Ciernik, I Frank; Brown, Derek W; Schmid, Daniel; Hany, Thomas; Egli, Peter; Davis, J Bernard
2007-02-01
Volumetric assessment of PET signals becomes increasingly relevant for radiotherapy (RT) planning. Here, we investigate the utility of 18F-choline PET signals to serve as a structure for semi-automatic segmentation for forward treatment planning of prostate cancer. 18F-choline PET and CT scans of ten patients with histologically proven prostate cancer without extracapsular growth were acquired using a combined PET/CT scanner. Target volumes were manually delineated on CT images using standard software. Volumes were also obtained from 18F-choline PET images using an asymmetrical segmentation algorithm. PTVs were derived from CT 18F-choline PET based clinical target volumes (CTVs) by automatic expansion and comparative planning was performed. As a read-out for dose given to non-target structures, dose to the rectal wall was assessed. Planning target volumes (PTVs) derived from CT and 18F-choline PET yielded comparable results. Optimal matching of CT and 18F-choline PET derived volumes in the lateral and cranial-caudal directions was obtained using a background-subtracted signal thresholds of 23.0+/-2.6%. In antero-posterior direction, where adaptation compensating for rectal signal overflow was required, optimal matching was achieved with a threshold of 49.5+/-4.6%. 3D-conformal planning with CT or 18F-choline PET resulted in comparable doses to the rectal wall. Choline PET signals of the prostate provide adequate spatial information amendable to standardized asymmetrical region growing algorithms for PET-based target volume definition for external beam RT.
Diagnostic Performance of 11C-choline PET/CT and FDG PET/CT in Prostate Cancer.
Kitajima, Kazuhiro; Yamamoto, Shingo; Odawara, Soichi; Kobayashi, Kaoru; Fujiwara, Masayuki; Kamikonya, Norihiko; Fukushima, Kazuhito; Nakanishi, Yukako; Hashimoto, Takahiko; Yamada, Yusuke; Suzuki, Toru; Kanematsu, Akihiro; Nojima, Michio; Yamakado, Koichiro
2018-06-01
We compared 11C-choline and FDG PET/CT scan findings for the staging and restaging of prostate cancer. Twenty Japanese prostate cancer patients underwent 11C-choline and FDG PET/CT before (n=5) or after (n=15) treatment. Using a five-point scale, we compared these scanning modalities regarding patient- and lesion-based diagnostic performance for local recurrence, untreated primary tumor, and lymph node and bony metastases. Of the 20 patients, documented local lesions, and node and bony metastases were present in 11 (55.0%), 9 (45.0%), and 13 (65.0%), respectively. The patient-based sensitivity/specificity/accuracy/area under the receiver-operating-characteristic curve (AUC) values for 11C-choline-PET/CT for diagnosing local lesions were 90.9% /100%/ 95.0% / 1.0, whereas those for FDG-PET/CT were 45.5% /100%/ 75.0% / 0.773. Those for 11C-choline-PET/CT for node metastasis were 88.9% /100%/ 95.0% / 0.944, and those for FDG-PET/CT were 44.4%/100%/75.0%/0.722. Those for 11C-choline-PET/CT for bone metastasis were 84.6%/100%/90.0%/0.951, and those for FDG-PET/CT were 76.9% /100%/ 85.0% / 0.962. The AUCs for local lesion and node metastasis differed significantly (p=0.0039, p=0.011, respectively). The lesion-based detection rates of 11C-choline compared to FDG PET/CT for local lesion, and node and bone metastases were 91.7% vs. 41.7%, 92.0% vs. 32.0%, and 94.8% vs. 83.0% (p=0.041, p=0.0030, p<0.0001), respectively. 11C-choline-PET/CT is more useful for the staging and restaging of prostate cancer than FDG-PET/CT in Japanese men.
Schwarzenböck, Sarah M; Eiber, Matthias; Kundt, Günther; Retz, Margitta; Sakretz, Monique; Kurth, Jens; Treiber, Uwe; Nawroth, Roman; Rummeny, Ernst J; Gschwend, Jürgen E; Schwaiger, Markus; Thalgott, Mark; Krause, Bernd J
2016-11-01
The aim of this study was to prospectively evaluate the value of [ 11 C] Choline PET/CT in monitoring early and late response to a standardized first-line docetaxel chemotherapy in castration refractory prostate cancer (mCRPC) patients. Thirty-two patients were referred for [ 11 C] Choline PET/CT before the start of docetaxel chemotherapy, after one and ten chemotherapy cycles (or - in case of discontinuation - after the last administered cycle) for therapy response assessment. [ 11 C] Choline uptake (SUV max , SUV mean ), CT derived Houndsfield units (HU max , HU mean ), and volume of bone, lung, and nodal metastases and local recurrence were measured semi-automatically at these timepoints. Change in SUV max , SUV mean , HU max , HU mean, and volume was assessed between PET 2 and 1 (early response assessment, ERA) and PET 3 and 1 (late response assessment, LRA) on a patient and lesion basis. Results of PET/CT were compared to clinically used RECIST 1.1 and clinical criteria based therapy response assessment including PSA for defining progressive disease (PD) and non-progressive disease (nPD), respectively. Relationships between changes of SUV max and SUV mean (early and late) and changes of PSA early and PSA late were evaluated. Prognostic value of initial SUV max and SUV mean was assessed. Statistical analyses were performed using SPSS. In the patient-based ERA and LRA there were no statistically significant differences in change of choline uptake, HU, and volume between PD and nPD applying RECIST or clinical response criteria. In the lesion-based ERA, decrease in choline uptake of bone metastases was even higher in PD (applying RECIST criteria), whereas in LRA the decrease was higher in nPD (applying clinical criteria). There were only significant correlations between change in choline uptake and PSA in ERA in PD, in LRA no significant correlations were discovered. Initial SUV max and SUV mean were statistically significantly higher in nPD (applying clinical criteria). There is no significant correlation between change in choline uptake in [ 11 C] Choline PET/CT and clinically routinely used objective response assessment during the early and late course of docetaxel chemotherapy. Therefore, [ 11 C] Choline PET/CT seems to be of limited use in therapy response assessment in standardized first-line chemotherapy in mCRPC patients.
Kitajima, Kazuhiro; Fukushima, Kazuhito; Yamamoto, Shingo; Kato, Takashi; Odawara, Soichi; Takaki, Haruyuki; Fujiwara, Masayuki; Yamakado, Koichiro; Nakanishi, Yukako; Kanematsu, Akihiro; Nojima, Michio; Hirota, Shozo
2017-08-01
The aim of this study was to compare 11C-choline PET/CT and bone scintigraphy (BS) for detection of bone metastases in patients with prostate cancer. Twenty-one patients with histologically proven prostate cancer underwent 11C-choline PET/CT and BS before (n = 4) or after (n = 17) treatment. Patient-, region-, and lesion-based diagnostic performances of bone metastasis of both 11C-choline PET/CT and BS were evaluated using a five-point scale by two experienced readers. Bone metastases were present in 11 (52.4%) of 21 patients and 48 (32.7%) of 147 regions; 111 lesions were found to have bone metastases. Region-based analysis showed that the sensitivity, specificity, accuracy, and area under the receiver-operating-characteristic curves (AUC) of 11C-choline PET/CT were 97.9%, 99.0%, 98.6%, and 0.9989, respectively; those of BS were 72.9%, 99.0%, 90.5%, and 0.8386, respectively. Sensitivity, accuracy, and AUC significantly differed between the two methods (McNemar test, p = 0.0015, p = 0.0015, and p < 0.0001, respectively). 11C-choline PET/CT detected 110/111 metastatic lesions (99.1%); BS detected 85 (76.6%) (p < 0.0001). According to the CT morphological type, the visualization rates of 11C-choline-PET/BS were 100%/90.3% for the blastic type, 91.7%/8.3% for the lytic type, 100%/100% for the mixed type, and 100%/53.3% for the invisible type, respectively. Significant differences in blastic, lytic, and invisible types were observed between the two methods (p = 0.013, p = 0.0044, and p = 0.023, respectively). In conclusion, 11C-choline PET/CT had greater sensitivity and accuracy than BS for detection of bone involvement in patients with prostate cancer.
Influence of (11)C-choline PET/CT on radiotherapy planning in prostate cancer.
López, Escarlata; Lazo, Antonio; Gutiérrez, Antonio; Arregui, Gregorio; Núñez, Isabel; Sacchetti, Antonio
2015-01-01
To evaluate the influence of (11)C-choline PET/CT on radiotherapy planning in prostate cancer patients. Precise information on the extension of prostate cancer is crucial for the choice of an appropriate therapeutic strategy. (11)C-choline positron emission tomography ((11)C-choline PET/CT) has two roles in radiation oncology (RT): (1) patient selection for treatment and (2) target volume selection and delineation. In conjunction with high-accuracy techniques, it might offer an opportunity of dose escalation and better tumour control while sparing healthy tissues. We carried out a retrospective study in order to analyse RT planning modification based on (11)C-choline PET/CT in 16 prostate cancer patients. Patients were treated with hypofractionated step-and-shoot Intensity Modulated Radiotherapy (IMRT), or Volumetric Modulated Arc Therapy (VMAT), and a daily cone-beam CT for Image Guided Radiation Therapy (IGRT). All patients underwent a (11)C-choline-PET/CT scan prior to radiotherapy. In 37.5% of cases, a re-delineation and new dose prescription occurred. Data show good preliminary clinical results in terms of biochemical control and toxicity. No gastrointestinal (GI)/genitourinary (GU) grade III toxicities were observed after a median follow-up of 9.5 months. In our experience, concerning the treatment of prostate cancer (PCa), (11)C-choline PET/CT may be helpful in radiotherapy planning, either for dose escalation or exclusion of selected sites.
Schiavina, Riccardo; Bianchi, Lorenzo; Mineo Bianchi, Federico; Borghesi, Marco; Pultrone, Cristian Vincenzo; Dababneh, Hussam; Castellucci, Paolo; Ceci, Francesco; Nanni, Cristina; Gaudiano, Caterina; Fiorentino, Michelangelo; Porreca, Angelo; Chessa, Francesco; Minervini, Andrea; Fanti, Stefano; Brunocilla, Eugenio
2018-05-30
To evaluate the accuracy of 11 C-choline positron emission tomography (PET)/computed tomography (CT) for nodal staging of prostate cancer (PCa) in different populations of high-risk patients. We evaluated 262 individuals with intermediate- or high-risk PCa submitted to radical prostatectomy and extended pelvic lymph node dissection. Within men with high-risk disease, we identified a subgroup of individuals harboring very high-risk (VHR, n = 28) disease: clinical stage ≥ T2c and more than 5 cores with Gleason score 8-10; primary biopsy Gleason score of 5; 3 high-risk features; or prostate-specific antigen ≥ 30 ng/mL. The diagnostic accuracy of PET/CT and contrast-enhanced CT (CECT) was assessed after stratifying patients according to risk group classification on a patient- and anatomic region-based analysis. On patient-based analysis, considering high-risk patients (n = 155), 11 C-choline PET/CT versus CECT had sensitivity and specificity of 50% and 76% versus 21% and 92%, respectively. Considering VHR men as separate subgroups (n = 28), 11 C-choline PET/CT versus CECT had sensitivity and specificity of 71% and 93% versus 25% and 79%, respectively. Accordingly, in the VHR category, the area under the curve of 11 C-choline PET/CT versus CECT was 0.86 (95% confidence interval, 0.71-1.0) versus 0.69 (95% confidence interval, 0.52-0.86), respectively. On anatomic region-based analysis, considering the VHR group, 11 C-choline PET/CT versus CECT had sensitivity and specificity of 70.6% and 95.5% versus 35.3% and 98.5%, respectively. Patients with VHR characteristics could represent the ideal candidate to undergo disease staging with PET/CT before surgery with the highest cost efficacy. Copyright © 2018 Elsevier Inc. All rights reserved.
Bluemel, Christina; Krebs, Markus; Polat, Bülent; Linke, Fränze; Eiber, Matthias; Samnick, Samuel; Lapa, Constantin; Lassmann, Michael; Riedmiller, Hubertus; Czernin, Johannes; Rubello, Domenico; Bley, Thorsten; Kropf, Saskia; Wester, Hans-Juergen; Buck, Andreas K; Herrmann, Ken
2016-07-01
Investigating the value of Ga-PSMA-PET/CT in biochemically recurring prostate cancer patients with negative F-choline-PET/CT. One hundred thirty-nine consecutive patients with biochemical recurrence after curative (surgery and/or radiotherapy) therapy were offered participation in this sequential clinical imaging approach. Patients first underwent an F-choline-PET/CT. If negative, an additional Ga-PSMA-PET/CT was offered. One hundred twenty-five of 139 eligible patients were included in the study; 32 patients underwent additional Ga-PSMA-PET/CT. Patients with equivocal findings (n = 5) on F-choline-PET/CT and those who declined the additional Ga-PSMA-PET/CT (n = 9) were excluded. Images were analyzed visually for the presence of suspicious lesions. Findings on PET/CT were correlated with PSA level, PSA doubling time (dt), and PSA velocity (vel). The overall detection rates were 85.6% (107/125) for the sequential imaging approach and 74.4% (93/125) for F-choline-PET/CT alone. Ga-PSMA-PET/CT detected sites of recurrence in 43.8% (14/32) of the choline-negative patients. Detection rates of the sequential imaging approach and F-choline-PET/CT alone increased with higher serum PSA levels and PSA vel. Subgroup analysis of Ga-PSMA-PET/CT in F-choline negative patients revealed detection rates of 28.6%, 45.5%, and 71.4% for PSA levels of 0.2 or greater to less than 1 ng/mL, 1 to 2 ng/mL, and greater than 2 ng/mL, respectively. The sequential imaging approach designed to limit Ga-PSMA imaging to patients with negative choline scans resulted in high detection rates. Ga-PSMA-PET/CT identified sites of recurrent disease in 43.8% of the patients with negative F-choline PET/CT scans.
Bluemel, Christina; Krebs, Markus; Polat, Bülent; Linke, Fränze; Eiber, Matthias; Samnick, Samuel; Lapa, Constantin; Lassmann, Michael; Riedmiller, Hubertus; Czernin, Johannes; Rubello, Domenico; Bley, Thorsten; Kropf, Saskia; Wester, Hans-Juergen; Buck, Andreas K.; Herrmann, Ken
2016-01-01
Purpose Investigating the value of 68Ga-PSMA-PET/CT in biochemically recurring prostate cancer patients with negative 18F-choline-PET/CT. Patients and Methods One hundred thirty-nine consecutive patients with biochemical recurrence after curative (surgery and/or radiotherapy) therapy were offered participation in this sequential clinical imaging approach. Patients first underwent an 18F-choline-PET/CT. If negative, an additional 68Ga-PSMA-PET/CTwas offered. One hundred twenty-five of 139 eligible patients were included in the study; 32 patients underwent additional 68Ga-PSMA-PET/CT. Patients with equivocal findings (n = 5) on 18F-choline-PET/CT and those who declined the additional 68Ga-PSMA-PET/CT (n = 9) were excluded. Images were analyzed visually for the presence of suspicious lesions. Findings on PET/CT were correlated with PSA level, PSA doubling time (dt), and PSA velocity (vel). Results The overall detection rates were 85.6% (107/125) for the sequential imaging approach and 74.4% (93/125) for 18F-choline-PET/CT alone. 68Ga-PSMA-PET/CT detected sites of recurrence in 43.8% (14/32) of the choline-negative patients. Detection rates of the sequential imaging approach and 18F-choline-PET/CT alone increased with higher serum PSA levels and PSA vel. Subgroup analysis of 68Ga-PSMA-PET/CT in 18F-choline negative patients revealed detection rates of 28.6%, 45.5%, and 71.4% for PSA levels of 0.2 or greater to less than 1 ng/mL, 1 to 2 ng/mL, and greater than 2 ng/mL, respectively. Conclusions The sequential imaging approach designed to limit 68Ga-PSMA imaging to patients with negative choline scans resulted in high detection rates. 68Ga-PSMA-PET/CT identified sites of recurrent disease in 43.8% of the patients with negative 18F-choline PET/CT scans. PMID:26975008
Influence of androgen deprivation therapy on choline PET/CT in recurrent prostate cancer.
Dost, Rutger J; Glaudemans, Andor W J M; Breeuwsma, Anthonius J; de Jong, Igle J
2013-07-01
Recurrent prostate cancer is usually treated by combining radiotherapy and androgen deprivation therapy. To stage the cancer, choline positron emission tomography (PET)/CT can be performed. It is generally thought that androgen deprivation therapy does not influence choline PET/CT. In this article we focus on the molecular backgrounds of choline and androgens, and the results of preclinical and clinical studies performed using PET/CT. Using PubMed, we looked for the relevant articles about androgen deprivation therapy and choline PET/CT. During ADT, a tendency of decreased uptake of choline in prostate cancer was observed, in particular in hormone-naïve patients. We conclude that in order to prevent false-negative choline PET/CT scans androgen deprivation should be withheld prior to scanning, especially in hormone-naïve patients.
Cantiello, Francesco; Crocerossa, Fabio; Russo, Giorgio Ivan; Gangemi, Vincenzo; Ferro, Matteo; Vartolomei, Mihai Dorin; Lucarelli, Giuseppe; Mirabelli, Maria; Scafuro, Chiara; Ucciero, Giuseppe; De Cobelli, Ottavio; Morgia, Giuseppe; Damiano, Rocco; Cascini, Giuseppe Lucio
2018-06-04
To evaluate the diagnostic performance of 64 Cu-PSMA-617 positron emission tomography (PET) with computed tomography (CT) for restaging prostate cancer after biochemical recurrence (BCR) and to compare it with 18 F-choline PET/CT in a per-patient analysis. An observational study was performed of 43 patients with BCR after laparoscopic radical prostatectomy who underwent 64 Cu-PSMA-617 PET/CT and subsequently 18 F-choline PET/CT for restaging. The detection rates (DR) of 64 Cu-PSMA-617 PET/CT and of 18 F-choline PET/CT were calculated by standardized maximum uptake value (SUV max ) at 4 hours and SUV max at 1 hour as reference, respectively. Furthermore, univariate logistic regression analysis was carried out to identify independent predictive factors of positivity with 64 Cu-PSMA-617 PET/CT. An overall positivity with 64 Cu-PSMA-617 PET/CT was found in 32 patients (74.4%) versus 19 (44.2%) with 18 F-choline PET/CT. Specifically, after stratifying for prostate-specific antigen (PSA) values, we found a good performance of 64 Cu-PSMA-617 PET/CT at low PSA levels compared to 18 F-choline PET/CT, with a DR of 57.1% versus 14.3% for PSA 0.2-0.5 ng/mL (P = .031), and of 60% versus 30% with PSA 0.5-1 ng/mL. At univariate binary logistic regression analysis, PSA level was the only independent predictor of 64 Cu-PSMA-617 PET/CT positivity. No significant difference in terms of DR for both 64 Cu-PSMA-617 PET/CT and 18 F-choline PET/CT was found according to different Gleason score subgroups. In our study cohort, a better performance was observed for 64 Cu-PSMA-617 PET/CT compared to 18 F-choline PET/CT in restaging after BCR, especially in patients with low PSA values. Copyright © 2018 Elsevier Inc. All rights reserved.
Choline metabolism-based molecular diagnosis of cancer: an update
Glunde, Kristine; Penet, Marie-France; Jiang, Lu; Jacobs, Michael A; Bhujwalla, Zaver M
2016-01-01
Abnormal choline metabolism continues to be identified in multiple cancers. Molecular causes of abnormal choline metabolism are changes in choline kinase-α, ethanolamine kinase-α, phosphatidylcholine-specific phospholipase C and -D and glycerophosphocholine phosphodiesterases, as well as several choline transporters. The net outcome of these enzymatic changes is an increase in phosphocholine and total choline (tCho) and, in some cancers, a relative decrease of glycerophosphocholine. The increased tCho signal detected by 1H magnetic resonance spectroscopy is being evaluated as a diagnostic marker in multiple cancers. Increased expression and activity of choline transporters and choline kinase-α have spurred the development of radiolabeled choline analogs as PET imaging tracers. Both tCho 1H magnetic resonance spectroscopy and choline PET are being investigated to detect response to treatment. Enzymes mediating the abnormal choline metabolism are being explored as targets for cancer therapy. This review highlights recent molecular, therapeutic and clinical advances in choline metabolism in cancer. PMID:25921026
Does Choline PET/CT Change the Management of Prostate Cancer Patients With Biochemical Failure?
Goldstein, Jeffrey; Even-Sapir, Einat; Ben-Haim, Simona; Saad, Akram; Spieler, Benjamin; Davidson, Tima; Berger, Raanan; Weiss, Ilana; Appel, Sarit; Lawrence, Yaacov R; Symon, Zvi
2017-06-01
The FDA approved C-11 choline PET/computed tomography (CT) for imaging patients with recurrent prostate cancer in 2012. Subsequently, the 2014 NCCN guidelines have introduced labeled choline PET/CT in the imaging algorithm of patients with suspected recurrent disease. However, there is only scarce data on the impact of labeled choline PET/CT findings on disease management. We hypothesized that labeled-choline PET/CT studies showing local or regional recurrence or distant metastases will have a direct role in selection of appropriate patient management and improve radiation planning in patients with disease that can be controlled using this mode of therapy. This retrospective study was approved by the Tel Aviv Sourasky and Sheba Medical Center's Helsinki ethical review committees. Patient characteristics including age, PSA, stage, prior treatments, and pre-PET choline treatment recommendations based on NCCN guidelines were recorded. Patients with biochemical failure and without evidence of recurrence on physical examination or standard imaging were offered the option of additional imaging with labeled choline PET/CT. Treatment recommendations post-PET/CT were compared with pre-PET/CT ones. Pathologic confirmation was obtained before prostate retreatment. A nonparametric χ test was used to compare the initial and final treatment recommendations following choline PET/CT. Between June 2010 and January 2014, 34 labeled-choline PET/CT studies were performed on 33 patients with biochemical failure following radical prostatectomy (RP) (n=6), radiation therapy (RT) (n=6), brachytherapy (n=2), RP+salvage prostate fossa RT (n=14), and RP+salvage prostate fossa/lymph node RT (n=6). Median PSA level before imaging was 2 ng/mL (range, 0.16 to 79). Labeled choline PET/CT showed prostate, prostate fossa, or pelvic lymph node increased uptake in 17 studies, remote metastatic disease in 9 studies, and failed to identify the cause for biochemical failure in 7 scans.PET/CT altered treatment approach in 18 of 33 (55%) patients (P=0.05). Sixteen of 27 patients (59%) treated previously with radiation were retreated with RT and delayed or eliminated androgen deprivation therapy: 1 received salvage brachytherapy, 10 received salvage pelvic lymph node or prostate fossa irradiation, 2 brachytherapy failures received salvage prostate and lymph nodes IMRT, and 3 with solitary bone metastasis were treated with radiosurgery. Eleven of 16 patients retreated responded to salvage therapy with a significant PSA response (<0.2 ng/mL), 2 patients had partial biochemical responses, and 3 patients failed. The median duration of response was 500±447 days. Two of 6 patients with no prior RT were referred for salvage prostatic fossa RT: 1 received dose escalation for disease identified in the prostate fossa and another had inclusion of "hot" pelvic lymph nodes in the treatment volume. These early results suggest that labeled choline PET/CT imaging performed according to current NCCN guidelines may change management and improve care in prostate cancer patients with biochemical failure by identifying patients for referral for salvage radiation therapy, improving radiation planning, and delaying or avoiding use of androgen deprivation therapy.
Evaluation of Prostate Cancer with 11C- and 18F-Choline PET/CT: Diagnosis and Initial Staging.
