietary choline intake (no supplement) correlated with breast-milk phosphatidylcholine and plasma choline concentrations. A supplement further increased breast-milk choline, betaine, and phosphocholine concentrations and increased plasma choline and betaine concentrations. We identified 5 SNPs in MTHFR that altered the slope of the intake–metabolite concentration relations, and we identified 2 SNPs in PEMT that shifted these curves upward. Individuals who shared sets of common SNPs were outliers in plots of intake–metabolite concentration curves; we suggest that these SNPs should be further investigated to determine how they alter choline metabolism. Conclusion: Total intake of choline and genotype can influence the concentrations of choline and its metabolites in the breast milk and blood of lactating women and thereby affect the amount of choline available to the developing infant. This study was registered at clinicaltrials.gov as NCT00678925. PMID:20534746
Parikh, V; Sarter, M
2006-04-01
The capacity of the high-affinity choline transporter (CHT) to import choline into presynaptic terminals is essential for acetylcholine synthesis. Ceramic-based microelectrodes, coated at recording sites with choline oxidase to detect extracellular choline concentration changes, were attached to multibarrel glass micropipettes and implanted into the rat frontoparietal cortex. Pressure ejections of hemicholinium-3 (HC-3), a selective CHT blocker, dose-dependently reduced the uptake rate of exogenous choline as well as that of choline generated in response to terminal depolarization. Following the removal of CHTs, choline signal recordings confirmed that the demonstration of potassium-induced choline signals and HC-3-induced decreases in choline clearance require the presence of cholinergic terminals. The results obtained from lesioned animals also confirmed the selectivity of the effects of HC-3 on choline clearance in intact animals. Residual cortical choline clearance correlated significantly with CHT-immunoreactivity in lesioned and intact animals. Finally, synaptosomal choline uptake assays were conducted under conditions reflecting in vivo basal extracellular choline concentrations. Results from these assays confirmed the capacity of CHTs measured in vivo and indicated that diffusion of substrate away from the electrode did not confound the in vivo findings. Collectively, these results indicate that increases in extracellular choline concentrations, irrespective of source, are rapidly cleared by CHTs.
Dimke, Henrik
2011-12-01
The thiazide-sensitive NaCl cotransporter (NCC) plays key roles in renal electrolyte transport and blood pressure maintenance. Regulation of this cotransporter has received increased attention recently, prompted by the discovery that mutations in the with-no-lysine (WNK) kinases are the molecular explanation for pseudohypoaldosteronism type II (PHAII). Studies suggest that WNK4 regulates NCC via two distinct pathways, depending on its state of activation. Furthermore, an intact STE20-related proline-alanine-rich kinase (SPAK)/oxidative stress response 1 kinase (OSR1) pathway was found to be necessary for a WNK4 PHAII mutation to increase NCC phosphorylation and blood pressure in mice. The mouse protein 25α is a novel regulator of the SPAK/OSR1 kinase family, which greatly increases their activity. The phosphorylation status of NCC and the WNK is regulated by the serum- and glucocorticoid-inducible kinase 1, suggesting novel mechanisms whereby aldosterone modulates NCC activity. Dephosphorylation of NCC by protein phosphatase 4 strongly influences the activity of the cotransporter, confirming an important role for NCC phosphorylation. Finally, γ-adducin increases NCC activity. This stimulatory effect is dependent on the phosphorylation status of the cotransporter. γ-Adducin only binds the dephosphorylated cotransporter, suggesting that phosphorylation of NCC causes the dissociation of γ-adducin. Since γ-adducin is not a kinase, it is tempting to speculate that the protein exerts its function by acting as a scaffold between the dephosphorylated cotransporter and the regulatory kinase. As more molecular regulators of NCC are identified, the system-controlling NCC activity is becoming increasingly complex. This intricacy confers an ability to integrate a variety of stimuli, thereby regulating NCC transport activity and ultimately blood pressure.
Ilcol, Yesim Ozarda; Dönmez, Osman; Yavuz, Mahmut; Dilek, Kamil; Yurtkuran, Mustafa; Ulus, Ismail H
2002-06-01
This study tested whether continuous ambulatory peritoneal dialysis (CAPD) changes free or phospholipid-bound choline concentrations in serum or peritoneal dialysis fluid of patients with end stage renal disease (ESRD). Serum and dialysate choline and phospholipid-bound choline were measured before, during and after 6 h CAPD. Serum choline concentrations were higher in patients with ESRD compared with age-matched controls. CAPD lowered serum choline concentrations significantly although it did not influence phospholipid-bound choline. Choline accumulated in the dialysate, reaching 28.4 +/- 2.7 microM in children and 18.2 +/- 1.4 microM in adults, during six hours CAPD; phospholipid-bound choline increased to 22.9 +/- 2.5 microM and 10.8 +/- 1.4 microM in children and adults, respectively. The total daily loss of choline into the dialysate was 181 +/- 20 micromoles in children and 260 +/- 18 micromoles in adults. CAPD causes a substantial loss of choline into peritoneal dialysates and reduces serum choline concentrations significantly.
Water permeation through the sodium-dependent galactose cotransporter vSGLT.
Choe, Seungho; Rosenberg, John M; Abramson, Jeff; Wright, Ernest M; Grabe, Michael
2010-10-06
It is well accepted that cotransporters facilitate water movement by two independent mechanisms: osmotic flow through a water channel in the protein and flow driven by ion/substrate cotransport. However, the molecular mechanism of transport-linked water flow is controversial. Some researchers believe that it occurs via cotransport, in which water is pumped along with the transported cargo, while others believe that flow is osmotic in response to an increase in intracellular osmolarity. In this letter, we report the results of a 200-ns molecular dynamics simulation of the sodium-dependent galactose cotransporter vSGLT. Our simulation shows that a significant number of water molecules cross the protein through the sugar-binding site in the presence as well as the absence of galactose, and 70-80 water molecules accompany galactose as it moves from the binding site into the intracellular space. During this event, the majority of water molecules in the pathway are unable to diffuse around the galactose, resulting in water in the inner half of the transporter being pushed into the intracellular space and replaced by extracellular water. Thus, our simulation supports the notion that cotransporters act as both passive water channels and active water pumps with the transported substrate acting as a piston to rectify the motion of water. Copyright © 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Activation of ferret erythrocyte Na+–K+–2Cl− cotransport by deoxygenation
Flatman, Peter W
2005-01-01
Deoxygenation of ferret erythrocytes stimulates Na+–K+–2Cl− cotransport by 111% (s.d., 46) compared to controls in air. Half-maximal activation occurs at a PO2 of 24 mmHg (s.d., 2) indicating that physiological changes in oxygen tension can influence cotransport function. Approximately 25–35% of this stimulation can be attributed to the rise of intracellular free magnesium concentration that occurs on deoxygenation (from 0.82 (s.d., 0.07) to 1.40 mm (s.d., 0.17)). Most of the stimulation is probably caused by activation of a kinase which can be prevented or reversed by treating cells with the kinase inhibitors PP1 or staurosporine, or by reducing cell magnesium content to submicromolar levels. Stimulation by deoxygenation is comparable with that caused by calyculin A or sodium arsenite, compounds that cause a 2- to 3-fold increase in threonine phosphorylation of the cotransporter which can be detected with phospho-specific antibodies. However, the same approach failed to detect significant changes in threonine phosphorylation following deoxygenation. The results suggest that deoxygenation causes activation of a kinase that either phosphorylates the transporter, but probably not on threonine, or phosphorylates another protein that in turn influences cotransporter behaviour. They also indicate that more than one kinase and phosphatase are involved in cotransporter phosphorylation. PMID:15618270
Reexamining the role of choline transporter-like (Ctlp) proteins in choline transport.
Zufferey, Rachel; Santiago, Teresa C; Brachet, Valerie; Ben Mamoun, Choukri
2004-02-01
In Saccharomyces cerevisiae, choline enters the cell via a single high-affinity transporter, Hnmlp. hnm1delta cells lacking HNM1 gene are viable. However, they are unable to transport choline suggesting that no additional active choline transporters are present in this organism. A complementation study of a choline auxotrophic mutant, ctrl-ise (hnm1-ise), using a cDNA library from Torpedo marmorata electric lobe identified a membrane protein named Torpedo marmorata choline transporter-like, tCtl1p. tCtllp was proposed to mediate a high-affinity choline transport (O'Regan et al., 1999, Proc. Natl. Acad. Sci.). Homologs of tCtl1p have been identified in other organisms, including yeast (Pns1p, YOR161c) and are postulated to function as choline transporters. Here we provide several lines of evidence indicating that Ctlp proteins are not involved in choline transport. Loss of PNS1 has no effect on choline transport and overexpression of either PNS1 or tCTL1 does not restore choline uptake activity of choline transport-defective mutants. The data presented here call into question the role of proteins of the CTL family in choline transport and suggest that the mechanism by which tCTL1 complements hnm1-ise mutant is independent of its ability to transport choline.
Measurement of the abundance of choline and the distribution of choline-containing moieties in meat.
Lewis, Erin D; Zhao, Yuan-Yuan; Richard, Caroline; Bruce, Heather L; Jacobs, René L; Field, Catherine J; Curtis, Jonathan M
2015-01-01
Epidemiological studies identify meat as a major source of choline; however, the most comprehensive reference for food choline content, the United States Department of Agriculture (USDA) database for dietary choline, does not include values for meats of importance in some regions. In this work, the total choline and choline-containing moieties of 20 samples of meat were analyzed by LC-MS/MS; 16 samples analyzed are absent from the USDA database and 4 samples included for comparison. Average total choline for one serving (75 g) was 50 ± 12 mg, which was 82.6% ± 5.5% phosphatidylcholine. There was general agreement between total choline levels in the meats analyzed in this work and USDA values. A strong negative correlation (r = -0.777, p < 0.001) between total choline and fat content was found. This research added choline composition data to a food group that is a major source of choline and ultimately this data will assist in obtaining more accurate estimates of dietary choline.
Dietary choline requirement of juvenile hybrid striped bass.
Griffin, M E; Wilson, K A; White, M R; Brown, P B
1994-09-01
Two experiments were conducted to estimate the dietary choline requirement and to determine the effects of dietary choline on liver lipid deposition in juvenile hybrid striped bass (Monrone saxatilis x M. chrysops). Experimental diets contained 0.73 g total sulfur amino acids/100 g diet (0.47 g methionine + 0.26 g cyst(e)ine/100 g diet), thus meeting, but not exceeding, the requirement. Graded levels of choline bitartrate in Experiment 1 and choline chloride in Experiment 2 were added to the basal diet, resulting in eight dietary treatments in each experiment. Dietary treatments were 0, 250, 500, 1000, 2000, 4000, 6000 and 8000 mg choline/kg dry diet. Diets were fed for 12 and 10 wk in Experiments 1 and 2, respectively. Dietary choline concentrations significantly affected weight gain, feed efficiency, survival and total liver lipid concentrations in each experiment. Weight gain and feed efficiency were greatest in fish fed 500 mg choline/kg dry diet as choline bitartrate. Total liver lipid concentrations were variable but tended to be lowest in fish fed diets containing at least 2000 mg choline/kg diet. Survival was significantly lower in the group of fish fed 8000 mg choline/kg diet supplied by choline bitartrate. Weight gain and feed efficiency were greatest and total liver lipid concentration was lowest in groups of fish fed at least 500 mg choline/kg diet as choline chloride; survival was unaffected by dietary treatment. Therefore, choline chloride seems to be a better source of dietary choline than choline bitartrate and 500 mg choline/kg diet is adequate for maximum weight gain and prevention of increased liver lipid concentration in juvenile hybrid striped bass.
Functional analysis of choline transporters in rheumatoid arthritis synovial fibroblasts.
Seki, Masayuki; Kawai, Yuiko; Ishii, Chikanao; Yamanaka, Tsuyoshi; Odawara, Masato; Inazu, Masato
2017-11-01
In this study, we examined the functional characteristics of choline uptake and sought to identify the transporters in rheumatoid arthritis synovial fibroblasts (RASFs). The expression of choline transporters was evaluated by quantitative real-time PCR, western blotting, and immunocytochemistry. Time course, Na + -dependency, and kinetics of [ 3 H]choline uptake were investigated. Effects of cationic drugs on the uptake of [ 3 H]choline, cell viability, and caspase-3/7 activity were also examined. Finally, we investigated the influence of choline uptake inhibitor, hemicholinium-3 (HC-3), and choline deficiency on cell viability and caspase-3/7 activity. Choline transporter-like protein 1 (CTL1) and CTL2 mRNA and protein were highly expressed in RASFs and were localized to the plasma membrane. [ 3 H]Choline uptake occurred via a Na + -independent and pH-dependent transport system. The cells have two different [ 3 H]choline transport systems, high- and low-affinity. Various organic cations, HC-3 and choline deficiency inhibited both [ 3 H]choline uptake and cell viability, and enhanced the caspase-3/7 activity. The functional inhibition of choline transporters could promote apoptotic cell death. In RASFs, [ 3 H]choline uptake was significantly increased compared with that in OASFs without a change in gene expression. These results suggest that CTL1 (high-affinity) and CTL2 (low-affinity) are highly expressed in RASFs and choline may be transported by a choline/H + antiport system. Identification of this CTL1- and CTL2-mediated choline transport system should provide a potential new target for RA therapy.
Ganz, Ariel B.; Cohen, Vanessa V.; Swersky, Camille C.; Stover, Julie; Vitiello, Gerardo A.; Lovesky, Jessica; Chuang, Jasmine C.; Shields, Kelsey; Fomin, Vladislav G.; Lopez, Yusnier S.; Mohan, Sanjay; Ganti, Anita; Carrier, Bradley; Malysheva, Olga V.; Caudill, Marie A.
2017-01-01
Single nucleotide polymorphisms (SNPs) in choline metabolizing genes are associated with disease risk and greater susceptibility to organ dysfunction under conditions of dietary choline restriction. However, the underlying metabolic signatures of these variants are not well characterized and it is unknown whether genotypic differences persist at recommended choline intakes. Thus, we sought to determine if common genetic risk factors alter choline dynamics in pregnant, lactating, and non-pregnant women consuming choline intakes meeting and exceeding current recommendations. Women (n = 75) consumed 480 or 930 mg choline/day (22% as a metabolic tracer, choline-d9) for 10–12 weeks in a controlled feeding study. Genotyping was performed for eight variant SNPs and genetic differences in metabolic flux and partitioning of plasma choline metabolites were evaluated using stable isotope methodology. CHKA rs10791957, CHDH rs9001, CHDH rs12676, PEMT rs4646343, PEMT rs7946, FMO3 rs2266782, SLC44A1 rs7873937, and SLC44A1 rs3199966 altered the use of choline as a methyl donor; CHDH rs9001 and BHMT rs3733890 altered the partitioning of dietary choline between betaine and phosphatidylcholine synthesis via the cytidine diphosphate (CDP)-choline pathway; and CHKA rs10791957, CHDH rs12676, PEMT rs4646343, PEMT rs7946 and SLC44A1 rs7873937 altered the distribution of dietary choline between the CDP-choline and phosphatidylethanolamine N-methyltransferase (PEMT) denovo pathway. Such metabolic differences may contribute to disease pathogenesis and prognosis over the long-term. PMID:28134761
Ganz, Ariel B; Cohen, Vanessa V; Swersky, Camille C; Stover, Julie; Vitiello, Gerardo A; Lovesky, Jessica; Chuang, Jasmine C; Shields, Kelsey; Fomin, Vladislav G; Lopez, Yusnier S; Mohan, Sanjay; Ganti, Anita; Carrier, Bradley; Malysheva, Olga V; Caudill, Marie A
2017-01-26
Single nucleotide polymorphisms (SNPs) in choline metabolizing genes are associated with disease risk and greater susceptibility to organ dysfunction under conditions of dietary choline restriction. However, the underlying metabolic signatures of these variants are not well characterized and it is unknown whether genotypic differences persist at recommended choline intakes. Thus, we sought to determine if common genetic risk factors alter choline dynamics in pregnant, lactating, and non-pregnant women consuming choline intakes meeting and exceeding current recommendations. Women ( n = 75) consumed 480 or 930 mg choline/day (22% as a metabolic tracer, choline-d9) for 10-12 weeks in a controlled feeding study. Genotyping was performed for eight variant SNPs and genetic differences in metabolic flux and partitioning of plasma choline metabolites were evaluated using stable isotope methodology. CHKA rs10791957, CHDH rs9001, CHDH rs12676, PEMT rs4646343, PEMT rs7946, FMO3 rs2266782, SLC44A1 rs7873937, and SLC44A1 rs3199966 altered the use of choline as a methyl donor; CHDH rs9001 and BHMT rs3733890 altered the partitioning of dietary choline between betaine and phosphatidylcholine synthesis via the cytidine diphosphate (CDP)-choline pathway; and CHKA rs10791957, CHDH rs12676, PEMT rs4646343, PEMT rs7946 and SLC44A1 rs7873937 altered the distribution of dietary choline between the CDP-choline and phosphatidylethanolamine N -methyltransferase (PEMT) denovo pathway. Such metabolic differences may contribute to disease pathogenesis and prognosis over the long-term.
Caudill, Marie A; Strupp, Barbara J; Muscalu, Laura; Nevins, Julie E H; Canfield, Richard L
2018-04-01
Rodent studies demonstrate that supplementing the maternal diet with choline during pregnancy produces life-long cognitive benefits for the offspring. In contrast, the two experimental studies examining cognitive effects of maternal choline supplementation in humans produced inconsistent results, perhaps because of poor participant adherence and/or uncontrolled variation in intake of choline or other nutrients. We examined the effects of maternal choline supplementation during pregnancy on infant cognition, with intake of choline and other nutrients tightly controlled. Women entering their third trimester were randomized to consume, until delivery, either 480 mg choline/d ( n = 13) or 930 mg choline/d ( n = 13). Infant information processing speed and visuospatial memory were tested at 4, 7, 10, and 13 mo of age ( n = 24). Mean reaction time averaged across the four ages was significantly faster for infants born to mothers in the 930 ( vs. 480) mg choline/d group. This result indicates that maternal consumption of approximately twice the recommended amount of choline during the last trimester improves infant information processing speed. Furthermore, for the 480-mg choline/d group, there was a significant linear effect of exposure duration (infants exposed longer showed faster reaction times), suggesting that even modest increases in maternal choline intake during pregnancy may produce cognitive benefits for offspring.-Caudill, M. A., Strupp, B. J., Muscalu, L., Nevins, J. E. H., Canfield, R. L. Maternal choline supplementation during the third trimester of pregnancy improves infant information processing speed: a randomized, double-blind, controlled feeding study.
Choline metabolism-based molecular diagnosis of cancer: an update
Glunde, Kristine; Penet, Marie-France; Jiang, Lu; Jacobs, Michael A; Bhujwalla, Zaver M
2016-01-01
Abnormal choline metabolism continues to be identified in multiple cancers. Molecular causes of abnormal choline metabolism are changes in choline kinase-α, ethanolamine kinase-α, phosphatidylcholine-specific phospholipase C and -D and glycerophosphocholine phosphodiesterases, as well as several choline transporters. The net outcome of these enzymatic changes is an increase in phosphocholine and total choline (tCho) and, in some cancers, a relative decrease of glycerophosphocholine. The increased tCho signal detected by 1H magnetic resonance spectroscopy is being evaluated as a diagnostic marker in multiple cancers. Increased expression and activity of choline transporters and choline kinase-α have spurred the development of radiolabeled choline analogs as PET imaging tracers. Both tCho 1H magnetic resonance spectroscopy and choline PET are being investigated to detect response to treatment. Enzymes mediating the abnormal choline metabolism are being explored as targets for cancer therapy. This review highlights recent molecular, therapeutic and clinical advances in choline metabolism in cancer. PMID:25921026
Fabry, M E; Romero, J R; Buchanan, I D; Suzuka, S M; Stamatoyannopoulos, G; Nagel, R L; Canessa, M
1991-07-01
We have previously demonstrated that young normal (AA) and sickle cell anemia (SS) red blood cells are capable of a volume regulatory decrease response (VRD) driven by a K:Cl cotransporter that is activated by low pH or hypotonic conditions. We now report on the characteristics of young SS cells (SS2, discocytes) capable of rapid increase in density in response to swelling. We have isolated cells with high VRD response (H-VRD) and low VRD response (L-VRD) cells by incubation and density-gradient centrifugation under hypotonic conditions. Comparison of these cells in patients homozygous for hemoglobin (Hb)S indicated that H-VRD cells have 91% more reticulocytes (P less than 9 x 10(-9) than L-VRD cells, 25% less HbF (P less than 5.5 x 10(-5), 106% more NEM (N-methylmaleimide)-stimulated K:Cl cotransport activity (P less than 2 x 10(-4), and 86% more volume-stimulated K:Cl cotransport activity (P less than 1.8 x 10(-3). H-VRD and L-VRD cells have similar G-6-PD and Na+/H+ antiport activity. In agreement with the reduced percent HbF in H-VRD cells, F cells (red blood cells that contain fetal Hb) are depleted from the H-VRD population; however, F reticulocytes are enriched in the H-VRD population to the same extent as non-F reticulocytes, which suggests that both F and non-F reticulocytes have a similar initial distribution of volume-sensitive K:Cl cotransport activity but that it may be more rapidly inactivated in F than in S reticulocytes. We find that H-VRD cells consist of 20% reticulocytes (or 79% of all reticulocytes in SS2) and 80% more mature cells. This study demonstrates the role of K:Cl cotransport in determining red blood cell density, the heterogeneity of K:Cl cotransport activity in reticulocytes, and the capacity for rapid change in the density of reticulocytes with high K:Cl cotransport activity. We speculate that the H-VRD population may be more susceptible to generation of dense and irreversibly sickled cells.
The association of serum choline with linear growth failure in young children from rural Malawi.
Semba, Richard D; Zhang, Pingbo; Gonzalez-Freire, Marta; Moaddel, Ruin; Trehan, Indi; Maleta, Kenneth M; Ordiz, M Isabel; Ferrucci, Luigi; Manary, Mark J
2016-07-01
Choline is an essential nutrient for cell structure, cell signaling, neurotransmission, lipid transport, and bone formation. Choline can be irreversibly converted to betaine, a major source of methyl groups. Trimethylene N-oxide (TMAO), a proatherogenic molecule, is produced from the metabolism of dietary choline by the gut microbiome. The relation between serum choline and its closely related metabolites with linear growth in children is unknown. The aim was to characterize the relation between serum choline and its closely related metabolites, betaine and TMAO, with linear growth and stunting in young children. We measured serum choline, betaine, and TMAO concentrations by using liquid chromatography isotopic dilution tandem mass spectrometry in a cross-sectional study in 325 Malawian children, aged 12-59 mo, of whom 62% were stunted. Median (25th, 75th percentile) serum choline, betaine, and TMAO concentrations were 6.4 (4.8, 8.3), 12.4 (9.1, 16.3), and 1.2 (0.7, 1.8) μmol/L, respectively. Spearman correlation coefficients of age with serum choline, betaine, and TMAO were -0.57 (P < 0.0001), -0.26 (P < 0.0001), and -0.10 (P = 0.07), respectively. Correlation coefficients of height-for-age z score with serum choline, betaine-to-choline ratio, and TMAO-to-choline ratio were 0.31 (P < 0.0001), -0.24 (P < 0.0001), and -0.29 (P < 0.0001), respectively. Serum choline concentrations were strongly and significantly associated with stunting. Children with and without stunting had median (25th, 75th percentile) serum choline concentrations of 5.6 (4.4, 7.4) and 7.3 (5.9, 9.1) μmol/L (P < 0.0001). Linear growth failure in young children is associated with low serum choline and elevated betaine-to-choline and TMAO-to-choline ratios. Further work is needed to understand whether low dietary choline intake explains low circulating choline among stunted children living in low-income countries and whether increasing choline intake may correct choline deficiency and improve growth and development. This trial was registered in the ISRCTN registry (www.isrctn.com) as ISRCTN14597012. © 2016 American Society for Nutrition.
Use of canonical variate analysis biplot in examination of choline content data of some foods.
Alkan, Baris; Atakan, Cemal
2011-03-01
Adequate intake (AI) of choline as part of the daily diet can help prevent major diseases. Low choline intake is a major risk factor for liver and several neurological disorders. Extreme choline consumption may cause diseases such as hypotension, sweating, diarrhea, and fishy body odor. The AI of choline is 425 mg/day for adult women; higher for pregnant and lactating women. The AI for adult men is 550 mg/day. The total choline content of foods is calculated as the sum of free choline, glycerophosphocholine, phosphocholine, phosphatidylcholine and sphingomyelin. These are called the choline variables. Observed values of choline variables may be different in amounts of nutrients. So different food groups in terms of choline variables are useful to compare. The present paper shows the advantages of using canonical variate analysis biplot to optimally separate groups and explore the differentiality of choline variables amounts in foods.
Phosphatidylcholine and the CDP-Choline Cycle
Fagone, Paolo; Jackowski, Suzanne
2012-01-01
The CDP-choline pathway of phosphatidylcholine (PtdCho) biosynthesis was first described more than 50 years ago. Investigation of the CDP-choline pathway in yeast provides a basis for understanding the CDP-choline pathway in mammals. PtdCho is considered as an intermediate in a cycle of synthesis and degradation, and the activity of a CDP-choline cycle is linked to subcellular membrane lipid movement. The components of the mammalian CDP-choline pathway include choline transport, choline kinase, phosphocholine cytidylyltransferase, and choline phosphotransferase activities. The protein isoforms and biochemical mechanisms of regulation of the pathway enzymes are related to their cell and tissue-specific functions. Regulated PtdCho turnover mediated by phospholipases or neuropathy target esterase participates in the mammalian CDP-choline cycle. Knockout mouse models define the biological functions of the CDP-choline cycle in mammalian cells and tissues. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism. PMID:23010477
Metabolism and transfer of choline in hamster small intestine
Flower, R. J.; Pollitt, R. J.; Sanford, P. A.; Smyth, D. H.
1972-01-01
1. The transfer and metabolism of choline was studied with sacs of everted intestine of hamster. 2. Approximately half the choline transferred from the mucosal fluid may be metabolized. High voltage electrophoresis, paper chromatography and ion exchange chromatography have been used to identify this meta bolite as betaine. 3. The concentration of choline and betaine together accumulating in the gut wall and serosal fluid are greater than that of choline present initially in the mucosal fluid indicating some kind of specific mechanism for choline transport. 4. A detailed analysis of choline transfer suggests that the movement of choline cannot be accounted for by simple diffusion. The concentration of choline accumulating in the gut wall and serosal fluid, the inhibitory effects of hemicholinium-3 and α-methylglucoside on choline transfer, and the insensitivity of betaine transfer to hemicholinium-3 suggest a specific active transport process for choline independent of active betaine transport. PMID:5085340
Analytical approaches to determination of total choline in foods and dietary supplements.
Phillips, Melissa M
2012-06-01
Choline is a quaternary amine that is synthesized in the body or consumed through the diet. Choline is critical for cell membrane structure and function and in synthesis of the neurotransmitter acetylcholine. Although the human body produces this micronutrient, dietary supplementation of choline is necessary for good health. The major challenge in the analysis of choline in foods and dietary supplements is in the extraction and/or hydrolysis approach. In many products, choline is present as choline esters, which can be quantitated individually or treated with acid, base, or enzymes in order to release choline ions for analysis. A critical review of approaches based on extraction and quantitation of each choline ester as well as hydrolysis-based methods for determination of total choline in foods and dietary supplements is presented.
Atta, Mohamed G.; Dahl, Stephen C.; Kwon, H. Moo; Handler, Joseph S.
2008-01-01
Background The sodium/myo-inositol cotransporter (SMIT) and the betaine cotransporter (BGT1) are essential for the accumulation of myo-inositol and betaine, and hence cell survival in a hypertonic environment. The underlying molecular mechanism involves an increase in transcription of the SMIT and BGT1 genes through binding of a trans-acting factor to enhancer elements in the 5′ flanking region of both genes, resulting in increased mRNA abundance and increased activity of the cotransporters. Current evidence regarding transcriptional and post-transcriptional regulation indicates that both cotransporters are regulated in parallel. Methods To investigate the signal transduction of hypertonic stress, we examined the effect of tyrosine kinase inhibitors and immunosuppressants on the hypertonicity-induced activity of the two cotransporters in Madin-Darby canine kidney (MDCK) cells. Results None of the agents studied affected BGT1 activity in isotonic or hypertonic conditions. Treatment of MDCK cells with genistein, a tyrosine kinase inhibitor, increased SMIT activity in hypertonic but not isotonic conditions. The stimulation of SMIT by genistein was accompanied by a parallel increase in mRNA abundance. In contrast, treating cells with tyrphostin A23, another tyrosine kinase inhibitor, or cyclosporine A, an immunosuppressant, inhibited SMIT activity in hypertonic cells. FK506, another immunosuppressant, increased SMIT activity, but only in isotonic conditions. Conclusions These results provide the first evidence of divergent regulatory pathways modulating SMIT and BGT activity. PMID:10027932
The use of a diuretic agent as a probe to investigate site and mechanism of ion transport processes.
Giebisch, G
1985-01-01
Several features emerge from consideration of a furosemide-sensitive cotransport mechanism in the various tissues surveyed. First discovered in epithelia, above all in the kidney because of its potent diuretic effect, furosemide inhibits a cotransport mechanism that tightly couples the movement of sodium, chloride and potassium. Its mode of operation is electrically neutral and in all tissues so far examined, the cotransport-mediated ion movement is driven by the electrochemical potential of the cotransported ion-species. The energy for this ion movement derives ultimately from the Na-K pump that establishes the Na gradient that drives the coupled ion movement. This type of carrier-mediated and ion-specific solute movement expands the traditional "pump-leak" model of cellular ion transport by providing dissipative "leak" pathways in addition to the well-established ion channels that allow solute movement by electrodiffusion. An important feature of the cotransport mechanism is its important role in both reabsorptive and secretory epithelial transport operations. This variability can be adequately explained by the location of the cotransport mechanism in either the apical or basolateral cell membrane of such epithelia as the renal tubule, the intestinal mucosa, the rectal gland or the trachea. In addition, the furosemide-sensitive transporter has also been shown to play a significant role in cell volume regulation, both in epithelia and in non-epithelia cells, and it appears to participate in the regulation of the cell chloride concentrations in excitable tissues.
Schall, Joan I; Mascarenhas, Maria R; Maqbool, Asim; Dougherty, Kelly A; Elci, Okan; Wang, Dah-Jyuu; Altes, Talissa A; Hommel, Kevin A; Shaw, Walter; Moore, Jeff; Stallings, Virginia A
2016-04-01
Choline depletion is seen in cystic fibrosis (CF) and pancreatic insufficiency in spite of enzyme treatment and may result in liver, fatty acid, and muscle abnormalities. This study evaluated the efficacy and safety of an easily absorbed choline-rich structured lipid (LYM-X-SORB™ [LXS]) to improve choline status. Children with CF and pancreatic insufficiency were randomized to LXS or placebo in a 12-month double blind trial. Dietary choline intake, plasma cholines, plasma and fecal phospholipids, coefficient of fat absorption, pulmonary function, growth status, body composition, and safety measures were assessed. Magnetic resonance spectroscopy for calf muscle choline and liver fat were assessed in a subgroup and compared with a healthy comparison group matched for age, sex, and body size. A total of 110 subjects were enrolled (age 10.4 ± 3.0 years). Baseline dietary choline, 88% recommended, increased 3-fold in the LXS group. Plasma choline, betaine, and dimethylglycine increased in the LXS but not placebo (P = 0.007). Plasma lysophosphatidylcholine and phosphatidylcholine increased, and fecal phosphatidylcholine/phosphatidylethanolamine ratio decreased (P ≤ 0.05) in LXS only, accompanied by a 6% coefficient of fat absorption increase (P = 0.001). Children with CF had higher liver fat than healthy children and depleted calf muscle choline at baseline. Muscle choline concentration increased in LXS and was associated with improvement in plasma choline status. No relevant changes in safety measures were evident. LXS had improved choline intake, plasma choline status, and muscle choline stores compared with placebo group. The choline-rich supplement was safe, accepted by participants, and improved choline status in children with CF.
Yan, Jian; Jiang, Xinyin; West, Allyson A; Perry, Cydne A; Malysheva, Olga V; Brenna, J Thomas; Stabler, Sally P; Allen, Robert H; Gregory, Jesse F; Caudill, Marie A
2013-12-01
Although biomarkers of choline metabolism are altered by pregnancy, little is known about the influence of human pregnancy on the dynamics of choline-related metabolic processes. This study used stable isotope methodology to examine the effects of pregnancy on choline partitioning and the metabolic activity of choline-related pathways. Healthy third-trimester pregnant (n = 26; initially week 27 of gestation) and nonpregnant (n = 21) women consumed 22% of their total choline intake (480 or 930 mg/d) as methyl-d9-choline for the final 6 wk of a 12-wk feeding study. Plasma d9-betaine:d9-phosphatidylcholine (PC) was lower (P ≤ 0.04) in pregnant than in nonpregnant women, suggesting greater partitioning of choline into the cytidine diphosphate-choline (CDP-choline) PC biosynthetic pathway relative to betaine synthesis during pregnancy. Pregnant women also used more choline-derived methyl groups for PC synthesis via phosphatidylethanolamine N-methyltransferase (PEMT) as indicated by comparable increases in PEMT-PC enrichment in pregnant and nonpregnant women despite unequal (pregnant > nonpregnant; P < 0.001) PC pool sizes. Pregnancy enhanced the hydrolysis of PEMT-PC to free choline as shown by greater (P < 0.001) plasma d3-choline:d3-PC. Notably, d3-PC enrichment increased (P ≤ 0.011) incrementally from maternal to placental to fetal compartments, signifying the selective transfer of PEMT-PC to the fetus. The enhanced use of choline for PC production via both the CDP-choline and PEMT pathways shows the substantial demand for choline during late pregnancy. Selective partitioning of PEMT-PC to the fetal compartment may imply a unique requirement of PEMT-PC by the developing fetus.
Ilcol, Yesim Ozarda; Yilmaz, Zeki; Cansev, Mehmet; Ulus, Ismail H
2009-09-01
We showed previously that choline administration protects dogs from endotoxin-induced multiple organ injury and platelet dysfunctions. Because sepsis/endotoxemia is associated with alterations in lipid metabolism, we have investigated whether choline or cytidine-5'-diphosphate choline, a choline donor, alters serum lipid responses to endotoxin in dogs and rats. In response to endotoxin, serum concentrations of triglycerides, choline-containing phospholipids, total cholesterol, and high-density lipoprotein cholesterol increased in a dose- and time-related manner. Administration of choline (20 mg/kg i.v. in dogs or 90 mg/kg i.p. in rats) or cytidine-5'-diphosphate choline (70 mg/kg i.v. in dogs) 5 min before and 4 and 8 h after endotoxin blocked or attenuated the increases in serum triglycerides, total cholesterol, and nonesterified fatty acids. Endotoxin-induced elevations in serum phospholipid levels did not change in rats and were enhanced in dogs by choline. In rats, serum lipid response to endotoxin was accompanied by severalfold elevations in serum levels of hepatorenal injury markers; their elevations were also blocked by choline. Pretreatment with hexamethonium blocked choline's effects on serum lipids and hepatorenal injury markers. Pretreatment with atropine blocked endotoxin-induced elevations in serum lipid and hepatorenal injury markers, but failed to alter choline's actions on these parameters. Choline treatment improved survival rate of rats in lethal endotoxin shock. In conclusion, these data show that choline treatment alters serum lipid responses to endotoxin and prevents hepatorenal injury during endotoxemia through a nicotinic acetylcholine receptor-mediated mechanism. Hence, choline and choline-containing compounds may have a therapeutic potential in the treatment of endotoxemia/sepsis.
Schall, Joan I.; Mascarenhas, Maria R.; Maqbool, Asim; Dougherty, Kelly A.; Elci, Okan; Wang, Dah-Jyuu; Altes, Talissa A.; Hommel, Kevin A.; Shaw, Walter; Moore, Jeff; Stallings, Virginia A.
2015-01-01
Background Choline depletion is seen in cystic fibrosis (CF) and pancreatic insufficiency (PI) in spite of enzyme treatment and may result in liver, fatty acid and muscle abnormalities. This study evaluated the efficacy and safety of an easily absorbed choline-rich structured lipid (LYM-X-SORB™ [LXS]) to improve choline status. Methods Children with CF and PI were randomized to LXS or placebo in a 12-month double blind trial. Dietary choline intake, plasma cholines, plasma and fecal phospholipids, coefficient of fat absorption (CFA), pulmonary function, growth status, body composition, and safety measures were assessed. Magnetic resonance spectroscopy for calf muscle choline and liver fat were assessed in a subgroup and compared to a healthy comparison group matched for age, sex and body size. Results 110 subjects were enrolled (age 10.4±3.0 years). Baseline dietary choline, 88% recommended, increased 3-fold in the LXS group. Plasma choline, betaine, and dimethylglycine increased in the LXS but not placebo (P=0.007). Plasma lysophosphatidylcholine and phosphatidylcholine (PC) increased and fecal PC/phosphatidylethanolamine ratio decreased (P≤0.05) in LXS only, accompanied by a 6% CFA increase (P=0.001). Children with CF had higher liver fat than healthy children and depleted calf muscle choline at baseline. Muscle choline concentration increased in LXS and was associated with improvement in plasma choline status. No relevant changes in safety measures were evident. Conclusions LXS had improved choline intake, plasma choline status and muscle choline stores, compared with placebo. The choline-rich supplement was safe, accepted by participants and improved choline status in children with CF. PMID:26465792
Cohen, B M; Renshaw, P F; Stoll, A L; Wurtman, R J; Yurgelun-Todd, D; Babb, S M
1995-09-20
To test the hypothesis that uptake of circulating choline into the brain decreases with age, because alterations in metabolism of choline may be a factor contributing to age-related degenerative changes in the brain. Cohort comparison in younger and older adults. Subjects were chosen consecutively from lists of healthy volunteers screened by medical and psychiatric interviews and laboratory tests. Younger adults (n = 12) were between the ages of 20 and 40 years (mean age, 32 years), and older adults (n = 16) were between the ages of 60 and 85 years (mean age, 73 years). After fasting overnight, subjects received choline, as the bitartrate, to yield free choline equal to 50 mg/kg of body weight. Blood was drawn for determination of plasma choline concentration by high-performance liquid chromatography, and proton magnetic resonance spectroscopy (1H-MRS) was performed to determine the relative concentration of cytosolic choline-containing compounds in the brain at baseline and after ingestion of choline. Plasma choline and cytosolic choline-containing compounds in the brain, estimated as the ratio of the choline resonance to the creatine resonance on 1H-MRS scans of the basal ganglia, were compared following blinded analyses of data from subject cohorts studied at baseline and 3 hours after choline ingestion. Levels of plasma choline and cytosolic choline-containing compounds in brain were similar at baseline in younger and older subjects. Following ingestion of choline, plasma choline concentration increased by similar proportions (76% and 80%) in both younger and older subjects. Brain cytosolic choline--containing compounds increased substantially in younger subjects (mean increase, 60%; P < .001 vs baseline). Older subjects showed a much smaller increase in brain choline-containing compounds (mean, 16%; P < .001 vs the increase in younger subjects). Uptake of circulating choline into the brain decreases with age. Given the key role of choline in neuronal structure and function, this change may be a contributing factor in onset in late life of neurodegenerative, particularly dementing, illnesses in which cholinergic neurons show particular susceptibility to loss.
NASA Astrophysics Data System (ADS)
Wang, Dengjun; Jin, Yan; Jaisi, Deb P.
2015-11-01
The fate and transport of individual type of engineered nanoparticles (ENPs) in porous media have been studied intensively and the corresponding mechanisms controlling ENPs transport and deposition are well-documented. However, investigations regarding the mobility of ENPs in the concurrent presence of another mobile colloidal phase such as naturally occurring colloids (colloid-mediated transport of ENPs) are largely lacking. Here, we investigated the cotransport and retention of engineered hydroxyapatite nanoparticles (HANPs) with naturally occurring hematite colloids in water-saturated sand columns under environmentally relevant transport conditions, i.e., pH, ionic strength (IS), and flow rate. Particularly, phosphate oxygen isotope fractionation of HANPs during cotransport was explored at various ISs and flow rates to examine the mechanisms controlling the isotope fractionation of HANPs in abiotic transport processes (physical transport). During cotransport, greater mobility of both HANPs and hematite occurred at higher pHs and flow rates, but at lower ISs. Intriguingly, the mobility of both HANPs and hematite was substantially lower during cotransport than the individual transport of either, attributed primarily to greater homo- and hetero-aggregation when both particles are copresent in the suspension. The shapes of breakthrough curves (BTCs) and retention profiles (RPs) during cotransport for both particles evolved from blocking to ripening with time and from flat to hyperexponential with depth, respectively, in response to decreases in pH and flow rate, and increases in IS. The blocking BTCs and RPs that are flat or hyperexponential can be well-approximated by a one-site kinetic attachment model. Conversely, a ripening model that incorporates attractive particle-particle interaction has to be employed to capture the ripening BTCs that are impacted by particle aggregation during cotransport. A small phosphate oxygen isotope fractionation (≤ 1.8‰) occurred among HANPs populations during cotransport responding to IS and flow rate changes. This fractionation is most likely a result of hetero-aggregation between hematite and HANPs that favors light phosphate isotopes (P16O4). This interpretation is further supported by the increase in isotope fractionation at higher ISs (i.e., greater aggregation). However, the fractionation was progressively erased by decreasing flow rate, ascribed to the reduced mass transfer of HANPs between the influent and effluent. Together our findings suggest that the cotransport and retention of HANPs and hematite colloids are highly sensitive to the considered physicochemical factors, and isotope tracing could serve as a promising tool to identify the sources and transport of phosphate-based NPs in complex subsurface environments due to insignificant transport-related isotope fractionation.
NASA Astrophysics Data System (ADS)
Wang, Hong; Cao, Xiaojian; Jia, Ke; Chai, Xueting; Lu, Hua; Lu, Zuhong
2001-10-01
A fiber optic fluorescence biosensor for choline is introduced in this paper. Choline is an important neurotransmitter in mammals. Due to the growing needs for on-site clinical monitoring of the choline, much effect has been devoted to develop choline biosensors. Fiber-optic fluorescence biosensors have many advantages, including miniaturization, flexibility, and lack of electrical contact and interference. The choline fiber-optic biosensor we designed implemented a bifurcated fiber to perform fluorescence measurements. The light of the blue LED is coupled into one end of the fiber as excitation and the emission spectrum from sensing film is monitored by fiber-spectrometer (S2000, Ocean Optics) through the other end of the fiber. The sensing end of the fiber is coated with Nafion film dispersed with choline oxidase and oxygen sensitive luminescent Ru(II) complex (Tris(2,2'-bipyridyl)dichlororuthenium(II), hexahydrate). Choline oxidase catalyzes the oxidation of choline to betaine and hydrogen peroxide while consuming oxygen. The fluorescence intensity of oxygen- sensitive Ru(II) are related to the choline concentration. The response of the fiber-optic sensor in choline solution is represented and discussed. The result indicates a low-cost, high-performance, portable choline biosensor.
Deanol affects choline metabolism in peripheral tissues of mice.
Haubrich, D R; Gerber, N H; Pflueger, A B
1981-08-01
Administration of 2-dimethylaminoethanol (deanol) to mice induced an increase in both the concentration and the rate of turnover of free choline in blood. Treatment with deanol also caused an increase in the concentration of choline in kidneys, and markedly inhibited the rates of oxidation and phosphorylation of intravenously administered [3H-methyl]choline. In the liver, deanol inhibited the rate of phosphorylation of [3H-methyl]choline, but did not inhibit its rate of oxidation or cause an increase in the level of free choline. These findings suggest that deanol increases the choline concentration in blood by inhibition of its metabolism in tissues. Deanol may ultimately produce its central cholinergic effects by inhibition of choline metabolism in peripheral tissues, causing free choline choline to accumulate in blood, enter the brain, and stimulate cholinergic receptors.
Anceschi, M M; Di Renzo, G C; Venincasa, M D; Bleasdale, J E
1984-01-01
When type II pneumonocytes from adult rats were maintained in a medium that lacked choline, the incorporation of [14C]glycerol into phosphatidylcholine was not greatly diminished during the period that the cells displayed characteristics of type II pneumonocytes. Cells that were maintained in choline-free medium that contained choline oxidase and catalase, however, became depleted of choline and subsequent synthesis of phosphatidylcholine by these cells was responsive to choline in the extracellular medium. Incorporation of [14C]glycerol into phosphatidylcholine by choline-depleted cells was stimulated maximally (approx. 6-fold) by extracellular choline at a concentration (0.05 mM) that also supported the greatest incorporation into phosphatidylglycerol. The incorporation of [14C]glycerol into other glycerophospholipids by choline-depleted cells was not increased by extracellular choline. When cells were incubated in the presence of [3H]cytidine, the choline-dependent stimulation of the synthesis of phosphatidylcholine and phosphatidylglycerol was accompanied by an increased recovery of [3H]CMP. This increased recovery of [3H]CMP reflected an increase in the intracellular amount of CMP from 48 +/- 9 to 76 +/- 16 pmol/10(6) cells. Choline-depleted cells that were exposed to [3H]choline contained [3H]CDP-choline as the principal water-soluble choline derivative. As the extracellular concentration of choline was increase, however, the amount of 3H in phosphocholine greatly exceeded that in all other water-soluble derivatives. Choline-depletion of cells resulted in an increase in the specific activity of CTP:phosphocholine cytidylyltransferase in cell homogenates (from 0.40 +/- 0.15 to 1.31 +/- 0.20 nmol X min-1 X mg of protein-1). These data are indicative that the biosynthesis of phosphatidylcholine is integrated with that of phosphatidylglycerol and are consistent with the proposed involvement of CMP in this integration. The choline-depleted type II pneumonocyte provides a new model for investigating the regulation of CTP:phosphocholine cytidylyltransferase activity. PMID:6548908
The association of serum choline with linear growth failure in young children from rural Malawi12
Semba, Richard D; Zhang, Pingbo; Gonzalez-Freire, Marta; Moaddel, Ruin; Trehan, Indi; Maleta, Kenneth M; Ordiz, M Isabel; Ferrucci, Luigi; Manary, Mark J
2016-01-01
Background: Choline is an essential nutrient for cell structure, cell signaling, neurotransmission, lipid transport, and bone formation. Choline can be irreversibly converted to betaine, a major source of methyl groups. Trimethylene N-oxide (TMAO), a proatherogenic molecule, is produced from the metabolism of dietary choline by the gut microbiome. The relation between serum choline and its closely related metabolites with linear growth in children is unknown. Objective: The aim was to characterize the relation between serum choline and its closely related metabolites, betaine and TMAO, with linear growth and stunting in young children. Design: We measured serum choline, betaine, and TMAO concentrations by using liquid chromatography isotopic dilution tandem mass spectrometry in a cross-sectional study in 325 Malawian children, aged 12–59 mo, of whom 62% were stunted. Results: Median (25th, 75th percentile) serum choline, betaine, and TMAO concentrations were 6.4 (4.8, 8.3), 12.4 (9.1, 16.3), and 1.2 (0.7, 1.8) μmol/L, respectively. Spearman correlation coefficients of age with serum choline, betaine, and TMAO were −0.57 (P < 0.0001), −0.26 (P < 0.0001), and −0.10 (P = 0.07), respectively. Correlation coefficients of height-for-age z score with serum choline, betaine-to-choline ratio, and TMAO-to-choline ratio were 0.31 (P < 0.0001), −0.24 (P < 0.0001), and −0.29 (P < 0.0001), respectively. Serum choline concentrations were strongly and significantly associated with stunting. Children with and without stunting had median (25th, 75th percentile) serum choline concentrations of 5.6 (4.4, 7.4) and 7.3 (5.9, 9.1) μmol/L (P < 0.0001). Conclusions: Linear growth failure in young children is associated with low serum choline and elevated betaine-to-choline and TMAO-to-choline ratios. Further work is needed to understand whether low dietary choline intake explains low circulating choline among stunted children living in low-income countries and whether increasing choline intake may correct choline deficiency and improve growth and development. This trial was registered in the ISRCTN registry (www.isrctn.com) as ISRCTN14597012. PMID:27281303
Oral choline supplementation in children with intestinal failure.
Guerrerio, Anthony L; Mattis, Lynn; Conner, Kim G; Hampsey, Jenifer; Stasinopoulos, D Mikis; DeJong, Robert; Boctor, Emad M; Sheth, Shelia; Hamper, Ulrike M; Scheimann, Ann O
2011-07-01
Choline deficiency leads to steatohepatitis, elevated transaminases, susceptibility to septic shock, and an increased risk of central catheter thrombosis. Children with intestinal failure (IF) are at risk for choline deficiency. In an unblinded, open-label study, we studied 7 children with IF on parenteral nutrition, measured their plasma free choline level, and, if low, supplemented enterally with adequate intake (AI) doses of choline. Four to 6 weeks later we remeasured their plasma free choline. Unlike adults, infants did not respond to oral choline supplementation at AI doses. Additionally, we have calculated plasma free choline percentiles versus age for normal children.
Garber, Alan J; Abrahamson, Martin J; Barzilay, Joshua I; Blonde, Lawrence; Bloomgarden, Zachary T; Bush, Michael A; Dagogo-Jack, Samuel; DeFronzo, Ralph A; Einhorn, Daniel; Fonseca, Vivian A; Garber, Jeffrey R; Garvey, W Timothy; Grunberger, George; Handelsman, Yehuda; Hirsch, Irl B; Jellinger, Paul S; McGill, Janet B; Mechanick, Jeffrey I; Rosenblit, Paul D; Umpierrez, Guillermo E
2017-02-01
A1C = hemoglobin A1C AACE = American Association of Clinical Endocrinologists ACCORD = Action to Control Cardiovascular Risk in Diabetes ACCORD BP = Action to Control Cardiovascular Risk in Diabetes Blood Pressure ACEI = angiotensin-converting enzyme inhibitor ADVANCE = Action in Diabetes and Vascular Disease: Preterax and Diamicron MR Controlled Evaluation AGI = alpha-glucosidase inhibitor apo B = apolipoprotein B ASCVD = atherosclerotic cardiovascular disease BAS = bile acid sequestrant BMI = body mass index BP = blood pressure CHD = coronary heart disease CKD = chronic kidney disease CVD = cardiovascular disease DASH = Dietary Approaches to Stop Hypertension DPP-4 = dipeptidyl peptidase 4 eGFR = estimated glomerular filtration rate FDA = Food and Drug Administration GLP-1 = glucagon-like peptide 1 HDL-C = high-density lipoprotein cholesterol IMPROVE-IT = Improved Reduction of Outcomes: Vytorin Efficacy International Trial LDL-C = low-density lipoprotein cholesterol LDL-P = low-density lipoprotein particle Look AHEAD = Look Action for Health in Diabetes NPH = neutral protamine Hagedorn OSA = obstructive sleep apnea SFU = sulfonylurea SGLT-2 = sodium glucose cotransporter-2 SMBG = self-monitoring of blood glucose T2D = type 2 diabetes TZD = thiazolidinedione VADT = Veterans Affairs Diabetes Trial.
Morita, Junko; Kano, Kuniyuki; Kato, Kazuki; Takita, Hiroyuki; Sakagami, Hideki; Yamamoto, Yasuo; Mihara, Emiko; Ueda, Hirofumi; Sato, Takanao; Tokuyama, Hidetoshi; Arai, Hiroyuki; Asou, Hiroaki; Takagi, Junichi; Ishitani, Ryuichiro; Nishimasu, Hiroshi; Nureki, Osamu; Aoki, Junken
2016-01-01
Choline is an essential nutrient for all living cells and is produced extracellularly by sequential degradation of phosphatidylcholine (PC). However, little is known about how choline is produced extracellularly. Here, we report that ENPP6, a choline-specific phosphodiesterase, hydrolyzes glycerophosphocholine (GPC), a degradation product of PC, as a physiological substrate and participates in choline metabolism. ENPP6 is highly expressed in liver sinusoidal endothelial cells and developing oligodendrocytes, which actively incorporate choline and synthesize PC. ENPP6-deficient mice exhibited fatty liver and hypomyelination, well known choline-deficient phenotypes. The choline moiety of GPC was incorporated into PC in an ENPP6-dependent manner both in vivo and in vitro. The crystal structure of ENPP6 in complex with phosphocholine revealed that the choline moiety of the phosphocholine is recognized by a choline-binding pocket formed by conserved aromatic and acidic residues. The present study provides the molecular basis for ENPP6-mediated choline metabolism at atomic, cellular and tissue levels. PMID:26888014
Wiedeman, Alejandra M.; March, Kaitlin M.; Chen, Nancy N.; Kroeun, Hou; Sokhoing, Ly; Sophonneary, Prak; Dyer, Roger A.; Xu, Zhaoming; Kitts, David D.; Innis, Sheila M.
2018-01-01
Choline has critical roles during periods of rapid growth and development, such as infancy. In human milk, choline is mostly present in water-soluble forms (free choline, phosphocholine, and glycerophosphocholine). It is thought that milk choline concentration is influenced by maternal choline intake, and the richest food sources for choline are of animal origin. Scarce information exists on milk choline from countries differing in animal-source food availability. In this secondary analysis of samples from previous trials, the concentrations of the water-soluble forms of choline were quantified by liquid chromatography-tandem mass spectrometry in mature milk samples collected from lactating women in Canada (n = 301) and in Cambodia (n = 67). None of the water-soluble forms of choline concentrations in milk differed between Canada and Cambodia. For all milk samples (n = 368), free choline, phosphocholine, glycerophosphocholine, and the sum of water-soluble forms of choline concentrations in milk were (mean (95%CI)) 151 (141, 160, 540 (519, 562), 411 (396, 427), and 1102 (1072, 1133) µmol/L, respectively. Theoretically, only 19% of infants would meet the current Adequate Intake (AI) for choline. Our findings suggest that the concentrations in milk of water-soluble forms of choline are similar in Canada and Cambodia, and that the concentration used to set the infant AI might be inaccurate. PMID:29558412
Choline transporter-like proteins CTLs/SLC44 family as a novel molecular target for cancer therapy.
Inazu, Masato
2014-11-01
Choline is essential for the synthesis of the major membrane phospholipid phosphatidylcholine (PC), the methyl donor betaine and the neurotransmitter acetylcholine (ACh). Elevated levels of choline and up-regulated choline kinase activity have been detected in various cancers. Thus, the intracellular accumulation of choline through choline transporters is the rate-limiting step in phospholipid metabolism and a prerequisite for cancer cell proliferation. Previous studies have demonstrated abnormalities in choline uptake and choline phospholipid metabolism in cancer cells using the imaging of cancer with positron emission tomography (PET) and magnetic resonance spectroscopy (MRS). The aberrant choline metabolism in cancer cells is strongly correlated with their malignant progression. Using quantitative real-time PCR, the mRNA expression of choline transporters was measured, and it was found that choline transporter-like proteins CTLs/SLC44 family are highly expressed in various cancer cell lines. Choline uptake through CTLs is associated with cell viability, and the functional inhibition of CTLs could promote apoptotic cell death. Furthermore, non-neuronal cholinergic systems that include CTLs-mediated choline transport are associated with cell proliferation and their inhibition promotes apoptotic cell death in colon cancer, small cell lung cancer and human leukemic T-cells. The identification of this new CTLs-mediated choline transport system provides a potential new target for cancer therapy. Copyright © 2014 John Wiley & Sons, Ltd.
Wiedeman, Alejandra M; Whitfield, Kyly C; March, Kaitlin M; Chen, Nancy N; Kroeun, Hou; Sokhoing, Ly; Sophonneary, Prak; Dyer, Roger A; Xu, Zhaoming; Kitts, David D; Green, Timothy J; Innis, Sheila M; Barr, Susan I
2018-03-20
Choline has critical roles during periods of rapid growth and development, such as infancy. In human milk, choline is mostly present in water-soluble forms (free choline, phosphocholine, and glycerophosphocholine). It is thought that milk choline concentration is influenced by maternal choline intake, and the richest food sources for choline are of animal origin. Scarce information exists on milk choline from countries differing in animal-source food availability. In this secondary analysis of samples from previous trials, the concentrations of the water-soluble forms of choline were quantified by liquid chromatography-tandem mass spectrometry in mature milk samples collected from lactating women in Canada ( n = 301) and in Cambodia ( n = 67). None of the water-soluble forms of choline concentrations in milk differed between Canada and Cambodia. For all milk samples ( n = 368), free choline, phosphocholine, glycerophosphocholine, and the sum of water-soluble forms of choline concentrations in milk were (mean (95%CI)) 151 (141, 160, 540 (519, 562), 411 (396, 427), and 1102 (1072, 1133) µmol/L, respectively. Theoretically, only 19% of infants would meet the current Adequate Intake (AI) for choline. Our findings suggest that the concentrations in milk of water-soluble forms of choline are similar in Canada and Cambodia, and that the concentration used to set the infant AI might be inaccurate.
Visentin, Carly E; Masih, Shannon; Plumptre, Lesley; Malysheva, Olga; Nielsen, Daiva E; Sohn, Kyoung-Jin; Ly, Anna; Lausman, Andrea Y; Berger, Howard; Croxford, Ruth; El-Sohemy, Ahmed; Caudill, Marie A; O'Connor, Deborah L; Kim, Young-In
2015-07-01
Choline deficiency during pregnancy can lead to adverse birth outcomes, including impaired neurodevelopment and birth defects. Genetic variants of choline and one-carbon metabolism may also influence birth outcomes by altering plasma choline concentrations. The effects of maternal ad libitum choline intake during pregnancy and fetal genetic variants on maternal and cord concentrations of choline and its metabolites are unknown. This prospective study sought to assess the effect of 1) maternal dietary choline intake on maternal and cord plasma concentrations of choline and its metabolites, and 2) fetal genetic polymorphisms on cord plasma concentrations. The dietary choline intake of 368 pregnant Canadian women was assessed in early (0-16 wk) and late (23-37 wk) pregnancy with the use of a food frequency questionnaire. Plasma concentrations of free choline and its metabolites were measured in maternal samples at recruitment and delivery, and in the cord blood. Ten fetal genetic variants in choline and one-carbon metabolism were assessed for their association with cord plasma concentrations of free choline and its metabolites. Mean maternal plasma free choline, dimethylglycine, and trimethylamine N-oxide (TMAO) concentrations increased during pregnancy by 49%, 17%, and 13%, respectively (P < 0.005), whereas betaine concentrations decreased by 21% (P < 0.005). Cord plasma concentrations of free choline, betaine, dimethylglycine, and TMAO were 3.2, 2.0, 1.3, and 0.88 times corresponding maternal concentrations at delivery, respectively (all P < 0.005). Maternal plasma concentrations of betaine, dimethylglycine, and TMAO (r(2) = 0.19-0.51; P < 0.0001) at delivery were moderately strong, whereas maternal concentrations of free choline were not significant (r(2) = 0.12; P = 0.06), predictors of cord plasma concentrations of these metabolites. Neither maternal dietary intake nor fetal genetic variants predicted maternal or cord plasma concentrations of choline and its metabolites. These data collectively indicate that maternal choline status, but not fetal genotype, influences cord plasma concentrations of choline metabolites. This trial was registered at clinicaltrials.gov as NCT02244684. © 2015 American Society for Nutrition.
Yan, Jian; Ginsberg, Stephen D.; Powers, Brian; Alldred, Melissa J.; Saltzman, Arthur; Strupp, Barbara J.; Caudill, Marie A.
2014-01-01
Maternal choline supplementation (MCS) induces lifelong cognitive benefits in the Ts65Dn mouse, a trisomic mouse model of Down syndrome and Alzheimer's disease. To gain insight into the mechanisms underlying these beneficial effects, we conducted a study to test the hypothesis that MCS alters choline metabolism in adult Ts65Dn offspring. Deuterium-labeled methyl-d9-choline was administered to adult Ts65Dn and disomic (2N) female littermates born to choline-unsupplemented or choline-supplemented Ts65Dn dams. Enrichment of d9-choline metabolites (derived from intact choline) and d3 + d6-choline metabolites [produced when choline-derived methyl groups are used by phosphatidylethanolamine N-methyltransferase (PEMT)] was measured in harvested tissues. Adult offspring (both Ts65Dn and 2N) of choline-supplemented (vs. choline-unsupplemented) dams exhibited 60% greater (P≤0.007) activity of hepatic PEMT, which functions in de novo choline synthesis and produces phosphatidylcholine (PC) enriched in docosahexaenoic acid. Higher (P<0.001) enrichment of PEMT-derived d3 and d6 metabolites was detected in liver, plasma, and brain in both genotypes but to a greater extent in the Ts65Dn adult offspring. MCS also yielded higher (P<0.05) d9 metabolite enrichments in liver, plasma, and brain. These data demonstrate that MCS exerts lasting effects on offspring choline metabolism, including up-regulation of the hepatic PEMT pathway and enhanced provision of choline and PEMT-PC to the brain.—Yan, J., Ginsberg, S. D., Powers, B., Alldred, M. J., Saltzman, A., Strupp, B. J., Caudill, M. A. Maternal choline supplementation programs greater activity of the phosphatidylethanolamine N-methyltransferase (PEMT) pathway in adult Ts65Dn trisomic mice. PMID:24963152
Luo, Zhi; Wei, Chuan-Chuan; Ye, Han-Mei; Zhao, Hai-Ping; Song, Yu-Feng; Wu, Kun
2016-12-01
The present experiment was conducted to determine the effect and mechanism of dietary choline levels on growth performance and lipid deposition of yellow catfish Pelteobagrus fulvidraco. Dietary choline was included at three levels of 239.2 (control (without extra choline addition), 1156.4 and 2273.6mg choline per kg diet, respectively) and fed to yellow catfish (mean initial weight: 3.45±0.02g mean±standard errors of mean (SEM)) for 8weeks. Fish fed the diet containing 1156.4mgkg -1 choline showed the higher weight gain (WG), specific growth rate (SGR) and feed intake (FI), but the lower feed conversion rate (FCR), than those in control and highest choline group. Hepatosomatic index (HSI) and hepatic lipid content declined with increasing dietary choline levels. Muscle lipid content was the lowest for fish fed adequate choline diets and showed no significant difference between other two groups. Choline contents in liver and muscle increased with increasing dietary choline levels. Dietary choline levels significantly influenced mRNA levels of genes involved in lipid homeostasis in muscle and liver, such as CTP:phosphocholine cytidylyltransferase a (CCTa), phosphatidylethanolamine N-methyl-transferase (PEMT), microsomal triglyceride transfer protein (MTP), apolipoprotein b (APOBb), apolipoprotein E (ApoE) and lipoprotein lipase (LPL), and effects of dietary choline levels on lipid deposition and metabolism were tissue-specific. Different responses of these genes at the mRNA levels partially explained the profiles of lipid deposition in liver and muscle for fish fed different choline diets. To our knowledge, this is the first to explore the effect of dietary choline level on mRNA expression of these genes, which provides new insights into choline nutrition in fish. Copyright © 2016 Elsevier Inc. All rights reserved.
Emmert, J L; Baker, D H
1997-05-01
Our objectives were to use a soy protein isolate (SPI) diet containing 2-amino-2-methyl-1-propanol, an inhibitor of choline biosynthesis, to determine the bioavailable choline content of normal and overheated soybean meal (SBM), canola meal (CM) and peanut meal (PM). In the first four experiments, it was determined that weight gain of chicks fed the basal diet would respond linearly (P < 0.05) to graded levels of crystalline choline and would not respond to betaine, and that when fortified with adequate choline, no weight gain or feed intake response would occur upon addition of 100 g/kg SBM, CM or PM to the basal diet. Furthermore, addition of crystalline amino acids simulating the amino acid composition of 100 g/kg SBM did not alter the utilization of crystalline choline. In Experiment 5, feeding graded doses of choline, SBM, CM or PM resulted in linear (P < 0.05) increases in weight gain. Multiple linear regression analysis indicated bioavailable choline concentrations of 1708, 1545 and 1203 mg/kg for SBM, CM and PM, respectively. In Experiment 6, no differences (P > 0.05) in bioavailable choline concentrations occurred between normal and overheated SBM, CM or PM, and the bioavailable choline concentration of normal SBM, CM and PM was 2002, 1464 and 1320 mg/kg, respectively. Average bioavailable choline levels were 83, 24 and 76% of analytically determined choline levels in SBM, CM and PM, respectively. Canola meal, although three times as rich in total choline as SBM, has less bioavailable choline than SBM. A substantial portion of choline in SBM, CM and PM is unavailable, and overheating does not appear to decrease the bioavailability of choline in these products.
Scholz, Anica; Stahl, Julia; de Berardinis, Veronique; Müller, Volker; Averhoff, Beate
2016-04-01
Acinetobacter baylyi, a ubiquitous soil bacterium, can cope with high salinity by uptake of choline as precursor of the compatible solute glycine betaine. Here, we report on the identification of a choline dehydrogenase (BetA) and a glycine betaine aldehyde dehydrogenase (BetB) mediating the oxidation of choline to glycine betaine. The betAB genes were found to form an operon together with the potential transcriptional regulator betI. The transcription of the betIBA operon and the two recently identified choline transporters was upregulated in response to choline and choline plus salt. The finding that the osmo-independent transporter BetT1 undergoes a higher upregulation in response to choline alone than betT2 suggests that BetT1 does not primarily function in osmoadaptation. Electrophoretic mobility shift assays led to the conclusion that BetI mediates transcriptional regulation of both, the betIBA gene operon and the choline transporters. BetI was released from the DNA in response to choline which together with the transcriptional upregulation of the bet genes in the presence of choline suggests that BetI is a choline sensing transcriptional repressor. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.
Determination of picomole quantities of acetylcholine and choline in physiologic salt solutions.
Gilberstadt, M L; Russell, J A
1984-04-01
An assay capable of detecting tens-of-picomole quantities of choline and acetylcholine in milliliter volumes of a physiological salt solution has been developed. Silica column chromatography was used to bind and separate 10-3000 pmol [14C]choline and [14C]acetylcholine standards made up in 3 ml of a bicarbonate-buffered Krebs-Ringer solution. The silica columns bound 95-98% of both choline and acetylcholine. Of the bound choline 84-87% was eluted in 1.5 ml of 0.075 N HCl, whereas 95-98% of the bound acetylcholine was eluted in a subsequent wash with 1.5 ml of 0.030 N HCl in 10% 2-butanone. Vacuum centrifugation of the eluants yielded small white pellets with losses of choline and acetylcholine of only 1%. Dried pellets of unlabeled choline and acetylcholine standards were assayed radioenzymatically using [gamma-32P]ATP, choline kinase, and acetylcholinesterase. The net disintegrations per minute of choline[32P]phosphate product was proportional to both the acetylcholine (10-3000 pmol) and choline (30-3000 pmol) standards. The "limit sensitivity" was 8.5 pmol for acetylcholine and 11.4 pmol for choline. Cross-contamination of the choline assay by acetylcholine averaged 1.3%, whereas contamination of the acetylcholine assay by choline averaged 3.1%.
Garner, S C; Mar, M H; Zeisel, S H
1995-11-01
Choline supplementation of pregnant rats between d 12 and 17 of pregnancy permanently enhances the spatial memory of offspring; however, the mechanism is unknown. We examined the effect of choline supplementation on metabolism of orally ingested choline by nonmated rats and pregnant rats and their fetuses. We studied the metabolism of an acute oral dose of 14C-choline chloride in pregnant and nonmated rats with and without choline supplementation (25 mmol/L choline chloride in water) on d 12-17 of pregnancy. During the first 2 h after oral dosing, plasma radiolabeled choline was detectable, whereas plasma choline metabolites contributed little to total radioactivity at any time. The pattern of accumulation of label in placentas was similar in all groups. Fetal tissues (i.e., brain, liver and carcass remnant) contained primarily 14C-phosphatidylcholine and 14C-phosphorylcholine. Also, we examined the fetal tissue distribution of isotopically labeled (deuterated) choline derived from the diet and from the dietary choline supplement. The distribution patterns for radiolabeled choline metabolites in fetuses of supplemented dams accumulated significantly (P < 0.01) more of their total choline and its metabolites than fetuses of control dams during d 12-17 of gestation (50 vs. 20%). In fetuses from supplemented dams, betaine concentrations were greater than in fetuses from control dams in all organs assayed (by 36-57%). Phosphorylcholine concentrations in brain of fetuses from supplemented dams were also greater. These experiments identify potential metabolites of choline that might mediate the observed effects on brain development in the rats.
Yan, Jian; Ginsberg, Stephen D; Powers, Brian; Alldred, Melissa J; Saltzman, Arthur; Strupp, Barbara J; Caudill, Marie A
2014-10-01
Maternal choline supplementation (MCS) induces lifelong cognitive benefits in the Ts65Dn mouse, a trisomic mouse model of Down syndrome and Alzheimer's disease. To gain insight into the mechanisms underlying these beneficial effects, we conducted a study to test the hypothesis that MCS alters choline metabolism in adult Ts65Dn offspring. Deuterium-labeled methyl-d9-choline was administered to adult Ts65Dn and disomic (2N) female littermates born to choline-unsupplemented or choline-supplemented Ts65Dn dams. Enrichment of d9-choline metabolites (derived from intact choline) and d3 + d6-choline metabolites [produced when choline-derived methyl groups are used by phosphatidylethanolamine N-methyltransferase (PEMT)] was measured in harvested tissues. Adult offspring (both Ts65Dn and 2N) of choline-supplemented (vs. choline-unsupplemented) dams exhibited 60% greater (P≤0.007) activity of hepatic PEMT, which functions in de novo choline synthesis and produces phosphatidylcholine (PC) enriched in docosahexaenoic acid. Higher (P<0.001) enrichment of PEMT-derived d3 and d6 metabolites was detected in liver, plasma, and brain in both genotypes but to a greater extent in the Ts65Dn adult offspring. MCS also yielded higher (P<0.05) d9 metabolite enrichments in liver, plasma, and brain. These data demonstrate that MCS exerts lasting effects on offspring choline metabolism, including up-regulation of the hepatic PEMT pathway and enhanced provision of choline and PEMT-PC to the brain. © FASEB.
Direct renal tubular effects of choline on electrolyte excretion in the chicken.
Besseghir, K; Rennick, B
1981-03-01
Direct local effects of choline on electrolyte effects did not reappear. Acetylcholine was more potent than choline in producing the electrolyte effects. These results suggest that choline-induced changes in renal electrolyte excretion are mediated by a muscarinic receptor completely separate from the choline transport system. These effects imply that choline is not an "inert" cation.
Mudd, Austin T; Alexander, Lindsey S; Johnson, Stacey K; Getty, Caitlyn M; Malysheva, Olga V; Caudill, Marie A; Dilger, Ryan N
2016-11-01
Choline is essential for synthesis of phospholipids, neurodevelopment, and DNA methylation. It is unknown whether dietary perinatal choline deficiency affects maternal milk composition. We examined whether perinatal maternal dietary choline deficiency influences porcine-milk composition. Yorkshire sows were fed choline-deficient (CD) or choline-sufficient (CS) gestation diets [544 or 1887 mg choline/kg dry matter (DM), respectively] from 65 d before to 48 h after parturition and then fed lactation diets (517 or 1591 mg choline/kg DM, respectively) through day 19 of lactation. Milk was collected from 7 sows fed each diet at days 0 (colostrum), 7-9 (mature milk), and 17-19 (preweaning) of lactation. Sow plasma was collected 65 d before and 19 d after parturition. Milk was analyzed for choline metabolite, fatty acid (FA), and amino acid composition. All outcomes were analyzed to assess main and interactive effects of choline intake and time. Plasma choline metabolites did not differ before treatment, but free choline, betaine, and dimethylglycine concentrations were lower in CD-fed than in CS-fed sows at day 19 of lactation (interaction; P < 0.05). Milk betaine concentrations responded similarly, with no differences due to choline intake at day 0 of lactation, but lower concentrations in CD-fed than in CS-fed sows at day 18 of lactation (interaction; P < 0.001). Certain milk long-chain FAs also exhibited no differences at day 0 of lactation but higher concentrations in CD-fed than in CS-fed sows at day 18 of lactation (P < 0.05). These data indicate that, in pigs, dietary choline deficiency induces alterations in plasma choline metabolites that are evident at the end of lactation. Betaine and select FAs in milk are sensitive to maternal dietary choline deficiency and day of lactation. Alterations in concentrations of these nutrients may affect early-life neonatal development. © 2016 American Society for Nutrition.
Membrane transport mechanisms of choline in human intestinal epithelial LS180 cells.
Horie, Asuka; Ishida, Kazuya; Watanabe, Yuri; Shibata, Kaito; Hashimoto, Yukiya
2014-12-01
The aim of the present study was to investigate the membrane transport mechanisms of choline using human intestinal epithelial LS180 cells. The mRNA of choline transporter-like proteins (CTLs) was expressed significantly in LS180 cells, and the rank order was CTL1 > CTL4 > CTL3 > CTL2 > CTL5. In contrast, the mRNA expression of other choline transporters, organic cation transporter (OCT) 1, OCT2 and high-affinity choline transporter 1 (CHT1), was considerably lower in LS180 cells. Five mm unlabelled choline, hemicolinium-3 and guanidine, but not tetraethylammonium, inhibited the cellular uptake of 100 µm choline in LS180 cells. The uptake of choline into LS180 cells was virtually Na(+)-independent. The uptake of choline was significantly decreased by acidification of the extracellular pH; however, it was not increased by alkalization of the extracellular pH. In addition, both acidification and alkalization of intracellular pH decreased the uptake of choline, indicating that the choline uptake in LS180 cells is not stimulated by the outward H(+) gradient. On the other hand, the uptake of choline was decreased by membrane depolarization along with increasing extracellular K(+) concentration. In addition, the Na(+)-independent uptake of choline was saturable, and the Km value was estimated to be 108 µm. These findings suggest that the uptake of choline into LS180 cells is membrane potential-dependent, but not outward H(+) gradient-dependent. Copyright © 2014 John Wiley & Sons, Ltd.
Deanol acetamidobenzoate inhibits the blood-brain barrier transport of choline.
Millington, W R; McCall, A L; Wurtman, R J
1978-10-01
Competition by deanol (dimethylaminoethanol) with choline for uptake from the bloodstream into the brain was demonstrated by simultaneous intracarotid administration of carbon 14-labeled choline with deanol (plus tritiated water and indium 113m, to calculate a brain uptake index) and by measuring the brain uptake of 14C-labeled choline mixed with sera from rats pretreated with deanol (300 or 500 mg/kg 8 or 30 minutes earlier). The inhibition constant for inhibition of choline uptake by deanol (159 micrograms) was actually lower than the Michaelis constant for choline itself (442 micrograms); hence, the affinity of the carrier mechanism for deanol is at least as great as it is for choline. Deanol administration also elevated blood choline levels; thus, the effect of the drug on brain choline (and acetylcholine) levels is the result of the increase it produces in blood choline and the suppression it causes in choline uptake. These findings may explain discrepant results from laboratories seeking increases in brain acetylcholine or clinical improvement in patients with tardive dyskinesia after deanol treatment.
Concentrations of choline-containing compounds and betaine in common foods.
Zeisel, Steven H; Mar, Mei-Heng; Howe, Juliette C; Holden, Joanne M
2003-05-01
Choline is important for normal membrane function, acetylcholine synthesis and methyl group metabolism; the choline requirement for humans is 550 mg/d for men (Adequate Intake). Betaine, a choline derivative, is important because of its role in the donation of methyl groups to homocysteine to form methionine. In tissues and foods, there are multiple choline compounds that contribute to total choline concentration (choline, glycerophosphocholine, phosphocholine, phosphatidylcholine and sphingomyelin). In this study, we collected representative food samples and analyzed the choline concentration of 145 common foods using liquid chromatography-mass spectrometry. Foods with the highest total choline concentration (mg/100 g) were: beef liver (418), chicken liver (290), eggs (251), wheat germ (152), bacon (125), dried soybeans (116) and pork (103). The foods with the highest betaine concentration (mg/100 g) were: wheat bran (1339), wheat germ (1241), spinach (645), pretzels (237), shrimp (218) and wheat bread (201). A number of epidemiologic studies have examined the relationship between dietary folic acid and cancer or heart disease. It may be helpful to also consider choline intake as a confounding factor because folate and choline methyl donation can be interchangeable.
Fine-tuning of choline metabolism is important for pneumococcal colonization.
Johnston, Calum; Hauser, Christoph; Hermans, Peter W M; Martin, Bernard; Polard, Patrice; Bootsma, Hester J; Claverys, Jean-Pierre
2016-06-01
The human pathogen Streptococcus pneumoniae (the pneumococcus) is rare in having a strict requirement for the amino alcohol choline, which decorates pneumococcal teichoic acids. This process relies on the lic locus, containing the lic1 and lic2 operons. These operons produce eight proteins that import and metabolize choline, generate teichoic acid precursors and decorate these with choline. Three promoters control expression of lic operons, with Plic1P1 and Plic1P2 controlling lic1 and Plic2 controlling lic2. To investigate the importance of lic regulation for pneumococci, we assayed the activity of transcriptional fusions of the three lic promoters to the luciferase reporter gene. Plic1P1 , whose activity depends on the response regulator CiaR, responded to fluctuations in extracellular choline, with activity increasing greatly upon choline depletion. We uncovered a complex regulatory mechanism controlling Plic1P1 , involving activity driven by CiaR, repression by putative repressor LicR in the presence of choline, and derepression upon choline depletion mediated by LicC, a choline metabolism enzyme. Finally, the ability to regulate Plic1P1 in response to choline was important for pneumococcal colonization. We suggest that derepression of Plic1P1 upon choline depletion maximizing choline internalization constitutes an adaptive response mechanism allowing pneumococci to optimize growth and survival in environments where choline is scarce. © 2016 John Wiley & Sons Ltd.
Uptake of Free Choline by Isolated Perfused Rat Liver
NASA Astrophysics Data System (ADS)
Zeisel, Steven H.; Story, David L.; Wurtman, Richard J.; Brunengraber, Henri
1980-08-01
The uptake of free choline by isolated perfused rat liver was characterized. A saturable uptake mechanism [Ka=0.17± 0.07 mM (SD); Vmax=0.84± 0.16\\ μ mol/min × g dry weight] and a nonsaturable mechanism (through which uptake is proportional to choline concentration in the perfusate) were identified. Most of the choline transported into hepatocytes was converted to betaine, phosphorylcholine, or lecithin. Free choline also accumulated within the intracellular space, suggesting that choline oxidase activity does not always limit choline's uptake by the liver.
A comparison of choline:urea and choline:oxalic acid deep eutectic solvents at 338 K
NASA Astrophysics Data System (ADS)
Gilmore, Mark; Moura, Leila M.; Turner, Adam H.; Swadźba-Kwaśny, Małgorzata; Callear, Samantha K.; McCune, Jade A.; Scherman, Oren A.; Holbrey, John D.
2018-05-01
1:2 choline chloride:urea and 1:1 choline chloride:oxalic acid deep eutectic solvents are compared at 338 K using liquid-phase neutron diffraction with H/D isotopic substitution to obtain differential neutron scattering cross sections and fitting of models to the experimental data using Empirical Potential Structure Refinement. In comparison to the previously reported study of choline chloride:urea at 303 K, we observed significant weakening and lengthening of choline-OH⋯Cl- and choline-OH⋯hydrogen-bond acceptor correlations.
Evidence for an apical Na-Cl cotransporter involved in ion uptake in a teleost fish
Hiroi, J.; Yasumasu, S.; McCormick, S.D.; Hwang, P.-P.; Kaneko, T.
2008-01-01
Cation-chloride cotransporters, such as the Na+/K +/2Cl- cotransporter (NKCC) and Na+/Cl - cotransporter (NCC), are localized to the apical or basolateral plasma membranes of epithelial cells and are involved in active ion absorption or secretion. The objectives of this study were to clone and identify 'freshwater-type' and 'seawater-type' cation-chloride cotransporters of euryhaline Mozambique tilapia (Oreochromis mossambicus) and to determine their intracellular localization patterns within mitochondria-rich cells (MRCs). From tilapia gills, we cloned four full-length cDNAs homologous to human cation-chloride cotransporters and designated them as tilapia NKCC1a, NKCC1b, NKCC2 and NCC. Out of the four candidates, the mRNA encoding NKCC1a was highly expressed in the yolk-sac membrane and gills (sites of the MRC localization) of seawater-acclimatized fish, whereas the mRNA encoding NCC was exclusively expressed in the yolk-sac membrane and gills of freshwater-acclimatized fish. We then generated antibodies specific for tilapia NKCC1a and NCC and conducted whole-mount immunofluorescence staining for NKCC1a and NCC, together with Na+/K+-ATPase, cystic fibrosis transmembrane conductance regulator (CFTR) and Na+/H+ exchanger 3 (NHE3), on the yolk-sac membrane of tilapia embryos acclimatized to freshwater or seawater. The simultaneous quintuple-color immunofluorescence staining allowed us to classify MRCs clearly into four types: types I, II, III and IV. The NKCC1a immunoreactivity was localized to the basolateral membrane of seawater-specific type-IV MRCs, whereas the NCC immunoreactivity was restricted to the apical membrane of freshwater-specific type-II MRCs. Taking account of these data at the level of both mRNA and protein, we deduce that NKCC1a is the seawater-type cotransporter involved in ion secretion by type-IV MRCs and that NCC is the freshwater-type cotransporter involved in ion absorption by type-II MRCs. We propose a novel ion-uptake model by MRCs in freshwater that incorporates apically located NCC. We also reevaluate a traditional ion-uptake model incorporating NHE3; the mRNA was highly expressed in freshwater, and the immunoreactivity was found at the apical membrane of other freshwater-specific MRCs.
K-Cl cotransport function and its potential contribution to cardiovascular disease.
Adragna, Norma C; Lauf, Peter K
2007-12-01
K-Cl cotransport is the coupled electroneutral movement of K and Cl ions carried out by at least four protein isoforms, KCC1-4. These transporters belong to the SLC12A family of coupled cotransporters and, due to their multiple functions, play an important role in the maintenance of cellular homeostasis. Significant information exists on the overall function of these transporters, but less is known about the role of the specific isoforms. Most functional studies were done on K-Cl cotransport fluxes without knowing the molecular details, and only recently attention has been paid to the isoforms and their individual contribution to the fluxes. This review summarizes briefly and updates the information on the overall functions of this transporter, and offers some ideas on its potential contribution to the pathophysiological basis of cardiovascular disease. By virtue of its properties and the cellular ionic distribution, K-Cl cotransport participates in volume regulation of the nucleated and some enucleated cells studied thus far. One of the hallmarks in cardiovascular disease is the inability of the organism to maintain water and electrolyte balance in effectors and/or target tissues. Oxidative stress is another compounding factor in cardiovascular disease and of great significance in our modern life styles. Several functions of the transporter are modulated by oxidative stress, which in turn may cause the transporter to operate in either "overdrive" with the purpose to counteract homeostatic changes, or not to respond at all, again setting the stage for pathological changes leading to cardiovascular disease. Intracellular Mg, a second messenger, acts as an inhibitor of K-Cl cotransport and plays a crucial role in regulating the activity of protein kinases and phosphatases, which, in turn, regulate a myriad of cellular functions. Although the role of Mg in cardiovascular disease has been dealt with for several decades, this chapter is evolving nowadays at a faster pace and the relationships between Mg, K-Cl cotransport, and cardiovascular disease is an area that awaits further experimentation. We envision that further studies on the role of K-Cl cotransport, and ideally on its specific isoforms, in mammalian cells will add missing links and help to understand the cellular mechanisms involved in the pathophysiology of cardiovascular disease.