Nitsch, Sascha; Hakenberg, Oliver W; Heuschkel, Martin; Dräger, Desiree; Hildebrandt, Guido; Krause, Bernd J; Schwarzenböck, Sarah M
2016-10-01
Early diagnosis and adequate staging are crucial for the choice of adequate treatment in prostate cancer (PC). Morphologic and functional imaging modalities, such as CT and MRI, have had limited accuracy in the diagnosis and nodal staging of PC. Molecular PET/CT imaging with 11 C- or 18 F-choline-labeled derivatives is increasingly being used, but its role in the diagnosis and initial staging of PC is controversial because of limitations in sensitivity and specificity for the detection of primary PC. For T staging, functional MRI is superior to 11 C- or 18 F-choline PET/CT. For N staging, 11 C- or 18 F-choline PET/CT can provide potentially useful information that may influence treatment planning. For the detection of bone metastases, 11 C- or 18 F-choline PET/CT has had promising results; however, in terms of cost-effectiveness, the routine use of 11 C- or 18 F-choline PET/CT is still debatable. 11 C- or 18 F-choline PET/CT might be used in high-risk PC before radiation treatment planning, potentially affecting this planning (e.g., regarding dose escalation). This review provides an overview of the diagnostic accuracy and limitations of 11 C- or 18 F-choline PET/CT in the diagnosis and staging of PC. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
García, J R; Cozar, M; Soler, M; Bassa, P; Riera, E; Ferrer, J
2016-01-01
To assess the prognostic value of the therapeutic response by (11)C-choline PET/CT in prostate cancer patients with biochemical recurrence in which (11)C-choline PET/CT indicated radio-guided radiotherapy. The study included 37 patients initially treated with prostatectomy, who were treated due to biochemical recurrence. (11)C-choline PE/CT detected infra-diaphragmatic lymph-node involvement. All were selected for intensity modulated radiation therapy, escalating the dose according to the PET findings. One year after treatment patients underwent PSA and (11)C-choline PET/CT categorizing response (complete/partial/progression). Clinical/biochemical/image monitoring was performed until appearance of second relapse or 36 months in disease-free patients. (11)C-choline PET/CT could detect lymph nodes in all 37 patients. They were 18 (48.6%) of more than a centimetre in size and 19 (51.3%) with no pathological CT morphology: 9 (24.3%) with positive lymph nodes of around one centimetre and 10 (27.0%) only less than a centimetre in size. The response by (11)C-choline PET/CT was categorised one year after radiotherapy: 16 patients (43.2%) complete response; 15 (40.5%) partial response, and 6 (16.2%) progression. The response was concordant between the PSA result and (11)C-choline PET/CT in 32 patients (86.5%), and discordant in five (13.5%). New recurrence was detected in 12 patients (80%) with partial response, and 5 (31.2%) with complete response. The mean time to recurrence was 9 months after partial response, and 18 months after complete response (significant difference, p<.0001). (11)C-choline PET/CT allows the selection of patients with recurrent prostate cancer candidates for radiotherapy and to plan the technique. The evaluation of therapeutic response by (11)C-choline PET/CT has prognostic significance. Copyright © 2015 Elsevier España, S.L.U. and SEMNIM. All rights reserved.
18F-choline PET/MRI in suspected recurrence of prostate carcinoma.
Riola-Parada, C; Carreras-Delgado, J L; Pérez-Dueñas, V; Garcerant-Tafur, M; García-Cañamaque, L
2018-05-21
To evaluate the usefulness of simultaneous 18 F-choline PET/MRI in the suspicion of prostate cancer recurrence and to relate 18 F-choline PET/MRI detection rate with analytical and pathological variables. 27 patients with prostate cancer who received local therapy as primary treatment underwent a 18 F-choline PET/MRI due to suspicion of recurrence (persistently rising serum PSA level). 18 F-choline PET/MRI findings were validated by anatomopathological analysis, other imaging tests or by biochemical response to oncological treatment. 18 F-choline PET/MRI detected disease in 15 of 27 patients (detection rate 55.56%). 4 (15%) presented exclusively local recurrence, 5 (18%) lymph node metastases and 7 (26%) bone metastases. Mean PSA (PSA med ) at study time was 2.94ng/mL (range 0.18-10ng/mL). PSA med in patients with positive PET/MRI was 3.70ng/mL (range 0.24-10ng/mL), higher than in patients with negative PET/MRI, PSA med 1.97ng/mL (range 0.18-4.38ng/mL), although without statistically significant differences. Gleason score at diagnosis in patients with a positive study was 7.33 (range 6-9) and in patients with a negative study was 7 (range 6-9), without statistically significant differences. 18 F-choline PET/MRI detection rate was considerable despite the relatively low PSA values in our sample. The influence of Gleason score and PSA level on 18 F-choline PET/MRI detection rate was not statistically significant. Copyright © 2018 Sociedad Española de Medicina Nuclear e Imagen Molecular. Publicado por Elsevier España, S.L.U. All rights reserved.
Evangelista, Laura; Zattoni, Fabio; Karnes, Robert J; Novara, Giacomo; Lowe, Val
2016-12-01
To provide a systematic review of recently published reports and carry out a meta-analysis on the use of radiolabeled choline PET/computed tomography (CT) as a guide for salvage lymph node dissection (sLND) in prostate cancer patients with biochemical recurrence after primary treatments. Bibliographic database searches, from 2005 to May 2015, including Pubmed, Web of Science, and TripDatabase, were performed to find studies that included only patients who underwent sLND after radiolabeled choline PET/CT alone or in combination with other imaging modalities. For the qualitative assessment, all studies including the selected population were considered. Conversely, for the quantitative assessment, articles were included only if absolute numbers of true positive, true negative, false positive, and false negative test results were available or derivable from the text for lymph node metastases. Reviews, clinical reports, and editorial articles were excluded from analyses. Eighteen studies fulfilled the inclusion criteria and were assessed qualitatively. A total of 750 patients underwent radiolabeled choline (such as C-choline or F-choline) PET/CT before sLND. A quantitative evaluation was performed in nine studies. A patient-based, a lesion-based, and a site-based analysis was carried out in nine, four, and five studies, respectively. The pooled sensitivities were 85.3% [95% confidence interval (CI): 78.5-90.3%], 56.2% (95% CI: 41.6-69.7%), 75.3% (95% CI: 56.6-87.7%), and 63.7% (95% CI: 41-81.6%), respectively, for patient-based, lesion-based, pelvic site-based, and retroperitoneal site-based analysis. The pooled positive predictive values (PPVs) were 75% (95% CI: 68-80.9%), 85.8% (95% CI: 66.8-94.8%), 81.2% (95% CI: 70.1-88.9%), and 75.2% (95% CI: 58.7-86.7%), respectively, in the same analyses. High heterogeneities among the studies were found for sensitivities and PPVs ranging between 61.7-93.3% and 60.6-94.5%, respectively. Radiolabeled choline PET/CT has only a moderate sensitivity for the detection of metastatic lymph nodes in patients who are candidates for sLND, although the pooled PPVs ranged between 75 and 85.8% for all type of subanalyses. The presence of high heterogeneity among the studies should be considered carefully.
Calabria, Ferdinando; Chiaravalloti, Agostino; Cicciò, Carmelo; Gangemi, Vincenzo; Gullà, Domenico; Rocca, Federico; Gallo, Gianpasquale; Cascini, Giuseppe Lucio; Schillaci, Orazio
2017-08-01
The 11 C/ 18 F-choline is a PET/CT radiopharmaceutical useful in detecting tumors with high lipogenesis. 11 C/ 18 F-choline uptake can occur in physiological conditions or tumors. The knowledge of its bio-distribution is essential to recognize physiologic variants or diagnostic pitfalls. Moreover, few information are available on the bio-distribution of this tracer in female patients. Our aim was to discuss some documented 18 F-choline PET/CT pitfalls in prostate cancer patients. Our secondary aim was to describe the 18 F-choline bio-distribution in the female body. We collected diagnostic pitfalls in three PET centers examining 1000 prostate cancer by 18 F-choline PET/CT. All pitfalls were ensured by follow-up, imaging and/or histology. We also performed whole body 18 F-choline PET/CT in 5 female patients. 169/1000 (16.9%) patients showed pitfalls not owing to prostate cancer. These findings were due to inflammation, benign tumors while, in 1% of examined patients, a concomitant neoplasm was found. In the female body, the breast showed low physiological uptake. The accurate knowledge of 18 F-choline PET/CT bio-distribution and diagnostic pitfalls is essential. Correlative imaging and histological exam are often necessary to depict pitfalls. In women, the uptake in the breast is due to the physiological gradient of 18 F-choline uptake in the exocrine glands. Our results confirm the possibility of 18 F-choline uptake in several diseases other than prostate cancer. However, our experience was acquired on a large population and shows that a conspicuous amount of 18 F-choline diagnostic pitfalls are easily recognizable and attributable to inflammation. A new advance in knowledge is the minimal difference in terms of physiological tracer bio-distribution between male and female patients. The knowledge of the physiological bio-distribution and of the potential pitfalls linked of a tracer could help physicians to choose the best diagnostic and therapeutic approaches for a better patient quality of life. Copyright © 2017 Elsevier Inc. All rights reserved.
Is choline PET useful for identifying intraprostatic tumour lesions? A literature review.
Chan, Joachim; Syndikus, Isabel; Mahmood, Shelan; Bell, Lynn; Vinjamuri, Sobhan
2015-09-01
More than 80% of patients with intermediate-risk or high-risk localized prostate cancer are cured with radiation doses of 74-78 Gy, but high doses increase the risk for late bowel and bladder toxicity among long-term survivors. Dose painting, defined as dose escalation to areas in the prostate containing the tumour, rather than to the whole gland, minimizes dose to normal tissues and hence toxicity. It requires accurate identification of the location and size of these lesions, for which functional MRI is the current gold standard. Many studies have assessed the use of choline PET in staging newly diagnosed patients. This review will discuss important imaging variables affecting the accuracy of choline PET scans, how choline PET contributes to tumour identification and is used in radiotherapy planning and how PET can improve the patient pathway involving prostate radiotherapy. In summary, the available literature shows that the accuracy of choline PET improves with higher tracer doses and delayed imaging (although the optimal uptake time is unclear), and tumour identification by MRI is improved by the addition of PET imaging. We propose future research with prolonged choline uptake time and multiphase imaging, which may further improve accuracy.
Franzese, Ciro; Lopci, Egesta; Di Brina, Lucia; D'Agostino, Giuseppe Roberto; Navarria, Pierina; Mancosu, Pietro; Tomatis, Stefano; Chiti, Arturo; Scorsetti, Marta
2017-10-21
aim is outcome of 11C-Choline-PET guided SBRT on lymph node metastases. patients with 1 - 4 lymph node metastases detected by 11C-choline-PET were treated with SBRT. Toxicity, treated metastases control and Progression Free Survival were computed. twenty-six patients, 38 lymph node metastases were irradiated. No grade ≥ 2 toxicity. Median PSA-nadir after RT was 1.02 ng/mL. Post-treatment 11C-Choline-PET showed metabolic complete response in 17 metastases (44,7%), partial response in 9 metastases (38%). SBRT is effective and safe for lymph node metastases. PET is important in identification of gross tumor and evaluation of the response.
Ceci, Francesco; Castellucci, Paolo; Mapelli, Paola; Incerti, Elena; Picchio, Maria; Fanti, Stefano
2016-10-01
The aim of this review is to report on the value of 11 C-choline PET imaging as a diagnostic procedure for metastasis-directed therapies. Furthermore, the role of 11 C-choline PET/CT as a diagnostic tool for monitoring castration-resistant prostate cancer patients treated with systematic therapy is assessed. Finally, the role of 11 C-choline PET/CT in the prediction of survival in both castration-resistant prostate cancer patients and hormone-naïve patients is investigated. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Nanni, Cristina; Schiavina, Riccardo; Boschi, Stefano; Ambrosini, Valentina; Pettinato, Cinzia; Brunocilla, Eugenio; Martorana, Giuseppe; Fanti, Stefano
2013-07-01
We assessed the rate of detection rate of recurrent prostate cancer by PET/CT using anti-3-(18)F-FACBC, a new synthetic amino acid, in comparison to that using (11)C-choline as part of an ongoing prospective single-centre study. Included in the study were 15 patients with biochemical relapse after initial radical treatment of prostate cancer. All the patients underwent anti-3-(18)F-FACBC PET/CT and (11)C-choline PET/CT within a 7-day period. The detection rates using the two compounds were determined and the target-to-background ratios (TBR) of each lesion are reported. No adverse reactions to anti-3-(18)F-FACBC PET/CT were noted. On a patient basis, (11)C-choline PET/CT was positive in 3 patients and negative in 12 (detection rate 20%), and anti-3-(18)F-FACBC PET/CT was positive in 6 patients and negative in 9 (detection rate 40%). On a lesion basis, (11)C-choline detected 6 lesions (4 bone, 1 lymph node, 1 local relapse), and anti-3-(18)F-FACBC detected 11 lesions (5 bone, 5 lymph node, 1 local relapse). All (11)C-choline-positive lesions were also identified by anti-3-(18)F-FACBC PET/CT. The TBR of anti-3-(18)F-FACBC was greater than that of (11)C-choline in 8/11 lesions, as were image quality and contrast. Our preliminary results indicate that anti-3-(18)F-FACBC may be superior to (11)C-choline for the identification of disease recurrence in the setting of biochemical failure. Further studies are required to assess efficacy of anti-3-(18)F-FACBC in a larger series of prostate cancer patients.
Chan, Joachim; Carver, Antony; Brunt, John N H; Vinjamuri, Sobhan; Syndikus, Isabel
2017-03-01
Prostate dose painting radiotherapy requires the accurate identification of dominant intraprostatic lesions (DILs) to be used as boost volumes; these can be identified on multiparametric MRI (mpMRI) or choline positron emission tomography (PET)/CT. Planning scans are usually performed after 2-3 months of androgen deprivation therapy (ADT). We examine the effect of ADT on choline tracer uptake and boost volumes identified on choline PET/CT. Fluoroethylcholine ( 18 F choline) PET/CT was performed for dose painting radiotherapy planning in patients with intermediate- to high-risk prostate cancer. Initially, they were performed at planning. Owing to low visual tracer uptake, PET/CT for subsequent patients was performed at staging. We compared these two approaches on intraprostatic lesions obtained on PET using both visual and automatic threshold methods [prostate maximum standardized uptake value (SUV max ) 60%] when compared with mpMRI. PET/CT was performed during ADT in 11 patients (median duration of 85 days) and before ADT in 29 patients. ADT significantly reduced overall prostate volume by 17%. During ADT, prostate SUV max was lower although it did not reach statistical significance (4.2 vs 6.6, p = 0.06); three patients had no visually identifiable PET DIL; and visually defined PET DILs were significantly smaller than corresponding mpMRI DILs (p = 0.03). However, all patients scanned before ADT had at least one visually identifiable PET DIL, with no significant size difference between MRI and visually defined PET DILs. In both groups, threshold PET produced larger DILs than visual PET. Both PET methods have moderate sensitivity (0.50-0.68) and high specificity (0.85-0.98) for identifying MRI-defined disease. For visual contouring of boost volumes in prostate dose painting radiotherapy, 18 F choline PET/CT should be performed before ADT. For threshold contouring of boost volumes using our PET/CT scanning protocol, threshold levels of above 60% prostate SUV max may be more suitable. Additional use of PET with MRI for radiotherapy planning can significantly change the overall boost volumes compared with using MRI alone. Advances in knowledge: For prostate dose painting radiotherapy, the additional use of 18 F choline PET with MRI can significantly change the overall boost volumes, and PET should be performed before hormone therapy, especially if boost volumes are visually identified.
Cardona Arboniés, J; Rodríguez Alfonso, B; Mucientes Rasilla, J; Martínez Ballesteros, C; Zapata Paz, I; Prieto Soriano, A; Carballido Rodriguez, J; Mitjavila Casanovas, M
To evaluate the role of the 18 F-Choline PET/CT in prostate cancer management when detecting distant disease in planning radiotherapy and staging and to evaluate the therapy changes guided by PET/TC results. A retrospective evaluation was performed on 18 F-Choline PET/CT scans of patients with prostate cancer. Staging and planning radiotherapy scans were selected in patients with at least 9 months follow up. There was a total of 56 studies, 33 (58.93%) for staging, and 23 (41.07%) for planning radiotherapy. All scans were obtained using a hybrid PET/CT scanner. The PET/CT acquisition protocol consisted of a dual-phase procedure after the administration of an intravenous injection of 296-370MBq of 18 F-Choline. There were 43 out of 56 (76.8%) scans considered as positive, and 13 (23.2%) were negative. The TNM staging was changed in 13 (23.2%) scans. The PET/CT findings ruled out distant disease in 4 out of 13 scans, and unknown distant disease was detected in 9 (69.3%) scans. 18 F-Choline PET/CT is a useful technique for detecting unknown distant disease in prostate cancer when staging and planning radiotherapy. The inclusion of 18 F-choline PET/CT should be considered in prostate cancer management protocols. Copyright © 2017 Elsevier España, S.L.U. y SEMNIM. All rights reserved.
Schwarz, Timo; Seidl, Christof; Schiemann, Matthias; Senekowitsch-Schmidtke, Reingard; Krause, Bernd Joachim
2016-06-01
Inflammatory cells may contribute to the choline uptake in different prostate pathologies. The aim of this study was (i) to assess if inflammatory cells incorporate choline and (ii) to potentially detect differences compared to FDG uptake. Therefore we investigated the uptake of [(3)H]choline and [(18)F]FDG in human prostate carcinoma cells and human inflammatory cells. Macrophages were cultured from isolated mononuclear cells, gained by density gradient centrifugation of human buffy coats. T-lymphocytes, B-lymphocytes and granulocytes were enriched by density gradient centrifugation before cell sorting by means of flow cytometry was performed. [(3)H]choline and [(18)F]FDG uptake of isolated inflammatory cells as well as of LNCaP and PC-3 human prostate carcinoma cells was assessed simultaneously in dual tracer uptake experiments. Macrophages showed highest [(3)H]choline and [(18)F]FDG uptake compared to the tracer uptake rates of leukocytes. [(3)H]choline uptake of macrophages was in the same range as in prostate cancer cells. Lipopolysaccharide stimulation of macrophages resulted in an increase of [(18)F]FDG uptake in macrophages, but not in an increased [(3)H]choline uptake. The high [(3)H]choline uptake in macrophages may be a source of false-positive PET results in diagnosis of prostate cancer by choline-PET/CT. As already known from FDG-PET, discrimination between tumor and inflammation in prostate cancer patients is not possible via choline-PET. The application of choline-PET for reliable primary prostate cancer detection and delineation has to be queried. Copyright © 2016 Elsevier Inc. All rights reserved.
2014-10-01
Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The study investigates whether fusion PET/MRI imaging with 18F- choline PET/CT and...imaging with 18F- choline PET/CT and diffusion-weighted MRI can be successfully applied to target prostate cancer using image-guided prostate...Completed task. The 18F- choline synthesis was implemented and optimized for routine radiotracer production. RDRC committee approval as part of the IRB
Mühlematter, Urs J; Nagel, Hannes W; Becker, Anton; Mueller, Julian; Vokinger, Kerstin N; de Galiza Barbosa, Felipe; Ter Voert, Edwin E G T; Veit-Haibach, Patrick; Burger, Irene A
2018-05-31
Accurate attenuation correction (AC) is an inherent problem of positron emission tomography magnetic resonance imaging (PET/MRI) systems. Simulation studies showed that time-of-flight (TOF) detectors can reduce PET quantification errors in MRI-based AC. However, its impact on lesion detection in a clinical setting with 18 F-choline has not yet been evaluated. Therefore, we compared TOF and non-TOF 18 F-choline PET for absolute and relative difference in standard uptake values (SUV) and investigated the detection rate of metastases in prostate cancer patients. Non-TOF SUV was significantly lower compared to TOF in all osseous structures, except the skull, in primary lesions of the prostate, and in pelvic nodal and osseous metastasis. Concerning lymph node metastases, both experienced readers detected 16/19 (84%) on TOF PET, whereas on non-TOF PET readers 1 and 2 detected 11 (58%), and 14 (73%), respectively. With TOF PET readers 1 and 2 detected 14/15 (93%) and 11/15 (73%) bone metastases, respectively, whereas detection rate with non-TOF PET was 73% (11/15) for reader 1 and 53% (8/15) for reader 2. The interreader agreement was good for osseous metastasis detection on TOF (kappa 0.636, 95% confidence interval [CI] 0.453-0.810) and moderate on non-TOF (kappa = 0.600, CI 0.438-0.780). TOF reconstruction for 18 F-choline PET/MRI shows higher SUV measurements compared to non-TOF reconstructions in physiological osseous structures as well as pelvic malignancies. Our results suggest that addition of TOF information has a positive impact on lesion detection rate for lymph node and bone metastasis in prostate cancer patients.
Richter, José A; Rodríguez, Macarena; Rioja, Jorge; Peñuelas, Iván; Martí-Climent, Josep; Garrastachu, Puy; Quincoces, Gemma; Zudaire, Javier; García-Velloso, María J
2010-04-01
The purpose of this study was to evaluate a dual tracer 2-deoxy-2-[F-18]fluoro-D: -glucose (FDG) and (11)C-choline positron emission tomography (PET) protocol in the detection of biochemical prostate cancer relapse. Seventy-three patients (median Prostate Specific Antigen (PSA) Test value 2.7 ng/ml (1.1-5.4)) after radical treatment. PET scans were performed by means of a ECAT-Exact HR+ in the first 18 patients and in a PET/computed tomography Biograph II in the remaining 55 patients. The sensitivity of (11)C-choline and FDG was 60.6% and 31%. In PSA levels over 1.9 ng/ml, sensitivity increased to 80% and 40%, respectively. In the group receiving adjuvant hormone therapy, the diagnostic yields were 71.2% and 43%, respectively. While (11)C-choline-PET could not differentiate well and poorly differentiated Gleason score patients, FDG-PET results were almost significant (p = 0.058). A PSA value higher than 1.9 ng/ml determines a significant increase in the diagnostic yield. Adjuvant hormonotherapy has no influence on the PET results. FDG has a better correlation with the Gleason score than (11)C-choline.
Schwenck, Johannes; Rempp, Hansjoerg; Reischl, Gerald; Kruck, Stephan; Stenzl, Arnulf; Nikolaou, Konstantin; Pfannenberg, Christina; la Fougère, Christian
2017-01-01
Prostate-specific membrane antigen (PSMA) is expressed ubiquitously on the membrane of most prostate tumors and its metastasis. While PET/CT using 11 C-choline was considered as the gold standard in the staging of prostate cancer, PET with radiolabelled PSMA ligands was introduced into the clinic in recent years. Our aim was to compare the PSMA ligand 68 Ga-PSMA-11 with 11 C-choline in patients with primary and recurrent prostate cancer. 123 patients underwent a whole-body PET/CT examination using 68 Ga-PSMA-11 and 11 C-choline. Suspicious lesions were evaluated visually and semiquantitatively (SUVavg). Out of these, 103 suffered from a confirmed biochemical relapse after prostatectomy and/or radiotherapy (mean PSA level of 4.5 ng/ml), while 20 patients underwent primary staging. In 67 patients with biochemical relapse, we detected 458 lymph nodes suspicious for metastasis. PET using 68 Ga-PSMA-11 showed a significantly higher uptake and detection rate than 11 C-choline PET. Also 68 Ga-PSMA-11 PET identified significantly more patients with suspicious lymph nodes as well as affected lymph nodes regions especially at low PSA levels. Bone lesions suspicious for prostate cancer metastasis were revealed in 36 patients' biochemical relapse. Significantly more bone lesions were detected by 68 Ga-PSMA-11, but only 3 patients had only PSMA-positive bone lesions. Nevertheless, we detected also 29 suspicious lymph nodes and 8 bone lesions, which were only positive as per 11 C-choline PET. These findings led to crucial differences in the TNM classification and the identification of oligometastatic patients. In the patients who underwent initial staging, all primary tumors showed uptake of both tracers. Although significantly more suspicious lymph nodes and bone lesions were identified, only 2 patients presented with bone lesions only detected by 68 Ga-PSMA-11 PET. Thus, PET using 68 Ga-PSMA-11 showed a higher detection rate than 11 C-choline PET for lymph nodes as well as bone lesions. However, we found lymph nodes and bone lesions which were not concordant applying both tracers.
Conde-Moreno, A J; Herrando-Parreño, G; Muelas-Soria, R; Ferrer-Rebolleda, J; Broseta-Torres, R; Cozar-Santiago, M P; García-Piñón, F; Ferrer-Albiach, C
2017-05-01
To determine the effectiveness of whole-body diffusion-weighted magnetic resonance imaging (WB-DW-MRI) in detecting metastases by comparing the results with those from choline-positron emission tomography-computed tomography (choline-PET/CT) in patients with biochemical relapse after primary treatment, and no metastases in bone scintigraphy, CT and/or pelvic MRI, or metastatic/oligometastatic prostate cancer (PCa). Patients with this disease profile who could benefit from treatment with stereotactic body radiation therapy (SBRT) were selected and their responses to these techniques were rated. This was a prospective, controlled, unicentric study, involving 46 consecutive patients from our centre who presented biochemical relapse after adjuvant, salvage or radical treatment with external beam radiotherapy, or brachytherapy. After initial tests (bone scintigraphy, CT, pelvic MRI), 35 patients with oligometastases or without them were selected. 11 patients with multiple metastases were excluded from the study. WB-DW-MRI and choline-PET/CT was then performed on each patient within 1 week. The results were interpreted by specialists in nuclear medicine and MRI. If they were candidates for treatment with ablative SBRT (SABR), they were then evaluated every three months with both tests. Choline-PET/CT detected lesions in 16 patients that were not observable using WB-DW-MRI. The results were consistent in seven patients and in three cases, a lesion was observed using WB-DW-MRI that was not detected with choline-PET/CT. The Kappa value obtained was 0.133 (p = 0.089); the sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of WB-DW-MRI were estimated at 44.93, 64.29, 86.11, and 19.15%, respectively. For choline-PET/CT patients, the sensitivity, specificity, PPV, and NPV were 97.10, 58.33, 93.06, and 77.78%, respectively. Choline-PET/CT has a high global sensitivity while WB-DW-MRI has a high specificity, and so they are complementary techniques. Future studies with more enrolled patients and a longer follow-up period will be required to confirm these data. The initial data show that the best technique for evaluating response after SBRT is choline-PET/CT. Trial registration number NCT02858128.
Alonso, Omar; Dos Santos, Gerardo; García Fontes, Margarita; Balter, Henia; Engler, Henry
2018-01-01
The aim of this study was to prospectively compare the detection rate of 68 Ga-PSMA versus 11 C-Choline in men with prostate cancer with biochemical recurrence and to demonstrate the added value of a tri-modality PET/CT-MRI system. We analysed 36 patients who underwent both 11 C-Choline PET/CT and 68 Ga-PSMA PET/CT scanning within a time window of 1-2 weeks. Additionally, for the 68 Ga-PSMA scan, we used a PET/CT-MRI (3.0 T) system with a dedicated shuttle, acquiring MRI images of the pelvis. Both scans were positive in 18 patients (50%) and negative in 8 patients (22%). Nine patients were positive with 68 Ga-PSMA alone (25%) and one with 11 C-Choline only (3%). The median detected lesion per patient was 2 for 68 Ga-PSMA (range 0-93) and 1 for 11 C-Choline (range 0-57). Tumour to background ratios in all concordant lesions ( n = 96) were higher for 68 Ga-PSMA than for 11 C-Choline (110.3 ± 107.8 and 27.5 ± 17.1, mean ± S.D., for each tracer, respectively P = 0.0001). The number of detected lesions per patient was higher for 11 C-Choline in those with PSA ≥ 3.3 ng/mL, while the number of detected lesions was independent of PSA levels for 68 Ga-PSMA using the same PSA cut-off value. Metastatic pelvic lesions were found in 25 patients (69%) with 68 Ga-PSMA PET/CT, in 18 (50%) with 11 C-Choline PET/CT and in 21 (58%) with MRI (3.0 T). MRI was very useful in detecting recurrence in cases classified as indeterminate by means of PET/CT alone at prostate bed. In patients with prostate cancer with biochemical recurrence 68 Ga-PSMA detected more lesions per patient than 11 C-Choline, regardless of PSA levels. PET/CT-MRI (3.0 T) system is a feasible imaging modality that potentially adds useful relevant information with increased accuracy of diagnosis.
Taguchi, Chiaki; Inazu, Masato; Saiki, Iwao; Yara, Miki; Hara, Naomi; Yamanaka, Tsuyoshi; Uchino, Hiroyuki
2014-04-01
Positron emission tomography (PET) and PET/computed tomography (PET-CT) studies with (11)C- or (18)F-labeled choline derivatives are used for PET imaging in glioblastoma patients. However, the nature of the choline transport system in glioblastoma is poorly understood. In this study, we performed a functional characterization of [methyl-(3)H]choline uptake and sought to identify the transporters that mediate choline uptake in the human glioblastoma cell lines A-172 and U-251MG. In addition, we examined the influence of anti-cancer drugs and central nervous system drugs on the transport of [methyl-(3)H]choline. High- and low-affinity choline transport systems were present in A-172 cells, U-251MG cells and astrocytes, and these were Na(+)-independent and pH-dependent. Cell viability in A-172 cells was not affected by choline deficiency. However, cell viability in U-251MG cells was significantly inhibited by choline deficiency. Both A-172 and U-251MG cells have two different choline transporters, choline transporter-like protein 1 (CTL1) and CTL2. In A-172 cells, CTL1 is predominantly expressed, whereas in U-251MG cells, CTL2 is predominantly expressed. Treatment with anti-cancer drugs such as cisplatin, etoposide and vincristine influenced [methyl-(3)H]choline uptake in U-251MG cells, but not A-172 cells. Central nervous system drugs such as imipramine, fluvoxamine, paroxetine, reboxetine, citalopram and donepezil did not affect cell viability or [methyl-(3)H]choline uptake. The data presented here suggest that CTL1 and CTL2 are functionally expressed in A-172 and U-251MG cells and are responsible for [methyl-(3)H]choline uptake that relies on a directed H(+) gradient as a driving force. Furthermore, while anti-cancer drugs altered [methyl-(3)H]choline uptake, central nervous system drugs did not affect [methyl-(3)H]choline uptake. Copyright © 2014 Elsevier Inc. All rights reserved.
Gómez-de la Fuente, F J; Martínez-Rodríguez, I; de Arcocha-Torres, M; Quirce, R; Jiménez-Bonilla, J; Martínez-Amador, N; Banzo, I
11 C-choline PET/CT has demonstrated good results in the restaging of prostate cancer (PCa) with high serum prostate specific antigen (PSA), but its use in patients with low serum PSA is controversial. Our aim was to evaluate the contribution of 11 C-choline PET/CT in patients with PCa, biochemical relapse and PSA <1 ng/ml. Fifty consecutive patients (mean age: 65.9±5.6 years) with biochemical relapse of PCa and serum PSA <1ng/ml were evaluated retrospectively. PET/CT was performed 20min after intravenous administration of 555-740 MBq of 11 C-choline. Minimum follow up time was 30 months. Twenty-one out of 50 patients (42%) had an abnormal 11 C-choline PET/CT. In 7 out of 21 patients (14%) tumor was confirmed (4 in prostatic bed, 4 in pelvic lymph nodes, 2 in mediastinal lymph nodes and one synchronous sigmoid carcinoma), and in all cases the initial therapeutic planning was modified. In 2 patients (4%) subsequent tests diagnosed a benign disease (one sarcoidosis, one tuberculosis sequelae) and in 3 patients (6%) they ruled out pathology. The other 9 patients (18%) had no further assessment (7 mediastinal and 4 pelvic lymph nodes). Twenty-nine out of 50 patients (58%) had a normal PET/CT. At 30 months, follow up recurrence was confirmed only in 2 of these patients. 11 C-choline PET/CT proved its usefulness in demonstrating tumor in 14% of patients with BR of PCa and serum PSA <1ng/ml, with therapeutic implications. In 4% of patients a benign condition was detected. A normal 11 C-choline PET/CT was associated with a very low rate of recurrence at 30 months. Copyright © 2017 Elsevier España, S.L.U. y SEMNIM. All rights reserved.
Diagnostic value of combining ¹¹C-choline and ¹⁸F-FDG PET/CT in hepatocellular carcinoma.
Castilla-Lièvre, Maria-Angéla; Franco, Dominique; Gervais, Philippe; Kuhnast, Bertrand; Agostini, Hélène; Marthey, Lysiane; Désarnaud, Serge; Helal, Badia-Ourkia
2016-05-01
In this prospective study, our goal was to emphasize the diagnostic value of combining (11)C-choline and (18)F-FDG PET/CT for hepatocellular carcinoma (HCC) in patients with chronic liver disease. Thirty-three consecutive patients were enrolled. All patients were suspected to have HCC based on CT and/or MRI imaging. A final diagnosis was obtained by histopathological examination or by imaging alone according to American Association for the Study of Liver Disease criteria. All patients underwent PET/CT with both tracers within a median of 5 days. All lesions showing higher tracer uptake than normal liver were considered positive for HCC. We examined how tracer uptake was related to biological (serum α-fetoprotein levels) and pathological (differentiation status, peritumoral capsule and vascular invasion) prognostic markers of HCC, as well as clinical observations at 6 months (recurrence and death). Twenty-eight HCC, four cholangiocarcinomas and one adenoma were diagnosed. In the HCC patients, the sensitivity of (11)C-choline, (18)F-FDG and combined (11)C-choline and (18)F-FDG PET/CT for the detection of HCC was 75 %, 36 % and 93 %, respectively. Serum α-fetoprotein levels >200 ng/ml were more frequent among patients with (18)F-FDG-positive lesions than those with (18)F-FDG-negative lesions (p < 0.05). Early recurrence (n=2) or early death (n=5) occurred more frequently in patients with (18)F-FDG-positive lesions than in those with (18)F-FDG-negative lesions (p < 0.05). The combined use of (11)C-choline and (18)F-FDG PET/CT detected HCC with high sensitivity. This approach appears to be of potential prognostic value and may facilitate the selection of patients for surgical resection or liver transplantation.
Nuclear Medicine Imaging of Prostate Cancer.
Schreiter, V; Reimann, C; Geisel, D; Schreiter, N F
2016-11-01
The new tracer Gallium-68 prostate-specific membrane antigen (Ga-68 PSMA) yields new promising options for the PET/CT diagnosis of prostate cancer (PCa) and its metastases. To overcome limitations of hybrid imaging, known from the use of choline derivatives, seems to be possible with the use of Ga-68 PSMA for PCa. The benefits of hybrid imaging with Ga-68 PSMA for PCa compared to choline derivatives shall be discussed in this article based on an overview of the current literature. Key Points: • Ga-68 PSMA PET/CT can achieve higher detection rates of PCa lesions than PET/CT performed with choline derivatives• The new tracer Ga-68 PSMA has the advantage of high specificity, independence of PSA-level and low nonspecific tracer uptake in surrounding tissue• The new tracer Ga-68 PSMA seems very suitable for MR-PET diagnostic Citation Format: • Schreiter V, Reimann C, Geisel D et al. Nuclear Medicine Imaging of Prostate Cancer. Fortschr Röntgenstr 2016; 188: 1037 - 1044. © Georg Thieme Verlag KG Stuttgart · New York.
Ribeiro, Thalles H; S, Raul; Castro, Ana Carolina G; Paulino, Eduardo; Mamede, Marcelo
2017-02-01
Early diagnosis and staging of non-Hodgkin lymphoma (NHL) is essential for therapeutic strategy decision. Positron emission tomography/computed tomography (PET/CT) with fluordeoxyglucose (FDG), a glucose analogue, labeled with fluor-18 (18F-FDG) has been used to evaluate staging, therapy response and prognosis in NHL patients. However, in some cases, 18F-FDG has shown false-positive uptake due to inflammatory reaction after chemo and/or radiation therapy. In this case report, we present a NHL patient evaluated with 18F-FDG and 18F-choline PET/CT scan imaging pre- and post-therapy. 18F-FDG and 18F-choline PET/CT were performed for the purpose of tumor staging and have shown intense uptake in infiltrative tissue as well as in the lymph node, but with some mismatching in the tumor. Post-treatment 18F-FDG and 18F-choline PET/ CT scans revealed no signs of radiotracer uptake, suggesting complete remission of the tumor. 18F-choline may be a complimentary tool for staging and assessment of therapeutic response in non-Hodgkin lymphoma, while non-18F-FDG tracer can be used for targeted therapy and patient management.
Wang, Hui; Vees, Hansjörg; Miralbell, Raymond; Wissmeyer, Michael; Steiner, Charles; Ratib, Osman; Senthamizhchelvan, Srinivasan; Zaidi, Habib
2009-11-01
We evaluate the contribution of (18)F-choline PET/CT in the delineation of gross tumour volume (GTV) in local recurrent prostate cancer after initial irradiation using various PET image segmentation techniques. Seventeen patients with local-only recurrent prostate cancer (median=5.7 years) after initial irradiation were included in the study. Rebiopsies were performed in 10 patients that confirmed the local recurrence. Following injection of 300 MBq of (18)F-fluorocholine, dynamic PET frames (3 min each) were reconstructed from the list-mode acquisition. Five PET image segmentation techniques were used to delineate the (18)F-choline-based GTVs. These included manual delineation of contours (GTV(man)) by two teams consisting of a radiation oncologist and a nuclear medicine physician each, a fixed threshold of 40% and 50% of the maximum signal intensity (GTV(40%) and GTV(50%)), signal-to-background ratio-based adaptive thresholding (GTV(SBR)), and a region growing (GTV(RG)) algorithm. Geographic mismatches between the GTVs were also assessed using overlap analysis. Inter-observer variability for manual delineation of GTVs was high but not statistically significant (p=0.459). In addition, the volumes and shapes of GTVs delineated using semi-automated techniques were significantly higher than those of GTVs defined manually. Semi-automated segmentation techniques for (18)F-choline PET-guided GTV delineation resulted in substantially higher GTVs compared to manual delineation and might replace the latter for determination of recurrent prostate cancer for partial prostate re-irradiation. The selection of the most appropriate segmentation algorithm still needs to be determined.
Schwarzenböck, Sarah M; Knieling, Anna; Souvatzoglou, Michael; Kurth, Jens; Steiger, Katja; Eiber, Matthias; Esposito, Irene; Retz, Margitta; Kübler, Hubert; Gschwend, Jürgen E; Schwaiger, Markus; Krause, Bernd J; Thalgott, Mark
2016-09-27
Recent studies have shown promising results of neoadjuvant therapy in prostate cancer (PC). The aim of this study was to evaluate the potential of [11C]Choline PET/CT in therapy response monitoring after combined neoadjuvant docetaxel chemotherapy and complete androgen blockade in locally advanced and high risk PC patients. In [11C]Choline PET/CT there was a significant decrease of SUVmax and SUVmean (p = 0.004, each), prostate volume (p = 0.005) and PSA value (p = 0.003) after combined neoadjuvant therapy. MRI showed a significant prostate and tumor volume reduction (p = 0.003 and 0.005, respectively). Number of apoptotic cells was significantly higher in prostatectomy specimens of the therapy group compared to pretherapeutic biopsies and the control group (p = 0.02 and 0.003, respectively). 11 patients received two [11C]Choline PET/CT and MRI scans before and after combined neoadjuvant therapy followed by radical prostatectomy and pelvic lymph node dissection. [11C]Choline uptake, prostate and tumor volume, PSA value (before/after neoadjuvant therapy) and apoptosis (of pretherapeutic biopsy/posttherapeutic prostatectomy specimens of the therapy group and prostatectomy specimens of a matched control group without neoadjuvant therapy) were assessed and tested for differences and correlation using SPSS. The results showing a decrease in choline uptake after combined neoadjuvant therapy (paralleled by regressive and apoptotic changes in histopathology) confirm the potential of [11C]Choline PET/CT to monitor effects of neoadjuvant therapy in locally advanced and high risk PC patients. Further studies are recommended to evaluate its use during the course of neoadjuvant therapy for early response assessment.
Roelcke, Ulrich; Bruehlmeier, Matthias; Hefti, Martin; Hundsberger, Thomas; Nitzsche, Egbert U
2012-01-01
Positron emission tomography (PET) with radiolabeled amino acids provides information on biopsy target and chemotherapy response in patients with low-grade gliomas (LGG). In this article, we addressed whether PET with F-18 choline (CHO) detects increased metabolism in F-18 fluoroethyltyrosine (FET)-negative LGG patients. Six LGG patients with nongadolinium-enhancing (magnetic resonance) FET-negative LGG were imaged with CHO PET. Regions of interest were positioned over tumor and contralateral brain. Uptake of FET and CHO was quantified as count ratio of tumor to contralateral brain. The mean FET uptake ratio for FET-negative LGG was 0.95 ± 0.03 (mean ± standard deviation). Five tumors did not show increased uptake ratios for CHO (0.96 ± 0.12). Slightly increased CHO uptake was found in 1 patient (1.24), which, however, was not associated with tumor visualization. Amino acid and choline uptake appear to behave similar in nongadolinium-enhancing LGG. For clinical purposes, CHO PET is not superior to FET PET.