Dilger, Ryan N; Garrow, Timothy A; Baker, David H
2007-10-01
The ability of betaine to serve as a methyl donor in chicks was assessed in 3 bioassays using a choline-free purified diet that contained adequate methionine (Met). In assay 1, choline and betaine were each supplemented at 300 mg/kg in a 2 x 2 factorial arrangement of diets. Supplemental choline improved (P < 0.05) growth performance over the 9-d growth period, whereas betaine alone had no effect. In assay 2, graded supplements of choline produced a linear increase (P < 0.05) in growth performance criteria over a 9-d growth period. Additionally, hepatic betaine-homocysteine (Hcy) methyltransferase (BHMT) activity decreased linearly (P < 0.05), whereas plasma total Hcy remained unchanged. Addition of 260 or 600 mg/kg betaine to the choline-free basal diet did not affect growth performance or BHMT activity, but 600 mg/kg betaine reduced (P < 0.05) plasma total Hcy. Assay 3 was designed to quantify the ability of betaine to spare choline. Minimal supplemental choline requirements of 20.8 +/- 1.50 mg/d (722 mg/kg diet) and 10.5 +/- 1.03 mg/d (412 mg/kg diet) were estimated in the absence and presence of 1000 mg/kg supplemental betaine, respectively. Based on these estimates, 50% of the dietary choline requirement must be supplied as choline per se, but the remaining 50% can be replaced by betaine. Collectively, these data suggest betaine and Met have minimal choline-sparing activity in chicks fed purified diets devoid of preformed choline. However, addition of betaine to diets containing minimal choline allows a marked reduction in the total dietary choline requirement.
Wallace, Julie M W; McCormack, Jacqueline M; McNulty, Helene; Walsh, Paula M; Robson, Paula J; Bonham, Maxine P; Duffy, Maresa E; Ward, Mary; Molloy, Anne M; Scott, John M; Ueland, Per M; Strain, J J
2012-10-01
Choline is an essential nutrient and can also be obtained by de novo synthesis via an oestrogen responsive pathway. Choline can be oxidised to the methyl donor betaine, with short-term supplementation reported to lower plasma total homocysteine (tHcy); however, the effects of longer-term choline supplementation are less clear. We investigated the effect of choline supplementation on plasma concentrations of free choline, betaine and tHcy and B-vitamin status in postmenopausal women, a group more susceptible to low choline status. We also assessed whether supplementation altered plasma lipid profiles. In this randomised, double-blinded, placebo-controlled study, forty-two healthy postmenopausal women received 1 g choline per d (as choline bitartrate), or an identical placebo supplement with their habitual diet. Fasting blood samples were collected at baseline, week 6 and week 12. Administration of choline increased median choline and betaine concentrations in plasma, with significant effects evident after 6 weeks of supplementation (P<0·001) and remaining significant at 12 weeks (P<0·001); no effect was observed on folate status or on plasma lipids. Choline supplementation induced a median (25th, 75th percentile) change in plasma tHcy concentration at week 6 of -0·9 (-1·6, 0·2) μmol, a change which, when compared to that observed in the placebo group 0·6 (-0·4, 1·9) μmol, approached statistical significance (P=0·058). Choline supplementation at a dose of 1 g/d significantly increases the circulating concentration of free choline, and can also significantly increase the concentration of the methyl donor, betaine, thereby potentially enhancing the betaine-homocysteine methyltransferase-mediated remethylation of tHcy.
Uptake of choline by rat mammary-gland epithelial cells.
Chao, C K; Pomfret, E A; Zeisel, S H
1988-01-01
The neonatal mammal requires especially large amounts of choline to sustain growth. Much of this choline is derived from the newborn's only source of food, milk. The concentration of choline in rat milk [182 +/- 24 microM (S.E.M.)] was much higher than that in maternal serum (11.6 +/- 0.9 microM), suggesting that a mechanism capable of concentrating choline into milk must exist. We characterized choline uptake by mammary epithelial cells (the site of milk production) of the lactating rat. We observed two uptake processes, one saturable and obeying Michaelis-Menten kinetics, and the other non-saturable and linear. At physiological blood choline concentrations, the saturable component of choline uptake predominated. The saturable component had Kapp. = 35 +/- 16 microM, and Vmax. = 1.24 +/- 0.19 nmol/h per mg of protein. Saturable uptake of choline was inhibited by hemicholinium-3. Ca2+ was required for uptake, but Mg2+ was not. Replacement Na+ with K+, Li+ or sucrose inhibited transport. Ouabain did not inhibit choline uptake. Choline concentration in epithelial cells was 67.7 +/- 1.9 nmol/g wet wt. at the start of incubation at 37 degrees C and rose to 80.9 +/- 6.5 nmol/g wet wt. over 30 min. Much of the choline accumulated by the mammary gland (in the presence of endogenous concentrations of choline) remained in the form of choline (50 +/- 1.2%), phosphatidylcholine (12 +/- 2.3%), lysophosphatidylcholine (0.1 +/- 0.03%), betaine (7 +/- 0.3% and phosphocholine (6 +/- 0.5%). In addition, we isolated 25 +/- 1.2% of choline-derived radiolabel in an unidentified compound. Images Fig. 1. Fig. 3. PMID:3178755
Breast milk choline contents are associated with inflammatory status of breastfeeding women.
Ozarda, Yesim; Cansev, Mehmet; Ulus, Ismail H
2014-05-01
Choline is an important component of human breast milk and its content varies considerably among breastfeeding women and lactation periods. The aim of this study was to assess the relationship between breast milk choline contents and inflammatory status in breastfeeding women. Breast milk choline compounds and serum C-reactive protein (CRP) concentrations were determined in breastfeeding women at 1 to 3 (n = 53) or 22 to 180 (n = 54) days postpartum, expressing colostrum or mature milk, respectively. Median concentrations of free choline, phosphocholine, glycerophosphocholine, phospholipid-bound choline, and total choline were 71, 38, 96, 194, and 407 µmol/L or 93, 351, 958, 186, and 1532 µmol/L in colostrum or mature milk, respectively. Median serum CRP concentrations were 4.13 mg/L and 0.33 mg/L at 1 to 3 days and 22 to 180 days postpartum, respectively. At 1 to 3 days postpartum, milk free choline, phosphocholine, glycerophosphocholine, and total choline as well as serum CRP concentrations were significantly higher in breastfeeding women who delivered by cesarean section than those who delivered via the vaginal route. Serum CRP concentration was positively correlated with colostrum free choline (r = 0.703; P < .001), phosphocholine (r = 0.759; P < .001), glycerophosphocholine (r = 0.706; P < .001), and total choline (r = 0.693; P < .001), whereas it was negatively correlated (r = -0.442; P < .001) with colostrum phospholipid-bound choline. Serum CRP was also negatively correlated with mature milk free choline (r = -0.278; P < .05), but no correlation was found between serum CRP and other choline compounds in mature milk. These data show that the concentrations of milk choline compounds are associated with inflammatory status of breastfeeding women, particularly during the first few days after delivery.
Kohlmeier, Martin; da Costa, Kerry-Ann; Fischer, Leslie M; Zeisel, Steven H
2005-11-01
Choline is a required nutrient, and some humans deplete quickly when fed a low-choline diet, whereas others do not. Endogenous choline synthesis can spare some of the dietary requirement and requires one-carbon groups derived from folate metabolism. We examined whether major genetic variants of folate metabolism modify susceptibility of humans to choline deficiency. Fifty-four adult men and women were fed diets containing adequate choline and folate, followed by a diet containing almost no choline, with or without added folate, until they were clinically judged to be choline-deficient, or for up to 42 days. Criteria for clinical choline deficiency were a more than five times increase in serum creatine kinase activity or a >28% increase of liver fat after consuming the low-choline diet that resolved when choline was returned to the diet. Choline deficiency was observed in more than half of the participants, usually within less than a month. Individuals who were carriers of the very common 5,10-methylenetetrahydrofolate dehydrogenase-1958A gene allele were more likely than noncarriers to develop signs of choline deficiency (odds ratio, 7.0; 95% confidence interval, 2.0-25; P < 0.01) on the low-choline diet unless they were also treated with a folic acid supplement. The effects of the C677T and A1298C polymorphisms of the 5,10-methylene tetrahydrofolate reductase gene and the A80C polymorphism of the reduced folate carrier 1 gene were not statistically significant. The most remarkable finding was the strong association in premenopausal women of the 5,10-methylenetetrahydrofolate dehydrogenase-1958A gene allele polymorphism with 15 times increased susceptibility to developing organ dysfunction on a low-choline diet.
Lemos, Bruno S; Medina-Vera, Isabel; Malysheva, Olga V; Caudill, Marie A; Fernandez, Maria Luz
2018-05-15
Plasma trimethylamine-N-oxide (TMAO) concentrations have been associated with cardiovascular disease risk. Eggs are a rich source of choline, which is a precursor of TMAO. The effects of egg intake versus daily choline supplementation were evaluated on plasma choline and TMAO in a young, healthy population. Thirty participants (14 males, 16 females; 25.6 ± 2.3 years; body mass index = 24.3 ± 2.9 kg/m 2 ) were enrolled in this 13-week crossover intervention. After a 2-week washout, participants were randomized to consume either 3 eggs/d or a choline bitartrate supplement (∼ 400 mg choline total in eggs or supplement) for 4 weeks. Following a 3-week washout, participants were switched to the alternate treatment. Dietary records were measured at the end of each period. Plasma TMAO and choline were measured at baseline and at the end of each dietary intervention. Gene expression of scavenger receptors associated with plasma TMAO were quantified at the end of each intervention. Compared to the choline supplement, intake of total fat, cholesterol, selenium, and vitamin E were higher (p < 0.05), whereas carbohydrate intake was lower (p < 0.001) with consumption of 3 eggs/d. Fasting plasma choline increased 20% (p = 0.023) with egg intake, while no changes were observed with choline supplementation. Plasma TMAO levels were not different between dietary treatments or compared to baseline. Dietary choline appears to be more bioavailable via egg consumption when compared to a choline supplement. Plasma TMAO concentrations were not affected in healthy participants after 4 weeks of taking ∼400 mg/d choline either via eggs or choline supplementation.
Compher, Charlene W; Kinosian, Bruce P; Stoner, Nancy E; Lentine, Deborah C; Buzby, Gordon P
2002-01-01
Choline has recently been recognized as an essential nutrient, in part based on deficiency data in long-term home total parenteral nutrition (TPN) patients. Choline, a methyl donor in the metabolism of homocysteine, is intricately related to folate status, but little is known about choline and vitamin B12 status. Long-term TPN patients are also subject to vitamin B12 deficiency. The objective of the study was to evaluate any interaction between choline, vitamin B12, and folate in patients with severe malabsorption syndromes, requiring long-term TPN. Plasma free choline, serum and red blood cell (RBC) folate, serum vitamin B12 methylmalonic acid, B6, and plasma total homocysteine concentrations were assayed by standard methods. Low choline was defined as values that fall 1 to < or =3 and marked low choline concentration as >3 SD below the control mean. Both low choline concentrations (52% were marked low, 33% low, 14% normal) and elevated methylmalonic acid concentrations (47%) were prevalent. Choline concentration was significantly lower and RBC folate higher in patients with elevated methylmalonic acid. Total homocysteine elevations were rare (3 of 21) and mild. These data suggest a strong interaction between vitamin B12 and choline deficiencies and folate status in this population, which may be due in part to variations in vitamin and choline delivery by TPN. Folate adequacy may increase B12 use for homocysteine metabolism, thus limiting B12 availability for methylmaIonic acid metabolism. Choline use may also increase, and choline deficiency may worsen if choline substitutes when the vitamin B12 side of the homocysteine metabolic pathway cannot be used.
Novel channel-mediated choline transport in cholinergic neurons of the mouse retina.
Ishii, Toshiyuki; Homma, Kohei; Mano, Asuka; Akagi, Takumi; Shigematsu, Yasuhide; Shimoda, Yukio; Inoue, Hiroyoshi; Kakinuma, Yoshihiko; Kaneda, Makoto
2017-10-01
Choline uptake into the presynaptic terminal of cholinergic neurons is mediated by the high-affinity choline transporter and is essential for acetylcholine synthesis. In a previous study, we reported that P2X 2 purinoceptors are selectively expressed in OFF-cholinergic amacrine cells of the mouse retina. Under specific conditions, P2X 2 purinoceptors acquire permeability to large cations, such as N -methyl-d-glucamine, and therefore potentially could act as a noncanonical pathway for choline entry into neurons. We tested this hypothesis in OFF-cholinergic amacrine cells of the mouse retina. ATP-induced choline currents were observed in OFF-cholinergic amacrine cells, but not in ON-cholinergic amacrine cells, in mouse retinal slice preparations. High-affinity choline transporters are expressed at higher levels in ON-cholinergic amacrine cells than in OFF-cholinergic amacrine cells. In dissociated preparations of cholinergic amacrine cells, ATP-activated cation currents arose from permeation of extracellular choline. We also examined the pharmacological properties of choline currents. Pharmacologically, α,β-methylene ATP did not produce a cation current, whereas ATPγS and benzoyl-benzoyl-ATP (BzATP) activated choline currents. However, the amplitude of the choline current activated by BzATP was very small. The choline current activated by ATP was strongly inhibited by pyridoxalphosphate-6-azophenyl-2',4'-sulfonic acid. Accordingly, P2X 2 purinoceptors expressed in HEK-293T cells were permeable to choline and similarly functioned as a choline uptake pathway. Our physiological and pharmacological findings support the hypothesis that P2 purinoceptors, including P2X 2 purinoceptors, function as a novel choline transport pathway and may provide a new regulatory mechanism for cholinergic signaling transmission at synapses in OFF-cholinergic amacrine cells of the mouse retina. NEW & NOTEWORTHY Choline transport across the membrane is exerted by both the high-affinity and low-affinity choline transporters. We found that choline can permeate P2 purinergic receptors, including P2X 2 purinoceptors, in cholinergic neurons of the retina. Our findings show the presence of a novel choline transport pathway in cholinergic neurons. Our findings also indicate that the permeability of P2X 2 purinergic receptors to choline observed in the heterologous expression system may have a physiological relevance in vivo. Copyright © 2017 the American Physiological Society.
[Folate metabolism--epigenetic role of choline and vitamin B12 during pregnancy].
Drews, Krzysztof
2015-12-01
Adequate choline intake during pregnancy is essential for proper fetal development. Nowadays studies suggest that even in high income countries regular pregnant women diet does not provide the satisfactory amount of choline. Choline demand during pregnancy is high and it seems to exceed present choline intake recommendations. Moreover lactation period also demands choline supplementation because of its high concentration in female milk. Numerous studies on animal model proved correlation between choline supplementation during pregnancy and proper fetal cognitive function development. Despite increased synthesis in maternal liver during pregnancy choline demand is much higher than common dietary uptake. Nowadays studies as to the nutritional recommendations during pregnancy concern also vitamin B12 supplementation. Vitamin B12 deficiency may be an important risk factor of neural tube defects development. Presented article contains a review of data on proper choline and vitamin B12 uptake during pregnancy and lactation and potential results of choline and vitamin B12 poor maternal status.
Pre- and postnatal health: evidence of increased choline needs.
Caudill, Marie A
2010-08-01
Choline, a micronutrient found in food, serves as the starting material for several important metabolites that play key roles in fetal development, particularly the brain. Although human beings' requirement for choline is unknown, an Adequate Intake level of 425 mg/day was established for women with upward adjustments to 450 and 550 mg/day during pregnancy and lactation, respectively. The importance of choline in human development is supported by observations that a human fetus receives a large supply of choline during gestation; pregnancy causes depletion of hepatic choline pools in rats consuming a normal diet; human neonates are born with blood levels that are three times higher than maternal blood concentrations; and large amounts of choline are present in human milk. The development of the central nervous system is particularly sensitive to choline availability with evidence of effects on neural tube closure and cognition. Existing data show that the majority of pregnant (and presumably lactating) women are not achieving the target intake levels and that certain common genetic variants may increase requirements for choline beyond current recommendations. Because choline is not found in most varieties of prenatal vitamins (or regular multivitamins), increased consumption of choline-rich foods may be needed to meet the high pre- and postnatal demands for choline. 2010 American Dietetic Association. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rand, J.B.; Johnson, C.D.
1981-09-15
A single-vial liquid extraction assay for choline acetyltransferase that uses (/sup 3/H)choline as the labeled substrate has been devised. (/sup 3/H)Choline is incubated with an excess of acetyl-CoA in a small reaction vial which also serves as a scintillation vial. After a suitable reaction period, unreacted (/sup 3/H)choline is quickly and quantitatively converted to phosphoryl-(/sup 3/H)choline by the addition of an excess of choline kinase. This treatment is followed by the addition of scintillation fluid containing sodium tetraphenylboron after which the vial is capped, shaken, and counted. A two-phase system is produced in which product (/sup 3/H)choline is selectively extractedmore » into the scintillation fluid, where is is counted. Phosphoryl-(/sup 3/H)choline remains in the aqueous phase and is not counted. This assay is rapid, simple, and quite sensitive. In comparison to assays using acetyl-CoA as the labeled substrate, it is less sensitive to interference by other enzymes and thus more suitable for measuring choline acetyltransferase in crude extracts and in the initial stages of purificaton. Similar single-vial radiometric assays are described for choline kinase and acetyl-CoA hydrolases.« less
Choline oxidation by intact spinach chloroplasts. [Spinacia oleracea L
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weigel, P.; Lerma, C.; Hanson, A.D.
1988-01-01
Plants synthesize betaine by a two-step oxidation of choline (choline ..-->.. betaine aldehyde ..-->.. betaine). Protoplast-derived chloroplasts of spinach (Spinacia oleracea L.) carry out both reactions, more rapidly in light than in darkness. We investigated the light-stimulated oxidation of choline, using spinach chloroplasts isolated directly from leaves. The rates of choline oxidation obtained (dark and light rates: 10-50 and 100-300 nanomoles per hour per milligram chlorophyll, respectively) were approximately 20-fold higher than for protoplast-derived chloroplasts. Betaine aldehyde was the main product. Choline oxidation in darkness and light was suppressed by hypoxia. Neither uncouplers not the Calvin cycle inhibitor glyceraldehyde greatlymore » affected choline oxidation in the light, and maximal choline oxidation was attained far below light saturation of CO/sub 2/ fixation. The light stimulation of choline oxidation was abolished by the PSII inhibitors DCMU and dibromothymoquinone, and was partially restored by adding reduced diaminodurene, an electron donor to PSI. Both methyl viologen and phenazine methosulfate prevented choline oxidation. Adding dihydroxyacetone phosphate, which can generate NADPH in organello, doubled the dark rate of choline oxidation. These results indicate that choline oxidation in chloroplasts requires oxygen, and reducing power generated from PSI. Enzymic reactions consistent with these requirements are discussed.« less
Schenkel, Laila C; Singh, Ratnesh K; Michel, Vera; Zeisel, Steven H; da Costa, Kerry-Ann; Johnson, Amy R; Mudd, Harvey S; Bakovic, Marica
2015-05-01
Fibroblasts from a patient with postural orthostatic tachycardia syndrome (POTS), who presented with low plasma choline and betaine, were studied to determine the metabolic characteristics of the choline deficiency. Choline is required for the synthesis of the phospholipid phosphatidylcholine (PC) and for betaine, an important osmoregulator. Here, choline transport, lipid homeostasis, and mitochondria function were analyzed in skin fibroblasts from POTS and compared with control cells. The choline transporter-like protein 1/solute carrier 44A1 (CTL1/SLC44A1) and mRNA expression were 2-3 times lower in POTS fibroblasts, and choline uptake was reduced 60% (P < 0.05). Disturbances of membrane homeostasis were observed by reduced ratios between PC:phosphatidylethanolamine and sphingomyelin:cholesterol, as well as by modified phospholipid fatty acid composition. Choline deficiency also impaired mitochondria function, which was observed by a reduction in oxygen consumption, mitochondrial potential, and glycolytic activity. When POTS cells were treated with choline, transporter was up-regulated, and uptake of choline increased, offering an option for patient treatment. The characteristics of the POTS fibroblasts described here represent a first model of choline and CTL1/SLC44A1 deficiency, in which choline transport, membrane homeostasis, and mitochondrial function are impaired. © FASEB.
Zhu, Cui-Hong; Wu, Ting; Jin, Yu; Huang, Bi-Xia; Zhou, Rui-Fen; Wang, Yi-Qin; Luo, Xiao-Lin; Zhu, Hui-Lian
2016-06-01
Prenatal intake of choline has been reported to lead to enhanced cognitive function in offspring, but little is known about the effects on spatial learning deficits. The present study examined the effects of prenatal choline supplementation on developmental low-protein exposure and its potential mechanisms. Pregnant female rats were fed either a normal or low-protein diet containing sufficient choline (1.1g/kg choline chloride) or supplemented choline (5.0g/kg choline chloride) until delivery. The Barnes maze test was performed at postnatal days 31-37. Choline and its metabolites, the synaptic structural parameters of the CA1 region in the brain of the newborn rat, were measured. The Barnes maze test demonstrated that prenatal low-protein pups had significantly greater error scale values, hole deviation scores, strategy scores and spatial search strategy and had lesser random search strategy values than normal protein pups (all P<.05). These alterations were significantly reversed by choline supplementation. Choline supplementation increased the brain levels of choline, betaine, phosphatidylethanolamine and phosphatidylcholine of newborns by 51.35% (P<.05), 33.33% (P<.001), 28.68% (P<.01) and 23.58% (P<.05), respectively, compared with the LPD group. Prenatal choline supplementation reversed the increased width of the synaptic cleft (P<.05) and decreased the curvature of the synaptic interface (P<.05) induced by a low-protein diet. Prenatal choline supplementation could attenuate the spatial learning deficits caused by prenatal protein malnutrition by increasing brain choline, betaine and phospholipids and by influencing the hippocampus structure. Copyright © 2016 Elsevier Inc. All rights reserved.
Fitzsimmons, Liam F.; Flemer, Stevenson; Wurthmann, A. Sandy; Deker, P. Bruce; Sarkar, Indra Neil; Wargo, Matthew J.
2011-01-01
Choline is abundant in association with eukaryotes and plays roles in osmoprotection, thermoprotection, and membrane biosynthesis in many bacteria. Aerobic catabolism of choline is widespread among soil proteobacteria, particularly those associated with eukaryotes. Catabolism of choline as a carbon, nitrogen, and/or energy source may play important roles in association with eukaryotes, including pathogenesis, symbioses, and nutrient cycling. We sought to generate choline analogues to study bacterial choline catabolism in vitro and in situ. Here we report the characterization of a choline analogue, propargylcholine, which inhibits choline catabolism at the level of Dgc enzyme-catalyzed dimethylglycine demethylation in Pseudomonas aeruginosa. We used genetic analyses and 13C nuclear magnetic resonance to demonstrate that propargylcholine is catabolized to its inhibitory form, propargylmethylglycine. Chemically synthesized propargylmethylglycine was also an inhibitor of growth on choline. Bioinformatic analysis suggests that there are genes encoding DgcA homologues in a variety of proteobacteria. We examined the broader utility of propargylcholine and propargylmethylglycine by assessing growth of other members of the proteobacteria that are known to grow on choline and possess putative DgcA homologues. Propargylcholine showed utility as a growth inhibitor in P. aeruginosa but did not inhibit growth in other proteobacteria tested. In contrast, propargylmethylglycine was able to inhibit choline-dependent growth in all tested proteobacteria, including Pseudomonas mendocina, Pseudomonas fluorescens, Pseudomonas putida, Burkholderia cepacia, Burkholderia ambifaria, and Sinorhizobium meliloti. We predict that chemical inhibitors of choline catabolism will be useful for studying this pathway in clinical and environmental isolates and could be a useful tool to study proteobacterial choline catabolism in situ. PMID:21602374
Choline and betaine in health and disease.
Ueland, Per Magne
2011-02-01
Choline is an essential nutrient, but is also formed by de novo synthesis. Choline and its derivatives serve as components of structural lipoproteins, blood and membrane lipids, and as a precursor of the neurotransmitter acetylcholine. Pre-and postnatal choline availability is important for neurodevelopment in rodents. Choline is oxidized to betaine that serves as an osmoregulator and is a substrate in the betaine-homocysteine methyltransferase reaction, which links choline and betaine to the folate-dependent one-carbon metabolism. Choline and betaine are important sources of one-carbon units, in particular, during folate deficiency. Choline or betaine supplementation in humans reduces concentration of total homocysteine (tHcy), and plasma betaine is a strong predictor of plasma tHcy in individuals with low plasma concentration of folate and other B vitamins (B₂, B₆, and B₁₂) in combination TT genotype of the methylenetetrahydrofolate reductase 677 C->T polymorphism. The link to one-carbon metabolism and the recent availability of food composition data have motivated studies on choline and betaine as risk factors of chronic diseases previously studied in relation to folate and homocysteine status. High intake and plasma level of choline in the mother seems to afford reduced risk of neural tube defects. Intake of choline and betaine shows no consistent relation to cancer or cardiovascular risk or risk factors, whereas an unfavorable cardiovascular risk factor profile was associated with high choline and low betaine concentrations in plasma. Thus, choline and betaine showed opposite relations with key components of metabolic syndrome, suggesting a disruption of mitochondrial choline oxidation to betaine as part of the mitochondrial dysfunction in metabolic syndrome.
Malek, Adel A.; Chen, Chiliang; Wargo, Matthew J.; Beattie, Gwyn A.; Hogan, Deborah A.
2011-01-01
Pseudomonas aeruginosa uses the quaternary amine choline as a carbon source, osmoprotectant, and macromolecular precursor. The importance of choline in P. aeruginosa physiology is highlighted by the presence of multiple known and putative choline transporters encoded within its genome. This report describes the relative roles of three choline transporters, the ABC transporter CbcXWV and two symporters, BetT1 and BetT3, in P. aeruginosa growth on choline under osmotic conditions that are physiologically relevant to eukaryotic hosts. The increased lag phases exhibited by the ΔbetT1 and ΔbetT1 ΔbetT3 mutants relative to the wild type upon transfer to medium with choline as a sole carbon source suggested roles for BetT1 and BetT3 in cells newly exposed to choline. BetT3 and CbcXWV, but not BetT1, were sufficient to support growth on choline. betT1 and betT3 expression was regulated by the repressor BetI and choline, whereas cbcXWV expression was induced by the activator GbdR and glycine betaine. The data support a model in which, upon transfer to a choline-based medium, the glycine betaine derived from choline taken up by BetT1 and BetT3 promotes subsequent GbdR-mediated cbcXWV induction. Furthermore, growth data indicated that the relative contributions of each transporter varied under different conditions, as BetT1 and CbcXWV were the primary choline transporters under hypo-osmolar conditions whereas BetT3 was the major choline transporter under hyperosmolar conditions. This work represents the first systematic approach to unravel the mechanisms of choline uptake in P. aeruginosa, which has the most complex bacterial choline uptake systems characterized to date. PMID:21478341
Taguchi, Chiaki; Inazu, Masato; Saiki, Iwao; Yara, Miki; Hara, Naomi; Yamanaka, Tsuyoshi; Uchino, Hiroyuki
2014-04-01
Positron emission tomography (PET) and PET/computed tomography (PET-CT) studies with (11)C- or (18)F-labeled choline derivatives are used for PET imaging in glioblastoma patients. However, the nature of the choline transport system in glioblastoma is poorly understood. In this study, we performed a functional characterization of [methyl-(3)H]choline uptake and sought to identify the transporters that mediate choline uptake in the human glioblastoma cell lines A-172 and U-251MG. In addition, we examined the influence of anti-cancer drugs and central nervous system drugs on the transport of [methyl-(3)H]choline. High- and low-affinity choline transport systems were present in A-172 cells, U-251MG cells and astrocytes, and these were Na(+)-independent and pH-dependent. Cell viability in A-172 cells was not affected by choline deficiency. However, cell viability in U-251MG cells was significantly inhibited by choline deficiency. Both A-172 and U-251MG cells have two different choline transporters, choline transporter-like protein 1 (CTL1) and CTL2. In A-172 cells, CTL1 is predominantly expressed, whereas in U-251MG cells, CTL2 is predominantly expressed. Treatment with anti-cancer drugs such as cisplatin, etoposide and vincristine influenced [methyl-(3)H]choline uptake in U-251MG cells, but not A-172 cells. Central nervous system drugs such as imipramine, fluvoxamine, paroxetine, reboxetine, citalopram and donepezil did not affect cell viability or [methyl-(3)H]choline uptake. The data presented here suggest that CTL1 and CTL2 are functionally expressed in A-172 and U-251MG cells and are responsible for [methyl-(3)H]choline uptake that relies on a directed H(+) gradient as a driving force. Furthermore, while anti-cancer drugs altered [methyl-(3)H]choline uptake, central nervous system drugs did not affect [methyl-(3)H]choline uptake. Copyright © 2014 Elsevier Inc. All rights reserved.
Mini-review: regulation of the renal NaCl cotransporter by hormones.
Rojas-Vega, Lorena; Gamba, Gerardo
2016-01-01
The renal thiazide-sensitive NaCl cotransporter, NCC, is the major pathway for salt reabsorption in the distal convoluted tubule. The activity of this cotransporter is critical for regulation of several physiological variables such as blood pressure, serum potassium, acid base metabolism, and urinary calcium excretion. Therefore, it is not surprising that numerous hormone-signaling pathways regulate NCC activity to maintain homeostasis. In this review, we will provide an overview of the most recent evidence on NCC modulation by aldosterone, angiotensin II, vasopressin, glucocorticoids, insulin, norepinephrine, estradiol, progesterone, prolactin, and parathyroid hormone. Copyright © 2016 the American Physiological Society.
Saha, Prosenjit; Arthur, Subha; Kekuda, Ramesh; Sundaram, Uma
2012-03-01
Glutamine is a major nutrient utilized by the intestinal epithelium and is primarily assimilated via Na-glutamine co-transport (NGcT) on the brush border membrane (BBM) of enterocytes. Recently we reported that B(0)AT1 (SLC6A19) mediates glutamine absorption in villus while SN2 (SLC38A5) does the same in crypt cells. However, how B(0)AT1 and SN2 are affected during intestinal inflammation is unknown. In the present study it was shown that during chronic enteritis NGcT was inhibited in villus cells, however, it was stimulated in crypt cells. Our studies also demonstrated that the mechanism of inhibition of NGcT during chronic enteritis was secondary to a reduction in the number of B(0)AT1 co-transporters in the villus cell BBM without a change in the affinity of the co-transporter. In contrast, stimulation of NGcT in crypt cells was secondary to an increase in the affinity of SN2 for glutamine without an alteration in the number of co-transporters. Thus, glutamine assimilation which occurs via distinct transporters in crypt and villus cells is altered in the chronically inflamed intestine. Copyright © 2011 Elsevier B.V. All rights reserved.
21 CFR 172.370 - Iron-choline citrate complex.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Iron-choline citrate complex. 172.370 Section 172... CONSUMPTION Special Dietary and Nutritional Additives § 172.370 Iron-choline citrate complex. Iron-choline citrate complex made by reacting approximately equimolecular quantities of ferric hydroxide, choline, and...
Fernández-Murray, J. Pedro; Ngo, Michael H.; McMaster, Christopher R.
2013-01-01
Choline is a precursor for the synthesis of phosphatidylcholine through the CDP-choline pathway. Saccharomyces cerevisiae expresses a single high affinity choline transporter at the plasma membrane, encoded by the HNM1 gene. We show that exposing cells to increasing levels of choline results in two different regulatory mechanisms impacting Hnm1 activity. Initial exposure to choline results in a rapid decrease in Hnm1-mediated transport at the level of transporter activity, whereas chronic exposure results in Hnm1 degradation through an endocytic mechanism that depends on the ubiquitin ligase Rsp5 and the casein kinase 1 redundant pair Yck1/Yck2. We present details of how the choline transporter is a major regulator of phosphatidylcholine synthesis. PMID:24187140
Prenatal choline availability alters the context sensitivity of Pavlovian conditioning in adult rats
Lamoureux, Jeffrey A.; Meck, Warren H.; Williams, Christina L.
2008-01-01
The effects of prenatal choline availability on Pavlovian conditioning were assessed in adult male rats (3–4 mo). Neither supplementation nor deprivation of prenatal choline affected the acquisition and extinction of simple Pavlovian conditioned excitation, or the acquisition and retardation of conditioned inhibition. However, prenatal choline availability significantly altered the contextual control of these learned behaviors. Both control and choline-deprived rats exhibited context specificity of conditioned excitation as exhibited by a loss in responding when tested in an alternate context after conditioning; in contrast, choline-supplemented rats showed no such effect. When switched to a different context following extinction, however, both choline-supplemented and control rats showed substantial contextual control of responding, whereas choline-deficient rats did not. These data support the view that configural associations that rely on hippocampal function are selectively sensitive to prenatal manipulations of dietary choline during prenatal development. PMID:19050158
Stoll, A L; Sachs, G S; Cohen, B M; Lafer, B; Christensen, J D; Renshaw, P F
1996-09-01
This study examined choline augmentation of lithium for rapid-cycling bipolar disorder. Choline bitartrate was given openly to 6 consecutive lithium-treated outpatients with rapid-cycling bipolar disorder. Five patients also underwent brain proton magnetic resonance spectroscopy. Five of 6 rapid-cycling patients had a substantial reduction in manic symptoms, and 4 patients had a marked reduction in all mood symptoms during choline therapy. The patients who responded to choline all exhibited a substantial rise in the basal ganglia concentration of choline-containing compounds. Choline was well tolerated in all cases. Choline, in the presence of lithium, was a safe and effective treatment for 4 of 6 rapid-cycling patients in our series. A hypothesis is suggested to explain both lithium refractoriness in patients with bipolar disorder and the action of choline in mania, which involves the interaction between phosphatidylinositol and phosphatidylcholine second-messenger systems.
Increased choline kinase activity in 1,2-dimethylhydrazine-induced rat colon cancer.
Nakagami, K; Uchida, T; Ohwada, S; Koibuchi, Y; Morishita, Y
1999-11-01
Cancer cells acquire particular characteristics that benefit their proliferation. We previously reported that human colon cancers examined had increased choline kinase activity and phosphocholine levels. The elevated phosphocholine levels were in part due to both activation of choline kinase and increased choline kinase alpha protein levels. In this report, we analyzed choline kinase, which catalyzes the phosphorylation of choline to produce phosphocholine, in rat 1,2-dimethylhydrazine (DMH)-induced colon cancer. This study is the first to demonstrate increased choline kinase alpha enzymatic activity, protein levels, and mRNA levels in DMH-induced colon cancer as well as human colon cancer, although phosphocholine was not increased in DMH-induced rat cancer. The increase in the mRNA level was partly due to an increase in the transcription of the choline kinase alpha gene. The increased choline kinase activity may be a specific characteristic acquired by cancer cells that benefits their proliferation.
Zeng, F-f; Xu, C-h; Liu, Y-t; Fan, Y-y; Lin, X-l; Lu, Y-k; Zhang, C-x; Chen, Y-m
2014-02-04
Intakes of choline and betaine have been inversely related to the risk of various neoplasms, but scant data exist on nasopharyngeal carcinoma (NPC). We examined the association between consumption of choline and betaine and risk of NPC. We conducted a case-control study with 600 incident NPC patients and 600 controls 1 : 1 matched by age, sex and household type in Guangdong, China. Dietary intake was assessed by a food frequency questionnaire through face-to-face interview. Intakes of total choline, betaine and choline+betaine were inversely related to NPC after adjustment for various lifestyle and dietary factors (all P-trend <0.001). Adjusted odds ratios (95% CI) for quartile 4 (vs quartile 1) were 0.42 (0.29, 0.61) for total choline, 0.50 (0.35, 0.72) for betaine and 0.44 (0.30, 0.64) for betaine+total choline. Regarding various sources of choline, lower NPC risk was associated with greater intakes of choline from phosphatidylcholine, free choline, glycerophosphocholine and phosphocholine, but not sphingomyelin. These findings are consistent with a beneficial effect of choline and betaine intakes on carcinogenesis.
Zeng, F-f; Xu, C-h; Liu, Y-t; Fan, Y-y; Lin, X-l; Lu, Y-k; Zhang, C-x; Chen, Y-m
2014-01-01
Background: Intakes of choline and betaine have been inversely related to the risk of various neoplasms, but scant data exist on nasopharyngeal carcinoma (NPC). We examined the association between consumption of choline and betaine and risk of NPC. Methods: We conducted a case–control study with 600 incident NPC patients and 600 controls 1 : 1 matched by age, sex and household type in Guangdong, China. Dietary intake was assessed by a food frequency questionnaire through face-to-face interview. Results: Intakes of total choline, betaine and choline+betaine were inversely related to NPC after adjustment for various lifestyle and dietary factors (all P-trend <0.001). Adjusted odds ratios (95% CI) for quartile 4 (vs quartile 1) were 0.42 (0.29, 0.61) for total choline, 0.50 (0.35, 0.72) for betaine and 0.44 (0.30, 0.64) for betaine+total choline. Regarding various sources of choline, lower NPC risk was associated with greater intakes of choline from phosphatidylcholine, free choline, glycerophosphocholine and phosphocholine, but not sphingomyelin. Conclusion: These findings are consistent with a beneficial effect of choline and betaine intakes on carcinogenesis. PMID:24169354
Homeostasis and catabolism of choline and glycine betaine: lessons from Pseudomonas aeruginosa.
Wargo, Matthew J
2013-04-01
Most sequenced bacteria possess mechanisms to import choline and glycine betaine (GB) into the cytoplasm. The primary role of choline in bacteria appears to be as the precursor to GB, and GB is thought to primarily act as a potent osmoprotectant. Choline and GB may play accessory roles in shaping microbial communities, based on their limited availability and ability to enhance survival under stress conditions. Choline and GB enrichment near eukaryotes suggests a role in the chemical relationships between these two kingdoms, and some of these interactions have been experimentally demonstrated. While many bacteria can convert choline to GB for osmoprotection, a variety of soil- and water-dwelling bacteria have catabolic pathways for the multistep conversion of choline, via GB, to glycine and can thereby use choline and GB as sole sources of carbon and nitrogen. In these choline catabolizers, the GB intermediate represents a metabolic decision point to determine whether GB is catabolized or stored as an osmo- and stress protectant. This minireview focuses on this decision point in Pseudomonas aeruginosa, which aerobically catabolizes choline and can use GB as an osmoprotectant and a nutrient source. P. aeruginosa is an experimentally tractable and ecologically relevant model to study the regulatory pathways controlling choline and GB homeostasis in choline-catabolizing bacteria. The study of P. aeruginosa associations with eukaryotes and other bacteria also makes this a powerful model to study the impact of choline and GB, and their associated regulatory and catabolic pathways, on host-microbe and microbe-microbe relationships.
Haberberger, Rainer Viktor; Pfeil, Uwe; Lips, Katrin Susanne; Kummer, Wolfgang
2002-10-01
Choline is an essential component in acetylcholine biosynthesis, and is involved in cell signaling. It is unable to permeate the cell membrane and requires a transporter to enter the cell. Neurons that synthesize acetylcholine take up choline by a recently cloned high-affinity choline transporter (choline transporter 1) that is Na+-dependent and can be blocked by hemicholinium-3. The aim of this study was to determine the expression and to analyze the distribution of choline transporter 1 in human and rat skin. The mRNA for choline transporter 1 was detected in rat and human skin and in the human keratinocyte cell line HaCaT. A polyclonal anti-serum was developed against the N-terminal region of the human and rat protein. In rat and human skin, choline transporter 1 immunoreactivity was present in nerve fibers. In addition, keratinocytes, HaCaT cells and cells of the internal root sheath of the hair follicle contained choline transporter 1 immunoreactivity. The labeling patterns of nonconfluent vs confluent cultured cells and the distribution of choline transporter 1 along the epidermal layer suggest an association of choline transporter 1 with keratinocyte differentiation. In conclusion, this study shows the presence of the high-affinity choline transporter choline transporter 1 in nerve fibers and epithelial cells in the human and rat skin supporting the pivotal role of this transporter in both the neuronal and non-neuronal cholinergic system of the skin.
Schenkel, Laila C.; Singh, Ratnesh K.; Michel, Vera; Zeisel, Steven H.; da Costa, Kerry-Ann; Johnson, Amy R.; Mudd, Harvey S.; Bakovic, Marica
2015-01-01
Fibroblasts from a patient with postural orthostatic tachycardia syndrome (POTS), who presented with low plasma choline and betaine, were studied to determine the metabolic characteristics of the choline deficiency. Choline is required for the synthesis of the phospholipid phosphatidylcholine (PC) and for betaine, an important osmoregulator. Here, choline transport, lipid homeostasis, and mitochondria function were analyzed in skin fibroblasts from POTS and compared with control cells. The choline transporter-like protein 1/solute carrier 44A1 (CTL1/SLC44A1) and mRNA expression were 2–3 times lower in POTS fibroblasts, and choline uptake was reduced 60% (P < 0.05). Disturbances of membrane homeostasis were observed by reduced ratios between PC:phosphatidylethanolamine and sphingomyelin:cholesterol, as well as by modified phospholipid fatty acid composition. Choline deficiency also impaired mitochondria function, which was observed by a reduction in oxygen consumption, mitochondrial potential, and glycolytic activity. When POTS cells were treated with choline, transporter was up-regulated, and uptake of choline increased, offering an option for patient treatment. The characteristics of the POTS fibroblasts described here represent a first model of choline and CTL1/SLC44A1 deficiency, in which choline transport, membrane homeostasis, and mitochondrial function are impaired.—Schenkel, L. C., Singh, R. K., Michel, V., Zeisel, S. H., da Costa, K.-A., Johnson, A. R., Mudd, H. S., Bakovic, M. Mechanism of choline deficiency and membrane alteration in postural orthostatic tachycardia syndrome primary skin fibroblasts. PMID:25466896
Robinson, B S; Snoswell, A M; Runciman, W B; Upton, R N
1984-01-01
The net uptake and output of plasma unesterified choline, glycerophosphocholine, phosphocholine and lipid choline by organs of the conscious chronically catheterized sheep were measured. There was significant production of plasma unesterified choline by the upper- and lower-body regions and the alimentary tract and uptake by the liver, lungs and kidneys. The upper- and lower-body regions drained by the venae cavae provided the bulk (about 82%) of the total body venous return of plasma unesterified choline. Production of plasma unesterified choline by the alimentary tract was approximately balanced by the plasma unesterified choline taken up by the liver, and was almost equal to the amount of choline secreted in the bile. There was a considerable amount of glycerophosphocholine in the liver and there was production of plasma glycerophosphocholine by the liver and uptake by the lungs and kidneys. Glycerophosphocholine was higher in the plasma of sheep than in that of rats. Plasma phosphocholine was produced by the alimentary tract and kidneys. There was production of plasma lipid choline by the upper- and lower-body regions drained by the venae cavae. The results suggest that the sheep synthesizes substantial amounts of choline in ectrahepatic tissues and has the capacity for extensive retention and recycling of bile choline. These observations, coupled with a slow turnover of the endogenous choline body pool, explain the low requirement of sheep for dietary choline in contrast with non-ruminant species. PMID:6696739
Mellott, Tiffany J; Kowall, Neil W; Lopez-Coviella, Ignacio; Blusztajn, Jan Krzysztof
2007-06-02
Supplementation of maternal diet with the essential nutrient, choline, during the second half of pregnancy in rats causes long-lasting improvements in spatial memory in the offspring and protects them from the memory decline characteristic of old age. In contrast, prenatal choline deficiency is associated with poor performance in certain cognitive tasks. The mechanism by which choline influences learning and memory remains unclear; however, it may involve changes to the hippocampal cholinergic system. Previously, we showed that the hippocampi of prenatally [embryonic days (E) 11-17] choline-deficient animals have increased synthesis of acetylcholine (ACh) from choline transported by the high-affinity choline transporter (CHT) and reduced ACh content relative to the control and to the E11-17 choline-supplemented rats. In the current study, we found that, during postnatal period [postnatal days (P) 18-480], prenatal choline deficiency increased the expression of CHT mRNA in the septum and CHT mRNA and protein levels in the hippocampus and altered the pattern of CHT immunoreactivity in the dentate gyrus. CHT immunoreactivity was more prominent in the inner molecular layer in prenatally choline-deficient rats compared to controls and prenatally choline-supplemented animals. In addition, in all groups, we observed a population of hilar interneurons that were CHT-immunoreactive. These neurons are the likely source of the hippocampal CHT mRNA as their number correlated with the levels of this mRNA. The abundance of hippocampal CHT mRNA rose between P1 and P24 and then declined reaching 60% of the P1 value by P90. These data show that prenatal availability of choline alters its own metabolism (i.e., CHT expression). While the upregulated CHT expression during the period of prenatal choline deficiency may be considered as a compensatory mechanism that could enhance ACh synthesis when choline supply is low, the persistent upregulation of CHT expression subsequent to the brief period of prenatal deprivation of choline in utero might be beneficial during choline deficiency in adulthood.
Afonso, Marta B; Rodrigues, Pedro M; Carvalho, Tânia; Caridade, Marta; Borralho, Paula; Cortez-Pinto, Helena; Castro, Rui E; Rodrigues, Cecília M P
2015-10-01
Hepatocyte cell death, inflammation and oxidative stress constitute key pathogenic mechanisms underlying non-alcoholic fatty liver disease (NAFLD). We aimed to investigate the role of necroptosis in human and experimental NAFLD and its association with tumour necrosis factor α (TNF-α) and oxidative stress. Serum markers of necrosis, liver receptor-interacting protein 3 (RIP3) and phosphorylated mixed lineage kinase domain-like (MLKL) were evaluated in control individuals and patients with NAFLD. C57BL/6 wild-type (WT) or RIP3-deficient (RIP3(-/-)) mice were fed a high-fat choline-deficient (HFCD) or methionine and choline-deficient (MCD) diet, with subsequent histological and biochemical analysis of hepatic damage. In primary murine hepatocytes, necroptosis and oxidative stress were also assessed after necrostatin-1 (Nec-1) treatment or RIP3 silencing. We show that circulating markers of necrosis and TNF-α, as well as liver RIP3 and MLKL phosphorylation were increased in NAFLD. Likewise, RIP3 and MLKL protein levels and TNF-α expression were increased in the liver of HFCD and MCD diet-fed mice. Moreover, RIP3 and MLKL sequestration in the insoluble protein fraction of NASH (non-alcoholic steatohepatitis) mice liver lysates represented an early event during stetatohepatitis progression. Functional studies in primary murine hepatocytes established the association between TNF-α-induced RIP3 expression, activation of necroptosis and oxidative stress. Strikingly, RIP3 deficiency attenuated MCD diet-induced liver injury, steatosis, inflammation, fibrosis and oxidative stress. In conclusion, necroptosis is increased in the liver of NAFLD patients and in experimental models of NASH. Further, TNF-α triggers RIP3-dependent oxidative stress during hepatocyte necroptosis. As such, targeting necroptosis appears to arrest or at least impair NAFLD progression. © 2015 Authors; published by Portland Press Limited.
Wecker, L
1991-10-01
The objective of these experiments was to determine whether preincubating hippocampal slices with choline provides precursor that can be used during a subsequent incubation to support or enhance the synthesis of acetylcholine (ACh). Slices were preincubated for 60 min with 0, 10, 25, or 50 microM choline, washed, resuspended, and then incubated for 10 min in choline-free buffer containing 4.74 (Krebs-Ringer bicarbonate, KRB) or 25 mM KCl. The tissue contents of ACh and choline were determined prior to and after the preincubation, as well as after the incubation; the amounts of ACh and choline released were measured, and ACh synthesis was calculated. Preincubation in the absence of choline increased the tissue content of ACh to 242% of original levels; preincubation with 10 microM choline did not lead to a further increase, but preincubation with 25 or 50 microM choline increased the ACh content to 272% of original levels, significantly greater than that of slices preincubated with either 0 or 10 microM choline. When tissues were subsequently incubated for 10 min with either KRB or 25 mM KCl, ACh release from slices preincubated with 50 microM choline was greater than from slices preincubated with 0, 10, or 25 microM choline. Incubation of slices with KRB did not alter the tissue content of ACh, but when tissues were incubated with 25 mM KCl, the ACh content of slices preincubated with 0 or 10 microM choline decreased significantly, whereas that of slices preincubated with 25 or 50 microM choline did not.(ABSTRACT TRUNCATED AT 250 WORDS)
Choline Metabolites: Gene by Diet Interactions
Smallwood, Tangi; Allayee, Hooman; Bennett, Brian J.
2015-01-01
Purpose of review This review highlights recent advances in our understanding of the interactions between genetic polymorphisms in genes that metabolize choline and the dietary requirements of choline and how these interactions relate to human health and disease. Recent findings The importance of choline as an essential nutrient has been well established but our appreciation of the interaction between our underlying genetic architecture and dietary choline requirements is only beginning. It has been shown in both human and animal studies that choline deficiencies contribute to diseases such as non-alcoholic fatty liver disease and various neurodegenerative diseases. An adequate supply of dietary choline is important for optimum development, highlighted by the increased maternal requirements during fetal development and in breast-fed infants. We discuss recent studies investigating variants in PEMT and MTHFR1 that are associated with a variety of birth defects. In addition to genetic interactions, we discuss several recent studies that uncover changes in fetal global methylation patterns in response to maternal dietary choline intake that result in changes in gene expression in the offspring. In contrast to the developmental role of adequate choline, there is now an appreciation of the role choline has in cardiovascular disease through the gut microbiota-mediated metabolite trimethylamine N-oxide. This pathway highlights some of our understanding of how the microbiome affects nutrient processing and bioavailability. Finally, in order to better characterize the genetic architecture regulating choline requirements, we discuss recent results focused on identifying polymorphisms that regulate choline and its derivative products. Summary Here we discuss recent studies that have advanced our understanding of how specific alleles in key choline metabolism genes are related to dietary choline requirements and human disease. PMID:26655287
Silver, Matt J.; Corbin, Karen D.; Hellenthal, Garrett; da Costa, Kerry-Ann; Dominguez-Salas, Paula; Moore, Sophie E.; Owen, Jennifer; Prentice, Andrew M.; Hennig, Branwen J.; Zeisel, Steven H.
2015-01-01
Choline is an essential nutrient, and the amount needed in the diet is modulated by several factors. Given geographical differences in dietary choline intake and disparate frequencies of single-nucleotide polymorphisms (SNPs) in choline metabolism genes between ethnic groups, we tested the hypothesis that 3 SNPs that increase dependence on dietary choline would be under negative selection pressure in settings where choline intake is low: choline dehydrogenase (CHDH) rs12676, methylenetetrahydrofolate reductase 1 (MTHFD1) rs2236225, and phosphatidylethanolamine-N-methyltransferase (PEMT) rs12325817. Evidence of negative selection was assessed in 2 populations: one in The Gambia, West Africa, where there is historic evidence of a choline-poor diet, and the other in the United States, with a comparatively choline-rich diet. We used 2 independent methods, and confirmation of our hypothesis was sought via a comparison with SNP data from the Maasai, an East African population with a genetic background similar to that of Gambians but with a traditional diet that is higher in choline. Our results show that frequencies of SNPs known to increase dependence on dietary choline are significantly reduced in the low-choline setting of The Gambia. Our findings suggest that adequate intake levels of choline may have to be reevaluated in different ethnic groups and highlight a possible approach for identifying novel functional SNPs under the influence of dietary selective pressure.—Silver, M. J., Corbin, K. D., Hellenthal, G., da Costa, K.-A., Dominguez-Salas, P., Moore, S. E., Owen, J., Prentice, A. M., Hennig, B. J., Zeisel, S. H. Evidence for negative selection of gene variants that increase dependence on dietary choline in a Gambian cohort. PMID:25921832
Bagley, Bradford D; Chang, Shu-Ching; Ehresman, David J; Eveland, Alan; Parker, George A; Peters, Jeffrey M; Butenhoff, John L
2017-10-01
Choline is an essential nutrient utilized for phosphatidylcholine biosynthesis and lipoprotein packaging and secretion. Recently, choline supplementation has been used by athletes and the public for weight loss. However, the potential toxicological impact of choline dietary supplementation requires further investigation. This study examined the effects of choline dietary supplementation in Sprague Dawley rats for 4 weeks. Rats were fed diets containing basal choline levels (control) or 5-, 10-, or 15-fold (5×, 10×, or 15×) basal diet concentration. In groups fed choline-supplemented diets, there were no toxicologically relevant findings in clinical observations, food intake, clinical chemistry, liver weights, or liver histopathology. However, decreased mean body weights (8.5-10.2%) and body weight gains (24-31%) were noted for the 10× choline-supplemented (females only) and 15× choline-supplemented (both sexes) groups relative to the control groups from day 3 onward. These body weight effects were not related to a persistent reduction in average food intake. Serum cholesterol was increased in the 15× choline-supplemented male rats relative to the controls, an expected effect of choline supplementation; however, there were no changes in the serum cholesterol of female rats. Serum choline concentrations were increased in female rats relative to the male rats across all treatment groups. The maximum tolerated dose for male and female rats were the 15× and 10× choline supplements, respectively, based on decreased mean body weight and body weight gains. This study supported the conclusions of a clinical trial that showed a high choline diet can decrease body weight in humans.
Wong-Goodrich, Sarah J.E.; Glenn, Melissa J.; Mellott, Tiffany J.; Blusztajn, Jan K.; Meck, Warren H.; Williams, Christina L.
2009-01-01
Altered dietary choline availability early in life leads to persistent changes in spatial memory and hippocampal plasticity in adulthood. Developmental programming by early choline nutrition may determine the range of adult choline intake that is optimal for the types of neural plasticity involved in cognitive function. To test this, male Sprague-Dawley rats were exposed to a choline chloride deficient (DEF), sufficient (CON), or supplemented (SUP) diet during embryonic days 12-17 and then returned to a control diet (1.1 g choline chloride/kg). At 70 days of age, we found that DEF and SUP rats required fewer choices to locate 8 baited arms of a 12-arm radial maze than CON rats. When switched to a choline-deficient diet (0 g/kg), SUP rats showed impaired performance while CON and DEF rats were unaffected. In contrast, when switched to a choline-supplemented diet (5.0 g/kg), DEF rats' performance was significantly impaired while CON and SUP rats were less affected. These changes in performance were reversible when the rats were switched back to a control diet. In a second experiment, DEF, CON, and SUP rats were either maintained on a control diet, or the choline-supplemented diet. After 12 weeks, DEF rats were significantly impaired by choline supplementation on a matching-to-place water-maze task, which was also accompanied by a decrease in dentate cell proliferation in DEF rats only. IGF-1 levels were elevated by both prenatal and adult choline supplementation. Taken together, these findings suggest that the in utero availability of an essential nutrient, choline, causes differential behavioral and neuroplastic sensitivity to the adult choline supply. PMID:18778697
Wong-Goodrich, Sarah J E; Glenn, Melissa J; Mellott, Tiffany J; Blusztajn, Jan K; Meck, Warren H; Williams, Christina L
2008-10-27
Altered dietary choline availability early in life leads to persistent changes in spatial memory and hippocampal plasticity in adulthood. Developmental programming by early choline nutrition may determine the range of adult choline intake that is optimal for the types of neural plasticity involved in cognitive function. To test this, male Sprague-Dawley rats were exposed to a choline chloride deficient (DEF), sufficient (CON), or supplemented (SUP) diet during embryonic days 12-17 and then returned to a control diet (1.1 g choline chloride/kg). At 70 days of age, we found that DEF and SUP rats required fewer choices to locate 8 baited arms of a 12-arm radial maze than CON rats. When switched to a choline-deficient diet (0 g/kg), SUP rats showed impaired performance while CON and DEF rats were unaffected. In contrast, when switched to a choline-supplemented diet (5.0 g/kg), DEF rats' performance was significantly impaired while CON and SUP rats were less affected. These changes in performance were reversible when the rats were switched back to a control diet. In a second experiment, DEF, CON, and SUP rats were either maintained on a control diet, or the choline-supplemented diet. After 12 weeks, DEF rats were significantly impaired by choline supplementation on a matching-to-place water-maze task, which was also accompanied by a decrease in dentate cell proliferation in DEF rats only. IGF-1 levels were elevated by both prenatal and adult choline supplementation. Taken together, these findings suggest that the in utero availability of an essential nutrient, choline, causes differential behavioral and neuroplastic sensitivity to the adult choline supply.
Lee, N-Y; Choi, H-M; Kang, Y-S
2009-04-01
Choline is an essential nutrient for phospholipids and acetylcholine biosynthesis in normal development of fetus. In the present study, we investigated the functional characteristics of choline transport system and inhibitory effect of cationic drugs on choline transport in rat conditionally immortalized syncytiotrophoblast cell line (TR-TBT). Choline transport was weakly Na(+) dependent and significantly influenced by extracellular pH and by membrane depolarization. The transport process of choline is saturable with Michaelis-Menten constants (K(m)) of 68microM and 130microM in TR-TBT 18d-1 and TR-TBT 18d-2 respectively. Choline uptake in the cells was inhibited by unlabeled choline and hemicholinium-3 as well as various organic cations including guanidine, amiloride and acetylcholine. However, the prototypical organic cation tetraethylammonium and cimetidine showed very little inhibitory effect of choline uptake in TR-TBT cells. RT-PCR revealed that choline transporter-like protein 1 (CTL1) and organic cation transporter 2 (OCT2) are expressed in TR-TBT cells. The transport properties of choline in TR-TBT cells were similar or identical to that of CTL1 but not OCT2. CTL1 was also detected in human placenta. In addition, several cationic drugs such as diphenhydramine and verapamil competitively inhibited choline uptake in TR-TBT 18d-1 with K(i) of 115microM and 55microM, respectively. Our results suggest that choline transport system, which has intermediate affinity and weakly Na(+) dependent, in TR-TBT seems to occur through a CTL1 and this system may have relevance with the uptake of pharmacologically important organic cation drugs.
Storm, Christian; Danne, Oliver; Ueland, Per Magne; Leithner, Christoph; Hasper, Dietrich; Schroeder, Tim
2013-01-01
Objective Choline is related to phospholipid metabolism and is a marker for global ischaemia with a small reference range in healthy volunteers. The aim of our study was to characterize the early kinetics of plasma free choline in patients after cardiac arrest. Additionally, we investigated the potential of plasma free choline to predict neurological outcome. Methods Twenty patients admitted to our medical intensive care unit were included in this prospective, observational trial. All patients were enrolled between May 2010 and May 2011. They received post cardiac arrest treatment including mild therapeutic hypothermia which was initiated with a combination of cold fluid and a feedback surface cooling device according to current guidelines. Sixteen blood samples per patient were analysed for plasma free choline levels within the first week after resuscitation. Choline was detected by liquid chromatography-tandem mass spectrometry. Results Most patients showed elevated choline levels on admission (median 14.8 µmol/L; interquartile range; IQR 9.9-20.1) which subsequently decreased. 48 hours after cardiac arrest choline levels in all patients reached subnormal levels at a median of 4.0 µmol/L (IQR 3-4.9; p = 0.001). Subsequently, choline levels normalized within seven days. There was no significant difference in choline levels when groups were analyzed in relation to neurological outcome. Conclusions Our data indicate a choline deficiency in the early postresucitation phase. This could potentially result in impaired cell membrane recovery. The detailed characterization of the early choline time course may aid in planning of choline supplementation trials. In a limited number of patients, choline was not promising as a biomarker for outcome prediction. PMID:24098804
Storm, Christian; Danne, Oliver; Ueland, Per Magne; Leithner, Christoph; Hasper, Dietrich; Schroeder, Tim
2013-01-01
Choline is related to phospholipid metabolism and is a marker for global ischaemia with a small reference range in healthy volunteers. The aim of our study was to characterize the early kinetics of plasma free choline in patients after cardiac arrest. Additionally, we investigated the potential of plasma free choline to predict neurological outcome. Twenty patients admitted to our medical intensive care unit were included in this prospective, observational trial. All patients were enrolled between May 2010 and May 2011. They received post cardiac arrest treatment including mild therapeutic hypothermia which was initiated with a combination of cold fluid and a feedback surface cooling device according to current guidelines. Sixteen blood samples per patient were analysed for plasma free choline levels within the first week after resuscitation. Choline was detected by liquid chromatography-tandem mass spectrometry. Most patients showed elevated choline levels on admission (median 14.8 µmol/L; interquartile range; IQR 9.9-20.1) which subsequently decreased. 48 hours after cardiac arrest choline levels in all patients reached subnormal levels at a median of 4.0 µmol/L (IQR 3-4.9; p = 0.001). Subsequently, choline levels normalized within seven days. There was no significant difference in choline levels when groups were analyzed in relation to neurological outcome. Our data indicate a choline deficiency in the early postresucitation phase. This could potentially result in impaired cell membrane recovery. The detailed characterization of the early choline time course may aid in planning of choline supplementation trials. In a limited number of patients, choline was not promising as a biomarker for outcome prediction.
Nano interfaced biosensor for detection of choline in triple negative breast cancer cells.
Thiagarajan, Vignesh; Madhurantakam, Sasya; Sethuraman, Swaminathan; Balaguru Rayappan, John Bosco; Maheswari Krishnan, Uma
2016-01-15
Choline, a type of Vitamin B, is an important nutrient in the human body and is involved in key metabolic pathways. Abnormal levels of choline leads to diseased conditions. The levels of choline and its associated compounds are found to be elevated in triple negative breast cancer (TNBC) patients. The choline level ranges from 0.4 to 4.9mmol/kg in TNBC. Thus the detection of choline levels in cells can aid in diagnosing breast cancer. The present work aims to develop a nano-interfaced electrochemical biosensor for the rapid detection of choline in cancer cells. For electrochemical detection, glassy carbon electrode coated with a zinc oxide nano-interface was used as the working electrode. Zinc oxide synthesized by hydrothermal method was characterized using SEM and XRD. The choline oxidase (ChOx) enzyme was immobilized on the nano-interface by drop-casting. Choline oxidase (ChOx) converts choline to betaine and H2O2 in the presence of oxygen. The H2O2 produced was determined amperometrically. The amount of H2O2 produced is directly proportional to concentration of choline present. The sensitivity, selectivity, stability and concentration studies were carried out and quantification of choline in TNBC was also carried out. The results demonstrate that this biosensor has the potential to be developed as a clinical tool for breast cancer detection. Copyright © 2015 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bligny, R.; Foray, M.F.; Roby, C.
1989-03-25
When sycamore cells were suspended in basal medium containing choline, the latter was taken up by the cells very rapidly. A facilitated diffusion system appertained at low concentrations of choline and exhibited Michaelis-Menten kinetics. At higher choline concentrations simple diffusion appeared to be the principal mode of uptake. Addition of choline to the perfusate of compressed sycamore cells monitored by /sup 31/P NMR spectroscopy resulted in a dramatic accumulation of P-choline in the cytoplasmic compartment containing choline kinase and not in the vacuole. The total accumulation of P-choline over a 10-h period exhibited Michaelis-Menten kinetics. During this period, in themore » absence of Pi in the perfusion medium there was a marked depletion of glucose-6-P, and the cytoplasmic Pi resonance disappeared almost completely. When a threshold of cytoplasmic Pi was attained, the phosphorylation of choline was sustained by the continuous release of Pi from the vacuole although at a much lower rate. However, when 100 microM inorganic phosphate was present in the perfusion medium, externally added Pi was preferentially used to sustain P-choline synthesis. It is clear, therefore, that cytosolic choline kinase associated with a carrier-mediated transport system for choline uptake appeared as effective systems for continuously trapping cytoplasmic Pi including vacuolar Pi entering the cytoplasm.« less
75 FR 53577 - Choline hydroxide; Exemption from the Requirement of a Tolerance
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-01
... endogenously in the human body. Humans are currently exposed to choline on a daily basis through commonly eaten... dietary consumption of choline, choline is made endogenously in the human body. Choline is a precursor to... human health. In order to determine the risks from aggregate exposure to pesticide inert ingredients...
Total choline and choline-containing moieties of commercially available pulses.
Lewis, Erin D; Kosik, Sarah J; Zhao, Yuan-Yuan; Jacobs, René L; Curtis, Jonathan M; Field, Catherine J
2014-06-01
Estimating dietary choline intake can be challenging due to missing foods in the current United States Department of Agriculture (USDA) database. The objectives of the study were to quantify the choline-containing moieties and the total choline content of a variety of pulses available in North America and use the expanded compositional database to determine the potential contribution of pulses to dietary choline intake. Commonly consumed pulses (n = 32) were analyzed by hydrophilic interaction liquid chromatography-tandem mass spectrometry (HILIC LC-MS/MS) and compared to the current USDA database. Cooking was found to reduce the relative percent from free choline and increased the contribution of phosphatidylcholine to total choline for most pulses (P < 0.05). Using the expanded database to estimate choline content of recipes using pulses as meat alternatives, resulted in a different estimation of choline content per serving (±30%), compared to the USDA database. These results suggest that when pulses are a large part of a meal or diet, the use of accurate food composition data should be used.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ancelin, M.L.; Torpier, G.; Vial, H.J.
1987-06-01
Choline metabolism was investigated in Schistosoma mansoni during the main phases of its development, namely, schistosomula, 11- and 15-day-old worms, and adults. At the physiological choline concentration used in the assay (20 microM), betaine was, along with phosphatidylcholine, one of the most abundant choline metabolites, revealing considerable choline oxidation activity. Very little radioactivity was associated with CDP-choline, whereas a sustained incorporation into phosphocholine occurred. These results provide good evidence that CTP:phosphocholine cytidylyltransferase plays a regulatory role in the de novo pathway of phosphatidylcholine biosynthesis. During development, the incorporation of choline into its various metabolites was maximal in 11-day-old worms. Atmore » this stage, the oxidative pathway predominated over the Kennedy pathway, whereas at all other stages the de novo phosphatidylcholine biosynthesis was predominant. Furthermore, choline incorporation into betaine was much more important in the adult female worm than in the male, indicating a major difference in choline incorporation and distribution between the 2 sexes of the adult worms.« less
Getty, Caitlyn M; Dilger, Ryan N
2015-01-01
Few studies have evaluated the impact of dietary choline on the health and well-being of swine, and those pivotal papers were aimed at determining dietary requirements for sows and growing pigs. This is of importance as the piglet is becoming a widely accepted model for human infant nutrition, but little is known about the impacts of perinatal choline status on overall health and metabolism of the growing piglet. In the present study, sows were provided either a choline deficient (CD, 625 mg choline/kg dry matter) or choline sufficient (CS, 1306 mg choline/kg dry matter) diet for the last 65 d of gestation (prenatal intervention). Piglets were weaned from the sow 48 h after farrowing and provided either a CD (477 mg choline/kg dry matter) or CS (1528 mg choline/kg dry matter) milk replacer (postnatal intervention) for 29 ± 2 d, resulting in a factorial arrangement of 4 treatment (prenatal/postnatal) groups: CS/CS, CS/CD, CD/CS, and CD/CD. Piglet growth was normal for artificially-reared piglets, and was not impacted by perinatal choline status. Piglets receiving the postnatal CD treatment had lower (P < 0.01) plasma choline and choline-containing phospholipid concentrations and higher (P < 0.05) liver enzyme (alkaline phosphatase and gamma-glutamyl transferase) values compared with piglets receiving the postnatal CS treatment. Hepatic lipid content of piglets receiving the postnatal CD treatment was higher (P < 0.01) compared with piglets receiving the postnatal CS treatment. Additionally, postnatally CD piglets had lower (P = 0.01) plasma cholesterol than postnatally CS piglets. Brain development was also impacted by perinatal choline status, with brains of piglets exposed to prenatal CD being smaller (P = 0.01) than those of prenatally CS piglets. These findings support the hypothesis that the piglet is a sensitive model for choline deficiency during the perinatal period. In the present study, piglets exhibited similarities in health markers and metabolomic profiles to rodents and humans when exposed to moderate choline deficiency.
Choline metabolism in malignant transformation
Glunde, Kristine; Bhujwalla, Zaver M.; Ronen, Sabrina M.
2015-01-01
Abnormal choline metabolism is emerging as a metabolic hallmark that is associated with oncogenesis and tumour progression. Following transformation, the modulation of enzymes that control anabolic and catabolic pathways causes increased levels of choline-containing precursors and breakdown products of membrane phospholipids. These increased levels are associated with proliferation, and recent studies emphasize the complex reciprocal interactions between oncogenic signalling and choline metabolism. Because choline-containing compounds are detected by non-invasive magnetic resonance spectroscopy (MRS), increased levels of these compounds provide a non-invasive biomarker of transformation, staging and response to therapy. Furthermore, enzymes of choline metabolism, such as choline kinase, present novel targets for image-guided cancer therapy. PMID:22089420
Choline: Dietary Requirements and Role in Brain Development.
Sanders, Lisa M; Zeisel, Steven H
2007-01-01
Choline is needed for the maintenance of the structural integrity and signaling functions of cell membranes, for neurotransmission, and for transport of lipids and as a source of methyl groups. Choline can be made de novo in the body, but some individuals must also obtain choline in the diet to prevent deficiency symptoms. A number of environmental and genetic factors influence dietary requirements for choline, and average intakes in the population vary widely. Therefore, certain individuals may be at greater risk of choline deficiency. Choline is critical during fetal development, particularly during the development of the brain, where it can influence neural tube closure and lifelong memory and learning functions.
Dietary Choline Deficiency causes DNA Strand Breaks and Alters Epigenetic Marks on DNA and Histones
Zeisel, Steven H.
2011-01-01
Dietary choline is an important modulator of gene expression (via epigenetic marks) and of DNA integrity. Choline was discovered to be an essential nutrient for some humans approximately one decade ago. This requirement is diminished in young women because estrogen drives endogenous synthesis of phosphatidylcholine, from which choline can be derived. Almost half of women have a single nucleotide polymorphism that abrogates estrogen-induction of endogenous synthesis, and these women require dietary choline just as do men. In the US, dietary intake of choline is marginal. Choline deficiency in people is associated with liver and muscle dysfunction and damage, with apoptosis, and with increased DNA strand breaks. Several mechanisms explain these modifications to DNA. Choline deficiency increases leakage of reactive oxygen species from mitochondria consequent to altered mitochondrial membrane composition and enhanced fatty acid oxidation. Choline deficiency impairs folate metabolism, resulting in decreased thymidylate synthesis and increased uracil misincorporation into DNA, with strand breaks resulting during error-prone repair attempts. Choline deficiency alters DNA methylation, which alters gene expression for critical genes involved in DNA mismatch repair, resulting in increased mutation rates. Any dietary deficiency which increases mutation rates should be associated with increased risk of cancers, and this is the case for choline deficiency. In rodent models, diets low in choline and methyl-groups result in spontaneous hepatocarcinomas. In human epidemiological studies, there are interesting data that suggest that this also may be the case for humans, especially those with SNPs that increase the dietary requirement for choline. PMID:22041500
Dietary choline deficiency causes DNA strand breaks and alters epigenetic marks on DNA and histones.
Zeisel, Steven H
2012-05-01
Dietary choline is an important modulator of gene expression (via epigenetic marks) and of DNA integrity. Choline was discovered to be an essential nutrient for some humans approximately one decade ago. This requirement is diminished in young women because estrogen drives endogenous synthesis of phosphatidylcholine, from which choline can be derived. Almost half of women have a single nucleotide polymorphism that abrogates estrogen-induction of endogenous synthesis, and these women require dietary choline just as do men. In the US, dietary intake of choline is marginal. Choline deficiency in people is associated with liver and muscle dysfunction and damage, with apoptosis, and with increased DNA strand breaks. Several mechanisms explain these modifications to DNA. Choline deficiency increases leakage of reactive oxygen species from mitochondria consequent to altered mitochondrial membrane composition and enhanced fatty acid oxidation. Choline deficiency impairs folate metabolism, resulting in decreased thymidylate synthesis and increased uracil misincorporation into DNA, with strand breaks resulting during error-prone repair attempts. Choline deficiency alters DNA methylation, which alters gene expression for critical genes involved in DNA mismatch repair, resulting in increased mutation rates. Any dietary deficiency which increases mutation rates should be associated with increased risk of cancers, and this is the case for choline deficiency. In rodent models, diets low in choline and methyl-groups result in spontaneous hepatocarcinomas. In human epidemiological studies, there are interesting data that suggest that this also may be the case for humans, especially those with SNPs that increase the dietary requirement for choline. Copyright © 2011 Elsevier B.V. All rights reserved.
Pharmacological action of choline and aspirin coadministration on acute inflammatory pain.
Yong-Ping, Shi; Jin-Da, Wang; Ru-Huan, Wang; Xiang-Di, Zhao; Hai-Tao, Yu; Hai, Wang
2011-09-01
Non-steroidal anti-inflammatory drugs (NSAIDs) are effective for relieving pain but undesirable side effects limit their clinical usefulness. Choline is a α7 nicotinic receptor agonist that has antinociceptive effects in a variety of pain models. Drug combination is a strategy in the management of pain to reduce side effects. The aim of the study was to evaluate the nature of the interaction between choline and aspirin in two distinct inflammatory pain models. The analgesic mechanism of choline was also investigated. In the writhing test, intravenous administration of choline or aspirin showed dose-dependent antinociceptive activity, and isobolographic analysis revealed a synergistic nature of the interaction between choline and aspirin. More importantly, coadministration choline with aspirin could significantly shorten the antinociceptive latency of aspirin and prolong the antinociceptive duration of aspirin in the writhing test. In the carrageenan test, single administration of choline or aspirin significantly attenuated carrageenan-induced thermal hyperalgesia in a dose-dependent relationship. Coadministration of non-analgesic doses of aspirin with choline significantly suppressed the thermal hyperalgesia, with a longer duration efficacy. Furthermore, we found that α7 nicotinic, muscarinic, and opioid-receptors are involved in the antinociceptive effect of choline in the writhing test and the antinociceptive effect produced by systemically administered choline may be via a peripheral mechanism. In conclusion, coadministration of choline and aspirin holds promise for development as a safe analgesic drug combination for inflammatory pain, with a higher potency and longer duration than either aspirin or choline alone. Copyright © 2011 European Federation of International Association for the Study of Pain Chapters. Published by Elsevier Ltd. All rights reserved.
Effects of CDP-choline on striatal dopamine level and behavior in rats.
Shibuya, M; Kageyama, N; Taniguchi, T; Hidaka, H; Fujiwara, M
1981-02-01
To further assess the effects of CDP (cytidine diphosphate)-choline on Parkinsonian symptoms, striatal dopamine (DA) was measured fluorometrically in rats after injection of CDP-choline. CDP-choline (300 mg/kg, i.p.) increased the DA content in the striatum (p less than 0.05) one hour after injection. The behavioral effect of CDP-choline was then tested in rats in which the unilateral nigro-striatal DA neurons had degenerated following an intranigral injection of 6-hydroxydopamine (6-OHDA). CDP-choline alone did not produce behavioral changes in these rats. However, pretreatment with a single dose of CDP-choline (900 mg/kg, i.p.) suppressed both the apomorphine-induced contralateral and the d-amphetamine-induced ipsilateral circling. The same dose of CDP-choline suppressed the number of treadmill revolutions in mice. On the other hand, a 7-day consecutive treatment with 300 mg/kg of CDP-choline enhanced the apomorphine-induced contralateral circling (by 42%, p less than 0.05). The same treatment with CDP-choline raised the striatal DA content by 29% (p less than 0.05) on the intact side, but not on the 6-OHDA injected side. These results indicate that CDP-choline has either a direct nor an indirect DA agonistic effect. The increase in DA content, decrease in locomotion and enhancement of the effect of apomorphine can be explained on the hypothesis that CDP-choline may act as an antagonist on the DA neurons and receptors. The validity of this apparently paradoxical use of CDP-choline with antagonistic effect on DA neurons in the treatment of Parkinson's disease is discussed.
Homeostasis and Catabolism of Choline and Glycine Betaine: Lessons from Pseudomonas aeruginosa
2013-01-01
Most sequenced bacteria possess mechanisms to import choline and glycine betaine (GB) into the cytoplasm. The primary role of choline in bacteria appears to be as the precursor to GB, and GB is thought to primarily act as a potent osmoprotectant. Choline and GB may play accessory roles in shaping microbial communities, based on their limited availability and ability to enhance survival under stress conditions. Choline and GB enrichment near eukaryotes suggests a role in the chemical relationships between these two kingdoms, and some of these interactions have been experimentally demonstrated. While many bacteria can convert choline to GB for osmoprotection, a variety of soil- and water-dwelling bacteria have catabolic pathways for the multistep conversion of choline, via GB, to glycine and can thereby use choline and GB as sole sources of carbon and nitrogen. In these choline catabolizers, the GB intermediate represents a metabolic decision point to determine whether GB is catabolized or stored as an osmo- and stress protectant. This minireview focuses on this decision point in Pseudomonas aeruginosa, which aerobically catabolizes choline and can use GB as an osmoprotectant and a nutrient source. P. aeruginosa is an experimentally tractable and ecologically relevant model to study the regulatory pathways controlling choline and GB homeostasis in choline-catabolizing bacteria. The study of P. aeruginosa associations with eukaryotes and other bacteria also makes this a powerful model to study the impact of choline and GB, and their associated regulatory and catabolic pathways, on host-microbe and microbe-microbe relationships. PMID:23354714
[Anti-platelet actions of salicylates: in vivo, ex vivo and in vitro effects of choline salicylate].
Irino, O; Saitoh, K; Ohkubo, K
1985-07-01
Effects of choline salicylate, sodium salicylate, choline chloride and acetylsalicylic acid on platelet aggregation in vivo, ex vivo and in vitro in mice were studied. These drugs all inhibited adenosine diphosphate (ADP)-induced respiratory depression, which is closely related to platelet aggregation in vivo, with choline salicylate showing the strongest inhibitory effect. Choline salicylate had a tendency to reduce the mortality of animals injected intravenously with endotoxin, but the other drugs had no such effect. The inhibitory effects of these drugs on ADP-induced platelet aggregation ex vivo were in the order of choline salicylate greater than acetylsalicylic acid congruent to sodium salicylate greater than choline chloride congruent to no effect, and plasma concentrations of protein-unbound salicylic acid at 1 hr after oral administration of drugs were in the order of choline salicylate greater than acetylsalicylic acid congruent to sodium salicylate. The in vitro effects of these drugs were in the order of choline salicylate congruent to sodium salicylate greater than choline chloride congruent to acetylsalicylic acid congruent to no effect. Therefore, it was considered that salicylic acid played an important role on the in vivo, ex vivo and in vitro effects of choline salicylate and that choline increased plasma concentrations of salicylic acid and consequently enhanced the in vivo and ex vivo effects of salicylic acid. Furthermore, the ex vivo effects of choline salicylate were found when ADP-induced platelet aggregation was measured with platelet-rich plasma prepared from blood collected with heparin as anti-coagulant, but not when blood was collected with citrate.(ABSTRACT TRUNCATED AT 250 WORDS)
Autoregulation of Neuromuscular Transmission by Nerve Terminals
1985-12-01
converted to choline by AChE (EC 3.1.1.7); second, choline 24 is converted to betaine and H2 02 by choline oxidase (ChOx) (EC 1.1.3.17); and finally, H2...obtained that choline avail- ability can influence ACh release. Low levels of choline decrease release. However, this modulatory mechanism appears to...fects of various toxic agents on the axonal transport of these binding sites. The effects of organophosphate agents in vitro and in vivo on choline efflux
Comparative genomics and mutagenesis analyses of choline metabolism in the marine R oseobacter clade
Lidbury, Ian; Kimberley, George; Scanlan, David J.; Murrell, J. Colin
2015-01-01
Summary Choline is ubiquitous in marine eukaryotes and appears to be widely distributed in surface marine waters; however, its metabolism by marine bacteria is poorly understood. Here, using comparative genomics and molecular genetic approaches, we reveal that the capacity for choline catabolism is widespread in marine heterotrophs of the marine Roseobacter clade (MRC). Using the model bacterium R uegeria pomeroyi, we confirm that the bet A, bet B and bet C genes, encoding choline dehydrogenase, betaine aldehyde dehydrogenase and choline sulfatase, respectively, are involved in choline metabolism. The bet T gene, encoding an organic solute transporter, was essential for the rapid uptake of choline but not glycine betaine (GBT). Growth of choline and GBT as a sole carbon source resulted in the re‐mineralization of these nitrogen‐rich compounds into ammonium. Oxidation of the methyl groups from choline requires formyltetrahydrofolate synthetase encoded by fhs in R . pomeroyi, deletion of which resulted in incomplete degradation of GBT. We demonstrate that this was due to an imbalance in the supply of reducing equivalents required for choline catabolism, which can be alleviated by the addition of formate. Together, our results demonstrate that choline metabolism is ubiquitous in the MRC and reveal the role of Fhs in methyl group oxidation in R . pomeroyi. PMID:26058574
Nishiyama, Ryohta; Nagashima, Fumiaki; Iwao, Beniko; Kawai, Yuiko; Inoue, Kana; Midori, Arisa; Yamanaka, Tsuyoshi; Uchino, Hiroyuki; Inazu, Masato
2016-06-01
We examined the functional characteristics of choline uptake in human tongue carcinoma using the cell line HSC-3. Furthermore, we explored the possible correlation between the inhibition of choline uptake and apoptotic cell death. Both choline transporter-like protein 1 (CTL1) and CTL2 mRNAs and proteins were expressed, and were located in plasma membrane and mitochondria, respectively. Choline uptake was saturable and mediated by a single transport system, which is pH-dependent. Several cationic drugs inhibited cell viability and [(3)H]choline uptake. Choline uptake inhibitors and choline deficiency inhibited cell viability and increased caspase-3/7 activity. We conclude that extracellular choline is mainly transported via a CTL1 that relies on a directed H(+) gradient as a driving force. The functional inhibition of CTL1 by cationic drugs could promote apoptotic cell death. Furthermore, CTL2 may be the major site for the control of choline oxidation in mitochondria and hence for the supply of endogenous betaine and S-adenosyl methionine, which serves as a major methyl donor. Identification of this CTL1- and CTL2-mediated choline transport system provides a potential new target for tongue cancer therapy. Copyright © 2016 The Authors. Production and hosting by Elsevier B.V. All rights reserved.
Conductive choline transport by alveolar epithelial plasma membrane vesicles.
Oelberg, D G; Xu, F
1998-11-01
Choline is an important substrate in alveolar epithelia for both surfactant production and cellular maintenance. The underlying mechanisms of uptake and sites of membrane transport remain uncertain. To test the hypothesis that choline transport occurs at the basolateral side of alveolar epithelia by both Na+-independent and -dependent mechanisms, plasma membrane vesicles were prepared from the apical and basolateral membranes of mature porcine type II pneumocytes. Choline+ transport was assayed by uptake of [3H]choline+ by enriched apical or basolateral vesicles. In the presence of imposed, inside-negative charge gradients, basolateral vesicles exhibited early overshoot of [3H]choline+ uptake unaffected by the presence or absence of external Na+ (541 +/- 53 vs 564 +/- 79 pmol/mg protein (NS)). High sensitivity to hemicholinium-3 was observed in the presence or absence of Na+. In the absence of inside-negative charge gradients, uptake was reduced 12-fold in the presence or absence of Na+, and external choline+ induced internal alkalization of acidified basolateral vesicles. Accumulative [3H]choline+ uptakes by apical vesicles in the presence or absence of inside-negative charge gradients and Na+ were insignificant. We conclude that predominant choline+ uptake by type II pneumocytes occurs at the basolateral membrane by Na+-independent, electrogenic choline+ conductance. The presence of electroneutral choline+/H+ exchange is suggested. Copyright 1998 Academic Press.