Cancer Localization in the Prostate with F-18 Fluorocholine Positron Emission Tomography. Addendum
2010-01-01
of malignancy in anatomical sextants of the prostate gland. The rationale for evaluating fluorocholine as an oncologic tracer applicable to...interest in radiolabeled choline deriv- atives as oncologic tracers for positron emission tomogra- phy (PET) [6, 7]. This approach has shown feasibility in...prostate cancer using the tracer fluorine-18 fluor- omethylcholine (18F-choline) [8–11]. As a preliminary step in evaluating 18F-choline PET/CT as a
Cimitan, Marino; Evangelista, Laura; Hodolič, Marina; Mariani, Giuliano; Baseric, Tanja; Bodanza, Valentina; Saladini, Giorgio; Volterrani, Duccio; Cervino, Anna Rita; Gregianin, Michele; Puccini, Giulia; Guidoccio, Federica; Fettich, Jure; Borsatti, Eugenio
2015-02-01
The objective of this study was to explore the ability of the initial Gleason score (GS) to predict the rate of detection of recurrent prostate cancer (PCa) with (18)F-choline PET/CT in a large cohort of patients. Data from 1,000 patients who had undergone (18)F-choline PET/CT because of biochemical evidence of relapse of PCa between 2004 and 2013 were retrieved from databases at 4 centers. Continuous data were compared by the Student t test or ANOVA, and categoric variables were compared by the χ(2) test. Univariable and multivariable analyses were performed by logistic regression. The GS at diagnosis was less than or equal to 6 in 257 patients, 7 in 347 patients, and greater than 7 in 396 patients. The results of 645 PET/CT scans were positive for PCa recurrence. Eighty-one percent of the positive PET/CT results were found in patients with a PSA level of greater than or equal to 2 ng/mL, 43% were found in patients with a PSA level of 1-2 ng/mL, and 31% were found in patients with a PSA level of less than or equal to 1 ng/mL; 78.8% of patients with positive PET/CT results had a GS of greater than 7. The results of (18)F-choline PET/CT scans were negative in 300 patients; 44% had a GS of less than or equal to 6, 35% had a GS of 7, and 17% had a GS of greater than 7. PET/CT results were rated as doubtful in only 5.5% of patients (median PSA, 1.8 ng/mL). When the GS was greater than 7, the rates of detection of (18)F-choline PET/CT were 51%, 65%, and 91% for a PSA level of less than 1 ng/mL, 1-2 ng/mL, and greater than 2 ng/mL, respectively. In univariable and multivariable analyses, both a GS of 7 and a GS of greater than 7 were independent predictors for positive (18)F-choline PET/CT results (odds ratios, 0.226 and 0.330, respectively; P values for both, <0.001). A high GS at diagnosis is a strong predictive factor for positive (18)F-choline PET/CT scan results for recurrent PCa, even when the PSA level is low (i.e., ≤1 ng/mL). © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Frood, R; Baren, J; McDermott, G; Bottomley, D; Patel, C; Scarsbrook, A
2018-04-30
To evaluate the efficacy of single time-point half-body (skull base to thighs) fluorine-18 choline positron emission tomography-computed tomography (PET-CT) compared to a triple-phase acquisition protocol in the detection of prostate carcinoma recurrence. Consecutive choline PET-CT studies performed at a single tertiary referral centre in patients with biochemical recurrence of prostate carcinoma between September 2012 and March 2017 were reviewed retrospectively. The indication for the study, imaging protocol used, imaging findings, whether management was influenced by the PET-CT, and subsequent patient outcome were recorded. Ninety-one examinations were performed during the study period; 42 were carried out using a triple-phase protocol (dynamic pelvic imaging for 20 minutes after tracer injection, half-body acquisition at 60 minutes and delayed pelvic scan at 90 minutes) between 2012 and August 2015. Subsequently following interim review of diagnostic performance, a streamlined protocol and appropriate-use criteria were introduced. Forty-nine examinations were carried out using the single-phase protocol between 2015 and 2017. Twenty-nine (69%) of the triple-phase studies were positive for recurrence compared to 38 (78%) of the single-phase studies. Only one patient who had a single-phase study would have benefited from a dynamic acquisition, they have required no further treatment or imaging and are currently under prostate-specific antigen (PSA) surveillance. Choline PET-CT remains a useful tool for the detection of prostate recurrence when used in combination with appropriate-use criteria. Removal of dynamic and delayed acquisition phases reduces study time without adversely affecting accuracy. Benefits include shorter imaging time which improves patient comfort, reduced cost, and improved scanner efficiency. Copyright © 2018 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
Graziani, Tiziano; Ceci, Francesco; Castellucci, Paolo; Polverari, Giulia; Lima, Giacomo Maria; Lodi, Filippo; Morganti, Alessio Giuseppe; Ardizzoni, Andrea; Schiavina, Riccardo; Fanti, Stefano
2016-10-01
To evaluate (11)C-choline PET/CT as a diagnostic tool for restaging prostate cancer (PCa), in a large, homogeneous and clinically relevant population of patients with biochemical recurrence (BCR) of PCa after primary therapy. The secondary aim was to assess the best timing for performing (11)C-choline PET/CT during BCR. We retrospectively analysed 9,632 (11)C-choline PET/CT scans performed in our institution for restaging PCa from January 2007 to June 2015. The inclusion criteria were: (1) proven PCa radically treated with radical prostatectomy (RP) or with primary external beam radiotherapy (EBRT); (2) PSA serum values available; (3) proven BCR (PSA >0.2 ng/mL after RP or PSA >2 ng/mL above the nadir after primary EBRT with rising PSA levels). Finally, 3,203 patients with recurrent PCa matching all the inclusion criteria were retrospectively enrolled and 4,426 scans were analysed. Overall, 52.8 % of the (11)C-choline PET/CT scans (2,337/4,426) and 54.8 % of the patients (1,755/3,203) were positive. In 29.4 % of the scans, at least one distant finding was observed. The mean and median PSA values were, respectively, 4.9 and 2.1 ng/mL at the time of the scan (range 0.2 - 50 ng/mL). In our series, 995 scans were performed in patients with PSA levels between 1 and 2 ng/mL. In this subpopulation the positivity rate in the 995 scans was 44.7 %, with an incidence of distant findings of 19.2 % and an incidence of oligometastatic disease (one to three lesions) of 37.7 %. The absolute PSA value at the time of the scan and ongoing androgen deprivation therapy were associated with an increased probability of a positive (11)C-choline PET/CT scan (p < 0.0001). In the ROC analysis, a PSA value of 1.16 ng/mL was the optimal cut-off value. In patients with a PSA value <1.16 ng/mL, 26.8 % of 1,426 (11)C-choline PET/CT scans were positive, with oligometastatic disease in 84.7 % of positive scans. In a large cohort of patients, the feasibility of (11)C-choline PET/CT for detecting the sites of metastatic disease in PCa patients with BCR was confirmed. The PSA level was the main predictor of a positive scan with 1.16 ng/mL as the optimal cut-off value. In the majority of positive scans oligometastatic disease, potentially treatable with salvage therapies, was observed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van den Bergh, Laura, E-mail: laura.vandenbergh@uzleuven.be; Koole, Michel; Isebaert, Sofie
2012-08-01
Purpose: To investigate the additional value of {sup 11}C-choline positron emission tomography (PET)-computed tomography (CT) to T2-weighted (T2w) magnetic resonance imaging (MRI) for localization of intraprostatic tumor nodules. Methods and Materials: Forty-nine prostate cancer patients underwent T2w MRI and {sup 11}C-choline PET-CT before radical prostatectomy and extended lymphadenectomy. Tumor regions were outlined on the whole-mount histopathology sections and on the T2w MR images. Tumor localization was recorded in the basal, middle, and apical part of the prostate by means of an octant grid. To analyze {sup 11}C-choline PET-CT images, the same grid was used to calculate the standardized uptake valuesmore » (SUV) per octant, after rigid registration with the T2w MR images for anatomic reference. Results: In total, 1,176 octants were analyzed. Sensitivity, specificity, and accuracy of T2w MRI were 33.5%, 94.6%, and 70.2%, respectively. For {sup 11}C-choline PET-CT, the mean SUV{sub max} of malignant octants was significantly higher than the mean SUV{sub max} of benign octants (3.69 {+-} 1.29 vs. 3.06 {+-} 0.97, p < 0.0001) which was also true for mean SUV{sub mean} values (2.39 {+-} 0.77 vs. 1.94 {+-} 0.61, p < 0.0001). A positive correlation was observed between SUV{sub mean} and absolute tumor volume (Spearman r = 0.3003, p = 0.0362). No correlation was found between SUVs and prostate-specific antigen, T-stage or Gleason score. The highest accuracy (61.1%) was obtained with a SUV{sub max} cutoff of 2.70, resulting in a sensitivity of 77.4% and a specificity of 44.9%. When both modalities were combined (PET-CT or MRI positive), sensitivity levels increased as a function of SUV{sub max} but at the cost of specificity. When only considering suspect octants on {sup 11}C-choline PET-CT (SUV{sub max} {>=} 2.70) and T2w MRI, 84.7% of these segments were in agreement with the gold standard, compared with 80.5% for T2w MRI alone. Conclusions: The additional value of {sup 11}C-choline PET-CT next to T2w MRI in detecting tumor nodules within the prostate is limited.« less
Picchio, M; Berardi, G; Fodor, A; Busnardo, E; Crivellaro, C; Giovacchini, G; Fiorino, C; Kirienko, M; Incerti, E; Messa, C; Gianolli, L; Di Muzio, N
2014-07-01
To evaluate, in prostate cancer (PCa) patients the potential of (11)C-choline PET/CT as a guide to helical tomotherapy (HTT) of lymph-node (LN) relapses with simultaneous integrated boost (SIB). The efficacy and feasibility of HTT in terms of acute toxicity were assessed. We enrolled 83 PCa patients (mean age 68 years, range 51 - 82 years) with biochemical recurrence after radical primary treatment (mean serum PSA 7.61 ng/ml, range 0.37 - 187.00 ng/ml; PSA0) who showed pathological findings on (11)C-choline PET/CT only at the LN site. (11)C-Choline PET/CT was performed for restaging and then for radiation treatment planning (PET/CT0). Of the 83 patients, 8 experienced further LN relapse, of whom 5 were retreated once and 3 were retreated twice (total 94 radiotherapy treatments). All pelvic and/or abdominal LNs positive on PET/CT0 were treated with high doses using SIB. Doses were in the range 36 - 74 Gy administered in 28 fractions. After the end of HTT (mean 83 days, range 16 - 365 days), serum PSA was measured in all patients (PSA1) and compared with PSA0 to evaluate early biochemical response. In 47 patients PET/CT was repeated (PET/CT1) to assess metabolic responses at the treated areas. Toxicity criteria of the Radiation Therapy Oncology Group (RTOG) were used to assess acute toxicity. PET/CT0 revealed pathological LNs in the pelvis in 49 patients, pathological LNs in the abdomen in 15 patients pathological LNs in both the pelvis and abdomen in 18 patients, and pathological LNs in the pelvis or abdomen and other sites in 12 patients. All these sites were treated with HTT. With respect to PSA0, PSA1 (mean 6.28 ng/ml, range 0.00 - 220.46 ng/ml) showed a complete biochemical response after 66 of the 94 HTT treatments, a partial response after 12 treatments, stable disease after 1 treatment and progression of disease after 15 treatments. Of the 47 patients receiving PET/CT1, 20 showed a complete metabolic response at the treated area, 22 a partial metabolic response, 3 progression of disease and 2 stable disease. HTT with SIB was well tolerated in all patients. Grade 3 acute toxicity in the genitourinary tract was observed in two patients. (11)C-Choline PET/CT is a valuable tool for planning and monitoring HTT in LN relapse after primary treatment. High-dose hypofractionated (11)C-choline PET/CT-guided HTT with SIB is well tolerated and is associated with a high early biochemical response rate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Joe H.; University of Melbourne, Victoria; Lim Joon, Daryl
Purpose: To demonstrate the technical feasibility of intensity modulated radiation therapy (IMRT) dose painting using {sup 11}C-choline positron emission tomography PET scans in patients with localized prostate cancer. Methods and Materials: This was an RT planning study of 8 patients with prostate cancer who had {sup 11}C-choline PET scans prior to radical prostatectomy. Two contours were semiautomatically generated on the basis of the PET scans for each patient: 60% and 70% of the maximum standardized uptake values (SUV{sub 60%} and SUV{sub 70%}). Three IMRT plans were generated for each patient: PLAN{sub 78}, which consisted of whole-prostate radiation therapy to 78more » Gy; PLAN{sub 78-90}, which consisted of whole-prostate RT to 78 Gy, a boost to the SUV{sub 60%} to 84 Gy, and a further boost to the SUV{sub 70%} to 90 Gy; and PLAN{sub 72-90}, which consisted of whole-prostate RT to 72 Gy, a boost to the SUV{sub 60%} to 84 Gy, and a further boost to the SUV{sub 70%} to 90 Gy. The feasibility of these plans was judged by their ability to reach prescription doses while adhering to published dose constraints. Tumor control probabilities based on PET scan-defined volumes (TCP{sub PET}) and on prostatectomy-defined volumes (TCP{sub path}), and rectal normal tissue complication probabilities (NTCP) were compared between the plans. Results: All plans for all patients reached prescription doses while adhering to dose constraints. TCP{sub PET} values for PLAN{sub 78}, PLAN{sub 78-90}, and PLAN{sub 72-90} were 65%, 97%, and 96%, respectively. TCP{sub path} values were 71%, 97%, and 89%, respectively. Both PLAN{sub 78-90} and PLAN{sub 72-90} had significantly higher TCP{sub PET} (P=.002 and .001) and TCP{sub path} (P<.001 and .014) values than PLAN{sub 78}. PLAN{sub 78-90} and PLAN{sub 72-90} were not significantly different in terms of TCP{sub PET} or TCP{sub path}. There were no significant differences in rectal NTCPs between the 3 plans. Conclusions: IMRT dose painting for localized prostate cancer using {sup 11}C-choline PET scans is technically feasible. Dose painting results in higher TCPs without higher NTCPs.« less
Oka, Shuntaro; Kanagawa, Masaru; Doi, Yoshihiro; Schuster, David M; Goodman, Mark M; Yoshimura, Hirokatsu
2017-01-01
18 F-Fluciclovine ( trans -1-amino-3- 18 F-fluorocyclobutanecarboxylic acid; anti - 18 F-FACBC) is a positron emission tomography (PET) tracer for diagnosing cancers (e.g., prostate and breast cancer). The most frequent metastatic organ of these cancers is bone. Fluciclovine-PET can visualize bony lesions in clinical practice; however, such lesions have not been described histologically. Methods: We investigated the potential of 14 C-fluciclovine in aiding the visualization of osteolytic and osteoblastic bone metastases (with histological analyses), compared with 3 H-2-deoxy-2-fluoro-D-glucose ( 3 H-FDG), 3 H-choline chloride ( 3 H-choline), and 99m Tc-hydroxymethylene diphosphonate ( 99m Tc-HMDP) by using triple-tracer autoradiography in rat breast cancer osteolytic (on day 12 ± 1 postinjection of MRMT-1) and prostate cancer osteoblastic (on day 20 ± 3 postinjection of AT6.1) metastatic models. Results: The distribution patterns of 14 C-fluciclovine, 3 H-FDG, and 3 H-choline, but not 99m Tc-HMDP, were similar in both models, and the lesions where these tracers accumulated were, histologically, typical osteolytic and osteoblastic lesions. 99m Tc-HMDP accumulated mostly in osteoblastic lesions. 14 C-fluciclovine could visualize the osteolytic lesions as early as day 6 postinjection of MRMT-1. However, differential distributions in 14 C-fluciclovine and 3 H-FDG existed, based on histological differences: low 14 C-fluciclovine and high 3 H-FDG accumulation in osteolytic lesions with inflammation. In the osteoblastic metastatic model, visualization of osteoblastic lesions with 14 C-fluciclovine was not clear, yet clearer than with 3 H-FDG. Although half of the osteoblastic lesions with 14 C-fluciclovine accumulation showed negligible 3 H-choline accumulation in comparison, they were histologically similar to lesions with marked 14 C-fluciclovine and 3 H-choline accumulation. Conclusion: These results suggest that fluciclovine-PET can visualize true osteolytic and osteoblastic bone metastatic lesions.
Oka, Shuntaro; Kanagawa, Masaru; Doi, Yoshihiro; Schuster, David M.; Goodman, Mark M.; Yoshimura, Hirokatsu
2017-01-01
18F-Fluciclovine (trans-1-amino-3-18F-fluorocyclobutanecarboxylic acid; anti-18F-FACBC) is a positron emission tomography (PET) tracer for diagnosing cancers (e.g., prostate and breast cancer). The most frequent metastatic organ of these cancers is bone. Fluciclovine-PET can visualize bony lesions in clinical practice; however, such lesions have not been described histologically. Methods: We investigated the potential of 14C-fluciclovine in aiding the visualization of osteolytic and osteoblastic bone metastases (with histological analyses), compared with 3H-2-deoxy-2-fluoro-D-glucose (3H-FDG), 3H-choline chloride (3H-choline), and 99mTc-hydroxymethylene diphosphonate (99mTc-HMDP) by using triple-tracer autoradiography in rat breast cancer osteolytic (on day 12 ± 1 postinjection of MRMT-1) and prostate cancer osteoblastic (on day 20 ± 3 postinjection of AT6.1) metastatic models. Results: The distribution patterns of 14C-fluciclovine, 3H-FDG, and 3H-choline, but not 99mTc-HMDP, were similar in both models, and the lesions where these tracers accumulated were, histologically, typical osteolytic and osteoblastic lesions. 99mTc-HMDP accumulated mostly in osteoblastic lesions. 14C-fluciclovine could visualize the osteolytic lesions as early as day 6 postinjection of MRMT-1. However, differential distributions in 14C-fluciclovine and 3H-FDG existed, based on histological differences: low 14C-fluciclovine and high 3H-FDG accumulation in osteolytic lesions with inflammation. In the osteoblastic metastatic model, visualization of osteoblastic lesions with 14C-fluciclovine was not clear, yet clearer than with 3H-FDG. Although half of the osteoblastic lesions with 14C-fluciclovine accumulation showed negligible 3H-choline accumulation in comparison, they were histologically similar to lesions with marked 14C-fluciclovine and 3H-choline accumulation. Conclusion: These results suggest that fluciclovine-PET can visualize true osteolytic and osteoblastic bone metastatic lesions. PMID:28656060
Challapalli, Amarnath; Barwick, Tara; Tomasi, Giampaolo; O' Doherty, Michael; Contractor, Kaiyumars; Stewart, Simon; Al-Nahhas, Adil; Behan, Kevin; Coombes, Charles; Aboagye, Eric O; Mangar, Stephen
2014-01-01
The aim of the study was to assess the effects of neoadjuvant androgen deprivation (NAD) and radical prostate radiotherapy with concurrent androgen deprivation (RT-CAD) on prostatic [C]choline kinetics and thus develop methodology for the use of [C]choline-PET/computed tomography (CT) as an early imaging biomarker. Ten patients with histologically confirmed prostate cancer underwent three sequential dynamic [C]choline-PET/CT pelvic scans: at baseline, after NAD and 4 months after RT-CAD. [C]Choline uptake was quantified using the average and maximum standardized uptake values at 60 min (SUV60,ave and SUV60,max), the tumour-to-muscle ratios (TMR60,max) and net irreversible retention of [C]choline at steady state (Kimod-pat). The combination of NAD and RT-CAD significantly decreased tumour [C]choline uptake (SUV60,ave, SUV60,max, TMR60,max or Kimod-pat) and prostate-specific antigen (PSA) levels (analysis of variance, P<0.001 for all variables). Although the magnitude of reduction in the variables was larger after NAD, there was a smaller additional reduction after RT-CAD. A wide range of reduction in tumour SUV60,ave (38-83.7%) and SUV60,max (22.2-85.3%) was seen with combined NAD and RT-CAD despite patients universally achieving PSA suppression (narrow range of 93.5-99.7%). There was good association between baseline SUV60,max and initial PSA levels (Pearson's r=0.7, P=0.04). The reduction in tumour SUV60,ave after NAD was associated with PSA reduction (r=0.7, P=0.04). This association occurred despite the larger reduction in PSA (94%) compared with SUV60,ave (58%). This feasibility study shows that [C]choline-PET/CT detects metabolic changes within tumours following NAD and RT-CAD to the prostate. A differential reduction in [C]choline uptake despite a global reduction in PSA following NAD and RT-CAD could provide prognostic information and warrants further evaluation as an imaging biomarker in this setting.
Evangelista, Laura; Guttilla, Andrea; Zattoni, Fabio; Muzzio, Pier Carlo; Zattoni, Filiberto
2013-06-01
Determination of tumour involvement of regional lymph nodes in patients with prostate cancer (PCa) is of key importance for the proper planning of treatment. To provide a critical overview of published reports and to perform a meta-analysis about the diagnostic performance of 18F-choline and 11C-choline positron emission tomography (PET) or PET/computed tomography (CT) in the lymph node staging of PCa. A Medline, Web of Knowledge, and Google Scholar search was carried out to select English-language articles published before January 2012 that discussed the diagnostic performance of choline PET to individualise lymph node disease at initial staging in PCa patients. Articles were included only if absolute numbers of true-positive, true-negative, false-positive, and false-negative test results were available or derivable from the text and focused on lymph node metastases. Reviews, clinical reports, and editorial articles were excluded. All complete studies were reviewed; thus qualitative and quantitative analyses were performed. From the year 2000 to January 2012, we found 18 complete articles that critically evaluated the role of choline PET and PCa at initial staging. The meta-analysis was carried out and consisted of 10 selected studies with a total of 441 patients. The meta-analysis provided the following results: pooled sensitivity 49.2% (95% confidence interval [CI], 39.9-58.4) and pooled specificity 95% (95% CI, 92-97.1). The area under the curve was 0.9446 (p<0.05). The heterogeneity ranged between 22.7% and 78.4%. The diagnostic odds ratio was 18.999 (95% CI, 7.109-50.773). Choline PET and PET/CT provide low sensitivity in the detection of lymph node metastases prior to surgery in PCa patients. A high specificity has been reported from the overall studies. Studies carried out on a larger scale with a homogeneous patient population together with the evaluation of cost effectiveness are warranted. Copyright © 2012 European Association of Urology. Published by Elsevier B.V. All rights reserved.
Incerti, Elena; Gangemi, Vincenzo; Mapelli, Paola; Deantoni, Chiara Lucrezia; Giovacchini, Giampiero; Fallanca, Federico; Fodor, Andrei; Ciarmiello, Andrea; Baldari, Sergio; Gianolli, Luigi; Di Muzio, Nadia; Picchio, Maria
2017-11-10
To evaluate the efficacy of 11C-choline PET/CT (CHO-PET/CT) based helical tomotherapy (HTT) as a therapeutic approach for bone metastases in recurrent prostate cancer (PCa) patients. This retrospective study includes 20 PCa patients (median age: 67; range: 51-80 years) presenting biochemical relapse after primary treatment who underwent CHO-PET/CT based HTT on positive bone metastases from December 2007 to June 2014. The effectiveness of HTT has been assessed with biochemical response at 3/6/12 months, biochemical relapse free survival (bRFS) and overall survival (OS) at 2 years. Toxicity has also been considered and assessed according to Common Terminology Criteria for Adverse Events (CTCAE). All patients presented a relapse at the time of CHO-PET/CT at bone level. In addition 15/20 (75%) also at lymph nodes (LNs) level (total lesions= 54). All patients underwent HTT on bone metastases and 19/20 concomitantly on prostatic bed and LNs. The median follow-up from CHO-PET/CT was 2 years (range: 1-7 years). At 3 months after the beginning of HTT treatment complete or partial biochemical response occurred in 79% of patients, at 6 months in 82% and at 12 months in 63% of patients. bRFS and OS at 2 years were 50% and 55% of patients, respectively. Patients presented mostly grade 1 or 2 toxicity according to CTCAE. The only grade 3 late toxicity has been observed in one patient. CHO-PET/CT based HTT is a suitable therapeutic approach in patients with recurrent PCa presenting bone metastases with a medium-low toxicity. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Hegemann, Nina-Sophie; Wenter, Vera; Spath, Sonja; Kusumo, Nadia; Li, Minglun; Bartenstein, Peter; Fendler, Wolfgang P; Stief, Christian; Belka, Claus; Ganswindt, Ute
2016-03-11
In order to define adequate radiation portals in nodal positive prostate cancer a detailed knowledge of the anatomic lymph-node distribution is mandatory. We therefore systematically analyzed the localization of Choline PET/CT positive lymph nodes and compared it to the RTOG recommendation of pelvic CTV, as well as to previous work, the SPECT sentinel lymph node atlas. Thirty-two patients being mostly high risk patients with a PSA of 12.5 ng/ml (median) received PET/CT before any treatment. Eighty-seven patients received PET/CT for staging due to biochemical failure with a median PSA of 3.12 ng/ml. Each single PET-positive lymph node was manually contoured in a "virtual" patient dataset to achieve a 3-D visualization, resulting in an atlas of the cumulative PET positive lymph node distribution. Further the PET-positive lymph node location in each patient was assessed with regard to the existence of a potential geographic miss (i.e. PET-positive lymph nodes that would not have been treated adequately by the RTOG consensus on CTV definition of pelvic lymph nodes). Seventy-eight and 209 PET positive lymph nodes were detected in patients with no prior treatment and in postoperative patients, respectively. The most common sites of PET positive lymph nodes in patients with no prior treatment were external iliac (32.1 %), followed by common iliac (23.1 %) and para-aortic (19.2 %). In postoperative patients the most common sites of PET positive lymph nodes were common iliac (24.9 %), followed by external iliac (23.0 %) and para-aortic (20.1 %). In patients with no prior treatment there were 34 (43.6 %) and in postoperative patients there were 77 (36.8 %) of all detected lymph nodes that would not have been treated adequately using the RTOG CTV. We compared the distribution of lymph nodes gained by Choline PET/CT to the preexisting SPECT sentinel lymph node atlas and saw an overall good congruence. Choline PET/CT and SPECT sentinel lymph node atlas are comparable to each other. More than one-third of the PET positive lymph nodes in patients with no prior treatment and in postoperative patients would not have been treated adequately using the RTOG CTV. To reduce geographical miss, image based definition of an individual target volume is necessary.
An Incidental Renal Oncocytoma: 18F-Choline PET/MRI
Mallia, Andrew; Bashir, Usman; Stirling, James; Wolfe, Konrad; Goh, Vicky; Cook, Gary
2016-01-01
PET/MRI is a new hybrid imaging modality and has the potential to become a powerful imaging tool. It is currently one of the most active areas of research in diagnostic imaging. The characterisation of an incidental renal lesion can be difficult. In particular, the differentiation of an oncocytoma from other solid renal lesions such as renal cell carcinoma (RCC) represents a diagnostic challenge. We describe the detection of an incidental renal oncocytoma in a 79-year gentleman who underwent a re-staging 18F-Choline PET/MRI following a rise in PSA values (4.07, nadir 1.3).
Fanti, Stefano; Minozzi, Silvia; Castellucci, Paolo; Balduzzi, Sara; Herrmann, Ken; Krause, Bernd Joachim; Oyen, Wim; Chiti, Arturo
2016-01-01
For the last decade PET and PET/CT with (11)C-choline have been proposed for the evaluation of prostate cancer (PC), but the diagnostic performance of (11)C-choline PET/CT is still a matter of debate. We performed a comprehensive review of the most important clinical application of (11)C-choline PET, restaging of patients with biochemical relapse, following a rigorous methodological approach and including assessment of the risk of bias. We conducted a systematic review and meta-analysis of the literature assessing (11)C-choline PET/CT for its accuracy in the diagnosis and ability to detect the site of recurrence of PC in the restaging of patients with biochemical recurrence after initial treatment with curative intent. We performed a comprehensive literature search of PubMed and the Cochrane Library to determine the accuracy for the detection of the site of recurrence (prostate bed recurrences, metastatic spread to locoregional pelvic lymph nodes or distant metastases). Only studies with a reference standard (for prostatic bed histopathology, for histopathology or biopsy of distant metastases or a composite reference standard with clinical follow-up of at least 12 months, correlative imaging and clinical data) were included. Overall 425 studies were retrieved, of which 43 were judged as potentially relevant and 29 with 2,686 participants were finally included. Of these 29 studies, 18 reported results for any relapse, All 18 studies, with a total of 2,126 participants, reported detection rates. The pooled rate was 62 % (95 % CI 53 - 71 %). Of the 18 studies, 12 with 1,270 participants reported useful data to derive sensitivity and specificity. The pooled sensitivity was 89 % (95 % CI 83 - 93 %) and the pooled specificity was 89 % (95 % CI 73 - 96 %). Of 11 studies reporting results for local relapse, 9 with 993 participants reported detection rates. The pooled rate was 27 % (95 % CI 16 - 38 %). Six studies with 491 participants reported sensitivity and specificity. The pooled sensitivity was 61 % (95 % CI 40 - 80 %) and the pooled specificity was 97 % (95 % CI 87 - 99 %). Ten studies reported results for lymph nodes and distant metastases. For nodal disease, 7 studies with 752 participants reported detection rates. The pooled rate was 36 % (95 % CI 22 - 50 %). For bone metastases, 8 studies with 775 participants reported detection rates. The pooled rate was 25 % (95 % CI 16 - 34 %). There is a significant amount of (11)C-choline PET data published showing a high degree of consistency in inclusion criteria, acquisition protocols and scan interpretation criteria. Furthermore, the quality of the data derived limited to the same standard of reference was acceptable. Despite a high variability in the observed prevalence of any relapse, the diagnostic performance of (11)C-choline PET was in line with previous meta-analyses. Our data confirm the very good accuracy of (11)C-choline PET for detection of lymph node metastases and/or distant lesions in a single examination in patients with biochemical relapse.