Øyen, Jannike; Gjesdal, Clara Gram; Karlsson, Therese; Svingen, Gard Ft; Tell, Grethe S; Strand, Elin; Drevon, Christian A; Vinknes, Kathrine J; Meyer, Klaus; Ueland, Per Magne; Nygård, Ottar
2017-04-01
Background: Choline is an important nutrient either obtained from a variety of foods or synthesized endogenously, and it is the precursor of betaine. We previously reported positive associations between plasma free choline and bone mineral density (BMD). Animal studies suggest an impact of dietary choline on bone metabolism, but the role of dietary intake of choline and betaine for human bone health is unknown. Objectives: The main aims were to examine the associations of dietary choline, choline species, and betaine with BMD and to study the relations between dietary and plasma free choline and betaine. Methods: Study subjects were participants in the Hordaland Health Study, including 2649 women and 1983 men (aged 46-49 or 71-74 y). BMD was measured by dual-energy X-ray absorptiometry, and dietary intake was obtained by using a validated 169-item food-frequency questionnaire. Risk associations were assessed by logistic regression and correlations by ρ (Spearman's bivariate rank order correlation). Results: Subjects in the lowest compared with the highest tertile of dietary total choline, free choline, glycerophosphocholine, phosphocholine, phosphatidylcholine, and sphingomyelin had a higher risk of low-femoral neck BMD, defined as the lowest BMD quintile. Particularly strong associations were found among middle-aged men for intake of free choline (OR: 1.83; 95% CI: 1.24, 2.69; P = 0.002) and glycerophosphocholine (OR: 2.13; 95% CI: 1.43, 3.16; P < 0.001) and among elderly women for total choline (OR: 1.96; 95% CI: 1.33, 2.88; P = 0.001) and phosphatidylcholine (OR: 1.94; 95% CI: 1.33, 2.84: P = 0.001) intake. No significant associations were observed between dietary betaine and BMD. Dietary total choline, free choline, glycerophosphocholine, phosphatidylcholine, and sphingomyelin correlated weakly with plasma free choline (ρ: 0.07, 0.05, 0.07, 0.07, and 0.05, respectively; P < 0.01). Dietary betaine correlated with plasma betaine (ρ: 0.23; P < 0.001). Conclusion: Dietary choline was positively associated with BMD in middle-aged and elderly participants. © 2017 American Society for Nutrition.
Gross, Eitan; Pushkin, Alexander; Abuladze, Natalia; Fedotoff, Olga; Kurtz, Ira
2002-11-01
The HCO(3)(-) : Na(+) cotransport stoichiometry of the electrogenic sodium bicarbonate cotransporter kNBC1 determines the reversal potential (E(rev)) and thus the net direction of transport of these ions through the cotransporter. Previously, we showed that phosphorylation of kNBC1-Ser(982) in the carboxy-terminus of kNBC1 (kNBC1-Ct), by cAMP-protein kinase A (PKA), shifts the stoichiometry from 3 : 1 to 2 : 1 and that binding of bicarbonate to the cotransporter is electrostaticaly modulated. These results raise the possibility that phosphorylated kNBC1-Ser(982), or other nearby negatively charged residues shift the stoichiometry by blocking a bicarbonate-binding site. In the current study, we examined the role of the negative charge on Ser(982)-phosphate and three aspartate residues in a D986NDD custer in altering the stoichiometry of kNBC1. mPCT cells expressing kNBC1 mutants were grown on filters and mounted in an Ussing chamber for electrophysiological studies. Enhanced green fluorescence protein (EGFP)-tagged mutant constructs expressed in the same cells were used to determine the phosphorylation status of kNBC1-Ser(982). The data indicate that both kNBC1-Asp(986) and kNBC1-Asp(988), but not kNBC1-Asp(989), are required for the phosphorylation-induced shift in stoichiometry. A homologous motif (D887ADD) in the carboxy-terminus of the anion exchanger AE1 binds to carbonic anhydrase II (CAII). In isothermal titration calorimetry experiments, CAII was found to bind to kNBC1-Ct with a K(D) of 160 +/- 10 nM. Acetazolamide inhibited the short-circuit current through the cotransporter by 65 % when the latter operated in the 3 : 1 mode, but had no effect on the current in the 2 : 1 mode. Acetazolamide did not affect the cotransport stoichiometry or the ability of 8-Br-cAMP to shift the stoichiometry. Although CAII does not affect the transport stoichiometry, it may play an important role in enhancing the flux through the transporter when kNBC1-Ser(982) is unphosphorylated.
Buchman, A L; Ament, M E; Sohel, M; Dubin, M; Jenden, D J; Roch, M; Pownall, H; Farley, W; Awal, M; Ahn, C
2001-01-01
Previous studies have shown that plasma free choline concentrations are significantly decreased in many long-term home total parenteral nutrition (TPN) patients. Furthermore, low choline status has been associated with both hepatic morphologic and hepatic aminotransferase abnormalities. A preliminary pilot study suggested choline-supplemented TPN may be useful in reversal of these hepatic abnormalities. Fifteen patients (10 M, 5 F) who had required TPN for > or =80% of their nutritional needs were randomized to receive their usual TPN (n = 8), or TPN to which 2 g choline chloride had been added (n = 7) for 24 weeks. Baseline demographic data were similar between groups. Patients had CT scans of the liver and spleen, and blood for plasma free and phospholipid-bound choline, alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase, gamma glutamyl transferase (GGT), bilirubin, serum lipids, complete blood count (CBC), and chemistry profile obtained at baseline, and weeks 2, 4, 6, 12, 16, 20, 24, and 34. CT scans were analyzed for Hounsfield unit (HU) densities. There were no significant differences in any measured parameters after 2 weeks. However, at 4 weeks, a significant difference in liver HU between groups was observed (13.3+/-5.0 HU [choline] vs 5.8+/-5.2 HU [placebo], p = .04). This significant trend continued through week 24. Recurrent hepatic steatosis and decreased HU were observed at week 34, 10 weeks after choline supplementation had been discontinued. A significant increase in the liver-spleen differential HU was also observed in the choline group (10.6+/-6.2 HU [choline] vs 1.3+/-3.3 HU [placebo], p = .01). Serum ALT decreased significantly (p = .01 to .05) in the choline group vs placebo at weeks 6,12, 20, and 24. Serum AST was significantly decreased in the choline group by week 24 (p = .02). The serum alkaline phosphatase was significantly reduced in the choline group at weeks 2, 12, 20, 24, and 34 (p = .02 to 0.07). Total bilirubin was normal in these patients and remained unchanged during the study. Serum GGT tended to decrease more in the choline group, but the greater decrease was not statistically significant. Choline deficiency is a significant contributor to the development of TPN-associated liver disease. The data suggest choline is a required nutrient for long-term home TPN patients.
Tan, J; Bluml, S; Hoang, T; Dubowitz, D; Mevenkamp, G; Ross, B
1998-06-01
Recent reports suggest that oral choline supplement may alter the cerebral choline/creatine (Cho/Cr) ratio and might be used to treat neurodegenerative disorders of cholinergic transmission. Using both 1H and 31P MRS, we reexamined the Cho/Cr ratio and quantified cerebral choline and its major constituents: phosphoethanolamine (PE), phosphorylcholine (PC), glycerophosphorylethanolamine (GPE), and glycerophosphorylcholine (GPC). In the four brain locations examined, no significant increases in Cho/Cr, [Cho], or in its major constituents were found in response to an oral challenge of 50 mg/kg of choline bitartrate. Oral choline did not significantly affect human cerebral metabolism in the short term.
Huang, Jun; Rozwadowski, Kevin; Bhinu, V S; Schäfer, Ulrike; Hannoufa, Abdelali
2008-07-01
Sinapoylcholine (sinapine) is the most abundant antinutritional phenolic compound in cruciferous seeds. The quaternary ammonium compounds, choline, betaine and N,N-dimethylglycine, reside along a biosynthetic pathway linked to the synthesis of membrane phospholipids and neurotransmitters with various biological functions. In chicken, choline intake is required for optimal egg-laying performance and a choline supplement in diet is positively correlated with weight gains. A key step in sinapine biosynthesis is catalyzed by sinapoylglucose: choline sinapoyltransferase (SCT; EC 2.3.1.91) to form an ester linkage with sinapoylglucose and choline. The objective of this work was to reduce the sinapine content and simultaneously enhance free choline levels in cruciferous seeds. We report here the characterization of an Arabidopsis T-DNA insertion mutant lacking SCT activity in the seed. The sct mutant seeds contain less than 1% of sinapine and a more than 2-fold increase in free choline compared with wild type. We further expressed a choline oxidase (COX; EC 1.1.3.17) gene from Arthrobacter pascens in the Arabidopsis sct mutant and wild-type background using a napin gene promoter to convert free choline into betaine, an effective stress-alleviating compound in plants. Betaine was not detected in WT or sct mutant seeds. The sct+COX seeds contain nearly 2-fold greater levels of betaine relative to WT+COX seeds, demonstrating a positive correlation between endogenous choline and betaine production. In contrast, stable comparable levels of free choline were detected between sct+COX and WT+COX plants suggesting choline homeostasis likely prevent high levels of betaine production in the seed of transgenic COX plants.
Zhang, Cai-Xia; Pan, Mei-Xia; Li, Bin; Wang, Lian; Mo, Xiong-Fei; Chen, Yu-Ming; Lin, Fang-Yu; Ho, Suzanne C
2013-02-01
Few epidemiological studies have evaluated the association of choline and betaine intake with breast cancer risk and the results remain inconsistent. This study aimed to assess the relationship between dietary intake of choline and betaine and the risk of breast cancer among Chinese women. A two-stage case-control study was conducted, with 807 cases and 807 age- (5-year interval) and residence (rural/urban)-matched controls. A validated food frequency questionnaire was used to assess dietary intake by face-to-face interview. An unconditional logistic regression model was used to calculate multivariate-adjusted odds ratios (OR) and 95% confidence intervals (CI). A significant inverse association was found between dietary choline and betaine consumption and breast cancer risk. The adjusted OR for the highest quartile of intake compared with the lowest were 0.40 (95% CI = 0.28-0.57, P(trend) < 0.001) for total choline intake, 0.58 (95% CI = 0.42-0.80, P(trend) < 0.001) for betaine intake and 0.38 (0.27-0.53, P(trend) < 0.001) for choline plus betaine intake, respectively. Intakes of individual choline compouds, choline from glycerophosphocholine, phosphocholine, phosphatidylcholine, sphingomyelin and free choline were also negatively associated with breast cancer risk. The inverse association between choline intake and breast cancer risk was primarily confined to participants with low folate level (<242 g/day), with an OR (95% CI) of 0.46 (0.23-0.91) comparing the fourth quartile with the first quartile of choline intake (P(trend) = 0.005). The present study suggests that consumption of choline and betaine is inversely associated with the risk of breast cancer. The association of choline intake with breast cancer risk is probably modified by folate intake. © 2012 Japanese Cancer Association.
Mills, James L; Fan, Ruzong; Brody, Lawrence C; Liu, Aiyi; Ueland, Per M; Wang, Yifan; Kirke, Peadar N; Shane, Barry; Molloy, Anne M
2014-10-01
Low maternal choline intake and blood concentration may be risk factors for having a child with a neural tube defect (NTD); however, the data are inconsistent. This is an important question to resolve because choline, if taken periconceptionally, might add to the protective effect currently being achieved by folic acid. We examined the relation between NTDs, choline status, and genetic polymorphisms reported to influence de novo choline synthesis to investigate claims that taking choline periconceptionally could reduce NTD rates. Two study groups of pregnant women were investigated: women who had a current NTD-affected pregnancy (AP; n = 71) and unaffected controls (n = 214) and women who had an NTD in another pregnancy but not in the current pregnancy [nonaffected pregnancy (NAP); n = 98] and unaffected controls (n = 386). Blood samples to measure betaine and total choline concentrations and single nucleotide polymorphisms related to choline metabolism were collected at their first prenatal visit. Mean (±SD) plasma total choline concentrations in the AP (2.8 ± 1.0 mmol/L) and control (2.9 ± 0.9 mmol/L) groups did not differ significantly. Betaine concentrations were not significantly different between the 2 groups. Total choline and betaine in the NAP group did not differ from controls. Cases were significantly more likely to have the G allele of phosphatidylethanolamine-N-methyltransferase (PEMT; V175M, +5465 G>A) rs7946 (P = 0.02). Our results indicate that maternal betaine and choline concentrations are not strongly associated with NTD risk. The association between PEMT rs7946 and NTDs requires confirmation. The addition of choline to folic acid supplements may not further reduce NTD risk. © 2014 American Society for Nutrition.
Mills, James L; Fan, Ruzong; Brody, Lawrence C; Liu, Aiyi; Ueland, Per M; Wang, Yifan; Kirke, Peadar N; Shane, Barry; Molloy, Anne M
2014-01-01
Background: Low maternal choline intake and blood concentration may be risk factors for having a child with a neural tube defect (NTD); however, the data are inconsistent. This is an important question to resolve because choline, if taken periconceptionally, might add to the protective effect currently being achieved by folic acid. Objective: We examined the relation between NTDs, choline status, and genetic polymorphisms reported to influence de novo choline synthesis to investigate claims that taking choline periconceptionally could reduce NTD rates. Design: Two study groups of pregnant women were investigated: women who had a current NTD-affected pregnancy (AP; n = 71) and unaffected controls (n = 214) and women who had an NTD in another pregnancy but not in the current pregnancy [nonaffected pregnancy (NAP); n = 98] and unaffected controls (n = 386). Blood samples to measure betaine and total choline concentrations and single nucleotide polymorphisms related to choline metabolism were collected at their first prenatal visit. Results: Mean (±SD) plasma total choline concentrations in the AP (2.8 ± 1.0 mmol/L) and control (2.9 ± 0.9 mmol/L) groups did not differ significantly. Betaine concentrations were not significantly different between the 2 groups. Total choline and betaine in the NAP group did not differ from controls. Cases were significantly more likely to have the G allele of phosphatidylethanolamine-N-methyltransferase (PEMT; V175M, +5465 G>A) rs7946 (P = 0.02). Conclusions: Our results indicate that maternal betaine and choline concentrations are not strongly associated with NTD risk. The association between PEMT rs7946 and NTDs requires confirmation. The addition of choline to folic acid supplements may not further reduce NTD risk. PMID:25240073
Choline concentrations are lower in postnatal plasma of preterm infants than in cord plasma.
Bernhard, Wolfgang; Raith, Marco; Kunze, Rebecca; Koch, Vera; Heni, Martin; Maas, Christoph; Abele, Harald; Poets, Christian F; Franz, Axel R
2015-08-01
Choline is essential to human development, particularly of the brain in the form of phosphatidylcholine, sphingomyelin and acetylcholine, for bile and lipoprotein formation, and as a methyl group donator. Choline is actively transported into the fetus, and maternal supply correlates with cognitive outcome. Interruption of placental supply may therefore impair choline homeostasis in preterm infants. Determination of postnatal plasma concentrations of choline and its derivatives betaine and dimethylglycine (DMG) in preterm infants compared to cord and maternal blood matched for postmenstrual age (PMA). We collected plasma of very low-birth-weight infants undergoing neonatal intensive care (n = 162), cord plasma of term and preterm infants (n = 176, 24-42-week PMA), serum of parturients (n = 36), and plasma of healthy premenopausal women (n = 40). Target metabolites were analyzed with tandem mass spectrometry and reported as median (25th/75th percentiles). Cord plasma choline concentration was 41.4 (31.8-51.2) µmol/L and inversely correlated with PMA. In term but not in preterm infants, cord plasma choline was lower in girls than in boys. Prenatal glucocorticoid treatment did not affect choline levels in cord plasma, whereas betaine was decreased and DMG increased. In parturients and non-pregnant women, choline concentrations were 14.1 (10.3-16.9) and 8.8 (5.7-11.2) µmol/L, respectively, whereas betaine was lowest in parturients. After delivery, preterm infant plasma choline decreased to 20.8 (16.0-27.6) µmol/L within 48 h. Betaine and DMG correlated with plasma choline in all groups. In preterm infants, plasma choline decreases to 50 % of cord plasma concentrations, reflecting choline undernourishment and postnatal metabolic adaptation, and potentially contributing to impaired outcome.
Sex and menopausal status influence human dietary requirements for the nutrient choline.
Fischer, Leslie M; daCosta, Kerry Ann; Kwock, Lester; Stewart, Paul W; Lu, Tsui-Shan; Stabler, Sally P; Allen, Robert H; Zeisel, Steven H
2007-05-01
Although humans require dietary choline for methyl donation, membrane function, and neurotransmission, choline can also be derived from the de novo synthesis of phosphatidylcholine, which is up-regulated by estrogen. A recommended Adequate Intake (AI) exists for choline; however, an Estimated Average Requirement has not been set because of a lack of sufficient human data. The objective of the study was to evaluate the dietary requirements for choline in healthy men and women and to investigate the clinical sequelae of choline deficiency. Fifty-seven adult subjects (26 men, 16 premenopausal women, 15 postmenopausal women) were fed a diet containing 550 mg choline x 70 kg(-1) x d(-1) for 10 d followed by <50 mg choline x 70 kg(-1) x d(-1) with or without a folic acid supplement (400 microg/d per randomization) for up to 42 d. Subjects who developed organ dysfunction during this diet had normal organ function restored after incremental amounts of choline were added back to the diet. Blood and urine were monitored for signs of toxicity and metabolite concentrations, and liver fat was assessed by using magnetic resonance imaging. When deprived of dietary choline, 77% of men and 80% of postmenopausal women developed fatty liver or muscle damage, whereas only 44% of premenopausal women developed such signs of organ dysfunction. Moreover, 6 men developed these signs while consuming 550 mg choline x 70 kg(-1) x d(-1), the AI for choline. Folic acid supplementation did not alter the subjects' response. Subject characteristics (eg, menopausal status) modulated the dietary requirement for choline, and a daily intake at the current AI was not sufficient to prevent organ dysfunction in 19 of the subjects.
Influence of chain length and double bond on the aqueous behavior of choline carboxylate soaps.
Rengstl, Doris; Diat, Olivier; Klein, Regina; Kunz, Werner
2013-02-26
In preceding studies, we demonstrated that choline carboxylates ChC(m) with alkyl chain lengths of m = 12 - 18 are highly water-soluble (for m = 12, soluble up to 93 wt % soap and 0 °C). In addition, choline soaps are featured by an extraordinary lyotropic phase behavior. With decreasing water concentration, the following phases were found: micellar phase (L(1)), discontinuous cubic phase (I(1)' and I(1)"), hexagonal phase (H(1)), bicontinuous cubic phase (V(1)), and lamellar phase (L(α)). The present work is also focused on the lyotropic phase behavior of choline soaps but with shorter alkyl chains or different alkyl chain properties. We have investigated the aqueous phase behavior of choline soaps with C(8) and C(10) chain-lengths (choline octanoate and choline decanoate) and with a C(18) chain-length with a cis-double bond (choline oleate). We found that choline decanoate follows the lyotropic phase behavior of the longer-chain homologues mentioned above. Choline octanoate in water shows no discontinuous cubic phases, but an extended, isotropic micellar solution phase. In addition, choline octanoate is at the limit between a surfactant and a hydrotrope. The double bond in choline oleate leads also to a better solubility in water and a decrease of the solubilization temperature. It also influences the Gaussian curvature of the aggregates which results in a loss of discontinuous cubic phases in the binary phase diagram. The different lyotropic mesophases were identified by the penetration scan technique with polarizing light microscope and visual observations. To clarify the structural behavior small (SAXS) and wide (WAXS) angle X-ray scattering were performed. To further characterize the extended, isotropic micellar solution phase in the binary phase diagram of choline octanoate viscosity and conductivity measurements were also carried out.
Sex and menopausal status influence human dietary requirements for the nutrient choline2
Fischer, Leslie M; daCosta, Kerry Ann; Kwock, Lester; Stewart, Paul W; Lu, Tsui-Shan; Stabler, Sally P; Allen, Robert H; Zeisel, Steven H
2008-01-01
Background Although humans require dietary choline for methyl donation, membrane function, and neurotransmission, choline can also be derived from the de novo synthesis of phosphatidylcholine, which is up-regulated by estrogen. A recommended Adequate Intake (AI) exists for choline; however, an Estimated Average Requirement has not been set because of a lack of sufficient human data. Objective The objective of the study was to evaluate the dietary requirements for choline in healthy men and women and to investigate the clinical sequelae of choline deficiency. Design Fifty-seven adult subjects (26 men, 16 premenopausal women, 15 postmenopausal women) were fed a diet containing 550 mg choline · 70 kg−1 · d−1 for 10 d followed by <50 mg choline · 70 kg−1 · d−1 with or without a folic acid supplement (400 μg/d per randomization) for up to 42 d. Subjects who developed organ dysfunction during this diet had normal organ function restored after incremental amounts of choline were added back to the diet. Blood and urine were monitored for signs of toxicity and metabolite concentrations, and liver fat was assessed by using magnetic resonance imaging. Results When deprived of dietary choline, 77% of men and 80% of postmenopausal women developed fatty liver or muscle damage, whereas only 44% of premenopausal women developed such signs of organ dysfunction. Moreover, 6 men developed these signs while consuming 550 mg choline · 70 kg−1 · d−1, the AI for choline. Folic acid supplementation did not alter the subjects’ response. Conclusion Subject characteristics (eg, menopausal status) modulated the dietary requirement for choline, and a daily intake at the current AI was not sufficient to prevent organ dysfunction in 19 of the subjects. PMID:17490963
Choline-mediated modulation of hippocampal sharp wave-ripple complexes in vitro.
Fischer, Viktoria; Both, Martin; Draguhn, Andreas; Egorov, Alexei V
2014-06-01
The cholinergic system is critically involved in the modulation of cognitive functions, including learning and memory. Acetylcholine acts through muscarinic (mAChRs) and nicotinic receptors (nAChRs), which are both abundantly expressed in the hippocampus. Previous evidence indicates that choline, the precursor and degradation product of Acetylcholine, can itself activate nAChRs and thereby affects intrinsic and synaptic neuronal functions. Here, we asked whether the cellular actions of choline directly affect hippocampal network activity. Using mouse hippocampal slices we found that choline efficiently suppresses spontaneously occurring sharp wave-ripple complexes (SPW-R) and can induce gamma oscillations. In addition, choline reduces synaptic transmission between hippocampal subfields CA3 and CA1. Surprisingly, these effects are mediated by activation of both mAChRs and α7-containing nAChRs. Most nicotinic effects became only apparent after local, fast application of choline, indicating rapid desensitization kinetics of nAChRs. Effects were still present following block of choline uptake and are, therefore, likely because of direct actions of choline at the respective receptors. Together, choline turns out to be a potent regulator of patterned network activity within the hippocampus. These actions may be of importance for understanding state transitions in normal and pathologically altered neuronal networks. In this study we asked whether choline, the precursor and degradation product of acetylcholine, directly affects hippocampal network activity. Using mouse hippocampal slices we found that choline efficiently suppresses spontaneously occurring sharp wave-ripple complexes (SPW-R). In addition, choline reduces synaptic transmission between hippocampal subfields. These effects are mediated by direct activation of muscarinic as well as nicotinic cholinergic pathways. Together, choline turns out to be a potent regulator of patterned activity within hippocampal networks. © 2014 International Society for Neurochemistry.
Mistargeting of a truncated Na-K-2Cl cotransporter in epithelial cells.
Koumangoye, Rainelli; Omer, Salma; Delpire, Eric
2018-05-02
We recently reported the case of a young patient with multi-system failure carrying a de novo mutation in SLC12A2, the gene encoding the Na-K-2Cl cotransporter-1. Heterologous expression studies in non-epithelial cells failed to demonstrate dominant-negative effects. In this study, we examined expression of the mutant cotransporter in epithelial cells. Using MDCK cells grown on glass coverslips, permeabilized support, and matrigel, we show that the fluorescently-tagged mutant cotransporter is expressed in cytoplasm and at the apical membrane and affects epithelium integrity. Expression of the mutant transporter at the apical membrane also results in the mislocalization of some of the wild-type transporter to the apical membrane. This mistargeting is specific to NKCC1 as the Na + /K + -ATPase remains localized on the basolateral membrane. To assess transporter localization in vivo, we created a mouse model using CRISPR/cas9 that reproduces the 11 bp deletion in exon 22 of Slc12a2. While the mice do not display an overt phenotype, we show that the colon and salivary gland expresses wild-type NKCC1 abundantly at the apical pole, confirming the data obtained in cultured epithelial cells. Enough cotransporter must remain, however, on the basolateral membrane to participate in saliva secretion, as no significant decrease in saliva production was observed in the mutant mice.
Parrish, William R; Rosas-Ballina, Mauricio; Gallowitsch-Puerta, Margot; Ochani, Mahendar; Ochani, Kanta; Yang, Li-Hong; Hudson, LaQueta; Lin, Xinchun; Patel, Nirav; Johnson, Sarah M; Chavan, Sangeeta; Goldstein, Richard S; Czura, Christopher J; Miller, Edmund J; Al-Abed, Yousef; Tracey, Kevin J; Pavlov, Valentin A
2008-01-01
The α7 subunit-containing nicotinic acetylcholine receptor (α7nAChR) is an essential component in the vagus nerve-based cholinergic anti-inflammatory pathway that regulates the levels of TNF, high mobility group box 1 (HMGB1), and other cytokines during inflammation. Choline is an essential nutrient, a cell membrane constituent, a precursor in the biosynthesis of acetylcholine, and a selective natural α7nAChR agonist. Here, we studied the anti-inflammatory potential of choline in murine endotoxemia and sepsis, and the role of the α7nAChR in mediating the suppressive effect of choline on TNF release. Choline (0.1–50 mM) dose-dependently suppressed TNF release from endotoxin-activated RAW macrophage-like cells, and this effect was associated with significant inhibition of NF-κB activation. Choline (50 mg/kg, intraperitoneally [i.p.]) treatment prior to endotoxin administration in mice significantly reduced systemic TNF levels. In contrast to its TNF suppressive effect in wild type mice, choline (50 mg/kg, i.p.) failed to inhibit systemic TNF levels in α7nAChR knockout mice during endotoxemia. Choline also failed to suppress TNF release from endotoxin-activated peritoneal macrophages isolated from α7nAChR knockout mice. Choline treatment prior to endotoxin resulted in a significantly improved survival rate as compared with saline-treated endotoxemic controls. Choline also suppressed HMGB1 release in vitro and in vivo, and choline treatment initiated 24 h after cecal ligation and puncture (CLP)-induced polymicrobial sepsis significantly improved survival in mice. In addition, choline suppressed TNF release from endotoxin-activated human whole blood and macrophages. Collectively, these data characterize the anti-inflammatory efficacy of choline and demonstrate that the modulation of TNF release by choline requires α7nAChR-mediated signaling. PMID:18584048
Webb, R A; Xue, L
1998-02-01
Absorption of exogenous choline by the cestode Hymenolepis diminuta was found to be both Na+- and HCO3--dependent and, at pH 6 to 7, accounted for up to 65% of the total choline uptake. Na+/HCO3- dependent choline uptake was activated at approximately 6 mM HCO3- (EC50 approximately 9 mM), and, above 100 mM Na+, the rate of uptake was directly proportional to the Na+ concentration. Atempts to uncouple Na+-dependent uptake from HCO3--dependent uptake were not successful: K+-depolarization was without effect on HCO3--dependent choline uptake, and use of valinoomycin to hyperpolarize the brush-border membrane resulted in inhibition of uptake. Na-/HCO3--dependent choline uptake was not associated with solvent drag. The Na+/HCO3--dependent choline uptake displayed a Q10 of 6.4 (27 degrees to 37 degrees) and a relatively high activation energy of 126 kJ x mol(-1). At pH 6.0 and 7.0, Na-/HCO3--dependent choline uptake rates were similar, but Na+/HCO3--dependent choline uptake was reduced at pH 5.0. The Na+/HCO3--dependent choline uptake, at pH 7.0, displayed a Kt of approximately 500 microM and a Vmax of 4.01 pmol x mg wet weight(-1) x min(-1). The Na+/HCO3--dependent choline uptake was hemicholinium-3 sensitive, but not significantly inhibited by 200 microM bumetanide, 100 microM amiloride, benzamil, or EIPA or by 1 mM 4,4'-diisothiocyano-2,2'-stilbene disulfonate (DIDS) or 4-acetamido-4'-isothiocvanostilbene-2,2'-disulfonic acid (SITS). Although it remains to be shown that HCO3- uptake is coupled directly to both choline and Na+ uptake, the data suggest that choline up take occurs via choline/Na+/HCO3--co-trans porter.
Repression of choline kinase by inositol and choline in Saccharomyces cerevisiae.
Hosaka, K; Murakami, T; Kodaki, T; Nikawa, J; Yamashita, S
1990-01-01
The regulation of choline kinase (EC 2.7.1.32), the initial enzyme in the CDP-choline pathway, was examined in Saccharomyces cerevisiae. The addition of myo-inositol to a culture of wild-type cells resulted in a significant decrease in choline kinase activity. Additional supplementation of choline caused a further reduction in the activity. The coding frame of the choline kinase gene, CK1, was joined to the carboxyl terminus of lacZ and expressed in Escherichia coli as a fusion protein, which was then used to prepare an anti-choline kinase antibody. Upon Western (immuno-) and Northern (RNA) blot analyses using the antibody and a CK1 probe, respectively, the decrease in the enzyme activity was found to be correlated with decreases in the enzyme amount and mRNA abundance. The molecular mass of the enzyme was estimated to be 66 kilodaltons, in agreement with the value predicted previously from the nucleotide sequence of the gene. The coding region of CK1 was replaced with that of lacZ, and CK1 expression was measured by assaying beta-galactosidase. The expression of beta-galactosidase from this fusion was repressed by myo-inositol and choline and derepressed in a time-dependent manner upon their removal. The present findings indicate that yeast choline kinase is regulated by myo-inositol and choline at the level of mRNA abundance. Images FIG. 3 FIG. 4 PMID:2156807
Effect of choline supplementation on fatigue in trained cyclists.
Spector, S A; Jackman, M R; Sabounjian, L A; Sakkas, C; Landers, D M; Willis, W T
1995-05-01
The availability of choline, the precurser of the neurotransmitter, acetylcholine, in the diet is sufficient to provide the body's requirements under normal conditions. However, preliminary evidence indicates that depletion of choline may limit performance, while oral supplementation may delay fatigue during prolonged efforts. A double-blind cross-over design was used to determine the relationship between plasma choline and fatigue during supramaximal brief and submaximal prolonged activities. Twenty male cyclists (ages 23-29) with maximal aerobic power (VO2max) between 58 and 81 ml.min-1.kg-1 were randomly divided into BRIEF (N = 10) and PROLONGED (N = 10) groups. One hour after drinking a beverage with or without choline bitartrate (2.43 g), cyclists began riding at a power output equivalent to approximately 150% (BRIEF) and 70% (PROLONGED) of VO2max at a cadence of 80-90 rpm. Time to exhaustion, indirect calorimetry and serum choline, lactate, and glucose were measured. Increases in choline levels of 37 and 52% were seen within one hour of ingestion for BRIEF and PROLONGED groups, respectively. Neither group depleted choline during exercise under the choline or placebo conditions. Fatigue times and work performed under either test condition for the BRIEF or PROLONGED groups were similar. Consequently, trained cyclists do not deplete choline during supramaximal brief or prolonged submaximal exercise, nor do they benefit from choline supplementation to delay fatigue under these conditions.
Nikzad, Nasrin; Karami, Zahra
2018-04-14
Changes in choline levels can be associated with diseases such as Alzheimer, Parkinson, Huntington, fatty liver, interstitial lung abnormalities, autism and so on. Therefore, quantitative determination of choline is important in the biological and clinical analysis. So far, several methods have been investigated for measuring choline in the body fluids, each of which has disadvantages such as the need for specialist ability, complexity, and high cost. For this purpose, a facile and sensitive colorimetric biosensor based on DNAzyme-choline oxidase coupling used for the determination of choline. In this method, the first, choline oxidase produces H 2 O 2 and betaine in the presence of choline and oxygen, then, the DNAzyme converts colorless ABTS into green ABTS + radicals. Compared to the previous methods, the linear range and the limit of detection of this talented biosensor were 0.1-25 μM and 22 nM. Choline measurement using this biosensor has shown satisfactory selectivity and repeatability. Its recovery was 96.9-103.7%, which shows the reliability of biosensor assay in biological samples. Simplicity, low cost, naked eye, high sensitivity, and precision are the benefits of this biosensor. Taken to gather, the proposed system can be considered as a great biosensor for measuring choline levels especially in point of care diagnostic. Copyright © 2018 Elsevier B.V. All rights reserved.
Damjanovic, Marlen; Kharat, Arun S.; Eberhardt, Alice; Tomasz, Alexander; Vollmer, Waldemar
2007-01-01
Streptococcus pneumoniae has an absolute nutritional requirement for choline, and the choline molecules are known to incorporate exclusively into the cell wall and membrane teichoic acids of the bacterium. We describe here the isolation of a mutant of strain R6 in which a single G→T point mutation in the gene tacF (formerly designated spr1150) is responsible for generating a choline-independent phenotype. The choline-independent phenotype could be transferred to the laboratory strain R6 and to the encapsulated strain D39 by genetic transformation with a PCR product or with a plasmid carrying the mutated tacF gene. The tacF gene product belongs to the protein family of polysaccharide transmembrane transporters (flippases). A model is presented in which TacF is required for the transport of the teichoic acid subunits across the cytoplasmic membrane. According to this model, wild-type TacF has a strict specificity for choline-containing subunits, whereas the TacF present in the choline-independent mutant strain is able to transport both choline-containing and choline-free teichoic acid chains. The proposed transport specificity of parental-type TacF for choline-containing subunits would ensure the loading of the cell wall with teichoic acid chains decorated with choline residues, which appear to be essential for the virulence of this pathogen. PMID:17660291
The addition of choline to parenteral nutrition.
Buchman, Alan L
2009-11-01
Choline is a quaternary amine endogenously synthesized from the amino acid methionine or absorbed via the portal circulation. It is ubiquitous in the diet, although it has a greater presence in organ meats. Choline is an essential component of all cell membranes, and has been considered a required dietary nutrient since 1998 by the US Institute of Medicine's Food and Nutrition Board. Choline is necessary for DNA repair, mediated by its role as a methyl donor. It also serves as the precursor for the neurotransmitter acetylcholine. Evidence has accumulated that hepatic steatosis, which occurs during parenteral nutrition therapy, develops as a result of choline deficiency because endogenous production of choline from parenterally infused methionine is deficient. In addition, memory deficits and skeletal muscle abnormalities have been described, and choline deficiency appears to activate cellular apoptosis. Provision of intravenous choline ameliorates hepatic steatosis associated with parenteral nutrition infusion.
Caffeine potentiates the enhancement by choline of striatal acetylcholine release
NASA Technical Reports Server (NTRS)
Johnson, D. A.; Ulus, I. H.; Wurtman, R. J.
1992-01-01
We investigated the effect of peripherally administered caffeine (50 mg/kg), choline (30, 60, or 120 mg/kg) or combinations of both drugs on the spontaneous release of acetylcholine (ACh) from the corpus striatum of anesthetized rats using in vivo microdialysis. Caffeine alone or choline in the 30 or 60 mg/kg dose failed to increase ACh in microdialysis samples; the 120 mg/kg choline dose significantly enhanced ACh during the 80 min following drug administration. Coadministration of caffeine with choline significantly increased ACh release after each of the choline doses tested. Peak microdialysate levels with the 120 mg/kg dose were increased 112% when caffeine was additionally administered, as compared with 54% without caffeine. These results indicate that choline administration can enhance spontaneous ACh release from neurons, and that caffeine, a drug known to block adenosine receptors on these neurons, can amplify the choline effect.
Consolo, S; Garattini, S; Ladinsky, H; Thoenen, H
1972-02-01
1. Acetylcholine and choline were measured in the spleens and irides of normal and 6-hydroxydopamine-treated cats. In addition, choline acetyltransferase activity was measured in the spleens.2. No acetylcholine or choline acetyltransferase activity were found in spleens of normal or treated cats. The choline content of normal spleens was 12.4 +/- 1.5 mug/g wet wt. (mean +/- S.E. of mean), which was not significantly altered by chemical sympathectomy.3. The acetylcholine and choline contents of the cat iris were 3.0 +/- 0.3 mug/g wet wt. and 7.7 +/- 0.9 mug/g wet wt., respectively. There was no difference in acetylcholine and choline concentrations between left and right or normal and sympathectomized irides.4. These results are discussed in relation to the question of a cholinergic link in post-ganglionic sympathetic transmission.
Intestinal transfer of choline in rat and hamster
Sanford, P. A.; Smyth, D. H.
1971-01-01
1. The transfer of choline was studied with sacs of everted intestine of rat and hamster. 2. The choline transfer can be divided into two components, a diffusion process and a saturable process. The latter plays a relatively greater part at low concentrations of choline, which include the physiological concentration in the plasma. The saturable process is better seen in the hamster than in the rat. 3. Intestinal transfer of choline is influenced by substances altering the availability of energy in the cell, and by some substances chemically or pharmacologically related to choline. These findings are consistent with some kind of specific mechanism for choline transfer. 4. Part of the choline taken up by the cell appears as a metabolite not yet identified. The formation of the metabolite is a saturable process and is abolished by anaerobic conditions and by homogenization. 5. The results are also discussed in relation to parameters of transfer. PMID:5090994
Nocianitri, K A; Aoyama, Y
2001-04-01
Rats of the Donryu, Wistar, Fischer, and Sprague-Dawley strains were examined for the effects of choline deficiency on liver lipids, serum lipids, and serum ornithine carbamoyltransferase. The liver total lipid, triacylglycerol, cholesterol and phospholipid contents in the choline-deficient rats were significantly higher than those in choline-sufficient rats. The contents of total lipids and phospholipids in the liver of the Wistar and Fischer rats fed on a choline-deficient diet were significantly higher than those of the Donryu and Sprague-Dawley rats. The levels of triacylglycerol, cholesterol and phospholipids in the serum were significantly decreased by feeding with the choline-deficient diet. The serum ornithine carbamoyltransferase activity was increased in the Wistar and Fischer strains by feeding with the choline-deficient diet. The Wistar and Fischer strains were consequently the most sensitive to both lipid accumulation and liver lesions induced by the choline deficiency.
Ganz, Ariel B.; Shields, Kelsey; Fomin, Vlad G.; Lopez, Yusnier S.; Mohan, Sanjay; Lovesky, Jessica; Chuang, Jasmine C.; Ganti, Anita; Carrier, Bradley; Yan, Jian; Taeswuan, Siraphat; Cohen, Vanessa V.; Swersky, Camille C.; Stover, Julie A.; Vitiello, Gerardo A.; Malysheva, Olga V.; Mudrak, Erika; Caudill, Marie A.
2016-01-01
Although single nucleotide polymorphisms (SNPs) in folate-mediated pathways predict susceptibility to choline deficiency during severe choline deprivation, it is unknown if effects persist at recommended intakes. Thus, we used stable isotope liquid chromatography-mass spectrometry (LC-MS) methodology to examine the impact of candidate SNPs on choline metabolism in a long-term, randomized, controlled feeding trial among pregnant, lactating, and nonpregnant (NP) women consuming 480 or 930 mg/d choline (22% as choline-d9, with d9 indicating a deuterated trimethyl amine group) and meeting folate-intake recommendations. Variants impairing folate metabolism, methylenetetrahydrofolate reductase (MTHFR) rs1801133, methionine synthase (MTR) rs1805087 [wild-type (WT)], MTR reductase (MTRR) rs1801394, and methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase-formyltetrahydrofolate synthetase (MTHFD1) rs2236225, influenced choline dynamics, frequently through interactions with reproductive state and choline intake, with fewer genotypic alterations observed among pregnant women. Women with these variants partitioned more dietary choline toward phosphatidylcholine (PC) biosynthesis via the cytidine diphosphate (CDP)-choline pathway at the expense of betaine synthesis even when use of betaine as a methyl donor was increased. Choline intakes of 930 mg/d restored partitioning of dietary choline between betaine and CDP-PC among NP (MTHFR rs1801133 and MTR rs1805087 WT) and lactating (MTHFD1 rs2236225) women with risk genotypes. Overall, our findings indicate that loss-of-function variants in folate-metabolizing enzymes strain cellular PC production, possibly via impaired folate-dependent phosphatidylethanolamine-N-methyltransferase (PEMT)-PC synthesis, and suggest that women with these risk genotypes may benefit from choline intakes exceeding current recommendations.—Ganz, A. B., Shields, K., Fomin, V. G., Lopez, Y. S., Mohan, S., Lovesky, J., Chuang, J. C., Ganti, A., Carrier, B., Yan, J., Taeswuan, S., Cohen, V. V., Swersky, C. C., Stover, J. A., Vitiello, G. A., Malysheva, O. V., Mudrak, E., Caudill, M. A. Genetic impairments in folate enzymes increase dependence on dietary choline for phosphatidylcholine production at the expense of betaine synthesis. PMID:27342765
Ganz, Ariel B; Shields, Kelsey; Fomin, Vlad G; Lopez, Yusnier S; Mohan, Sanjay; Lovesky, Jessica; Chuang, Jasmine C; Ganti, Anita; Carrier, Bradley; Yan, Jian; Taeswuan, Siraphat; Cohen, Vanessa V; Swersky, Camille C; Stover, Julie A; Vitiello, Gerardo A; Malysheva, Olga V; Mudrak, Erika; Caudill, Marie A
2016-10-01
Although single nucleotide polymorphisms (SNPs) in folate-mediated pathways predict susceptibility to choline deficiency during severe choline deprivation, it is unknown if effects persist at recommended intakes. Thus, we used stable isotope liquid chromatography-mass spectrometry (LC-MS) methodology to examine the impact of candidate SNPs on choline metabolism in a long-term, randomized, controlled feeding trial among pregnant, lactating, and nonpregnant (NP) women consuming 480 or 930 mg/d choline (22% as choline-d 9 , with d 9 indicating a deuterated trimethyl amine group) and meeting folate-intake recommendations. Variants impairing folate metabolism, methylenetetrahydrofolate reductase (MTHFR) rs1801133, methionine synthase (MTR) rs1805087 [wild-type (WT)], MTR reductase (MTRR) rs1801394, and methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase-formyltetrahydrofolate synthetase (MTHFD1) rs2236225, influenced choline dynamics, frequently through interactions with reproductive state and choline intake, with fewer genotypic alterations observed among pregnant women. Women with these variants partitioned more dietary choline toward phosphatidylcholine (PC) biosynthesis via the cytidine diphosphate (CDP)-choline pathway at the expense of betaine synthesis even when use of betaine as a methyl donor was increased. Choline intakes of 930 mg/d restored partitioning of dietary choline between betaine and CDP-PC among NP (MTHFR rs1801133 and MTR rs1805087 WT) and lactating (MTHFD1 rs2236225) women with risk genotypes. Overall, our findings indicate that loss-of-function variants in folate-metabolizing enzymes strain cellular PC production, possibly via impaired folate-dependent phosphatidylethanolamine-N-methyltransferase (PEMT)-PC synthesis, and suggest that women with these risk genotypes may benefit from choline intakes exceeding current recommendations.-Ganz, A. B., Shields, K., Fomin, V. G., Lopez, Y. S., Mohan, S., Lovesky, J., Chuang, J. C., Ganti, A., Carrier, B., Yan, J., Taeswuan, S., Cohen, V. V., Swersky, C. C., Stover, J. A., Vitiello, G. A., Malysheva, O. V., Mudrak, E., Caudill, M. A. Genetic impairments in folate enzymes increase dependence on dietary choline for phosphatidylcholine production at the expense of betaine synthesis. © FASEB.
Nutritional genomics: defining the dietary requirement and effects of choline.
Zeisel, Steven H
2011-03-01
As it becomes evident that single nucleotide polymorphisms (SNPs) in humans can create metabolic inefficiencies, it is reasonable to ask if such SNPs influence dietary requirements. Epidemiologic studies that examine SNPs relative to risks for diseases are common, but there are few examples of clinically sized nutrition studies that examine how SNPs influence metabolism. Studies on how SNPs influence the dietary requirement for choline provide a model for how we might begin examining the effects of SNPs on nutritional phenotypes using clinically sized studies (clinical nutrigenomics). Most men and postmenopausal women develop liver or muscle dysfunction when deprived of dietary choline. More than one-half of premenopausal women may be resistant to choline deficiency-induced organ dysfunction, because estrogen induces the gene [phosphatidylethanolamine-N-methyltransferase (PEMT)] that catalyzes endogenous synthesis of phosphatidylcholine, which can subsequently yield choline. Those premenopausal women that do require a dietary source of choline have a SNP in PEMT, making them unresponsive to estrogen induction of PEMT. It is important to recognize differences in dietary requirements for choline in women, because during pregnancy, maternal dietary choline modulates fetal brain development in rodent models. Because choline metabolism and folate metabolism intersect at the methylation of homocysteine, manipulations that limit folate availability also increase the use of choline as a methyl donor. People with a SNPs in MTHFD1 (a gene of folate metabolism that controls the use of folate as a methyl donor) are more likely to develop organ dysfunction when deprived of choline; their dietary requirement is increased because of increased need for choline as a methyl donor.
Identification and Characterization of a High-Affinity Choline Uptake System of Brucella abortus
Herrmann, Claudia K.; Bukata, Lucas; Melli, Luciano; Marchesini, M. Ines; Caramelo, Julio J.
2013-01-01
Phosphatidylcholine (PC), a common phospholipid of the eukaryotic cell membrane, is present in the cell envelope of the intracellular pathogen Brucella abortus, the etiological agent of bovine brucellosis. In this pathogen, the biosynthesis of PC proceeds mainly through the phosphatidylcholine synthase pathway; hence, it relies on the presence of choline in the milieu. These observations imply that B. abortus encodes an as-yet-unknown choline uptake system. Taking advantage of the requirement of choline uptake for PC synthesis, we devised a method that allowed us to identify a homologue of ChoX, the high-affinity periplasmic binding protein of the ABC transporter ChoXWV. Disruption of the choX gene completely abrogated PC synthesis at low choline concentrations in the medium, thus indicating that it is a high-affinity transporter needed for PC synthesis via the PC synthase (PCS) pathway. However, the synthesis of PC was restored when the mutant was incubated in media with higher choline concentrations, suggesting the presence of an alternative low-affinity choline uptake activity. By means of a fluorescence-based equilibrium-binding assay and using the kinetics of radiolabeled choline uptake, we show that ChoX binds choline with an extremely high affinity, and we also demonstrate that its activity is inhibited by increasing choline concentrations. Cell infection assays indicate that ChoX activity is required during the first phase of B. abortus intracellular traffic, suggesting that choline concentrations in the early and intermediate Brucella-containing vacuoles are limited. Altogether, these results suggest that choline transport and PC synthesis are strictly regulated in B. abortus. PMID:23161032
Albiñana, E; Luengo, J G; Baraibar, A M; Muñoz, M D; Gandía, L; Solís, J M; Hernández-Guijo, J M
2017-06-01
Choline is present at cholinergic synapses as a product of acetylcholine degradation. In addition, it is considered a selective agonist for α5 and α7 nicotinic acetylcholine receptors (nAChRs). In this study, we determined how choline affects action potentials and excitatory synaptic transmission using extracellular and intracellular recording techniques in CA1 area of hippocampal slices obtained from both mice and rats. Choline caused a reversible depression of evoked field excitatory postsynaptic potentials (fEPSPs) in a concentration-dependent manner that was not affected by α7 nAChR antagonists. Moreover, this choline-induced effect was not mimicked by either selective agonists or allosteric modulators of α7 nAChRs. Additionally, this choline-mediated effect was not prevented by either selective antagonists of GABA receptors or hemicholinium, a choline uptake inhibitor. The paired pulse facilitation paradigm, which detects whether a substance affects presynaptic release of glutamate, was not modified by choline. On the other hand, choline induced a robust increase of population spike evoked by orthodromic stimulation but did not modify that evoked by antidromic stimulation. We also found that choline impaired recurrent inhibition recorded in the pyramidal cell layer through a mechanism independent of α7 nAChR activation. These choline-mediated effects on fEPSP and population spike observed in rat slices were completely reproduced in slices obtained from α7 nAChR knockout mice, which reinforces our conclusion that choline modulates synaptic transmission and neuronal excitability by a mechanism independent of nicotinic receptor activation.
Metabolism of acetylcholine in human erythrocytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chapman, E.S.
1990-01-01
In order to examine the possible role of erythrocyte acetylcholinesterase in the maintenance of membrane phospholipid content and membrane fluidity, experiments were performed to monitor the activity of the enzyme and follow the fate of one of its hydrolytic products, choline. Intact human erythrocytes were incubated with acetylcholine (choline methyl-{sup 14}C). The incubation resulted in the hydrolysis of acetylcholine to acetate and choline; the reaction was catalyzed by membrane acetylcholinesterase. The studies demonstrate the further metabolism of choline. Experiments were carried out to determine rate of hydrolysis of acetylcholine, uptake of choline, identification of intracellular metabolites of choline, and identificationmore » of radiolabeled membrane components. Erythrocytes at a 25% hematocrit were incubated in an isoosmotic bicarbonate buffer pH 7.4, containing glucose, adenosine, streptomycin and penicillin with 0.3 {mu}Ci of acetylcholine (choline methyl-{sup 14}C), for 24 hours. Aliquots of the erythrocyte suspension were taken throughout for analysis. Erythrocytes were washed free of excess substrate, lysed, and the hemolysate was extracted for choline and its metabolites. Blank samples containing incubation buffer and radiolabeled acetylcholine only, and erythrocyte hemolysate extracts were analyzed for choline content, the difference between blank samples and hemolysate extracts was the amount of choline originating from acetylcholine and attributable to acetylcholinesterase activity. The conversion of choline to {sup 14}C-betaine is noted after several minutes of incubation; at 30 minutes, more than 80% of {sup 14}C-choline is taken up and after several hours, detectable levels of radiolabeled S-adenosylmethionine were present in the hemolysate extract.« less
Mygind, Vanessa L; Evans, Sophie E; Peddie, Meredith C; Miller, Jody C; Houghton, Lisa A
2013-01-01
Recently, choline has been associated with neurodevelopment, cognitive function and neural tube defect incidence. However, data on usual intakes are limited, and estimates of dietary intakes of choline and its metabolite betaine, are not available for New Zealanders. The objective of the present study was to determine usual intake and food sources of choline and betaine in a group of New Zealand reproductive age women. Dietary intake data were collected from a sample of 125 women, aged 18-40 years, by means of a 3-day weighed food record, and usual choline and betaine intake distributions were determined. The mean (SD) daily intakes of choline and betaine were 316 (66) mg and 178 (66) mg, respectively. The total choline intake relative to energy intake and body weight was 0.18 mg/kcal and 5.1 mg/kg, respectively. Only 16% of participants met or exceeded the Adequate Intake (AI) for adult women of 425 mg of choline. The top five major food contributors of choline were eggs, red meat, milk, bread and chicken; and of betaine were bread, breakfast cereal, pasta, grains and root vegetables (carrots, parsnips, beetroot, swedes). Our findings contribute towards the recent emergence of published reports on the range of dietary choline and betaine intakes consumed by free-living populations. In our sample of New Zealand women, few participants were meeting or exceeding the AI level. Given recent epidemiological evidence suggesting health benefits of increased choline and betaine intakes, recommendations should be made to encourage the consumption of choline and betaine-rich foods.
Choline deficiency increases lymphocyte apoptosis and DNA damage in humans.
da Costa, Kerry-Ann; Niculescu, Mihai D; Craciunescu, Corneliu N; Fischer, Leslie M; Zeisel, Steven H
2006-07-01
Whereas deficiency of the essential nutrient choline is associated with DNA damage and apoptosis in cell and rodent models, it has not been shown in humans. The objective was to ascertain whether lymphocytes from choline-deficient humans had greater DNA damage and apoptosis than did those from choline-sufficient humans. Fifty-one men and women aged 18-70 y were fed a diet containing the recommended adequate intake of choline (control) for 10 d. They then were fed a choline-deficient diet for up to 42 d before repletion with 138-550 mg choline/d. Blood was collected at the end of each phase, and peripheral lymphocytes were isolated. DNA damage and apoptosis were then assessed by activation of caspase-3, terminal deoxynucleotide transferase-mediated dUTP nick end-labeling, and single-cell gel electrophoresis (COMET) assays. All subjects fed the choline-deficient diet had lymphocyte DNA damage, as assessed by COMET assay, twice that found when they were fed the control diet. The subjects who developed organ dysfunction (liver or muscle) when fed the choline-deficient diet had significantly more apoptotic lymphocytes, as assessed by the activated caspase-3 assay, than when fed the control diet. A choline-deficient diet increased DNA damage in humans. Subjects in whom these diets induced liver or muscle dysfunction also had higher rates of apoptosis in their peripheral lymphocytes than did subjects who did not develop organ dysfunction. Assessment of DNA damage and apoptosis in lymphocytes appears to be a clinically useful measure in humans (such as those receiving parenteral nutrition) in whom choline deficiency is suspected.
Maternal choline supplementation: a nutritional approach for improving offspring health?
Jiang, Xinyin; West, Allyson A; Caudill, Marie A
2014-05-01
The modulatory role of choline on the fetal epigenome and the impact of in utero choline supply on fetal programming and health are of great interest. Studies in animals and/or humans suggest that maternal choline supplementation during pregnancy benefits important physiologic systems such as offspring cognitive function, response to stress, and cerebral inhibition. Because alterations in offspring phenotype frequently coincide with epigenetic modifications and changes in gene expression, maternal choline supplementation may be a nutritional strategy to improve lifelong health of the child. Future studies are warranted to elucidate further the effect of choline on the fetal epigenome and to determine the level of maternal choline intake required for optimal offspring physiologic function. Copyright © 2014 Elsevier Ltd. All rights reserved.
Zeisel, Steven H
2011-10-01
The consequences of fetal exposure to alcohol are very diverse and the likely molecular mechanisms involved must be able to explain how so many developmental processes could go awry. If pregnant rat dams are fed alcohol, their pups develop abnormalities characteristic of fetal alcohol spectrum disorders (FASD), but if these rat dams were also treated with choline, the effects from ethanol were attenuated in their pups. Choline is an essential nutrient in humans, and is an important methyl group donor. Alcohol exposure disturbs the metabolism of choline and other methyl donors. Availability of choline during gestation directly influences epigenetic marks on DNA and histones, and alters gene expression needed for normal neural and endothelial progenitor cell proliferation. Maternal diets low in choline alter development of the mouse hippocampus, and decrement memory for life. Women eating low-choline diets have an increased risk of having an infant with a neural tube or orofacial cleft birth defect. Thus, the varied effects of choline could affect the expression of FASD, and studies on choline might shed some light on the underlying molecular mechanisms responsible for FASD.
Sherriff, Jill L; O’Sullivan, Therese A; Properzi, Catherine; Oddo, Josephine-Lee; Adams, Leon A
2016-01-01
Our understanding of the impact of poor hepatic choline/phosphatidylcholine availability in promoting the steatosis characteristic of human nonalcoholic fatty liver disease (NAFLD) has recently advanced and possibly relates to phosphatidylcholine/phosphatidylethanolamine concentrations in various, membranes as well as cholesterol dysregulation. A role for choline/phosphatidylcholine availability in the progression of NAFLD to liver injury and serious hepatic consequences in some individuals requires further elucidation. There are many reasons for poor choline/phosphatidylcholine availability in the liver, including low intake, estrogen status, and genetic polymorphisms affecting, in particular, the pathway for hepatic de novo phosphatidylcholine synthesis. In addition to free choline, phosphatidylcholine has been identified as a substrate for trimethylamine production by certain intestinal bacteria, thereby reducing host choline bioavailability and providing an additional link to the increased risk of cardiovascular disease faced by those with NAFLD. Thus human choline requirements are highly individualized and biomarkers of choline status derived from metabolomics studies are required to predict those at risk of NAFLD induced by choline deficiency and to provide a basis for human intervention trials. PMID:26773011
CDP-choline liposomes provide significant reduction in infarction over free CDP-choline in stroke
Adibhatla, Rao Muralikrishna; Hatcher, J.F.; Tureyen, K.
2007-01-01
Cytidine-5′-diphosphocholine (CDP-choline, Citicoline, Somazina) is in clinical use (intravenous administration) for stroke treatment in Europe and Japan, while USA phase III stroke clinical trials (oral administration) were disappointing. Others showed that CDP-choline liposomes significantly increased brain uptake over the free drug in cerebral ischemia models. Liposomes were formulated as DPPC, DPPS, cholesterol, GM1 ganglioside; 7/4/7/1.57 molar ratio or 35.8/20.4/35.8/8.0 mol%. GM1 ganglioside confers long-circulating properties to the liposomes by suppressing phagocytosis. CDP-choline liposomes deliver the agent intact to the brain, circumventing the rate-limiting, cytidine triphosphate:phosphocholine cytidylyltransferase in phosphatidylcholine synthesis. Our data show that CDP-choline liposomes significantly ( P < 0.01) decreased cerebral infarction (by 62%) compared to the equivalent dose of free CDP-choline (by 26%) after 1 h focal cerebral ischemia and 24 h reperfusion in spontaneously hypertensive rats. Beneficial effects of CDP-choline liposomes in stroke may derive from a synergistic effect between the phospholipid components of the liposomes and the encapsulated CDP-choline. PMID:16153613
Sherriff, Jill L; O'Sullivan, Therese A; Properzi, Catherine; Oddo, Josephine-Lee; Adams, Leon A
2016-01-01
Our understanding of the impact of poor hepatic choline/phosphatidylcholine availability in promoting the steatosis characteristic of human nonalcoholic fatty liver disease (NAFLD) has recently advanced and possibly relates to phosphatidylcholine/phosphatidylethanolamine concentrations in various, membranes as well as cholesterol dysregulation. A role for choline/phosphatidylcholine availability in the progression of NAFLD to liver injury and serious hepatic consequences in some individuals requires further elucidation. There are many reasons for poor choline/phosphatidylcholine availability in the liver, including low intake, estrogen status, and genetic polymorphisms affecting, in particular, the pathway for hepatic de novo phosphatidylcholine synthesis. In addition to free choline, phosphatidylcholine has been identified as a substrate for trimethylamine production by certain intestinal bacteria, thereby reducing host choline bioavailability and providing an additional link to the increased risk of cardiovascular disease faced by those with NAFLD. Thus human choline requirements are highly individualized and biomarkers of choline status derived from metabolomics studies are required to predict those at risk of NAFLD induced by choline deficiency and to provide a basis for human intervention trials. © 2016 American Society for Nutrition.
Some actions of substituted choline phenyl ethers, particularly of choline 2:6-xylyl ether
Edge, N. D.; Mason, D. F. J.; Wyllie, J. H.
1957-01-01
Marked nicotine-like stimulant properties are possessed by choline phenyl ether and choline o-tolyl ether, and to a decreasing extent by choline 2:6-xylyl ether and choline 2:4:6-mesityl ether. The compounds all show neuromuscular blocking properties, which are of short duration and pass from mainly decamethonium-like to mainly curare-like as more methyl groups are added to the phenyl nucleus. This series of compounds also possesses muscarinic, weak anti-adrenaline and vasodilator properties, as well as long-lasting local anaesthetic effects in the two compounds tested by intradermal injection. PMID:13460236
Novel choline esterase based sensor for monitoring of organophosphorus pollutants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilkins, E.S.; Ghindilis, A.L.; Atanasov, P.
1996-12-31
Organophosphorus compounds are significant major environmental pollutants due to their intensive use as pesticides. The modern techniques based on inhibition of choline esterase enzyme activity are discussed. Potentiometric electrodes based on detection of choline esterase inhibition by analytes has been developed. The detection of choline esterase activity is based on the novel principle of molecular transduction. Immobilized peroxidase acting as the molecular transducer, catalyzes the electroreduction of hydrogen peroxide by direct (mediatorless) electron transfer. The sensing element consists of a carbon based electrode containing an assembly of co-immobilized enzymes: choline esterase, choline oxidase and peroxidase.
Topuz, Bora B; Altinbas, Burcin; Yilmaz, Mustafa S; Saha, Sikha; Batten, Trevor F; Savci, Vahide; Yalcin, Murat
2014-05-01
CDP-choline is an endogenous metabolite in phosphatidylcholine biosynthesis. Exogenous administration of CDP-choline has been shown to affect brain metabolism and to exhibit cardiovascular, neuroendocrine neuroprotective actions. On the other hand, little is known regarding its respiratory actions and/or central mechanism of its respiratory effect. Therefore the current study was designed to investigate the possible effects of centrally injected CDP-choline on respiratory system and the mediation of the central cholinergic receptors and phospholipase to thromboxane signaling pathway on CDP-choline-induced respiratory effects in anaesthetized rats. Intracerebroventricularly (i.c.v.) administration of CDP-choline induced dose- and time-dependent increased respiratory rates, tidal volume and minute ventilation of male anaesthetized Spraque Dawley rats. İ.c.v. pretreatment with atropine failed to alter the hyperventilation responses to CDP-choline whereas mecamylamine, cholinergic nicotinic receptor antagonist, mepacrine, phospholipase A2 inhibitor, and neomycin phospholipase C inhibitor, blocked completely the hyperventilation induced by CDP-choline. In addition, central pretreatment with furegrelate, thromboxane A2 synthesis inhibitor, also partially blocked CDP-choline-evoked hyperventilation effects. These data show that centrally administered CDP-choline induces hyperventilation which is mediated by activation of central nicotinic receptors and phospholipase to thromboxane signaling pathway. Copyright © 2014 Elsevier B.V. All rights reserved.
Anaerobic choline metabolism in microcompartments promotes growth and swarming of Proteus mirabilis.
Jameson, Eleanor; Fu, Tiantian; Brown, Ian R; Paszkiewicz, Konrad; Purdy, Kevin J; Frank, Stefanie; Chen, Yin
2016-09-01
Gammaproteobacteria are important gut microbes but only persist at low levels in the healthy gut. The ecology of Gammaproteobacteria in the gut environment is poorly understood. Here, we demonstrate that choline is an important growth substrate for representatives of Gammaproteobacteria. Using Proteus mirabilis as a model, we investigate the role of choline metabolism and demonstrate that the cutC gene, encoding a choline-trimethylamine lyase, is essential for choline degradation to trimethylamine by targeted mutagenesis of cutC and subsequent complementation experiments. Proteus mirabilis can rapidly utilize choline to enhance growth rate and cell yield in broth culture. Importantly, choline also enhances swarming-associated colony expansion of P. mirabilis under anaerobic conditions on a solid surface. Comparative transcriptomics demonstrated that choline not only induces choline-trimethylamine lyase but also genes encoding shell proteins for the formation of bacterial microcompartments. Subsequent analyses by transmission electron microscopy confirmed the presence of such novel microcompartments in cells cultivated in liquid broth and hyper-flagellated swarmer cells from solid medium. Together, our study reveals choline metabolism as an adaptation strategy for P. mirabilis and contributes to better understand the ecology of this bacterium in health and disease. © 2015 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.
Thomas Rajarethnem, Huban; Megur Ramakrishna Bhat, Kumar; Jc, Malsawmzuali; Kumar Gopalkrishnan, Siva; Mugundhu Gopalram, Ramesh Babu; Rai, Kiranmai Sesappa
2017-01-01
Choline is an essential nutrient for humans which plays an important role in structural integrity and signaling functions. Docosahexaenoic acid (DHA) is a polyunsaturated fatty acid, highly enriched in cell membranes of the brain. Dietary intake of choline or DHA alone by pregnant mothers directly affects fetal brain development and function. But no studies show the efficacy of combined supplementation of choline and DHA on fetal neurodevelopment. The aim of the present study was to analyze fetal neurodevelopment on combined supplementation of pregnant dams with choline and DHA. Pregnant dams were divided into five groups: normal control [NC], saline control [SC], choline [C], DHA, and C + DHA. Saline, choline, and DHA were given as supplements to appropriate groups of dams. NC dams were undisturbed during entire gestation. On postnatal day (PND) 40, brains were processed for Cresyl staining. Pups from choline or DHA supplemented group showed significant ( p < 0.05) increase in number of neurons in hippocampus when compared to the same in NC and SC groups. Moreover, pups from C + DHA supplemented group showed significantly higher number of neurons ( p < 0.001) in hippocampus when compared to the same in NC and SC groups. Thus combined supplementation of choline and DHA during normal pregnancy enhances fetal hippocampal neurodevelopment better than supplementation of choline or DHA alone.
Naber, Marnix; Hommel, Bernhard; Colzato, Lorenza S
2015-08-14
Only few nutrients are known to enhance cognition. Here we explore whether visuomotor performance can be improved through the intake of the nutrient choline, an essential chemical compound in a vertebrate's diet. Choline is abundant in for example eggs and shrimps and many animal studies suggest that it serves as a cognitive enhancer. As choline is important for the communication between motor neurons and the control of skeletal muscles, we assumed that choline supplementation may have positive effects on action coordination in humans. A group of twenty-eight individuals ingested two grams of choline bitartrate or a placebo in two separate sessions. Seventy minutes post ingestion, participants performed a visuomotor aiming task in which they had to rapidly hit the centers of targets. Results showed that participants hit targets more centrally after choline supplementation. Pupil size (a cognition-sensitive biomarker) also significantly decreased after choline intake and correlated positively with the hit distance to the targets and the number of target misses, and negatively with reaction times. These findings point to a choline-induced bias towards action precision in the trade-off between speed and accuracy. The changes in pupil size suggest that choline uptake alters cholinergic functions in the nervous system.
Contents of lecithin and choline in crude drugs.
Yamasaki, K; Kikuoka, M; Nishi, H; Kokusenya, Y; Miyamoto, T; Matsuo, M; Sato, T
1994-01-01
The determination of lecithin and choline in crude drugs was established by a combination of high performance liquid chromatography (HPLC) with electrochemical detector (ECD) and enzyme reaction. Lecithin in crude drugs extracted with a mixture of chloroform-methanol (2:1) at room temperature was hydrolyzed by phospholipase D. The hydrolyzate was injected to HPLC, and choline was separated from impurities by reverse phase column. The choline was converted to betaine and hydrogen peroxide by passing through column packed with immobilized choline oxidase. This hydrogen peroxide was detected by ECD. The peak area of hydrogen peroxide derived from lecithin was proportional to the concentration of lecithin from 0.10 to 1.52 microgram/ml. Choline in crude drugs was extracted with ethanol under reflux and determined under the same HPLC conditions as lecithin. The peak area of hydrogen peroxide derived from choline was proportional to the concentration of choline from 0.01 to 0.45 microgram/ml. The contents of lecithin and choline in 31 kinds of crude drugs were determined by these established methods. The results showed that Cervi Parvum Cornu, Kokurozin, Foenigraeci Semen and Psoraleae Semen contained more lecithin than other crude drugs, while Angelicae Radix, Foenigraeci Semen, Psoraleae Semen, and especially Hippocampus were found to contain more choline than other crude drugs.
Naber, Marnix; Hommel, Bernhard; Colzato, Lorenza S.
2015-01-01
Only few nutrients are known to enhance cognition. Here we explore whether visuomotor performance can be improved through the intake of the nutrient choline, an essential chemical compound in a vertebrate’s diet. Choline is abundant in for example eggs and shrimps and many animal studies suggest that it serves as a cognitive enhancer. As choline is important for the communication between motor neurons and the control of skeletal muscles, we assumed that choline supplementation may have positive effects on action coordination in humans. A group of twenty-eight individuals ingested two grams of choline bitartrate or a placebo in two separate sessions. Seventy minutes post ingestion, participants performed a visuomotor aiming task in which they had to rapidly hit the centers of targets. Results showed that participants hit targets more centrally after choline supplementation. Pupil size (a cognition-sensitive biomarker) also significantly decreased after choline intake and correlated positively with the hit distance to the targets and the number of target misses, and negatively with reaction times. These findings point to a choline-induced bias towards action precision in the trade-off between speed and accuracy. The changes in pupil size suggest that choline uptake alters cholinergic functions in the nervous system. PMID:26271904
Fitzsimmons, Liam F; Hampel, Ken J; Wargo, Matthew J
2012-09-01
Choline is abundantly produced by eukaryotes and plays an important role as a precursor of the osmoprotectant glycine betaine. In Pseudomonas aeruginosa, glycine betaine has additional roles as a nutrient source and an inducer of the hemolytic phospholipase C, PlcH. The multiple functions for glycine betaine suggested that the cytoplasmic pool of glycine betaine is regulated in P. aeruginosa. We used (13)C nuclear magnetic resonance ((13)C-NMR) to demonstrate that P. aeruginosa maintains both choline and glycine betaine pools under a variety of conditions, in contrast to the transient glycine betaine pool reported for most bacteria. We were able to experimentally manipulate the choline and glycine betaine pools by overexpression of the cognate catabolic genes. Depletion of either the choline or glycine betaine pool reduced phospholipase production, a result unexpected for choline depletion. Depletion of the glycine betaine pool, but not the choline pool, inhibited growth under conditions of high salt with glucose as the primary carbon source. Depletion of the choline pool inhibited growth under high-salt conditions with choline as the sole carbon source, suggesting a role for the choline pool under these conditions. Here we have described the presence of a choline pool in P. aeruginosa and other pseudomonads that, with the glycine betaine pool, regulates osmoprotection and phospholipase production and impacts growth under high-salt conditions. These findings suggest that the levels of both pools are actively maintained and that perturbation of either pool impacts P. aeruginosa physiology.
Yara, M; Iwao, B; Hara, N; Yamanaka, T; Uchino, H; Inazu, M
2015-06-01
Choline is essential for the synthesis of the major membrane phospholipid phosphatidylcholine (PC), the methyl donor betaine and the neurotransmitter acetylcholine (ACh), which is involved in several vital biological functions that play key roles in fetal development. In this study, we examined the molecular and functional characteristics of choline uptake in the human trophoblastic cell line JEG-3. We examined [(3)H]choline uptake in the human trophoblastic cell line JEG-3. The expression of CTL1 and CTL2 was evaluated by quantitative real-time PCR, western blotting and immunocytochemistry. We demonstrated that JEG-3 cells take up [(3)H] choline by a saturable process that is mediated by a Na(+)-independent and pH-dependent transport system. The cells have two different [(3)H] choline transport systems, high- and low-affinity, with Km values of 28.4 ± 5.0 μM and 210.6 ± 55.1 μM, respectively. Cationic compounds and hemicholinium-3 (HC-3) inhibited choline uptake. Choline transporter-like protein 1 (CTL1) and CTL2 mRNA and protein were highly expressed in JEG-3 cells and were localized to the plasma membrane. The present results suggest that choline is mainly transported via a high-affinity choline transport system (CTL1) and a low-affinity choline transport system (CTL2) in human trophoblastic JEG-3 cells. These transporters play an important role in the growth of the fetus. Copyright © 2015 Elsevier Ltd. All rights reserved.
Effects of choline on health across the life course: a systematic review.
Leermakers, Elisabeth T M; Moreira, Eduardo M; Kiefte-de Jong, Jessica C; Darweesh, Sirwan K L; Visser, Thirsa; Voortman, Trudy; Bautista, Paula K; Chowdhury, Rajiv; Gorman, Donal; Bramer, Wichor M; Felix, Janine F; Franco, Oscar H
2015-08-01
Choline is a precursor of both betaine and acetylcholine and might, therefore, influence cardiovascular and cognitive outcomes. There has been concern, however, that it may influence blood lipid levels because it is an essential component of very-low-density lipoproteins. The aim was to systematically review, using PRISMA guidelines, the literature pertaining to the effects of choline on body composition and on metabolic, cardiovascular, respiratory, and neurological outcomes in different life stages. The MEDLINE, Embase, Cochrane Central, Web of Science, PubMed, and Google Scholar databases were searched up to July 2014. Fifty relevant articles were identified. These comprised trials and cohort, case-control, and cross-sectional studies that assessed blood levels of choline, dietary intake of choline, and supplementation with choline in a population free of diseases at baseline. There is some observational evidence that choline during pregnancy may be beneficial for the neurological health of the child. In adults, choline may have beneficial effects on cognition, but high-quality (intervention) studies are lacking. Results on the effects of choline on body composition, blood lipids, and cardiovascular health were inconsistent. Evidence to confirm the suggested effects of choline on health in different stages of life is scarce. Potential effects of choline need to be confirmed by intervention studies. Possible harmful effects on cardiometabolic health need careful evaluation. © The Author(s) 2015. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
The supply of choline is important for fetal progenitor cells
Zeisel, Steven H.
2011-01-01
Fetal progenitor cells proliferate, migrate, differentiate and undergo apoptosis at specific times during fetal development. Choline is needed by these cells for membrane synthesis and for methylation. There is growing evidence that this nutrient also modulates epigenetic regulation of gene expression in both neuronal and endothelial progenitor cells, thereby modifying brain development. It is likely that these mechanisms explain why, in rodent models, maternal dietary intake of choline influences both angiogenesis and neurogenesis in fetal hippocampus, and results in life-long changes in memory function. This also may explain why women eating diets low in choline have a greater risk of having a baby with a birth defect. Choline is mainly found in foods that contain fat and cholesterol, and intake of such foods has diminished in response dietary advice from nutritionists and physicians. Forty years ago, diets commonly contained choline-rich foods but now women in the USA tend to eat diets low in choline content. Premenopausal women normally may require less choline in their diet than do men and postmenopausal women, because estrogen induces the gene for the enzyme catalyzing endogenous biosynthesis of the choline-containing phospholipid phosphatidylcholine. However, many women have a single nucleotide polymorphism (SNP) that blocks the induction of endogenous biosynthesis, thereby making them require more dietary choline. When these women eat diets low in choline, the supply of this nutrient to the fetus is likely to be inadequate, and may perturb progenitor cell proliferation, migration, differentiation and apoptosis. PMID:21693194
Fitzsimmons, Liam F.; Hampel, Ken J.
2012-01-01
Choline is abundantly produced by eukaryotes and plays an important role as a precursor of the osmoprotectant glycine betaine. In Pseudomonas aeruginosa, glycine betaine has additional roles as a nutrient source and an inducer of the hemolytic phospholipase C, PlcH. The multiple functions for glycine betaine suggested that the cytoplasmic pool of glycine betaine is regulated in P. aeruginosa. We used 13C nuclear magnetic resonance (13C-NMR) to demonstrate that P. aeruginosa maintains both choline and glycine betaine pools under a variety of conditions, in contrast to the transient glycine betaine pool reported for most bacteria. We were able to experimentally manipulate the choline and glycine betaine pools by overexpression of the cognate catabolic genes. Depletion of either the choline or glycine betaine pool reduced phospholipase production, a result unexpected for choline depletion. Depletion of the glycine betaine pool, but not the choline pool, inhibited growth under conditions of high salt with glucose as the primary carbon source. Depletion of the choline pool inhibited growth under high-salt conditions with choline as the sole carbon source, suggesting a role for the choline pool under these conditions. Here we have described the presence of a choline pool in P. aeruginosa and other pseudomonads that, with the glycine betaine pool, regulates osmoprotection and phospholipase production and impacts growth under high-salt conditions. These findings suggest that the levels of both pools are actively maintained and that perturbation of either pool impacts P. aeruginosa physiology. PMID:22753069
Influence of dietary protein and excess methionine on choline needs for young bobwhite quail
Serafin, J.A.
1982-01-01
Experiments were conducted with young Bobwhite quail (Colinus virginianus) to investigate the effect of differing dietary protein levels and nondetrimental amounts of excess methionine on choline needs. Growth and feed consumption of quail fed an adequate (27.3%) protein purified diet supplemented with 2000 mg/kg of choline were unaffected by increasing the level of excess methionine to 1.75%; however, greater amounts (2.0%, 2.25%) of excess methionine depressed growth (P less than .01), reduced feed consumption (P less than .01), and decreased feed utilization (P less than .05). Quail fed a purified diet containing 13.85% protein and 515 mg/kg of choline grew poorly. Growth was unaffected by additional choline in this diet. Growth was suboptimal among quail fed purified diets containing adequate or high (41.55%) levels of protein in which choline was limiting; however, a high level of protein did not in itself affect performance. Growth was improved by supplemental choline in these diets. Growth of quail fed purified diets with up to 1.35% excess methionine which were limiting (531 mg/kg) in choline was less than that of groups fed 2000 mg/kg of added dietary choline (P less than .01); however, excess methionine did not significantly influence growth of quail fed choline-deficient diets. These experiments indicate that neither high dietary protein nor excess methionine, fed at non-growth-depressing levels, increases dietary choline needs for young Bobwhite quail.
Amenta, F; Tayebati, S K
2008-01-01
Acetylcholine (ACh) is a neurotransmitter widely diffused in central, peripheral, autonomic and enteric nervous system. This paper has reviewed the main mechanisms of ACh synthesis, storage, and release. Presynaptic choline transport supports ACh production and release, and cholinergic terminals express a unique transporter critical for neurotransmitter release. Neurons cannot synthesize choline, which is ultimately derived from the diet and is delivered through the blood stream. ACh released from cholinergic synapses is hydrolyzed by acetylcholinesterase into choline and acetyl coenzyme A and almost 50% of choline derived from ACh hydrolysis is recovered by a high-affinity choline transporter. Parallel with the development of cholinergic hypothesis of geriatric memory dysfunction, cholinergic precursor loading strategy was tried for treating cognitive impairment occurring in Alzheimer's disease. Controlled clinical studies denied clinical usefulness of choline and lecithin (phosphatidylcholine), whereas for other phospholipids involved in choline biosynthetic pathways such as cytidine 5'-diphosphocholine (CDP-choline) or alpha-glyceryl-phosphorylcholine (choline alphoscerate) a modest improvement of cognitive dysfunction in adult-onset dementia disorders is documented. These inconsistencies have probably a metabolic explanation. Free choline administration increases brain choline availability but it does not increase ACh synthesis/or release. Cholinergic precursors to serve for ACh biosynthesis should be incorporate and stored into phospholipids in brain. It is probable that appropriate ACh precursors and other correlated molecules (natural or synthesized) could represent a tool for developing therapeutic strategies by revisiting and updating treatments/supplementations coming out from this therapeutic stalemate.
Morley, B J; Garner, L L
1990-06-11
Sodium-dependent, high-affinity choline uptake (HACU) and the density of alpha-bungarotoxin (BuTX) receptor-binding sites were measured in the hippocampus following the intraventricular infusion of ethylcholine aziridinium ion (AF64A), a neurotoxin that competes with choline at high-affinity choline transport sites and may result in the degeneration of cholinergic axons. Eight days after the infusion of AF64A into the lateral ventricles (2.5 nmol/side), HACU was depleted by 60% in the hippocampus of experimental animals in comparison with controls, but the density of BuTX-binding sites was not altered. The administration of 15 mg/ml of choline chloride in the drinking water increased the density of BuTX-binding sites, as previously reported by this laboratory. The administration of AF64A did not prevent the effect of exogenous choline on the density of binding sites, nor did choline treatment alter the effect of AF64A on HACU. These data indicate that the density of BuTX-binding sites in the hippocampus is not altered following a substantial decrease in HACU and presumed degeneration of cholinergic axons. Since the effect of exogenous choline was not prevented by AF64A treatment, the data are interpreted to support the hypothesis that the increase in the density of BuTX-binding sites following dietary choline supplementation is attributable to a direct effect of choline on receptor sites.
Positioning of sodium-glucose cotransporter-2 inhibitors in national and international guidelines.
Morillas, Carlos
2016-11-01
Sodium-glucose cotransporter-2 inhibitors (SGLT2-i) selectively and reversibly inhibit sodium-glucose cotransporter-2 (SGLT2), promoting renal glucose excretion and reducing plasma glycaemia. By increasing renal glucose excretion, these drugs favour a negative energy balance, leading to weight loss. Their glucoselowering effect is independent of insulin. Although these drugs have only recently been developed, they have been included in all the main national and international guidelines since 2014. The present review summarises the most important recommendations on the use of SGLT2 in patients with DM2 contained in the most recently published guidelines and consensus statements. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.
Dietary choline and betaine intakes vary in an adult multiethnic population.
Yonemori, Kim M; Lim, Unhee; Koga, Karin R; Wilkens, Lynne R; Au, Donna; Boushey, Carol J; Le Marchand, Loïc; Kolonel, Laurence N; Murphy, Suzanne P
2013-06-01
Choline and betaine are important nutrients for human health, but reference food composition databases for these nutrients became available only recently. We tested the feasibility of using these databases to estimate dietary choline and betaine intakes among ethnically diverse adults who participated in the Multiethnic Cohort (MEC) Study. Of the food items (n = 965) used to quantify intakes for the MEC FFQ, 189 items were exactly matched with items in the USDA Database for the Choline Content of Common Foods for total choline, choline-containing compounds, and betaine, and 547 items were matched to the USDA National Nutrient Database for Standard Reference for total choline (n = 547) and 148 for betaine. When a match was not found, choline and betaine values were imputed based on the same food with a different form (124 food items for choline, 300 for choline compounds, 236 for betaine), a similar food (n = 98, 284, and 227, respectively) or the closest item in the same food category (n = 6, 191, and 157, respectively), or the values were assumed to be zero (n = 1, 1, and 8, respectively). The resulting mean intake estimates for choline and betaine among 188,147 MEC participants (aged 45-75) varied by sex (372 and 154 mg/d in men, 304 and 128 mg/d in women, respectively; P-heterogeneity < 0.0001) and by race/ethnicity among Caucasians, African Americans, Japanese Americans, Latinos, and Native Hawaiians (P-heterogeneity < 0.0001), largely due to the variation in energy intake. Our findings demonstrate the feasibility of assessing choline and betaine intake and characterize the variation in intake that exists in a multiethnic population.
West, Allyson A; Shih, Yun; Wang, Wei; Oda, Keiji; Jaceldo-Siegl, Karen; Sabaté, Joan; Haddad, Ella; Rajaram, Sujatha; Caudill, Marie A; Burns-Whitmore, Bonny
2014-10-01
The lacto-ovo-vegetarian (LOV) dietary regimen allows eggs, which are a rich source of choline. Consumption of eggs by LOV women may be especially important during pregnancy and lactation when demand for choline is high. The aim of this single blind, randomized, crossover-feeding study was to determine how near-daily egg consumption influenced biomarkers of choline metabolism in healthy LOV women of reproductive age (n=15). Because long-chain n-3 fatty acids could influence choline metabolism, the effect of n-3-enriched vs nonenriched eggs on choline metabolites was also investigated. Three 8-week dietary treatments consisting of six n-3-enriched eggs per week, six nonenriched eggs per week, and an egg-free control phase were separated by 4-week washout periods. Choline metabolites were quantified in fasted plasma collected before and after each treatment and differences in posttreatment choline metabolite concentrations were determined with linear mixed models. The n-3-enriched and nonenriched egg treatments produced different choline metabolite profiles compared with the egg-free control; however, response to the eggs did not differ (P>0.1). Consumption of the n-3-enriched egg treatment yielded higher plasma free choline (P=0.02) and betaine (P<0.01) (vs egg-free control) concentrations, whereas consumption of the nonenriched egg treatment yielded borderline higher (P=0.06) plasma phosphatidylcholine (vs egg-free control) levels. Neither egg treatment increased levels of plasma trimethylamine oxide, a gut-flora-dependent oxidative choline metabolite implicated as a possible risk factor for cardiovascular disease. Overall these data suggest that egg fatty-acid composition modulates the metabolic use of choline. Copyright © 2014 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.
Choline Ameliorates Deficits in Balance Caused by Acute Neonatal Ethanol Exposure.
Bearer, Cynthia F; Wellmann, Kristen A; Tang, Ningfeng; He, Min; Mooney, Sandra M
2015-08-01
Fetal alcohol spectrum disorder (FASD) is estimated to occur in 1 % of all live births. The developing cerebellum is vulnerable to the toxic effects of alcohol. People with FASD have cerebellar hypoplasia and developmental deficits associated with cerebellar injury. Choline is an essential nutrient, but many diets in the USA are choline deficient. In rats, choline given with or following alcohol exposure reduces many alcohol-induced neurobehavioral deficits but not those associated with cerebellar function. Our objective was to determine if choline supplementation prior to alcohol exposure would ameliorate the impact of ethanol on a cerebellar-associated behavioral test in mice. Pregnant C57Bl6/J mice were maintained on a choline-deficient diet from embryonic day 4.5. On postnatal day 1 (P1), pups were assigned to one of eight treatment groups: choline (C) or saline (S) pre-treatment from P1 to P5, ethanol (6 g/kg) or Intralipid(®) on P5, C and or S post-treatment from P6 to P20. On P30, balance and coordination were tested using the dowel crossing test. Overall, there was a significant effect of treatment and females crossed longer distances than males. Ethanol exposure significantly reduced the total distance crossed. Choline pre-treatment increased the distance crossed by males, and both pre- and post-treatment with choline significantly increased total distance crossed for females and males. There was no effect of choline on Intralipid®-exposed animals. This is the first study to show that choline ameliorates ethanol-induced effects on balance and coordination when given before ethanol exposure. Choline fortification of common foodstuffs may reduce the effects of alcohol.
Schwarz, Timo; Seidl, Christof; Schiemann, Matthias; Senekowitsch-Schmidtke, Reingard; Krause, Bernd Joachim
2016-06-01
Inflammatory cells may contribute to the choline uptake in different prostate pathologies. The aim of this study was (i) to assess if inflammatory cells incorporate choline and (ii) to potentially detect differences compared to FDG uptake. Therefore we investigated the uptake of [(3)H]choline and [(18)F]FDG in human prostate carcinoma cells and human inflammatory cells. Macrophages were cultured from isolated mononuclear cells, gained by density gradient centrifugation of human buffy coats. T-lymphocytes, B-lymphocytes and granulocytes were enriched by density gradient centrifugation before cell sorting by means of flow cytometry was performed. [(3)H]choline and [(18)F]FDG uptake of isolated inflammatory cells as well as of LNCaP and PC-3 human prostate carcinoma cells was assessed simultaneously in dual tracer uptake experiments. Macrophages showed highest [(3)H]choline and [(18)F]FDG uptake compared to the tracer uptake rates of leukocytes. [(3)H]choline uptake of macrophages was in the same range as in prostate cancer cells. Lipopolysaccharide stimulation of macrophages resulted in an increase of [(18)F]FDG uptake in macrophages, but not in an increased [(3)H]choline uptake. The high [(3)H]choline uptake in macrophages may be a source of false-positive PET results in diagnosis of prostate cancer by choline-PET/CT. As already known from FDG-PET, discrimination between tumor and inflammation in prostate cancer patients is not possible via choline-PET. The application of choline-PET for reliable primary prostate cancer detection and delineation has to be queried. Copyright © 2016 Elsevier Inc. All rights reserved.
Du, Yu-Feng; Luo, Wei-Ping; Lin, Fang-Yu; Lian, Zhen-Qiang; Mo, Xiong-Fei; Yan, Bo; Xu, Ming; Huang, Wu-Qing; Huang, Jing; Zhang, Cai-Xia
2016-09-01
Choline and betaine are essential nutrients involved in one-carbon metabolism and have been hypothesised to affect breast cancer risk. Functional polymorphisms in genes encoding choline-related one-carbon metabolism enzymes, including phosphatidylethanolamine N-methyltransferase (PEMT), choline dehydrogenase (CHDH) and betaine-homocysteine methyltransferase (BHMT), have important roles in choline metabolism and may thus interact with dietary choline and betaine intake to modify breast cancer risk. This study aimed to investigate the interactive effect of polymorphisms in PEMT, BHMT and CHDH genes with choline/betaine intake on breast cancer risk among Chinese women. This hospital-based case-control study consecutively recruited 570 cases with histologically confirmed breast cancer and 576 age-matched (5-year interval) controls. Choline and betaine intakes were assessed by a validated FFQ, and genotyping was conducted for PEMT rs7946, CHDH rs9001 and BHMT rs3733890. OR and 95 % CI were estimated using unconditional logistic regression. Compared with the highest quartile of choline intake, the lowest intake quartile showed a significant increased risk of breast cancer. The SNP PEMT rs7946, CHDH rs9001 and BHMT rs3733890 had no overall association with breast cancer, but a significant risk reduction was observed among postmenopausal women with AA genotype of BHMT rs3733890 (OR 0·49; 95 % CI 0·25, 0·98). Significant interactions were observed between choline intake and SNP PEMT rs7946 (P interaction=0·029) and BHMT rs3733890 (P interaction=0·006) in relation to breast cancer risk. Our results suggest that SNP PEMT rs7946 and BHMT rs3733890 may interact with choline intake on breast cancer risk.
Dietary Choline and Betaine Intakes Vary in an Adult Multiethnic Population123
Yonemori, Kim M.; Lim, Unhee; Koga, Karin R.; Wilkens, Lynne R.; Au, Donna; Boushey, Carol J.; Le Marchand, Loïc; Kolonel, Laurence N.; Murphy, Suzanne P.
2013-01-01
Choline and betaine are important nutrients for human health, but reference food composition databases for these nutrients became available only recently. We tested the feasibility of using these databases to estimate dietary choline and betaine intakes among ethnically diverse adults who participated in the Multiethnic Cohort (MEC) Study. Of the food items (n = 965) used to quantify intakes for the MEC FFQ, 189 items were exactly matched with items in the USDA Database for the Choline Content of Common Foods for total choline, choline-containing compounds, and betaine, and 547 items were matched to the USDA National Nutrient Database for Standard Reference for total choline (n = 547) and 148 for betaine. When a match was not found, choline and betaine values were imputed based on the same food with a different form (124 food items for choline, 300 for choline compounds, 236 for betaine), a similar food (n = 98, 284, and 227, respectively) or the closest item in the same food category (n = 6, 191, and 157, respectively), or the values were assumed to be zero (n = 1, 1, and 8, respectively). The resulting mean intake estimates for choline and betaine among 188,147 MEC participants (aged 45–75) varied by sex (372 and 154 mg/d in men, 304 and 128 mg/d in women, respectively; P-heterogeneity < 0.0001) and by race/ethnicity among Caucasians, African Americans, Japanese Americans, Latinos, and Native Hawaiians (P-heterogeneity < 0.0001), largely due to the variation in energy intake. Our findings demonstrate the feasibility of assessing choline and betaine intake and characterize the variation in intake that exists in a multiethnic population. PMID:23616508
Hang, Pengzhou; Zhao, Jing; Su, Zhenli; Sun, Hanqi; Chen, Tingting; Zhao, Lihui; Du, Zhimin
2018-01-01
Backgroud/Aims: Growing evidence suggests that both cardiomyocyte apoptosis and excessive autophagy exacerbates cardiac dysfunction during myocardial ischemia-reperfusion (IR). As a precursor of acetylcholine, choline has been found to protect the heart by repressing ischemic cardiomyocyte apoptosis. However, the relationship between choline and cardiomyocyte autophagy is unclear. The present study aimed to investigate whether autophagy was involved in the cardioprotection of choline during IR. Rats were subjected to 30 min reversible ischemia by ligation of left anterior descending coronary artery followed by reperfusion for 2 h. Choline (5 mg/kg, i.v.) alone or along with rapamycin (5 mg/ kg, i.p.) were injected 30 min before ischemia. Transmission electron microscopy, hematoxylin and eosin (HE) and TUNEL staining were conducted to evaluate the effect of choline on cardiac apoptosis and autophagy. Protein levels of autophagic markers including LC3, beclin-1 and p62 as well as Akt and mammalian target of rapamycin (mTOR) were examined by Western blotting. Myocardial IR-induced cardiac apoptosis and accumulation of autophagosomes was attenuated by choline. Choline treatment significantly ameliorated myocardial IR-induced autophagic activity characterized by repression of beclin-1 over-activation, the reduction of autophagosomes, the LC3-II/LC3-I ratio, and p62 protein abundance. In addition, IR-induced downregulation of p-Akt/mTOR cascade was increased by choline. However, the above functions of choline were abolished by rapamycin. These findings suggest that choline plays a protective role against myocardial IR injury by inhibiting excessive autophagy, which might be associated with the activation of Akt/mTOR pathway. This study provides new mechanistic understanding of cardioprotective effect of choline and suggests novel potential therapeutic targets for cardiac IR injury. © 2018 The Author(s). Published by S. Karger AG, Basel.
Bernhard, Wolfgang; Full, Anna; Arand, Jörg; Maas, Christoph; Poets, Christian F; Franz, Axel R
2013-04-01
Choline forms the head group of phosphatidylcholines, comprising 40-50 % of cellular membranes and 70-95 % of phospholipids in surfactant, bile, and lipoproteins. Moreover, choline serves as the precursor of acetylcholine and is important for brain differentiation and function. While accepted as essential for fetal and neonatal development, its role in preterm infant nutrition has not yet gained much attention. The adequate intake of choline of preterm infants was estimated from international recommendations for infants, children, and adults. Choline intake relative to other nutrients was determined retrospectively in all inborn infants below 1,000 g (extremely low birth weight) or below 28 weeks gestational age, admitted to our department in 2006 and 2007 (N = 93). Estimation of adequate intake showed that children with 290 g body weight need more choline than those with 1,200 g (31.4 and 25.2 mg/kg/day, respectively). Day-by-day variability was high for all nutrient intakes including choline. In contrast to the continuous intrauterine choline delivery, median supply reached a plateau at d11 (21.7 mg/kg/day; 25th/75th percentile: 19.6; 23.9). Individual choline supply at d0-d1 and d2-d3 was <10 mg/kg/day in 100 and 69 % of infants, respectively. Furthermore, intakes <10 mg/kg/day were frequently observed beyond day 11. Median adequate intakes (27.4 mg/kg/day at 735 g body weight) were achieved in <2 %. Nutritional intake of choline in this cohort of preterm infants was frequently less than the estimated adequate intake, with particular shortage until postnatal d10. Because choline is important for brain development, future studies are needed to investigate the effects of adequate nutritional choline intake on long-term neurodevelopment in VLBW infants.
CHOLINE AMELIORATES DEFICITS IN BALANCE CAUSED BY ACUTE NEONATAL ETHANOL EXPOSURE
Bearer, Cynthia F.; Wellmann, Kristen A.; Tang, Ningfeng; He, Min; Mooney, Sandra M.
2015-01-01
Fetal alcohol spectrum disorder (FASD) is estimated to occur in 1% of all live births. The developing cerebellum is vulnerable to the toxic effects of alcohol. People with FASD have cerebellar hypoplasia and developmental deficits associated with cerebellar injury. Choline is an essential nutrient but many diets in the USA are choline deficient. In rats, choline given with or following alcohol exposure reduces many alcohol-induced neurobehavioral deficits, but not those associated with cerebellar function. Our objective was to determine if choline supplementation prior to alcohol exposure would ameliorate the impact of ethanol on a cerebellar-associated behavioral test in mice. Pregnant C57Bl6/J mice were maintained on a choline deficient diet from embryonic day 4.5. On postnatal day 1 (P1), pups were assigned to one of 8 treatment groups: choline (C) or saline (S) pre-treatment from P1-5, ethanol (6 g/kg) or Intralipid® on P5, C or S post-treatment from P6-20. On P30, balance and coordination were tested using the dowel crossing test. Overall, there was a significant effect of treatment and females crossed longer distances than males. Ethanol exposure significantly reduced the total distance crossed. Choline pre-treatment increased the distance crossed by males, and both pre- and post-treatment with choline significantly increased total distance crossed for females and males. There was no effect of choline on Intralipid®-exposed animals. This is the first study to show that choline ameliorates ethanol-induced effects on balance and coordination when given before ethanol exposure. Choline fortification of common foodstuffs may reduce the effects of alcohol. PMID:26085462
Folate Intake, Mthfr Genotype, and Sex Modulate Choline Metabolism in Mice123
Chew, Tina W.; Jiang, Xinyin; Yan, Jian; Wang, Wei; Lusa, Amanda L.; Carrier, Bradley J.; West, Allyson A.; Malysheva, Olga V.; Brenna, J. Thomas; Gregory, Jesse F.; Caudill, Marie A.
2011-01-01
Choline and folate are interrelated in 1-carbon metabolism, mostly because of their shared function as methyl donors for homocysteine remethylation. Folate deficiency and mutations of methylenetetrahydrofolate reductase (MTHFR) reduce the availability of a major methyl donor, 5-methyltetrahydrofolate, which in turn may lead to compensatory changes in choline metabolism. This study investigated the hypothesis that reductions in methyl group supply, either due to dietary folate deficiency or Mthfr gene deletion, would modify tissue choline metabolism in a sex-specific manner. Mthfr wild type (+/+) or heterozygous (+/−) knockout mice were randomized to a folate-deficient or control diet for 8 wk during which time deuterium-labeled choline (d9-choline) was consumed in the drinking water (~10 μmol/d). Mthfr heterozygosity did not alter brain choline metabolite concentrations, but it did enhance their labeling in males (P < 0.05) and tended to do so in females (P < 0.10), a finding consistent with greater turnover of dietary choline in brains of +/− mice. Dietary folate deficiency in females yielded 52% higher (P = 0.027) hepatic glycerophosphocholine, which suggests that phosphatidylcholine (PtdCho) degradation was enhanced. Labeling of the hepatic PtdCho in d3 form was also reduced (P < 0.001) in females, which implies that fewer of the dietary choline-derived methyl groups were used for de novo PtdCho biosynthesis under conditions of folate insufficiency. Males responded to folate restriction with a doubling (P < 0.001) of hepatic choline dehydrogenase transcripts, a finding consistent with enhanced conversion of choline to the methyl donor, betaine. Collectively, these data show that several adaptations in choline metabolism transpire as a result of mild perturbations in folate metabolism, presumably to preserve methyl group homeostasis. PMID:21697299
Choline deficiency increases lymphocyte apoptosis and DNA damage in humans2,3
da Costa, Kerry-Ann; Niculescu, Mihai D; Craciunescu, Corneliu N; Fischer, Leslie M; Zeisel, Steven H
2008-01-01
Background: Whereas deficiency of the essential nutrient choline is associated with DNA damage and apoptosis in cell and rodent models, it has not been shown in humans. Objective: The objective was to ascertain whether lymphocytes from choline-deficient humans had greater DNA damage and apoptosis than did those from choline-sufficient humans. Design: Fifty-one men and women aged 18–70 y were fed a diet containing the recommended adequate intake of choline (control) for 10 d. They then were fed a choline-deficient diet for up to 42 d before repletion with 138–550 mg choline/d. Blood was collected at the end of each phase, and peripheral lymphocytes were isolated. DNA damage and apoptosis were then assessed by activation of caspase-3, terminal deoxynucleotide transferase–mediated dUTP nick end-labeling, and single-cell gel electrophoresis (COMET) assays. Results: All subjects fed the choline-deficient diet had lymphocyte DNA damage, as assessed by COMET assay, twice that found when they were fed the control diet. The subjects who developed organ dysfunction (liver or muscle) when fed the choline-deficient diet had significantly more apoptotic lymphocytes, as assessed by the activated caspase-3 assay, than when fed the control diet. Conclusions: A choline-deficient diet increased DNA damage in humans. Subjects in whom these diets induced liver or muscle dys-function also had higher rates of apoptosis in their peripheral lymphocytes than did subjects who did not develop organ dysfunction. Assessment of DNA damage and apoptosis in lymphocytes appears to be a clinically useful measure in humans (such as those receiving parenteral nutrition) in whom choline deficiency is suspected. PMID:16825685
Dietary choline requirements of women: effects of estrogen and genetic variation.
Fischer, Leslie M; da Costa, Kerry-Ann; Kwock, Lester; Galanko, Joseph; Zeisel, Steven H
2010-11-01
Choline is obtained from the diet and from the biosynthesis of phosphatidylcholine. Phosphatidylcholine is catalyzed by the enzyme phosphatidylethanolamine-N-methyltransferase (PEMT), which is induced by estrogen. Because they have lower estrogen concentrations, postmenopausal women are more susceptible to the risk of organ dysfunction in response to a low-choline diet. A common genetic polymorphism (rs12325817) in the PEMT gene can also increase this risk. The objective was to determine whether the risk of low choline-related organ dysfunction increases with the number of alleles of rs12325817 in premenopausal women and whether postmenopausal women (with or without rs12325817) treated with estrogen are more resistant to developing such symptoms. Premenopausal women (n = 27) consumed a choline-sufficient diet followed by a very-low-choline diet until they developed organ dysfunction (or for 42 d), which was followed by a high-choline diet. Postmenopausal women (n = 22) were placed on the same diets but were first randomly assigned to receive estrogen or a placebo. The women were monitored for organ dysfunction and plasma choline metabolites and were genotyped for rs12325817. A dose-response effect of rs12325817 on the risk of choline-related organ dysfunction was observed in premenopausal women: 80%, 43%, and 13% of women with 2, 1, or 0 alleles, respectively, developed organ dysfunction. Among postmenopausal women, 73% who received placebo but only 18% who received estrogen developed organ dysfunction during the low-choline diet. Because of their lower estrogen concentrations, postmenopausal women have a higher dietary requirement for choline than do premenopausal women. Choline requirements for both groups of women are further increased by rs12325817. This trial was registered at clinicaltrials.gov as NCT00065546.
Kovacheva, Vesela P; Davison, Jessica M; Mellott, Tiffany J; Rogers, Adrianne E; Yang, Shi; O'Brien, Michael J; Blusztajn, Jan Krzysztof
2009-04-01
Choline is an essential nutrient that serves as a donor of metabolic methyl groups used during gestation to establish the epigenetic DNA methylation patterns that modulate tissue-specific gene expression. Because the mammary gland begins its development prenatally, we hypothesized that choline availability in utero may affect the gland's susceptibility to cancer. During gestational days 11-17, pregnant rats were fed a control, choline-supplemented, or choline-deficient diet (8, 36, and 0 mmol/kg of choline, respectively). On postnatal day 65, the female offspring received 25 mg/kg of a carcinogen 7,12-dimethylbenz[alpha]anthracene. Approximately 70% of the rats developed mammary adenocarcinomas; prenatal diet did not affect tumor latency, incidence, size, and multiplicity. Tumor growth rate was inversely related to choline content in the prenatal diet, resulting in 50% longer survival until euthanasia, determined by tumor size, of the prenatally choline-supplemented rats compared with the prenatally choline-deficient rats. This was accompanied by distinct expression patterns of approximately 70 genes in tumors derived from the three dietary groups. Tumors from the prenatally choline-supplemented rats overexpressed genes that confer favorable prognosis in human cancers (Klf6, Klf9, Nid2, Ntn4, Per1, and Txnip) and underexpressed those associated with aggressive disease (Bcar3, Cldn12, Csf1, Jag1, Lgals3, Lypd3, Nme1, Ptges2, Ptgs1, and Smarcb1). DNA methylation within the tumor suppressor gene, stratifin (Sfn, 14-3-3sigma), was proportional to the prenatal choline supply and correlated inversely with the expression of its mRNA and protein in tumors, suggesting that an epigenetic mechanism may underlie the altered molecular phenotype and tumor growth. Our results suggest a role for adequate maternal choline nutrition during pregnancy in prevention/alleviation of breast cancer in daughters.
Woodbury, M M; Woodbury, M A
1993-06-01
Choline supplementation has been used with moderate success in subgroups of adult patients with neuropsychiatric and medical problems. The dietary fish oils have also been used in adults with hypercholesterolemia. We report on two young children with multiple neurodevelopmental delays, one who responded to choline and eicosapentaenoic acid, and the other to choline alone. A brief discussion about choline's metabolic pathways and benefits is included.
CO2/Brine transport into shallow aquifers along fault zones.
Keating, Elizabeth H; Newell, Dennis L; Viswanathan, Hari; Carey, J W; Zyvoloski, G; Pawar, Rajesh
2013-01-02
Unintended release of CO(2) from carbon sequestration reservoirs poses a well-recognized risk to groundwater quality. Research has largely focused on in situ CO(2)-induced pH depression and subsequent trace metal mobilization. In this paper we focus on a second mechanism: upward intrusion of displaced brine or brackish-water into a shallow aquifer as a result of CO(2) injection. Studies of two natural analog sites provide insights into physical and chemical mechanisms controlling both brackish water and CO(2) intrusion into shallow aquifers along fault zones. At the Chimayó, New Mexico site, shallow groundwater near the fault is enriched in CO(2) and, in some places, salinity is significantly elevated. In contrast, at the Springerville, Arizona site CO(2) is leaking upward through brine aquifers but does not appear to be increasing salinity in the shallow aquifer. Using multiphase transport simulations we show conditions under which significant CO(2) can be transported through deep brine aquifers into shallow layers. Only a subset of these conditions favor entrainment of salinity into the shallow aquifer: high aspect-ratio leakage pathways and viscous coupling between the fluid phases. Recognition of the conditions under which salinity is favored to be cotransported with CO(2) into shallow aquifers will be important in environmental risk assessments.
Gao, Xiang; Wang, Yongbo; Randell, Edward; Pedram, Pardis; Yi, Yanqing; Gulliver, Wayne; Sun, Guang
2016-01-01
Choline is an essential nutrient and betaine is an osmolyte and methyl donor. Both are important to maintain health including adequate lipid metabolism. Supplementation of dietary choline and betaine increase muscle mass and reduce body fat in animals. However, little data is available regarding the role of dietary choline and betaine on body composition in humans. To investigate the association between dietary choline and betaine intakes with body composition in a large population based cross-sectional study. A total of 3214 subjects from the CODING (Complex Disease in Newfoundland population: Environment and Genetics) study were assessed. Dietary choline and betaine intakes were computed from the Willett Food Frequency questionnaire. Body composition was measured using dual-energy X-ray absorptiometry following a 12-hour fast. Major confounding factors including age, sex, total calorie intake and physical activity level were controlled in all analyses. Significantly inverse correlations were found between dietary choline and betaine intakes, with all obesity measurements: total percent body fat (%BF), percent trunk fat (%TF), percent android fat (%AF), percent gynoid fat (%GF) and anthropometrics: weight, body mass index, waist circumference, waist-to-hip ratio in both women and men (r range from -0.13 to -0.47 for choline and -0.09 to -0.26 for betaine, p<0.001 for all). Dietary choline intake had stronger association than betaine. Moreover, obese subjects had the lowest dietary choline and betaine intakes, with overweight subjects in the middle, and normal weight subjects consumed the highest dietary choline and betaine (p<0.001). Vice versa, when subjects were ranked according to dietary choline and betaine intakes, subjects with the highest intake of both had the lowest %TF, %AF, %GF, %BF and highest %LM among the groups in both sexes. Our findings indicate that high dietary choline and betaine intakes are significantly associated with favorable body composition in humans.
Lewis, Erin D; Subhan, Fatheema B; Bell, Rhonda C; McCargar, Linda J; Curtis, Jonathan M; Jacobs, René L; Field, Catherine J
2014-07-14
Despite recommendations for higher choline intakes during pregnancy and lactation, there is limited research regarding maternal intake during these important periods. In the present study, we estimated dietary choline intake during pregnancy and lactation in a population of Albertan women and the contribution of egg and milk consumption to intake. Dietary intake data were collected from the first 600 women enrolled in a prospective cohort study carried out in Alberta, Canada. During the first and/or second trimester, the third trimester and 3 months postpartum, 24 h dietary intake recall data were collected. A database was constructed including foods consumed by the cohort and used to estimate dietary choline intake. The mean total choline intake value during pregnancy was 347 (SD 149) mg/d, with 23% of the participants meeting the adequate intake (AI) recommendation. During lactation, the mean total choline intake value was 346 (SD 151) mg/d, with 10% of the participants meeting the AI recommendation. Phosphatidylcholine was the form of choline consumed in the highest proportion and the main dietary sources of choline were dairy products, eggs and meat. Women who consumed at least one egg in a 24 h period had higher (P< 0·001) total choline intake and were eight times more likely (95% CI 5·2, 12·6) to meet choline intake recommendations compared with those who did not consume eggs during pregnancy. Women who reported consuming ≥ 500 ml of milk in a 24 h period were 2·8 times more likely (95 % CI 1·7, 4·8) to meet daily choline intake recommendations compared with those consuming < 250 ml of milk/d during pregnancy. Choline intake is below the recommendation levels in this population and the promotion of both egg and milk consumption may assist in meeting the daily choline intake recommendations.
Choline is required in the diet of lactating dams to maintain maternal immune function.
Dellschaft, Neele S; Ruth, Megan R; Goruk, Susan; Lewis, Erin D; Richard, Caroline; Jacobs, René L; Curtis, Jonathan M; Field, Catherine J
2015-06-14
Choline demands during lactation are high; however, detailed knowledge is lacking regarding the optimal dietary intake during this critical period. The present study was designed to determine the effects of varying intakes of choline on maternal immune function during lactation. Primiparous Sprague-Dawley rats (n 42) were randomised 24-48 h before birth and fed the following diets for 21 d: choline-devoid (0 g choline/kg diet; D, n 10); 1·0 g choline/kg diet (C1, n 11); 2·5 g choline/kg diet (C2·5, n 10); 6·2 g choline/kg diet (C6, n 11). Splenocytes were isolated and stimulated ex vivo with concanavalin A, lipopolysaccharide (LPS) or CD3/CD28. D and C6 dams had lower final body weight, spleen weight and average pup weight than C1 dams (P< 0·05). There was a linear relationship between free choline concentration in pup stomach contents with maternal dietary choline content (P< 0·001, r² 0·415). Compared with C1 and C2·5, D spleens had a lower proportion of mature T cells and activated suppressor cells, and this resulted in reduced cytokine production after stimulation (P< 0·05). Feeding 6·2 g choline/kg diet resulted in a higher cytokine production after stimulation with CD3/CD28 (P< 0·05). Except for a higher IL-6 production after LPS stimulation with cells from the C2·5 dams (P< 0·05), there were no differences between the C1 and C2·5 dams. For the first time, we show that feeding lactating mothers a diet free of choline has substantial effects on their immune function and on offspring growth. Additionally, excess dietary choline had adverse effects on maternal and offspring body weight but only minimal effects on maternal immune function.
Gao, Xiang; Wang, Yongbo; Randell, Edward; Pedram, Pardis; Yi, Yanqing; Gulliver, Wayne; Sun, Guang
2016-01-01
Background Choline is an essential nutrient and betaine is an osmolyte and methyl donor. Both are important to maintain health including adequate lipid metabolism. Supplementation of dietary choline and betaine increase muscle mass and reduce body fat in animals. However, little data is available regarding the role of dietary choline and betaine on body composition in humans. Objective To investigate the association between dietary choline and betaine intakes with body composition in a large population based cross-sectional study. Design A total of 3214 subjects from the CODING (Complex Disease in Newfoundland population: Environment and Genetics) study were assessed. Dietary choline and betaine intakes were computed from the Willett Food Frequency questionnaire. Body composition was measured using dual-energy X-ray absorptiometry following a 12-hour fast. Major confounding factors including age, sex, total calorie intake and physical activity level were controlled in all analyses. Result Significantly inverse correlations were found between dietary choline and betaine intakes, with all obesity measurements: total percent body fat (%BF), percent trunk fat (%TF), percent android fat (%AF), percent gynoid fat (%GF) and anthropometrics: weight, body mass index, waist circumference, waist-to-hip ratio in both women and men (r range from -0.13 to -0.47 for choline and -0.09 to -0.26 for betaine, p<0.001 for all). Dietary choline intake had stronger association than betaine. Moreover, obese subjects had the lowest dietary choline and betaine intakes, with overweight subjects in the middle, and normal weight subjects consumed the highest dietary choline and betaine (p<0.001). Vice versa, when subjects were ranked according to dietary choline and betaine intakes, subjects with the highest intake of both had the lowest %TF, %AF, %GF, %BF and highest %LM among the groups in both sexes. Conclusion Our findings indicate that high dietary choline and betaine intakes are significantly associated with favorable body composition in humans. PMID:27166611
Setoue, Minoru; Ohuchi, Seiya; Morita, Tatsuya; Sugiyama, Kimio
2008-07-01
Rats were fed 25% casein (25C) diets differing in choline levels (0-0.5%) with and without 0.5% guanidinoacetic acid (GAA) or 0.75% L-methionine for 7 d to determine the effects of dietary choline level on experimental hyperhomocysteinemia. The effects of dietary choline (0.30%) and betaine (0.34%) on GAA- and methionine-induced hyperhomocysteinemia were also compared. Dietary choline suppressed hyperhomocysteinemia induced by GAA, but not by methionine, in a dose-dependent manner. GAA-induced enhancement of the plasma homocysteine concentration was suppressed by choline and betaine to the same degree, but the effects of these compounds were relatively small on methionine-induced hyperhomocysteinemia. Dietary supplementation with choline and betaine significantly increased the hepatic betaine concentration in rats fed a GAA diet, but not in rats fed a methionine diet. These results indicate that choline and betaine are effective at relatively low levels in reducing plasma homocysteine, especially under the condition of betaine deficiency without a loading of homocysteine precursor.
Perinatal choline deficiency produces abnormal sensory inhibition in Sprague-Dawley rats
Stevens, Karen E.; Adams, Catherine E.; Mellott, Tiffany J.; Robbins, Emily; Kisley, Michael A.
2008-01-01
Adequate choline levels in rodents during gestation have been shown to be critical to several functions, including certain learning and memory functions, when tested at adulthood. Choline is a selective agonist for the α7 nicotinic receptor which appears in development before acetylcholine is present. Normal sensory inhibition is dependent, in part, upon sufficient numbers of this receptor in the hippocampus. The present study assessed sensory inhibition in Sprague-Dawley rats gestated on normal (1.1 g/kg), deficient (0 g/kg) or supplemented (5 g/kg) choline in the maternal diet during the critical period for cholinergic cell development (E12-18). Rats gestated on deficient choline showed abnormal sensory inhibition when tested at adulthood, while rats gestated on normal or supplemented choline showed normal sensory inhibition. Assessment of hippocampal α-bungarotoxin to visualize nicotinic α7 receptors revealed no difference between the gestational choline levels. These data suggest that attention to maternal choline levels for human pregnancy may be important to the normal functioning of the offspring. PMID:18778692
NASA Astrophysics Data System (ADS)
Duan, S. H.; Kai, T.; Chowdhury, F. A.; Taniguchi, I.; Kazama, S.
2018-01-01
Poly(amidoamine) (PAMAM) dendrimers were incorporated into cross-linked poly(ethylene glycol) (PEGDMA) matrix to improve carbon dioxide (CO2) separation performance at elevated pressures. In our previous studies, PAMAM/PEGDMA hybrid membranes showed high CO2 separation properties from CO2/H2 mixed gases. In this study, proline, choline and ionic liquid [Choline][Pro] compounds were selected as rate promoters that were used to prepare PAMAM/PEGDMA hybrid membranes. The effect of addition of proline, choline, IL [Choline][Pro] on separation performance of PAMAM/PEGDMA) hybrid membranes for CO2/H2 separation was investigated. Amino acid proline, choline, and IL [Choline][Pro] were used to promote CO2 and amine reaction. With the addition of [Choline][Pro] into PAMAM/PEG membrane, CO2 permeance of PAMAM/PEG hybrid membranes are increased up to 46% without any change of selectivity of membrane for CO2.
Consolo, S.; Garattini, S.; Ladinsky, H.; Thoenen, H.
1972-01-01
1. Acetylcholine and choline were measured in the spleens and irides of normal and 6-hydroxydopamine-treated cats. In addition, choline acetyltransferase activity was measured in the spleens. 2. No acetylcholine or choline acetyltransferase activity were found in spleens of normal or treated cats. The choline content of normal spleens was 12·4 ± 1·5 μg/g wet wt. (mean ± S.E. of mean), which was not significantly altered by chemical sympathectomy. 3. The acetylcholine and choline contents of the cat iris were 3·0 ± 0·3 μg/g wet wt. and 7·7 ± 0·9 μg/g wet wt., respectively. There was no difference in acetylcholine and choline concentrations between left and right or normal and sympathectomized irides. 4. These results are discussed in relation to the question of a cholinergic link in post-ganglionic sympathetic transmission. PMID:4335730
Perinatal choline deficiency produces abnormal sensory inhibition in Sprague-Dawley rats.
Stevens, Karen E; Adams, Catherine E; Mellott, Tiffany J; Robbins, Emily; Kisley, Michael A
2008-10-27
Adequate choline levels in rodents during gestation have been shown to be critical to several functions, including certain learning and memory functions, when tested at adulthood. Choline is a selective agonist for the alpha7 nicotinic receptor which appears in development before acetylcholine is present. Normal sensory inhibition is dependent, in part, upon sufficient numbers of this receptor in the hippocampus. The present study assessed sensory inhibition in Sprague-Dawley rats gestated on normal (1.1 g/kg), deficient (0 g/kg) or supplemented (5 g/kg) choline in the maternal diet during the critical period for cholinergic cell development (E12-18). Rats gestated on deficient choline showed abnormal sensory inhibition when tested at adulthood, while rats gestated on normal or supplemented choline showed normal sensory inhibition. Assessment of hippocampal alpha-bungarotoxin to visualize nicotinic alpha7 receptors revealed no difference between the gestational choline levels. These data suggest that attention to maternal choline levels for human pregnancy may be important to the normal functioning of the offspring.
Biosynthesis and accumulation of osmoprotective compounds by halophytic plants of the genus Limonium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanson, A.D.; Rathinasabapathi, B.; Gage, D.A.
1991-05-01
Analyses of quaternary ammonium compounds in leaf and root tissues of halophytic Limonium spp. using fast atom bombardment mass spectrometry revealed that only 3 out of 21 spp. accumulated glycine betaine, the common angiosperm osmolyte. The 18 other spp. accumulated {beta}-alanine betaine instead. However, all the Limonium spp. studied accumulated choline-O-sulfate and their leaf disks metabolized ({sup 14}C) choline to choline-O-sulfate. Only the glycine betaine accumulators oxidized ({sup 14}C) choline to glycine betaine and only {beta}-alanine betaine accumulators converted {beta}-({sup 14}C)alanine to {beta}-alanine betaine. When {beta}-alanine betaine and glycine betaine accumulators were salinized with NaCl, the levels of their respectivemore » betaines and of choline sulfate were closely correlated with solute potential. Glycine betaine accumulators had less choline-O-sulfate than {beta}-alanine betaine accumulators and increasing the SO{sub 4}{sup 2}/Cl ratio in the medium increased choline-O-sulfate and caused a matching decrease in glycine betaine. Thus, it appears that {beta}-alanine betaine has replaced glycine betaine in most members of this genus, eliminating a possible competition between glycine betaine and choline-O-sulfate for choline.« less
Choline deficiency impairs intestinal lipid metabolism in the lactating rat.
da Silva, Robin P; Kelly, Karen B; Lewis, Erin D; Leonard, Kelly-Ann; Goruk, Sue; Curtis, Jonathan M; Vine, Donna F; Proctor, Spencer D; Field, Catherine J; Jacobs, René L
2015-10-01
Choline is a precursor to phosphatidylcholine (PC), a structural molecule in cellular membranes that is crucial for cell growth and function. PC is also required for the secretion of lipoprotein particles from liver and intestine. Choline requirements are increased during lactation when maternal choline is supplied to the offspring through breast milk. To investigate the effect of dietary choline on intestinal lipid metabolism during lactation, choline-supplemented (CS), phosphatidylcholine-supplemented (PCS) or choline-deficient (CD) diets were fed to dams during the suckling period. CD dams had lower plasma triacylglycerol, cholesterol and apoB in the fasted state and following a fat-challenge (P < .05). There was a higher content of neutral lipids and lower content of PC in the intestine of CD dams, compared with CS and PCS fed animals (P < .05). In addition, there was lower (P < .05) villus height in CD dams, which indicated a reduced absorptive surface area in the intestine. Choline is critical for the absorption of fat in lactating rats and choline deficiency alters intestinal morphology and impairs chylomicron secretion by limiting the supply of PC. Copyright © 2015 Elsevier Inc. All rights reserved.
Singh, Abinav K; Singh, Bhanu P; Prasad, G B K S; Gaur, Shailendra N; Arora, Naveen
2008-12-24
Genetically modified crops have resistance to abiotic stress by introduction of choline oxidase protein. In the present study, the safety of choline oxidase protein derived from Arthrobacter globiformis was assessed for toxicity and allergenicity. The protein was stable at 90 degrees C for 1 h. Toxicity studies of choline oxidase in mice showed no significant difference (p > 0.05) from control in terms of growth, body weight, food consumption, and blood biochemical indices. Histology of gut tissue of mice fed protein showed normal gastric mucosal lining and villi in jejunum and ileum sections. Specific IgE in serum and IL-4 release in splenic culture supernatant were low in choline oxidase treated mice, comparable to control. Intravenous challenge with choline oxidase did not induce any adverse reaction, unlike ovalbumin group mice. Histology of lung tissues from choline oxidase sensitized mice showed normal airways, whereas ovalbumin-sensitized mice showed inflamed airways with eosinophilic infiltration and bronchoconstriction. ELISA carried out with food allergic patients' sera revealed no significant IgE affinity with choline oxidase. Also, choline oxidase did not show any symptoms of toxicity and allergenicity in mice.
Crocodile choline from Crocodylus siamensis induces apoptosis of human gastric cancer.
Mao, Xiao-Mei; Fu, Qi-Rui; Li, Hua-Liang; Zheng, Ya-Hui; Chen, Shu-Ming; Hu, Xin-Yi; Chen, Qing-Xi; Chen, Qiong-Hua
2017-03-01
Crocodile choline, an active compound isolated from Crocodylus siamensis, was found to exert potent anti-cancer activities against human gastric cancer cells in vitro and in vivo. Our study revealed that crocodile choline led to cell cycle arrest at the G2/M phase through attenuating the expressions of cyclins, Cyclin B1, and CDK-1. Furthermore, crocodile choline accelerated apoptosis through the mitochondrial apoptotic pathway with the decrease in mitochondrial membrane potential, the increase in reactive oxygen species production and Bax/Bcl-2 ratio, and the activation of caspase-3 along with the release of cytochrome c. In addition, this study, for the first time, shows that Notch pathway is remarkably deregulated by crocodile choline. The combination of crocodile choline and Notch1 short interfering RNA led to dramatically increased cytotoxicity than observed with either agent alone. Notch1 short interfering RNA sensitized and potentiated the capability of crocodile choline to suppress the cell progression and invasion of gastric cancer. Taken together, these data suggested that crocodile choline was a potent progression inhibitor of gastric cancer cells, which was correlated with mitochondrial apoptotic pathway and Notch pathway. Combining Notch1 inhibitors with crocodile choline might represent a novel approach for gastric cancer.
2013-01-01
The consequences of fetal exposure to alcohol are very diverse and the likely molecular mechanisms involved must be able to explain how so many developmental processes could go awry. If pregnant rat dams are fed alcohol, their pups develop abnormalities characteristic of fetal alcohol spectrum disorders (FASD), but if these rat dams were also treated with choline, the effects from ethanol were attenuated in their pups. Choline is an essential nutrient in humans, and is an important methyl group donor. Alcohol exposure disturbs the metabolism of choline and other methyl donors. Availability of choline during gestation directly influences epigenetic marks on DNA and histones, and alters gene expression needed for normal neural and endothelial progenitor cell proliferation. Maternal diets low in choline alter development of the mouse hippocampus, and decrement memory for life. Women eating low-choline diets have an increased risk of having an infant with a neural tube or or ofacial cleft birth defect. Thus, the varied effects of choline could affect the expression of FASD, and studies on choline might shed some light on the underlying molecular mechanisms responsible for FASD. PMID:21259123
Basolateral choline transport in isolated rabbit renal proximal tubules.
Dantzler, W H; Evans, K K; Wright, S H
1998-11-01
Choline can undergo both net secretion and net reabsorption by renal proximal tubules, but at physiological plasma levels net reabsorption occurs. During this process, choline enters the cells at the luminal side down an electrochemical gradient via a specific transporter with a high affinity for choline. It appeared likely that choline was then transported out of the cells against an electrochemical gradient at the basolateral membrane by countertransport for another organic cation. This possibility was examined by studying net transepithelial reabsorption and basolateral uptake and efflux of [14C]choline in isolated S2 segments of rabbit renal proximal tubules. Basolateral uptake, which was inhibited by other organic cations such as tetraethylammonium (TEA), appeared to occur by the standard organic cation transport pathway. However, the addition of TEA to the bathing medium not only failed to trans-stimulate net transepithelial reabsorption and basolateral efflux of [14C]choline but it actually inhibited transepithelial reabsorption by @60%. The results do not support the presence of a countertransport step for choline against an electrochemical gradient at the basolateral membrane. Instead, they suggest that choline crosses this membrane by some form of carrier-mediated diffusion even during the reabsorptive process.
Albright, Craig D; Siwek, Donald F; Craciunescu, Corneliu N; Mar, Mei-Heng; Kowall, Neil W; Williams, Christina L; Zeisel, Steven H
2003-04-01
Choline availability in the diet during pregnancy alters fetal brain biochemistry with resulting behavioral changes that persist throughout the lifetime of the offspring. In the present study, the effects of dietary choline on the onset of GABAergic neuronal differentiation in developing fetal brain, as demarcated by the expression of calcium binding protein calretinin, are described. In these studies, timed-pregnant mice were fed choline supplemented, control or choline deficient AIN-76 diet from day 12-17 of pregnancy and the brains of their fetuses were studied on day 17 of gestation. In the primordial dentate gyrus, we found that pups from choline deficient-dams had more calretinin protein (330% increase), and pups from choline supplemented-dams had less calretinin protein (70% decrease), than did pups from control-dams. Importantly, decreased calretinin protein was still detectable in hippocampus in aged, 24-month-old mice, born of choline supplemented-dams and maintained since birth on a control diet. Thus, alterations in the level of calretinin protein in fetal brain hippocampus could underlie the known, life long effects of maternal dietary choline availability on brain development and behavior.
Bidulescu, Aurelian; Chambless, Lloyd E; Siega-Riz, Anna Maria; Zeisel, Steven H; Heiss, Gerardo
2009-02-20
The repeatability of a risk factor measurement affects the ability to accurately ascertain its association with a specific outcome. Choline is involved in methylation of homocysteine, a putative risk factor for cardiovascular disease, to methionine through a betaine-dependent pathway (one-carbon metabolism). It is unknown whether dietary intake of choline meets the recommended Adequate Intake (AI) proposed for choline (550 mg/day for men and 425 mg/day for women). The Estimated Average Requirement (EAR) remains to be established in population settings. Our objectives were to ascertain the reliability of choline and related nutrients (folate and methionine) intakes assessed with a brief food frequency questionnaire (FFQ) and to estimate dietary intake of choline and betaine in a bi-ethnic population. We estimated the FFQ dietary instrument reliability for the Atherosclerosis Risk in Communities (ARIC) study and the measurement error for choline and related nutrients from a stratified random sample of the ARIC study participants at the second visit, 1990-92 (N = 1,004). In ARIC, a population-based cohort of 15,792 men and women aged 45-64 years (1987-89) recruited at four locales in the U.S., diet was assessed in 15,706 baseline study participants using a version of the Willett 61-item FFQ, expanded to include some ethnic foods. Intraindividual variability for choline, folate and methionine were estimated using mixed models regression. Measurement error was substantial for the nutrients considered. The reliability coefficients were 0.50 for choline (0.50 for choline plus betaine), 0.53 for folate, 0.48 for methionine and 0.43 for total energy intake. In the ARIC population, the median and the 75th percentile of dietary choline intake were 284 mg/day and 367 mg/day, respectively. 94% of men and 89% of women had an intake of choline below that proposed as AI. African Americans had a lower dietary intake of choline in both genders. The three-year reliability of reported dietary intake was similar for choline and related nutrients, in the range as that published in the literature for other micronutrients. Using a brief FFQ to estimate intake, the majority of individuals in the ARIC cohort had an intake of choline below the values proposed as AI.
Bidulescu, Aurelian; Chambless, Lloyd E; Siega-Riz, Anna Maria; Zeisel, Steven H; Heiss, Gerardo
2009-01-01
Background The repeatability of a risk factor measurement affects the ability to accurately ascertain its association with a specific outcome. Choline is involved in methylation of homocysteine, a putative risk factor for cardiovascular disease, to methionine through a betaine-dependent pathway (one-carbon metabolism). It is unknown whether dietary intake of choline meets the recommended Adequate Intake (AI) proposed for choline (550 mg/day for men and 425 mg/day for women). The Estimated Average Requirement (EAR) remains to be established in population settings. Our objectives were to ascertain the reliability of choline and related nutrients (folate and methionine) intakes assessed with a brief food frequency questionnaire (FFQ) and to estimate dietary intake of choline and betaine in a bi-ethnic population. Methods We estimated the FFQ dietary instrument reliability for the Atherosclerosis Risk in Communities (ARIC) study and the measurement error for choline and related nutrients from a stratified random sample of the ARIC study participants at the second visit, 1990–92 (N = 1,004). In ARIC, a population-based cohort of 15,792 men and women aged 45–64 years (1987–89) recruited at four locales in the U.S., diet was assessed in 15,706 baseline study participants using a version of the Willett 61-item FFQ, expanded to include some ethnic foods. Intraindividual variability for choline, folate and methionine were estimated using mixed models regression. Results Measurement error was substantial for the nutrients considered. The reliability coefficients were 0.50 for choline (0.50 for choline plus betaine), 0.53 for folate, 0.48 for methionine and 0.43 for total energy intake. In the ARIC population, the median and the 75th percentile of dietary choline intake were 284 mg/day and 367 mg/day, respectively. 94% of men and 89% of women had an intake of choline below that proposed as AI. African Americans had a lower dietary intake of choline in both genders. Conclusion The three-year reliability of reported dietary intake was similar for choline and related nutrients, in the range as that published in the literature for other micronutrients. Using a brief FFQ to estimate intake, the majority of individuals in the ARIC cohort had an intake of choline below the values proposed as AI. PMID:19232103
21 CFR 182.8252 - Choline chloride.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Choline chloride. 182.8252 Section 182.8252 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8252 Choline chloride. (a) Product. Choline chloride. (b) Conditions of use. This substance is generally recognized as...
21 CFR 182.8252 - Choline chloride.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Choline chloride. 182.8252 Section 182.8252 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8252 Choline chloride. (a) Product. Choline chloride. (b) Conditions of use. This substance is generally recognized as...
21 CFR 182.8250 - Choline bitartrate.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Choline bitartrate. 182.8250 Section 182.8250 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8250 Choline bitartrate. (a) Product. Choline bitartrate. (b) Conditions of use. This substance is generally recognized as...
21 CFR 182.8250 - Choline bitartrate.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Choline bitartrate. 182.8250 Section 182.8250 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8250 Choline bitartrate. (a) Product. Choline bitartrate. (b) Conditions of use. This substance is generally recognized as...
21 CFR 182.8252 - Choline chloride.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Choline chloride. 182.8252 Section 182.8252 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8252 Choline chloride. (a) Product. Choline chloride. (b) Conditions of use. This substance is generally recognized as...
21 CFR 182.8252 - Choline chloride.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Choline chloride. 182.8252 Section 182.8252 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8252 Choline chloride. (a) Product. Choline chloride. (b...
21 CFR 182.8250 - Choline bitartrate.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Choline bitartrate. 182.8250 Section 182.8250 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8250 Choline bitartrate. (a) Product. Choline bitartrate. (b) Conditions of use. This substance is generally recognized as...
21 CFR 182.8250 - Choline bitartrate.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Choline bitartrate. 182.8250 Section 182.8250 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8250 Choline bitartrate. (a) Product. Choline bitartrate. (b...
21 CFR 182.8250 - Choline bitartrate.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Choline bitartrate. 182.8250 Section 182.8250 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8250 Choline bitartrate. (a) Product. Choline bitartrate. (b) Conditions of use. This substance is generally recognized as...
Choline and betaine intake and the risk of colorectal cancer in men.
Lee, Jung Eun; Giovannucci, Edward; Fuchs, Charles S; Willett, Walter C; Zeisel, Steven H; Cho, Eunyoung
2010-03-01
Dietary choline and betaine have been hypothesized to decrease the risk of cancer because of their role as methyl donors in the one-carbon metabolism. However, it remains unknown whether dietary intake of choline and betaine is associated with colorectal cancer risk. We prospectively examined the associations between dietary choline and betaine intake and risk of colorectal cancer in men in the Health Professionals Follow-up Study. We followed 47,302 men and identified a total of 987 incident colorectal cancer cases from 1986 to 2004. We assessed dietary and supplemental choline and betaine intake every 4 years using a validated semiquantitative food frequency questionnaire. The Cox proportional hazards model was used to estimate multivariate relative risks and 95% confidence intervals. All statistical tests were two-sided. We did not find any statistically significant associations between choline intake or betaine intake and risk of colorectal cancer. Comparing the top quintile with bottom quintile, multivariate relative risks (95% confidence interval) were 0.97 (0.79-1.20; P(trend) = 0.87) for choline intake and 0.94 (0.77-1.16; P(trend) = 0.79) for betaine intake. Similarly, we observed no associations between colorectal cancer risk and choline from free choline, glycerophosphocholine, phosphocholine, phosphatidylcholine, or sphingomyelin. Our data do not support the hypothesis that choline and betaine intake is inversely associated with colorectal cancer risk.
Choline and betaine intake and the risk of colorectal cancer in men
Lee, Jung Eun; Giovannucci, Edward; Fuchs, Charles S.; Willett, Walter C.; Zeisel, Steven H.; Cho, Eunyoung
2010-01-01
Dietary choline and betaine have been hypothesized to decrease the risk of cancer because of their role as methyl donors in the one-carbon metabolism. However, it remains unknown whether dietary intake of choline and betaine is associated with colorectal cancer risk. We prospectively examined the associations between dietary choline and betaine intake and risk of colorectal cancer in men in the Health Professionals Follow-up Study. We followed 47,302 men and identified a total of 987 incident colorectal cancer cases from 1986 to 2004. We assessed dietary and supplemental choline and betaine intake every four years using a validated semi-quantitative food frequency questionnaire. The Cox proportional hazards model was used to estimate multivariate relative risks (RRs) and 95% confidence intervals (95% CIs). All statistical tests were two-sided. We did not find any statistically significant associations between choline intake or betaine intake and risk of colorectal cancer. Comparing the top quintile with bottom quintile, multivariate RRs (95% CI) were 0.97 (0.79-1.20; Ptrend = 0.87) for choline intake and 0.94 (0.77-1.16; Ptrend = 0.79) for betaine intake. Similarly, we observed no associations between colorectal cancer risk and choline from free choline, glycerophosphocholine, phosphocholine, phosphatidylcholine, or sphingomyelin. Our data do not support that choline and betaine intake is inversely associated with colorectal cancer risk. PMID:20160273
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chander, A.; Gullo, J.; Reicherter, J.
1987-05-01
Regulation of phosphatidylcholine (PC) synthesis in rat granular pneumocytes isolated by tryptic digestion of lungs and maintained in primary culture for 24 h was investigated by following effects of exogenous fatty acids on (/sup 3/H-methyl)choline incorporation into PC and disaturated PC (DSPC). At 0.1 mM choline, the rate of choline incorporation into PC and DSPC was 440 +/- and 380 +/- 50 pmol/h/ug Pi (mean +/- SE, n=3-5), respectively, and was linear for up to 3 h. PC synthesis was significantly increased by 0.1 mM each of palmitic, oleic, linoleic, or linolenic acid. However, synthesis of DSPC was increased onlymore » by palmitic acid and this increase was prevented by addition of oleic acid suggesting lack of effect on the remodeling pathway. Pulse-chase experiments with choline in absence or presence of palmitic or oleic acid showed that the label declined in choline phosphate and increased in PC more rapidly in presence of either of the fatty acids, suggesting rapid conversion of choline phosphate to PC. Microsomal choline phosphate cytidyltransferase activity in cells preincubated without or with palmitic acid for 3 h was 0.81 +/- 0.07 and 1.81 +/- 0.09 nmol choline phosphate converted/min/mg protein (n=4). These results suggest that in granular pneumocytes, exogenous fatty acids modulate PC synthesis by increasing choline phosphate cytidyltransferase activity.« less
Dietary S-methylmethionine, a component of foods, has choline-sparing activity in chickens.
Augspurger, Nathan R; Scherer, Colleen S; Garrow, Timothy A; Baker, David H
2005-07-01
Acid hydrolysis of dehulled soybean meal (SBM) and corn gluten meal (CGM) followed by chromatographic amino acid analysis (ninhydrin detection) revealed substantial quantities of S-methylmethionine (SMM) in both ingredients (1.65 g SMM/kg SBM; 0.5 g SMM/kg CGM). Young chicks were used to quantify the methionine- (Met) and choline-sparing bioactivity of crystalline L-SMM, relative to L-Met and choline chloride standards in 3 assays. A soy isolate basal diet was developed that could be made markedly deficient in Met, choline, or both. When singly deficient in choline or in both choline and Met, dietary SMM addition produced a significant (P < 0.01) growth response. In Assay 2, dietary SMM did not affect (P > 0.10) growth of chicks fed a Met-deficient, choline-adequate diet. A standard-curve growth assay revealed choline bioactivity values (wt:wt) of 14.2 +/- 0.8 and 25.9 +/- 5.1 g/100 g SMM based on weight gain and gain:food responses, respectively. A fourth assay, using standard-curve procedures, showed choline bioactivity values of 20.1 +/- 1.1 and 22.9 +/- 1.7 g/100 g SMM based on weight gain and gain:food responses, respectively. It is apparent that SMM in foods and feeds has methylation bioactivity, and this has implications for proper assessment of dietary Met and choline requirements as well as their bioavailability in foods and feeds.
Adaptations to excess choline in insulin resistant and Pcyt2 deficient skeletal muscle.
Taylor, Adrian; Schenkel, Laila Cigana; Yokich, Maiya; Bakovic, Marica
2017-04-01
It was hypothesized that choline supplementation in insulin resistant (IR) CTP:phosphoethanolamine cytidylyltransferase deficient (Pcyt2 +/- ) mice would ameliorate muscle function by remodeling glucose and fatty acid (FA) metabolism. Pcyt2 +/- mice either received no treatment or were allowed access to 2 mg/mL choline in drinking water for 4 weeks. Skeletal muscle was harvested from choline treated and untreated mice. Lipid analysis and metabolic gene expression and signaling pathways were compared between untreated Pcyt2 +/- mice, treated Pcyt2 +/- mice, and Pcyt2 +/+ mice. The major positive effect of choline supplementation on IR muscle was the reduction of glucose utilization for FA and triglyceride (TAG) synthesis and increased muscle glucose storage as glycogen. Choline reduced the expression of genes for FA and TAG formation (Scd1, Fas, Srebp1c, Dgat1/2), upregulated the genes for FA oxidation (Cpt1, Pparα, Pgc1α), and had minor effects on phospholipid and lipolysis genes. Pcyt2 +/- muscle had reduced insulin signaling (IRS1), autophagy (LC3), and choline transport (CTL1) proteins that were restored by choline treatment. Additionally, choline activated AMPK and Akt while inhibiting mTORC1 phosphorylation. These data established that choline supplementation could restore muscle glucose metabolism by reducing lipogenesis and improving mitochondrial and intracellular signaling for protein and energy metabolism in insulin resistant Pcyt2 deficient mice.
Ren, Daoyuan; Liu, Yafei; Zhao, Yan; Yang, Xingbin
2016-08-01
The involvement of choline and its metabolite trimethylamine-N-oxide (TMAO) in endothelial dysfunction and atherosclerosis has been repeatedly confirmed. Phloretin, a dihydrochalcone flavonoid usually present in apples, possesses a variety of biological activities including vascular nutrition. This study was designed to investigate whether phloretin could alleviate or prevent high choline-induced vascular endothelial dysfunction and liver injury in mice. Mice were provided with 3% high choline water and given phloretin orally daily for 10 weeks. The high choline-treated mice showed the significant dyslipidemia and hyperglycemia with the impaired liver and vascular endothelium (p < 0.01). Administration of phloretin at 200 and 400 mg/kg bw significantly reduced the choline-induced elevation of serum TC, TG, LDL-C, AST, ALT, ET-1 and TXA2 (p < 0.01), and markedly antagonized the choline-induced decrease of serum PGI2, HDL-C and NO levels. Furthermore, phloretin elevated hepatic SOD and GSH-Px activities and decreased hepatic MDA levels of the mice exposed to high choline water. Moreover, histopathological test with the H&E and Oil Red O staining of liver sections confirmed the high choline diet-caused liver steatosis and the hepatoprotective effect of phloretin. These findings suggest that high choline causes oxidative damage, and phloretin alleviate vascular endothelial dysfunction and liver injury. Copyright © 2016 Elsevier Ltd. All rights reserved.
Strilakou, Athina A; Tsakiris, Stylianos T; Kalafatakis, Konstantinos G; Stylianaki, Aikaterini T; Karkalousos, Petros L; Koulouris, Andreas V; Mourouzis, Iordanis S; Liapi, Charis A
2014-01-01
Choline is an essential nutrient, and choline deficiency has been associated with cardiovascular morbidity. Choline is also the precursor of acetylcholine (cholinergic component of the heart's autonomic nervous system), whose levels are regulated by acetylcholinesterase (AChE). Cardiac contraction-relaxation cycles depend on ion gradients established by pumps like the adenosine triphosphatases (ATPases) Na(+)/K(+)-ATPase and Mg(2+)-ATPase. This study aimed to investigate the impact of dietary choline deprivation on the activity of rat myocardial AChE (cholinergic marker), Na(+)/K(+)-ATPase, and Mg(2+)-ATPase, and the possible effects of carnitine supplementation (carnitine, structurally relevant to choline, is used as an adjunct in treating cardiac diseases). Adult male albino Wistar rats were distributed among 4 groups, and were fed a standard or choline-deficient diet for one month with or without carnitine in their drinking water (0.15% w/v). The enzyme activities were determined spectrophotometrically in the myocardium homogenate. Choline deficiency seems to affect the activity of the aforementioned parameters, but only the combination of choline deprivation and carnitine supplementation increased myocardial Na(+)/K(+)-ATPase activity along with a concomitant decrease in the activities of Mg(2+)-ATPase and AChE. The results suggest that carnitine, in the setting of choline deficiency, modulates cholinergic myocardial neurotransmission and the ATPase activity in favour of cardiac work efficiency.
Ray, Balmiki; Bailey, Jason A.; Simon, Jay R.; Lahiri, Debomoy K.
2012-01-01
Acetylcholine (ACh) is the neurotransmitter used by cholinergic neurons at the neuromuscular junction and in parasympathetic nerve terminals in the periphery, as well as important memory-related circuits in the brain and also takes part in several critical functions. ACh is synthesized from choline and acetyl coenzyme-A by the enzyme choline acetyltransferase (ChAT). The formation of acetylcholine in cholinergic nerve terminals requires both the transport of choline into the cells from the extracellular space, and the activity of ChAT. High affinity choline uptake (HACU) represents the majority of choline uptake into the nerve terminal, and is the acutely regulated, rate-limiting step in ACh synthesis. The HACU component of choline uptake can be differentiated from non-specific choline uptake by inhibition of the choline transporter with hemicholinium. Several methods have been described previously to measure HACU and ChAT simultaneously in synaptosomes, but a well-documented protocol for cultured cells is lacking. We describe a procedure to simultaneously measure HACU and ChAT in cultured cells by simple radionuclide-based techniques. In this procedure we have quantitatively determined HACU and ChAT activity in cholinergically differentiated human neuroblastoma (SK-N-SH) cells. These simple methods can be used for neurochemical and drug discovery studies relevant to several disorders including Alzheimer’s disease, myasthenia gravis, and cardiovascular disease. PMID:22752895
Chen, Xi; Qiu, Heng; Wang, Chao; Yuan, Yu; Tickner, Jennifer; Xu, Jiake; Zou, Jun
2017-02-01
Choline, a hydrophilic cation, has versatile physiological roles throughout the body, including cholinergic neurotransmission, memory consolidation and membrane biosynthesis and metabolism. Choline kinases possess enzyme activity that catalyses the conversion of choline to phosphocholine, which is further converted to cytidine diphosphate-coline (CDP-choline) in the biosynthesis of phosphatidylcholine (PC). PC is a major constituent of the phospholipid bilayer which constitutes the eukaryotic cell membrane, and regulates cell signal transduction. Choline Kinase consists of three isoforms, CHKα1, CHKα2 and CHKβ, encoded by two separate genes (CHKA(Human)/Chka(Mouse) and CHKB(Human)/Chkb(Mouse)). Both isoforms have similar structures and enzyme activity, but display some distinct molecular structural domains and differential tissue expression patterns. Whilst Choline Kinase was discovered in early 1950, its pivotal role in the development of muscular dystrophy, bone deformities, and cancer has only recently been identified. CHKα has been proposed as a cancer biomarker and its inhibition as an anti-cancer therapy. In contrast, restoration of CHKβ deficiency through CDP-choline supplements like citicoline may be beneficial for the treatment of muscular dystrophy, bone metabolic diseases, and cognitive conditions. The molecular structure and expression pattern of Choline Kinase, the differential roles of Choline Kinase isoforms and their potential as novel therapeutic targets for muscular dystrophy, bone deformities, cognitive conditions and cancer are discussed. Copyright © 2016. Published by Elsevier Ltd.
Exercise and neuromodulators: choline and acetylcholine in marathon runners
NASA Technical Reports Server (NTRS)
Conlay, L. A.; Sabounjian, L. A.; Wurtman, R. J.
1992-01-01
Certain neurotransmitters (i.e., acetylcholine, catecholamines, and serotonin) are formed from dietary constituents (i.e., choline, tyrosine and tryptophan). Changing the consumption of these precursors alters release of their respective neurotransmitter products. The neurotransmitter acetylcholine is released from the neuromuscular junction and from brain. It is formed from choline, a common constituent in fish, liver, and eggs. Choline is also incorporated into cell membranes; membranes may likewise serve as an alternative choline source for acetylcholine synthesis. In trained athletes, running a 26 km marathon reduced plasma choline by approximately 40%, from 14.1 to 8.4 uM. Changes of similar magnitude have been shown to reduce acetylcholine release from the neuromuscular junction in vivo. Thus, the reductions in plasma choline associated with strenuous exercise may reduce acetylcholine release, and could thereby affect endurance or performance.
Influence of androgen deprivation therapy on choline PET/CT in recurrent prostate cancer.
Dost, Rutger J; Glaudemans, Andor W J M; Breeuwsma, Anthonius J; de Jong, Igle J
2013-07-01
Recurrent prostate cancer is usually treated by combining radiotherapy and androgen deprivation therapy. To stage the cancer, choline positron emission tomography (PET)/CT can be performed. It is generally thought that androgen deprivation therapy does not influence choline PET/CT. In this article we focus on the molecular backgrounds of choline and androgens, and the results of preclinical and clinical studies performed using PET/CT. Using PubMed, we looked for the relevant articles about androgen deprivation therapy and choline PET/CT. During ADT, a tendency of decreased uptake of choline in prostate cancer was observed, in particular in hormone-naïve patients. We conclude that in order to prevent false-negative choline PET/CT scans androgen deprivation should be withheld prior to scanning, especially in hormone-naïve patients.
Yang, Chengbo; Yang, Xiaojian; Lackeyram, Dale; Rideout, Todd C; Wang, Zirong; Stoll, Barbara; Yin, Yulong; Burrin, Douglas G; Fan, Ming Z
2016-06-01
Gut apical amino acid (AA) transport activity is high at birth and during suckling, thus being essential to maintain luminal nutrient-dependent mucosal growth through providing AA as essential metabolic fuel, substrates and nutrient stimuli for cellular growth. Because system-B(0) Na(+)-neutral AA co-transporter (B(0)AT1, encoded by the SLC6A19 gene) plays a dominant role for apical uptake of large neutral AA including L-Gln, we hypothesized that high apical Na(+)-Gln co-transport activity, and B(0)AT1 (SLC6A19) in co-expression with angiotensin-converting enzyme 2 (ACE2) were expressed along the entire small intestinal crypt-villus axis in young animals via unique control mechanisms. Kinetics of Na(+)-Gln co-transport activity in the apical membrane vesicles, prepared from epithelial cells sequentially isolated along the jejunal crypt-villus axis from liquid formula-fed young pigs, were measured with the membrane potential being clamped to zero using thiocyanate. Apical maximal Na(+)-Gln co-transport activity was much higher (p < 0.05) in the upper villus cells than in the middle villus (by 29 %) and the crypt (by 30 %) cells, whereas Na(+)-Gln co-transport affinity was lower (p < 0.05) in the upper villus cells than in the middle villus and the crypt cells. The B(0)AT1 (SLC6A19) mRNA abundance was lower (p < 0.05) in the crypt (by 40-47 %) than in the villus cells. There were no significant differences in B(0)AT1 and ACE2 protein abundances on the apical membrane among the upper villus, the middle villus and the crypt cells. Our study suggests that piglet fast growth is associated with very high intestinal apical Na(+)-neutral AA uptake activities via abundantly co-expressing B(0)AT1 and ACE2 proteins in the apical membrane and by transcribing the B(0)AT1 (SLC6A19) gene in the epithelia along the entire crypt-villus axis.
Singh, Soudamani; Arthur, Subha; Talukder, Jamilur; Palaniappan, Balasubramanian; Coon, Steven; Sundaram, Uma
2015-04-15
In the chronically inflamed rabbit small intestine, brush border membrane (BBM) Na-glutamine co-transport is inhibited in villus cells (mediated by B0AT1), while it is stimulated in crypt cells (mediated by SN2/SNAT5). How mast cells, known to be enhanced in the chronically inflamed intestine, may regulate B0AT1 in villus and SN2/SNAT5 in crypt cell is unknown. Thus, the aim of the present study is to determine the regulation of B0AT1 and SN2/SNAT5 by mast cells during chronic enteritis. Chronic intestinal inflammation was induced in male rabbits with intra-gastric inoculation of Eimeria magna oocytes. Rabbits with chronic inflammation were treated with ketotifen (10 mg/day) or saline (Placebo) for 2 days. Villus and crypts cells were isolated from the rabbit intestine using the Ca++ chelation technique. Na/K-ATPase activity was measured as Pi from cellular homogenate. BBM vesicles (BBMV) were prepared from villus and crypt cells and uptake studies were performed using rapid filtration technique with (3)H-Glutamine. Western blot analyses were done using B0AT1 and SN2 specific antibodies. In villus cells, Na-glutamine co-transport inhibition observed during inflammation was completely reversed by ketotifen, a mast cell stabilizer. In contrast, in crypt cells, Na-glutamine co-transport stimulation was reversed to normal levels by ketotifen. Kinetic studies demonstrated that ketotifen reversed the inhibition of B0AT1 in villus cells by restoring co-transporter numbers in the BBM, whereas the stimulation of SN2/SNAT5 in crypts cells was reversed secondary to restoration of affinity of the co-transporter. Western blot analysis showed that ketotifen restored immune-reactive levels of B0AT1 in villus cells, while SN2/SNAT5 levels from crypts cell remained unchanged. In the present study we demonstrate that mast cells likely function as a common upstream immune pathway regulator of the Na-dependent glutamine co-transporters, B0AT1 in villus cells and SN2 in crypts cells that are uniquely altered in the chronically inflamed small intestine.
Imbard, Apolline; Smulders, Yvo M; Barto, Rob; Smith, Desiree E C; Kok, Robert M; Jakobs, Cornelis; Blom, Henk J
2013-03-01
Choline is essential for mammalian cell function. It plays a critical role in cell membrane integrity, neurotransmission, cell signaling and lipid metabolism. Moreover, choline is involved in methylation in two ways: a) its synthesis requires methyl groups donated by S-adenosyl-methionine (AdoMet); and b) choline oxidation product betaine methylates homocysteine (Hcy) to methionine (Met) and produces dimethylglycine. This later donates one carbon units to tetrahydrofolate (THF). To evaluate the correlations of choline and betaine with folate, AdoMet, S-anenosyl-homocysteine (AdoHcy), total homocysteine (tHcy), and DNA methylation, choline, betaine and dimethylglycine were measured by LC-MS/MS in plasma of 109 healthy volunteers, in whom folate, AdoMet, AdoHcy, tHcy, and DNA methylation have previously been reported. Using a bivariate model, choline and betaine showed strong positive correlations with folate (r = 0.346 and r = 0.226), AdoHcy (r = 0.468 and r = 0.296), and correlated negatively with AdoMet/AdoHcy ratio (r = – 0.246 and r = – 0.379). Only choline was positively correlated with AdoMet (r = 0.453). Using a multivariate linear regression model, choline correlated strongly with folate ( β = 17.416), AdoMet ( β = 61.272), and AdoHcy ( β = 9.215). Betaine correlated positively with folate ( β = 0.133) and negatively with tHcy ( β = – 0.194) ratio. Choline is an integral part of folate and methylation pathways. Our data highlight the importance of integrating choline in studies concerning addressing pathological conditions related to folate, homocysteine and methylation metabolism.
Chen, Chiliang; Li, Shanshan; McKeever, Dana R; Beattie, Gwyn A
2013-09-01
The quaternary ammonium compound (QAC) choline is a major component of membrane lipids in eukaryotes and, if available to microbial colonists of plants, could provide benefits for growth and protection from stress. Free choline is found in homogenized plant tissues, but its subcellular location and availability to plant microbes are not known. Whole-cell bacterial bioreporters of the phytopathogen Pseudomonas syringae were constructed that couple a QAC-responsive transcriptional fusion with well-characterized bacterial QAC transporters. These bioreporters demonstrated the presence of abundant free choline compounds released from germinating seeds and seedlings of the bean Phaseolus vulgaris, and a smaller but consistently detectable amount of QACs, probably choline, from leaves. The localization of P. syringae bioreporter cells to the surface and intercellular sites of plant tissues demonstrated the extracellular location of these QAC pools. Moreover, P. syringae mutants that were deficient in the uptake of choline compounds exhibited reduced fitness on leaves, highlighting the importance of extracellular choline to P. syringae on leaves. Our data support a model in which this choline pool is derived from the phospholipid phosphatidylcholine through plant-encoded phospholipases that release choline into the intercellular spaces of plant tissues, such as for membrane lipid recycling. The consequent extracellular release of choline compounds enables their interception and exploitation by plant-associated microbes, and thus provides a selective advantage for microbes such as P. syringae that are adapted to maximally exploit choline. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.
Haeffner, E W
1975-02-03
The initial rate of incorporation of 14C or 3H-labeled choline into Ehrlich-Lettre ascites cells of the glycogen-free strain seven days after inoculation was investigated in vitro. 1. At choline concentrations in the medium between 6 to 30 muM and 100 to 500 muM the choline uptake by the cells followed Michaelis-Menton Kinetics with V values between 31 to 100 and 59 to 500 pmol per minute at a given cell density, and average Q10-values of 2.1 at the high and of 2.4 at the low choline molarity. The K-m-values increased from 27 muM to 58.8 muM at low and from 0.11 mM to 0.22 mM at high choline concentrations over a temperature range between 15 degrees C and 37 degrees C. Arrhenius plot of the V values gave two lines, one with a transition temperature at 25 degrees C at low and one straight line at high choline concentrations, from which the energy of activation for choline uptake was determined to be 16 kcal/mol. 2. It is assumed that two systems exist for the choline uptake by the ascites cells. One, operative at low substrate concentrations, which is saturable and probably is to be classified as a carrier-mediated facilitated diffusion process, can be strongly inhibited by deoxyglucose or 2,4-dinitrophenol and also by substrate analogues such as chlorocholine or benzoylcholine. Ouabain affects this system to a lesser extent. The other system functioning at high choline concentrations may be a simple diffusion process, which is little inhibited by substrate analogues, ouabain and deoxyglucose; however, it is also inhibited by 2,4-dinitrophenol and p-chloromercuribenzoate. 3. Choline incorporation into the acid-insoluble material (lecithin) gave linear Michaelis-Menton kinetics at the low and the high substrate concentration respectively. K-m-values decreased with an increase in temperature at low and increased with rising temperature at high substrate concentrations thus reflecting a close relationship between choline uptake and its metabolism. Labeling of lecithin choline in the various subcellular fractions under the conditions of the functioning of a carrier-mediated process was in the order: mitochondria (50%) greater than plasma membranes (25%) greater nuclei (14%) greater than microsomes (9%) greater than supernatant (1.5%). 4. Treatment of the cells with p-chloromercuribenzoate or heat shock at 50 degrees C markedly reduced the cholinee uptake and concomitantly its conversion into lecithin. Kinetic analysis revealed that the inhibitory effect of p-chloromercuribenzoate was competitive and that of the heat shock non-competitive in nature. Further the choline uptake by the cells was found to be the rate-limiting step, since the rate of choline phosphorylation was determined by the extracellular choline concentration. Pulse chase experiments showed a rapid turnover of the choline moiety with a concomitant increase in activity of the lecithin fraction and little change within the choline phosphate pool.
Structure of the choline-binding domain of Spr1274 in Streptococcus pneumoniae.
Zhang, Zhenyi; Li, Wenzhe; Frolet, Cecile; Bao, Rui; di Guilmi, Anne Marie; Vernet, Thierry; Chen, Yuxing
2009-08-01
Spr1274 is a putative choline-binding protein that is bound to the cell wall of Streptococcus pneumoniae through noncovalent interactions with the choline moieties of teichoic and lipoteichoic acids. Its function is still unknown. The crystal structure of the choline-binding domain of Spr1274 (residues 44-129) was solved at 2.38 A resolution with three molecules in the asymmetric unit. It may provide a structural basis for functional analysis of choline-binding proteins.
Effects of ingesting soy or egg lecithins on serum choline, brain choline and brain acetylcholine.
Magil, S G; Zeisel, S H; Wurtman, R J
1981-01-01
Rats were fed lecithins, derived from eggs or soybeans, to determine whether the fatty acid composition of the phosphatidylcholine altered choline availability. Rats were fed either a single meal containing 5 g phosphatidylcholine or a lecithin-containing diet for 3 weeks, including approximately 5 g phosphatidylcholine per day. Each form of dietary lecithin elevated blood choline, brain choline and brain acetylcholine significantly (P < 0.05). There was no difference in response to egg- or soy-derived lecithin.
Choline and Inositol Distribution in Algae and Fungi1
Ikawa, Miyoshi; Borowski, Paul T.; Chakravarti, Ashima
1968-01-01
Inositol and choline were present in varying amounts among the species of Rhodophyta, Phaeophyta, Chlorophyta, and Euglenophyta examined. However, in the two members of the order Fucales (division Phaeophyta) examined, no detectable amounts of choline were found. In contrast, the species of Cyanophyta examined contained no detectable amounts of either choline or inositol. All species of the fungal classes Phycomyceteae, Ascomyceteae, and Basidiomyceteae collected contained both inositol and choline in varying amounts. The red, brown, and blue-green algae usually contained much less inositol and choline than do plant and animals sources, but the fungi and the algae Chlorella and Euglena contained amounts comparable to those present in plant sources. PMID:5647522
Effect of choline carboxylate ionic liquids on biological membranes
Rengstl, Doris; Kraus, Birgit; Van Vorst, Matthew; Elliott, Gloria D.; Kunz, Werner
2015-01-01
Choline carboxylates, ChCm, with m = 2–10 and choline oleate are known as biocompatible substances, yet their influence on biological membranes is not well-known, and the effect on human skin has not previously been investigated. The short chain choline carboxylates ChCm with m = 2, 4, 6 act as hydrotropes, solubilizing hydrophobic compounds in aqueous solution, while the longer chain choline carboxylates ChCm with m = 8,10 and oleate are able to form micelles. In the present study, the cytotoxicity of choline carboxylates was tested using HeLa and SK-MEL-28 cells. The influence of these substances on liposomes prepared from dipalmitoylphosphatidylcholine (DPPC) was also evaluated to provide insights on membrane interactions. It was observed that the choline carboxylates with a chain length of m > 8 distinctly influence the bilayer, while the shorter ones had minimal interaction with the liposomes. PMID:25444662
An introduction to the nutrition and metabolism of choline.
Hollenbeck, Clarie B
2012-06-01
Choline is a ubiquitous water soluble nutrient, often associated with the B vitamins; however, not yet officially defined as a B vitamin. It is important in the synthesis of phospholipid components of cell membranes, and plasma lipoproteins, providing structural integrity as well as being important in cell signaling; it is also important in the synthesis of the neurotransmitter acetylcholine, and the oxidized form of choline, glycine betaine, serves as an important methyl donor in the methionine cycle. It is present in a wide variety of foods, and is endogenously synthesized in humans through the sequential methylation of phosphatidylethanolamine. The present article represents an introduction to the nutrition, metabolism, and physiological functions of choline and choline derivatives in humans. The association of choline and choline derivatives in risk of chronic disease, including: neural tube defects, coronary artery disease, cancer, Alzheimer's disease, dementia, and memory, and cystic fibrosis is reviewed.
USDA-ARS?s Scientific Manuscript database
Background: There is a potential role of choline in cardiovascular and cerebrovascular disease through its involvement in lipid and one-carbon metabolism. Objective: We evaluated the associations of plasma choline and choline-related compounds with cardiometabolic risk factors, history of cardiovas...
21 CFR 573.580 - Iron-choline citrate complex.
Code of Federal Regulations, 2012 CFR
2012-04-01
...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.580 Iron-choline citrate complex. Iron-choline citrate complex made by... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Iron-choline citrate complex. 573.580 Section 573...
21 CFR 573.580 - Iron-choline citrate complex.
Code of Federal Regulations, 2011 CFR
2011-04-01
...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.580 Iron-choline citrate complex. Iron-choline citrate complex made by... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Iron-choline citrate complex. 573.580 Section 573...
21 CFR 573.580 - Iron-choline citrate complex.
Code of Federal Regulations, 2014 CFR
2014-04-01
...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.580 Iron-choline citrate complex. Iron-choline citrate complex made by... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Iron-choline citrate complex. 573.580 Section 573...
21 CFR 573.580 - Iron-choline citrate complex.
Code of Federal Regulations, 2010 CFR
2010-04-01
...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.580 Iron-choline citrate complex. Iron-choline citrate complex made by... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Iron-choline citrate complex. 573.580 Section 573...
21 CFR 573.580 - Iron-choline citrate complex.
Code of Federal Regulations, 2013 CFR
2013-04-01
...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.580 Iron-choline citrate complex. Iron-choline citrate complex made by... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Iron-choline citrate complex. 573.580 Section 573...
Jia, Chuandong; Zuo, Wei; Yang, Dong; Chen, Yanming; Cao, Liping; Custelcean, Radu; Hostaš, Jiří; Hobza, Pavel; Glaser, Robert; Wang, Yao-Yu; Yang, Xiao-Juan; Wu, Biao
2017-10-16
In nature, proteins have evolved sophisticated cavities tailored for capturing target guests selectively among competitors of similar size, shape, and charge. The fundamental principles guiding the molecular recognition, such as self-assembly and complementarity, have inspired the development of biomimetic receptors. In the current work, we report a self-assembled triple anion helicate (host 2) featuring a cavity resembling that of the choline-binding protein ChoX, as revealed by crystal and density functional theory (DFT)-optimized structures, which binds choline in a unique dual-site-binding mode. This similarity in structure leads to a similarly high selectivity of host 2 for choline over its derivatives, as demonstrated by the NMR and fluorescence competition experiments. Furthermore, host 2 is able to act as a fluorescence displacement sensor for discriminating choline, acetylcholine, L-carnitine, and glycine betaine effectively.The choline-binding protein ChoX exhibits a synergistic dual-site binding mode that allows it to discriminate choline over structural analogues. Here, the authors design a biomimetic triple anion helicate receptor whose selectivity for choline arises from a similar binding mechanism.
Koshy Cherian, Ajeesh; Parikh, Vinay; Wu, Qi; Mao-Draayer, Yang; Wang, Qin; Blakely, Randy D; Sarter, Martin
2017-09-01
The synaptic uptake of choline via the high-affinity, hemicholinium-3-dependent choline transporter (CHT) strongly influences the capacity of cholinergic neurons to sustain acetylcholine (ACh) synthesis and release. To advance research on the impact of CHT capacity in humans, we established the presence of the neuronal CHT protein in human T lymphocytes. Next, we demonstrated CHT-mediated choline transport in human T cells. To address the validity of T cell-based choline uptake as a proxy for brain CHT capacity, we isolated T cells from the spleen, and synaptosomes from cortex and striatum, of wild type and CHT-overexpressing mice (CHT-OXP). Choline uptake capacity in T cells from CHT-OXP mice was two-fold higher than in wild type mice, mirroring the impact of CHT over-expression on synaptosomal CHT-mediated choline uptake. Monitoring T lymphocyte CHT protein and activity may be useful for estimating human CNS cholinergic capacity and for testing hypotheses concerning the contribution of CHT and, more generally, ACh signaling in cognition, neuroinflammation and disease. Copyright © 2017 Elsevier Ltd. All rights reserved.
The choline requirement of broiler chicks during the seventh week of life.
Molitoris, B A; Baker, D H
1976-01-01
Male crossbred chicks were used to quantify the choline requirement and choline-sparing value of methionine and betaine for broiler chicks during the seventh week of life. The sulfur amino acid (SAA) requirement of male and female chicks was also determined. In all assays a crystalline amino acid diet containing 14.9% protein equivalent and 3400 kcal. M.E./kg, was employed. Increasing increments (0.08%) of SAA (equal mixture of DL-methionine and L-cystine) were fed from 0.38 to 0.70% of the diet. Least squares analysis indicated SAA requirements for maximal weight gain of 0.61 and 0.62% of the diet for males and females, respectively. The choline requirement was determined by feeding six levels of choline in the presence of 0.62% SAA. Gain but not gain/feed responded linearly to choline addition. Least squares analysis of gain indicated a dietary choline requirement of 358 p.p.m. of 30.6 mg./day. The choline-replacement value of methionine and betaine was found to be minimal.
Choline, Other Methyl-Donors and Epigenetics
Zeisel, Steven H.
2017-01-01
Choline dietary intake varies such that many people do not achieve adequate intakes. Diet intake of choline can modulate methylation because, via betaine homocysteine methyltransferase (BHMT), this nutrient (and its metabolite, betaine) regulate the concentrations of S-adenosylhomocysteine and S-adenosylmethionine. Some of the epigenetic mechanisms that modify gene expression without modifying the genetic code depend on the methylation of DNA or of histones; and diet availability of choline and other methyl-group donors influences both of these methylations. Examples of methyl-donor mediated epigenetic effects include the changes in coat color and body weight in offspring when pregnant agouti mice are fed high choline, high methyl diets; the changes in tail kinking in offspring when pregnant Axin(Fu) mice are fed high choline, high methyl diets; the changes in Cdkn3 methylation and altered brain development that occurs in offspring when pregnant rodents are fed low choline diets. When choline metabolism is disrupted by deleting the gene Bhmt, DNA methylation is affected (especially in a region of chromosome 13), expression of specific genes is suppressed, and liver cancers develop. Better understanding of how nutrients such as choline and methyl-donors influence epigenetic programs has importance for our understanding of not only developmental abnormalities but also for understanding the origins of chronic diseases. PMID:28468239
Diethanolamine alters proliferation and choline metabolism in mouse neural precursor cells.
Niculescu, Mihai D; Wu, Renan; Guo, Zhong; da Costa, Kerry Ann; Zeisel, Steven H
2007-04-01
Diethanolamine (DEA) is a widely used ingredient in many consumer products and in a number of industrial applications. It has been previously reported that dermal administration of DEA to mice diminished hepatic stores of choline and altered brain development in the fetus. The aim of this study was to use mouse neural precursor cells in vitro to assess the mechanism underlying the effects of DEA. Cells exposed to DEA treatment (3mM) proliferated less (by 5-bromo-2-deoxyuridine incorporation) at 48 h (24% of control [CT]), and had increased apoptosis at 72 h (308% of CT). Uptake of choline into cells was reduced by DEA treatment (to 52% of CT), resulting in diminished intracellular concentrations of choline and phosphocholine (55 and 12% of CT, respectively). When choline concentration in the growth medium was increased threefold (to 210 microM), the effects of DEA exposure on cell proliferation and apoptosis were prevented, however, intracellular phosphocholine concentrations remained low. In choline kinase assays, we observed that DEA can be phosphorylated to phospho-DEA at the expense of choline. Thus, the effects of DEA are likely mediated by inhibition of choline transport into neural precursor cells and by altered metabolism of choline. Our study suggests that prenatal exposure to DEA may have a detrimental effect on brain development.
Diethanolamine Alters Proliferation and Choline Metabolism in Mouse Neural Precursor Cells
Niculescu, Mihai D.; Wu, Renan; Guo, Zhong; da Costa, Kerry Ann; Zeisel, Steven H.