Freesmeyer, Martin; Drescher, Robert
2015-01-01
The purpose was to show the feasibility of F-18 choline positron emission tomography (PET) angiography for the evaluation of abdominal and iliac arteries. Thirty-five patients were examined and image quality was scored. Findings were correlated with contrast-enhanced computed tomography. Image quality was best in the aorta and common iliac arteries (100% and 93% of vessels). Negative predictive values of PET angiography were excellent (100%), and positive predictive values were impaired by disease overestimation. PET angiography is technically feasible and of good image quality in large arteries. In selected cases, it may become an alternative to established angiographic methods. Copyright © 2015 Elsevier Inc. All rights reserved.
Lu, Lijun; Lv, Wenbing; Jiang, Jun; Ma, Jianhua; Feng, Qianjin; Rahmim, Arman; Chen, Wufan
2016-12-01
Radiomic features are increasingly utilized to evaluate tumor heterogeneity in PET imaging and to enable enhanced prediction of therapy response and outcome. An important ingredient to success in translation of radiomic features to clinical reality is to quantify and ascertain their robustness. In the present work, we studied the impact of segmentation and discretization on 88 radiomic features in 2-deoxy-2-[ 18 F]fluoro-D-glucose ([ 18 F]FDG) and [ 11 C]methyl-choline ([ 11 C]choline) positron emission tomography/X-ray computed tomography (PET/CT) imaging of nasopharyngeal carcinoma. Forty patients underwent [ 18 F]FDG PET/CT scans. Of these, nine patients were imaged on a different day utilizing [ 11 C]choline PET/CT. Tumors were delineated using reference manual segmentation by the consensus of three expert physicians, using 41, 50, and 70 % maximum standardized uptake value (SUV max ) threshold with background correction, Nestle's method, and watershed and region growing methods, and then discretized with fixed bin size (0.05, 0.1, 0.2, 0.5, and 1) in units of SUV. A total of 88 features, including 21 first-order intensity features, 10 shape features, and 57 second- and higher-order textural features, were extracted from the tumors. The robustness of the features was evaluated via the intraclass correlation coefficient (ICC) for seven kinds of segmentation methods (involving all 88 features) and five kinds of discretization bin size (involving the 57 second- and higher-order features). Forty-four (50 %) and 55 (63 %) features depicted ICC ≥0.8 with respect to segmentation as obtained from [ 18 F]FDG and [ 11 C]choline, respectively. Thirteen (23 %) and 12 (21 %) features showed ICC ≥0.8 with respect to discretization as obtained from [ 18 F]FDG and [ 11 C]choline, respectively. Six features were obtained from both [ 18 F]FDG and [ 11 C]choline having ICC ≥0.8 for both segmentation and discretization, five of which were gray-level co-occurrence matrix (GLCM) features (SumEntropy, Entropy, DifEntropy, Homogeneity1, and Homogeneity2) and one of which was an neighborhood gray-tone different matrix (NGTDM) feature (Coarseness). Discretization generated larger effects on features than segmentation in both tracers. Features extracted from [ 11 C]choline were more robust than [ 18 F]FDG for segmentation. Discretization had very similar effects on features extracted from both tracers.
[11C]choline uptake in regenerating liver after partial hepatectomy or CCl4-administration.
Sasaki, Toru
2004-02-01
To characterize [methyl-(11)C]choline ([(11)C]choline) as an oncologic PET radiopharmaceutical, [(11)C]choline uptake in regenerating livers after partial hepatectomy as a model of typical proliferating tissue and after CCl(4) insult as that of proliferating tissue with inflammation, was studied in rats. [(11)C]Choline, [(18)F]2-fluoro-2-deoxy-D-glucose ([(18)F]FDG) and [2-(14)C]thymidine ([(14)C]TdR) uptake was studied in regenerating rat liver after 70% partial hepatectomy or CCl(4)-administration. [(11)C]Choline uptake in regenerating liver after partial hepatectomy was significantly increased with [(14)C]TdR uptake as a marker of DNA synthesis at 18 hours after surgery. On the other hand, the uptake was not accelerated by CCl(4)-administration, though it significantly increased [(14)C]TdR uptake. There were no differences of [(11)C]choline uptake acceleration following partial hepatectomy among the three parts of the regenerating liver. [(18)F]FDG uptake was accelerated in the regenerating liver on either partial hepatectomy or CCl(4)-administration. The magnitude of the increase in [(18)F]FDG uptake in the regenerating liver induced by partial hepatectomy was greater than that for [(11)C]choline. [(11)C]Choline uptake in the liver was accelerated by partial hepatectomy, but not by CCl(4)-administration. This might be expected given that the differentiation between proliferating tissues such as tumor and inflammatory tissue was possible by [(11)C]choline-PET.
Conteduca, V; Scarpi, E; Caroli, P; Salvi, S; Lolli, C; Burgio, S L; Menna, C; Schepisi, G; Testoni, S; Gurioli, G; Paganelli, G; Casadio, V; Matteucci, F; De Giorgi, U
2017-11-14
The association between choline uptake and androgen receptor (AR) expression is suggested by the upregulation of choline kinase-alpha in prostate cancer. Recently, detection of AR aberration in cell-free DNA as well as early 18F-fluorocholine positron emission tomography/computed tomography (FCH-PET/CT) were associated with outcome in metastatic castration-resistant prostate cancer (mCRPC) patients treated with abiraterone and enzalutamide. We aimed to make a direct comparison between circulating AR copy number (CN) and choline uptake at FCH-PET/CT. We analysed 80 mCRPC patients progressing after docetaxel treated with abiraterone (n = 47) or enzalutamide (n = 33). We analysed AR CN from plasma samples using digital PCR and Taqman CN assays and total lesion activity (TLA) and metabolic tumor volume (MTV) on FCH-PET/CT at baseline. A meaningful correlation was showed among AR gain and TLA/MTV compared to AR non-gained cases (P = 0.001 and P = 0.004, respectively), independently from type of treatment. Multivariate analysis revealed that AR CN and only TLA were associated with both shorter PFS (P < 0.0009 and P = 0.026, respectively) and OS (P < 0.031 and P = 0.039, respectively). AR gain appeared significantly correlated with choline uptake represented mainly by TLA. Further prospective studies are warranted to better address this pathway of AR-signalling and to identify multiplex biomarker strategies including plasma AR and FCH-PET/CT in mCRPC patients.
Kuang, Yu; Wu, Lili; Hirata, Emily; Miyazaki, Kyle; Sato, Miles; Kwee, Sandi A
2015-04-01
This study evaluated expected tumor control and normal tissue toxicity for prostate volumetric modulated arc therapy (VMAT) with and without radiation boosts to an intraprostatically dominant lesion (IDL), defined by (18)F-choline positron emission tomography/computed tomography (PET/CT). Thirty patients with localized prostate cancer underwent (18)F-choline PET/CT before treatment. Two VMAT plans, plan79 Gy and plan100-105 Gy, were compared for each patient. The whole-prostate planning target volume (PTVprostate) prescription was 79 Gy in both plans, but plan100-105 Gy added simultaneous boost doses of 100 Gy and 105 Gy to the IDL, defined by 60% and 70% of maximum prostatic uptake on (18)F-choline PET (IDLsuv60% and IDLsuv70%, respectively, with IDLsuv70% nested inside IDLsuv60% to potentially enhance tumor specificity of the maximum point dose). Plan evaluations included histopathological correspondence, isodose distributions, dose-volume histograms, tumor control probability (TCP), and normal tissue complication probability (NTCP). Planning objectives and dose constraints proved feasible in 30 of 30 cases. Prostate sextant histopathology was available for 28 cases, confirming that IDLsuv60% adequately covered all tumor-bearing prostate sextants in 27 cases and provided partial coverage in 1 case. Plan100-105 Gy had significantly higher TCP than plan79 Gy across all prostate regions for α/β ratios ranging from 1.5 Gy to 10 Gy (P<.001 for each case). There were no significant differences in bladder and femoral head NTCP between plans and slightly lower rectal NTCP (endpoint: grade ≥ 2 late toxicity or rectal bleeding) was found for plan100-105 Gy. VMAT can potentially increase the likelihood of tumor control in primary prostate cancer while observing normal tissue tolerances through simultaneous delivery of a steep radiation boost to a (18)F-choline PET-defined IDL. Copyright © 2015 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Breeuwsma, Anthonius J., E-mail: a.j.breeuwsma@uro.umcg.n; Departments of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen; Pruim, Jan
2010-05-01
Purpose: An elevated serum prostate-specific antigen (PSA) level cannot distinguish between local-regional recurrences and the presence of distant metastases after treatment with curative intent for prostate cancer. With the advent of salvage treatment such as cryotherapy, it has become important to localize the site of recurrence (local or distant). In this study, the potential of {sup 11}C-choline positron emission tomography (PET) to identify site of recurrence was investigated in patients with rising PSA after external-beam radiotherapy (EBRT). Methods and Materials: Seventy patients with histologically proven prostate cancer treated with EBRT and showing biochemical recurrence as defined by American Society formore » Therapeutic Radiology and Oncology consensus statement and 10 patients without recurrence underwent a PET scan using 400 MBq {sup 11}C-choline intravenously. Biopsy-proven histology from the site of suspicion, findings with other imaging modalities, clinical follow-up and/or response to adjuvant therapy were used as comparative references. Results: None of the 10 patients without biochemical recurrence had a positive PET scan. Fifty-seven of 70 patients with biochemical recurrence (median PSA 9.1 ng/mL; mean PSA 12.3 ng/mL) showed an abnormal uptake pattern (sensitivity 81%). The site of recurrence was only local in 41 of 57 patients (mean PSA 11.1 ng/mL at scan), locoregionally and/or distant in 16 of 57 patients (mean PSA 17.7 ng/mL). Overall the positive predictive value and negative predictive value for {sup 11}C-choline PET scan were 1.0 and 0.44 respectively. Accuracy was 84%. Conclusions: {sup 11}C-choline PET scan is a sensitive technique to identify the site of recurrence in patients with PSA relapse after EBRT for prostate cancer.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Joe H.; University of Melbourne, Victoria; Lim Joon, Daryl
2015-06-01
Purpose: The purpose of this study was to compare the accuracy of [{sup 11}C]choline positron emission tomography (CHOL-PET) with that of the combination of T2-weighted and diffusion-weighted (T2W/DW) magnetic resonance imaging (MRI) for delineating malignant intraprostatic lesions (IPLs) for guiding focal therapies and to investigate factors predicting the accuracy of CHOL-PET. Methods and Materials: This study included 21 patients who underwent CHOL-PET and T2W/DW MRI prior to radical prostatectomy. Two observers manually delineated IPL contours for each scan, and automatic IPL contours were generated on CHOL-PET based on varying proportions of the maximum standardized uptake value (SUV). IPLs identified onmore » prostatectomy specimens defined reference standard contours. The imaging-based contours were compared with the reference standard contours using Dice similarity coefficient (DSC), and sensitivity and specificity values. Factors that could potentially predict the DSC of the best contouring method were analyzed using linear models. Results: The best automatic contouring method, 60% of the maximum SUV (SUV{sub 60}) , had similar correlations (DSC: 0.59) with the manual PET contours (DSC: 0.52, P=.127) and significantly better correlations than the manual MRI contours (DSC: 0.37, P<.001). The sensitivity and specificity values were 72% and 71% for SUV{sub 60}; 53% and 86% for PET manual contouring; and 28% and 92% for MRI manual contouring. The tumor volume and transition zone pattern could independently predict the accuracy of CHOL-PET. Conclusions: CHOL-PET is superior to the combination of T2W/DW MRI for delineating IPLs. The accuracy of CHOL-PET is insufficient for gland-sparing focal therapies but may be accurate enough for focal boost therapies. The transition zone pattern is a new classification that may predict how well CHOL-PET delineates IPLs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, L; Wang, H; Kuang, Y
Purpose: To investigate the utility of {sup 18}F-choline positron emission tomography (PET) scans guidance for SBRT dose painting in patients with prostate cancer and its impact on tumor control probability (TCP) and normal tissue complication probability (NTCP). Methods: Twenty seven patients with localized prostate cancer who had {sup 18}F-choline PET/CT scan prior to treatment were included. A pair of nested intraprostatic dominant lesion (IDL) contours (IDL{sub suv60%} and IDL{sub suv70%}) were generated for each patient based on 60% and 70% of maximum prostate uptake on the {sup 18}F-choline PET images. GTV{sub reg} was delineated on prostate according to the glandmore » boundary seen on CT images. The PTVs (PTV{sub suv60%} and PTV{sub suv70%}) were defined as respective IDLs with a 3-mm margin posteriorly and 5 mm in all other dimensions. Two 5-fraction SBRT plans using VMAT technique along with 10 MV FFF beams, plan{sub 36Gy} and plan{sub 50–55Gy}, were generated for each patient. All plans included a dose of 36.25 Gy prescribed to PTV{sub reg}. The Plan{sub 50–55Gy} also included a simultaneous boost dose of 50 Gy and 55 Gy prescribed to the PTV{sub suv60%} and PTV{sub suv70%}, respectively. The utility of {sup 18}F-Choline PET-guided SBRT dose escalation was evaluated by its ability to achieve the prescription dose objectives while adhering to organ-at-risk (OAR) dose constraints. The TCP and NTCP calculated by radiological models were also compared between two plans for each patient. Results: In all 54 SBRT plans generated, the planning objectives and dose constraints were met without exception. Plan{sub 50–55Gy} had a significantly higher dose in PTV{sub suv60%} and PTV{sub suv70%} than those in Plan{sub 36Gy} (p < 0.05), respectively, while still maintaining a safe OAR sparing profile. In addition, plan{sub 50–55Gy} had significantly higher TCP than plan{sub 36Gy}. Conclusion: Using VMAT with FFF beams to incorporate a simultaneous {sup 18}F-choline PET-guided radiation boost dose up to 55 Gy into a SBRT plan is technically feasible. This work was supported in part by Congressionally Directed Medical Research Programs Prostate Cancer Research Program grant PC04130, National Institutes of Health/National Cancer Institute grant R41CA110121, and the UNLV Lincy Endowed Assistant Professorship.« less
Wahart, Aurélien; Guy, Jean-Baptiste; Vallard, Alexis; Geissler, Benjamin; Ben Mrad, Majed; Falk, Alexander T; Prevot, Nathalie; de Laroche, Guy; Rancoule, Chloé; Chargari, Cyrus; Magné, Nicolas
2016-01-01
The aim of this study was to report the first cases of salvage radiotherapy (RT) using the intensity-modulated radiotherapy (IMRT) with simultaneous integrated boost (SIB) targeted on choline positron emission tomography (PET) uptake in a local recurrent prostate cancer, after a radical prostatectomy. Four patients received salvage irradiation for biochemical relapse that occurred after the initial radical prostatectomy. The relapse occurred from 10 months to 6 years with PSA levels ranging from 2.35 to 4.86 ng ml(-1). For each patient, an (18)F-choline PET-CT showed a focal choline uptake in prostatic fossa, with standardized uptake value calculated on the basis of predicted lean body mass (SUL) max of 3.3-6.8. No involved lymph node or distant metastases were diagnosed. IMRT doses were of 62.7 Gy (1.9 Gy/fraction, 33 fractions), with a SIB of 69.3 Gy (2.1 Gy/fraction, 33 fractions) to a PET-guided target volume. Acute toxicities were limited. We observed no gastrointestinal toxicity ≥grade 2 and only one grade 2 genitourinary toxicity. At 1-month follow-up evaluation, no complication and a decrease in PSA level (6.8-43.8% of the pre-therapeutic level) were reported. After 4 months, a decrease in PSA level was obtained for all the patients, ranging from 30% to 70%. At a median follow-up of 15 months, PSA level was controlled for all the patients, but one of them experienced a distant lymph node recurrence. Salvage irradiation to the prostate bed with SIB guided by PET-CT is feasible, with biological efficacy and no major acute toxicity. IMRT with PET-oriented SIB for salvage treatment of prostate cancer is possible, without major acute toxicity.
Fodor, Andrei; Berardi, Genoveffa; Fiorino, Claudio; Picchio, Maria; Busnardo, Elena; Kirienko, Margarita; Incerti, Elena; Dell'Oca, Italo; Cozzarini, Cesare; Mangili, Paola; Pasetti, Marcella; Calandrino, Riccardo; Gianolli, Luigi; Di Muzio, Nadia G
2017-03-01
To report the 3-year toxicity and outcomes of carbon 11 (11C)-choline-positron emission tomography (PET)/computed tomography (CT)-guided radiotherapy (RT), delivered via helical tomotherapy (HTT; Tomotherapy ® Hi-Art II ® Treatment System, Accuray Inc., Sunnyvale, CA, USA) after lymph node (LN) relapses in patients with prostate cancer. From January 2005 to March 2013, 81 patients with biochemical recurrence after surgery, with or without adjuvant/salvage RT or radical RT, and with evidence of LN 11C-choline-PET/CT pathological uptake, underwent HTT (median [range] prostate-specific antigen level 2.59 [0.61-187] ng/mL). Of the 81 patients, 72 were treated at the pelvic and/or lumbar-aortic LN chain with HTT at 51.8 Gy/28 fr and with simultaneous integrated boost to a median dose of 65.5 Gy on the pathological uptake sites detected by 11C-choline-PET/CT. Nine patients were treated without simultaneous integrated boost (50-65.5 Gy, 25-30 fr). With a median (range) follow-up of 36 (9-116) months, 91.4% of the patients had a PSA reduction 3 months after HTT. The 3-year overall, local relapse-free and clinical relapse-free survival rates were 80.0, 89.8 and 61.8%, respectively. The 3-year actuarial incidences of ≥grade 2 rectal and ≥grade 2 genitourinary toxicity were 6.6% (±2.9%) and 26.3% (±5.5%), respectively. A PSA nadir of ≥0.26 ng/mL (hazard ratio [HR] 3.6, 95% confidence interval [CI] 1.7-7.7; P = 0.001), extrapelvic 11C-choline-PET/CT-positive LN location (HR 2.4, 95% CI 0.9-6.4; P = 0.07), RT previous to HTT (HR 2.7; 95% CI 1.07-6.9, P = 0.04) and number of positive LNs (HR 1.13, 95% CI 1.04-1.22; P = 0.003) were the main predictors of clinical relapse after HTT. 11C-choline-PET/CT-guided HTT is safe and effective in the treatment of LN relapses of prostate cancer in previously treated patients. © 2016 The Authors BJU International © 2016 BJU International Published by John Wiley & Sons Ltd.
Synthesis, isolation and purification of [11C]-choline
Jadwiński, Michał; Chmura, Agnieszka; Gorczewski, Kamil; Sokół, Maria
2016-01-01
[11C]-choline is an effective PET tracer used for imaging of neoplastic lesions and metastases of the prostate cancer. However, its production can be a challenge for manufacturers, as it has not yet been described in Polish or European pharmacopoeia. In this study the technical aspects of [11C]-choline production are described and detailed process parameters are provided. The quality control procedures for releasing [11C]-choline as solutio iniectabilis are also presented. The purity and quality of the radiopharmaceutical obtained according to the proposed method were find to be high enough to safely administrate the radiopharmaceutical to patients. Application of an automated synthesizer makes it possible to carry out the entire process of [11C]-choline production, isolation and purification within 20 minutes. It is crucial to maintain all aspects of the process as short as possible, since the decay half-time of carbon-11 is 20.4 minutes. The resulting radiopharmaceutical is sterile and pyrogen-free and of a high chemical, radiochemical, and radionuclide purity proved by chromatographic techniques. The yield of the process is up to 20%. [11C]-choline PET scanning can be used as accurate and effective diagnostic tool in all centers equipped with [11C]-target containing cyclotron. PMID:27660552
Liver metastases from prostate cancer at 11C-Choline PET/CT: a multicenter, retrospective analysis.
Ghedini, Pietro; Bossert, I; Zanoni, L; Ceci, F; Graziani, T; Castellucci, P; Ambrosini, V; Massari, F; Nobili, E; Melotti, B; Musto, A; Zoboli, S; Antunovic, L; Kirienko, M; Chiti, A; Mosconi, C; Ardizzoni, A; Golfieri, R; Fanti, S; Nanni, C
2018-05-01
During our daily clinical practice using 11C-Choline PET/CT for restaging patients affected by relapsing prostate cancer (rPCa) we noticed an unusual but significant occurrence of hypodense hepatic lesions with a different tracer uptake. Thus, we decided to evaluate the possible correlation between rPCa and these lesions as possible hepatic metastases. We retrospectively enrolled 542 patients diagnosed with rPCa in biochemical relapse after a radical treatment (surgery and/or radiotherapy). Among these, patients with a second tumor or other benign hepatic diseases were excluded. All patients underwent 11C-Choline PET/CT during the standard restaging workup of their disease. We analyzed CT images to evaluate the presence of hypodense lesions and PET images to identify the relative tracer uptake. In accordance to the subsequent oncological history, five clinical scenarios were recognized [Table 1]: normal low dose CT (ldCT) and normal tracer distribution (Group A); evidence of previously unknown hepatic round hypodense areas at ldCT with normal rim uptake (Group B); evidence of previously known hepatic round hypodense areas at ldCT stable over time and with normal rim uptake (Group C); evidence of previously known hepatic round hypodense areas at ldCT, in a previous PET/CT scan, with or without rim uptake and significantly changing over time in terms of size and/or uptake (Group D); evidence of hepatic round hypodense areas at ldCT with or without rim uptake confirmed as prostate liver metastases by histopathology, triple phase ceCT, ce-ultra sound (CEUS) and clinical/biochemical evaluation (Group E). We evaluated the correlation with PSA level at time of scan, rim SUVmax and association with local relapse or non-hepatic metastases (lymph nodes, bone, other parenchyma). Five hundred and forty-two consecutive patients were retrospectively enrolled. In 140 of the 542 patients more than one 11C-choline PET/CT had been performed. A total of 742 11C-Choline PET/CT scans were analyzed. Of the 542 patients enrolled, 456 (84.1%) had a normal appearance of the liver both at ldCT and PET (Group A). 19/542 (3,5%) belonged to Group B, 13/542 (2.4%) to Group C, 37/542 (6.8%) to Group D and 18/542 (3.3%) to Group E. Mean SUVmax of the rim was: 4.5 for Group B; 4.2 for Group C; 4.8 for Group D; 5.9 for Group E. Mean PSA level was 5.27 for Group A, 7.9 for Group B, 10.04 for Group C, 10.01 for Group D, 9.36 for Group E. Presence of positive findings at 11C-Choline PET/CT in any further anatomical area (local relapse, lymph node, bone, other extra hepatic sites) correlated with an higher PSA (p = 0.0285). In both the univariate and multivariate binary logistic regression analyses. PSA, SUVmax of the rim, local relapse, positive nodes were not associated to liver mets (Groups D-E) (p > 0.05). On the contrary, a significant correlation was found between the presence of liver metG (group D-E) and bone lesions (p= 0.00193). Our results indicate that liver metastases in relapsing prostate cancer may occur frequently. The real incidence evaluation needs more investigations. In this case and despite technical limitations, Choline PET/CT shows alterations of tracer distribution within the liver that could eventually be mistaken for simple cysts but can be suspected when associated to high trigger PSA, concomitant bone lesions or modification over time. In this clinical setting an accurate analysis of liver tracer distribution (increased or decreased uptake) by the nuclear medicine physician is, therefore, mandatory.