2008-01-01
Diethanolamine (DEA) is a widely used ingredient in many consumer products and in a number of industrial applications. It has been previously reported that dermal administration of DEA to mice diminished hepatic stores of choline and altered brain development in the fetus. The aim of this study was to use mouse neural precursor cells in vitro to assess the mechanism underlying the effects of DEA. Cells exposed to DEA treatment (3mM) proliferated less (by 5-bromo-2-deoxyuridine incorporation) at 48 h (24% of control [CT]), and had increased apoptosis at 72 h (308% of CT). Uptake of choline into cells was reduced by DEA treatment (to 52% of CT), resulting in diminished intracellular concentrations of choline and phosphocholine (55 and 12% of CT, respectively). When choline concentration in the growth medium was increased threefold (to 210μM), the effects of DEA exposure on cell proliferation and apoptosis were prevented, however, intracellular phosphocholine concentrations remained low. In choline kinase assays, we observed that DEA can be phosphorylated to phospho-DEA at the expense of choline. Thus, the effects of DEA are likely mediated by inhibition of choline transport into neural precursor cells and by altered metabolism of choline. Our study suggests that prenatal exposure to DEA may have a detrimental effect on brain development. PMID:17204582
Choline, Other Methyl-Donors and Epigenetics.
Zeisel, Steven
2017-04-29
Choline dietary intake varies such that many people do not achieve adequate intakes. Diet intake of choline can modulate methylation because, via betaine homocysteine methyltransferase (BHMT), this nutrient (and its metabolite, betaine) regulate the concentrations of S-adenosylhomocysteine and S-adenosylmethionine. Some of the epigenetic mechanisms that modify gene expression without modifying the genetic code depend on the methylation of DNA or of histones; and diet availability of choline and other methyl-group donors influences both of these methylations. Examples of methyl-donor mediated epigenetic effects include the changes in coat color and body weight in offspring when pregnant agouti mice are fed high choline, high methyl diets; the changes in tail kinking in offspring when pregnant Axin(Fu) mice are fed high choline, high methyl diets; the changes in Cdkn3 methylation and altered brain development that occurs in offspring when pregnant rodents are fed low choline diets. When choline metabolism is disrupted by deleting the gene Bhmt, DNA methylation is affected (especially in a region of chromosome 13), expression of specific genes is suppressed, and liver cancers develop. Better understanding of how nutrients such as choline and methyl-donors influence epigenetic programs has importance for our understanding of not only developmental abnormalities but also for understanding the origins of chronic diseases.
Choline requirements of White Pekin ducks from hatch to 21 days of age.
Wen, Z G; Tang, J; Hou, S S; Guo, Y M; Huang, W; Xie, M
2014-12-01
A dose-response experiment with 8 dietary choline levels (302, 496, 778, 990, 1,182, 1,414, 1,625, and 1,832 mg/kg) was conducted with male White Pekin ducks to estimate the choline requirement from hatch to 21 d of age. Three hundred eighty-four 1-d-old male White Pekin ducks were randomly assigned to 8 dietary treatments, each containing 6 replicate pens with 8 birds per pen. At 21 d of age, weight gain, feed intake, and feed/gain from each pen were calculated for feeding period, and 2 ducks selected randomly from each pen were euthanized and the liver was collected to determine total lipids, triglycerides, and phospholipids. In our study, perosis, poor growth, and high liver fat were all observed in choline-deficient ducks and incidence of perosis was zero when dietary choline was 1,182 mg/kg. As dietary choline increased, the weight gain and feed intake increased linearly or quadratically (P < 0.05). On the other hand, as dietary choline increased, the total lipid and triglyceride in liver decreased linearly and liver phospholipid increased linearly (P < 0.05), and the lipotropic activity of choline may be associated with increasing phospholipid at a high dietary choline level. According to broken-line regression, the choline requirements for weight gain and feed intake were 810 and 823 mg/kg, respectively, but higher requirement should be considered to prevent perosis and excess liver lipid deposition completely. ©2014 Poultry Science Association Inc.
Moreno, Hayarelis C; de Brugada, Isabel; Carias, Diamela; Gallo, Milagros
2013-11-01
Choline is an essential nutrient required for early development. Previous studies have shown that prenatal choline availability influences adult memory abilities depending on the medial temporal lobe integrity. The relevance of prenatal choline availability on object recognition memory was assessed in adult Wistar rats. Three groups of pregnant Wistar rats were fed from E12 to E18 with choline-deficient (0 g/kg choline chloride), standard (1.1 g/kg choline chloride), or choline-supplemented (5 g/kg choline chloride) diets. The offspring was cross-fostered to rat dams fed a standard diet during pregnancy and tested at the age of 3 months in an object recognition memory task applying retention tests 24 and 48 hours after acquisition. Although no significant differences have been found in the performance of the three groups during the first retention test, the supplemented group exhibited improved memory compared with both the standard and the deficient group in the second retention test, 48 hours after acquisition. In addition, at the second retention test the deficient group did not differ from chance. Taken together, the results support the notion of a long-lasting beneficial effect of prenatal choline supplementation on object recognition memory which is evident when the rats reach adulthood. The results are discussed in terms of their relevance for improving the understanding of the cholinergic involvement in object recognition memory and the implications of the importance of maternal diet for lifelong cognitive abilities.
[11C]choline uptake in regenerating liver after partial hepatectomy or CCl4-administration.
Sasaki, Toru
2004-02-01
To characterize [methyl-(11)C]choline ([(11)C]choline) as an oncologic PET radiopharmaceutical, [(11)C]choline uptake in regenerating livers after partial hepatectomy as a model of typical proliferating tissue and after CCl(4) insult as that of proliferating tissue with inflammation, was studied in rats. [(11)C]Choline, [(18)F]2-fluoro-2-deoxy-D-glucose ([(18)F]FDG) and [2-(14)C]thymidine ([(14)C]TdR) uptake was studied in regenerating rat liver after 70% partial hepatectomy or CCl(4)-administration. [(11)C]Choline uptake in regenerating liver after partial hepatectomy was significantly increased with [(14)C]TdR uptake as a marker of DNA synthesis at 18 hours after surgery. On the other hand, the uptake was not accelerated by CCl(4)-administration, though it significantly increased [(14)C]TdR uptake. There were no differences of [(11)C]choline uptake acceleration following partial hepatectomy among the three parts of the regenerating liver. [(18)F]FDG uptake was accelerated in the regenerating liver on either partial hepatectomy or CCl(4)-administration. The magnitude of the increase in [(18)F]FDG uptake in the regenerating liver induced by partial hepatectomy was greater than that for [(11)C]choline. [(11)C]Choline uptake in the liver was accelerated by partial hepatectomy, but not by CCl(4)-administration. This might be expected given that the differentiation between proliferating tissues such as tumor and inflammatory tissue was possible by [(11)C]choline-PET.
The effect of cytidine-diphosphate choline (CDP-choline) on brain lipid changes during aging
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Medio, G.E.; Trovarelli, G.; Piccinin, G.L.
1984-01-01
Lipid synthesis has been tested in vivo in different brain areas of 12-month-old male rats. Cortex, striatum, brainstem, and subcortex of brain have been examined. The cerebellum was discarded. Mixtures of (2-/sup 3/H)glycerol and (Me-/sup 14/C)choline were injected into the lateral ventricle of the brain as lipid precursors, and their incorporation into total lipid, water-soluble intermediates and choline-containing phospholipids was examined 1 hr after isotope injection. In another series of experiments cytidine-5'-diphosphate choline (CDP-choline) was injected intraventricularly to the aged rats 10 min before sacrifice with a simultaneous injection, and radioactivity assays were performed as above. Distribution of radioactivity contentmore » of CDP-choline among brain areas 10 min after its administration showed a noticeable enrichment of the nucleotide and water-soluble-related compounds in the examined areas, but to a lesser degree in the cerebral cortex. The incorporation of labelled glycerol, which is severely depressed in aged rats in all four areas (Gaiti et al, 1982, 1983), was increased only in the cortex, and apparently decreased in the other areas. This last result is probably due to a dilution effect brought about by the administered cold CDP-choline upon the (/sup 14/C)-containing water-soluble metabolites. As a consequence, the (/sup 3/H)/(/sup 14/C) ratio in total lipid and in isolated phosphatidylcholine and choline plasmalogen increased after CDP-choline treatment.« less
Lesion-induced plasticity of high affinity choline uptake in the developing rat fascia dentata.
Nadler, J V; Shelton, D L; Cotman, C W
1979-03-23
After removal of the perforant path input to the rat fascia dentata at the age of 11 days, cholinergic septohippocampal fibers invade the denervated area. We have examined the effect of this lesion on hemicholinium-sensitive, high affinity choline uptake and its coupling to acetylcholine synthesis, specific properties of the septohippocampal input. Removal of the ipsilateral perforant path fibers increased the velocity of high affinity choline uptake by dentate particulate preparations, usually within 1 day. Studies conducted 5--104 days after operation showed a consistent 50--65% elevation in the molecular (denervated) layer. In contrast, the choline uptake rate in the granular layer eventually decreased slightly. Calculation of choline uptake rates independently of protein (per whole region) revealed that fasciae dentatae from operated and control sides accumulated choline at approximately equal rates, but on the operated side a greater percentage was transported by structures from the molecular layer and a lesser percentage by those from the granular layer. The rate of acetylcholine synthesis from exogenous choline increased to the same extent as high affinity choline uptake from 3 days after operation onwards. The changes in high affinity choline uptake and acetylcholine synthesis coincided spatially and temporally with the reactive growth of septohippocampal fibers. Our results support the view that a perforant path lesion during development permanently alters the distribution of functional septohippocampal boutons in the fascia dentata. Acetylcholine synthesis is regulated to the same extent by high affinity choline uptake in the anomalous boutons as in normally located boutons.
Cho, Eunyoung; Zeisel, Steven H; Jacques, Paul; Selhub, Jacob; Dougherty, Lauren; Colditz, Graham A; Willett, Walter C
2008-01-01
Background: Epidemiologic studies of choline and betaine intakes have been sparse because a food-composition database was not available until recently. The physiologic relevance of a variation in dietary choline and betaine in the general population and the validity of intake assessed by food-frequency questionnaire (FFQ) have not been evaluated. Objective: This study was conducted to examine the physiologic relevance and validity of choline and betaine intakes measured by an FFQ. Design: We examined the relations between choline and betaine intakes measured by FFQ and plasma total homocysteine (tHcy) concentrations in 1960 participants from the Framingham Offspring Study. Results: Higher intakes of dietary choline and betaine were related to lower tHcy concentrations independent of other determinants, including folate and other B vitamins. For the lowest and highest quintiles of dietary choline plus betaine, the multivariate geometric means for tHcy were 10.9 and 9.9 μmol/L (P for trend < 0.0001). The inverse association was manifested primarily in participants with low folate intakes (P for interaction < 0.0001). Among participants with folate intakes ≤250 μg/d, the geometric mean tHcy concentrations in the lowest and highest quintiles of choline plus betaine intakes were 12.4 and 10.2 μmol/L (P for trend < 0.0001). Except for choline from phosphatidylcholine, individual forms of choline were inversely associated with tHcy concentrations. Conclusions: Our findings provide support for a physiologically important variation in choline and betaine intakes in the general population and for the validity of intake measured by FFQ. PMID:16600945
Chiuve, Stephanie E; Giovannucci, Edward L; Hankinson, Susan E; Zeisel, Steven H; Dougherty, Lauren W; Willett, Walter C; Rimm, Eric B
2007-10-01
Elevated total homocysteine (tHcy), a risk factor for many chronic diseases, can be remethylated to methionine by folate. Alternatively, tHcy can be metabolized by other 1-carbon nutrients, ie, betaine and its precursor, choline. We aimed to assess the association between the dietary intakes of betaine and choline and the concentration of tHcy. We conducted a cross-sectional analysis in 1477 women by using linear regression models to predict mean fasting tHcy by intakes of of betaine and choline. tHcy was 8% lower in the highest quintile of total betaine + choline intake than in the lowest quintile, even after control for folate intake (P for trend = 0.07). Neither choline nor betaine intake individually was significantly associated with tHcy. Choline from 2 choline-containing compounds, glycerophosphocholine and phosphocholine, was inversely associated with tHcy. These inverse associations were more pronounced in women with folate intake < 400 mug/d than in those with intakes >or=400 microg/d (P for interaction = 0.03 for phosphocholine) and in moderate alcohol drinkers (>or=15 g/d) than in nondrinkers or light drinkers (<15 g/d) (P for interaction = 0.02 for glycerophosphocholine and 0.04 for phosphocholine). The strongest dose response was seen in women with a low-methyl diet (high alcohol and low folate intake) (P for interaction = 0.002 for glycerophosphocholine and 0.001 for phosphocholine). Total choline + betaine intake was inversely associated with tHcy, as was choline from 2 water-soluble choline-containing compounds. Remethylation of tHcy may be more dependent on the betaine pathway when methyl sources are low as a result of either inadequate folate intake or heavier alcohol consumption.
West, Allyson A; Yan, Jian; Jiang, Xinyin; Perry, Cydne A; Innis, Sheila M; Caudill, Marie A
2013-04-01
Phosphatidylcholine (PC) produced via the S-adenosylmethionine-dependent phosphatidylethanolamine (PE) N-methyltransferase (PEMT) pathway is enriched with docosahexaenoic acid (DHA). DHA plays a critical role in fetal development and is linked to health endpoints in adulthood. It is unknown whether choline, which can serve as a source of S-adenosylmethionine methyl groups, influences PC-DHA or the PC:PE ratio in pregnant and nonpregnant women. This study tested whether choline intake affects indicators of choline-related lipid metabolism, including erythrocyte and plasma PC-DHA and PC:PE ratios, in pregnant women in the third trimester and nonpregnant women. Pregnant (n = 26) and nonpregnant (n = 21) women consumed 480 or 930 mg choline/d and a daily DHA supplement for 12 wk. Blood was collected at baseline and at the midpoint and end of the study. PC-DHA was analyzed as the proportion of total PC fatty acids. Pregnant women had greater (P = 0.002) PC-DHA concentrations than did nonpregnant women at baseline. The proportion of erythrocyte and plasma PC-DHA increased (P ≤ 0.002) in pregnant and nonpregnant women regardless of choline intake. However, in nonpregnant women, consumption of 930 mg choline/d led to greater (P < 0.001) erythrocyte PC-DHA and a more rapid increase (P < 0.001) in plasma PC-DHA. Lower (P = 0.001-0.024) erythrocyte and plasma PC:PE in pregnant women was not modified by choline intake. A higher choline intake may increase PEMT activity, resulting in greater PC-DHA enrichment of the PC molecule in nonpregnant women. Increased production of PC-DHA during pregnancy indicates elevated PEMT activity and a higher demand for methyl donors. This trial was registered at clinicaltrials.gov as NCT01127022.
Gao, Xiang; Wang, Yongbo; Sun, Guang
2017-01-01
Dietary betaine supplement could ameliorate insulin resistance (IR) in animals, but no data are available for choline. Reports on humans are rare. The aim of this study was to investigate the association between dietary choline and betaine intake and IR in humans. We assessed 2394 adults from the CODING (Complex Diseases in the Newfoundland population: Environment and Genetics) study. Intake of dietary choline and betaine was evaluated from the Willett Food Frequency Questionnaire. IR was estimated by homeostatic model assessment (HOMA-IR) and the quantitative insulin-sensitivity check index (QUICKI). Partial correlation analysis was used to determine the correlations of dietary choline and betaine intake with IR adjusted for major confounding factors. Dietary choline and betaine intake was inversely correlated with levels of fasting glucose and insulin, HOMA-IR, HOMA-β (r = -0.08 to -0.27 for choline and r = -0.06 to -0.16 for betaine; P < 0.05) and positively related to QUICKI (r = 0.16-0.25 for choline and r = 0.11-0.16 for betaine; P < 0.01) in both sexes after controlling for age, total calorie intake, and physical activity level. The significant associations disappeared in men after percent trunk fat was added as a confounding factor. Furthermore, individuals with the highest tertile of dietary choline and betaine intake had the lowest IR severity. Dietary choline and betaine intake, however, was the lowest in the high IR group, intermediate in the medium group, and the highest in the low IR group. This study demonstrated that higher intake of dietary choline and betaine is associated with lower IR in the general population. Copyright © 2016 Elsevier Inc. All rights reserved.
Choline Alleviates Parenteral Nutrition-Associated Duodenal Motility Disorder in Infant Rats.
Zhu, Jie; Wu, Yang; Guo, Yonggao; Tang, Qingya; Lu, Ting; Cai, Wei; Huang, Haiyan
2016-09-01
Parenteral nutrition (PN) has been found to influence duodenal motility in animals. Choline is an essential nutrient, and its deficiency is related to PN-associated organ diseases. Therefore, this study was aimed to investigate the role of choline supplementation in an infant rat model of PN-associated duodenal motility disorder. Three-week-old Sprague-Dawley male rats were fed chow and water (controls), PN solution (PN), or PN plus intravenous choline (600 mg/kg) (PN + choline). Rats underwent jugular vein cannulation for infusion of PN solution or 0.9% saline (controls) for 7 days. Duodenal oxidative stress status, concentrations of plasma choline, phosphocholine, and betaine and serum tumor necrosis factor (TNF)-α were assayed. The messenger RNA (mRNA) and protein expression of c-Kit proto-oncogene protein (c-Kit) and membrane-bound stem cell factor (mSCF) together with the electrophysiological features of slow waves in the duodenum were also evaluated. Rats on PN showed increased reactive oxygen species; decreased total antioxidant capacity in the duodenum; reduced plasma choline, phosphocholine, and betaine; and enhanced serum TNF-α concentrations, which were reversed by choline intervention. In addition, PN reduced mRNA and protein expression of mSCF and c-Kit, which were inversed under choline administration. Moreover, choline attenuated depolarized resting membrane potential and declined the frequency and amplitude of slow waves in duodenal smooth muscles of infant rats induced by PN, respectively. The addition of choline to PN may alleviate the progression of duodenal motor disorder through protecting smooth muscle cells from injury, promoting mSCF/c-Kit signaling, and attenuating impairment of interstitial cells of Cajal in the duodenum during PN feeding. © 2015 American Society for Parenteral and Enteral Nutrition.
Chiuve, Stephanie E; Giovannucci, Edward L; Hankinson, Susan E; Zeisel, Steven H; Dougherty, Lauren W; Willett, Walter C; Rimm, Eric B
2008-01-01
Background Elevated total homocysteine (tHcy), a risk factor for many chronic diseases, can be remethylated to methionine by folate. Alternatively, tHcy can be metabolized by other 1-carbon nutrients, ie, betaine and its precursor, choline. Objective We aimed to assess the association between the dietary intakes of betaine and choline and the concentration of tHcy. Design We conducted a cross-sectional analysis in 1477 women by using linear regression models to predict mean fasting tHcy by intakes of of betaine and choline. Results tHcy was 8% lower in the highest quintile of total betaine + choline intake than in the lowest quintile, even after control for folate intake (P for trend = 0.07). Neither choline nor betaine intake individually was significantly associated with tHcy. Choline from 2 choline-containing compounds, glycerophosphocholine and phosphocholine, was inversely associated with tHcy. These inverse associations were more pronounced in women with folate intake < 400 μg/d than in those with intakes ≥400 μg/d (P for interaction = 0.03 for phosphocholine) and in moderate alcohol drinkers (≥15 g/d) than in nondrinkers or light drinkers (<15 g/d) (P for interaction = 0.02 for glycerophosphocholine and 0.04 for phosphocholine). The strongest dose response was seen in women with a low-methyl diet (high alcohol and low folate intake) (P for interaction = 0.002 for glycerophosphocholine and 0.001 for phosphocholine). Conclusions Total choline + betaine intake was inversely associated with tHcy, as was choline from 2 water-soluble choline-containing compounds. Remethylation of tHcy may be more dependent on the betaine pathway when methyl sources are low as a result of either inadequate folate intake or heavier alcohol consumption. PMID:17921386
Bindel, D J; Titgemeyer, E C; Drouillard, J S; Ives, S E
2005-07-01
Ruminally cannulated steers (281 +/- 18 kg) were used to evaluate effects of choline on digestion and metabolism. Four steers were implanted with 24 mg of estradiol and 120 mg of trenbolone acetate, and four steers were not implanted. Cattle were assigned to concurrent 4 x 4 Latin squares. Dietary treatments were a 2 x 2 factorial: 0 or 4% tallow (DM basis) in corn-based diets, and 0 or 5 g/d supplemental choline administered abomasally. Blood collected before and 6 h after the initial choline infusion was used to assess acute responses to choline. Digestibility and blood metabolites were measured after adaptation to choline, as well as after an abomasal dose of 100 g of lipid. Digestibilities of dietary DM (P = 0.29) and of dietary total fatty acids (P = 0.42) were not affected by choline. Apparent digestibilities of C18:0 and C18:1 fatty acids were greater (P < 0.05) when diets contained 4% tallow. Digestibilities of fatty acids in the lipid dose were less than those in the diet, and no biologically important differences in fatty acid disappearance resulted from the treatments. No significant acute responses to choline were detected. After adaptation to choline, no important differences in plasma metabolites occurred in response to choline infusion. Plasma urea was less (P < 0.05) for implanted cattle, reflecting increased deposition of protein. Plasma cholesterol was greater (P < 0.05) for steers fed 4% tallow. Changes in plasma triglycerides in response to an abomasal lipid dose were less (P < 0.05) for steers fed 4% tallow, probably due to greater triglyceride concentrations at the time of lipid dosing. In summary, few responses to abomasally infused choline were observed in either digestion or plasma metabolites.
Yoon, Sujung J; Lyoo, In Kyoon; Kim, Hengjun J; Kim, Tae-Suk; Sung, Young Hoon; Kim, Namkug; Lukas, Scott E; Renshaw, Perry F
2010-04-01
Cytidine-5'-diphosphate choline (CDP-choline), as an important intermediate for major membrane phospholipids, may exert neuroprotective effects in various neurodegenerative disorders. This longitudinal proton magnetic resonance spectroscopy ((1)H-MRS) study aimed to examine whether a 4-week CDP-choline treatment could alter neurometabolite levels in patients with methamphetamine (MA) dependence and to investigate whether changes in neurometabolite levels would be associated with MA use. We hypothesized that the prefrontal levels of N-acetyl-aspartate (NAA), a neuronal marker, and choline-containing compound (Cho), which are related to membrane turnover, would increase with CDP-choline treatment in MA-dependent patients. We further hypothesized that this increase would correlate with the total number of negative urine results. Thirty-one treatment seekers with MA dependence were randomly assigned to receive CDP-choline (n=16) or placebo (n=15) for 4 weeks. Prefrontal NAA and Cho levels were examined using (1)H-MRS before medication, and at 2 and 4 weeks after treatment. Generalized estimating equation regression analyses showed that the rate of change in prefrontal NAA (p=0.005) and Cho (p=0.03) levels were greater with CDP-choline treatment than with placebo. In the CDP-choline-treated patients, changes in prefrontal NAA levels were positively associated with the total number of negative urine results (p=0.03). Changes in the prefrontal Cho levels, however, were not associated with the total number of negative urine results. These preliminary findings suggest that CDP-choline treatment may exert potential neuroprotective effects directly or indirectly because of reductions in drug use by the MA-dependent patients. Further studies with a larger sample size of MA-dependent patients are warranted to confirm a long-term efficacy of CDP-choline in neuroprotection and abstinence.
Dietary choline requirements of women: effects of estrogen and genetic variation123
Fischer, Leslie M; da Costa, Kerry-Ann; Kwock, Lester; Galanko, Joseph
2010-01-01
Background: Choline is obtained from the diet and from the biosynthesis of phosphatidylcholine. Phosphatidylcholine is catalyzed by the enzyme phosphatidylethanolamine-N-methyltransferase (PEMT), which is induced by estrogen. Because they have lower estrogen concentrations, postmenopausal women are more susceptible to the risk of organ dysfunction in response to a low-choline diet. A common genetic polymorphism (rs12325817) in the PEMT gene can also increase this risk. Objective: The objective was to determine whether the risk of low choline–related organ dysfunction increases with the number of alleles of rs12325817 in premenopausal women and whether postmenopausal women (with or without rs12325817) treated with estrogen are more resistant to developing such symptoms. Design: Premenopausal women (n = 27) consumed a choline-sufficient diet followed by a very-low-choline diet until they developed organ dysfunction (or for 42 d), which was followed by a high-choline diet. Postmenopausal women (n = 22) were placed on the same diets but were first randomly assigned to receive estrogen or a placebo. The women were monitored for organ dysfunction and plasma choline metabolites and were genotyped for rs12325817. Results: A dose-response effect of rs12325817 on the risk of choline-related organ dysfunction was observed in premenopausal women: 80%, 43%, and 13% of women with 2, 1, or 0 alleles, respectively, developed organ dysfunction. Among postmenopausal women, 73% who received placebo but only 18% who received estrogen developed organ dysfunction during the low-choline diet. Conclusions: Because of their lower estrogen concentrations, postmenopausal women have a higher dietary requirement for choline than do premenopausal women. Choline requirements for both groups of women are further increased by rs12325817. This trial was registered at clinicaltrials.gov as NCT00065546. PMID:20861172
Wang, Zeneng; Tang, W H Wilson; Buffa, Jennifer A; Fu, Xiaoming; Britt, Earl B; Koeth, Robert A; Levison, Bruce S; Fan, Yiying; Wu, Yuping; Hazen, Stanley L
2014-04-01
Recent metabolomics and animal model studies show trimethylamine-N-oxide (TMAO), an intestinal microbiota-dependent metabolite formed from dietary trimethylamine-containing nutrients such as phosphatidylcholine (PC), choline, and carnitine, is linked to coronary artery disease pathogenesis. Our aim was to examine the prognostic value of systemic choline and betaine levels in stable cardiac patients. We examined the relationship between fasting plasma choline and betaine levels and risk of major adverse cardiac events (MACE = death, myocardial infraction, stroke) in relation to TMAO over 3 years of follow-up in 3903 sequential stable subjects undergoing elective diagnostic coronary angiography. In our study cohort, median (IQR) TMAO, choline, and betaine levels were 3.7 (2.4-6.2)μM, 9.8 (7.9-12.2)μM, and 41.1 (32.5-52.1)μM, respectively. Modest but statistically significant correlations were noted between TMAO and choline (r = 0.33, P < 0.001) and less between TMAO and betaine (r = 0.09, P < 0.001). Higher plasma choline and betaine levels were associated with a 1.9-fold and 1.4-fold increased risk of MACE, respectively (Quartiles 4 vs. 1; P < 0.01, each). Following adjustments for traditional cardiovascular risk factors and high-sensitivity C-reactive protein, elevated choline [1.34 (1.03-1.74), P < 0.05], and betaine levels [1.33 (1.03-1.73), P < 0.05] each predicted increased MACE risk. Neither choline nor betaine predicted MACE risk when TMAO was added to the adjustment model, and choline and betaine predicted future risk for MACE only when TMAO was elevated. Elevated plasma levels of choline and betaine are each associated with incident MACE risk independent of traditional risk factors. However, high choline and betaine levels are only associated with higher risk of future MACE with concomitant increase in TMAO.
Wang, Zeneng; Tang, W. H. Wilson; Buffa, Jennifer A.; Fu, Xiaoming; Britt, Earl B.; Koeth, Robert A.; Levison, Bruce S.; Fan, Yiying; Wu, Yuping; Hazen, Stanley L.
2014-01-01
Aims Recent metabolomics and animal model studies show trimethylamine-N-oxide (TMAO), an intestinal microbiota-dependent metabolite formed from dietary trimethylamine-containing nutrients such as phosphatidylcholine (PC), choline, and carnitine, is linked to coronary artery disease pathogenesis. Our aim was to examine the prognostic value of systemic choline and betaine levels in stable cardiac patients. Methods and results We examined the relationship between fasting plasma choline and betaine levels and risk of major adverse cardiac events (MACE = death, myocardial infraction, stroke) in relation to TMAO over 3 years of follow-up in 3903 sequential stable subjects undergoing elective diagnostic coronary angiography. In our study cohort, median (IQR) TMAO, choline, and betaine levels were 3.7 (2.4–6.2)μM, 9.8 (7.9–12.2)μM, and 41.1 (32.5–52.1)μM, respectively. Modest but statistically significant correlations were noted between TMAO and choline (r = 0.33, P < 0.001) and less between TMAO and betaine (r = 0.09, P < 0.001). Higher plasma choline and betaine levels were associated with a 1.9-fold and 1.4-fold increased risk of MACE, respectively (Quartiles 4 vs. 1; P < 0.01, each). Following adjustments for traditional cardiovascular risk factors and high-sensitivity C-reactive protein, elevated choline [1.34 (1.03–1.74), P < 0.05], and betaine levels [1.33 (1.03–1.73), P < 0.05] each predicted increased MACE risk. Neither choline nor betaine predicted MACE risk when TMAO was added to the adjustment model, and choline and betaine predicted future risk for MACE only when TMAO was elevated. Conclusion Elevated plasma levels of choline and betaine are each associated with incident MACE risk independent of traditional risk factors. However, high choline and betaine levels are only associated with higher risk of future MACE with concomitant increase in TMAO. PMID:24497336
Choline nutrition programs brain development via DNA and histone methylation.
Blusztajn, Jan Krzysztof; Mellott, Tiffany J
2012-06-01
Choline is an essential nutrient for humans. Metabolically choline is used for the synthesis of membrane phospholipids (e.g. phosphatidylcholine), as a precursor of the neurotransmitter acetylcholine, and, following oxidation to betaine, choline functions as a methyl group donor in a pathway that produces S-adenosylmethionine. As a methyl donor choline influences DNA and histone methylation--two central epigenomic processes that regulate gene expression. Because the fetus and neonate have high demands for choline, its dietary intake during pregnancy and lactation is particularly important for normal development of the offspring. Studies in rodents have shown that high choline intake during gestation improves cognitive function in adulthood and prevents memory decline associated with old age. These behavioral changes are accompanied by electrophysiological, neuroanatomical, and neurochemical changes and by altered patterns of expression of multiple cortical and hippocampal genes including those encoding key proteins that contribute to the biochemical mechanisms of learning and memory. These actions of choline are observed long after the exposure to the nutrient ended (months) and correlate with fetal hepatic and cerebral cortical choline-evoked changes in global- and gene-specific DNA cytosine methylation and with dramatic changes of the methylation pattern of lysine residues 4, 9 and 27 of histone H3. Moreover, gestational choline modulates the expression of DNA (Dnmt1, Dnmt3a) and histone (G9a/Ehmt2/Kmt1c, Suv39h1/Kmt1a) methyltransferases. In addition to the central role of DNA and histone methylation in brain development, these processes are highly dynamic in adult brain, modulate the expression of genes critical for synaptic plasticity, and are involved in mechanisms of learning and memory. A recent study documented that in a cohort of normal elderly people, verbal and visual memory function correlated positively with the amount of dietary choline consumption. It will be important to determine if these actions of choline on human cognition are mediated by epigenomic mechanisms or by its influence on acetylcholine or phospholipid synthesis.
Wu, Brian T F; Dyer, Roger A; King, D Janette; Richardson, Kelly J; Innis, Sheila M
2012-01-01
The importance of maternal dietary choline for fetal neural development and later cognitive function has been well-documented in experimental studies. Although choline is an essential dietary nutrient for humans, evidence that low maternal choline in pregnancy impacts neurodevelopment in human infants is lacking. We determined potential associations between maternal plasma free choline and its metabolites betaine and dimethylglycine in pregnancy and infant neurodevelopment at 18 months of age. This was a prospective study of healthy pregnant women and their full-term, single birth infants. Maternal blood was collected at 16 and 36 weeks of gestation and infant neurodevelopment was assessed at 18 months of age for 154 mother-infant pairs. Maternal plasma choline, betaine, dimethylglycine, methionine, homocysteine, cysteine, total B12, holotranscobalamin and folate were quantified. Infant neurodevelopment was evaluated using the Bayley Scales of Infant Development-III. Multivariate regression, adjusting for covariates that impact development, was used to determine the associations between maternal plasma choline, betaine and dimethylglycine and infant neurodevelopment. The maternal plasma free choline at 16 and 36 weeks gestation was median (interquartile range) 6.70 (5.78-8.03) and 9.40 (8.10-11.3) µmol/L, respectively. Estimated choline intakes were (mean ± SD) 383 ± 98.6 mg/day, and lower than the recommended 450 mg/day. Betaine intakes were 142 ± 70.2 mg/day. Significant positive associations were found between infant cognitive test scores and maternal plasma free choline (B=6.054, SE=2.283, p=0.009) and betaine (B=7.350, SE=1.933, p=0.0002) at 16 weeks of gestation. Maternal folate, total B12, or holotranscobalamin were not related to infant development. We show that choline status in the first half of pregnancy is associated with cognitive development among healthy term gestation infants. More work is needed on the potential limitation of choline or betaine in the diets of pregnant women.
Monk, Bradley R; Leslie, Frances M; Thomas, Jennifer D
2012-08-01
Prenatal alcohol exposure leads to long-lasting cognitive and attention deficits, as well as hyperactivity. Using a rat model, we have previously shown that perinatal supplementation with the essential nutrient, choline, can reduce the severity of some fetal alcohol effects, including hyperactivity and deficits in learning and memory. In fact, choline can mitigate alcohol-related learning deficits even when administered after developmental alcohol exposure, during the postnatal period. However, it is not yet known how choline is able to mitigate alcohol-related behavioral alterations. Choline may act by altering cholinergic signaling in the hippocampus. This study examined the effects of developmental alcohol exposure and perinatal choline supplementation on hippocampal M(1) and M(2/4) muscarinic receptors. Sprague-Dawley rat pups were orally intubated with ethanol (5.25 mg/kg/day) from postnatal days (PD) 4-9, a period of brain development equivalent to the human third trimester; control subjects received sham intubations. From PD 4-30, subjects were injected s.c. with choline chloride (100 mg/kg/day) or saline vehicle. Open field activity was assessed from PD 30 through 33, and brain tissue was collected on PD 35 for autoradiographic analysis. Ethanol-exposed subjects were more active compared to controls during the first 2 days of testing, an effect attenuated with choline supplementation. Developmental alcohol exposure significantly decreased the density of muscarinic M(1) receptors in the dorsal hippocampus, an effect that was not altered by choline supplementation. In contrast, developmental alcohol exposure significantly increased M(2/4) receptor density, an effect mitigated by choline supplementation. In fact, M(2/4) receptor density of subjects exposed to alcohol and treated with choline did not differ significantly from that of controls. These data suggest that developmental alcohol exposure can cause long-lasting changes in the hippocampal cholinergic system and that perinatal choline supplementation may attenuate alcohol-related behavioral changes by influencing cholinergic systems. Copyright © 2012 Wiley Periodicals, Inc.
Monk, Bradley R.; Leslie, Frances M.; Thomas, Jennifer D.
2012-01-01
Prenatal alcohol exposure leads to long-lasting cognitive and attention deficits, as well as hyperactivity. Using a rat model, we have previously shown that perinatal supplementation with the essential nutrient, choline, can reduce the severity of some fetal alcohol effects, including hyperactivity and deficits in learning and memory. In fact, choline can mitigate alcohol-related learning deficits even when administered after developmental alcohol exposure, during the postnatal period. However, it is not yet known how choline is able to mitigate alcohol-related behavioral alterations. Choline may act by altering cholinergic signaling in the hippocampus. This study examined the effects of developmental alcohol exposure and perinatal choline supplementation on hippocampal M1 and M2/4 muscarinic receptors. Sprague-Dawley rat pups were orally intubated with ethanol (5.25 mg/kg/day) from postnatal days (PD) 4-9, a period of brain development equivalent to the human 3rd trimester; control subjects received sham intubations. From PD 4-30, subjects were injected s.c. with choline chloride (100 mg/kg/day) or saline vehicle. Open field activity was assessed from PD 30-33 and brain tissue was collected on PD 35 for autoradiographic analysis. Ethanol-exposed subjects were more active compared to controls during the first two days of testing, an effect attenuated with choline supplementation. Developmental alcohol exposure significantly decreased the density of muscarinic M1 receptors in the dorsal hippocampus, an effect that was not altered by choline supplementation. In contrast, developmental alcohol exposure significantly increased M2/4 receptor density, an effect mitigated by choline supplementation. In fact, M2/4 receptor density of subjects exposed to alcohol and treated with choline did not differ significantly from that of controls. These data suggest that developmental alcohol exposure can cause long-lasting changes in the hippocampal cholinergic system and that perinatal choline supplementation may attenuate alcohol-related behavioral changes by influencing cholinergic systems. PMID:22431326
da Costa, Kerry-Ann; Corbin, Karen D.; Niculescu, Mihai D.; Galanko, Joseph A.; Zeisel, Steven H.
2014-01-01
Effect alleles (alleles with a polymorphism that is associated with the effect being measured) in a small number of single-nucleotide polymorphisms (SNPs) are known to influence the dietary requirement for choline. In this study, we examined a much larger number of SNPs (n=200) in 10 genes related to choline metabolism for associations with development of organ dysfunction (liver or muscle) when 79 humans were fed a low-choline diet. We confirmed that effect alleles in SNPs such as the C allele of PEMT rs12325817 increase the risk of developing organ dysfunction in women when they consume a diet low in choline, and we identified novel effect alleles, such as the C allele of CHKA SNP rs7928739, that alter dietary choline requirements. When fed a low-choline diet, some people presented with muscle damage rather than liver damage; several effect alleles in SLC44A1 (rs7873937, G allele; rs2771040, G; rs6479313, G; rs16924529, A; and rs3199966, C) and one in CHKB (rs1557502, A) were more common in these individuals. This suggests that pathways related to choline metabolism are more important for normal muscle function than previously thought. In European, Mexican, and Asian Americans, and in individuals of African descent, we examined the prevalence of the effect alleles in SNPs that alter choline requirement and found that they are differentially distributed among people of different ethnic and racial backgrounds. Overall, our study has identified novel genetic variants that modulate choline requirements and suggests that the dietary requirement for choline may be different across racial and ethnic groups.—Da Costa, K.-A., Corbin, K. D., Niculescu, M. D., Galanko, J. A., Zeisel, S. H. Identification of new genetic polymorphisms that alter the dietary requirement for choline and vary in their distribution across ethnic and racial groups. PMID:24671709
Choline nutrition programs brain development via DNA and histone methylation
Blusztajn, Jan Krzysztof; Mellott, Tiffany J.
2017-01-01
Choline is an essential nutrient for humans. Metabolically choline is used for the synthesis of membrane phospholipids (e.g. phosphatidylcholine), as a precursor of the neurotransmitter acetylcholine, and, following oxidation to betaine, choline functions as a methyl group donor in a pathway that produces S-adenosylmethionine. As a methyl donor choline influences DNA and histone methylation – two central epigenomic processes that regulate gene expression. Because the fetus and neonate have high demands for choline, its dietary intake during pregnancy and lactation is particularly important for normal development of the offspring. Studies in rodents have shown that high choline intake during gestation improves cognitive function in adulthood and prevents memory decline associated with old age. These behavioral changes are accompanied by electrophysiological, neuroanatomical, and neurochemical changes and by altered patterns of expression of multiple cortical and hippocampal genes including those encoding key proteins that contribute to the biochemical mechanisms of learning and memory. These actions of choline are observed long after the exposure to the nutrient ended (months) and correlate with fetal hepatic and cerebral cortical choline-evoked changes in global- and gene-specific DNA cytosine methylation and with dramatic changes of the methylation pattern of lysine residues 4, 9 and 27 of histone H3. Moreover, gestational choline modulates the expression of DNA (Dnmt1, Dnmt3a) and histone (G9a/Ehmt2/Kmt1c, Suv39h1/Kmt1a) methyltransferases. In addition to the central role of DNA and histone methylation in brain development, these processes are highly dynamic in adult brain, modulate the expression of genes critical for synaptic plasticity, and are involved in mechanisms of learning and memory. A recent study documented that in a cohort of normal elderly people, verbal and visual memory function correlated positively with the amount of dietary choline consumption. It will be important to determine if these actions of choline on human cognition are mediated by epigenomic mechanisms or by its influence on acetylcholine or phospholipid synthesis. PMID:22483275
Nguyen, Tanya T; Risbud, Rashmi D; Mattson, Sarah N; Chambers, Christina D; Thomas, Jennifer D
2016-12-01
Prenatal alcohol exposure results in a broad range of cognitive and behavioral impairments. Because of the long-lasting problems that are associated with fetal alcohol spectrum disorders (FASDs), the development of effective treatment programs is critical. Preclinical animal studies have shown that choline, which is an essential nutrient, can attenuate the severity of alcohol-related cognitive impairments. We aimed to translate preclinical findings to a clinical population to investigate whether choline supplementation can ameliorate the severity of memory, executive function, and attention deficits in children with FASDs. In the current study, which was a randomized, double-blind, placebo-controlled clinical trial, we explored the effectiveness of a choline intervention for children with FASDs who were aged 5-10 y. Fifty-five children with confirmed histories of heavy prenatal alcohol exposure were randomly assigned to either the choline (n = 29) or placebo (n = 26) treatment arms. Participants in the choline group received 625 mg choline/d for 6 wk, whereas subjects in the placebo group received an equivalent dose of an inactive placebo treatment. Primary outcomes, including the performance on neuropsychological measures of memory, executive function, and attention and hyperactivity, were assessed at baseline and postintervention. Compared with the placebo group, participants in the choline group did not differentially improve in cognitive performance in any domain. Treatment compliance and mean dietary choline intake were not predictive of treatment outcomes. Findings of the current study do not support that choline, administered at a dose of 625 mg/d for 6 wk, is an effective intervention for school-aged (5-10 y old) children with FASDs. This research provides important information about choline's therapeutic window. Combined with other studies of choline and nutritional interventions in this population, this study emphasizes a further need for the continued study of the role of nutritional status and supplementation in children with FASDs and the contributions of nutrition to neurocognition. This trial was registered at clinicaltrials.gov as NCT01911299. © 2016 American Society for Nutrition.
Maternal Dietary Choline Status Influences Brain Gray and White Matter Development in Young Pigs
Mudd, Austin T; Getty, Caitlyn M; Dilger, Ryan N
2018-01-01
Abstract Background Choline is an essential nutrient that is pivotal to proper brain development. Research in animal models suggests that perinatal choline deficiency influences neuron development in the hippocampus and cortex, yet these observations require invasive techniques. Objective This study aimed to characterize the effects of perinatal choline deficiency on gray and white matter development with the use of noninvasive neuroimaging techniques in young pigs. Methods During the last 64 d of the 114-d gestation period Yorkshire sows were provided with a choline-sufficient (CS) or choline-deficient (CD) diet, analyzed to contain 1214 mg or 483 mg total choline/kg diet, respectively. Upon farrowing, pigs (Sus scrofa domesticus) were allowed colostrum consumption for ≤48 h, were further stratified into postnatal treatment groups, and were provided either CS or CD milk replacers, analyzed to contain 1591 or 518 mg total choline/kg diet, respectively, for 28 d. At 30 d of age, pigs were subjected to MRI procedures to assess brain development. Gray and white matter development was assessed through voxel-based morphometry (VBM) and tract-based spatial statistics (TBSS) to assess the effects of prenatal and postnatal dietary choline status. Results VBM analysis indicated that prenatally CS pigs exhibited increased (P < 0.01) gray matter in the left and right cortex compared with prenatally CD pigs. Analysis of white matter indicated that prenatally CS pigs exhibited increased (P < 0.01) white matter in the internal capsule, putamen–globus pallidus, and right cortex compared with prenatally CD pigs. No postnatal effects (P > 0.05) of choline status were noted for VBM analyses of gray and white matter. TBSS also showed no significant effects (P > 0.05) of prenatal or postnatal choline status for diffusion values along white matter tracts. Conclusions Observations from this study suggest that prenatal choline deficiency results in altered cortical gray matter and reduced white matter in the internal capsule and putamen of young pigs. With the use of noninvasive neuroimaging techniques, results from our study indicate that prenatal choline deficiency greatly alters gray and white matter development in pigs, thereby providing a translational assessment that may be used in clinical populations.
CDP-choline: pharmacological and clinical review.
Secades, J J; Frontera, G
1995-10-01
Cytidine 5'-diphosphocholine, CDP-choline or citicoline, is an essential intermediate in the biosynthetic pathway of the structural phospholipids of cell membranes, especially in that of phosphatidylcholine. Upon oral or parenteral administration, CDP-choline releases its two principle components, cytidine and choline. When administered orally, it is absorbed almost completely, and its bioavailability is approximately the same as when administered intravenously. Once absorbed, the cytidine and choline disperse widely throughout the organism, cross the blood-brain barrier and reach the central nervous system (CNS), where they are incorporated into the phospholipid fraction of the membrane and microsomes. CDP-choline activates the biosynthesis of structural phospholipids in the neuronal membranes, increases cerebral metabolism and acts on the levels of various neurotransmitters. Thus, it has been experimentally proven that CDP-choline increases noradrenaline and dopamine levels in the CNS. Due to these pharmacological activities, CDP-choline has a neuroprotective effect in situations of hypoxia and ischemia, as well as improved learning and memory performance in animal models of brain aging. Furthermore, it has been demonstrated that CDP-choline restores the activity of mitochondrial ATPase and of membranal Na+/K+ ATPase, inhibits the activation of phospholipase A2 and accelerates the reabsorption of cerebral edema in various experimental models. CDP-choline is a safe drug, as toxicological tests have shown; it has no serious effects on the cholinergic system and it is perfectly tolerated. These pharmacological characteristics, combined with CDP-choline's mechanisms of action, suggest that this drug may be suitable for the treatment of cerebral vascular disease, head trauma of varying severity and cognitive disorders of diverse etiology. In studies carried out on the treatment of patients with head trauma, CDP-choline accelerated the recovery from post-traumatic coma and the recuperation of walking ability, achieved a better final functional result and reduced the hospital stay of these patients, in addition to improving the cognitive and memory disturbances which are observed after a head trauma of lesser severity and which constitute the disorder known as postconcussion syndrome. In the treatment of patients with acute cerebral vascular disease of the ischemic type, CDP-choline accelerated the recovery of consciousness and motor deficit, attaining a better final result and facilitating the rehabilitation of these patients. The other important use for CDP-choline is in the treatment of senile cognitive impairment, which is secondary to degenerative diseases (e.g., Alzheimer's disease) and to chronic cerebral vascular disease. In patients with chronic cerebral ischemia, CDP-choline improves scores on cognitive evaluation scales, while in patients with senile dementia of the Alzheimer's type, it slows the disease's evolution. Beneficial neuroendocrine, neuroimmunomodulatory and neurophysiological effects have been described. CDP-choline has also been shown to be effective as co-therapy for Parkinson's disease. No serious side effects have been found in any of the groups of patients treated with CDP-choline, which demonstrates the safety of the treatment.
USDA-ARS?s Scientific Manuscript database
Gut apical Na(+)-glucose cotransporter 1 (SGLT1) activity is high at the birth and during suckling, thus contributing substantially to neonatal glucose homeostasis. We hypothesize that neonates possess high SGLT1 maximal activity by expressing apical SGLT1 protein along the intestinal crypt-villus a...
Rusan, Zeid M; Kingsford, Olivia A; Tanouye, Mark A
2014-01-01
Flies carrying a kcc loss-of-function mutation are more seizure-susceptible than wild-type flies. The kcc gene is the highly conserved Drosophila melanogaster ortholog of K+/Cl- cotransporter genes thought to be expressed in all animal cell types. Here, we examined the spatial and temporal requirements for kcc loss-of-function to modify seizure-susceptibility in flies. Targeted RNA interference (RNAi) of kcc in various sets of neurons was sufficient to induce severe seizure-sensitivity. Interestingly, kcc RNAi in glia was particularly effective in causing seizure-sensitivity. Knockdown of kcc in glia or neurons during development caused a reduction in seizure induction threshold, cell swelling, and brain volume increase in 24-48 hour old adult flies. Third instar larval peripheral nerves were enlarged when kcc RNAi was expressed in neurons or glia. Results suggest that a threshold of K+/Cl- cotransport dysfunction in the nervous system during development is an important determinant of seizure-susceptibility in Drosophila. The findings presented are the first attributing a causative role for glial cation-chloride cotransporters in seizures and epileptogenesis. The importance of elucidating glial cell contributions to seizure disorders and the utility of Drosophila models is discussed.
Mechanism of ion transport by avian salt gland primary cell cultures.
Lowy, R J; Dawson, D C; Ernst, S A
1989-06-01
Confluent sheets formed from primary culture of avian salt gland secretory cells exhibit a short-circuit current (Isc) in response to cholinergic and beta-adrenergic stimulation [Lowy, R. J., D. C. Dawson, and S. A. Ernst. Am J. Physiol. 249 (Cell Physiol. 18): C41-C47, 1985]. To establish the ionic basis for the Isc, transmural fluxes of 22Na and 36Cl were measured. Under short-circuit conditions there was little net flux of either ion in the absence of agonists. Addition of carbachol elevated net serosal-to-mucosal Cl flux to 1.71 mu eq.h-1.cm-2, whereas a smaller increase to 0.85 mu eq.h-1.cm-2 occurred with isoproterenol. Neither agonist altered net Na flux. The stimulated Isc accounted for 70% of the net Cl flux induced by carbachol and nearly 100% of that induced by isoproterenol. Replacement of Cl by gluconate or Na by choline abolished (carbachol) or greatly reduced (isoproterenol) the Isc, which could be restored in a dose-dependent fashion by ion restitution. Active ion transport was preferentially inhibited by basal (vs. apical) addition of ouabain, furosemide, or barium. The results provide evidence that cholinergic and beta-adrenergic agonists elicit active transmural Cl secretion. They further suggest that transport is dependent on the Na+-K+-adenosine-triphosphatase, a Na-Cl cotransport process, and a basal K conductance, all features of a secondary active Cl secretory mechanism.
Dietary intake and food sources of choline in European populations.
Vennemann, Francy B C; Ioannidou, Sofia; Valsta, Liisa M; Dumas, Céline; Ocké, Marga C; Mensink, Gert B M; Lindtner, Oliver; Virtanen, Suvi M; Tlustos, Christina; D'Addezio, Laura; Mattison, Irene; Dubuisson, Carine; Siksna, Inese; Héraud, Fanny
2015-12-28
Choline is an important nutrient for humans. Choline intake of the European population was assessed considering the European Food Safety Authority European Comprehensive Food Consumption Database and the United States Department of Agriculture Nutrient Database. Average choline intake ranges were 151-210 mg/d among toddlers (1 to ≤3 years old), 177-304 mg/d among other children (3 to ≤10 years old), 244-373 mg/d among adolescents (10 to ≤18 years old), 291-468 mg/d among adults (18 to ≤65 years old), 284-450 mg/d among elderly people (65 to ≤75 years old) and 269-444 mg/d among very elderly people (≥75 years old). The intakes were higher among males compared with females, mainly due to larger quantities of food consumed per day. In most of the population groups considered, the average choline intake was below the adequate intake (AI) set by the Institute of Medicine in the USA. The main food groups contributing to choline intake were meat, milk, grain, egg and their derived products, composite dishes and fish. The main limitations of this study are related to the absence of choline composition data of foods consumed by the European population and the subsequent assumption made to assess their intake levels. Given the definition of AI, no conclusion on the adequacy of choline intake can be drawn for most European population groups. Such results improve the knowledge on choline intake in Europe that could be further refined by the collection of choline composition data for foods as consumed in Europe.
Choline and betaine intake and colorectal cancer risk in Chinese population: a case-control study.
Lu, Min-Shan; Fang, Yu-Jing; Pan, Zhi-Zhong; Zhong, Xiao; Zheng, Mei-Chun; Chen, Yu-Ming; Zhang, Cai-Xia
2015-01-01
Few studies have examined the association of choline and betaine intake with colorectal cancer risk, although they might play an important role in colorectal cancer development because of their role as methyl donors. The aim of this study was to examine the relationship between consumption of choline and betaine and colorectal cancer risk in a Chinese population. A case-control study was conducted between July 2010 and December 2013 in Guangzhou, China. Eight hundred and ninety consecutively recruited colorectal cancer cases were frequency matched to 890 controls by age (5-year interval) and sex. Dietary information was assessed with a validated food frequency questionnaire by face-to-face interviews. The logistic regression model was used to estimate multivariate odds ratios (ORs) and 95% confidence intervals (CIs). Total choline intake was inversely associated with colorectal cancer risk after adjustment for various lifestyle and dietary factors. The multivariate-adjusted OR was 0.54 (95%CI = 0.37-0.80, Ptrend <0.01) comparing the highest with the lowest quartile. No significant associations were observed for betaine or total choline+betaine intakes. For choline-containing compounds, lower colorectal cancer risk was associated with higher intakes of choline from phosphatidylcholine, glycerophosphocholine and sphingomyelin but not for free choline and phosphocholine. The inverse association of total choline intake with colorectal cancer risk was observed in both men and women, colon and rectal cancer. These inverse associations were not modified by folate intake. These results indicate that high intake of total choline is associated with a lower risk of colorectal cancer.
Choline and Betaine Intake and Colorectal Cancer Risk in Chinese Population: A Case-Control Study
Pan, Zhi-Zhong; Zhong, Xiao; Zheng, Mei-Chun; Chen, Yu-Ming; Zhang, Cai-Xia
2015-01-01
Background Few studies have examined the association of choline and betaine intake with colorectal cancer risk, although they might play an important role in colorectal cancer development because of their role as methyl donors. The aim of this study was to examine the relationship between consumption of choline and betaine and colorectal cancer risk in a Chinese population. Methodology/Principal Findings A case-control study was conducted between July 2010 and December 2013 in Guangzhou, China. Eight hundred and ninety consecutively recruited colorectal cancer cases were frequency matched to 890 controls by age (5-year interval) and sex. Dietary information was assessed with a validated food frequency questionnaire by face-to-face interviews. The logistic regression model was used to estimate multivariate odds ratios (ORs) and 95% confidence intervals (CIs). Total choline intake was inversely associated with colorectal cancer risk after adjustment for various lifestyle and dietary factors. The multivariate-adjusted OR was 0.54 (95%CI = 0.37-0.80, Ptrend <0.01) comparing the highest with the lowest quartile. No significant associations were observed for betaine or total choline+betaine intakes. For choline-containing compounds, lower colorectal cancer risk was associated with higher intakes of choline from phosphatidylcholine, glycerophosphocholine and sphingomyelin but not for free choline and phosphocholine. The inverse association of total choline intake with colorectal cancer risk was observed in both men and women, colon and rectal cancer. These inverse associations were not modified by folate intake. Conclusions These results indicate that high intake of total choline is associated with a lower risk of colorectal cancer. PMID:25785727
Choline+ is a low-affinity ligand for alpha 1-adrenoceptors.
Unelius, L; Cannon, B; Nedergaard, J
1994-10-07
The effect of choline+, a commonly used Na+ substitute, on ligand binding to alpha 1-adrenoceptors was investigated. It was found that replacement of 25% of the Na+ in a Krebs-Ringer bicarbonate buffer with choline+ led to a 3-fold decrease in the apparent affinity of [3H]prazosin for its binding site (i.e. the alpha 1-receptor) in a membrane preparation from brown adipose tissue, while no decrease in the total number of binding sites was observed. Similar effects were seen in membrane preparations from liver and brain. In competition experiments, it was found that choline+ could inhibit [3H]prazosin binding; from the inhibition curve, an affinity (Ki) of 31 mM choline+ for the [3H]prazosin-binding site could be calculated. In fully choline(+)-substituted buffers, where the level of [3H]prazosin binding was substantially reduced, both phentolamine and norepinephrine could still compete with [3H]prazosin for its binding site, with virtually unaltered affinity; thus choline+ did not substantially affect the characteristics of those receptors to which it did not bind. Choline+ did not affect the binding characteristics of the beta 1/beta 2 radioligand [3H]CGP-12177; thus, the effect on alpha 1-receptors was not due to general, unspecific effects on the membrane preparations. It is concluded that choline+ possesses characteristics similar to those of a competitive ligand for the alpha 1-adrenoceptor; it has a low affinity but the competitive type of interaction of choline may nonetheless under experimental conditions interfere with agonist interaction with the alpha 1-receptor.
Choline as an agonist: determination of its agonistic potency on cholinergic receptors.
Ulus, I H; Millington, W R; Buyukuysal, R L; Kiran, B K
1988-07-15
These experiments examined the potency of choline as a cholinergic agonist at both muscarinic and nicotinic receptors in rat brain and peripheral tissues. Choline stimulated the contraction of isolated smooth muscle preparations of the stomach fundus, urinary bladder and trachea and reduced the frequency of spontaneous contractions of the right atrium at high micromolar and low millimolar concentrations. The potency of choline to elicit a biological response varied markedly among these tissues; EC50 values ranged between 0.41 mM in the fundus to 14.45 mM in the atrium. Choline also displaced [3H]quinuclidinyl benzilate binding in a concentration-dependent manner although, again, its potency varied among different brain regions (Ki = 1.2 to 3.5 mM) and peripheral tissues (Ki = 0.28 to 3.00 mM). Choline exhibited a comparable affinity for nicotinic receptors. It stimulated catecholamine release from the vascularly perfused adrenal gland (EC50 = 1.3 mM) and displaced L-[3H]nicotine binding to membrane preparations of brain and peripheral tissues (Ki = 0.38 to 1.17 mM). However, the concentration of choline required to bind to cholinergic receptors in most tissues was considerably higher than serum levels either in controls (8-13 microM) or following the administration of choline chloride (200 microM). These results clearly demonstrate that choline is a weak cholinergic agonist. Its potency is too low to account for the central nervous system effects produced by choline administration, although the direct activation of cholinergic receptors in several peripheral tissues may explain some of its side effects.
CDP-choline modulates matrix metalloproteinases in rat sciatic injury.
Gundogdu, Elif Basaran; Bekar, Ahmet; Turkyilmaz, Mesut; Gumus, Abdullah; Kafa, Ilker Mustafa; Cansev, Mehmet
2016-02-01
CDP-choline (cytidine-5'-diphosphocholine) improves functional recovery, promotes nerve regeneration, and decreases perineural scarring in rat peripheral nerve injury. The aim of the present study was to investigate the mechanism of action of CDP-choline with regard to matrix metalloproteinase (MMP) activity in the rat-transected sciatic nerve injury model. Male Wistar rats were randomized into Sham, Saline, and CDP-choline groups. Rats in Sham group received Sham surgery, whereas rats in Saline and CDP-choline groups underwent right sciatic nerve transection followed by immediate primary saturation and injected intraperitoneally with 0.9% NaCl (1 mL/kg) and CDP-choline (600 μg/kg), respectively. Sciatic nerve samples were obtained 1, 3, and 7 d after the surgery and analyzed for levels and activities of MMP-2 and MMP-9, levels of tissue inhibitor of metalloproteinases-1 (TIMP-1) and TIMP-3, and axonal regeneration. CDP-choline treatment decreased the levels and activities of MMP-2 and MMP-9, whereas increasing levels of TIMP-1 and TIMP-3 significantly on the third and seventh day after injury compared to Saline group. In addition, CDP-choline administration resulted in new axon formation and formation and advancement of myelination on newly formed islets (compartments) of axonal regrowth. Our data show, for the first time, that CDP-choline modulates MMP activity and promotes the expression of TIMPs to stimulate axonal regeneration. These data help to explain one mechanism by which CDP-choline provides neuroprotection in peripheral nerve injury. Copyright © 2016 Elsevier Inc. All rights reserved.
Spencer, Melanie D; Hamp, Timothy J; Reid, Robert W; Fischer, Leslie M; Zeisel, Steven H; Fodor, Anthony A
2011-03-01
Nonalcoholic fatty liver disease affects up to 30% of the US population, but the mechanisms underlying this condition are incompletely understood. We investigated how diet standardization and choline deficiency influence the composition of the microbial community in the human gastrointestinal tract and the development of fatty liver under conditions of choline deficiency. We performed a 2-month inpatient study of 15 female subjects who were placed on well-controlled diets in which choline levels were manipulated. We used 454-FLX pyrosequencing of 16S ribosomal RNA bacterial genes to characterize microbiota in stool samples collected over the course of the study. The compositions of the gastrointestinal microbial communities changed with choline levels of diets; each individual's microbiome remained distinct for the duration of the experiment, even though all subjects were fed identical diets. Variations between subjects in levels of Gammaproteobacteria and Erysipelotrichi were directly associated with changes in liver fat in each subject during choline depletion. Levels of these bacteria, change in amount of liver fat, and a single nucleotide polymorphism that affects choline were combined into a model that accurately predicted the degree to which subjects developed fatty liver on a choline-deficient diet. Host factors and gastrointestinal bacteria each respond to dietary choline deficiency, although the gut microbiota remains distinct in each individual. We identified bacterial biomarkers of fatty liver that result from choline deficiency, adding to the accumulating evidence that gastrointestinal microbes have a role in metabolic disorders. Copyright © 2011 AGA Institute. Published by Elsevier Inc. All rights reserved.
Schulz, Kalynn M; Pearson, Jennifer N; Gasparrini, Mary E; Brooks, Kayla F; Drake-Frazier, Chakeer; Zajkowski, Megan E; Kreisler, Alison D; Adams, Catherine E; Leonard, Sherry; Stevens, Karen E
2014-07-15
Brain cholinergic dysfunction is associated with neuropsychiatric illnesses such as depression, anxiety, and schizophrenia. Maternal stress exposure is associated with these same illnesses in adult offspring, yet the relationship between prenatal stress and brain cholinergic function is largely unexplored. Thus, using a rodent model, the current study implemented an intervention aimed at buffering the potential effects of prenatal stress on the developing brain cholinergic system. Specifically, control and stressed dams were fed choline-supplemented or control chow during pregnancy and lactation, and the anxiety-related behaviors of adult offspring were assessed in the open field, elevated zero maze and social interaction tests. In the open field test, choline supplementation significantly increased center investigation in both stressed and nonstressed female offspring, suggesting that choline-supplementation decreases female anxiety-related behavior irrespective of prenatal stress exposure. In the elevated zero maze, prenatal stress increased anxiety-related behaviors of female offspring fed a control diet (normal choline levels). However, prenatal stress failed to increase anxiety-related behaviors in female offspring receiving supplemental choline during gestation and lactation, suggesting that dietary choline supplementation ameliorated the effects of prenatal stress on anxiety-related behaviors. For male rats, neither prenatal stress nor diet impacted anxiety-related behaviors in the open field or elevated zero maze. In contrast, perinatal choline supplementation mitigated prenatal stress-induced social behavioral deficits in males, whereas neither prenatal stress nor choline supplementation influenced female social behaviors. Taken together, these data suggest that perinatal choline supplementation ameliorates the sex-specific effects of prenatal stress. Published by Elsevier B.V.
Schulz, Kalynn M.; Pearson, Jennifer N.; Gasparrini, Mary E.; Brooks, Kayla F.; Drake-Frazier, Chakeer; Zajkowski, Megan E.; Kreisler, Alison D.; Adams, Catherine E.; Leonard, Sherry; Stevens, Karen E.
2014-01-01
Brain cholinergic dysfunction is associated with neuropsychiatric illnesses such as depression, anxiety, and schizophrenia. Maternal stress exposure is associated with these same illnesses in adult offspring, yet the relationship between prenatal stress and brain cholinergic function is largely unexplored. Thus, using a rodent model, the current study implemented an intervention aimed at buffering the potential effects of prenatal stress on the developing brain cholinergic system. Specifically, control and stressed dams were fed choline-supplemented or control chow during pregnancy and lactation, and the anxiety-related behaviors of adult offspring were assessed in the open field, elevated zero maze and social interaction tests. In the open field test, choline supplementation significantly increased center investigation in both stressed and nonstressed female offspring, suggesting that choline-supplementation decreases female anxiety-related behavior irrespective of prenatal stress exposure. In the elevated zero maze, prenatal stress increased anxiety-related behaviors of female offspring fed a control diet (normal choline levels). However, prenatal stress failed to increase anxiety-related behaviors in female offspring receiving supplemental choline during gestation and lactation, suggesting that dietary choline supplementation ameliorated the effects of prenatal stress on anxiety-related behaviors. For male rats, neither prenatal stress nor diet impacted anxiety-related behaviors in the open field or elevated zero maze. In contrast, perinatal choline supplementation mitigated prenatal stress-induced social behavioral deficits in males, whereas neither prenatal stress nor choline supplementation influenced female social behaviors. Taken together, these data suggest that perinatal choline supplementation ameliorates the sex-specific effects of prenatal stress. PMID:24675162
Jiang, Xinyin; Bar, Haim Y; Yan, Jian; Jones, Sara; Brannon, Patsy M; West, Allyson A; Perry, Cydne A; Ganti, Anita; Pressman, Eva; Devapatla, Srisatish; Vermeylen, Francoise; Wells, Martin T; Caudill, Marie A
2013-03-01
This study investigated the influence of maternal choline intake on the human placental transcriptome, with a special interest in its role in modulating placental vascular function. Healthy pregnant women (n=26, wk 26-29 gestation) were randomized to 480 mg choline/d, an intake level approximating the adequate intake of 450 mg/d, or 930 mg/d for 12 wk. Maternal blood and placental samples were retrieved at delivery. Whole genome expression microarrays were used to identify placental genes and biological processes impacted by maternal choline intake. Maternal choline intake influenced a wide array of genes (n=166) and biological processes (n=197), including those related to vascular function. Of special interest was the 30% down-regulation (P=0.05) of the antiangiogenic factor and preeclampsia risk marker fms-like tyrosine kinase-1 (sFLT1) in the placenta tissues obtained from the 930 vs. 480 mg/d choline intake group. Similar decreases (P=0.04) were detected in maternal blood sFLT1 protein concentrations. The down-regulation of sFLT1 by choline treatment was confirmed in a human trophoblast cell culture model and may be related to enhanced acetylcholine signaling. These findings indicate that supplementing the maternal diet with extra choline may improve placental angiogenesis and mitigate some of the pathological antecedents of preeclampsia.
Wu, Gengshu; Sher, Roger B; Cox, Gregory A; Vance, Dennis E
2010-04-01
Choline kinase in mammals is encoded by two genes, Chka and Chkb. Disruption of murine Chka leads to embryonic lethality, whereas a spontaneous genomic deletion in murine Chkb results in neonatal forelimb bone deformity and hindlimb muscular dystrophy. Surprisingly, muscular dystrophy isn't significantly developed in the forelimb. We have investigated the mechanism by which a lack of choline kinase beta, encoded by Chkb, results in minimal muscular dystrophy in forelimbs. We have found that choline kinase beta is the major isoform in hindlimb muscle and contributes more to choline kinase activity, while choline kinase alpha is predominant in forelimb muscle and contributes more to choline kinase activity. Although choline kinase activity is decreased in forelimb muscles of Chkb(-/-) mice, the activity of CTP:phosphocholine cytidylyltransferase is increased, resulting in enhanced phosphatidylcholine biosynthesis. The activity of phosphatidylcholine phospholipase C is up-regulated while the activity of phospholipase A(2) in forelimb muscle is not altered. Regeneration of forelimb muscles of Chkb(-/-) mice is normal when challenged with cardiotoxin. In contrast to hindlimb muscle, mega-mitochondria are not significantly formed in forelimb muscle of Chkb(-/-) mice. We conclude that the relative lack of muscle degeneration in forelimbs of Chkb(-/-) mice is due to abundant choline kinase alpha and the stable homeostasis of phosphatidylcholine. 2009 Elsevier B.V. All rights reserved.
Raubenheimer, Peter J; Nyirenda, Moffat J; Walker, Brian R
2006-07-01
Liver fat accumulation is proposed to link obesity and insulin resistance. To dissect the role of liver fat in the insulin resistance of diet-induced obesity, we altered liver fat using a choline-deficient diet. C57Bl/6 mice were fed a low-fat (10% of calories) or high-fat (45% of calories) diet for 8 weeks; during the final 4 weeks, diets were either choline deficient or choline supplemented. In choline replete animals, high-fat feeding induced weight gain, elevated liver triglycerides (171%), hyperinsulinemia, and glucose intolerance. Choline deficiency did not affect body or adipose depot weights but amplified liver fat accumulation with high-fat diet (281%, P < 0.01). However, choline deficiency lowered fasting plasma insulin (from 983 +/- 175 to 433 +/- 36 pmol/l, P < 0.01) and improved glucose tolerance on a high-fat diet. In mice on 30% fat diet, choline deficiency increased liver mRNA levels of the rate-limiting enzyme in phosphatidylcholine synthesis and of enzymes involved in free fatty acid esterification, without affecting those of de novo lipogenesis or fatty acid oxidation. We conclude that liver fat accumulation per se does not cause insulin resistance during high-fat feeding and that choline deficiency may shunt potentially toxic free fatty acids toward innocuous storage triglyceride in the liver.
Choline Uptake in Agrobacterium tumefaciens by the High-Affinity ChoXWV Transporter▿
Aktas, Meriyem; Jost, Kathinka A.; Fritz, Christiane; Narberhaus, Franz
2011-01-01
Agrobacterium tumefaciens is a facultative phytopathogen that causes crown gall disease. For successful plant transformation A. tumefaciens requires the membrane lipid phosphatidylcholine (PC), which is produced via the methylation and the PC synthase (Pcs) pathways. The latter route is dependent on choline. Although choline uptake has been demonstrated in A. tumefaciens, the responsible transporter(s) remained elusive. In this study, we identified the first choline transport system in A. tumefaciens. The ABC-type choline transporter is encoded by the chromosomally located choXWV operon (ChoX, binding protein; ChoW, permease; and ChoV, ATPase). The Cho system is not critical for growth and PC synthesis. However, [14C]choline uptake is severely reduced in A. tumefaciens choX mutants. Recombinant ChoX is able to bind choline with high affinity (equilibrium dissociation constant [KD] of ≈2 μM). Since other quaternary amines are bound by ChoX with much lower affinities (acetylcholine, KD of ≈80 μM; betaine, KD of ≈470 μM), the ChoXWV system functions as a high-affinity transporter with a preference for choline. Two tryptophan residues (W40 and W87) located in the predicted ligand-binding pocket are essential for choline binding. The structural model of ChoX built on Sinorhizobium meliloti ChoX resembles the typical structure of substrate binding proteins with a so-called “Venus flytrap mechanism” of substrate binding. PMID:21803998
King, Julia H; Kwan, Sze Ting Cecilia; Yan, Jian; Klatt, Kevin C; Jiang, Xinyin; Roberson, Mark S; Caudill, Marie A
2017-07-18
Impairments in placental development can adversely affect pregnancy outcomes. The bioactive nutrient choline may mitigate some of these impairments, as suggested by data in humans, animals, and human trophoblasts. Herein, we investigated the effects of maternal choline supplementation (MCS) on parameters of fetal growth in a Dlx3 +/- (distal-less homeobox 3) mouse model of placental insufficiency. Dlx3 +/- female mice were assigned to 1X (control), 2X, or 4X choline intake levels during gestation. Dams were sacrificed at embryonic days E10.5, 12.5, 15.5, and 18.5. At E10.5, placental weight, embryo weight, and placental efficiency were higher in 4X versus 1X choline. Higher concentrations of hepatic and placental betaine were detected in 4X versus 1X choline, and placental betaine was positively associated with embryo weight. Placental mRNA expression of Igf1 was downregulated by 4X (versus 1X) choline at E10.5. No differences in fetal growth parameters were detected at E12.5 and 15.5, whereas a small but significant reduction in fetal weight was detected at E18.5 in 4X versus 1X choline. MCS improved fetal growth during early pregnancy in the Dlx3 +/- mice with the compensatory downregulation of Igf1 to slow growth as gestation progressed. Placental betaine may be responsible for the growth-promoting effects of choline.
González-Pacheco, Héctor; Méndez-Domínguez, Aurelio; Hernández, Salomón; López-Marure, Rebeca; Vazquez-Mellado, Maria J.; Aguilar, Cecilia; Rocha-Zavaleta, Leticia
2014-01-01
Background. CDP-choline is a key intermediate in the biosynthesis of phosphatidylcholine, which is an essential component of cellular membranes, and a cell signalling mediator. CDP-choline has been used for the treatment of cerebral ischaemia, showing beneficial effects. However, its potential benefit for the treatment of myocardial ischaemia has not been explored yet. Aim. In the present work, we aimed to evaluate the potential use of CDP-choline as a cardioprotector in an in vitro model of ischaemia/reperfusion injury. Methods. Neonatal rat cardiac myocytes were isolated and subjected to hypoxia/reperfusion using the coverslip hypoxia model. To evaluate the effect of CDP-choline on oxidative stress-induced reperfusion injury, the cells were incubated with H2O2 during reperfusion. The effect of CDP-choline pre- and postconditioning was evaluated using the cell viability MTT assay, and the proportion of apoptotic and necrotic cells was analyzed using the Annexin V determination by flow cytometry. Results. Pre- and postconditioning with 50 mg/mL of CDP-choline induced a significant reduction of cells undergoing apoptosis after hypoxia/reperfusion. Preconditioning with CDP-choline attenuated postreperfusion cell death induced by oxidative stress. Conclusion. CDP-choline administration reduces cell apoptosis induced by oxidative stress after hypoxia/reperfusion of cardiac myocytes. Thus, it has a potential as cardioprotector in ischaemia/reperfusion-injured cardiomyocytes. PMID:24578622
Jacobs, René L; Zhao, Yang; Koonen, Debby P Y; Sletten, Torunn; Su, Brian; Lingrell, Susanne; Cao, Guoqing; Peake, David A; Kuo, Ming-Shang; Proctor, Spencer D; Kennedy, Brian P; Dyck, Jason R B; Vance, Dennis E
2010-07-16
Phosphatidylcholine (PC) is synthesized from choline via the CDP-choline pathway. Liver cells can also synthesize PC via the sequential methylation of phosphatidylethanolamine, catalyzed by phosphatidylethanolamine N-methyltransferase (PEMT). The current study investigates whether or not hepatic PC biosynthesis is linked to diet-induced obesity. Pemt(+/+) mice fed a high fat diet for 10 weeks increased in body mass by 60% and displayed insulin resistance, whereas Pemt(-/-) mice did not. Compared with Pemt(+/+) mice, Pemt(-/-) mice had increased energy expenditure and maintained normal peripheral insulin sensitivity; however, they developed hepatomegaly and steatosis. In contrast, mice with impaired biosynthesis of PC via the CDP-choline pathway in liver became obese when fed a high fat diet. We, therefore, hypothesized that insufficient choline, rather than decreased hepatic phosphatidylcholine, was responsible for the lack of weight gain in Pemt(-/-) mice despite the presence of 1.3 g of choline/kg high fat diet. Supplementation with an additional 2.7 g of choline (but not betaine)/kg of diet normalized energy metabolism, weight gain, and insulin resistance in high fat diet-fed Pemt(-/-) mice. Furthermore, Pemt(+/+) mice that were fed a choline-deficient diet had increased oxygen consumption, had improved glucose tolerance, and gained less weight. Thus, de novo synthesis of choline via PEMT has a previously unappreciated role in regulating whole body energy metabolism.
Zeisel, Steven H.
2015-01-01
In 1850, Theodore Gobley, working in Paris, described a substance “lecithine”, which he named after the Greek “lekithos” for egg yolk. Adolph Strecker noted in 1862 that when lecithin from bile was heated, it generated a new nitrogenous chemical that he named “choline”. Three years later, Oscar Liebreich identified a new substance, “neurine”, in the brain. After a period of confusion, neurine and choline were found to be the same molecule, and the name choline was adapted. Lecithin was eventually characterized chemically as being phosphatidylcholine. In 1954, Eugene Kennedy described the cytidine 5-dihphosphocholine pathway by which choline is incorporated into phosphatidylcholine. A second route, the phosphatidylethanolamine-N-methyltransferase pathway, was identified by Jon Bremer and David Greenberg in 1960. The role of choline as part of the neurotransmitter acetylcholine was established by Otto Loewi and Henry Dale. Working in the 1930s at the University of Toronto, Charles Best showed that choline prevented fatty liver in dogs and rats. The importance of choline as an essential nutrient for human health was determined in the 1990s through controlled feeding studies in humans. Recently, an understanding of the role of genetic variation in setting the dietary requirement for choline in people is being unraveled. PMID:23183298
Malek, Mahrooz; Pourashraf, Maryam; Gilani, Mitra Modares; Gity, Masoumeh
2015-01-01
The aim of this study was to assess the role of the presence of a choline peak in 3 Tesla 1H magnetic resonance spectroscopy (MRS) for differentiating benign from malignant adnexal masses. A total of 46 adnexal masses (23 malignant and 23 benign) underwent 1H MRS study prior to surgery to assess the presence of choline peak. A choline peak was detected in 16 malignant masses (69.5%) and was absent in the other 7 (30.5%). A choline peak was only detected in 6 (26%) of the benign adnexal masses. The presence of an MRS choline peak had a sensitivity of 69.5%, a specificity of 74%, a positive predictive value (PPV) of 72.7%, and a negative predictive value (NPV) of 71% for diagnosing malignant adnexal masses. A significant difference between the frequency of mean choline peaks in benign and malignant adnexal masses was observed (P value<0.01). A 1H MRS choline peak is seen in malignant adnexal masses more frequently than the benign masses, and may be helpful for diagnosing malignant adnexal masses.
Weaver, Katherine D; Van Vorst, Matthew P; Vijayaraghavan, R; Macfarlane, Douglas R; Elliott, Gloria D
2013-08-01
To better understand the relationship between the relative cytotoxicity of diluted ionic liquids and their specific interaction with biological membranes, the thermotropic behavior of model lipid membrane systems formulated in a series of choline based organic salts was investigated. Unilamellar vesicles prepared from dipalmitoylphosphatidylcholine were exposed to a series of choline phosphate salts at a concentration of 10mM at pH7.40, and the gel to liquid-crystalline state transition was examined using differential scanning calorimetry. The choline salts that were observed to have a low relative toxicity in previous studies induced minimal changes in the lipid phase transition behavior of these model membranes. In contrast, the salts choline bis(2,4,4-trimethylpentyl)phosphinate and choline bis(2-ethylhexyl)phosphate, both of which were observed to have high relative toxicity, caused distinct disruptions in the lipid phase transition behavior, consistent with penetration of the salts into the acyl chains of the phospholipids. choline bis(2,4,4-trimethylpentyl)phosphinate reduced the Tm and enthalpy of the main transition of dipalmitoylphosphatidylcholine while choline bis(2-ethylhexyl)phosphate induced the equilibration of alternate phases. Copyright © 2013 Elsevier B.V. All rights reserved.
Head-group specificity for feedback regulation of CTP:phosphocholine cytidylyltransferase.
Jamil, H; Vance, D E
1990-01-01
The specificity of the phospholipid head-group for feedback regulation of CTP: phosphocholine cytidylyltransferase was examined in rat hepatocytes. In choline-deficient cells there is a 2-fold increase in binding of cytidylyltransferase to cellular membranes, compared with choline-supplemented cells. Supplementation of choline-deficient cells with choline, dimethylethanolamine, monomethylethanolamine or ethanolamine resulted in an increase in the concentration of the corresponding phospholipid. Release of cytidylyltransferase into cytosol was only observed in hepatocytes supplemented with choline or dimethylethanolamine. The apparent EC50 values (concn. giving half of maximal effect) for cytidylyltransferase translocation were similar for choline and dimethylethanolamine (25 and 27 microM respectively). The maximum amount of cytidylyltransferase released into cytosol with choline supplementation (1.13 m-units/mg membrane protein) was twice that (0.62) observed with dimethylethanolamine. Supplementation of choline-deficient hepatocytes with NN'-diethylethanolamine, N-ethylethanolamine or 3-aminopropanol also did not cause release of cytidylyltransferase from cellular membranes. The translocation of cytidylyltransferase appeared to be mediated by the concentration of phosphatidylcholine in the membranes and not the ratio of phosphatidylcholine to phosphatidylethanolamine. The results provide further evidence for feedback regulation of phosphatidylcholine biosynthesis by phosphatidylcholine. PMID:2173550
No Acute Effects of Choline Bitartrate Food Supplements on Memory in Healthy, Young, Human Adults.
Lippelt, D P; van der Kint, S; van Herk, K; Naber, M
2016-01-01
Choline is a dietary component and precursor of acetylcholine, a crucial neurotransmitter for memory-related brain functions. In two double-blind, placebo-controlled cross-over experiments, we investigated whether the food supplement choline bitartrate improved declarative memory and working memory in healthy, young students one to two hours after supplementation. In experiment 1, 28 participants performed a visuospatial working memory task. In experiment 2, 26 participants performed a declarative picture memorization task. In experiment 3, 40 participants performed a verbal working memory task in addition to the visuospatial working memory and declarative picture task. All tasks were conducted approximately 60 minutes after the ingestion of 2.0-2.5g of either choline bitartrate or placebo. We found that choline did not significantly enhance memory performance during any of the tasks. The null hypothesis that choline does not improve memory performance as compared to placebo was strongly supported by Bayesian statistics. These results are in contrast with animal studies suggesting that choline supplementation boosts memory performance and learning. We conclude that choline likely has no acute effects on cholinergic memory functions in healthy human participants.
1H- 14N HSQC detection of choline-containing compounds in solutions
NASA Astrophysics Data System (ADS)
Mao, Jiezhen; Jiang, Ling; Jiang, Bin; Liu, Maili; Mao, Xi-an
2010-09-01
Choline nitrogen ( 14N) has a long relaxation time (seconds) which is due to the highly symmetric chemical environments. 14N in choline also has coupling constants with protons (0.6 Hz to methyl protons, 2.7 Hz to CH 2O protons and 0.2 Hz to NCH 2 protons). Based on these properties, we introduce a two-dimensional NMR method to detect choline and its derivatives in solutions. This method is the 1H- 14N hetero-nuclear single-quantum correlation (HSQC) experiment which has been developed in solid-state NMR in recent years. Experiments have demonstrated that the 1H- 14N HSQC technique is a sensitive method for detection of choline-containing compounds in solutions. From 1 mM choline solution in 16 min on a 500 MHz NMR spectrometer, a 1H- 14N HSQC spectrum has been recorded with a signal-to-noise ratio of 1700. Free choline, phosphocholine and glycerophosphocholine in milk can be well separated in 1H- 14N HSQC spectra. This technique would become a promising analytical approach to mixture analyses where choline-containing compounds are of interest, such as tissue extracts, body fluids and food solutions.
Anaerobic choline metabolism in microcompartments promotes growth and swarming of P roteus mirabilis
Jameson, Eleanor; Fu, Tiantian; Brown, Ian R.; Paszkiewicz, Konrad; Purdy, Kevin J.
2015-01-01
Summary Gammaproteobacteria are important gut microbes but only persist at low levels in the healthy gut. The ecology of G ammaproteobacteria in the gut environment is poorly understood. Here, we demonstrate that choline is an important growth substrate for representatives of G ammaproteobacteria. Using P roteus mirabilis as a model, we investigate the role of choline metabolism and demonstrate that the cut C gene, encoding a choline‐trimethylamine lyase, is essential for choline degradation to trimethylamine by targeted mutagenesis of cut C and subsequent complementation experiments. P roteus mirabilis can rapidly utilize choline to enhance growth rate and cell yield in broth culture. Importantly, choline also enhances swarming‐associated colony expansion of P . mirabilis under anaerobic conditions on a solid surface. Comparative transcriptomics demonstrated that choline not only induces choline‐trimethylamine lyase but also genes encoding shell proteins for the formation of bacterial microcompartments. Subsequent analyses by transmission electron microscopy confirmed the presence of such novel microcompartments in cells cultivated in liquid broth and hyper‐flagellated swarmer cells from solid medium. Together, our study reveals choline metabolism as an adaptation strategy for P . mirabilis and contributes to better understand the ecology of this bacterium in health and disease. PMID:26404097
Substrate Binding and Catalytic Mechanism of Human Choline Acetyltransferase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim,A.; Rylett, J.; Shilton, B.
2006-01-01
Choline acetyltransferase (ChAT) catalyzes the synthesis of the neurotransmitter acetylcholine from choline and acetyl-CoA, and its presence is a defining feature of cholinergic neurons. We report the structure of human ChAT to a resolution of 2.2 {angstrom} along with structures for binary complexes of ChAT with choline, CoA, and a nonhydrolyzable acetyl-CoA analogue, S-(2-oxopropyl)-CoA. The ChAT-choline complex shows which features of choline are important for binding and explains how modifications of the choline trimethylammonium group can be tolerated by the enzyme. A detailed model of the ternary Michaelis complex fully supports the direct transfer of the acetyl group from acetyl-CoAmore » to choline through a mechanism similar to that seen in the serine hydrolases for the formation of an acyl-enzyme intermediate. Domain movements accompany CoA binding, and a surface loop, which is disordered in the unliganded enzyme, becomes localized and binds directly to the phosphates of CoA, stabilizing the complex. Interactions between this surface loop and CoA may function to lower the K{sub M} for CoA and could be important for phosphorylation-dependent regulation of ChAT activity.« less
No Acute Effects of Choline Bitartrate Food Supplements on Memory in Healthy, Young, Human Adults
Lippelt, D. P.; van der Kint, S.; van Herk, K.; Naber, M.
2016-01-01
Choline is a dietary component and precursor of acetylcholine, a crucial neurotransmitter for memory-related brain functions. In two double-blind, placebo-controlled cross-over experiments, we investigated whether the food supplement choline bitartrate improved declarative memory and working memory in healthy, young students one to two hours after supplementation. In experiment 1, 28 participants performed a visuospatial working memory task. In experiment 2, 26 participants performed a declarative picture memorization task. In experiment 3, 40 participants performed a verbal working memory task in addition to the visuospatial working memory and declarative picture task. All tasks were conducted approximately 60 minutes after the ingestion of 2.0–2.5g of either choline bitartrate or placebo. We found that choline did not significantly enhance memory performance during any of the tasks. The null hypothesis that choline does not improve memory performance as compared to placebo was strongly supported by Bayesian statistics. These results are in contrast with animal studies suggesting that choline supplementation boosts memory performance and learning. We conclude that choline likely has no acute effects on cholinergic memory functions in healthy human participants. PMID:27341028
Ossani, Georgina P; Repetto, Marisa G; Boveris, Alberto; Monserrat, Alberto J
2013-02-26
Weanling rats fed a choline-deficient diet develop kidney oxidative damage, tubular and cortical kidney necrosis, renal failure and animal death. The effect of dietary menhaden oil was assayed on the mentioned sequence correlating oxidative stress with renal structure and function. Rats were fed ad libitum 4 different diets: (a) a choline-deficient diet with corn oil and sunflower hydrogenated oil as a source of fatty acids; (b) the same diet supplemented with choline; (c) a choline-deficient diet with menhaden oil as a source of fatty acids; and (d) the previous diet supplemented with choline. Animals were sacrificed at days 0, 2, 4 and 7. The histopathological study of the kidneys showed that renal necrosis was only observed at day 7 in choline-deficient rats receiving the vegetable oil diet, simultaneously with increased creatinine plasma levels. Homogenate chemiluminescence (BOOH-initiated chemiluminescence) and phospholipid oxidation indicate the development of oxidative stress and damage in choline-deficient rats fed vegetable oils as well as the protective effect of menhaden oil. Rats fed with the fish oil diet showed that oxidative stress and damage develop later, as compared with vegetable oil, with no morphological damage during the experimental period.
Choline supplementation restores substrate balance and alleviates complications of Pcyt2 deficiency.
Schenkel, Laila C; Sivanesan, Sugashan; Zhang, Junzeng; Wuyts, Birgitte; Taylor, Adrian; Verbrugghe, Adronie; Bakovic, Marica
2015-11-01
Choline plays a critical role in systemic lipid metabolism and hepatic function. Here we conducted a series of experiments to investigate the effect of choline supplementation on metabolically altered Pcyt2(+/-) mice. In Pcyt2(+/-) mice, the membrane phosphatidylethanolamine (PE) turnover is reduced and the formation of fatty acids (FA) and triglycerides (TAG) increased, resulting in hypertriglyceridemia, liver steatosis and obesity. One month of choline supplementation reduced the incorporation of FA into TAG and facilitated TAG degradation in Pcyt2(+/-) adipocytes, plasma and liver. Choline particularly stimulated adipocyte and liver TAG lipolysis by specific lipases (ATGL, LPL and HSL) and inhibited TAG formation by DGAT1 and DGAT2. Choline also activated the liver AMPK and mitochondrial FA oxidation gene PPARα and reduced the FA synthesis genes SREBP1, SCD1 and FAS. Liver (HPLC) and plasma (tandem mass spectroscopy and (1)H-NMR) metabolite profiling established that Pcyt2(+/-) mice have reduced membrane cholesterol/sphingomyelin ratio and the homocysteine/methionine cycle that were improved by choline supplementation. These data suggest that supplementary choline is beneficial for restoring FA and TAG homeostasis under conditions of obesity caused by impaired PE synthesis. Copyright © 2015 Elsevier Inc. All rights reserved.
A flower-like nickel oxide nanostructure: synthesis and application for choline sensing.
Sattarahmady, N; Heli, H; Dehdari Vais, R
2014-02-01
Flower-like nickel oxide nanostructure was synthesized by a simple desolvation method. The nanostructure was then employed as the modifier of a carbon paste electrode to fabricate a choline sensor. The mechanism and kinetics of the electrocatalytic oxidation of choline on the modified electrode surface were studied by cyclic voltammetry, steady-state polarization curve, and chronoamperometry. The catalytic rate constant and the charge transfer coefficient of the choline electrooxidation process by an active nickel species, and the diffusion coefficient of choline were reported. An amperometric method was developed for determination of choline with a sensitivity of 60.5 mA mol(-1)Lcm(-2) and a limit of detection of 25.4 μmol L(-1). The sensor had the advantages of high electrocatalytic activity and sensitivity, and long-term stability toward choline, with a simple fabrication method without complications of immobilization steps and using any enzyme or reagent. © 2013 Published by Elsevier B.V.
Choline pathways during normal and stimulated renal growth in rats.
Bean, G H; Lowenstein, L M
1978-01-01
Cellular membrane synthesis occurs during normal and stimulated renal growth. Choline in the kidney is utilized as a precursor for membrane synthesis via the choline kinase reaction. We investigated choline phosphorylation during normal and stimulated renal growth. Rapidly growing neonatal rat kidneys contained relatively high levels of choline kinase activity (61 pmol phosphorylcholine/min per mg protein). Choline kinase activity and phosphorylcholine production then fell gradually over the 1st mo of life; by 1 mo phosphorylcholine production was 34 pmol phosphorylcholine/min per mg protein. Choline kinase activity increased by 27% (P less than 0.001) in 28-day-old rats when renal growth was stimulated by contralateral nephrectomy; the increase occurred within 2 h after surgery. Thus, changes in the activity of this important enzyme in the initiation of membrane synthesis is associated both with normal renal development and with adaptation to nephron loss. The findings further suggest that the cell membrane may be involved in the initiation of compensatory renal growth. PMID:659614
Zeisel, Steven H
2012-01-01
One of the underlying mechanisms for metabolic individuality is genetic variation. Single nucleotide polymorphisms (SNPs) in genes of metabolic pathways can create metabolic inefficiencies that alter the dietary requirement for, and responses to, nutrients. These SNPs can be detected using genetic profiling and the metabolic inefficiencies they cause can be detected using metabolomic profiling. Studies on the human dietary requirement for choline illustrate how useful these new approaches can be, as this requirement is influenced by SNPs in genes of choline and folate metabolism. In adults, these SNPs determine whether people develop fatty liver, liver damage and muscle damage when eating diets low in choline. Because choline is very important for fetal development, these SNPs may identify women who need to eat more choline during pregnancy. Some of the actions of choline are mediated by epigenetic mechanisms that permit 'retuning' of metabolic pathways during early life. Copyright © 2012 S. Karger AG, Basel.
Park, Kyung-Eui; Kim, Jun-Dal; Nagashima, Yusuke; Kako, Koichiro; Daitoku, Hiroaki; Matsui, Motoki; Park, Gwi Gun; Fukamizu, Akiyoshi
2014-01-01
Phospholipase D (PLD) catalyzes the hydrolysis of phosphatidylcholine (PC), the most abundant phospholipids of plasma membrane, resulting in the production of choline and phosphatidic acid (PA). Choline is a precursor of the neurotransmitter acetylcholine, whereas PA functions as an intracellular lipid mediator of diverse biological functions. For assessing PLD activity in vitro, PLD-derived choline has been often analyzed with radioactive or non-radioactive methods. In this study, we have developed a new method for detecting choline and PA with MALDI-QIT-TOF/MS by using 9-aminoacridine as a matrix. The standard calibration curves showed that choline and PA could be detected with linearity over the range from 0.05 and 1 pmol, respectively. Importantly, this method enables the concomitant detection of choline and PA as a reaction product of PC hydrolysis by PLD2 proteins. Thus, our simple and direct method would be useful to characterize the enzymatic properties of PLD, thereby providing insight into mechanisms of PLD activation.
Elsawy, Gehan; Abdelrahman, Osama; Hamza, Amr
2014-03-27
Taekwondo and judo competitions are divided into weight categories. Many athletes reduce their body mass a few days before competition in order to obtain a competitive advantage over lighter opponents. To achieve fast body mass reduction, athletes use a number of nutritional strategies, including choline supplementation. The goal of this study was to identify the effects of choline supplementation on body mass reduction and leptin levels among female taekwondo and judo athletes. Twenty-two female athletes (15 taekwondo and 7 judo athletes) were selected from different weight categories and divided into two groups, according to weight. The players in the experimental group took choline tablets for one week before a competition. The results revealed significant differences between pre- and post-competition measurements of leptin, free plasma choline, urine choline and urine malondialdehyde levels; body mass was also reduced in the post-competition measurements. In conclusion, choline supplementation could rapidly reduce body mass without any side effects on biochemical levels or static strength.
Recirculation and reutilization of micellar bile lecithin.
Robins, S J
1975-09-01
Bile lecithins, solubilized in micellar bile salt and radiolabeled in the 1-acyl fatty acid, phosphorus, and choline positions, were infused in the small bowel of fasted rats. Absorption of each label was virtually complete after 24 h. However, these lecithins were extensively hydrolyzed in the bowel lumen as well as after absorption, and neither the fatty acid nor phosphorus was significantly retained in the enterohepatic circulation or reutilized for biliary lecithin synthesis. In contrast, while choline was also dissociated from absorbed lecithin, choline was instead retained in the liver, reincorporated into newly synthesized hepatic lecithin, and sercreted in biliary lecithin in 10-fold greater amounts than either the fatty acid or phosphorus. However, the extent of choline incorporation into bile lecithin was limited and was not further increased when free choline was directly injected into the portal vein. The data therefore suggest that although only choline of absorbed lecithin is retained in the enterohepatic circulation and preserved for new biliary lecithin synthesis, exogenous choline utilization is regulated by the size of the available hepatic pool.
1975-01-01
Although acetylcholine is a major neurotransmitter in Aplysia, labeling studies with methionine and serine showed that little choline was synthesized by nervous tissue and indicated that the choline required for the synthesis of acetylcholine must be derived exogenously. Aanglia in the central nervous system (abdominal, cerebral, and pleuropedals) all took up about 0.5 nmol of choline per hour at 9 muM, the concentration of choline we found in hemolymph. This rate was more than two orders of magnitude greater than that of synthesis from the labeled precursors. Ganglia accumulated choline by a process which has two kinetic components, one with a Michaelis constant between 2-8 muM. The other component was not saturated at 420 muM. Presumably the process with the high affinity functions to supply choline for synthesis of transmitter, since the efficiency of conversion to acetylcholine was maximal in the range of external concentrations found in hemolymph. PMID:1117282
21 CFR 582.5252 - Choline chloride.
Code of Federal Regulations, 2012 CFR
2012-04-01
... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5252 Choline chloride. (a) Product. Choline chloride. (b) Conditions of use. This...
21 CFR 582.5250 - Choline bitartrate.
Code of Federal Regulations, 2011 CFR
2011-04-01
... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5250 Choline bitartrate. (a) Product. Choline bitartrate. (b) Conditions of use. This...
21 CFR 582.5250 - Choline bitartrate.
Code of Federal Regulations, 2014 CFR
2014-04-01
... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5250 Choline bitartrate. (a) Product. Choline bitartrate. (b) Conditions of use. This...
21 CFR 582.5250 - Choline bitartrate.
Code of Federal Regulations, 2013 CFR
2013-04-01
... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5250 Choline bitartrate. (a) Product. Choline bitartrate. (b) Conditions of use. This...
21 CFR 582.5250 - Choline bitartrate.
Code of Federal Regulations, 2012 CFR
2012-04-01
... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5250 Choline bitartrate. (a) Product. Choline bitartrate. (b) Conditions of use. This...
21 CFR 582.5252 - Choline chloride.
Code of Federal Regulations, 2013 CFR
2013-04-01
... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5252 Choline chloride. (a) Product. Choline chloride. (b) Conditions of use. This...
21 CFR 582.5252 - Choline chloride.
Code of Federal Regulations, 2011 CFR
2011-04-01
... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5252 Choline chloride. (a) Product. Choline chloride. (b) Conditions of use. This...
21 CFR 582.5252 - Choline chloride.
Code of Federal Regulations, 2014 CFR
2014-04-01
... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5252 Choline chloride. (a) Product. Choline chloride. (b) Conditions of use. This...
21 CFR 582.5250 - Choline bitartrate.
Code of Federal Regulations, 2010 CFR
2010-04-01
... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5250 Choline bitartrate. (a) Product. Choline bitartrate. (b) Conditions of use. This...
21 CFR 582.5252 - Choline chloride.
Code of Federal Regulations, 2010 CFR
2010-04-01
... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5252 Choline chloride. (a) Product. Choline chloride. (b) Conditions of use. This...
The crystal structure of choline kinase reveals a eukaryotic protein kinase fold
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peisach, D.; Gee, P.; Kent, K.
2010-03-08
Choline kinase catalyzes the ATP-dependent phosphorylation of choline, the first committed step in the CDP-choline pathway for the biosynthesis of phosphatidylcholine. The 2.0 {angstrom} crystal structure of a choline kinase from C. elegans (CKA-2) reveals that the enzyme is a homodimeric protein with each monomer organized into a two-domain fold. The structure is remarkably similar to those of protein kinases and aminoglycoside phosphotransferases, despite no significant similarity in amino acid sequence. Comparisons to the structures of other kinases suggest that ATP binds to CKA-2 in a pocket formed by highly conserved and catalytically important residues. In addition, a choline bindingmore » site is proposed to be near the ATP binding pocket and formed by several structurally flexible loops.« less
Tazaki, Y; Sakai, F; Otomo, E; Kutsuzawa, T; Kameyama, M; Omae, T; Fujishima, M; Sakuma, A
1988-02-01
A multicenter double-blind placebo-controlled study of cytidine 5'-diphosphocholine (CDP-choline) was conducted to evaluate possible clinical benefits of the drug in patients with acute, moderate to severe cerebral infarction. The patients included also suffered from moderate to mild disturbances of consciousness, and all were admitted within 14 days of the ictus. Patients were allocated randomly to treatment with either CDP-choline (1,000 mg/day i.v. once daily for 14 days) or with placebo (physiological saline). One hundred thirty-three patients received CDP-choline treatment, and 139 received placebo. The group treated with CDP-choline showed significant improvements in level of consciousness compared with the placebo-treated group, and CDP-choline was an entirely safe treatment.
Choline Magnesium Trisalicylate
Choline magnesium trisalicylate is used to relieve the pain, tenderness, inflammation (swelling), and stiffness caused by arthritis ... also used to relieve pain and lower fever. Choline magnesium trisalicylate is in a class of nonsteroidal ...
Martínez-del Campo, Ana; Bodea, Smaranda; Hamer, Hilary A; Marks, Jonathan A; Haiser, Henry J; Turnbaugh, Peter J; Balskus, Emily P
2015-04-14
Elucidation of the molecular mechanisms underlying the human gut microbiota's effects on health and disease has been complicated by difficulties in linking metabolic functions associated with the gut community as a whole to individual microorganisms and activities. Anaerobic microbial choline metabolism, a disease-associated metabolic pathway, exemplifies this challenge, as the specific human gut microorganisms responsible for this transformation have not yet been clearly identified. In this study, we established the link between a bacterial gene cluster, the choline utilization (cut) cluster, and anaerobic choline metabolism in human gut isolates by combining transcriptional, biochemical, bioinformatic, and cultivation-based approaches. Quantitative reverse transcription-PCR analysis and in vitro biochemical characterization of two cut gene products linked the entire cluster to growth on choline and supported a model for this pathway. Analyses of sequenced bacterial genomes revealed that the cut cluster is present in many human gut bacteria, is predictive of choline utilization in sequenced isolates, and is widely but discontinuously distributed across multiple bacterial phyla. Given that bacterial phylogeny is a poor marker for choline utilization, we were prompted to develop a degenerate PCR-based method for detecting the key functional gene choline TMA-lyase (cutC) in genomic and metagenomic DNA. Using this tool, we found that new choline-metabolizing gut isolates universally possessed cutC. We also demonstrated that this gene is widespread in stool metagenomic data sets. Overall, this work represents a crucial step toward understanding anaerobic choline metabolism in the human gut microbiota and underscores the importance of examining this microbial community from a function-oriented perspective. Anaerobic choline utilization is a bacterial metabolic activity that occurs in the human gut and is linked to multiple diseases. While bacterial genes responsible for choline fermentation (the cut gene cluster) have been recently identified, there has been no characterization of these genes in human gut isolates and microbial communities. In this work, we use multiple approaches to demonstrate that the pathway encoded by the cut genes is present and functional in a diverse range of human gut bacteria and is also widespread in stool metagenomes. We also developed a PCR-based strategy to detect a key functional gene (cutC) involved in this pathway and applied it to characterize newly isolated choline-utilizing strains. Both our analyses of the cut gene cluster and this molecular tool will aid efforts to further understand the role of choline metabolism in the human gut microbiota and its link to disease. Copyright © 2015 Martínez-del Campo et al.
Lyoo, In Kyoon; Demopulos, Christina M; Hirashima, Fuyuki; Ahn, Kyung Heup; Renshaw, Perry F
2003-08-01
Oral choline administration has been reported to increase brain phosphatidylcholine levels. As phospholipid synthesis for maintaining membrane integrity in mammalian brain cells consumes approximately 10-15% of the total adenosine triphosphate (ATP) pool, an increased availability of brain choline may lead to an increase in ATP consumption. Given reports of genetic studies, which suggest mitochondrial dysfunction, and phosphorus (31P) magnetic resonance spectroscopy (MRS) studies, which report dysfunction in high-energy phosphate metabolism in patients with bipolar disorder, the current study is designed to evaluate the role of oral choline supplementation in modifying high-energy phosphate metabolism in subjects with bipolar disorder. Eight lithium-treated patients with DSM-IV bipolar disorder, rapid cycling type were randomly assigned to 50 mg/kg/day of choline bitartrate or placebo for 12 weeks. Brain purine, choline and lithium levels were assessed using 1H- and 7Li-MRS. Patients received four to six MRS scans, at baseline and weeks 2, 3, 5, 8, 10 and 12 of treatment (n = 40 scans). Patients were assessed using the Clinical Global Impression Scale (CGIS), the Young Mania Rating Scale (YRMS) and the Hamilton Depression Rating Scale (HDRS) at each MRS scan. There were no significant differences in change-from-baseline measures of CGIS, YMRS, and HDRS, brain choline/creatine ratios, and brain lithium levels over a 12-week assessment period between the choline and placebo groups or within each group. However, the choline treatment group showed a significant decrease in purine metabolite ratios from baseline (purine/n-acetyl aspartate: coef = -0.08, z = -2.17, df = 22, p = 0.030; purine/choline: coef = -0.12, z = -1.97, df = 22, p = 0.049) compared to the placebo group, controlling for brain lithium level changes. Brain lithium level change was not a significant predictor of purine ratios. The current study reports that oral choline supplementation resulted in a significant decrease in brain purine levels over a 12-week treatment period in lithium-treated patients with DSM-IV bipolar disorder, rapid-cycling type, which may be related to the anti-manic effects of adjuvant choline. This result is consistent with mitochondrial dysfunction in bipolar disorder inadequately meeting the demand for increased ATP production as exogenous oral choline administration increases membrane phospholipid synthesis.
21 CFR 172.370 - Iron-choline citrate complex.
Code of Federal Regulations, 2012 CFR
2012-04-01
...) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.370 Iron-choline citrate complex. Iron-choline...
21 CFR 172.370 - Iron-choline citrate complex.
Code of Federal Regulations, 2014 CFR
2014-04-01
...) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.370 Iron-choline citrate complex. Iron-choline citrate complex made by reacting...
21 CFR 172.370 - Iron-choline citrate complex.
Code of Federal Regulations, 2013 CFR
2013-04-01
...) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.370 Iron-choline citrate complex. Iron-choline...
Bridged Bicyclic Oximes as Acetylcholinesterase Reactivators
1988-04-03
with acetylcholine as substrate, is based on coupling away the choline produced from the esterase reaction with choline kinase, which catalyzes the...transfer of the y-phosphate from ATP to choline , producing ADP, and then removed with the pyruvate kinase-lactate dehydrogenase couple, and disappearance...nitrobenzoic acid absorbs strongly at 412 nm. Choline kinase and acetylcholinesterase were purchased from Sigma as the lyophilized powders. Each enzyme
Wu, Brian T. F.; Dyer, Roger A.; King, D. Janette; Richardson, Kelly J.; Innis, Sheila M.
2012-01-01
Background The importance of maternal dietary choline for fetal neural development and later cognitive function has been well-documented in experimental studies. Although choline is an essential dietary nutrient for humans, evidence that low maternal choline in pregnancy impacts neurodevelopment in human infants is lacking. We determined potential associations between maternal plasma free choline and its metabolites betaine and dimethylglycine in pregnancy and infant neurodevelopment at 18 months of age. Methodology This was a prospective study of healthy pregnant women and their full-term, single birth infants. Maternal blood was collected at 16 and 36 weeks of gestation and infant neurodevelopment was assessed at 18 months of age for 154 mother-infant pairs. Maternal plasma choline, betaine, dimethylglycine, methionine, homocysteine, cysteine, total B12, holotranscobalamin and folate were quantified. Infant neurodevelopment was evaluated using the Bayley Scales of Infant Development–III. Multivariate regression, adjusting for covariates that impact development, was used to determine the associations between maternal plasma choline, betaine and dimethylglycine and infant neurodevelopment. Results The maternal plasma free choline at 16 and 36 weeks gestation was median (interquartile range) 6.70 (5.78–8.03) and 9.40 (8.10–11.3) µmol/L, respectively. Estimated choline intakes were (mean ±SD) 383±98.6 mg/day, and lower than the recommended 450 mg/day. Betaine intakes were 142±70.2 mg/day. Significant positive associations were found between infant cognitive test scores and maternal plasma free choline (B = 6.054, SE = 2.283, p = 0.009) and betaine (B = 7.350, SE = 1.933, p = 0.0002) at 16 weeks of gestation. Maternal folate, total B12, or holotranscobalamin were not related to infant development. Conclusion We show that choline status in the first half of pregnancy is associated with cognitive development among healthy term gestation infants. More work is needed on the potential limitation of choline or betaine in the diets of pregnant women. PMID:22916264
Calabria, Ferdinando; Chiaravalloti, Agostino; Cicciò, Carmelo; Gangemi, Vincenzo; Gullà, Domenico; Rocca, Federico; Gallo, Gianpasquale; Cascini, Giuseppe Lucio; Schillaci, Orazio
2017-08-01
The 11 C/ 18 F-choline is a PET/CT radiopharmaceutical useful in detecting tumors with high lipogenesis. 11 C/ 18 F-choline uptake can occur in physiological conditions or tumors. The knowledge of its bio-distribution is essential to recognize physiologic variants or diagnostic pitfalls. Moreover, few information are available on the bio-distribution of this tracer in female patients. Our aim was to discuss some documented 18 F-choline PET/CT pitfalls in prostate cancer patients. Our secondary aim was to describe the 18 F-choline bio-distribution in the female body. We collected diagnostic pitfalls in three PET centers examining 1000 prostate cancer by 18 F-choline PET/CT. All pitfalls were ensured by follow-up, imaging and/or histology. We also performed whole body 18 F-choline PET/CT in 5 female patients. 169/1000 (16.9%) patients showed pitfalls not owing to prostate cancer. These findings were due to inflammation, benign tumors while, in 1% of examined patients, a concomitant neoplasm was found. In the female body, the breast showed low physiological uptake. The accurate knowledge of 18 F-choline PET/CT bio-distribution and diagnostic pitfalls is essential. Correlative imaging and histological exam are often necessary to depict pitfalls. In women, the uptake in the breast is due to the physiological gradient of 18 F-choline uptake in the exocrine glands. Our results confirm the possibility of 18 F-choline uptake in several diseases other than prostate cancer. However, our experience was acquired on a large population and shows that a conspicuous amount of 18 F-choline diagnostic pitfalls are easily recognizable and attributable to inflammation. A new advance in knowledge is the minimal difference in terms of physiological tracer bio-distribution between male and female patients. The knowledge of the physiological bio-distribution and of the potential pitfalls linked of a tracer could help physicians to choose the best diagnostic and therapeutic approaches for a better patient quality of life. Copyright © 2017 Elsevier Inc. All rights reserved.
Risbud, Rashmi D; Mattson, Sarah N; Chambers, Christina D; Thomas, Jennifer D
2016-01-01
Background: Prenatal alcohol exposure results in a broad range of cognitive and behavioral impairments. Because of the long-lasting problems that are associated with fetal alcohol spectrum disorders (FASDs), the development of effective treatment programs is critical. Preclinical animal studies have shown that choline, which is an essential nutrient, can attenuate the severity of alcohol-related cognitive impairments. Objective: We aimed to translate preclinical findings to a clinical population to investigate whether choline supplementation can ameliorate the severity of memory, executive function, and attention deficits in children with FASDs. Design: In the current study, which was a randomized, double-blind, placebo-controlled clinical trial, we explored the effectiveness of a choline intervention for children with FASDs who were aged 5–10 y. Fifty-five children with confirmed histories of heavy prenatal alcohol exposure were randomly assigned to either the choline (n = 29) or placebo (n = 26) treatment arms. Participants in the choline group received 625 mg choline/d for 6 wk, whereas subjects in the placebo group received an equivalent dose of an inactive placebo treatment. Primary outcomes, including the performance on neuropsychological measures of memory, executive function, and attention and hyperactivity, were assessed at baseline and postintervention. Results: Compared with the placebo group, participants in the choline group did not differentially improve in cognitive performance in any domain. Treatment compliance and mean dietary choline intake were not predictive of treatment outcomes. Conclusions: Findings of the current study do not support that choline, administered at a dose of 625 mg/d for 6 wk, is an effective intervention for school-aged (5–10 y old) children with FASDs. This research provides important information about choline’s therapeutic window. Combined with other studies of choline and nutritional interventions in this population, this study emphasizes a further need for the continued study of the role of nutritional status and supplementation in children with FASDs and the contributions of nutrition to neurocognition. This trial was registered at clinicaltrials.gov as NCT01911299. PMID:27806977
Prenatal choline and the development of schizophrenia
FREEDMAN, Robert; ROSS, Randal G.
2015-01-01
Background The primary prevention of illness at the population level, the ultimate aim of medicine, seems out of reach for schizophrenia. Schizophrenia has a strong genetic component, and its pathogenesis begins long before the emergence of psychosis, as early as fetal brain development. Cholinergic neurotransmission at nicotinic receptors is a pathophysiological mechanism related to one aspect of this genetic risk. Choline activates these nicotinic receptors during fetal brain development. Dietary supplementation of maternal choline thus emerges as a possible intervention in pregnancy to alter the earliest developmental course of the illness. Aim Review available literature on the relationship of choline supplementation or choline levels during pregnancy and fetal brain development. Methods A Medline search was used to identify studies assessing effects of choline in human fetal development. Studies of other prenatal risk factors for schizophrenia and the role of cholinergic neurotransmission in its pathophysiology were also identified. Results Dietary requirements for choline are high during pregnancy because of its several uses, including membrane biosynthesis, one-carbon metabolism, and cholinergic neurotransmission. Its ability to act directly at high concentrations as a nicotinic agonist is critical for normal brain circuit development. Dietary supplementation in the second and third trimesters with phosphatidyl-choline supports these functions and is associated generally with better fetal outcome. Improvement in inhibitory neuronal functions whose deficit is associated with schizophrenia and attention deficit disorder has been observed. Conclusion Prenatal dietary supplementation with phosphatidyl-choline and promotion of diets rich in choline-containing foods (meats, soybeans, and eggs) are possible interventions to promote fetal brain development and thereby decrease the risk of subsequent mental illnesses. The low risk and short (sixmonth) duration of the intervention makes it especially conducive to population-wide adoption. Similar findings with folate for the prevention of cleft palate led to recommendations for prenatal pharmacological supplementation and dietary improvement. However, definitive proof of the efficacy of prenatal choline supplementation will not be available for decades (because of the 20-year lag until the onset of schizophrenia), so public health officials need to decide whether or not promoting choline supplementation is justified based on the limited information available. PMID:26120259
Kennedy, Bruce C; Dimova, Jiva G; Siddappa, Asha J M; Tran, Phu V; Gewirtz, Jonathan C; Georgieff, Michael K
2014-11-01
Gestational iron deficiency in humans and rodents produces long-term deficits in cognitive and socioemotional function and alters expression of plasticity genes in the hippocampus that persist despite iron treatment. Prenatal choline supplementation improves cognitive function in other rodent models of developmental insults. The objective of this study was to determine whether prenatal choline supplementation prevents the long-term effects of fetal-neonatal iron deficiency on cognitive and social behaviors and hippocampal gene expression. Pregnant rat dams were administered an iron-deficient (2-6 g/kg iron) or iron-sufficient (IS) (200 g/kg iron) diet from embryonic day (E) 3 to postnatal day (P) 7 with or without choline supplementation (5 g/kg choline chloride, E11-18). Novel object recognition (NOR) in the test vs. acquisition phase, social approach (SA), and hippocampal mRNA expression were compared at P65 in 4 male adult offspring groups: formerly iron deficient (FID), FID with choline supplementation (FID-C), IS, and IS with choline supplementation. Relative to the intact NOR in IS rats (acquisition: 47.9%, test: 60.2%, P < 0.005), FID adult rats had impaired recognition memory at the 6-h delay (acquisition: 51.4%, test: 55.1%, NS), accompanied by a 15% reduction in hippocampal expression of brain-derived neurotrophic factor (Bdnf) (P < 0.05) and myelin basic protein (Mbp) (P < 0.05). Prenatal choline supplementation in FID rats restored NOR (acquisition: 48.8%, test: 64.4%, P < 0.0005) and increased hippocampal gene expression (FID-C vs. FID group: Bdnf, Mbp, P < 0.01). SA was also reduced in FID rats (P < 0.05 vs. IS rats) but was only marginally improved by prenatal choline supplementation. Deficits in recognition memory, but not social behavior, resulting from gestational iron deficiency are attenuated by prenatal choline supplementation, potentially through preservation of hippocampal Bdnf and Mbp expression. Prenatal choline supplementation may be a promising adjunct treatment for fetal-neonatal iron deficiency. © 2014 American Society for Nutrition.
Lewis, E D; Goruk, S; Richard, C; Dellschaft, N S; Curtis, J M; Jacobs, R L; Field, C J
2016-09-01
The nutrient choline is necessary for membrane synthesis and methyl donation, with increased requirements during lactation. The majority of immune development occurs postnatally, but the importance of choline supply for immune development during this critical period is unknown. The objective of this study was to determine the importance of maternal supply of choline during suckling on immune function in their offspring among rodents. At parturition, Sprague-Dawley dams were randomised to either a choline-devoid (ChD; n 7) or choline-sufficient (ChS, 1 g/kg choline; n 10) diet with their offspring euthanised at 3 weeks of age. In a second experiment, offspring were weaned to a ChS diet until 10 weeks of age (ChD-ChS, n 5 and ChS-ChS, n 9). Splenocytes were isolated, and parameters of immune function were measured. The ChD offspring received less choline in breast milk and had lower final body and organ weight compared with ChS offspring (P<0·05), but this effect disappeared by week 10 with choline supplementation from weaning. ChD offspring had a higher proportion of T cells expressing activation markers (CD71 or CD28) and a lower proportion of total B cells (CD45RA+) and responded less to T cell stimulation (lower stimulation index and less IFN-γ production) ex vivo (P<0·05). ChD-ChS offspring had a lower proportion of total and activated CD4+ T cells, and produced less IL-6 after mitogen stimulation compared with cells from ChS-ChS (P<0·05). Our study suggests that choline is required in the suckling diet to facilitate immune development, and choline deprivation during this critical period has lasting effects on T cell function later in life.
Martin, Barry A.; Tolbert, N. E.
1983-01-01
Phosphate in the xylem exudate of tomato (Lycopersicon esculentum) plants was 70 to 98% inorganic phosphate (Pi), 2 to 30% P-choline, and less than 1% P-ethanolamine. Upon adding 32Pi to the nutrient, Pi in xylem exudate had the same specific activity within 4 hours. P-choline and P-ethanolamine reached the same specific activity only after 96 hours. The amount of Pi in xylem exudate was dependent on Pi concentration in the nutrient and decreased from 1700 to 170 micromolar when Pi in the nutrient decreased from 50 to 2 micromolar. The flux of 0.4 nmoles organic phosphate per minute per gram fresh weight root into the xylem exudate was not affected by the Pi concentration in the nutrient solution unless it was below 1 micromolar. During 7 days of Pi starvation, Pi in the xylem exudate decreased from 1400 to 130 micromolar while concentrations of the two phosphate esters remained unchanged. The concentration of phosphate esters in the xylem exudate was increased by addition of choline or ethanolamine to the nutrient solution, but Pi remained unchanged. Upon adding [14C]choline to the nutrient, 10 times more [14C]P-choline than [14C]choline was in the xylem exudate and 85 to 90% of the ester phosphate was P-choline. When [14C]ethanolamine was added, [14C]P-ethanolamine and [14C]ethanolamine in the xylem sap were equal in amount. P-choline and P-ethanolamine accumulated in leaves of whole plants at the same time and the same proportion as observed for their flux into the xylem exudate. No relationship between the transport of P-choline and Pi in the xylem was established. Rather, the amount of choline in xylem exudate and its incorporation into phosphatidylcholine in the leaf suggest that the root is a site of synthesis of P-choline and P-ethanolamine for phospholipid synthesis in tomato leaves. PMID:16663240
Yoon, Sujung J; Lyoo, In Kyoon; Kim, Hengjun J; Kim, Tae-Suk; Sung, Young Hoon; Kim, Namkug; Lukas, Scott E; Renshaw, Perry F
2010-01-01
Cytidine-5′-diphosphate choline (CDP-choline), as an important intermediate for major membrane phospholipids, may exert neuroprotective effects in various neurodegenerative disorders. This longitudinal proton magnetic resonance spectroscopy (1H-MRS) study aimed to examine whether a 4-week CDP-choline treatment could alter neurometabolite levels in patients with methamphetamine (MA) dependence and to investigate whether changes in neurometabolite levels would be associated with MA use. We hypothesized that the prefrontal levels of N-acetyl-aspartate (NAA), a neuronal marker, and choline-containing compound (Cho), which are related to membrane turnover, would increase with CDP-choline treatment in MA-dependent patients. We further hypothesized that this increase would correlate with the total number of negative urine results. Thirty-one treatment seekers with MA dependence were randomly assigned to receive CDP-choline (n=16) or placebo (n=15) for 4 weeks. Prefrontal NAA and Cho levels were examined using 1H-MRS before medication, and at 2 and 4 weeks after treatment. Generalized estimating equation regression analyses showed that the rate of change in prefrontal NAA (p=0.005) and Cho (p=0.03) levels were greater with CDP-choline treatment than with placebo. In the CDP-choline-treated patients, changes in prefrontal NAA levels were positively associated with the total number of negative urine results (p=0.03). Changes in the prefrontal Cho levels, however, were not associated with the total number of negative urine results. These preliminary findings suggest that CDP-choline treatment may exert potential neuroprotective effects directly or indirectly because of reductions in drug use by the MA-dependent patients. Further studies with a larger sample size of MA-dependent patients are warranted to confirm a long-term efficacy of CDP-choline in neuroprotection and abstinence. PMID:20043005
Birch, Sharla M.; Lenox, Mark W.; Kornegay, Joe N.; Paniagua, Beatriz; Styner, Martin A.; Goodlett, Charles R.; Cudd, Tim A.; Washburn, Shannon E.
2016-01-01
Fetal alcohol spectrum disorder (FASD) is a leading potentially preventable birth defect. Poor nutrition may contribute to adverse developmental outcomes of prenatal alcohol exposure, and supplementation of essential micronutrients such as choline has shown benefit in rodent models. The sheep model of first-trimester binge alcohol exposure was used in this study to model the dose of maternal choline supplementation used in an ongoing prospective clinical trial involving pregnancies at risk for FASD. Primary outcome measures included volumetrics of the whole brain, cerebellum, and pituitary derived from magnetic resonance imaging (MRI) in 6-month-old lambs, testing the hypothesis that alcohol-exposed lambs would have brain volume reductions that would be ameliorated by maternal choline supplementation. Pregnant sheep were randomly assigned to one of five groups – heavy binge alcohol (HBA; 2.5 g/kg/treatment ethanol), heavy binge alcohol plus choline supplementation (HBC; 2.5 g/kg/treatment ethanol and 10 mg/kg/day choline), saline control (SC), saline control plus choline supplementation (SCC; 10 mg/kg/day choline), and normal control (NC). Ewes were given intravenous alcohol (HBA, HBC; mean peak BACs of ~280 mg/dL) or saline (SC, SCC) on three consecutive days per week from gestation day (GD) 4–41; choline was administered on GD 4–148. MRI scans of lamb brains were performed postnatally on day 182. Lambs from both alcohol groups (with or without choline) showed significant reductions in total brain volume; cerebellar and pituitary volumes were not significantly affected. This is the first report of MRI-derived volumetric brain reductions in a sheep model of FASD following binge-like alcohol exposure during the first trimester. These results also indicate that maternal choline supplementation comparable to doses in human studies fails to prevent brain volume reductions typically induced by first-trimester binge alcohol exposure. Future analyses will assess behavioral outcomes along with regional brain and neurohistological measures. PMID:27788773
Differential effect of imipramine and related compounds on Mg2+ efflux from rat erythrocytes.
Ebel, H; Hollstein, M; Günther, T
2004-12-15
The effect of imipramine on Mg2+ efflux in NaCl medium (Na+/Mg2+ antiport), on Mg2+ efflux in choline.Cl medium (choline/Mg2+ antiport) and on Mg2+ efflux in sucrose medium (Cl- -coupled Mg2+ efflux) was investigated in rat erythrocytes. In non-Mg2+-loaded rat erythrocytes, imipramine stimulated Na+/Mg2+ antiport but inhibited choline/Mg2+ antiport and Cl- -coupled Mg2+ efflux. The same effect could be obtained by several other compounds structurally related to imipramine. These drugs contain a cyclic hydrophobic ring structure to which a four-membered secondary or tertiary amine side chain is attached. At a physiological pH, the amine side chain expresses a cationic choline-like structure. The inhibitory effect on choline/Mg2+ antiport is lost when the amine side chain is modified or abandoned, pointing to competition of the choline-like side chain with choline or another cation at the unspecific choline antiporter or at the Cl- -coupled Mg2+ efflux. Other related drugs either stimulated Na+/Mg2+ antiport and choline/Mg2+ antiport, or they were ineffective. For stimulation of Na+/Mg2+ antiport and choline/Mg2+ antiport, there is no specific common structural motif of the drugs tested. The effects of imipramine on Na+/Mg2+ antiport and choline/Mg2+ antiport are not mediated by PKCalpha but are caused by a direct reaction of imipramine with these transporters. By increasing the intracellular Mg2+ concentration, the stimulation of Na+/Mg2+ antiport at a physiological intracellular Mg2+ concentration changed to an inhibition of Na+/Mg2+ antiport. This effect can be explained by the hypothesis that Mg2+ loading induced an allosteric transition of the Mg2+/Mg2+ exchanger with low Na+/Mg2+ antiport capacity to the Na+/Mg2+ antiporter with high Na+/Mg2+ antiport capacity. Both forms of the Mg2+ exchanger may be differently affected by imipramine.
Al Rajabi, Ala; Castro, Gabriela S F; da Silva, Robin P; Nelson, Randy C; Thiesen, Aducio; Vannucchi, Helio; Vine, Donna F; Proctor, Spencer D; Field, Catherine J; Curtis, Jonathan M; Jacobs, René L
2014-03-01
Dietary choline is required for proper structure and dynamics of cell membranes, lipoprotein synthesis, and methyl-group metabolism. In mammals, choline is synthesized via phosphatidylethanolamine N-methyltransferase (Pemt), which converts phosphatidylethanolamine to phosphatidylcholine. Pemt(-/-) mice have impaired VLDL secretion and developed fatty liver when fed a high-fat (HF) diet. Because of the reduction in plasma lipids, Pemt(-/-)/low-density lipoprotein receptor knockout (Ldlr(-/-)) mice are protected from atherosclerosis. The goal of this study was to investigate the importance of dietary choline in the metabolic phenotype of Pemt(-/-)/Ldlr(-/-) male mice. At 10-12 wk of age, Pemt(+/+)/Ldlr(-/-) (HF(+/+)) and half of the Pemt(-/-)/Ldlr(-/-) (HF(-/-)) mice were fed an HF diet with normal (1.3 g/kg) choline. The remaining Pemt(-/-)/Ldlr(-/-) mice were fed an HF diet supplemented (5 g/kg) with choline (HFCS(-/-) mice). The HF diet contained 60% of calories from fat and 1% cholesterol, and the mice were fed for 16 d. HF(-/-) mice lost weight and developed hepatomegaly, steatohepatitis, and liver damage. Hepatic concentrations of free cholesterol, cholesterol-esters, and triglyceride (TG) were elevated by 30%, 1.1-fold and 3.1-fold, respectively, in HF(-/-) compared with HF(+/+) mice. Choline supplementation normalized hepatic cholesterol, but not TG, and dramatically improved liver function. The expression of genes involved in cholesterol transport and esterification increased by 50% to 5.6-fold in HF(-/-) mice when compared with HF(+/+) mice. Markers of macrophages, oxidative stress, and fibrosis were elevated in the HF(-/-) mice. Choline supplementation normalized the expression of these genes. In conclusion, HF(-/-) mice develop liver failure associated with altered cholesterol metabolism when fed an HF/normal choline diet. Choline supplementation normalized cholesterol metabolism, which was sufficient to prevent nonalcoholic steatohepatitis development and improve liver function. Our data suggest that choline can promote liver health by maintaining cholesterol homeostasis.
Wu, Pei; Jiang, Wei-Dan; Liu, Yang; Chen, Gang-Fu; Jiang, Jun; Li, Shu-Hong; Feng, Lin; Zhou, Xiao-Qiu
2014-06-01
The present work evaluates the effects of various levels of dietary choline on antioxidant defenses and gene expressions of Nrf2 signaling molecule in spleen and head kidney of juvenile Jian carp (Cyprinus carpio var. Jian). Fish were fed with six different experimental diets containing graded levels of choline at 165 (choline-deficient control), 310, 607, 896, 1167 and 1820 mg kg(-1) diet for 65 days. At the end of the feeding trail, fish were challenged with Aeromonas hydrophila and mortalities were recorded over 17 days. Dietary choline significantly decreased malondialdehyde and protein carbonyl contents in spleen and head kidney. However, anti-superoxide anion and anti-hydroxyl radical activities in spleen and head kidney also decreased. Interestingly, activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST) and glutathione reductase (GR) in spleen, GPx activity in head kidney, and glutathione contents in spleen and head kidney were decreased with increase of dietary choline levels up to a certain point, whereas, activities of SOD, GST and GR in head kidney showed no significantly differences among groups. Similarly, expression levels of CuZnSOD, MnSOD, CAT, GPx1a, GPx1b and GR gene in spleen and head kidney were significantly lower in group with choline level of 607 mg kg(-1) diet than those in the choline-deficient group. The relative gene expressions of Nrf2 in head kidney and Keap1a in spleen and head kidney were decreased with increasing of dietary choline up to a certain point. However, the relative gene expression of Nrf2 in spleen were not significantly affected by dietary choline. In conclusion, dietary choline decreased the oxidant damage and regulated the antioxidant system in immune organs of juvenile Jian carp. Copyright © 2014 Elsevier Ltd. All rights reserved.
SLC4A11 is an EIPA-sensitive Na+ permeable pHi regulator
Ogando, Diego G.; Jalimarada, Supriya S.; Zhang, Wenlin; Vithana, Eranga N.
2013-01-01
Slc4a11, a member of the solute linked cotransporter 4 family that is comprised predominantly of bicarbonate transporters, was described as an electrogenic 2Na+-B(OH)4− (borate) cotransporter and a Na+-2OH− cotransporter. The goal of the current study was to confirm and/or clarify the function of SLC4A11. In HEK293 cells transfected with SLC4A11 we tested if SLC4A11 is a: 1) Na+-HCO3− cotransporter, 2) Na+-OH−(H+) transporter, and/or 3) Na+-B(OH)4− cotransporter. CO2/HCO3− perfusion yielded no significant differences in rate or extent of pHi changes or Na+ flux in SLC4A11-transfected compared with control cells. Similarly, in CO2/HCO3−, acidification on removal of Na+ and alkalinization on Na+ add back were not significantly different between control and transfected indicating that SLC4A11 does not have Na+-HCO3− cotransport activity. In the absence of CO2/HCO3−, SLC4A11-transfected cells showed higher resting intracelllular Na+ concentration ([Na+]i; 25 vs. 17 mM), increased NH4+-induced acidification and increased acid recovery rate (160%) after an NH4 pulse. Na+ efflux and influx were faster (80%) following Na+ removal and add back, respectively, indicative of Na+-OH−(H+) transport by SLC4A11. The increased alkalinization recovery was confirmed in NHE-deficient PS120 cells demonstrating that SLC4A11 is a bonafide Na+-OH−(H+) transporter and not an activator of NHEs. SLC4A11-mediated H+ efflux is inhibited by 5-(N-ethyl-N-isopropyl) amiloride (EIPA; EC50: 0.1 μM). The presence of 10 mM borate did not alter dpHi/dt or ΔpH during a Na+-free pulse in SLC4A11-transfected cells. In summary our results show that SLC4A11 is not a bicarbonate or borate-linked transporter but has significant EIPA-sensitive Na+-OH−(H+) and NH4+ permeability. PMID:23864606
Friesen, Russell W; Novak, Elizabeth M; Hasman, David; Innis, Sheila M
2007-12-01
Choline and glycine are inter-related through their roles in methyl metabolism. Choline is metabolized to betaine, which donates a methyl group to homocysteine to form methionine, also generating dimethylglycine, which is further metabolized to glycine. Choline is transported across the placenta and is higher in fetal than maternal plasma. Placental glycine transfer, however, is limited and poor glycine status has been suggested in preterm infants. Insufficient glycine for glutathione (GSH) synthesis results in increased metabolism of gamma-glutamyl cysteine to 5-oxoproline. We measured plasma 5-oxoproline as a metabolic indicator to address whether choline, via dimethylglycine, contributes physiologically relevant amounts of glycine in pregnancy. Blood was collected from healthy term pregnant women and their newborn infants at delivery (n = 46) and nonpregnant healthy women (n = 19) as a reference group. Plasma choline, betaine, dimethylglycine, homocysteine, methionine, and 5-oxoproline were quantified by HPLC-tandem MS. Plasma choline was 45% higher, but betaine was 63% lower and dimethylglycine was 28% lower in pregnant than nonpregnant women (P < 0.01). Higher white blood cell choline dehydrogenase messenger RNA levels in a random subset of pregnant (n = 8) than nonpregnant women (n = 7) (P < 0.01) suggest increased betaine and dimethylglycine turnover rather than decreased synthesis. Plasma choline, betaine, and dimethylglycine were higher (P < 0.001) in fetal plasma (36.4 +/- 13, 29.4 +/- 1.0, and 2.44 +/- 0.12 micromol/L, respectively) than maternal plasma (15.3 +/- 0.42, 14.1 +/- 0.6 and 1.81 +/- 0.12 micromol/L, respectively). Concentrations of 5-oxoproline and dimethylglycine were inversely (P < 0.05) correlated in maternal (Spearman rho = -0.35) and fetal plasma (Spearman rho = -0.32), suggesting that choline, via dimethylglycine, contributes glycine for GSH synthesis in human development.
Konstantinova, Svetlana V; Tell, Grethe S; Vollset, Stein Emil; Nygård, Ottar; Bleie, Øyvind; Ueland, Per Magne
2008-05-01
Choline is involved in the synthesis of phospholipids, including blood lipids, and is the immediate precursor of betaine, which serves as a methyl group donor in a reaction converting homocysteine to methionine. Several cardiovascular risk factors are associated with plasma homocysteine, whereas little is known about their relationship to choline and betaine. We examined the relation of plasma choline and betaine to smoking, physical activity, BMI, percent body fat, waist circumference, blood pressure, serum lipids, and glucose in a population-based study of 7074 men and women aged 47-49 and 71-74 y. Overall plasma concentrations (means +/- SD) were 9.9 +/- 2.3 micromol/L for choline and 39.5 +/- 12.5 micromol/L for betaine. Choline and betaine were lower in women than in men and in younger subjects compared with older (P < 0.0001). Multivariate analyses showed that choline was positively associated with serum triglycerides, glucose, BMI, percent body fat, waist circumference (P < 0.0001 for all), and physical activity (P < 0.05) and inversely related to HDL cholesterol (P < 0.05) and smoking (P < 0.0001). Betaine was inversely associated with serum non-HDL cholesterol, triglycerides, BMI, percent body fat, waist circumference, systolic and diastolic blood pressure (P < 0.0001 for all), and smoking (P < 0.05) and positively associated with HDL cholesterol (P < 0.01) and physical activity (P < 0.0001). Thus, an unfavorable cardiovascular risk factor profile was associated with high choline and low betaine concentrations. Choline and betaine were associated in opposite directions with key components of metabolic syndrome, suggesting a disruption of mitochondrial choline dehydrogenase pathway.
Bidulescu, Aurelian; Chambless, Lloyd E; Siega-Riz, Anna Maria; Zeisel, Steven H; Heiss, Gerardo
2007-01-01
Background Low dietary intake of the essential nutrient choline and its metabolite betaine may increase atherogenesis both through effects on homocysteine methylation pathways as well as through choline's antioxidants properties. Nutrient values for many common foods for choline and betaine have recently become available in the U.S. nutrient composition database. Our objective was to assess the association of dietary intake of choline and betaine with incident coronary heart disease (CHD), adjusting for dietary intake measurement error. Methods We conducted a prospective investigation of the relation between usual intake of choline and betaine with the risk of CHD in 14,430 middle-aged men and women of the biethnic Atherosclerosis Risk in Communities study. A semi-quantitative food frequency questionnaire was used to assess nutrient intake. Proportional hazard regression models were used to calculate the risk of incident CHD. A regression calibration method was used to adjust for measurement error. Results During an average 14 years of follow-up (1987–2002), 1,072 incident CHD events were documented. Compared with the lowest quartile of intake, incident CHD risk was slightly and non-significantly higher in the highest quartile of choline and choline plus betaine, HR = 1.22 (0.91, 1.64) and HR = 1.14 (0.85, 1.53), controlling for age, sex, education, total energy intake, dietary intakes of folate, methionine and vitamin B6. No association was found between dietary choline intake and incident CHD when correcting for measurement error. Conclusion Higher intakes of choline and betaine were not protective for incident CHD. Similar investigations in other populations are of interest. PMID:17629908
High intakes of choline and betaine reduce breast cancer mortality in a population-based study
Xu, Xinran; Gammon, Marilie D.; Zeisel, Steven H.; Bradshaw, Patrick T.; Wetmur, James G.; Teitelbaum, Susan L.; Neugut, Alfred I.; Santella, Regina M.; Chen, Jia
2009-01-01
Choline and betaine provide methyl groups for one-carbon metabolism. Humans obtain these nutrients from a wide range of foods. Betaine can also be synthesized endogenously from its precursor, choline. Although animal studies have implied a causal relationship between choline deficiency and carcinogenesis, the role of these two nutrients in human carcinogenesis and tumor progression is not well understood. We investigated the associations of dietary intakes of choline and betaine and breast cancer risk and mortality in the population-based Long Island Breast Cancer Study Project. Among the 1508 case-group women, 308 (20.2%) deaths occurred, among whom 164 (53.2%) died of breast cancer by December 31, 2005. There was an indication that a higher intake of free choline was associated with reduced risk of breast cancer (Ptrend=0.04). Higher intakes of betaine, phosphocholine, and free choline were associated with reduced all-cause as well as breast cancer-specific mortality in a dose-dependent fashion. We also explored associations of polymorphisms of three key choline- and betaine-metabolizing genes and breast cancer mortality. The betaine-homocysteine methyltransferase gene (BHMT) rs3733890 polymorphism was associated with reduced breast cancer-specific mortality (hazard ratio, 0.64; 95% confidence interval, 0.42–0.97). Our study supports the important roles of choline and betaine in breast carcinogenesis. It suggests that high intake of these nutrients may be a promising strategy to prevent the development of breast cancer and to reduce its mortality.—Xu, X., Gammon, M. D., Zeisal, S. H., Bradshaw, P. T., Wetmur, J. G., Teitelbaum, S. L., Neugut, A. I., Santella, R. M., Chen, J. High intakes of choline and betaine reduce breast cancer mortality in a population-based study. PMID:19635752
Plasma choline, smoking, and long-term prognosis in patients with stable angina pectoris.
Schartum-Hansen, Hall; Pedersen, Eva R; Svingen, Gard F T; Ueland, Per M; Seifert, Reinhard; Ebbing, Marta; Strand, Elin; Bleie, Øyvind; Nygård, Ottar
2015-05-01
Plasma choline has been associated with cardiovascular disease and nonalcoholic steatohepatitis. We sought to study relations of plasma choline and its metabolite betaine to long-term risk of acute myocardial infarction (AMI) and all-cause mortality according to smoking status, in patients undergoing coronary angiography for stable angina pectoris. Samples were obtained before angiography from 2568 patients who were subsequently randomized in the Western Norway B-Vitamin Intervention Trial (WENBIT). Hazard ratios (HR) were calculated using multivariate Cox-regression and p-values were reported for trends over quartiles. Plasma concentrations of choline, but not betaine, were lower in smokers, and choline was positively associated with C-reactive protein and troponin T in nonsmokers, but not in smokers (p for interaction <0.03). During a follow up of 4.8 ± 1.4 (mean ± SD) years, 8.3% suffered from AMI and 6.1% died. In the total population, choline was not associated with AMI or all-cause mortality. However, comparing the highest vs. the lowest quartiles, plasma choline was associated with increased risk of AMI in nonsmokers (HR 2.63, 95% CI 1.56 to 5.51; p for trend = 0.013) and no risk in smokers (p for interaction < 0.001). Plasma choline significantly improved discrimination and reclassification when added to established cardiovascular risk factors. Plasma betaine was not associated with either endpoint. In patients with stable angina pectoris, elevated plasma choline is associated with elevated troponin levels and increased risk of AMI in nonsmokers. These results motivate further research into the relation between choline metabolism, smoking, and atherothrombosis. © The European Society of Cardiology 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Batra, Vipen; Devasagayam, Thomas Paul Asir
2009-01-08
The search for non-toxic radio-protective drugs has yielded many potential agents but most of these compounds have certain amount of toxicity. Recent studies have indicated that bio-molecules such as folate and choline might be of radio-protective value as they are, within broad dose ranges, non-toxic to humans and experimental animals. The objective of the present study was to investigate choline dependent adaptive response to potential synergistic cytotoxic effect of folate deficiency and gamma-radiation. Male Swiss mice maintained on folate sufficient diet (FSD) and folate free diet (FFD) based on AIN-93M formula, were subjected to 1-4Gy total body gamma-irradiation. To investigate liver DNA damage, apurinic/apyrimidinic sites (AP sites) were quantified. A significant increase in liver DNA AP sites with concomitant depletion of liver choline reserves was observed when gamma-radiation was combined with folate deficiency. Further work in this direction suggested that cytotoxic interaction between folate deficiency and gamma radiation might induce utilization of choline and choline containing moieties by modifying levels of key regulatory enzymes dihydrofolate reductase (DHFR) and choline oxidase (ChoOx). Another major finding of these studies is that significant liver damage at higher doses of radiation (3-4Gy), might release considerable amounts of choline reserves to serum. In conclusion, a plausible interpretation of the present studies is that folate deprivation and gamma-radiation interact to mobilize additional choline reserves of hepatic tissue, for redistribution to other organs, which could not be utilized by folate deficiency alone. Present results clearly indicated a distinct choline pool in liver and kidney tissues that could be utilized by folate deficient animals only under radiation stress conditions.
Jesch, Stephen A; Zhao, Xin; Wells, Martin T; Henry, Susan A
2005-03-11
In the yeast Saccharomyces cerevisiae, the transcription of many genes encoding enzymes of phospholipid biosynthesis are repressed in cells grown in the presence of the phospholipid precursors inositol and choline. A genome-wide approach using cDNA microarray technology was used to profile the changes in the expression of all genes in yeast that respond to the exogenous presence of inositol and choline. We report that the global response to inositol is completely distinct from the effect of choline. Whereas the effect of inositol on gene expression was primarily repressing, the effect of choline on gene expression was activating. Moreover, the combination of inositol and choline increased the number of repressed genes compared with inositol alone and enhanced the repression levels of a subset of genes that responded to inositol. In all, 110 genes were repressed in the presence of inositol and choline. Two distinct sets of genes exhibited differential expression in response to inositol or the combination of inositol and choline in wild-type cells. One set of genes contained the UASINO sequence and were bound by Ino2p and Ino4p. Many of these genes were also negatively regulated by OPI1, suggesting a common regulatory mechanism for Ino2p, Ino4p, and Opi1p. Another nonoverlapping set of genes was coregulated by the unfolded protein response pathway, an ER-localized stress response pathway, but was not dependent on OPI1 and did not show further repression when choline was present together with inositol. These results suggest that inositol is the major effector of target gene expression, whereas choline plays a minor role.
Jesch, Stephen A.; Zhao, Xin; Wells, Martin T.; Henry, Susan A.
2005-01-01
SUMMARY In the yeast Saccharomyces cerevisiae the transcription of many genes encoding enzymes of phospholipid biosynthesis are repressed in cells grown in the presence of the phospholipid precursors inositol and choline. A genome-wide approach using cDNA microarray technology was utilized to profile the changes in the expression of all genes in yeast that respond to the exogenous presence of inositol and choline. We report that the global response to inositol is completely distinct from the effect of choline. Whereas the effect of inositol on gene expression was primarily repressing, the effect of choline on gene expression was activating. Moreover, the combination inositol and choline increased the number of repressed genes compared to inositol alone and enhanced the repression levels of a subset of genes that responded to inositol. In all, 110 genes were repressed in the presence of inositol and choline. Two distinct sets of genes exhibited differential expression in response to inositol or the combination of inositol and choline in wild type cells. One set of genes contained the UASINO sequence and were bound by Ino2p and Ino4p. Many of these genes were also negatively regulated by OPI1, suggesting a common regulatory mechanism for Ino2p, Ino4p, and Opi1p. Another non-overlapping set of genes were coregulated by the unfolded protein response pathway, an ER-localized stress response pathway, but were not dependent on OPI1 and did not show further repression when choline was present together with inositol. These results suggest that inositol is the major effector of target gene expression, while choline plays a minor role. PMID:15611057
The Form of Choline in the Maternal Diet Affects Immune Development in Suckled Rat Offspring.
Lewis, Erin D; Richard, Caroline; Goruk, Susan; Dellschaft, Neele S; Curtis, Jonathan M; Jacobs, René L; Field, Catherine J
2016-04-01
Lipid-soluble phosphatidylcholine (PC) and aqueous free choline are absorbed and metabolized differently, but the metabolic effects of feeding these 2 forms of choline have not been thoroughly investigated. We sought to compare the effects of PC and free choline in the maternal diet on the development of the offspring's immune system. During lactation, Sprague-Dawley dams (n= 10) were randomly assigned to 1 of 2 diet groups containing the same concentration of total choline (1 g/kg diet) as free choline (choline bitartrate) or PC (egg lecithin). The splenocytes of pups aged 21 d were isolated and stimulated ex vivo with concanavalin A (ConA) or lipopolysaccharide (LPS), and the choline concentrations of stomach content, plasma, and the spleen were measured. Pups from PC-fed dams had a lower proportion of cells involved in antigen presentation but produced 54% more interleukin (IL)-2, 163% more IL-6, and 107% more IFN-γ after ConA stimulation and 110% more IL-6 and 43% more tumor necrosis factor (TNF)-α after LPS stimulation (allP< 0.05). The PC concentrations were significantly higher in the plasma and spleen of pups from PC-fed dams (P< 0.05). Increasing the supply of PC in the form of lysophosphatidylcholine to splenocytes in vitro increased the rate of proliferation and IL-2 production and the surface expression of CD25, CD28, CD71, and CD152 on CD8+ T cells, suggesting 1 possible mechanism. The results of this study demonstrate that providing choline to rats in the form of PC (compared to free choline), possibly by increasing the supply of PC to the suckling pups, promotes maturation and improves function of the offspring's immune system. © 2016 American Society for Nutrition.
Nickerson, Chelsea A; Brown, Alexandra L; Yu, Waylin; Chun, Yoona; Glenn, Melissa J
2017-10-11
Choline is essential to the development and function of the central nervous system and supplemental choline during development is neuroprotective against a variety of insults, including neurotoxins like dizocilpine (MK-801). MK-801 is an NMDA receptor antagonist that is frequently used in rodent models of psychological disorders, particularly schizophrenia. At low doses, it causes cognitive impairments, and at higher doses it induces motor deficits, anhedonia, and neuronal degeneration. The primary goals of the present study were to investigate whether prenatal choline supplementation protects against the cognitive impairments, motor deficits, and neuropathologies that are precipitated by MK-801 administration in adulthood. Adult male Sprague-Dawley rats were fed a standard or supplemented choline diet prenatally. Using the novelty preference test of object recognition, we found that only prenatal standard-fed rats displayed memory consolidation deficits induced by low-dose MK-801 administered immediately following study of sample objects; all other groups, including prenatal choline supplemented rats given MK-801, showed intact memory. Following high-dose MK-801, prenatal choline supplementation significantly alleviated rats' motor response to MK-801, particularly ataxia. Using doublecortin and Ki67 to mark neurogenesis and cell division, respectively, in the hippocampus, we found that prenatal choline supplementation, in the face of MK-801 toxicity, protected against reduced hippocampal plasticity. Taken together, the current findings suggest that prenatal choline supplementation protects against a variety of behavioral and neural pathologies induced by the neurotoxin, MK-801. This research contributes to the growing body of evidence supporting the robust neuroprotective capacity of choline. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
Choline Kinase, A Novel Drug Target for the Inhibition of Streptococcus pneumoniae.
Zimmerman, Tahl; Ibrahim, Salam
2017-09-25
Gram-positive pathogens, such as S treptococcus pneumoniae , can have deleterious effects on both human and animal health. Antibiotics and antimicrobials have been developed to treat infections caused by such pathogens and to prevent food contamination. However, these strategies have been increasingly thwarted by the emergence of resistant bacteria strains. Thus, new methods for controlling Gram-positive pathogen growth need to be continuously developed. Choline analogs, such as Hemicholinium-3 (HC-3), have been shown to be useful in blocking cell division in eukaryotic cells through the inhibition of choline kinase, an enzyme which catalyzes the production of phosphocholine from choline and ATP. In some Gram-positive pathogens, choline kinase is an important enzyme in the production of the cell wall element, lipoteichoic acid. However, it is not known if inhibiting this enzyme has any effect on cell division in Gram-positive bacteria. Using the R6 strain as a model, we tested the ability of HC-3 to block the activity of choline kinase in S. pneumoniae and inhibit cell growth. Mass-spectrometry measurements of crude extracts revealed that HC-3 blocked choline kinase activity. Turbidity measurements and population counts showed that HC-3 inhibited cell growth. Competition assays with choline suggested that HC-3 also blocked choline transporters. Western blots showed that lipoteichoic acid production was blocked in the presence of HC-3, and autolytic assays showed that this decrease in lipoteichoic acids caused cells to be more resistant to autolysis. Scanning electron microscopy revealed that HC-3 distorted the cell wall. This study thus establishes choline kinase as a novel drug target for S. pneumoniae .
Schugar, Rebecca C.; Huang, Xiaojing; Moll, Ashley R.; Brunt, Elizabeth M.; Crawford, Peter A.
2013-01-01
Though widely employed for clinical intervention in obesity, metabolic syndrome, seizure disorders and other neurodegenerative diseases, the mechanisms through which low carbohydrate ketogenic diets exert their ameliorative effects still remain to be elucidated. Rodent models have been used to identify the metabolic and physiologic alterations provoked by ketogenic diets. A commonly used rodent ketogenic diet (Bio-Serv F3666) that is very high in fat (~94% kcal), very low in carbohydrate (~1% kcal), low in protein (~5% kcal), and choline restricted (~300 mg/kg) provokes robust ketosis and weight loss in mice, but through unknown mechanisms, also causes significant hepatic steatosis, inflammation, and cellular injury. To understand the independent and synergistic roles of protein restriction and choline deficiency on the pleiotropic effects of rodent ketogenic diets, we studied four custom diets that differ only in protein (5% kcal vs. 10% kcal) and choline contents (300 mg/kg vs. 5 g/kg). C57BL/6J mice maintained on the two 5% kcal protein diets induced the most significant ketoses, which was only partially diminished by choline replacement. Choline restriction in the setting of 10% kcal protein also caused moderate ketosis and hepatic fat accumulation, which were again attenuated when choline was replete. Key effects of the 5% kcal protein diet – weight loss, hepatic fat accumulation, and mitochondrial ultrastructural disarray and bioenergetic dysfunction – were mitigated by choline repletion. These studies indicate that synergistic effects of protein restriction and choline deficiency influence integrated metabolism and hepatic pathology in mice when nutritional fat content is very high, and support the consideration of dietary choline content in ketogenic diet studies in rodents to limit hepatic mitochondrial dysfunction and fat accumulation. PMID:24009777
Martínez-del Campo, Ana; Bodea, Smaranda; Hamer, Hilary A.; Marks, Jonathan A.; Haiser, Henry J.; Turnbaugh, Peter J.
2015-01-01
ABSTRACT Elucidation of the molecular mechanisms underlying the human gut microbiota’s effects on health and disease has been complicated by difficulties in linking metabolic functions associated with the gut community as a whole to individual microorganisms and activities. Anaerobic microbial choline metabolism, a disease-associated metabolic pathway, exemplifies this challenge, as the specific human gut microorganisms responsible for this transformation have not yet been clearly identified. In this study, we established the link between a bacterial gene cluster, the choline utilization (cut) cluster, and anaerobic choline metabolism in human gut isolates by combining transcriptional, biochemical, bioinformatic, and cultivation-based approaches. Quantitative reverse transcription-PCR analysis and in vitro biochemical characterization of two cut gene products linked the entire cluster to growth on choline and supported a model for this pathway. Analyses of sequenced bacterial genomes revealed that the cut cluster is present in many human gut bacteria, is predictive of choline utilization in sequenced isolates, and is widely but discontinuously distributed across multiple bacterial phyla. Given that bacterial phylogeny is a poor marker for choline utilization, we were prompted to develop a degenerate PCR-based method for detecting the key functional gene choline TMA-lyase (cutC) in genomic and metagenomic DNA. Using this tool, we found that new choline-metabolizing gut isolates universally possessed cutC. We also demonstrated that this gene is widespread in stool metagenomic data sets. Overall, this work represents a crucial step toward understanding anaerobic choline metabolism in the human gut microbiota and underscores the importance of examining this microbial community from a function-oriented perspective. PMID:25873372
Artegoitia, Virginia M.; Middleton, Jesse L.; Harte, Federico M.; Campagna, Shawn R.; de Veth, Michael J.
2014-01-01
Milk and dairy products are an important source of choline, a nutrient essential for human health. Infant formula derived from bovine milk contains a number of metabolic forms of choline, all contribute to the growth and development of the newborn. At present, little is known about the factors that influence the concentrations of choline metabolites in milk. The objectives of this study were to characterize and then evaluate associations for choline and its metabolites in blood and milk through the first 37 weeks of lactation in the dairy cow. Milk and blood samples from twelve Holstein cows were collected in early, mid and late lactation and analyzed for acetylcholine, free choline, betaine, glycerophosphocholine, lysophosphatidylcholine, phosphatidylcholine, phosphocholine and sphingomyelin using hydrophilic interaction liquid chromatography-tandem mass spectrometry, and quantified using stable isotope-labeled internal standards. Total choline concentration in plasma, which was almost entirely phosphatidylcholine, increased 10-times from early to late lactation (1305 to 13,535 µmol/L). In milk, phosphocholine was the main metabolite in early lactation (492 µmol/L), which is a similar concentration to that found in human milk, however, phosphocholine concentration decreased exponentially through lactation to 43 µmol/L in late lactation. In contrast, phosphatidylcholine was the main metabolite in mid and late lactation (188 µmol/L and 659 µmol/L, respectively), with the increase through lactation positively correlated with phosphatidylcholine in plasma (R 2 = 0.78). Unlike previously reported with human milk we found no correlation between plasma free choline concentration and milk choline metabolites. The changes in pattern of phosphocholine and phosphatidylcholine in milk through lactation observed in the bovine suggests that it is possible to manufacture infant formula that more closely matches these metabolites profile in human milk. PMID:25157578
Rungsrisuriyachai, Kunchala; Gadda, Giovanni
2010-03-23
The flavoprotein choline oxidase catalyzes the oxidation of choline to glycine betaine with transient formation of an aldehyde intermediate and molecular oxygen as final electron acceptor. The enzyme has been grouped in the glucose-methanol-choline oxidoreductase enzyme superfamily, which shares a highly conserved His-Asn catalytic pair in the active site. In this study, the conserved asparagine residue at position 510 in choline oxidase was replaced with alanine, aspartate, histidine, or leucine by site-directed mutagenesis, and the resulting mutant enzymes were purified and characterized in their biochemical and mechanistic properties. All of the substitutions resulted in low incorporation of FAD into the protein. The Asn510Asp enzyme was not catalytically active with choline and had 75% of the flavin associated noncovalently. The most notable changes in the catalytic parameters with respect to wild-type choline oxidase were seen in the Asn510Ala enzyme, with decreases of 4300-fold in the k(cat)/K(choline), 600-fold in the k(red), 660-fold in the k(cat), and 50-fold in the k(cat)/K(oxygen) values. Smaller, but nonetheless similar, changes were seen also in the Asn510His enzyme. Both the K(d) and K(m) values for choline changed < or = 7-fold. These data are consistent with Asn510 participating in both the reductive and oxidative half-reactions but having a minimal role in substrate binding. Substrate, solvent, and multiple kinetic isotope effects on the k(red) values indicated that the substitution of Asn510 with alanine, but not with histidine, resulted in a change from stepwise to concerted mechanisms for the cleavages of the OH and CH bonds of choline catalyzed by the enzyme.
Schugar, Rebecca C; Huang, Xiaojing; Moll, Ashley R; Brunt, Elizabeth M; Crawford, Peter A
2013-01-01
Though widely employed for clinical intervention in obesity, metabolic syndrome, seizure disorders and other neurodegenerative diseases, the mechanisms through which low carbohydrate ketogenic diets exert their ameliorative effects still remain to be elucidated. Rodent models have been used to identify the metabolic and physiologic alterations provoked by ketogenic diets. A commonly used rodent ketogenic diet (Bio-Serv F3666) that is very high in fat (~94% kcal), very low in carbohydrate (~1% kcal), low in protein (~5% kcal), and choline restricted (~300 mg/kg) provokes robust ketosis and weight loss in mice, but through unknown mechanisms, also causes significant hepatic steatosis, inflammation, and cellular injury. To understand the independent and synergistic roles of protein restriction and choline deficiency on the pleiotropic effects of rodent ketogenic diets, we studied four custom diets that differ only in protein (5% kcal vs. 10% kcal) and choline contents (300 mg/kg vs. 5 g/kg). C57BL/6J mice maintained on the two 5% kcal protein diets induced the most significant ketoses, which was only partially diminished by choline replacement. Choline restriction in the setting of 10% kcal protein also caused moderate ketosis and hepatic fat accumulation, which were again attenuated when choline was replete. Key effects of the 5% kcal protein diet - weight loss, hepatic fat accumulation, and mitochondrial ultrastructural disarray and bioenergetic dysfunction - were mitigated by choline repletion. These studies indicate that synergistic effects of protein restriction and choline deficiency influence integrated metabolism and hepatic pathology in mice when nutritional fat content is very high, and support the consideration of dietary choline content in ketogenic diet studies in rodents to limit hepatic mitochondrial dysfunction and fat accumulation.
Stevens, Karen E; Choo, Kevin S; Stitzel, Jerry A; Marks, Michael J; Adams, Catherine E
2014-03-13
Perinatal choline supplementation has produced several benefits in rodent models, from improved learning and memory to protection from the behavioral effects of fetal alcohol exposure. We have shown that supplemented choline through gestation and lactation produces long-term improvement in deficient sensory inhibition in DBA/2 mice which models a similar deficit in schizophrenia patients. The present study extends that research by feeding normal or supplemented choline diets to DBA/2 mice carrying the null mutation for the α7 nicotinic receptor gene (Chrna7). DBA/2 mice heterozygotic for Chrna7 were bred together. Dams were placed on supplemented (5 gm/kg diet) or normal (1.1 gm/kg diet) choline at mating and remained on the specific diet until offspring weaning. Thereafter, offspring were fed standard rodent chow. Adult offspring were assessed for sensory inhibition. Brains were obtained to ascertain hippocampal α7 nicotinic receptor levels. Choline-supplemented mice heterozygotic or null-mutant for Chrna7 failed to show improvement in sensory inhibition. Only wildtype choline-supplemented mice showed improvement with the effect solely through a decrease in test amplitude. This supports the hypothesis that gestational-choline supplementation is acting through the α7 nicotinic receptor to improve sensory inhibition. Although there was a significant gene-dose-related change in hippocampal α7 receptor numbers, binding studies did not reveal any choline-dose-related change in binding in any hippocampal region, the interaction being driven by a significant genotype main effect (wildtype>heterozygote>null mutant). These data parallel a human study wherein the offspring of pregnant women receiving choline supplementation during gestation, showed better sensory inhibition than offspring of women on placebo. Published by Elsevier B.V.
Stevens, Karen E.; Choo, Kevin S.; Stitzel, Jerry A.; Marks, Michael J.; Adams, Catherine E.
2014-01-01
Perinatal choline supplementation has produced several benefits in rodent models, from improved learning and memory to protection from the behavioral effects of fetal alcohol exposure. We have shown that supplemented choline through gestation and lactation produces long-term improvement in deficient sensory inhibition in DBA/2 mice which models a similar deficit in schizophrenia patients. The present study extends that research by feeding normal or supplemented choline diets to DBA/2 mice carrying the null mutation for the α7 nicotinic receptor gene (Chrna7). DBA/2 mice heterozygotic for Chrna7 were bred together. Dams were placed on supplemented (5 gm/kg diet) or normal (1.1 gm/kg diet) choline at mating and remained on the specific diet until offspring weaning. Thereafter, offspring were fed standard rodent chow. Adult offspring were assessed for sensory inhibition. Brains were obtained to ascertain hippocampal α7 nicotinic receptor levels. Choline-supplemented mice heterozygotic or null-mutant for Chrna7 failed to show improvement in sensory inhibition. Only wildtype choline-supplemented mice showed improvement with the effect solely through a decrease in test amplitude. This supports the hypothesis that gestational-choline supplementation is acting through the α7 nicotinic receptor to improve sensory inhibition. Although there was a significant gene-dose-related change in hippocampal α7 receptor numbers, binding studies did not reveal any choline-dose-related change in binding in any hippocampal region, the interaction being driven by a significant genotype main effect (wildtype>heterozygote>null mutant). These data parallel a human study wherein the offspring of pregnant women receiving choline supplementation during gestation, showed better sensory inhibition than offspring of women on placebo. PMID:24462939
Pan, Zhi-Yuan; Wang, Hai
2014-05-01
The simultaneous use of drugs with different mechanisms of anti-inflammatory action is a strategy for achieving effective control of inflammation while minimizing dose-related side effects. Choline was described to potentiate the antinociceptive action of aspirin at small doses in several inflammatory pain models. However, these findings are only limited to alleviating pain, more associated data are required to confirm the effectiveness of the combined choline and aspirin therapy against inflammatory disorders. Moreover, no report is available regarding the mechanism responsible for their synergism. Here, we first investigated the anti-inflammatory activity and pharmacological mechanisms of co-administration of choline and aspirin in 2 commonly studied inflammation models, carrageenan-induced paw edema and lipopolysaccharide (LPS)-induced sepsis in mice. Isobolographic analysis revealed that combined choline and aspirin administration exhibited a strong synergistic interaction in reducing carrageenan-mediated edema, and the estimated combination index values at 50%, 75%, and 90% effective dose (ED50, ED75, and ED90) were 0.25, 0.32, and 0.44. Drug co-administration also afforded synergistic protection against LPS-induced sepsis and mortality, since aspirin or choline alone was inadequate to improve survival. The effects of choline-aspirin co-administration were blocked by methyllycaconitine, suggesting that activation of alpha 7 nicotinic acetylcholine receptor participates in the interaction between choline and aspirin. Furthermore, co-administration of choline and aspirin was more likely to inhibit the production of pro-inflammatory mediators induced by LPS. Our results indicated that combined choline and aspirin therapy represented a significant synergistic interaction in attenuating acute inflammatory response. This preclinical relevant evidence provides a promising approach to treat inflammation-based diseases such as arthritis and sepsis. Copyright © 2014 Elsevier B.V. All rights reserved.
Glenn, Melissa J; Adams, Raven S; McClurg, Lauren
2012-03-14
Perinatal choline supplementation in rats is neuroprotective against insults such as fetal alcohol exposure, seizures, and advanced age. In the present study we explored whether dietary choline supplementation may also confer protection from psychological challenges, like stress, and act as a natural buffer against stress-linked psychological disorders, like depression. We previously found that choline supplementation increased adult hippocampal neurogenesis, a function compromised by stress, lowered in depression, and boosted by antidepressants; and increased levels of growth factors linked to depression, like brain-derived neurotrophic factor. Together, these were compelling reasons to study the role of choline in depressed mood. To do this, we treated rats with a choline supplemented diet (5 mg/kg choline chloride in AIN76A) prenatally on embryonic days 10-22, on postnatal days (PD) 25-50, or as adults from PD75 onward. Outside of these treatment periods rats were fed a standard diet (1.1 mg/kg choline chloride in AIN76A); control rats consumed only this diet throughout the study. Starting on PD100 rats' anxiety-like responses to an open field, learning in a water maze, and reactivity to forced swimming were assessed. Rats given choline supplementation during pre- or post-natal development, but not adult-treated rats, were less anxious in the open field and less immobile in the forced swim test than control rats. These effects were not mediated by a learning deficit as all groups performed comparably and well in the water maze. Thus, we offer compelling support for the hypothesis that supplemental dietary choline, at least when given during development, may inoculate an individual against stress and major psychological disorders, like depression. Copyright © 2012 Elsevier B.V. All rights reserved.
Glenn, Melissa J.; Adams, Raven S.; McClurg, Lauren
2012-01-01
Perinatal choline supplementation in rats is neuroprotective against insults such as fetal alcohol exposure, seizures, and advanced age. In the present study we explored whether dietary choline supplementation may also confer protection from psychological challenges, like stress, and act as a natural buffer against stress-linked psychological disorders, like depression. We previously found that choline supplementation increased adult hippocampal neurogenesis, a function compromised by stress, lowered in depression, and boosted by antidepressants; and increased levels of growth factors linked to depression, like brain-derived neurotrophic factor. Together, these were compelling reasons to study the role of choline in depressed mood. To do this, we treated rats with a choline supplemented diet (5 mg/kg choline chloride in AIN76A) prenatally on embryonic days 10–22, on postnatal days (PD) 25–50, or as adults from PD75 onward. Outside of these treatment periods rats were fed a standard diet (1.1 mg/kg choline chloride in AIN76A); control rats consumed only this diet throughout the study. Starting on PD100 rats’ anxiety-like responses to an open field, learning in a water maze, and reactivity to forced swimming were assessed. Rats given choline supplementation during pre- or post-natal development, but not adult-treated rats, were less anxious in the open field and less immobile in the forced swim test than control rats. These effects were not mediated by a learning deficit as all groups performed comparably and well in the water maze. Thus, we offer compelling support for the hypothesis that supplemental dietary choline, at least when given during development, may inoculate an individual against stress and major psychological disorders, like depression. PMID:22305146
Effects of dietary choline availability on latent inhibition of flavor aversion learning.
Gámiz, Fernando; Recio, Sergio Andrés; Iliescu, Adela Florentina; Gallo, Milagros; de Brugada, Isabel
2015-08-01
It has been previously reported that dietary choline supplementation might affect latent inhibition (LI) using a conditioned suppression procedure in rats. We have assessed the effect of dietary choline on LI of flavor aversion learning. Adult male Wistar rats received a choline supplemented (5 g/kg), deficient (0 g/kg), or standard (1.1 g/kg) diet for 3 months. After this supplementation period, all rats went through a conditioned taste aversion (CTA) procedure, half of them being pre-exposed to the conditioned stimulus before the conditioning. The results indicated that choline deficiency prevents LI of conditioned flavor aversion to cider vinegar (3%) induced by a LiCl (0.15 M; 2% body weight) intraperitoneal injection, while choline supplementation enhances CTA leading to slower extinction. The role of the brain systems modulating attentional processes is discussed.
High intakes of choline and betaine reduce breast cancer mortality in a population-based study.
Xu, Xinran; Gammon, Marilie D; Zeisel, Steven H; Bradshaw, Patrick T; Wetmur, James G; Teitelbaum, Susan L; Neugut, Alfred I; Santella, Regina M; Chen, Jia
2009-11-01
Choline and betaine provide methyl groups for one-carbon metabolism. Humans obtain these nutrients from a wide range of foods. Betaine can also be synthesized endogenously from its precursor, choline. Although animal studies have implied a causal relationship between choline deficiency and carcinogenesis, the role of these two nutrients in human carcinogenesis and tumor progression is not well understood. We investigated the associations of dietary intakes of choline and betaine and breast cancer risk and mortality in the population-based Long Island Breast Cancer Study Project. Among the 1508 case-group women, 308 (20.2%) deaths occurred, among whom 164 (53.2%) died of breast cancer by December 31, 2005. There was an indication that a higher intake of free choline was associated with reduced risk of breast cancer (P(trend)=0.04). Higher intakes of betaine, phosphocholine, and free choline were associated with reduced all-cause as well as breast cancer-specific mortality in a dose-dependent fashion. We also explored associations of polymorphisms of three key choline- and betaine-metabolizing genes and breast cancer mortality. The betaine-homocysteine methyltransferase gene (BHMT) rs3733890 polymorphism was associated with reduced breast cancer-specific mortality (hazard ratio, 0.64; 95% confidence interval, 0.42-0.97). Our study supports the important roles of choline and betaine in breast carcinogenesis. It suggests that high intake of these nutrients may be a promising strategy to prevent the development of breast cancer and to reduce its mortality.
Niculescu, Mihai D.; Yamamuro, Yutaka; Zeisel, Steven H.