2013-10-01
AD_________________ Award Number: W81XWH-12-1-0597 TITLE: Parametric PET /MR Fusion Imaging to...Parametric PET /MR Fusion Imaging to Differentiate Aggressive from Indolent Primary Prostate Cancer with Application for Image-Guided Prostate Cancer Biopsies...The study investigates whether fusion PET /MRI imaging with 18F-choline PET /CT and diffusion-weighted MRI can be successfully applied to target prostate
Caroli, Paola; Sandler, Israel; Matteucci, Federica; De Giorgi, Ugo; Uccelli, Licia; Celli, Monica; Foca, Flavia; Barone, Domenico; Romeo, Antonino; Sarnelli, Anna; Paganelli, Giovanni
2018-06-19
We studied the usefulness of 68 Ga-prostate-specific membrane antigen (PSMA) PET/CT for detecting relapse in a prospective series of patients with biochemical recurrence (BCR) of prostate cancer (PCa) after radical treatment. Patients with BCR of PCa after radical surgery and/or radiotherapy with or without androgen-deprivation therapy were included in the study. 68 Ga-PSMA PET/CT scans performed from the top of the head to the mid-thigh 60 min after intravenous injection of 150 ± 50 MBq of 68 Ga-PSMA were interpreted by two nuclear medicine physicians. The results were correlated with prostate-specific antigen (PSA) levels at the time of the scan (PSApet), PSA doubling time, Gleason score, tumour stage, postsurgery tumour residue, time from primary therapy to BCR, and patient age. When available, 68 Ga-PSMA PET/CT scans were compared with negative 18 F-choline PET/CT scans routinely performed up to 1 month previously. From November 2015 to October 2017, 314 PCa patients with BCR were evaluated. Their median age was 70 years (range 44-92 years) and their median PSApet was 0.83 ng/ml (range 0.003-80.0 ng/ml). 68 Ga-PSMA PET/CT was positive (one or more suspected PCa lesions detected) in 197 patients (62.7%). Lesions limited to the pelvis, i.e. the prostate/prostate bed and/or pelvic lymph nodes (LNs), were detected in 117 patients (59.4%). At least one distant lesion (LNs, bone, other organs, separately or combined with local lesions) was detected in 80 patients (40.6%). PSApet was higher in PET-positive than in PET-negative patients (P < 0.0001). Of 88 patients negative on choline PET/CT scans, 59 (67%) were positive on 68 Ga-PSMA PET/CT. We confirmed the value of 68 Ga-PSMA PET/CT in restaging PCa patients with BCR, highlighting its superior performance and safety compared with choline PET/CT. Higher PSApet was associated with a higher relapse detection rate.
Pinkawa, Michael; Piroth, Marc D; Holy, Richard; Klotz, Jens; Djukic, Victoria; Corral, Nuria Escobar; Caffaro, Mariana; Winz, Oliver H; Krohn, Thomas; Mottaghy, Felix M; Eble, Michael J
2012-01-30
In comparison to the conventional whole-prostate dose escalation, an integrated boost to the macroscopic malignant lesion might potentially improve tumor control rates without increasing toxicity. Quality of life after radiotherapy (RT) with vs. without (18)F-choline PET-CT detected simultaneous integrated boost (SIB) was prospectively evaluated in this study. Whole body image acquisition in supine patient position followed 1 h after injection of 178-355MBq (18)F-choline. SIB was defined by a tumor-to-background uptake value ratio > 2 (GTV(PET)). A dose of 76Gy was prescribed to the prostate (PTV(prostate)) in 2Gy fractions, with or without SIB up to 80Gy. Patients treated with (n = 46) vs. without (n = 21) SIB were surveyed prospectively before (A), at the last day of RT (B) and a median time of two (C) and 19 month (D) after RT to compare QoL changes applying a validated questionnaire (EPIC - expanded prostate cancer index composite). With a median cut-off standard uptake value (SUV) of 3, a median GTV(PET) of 4.0 cm(3) and PTV(boost) (GTV(PET) with margins) of 17.3 cm(3) was defined. No significant differences were found for patients treated with vs. without SIB regarding urinary and bowel QoL changes at times B, C and D (mean differences ≤3 points for all comparisons). Significantly decreasing acute urinary and bowel score changes (mean changes > 5 points in comparison to baseline level at time A) were found for patients with and without SIB. However, long-term urinary and bowel QoL (time D) did not differ relative to baseline levels - with mean urinary and bowel function score changes < 3 points in both groups (median changes = 0 points). Only sexual function scores decreased significantly (> 5 points) at time D. Treatment planning with (18)F-choline PET-CT allows a dose escalation to a macroscopic intraprostatic lesion without significantly increasing toxicity.
Linxweiler, Johannes; Saar, Matthias; Al-Kailani, Zaid; Janssen, Martin; Ezziddin, Samer; Stöckle, Michael; Siemer, Stefan; Ohlmann, Carsten-Henning
2018-06-01
Salvage lymph node dissection (sLND) - performed open or minimally-invasive - is a treatment modality that can be offered to patients with nodal recurrence after radical prostatectomy (RP), especially in times where modern imaging methods like choline- or PSMA-PET/CT are available. Yet, there are only very limited data on the safety and oncological effectiveness of robotic sLND. We retrospectively identified patients who underwent robotic sLND at our institution between 2013 and 2017 for nodal recurrence after RP, which had been diagnosed either by 18 F-choline- or 68 Ga-PSMA-PET/CT. We analyzed perioperative data and early oncological outcomes with a focus on the comparison of patients with preoperative choline- vs. those with preoperative PSMA-PET/CT. We identified 36 patients who underwent robotic sLND at a median time of 45.3 months [range 3.1;228.6] after RP, with nodal recurrences detected in 25 patients by PSMA- and in 11 by choline-PET/CT. Median preoperative PSA, operation time and blood loss were 1.98 ng/ml [range 0.09;35.15], 129.5 min [range 65;202] and 50 ml [range 0;400], respectively. No high-grade complications occurred. A median number of 6.5 [range 1;25] lymph nodes were removed with a median of 1 [range 0;9] tumor-occupied node. None of the patients received any adjuvant treatment. Median postoperative PSA-change was -57% [range -100; +58] in the PSMA- and +10% [range -91; +95] in the choline-group (p = 0.015). 44% of patients in the PSMA- and 18% of patients in the choline-group experienced complete biochemical response (cBCR; PSA <0.2 ng/ml). Median time from sLND to the initiation of further therapy was 12 months [range 2;21.5] in the PSMA-group and 4.7 months [range 2.2;18.9] in the choline-group (p = 0.001). This is the hitherto largest series on robotic sLND for nodal recurrence after RP. Robotic sLND is a feasible therapeutic option with low morbidity, which can at least delay the initiation of further therapy - in some patients up to several years. However, the extend of sLND has to be standardized and randomized trials are needed to finally define the oncological effectiveness of this approach. Copyright © 2018 Elsevier Ltd. All rights reserved.
Oligorecurrent prostate cancer limited to lymph nodes: getting our ducks in a row
Fodor, Andrei; Lancia, Andrea; Ceci, Francesco; Picchio, Maria; Hoyer, Morten; Jereczek-Fossa, Barbara Alicja; Ost, Piet; Castellucci, Paolo; Incerti, Elena; Di Muzio, Nadia; Ingrosso, Gianluca
2018-05-11
Oligorecurrent prostate cancer with exclusive nodal involvement represents a common state of disease, amenable to local therapy. New radio-labeled tracers have enriched the possibility of cancer detection and treatment. In this review, we aim to illustrate the main nuclear medicine diagnostic options and the role of radiotherapy in this setting of patients. We performed a PubMed search referring to the PRISMA guidelines to analyze the performance of PSMA- and choline-PET in detecting oligorecurrence limited to lymph nodes, and to review the main studies supporting either ablative stereotactic body radiotherapy or regional lymph node irradiation in this clinical setting. PSMA-PET has shown higher efficacy in the diagnosis of nodal lesions if compared with choline-PET. More specifically, for PSA ≤ 2 ng/ml, the median detection rate of choline-PET ranges from 19.5 to 44.5%, whereas PSMA ranges from 51.5 to 74%. SBRT achieves high local control rates positively affecting progression-free survival (PFS), with androgen deprivation therapy (ADT)-free survival ranging from 25 to 44 months and with low toxicity rates (0-15%). Prophylactic nodal irradiation shows 3-year PFS rates ranging from 62 to 75%, but with a potential higher risk of toxicity. However, the chosen treatment option needs to be tailored on the single patient. Newer PET/CT radio-labeled tracers have increased disease detection in oligorecurrent prostate cancer patients. Growing evidence of their impact on metastasis-directed therapy encourages the use of the most advanced radiotherapy techniques in the clinical management of such patients.
Nanni, Cristina; Zanoni, Lucia; Pultrone, Cristian; Schiavina, Riccardo; Brunocilla, Eugenio; Lodi, Filippo; Malizia, Claudio; Ferrari, Matteo; Rigatti, Patrizio; Fonti, Cristina; Martorana, Giuseppe; Fanti, Stefano
2016-08-01
To compare the accuracy of (18)F-FACBC and (11)C-choline PET/CT in patients radically treated for prostate cancer presenting with biochemical relapse. This prospective study enrolled 100 consecutive patients radically treated for prostate cancer and presenting with rising PSA. Of these 100 patients, 89 were included in the analysis. All had biochemical relapse after radical prostatectomy (at least 3 months previously), had (11)C-choline and (18)F-FACBC PET/CT performed within 1 week and were off hormonal therapy at the time of the scans. The two tracers were compared directly in terms of overall positivity/negativity on both a per-patient basis and a per-site basis. Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and accuracy were calculated for both the tracers; follow-up at 1 year (including correlative imaging, PSA trend and pathology when available) was considered as the standard of reference. In 51 patients the results were negative and in 25 patients positive with both the tracers, in eight patients the results were positive with (18)F-FACBC but negative with (11)C-choline, and in five patients the results were positive with (11)C-choline but negative with (18)F-FACBC. Overall in 49 patients the results were false-negative (FN), in two true-negative, in 24 true-positive (TP) and in none false-positive (FP) with both tracers. In terms of discordances between the tracers: (1) in one patient, the result was FN with (11)C-choline but FP with (18)F-FACBC (lymph node), (2) in seven, FN with (11)C-choline but TP with (18)F-FACBC (lymph node in five, bone in one, local relapse in one), (3) in one, FP with (11)C-choline (lymph node) but TP with (18)F-FACBC (local relapse), (4) in two, FP with (11)C-choline (lymph nodes in one, local relapse in one) but FN with (18)F-FACBC, and (5) in three, TP with (11)C-choline (lymph nodes in two, bone in one) but FN with (18)F-FACBC. With (11)C-choline and (18)F-FACBC, sensitivities were 32 % and 37 %, specificities 40 % and 67 %, accuracies 32 % and 38 %, PPVs 90 % and 97 %, and NPVs 3 % and 4 %, respectively. Categorizing patients by PSA level (<1 ng/ml 28 patients, 1 - <2 ng/ml 28 patients, 2 - <3 ng/ml 11 patients, ≥3 ng/ml 22 patients), the number (percent) of patients with TP findings were generally higher with (18)F-FACBC than with (11)C-choline: six patients (21 %) and four patients (14 %), eight patients (29 %) and eight patients (29 %), five patients (45 %) and four patients (36 %), and 13 patients (59 %) and 11 patients (50 %), respectively. (18)F-FACBC can be considered an alternative tracer superior to (11)C-choline in the setting of patients with biochemical relapse after radical prostatectomy.
Use of PET and Other Functional Imaging to Guide Target Delineation in Radiation Oncology.
Verma, Vivek; Choi, J Isabelle; Sawant, Amit; Gullapalli, Rao P; Chen, Wengen; Alavi, Abass; Simone, Charles B
2018-06-01
Molecular and functional imaging is increasingly being used to guide radiotherapy (RT) management and target delineation. This review summarizes existing data in several disease sites of various functional imaging modalities, chiefly positron emission tomography/computed tomography (PET/CT), with respect to RT target definition and management. For gliomas, differentiation between postoperative changes and viable tumor is discussed, as well as focal dose escalation and reirradiation. Head and neck neoplasms may also benefit from precise PET/CT-based target delineation, especially for cancers of unknown primary; focal dose escalation is also described. In lung cancer, PET/CT can influence coverage of tumor volumes, dose escalation, and adaptive management. For cervical cancer, PET/CT as an adjunct to magnetic resonance imaging planning is discussed, as are dose escalation and delineation of avoidance targets such as the bone marrow. The emerging role of choline-based PET for prostate cancer and its impact on dose escalation is also described. Lastly, given the essential role of PET/CT for target definition in lymphoma, phase III trials of PET-directed management are reviewed, along with novel imaging modalities. Taken together, molecular and functional imaging approaches offer a major step to individualize radiotherapeutic care going forward. Copyright © 2018 Elsevier Inc. All rights reserved.
Diagnostic Challenges in Prostate Cancer and 68Ga-PSMA PET Imaging: A Game Changer?
Zaman, Maseeh uz; Fatima, Nosheen; Zaman, Areeba; Sajid, Mahwsih; Zaman, Unaiza; Zaman, Sidra
2017-10-26
Prostate cancer (PC) is the most frequent solid tumor in men and the third most common cause of cancer mortality among men in developed countries. Current imaging modalities like ultrasound (US), computerized tomography (CT), magnetic resonance imaging (MRI) and choline based positron emission (PET) tracing have disappointing sensitivity for detection of nodal metastasis and small tumor recurrence. This poses a diagnostic challenge in staging of intermediate to high risk PC and restaging of patients with biochemical recurrence (PSA >0.2 ng/ml). Gallium-68 labeled prostate specific membrane antigen (68Ga-PSMA) PET imaging has now emerged with a higher diagnostic yield. 68Ga-PSMA PET/CT or PET/MRI can be expected to offer a one-stop-shop for staging and restaging of PC. PSMA ligands labeled with alpha and beta emitters have also shown promising therapeutic efficacy for nodal, bone and visceral metastasis. Therefore a PSMA based theranostics approach for detection, staging, treatment, and follow-up of PC would appear to be highly valuable to achieve personalized PC treatment. Creative Commons Attribution License
Schwarzenböck, Sarah Marie; Gertz, Jana; Souvatzoglou, Michael; Kurth, Jens; Sachs, David; Nawroth, Roman; Treiber, Uwe; Schuster, Tibor; Senekowitsch-Schmidtke, Reingard; Schwaiger, Markus; Ziegler, Sibylle Ilse; Henriksen, Gjermund; Wester, Hans-Jürgen; Krause, Bernd Joachim
2015-04-01
Carbon-11- and fluorine-18-labeled choline derivatives have been introduced as promising tracers for prostate cancer imaging. However, due to limited specificity and sensitivity, there is a need for new tracers with higher sensitivity and specificity for diagnosing prostate cancer to improve tracer uptake and enhance imaging contrast. The aim of this study was to compare the properties of [(11)C]choline ([(11)C]CHO) with S(+)-β-methyl-[(11)C]choline ([(11)C]SMC) as tracer for prostate cancer imaging in a human prostate tumor mouse xenograft model by small-animal positron emission tomography/X-ray computed tomography (PET/CT). We carried out a dual-tracer small-animal PET/CT study comparing [(11)C]CHO and [(11)C]SMC. The androgen-independent human prostate tumor cell line PC3 was implanted subcutaneously in the flanks of Naval Medical Research Institute (NMRI) (nu/nu) mice (n = 11). Mice-6 weeks post-xenograft implantation-were injected with 37 MBq [(11)C]CHO via the tail vein. On a separate day, the mice were injected with 37 MBq [(11)C]SMC. Dynamic imaging was performed for 60 min with the Inveon animal PET/CT scanner (Siemens Medical Solutions) on two separate days (randomizing the sequence of the tracers). The dynamic PET images were acquired in list mode. Regions of interest (5 × 5 × 5 mm) were placed in transaxial slices in tumor, muscle (thigh), liver, kidney, and blood. Image analysis was performed calculating tumor to muscle (T/M) ratios based on summed images as well as dynamic data. For [(11)C]SMC, the mean T/M ratio was 2.24 ± 0.56 while the corresponding mean [(11)C]CHO T/M ratio was 1.35 ± 0.28. The T/M ratio for [(11)C]SMC was significant higher compared to [(11)C]CHO (p < 0.001). The time course of T/M ratio (T/Mdyn ratio) of [(11)C]SMC was higher compared to [(11)C]CHO with a statistically significant difference between the magnitudes of the T/M ratios and a significant different change of the T/M ratios over time between [(11)C]CHO and [(11)C]SMC. Our results demonstrate that [(11)C]SMC is taken up by the tumor in the PC-3 prostate cancer xenograft model. [(11)C]SMC uptake was significantly higher compared to the clinically utilized [(11)C]CHO tracer with a higher contrast allowing imaging of a prostate cancer xenograft.
Choline transporter-like proteins CTLs/SLC44 family as a novel molecular target for cancer therapy.
Inazu, Masato
2014-11-01
Choline is essential for the synthesis of the major membrane phospholipid phosphatidylcholine (PC), the methyl donor betaine and the neurotransmitter acetylcholine (ACh). Elevated levels of choline and up-regulated choline kinase activity have been detected in various cancers. Thus, the intracellular accumulation of choline through choline transporters is the rate-limiting step in phospholipid metabolism and a prerequisite for cancer cell proliferation. Previous studies have demonstrated abnormalities in choline uptake and choline phospholipid metabolism in cancer cells using the imaging of cancer with positron emission tomography (PET) and magnetic resonance spectroscopy (MRS). The aberrant choline metabolism in cancer cells is strongly correlated with their malignant progression. Using quantitative real-time PCR, the mRNA expression of choline transporters was measured, and it was found that choline transporter-like proteins CTLs/SLC44 family are highly expressed in various cancer cell lines. Choline uptake through CTLs is associated with cell viability, and the functional inhibition of CTLs could promote apoptotic cell death. Furthermore, non-neuronal cholinergic systems that include CTLs-mediated choline transport are associated with cell proliferation and their inhibition promotes apoptotic cell death in colon cancer, small cell lung cancer and human leukemic T-cells. The identification of this new CTLs-mediated choline transport system provides a potential new target for cancer therapy. Copyright © 2014 John Wiley & Sons, Ltd.
New aspects of molecular imaging in prostate cancer.
Ceci, Francesco; Castellucci, Paolo; Cerci, Juliano J; Fanti, Stefano
2017-11-01
Nowadays several new imaging modalities are available for investigating prostate cancer (PCa) such as magnet resonance imaging (MRI) in the form of whole body MRI and pelvic multiparametric MRI and positron emission tomography (PET) using choline as radiotracers. Nevertheless, these modalities proved sub-optimal accuracy for detecting PCa metastases, particularly in the recurrence setting. A new molecular probe targeting the prostate specific membrane antigen (PSMA) has been recently developed for PET imaging. PSMA, the glutamate carboxypeptidase II, is a membrane bound metallo-peptidase over-expressed in PCa cells. It has been shown that PSMA based imaging offers higher tumor detection rate compared to choline PET/CT and radiological conventional imaging, especially at very low PSA levels during biochemical recurrence. In addition PSMA, as theranostics agent, allows both radiolabeling with diagnostic (e.g. 68Ga, 18F) or therapeutic nuclides (e.g. 177Lu, 225Ac). Initial results show that PSMA-targeted radioligand therapy can potentially delay disease progression in metastatic castrate-resistant PCa. Despite still investigational, the bombesin-based radiotracers and antagonist of gastrin releasing-peptide receptor (GRP) (RM2) and anti1-amino-3-18Ffluorocyclobutane-1-carboxylic acid (18F-FACBC) are emerging as possible alternatives for investigating PCa. Considering the wide diffusion of PCa in the Europe and the United States, the presence of these new diagnostic techniques able to detect the disease with high sensitivity and specificity might have a clinical impact on the management of patients. PET/CT imaging with new radiopharmaceuticals can implement the patient management identifying lesion(s) not detectable with conventional imaging procedures. In this review article will be discussed the most promising new PET radiopharmaceuticals (68Ga-PSMA-11, 18F-FACBC, 68Ga-RM2) available at the moment, focusing the attention on their accuracy and their impact on treatment strategy. Copyright © 2017 Elsevier Inc. All rights reserved.
D'Angelillo, Rolando M; Sciuto, Rosa; Ramella, Sara; Papalia, Rocco; Jereczek-Fossa, Barbara A; Trodella, Luca E; Fiore, Michele; Gallucci, Michele; Maini, Carlo L; Trodella, Lucio
2014-10-01
To retrospectively review data of a cohort of patients with biochemical progression after radical prostatectomy, treated according to a uniform institutional treatment policy, to evaluate toxicity and feasibility of high-dose salvage radiation therapy (80 Gy). Data on 60 patients with biochemical progression after radical prostatectomy between January 2009 and September 2011 were reviewed. The median value of prostate-specific antigen before radiation therapy was 0.9 ng/mL. All patients at time of diagnosis of biochemical recurrence underwent dynamic (18)F-choline positron emission tomography/computed tomography (PET/CT), which revealed in all cases a local recurrence. High-dose salvage radiation therapy was delivered up to total dose of 80 Gy to 18F-choline PET/CT-positive area. Toxicity was recorded according to the Common Terminology Criteria for Adverse Events, version 3.0, scale. Treatment was generally well tolerated: 54 patients (90%) completed salvage radiation therapy without any interruption. Gastrointestinal grade ≥2 acute toxicity was recorded in 6 patients (10%), whereas no patient experienced a grade ≥2 genitourinary toxicity. No grade 4 acute toxicity events were recorded. Only 1 patient (1.7%) experienced a grade 2 gastrointestinal late toxicity. With a mean follow-up of 31.2 months, 46 of 60 patients (76.6%) were free of recurrence. The 3-year biochemical progression-free survival rate was 72.5%. At early follow-up, (18)F-choline PET/CT-driven high-dose salvage radiation therapy seems to be feasible and well tolerated, with a low rate of toxicity. Copyright © 2014 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
D'Angelillo, Rolando M., E-mail: r.dangelillo@unicampus.it; Sciuto, Rosa; Ramella, Sara
Purpose: To retrospectively review data of a cohort of patients with biochemical progression after radical prostatectomy, treated according to a uniform institutional treatment policy, to evaluate toxicity and feasibility of high-dose salvage radiation therapy (80 Gy). Methods and Materials: Data on 60 patients with biochemical progression after radical prostatectomy between January 2009 and September 2011 were reviewed. The median value of prostate-specific antigen before radiation therapy was 0.9 ng/mL. All patients at time of diagnosis of biochemical recurrence underwent dynamic {sup 18}F-choline positron emission tomography/computed tomography (PET/CT), which revealed in all cases a local recurrence. High-dose salvage radiation therapy was delivered up tomore » total dose of 80 Gy to 18F-choline PET/CT-positive area. Toxicity was recorded according to the Common Terminology Criteria for Adverse Events, version 3.0, scale. Results: Treatment was generally well tolerated: 54 patients (90%) completed salvage radiation therapy without any interruption. Gastrointestinal grade ≥2 acute toxicity was recorded in 6 patients (10%), whereas no patient experienced a grade ≥2 genitourinary toxicity. No grade 4 acute toxicity events were recorded. Only 1 patient (1.7%) experienced a grade 2 gastrointestinal late toxicity. With a mean follow-up of 31.2 months, 46 of 60 patients (76.6%) were free of recurrence. The 3-year biochemical progression-free survival rate was 72.5%. Conclusions: At early follow-up, {sup 18}F-choline PET/CT-driven high-dose salvage radiation therapy seems to be feasible and well tolerated, with a low rate of toxicity.« less
Cysouw, Matthijs; Bouman-Wammes, Esther; Hoekstra, Otto; van den Eertwegh, Alfons; Piet, Maartje; van Moorselaar, Jeroen; Boellaard, Ronald; Dahele, Max; Oprea-Lager, Daniela
2018-06-01
To investigate the predictive value of [ 18 F]-fluoromethylcholine positron emission tomography/computed tomography (PET/CT)-derived parameters on progression-free survival (PFS) in oligometastatic prostate cancer patients treated with stereotactic body radiation therapy (SBRT). In [ 18 F]-fluoromethylcholine PET/CT scans of 40 consecutive patients with ≤4 metachronous metastases treated with SBRT we retrospectively measured the number of metastases, standardized uptake values (SUV mean , SUV max , SUV peak ), metabolically active tumor volume (MATV), and total lesion choline uptake. Partial-volume correction was applied using the iterative deconvolution Lucy-Richardson algorithm. Thirty-seven lymph node and 13 bone metastases were treated with SBRT. Thirty-three patients (82.5%) had 1 lesion, 4 (10%) had 2 lesions, and 3 (7.5%) had 3 lesions. After a median follow-up of 32.6 months (interquartile range, 35.5 months), the median PFS was 11.5 months (95% confidence interval 8.4-14.6 months). Having more than a single metastasis was a significant prognostic factor (hazard ratio 2.74; P = .03), and there was a trend in risk of progression for large MATV (hazard ratio 1.86; P = .10). No SUV or total lesion choline uptake was significantly predictive for PFS, regardless of partial-volume correction. All PET semiquantitative parameters were significantly correlated with each other (P ≤ .013). The number of choline-avid metastases was a significant prognostic factor for progression after [ 18 F]-fluormethylcholine PET/CT-guided SBRT for recurrent oligometastatic prostate cancer, and there seemed to be a trend in risk of progression for patients with large MATVs. The lesional level of [ 18 F]-fluoromethylcholine uptake was not prognostic for progression. Copyright © 2018 Elsevier Inc. All rights reserved.
Alongi, Filippo; Liardo, Rocco L E; Iftode, Cristina; Lopci, Egesta; Villa, Elisa; Comito, Tiziana; Tozzi, Angelo; Navarria, Pierina; Ascolese, Anna M; Mancosu, Pietro; Tomatis, Stefano; Bellorofonte, Carlo; Arturo, Chiti; Scorsetti, Marta
2014-10-01
The purpose of this work was to evaluate tolerance, feasibility and acute toxicity in patients undergoing salvage radiotherapy after high-intensity focused ultrasound (HIFU) failure. From 2005 to 2011 a total of 15 patients were treated with HIFU as primary radical treatment. Between July 2011 and February 2013, all 15 patients presented biochemical relapse after HIFU and 11C choline PET documenting intrapostatic-only failure. Salvage EBRT was performed with moderate hypofractionation schedule in 28 fractions with volumetric modulation arc therapy (VMAT). Genito-urinary (GU) and rectal and bowel toxicity were scored by common terminology criteria for adverse events version 4 (CTCAE V.4) scale. Biochemical response was assessed by ASTRO Phoenix criteria. Median age of patients was 67 years (range: 53-85). The median Gleason score was 7 (range: 6-9). The median prostate specific antigen (PSA) at the time of biochemical relapse after HIFU was 5.2 ng/mL (range: 2-64.2). Seven of the 15 patients received androgen deprivation therapy (ADT) started after HIFU failure, interrupted before 11C choline PET and radiotherapy. Median prescribed dose was 71.4 Gy (range: 71.4-74.2 Gy) in 28 fractions. No radiation related major upper gastrointestinal (GI), rectal and GU toxicity were experienced. GU, acute grade 1 and grade 2 toxicities were recorded in 7/15 and 4/15 respectively; bowel acute grade 1 and grade 2 toxicities in 4/15 and 1/15; rectal acute grade 1 and grade 2 toxicities in 3/15 and 2/15 respectively. No grade 3 or greater acute or late toxicities occurred. Biochemical control was assessed in 12/15 (80%) patients. With a median follow up of 12 months, three out of 15 patients, with biochemical relapse, showed lymph-nodal recurrence. Our early clinical results and biochemical data confirm the feasibility and show a good tolerance of the 11C choline PET guided salvage radiation therapy after HIFU failure. The findings of low acute toxicity is encouraging, but longer follow-up is needed to assess late toxicity and definitive outcomes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuang, Yu; Wu, Lili; Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong
Purpose: This study evaluated expected tumor control and normal tissue toxicity for prostate volumetric modulated arc therapy (VMAT) with and without radiation boosts to an intraprostatically dominant lesion (IDL), defined by {sup 18}F-choline positron emission tomography/computed tomography (PET/CT). Methods and Materials: Thirty patients with localized prostate cancer underwent {sup 18}F-choline PET/CT before treatment. Two VMAT plans, plan{sub 79} {sub Gy} and plan{sub 100-105} {sub Gy}, were compared for each patient. The whole-prostate planning target volume (PTV{sub prostate}) prescription was 79 Gy in both plans, but plan{sub 100-105} {sub Gy} added simultaneous boost doses of 100 Gy and 105 Gy to the IDL, definedmore » by 60% and 70% of maximum prostatic uptake on {sup 18}F-choline PET (IDL{sub suv60%} and IDL{sub suv70%}, respectively, with IDL{sub suv70%} nested inside IDL{sub suv60%} to potentially enhance tumor specificity of the maximum point dose). Plan evaluations included histopathological correspondence, isodose distributions, dose-volume histograms, tumor control probability (TCP), and normal tissue complication probability (NTCP). Results: Planning objectives and dose constraints proved feasible in 30 of 30 cases. Prostate sextant histopathology was available for 28 cases, confirming that IDL{sub suv60%} adequately covered all tumor-bearing prostate sextants in 27 cases and provided partial coverage in 1 case. Plan{sub 100-105} {sub Gy} had significantly higher TCP than plan{sub 79} {sub Gy} across all prostate regions for α/β ratios ranging from 1.5 Gy to 10 Gy (P<.001 for each case). There were no significant differences in bladder and femoral head NTCP between plans and slightly lower rectal NTCP (endpoint: grade ≥ 2 late toxicity or rectal bleeding) was found for plan{sub 100-105} {sub Gy}. Conclusions: VMAT can potentially increase the likelihood of tumor control in primary prostate cancer while observing normal tissue tolerances through simultaneous delivery of a steep radiation boost to a {sup 18}F-choline PET-defined IDL.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fortuin, Ansje S., E-mail: A.Fortuin@rad.umcn.nl; Deserno, Willem M.L.L.G.; Meijer, Hanneke J.M.
2012-11-01
Purpose: To determine the clinical value of two novel molecular imaging techniques: {sup 11}C-choline positron emission tomography (PET)/computed tomography (CT) and ferumoxtran-10 enhanced magnetic resonance imaging (magnetic resonance lymphography [MRL]) for lymph node (LN) treatment in prostate cancer (PCa) patients. Therefore, we evaluated the ability of PET/CT and MRL to assess the number, size, and location of LN metastases in patients with primary or recurrent PCa. Methods and Materials: A total of 29 patients underwent MRL and PET/CT for LN evaluation. The MRL and PET/CT data were analyzed independently. The number, size, and location of the LN metastases were determined.more » The location was described as within or outside the standard clinical target volume for elective pelvic irradiation as defined by the Radiation Therapy Oncology Group. Subsequently, the results from MRL and PET/CT were compared. Results: Of the 738 LNs visible on MRL, 151 were positive in 23 of 29 patients. Of the 132 LNs visible on PET/CT, 34 were positive in 13 of 29 patients. MRL detected significantly more positive LNs (p < 0.001) in more patients than PET/CT (p = 0.002). The mean diameter of the detected suspicious LNs on MRL was significantly smaller than those detected by PET/CT, 4.9 mm and 8.4 mm, respectively (p < 0.0001). In 14 (61%) of 23 patients, suspicious LNs were found outside the clinical target volume with MRL and in 4 (31%) of 13 patients with PET/CT. Conclusion: In patients with PCa, both molecular imaging techniques, MRL and {sup 11}C-choline PET/CT, can detect LNs suspicious for metastasis, irrespective of the existing size and shape criteria for CT and conventional magnetic resonance imaging. On MRL and PET/CT, 61% and 31% of the suspicious LNs were located outside the conventional clinical target volume. Therefore, these techniques could help to individualize treatment selection and enable image-guided radiotherapy for patients with PCa LN metastases.« less
Leyton, Julius; Smith, Graham; Zhao, Yongjun; Perumal, Meg; Nguyen, Quang-De; Robins, Edward; Årstad, Erik; Aboagye, Eric O.
2009-01-01
Current radiotracers for positron emission tomography (PET) imaging of choline metabolism have poor systemic metabolic stability in vivo. We describe a novel radiotracer, [18F]fluoromethyl-[1,2-2H4]-choline (D4-FCH), that employs deuterium isotope effect to improve metabolic stability. D4-FCH proved more resistant to oxidation than its non-deuterated analog, [18F]fluoromethylcholine (FCH), in plasma, kidneys, liver and tumor, while retaining phosphorylation potential. Tumor radiotracer levels, a determinant of sensitivity in imaging studies, was improved by deuterium substitution; tumor uptake values expressed as %injected dose/voxel at 60 min were 7.43 ± 0.47 and 5.50 ± 0.49 for D4-FCH and FCH, respectively, (P = 0.04). D4-FCH was also found to be a useful response biomarker. Treatment with the mitogenic extracellular kinase inhibitor, PD0325901, resulted in a reduction in tumor radiotracer uptake that occurred in parallel with reductions in choline kinase A expression. In conclusion, D4-FCH is a very promising metabolically stable radiotracer for imaging choline metabolism in tumors. PMID:19773436
Dirscherl, Thomas; Rickhey, Mark; Bogner, Ludwig
2012-02-01
A biologically adaptive radiation treatment method to maximize the TCP is shown. Functional imaging is used to acquire a heterogeneous dose prescription in terms of Dose Painting by Numbers and to create a patient-specific IMRT plan. Adapted from a method for selective dose escalation under the guidance of spatial biology distribution, a model, which translates heterogeneously distributed radiobiological parameters into voxelwise dose prescriptions, was developed. At the example of a prostate case with (18)F-choline PET imaging, different sets of reported values for the parameters were examined concerning their resulting range of dose values. Furthermore, the influence of each parameter of the linear-quadratic model was investigated. A correlation between PET signal and proliferation as well as cell density was assumed. Using our in-house treatment planning software Direct Monte Carlo Optimization (DMCO), a treatment plan based on the obtained dose prescription was generated. Gafchromic EBT films were irradiated for evaluation. When a TCP of 95% was aimed at, the maximal dose in a voxel of the prescription exceeded 100Gy for most considered parameter sets. One of the parameter sets resulted in a dose range of 87.1Gy to 99.3Gy, yielding a TCP of 94.7%, and was investigated more closely. The TCP of the plan decreased to 73.5% after optimization based on that prescription. The dose difference histogram of optimized and prescribed dose revealed a mean of -1.64Gy and a standard deviation of 4.02Gy. Film verification showed a reasonable agreement of planned and delivered dose. If the distribution of radiobiological parameters within a tumor is known, this model can be used to create a dose-painting by numbers plan which maximizes the TCP. It could be shown, that such a heterogeneous dose distribution is technically feasible. Copyright © 2012. Published by Elsevier GmbH.
Supiot, Stéphane; Rousseau, Caroline; Dore, Mélanie; Cheze-Le-Rest, Catherine; Kandel-Aznar, Christine; Potiron, Vincent; Guerif, Stéphane; Paris, François; Ferrer, Ludovic; Campion, Loïc; Meingan, Philippe; Delpon, Gregory; Hatt, Mathieu; Visvikis, Dimitris
2018-02-09
Hypoxia is a major factor in prostate cancer aggressiveness and radioresistance. Predicting which patients might be bad candidates for radiotherapy may help better personalize treatment decisions in intermediate-risk prostate cancer patients. We assessed spatial distribution of 18 F-Misonidazole (FMISO) PET/CT uptake in the prostate prior to radiotherapy treatment. Intermediate-risk prostate cancer patients about to receive high-dose (>74 Gy) radiotherapy to the prostate without hormonal treatment were prospectively recruited between 9/2012 and 10/2014. Prior to radiotherapy, all patients underwent a FMISO PET/CT as well as a MRI and 18 F-choline-PET. 18 F-choline and FMISO-positive volumes were semi-automatically determined using the fuzzy locally adaptive Bayesian (FLAB) method. In FMISO-positive patients, a dynamic analysis of early tumor uptake was performed. Group differences were assessed using the Wilcoxon signed rank test. Parameters were correlated using Spearman rank correlation. Of 27 patients (median age 76) recruited to the study, 7 and 9 patients were considered positive at 2.5h and 3.5h FMISO PET/CT respectively. Median SUV max and SUV max tumor to muscle (T/M) ratio were respectively 3.4 and 3.6 at 2.5h, and 3.2 and 4.4 at 3.5h. The median FMISO-positive volume was 1.1 ml. This is the first study regarding hypoxia imaging using FMISO in prostate cancer showing that a small FMISO-positive volume was detected in one third of intermediate-risk prostate cancer patients.
Nuclear Medicine in Prostate Cancer: A New Era for Radiotracers.
Cuccurullo, Vincenzo; Di Stasio, Giuseppe Danilo; Mansi, Luigi
2018-01-01
Natural history of prostate cancer (PCa) is extremely variable, as it ranges from indolent and slow growing tumors to highly aggressive histotypes. Genetic background and environmental factors co-operate to the genesis and clinical manifestation of the tumor and include among the others race, family, specific gene variants (i.e., BRCA1 and BRCA2 mutations), acute and chronic inflammation, infections, diet and drugs. In this scenario, remaining actual the clinical interest of bone scan (BS) in detecting skeletal metastases, an important role in diagnostic imaging may be also carried out by, positron emission tomography/computed tomography (PET/CT) and PET/magnetic resonance imaging (PET/MRI), which combine morphological information provided by CT and MRI with functional and metabolic data provided by PET acquisitions. With respect to PET radiotracers, being ancillary the usefulness of F-18 fluoro-deoxyglucose and not yet demonstrated the cost-effectiveness of F-18 Fluoride respect to BS, the main role is now played by choline derivatives, in particular by 11C-choline and 18F-fluorocholine. More recently, a greater interest for both diagnostic and therapeutic purposes has been associated with radiotracers directed to prostate-specific membrane antigen (PSMA), a transmembrane protein expressed on the cell surface, which showed high selective expression in PCa, metastatic lymph nodes and bone metastases. Several PSMA-targeted PET tracers have been developed many of which showing promising results for accurate diagnosis and staging of primary PCa and re-staging after biochemical recurrence, even in case of low prostate specific antigen values. In particular, the most widely used PSMA ligand for PET imaging is a 68 Ga-labelled PSMA inhibitor, 68 Ga-PSMA-HBED-CC ( 68 Ga-PSMA-11). 99m Tc-HYNIC-Glu-Urea-A for single photon emission computed tomography, and 177 Lu-PSMA-617 for radioligand therapy has also been applied in humans, with interesting preliminary results related to a possible theranostic approach. A potential role of PSMA radioligands in radio-guided surgery has also been proposed.
Nuclear Medicine in Prostate Cancer: A New Era for Radiotracers
Cuccurullo, Vincenzo; Di Stasio, Giuseppe Danilo; Mansi, Luigi
2018-01-01
Natural history of prostate cancer (PCa) is extremely variable, as it ranges from indolent and slow growing tumors to highly aggressive histotypes. Genetic background and environmental factors co-operate to the genesis and clinical manifestation of the tumor and include among the others race, family, specific gene variants (i.e., BRCA1 and BRCA2 mutations), acute and chronic inflammation, infections, diet and drugs. In this scenario, remaining actual the clinical interest of bone scan (BS) in detecting skeletal metastases, an important role in diagnostic imaging may be also carried out by, positron emission tomography/computed tomography (PET/CT) and PET/magnetic resonance imaging (PET/MRI), which combine morphological information provided by CT and MRI with functional and metabolic data provided by PET acquisitions. With respect to PET radiotracers, being ancillary the usefulness of F-18 fluoro-deoxyglucose and not yet demonstrated the cost-effectiveness of F-18 Fluoride respect to BS, the main role is now played by choline derivatives, in particular by 11C-choline and 18F-fluorocholine. More recently, a greater interest for both diagnostic and therapeutic purposes has been associated with radiotracers directed to prostate-specific membrane antigen (PSMA), a transmembrane protein expressed on the cell surface, which showed high selective expression in PCa, metastatic lymph nodes and bone metastases. Several PSMA-targeted PET tracers have been developed many of which showing promising results for accurate diagnosis and staging of primary PCa and re-staging after biochemical recurrence, even in case of low prostate specific antigen values. In particular, the most widely used PSMA ligand for PET imaging is a 68Ga-labelled PSMA inhibitor, 68Ga-PSMA-HBED-CC (68Ga-PSMA-11). 99mTc-HYNIC-Glu-Urea-A for single photon emission computed tomography, and 177Lu-PSMA-617 for radioligand therapy has also been applied in humans, with interesting preliminary results related to a possible theranostic approach. A potential role of PSMA radioligands in radio-guided surgery has also been proposed. PMID:29719480
Innovations in imaging modalities for recurrent and metastatic prostate cancer: a systematic review.
Albisinni, Simone; Aoun, Fouad; Marcelis, Quentin; Jungels, Claude; Al Hajj Obeid, Walid; Zanaty, Marc; Tubaro, Andrea; Roumeguere, Thierry; DE Nunzio, Cosimo
2018-01-31
The last decade has witnessed tremendous changes in the management of advanced and metastatic castration resistant prostate cancer (mCRPC). In the current systematic review, we analyze novel imaging techniques in the setting of recurrent and metastatic PCa, exploring available data and highlighting future exams which could enter clinical practice in the upcoming years. The National Library of Medicine Database was searched for relevant articles published between January 2012 and August 2017. A wide search was performed including the combination of following words: "Prostate" AND "Cancer" AND ("Metastatic" OR "Recurrent") AND "imaging" AND ("MRI" OR "PET"). The selection procedure followed the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) principles and is presented using a PRISMA flow chart. Novel imaging techniques, as multiparametric MRI, whole-body MRI and Choline and PSMA PET imaging techniques are currently revolutioning the treatment planning in patients with advanced and metastatic PCa, allowing a better characterization of the disease. Multiparametric MRI performs well in the detection of local recurrences, with sensitivity rates of 67-98% and overall diagnostic accuracy of 83-93%, depending on the type of magnetic field strength (1.5 vs 3T). Whole body MRI instead shows a high specificity (>95%) for bone metastases. PET imaging, and in particular PSMA PET/CT, showed promising results in the detection of both local and distant recurrences, even for low PSA values (<0.5ng/ml). Sensitivity varies from 77-98% depending on PSA value and PSA velocity. Whole body-MRI, NaF PET, Choline-PET/CT and PSMA PET/CT are flourishing techniques which find great application in the field of recurrent and metastatic PCa, in the effort to reduce treatment of "PSA only" and rather focus our therapies on clinical tumor entities. Standardization is urgently needed to allow adequate comparison of results and diffusion on a large scale.
Advances in prostate-specific membrane antigen PET of prostate cancer.
Bouchelouche, Kirsten; Choyke, Peter L
2018-05-01
In recent years, a large number of reports have been published on prostate-specific membrane antigen (PSMA)/PET in prostate cancer (PCa). This review highlights advances in PSMA PET in PCa during the past year. PSMA PET/computed tomography (CT) is useful in detection of biochemical recurrence, especially at low prostate-specific antigen (PSA) values. The detection rate of PSMA PET is influenced by PSA level. For primary PCa, PSMA PET/CT shows promise for tumour localization in the prostate, especially in combination with multiparametric MRI (mpMRI). For primary staging, PSMA PET/CT can be used in intermediate and high-risk PCa. Intraoperative PSMA radioligand guidance seems promising for detection of malignant lymph nodes. While the use of PSMA PET/MRI in primary localized disease is limited to high and intermediate-risk patients and localized staging, in the recurrence setting, PET/MRI can be particularly helpful when the lesions are subtle. PSMA PET/CT is superior to choline PET/CT and other conventional imaging modalities. Molecular imaging with PSMA PET continues to pave the way for personalized medicine in PCa.However, large prospective clinical studies are still needed to fully evaluate the role of PSMA PET/CT and PET/MRI in the clinical workflow of PCa.
PSMA PET in prostate cancer – a step towards personalized medicine
Bouchelouche, Kirsten; Choyke, Peter L.
2017-01-01
Purpose of review Increasing attention is being given to personalized medicine in oncology, where therapies are tailored to the particular characteristics of the individual cancer patient. In recent years, there has been greater focus on PSMA in prostate cancer (PCa) as a target for imaging and therapy with radionuclides. This review highlights the recent advancements in PSMA PET in PCa during the past year. Recent findings Several reports on PSMA PET/CT in PCa patients are demonstrating promising results, especially for detection of biochemical recurrence. 18F-PSMA PET/CT may be superior to 68Ga-PSMA PET/CT. The detection rate of PSMA PET is influenced by PSA level. PSMA PET/CT may have a higher detection rate than choline PET/CT. Only a few reports have been published on PSMA PET/MRI, and this modality remains to be elucidated further. Conclusion Molecular imaging with PSMA PET is paving the way for personalized medicine in PCa. However, large prospective clinical studies are needed to further evaluate the role of PSMA PET/CT and PET/MRI in the clinical workflow of PCa. PSMA is an excellent target for imaging and therapy with radionuclides, and the “image and treat” strategy has the potential to become a milestone in the management of PCa patients. PMID:26967720
Palumbo, Barbara; Sivolella, Silvio; Palumbo, Isabella; Buresta, Tommaso; Radicchia, Valentina; Fravolini, Mario L; Ferretti, Francesca; Bellavita, Rita; Mearini, Luigi; Scialpi, Michele; Aristei, Cynthia; Pelliccia, Gianfranco
2016-12-01
Patients with suspected recurrence of prostate cancer undergoing [18F]fluoromethyl choline ([18F]FCH) PET/CT were retrospectively evaluated to investigate the influence of hormonal therapy (HT) in [18F]FCH uptake. [18F]FCH PET/CT was performed in 102 surgically treated patients with suspected recurrence (PSA increase >0.2 ng/mL) of prostate cancer, divided in two groups: under HT (N.=54) and without HT (N.=48) at the time of PET scanning. PET/CT was carried out by an integrated system (Biograph 6, CTI/Siemens, Knoxville, TN, USA) intravenously by administering 4.1 MBq/kg of [18F]FCH to each patient; images were acquired 60 minutes later. On the total number of patients, 66 were found to be true positives (TP), 9 false positives (FP), 5 false negatives (FN) and 22 true negatives (TN), sensitivity to [18F]FCH PET/CT was 93%, specificity 71%, accuracy 86%, positive predictive value (PPV) 88%, negative predictive value (NPV) 81%. In the 54 patients under HT, 38 were TP, 6 FP, 3 FN and 7 TN, sensitivity was 93%, specificity 54%, accuracy 83%, PPV 86% and NPV was 70%. In the 48 patients receiving no HT, 28 were TP, 3 FP, 2 FN and 15 TN, sensitivity was 93%, specificity 83%, accuracy 90%, PPV 90% and NPV 88%. A χ2 test showed that sensitivity, accuracy and PPV did not differ among patients with and without HT, while specificity and NPV were significantly lower (P<0.001) in HT treated patients. Sensitivity, accuracy and PPV were similar in patients with and without HT. Specificity and NPV were reduced in patients under HT, but further data are necessary to support if this reduction is casual or related to therapy and it could be confirmed in a larger series of patients.