2006-01-01
Choline is an important methyl donor and a component of membrane phospholipids. In this study, we tested the hypothesis that choline availability can modulate cell proliferation and the methylation of genes that regulate cell cycling. In several other model systems, hypomethylation of cytosine bases that are followed by a guanosine (CpG) sites in the promoter region of a gene is associated with increased gene expression. We found that in choline-deficient IMR-32 neuroblastoma cells, the promoter of the cyclin-dependent kinase inhibitor 3 gene (CDKN3) was hypomethylated. This change was associated with increased expression of CDKN3 and increased levels of its gene product, kinase-associated phosphatase (KAP), which inhibits the G1/S transition of the cell cycle by dephosphorylating cyclin-dependent kinases. Choline deficiency also reduced global DNA methylation. The percentage of cells that accumulated bromodeoxyuridine (proportional to cell proliferation) was 1.8 times lower in the choline-deficient cells than in the control cells. Phosphorylated retinoblastoma (p110) levels were 3 times lower in the choline-deficient cells than in control cells. These findings suggest that the mechanism whereby choline deficiency inhibits cell proliferation involves hypomethylation of key genes regulating cell cycling. This may be a mechanism for our previously reported observation that stem cell proliferation in hippocampus neuroepithelium is decreased in choline-deficient rat and mouse fetuses. PMID:15147518
Hunt, Pamela S
2012-08-01
Supplemental choline during early stages of development can result in long-lasting improvements to memory function. In addition, pre- or postnatal choline has been shown to be protective against some of the adverse effects of early alcohol exposure. The present experiment examined whether supplemental choline given to rats would protect against the effects of posttraining alcohol administration on trace fear conditioning. Posttraining alcohol exposure in adolescent rats results in poor performance in this hippocampus-dependent task, although delay conditioning is unaffected. Here, rats were given an s.c. injection of either saline or choline chloride daily on postnatal days (PD) 15-26. On PD 30 subjects were trained in a trace fear conditioning procedure. For the next 3 days animals were administered 2.5 g/kg ethanol or water control, and conditional stimulus (CS)-elicited freezing was measured on PD 34. Results indicated that posttraining alcohol disrupted the expression of trace conditioning and that supplemental choline on PD 15-26 was protective against this effect. That is, choline-treated animals subsequently given posttraining ethanol performed as well as animals not given ethanol. These results indicate that supplemental choline given during the periweaning period protects against ethanol-induced impairments in a hippocampus-dependent learning task. Findings contribute to the growing literature showing improvements in learning and memory in subjects given extra dietary choline during critical periods of brain development.
Kwan, Sze Ting (Cecilia); Yan, Jian; Klatt, Kevin C.; Jiang, Xinyin; Roberson, Mark S.; Caudill, Marie A.
2017-01-01
Impairments in placental development can adversely affect pregnancy outcomes. The bioactive nutrient choline may mitigate some of these impairments, as suggested by data in humans, animals, and human trophoblasts. Herein, we investigated the effects of maternal choline supplementation (MCS) on parameters of fetal growth in a Dlx3+/− (distal-less homeobox 3) mouse model of placental insufficiency. Dlx3+/− female mice were assigned to 1X (control), 2X, or 4X choline intake levels during gestation. Dams were sacrificed at embryonic days E10.5, 12.5, 15.5, and 18.5. At E10.5, placental weight, embryo weight, and placental efficiency were higher in 4X versus 1X choline. Higher concentrations of hepatic and placental betaine were detected in 4X versus 1X choline, and placental betaine was positively associated with embryo weight. Placental mRNA expression of Igf1 was downregulated by 4X (versus 1X) choline at E10.5. No differences in fetal growth parameters were detected at E12.5 and 15.5, whereas a small but significant reduction in fetal weight was detected at E18.5 in 4X versus 1X choline. MCS improved fetal growth during early pregnancy in the Dlx3+/− mice with the compensatory downregulation of Igf1 to slow growth as gestation progressed. Placental betaine may be responsible for the growth-promoting effects of choline. PMID:28718809
Buhusi, Catalin V.; Lamoureux, Jeffrey A.; Meck, Warren H.
2008-01-01
The effects of prenatal choline availability on contextual processing in a 30-s peak-interval (PI) procedure with gaps (1, 5, 10, and 15 s) were assessed in adult male rats. Neither supplementation nor deprivation of prenatal choline affected baseline timing performance in the PI procedure. However, prenatal choline availability significantly altered the contextual processing of gaps inserted into the to-be-timed signal (light on). Choline-supplemented rats displayed a high degree of context sensitivity as indicated by clock resetting when presented with a gap in the signal (light off). In contrast, choline-deficient rats showed no such effect and stopped their clocks during the gap. Control rats exhibited an intermediate level of contextual processing in between stop and full reset. When switched to a reversed gap condition in which rats timed the absence of the light and the presence of the light served as a gap, all groups reset their clocks following a gap. Furthermore, when filling the intertrial interval (ITI) with a distinctive stimulus (e.g., sound), both choline-supplemented and control rats rightward shifted their PI functions less on trials with gaps than choline-deficient rats, indicating greater contextual sensitivity and reduced clock resetting under these conditions. Overall, these data support the view that prenatal choline availability affects the sensitivity to the context in which gaps are inserted in the to-be-timed signal, thereby influencing whether rats run, stop, or reset their clocks. PMID:18778696
Hunt, Pamela S.
2012-01-01
Supplemental choline during early stages of development can result in long-lasting improvements to memory function. In addition, pre- or postnatal choline has been shown to be protective against some of the adverse effects of early alcohol exposure. The present experiment examined whether supplemental choline given to rats would protect against the effects of post-training alcohol administration on trace fear conditioning. Post-training alcohol exposure in adolescent rats results in poor performance in this hippocampus-dependent task, although delay conditioning is unaffected. Here, rats were given an s.c. injection of either saline or choline chloride daily on postnatal days (PD) 15-26. On PD 30 subjects were trained in a trace fear conditioning procedure. For the next three days animals were administered 2.5 g/kg ethanol or water control, and CS-elicited freezing was measured on PD 34. Results indicated that post-training alcohol disrupted the expression of trace conditioning and that supplemental choline on PD 15-26 was protective against this effect. That is, choline-treated animals subsequently given post-training ethanol performed as well as animals not given ethanol. These results indicate that supplemental choline given during the periweaning period protects against ethanol-induced impairments in a hippocampus-dependent learning task. Findings contribute to the growing literature showing improvements in learning and memory in subjects given extra dietary choline during critical periods of brain development. PMID:22687150
Perturbations in choline metabolism cause neural tube defects in mouse embryos in vitro.
Fisher, Melanie C; Zeisel, Steven H; Mar, Mei-Heng; Sadler, Thomas W
2002-04-01
A role for choline during early stages of mammalian embryogenesis has not been established, although recent studies show that inhibitors of choline uptake and metabolism, 2-dimethylaminoethanol (DMAE), and 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine (ET-18-OCH3), produce neural tube defects in mouse embryos grown in vitro. To determine potential mechanisms responsible for these abnormalities, choline metabolism in the presence or absence of these inhibitors was evaluated in cultured, neurulating mouse embryos by using chromatographic techniques. Results showed that 90%-95% of 14C-choline was incorporated into phosphocholine and phosphatidylcholine (PtdCho), which was metabolized to sphingomyelin. Choline was oxidized to betaine, and betaine homocysteine methyltransferase was expressed. Acetylcholine was synthesized in yolk sacs, but 70 kDa choline acetyltransferase was undetectable by immunoblot. DMAE reduced embryonic choline uptake and inhibited phosphocholine, PtdCho, phosphatidylethanolamine (PtdEtn), and sphingomyelin synthesis. ET-18-OCH3 also inhibited PtdCho synthesis. In embryos and yolk sacs incubated with 3H-ethanolamine, 95% of recovered label was PtdEtn, but PtdEtn was not converted to PtdCho, which suggested that phosphatidylethanolamine methyltransferase (PeMT) activity was absent. In ET-18-OCH3 treated yolk sacs, PtdEtn was increased, but PtdCho was still not generated through PeMT. Results suggest that endogenous PtdCho synthesis is important during neurulation and that perturbed choline metabolism contributes to neural tube defects produced by DMAE and ET-18-OCH3.
Graham, Stewart F; Hollis, James H; Migaud, Marie; Browne, Roy A
2009-03-11
In conventional milling, the aleurone layer is combined with the bran fraction. Studies indicate that the bran fraction of wheat contains the majority of the phytonutrients betaine and choline, with relatively minor concentrations in the refined flour. This present study suggests that the wheat aleurone layer ( Triticum aestivum L. cv. Tiger) contains the greatest concentration of both betaine and choline (1553.44 and 209.80 mg/100 g of sample, respectively). The bran fraction contained 866.94 and 101.95 mg/100 g of sample of betaine and choline, respectively, while the flour fraction contained 23.30 mg/100 g of sample (betaine) and 28.0 mg/100 g of sample (choline). The betaine content for the bran was lower, and the choline content was higher compared to previous studies, although it is known that there is large variation in betaine and choline contents between wheat cultivars. The ratio of betaine/choline in the aleurone fraction was approximately 7:1; in the bran, the ratio was approximately 8:1; and in the flour fraction, the ratio was approximately 1:1. The study further emphasizes the superior phytonutrient composition of the aleurone layer.
Choline and betaine consumption lowers cancer risk: a meta-analysis of epidemiologic studies.
Sun, Shanwen; Li, Xiao; Ren, Anjing; Du, Mulong; Du, Haina; Shu, Yongqian; Zhu, Lingjun; Wang, Wei
2016-10-19
A number of human and animal in vitro or in vivo studies have investigated the relationship between dietary choline and betaine and cancer risk, suggesting that choline and betaine consumption may be protective for cancer. There are also a few epidemiologic studies exploring this relationship, however, with inconsistent conclusions. The PubMed and Embase were searched, from their inception to March 2016, to identify relevant studies and we brought 11 articles into this meta-analysis eventually. The pooled relative risks (RRs) of cancer for the highest versus the lowest range were 0.82 (95% CI, 0.70 to 0.97) for choline consumption only, 0.86 (95%CI, 0.76 to 0.97) for betaine consumption only and 0.60 (95%CI, 0.40 to 0.90) for choline plus betaine consumption, respectively. Significant protective effect of dietary choline and betaine for cancer was observed when stratified by study design, location, cancer type, publication year, sex and quality score of study. An increment of 100 mg/day of choline plus betaine intake helped reduce cancer incidence by 11% (0.89, 95% CI, 0.87 to 0.92) through a dose-response analysis. To conclude, choline and betaine consumption lowers cancer incidence in this meta-analysis, but further studies are warranted to verify the results.
Zhang, Jianhai; Zhang, Yufang; Liang, Chen; Wang, Nasui; Zheng, Heping; Wang, Jundong
2016-11-01
Fluoride is known to cause male reproductive toxicity, and the elucidation of its underlying mechanisms is an ongoing research focus in reproductive toxicology and epidemiology. Choline, an essential nutrient, has been extensively studied for its benefits in nervous system yet was rarely discussed for its prospective effect in male reproductive system. This study aims to explore the potential protective role of choline against NaF-induced male reproductive toxicity via MAPK pathway. The male mice were administrated by 150mg/L NaF in drinking water, 5.75g/kg choline in diet, and their combination respectively from maternal gestation to postnatal 15weeks. The results showed that fluoride exposure reduced body weight growth, lowered sperm count and survival percentages, altered testicular histology, down-regulated the mRNA expressions of NGF, Ras, Raf, and MEK genes in testes, as well as significantly decreased the expressions of both NGF and phosphor-MEK proteins in testes. Examination of data from choline-treated mice revealed that choline supplementation ameliorated these fluoride-induced changes. Taken together, our findings suggest that choline supplementation alleviates fluoride-induced testicular toxicity by restoring the NGF and phosphor-MEK expression. The suitable dosage and supplementation periods of choline await further exploration. Copyright © 2016 Elsevier Inc. All rights reserved.
Deficiency in methionine, tryptophan, isoleucine, or choline induces apoptosis in cultured cells.
Yen, Chi-Liang E; Mar, Mei-Heng; Craciunescu, Corneliu N; Edwards, Lloyd J; Zeisel, Steven H
2002-07-01
Cells in culture die by apoptosis when deprived of the essential nutrient choline. We now report that cells (both proliferating PC12 cells and postmitotic neurons isolated from fetal rat brains) undergo apoptosis when deprived of other individual essential nutrients (methionine, tryptophan or isoleucine). In PC12 cells, deficiencies of each nutrient independently led to ceramide accumulation and to caspase activation, both recognized signals of several apoptotic pathways. A similar profile of caspases was activated in PC12 cells deprived of choline, methionine, tryptophan or isoleucine. More than one caspase was involved and these caspases appeared to transmit parallel signals for apoptosis induction because only broad-spectrum caspase inhibitors, but not inhibitors for specific individual caspases inhibited apoptosis in choline- or methionine-deprived cells. The induction of these caspase-dependent apoptosis pathways likely did not involve the same upstream signals. Choline deficiency perturbed choline metabolism but did not affect protein synthesis, whereas amino acid deficiencies inhibited protein synthesis but did not perturb choline metabolism. In addition, a subclone of PC12 cells that was resistant to choline deficiency-induced apoptosis was not resistant to tryptophan deficiency-induced apoptosis. These observations suggest that deficiency of each studied nutrient activates different pathways for signaling apoptosis that ultimately converge on a common execution pathway.
Paglia, D E; Valentine, W N; Nakatani, M; Rauth, B J
1983-01-01
Erythrocytes from a young woman with chronic hemolytic anemia were found to contain 0.31-0.45 mM CDP-choline, concentrations that are 15-25 times those in normal erythrocytes and equivalent to 20-30% of the total adenine nucleotide content. Accumulation of CDP-choline has been reported only in erythrocytes from subjects with severe (homozygous) pyrimidine nucleotidase deficiency. In the latter syndrome, however, pyrimidine nucleotidase activity is very low and a spectrum of uridine- and cytidine-containing nucleotides is present along with epiphenomena involving glutathione and ribosephosphate pyrophosphokinase. By contrast, selective accumulation of CDP-choline was the only abnormality demonstrable in proband erythrocytes. Membrane phospholipids were quantitatively and qualitatively normal, compatible with the observation that mature erythrocytes maintain membrane phospholipids largely by passive exchange with plasma components or by acylation of lysophospholipids. Although the presence of small amounts of other CDP-containing cofactors, such as CDP-ethanolamine, could not be entirely excluded, the cytidine/choline ratio closely approximated 1:1 in all studies. These data are compatible with the view that choline phosphotransferase and ethanolamine phosphotransferase are separate enzymes in erythroid cells. Selective accumulation of CDP-choline in proband erythrocytes is also compatible with an inherited deficiency of choline phosphotransferase in erythroid precursors, though this hypothesis remains unproved. PMID:6574471
Tang, Ningfeng; Bamford, Penny; Jones, Jace; He, Min; Kane, Maureen A.; Mooney, Sandra M.; Bearer, Cynthia F.
2014-01-01
Background Fetal Alcohol Spectrum Disorder, the leading known cause of mental retardation, is caused by alcohol exposure during pregnancy. One mechanism of ethanol teratogenicity is the disruption of the function of L1 cell adhesion molecule (L1). These functions include enhancement of neurite outgrowth, trafficking through lipid rafts, and signal transduction. Recent data have shown that choline supplementation of rat pups reduces the effects of ethanol on neurobehavior. We sought to determine if choline could prevent the effect of ethanol on L1 function using a simple experimental system. Methods Cerebellar granule neurons (CGN) from postnatal day 6 rat pups were cultured with and without supplemental choline, and the effects on L1 signaling, lipid raft distribution and neurite outgrowth were measured in the presence or absence of ethanol. Results Choline significantly reduced the effect of ethanol on L1 signaling, the distribution of L1 in lipid rafts and L1 mediated neurite outgrowth. However, choline supplemented ethanol exposed cultures remained significantly different than controls. Conclusions Choline pretreatment of CGN significantly reduces the disruption of L1 function by ethanol, but does not completely return L1 function to baseline. This experimental system will enable discovery of the mechanism of the neuroprotective effect of choline. PMID:25421509
SGLT2 Inhibition in the Diabetic Kidney—From Mechanisms to Clinical Outcome
Muskiet, Marcel H.A.; Tonneijck, Lennart; Kramer, Mark H.H.; Nieuwdorp, Max; van Raalte, Daniel H.
2017-01-01
Diabetic kidney disease not only has become the leading cause for ESRD worldwide but also, highly contributes to increased cardiovascular morbidity and mortality in type 2 diabetes. Despite increased efforts to optimize renal and cardiovascular risk factors, like hyperglycemia, hypertension, obesity, and dyslipidemia, they are often insufficiently controlled in clinical practice. Although current drug interventions mostly target a single risk factor, more substantial improvements of renal and cardiovascular outcomes can be expected when multiple factors are improved simultaneously. Sodium-glucose cotransporter type 2 in the renal proximal tubule reabsorbs approximately 90% of filtered glucose. In type 2 diabetes, the maladaptive upregulation of sodium-glucose cotransporter type 2 contributes to the maintenance of hyperglycemia. Inhibiting these transporters has been shown to effectively improve glycemic control through inducing glycosuria and is generally well tolerated, although patients experience more genital infections. In addition, sodium-glucose cotransporter type 2 inhibitors favorably affect body weight, BP, serum uric acid, and glomerular hyperfiltration. Interestingly, in the recently reported first cardiovascular safety trial with a sodium-glucose cotransporter type 2 inhibitor, empagliflozin improved both renal and cardiovascular outcomes in patients with type 2 diabetes and established cardiovascular disease. Because the benefits were seen rapidly after initiation of therapy and other glucose-lowering agents, with the exception of liraglutide and semaglutide, have not been able to improve cardiovascular outcome, these observations are most likely explained by effects beyond glucose lowering. In this mini review, we present the drug class of sodium-glucose cotransporter type 2 inhibitors, elaborate on currently available renal and cardiovascular outcome data, and discuss how the effects of these agents on renal physiology may explain the data. PMID:28254770
Donnelly, Bridget F.; Needham, Patrick G.; Snyder, Avin C.; Roy, Ankita; Khadem, Shaheen; Brodsky, Jeffrey L.; Subramanya, Arohan R.
2013-01-01
The thiazide-sensitive NaCl cotransporter (NCC) is the primary mediator of salt reabsorption in the distal convoluted tubule and is a key determinant of the blood pressure set point. Given its complex topology, NCC is inefficiently processed and prone to endoplasmic reticulum (ER)-associated degradation (ERAD), although the mechanisms governing this process remain obscure. Here, we identify factors that impact the ER quality control of NCC. Analyses of NCC immunoprecipitates revealed that the cotransporter formed complexes with the core chaperones Hsp90, Hsp70, and Hsp40. Disruption of Hsp90 function accelerated NCC degradation, suggesting that Hsp90 promotes NCC folding. In addition, two cochaperones, the C terminus of Hsp70-interacting protein (CHIP) and the Hsp70/Hsp90 organizer protein, were associated with NCC. Although CHIP, an E3 ubiquitin ligase, promoted NCC ubiquitination and ERAD, the Hsp70/Hsp90 organizer protein stabilized NCC turnover, indicating that these two proteins differentially remodel the core chaperone systems to favor cotransporter degradation and biogenesis, respectively. Adjusting the folding environment in mammalian cells via reduced temperature enhanced NCC biosynthetic trafficking, increased Hsp90-NCC interaction, and diminished binding to Hsp70. In contrast, cotransporters harboring disease-causing mutations that impair NCC biogenesis failed to escape ERAD as efficiently as the wild type protein when cells were incubated at a lower temperature. Instead, these mutants interacted more strongly with Hsp70, Hsp40, and CHIP, consistent with a role for the Hsp70/Hsp40 system in selecting misfolded NCC for ERAD. Collectively, these observations indicate that Hsp70 and Hsp90 comprise two functionally distinct ER quality control checkpoints that sequentially monitor NCC biogenesis. PMID:23482560
Ueda, Kohei; Nishimoto, Mitsuhiro; Hirohama, Daigoro; Ayuzawa, Nobuhiro; Kawarazaki, Wakako; Watanabe, Atsushi; Shimosawa, Tatsuo; Loffing, Johannes; Zhang, Ming-Zhi; Marumo, Takeshi; Fujita, Toshiro
2017-07-01
Genome-wide analysis of renal sodium-transporting system has identified specific variations of Mendelian hypertensive disorders, including HSD11B2 gene variants in apparent mineralocorticoid excess. However, these genetic variations in extrarenal tissue can be involved in developing hypertension, as demonstrated in former studies using global and brain-specific Hsd11b2 knockout rodents. To re-examine the importance of renal dysfunction on developing hypertension, we generated kidney-specific Hsd11b2 knockout mice. The knockout mice exhibited systemic hypertension, which was abolished by reducing salt intake, suggesting its salt-dependency. In addition, we detected an increase in renal membrane expressions of cleaved epithelial sodium channel-α and T53-phosphorylated Na + -Cl - cotransporter in the knockout mice. Acute intraperitoneal administration of amiloride-induced natriuresis and increased urinary sodium/potassium ratio more in the knockout mice compared with those in the wild-type control mice. Chronic administration of amiloride and high-KCl diet significantly decreased mean blood pressure in the knockout mice, which was accompanied with the correction of hypokalemia and the resultant decrease in Na + -Cl - cotransporter phosphorylation. Accordingly, a Na + -Cl - cotransporter blocker hydrochlorothiazide significantly decreased mean blood pressure in the knockout mice. Chronic administration of mineralocorticoid receptor antagonist spironolactone significantly decreased mean blood pressure of the knockout mice along with downregulation of cleaved epithelial sodium channel-α and phosphorylated Na + -Cl - cotransporter expression in the knockout kidney. Our data suggest that kidney-specific deficiency of 11β-HSD2 leads to salt-dependent hypertension, which is attributed to mineralocorticoid receptor-epithelial sodium channel-Na + -Cl - cotransporter activation in the kidney, and provides evidence that renal dysfunction is essential for developing the phenotype of apparent mineralocorticoid excess. © 2017 American Heart Association, Inc.
Singh, Soudamani; Arthur, Subha; Sundaram, Uma
2018-03-01
The only Na-nutrient cotransporter described in mammalian small intestinal crypt cells is SN2/SNAT5, which facilitates glutamine uptake. In a rabbit model of chronic intestinal inflammation, SN2 stimulation is secondary to an increase in affinity of the cotransporter for glutamine. However, the immune regulation of SN2 in the crypt cells during chronic intestinal inflammation is unknown. We sought to determine the mechanism of regulation of Na-nutrient cotransporter SN2 by arachidonic acid metabolites in crypt cells. The small intestines of New Zealand white male rabbits were inflamed via inoculation with Eimeria magna oocytes. After 2-week incubation, control and inflamed rabbits were subjected to intramuscular injections of arachidonyl trifluoromethyl ketone (ATK), piroxicam and MK886 for 48 hrs. After injections, the rabbits were euthanized and crypt cells from small intestines were harvested and used. Treatment of rabbits with ATK prevented the release of AA and reversed stimulation of SN2. Inhibition of cyclooxygenase (COX) with piroxicam did not affect stimulation of SN2. However, inhibition of lipoxygenase (LOX) with MK886, thus reducing leukotriene formation during chronic enteritis, reversed the stimulation of SN2. Kinetic studies showed that the mechanism of restoration of SN2 by ATK or MK886 was secondary to the restoration of the affinity of the cotransporter for glutamine. For all treatment conditions, Western blot analysis revealed no change in SN2 protein levels. COX inhibition proved ineffective at reversing the stimulation of SN2. Thus, this study provides evidence that SN2 stimulation in crypt cells is mediated by the leukotriene pathway during chronic intestinal inflammation. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
Neuroprotective actions of perinatal choline nutrition
Blusztajn, Jan Krzysztof; Mellott, Tiffany J.
2017-01-01
Choline is an essential nutrient for humans. Studies in rats and mice have shown that high choline intake during gestation or the perinatal period improves cognitive function in adulthood, prevents memory decline of old age, and protects the brain from damage and cognitive and neurological deterioration associated with epilepsy and hereditary conditions such as Down’s and Rett syndromes. These behavioral changes are accompanied by modified patterns of expression of hundreds of cortical and hippocampal genes including those encoding proteins central for learning and memory processing. The effects of choline correlate with cerebral cortical changes in DNA and histone methylation, thus suggesting an epigenomic mechanism of action of perinatal choline. PMID:23314544
Choline chloride-thiourea, a deep eutectic solvent for the production of chitin nanofibers.
Mukesh, Chandrakant; Mondal, Dibyendu; Sharma, Mukesh; Prasad, Kamalesh
2014-03-15
Deep eutectic solvents (DESs) consisting of the mixtures of choline halide (chloride/bromide)-urea and choline chloride-thiourea were used as solvents to prepare α-chitin nanofibers (CNFs). CNFs of diameter 20-30 nm could be obtained using the DESs comprising of the mixture of choline chloride and thiourea (CCT 1:2); however, NFs could not be obtained using the DESs having urea (CCU 1:2) as hydrogen bond donor. The physicochemical properties of thus obtained NFs were compared with those obtained using a couple of imidazolium based ionic liquids namely, 1-butyl-3-methylimidazolium hydrogen sulphate [(Bmim)HSO4] and 1-methylimidazolium hydrogen sulphate [(Hmim)HSO4] as well as choline based bio-ILs namely, choline hydrogen sulphate [(Chol)HSO4] and choline acrylate. The CNFs obtained using the DES as a solvent were used to prepare calcium alginate bio-nanocomposite gel beads having enhanced elasticity in comparison to Ca-alginate beads. The bio-nanocomposite gel beads thus obtained were used to study slow release of 5-fluorouracil, an anticancer drug. Copyright © 2014 Elsevier Ltd. All rights reserved.
Metabolic crosstalk between choline/1-carbon metabolism and energy homeostasis
Zeisel, Steven H.
2013-01-01
There are multiple identified mechanisms involved in energy metabolism, insulin resistance and adiposity, but there are here-to-fore unsuspected metabolic factors that also influence these processes. Studies in animal models suggest important links between choline/1-carbon metabolism and energy homeostasis. Rodents fed choline deficient diets become hypermetabolic. Mice with deletions in one of several different genes of choline metabolism have phenotypes that include increased metabolic rate, decreased body fat/lean mass ratio, increased insulin sensitivity, decreased ATP production by mitochondria, or decreased weight gain on a high fat diet. In addition, farmers have recognized that the addition of a metabolite of choline (betaine) to cattle and swine feed reduces body fat/lean mass ratio. Choline dietary intake in humans varies over a >three-fold range, and genetic variation exists that modifies individual requirements for this nutrient. Although there are some epidemiologic studies in humans suggesting a link between choline/1-carbon metabolism and energy metabolism, there have been no controlled studies in humans that were specifically designed to examine this relationship. PMID:23072856
Dus, Monica; Ai, Minrong; Suh, Greg S. B.
2013-01-01
Animals can determine the nutritional value of sugar without the influence of taste. Here, we describe a Drosophila mutant that is insensitive to the nutritional value of sugars, but responds only to the concentration (i.e. sweetness). The affected gene encodes a sodium/solute cotransporter-like protein, designated dSLC5A11 (or cupcake), which is structurally similar to mammalian sodium/glucose cotransporters (SGLTs) that transport sugar across the intestinal and renal lumen. However, dSLC5A11 is prominently expressed in 10-13 pairs of R4 neurons of the ellipsoid body (EB) in the brain and functions in these neurons for selecting appropriate foods. We propose that dSLC5A11 and EB R4 neurons carry out a critical signaling function in responding to internal glycemic levels. PMID:23542692
Bone Fractures with Sodium-Glucose Co-transporter-2 Inhibitors: How Real is the Risk?
Mannucci, Edoardo; Monami, Matteo
2017-02-01
This article succinctly summarizes the available evidence on the risk of bone fractures with sodium-glucose co-transporter-2 inhibitors. The US Food and Drug Administration has strengthened the warning for canagliflozin related to the increased risk of bone fractures, and added new information about decreased bone mineral density. The agency has also said that it will evaluate the risk of bone fractures with other drugs in the sodium-glucose co-transporter-2 inhibitor class. Increases in parathyroid hormone levels and decreases in 1,25-dihydroxyvitamin D levels have been postulated as possible mechanisms. In contrast, some studies with dapagliflozin have shown no effects on bone health. Because a consensus has not been reached, we believe that an expert opinion on how to interpret the available evidence would be of great benefit for clinicians.
Leung, Hon-Wing; Kamendulis, Lisa M; Stott, William T
2005-12-01
Diethanolamine (DEA) is a chemical used widely in a number of industries and is present in many consumer products. Studies by the National Toxicology Program (NTP) have indicated that lifetime dermal exposure to DEA increased the incidence and multiplicity of liver tumors in mice, but not in rats. In addition, DEA was not carcinogenic when tested in the Tg.Ac transgenic mouse model. Short-term genotoxicity tests have yielded negative results. In view of these apparent inconsistencies, we have critically evaluated the NTP studies and other data relevant to assessing the carcinogenic potential of DEA. The available data indicate that DEA induces mouse liver tumors by a non-genotoxic mode of action that involves its ability to cause choline deficiency. The following experimental evidence supports this hypothesis. DEA decreased the hepatic choline metabolites and S-adenosylmethionine levels in mice, similar to those observed in choline-deficient mice. In contrast, DEA had no effect in the rat, a species in which it was not carcinogenic at a maximum tolerated dose level. In addition, a consistent dose-effect relationship had been established between choline deficiency and carcinogenic activity since all DEA dosages that induced tumors in the NTP studies were also shown to cause choline deficiency. DEA decreased phosphatidylcholine synthesis by blocking the cellular uptake of choline in vitro, but these events did not occur in the presence of excess choline. Finally, DEA induced transformation in the Syrian hamster embryo cells, increased S-phase DNA synthesis in mouse hepatocytes, and decreased gap junctional intracellular communication in primary cultured mouse and rat hepatocytes, but all these events were prevented with choline supplementation. Since choline is an essential nutrient in mammals, this mode of action is qualitatively applicable to humans. However, there are marked species differences in susceptibility to choline deficiency, with rats and mice being far more susceptible than other mammalian species including humans. These differences are attributed to quantitative differences in the enzyme kinetics controlling choline metabolism. The fact that DEA was carcinogenic in mice but not in rats also has important implications for human risk assessment. DEA has been shown to be less readily absorbed across rat and human skin than mouse skin. Since a no observed effect level for DEA-induced choline deficiency in mice has been established to be 10 mg/kg/d, this indicates that there is a critical level of DEA that must be attained in order to affect choline homeostasis. The lack of a carcinogenic response in rats suggests that exposure to DEA did not reach this critical level. Since rodents are far more sensitive to choline deficiency than humans, it can be concluded that the hepatocarcinogenic effect of DEA in mice is not predictive of similar susceptibility in humans.
Zeisel, Steven H.
2014-01-01
One of the underlying mechanisms for metabolic individuality is genetic variation. Single nucleotide polymorphisms (SNPs) in genes of metabolic pathways can create metabolic inefficiencies that alter the dietary requirement for, and responses to nutrients. These SNPS can be detected using genetic profiling and the metabolic inefficiencies they cause can be detected using metabolomic profiling. Studies on the human dietary requirement for choline illustrate how useful these new approaches can be, as this requirement is influenced by SNPs in genes of choline and folate metabolism. In adults, these SNPs determine whether people develop fatty liver, liver damage and muscle damage when eating diets low in choline. Because choline is very important for fetal development, these SNPs may identify women who need to eat more choline during pregnancy. Some of the actions of choline are mediated by epigenetic mechanisms that permit “retuning” of metabolic pathways during early life. PMID:22614815
Choline-based ionic liquids-enhanced biodegradation of azo dyes.
Sekar, Sudharshan; Surianarayanan, Mahadevan; Ranganathan, Vijayaraghavan; MacFarlane, Douglas R; Mandal, Asit Baran
2012-05-01
Industrial wastewaters such as tannery and textile processing effluents are often characterized by a high content of dissolved organic dyes, resulting in large values of chemical and biological oxygen demand (COD and BOD) in the aquatic systems into which they are discharged. Such wastewater streams are of rapidly growing concern as a major environmental issue in developing countries. Hence there is a need to mitigate this challenge by effective approaches to degrade dye-contaminated wastewater. In this study, several choline-based salts originally developed for use as biocompatible hydrated ionic liquids (i.e., choline sacchrinate (CS), choline dihydrogen phosphate (CDP), choline lactate (CL), and choline tartarate (CT)) have been successfully employed as the cosubstrate with S. lentus in the biodegradation of an azo dye in aqueous solution. We also demonstrate that the azo dye has been degraded to less toxic components coupled with low biomass formation. © 2012 American Chemical Society
Guseva, M V; Kamenskii, A A; Gusev, V B
2013-06-01
Choline diet promotes improvement of the brain cognitive functions in rats with moderate-to-severe traumatic brain injury. In previous studies, the rats received choline being standard (0.2%) or choline-supplemented (2%) diet for 2 weeks prior to and 2 weeks after experimental brain injury. To the end of the experiments (in 4 weeks), the post-traumatic disturbances in the cognitive functions were observed in both groups, although they were less pronounced than in the rats kept on the choline-supplemented diet. Based on original mathematical model, this paper proposes a method to calculate the most efficient use of choline to correct the brain cognitive functions. In addition to evaluating the cognitive functions, the study assessed expression of α7 nicotinic acetylcholine receptors, the amount of consumed food and water, and the dynamics of body weight.
Mailloux, Ryan J; Young, Adrian; Chalker, Julia; Gardiner, Danielle; O'Brien, Marisa; Slade, Liam; Brosnan, John T
2016-12-01
Here, we report that choline and dimethylglycine can stimulate reactive oxygen species (ROS) production in liver mitochondria. Choline stimulated O 2 ˙ - /H 2 O 2 formation at a concentration of 5 μm. We also observed that Complex II and III inhibitors, atpenin A5 and myxothiazol, collectively induced a 95% decrease in O 2 ˙ - /H 2 O 2 production indicating both sites serve as the main sources of ROS during choline oxidation. Dimethylglycine, an intermediate of choline oxidation, was a more effective ROS generator. Rates of production were ~ 43% higher than choline-mediated O 2 ˙ - /H 2 O 2 production. The main site for dimethylglycine-mediated ROS production was via reverse electron transfer to Complex I. Our results demonstrate that metabolism of essential metabolites involved in methionine and folic acid biosynthesis can stimulate mitochondrial ROS production. © 2016 Federation of European Biochemical Societies.
Characterization of choline trimethylamine-lyase expands the chemistry of glycyl radical enzymes.
Craciun, Smaranda; Marks, Jonathan A; Balskus, Emily P
2014-07-18
The recently identified glycyl radical enzyme (GRE) homologue choline trimethylamine-lyase (CutC) participates in the anaerobic conversion of choline to trimethylamine (TMA), a widely distributed microbial metabolic transformation that occurs in the human gut and is linked to disease. The proposed biochemical function of CutC, C-N bond cleavage, represents new reactivity for the GRE family. Here we describe the in vitro characterization of CutC and its activating protein CutD. We have observed CutD-mediated formation of a glycyl radical on CutC using EPR spectroscopy and have demonstrated that activated CutC processes choline to trimethylamine and acetaldehyde. Surveys of potential alternate CutC substrates uncovered a strict specificity for choline. Homology modeling and mutagenesis experiments revealed essential CutC active site residues. Overall, this work establishes that CutC is a GRE of unique function and a molecular marker for anaerobic choline metabolism.
Structure and Function of CutC Choline Lyase from Human Microbiota Bacterium Klebsiella pneumoniae*
Kalnins, Gints; Kuka, Janis; Grinberga, Solveiga; Makrecka-Kuka, Marina; Liepinsh, Edgars; Dambrova, Maija; Tars, Kaspars
2015-01-01
CutC choline trimethylamine-lyase is an anaerobic bacterial glycyl radical enzyme (GRE) that cleaves choline to produce trimethylamine (TMA) and acetaldehyde. In humans, TMA is produced exclusively by the intestinal microbiota, and its metabolite, trimethylamine oxide, has been associated with a higher risk of cardiovascular diseases. Therefore, information about the three-dimensional structures of TMA-producing enzymes is important for microbiota-targeted drug discovery. We have cloned, expressed, and purified the CutC GRE and the activating enzyme CutD from Klebsiella pneumoniae, a representative of the human microbiota. We have determined the first crystal structures of both the choline-bound and choline-free forms of CutC and have discovered that binding of choline at the ligand-binding site triggers conformational changes in the enzyme structure, a feature that has not been observed for any other characterized GRE. PMID:26187464
Wozniak, Jeffrey R; Fuglestad, Anita J; Eckerle, Judith K; Fink, Birgit A; Hoecker, Heather L; Boys, Christopher J; Radke, Joshua P; Kroupina, Maria G; Miller, Neely C; Brearley, Ann M; Zeisel, Steven H; Georgieff, Michael K
2015-11-01
Fetal alcohol spectrum disorders (FASDs) are conditions characterized by physical anomalies, neurodevelopmental abnormalities, and neurocognitive deficits, including intellectual, executive, and memory deficits. There are no specific biological treatments for FASDs, but rodent models have shown that prenatal or postnatal choline supplementation reduces cognitive and behavioral deficits. Potential mechanisms include phospholipid production for axonal growth and myelination, acetylcholine enhancement, and epigenetic effects. Our primary goal was to determine whether postnatal choline supplementation has the potential to improve neurocognitive functioning, particularly hippocampal-dependent memory, in children with FASDs. The study was a double-blind, randomized, placebo-controlled pilot trial in children (aged 2.5-5 y at enrollment) with FASDs (n = 60) who received 500 mg choline or a placebo daily for 9 mo. Outcome measures were Mullen Scales of Early Learning (primary) and the elicited imitation (EI) memory paradigm (secondary). The administration proved feasible, and choline was well tolerated. Participants received a dose on 88% of enrolled days. The only adverse event linked to choline was a fishy body odor. Choline supplementation improved the secondary outcome (EI) only after immediate recall performance was controlled for, and the outcome was moderated by age. The treatment effect on EI items recalled was significant in the younger participants (2.5- to ≤4.0-y-olds); the young choline group showed an increase of 12-14 percentage points greater than that of the young placebo group on delayed recall measures during treatment. However, there was a marginal baseline difference in delayed item recall between the young choline and placebo groups as well as a potential ceiling effect for item recall, both of which likely contributed to the observed treatment effect. We also observed a trend toward a negative effect of choline supplementation on the immediate EI recall of ordered pairs; the young placebo group showed an increase of 8-17 percentage points greater than that of the choline group during treatment. There was an inverse relation between choline dose (in mg/kg) and memory improvement (P = 0.041); the data suggest that weight-adjusted doses may be a better alternative to a fixed dose in future studies. Limitations included trend-level baseline differences in performance, the post-hoc determination of age moderation, and potential ceiling effects for the memory measure. This pilot study suggests that an additional evaluation of choline supplementation as an intervention for memory functioning in children with FASDs is warranted. The observed interaction between age and choline's effect on EI suggests that potential sensitive periods should be considered in future work. This trial was registered at clinicaltrials.gov as NCT01149538. © 2015 American Society for Nutrition.
Ciernik, I Frank; Brown, Derek W; Schmid, Daniel; Hany, Thomas; Egli, Peter; Davis, J Bernard
2007-02-01
Volumetric assessment of PET signals becomes increasingly relevant for radiotherapy (RT) planning. Here, we investigate the utility of 18F-choline PET signals to serve as a structure for semi-automatic segmentation for forward treatment planning of prostate cancer. 18F-choline PET and CT scans of ten patients with histologically proven prostate cancer without extracapsular growth were acquired using a combined PET/CT scanner. Target volumes were manually delineated on CT images using standard software. Volumes were also obtained from 18F-choline PET images using an asymmetrical segmentation algorithm. PTVs were derived from CT 18F-choline PET based clinical target volumes (CTVs) by automatic expansion and comparative planning was performed. As a read-out for dose given to non-target structures, dose to the rectal wall was assessed. Planning target volumes (PTVs) derived from CT and 18F-choline PET yielded comparable results. Optimal matching of CT and 18F-choline PET derived volumes in the lateral and cranial-caudal directions was obtained using a background-subtracted signal thresholds of 23.0+/-2.6%. In antero-posterior direction, where adaptation compensating for rectal signal overflow was required, optimal matching was achieved with a threshold of 49.5+/-4.6%. 3D-conformal planning with CT or 18F-choline PET resulted in comparable doses to the rectal wall. Choline PET signals of the prostate provide adequate spatial information amendable to standardized asymmetrical region growing algorithms for PET-based target volume definition for external beam RT.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jianhai
Fluoride is known to cause male reproductive toxicity, and the elucidation of its underlying mechanisms is an ongoing research focus in reproductive toxicology and epidemiology. Choline, an essential nutrient, has been extensively studied for its benefits in nervous system yet was rarely discussed for its prospective effect in male reproductive system. This study aims to explore the potential protective role of choline against NaF-induced male reproductive toxicity via MAPK pathway. The male mice were administrated by 150 mg/L NaF in drinking water, 5.75 g/kg choline in diet, and their combination respectively from maternal gestation to postnatal 15 weeks. The resultsmore » showed that fluoride exposure reduced body weight growth, lowered sperm count and survival percentages, altered testicular histology, down-regulated the mRNA expressions of NGF, Ras, Raf, and MEK genes in testes, as well as significantly decreased the expressions of both NGF and phosphor-MEK proteins in testes. Examination of data from choline-treated mice revealed that choline supplementation ameliorated these fluoride-induced changes. Taken together, our findings suggest that choline supplementation alleviates fluoride-induced testicular toxicity by restoring the NGF and phosphor-MEK expression. The suitable dosage and supplementation periods of choline await further exploration. - Highlights: • Fluoride exposure altered the growth and development, sperm count and sperm survival percentages, testicular histology • Fluoride exposure decreased NGF, Ras, and Mek mRNA and NGF and p-MEK protein expressions in testis of mice. • Choline supplementation diminishes fluoride-induced testicular toxicity.« less
Characterization of choline transporters in the human placenta over gestation.
Baumgartner, Heidi K; Trinder, Kinsey M; Galimanis, Carly E; Post, Annalisa; Phang, Tzu; Ross, Randal G; Winn, Virginia D
2015-12-01
The developing fetus relies on the maternal blood supply to provide the choline it requires for making membrane lipids, synthesizing acetylcholine, and performing important methylation reactions. It is vital, therefore, that the placenta is efficient at transporting choline from the maternal to the fetal circulation. Although choline transporters have been found in term placenta samples, little is known about what cell types express specific choline transporters and how expression of the transporters may change over gestation. The objective of this study was to characterize choline transporter expression levels and localization in the human placenta throughout placental development. We analyzed CTL1 and -2 expression over gestation in human placental biopsies from 6 to 40 weeks gestation (n = 6-10 per gestational window) by immunoblot analysis. To determine the cellular expression pattern of the choline transporters throughout gestation, immunofluorescence analysis was then performed. Both CTL1 and CTL2 were expressed in the chorionic villi from 6 weeks gestation to term. Labor did not alter expression levels of either transporter. CTL1 localized to the syncytial trophoblasts and the endothelium of the fetal vasculature within the chorionic villous structure. CTL2 localized mainly to the stroma early in gestation and by the second trimester co-localized with CTL1 at the fetal vasculature. The differential expression pattern of CTL1 and CTL2 suggests that CTL1 is the key transporter involved in choline transport from maternal circulation and both transporters are likely involved in stromal and endothelial cell choline transport. Copyright © 2015 Elsevier Ltd. All rights reserved.
Organ, Chelsea L; Otsuka, Hiroyuki; Bhushan, Shashi; Wang, Zeneng; Bradley, Jessica; Trivedi, Rishi; Polhemus, David J; Tang, W H Wilson; Wu, Yuping; Hazen, Stanley L; Lefer, David J
2016-01-01
Trimethylamine N-oxide (TMAO), a gut microbe-dependent metabolite of dietary choline and other trimethylamine-containing nutrients, is both elevated in the circulation of patients having heart failure and heralds worse overall prognosis. In animal studies, dietary choline or TMAO significantly accelerates atherosclerotic lesion development in ApoE-deficient mice, and reduction in TMAO levels inhibits atherosclerosis development in the low-density lipoprotein receptor knockout mouse. C57BL6/J mice were fed either a control diet, a diet containing choline (1.2%) or a diet containing TMAO (0.12%) starting 3 weeks before surgical transverse aortic constriction. Mice were studied for 12 weeks after transverse aortic constriction. Cardiac function and left ventricular structure were monitored at 3-week intervals using echocardiography. Twelve weeks post transverse aortic constriction, myocardial tissues were collected to evaluate cardiac and vascular fibrosis, and blood samples were evaluated for cardiac brain natriuretic peptide, choline, and TMAO levels. Pulmonary edema, cardiac enlargement, and left ventricular ejection fraction were significantly (P<0.05, each) worse in mice fed either TMAO- or choline-supplemented diets when compared with the control diet. In addition, myocardial fibrosis was also significantly greater (P<0.01, each) in the TMAO and choline groups relative to controls. Heart failure severity is significantly enhanced in mice fed diets supplemented with either choline or the gut microbe-dependent metabolite TMAO. The present results suggest that additional studies are warranted examining whether gut microbiota and the dietary choline → TMAO pathway contribute to increased heart failure susceptibility. © 2015 American Heart Association, Inc.
Organ, Chelsea L.; Otsuka, Hiroyuki; Bhushan, Shashi; Wang, Zeneng; Bradley, Jessica; Trivedi, Rishi; Polhemus, David J.; Tang, W. H. Wilson; Wu, Yuping; Hazen, Stanley L.; Lefer, David J.
2015-01-01
Background Trimethylamine N-oxide (TMAO), a gut microbe dependent metabolite of dietary choline and other trimethylamine containing nutrients, is both elevated in the circulation of patients suffering from heart failure (HF) and heralds worse overall prognosis. In animal studies, dietary choline or TMAO significantly accelerate atherosclerotic lesion development in ApoE deficient mice, and reduction in TMAO levels inhibits atherosclerosis development in the LDL receptor knockout mouse. Methods and Results C57BL6/J mice were fed either a control diet, a diet containing choline (1.2%) or a diet containing TMAO (0.12%) starting 3 weeks prior to surgical TAC. Mice were studied for 12 weeks following TAC. Cardiac function and left ventricular structure were monitored at 3-week intervals using echocardiography. Twelve weeks post-TAC myocardial tissues were collected to evaluate cardiac and vascular fibrosis, and blood samples were evaluated for cardiac BNP, choline, and TMAO levels. Pulmonary edema, cardiac enlargement, and left ventricular ejection fraction (LVEF) were significantly (p < 0.05, each) worse in mice fed either TMAO or choline supplemented diets compared to the control diet. In addition, myocardial fibrosis was also significantly greater (p < 0.01, each) in the TMAO and choline groups relative to controls. Conclusions Heart failure severity is significantly enhanced in mice fed diets supplemented in either choline or the gut microbe-dependent metabolite TMAO. The present results suggest that further studies are warranted examining whether gut microbiota and the dietary choline -> TMAO pathway contribute to increased heart failure susceptibility. PMID:26699388
Cheng, Chin-Pao; Chen, Chien-Hung; Kuo, Chang-Sheng; Kuo, Hsing-Tao; Huang, Kuang-Ta; Shen, Yu-Li; Chang, Chin-Hao; Huang, Rwei Fen S
The relationships of dietary choline and folate intake with hepatic function have yet to be established in the Taiwanese population. We investigated the associations of choline and folate intake with hepatic inflammatory injury in Taiwanese adults. Blood samples and data on dietary choline components and folate intake from 548 Taiwanese adults without pathological liver disease were collected. Dietary intake was derived using a semiquantitative food-frequency questionnaire. Serum liver injury markers of alanine transaminase, aspartate transaminase, and hepatitis viral infection were measured. Elevated serum hepatic injury markers (>40 U/L) were associated with low folate and free choline intake (p<0.05). Folate intake was the most significant dietary determinant of serum aspartate transaminase concentration (beta=-0.05, p=0.04), followed by free choline intake (beta=-0.249, p=0.055). Folate intake exceeding the median level (268 μg/d) was correlated with a reduced rate of hepatitis viral infection (p=0.032) and with normalized serum aspartate transaminase (odds ratio [OR]=0.998, 95% confidence interval [CI]=0.996-1, p=0.042) and alanine transaminase (OR=0.998, 95% CI=0.007-1, p=0.019). Total choline intake exceeding the median level (233 mg/d) was associated with normalized serum aspartate transaminase (OR=0.518, 95% CI=0.360-0.745, p=0.018). The newly established relationships of dietary intake of total choline and folate with normalized hepatic inflammatory markers can guide the development of dietary choline and folate intake recommendations for Taiwanese adults.
Jiang, Wei-Dan; Liu, Yang; Jiang, Jun; Wu, Pei; Zhao, Juan; Kuang, Sheng-Yao; Tang, Ling; Tang, Wu-Neng; Zhang, Yong-An; Zhou, Xiao-Qiu
2015-01-01
Six groups of grass carp (average weight 266.9 ± 0.6 g) were fed diets containing 197, 385, 770, 1082, 1436 and 1795 mg choline/kg, for 8 weeks. Fish growth, and muscle nutrient (protein, fat and amino acid) content of young grass carp were significantly improved by appropriate dietary choline. Furthermore, muscle hydroxyproline concentration, lactate content and shear force were improved by optimum dietary choline supplementation. However, the muscle pH value, cooking loss and cathepsins activities showed an opposite trend. Additionally, optimum dietary choline supplementation attenuated muscle oxidative damage in grass carp. The muscle antioxidant enzyme (catalase and glutathione reductase did not change) activities and glutathione content were enhanced by optimum dietary choline supplementation. Muscle cooking loss was negatively correlated with antioxidant enzyme activities and glutathione content. At the gene level, these antioxidant enzymes, as well as the targets of rapamycin, casein kinase 2 and NF-E2-related factor 2 transcripts in fish muscle were always up-regulated by suitable choline. However, suitable choline significantly decreased Kelch-like ECH-associated protein 1 a (Keap1a) and Kelch-like ECH-associated protein 1 b (Keap1b) mRNA levels in muscle. In conclusion, suitable dietary choline enhanced fish flesh quality, and the decreased cooking loss was due to the elevated antioxidant status that may be regulated by Nrf2 signaling. PMID:26600252
Corbin, Karen D.; Zeisel, Steven H.
2013-01-01
Purpose of review Choline is an essential nutrient and the liver is a central organ responsible for choline metabolism. Hepatosteatosis and liver cell death occur when humans are deprived of choline. In the last few years there have been significant advances in our understanding of the mechanisms that influence choline requirements in humans and in our understanding of choline’s effects on liver function. These advances are useful in elucidating why non-alcoholic fatty liver disease (NAFLD) occurs and progresses sometimes to hepatocarcinogenesis. Recent findings Humans eating low choline diets develop fatty liver and liver damage,. This dietary requirement for choline is modulated by estrogen and by single nucleotide polymorphisms (SNPs) in specific genes of choline and folate metabolism. The spectrum of choline’s effects on liver range from steatosis to development of hepatocarcinomas, and several mechanisms for these effects have been identified. They include abnormal phospholipid synthesis, defects in lipoprotein secretion, oxidative damage caused by mitochondrial dysfunction, and endoplasmic reticulum (ER) stress. Furthermore, the hepatic steatosis phenotype and can be characterized more fully via metabolomic signatures and is influenced by the gut microbiome. Importantly, the intricate connection between liver function, one carbon metabolism, and energy metabolism is just beginning to be elucidated. Summary Choline influences liver function, and the dietary requirement for this nutrient varies depending on an individual’s genotype and estrogen status. Understanding these individual differences is important for gastroenterologists seeking to understand why some individuals develop NAFLD and others do not, and why some patients tolerate total parenteral nutrition and others develop liver dysfunction. PMID:22134222
Zhao, Hua-Fu; Feng, Lin; Jiang, Wei-Dan; Liu, Yang; Jiang, Jun; Wu, Pei; Zhao, Juan; Kuang, Sheng-Yao; Tang, Ling; Tang, Wu-Neng; Zhang, Yong-An; Zhou, Xiao-Qiu
2015-01-01
Six groups of grass carp (average weight 266.9 ± 0.6 g) were fed diets containing 197, 385, 770, 1082, 1436 and 1795 mg choline/kg, for 8 weeks. Fish growth, and muscle nutrient (protein, fat and amino acid) content of young grass carp were significantly improved by appropriate dietary choline. Furthermore, muscle hydroxyproline concentration, lactate content and shear force were improved by optimum dietary choline supplementation. However, the muscle pH value, cooking loss and cathepsins activities showed an opposite trend. Additionally, optimum dietary choline supplementation attenuated muscle oxidative damage in grass carp. The muscle antioxidant enzyme (catalase and glutathione reductase did not change) activities and glutathione content were enhanced by optimum dietary choline supplementation. Muscle cooking loss was negatively correlated with antioxidant enzyme activities and glutathione content. At the gene level, these antioxidant enzymes, as well as the targets of rapamycin, casein kinase 2 and NF-E2-related factor 2 transcripts in fish muscle were always up-regulated by suitable choline. However, suitable choline significantly decreased Kelch-like ECH-associated protein 1 a (Keap1a) and Kelch-like ECH-associated protein 1 b (Keap1b) mRNA levels in muscle. In conclusion, suitable dietary choline enhanced fish flesh quality, and the decreased cooking loss was due to the elevated antioxidant status that may be regulated by Nrf2 signaling.
Choline deficiency is associated with increased risk for venous catheter thrombosis.
Buchman, Alan L; Ament, Marvin E; Jenden, Donald J; Ahn, Chul
2006-01-01
Patients with intestinal failure who require long-term parenteral nutrition (PN) develop catheter thrombosis as a complication. This patient group may also develop choline deficiency because of a defect in the hepatic transsulfuration pathway in the setting of malabsorption. This study was undertaken to determine whether choline deficiency is a risk factor for development of catheter thrombosis. Plasma free and phospholipid-bound choline concentrations were measured in a group of 41 patients that required long-term PN. Episodes of catheter thrombosis from onset of PN to the time of blood testing were recorded. Sixteen (39%) patients developed catheter thrombosis, and 5 of these had recurrent catheter thrombosis. Plasma free choline was 7.7 +/- 2.7 nmol/mL in patients with no history of catheter thrombosis and 6.2 +/- 1.7 nmol/mL in patients with previous catheter thrombosis (p = .076 by Wilcoxon rank-sum test). The partial correlation between plasma free choline concentration and the frequency of clots after controlling for catheter duration was r = -0.33 (p = .038). The relative risk for catheter thrombosis in subjects with a plasma free choline concentration <8 nmol/mL was 10.0, 95% confidence interval (1.134-88.167). Plasma phospholipid-bound choline concentration was 2191.7 +/- 679.0 nmol/mL in patients with previous catheter thrombosis and 2103.3 +/- 531.2 nmol/mL in patients without history of catheter thrombosis (p = NS). Choline deficiency is a significant risk factor for development of catheter thrombosis in patients with intestinal failure who require PN.
Inhibition of pneumococcal choline-binding proteins and cell growth by esters of bicyclic amines.
Maestro, Beatriz; González, Ana; García, Pedro; Sanz, Jesús M
2007-01-01
Streptococcus pneumoniae is one of the major pathogens worldwide. The use of currently available antibiotics to treat pneumococcal diseases is hampered by increasing resistance levels; also, capsular polysaccharide-based vaccination is of limited efficacy. Therefore, it is desirable to find targets for the development of new antimicrobial drugs specifically designed to fight pneumococcal infections. Choline-binding proteins are a family of polypeptides, found in all S. pneumoniae strains, that take part in important physiologic processes of this bacterium. Among them are several murein hydrolases whose enzymatic activity is usually inhibited by an excess of choline. Using a simple chromatographic procedure, we have identified several choline analogs able to strongly interact with the choline-binding module (C-LytA) of the major autolysin of S. pneumoniae. Two of these compounds (atropine and ipratropium) display a higher binding affinity to C-LytA than choline, and also increase the stability of the protein. CD and fluorescence spectroscopy analyses revealed that the conformational changes of C-LytA upon binding of these alkaloids are different to those induced by choline, suggesting a different mode of binding. In vitro inhibition assays of three pneumococcal, choline-dependent cell wall lytic enzymes also demonstrated a greater inhibitory efficiency of those molecules. Moreover, atropine and ipratropium strongly inhibited in vitro pneumococcal growth, altering cell morphology and reducing cell viability, a very different response than that observed upon addition of an excess of choline. These results may open up the possibility of the development of bicyclic amines as new antimicrobials for use against pneumococcal pathologies.
Choline Protects Against Cardiac Hypertrophy Induced by Increased After-load
Zhao, Yilei; Wang, Chen; Wu, Jianwei; Wang, Yan; Zhu, Wenliang; Zhang, Yong; Du, Zhimin
2013-01-01
Background: Although inadequate intake of essential nutrient choline has been known to significantly increase cardiovascular risk, whether additional supplement of choline offering a protection against cardiac hypertrophy remain unstudied. Methods: The effects of choline supplements on pathological cardiac hypertrophic growth induced by transverse aorta constriction (TAC) for three weeks and cardiomyocyte hypertrophy in cultured cells induced by isoproterenol (ISO) 10 μM for 48 h stimulation were investigated. Western blot analysis and real-time PCR were used to determine the expression of ANP, BNP, β-MHC, miR-133a and Calcineurin. Results: Administration of 14 mg/kg choline to mice undergone TAC effectively attenuated the cardiac hypertrophic responses, as indicated by the reduced heart weight, left ventricular weight, ventricular thickness, and reduced expression of biomarker genes of cardiac hypertrophy. This anti-hypertrophic efficacy was reproduced in a cellular model of cardiomyocyte hypertrophy induced by isoproterenol in cultured neonatal cardiomyocytes. Our results further showed that choline rescued the aberrant downregulation of the muscle-specific microRNA miR-133a expression, a recently identified anti-hypertrophic factor, and restored the elevated calcineurin protein level, the key signaling molecule for the development of cardiac hypertrophy. These effects of choline were abolished by the M3 mAChR-specific antagonist 4-DAMP. Conclusion: Our study unraveled for the first time the cardioprotection of choline against cardiac hypertrophy, with correction of expression of miR-133a and calcineurin as a possible mechanism. Our findings suggest that choline supplement may be considered for adjunct anti-hypertrophy therapy. PMID:23493786
Symmetrical choline-derived dications display strong anti-kinetoplastid activity
Ibrahim, Hasan M. S.; Al-Salabi, Mohammed I.; El Sabbagh, Nasser; Quashie, Neils B.; Alkhaldi, Abdulsalam A. M.; Escale, Roger; Smith, Terry K.; Vial, Henri J.; de Koning, Harry P.
2011-01-01
Objectives To investigate the anti-kinetoplastid activity of choline-derived analogues with previously reported antimalarial efficacy. Methods From an existing choline analogue library, seven antimalarial compounds, representative of the first-, second- and third-generation analogues previously developed, were assessed for activity against Trypanosoma and Leishmania spp. Using a variety of techniques, the effects of choline analogue exposure on the parasites were documented and a preliminary investigation of their mode of action was performed. Results The activities of choline-derived compounds against Trypanosoma brucei and Leishmania mexicana were determined. The compounds displayed promising anti-kinetoplastid activity, particularly against T. brucei, to which 4/7 displayed submicromolar EC50 values for the wild-type strain. Low micromolar concentrations of most compounds cleared trypanosome cultures within 24–48 h. The compounds inhibit a choline transporter in Leishmania, but their entry may not depend only on this carrier; T. b. brucei lacks a choline carrier and the mode of uptake remains unclear. The compounds had no effect on the overall lipid composition of the cells, cell cycle progression or cyclic adenosine monophosphate production or short-term effects on intracellular calcium levels. However, several of the compounds, displayed pronounced effects on the mitochondrial membrane potential; this action was not associated with production of reactive oxygen species but rather with a slow rise of intracellular calcium levels and DNA fragmentation. Conclusions The choline analogues displayed strong activity against kinetoplastid parasites, particularly against T. b. brucei. In contrast to their antimalarial activity, they did not act on trypanosomes by disrupting choline salvage or phospholipid metabolism, instead disrupting mitochondrial function, leading to chromosomal fragmentation. PMID:21078603
Characterization of Choline Transporters in the Human Placenta over Gestation
Baumgartner, Heidi K.; Trinder, Kinsey M.; Galimanis, Carly E.; Post, Annalisa; Phang, Tzu; Ross, Randal G.; Winn, Virginia D.
2015-01-01
INTRODUCTION The developing fetus relies on the maternal blood supply to provide the choline it requires for making membrane lipids, synthesizing acetylcholine, and performing important methylation reactions. It is vital, therefore, that the placenta is efficient at transporting choline from maternal to fetal circulation. Although choline transporters have been found in term placenta samples, little is known about what cell types express specific choline transporters and how expression of the transporters may change over gestation. The objective of this study was to characterize choline transporter expression levels and localization in the human placenta throughout placental development. METHODS We analyzed CTL1 and −2 expression over gestation in human placental biopsies from 6 to 40 weeks gestation (n=6–10 per gestational window) by immunoblot analysis. To determine the cellular expression pattern of the choline transporters throughout gestation, immunofluorescence analysis was then performed. RESULTS Both CTL1 and CTL2 were expressed in the chorionic villi from 6 weeks gestation to term. Labor did not alter expression levels of either transporter. CTL1 localized to the syncytial trophoblasts and the endothelium of the fetal vasculature within the chorionic villous structure. CTL2 localized mainly to the stroma early in gestation and by the second trimester co-localized with CTL1 at the fetal vasculature. DISCUSSION The differential expression pattern of CTL1 and CTL2 suggests that CTL1 is the key transporter involved in choline transport from maternal circulation and both transporters are likely involved in stromal and endothelial cell choline transport. PMID:26601765
Tabassum, Saiqa; Haider, Saida; Ahmad, Saara; Madiha, Syeda; Parveen, Tahira
2017-08-01
Choline, an essential nutrient, accounts for multiple functions in the body and brain. While its beneficial effects on healthy adults are not clear, choline supplementation is important during pregnancy for brain development, in elderly patients for support of cognitive performance and in patients with neurological disorders to reduce memory deficits. Thus, the aim of this study is to investigate whether choline administration in healthy adult rats beneficially impacts cognitive and locomotor performance, and associated oxidative and neurochemical outcomes. Two groups, control and choline, received tap water and choline bitartrate, respectively at the dose equivalent to adequate intake for five weeks. Food intake and body weight were monitored daily. Behavioral analysis comprising assessment of cognitive performance (by novel object recognition, passive avoidance and Morris Water Maze test) and locomotor performance (by Open field, Kondziela's inverted screen and beam walking test) were performed. Following testing, rats were decapitated and brain samples were collected for estimation of acetylcholine, redox profile and monoamine measurements. The results showed that chronic choline administration significantly improves cognitive and locomotor performance accompanied by a reduction in oxidative stress, enhanced cholinergic neurotransmission and monoamine levels in the brain of healthy adult rats. Hence, chronic choline intake was found to improve behavioral, oxidative and neurochemical outcomes in the normal population, so it can be suggested that choline tablets can be used as a safe and effective supplement for improving the neurological health of normal individuals and that they might also be beneficial in preventing cognitive and motor disorders later in life. Copyright © 2017 Elsevier Inc. All rights reserved.
Wu, Pei; Liu, Yang; Jiang, Wei-Dan; Jiang, Jun; Zhao, Juan; Zhang, Yong-An; Zhou, Xiao-Qiu; Feng, Lin
2017-01-01
The liver and intestine are susceptible to the oxidative damage which could result in several diseases. Choline deficiency induced oxidative damage in rat liver cells. Thus, this study aimed to investigate the potential molecular mechanisms responsible for choline deficiency-induced oxidative damage. Juvenile Jian carp were fed diets differing in choline content [165 (deficient group), 310, 607, 896, 1167 and 1820 mg/kg diet] respectively for 65 days. Oxidative damage, antioxidant enzyme activities and related gene expressions in the hepatopancreas and intestine were measured. Choline deficiency decreased choline and phosphatidylcholine contents, and induced oxidative damage in both organs, as evidenced by increased levels of oxidative-stress markers (malondialdehyde, protein carbonyl and 8-hydroxydeoxyguanosine), coupled with decreased activities of antioxidant enzymes [Copper-zinc superoxide dismutase (CuZnSOD), manganese superoxide dismutase (MnSOD), glutathione peroxidase (GPx) and glutathione-S-transferase (GST)]. However, choline deficiency increased glutathione contents in the hepatopancreas and intestine. Furthermore, dietary choline deficiency downregulated mRNA levels of MnSOD, GPx1b, GST-rho, mGST3 and Kelch-like ECH associating protein 1 (Keap1b) in the hepatopancreas, MnSOD, GPx1b, GPx4a, GPx4b, GST-rho, GST-theta, GST-mu, GST-alpha, GST-pi and GST-kappa in the intestine, as well as intestinal Nrf2 protein levels. In contrast, choline deficiency upregulated the mRNA levels of GPx4a, GPx4b, mGST1, mGST2, GST-theta, GST-mu, Keap1a and PKC in the hepatopancreas, mGST3, nuclear factor erythoid 2-related factor 2 (Nrf2) and Keap1a in the intestine, as well as hepatopancreatic Nrf2 protein levels. This study provides new evidence that choline deficiency-induced oxidative damage is associated with changes in the transcription of antioxidant enzyme and Nrf2/Keap1 signaling molecules in the hepatopancreas and intestine. Additionally, this study firstly indicated that choline deficiency induced varied change patterns of different GPx and GST isoforms. Meanwhile, the changes of some GPx and GST isoforms caused by choline deficiency in the intestine were contrary to those in the hepatopancreas. PMID:28099509
Wu, Pei; Liu, Yang; Jiang, Wei-Dan; Jiang, Jun; Zhao, Juan; Zhang, Yong-An; Zhou, Xiao-Qiu; Feng, Lin
2017-01-01
The liver and intestine are susceptible to the oxidative damage which could result in several diseases. Choline deficiency induced oxidative damage in rat liver cells. Thus, this study aimed to investigate the potential molecular mechanisms responsible for choline deficiency-induced oxidative damage. Juvenile Jian carp were fed diets differing in choline content [165 (deficient group), 310, 607, 896, 1167 and 1820 mg/kg diet] respectively for 65 days. Oxidative damage, antioxidant enzyme activities and related gene expressions in the hepatopancreas and intestine were measured. Choline deficiency decreased choline and phosphatidylcholine contents, and induced oxidative damage in both organs, as evidenced by increased levels of oxidative-stress markers (malondialdehyde, protein carbonyl and 8-hydroxydeoxyguanosine), coupled with decreased activities of antioxidant enzymes [Copper-zinc superoxide dismutase (CuZnSOD), manganese superoxide dismutase (MnSOD), glutathione peroxidase (GPx) and glutathione-S-transferase (GST)]. However, choline deficiency increased glutathione contents in the hepatopancreas and intestine. Furthermore, dietary choline deficiency downregulated mRNA levels of MnSOD, GPx1b, GST-rho, mGST3 and Kelch-like ECH associating protein 1 (Keap1b) in the hepatopancreas, MnSOD, GPx1b, GPx4a, GPx4b, GST-rho, GST-theta, GST-mu, GST-alpha, GST-pi and GST-kappa in the intestine, as well as intestinal Nrf2 protein levels. In contrast, choline deficiency upregulated the mRNA levels of GPx4a, GPx4b, mGST1, mGST2, GST-theta, GST-mu, Keap1a and PKC in the hepatopancreas, mGST3, nuclear factor erythoid 2-related factor 2 (Nrf2) and Keap1a in the intestine, as well as hepatopancreatic Nrf2 protein levels. This study provides new evidence that choline deficiency-induced oxidative damage is associated with changes in the transcription of antioxidant enzyme and Nrf2/Keap1 signaling molecules in the hepatopancreas and intestine. Additionally, this study firstly indicated that choline deficiency induced varied change patterns of different GPx and GST isoforms. Meanwhile, the changes of some GPx and GST isoforms caused by choline deficiency in the intestine were contrary to those in the hepatopancreas.
Badges of Immobilized Enzymes: Detection of Chemical Warfare Agents
2003-07-01
Betaine aldehyde+ H2O2 H2O2 Betaine ...IDA, DTNB, Amplex) Resorufin Amplex Red + Horseradish Peroxidase Choline oxidase O2+ ACh ChE Acetate + Choline (substrates) Choline oxidase O2+ OP X...by choline oxidase to yield hydrogen peroxide, can be optimized to the same pH. 5 6 7 8 9 10 0.0 0.2 0.4 0.6 0.8 pH Re la tiv e Ac ti Ch ol in
Chen, Yu-ming; Liu, Yan; Zhou, Rui-fen; Chen, Xiao-ling; Wang, Cheng; Tan, Xu-ying; Wang, Li-jun; Zheng, Rui-dan; Zhang, Hong-wei; Ling, Wen-hua; Zhu, Hui-lian
2016-01-08
Many studies suggest that trimethylamine-N-oxide (TMAO), a gut-flora-dependent metabolite of choline, contributes to the risk of cardiovascular diseases, but little is known for non-alcoholic fatty liver disease (NAFLD). We examined the association of circulating TMAO, choline and betaine with the presence and severity of NAFLD in Chinese adults. We performed a hospital-based case-control study (CCS) and a cross-sectional study (CSS). In the CCS, we recruited 60 biopsy-proven NAFLD cases and 35 controls (18-60 years) and determined serum concentrations of TMAO, choline and betaine by HPLC-MS/MS. For the CSS, 1,628 community-based adults (40-75 years) completed the blood tests and ultrasonographic NAFLD evaluation. In the CCS, analyses of covariance showed adverse associations of ln-transformed serum levels of TMAO, choline and betaine/choline ratio with the scores of steatosis and total NAFLD activity (NAS) (all P-trend <0.05). The CSS revealed that a greater severity of NAFLD was independently correlated with higher TMAO but lower betaine and betaine/choline ratio (all P-trend <0.05). No significant choline-NAFLD association was observed. Our findings showed adverse associations between the circulating TMAO level and the presence and severity of NAFLD in hospital- and community-based Chinese adults, and a favorable betaine-NAFLD relationship in the community-based participants.
Awwad, Hussain Mohamad; Kirsch, Susanne H; Geisel, Juergen; Obeid, Rima
2014-04-15
We aimed at developing a method for the measurement of choline and its metabolites in whole blood (WB). After an extraction step, quantification of choline, betaine, and dimethylglycine (DMG) was performed using ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). Plasma and WB metabolites were evaluated in a group of 61 elderly people. The calibration curves were linear (r(2)>0.997) for all compounds. The inter- and intra-assay coefficients of variation for all analytes were <10%. The recoveries were >90% and the relative matrix effect were ≤4.0%. The median concentrations of choline, betaine, and DMG were 11.3, 27.8, and 5.9μmol/L in plasma and 66.6, 165, and 13.7μmol/L in WB, respectively. There were positive correlations between WB and plasma markers; for choline (r=0.42), betaine (r=0.61), and DMG (r=0.56) (all p≤0.001). The concentrations of betaine in WB and plasma were significantly higher in men than in women. The concentrations of WB choline and DMG did not differ significantly according to sex. In conclusion, we have established a reliable method for measuring choline metabolites in WB. The concentrations of WB choline, betaine, and DMG seem to reflect intracellular concentrations of these metabolites. Copyright © 2014 Elsevier B.V. All rights reserved.
Metabolic Imaging of Pancreatic Ductal Adenocarcinoma Detects Altered Choline Metabolism
Penet, Marie-France; Shah, Tariq; Bharti, Santosh; Krishnamachary, Balaji; Artemov, Dmitri; Mironchik, Yelena; Wildes, Flonné; Maitra, Anirban; Bhujwalla, Zaver M.
2014-01-01
Purpose Pancreatic ductal adenocarcinoma (PDAC) is an aggressive and lethal disease that develops relatively symptom-free and is therefore advanced at the time of diagnosis. The absence of early symptoms and effective treatments has created a critical need for identifying and developing new noninvasive biomarkers and therapeutic targets. Experimental Design We investigated the metabolism of a panel of PDAC cell lines in culture and noninvasively in vivo with 1H magnetic resonance spectroscopic imaging (MRSI) to identify noninvasive biomarkers and uncover potential metabolic targets. Results We observed elevated choline-containing compounds in the PDAC cell lines and tumors. These elevated choline-containing compounds were easily detected by increased total choline (tCho) in vivo, in spectroscopic images obtained from tumors. Principal component analysis of the spectral data identified additional differences in metabolites between HPNE and neoplastic PDAC cells. Molecular characterization revealed overexpression of choline kinase (Chk)-α, choline transporter 1 (CHT1), and choline transporter-like protein 1 (CTL1) in the PDAC cell lines and tumors. Conclusions Collectively, these data identify new metabolic characteristics of PDAC and reveal potential metabolic targets. Total choline detected with 1H MRSI may provide an intrinsic, imaging-probe independent biomarker to complement existing techniques in detecting PDAC. The expression of Chk-α, CHT1, and CTL1 may provide additional molecular markers in aspirated cytological samples. PMID:25370468
Tang, Ningfeng; Bamford, Penny; Jones, Jace; He, Min; Kane, Maureen A; Mooney, Sandra M; Bearer, Cynthia F
2014-11-01
Fetal alcohol spectrum disorder, the leading known cause of mental retardation, is caused by alcohol exposure during pregnancy. One mechanism of ethanol (EtOH) teratogenicity is the disruption of the functions of L1 cell adhesion molecule (L1). These functions include enhancement of neurite outgrowth, trafficking through lipid rafts, and signal transduction. Recent data have shown that choline supplementation of rat pups reduces the effects of EtOH on neurobehavior. We sought to determine whether choline could prevent the effect of EtOH on L1 function using a simple experimental system. Cerebellar granule neurons (CGN) from postnatal day 6 rat pups were cultured with and without supplemental choline, and the effects on L1 signaling, lipid raft distribution, and neurite outgrowth were measured in the presence or absence of EtOH. Choline significantly reduced the effect of EtOH on L1 signaling, the distribution of L1 in lipid rafts and L1-mediated neurite outgrowth. However, choline supplemented EtOH-exposed cultures remained significantly different than controls. Choline pretreatment of CGN significantly reduces the disruption of L1 function by EtOH, but does not completely return L1 function to baseline. This experimental system will enable discovery of the mechanism of the neuroprotective effect of choline. Copyright © 2014 by the Research Society on Alcoholism.
Maternal choline intake alters the epigenetic state of fetal cortisol-regulating genes in humans.
Jiang, Xinyin; Yan, Jian; West, Allyson A; Perry, Cydne A; Malysheva, Olga V; Devapatla, Srisatish; Pressman, Eva; Vermeylen, Francoise; Caudill, Marie A
2012-08-01
The in utero availability of methyl donors, such as choline, may modify fetal epigenetic marks and lead to sustainable functional alterations throughout the life course. The hypothalamic-pituitary-adrenal (HPA) axis regulates cortisol production and is sensitive to perinatal epigenetic programming. As an extension of a 12-wk dose-response choline feeding study conducted in third-trimester pregnant women, we investigated the effect of maternal choline intake (930 vs. 480 mg/d) on the epigenetic state of cortisol-regulating genes, and their expression, in placenta and cord venous blood. The higher maternal choline intake yielded higher placental promoter methylation of the cortisol-regulating genes, corticotropin releasing hormone (CRH; P=0.05) and glucocorticoid receptor (NR3C1; P=0.002); lower placental CRH transcript abundance (P=0.04); lower cord blood leukocyte promoter methylation of CRH (P=0.05) and NR3C1 (P=0.04); and 33% lower (P=0.07) cord plasma cortisol. In addition, placental global DNA methylation and dimethylated histone H3 at lysine 9 (H3K9me2) were higher (P=0.02) in the 930 mg choline/d group, as was the expression of select placental methyltransferases. These data collectively suggest that maternal choline intake in humans modulates the epigenetic state of genes that regulate fetal HPA axis reactivity as well as the epigenomic status of fetal derived tissues.
Wang, Yanyan; Surzenko, Natalia; Friday, Walter B.; Zeisel, Steven H.
2015-01-01
Maternal diets low in choline, an essential nutrient, increase the risk of neural tube defects and lead to low performance on cognitive tests in children. However, the consequences of maternal dietary choline deficiency for the development and structural organization of the cerebral cortex remain unknown. In this study, we fed mouse dams either control (CT) or low-choline (LC) diets and investigated the effects of choline on cortical development in the offspring. As a result of a low choline supply between embryonic day (E)11 and E17 of gestation, the number of 2 types of cortical neural progenitor cells (NPCs)—radial glial cells and intermediate progenitor cells—was reduced in fetal brains (P < 0.01). Furthermore, the number of upper layer cortical neurons was decreased in the offspring of dams fed an LC diet at both E17 (P < 0.001) and 4 mo of age (P < 0.001). These effects of LC maternal diet were mediated by a decrease in epidermal growth factor receptor (EGFR) signaling in NPCs related to the disruption of EGFR posttranscriptional regulation. Our findings describe a novel mechanism whereby low maternal dietary intake of choline alters brain development.—Wang, Y., Surzenko, N., Friday, W. B., Zeisel, S. H. Maternal dietary intake of choline in mice regulates development of the cerebral cortex in the offspring. PMID:26700730
Wang, Yanyan; Surzenko, Natalia; Friday, Walter B; Zeisel, Steven H
2016-04-01
Maternal diets low in choline, an essential nutrient, increase the risk of neural tube defects and lead to low performance on cognitive tests in children. However, the consequences of maternal dietary choline deficiency for the development and structural organization of the cerebral cortex remain unknown. In this study, we fed mouse dams either control (CT) or low-choline (LC) diets and investigated the effects of choline on cortical development in the offspring. As a result of a low choline supply between embryonic day (E)11 and E17 of gestation, the number of 2 types of cortical neural progenitor cells (NPCs)-radial glial cells and intermediate progenitor cells-was reduced in fetal brains (P< 0.01). Furthermore, the number of upper layer cortical neurons was decreased in the offspring of dams fed an LC diet at both E17 (P< 0.001) and 4 mo of age (P< 0.001). These effects of LC maternal diet were mediated by a decrease in epidermal growth factor receptor (EGFR) signaling in NPCs related to the disruption of EGFR posttranscriptional regulation. Our findings describe a novel mechanism whereby low maternal dietary intake of choline alters brain development.-Wang, Y., Surzenko, N., Friday, W. B., Zeisel, S. H. Maternal dietary intake of choline in mice regulates development of the cerebral cortex in the offspring. © FASEB.
Arlauckas, Sean P; Kumar, Manoj; Popov, Anatoliy V; Poptani, Harish; Delikatny, Edward J
2017-03-07
Choline kinase alpha (ChoKα) overexpression is associated with an aggressive tumor phenotype. ChoKα inhibitors induce apoptosis in tumors, however validation of their specificity is difficult in vivo. We report the use of optical imaging to assess ChoKα status in cells and in vivo using JAS239, a carbocyanine-based ChoKα inhibitor with inherent near infrared fluorescence. JAS239 attenuated choline phosphorylation and viability in a panel of human breast cancer cell lines. Antibody blockade prevented cellular retention of JAS239 indicating direct interaction with ChoKα independent of the choline transporters and catabolic choline pathways. In mice bearing orthotopic MCF7 breast xenografts, optical imaging with JAS239 distinguished tumors overexpressing ChoKα from their empty vector counterparts and delineated tumor margins. Pharmacological inhibition of ChoK by the established inhibitor MN58b led to a growth inhibition in 4175-Luc+ tumors that was accompanied by concomitant reduction in JAS239 uptake and decreased total choline metabolite levels as measured using magnetic resonance spectroscopy. At higher therapeutic doses, JAS239 was as effective as MN58b at arresting tumor growth and inducing apoptosis in MDA-MB-231 tumors, significantly reducing tumor choline below baseline levels without observable systemic toxicity. These data introduce a new method to monitor therapeutically effective inhibitors of choline metabolism in breast cancer using a small molecule companion diagnostic.
Evaluation of Prostate Cancer with 11C- and 18F-Choline PET/CT: Diagnosis and Initial Staging.
Nitsch, Sascha; Hakenberg, Oliver W; Heuschkel, Martin; Dräger, Desiree; Hildebrandt, Guido; Krause, Bernd J; Schwarzenböck, Sarah M
2016-10-01
Early diagnosis and adequate staging are crucial for the choice of adequate treatment in prostate cancer (PC). Morphologic and functional imaging modalities, such as CT and MRI, have had limited accuracy in the diagnosis and nodal staging of PC. Molecular PET/CT imaging with 11 C- or 18 F-choline-labeled derivatives is increasingly being used, but its role in the diagnosis and initial staging of PC is controversial because of limitations in sensitivity and specificity for the detection of primary PC. For T staging, functional MRI is superior to 11 C- or 18 F-choline PET/CT. For N staging, 11 C- or 18 F-choline PET/CT can provide potentially useful information that may influence treatment planning. For the detection of bone metastases, 11 C- or 18 F-choline PET/CT has had promising results; however, in terms of cost-effectiveness, the routine use of 11 C- or 18 F-choline PET/CT is still debatable. 11 C- or 18 F-choline PET/CT might be used in high-risk PC before radiation treatment planning, potentially affecting this planning (e.g., regarding dose escalation). This review provides an overview of the diagnostic accuracy and limitations of 11 C- or 18 F-choline PET/CT in the diagnosis and staging of PC. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Wei, Xudan; Li, Ping; Liu, Meina; Du, Yuqian; Wang, Menglin; Zhang, Jinling; Wang, Jing; Liu, Hongzhuo; Liu, Xiaohong
2017-04-01
Choline fenofibrate is the choline salt of fenofibric acid, which releases free fenofibric acid in the gastrointestinal tract. To estimate the absolute oral bioavailability of fenofibric acid and choline fenofibrate, a novel and sensitive UPLC-MS/MS method with liquid-liquid extraction procedure was developed for the determination of fenofibric acid in rat plasma. The separation was achieved on a Phenomenex Kinetex C 18 column (50 × 2.1 mm, 2.6 μm) containing 2 mm ammonium acetate-methanol with a gradient elution program. Validations of this method including specificity, sensitivity (limit of quantification, 5 ng/mL), linearity (0.005-10 μg/mL), accuracy (within ±4.3%), precision (intra- and inter-day coefficient of variation <11.3%), recovery (94.9-105.2% for fenofibric acid), matrix effect, stability and dilution, were all within acceptable limits. This method successfully supported the determination of fenofibric acid and choline fenofibrate. The absolute oral bioavailability was 93.4% for choline fenofibrate and 40.0% for fenofibric acid. These results suggested that choline fenofibrate and fenofibric acid had a better in vivo pharmacokinetic behavior than that of fenofibrate. The two new orally administrated pharmaceuticals, fenofibric acid and choline fenofibrate, can be developed as alternatives to fenofibrate. Copyright © 2016 John Wiley & Sons, Ltd.
Short-term menhaden oil rich diet changes renal lipid profile in acute kidney injury.
Ossani, Georgina P; Denninghoff, Valeria C; Uceda, Ana M; Díaz, Maria L; Uicich, Raúl; Monserrat, Alberto J
2015-01-01
Weanling male Wistar rats fed a choline-deficient diet develop acute kidney injury. Menhaden oil, which is a very important source of omega-3 fatty acids, has a notorious protective effect. The mechanism of this protection is unknown; one possibility could be that menhaden oil changes renal lipid profile, with an impact on the functions of biological membranes. The aim of this work was to study the renal lipid profile in rats fed a choline-deficient diet with menhaden oil or vegetable oil as lipids. Rats were divided into 4 groups and fed four different diets for 7 days: choline-deficient or choline-supplemented diets with corn and hydrogenated oils or menhaden oil. Serum homocysteine, vitamin B12, and folic acid were analyzed. Renal lipid profile, as well as the fatty acid composition of the three oils, was measured. Choline-deficient rats fed vegetable oils showed renal cortical necrosis. Renal omega-6 fatty acids were higher in rats fed a cholinedeficient diet and a choline-supplemented diet with vegetable oils, while renal omega-3 fatty acids were higher in rats fed a choline-deficient diet and a choline-supplemented diet with menhaden oil. Rats fed menhaden oil diets had higher levels of renal eicosapentaenoic and docosahexaenoic acids. Renal myristic acid was increased in rats fed menhaden oil. The lipid renal profile varied quickly according to the type of oil present in the diet.
Chen, Yu-ming; Liu, Yan; Zhou, Rui-fen; Chen, Xiao-ling; Wang, Cheng; Tan, Xu-ying; Wang, Li-jun; Zheng, Rui-dan; Zhang, Hong-wei; Ling, Wen-hua; Zhu, Hui-lian
2016-01-01
Many studies suggest that trimethylamine-N-oxide (TMAO), a gut-flora-dependent metabolite of choline, contributes to the risk of cardiovascular diseases, but little is known for non-alcoholic fatty liver disease (NAFLD). We examined the association of circulating TMAO, choline and betaine with the presence and severity of NAFLD in Chinese adults. We performed a hospital-based case-control study (CCS) and a cross-sectional study (CSS). In the CCS, we recruited 60 biopsy-proven NAFLD cases and 35 controls (18–60 years) and determined serum concentrations of TMAO, choline and betaine by HPLC-MS/MS. For the CSS, 1,628 community-based adults (40-75 years) completed the blood tests and ultrasonographic NAFLD evaluation. In the CCS, analyses of covariance showed adverse associations of ln-transformed serum levels of TMAO, choline and betaine/choline ratio with the scores of steatosis and total NAFLD activity (NAS) (all P-trend <0.05). The CSS revealed that a greater severity of NAFLD was independently correlated with higher TMAO but lower betaine and betaine/choline ratio (all P-trend <0.05). No significant choline-NAFLD association was observed. Our findings showed adverse associations between the circulating TMAO level and the presence and severity of NAFLD in hospital- and community-based Chinese adults, and a favorable betaine-NAFLD relationship in the community-based participants. PMID:26743949
Energy for Wild-Type Acetylcholine Receptor Channel Gating from Different Choline Derivatives
Bruhova, Iva; Gregg, Timothy; Auerbach, Anthony
2013-01-01
Agonists, including the neurotransmitter acetylcholine (ACh), bind at two sites in the neuromuscular ACh receptor channel (AChR) to promote a reversible, global change in protein conformation that regulates the flow of ions across the muscle cell membrane. In the synaptic cleft, ACh is hydrolyzed to acetate and choline. Replacement of the transmitter’s ester acetyl group with a hydroxyl (ACh→choline) results in a +1.8 kcal/mol reduction in the energy for gating generated by each agonist molecule from a low- to high-affinity change of the transmitter binding site (ΔGB). To understand the distinct actions of structurally related agonist molecules, we measured ΔGB for 10 related choline derivatives. Replacing the hydroxyl group of choline with different substituents, such as hydrogen, chloride, methyl, or amine, increased the energy for gating (i.e., it made ΔGB more negative relative to choline). Extending the ethyl hydroxide tail of choline to propyl and butyl hydroxide also increased this energy. Our findings reveal the amount of energy that is available for the AChR conformational change provided by different, structurally related agonists. We speculate that a hydrogen bond between the choline hydroxyl and the backbone carbonyl of αW149 positions this agonist’s quaternary ammonium group so as to reduce the cation-π interaction between this moiety and the aromatic groups at the binding site. PMID:23442907
Choline attenuates immune inflammation and suppresses oxidative stress in patients with asthma.
Mehta, Amit K; Singh, Bhanu P; Arora, Naveen; Gaur, Shailendra N
2010-07-01
Asthma is a chronic immune inflammatory disease characterized by variable airflow obstruction and increased bronchial hyperreactivity (BHR). Therapeutic interventions reduce airway inflammation and relieve symptoms but associated with potential side effects that limit their usefulness. The present study was undertaken to assess the effect of choline on immune inflammation and BHR in asthma subjects. The patients of asthma (n=76) were recruited and treated with choline supplement (1500 mg twice) or standard pharmacotherapy for 6 months in two groups. The patients were evaluated by clinical, immunologic and biochemical parameters. The treatment with choline showed significant reduction in symptom/drug score and improvement in PC(20) FEV1 compared to baseline or standard pharmacotherapy (p<0.01). Choline therapy significantly reduced IL-4, IL-5 and TNF-alpha level as compared to baseline or standard pharmacotherapy after 6 months (p<0.01). Blood eosinophil count and total IgE levels were reduced in both the treatment groups. Cysteinyl leukotriene and leukotriene B4 were suppressed significantly by choline treatment (p<0.01). This was accompanied by decreased 8-isoprostanes, a biomarker for oxidative stress after choline treatment (p<0.01). Choline therapy modulates immune inflammation and suppresses oxidative stress in asthma patients. It can be used as an adjunct therapy for asthma patients. Copyright 2009 Elsevier GmbH. All rights reserved.
Gadda, Giovanni; Powell, Nichole L N; Menon, Prashanthi
2004-10-15
Choline oxidase catalyzes the oxidation of choline to glycine betaine via two sequential flavin-linked transfers of hydride equivalents to molecular oxygen and formation of a betaine aldehyde intermediate. In the present study, choline and glycine betaine analogs were used as substrates and inhibitors for the enzyme to investigate the structural determinants that are relevant for substrate recognition and specificity. Competitive inhibition patterns with respect to choline were determined for a number of substituted amines at pH 6.5 and 25 degrees C. The Kis values for the carboxylate-containing ligands glycine betaine, N,N-dimethylglycine, and N-methylglycine increased monotonically with decreasing number of methyl groups, consistent with the trimethylammonium portion of the ligand being important for binding. In contrast, the acetate portion of glycine betaine did not contribute to binding, as suggested by lack of changes in the Kis values upon substituting glycine betaine with inhibitors containing methyl, ethyl, allyl, and 2-amino-ethyl side chains. In agreement with the inhibition data, the specificity of the enzyme for the organic substrate (kcat/Km value) decreased when N,N-dimethylethanolamine, N-methylethanolamine, and the isosteric substrate 3,3-dimethyl-1-butanol were used as substrate instead of choline; a contribution of approximately 7 kcal mol(-1) toward substrate discrimination was estimated for the interaction of the trimethylammonium portion of the substrate with the active site of choline oxidase.
Choline in anxiety and depression: the Hordaland Health Study.
Bjelland, Ingvar; Tell, Grethe S; Vollset, Stein E; Konstantinova, Svetlana; Ueland, Per M
2009-10-01
Despite its importance in the central nervous system as a precursor for acetylcholine and membrane phosphatidylcholine, the role of choline in mental illness has been little studied. We examined the cross-sectional association between plasma choline concentrations and scores of anxiety and depression symptoms in a general population sample. We studied a subsample (n = 5918) of the Hordaland Health Study, including both sexes and 2 age groups of 46-49 and 70-74 y who had valid information on plasma choline concentrations and symptoms of anxiety and depression measured by the Hospital Anxiety and Depression Scale--the latter 2 as continuous measures and dichotomized at a score > or =8 for both subscales. The lowest choline quintile was significantly associated with high anxiety levels (odds ratio: 1.33; 95% CI: 1.06, 1.69) in the fully adjusted (age group, sex, time since last meal, educational level, and smoking habits) logistic regression model. Also, the trend test in the anxiety model was significant (P = 0.007). In the equivalent fully adjusted linear regression model, a significant inverse association was found between choline quintiles and anxiety levels (standardized regression coefficient = -0.027, P = 0.045). We found no significant associations in the corresponding analyses of the relation between plasma choline and depression symptoms. In this large population-based study, choline concentrations were negatively associated with anxiety symptoms but not with depression symptoms.
Birch, Sharla M; Lenox, Mark W; Kornegay, Joe N; Paniagua, Beatriz; Styner, Martin A; Goodlett, Charles R; Cudd, Tim A; Washburn, Shannon E
2016-09-01
Fetal alcohol spectrum disorder (FASD) is a leading potentially preventable birth defect. Poor nutrition may contribute to adverse developmental outcomes of prenatal alcohol exposure, and supplementation of essential micronutrients such as choline has shown benefit in rodent models. The sheep model of first-trimester binge alcohol exposure was used in this study to model the dose of maternal choline supplementation used in an ongoing prospective clinical trial involving pregnancies at risk for FASD. Primary outcome measures including volumetrics of the whole brain, cerebellum, and pituitary derived from magnetic resonance imaging (MRI) in 6-month-old lambs, testing the hypothesis that alcohol-exposed lambs would have brain volume reductions that would be ameliorated by maternal choline supplementation. Pregnant sheep were randomly assigned to one of five groups - heavy binge alcohol (HBA; 2.5 g/kg/treatment ethanol), heavy binge alcohol plus choline supplementation (HBC; 2.5 g/kg/treatment ethanol and 10 mg/kg/day choline), saline control (SC), saline control plus choline supplementation (SCC; 10 mg/kg/day choline), and normal control (NC). Ewes were given intravenous alcohol (HBA, HBC; mean peak BACs of ∼280 mg/dL) or saline (SC, SCC) on three consecutive days per week from gestation day (GD) 4-41; choline was administered on GD 4-148. MRI scans of lamb brains were performed postnatally on day 182. Lambs from both alcohol groups (with or without choline) showed significant reductions in total brain volume; cerebellar and pituitary volumes were not significantly affected. This is the first report of MRI-derived volumetric brain reductions in a sheep model of FASD following binge-like alcohol exposure during the first trimester. These results also indicate that maternal choline supplementation comparable to doses in human studies fails to prevent brain volume reductions typically induced by first-trimester binge alcohol exposure. Future analyses will assess behavioral outcomes along with regional brain and neurohistological measures. Copyright © 2016 Elsevier Inc. All rights reserved.
Dietary Choline and Betaine and the Risk of Distal Colorectal Adenoma in Women
Cho, Eunyoung; Willett, Walter C.; Colditz, Graham A.; Fuchs, Charles S.; Wu, Kana; Chan, Andrew T.; Zeisel, Steven H.; Giovannucci, Edward L.
2008-01-01
Background Choline and betaine are involved in methyl-group metabolism as methyl-group donors; thus, like folate, another methyl-group donor, they may be associated with a reduced risk of colorectal adenomas. No epidemiologic study has examined the association of intake of these nutrients and colorectal adenoma risk. Methods We investigated the relationship between intakes of choline and betaine and risk of colorectal adenoma in US women enrolled in the Nurses' Health Study. Dietary intake was measured by food-frequency questionnaires, and individual intakes of choline and betaine were calculated by multiplying the frequency of consumption of each food item by its choline and betaine content and summing the nutrient contributions of all foods. Logistic regression models were used to calculate adjusted odds ratios (as approximations for relative risks) and 95% confidence intervals (CIs) of colorectal adenoma. All statistical tests were two-sided. Results Among 39 246 women who were initially free of cancer or polyps and who had at least one endoscopy from 1984 through 2002, 2408 adenoma cases were documented. Increasing choline intake was associated with an elevated risk of colorectal adenoma; the multivariable relative risks (95% CIs) for increasing quintiles of intake, relative to the lowest quintile, were 1.03 (0.90 to 1.18), 1.01 (0.88 to 1.16), 1.23 (1.07 to 1.41), and 1.45 (1.27 to 1.67; Ptrend<.001). Betaine intake had a nonlinear inverse association with colorectal adenoma; the multivariable relative risks (95% CIs) for increasing quintiles of intake were 0.94 (0.83 to 1.07), 0.85 (0.75 to 0.97), 0.86 (0.75 to 0.98), and 0.90 (95% CI = 0.78 to 1.04; Ptrend = .09). Among individual sources of choline, choline from phosphatidylcholine and from sphingomyelin were each positively related to adenoma risk. Conclusions Our findings do not support an inverse association between choline intake and risk of colorectal adenoma. The positive association between choline intake and colorectal adenoma that we observed could represent effects of other components in the foods from which choline was derived and should be investigated further. PMID:17686825
Romano, Kymberleigh A; Vivas, Eugenio I; Amador-Noguez, Daniel; Rey, Federico E
2015-03-17
Choline is a water-soluble nutrient essential for human life. Gut microbial metabolism of choline results in the production of trimethylamine (TMA), which upon absorption by the host is converted in the liver to trimethylamine-N-oxide (TMAO). Recent studies revealed that TMAO exacerbates atherosclerosis in mice and positively correlates with the severity of this disease in humans. However, which microbes contribute to TMA production in the human gut, the extent to which host factors (e.g., genotype) and diet affect TMA production and colonization of these microbes, and the effects TMA-producing microbes have on the bioavailability of dietary choline remain largely unknown. We screened a collection of 79 sequenced human intestinal isolates encompassing the major phyla found in the human gut and identified nine strains capable of producing TMA from choline in vitro. Gnotobiotic mouse studies showed that TMAO accumulates in the serum of animals colonized with TMA-producing species, but not in the serum of animals colonized with intestinal isolates that do not generate TMA from choline in vitro. Remarkably, low levels of colonization by TMA-producing bacteria significantly reduced choline levels available to the host. This effect was more pronounced as the abundance of TMA-producing bacteria increased. Our findings provide a framework for designing strategies aimed at changing the representation or activity of TMA-producing bacteria in the human gut and suggest that the TMA-producing status of the gut microbiota should be considered when making recommendations about choline intake requirements for humans. Cardiovascular disease (CVD) is the leading cause of death and disability worldwide, and increased trimethylamine N-oxide (TMAO) levels have been causally linked with CVD development. This work identifies members of the human gut microbiota responsible for both the accumulation of trimethylamine (TMA), the precursor of the proatherogenic compound TMAO, and subsequent decreased choline bioavailability to the host. Understanding how to manipulate the representation and function of choline-consuming, TMA-producing species in the intestinal microbiota could potentially lead to novel means for preventing or treating atherosclerosis and choline deficiency-associated diseases. Copyright © 2015 Romano et al.
Kennedy, Bruce C.; Dimova, Jiva G.; Siddappa, Asha J. M.; Tran, Phu V.; Gewirtz, Jonathan C.; Georgieff, Michael K.
2014-01-01
Background: Gestational iron deficiency in humans and rodents produces long-term deficits in cognitive and socioemotional function and alters expression of plasticity genes in the hippocampus that persist despite iron treatment. Prenatal choline supplementation improves cognitive function in other rodent models of developmental insults. Objective: The objective of this study was to determine whether prenatal choline supplementation prevents the long-term effects of fetal-neonatal iron deficiency on cognitive and social behaviors and hippocampal gene expression. Methods: Pregnant rat dams were administered an iron-deficient (2–6 g/kg iron) or iron-sufficient (IS) (200 g/kg iron) diet from embryonic day (E) 3 to postnatal day (P) 7 with or without choline supplementation (5 g/kg choline chloride, E11–18). Novel object recognition (NOR) in the test vs. acquisition phase, social approach (SA), and hippocampal mRNA expression were compared at P65 in 4 male adult offspring groups: formerly iron deficient (FID), FID with choline supplementation (FID-C), IS, and IS with choline supplementation. Results: Relative to the intact NOR in IS rats (acquisition: 47.9%, test: 60.2%, P < 0.005), FID adult rats had impaired recognition memory at the 6-h delay (acquisition: 51.4%, test: 55.1%, NS), accompanied by a 15% reduction in hippocampal expression of brain-derived neurotrophic factor (Bdnf) (P < 0.05) and myelin basic protein (Mbp) (P < 0.05). Prenatal choline supplementation in FID rats restored NOR (acquisition: 48.8%, test: 64.4%, P < 0.0005) and increased hippocampal gene expression (FID-C vs. FID group: Bdnf, Mbp, P < 0.01). SA was also reduced in FID rats (P < 0.05 vs. IS rats) but was only marginally improved by prenatal choline supplementation. Conclusions: Deficits in recognition memory, but not social behavior, resulting from gestational iron deficiency are attenuated by prenatal choline supplementation, potentially through preservation of hippocampal Bdnf and Mbp expression. Prenatal choline supplementation may be a promising adjunct treatment for fetal-neonatal iron deficiency. PMID:25332485
Bluemel, Christina; Krebs, Markus; Polat, Bülent; Linke, Fränze; Eiber, Matthias; Samnick, Samuel; Lapa, Constantin; Lassmann, Michael; Riedmiller, Hubertus; Czernin, Johannes; Rubello, Domenico; Bley, Thorsten; Kropf, Saskia; Wester, Hans-Juergen; Buck, Andreas K; Herrmann, Ken
2016-07-01
Investigating the value of Ga-PSMA-PET/CT in biochemically recurring prostate cancer patients with negative F-choline-PET/CT. One hundred thirty-nine consecutive patients with biochemical recurrence after curative (surgery and/or radiotherapy) therapy were offered participation in this sequential clinical imaging approach. Patients first underwent an F-choline-PET/CT. If negative, an additional Ga-PSMA-PET/CT was offered. One hundred twenty-five of 139 eligible patients were included in the study; 32 patients underwent additional Ga-PSMA-PET/CT. Patients with equivocal findings (n = 5) on F-choline-PET/CT and those who declined the additional Ga-PSMA-PET/CT (n = 9) were excluded. Images were analyzed visually for the presence of suspicious lesions. Findings on PET/CT were correlated with PSA level, PSA doubling time (dt), and PSA velocity (vel). The overall detection rates were 85.6% (107/125) for the sequential imaging approach and 74.4% (93/125) for F-choline-PET/CT alone. Ga-PSMA-PET/CT detected sites of recurrence in 43.8% (14/32) of the choline-negative patients. Detection rates of the sequential imaging approach and F-choline-PET/CT alone increased with higher serum PSA levels and PSA vel. Subgroup analysis of Ga-PSMA-PET/CT in F-choline negative patients revealed detection rates of 28.6%, 45.5%, and 71.4% for PSA levels of 0.2 or greater to less than 1 ng/mL, 1 to 2 ng/mL, and greater than 2 ng/mL, respectively. The sequential imaging approach designed to limit Ga-PSMA imaging to patients with negative choline scans resulted in high detection rates. Ga-PSMA-PET/CT identified sites of recurrent disease in 43.8% of the patients with negative F-choline PET/CT scans.
Wu, Brian Tf; Innis, Sheila M; Mulder, Kelly A; Dyer, Roger A; King, D Janette
2013-11-01
Choline needs are increased in pregnancy. Choline can be used as a source of methyl for homocysteine remethylation to methionine, but choline synthesis requires methyls from methionine. Vitamin B-12 deficiency increases choline use for homocysteine methylation. We investigated whether poor vitamin B-12 status occurs and contributes to low plasma choline and altered biomarkers of choline synthesis in pregnant women. With the use of a post hoc analysis, we addressed the association of maternal plasma vitamin B-12 status with postnatal growth rates in term infants. Blood was analyzed for a prospective study of 264 and 220 pregnant women at 16 and 36 wk of gestation, respectively, and 88 nonpregnant women as a reference. The proportion of women with a plasma total vitamin B-12 concentration <148 pmol/L (deficient) or 148-220 pmol/L (marginal) increased with pregnancy and pregnancy duration, which affected 3% and 9% of nonpregnant women, 10% and 21% of women at 16 wk of gestation, and 23% and 35% of women at 36 wk of gestation, respectively. Plasma free choline, betaine, and dimethylglycine were lower in women at 36 wk of gestation with a deficient or marginal compared with sufficient plasma total vitamin B-12 concentration (>220 pmol/L). Plasma total vitamin B-12 was positively associated with the increase in plasma free choline from midgestation to late gestation (P < 0.001). The postnatal growth rate to 9 mo was lower in infant boys of women classified as total vitamin B-12 deficient compared with sufficient. This study shows that maternal vitamin B-12 status is related to choline status in late gestation in a folate-replete population and may be a determinant of infant growth even in the absence of undernutrition.
Stott, W T; Radtke, B J; Linscombe, V A; Mar, M-H; Zeisel, S H
2004-06-01
Triethanolamine (TEA), a widely used nongenotoxic alcohol-amine, has recently been reported to cause an increased incidence of liver tumors in female B6C3F1 mice, but not in males nor in Fischer 344 rats. Choline deficiency induces liver cancer in rodents, and TEA could compete with choline uptake into tissues. The potential of TEA to cause choline deficiency in the liver of these mice as a mode of tumorigenesis was investigated. Groups of female B6C3F1 mice were administered 0 (vehicle) or a maximum tolerated dosage (MTD) of 1000 mg/kg/day TEA (Trial I) and 0, 10, 100, 300, or 1000 mg/kg/day TEA (Trial II) in acetone vehicle via skin painting 5 days/week for 3 weeks. Female CDF(R) rats were also administered 0 or an MTD dosage of 250 mg/kg/day TEA (Trial II) in a similar manner. No clinical signs of toxicity were noted, and upon sacrifice, levels of hepatic choline, its primary storage form, phosphocholine (PCho), and its primary oxidation product, betaine, were determined. A statistically significant decrease in PCho and betaine, was observed at the high dosage (26-42%) relative to controls and a dose-related, albeit variable, decrease was noted in PCho levels. Choline levels were also decreased 13-35% at the high dose level in mice. No changes in levels of choline or metabolites were noted in treated rats. A subsequent evaluation of the potential of TEA to inhibit the uptake of (3)H-choline by cultured Chinese Hamster Ovary Cells revealed a dose-related effect upon uptake. It was concluded that TEA may cause liver tumors in mice via a choline-depletion mode of action and that this effect is likely caused by the inhibition of choline uptake by cells.
Evaluation of the Potential of Triethanolamine to Alter Hepatic Choline Levels in Female B6C3F1 Mice
Stott, W. T.; Radtke, B. J.; Linscombe, V. A.; Mar, M-H; Zeisel, S. H.
2006-01-01
Triethanolamine (TEA), a widely used nongenotoxic alcoholamine, has recently been reported to cause an increased incidence of liver tumors in female B6C3F1 mice, but not in males nor in Fischer 344 rats. Choline deficiency induces liver cancer in rodents, and TEA could compete with choline uptake into tissues. The potential of TEA to cause choline deficiency in the liver of these mice as a mode of tumorigenesis was investigated. Groups of female B6C3F1 mice were administered 0 (vehicle) or a maximum tolerated dosage (MTD) of 1000 mg/kg/day TEA (Trial I) and 0, 10, 100, 300, or 1000 mg/kg/day TEA (Trial II) in acetone vehicle via skin painting 5 days/week for 3 weeks. Female CDF® rats were also administered 0 or an MTD dosage of 250 mg/kg/day TEA (Trial II) in a similar manner. No clinical signs of toxicity were noted, and upon sacrifice, levels of hepatic choline, its primary storage form, phosphocholine (PCho), and its primary oxidation product, betaine, were determined. A statistically significant decrease in PCho and betaine, was observed at the high dosage (26–42%) relative to controls and a dose-related, albeit variable, decrease was noted in PCho levels. Choline levels were also decreased 13–35% at the high dose level in mice. No changes in levels of choline or metabolites were noted in treated rats. A subsequent evaluation of the potential of TEA to inhibit the uptake of 3H-choline by cultured Chinese Hamster Ovary Cells revealed a dose-related effect upon uptake. It was concluded that TEA may cause liver tumors in mice via a choline-depletion mode of action and that this effect is likely caused by the inhibition of choline uptake by cells. PMID:15056812
Schneider, Ronald D.; Thomas, Jennifer D.
2018-01-01
Background Children exposed to alcohol prenatally may suffer from behavioral and cognitive alterations that adversely affect their quality of life. Animal studies have shown that perinatal supplementation with the nutrient choline can attenuate ethanol’s adverse effects on development; however, it is not clear how late in development choline can be administered and still effectively reduce the consequences of prenatal alcohol exposure. Using a rodent model, this study examined whether choline supplementation is effective in mitigating alcohol’s teratogenic effects when administered during adolescence/young adulthood. Methods Sprague–Dawley rats were exposed to alcohol (5.25 g/kg/d) during the third trimester equivalent brain growth spurt, which occurs from postnatal day (PD) 4 to 9, via oral intubation. Sham-intubated and nontreated controls were included. Subjects were treated with 100 mg/kg/d choline chloride or vehicle from PD 40 to 60, a period equivalent to young adulthood in the rat. After the choline treatment had ceased, subjects were tested on a series of behavioral tasks: open field activity (PD 61 to 64), Morris water maze spatial learning (PD 65 to 73), and spatial working memory (PD 87 to 91). Results Ethanol-exposed subjects were overactive in the activity chambers and impaired on both the spatial and the working memory versions of the Morris water maze. Choline treatment failed to attenuate alcohol-related overactivity in the open field and deficits in Morris water maze performance. In contrast, choline supplementation significantly mitigated alcohol-related deficits in working memory, which may suggest that choline administration at this later developmental time affects functioning of the prefrontal cortex. Conclusions The results indicate that adolescent choline supplementation can attenuate some, but not all, of the behavioral deficits associated with early developmental alcohol exposure. The results of this study indicate that dietary intervention may reduce some fetal alcohol effects, even when administered later in life, findings with important implications for adolescents and young adults with fetal alcohol spectrum disorders. PMID:27038598
Poly, Coreyann; Massaro, Joseph M; Seshadri, Sudha; Wolf, Philip A; Cho, Eunyoung; Krall, Elizabeth; Jacques, Paul F; Au, Rhoda
2011-01-01
Background: Choline is the precursor to the neurotransmitter acetylcholine. Loss of cholinergic neurons is associated with impaired cognitive function, particularly memory loss and Alzheimer disease (AD). Brain atrophy and white-matter hyperintensity (WMH) are also associated with impaired cognitive function and AD. Objective: The objective was to determine whether a relation exists between dietary choline intake, cognitive function, and brain morphology in a large, nondemented community-based cohort. Design: A dementia-free cohort of 1391 subjects (744 women, 647 men; age range: 36–83 y; mean ± SD age: 60.9 ± 9.29 y) from the Framingham Offspring population completed a food-frequency questionnaire administered from 1991 to 1995 (exam 5; remote intake) and from 1998 to 2001 (exam 7; concurrent intake). Participants underwent neuropsychological evaluation and brain MRI at exam 7. Four neuropsychological factors were constructed: verbal memory (VM), visual memory (VsM), verbal learning, and executive function. MRI measures included WMH volume (WMHV). Results: Performance on the VM and VsM factors was better with higher concurrent choline intake in multivariable-adjusted models for VM (average change in neuropsychological factor per 1-unit change in choline = 0.60; 95% CI: 0.29, 0.91; P < 0.01) and VsM (0.66; 95% CI: 0.19, 1.13; P < 0.01). Remote choline intake was inversely related to log-transformed WMHV (average change in log WMHV per 1-unit change in choline = −0.05; 95% CI: −0.10, −0.01; P = 0.02). Furthermore, an inverse association was observed between remote higher choline intake and presence of large WMVH (OR: 0.56; 95% CI: 0.34, 0.92; P = 0.01). Conclusion: In this community-based population of nondemented individuals, higher concurrent choline intake was related to better cognitive performance, whereas higher remote choline intake was associated with little to no WMHV. PMID:22071706
Assessment of Total Choline Intakes in the United States.
Wallace, Taylor C; Fulgoni, Victor L
2016-01-01
Choline is an essential nutrient and plays a critical role in brain development, cell signaling, nerve impulse transmission, and lipid transport and metabolism. This analysis aimed to assess usual intakes of choline and compare them with the dietary reference intakes for U.S. residents aged ≥ 2 years. The National Cancer Institute method was used to assess usual intakes of choline from foods according to data for participants in the 2009-2012 National Health and Nutrition Examination Survey (NHANES; n = 16,809). Suboptimal intakes of choline are prevalent across many life-stage subpopulations in the United States. Only 10.8 ± 0.6% of 2009-2012 NHANES participants aged ≥ 2 years (15.6 ± 0.8% of males and 6.1 ± 0.6% of females) achieved the adequate intake (AI) for choline. Children aged 2-3 years were the most likely to exceed the AI (62.9 ± 3.1%), followed by children aged 4-8 years (45.4 ± 1.6%) and children aged 9-13 years (9.0 ± 1.0%), compared to adolescents aged 14-18 years (1.8 ± 0.4%) and adults aged ≥ 19 years (6.6 ± 0.5%). When comparing by age and gender, males consumed significantly more choline than females for all age groups. These data indicate that there is a need to increase awareness among health professionals and consumers regarding potential suboptimal intakes of choline in the United States, as well as the critical role that choline plays in health maintenance throughout the lifespan. Food scientists and the food and dietary supplement industries should consider working collectively with government agencies to discuss strategies to help offset the percentage of the population that does not meet the AI. Revision of the dietary reference intakes for choline should include replacement of the AI with an estimated average requirement and a recommended dietary allowance, so that more accurate population estimates of inadequate intakes may be calculated.
Uluisik, Rizvan; Romero, Elvira; Gadda, Giovanni
2017-11-01
The effect of temperature on the reaction of alcohol oxidation catalyzed by choline oxidase was investigated with the S101A variant of choline oxidase. Anaerobic enzyme reduction in a stopped-flow spectrophotometer was biphasic using either choline or 1,2-[ 2 H 4 ]-choline as a substrate. The limiting rate constants k lim1 and k lim2 at saturating substrate were well separated (k lim1 /k lim2 >9), and were >15-fold slower than for wild-type choline oxidase. Solvent deuterium kinetic isotope effects (KIEs) ~4 established that k lim1 probes the proton transfer from the substrate hydroxyl to a catalytic base. Primary substrate deuterium KIEs ≥7 demonstrated that k lim2 reports on hydride transfer from the choline alkoxide to the flavin. Between 15°C and 39°C the k lim1 and k lim2 values increased with increasing temperature, allowing for the analyses of H + and H - transfers using Eyring and Arrhenius formalisms. Temperature-independent KIE on the k lim1 value ( H2O k lim1 / D2O k lim1 ) suggests that proton transfer occurs within a highly reorganized tunneling-ready-state with a narrow distribution of donor-acceptor distances. Eyring analysis of the k lim2 value gave lines with the slope (choline) >slope (D-choline) , suggesting kinetic complexity. Spectral evidence for the transient occurrence of a covalent flavin-substrate adduct during the first phase of the anaerobic reaction of S101A CHO with choline is presented, supporting the notion that an important role of amino acid residues in the active site of flavin-dependent enzymes is to eliminate alternative reactions of the versatile enzyme-bound flavin for the reaction that needs to be catalyzed. Copyright © 2017 Elsevier B.V. All rights reserved.
Balaraman, Sridevi; Idrus, Nirelia M.; Miranda, Rajesh C.; Thomas, Jennifer D.
2017-01-01
Prenatal alcohol exposure can result in a range of physical, neuropathological, and behavioral alterations, collectively termed fetal alcohol spectrum disorders (FASD). We have shown that supplementation with the nutrient choline reduces the severity of developmental alcohol-associated deficits in hippocampal-dependent behaviors and normalizes some aspects of hippocampal cholinergic development and DNA methylation patterns. Alcohol’s developmental effects may also be mediated, in part, by altering microRNAs (miRNAs) that serve as negative regulators of gene translation. To determine whether choline supplementation alters ethanol’s long-lasting effects on miRNAs, Sprague-Dawley rats were exposed to 5.25 g/kg/day ethanol from postnatal days (PD) 4–9 via intubation; controls received sham intubations. Subjects were treated with choline chloride (100 mg/kg/day) or saline vehicle subcutaneously (s.c.) from PD 4–21. On PD 22, subjects were sacrificed, and RNA isolated from the hippocampus. MiRNA expression was assessed with TaqMan Human MicroRNA Panel Low-Density Arrays. Ethanol significantly increased miRNA expression variance, an effect that was normalized with choline supplementation. Cluster analysis of stably expressed miRNAs that exceeded an ANOVA p<0.05 criterion indicated that for both male and female offspring, control and ethanol-exposed groups were most dissimilar from each other, with choline-supplemented groups in between. MiRNAs that expressed an average 2-fold change due to ethanol exposure were further analyzed to identify which ethanol-sensitive miRNAs were protected by choline supplementation. We found that at a false discovery rate (FDR)-adjusted criterion of p<0.05, miR-200c was induced by ethanol exposure and that choline prevented this effect. Collectively, our data show that choline supplementation can normalize disturbances in miRNA expression following developmental alcohol exposure and can protect specific miRNAs from induction by ethanol. These findings have important implications for the mechanisms by which choline may serve as a potential treatment for FASD. PMID:28433422
Zhang, Limin; Krishnan, Prasad; Ehresman, David J; Smith, Philip B; Dutta, Mainak; Bagley, Bradford D; Chang, Shu-Ching; Butenhoff, John L; Patterson, Andrew D; Peters, Jeffrey M
2016-09-01
The mechanisms underlying perfluorooctane sulfonate (PFOS)-induced steatosis remain unclear. The hypothesis that PFOS causes steatosis and other hepatic effects by forming an ion pair with choline was examined. C57BL/6 mice were fed either a control diet or a marginal methionine/choline-deficient (mMCD) diet, with and without 0.003, 0.006, or 0.012% potassium PFOS. Dietary PFOS caused a dose-dependent decrease in body weight, and increases in the relative liver weight, hepatic triglyceride concentration and serum markers of liver toxicity and oxidative stress. Some of these effects were exacerbated in mice fed the mMCD diet supplemented with 0.012% PFOS compared with those fed the control diet supplemented with 0.012% PFOS. Surprisingly, serum PFOS concentrations were higher while liver PFOS concentrations were lower in mMCD-fed mice compared with corresponding control-fed mice. To determine if supplemental dietary choline could prevent PFOS-induced hepatic effects, C57BL/6 mice were fed a control diet, or a choline supplemental diet (1.2%) with or without 0.003% PFOS. Lipidomic analysis demonstrated that PFOS caused alterations in hepatic lipid metabolism in the PFOS-fed mice compared with controls, and supplemental dietary choline prevented these PFOS-induced changes. Interestingly, dietary choline supplementation also prevented PFOS-induced oxidative damage. These studies are the first to suggest that PFOS may cause hepatic steatosis and oxidative stress by effectively reducing the choline required for hepatic VLDL production and export by forming an ion pair with choline, and suggest that choline supplementation may prevent and/or treat PFOS-induced hepatic steatosis and oxidative stress. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
García, J R; Cozar, M; Soler, M; Bassa, P; Riera, E; Ferrer, J
2016-01-01
To assess the prognostic value of the therapeutic response by (11)C-choline PET/CT in prostate cancer patients with biochemical recurrence in which (11)C-choline PET/CT indicated radio-guided radiotherapy. The study included 37 patients initially treated with prostatectomy, who were treated due to biochemical recurrence. (11)C-choline PE/CT detected infra-diaphragmatic lymph-node involvement. All were selected for intensity modulated radiation therapy, escalating the dose according to the PET findings. One year after treatment patients underwent PSA and (11)C-choline PET/CT categorizing response (complete/partial/progression). Clinical/biochemical/image monitoring was performed until appearance of second relapse or 36 months in disease-free patients. (11)C-choline PET/CT could detect lymph nodes in all 37 patients. They were 18 (48.6%) of more than a centimetre in size and 19 (51.3%) with no pathological CT morphology: 9 (24.3%) with positive lymph nodes of around one centimetre and 10 (27.0%) only less than a centimetre in size. The response by (11)C-choline PET/CT was categorised one year after radiotherapy: 16 patients (43.2%) complete response; 15 (40.5%) partial response, and 6 (16.2%) progression. The response was concordant between the PSA result and (11)C-choline PET/CT in 32 patients (86.5%), and discordant in five (13.5%). New recurrence was detected in 12 patients (80%) with partial response, and 5 (31.2%) with complete response. The mean time to recurrence was 9 months after partial response, and 18 months after complete response (significant difference, p<.0001). (11)C-choline PET/CT allows the selection of patients with recurrent prostate cancer candidates for radiotherapy and to plan the technique. The evaluation of therapeutic response by (11)C-choline PET/CT has prognostic significance. Copyright © 2015 Elsevier España, S.L.U. and SEMNIM. All rights reserved.
Bluemel, Christina; Krebs, Markus; Polat, Bülent; Linke, Fränze; Eiber, Matthias; Samnick, Samuel; Lapa, Constantin; Lassmann, Michael; Riedmiller, Hubertus; Czernin, Johannes; Rubello, Domenico; Bley, Thorsten; Kropf, Saskia; Wester, Hans-Juergen; Buck, Andreas K.; Herrmann, Ken
2016-01-01
Purpose Investigating the value of 68Ga-PSMA-PET/CT in biochemically recurring prostate cancer patients with negative 18F-choline-PET/CT. Patients and Methods One hundred thirty-nine consecutive patients with biochemical recurrence after curative (surgery and/or radiotherapy) therapy were offered participation in this sequential clinical imaging approach. Patients first underwent an 18F-choline-PET/CT. If negative, an additional 68Ga-PSMA-PET/CTwas offered. One hundred twenty-five of 139 eligible patients were included in the study; 32 patients underwent additional 68Ga-PSMA-PET/CT. Patients with equivocal findings (n = 5) on 18F-choline-PET/CT and those who declined the additional 68Ga-PSMA-PET/CT (n = 9) were excluded. Images were analyzed visually for the presence of suspicious lesions. Findings on PET/CT were correlated with PSA level, PSA doubling time (dt), and PSA velocity (vel). Results The overall detection rates were 85.6% (107/125) for the sequential imaging approach and 74.4% (93/125) for 18F-choline-PET/CT alone. 68Ga-PSMA-PET/CT detected sites of recurrence in 43.8% (14/32) of the choline-negative patients. Detection rates of the sequential imaging approach and 18F-choline-PET/CT alone increased with higher serum PSA levels and PSA vel. Subgroup analysis of 68Ga-PSMA-PET/CT in 18F-choline negative patients revealed detection rates of 28.6%, 45.5%, and 71.4% for PSA levels of 0.2 or greater to less than 1 ng/mL, 1 to 2 ng/mL, and greater than 2 ng/mL, respectively. Conclusions The sequential imaging approach designed to limit 68Ga-PSMA imaging to patients with negative choline scans resulted in high detection rates. 68Ga-PSMA-PET/CT identified sites of recurrent disease in 43.8% of the patients with negative 18F-choline PET/CT scans. PMID:26975008
Common Genetic Variants Alter Metabolism and Influence Dietary Choline Requirements.
Ganz, Ariel B; Klatt, Kevin C; Caudill, Marie A
2017-08-04
Nutrient needs, including those of the essential nutrient choline, are a population wide distribution. Adequate Intake (AI) recommendations for dietary choline (put forth by the National Academies of Medicine to aid individuals and groups in dietary assessment and planning) are grouped to account for the recognized unique needs associated with age, biological sex, and reproductive status (i.e., pregnancy or lactation). Established and emerging evidence supports the notion that common genetic variants are additional factors that substantially influence nutrient requirements. This review summarizes the genetic factors that influence choline requirements and metabolism in conditions of nutrient deprivation, as well as conditions of nutrient adequacy, across biological sexes and reproductive states. Overall, consistent and strong associative evidence demonstrates that common genetic variants in choline and folate pathway enzymes impact the metabolic handling of choline and the risk of nutrient inadequacy across varied dietary contexts. The studies characterized in this review also highlight the substantial promise of incorporating common genetic variants into choline intake recommendations to more precisely target the unique nutrient needs of these subgroups within the broader population. Additional studies are warranted to facilitate the translation of this evidence to nutrigenetics-based dietary approaches.
Common Genetic Variants Alter Metabolism and Influence Dietary Choline Requirements
Ganz, Ariel B.; Klatt, Kevin C.; Caudill, Marie A.
2017-01-01
Nutrient needs, including those of the essential nutrient choline, are a population wide distribution. Adequate Intake (AI) recommendations for dietary choline (put forth by the National Academies of Medicine to aid individuals and groups in dietary assessment and planning) are grouped to account for the recognized unique needs associated with age, biological sex, and reproductive status (i.e., pregnancy or lactation). Established and emerging evidence supports the notion that common genetic variants are additional factors that substantially influence nutrient requirements. This review summarizes the genetic factors that influence choline requirements and metabolism in conditions of nutrient deprivation, as well as conditions of nutrient adequacy, across biological sexes and reproductive states. Overall, consistent and strong associative evidence demonstrates that common genetic variants in choline and folate pathway enzymes impact the metabolic handling of choline and the risk of nutrient inadequacy across varied dietary contexts. The studies characterized in this review also highlight the substantial promise of incorporating common genetic variants into choline intake recommendations to more precisely target the unique nutrient needs of these subgroups within the broader population. Additional studies are warranted to facilitate the translation of this evidence to nutrigenetics-based dietary approaches. PMID:28777294
Role of teichoic acid choline moieties in the virulence of Streptococcus pneumoniae.
Gehre, Florian; Spisek, Radek; Kharat, Arun S; Matthews, Phillip; Kukreja, Anjli; Anthony, Robert M; Dhodapkar, Madhav V; Vollmer, Waldemar; Tomasz, Alexander
2009-07-01
In recent reports it was shown that genetically modified choline-free strains of Streptococcus pneumoniae (D39Cho(-)licA64 and D39ChiplicB31) expressing the type II capsular polysaccharide were virtually avirulent in the murine sepsis model, in sharp contrast to the isogenic and highly virulent strains D39Cho(-) and D39Chip, which have retained the choline residues at their surface. We now demonstrate that this choline-associated virulence is independent of Toll-like receptor 2 recognition. Also, despite the lack of virulence, choline-free strains of S. pneumoniae were able to activate splenic dendritic cells, induce secretion of proinflammatory cytokines, and produce specific protective immunity against subsequent challenge. However, after this transient engagement of the immune system the choline-free bacteria were rapidly cleared from the blood, while the isogenic virulent strain D39Cho(-) continued to grow, accompanied by prolonged expression of cytokines, eventually killing the experimental animals. The critical contribution of choline residues to the virulence potential of pneumococci appears to be the role that these amino alcohol residues play in a pneumococcal immune evasion strategy, the mechanism of which is unknown at the present time.
Transport of choline by Madin-Darby canine kidney cells.
Zlatkine, P; Moll, G; Blais, A; Loiseau, A; Le Grimellec, C
1993-12-12
Choline is an essential precursor for the synthesis of phosphatidylcholine, the most abundant phospholipid classes in renal cells, as well as for the synthesis of the osmolyte glycerophosphorylcholine. The characteristics of choline uptake in the renal epithelial cell line MDCK were investigated. In the range of physiological concentrations, choline entered MDCK cells, grown as a monolayer on solid support, via a specific sodium-independent transport system (apparent Km = 43 microM, apparent Vmax = 284 pmol/mg protein per 5 min). Cell ATP depletion, addition of KCl to the medium to reduce the cell membrane potential, and hemicholinium-3 (HC-3) inhibited choline uptake. Specific binding of [3H]HC-3 was detected on the apical membrane of cells grown on plastic dishes, whereas it occurred only on the basolateral domain of cells grown on permeant support. When growing cells on filter, choline uptake from the basolateral side was 10-times the apical uptake. This suggests that the choline carrier present at the apical domain of cells grown on solid support is either inactivated or no longer targeted to the apical but to the basolateral membrane of MDCK cells grown on filter.
Glycine Betaine: Reserve Form of Choline in Penicillium fellutanum in Low-Sulfate Medium
Park, Yong-Il; Buszko, Marian L.; Gander, John E.
1999-01-01
In spite of choline’s importance in fungal metabolism, its sources in cytoplasm have not been fully established. 13C nuclear magnetic resonance analysis of mycelial extracts from day-5 Penicillium fellutanum cultures showed that, as well as choline-O-sulfate, intracellular glycine betaine is another reserve form of choline, depending on the availability of sulfate in the culture medium. These observations are discussed relative to the multiple roles of choline and its precursors in P. fellutanum. PMID:10049905
2002-01-01
cuvette containing a stir bar and the biosensor. RESULTS ACh ChE Acetate + Choline Betaine aldehyde+H2O2 Choline oxidase O2+ Choline oxidase...O2+ H2O2 Betaine + 2H2O2 carbon electrode electrochemical detection luminol fluorescent adducts visible adducts chemiluminescence fluorescence (CPM...soluble BChE and biosensor BChE at different tem- peratures relative to 30oC. Figure 7. Top: Immobilized choline oxidase and soluble form of the
Guertin, Kristin A.; Li, Xinmin S.; Graubard, Barry I.; Albanes, Demetrius; Weinstein, Stephanie J.; Goedert, James J.; Wang, Zeneng; Hazen, Stanley L.; Sinha, Rashmi
2017-01-01
Background TMAO, a choline-derived metabolite produced by gut microbiota, and its biomarker precursors have not been adequately evaluated in relation to colorectal cancer risk. Methods We investigated the relationship between serum concentrations of TMAO and its biomarker precursors (choline, carnitine and betaine) and incident colorectal cancer risk in a nested case-control study of male smokers in the Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) Study. We measured biomarker concentrations in baseline fasting serum samples from 644 incident colorectal cancer cases and 644 controls using LC-MS/MS. Logistic regression models estimated the odds ratio (OR) and 95% confidence interval (CI) for colorectal cancer by quartile (Q) of serum TMAO, choline, carnitine and betaine concentrations. Results Men with higher serum choline at ATBC baseline had approximately 3-fold greater risk of developing colorectal cancer over the ensuing (median ± IQR) 14 ±10 years (in fully adjusted models, Q4 vs. Q1 OR, 3.22; 95% CI, 2.24–4.61; P trend<0.0001). The prognostic value of serum choline for prediction of incident colorectal cancer development was similarly robust for proximal, distal and rectal colon cancers (all P<0.0001). The association between serum TMAO, carnitine, or betaine and colorectal cancer risk was not statistically significant (P=0.25, P=0.71 and P=0.61, respectively). Conclusions Higher serum choline concentration (but not TMAO, carnitine, or betaine) was associated with increased risk of colorectal cancer. Impact Serum choline levels showed strong prognostic value for prediction of incident colorectal cancer risks across all anatomical subsites, suggesting a role of altered choline metabolism in colorectal cancer pathogenesis. PMID:28077427
Choline intake in a large cohort of patients with nonalcoholic fatty liver disease123
Guerrerio, Anthony L; Colvin, Ryan M; Schwartz, Amy K; Molleston, Jean P; Murray, Karen F; Diehl, AnnaMae; Mohan, Parvathi; Schwimmer, Jeffrey B; Lavine, Joel E; Torbenson, Michael S
2012-01-01
Background: There is significant histologic and biochemical overlap between nonalcoholic fatty liver disease (NAFLD) and steatohepatitis associated with choline deficiency. Objective: We sought to determine whether subjects with biopsy-proven NAFLD and evidence of an inadequate intake of choline had more severe histologic features. Design: We performed a cross-sectional analysis of 664 subjects enrolled in the multicenter, prospective Nonalcoholic Steatohepatitis Clinical Research Network (NASH CRN) with baseline data on diet composition (from a recall-based food-frequency questionnaire) within 6 mo of a liver biopsy. Food questionnaires were analyzed with proprietary software to estimate daily intakes of choline. Liver biopsies were centrally read, and consensus was scored with the NASH CRN–developed scoring system. Because choline needs vary by age, sex, and menopausal status, participants were segregated into corresponding categories (children 9–13 y old, males ≥14 y old, premenopausal women ≥19 y old, and postmenopausal women) on the basis of the Institute of Medicine's definition of adequate intake (AI) for choline. Deficient intake was defined as <50% AI. Results: Postmenopausal women with deficient choline intake had worse fibrosis (P = 0.002) once factors associated with NAFLD (age, race-ethnicity, obesity, elevated triglycerides, diabetes, alcohol use, and steroid use) were considered in multiple ordinal logistic regression models. Choline intake was not identified as a contributor to disease severity in children, men, or premenopausal women. Conclusion: Decreased choline intake is significantly associated with increased fibrosis in postmenopausal women with NAFLD. The Pioglitazone vs Vitamin E vs Placebo for Treatment of Non-Diabetic Patients With Nonalcoholic Steatohepatitis trial was registered at clinicaltrials.gov as NCT00063622, and the Treatment of Nonalcoholic Fatty Liver Disease in Children trial was registered at clinicaltrials.gov as NCT00063635. PMID:22338037
Young, Robin K; Villalobos, Alice R A
2014-03-01
The choroid plexus epithelium forms the blood-cerebrospinal fluid barrier and accumulates essential minerals and heavy metals. Choroid plexus is cited as being a "sink" for heavy metals and excess minerals, serving to minimize accumulation of these potentially toxic agents in the brain. An understanding of how low doses of contaminant metals might alter transport of other solutes in the choroid plexus is limited. Using primary cultures of epithelial cells isolated from neonatal rat choroid plexus, our objective was to characterize modulation of apical uptake of the model organic cation choline elicited by low concentrations of the contaminant metal cadmium (CdCl₂). At 50-1,000 nM, cadmium did not directly decrease or increase 30-min apical uptake of 10 μM [(3)H]choline. However, extended exposure to 250-500 nM cadmium increased [(3)H]choline uptake by as much as 75% without marked cytotoxicity. In addition, cadmium induced heat shock protein 70 and heme oxygenase-1 protein expression and markedly induced metallothionein gene expression. The antioxidant N-acetylcysteine attenuated stimulation of choline uptake and induction of stress proteins. Conversely, an inhibitor of glutathione synthesis l-buthionine-sulfoximine (BSO) enhanced stimulation of choline uptake and induction of stress proteins. Cadmium also activated ERK1/2 MAP kinase. The MEK1 inhibitor PD98059 diminished ERK1/2 activation and attenuated stimulation of choline uptake. Furthermore, inhibition of ERK1/2 activation abated stimulation of choline uptake in cells exposed to cadmium with BSO. These data indicate that in the choroid plexus, exposure to low concentrations of cadmium may induce oxidative stress and consequently stimulate apical choline transport through activation of ERK1/2 MAP kinase.
Usual Choline Intakes Are Associated with Egg and Protein Food Consumption in the United States
Wallace, Taylor C.; Fulgoni, Victor L.
2017-01-01
Choline is an essential nutrient with critical roles in several biological processes including neuronal development, cell signaling, nerve impulse transmission, and lipid transport and metabolism. The National Cancer Institute method was used to assess usual intakes of choline from foods according to data for participants enrolled in the National Health and Nutrition Examination Survey 2009–2014 datasets and pregnant women in the 2005–2014 datasets. Suboptimal intakes of choline are present across many gender and life-stage subpopulations, as well as pregnant women in the U.S. Only 8.03 ± 0.56% of adults and 8.51 ± 2.89% pregnant women meet the AI for choline. Children 2–3 years were the most likely to meet their gender and life-stage specific AI, followed by children 4–8 years. Adults 19+ years who consume eggs were more likely to meet their gender and life-stage AI as compared to non-consumers (57.3 ± 1.45% and 2.43 ± 0.28%). Consumers of eggs had almost double the usual intake of choline as compared to non-consumers (525 ± 5.17 mg/d and 294 ± 1.98; p < 0.0001). Protein food (meat, poultry and seafood) consumption also increased usual choline intakes compared to non-consumers (345 ± 2.21 mg/day and 235 ± 8.81; p < 0.0001) to a lesser degree, but did not result in substantial increases in the percent of individuals meeting the AI. No subpopulation exceeded the UL for choline. This research illustrates that it is extremely difficult to achieve the AI for choline without consuming eggs or taking a dietary supplement. PMID:28783055
Kelley, Christy M; Powers, Brian E; Velazquez, Ramon; Ash, Jessica A; Ginsberg, Stephen D; Strupp, Barbara J; Mufson, Elliott J
2014-04-15
Down syndrome (DS), trisomy 21, is a multifaceted condition marked by intellectual disability and early presentation of Alzheimer's disease (AD) neuropathological lesions including degeneration of the basal forebrain cholinergic neuron (BFCN) system. Although DS is diagnosable during gestation, there is no treatment option for expectant mothers or DS individuals. Using the Ts65Dn mouse model of DS that displays age-related degeneration of the BFCN system, we investigated the effects of maternal choline supplementation on the BFCN system in adult Ts65Dn mice and disomic (2N) littermates at 4.3-7.5 months of age. Ts65Dn dams were maintained on a choline-supplemented diet (5.1 g/kg choline chloride) or a control, unsupplemented diet with adequate amounts of choline (1 g/kg choline chloride) from conception until weaning of offspring; post weaning, offspring were fed the control diet. Mice were transcardially perfused with paraformaldehyde, and brains were sectioned and immunolabeled for choline acetyltransferase (ChAT) or p75-neurotrophin receptor (p75(NTR) ). BFCN number and size, the area of the regions, and the intensity of hippocampal labeling were determined. Ts65Dn-unsupplemented mice displayed region- and immunolabel-dependent increased BFCN number, larger areas, smaller BFCNs, and overall increased hippocampal ChAT intensity compared with 2N unsupplemented mice. These effects were partially normalized by maternal choline supplementation. Taken together, the results suggest a developmental imbalance in the Ts65Dn BFCN system. Early maternal-diet choline supplementation attenuates some of the genotype-dependent alterations in the BFCN system, suggesting this naturally occurring nutrient as a treatment option for pregnant mothers with knowledge that their offspring is trisomy 21. Copyright © 2013 Wiley Periodicals, Inc.
Thomas, Jennifer D; Abou, Elizabeth J; Dominguez, Hector D
2009-01-01
Prenatal alcohol exposure can lead to a range of physical, neurological, and behavioral alterations referred to as fetal alcohol spectrum disorders (FASD). Variability in outcome observed among children with FASD is likely related to various pre- and postnatal factors, including nutritional variables. Choline is an essential nutrient that influences brain and behavioral development. Recent animal research indicates that prenatal choline supplementation leads to long-lasting cognitive enhancement, as well as changes in brain morphology, electrophysiology and neurochemistry. The present study examined whether choline supplementation during ethanol exposure effectively reduces fetal alcohol effects. Pregnant dams were exposed to 6.0g/kg/day ethanol via intubation from gestational days (GD) 5-20; pair-fed and lab chow controls were included. During treatment, subjects from each group received choline chloride (250mg/kg/day) or vehicle. Physical development and behavioral development (righting reflex, geotactic reflex, cliff avoidance, reflex suspension and hindlimb coordination) were examined. Subjects prenatally exposed to alcohol exhibited reduced birth weight and brain weight, delays in eye opening and incisor emergence, and alterations in the development of all behaviors. Choline supplementation significantly attenuated ethanol's effects on birth and brain weight, incisor emergence, and most behavioral measures. In fact, behavioral performance of ethanol-exposed subjects treated with choline did not differ from that of controls. Importantly, choline supplementation did not influence peak blood alcohol level or metabolism, indicating that choline's effects were not due to differential alcohol exposure. These data indicate early dietary supplements may reduce the severity of some fetal alcohol effects, findings with important implications for children of women who drink alcohol during pregnancy.
Thomas, Jennifer D; Garrison, Megan; O'Neill, Teresa M
2004-01-01
Children exposed to alcohol prenatally suffer from a variety of behavioral alterations, including hyperactivity and learning deficits. Given that women continue to drink alcohol during pregnancy, it is critical that effective interventions and treatments be identified. Previously, we reported that early postnatal choline supplementation can reduce the severity of learning deficits in rats exposed to alcohol prenatally. The present study examined whether choline supplementation can reduce the severity of behavioral alterations associated with alcohol exposure during the third trimester equivalent brain growth spurt. Male neonatal rats were assigned to one of three treatment groups. One group was exposed to alcohol (6.6 g/kg/day) from postnatal days (PD) 4-9 via an artificial rearing procedure. Artificially reared and normally reared control groups were included. One half of subjects from each treatment received daily subcutaneous injections of a choline chloride solution from PD 4-30, whereas the other half received saline vehicle injections. On PD 31-34, after choline treatment was complete, activity level was monitored and, on PD 40-42, subjects were tested on a serial spatial discrimination reversal learning task. Subjects exposed to alcohol were significantly hyperactive compared to controls. The severity of ethanol-induced hyperactivity was attenuated with choline treatment. In addition, subjects exposed to ethanol during the neonatal period committed a significantly greater number of perseverative-type errors on the reversal learning task compared to controls. Exposure to choline significantly reduced the number of ethanol-related errors. Importantly, these behavioral changes were not due to the acute effects of choline, but were related to long-lasting organizational effects of early choline supplementation. These data suggest that early dietary interventions may reduce the severity of fetal alcohol effects.
Usual Choline Intakes Are Associated with Egg and Protein Food Consumption in the United States.
Wallace, Taylor C; Fulgoni, Victor L
2017-08-05
Choline is an essential nutrient with critical roles in several biological processes including neuronal development, cell signaling, nerve impulse transmission, and lipid transport and metabolism. The National Cancer Institute method was used to assess usual intakes of choline from foods according to data for participants enrolled in the National Health and Nutrition Examination Survey 2009-2014 datasets and pregnant women in the 2005-2014 datasets. Suboptimal intakes of choline are present across many gender and life-stage subpopulations, as well as pregnant women in the U.S. Only 8.03 ± 0.56% of adults and 8.51 ± 2.89% pregnant women meet the AI for choline. Children 2-3 years were the most likely to meet their gender and life-stage specific AI, followed by children 4-8 years. Adults 19+ years who consume eggs were more likely to meet their gender and life-stage AI as compared to non-consumers (57.3 ± 1.45% and 2.43 ± 0.28%). Consumers of eggs had almost double the usual intake of choline as compared to non-consumers (525 ± 5.17 mg/d and 294 ± 1.98; p < 0.0001). Protein food (meat, poultry and seafood) consumption also increased usual choline intakes compared to non-consumers (345 ± 2.21 mg/day and 235 ± 8.81; p < 0.0001) to a lesser degree, but did not result in substantial increases in the percent of individuals meeting the AI. No subpopulation exceeded the UL for choline. This research illustrates that it is extremely difficult to achieve the AI for choline without consuming eggs or taking a dietary supplement.
Young, Robin K.
2013-01-01
The choroid plexus epithelium forms the blood-cerebrospinal fluid barrier and accumulates essential minerals and heavy metals. Choroid plexus is cited as being a “sink” for heavy metals and excess minerals, serving to minimize accumulation of these potentially toxic agents in the brain. An understanding of how low doses of contaminant metals might alter transport of other solutes in the choroid plexus is limited. Using primary cultures of epithelial cells isolated from neonatal rat choroid plexus, our objective was to characterize modulation of apical uptake of the model organic cation choline elicited by low concentrations of the contaminant metal cadmium (CdCl2). At 50–1,000 nM, cadmium did not directly decrease or increase 30-min apical uptake of 10 μM [3H]choline. However, extended exposure to 250–500 nM cadmium increased [3H]choline uptake by as much as 75% without marked cytotoxicity. In addition, cadmium induced heat shock protein 70 and heme oxygenase-1 protein expression and markedly induced metallothionein gene expression. The antioxidant N-acetylcysteine attenuated stimulation of choline uptake and induction of stress proteins. Conversely, an inhibitor of glutathione synthesis l-buthionine-sulfoximine (BSO) enhanced stimulation of choline uptake and induction of stress proteins. Cadmium also activated ERK1/2 MAP kinase. The MEK1 inhibitor PD98059 diminished ERK1/2 activation and attenuated stimulation of choline uptake. Furthermore, inhibition of ERK1/2 activation abated stimulation of choline uptake in cells exposed to cadmium with BSO. These data indicate that in the choroid plexus, exposure to low concentrations of cadmium may induce oxidative stress and consequently stimulate apical choline transport through activation of ERK1/2 MAP kinase. PMID:24401988
Guertin, Kristin A; Li, Xinmin S; Graubard, Barry I; Albanes, Demetrius; Weinstein, Stephanie J; Goedert, James J; Wang, Zeneng; Hazen, Stanley L; Sinha, Rashmi
2017-06-01
Background: Trimethylamine N-oxide (TMAO), a choline-derived metabolite produced by gut microbiota, and its biomarker precursors have not been adequately evaluated in relation to colorectal cancer risk. Methods: We investigated the relationship between serum concentrations of TMAO and its biomarker precursors (choline, carnitine, and betaine) and incident colorectal cancer risk in a nested case-control study of male smokers in the Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) Study. We measured biomarker concentrations in baseline fasting serum samples from 644 incident colorectal cancer cases and 644 controls using LC/MS-MS. Logistic regression models estimated the ORs and 95% confidence interval (CI) for colorectal cancer by quartile (Q) of serum TMAO, choline, carnitine, and betaine concentrations. Results: Men with higher serum choline at ATBC baseline had approximately 3-fold greater risk of developing colorectal cancer over the ensuing (median ± IQR) 14 ± 10 years (in fully adjusted models, Q4 vs. Q1, OR, 3.22; 95% CI, 2.24-4.61; P trend < 0.0001). The prognostic value of serum choline for prediction of incident colorectal cancer was similarly robust for proximal, distal, and rectal colon cancers (all P < 0.0001). The association between serum TMAO, carnitine, or betaine and colorectal cancer risk was not statistically significant ( P = 0.25, 0.71, and 0.61, respectively). Conclusions: Higher serum choline concentration (but not TMAO, carnitine, or betaine) was associated with increased risk of colorectal cancer. Impact: Serum choline levels showed strong prognostic value for prediction of incident colorectal cancer risk across all anatomical subsites, suggesting a role of altered choline metabolism in colorectal cancer pathogenesis. Cancer Epidemiol Biomarkers Prev; 26(6); 945-52. ©2017 AACR . ©2017 American Association for Cancer Research.
van Lee, Linde; Quah, Phaik Ling; Saw, Seang Mei; Yap, Fabian K P; Godfrey, Keith M; Chong, Yap Seng; Meaney, Michael J; Chen, Helen; Chong, Mary Foong-Fong
2017-10-01
Choline and betaine status have previously been associated with symptoms of depression. However, the relation of maternal plasma choline and betaine concentrations in pregnancy to peripartum maternal mood is unknown. Maternal plasma choline and betaine concentrations (μmol/L) were measured at 26-28 weeks gestation in the Growing Up in Singapore Toward healthy Outcomes (GUSTO) mother-offspring cohort. Participants completed the State-Trait Anxiety Inventory (STAI) and Edinburgh Postnatal Depression Scale (EDPS) at 26-28 weeks gestation (n = 949) and at 3 months postnatal (n = 689): higher scores are indicative of more symptoms of anxiety and depression. Multivariate linear regression models were used to estimate the association of choline and betaine with ante- and postnatal mental well-being adjusting for covariates. Mean (SD) antenatal plasma choline and betaine concentrations were 9.2 μmol/L (1.6) and 13.1 μmol/L (2.7), respectively. Plasma choline concentrations were positively associated with antenatal depressive (β = .24 EPDS score [95% CI: 0.05-0.43] per μmol/L] and anxiety symptoms (β = .46 STAI-state score [95% CI: 0.03-0.88] per μmol/L) adjusting for covariates. Plasma betaine concentrations were not associated with antenatal depression or anxiety symptoms. No associations were observed between pregnancy choline or betaine and postnatal mental well-being. This study suggests that higher maternal plasma choline status during pregnancy is associated with more symptoms of antenatal depression and anxiety, whereas plasma betaine concentrations showed no associations. No associations were observed for postnatal mental well-being. Prospective studies are required to replicate these findings and further examine the direction of causality and possible biological mechanisms. © 2017 Wiley Periodicals, Inc.
Heffernan, Corey; Jain, Mohit R.; Liu, Tong; Kim, Hyosung; Barretto, Kevin; Li, Hong; Maurel, Patrice
2017-01-01
Nectin-like 4 (NECL4, CADM4) is a Schwann cell-specific cell adhesion molecule that promotes axo-glial interactions. In vitro and in vivo studies have shown that NECL4 is necessary for proper peripheral nerve myelination. However, the molecular mechanisms that are regulated by NECL4 and affect peripheral myelination currently remain unclear. We used an in vitro approach to begin identifying some of the mechanisms that could explain NECL4 function. Using mass spectrometry and Western blotting techniques, we have identified choline transporter-like 1 (CTL1) as a putative complexing partner with NECL4. We show that intracellular choline levels are significantly elevated in NECL4-deficient Schwann cells. The analysis of extracellular d9-choline uptake revealed a deficit in the amount of d9-choline found inside NECL4-deficient Schwann cells, suggestive of either reduced transport capabilities or increased metabolization of transported choline. An extensive lipidomic screen of choline derivatives showed that total phosphatidylcholine and phosphatidylinositol (but not diacylglycerol or sphingomyelin) are significantly elevated in NECL4-deficient Schwann cells, particularly specific subspecies of phosphatidylcholine carrying very long polyunsaturated fatty acid chains. Finally, CTL1-deficient Schwann cells are significantly impaired in their ability to myelinate neurites in vitro. To our knowledge, this is the first demonstration of a bona fide cell adhesion molecule, NECL4, regulating choline homeostasis and lipid biogenesis. Phosphatidylcholines are major myelin phospholipids, and several phosphorylated phosphatidylinositol species are known to regulate key aspects of peripheral myelination. Furthermore, the biophysical properties imparted to plasma membranes are regulated by fatty acid chain profiles. Therefore, it will be important to translate these in vitro observations to in vivo studies of NECL4 and CTL1-deficient mice. PMID:28119456
González, Ana; Llull, Daniel; Morales, María; García, Pedro; García, Ernesto
2008-06-01
The nutritional requirement that Streptococcus pneumoniae has for the aminoalcohol choline as a component of teichoic and lipoteichoic acids appears to be exclusive to this prokaryote. A mutation in the tacF gene, which putatively encodes an integral membrane protein (possibly, a teichoic acid repeat unit transporter), has been recently identified as responsible for generating a choline-independent phenotype of S. pneumoniae (M. Damjanovic, A. S. Kharat, A. Eberhardt, A. Tomasz, and W. Vollmer, J. Bacteriol. 189:7105-7111, 2007). We now report that Streptococcus mitis can grow in choline-free medium, as previously illustrated for Streptococcus oralis. While we confirmed the finding by Damjanovic et al. of the involvement of TacF in the choline dependence of the pneumococcus, the genetic transformation of S. pneumoniae R6 by using S. mitis SK598 DNA and several PCR-amplified tacF fragments suggested that a minimum of two mutations were required to confer improved fitness to choline-independent S. pneumoniae mutants. This conclusion is supported by sequencing results also reported here that indicate that a spontaneous mutant of S. pneumoniae (strain JY2190) able to proliferate in the absence of choline (or analogs) is also a double mutant for the tacF gene. Microscopic observations and competition experiments during the cocultivation of choline-independent strains confirmed that a minimum of two amino acid changes were required to confer improved fitness to choline-independent pneumococcal strains when growing in medium lacking any aminoalcohol. Our results suggest complex relationships among the different regions of the TacF teichoic acid repeat unit transporter.
Bagley, Bradford D; Chang, Shu-Ching; Ehresman, David J; Eveland, Alan; Zitzow, Jeremiah D; Parker, George A; Peters, Jeffrey M; Wallace, Kendall B; Butenhoff, John L
2017-12-01
Perfluorooctane sulfonate (PFOS) is an environmentally persistent chemical. Dietary 100 ppm PFOS fed to male mice and rats for 4 weeks caused hepatic steatosis through an unknown mechanism. Choline deficient diets can cause hepatic steatosis. A hepatic choline:PFOS ion complex was hypothesized to cause this effect in mice. This study tested whether dietary choline supplementation attenuates PFOS-induced hepatic steatosis in rats. Sprague Dawley rats (12/sex/group) were fed control, choline supplemented (CS), 100 ppm PFOS, or 100 ppm PFOS + CS diets for 3 weeks. Male rats fed both PFOS-containing diets had decreased serum cholesterol and triglycerides (TGs) on days 9, 16, and/or 23 and increased hepatic free fatty acids and TG (ie, steatosis). Female rats fed both PFOS diets had decreased serum cholesterol on days 9 and 16 and decreased hepatic free fatty acid and TG at termination (ie, no steatosis). Liver PFOS concentrations were similar for both sexes. Liver choline concentrations were increased in male rats fed PFOS (±CS), but the increase was lower in the PFOS + CS group. Female liver choline concentrations were not altered by any diet. These findings demonstrate a clear sex-related difference in PFOS-induced hepatic steatosis in the rat. Additional evaluated mechanisms (ie, nuclear receptor activation, mRNA upregulation, and choline kinase activity inhibition) did not appear to be involved in the hepatic steatosis. Dietary PFOS (100 ppm) induced hepatic steatosis in male, but not female, rats that was not attenuated by choline supplementation. The mechanism of lipid accumulation and the sex-related differences warrant further investigation. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Langley, Erika A; Krykbaeva, Marina; Blusztajn, Jan Krzysztof; Mellott, Tiffany J
2015-02-01
Autism is a neurodevelopmental disorder with multiple genetic and environmental risk factors. Choline is a fundamental nutrient for brain development and high choline intake during prenatal and/or early postnatal periods is neuroprotective. We examined the effects of perinatal choline supplementation on social behavior, anxiety, and repetitive behaviors in the BTBR T+Itpr3tf/J (BTBR) mouse model of autism. The BTBR or the more "sociable" C57BL/6J (B6) strain females were fed a control or choline-supplemented diet from mating, throughout pregnancy and lactation. After weaning to a control diet, all offspring were evaluated at one or two ages [postnatal days 33-36 and 89-91] using open field (OF), elevated plus maze (EPM), marble burying (MB), and three-chamber social interaction tests. As expected, control-diet BTBR mice displayed higher OF locomotor activity, impaired social preference, and increased digging behavior during the MB test compared to control-diet B6 mice. Choline supplementation significantly decreased digging behavior, elevated the percentage of open arm entries and time spent in open arms in the EPM by BTBR mice, but had no effect on locomotion. Choline supplementation did not alter social interaction in B6 mice but remarkably improved impairments in social interaction in BTBR mice at both ages, indicating that the benefits of supplementation persist long after dietary choline returns to control levels. In conclusion, our results suggest that high choline intake during early development can prevent or dramatically reduce deficits in social behavior and anxiety in an autistic mouse model, revealing a novel strategy for the treatment/prevention of autism spectrum disorders. Copyright © 2014 Elsevier B.V. All rights reserved.
Kelley, Christy M.; Powers, Brian E.; Velazquez, Ramon; Ash, Jessica A.; Ginsberg, Stephen D.; Strupp, Barbara J.; Mufson, Elliott J.
2014-01-01
Down syndrome (DS), trisomy 21, is a multifaceted condition marked by intellectual disability and early presentation of Alzheimer’s disease (AD) neuropathological lesions including degeneration of the basal forebrain cholinergic neuron (BFCN) system. While DS is diagnosable during gestation, there is no treatment option for expectant mothers or DS individuals. Using the Ts65Dn mouse model of DS that displays age-related degeneration of the BFCN system, we investigated the effects of maternal choline supplementation on the BFCN system in adult Ts65Dn mice and disomic (2N) littermates at 4.3–7.5 mos of age. Ts65Dn dams were maintained on a choline supplemented diet (5.1 g/kg choline chloride) or a control, unsupplemented diet with adequate amounts of choline (1 g/kg choline chloride) from conception until weaning of offspring; postweaning, offspring were fed the control diet. Mice were transcardially perfused with paraformaldehyde, brains were sectioned, and immunolabeled for choline acetyltransferase (ChAT) or p75-neurotrophin receptor (p75NTR). BFCN number and size, the area of the regions, and the intensity of hippocampal labeling were determined. Ts65Dn unsupplemented mice displayed region- and immunolabel-dependent increased BFCN number, larger areas, smaller BFCNs, and overall increased hippocampal ChAT intensity compared with 2N unsupplemented mice. These effects were partially normalized by maternal choline supplementation. Taken together, the results suggest a developmental imbalance in the Ts65Dn BFCN system. Early maternal-diet choline supplementation attenuates some of the genotype-dependent alterations in the BFCN system, suggesting this naturally occurring nutrient as a treatment option for pregnant mothers with knowledge that their offspring is trisomy 21. PMID:24178831
Choline intake in a large cohort of patients with nonalcoholic fatty liver disease.
Guerrerio, Anthony L; Colvin, Ryan M; Schwartz, Amy K; Molleston, Jean P; Murray, Karen F; Diehl, AnnaMae; Mohan, Parvathi; Schwimmer, Jeffrey B; Lavine, Joel E; Torbenson, Michael S; Scheimann, Ann O
2012-04-01
There is significant histologic and biochemical overlap between nonalcoholic fatty liver disease (NAFLD) and steatohepatitis associated with choline deficiency. We sought to determine whether subjects with biopsy-proven NAFLD and evidence of an inadequate intake of choline had more severe histologic features. We performed a cross-sectional analysis of 664 subjects enrolled in the multicenter, prospective Nonalcoholic Steatohepatitis Clinical Research Network (NASH CRN) with baseline data on diet composition (from a recall-based food-frequency questionnaire) within 6 mo of a liver biopsy. Food questionnaires were analyzed with proprietary software to estimate daily intakes of choline. Liver biopsies were centrally read, and consensus was scored with the NASH CRN-developed scoring system. Because choline needs vary by age, sex, and menopausal status, participants were segregated into corresponding categories (children 9-13 y old, males ≥14 y old, premenopausal women ≥19 y old, and postmenopausal women) on the basis of the Institute of Medicine's definition of adequate intake (AI) for choline. Deficient intake was defined as <50% AI. Postmenopausal women with deficient choline intake had worse fibrosis (P = 0.002) once factors associated with NAFLD (age, race-ethnicity, obesity, elevated triglycerides, diabetes, alcohol use, and steroid use) were considered in multiple ordinal logistic regression models. Choline intake was not identified as a contributor to disease severity in children, men, or premenopausal women. Decreased choline intake is significantly associated with increased fibrosis in postmenopausal women with NAFLD. The Pioglitazone vs Vitamin E vs Placebo for Treatment of Non-Diabetic Patients With Nonalcoholic Steatohepatitis trial was registered at clinicaltrials.gov as NCT00063622, and the Treatment of Nonalcoholic Fatty Liver Disease in Children trial was registered at clinicaltrials.gov as NCT00063635.
van Lee, Linde; Quah, Phaik Ling; Saw, Seang Mei; Yap, Fabian KP; Godfrey, Keith M; Chong, Yap Seng; Meaney, Michael J; Chen, Helen; Chong, Mary Foong-Fong
2017-01-01
Background Choline and betaine status have previously been associated with symptoms of depression. However, the relation of maternal plasma choline and betaine concentrations in pregnancy to peripartum maternal mood is unknown. Methods Maternal plasma choline and betaine concentrations (µmol/L) were measured at 26-28 weeks gestation in the GUSTO mother-offspring cohort. Participants completed the State-Trait Anxiety Inventory (STAI) and Edinburgh Postnatal Depression Scale (EDPS) at 26-28 weeks gestation (n=949) and at 3 months postnatal (n=689): higher scores are indicative of more symptoms of anxiety and depression. Multivariate linear regression models were used to estimate the association of choline and betaine with ante- and postnatal mental well-being adjusting for covariates. Results Mean (SD) antenatal plasma choline and betaine concentrations were 9.2 µmol/L (1.6) and 13.1 µmol/L (2.7), respectively. Plasma choline concentrations were positively associated with antenatal depressive [β=0.24 EPDS score (95% CI 0.05, 0.43) per µmol/L] and anxiety symptoms [β=0.46 STAI-state score (95% CI 0.03, 0.88) per µmol/L] adjusting for covariates. Plasma betaine concentrations were not associated with antenatal depression or anxiety symptoms. No associations were observed between pregnancy choline or betaine and postnatal mental well-being. Conclusion This study suggests that higher maternal plasma choline status during pregnancy is associated with more symptoms of antenatal depression and anxiety, while plasma betaine concentrations showed no associations. No associations were observed for postnatal mental well-being. Prospective studies are required to replicate these findings and further examine the direction of causality and possible biological mechanisms. PMID:28471488
Phospholipid biosynthesis in Candida albicans: Regulation by the precursors inositol and choline
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klig, L.S.; Friedli, L.; Schmid, E.
1990-08-01
Phospholipid metabolism in the pathogenic fungus Candida albicans was examined. The phospholipid biosynthetic pathways of C. albicans were elucidated and were shown to be similar to those of Saccharomyces cerevisiae. However, marked differences were seen between these two fungi in the regulation of the pathways in response to exogenously provided precursors inositol and choline. In S. cerevisiae, the biosynthesis of phosphatidylcholine via methylation of phosphatidylethanolamine appears to be regulated in response to inositol and choline; provision of choline alone does not repress the activity of this pathway. The same pathway in C. albicans responds to the exogenous provision of choline.more » Possible explanations for the observed differences in regulation are discussed.« less
Are dietary choline and betaine intakes determinants of total homocysteine concentration?
USDA-ARS?s Scientific Manuscript database
Elevated homocysteine concentrations are associated with an increased risk of cardiovascular disease and a decline in cognitive function. Intakes of choline and betaine, as methyl donors, may affect homocysteine concentrations. The objective was to examine whether choline and betaine intakes, assess...
21 CFR 172.370 - Iron-choline citrate complex.
Code of Federal Regulations, 2010 CFR
2010-04-01
....370 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.370 Iron-choline citrate complex. Iron-choline...
Trujillo, Xóchitl; Sánchez-Pastor, Enrique; Andrade, Felipa; Huerta, Miguel
2014-01-01
We investigated the effects of cannabinoids on acetylcholine (ACh) or choline contractures in slow skeletal muscle fibers from Rana pipiens. Bundles of cruralis muscle fibers were incubated with the cannabinoid receptor 1 (CB1) agonist, arachidonylcyclopropylamide (ACPA), which diminished the maximum isometric tension by 10 % and the total tension by 5 % of the ACh contracture, and 40 and 22 % of the choline contracture, respectively. Preincubation with the CB1 antagonist, AM281, or with pertussis toxin (PTX) completely blocked the effect of ACPA on the ACh contracture. On the other hand, the decrease in choline contracture by ACPA was only partially blocked by AM281 (~16 % decrease), PTX (20 %), or by dantrolene (~46 %). Our results show that ACPA modulates ACh and choline contractures, and suggest that this effect involves the participation of CB1, the ACh receptor, and -RyR in ACh contractures. For choline contractures, ACPA may also be acting through cannabinoid receptor-independent mechanisms.
Dietary intake of choline and neural tube defects in Mexican Americans.
Lavery, Amy M; Brender, Jean D; Zhao, Hongwei; Sweeney, Anne; Felkner, Marilyn; Suarez, Lucina; Canfield, Mark A
2014-06-01
Low maternal intake of dietary choline and betaine (a choline derivative) has recently been investigated as a possible risk factor for neural tube defects (NTDs). This case-control study examined the NTD risk associated with choline and betaine in 409 Mexican-American women who gave birth during 1995 to 2000 in the 14-county border region of Texas. Using data from the food frequency questionnaire and the lowest quartiles of intake as the reference categories, a protective association was suggested between higher intakes of choline and betaine and NTD risk although the 95% confidence intervals for all risk estimates included 1.0. For choline intake in the second, third, and fourth quartiles, adjusted odds ratios were 1.2, 0.80, and 0.89, respectively. Betaine appeared more protective with odds ratios of 0.62, 0.73, and 0.61, respectively, for the second, third, and fourth quartiles of intake. Study findings suggest that dietary betaine may help to prevent NTDs. © 2014 Wiley Periodicals, Inc.
Modification by choline of adrenergic transmission in rat mesenteric arteries
Malik, K. U.; McGiff, J. C.
1971-01-01
1. The action of choline on the vasoconstrictor responses of the perfused mesenteric arteries of the rat to sympathetic nerve stimulation and to injected noradrenaline has been investigated. 2. The infusion of choline (500 μg/ml), for periods of 15 s, increased the response to sympathetic nerve stimulation, whereas the infusion of the same concentration for 20 min greatly reduced the response to nerve stimulation. Choline (up to 500 μg/ml), infused either for short or long periods, did not alter the response to injected noradrenaline. 3. The inhibitory action of choline on the response to nerve stimulation was abolished either by an increase in the calcium concentration from 1·8 to 5·4 mM or by simultaneous infusion of (+)-amphetamine or atropine. 4. The results suggest that choline in concentrations of 500 μg/ml has the same effect on adrenergic transmission in mesenteric arteries as acetylcholine at concentrations of 5 ng/ml. PMID:4339884
Choline and betaine ameliorate liver lipid accumulation induced by vitamin B6 deficiency in rats.
Kitagawa, Erina; Yamamoto, Tatsuya; Fujishita, Mayuko; Ota, Yuki; Yamamoto, Kohei; Nakagawa, Tomoyuki; Hayakawa, Takashi
2017-02-01
We investigated the efficacy of supplementing the diet with choline or betaine in ameliorating lipid accumulation induced by vitamin B 6 (B 6 ) deficiency in rat liver. Male Wistar rats were fed a control, B 6 -deficient, choline-supplemented (2, 4, or 6 g choline bitartrate/kg diet) B 6 -deficient diet or betaine-supplemented (1, 2, or 4 g betaine anhydrous/kg diet) B 6 -deficient diet for 35 d; all diets contained 9 g L-methionine (Met)/kg diet. Choline or betaine supplementation attenuated liver lipid deposition and restored plasma lipid profiles to control levels. These treatments restored the disruptions in Met metabolism and the phosphatidylcholine (PC)/phosphatidylethanolamine (PE) ratio induced by B 6 deficiency in liver microsomes. These results suggest that choline and betaine ameliorated liver lipid accumulation induced by B 6 deficiency via recovery of Met metabolism and very low-density lipoprotein secretion by restoring the supply of PC derived from PE.
Phosphatidylcholine synthesis in castor bean endosperm. I. Metabolism of L-serine. [Ricinus communis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kinney, A.J.; Moore, T.S. Jr.
1987-05-01
Endosperm halves from 3-day-old castor bean (Ricinus communis var Hale) were incubated for 30 minutes with L(/sup 14/C)serine, after which label was observed in ethanolamine, choline, phosphatidylserine, phosphatidylethanolamine, phosphatidylcholine, ethanolaminephosphate, and CDPethanolamine, but not in cholinephosphate or CDPcholine. Only later did significant amounts of isotope become incorporated into cholinephosphate and CDPcholine. The choline kinase inhibitor hemicholinium-3 prevented the incorporation of label from serine into choline-phosphate and CDPcholine, reduced the incorporation of (/sup 14/C)choline into phosphatidylcholine by 65%, but inhibited the incorporation of label into phosphatidylcholine from serine by only 15%. The inhibitor did not prevent the incorporation of labeled methylmore » groups from S-adenosyl-L-methionine into phosphatidyldimethylethanolamine plus phosphatidyl-choline. The amount of incorporation of label from the methyl donor was only 8% of that from choline into phosphatidylcholine. The implications of these results for the pathway and regulation of phosphatidylcholine synthesis from the water-soluble precursors are discussed.« less
Abe, P M; Kendall, C J; Stauffer, L R; Holland, J W
1979-01-01
Culture supernatants of Fusobacterium necrophorum demonstrated hemolytic activity. The hemolysin(s), which was partially purified by ammonium sulfate precipitation, was temperature-dependent and heat labile. The spectrum of hemolytic activity against various erythrocytes included rabbit, human, and dog erythrocytes. Goats, sheep, and bovine erythrocytes showed only trace hemolysis. According to results of thin-layer chromatography, the hemolysin hydrolyzed rabbit erythrocyte phosphatidyl choline, phosphatidyl ethanolamine, lysophosphatidyl choline, and bovine phosphatidyl choline. Hydrolysis of egg yolk phosphatidyl choline, bovine phosphatidyl ethanolamine, cholesterol, 1,2-dipalmitin, 1,3-dipalmitin, sphingomyelin, or triolein was not detected by thin layer chromatography. A more sensitive procedure utilizing gas-liquid chromatography revealed that, of the substrates tested, the following were bein hydrolyzed: bovine and egg yolk phosphatidyl choline, lysophosphatidyl choline, alpha-palmito-beta-eleoyl-L-alpha lecithin and alpha-oleoyl-betal-palmitoyl-L-alpha lecithin. Substrates which were weakly hydrolyzed were bovine phosphatidyl ethanolamine, DL-alpha-hosphatidyl ethanolamine dipalmitoyl, 1,2-dipalmitin, 1,3-dipalmitin, and triolein.