Bailey, Jason; Piert, Morand
2017-09-09
Recently introduced Gallium-68 labeled PSMA-ligands such as HBED-CC ( 68 Ga-PSMA) have shown promise for unmet diagnostic needs in prostate cancer. 68 Ga-PSMA has demonstrated improved detection rates and specificity for prostate cancer compared to standard imaging approaches. In the setting of primary disease, 68 Ga-PSMA appears to preferentially identify treatment-relevant intermediate and high-risk prostate cancer. There is also a growing evidence that 68 Ga-PSMA positron emission tomography (PET) outperforms alternative conventional imaging methods including choline-based radiotracers for the localization of disease sites at biochemical recurrence, particularly at lower prostate-specific antigen (PSA) levels (< 1 ng/mL). However, the majority of published work lacks rigorous verification of imaging results. 68 Ga-PSMA offers significant promise for both, primary disease and biochemically recurrent prostate cancer. The evidence base to support 68 Ga-PSMA is however still underdeveloped, and more rigorous studies substantiating efficacy are needed.
[Rational imaging in locally advanced prostate cancer].
Beissert, M; Lorenz, R; Gerharz, E W
2008-11-01
Prostate cancer is one of the principal medical problems facing the male population in developed countries with an increasing need for sophisticated imaging techniques and risk-adapted treatment options. This article presents an overview of the current imaging procedures in the diagnosis of locally advanced prostate cancer. Apart from conventional gray-scale transrectal ultrasound (TRUS) as the most frequently used primary imaging modality we describe computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET). CT and MRI not only allow assessment of prostate anatomy but also a specific evaluation of the pelvic region. Color-coded and contrast-enhanced ultrasound, real-time elastography, dynamic contrast enhancement in MR imaging, diffusion imaging, and MR spectroscopy may lead to a clinically relevant improvement in the diagnosis of prostate cancer. While bone scintigraphy with (99m)Tc-bisphosphonates is still the method of choice in the evaluation of bone metastasis, whole-body MRI and PET using (18)F-NaF, (18)F-FDG, (11)C-choline, (11)C-acetate, and (18)F-choline as tracers achieve higher sensitivities.
Current application and future perspectives of PSMA PET imaging in prostate cancer.
Ceci, Francesco; Castellucci, Paolo; Fanti, Stefano
2018-03-08
As precision medicine evolves, the contribution of molecular imaging to the management of prostate cancer (PCa) patients, especially for Positron Emission Tomography (PET) imaging, is gaining importance. Highly successful approaches to measure the expression of the prostate specific membrane antigen (PSMA) have been introduced recently. PSMA, the glutamate carboxypeptidase II (GCP-II), is a membrane bound metallo-peptidase that is overexpressed in 90-100% of PCa cells. Due to its selective over-expression, PSMA is a reliable tissue marker for prostate cancer and is considered an ideal target for tumor specific imaging and therapy. A variety of PET and SPECT probes targeting this peptide receptor have been introduced. These are undergoing extensive clinical evaluations. Initial results attest to a high accuracy for disease detection compared conventional radiology (CT or MRI) and other nuclear medicine procedure (choline PET or fluciclovine PET). However, prospective evaluation of the impact on patient management for PSMA-ligand PET and its impact on patient outcome is currently missing. Finally, PSMA inhibitors can be radio-labeled with diagnostic (68Ga-PSMA-11), or therapeutic nuclides (177Lu/225Ac PSMA-617) to be used as theranostic agent. Initial results showed that PSMA-targeted radioligand therapy (RLT) can potentially delay disease progression in metastatic castrate-resistant PCa. This review aims to explore the current application of PSMA based imaging in prostate cancer, reporting about main advantages and limitations of this new theranostic procedure. The future perspectives and potential the applications of this agent will be also discussed.
Valentini, Maria Consuelo; Mellai, Marta; Annovazzi, Laura; Melcarne, Antonio; Denysenko, Tetyana; Cassoni, Paola; Casalone, Cristina; Maurella, Cristiana; Grifoni, Silvia; Fania, Piercarlo; Cistaro, Angelina; Schiffer, Davide
2017-10-31
Glioblastoma (GB) is a highly heterogeneous tumor. In order to identify in vivo the most malignant tumor areas, the extent of tumor infiltration and the sites giving origin to GB stem cells (GSCs), we combined positron emission tomography/computed tomography (PET/CT) and conventional and advanced magnetic resonance imaging (MRI) with histology, immunohistochemistry and molecular genetics. Prior to dura opening and tumor resection, forty-eight biopsy specimens [23 of contrast-enhancing (CE) and 25 of non-contrast enhancing (NE) regions] from 12 GB patients were obtained by a frameless image-guided stereotactic biopsy technique. The highest values of 2-[18F]-fluoro-2-deoxy-D-glucose maximum standardized uptake value ( 18 F-FDG SUV max ), relative cerebral blood volume (rCBV), Choline/Creatine (Cho/Cr), Choline/N-acetylaspartate (Cho/NAA) and Lipids/Lactate (LL) ratio have been observed in the CE region. They corresponded to the most malignant tumor phenotype, to the greatest molecular spectrum and stem cell potential. On the contrary, apparent diffusion coefficient (ADC) and fractional anisotropy (FA) in the CE region were very variable. 18 F-FDG SUV max , Cho/Cr and Cho/NAA ratio resulted the most suitable parameters to detect tumor infiltration. In edematous areas, reactive astrocytes and microglia/macrophages were influencing variables. Combined MRI and 18 F-FDG PET/CT allowed to recognize the specific biological significance of the different identified areas of GB.
Valentini, Maria Consuelo; Mellai, Marta; Annovazzi, Laura; Melcarne, Antonio; Denysenko, Tetyana; Cassoni, Paola; Casalone, Cristina; Maurella, Cristiana; Grifoni, Silvia; Fania, Piercarlo; Cistaro, Angelina; Schiffer, Davide
2017-01-01
Glioblastoma (GB) is a highly heterogeneous tumor. In order to identify in vivo the most malignant tumor areas, the extent of tumor infiltration and the sites giving origin to GB stem cells (GSCs), we combined positron emission tomography/computed tomography (PET/CT) and conventional and advanced magnetic resonance imaging (MRI) with histology, immunohistochemistry and molecular genetics. Prior to dura opening and tumor resection, forty-eight biopsy specimens [23 of contrast-enhancing (CE) and 25 of non-contrast enhancing (NE) regions] from 12 GB patients were obtained by a frameless image-guided stereotactic biopsy technique. The highest values of 2-[18F]-fluoro-2-deoxy-D-glucose maximum standardized uptake value (18F-FDG SUVmax), relative cerebral blood volume (rCBV), Choline/Creatine (Cho/Cr), Choline/N-acetylaspartate (Cho/NAA) and Lipids/Lactate (LL) ratio have been observed in the CE region. They corresponded to the most malignant tumor phenotype, to the greatest molecular spectrum and stem cell potential. On the contrary, apparent diffusion coefficient (ADC) and fractional anisotropy (FA) in the CE region were very variable. 18F-FDG SUVmax, Cho/Cr and Cho/NAA ratio resulted the most suitable parameters to detect tumor infiltration. In edematous areas, reactive astrocytes and microglia/macrophages were influencing variables. Combined MRI and 18F-FDG PET/CT allowed to recognize the specific biological significance of the different identified areas of GB. PMID:29207673
Kwee, Sandi A; Sato, Miles M; Kuang, Yu; Franke, Adrian; Custer, Laurie; Miyazaki, Kyle; Wong, Linda L
2017-06-01
[ 18 F]fluorocholine PET/CT can detect hepatocellular carcinoma (HCC) based on imaging the initial steps of phosphatidylcholine synthesis. To relate the diagnostic performance of [ 18 F]fluorocholine positron emission tomography (PET)/x-ray computed tomography (CT) to the phospholipid composition of liver tumors, radiopathologic correspondence was performed in patients with early-stage liver cancer who had undergone [ 18 F]fluorocholine PET/CT before tumor resection. Tumor and adjacent liver were profiled by liquid chromatography mass spectrometry, quantifying phosphatidylcholine species by mass-to-charge ratio. For clinical-radiopathologic correlation, HCC profiles were reduced to two orthogonal principal component factors (PCF1 and PCF2) accounting for 80 % of total profile variation. Tissues from 31 HCC patients and 4 intrahepatic cholangiocarcinoma (ICC) patients were analyzed, revealing significantly higher levels of phosphocholine, CDP-choline, and highly saturated phosphatidylcholine species in HCC tumors relative to adjacent liver and ICC tumors. Significant loading values for PCF1 corresponded to phosphatidylcholines containing poly-unsaturated fatty acids while PCF2 corresponded only to highly saturated phosphatidylcholines. Only PCF2 correlated significantly with HCC tumor-to-liver [ 18 F]fluorocholine uptake ratio (ρ = 0.59, p < 0.0005). Sensitivity for all tumors based on an abnormal [ 18 F]fluorocholine uptake ratio was 93 % while sensitivity for HCC based on increased tumor [ 18 F]fluorocholine uptake was 84 %, with lower levels of highly saturated phosphatidylcholines in tumors showing low [ 18 F]fluorocholine uptake. Most HCC tumors contain high levels of saturated phosphatidylcholines, supporting their dependence on de novo fatty acid metabolism for phospholipid membrane synthesis. While [ 18 F]fluorocholine PET/CT can serve to identify these lipogenic tumors, its imperfect diagnostic sensitivity implies metabolic heterogeneity across HCC and a weaker lipogenic phenotype in some tumors.
Kwee, Sandi A; Sato, Miles M; Kuang, Yu; Franke, Adrian; Custer, Laurie; Miyazaki, Kyle; Wong, Linda L
2017-01-01
BACKGROUND [18F]fluorocholine PET/CT can detect hepatocellular carcinoma (HCC) based on imaging the initial steps of phosphatidylcholine synthesis. To relate the diagnostic performance of [18F]fluorocholine PET/CT to the phospholipid composition of liver tumors, radiopathologic correspondence was performed in patients with early-stage liver cancer who had undergone [18F]fluorocholine PET/CT before tumor resection. METHODS Tumor and adjacent liver were profiled by liquid chromatography mass spectrometry, quantifying phosphatidylcholine species by mass-to-charge ratio. For clinical-radiopathologic correlation, HCC profiles were reduced to two orthogonal principal component factors (PCF1 and PCF2) accounting for 80% of total profile variation. RESULTS Tissues from 31 HCC patients and 4 intrahepatic cholangiocarcinoma (ICC) patients were analyzed, revealing significantly higher levels of phosphocholine, CDP-choline, and highly-saturated phosphatidylcholine species in HCC tumors relative to adjacent liver and ICC tumors. Significant loading values for PCF1 corresponded to phosphatidylcholines containing poly-unsaturated fatty acids while PCF2 corresponded only to highly-saturated phosphatidylcholines. Only PCF2 correlated significantly with HCC tumor-to-liver [18F]fluorocholine uptake ratio (ρ = 0.59, p < 0.0005). Sensitivity for all tumors based on an abnormal [18F]fluorocholine uptake ratio was 93%, while sensitivity for HCC based on increased tumor [18F]fluorocholine uptake was 84%, with lower levels of highly-saturated phosphatidylcholines in tumors showing low [18F]fluorocholine uptake. CONCLUSION Most HCC tumors contain high levels of saturated phosphatidylcholines, supporting their dependence on de-novo fatty acid metabolism for phospholipid membrane synthesis. While [18F]fluorocholine PET/CT can serve to identify these lipogenic tumors, its imperfect diagnostic sensitivity implies metabolic heterogeneity across HCC and a weaker lipogenic phenotype in some tumors. PMID:27787742
Mathieu, Cédric; Ferrer, Ludovic; Carlier, Thomas; Colombié, Mathilde; Rusu, Daniela; Kraeber-Bodéré, Françoise; Campion, Loic; Rousseau, Caroline
2015-01-01
Dynamic image acquisition with (18)F-Choline [fluorocholine (FCH)] PET/CT in prostate cancer is mostly used to overcome the bladder repletion, which could obstruct the loco-regional analysis. The aim of our study was to analyze early dynamic FCH acquisitions to define pelvic lymph node or prostate pathological status. Retrospective analysis was performed on 39 patients for initial staging (n = 18), or after initial treatment (n = 21). Patients underwent 10-min dynamic acquisitions centered on the pelvis, after injection of 3-4 MBq/kg of FCH. Whole-body images were acquired about 1 h after injection using a PET/CT GE Discovery LS (GE-LS) or Siemens Biograph mCT (mCT). Maximum and mean SUV according to time were measured on nodal and prostatic lesions. SUVmean was corrected for partial volume effect (PVEC) with suitable recovery coefficients. The status of each lesion was based on histological results or patient follow-up (>6 months). A Mann-Whitney test and ANOVA were used to compare mean and receiver operating characteristic (ROC) curve analysis. The median PSA was 8.46 ng/mL and the median Gleason score was 3 + 4. Ninety-two lesions (43 lymph nodes and 49 prostate lesions) were analyzed, including 63 malignant lesions. In early dynamic acquisitions, the maximum and mean SUV were significantly higher, respectively, on mCT and GE-LS, in malignant versus benign lesions (p < 0.001, p < 0.001). Mean SUV without PVEC, allowed better discrimination of benign from malignant lesions, in comparison with maximum and mean SUV (with PVEC), for both early and late acquisitions. For patients acquired on mCT, area under the ROC curve showed a trend to better sensitivity and specificity for early acquisitions, compared with late acquisitions (SUVmax AUC 0.92 versus 0.85, respectively). Assessment of lymph nodes and prostate pathological status with early dynamic imaging using PET/CT FCH allowed prostate cancer detection in situations where proof of malignancy is difficult to obtain.
Würschmidt, Florian; Petersen, Cordula; Wahl, Andreas; Dahle, Jörg; Kretschmer, Matthias
2011-05-01
At present there is no consensus on irradiation treatment volumes for intermediate to high-risk primary cancers or recurrent disease. Conventional imaging modalities, such as CT, MRI and transrectal ultrasound, are considered suboptimal for treatment decisions. Choline-PET/CT might be considered as the imaging modality in radiooncology to select and delineate clinical target volumes extending the prostate gland or prostate fossa. In conjunction with intensity modulated radiotherapy (IMRT) and imaged guided radiotherapy (IGRT), it might offer the opportunity of dose escalation to selected sites while avoiding unnecessary irradiation of healthy tissues. Twenty-six patients with primary (n = 7) or recurrent (n = 19) prostate cancer received Choline-PET/CT planned 3D conformal or intensity modulated radiotherapy. The median age of the patients was 65 yrs (range 45 to 78 yrs). PET/CT-scans with F18-fluoroethylcholine (FEC) were performed on a combined PET/CT-scanner equipped for radiation therapy planning. The majority of patients had intermediate to high risk prostate cancer. All patients received 3D conformal or intensity modulated and imaged guided radiotherapy with megavoltage cone beam CT. The median dose to primary tumours was 75.6 Gy and to FEC-positive recurrent lymph nodal sites 66,6 Gy. The median follow-up time was 28.8 months. The mean SUV(max) in primary cancer was 5,97 in the prostate gland and 3,2 in pelvic lymph nodes. Patients with recurrent cancer had a mean SUV(max) of 4,38. Two patients had negative PET/CT scans. At 28 months the overall survival rate is 94%. Biochemical relapse free survival is 83% for primary cancer and 49% for recurrent tumours. Distant disease free survival is 100% and 75% for primary and recurrent cancer, respectively. Acute normal tissue toxicity was mild in 85% and moderate (grade 2) in 15%. No or mild late side effects were observed in the majority of patients (84%). One patient had a severe bladder shrinkage (grade 4) after a previous treatment with TUR of the prostate and seed implantation. FEC-PET/CT planning could be helpful in dose escalation to lymph nodal sites of prostate cancer.
Caroli, Paola; De Giorgi, Ugo; Scarpi, Emanuela; Fantini, Lorenzo; Moretti, Andrea; Galassi, Riccardo; Celli, Monica; Conteduca, Vincenza; Rossi, Lorena; Bianchi, Emanuela; Paganelli, Giovanni; Matteucci, Federica
2018-03-01
The role of 18F-choline positron emission tomography/computed tomography (FCH-PET/CT) in patients with metastatic castration-resistant prostate cancer (mCRPC) has been firmly established in recent years. We analyzed the prognostic value of functional parameters such as mean standardized uptake volume (SUVmean), maximum standardized uptake volume (SUVmax), metabolic total volume (MTV; the volume of interest consisting of all spatially connected voxels within a fixed threshold of 40% of the SUVmax), and total lesion activity (TLA: the product of MTV and mean standardized uptake value) estimated with FCH-PET/CT in mCRPC patients in progression after docetaxel and treated with new antiandrogen receptor therapies, abiraterone or enzalutamide. We retrospectively studied 94 mCRPC patients, mean age 74 years (range 42-90), previously treated with docetaxel who were treated with either abiraterone (n = 52) or enzalutamide (n = 42). An FCH-PET/CT was performed at baseline, and patients were evaluated on a monthly basis for serological PSA response and every 3 months for radiological response. We measured MTV, SUVmean, SUVmax and TLA for each lesion and analyzed the sum of MTV (SMTV), SUVmean (SSUVmean), SUVmax (SSUVmax) and TLA (STLA) values for a maximum of 20 lesions. Univariate analysis was used to correlate these data with PFS and OS. We observed a median SMTV of 130 cm 3 , median SSUVmax of 106.5 and a median STLA of 495,070. All of these parameters were significant for PFS and OS in univariate analysis, while only STLA was significant for PFS and OS in multivariate analysis after adjusting for lesion and age (p < 0.0001 and p = 0.001, respectively). Baseline PSA values maintained a certain reliability for OS (p = 0.034). Semiquantitative parameters of FCH-PET/CT play a prognostic role in mCRCP patients treated with abiraterone or enzalutamide.
Alongi, Filippo; Schipani, Stefano; Samanes Gajate, Ana Maria; Rosso, Alberto; Cozzarini, Cesare; Fiorino, Claudio; Alongi, Pierpaolo; Picchio, Maria; Gianolli, Luigi; Messa, Cristina; Di Muzio, Nadia
2010-01-01
[11C]choline positron emission tomograhy can be useful to detect metastatic disease and to localize isolated lymph node relapse after primary treatment in case of prostate-specific antigen failure. In case of lymph node failure in prostate cancer patients, surgery or radiotherapy can be proposed with a curative intent. Some reports have suggested that radiotherapy could have a role in local control of oligometastatic lymph node disease. This is the first reported case of [11C]choline positron emission tomography-guided helical tomotherapy concomitant with estramustine for the treatment of pelvic-recurrent prostate cancer. At 24 months after the end of helical tomotherapy, prostate-specific antigen was undetectable and no late toxicities were recorded. A disease-free survival of 24 months, in the absence of any type of systemic therapy, is uncommon in metastatic prostate cancer. The therapeutic approach of the case report is discussed and a literature review on the issue is presented.
SU-E-I-82: PET Radiopharmaceuticals for Prostate Cancer Imaging: A Review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernandes, F; Escola Bahiana de Medicina e Saude Publica, Salvador, Bahia; Silva, D da
2015-06-15
Purpose: The aim of this work was to review new and clinical practice PET radiopharmaceuticals for prostate cancer imaging. Methods: PET radiopharmaceuticals were reviewed on the main databases. Availability, dosimetry, accuracy and limitations were considered. Results: The following radioisotopes with respective physical half-life and mean positron energy were found: {sup 18}F (109,7 min, 249,8 keV), {sup 89}Zr (78,4 hs, 395,5 keV), {sup 11}C (20,4 min, 385,7 keV) and {sup 68}Ga (67,8 min, 836 keV). {sup 68}Ga was the only one not produced by cyclotron. Radiopharmaceuticals uptake by glucose metabolism ({sup 18}F-FDG), lipogenesis ({sup 11}C-Choline and {sup 11}C-Acetate), amino acid transportmore » (Anti-{sup 18}F-FACBC), bone matrix ({sup 18}F-NaF), prostatespecific membrane antigen ({sup 68}Ga-PSMA and {sup 89}Zr-J591), CXCR receptors ({sup 89}Ga-Pentixafor), adrenal receptors ({sup 18}F-FDHT) and gastrin release peptide receptor (bombesin analogue). Most of radiopharmaceuticals are urinary excretion, so bladder is the critical organ. 11C-choline (pancreas), Anti-{sup 18}FFACBC (liver) and {sup 18}F-FBDC (stomach wall) are the exception. Higher effective dose was seen {sup 18}F-NaF (27 μSv/MBq) while the lowest was {sup 11}CAcetate (3,5 μSv/MBq). Conclusion: Even though {sup 18}F-FDG has a large availability its high urinary excretion and poor uptake to slow growing disease offers weak results for prostate cancer. Better accuracy is obtained when {sup 18}F-NaF is used for bone metastatic investigation although physicians tend to choose bone scintigraphy probably due to its cost and practice. Many guidelines in oncology consider {sup 11}C or {sup 18}F labeled with Choline the gold standard for biochemical relapse after radical treatment. Local, lymph node and distant metastatic relapse can be evaluated at same time with this radiopharmaceutical. There is no consensus over bigger urinary excretion for {sup 18}F labeling. Anti-{sup 18}F-FACBC, {sup 68}Ga-PSMA and {sup 68}Ga-Pentixafor are demonstrating good results but more researches are needed. While PSMA imaging seems to be independent of PSA level, one choline limitation, anti-{sup 18}F-FACBC adds value because imaging any disease stage. {sup 68}Ga-Petixafor is being tested as theranostics marker integrating molecular image and therapy.« less
Bansal, Aditya; Shuyan, Wang; Hara, Toshiko; Harris, Robert A.; DeGrado, Timothy R.
2008-01-01
Purpose [18F]Fluorocholine [18F]FCH) was developed as an analog of [11C]choline for tumor imaging, however, its metabolic handling remains ill-defined. In this study, the metabolism of [18F]FCH is evaluated in cultured 9L glioma cells and Fisher 344 rats bearing 9L glioma tumors. Methods 9L glioma cells were incubated with [18F]FCH and [14C]choline under normoxic and hypoxic (1% O2) conditions and analyzed for metabolic fate. [18F]FCH and [14C]choline kinetics and metabolism were studied in Fisher 344 rats bearing subcutaneous 9L tumors. Results [18F]FCH and [14C]choline were similarly metabolized in 9L cells in both normoxic and hypoxic conditions over a 2 hr incubation period. In normoxia, radioactivity was predominantly in phosphorylated form for both tracers after 5 min incubation. In hypoxia, the tracers remained mainly in nonmetabolized form at early timepoints (< 20 min). Slow dephosphorylation of intracellular [18F]phosphofluorocholine (0.043–0.060 min−1) and [14C]phosphocholine (0.072–0.088 min−1) was evidenced via efflux measurements. In rat, both [18F]FCH and [14C]choline showed high renal and hepatic uptake. Blood clearance of both tracers was rapid with oxidative metabolites, [18F]fluorobetaine and [14C]betaine, representing the majority of radiolabel in plasma after 5 min post-injection. Oxidation (in liver) and lipid incorporation (in lung) were somewhat slower for [18F]FCH relative to [14C]choline. The majority of radiolabel in hypoxic subcutaneous tumor, as in hypoxic cultured 9L cells, was found as nonmetabolized [18F]FCH and [14C]choline. Conclusions [18F]FCH mimics choline uptake and metabolism by 9L glioma cells and tumors. However, subtle changes in biodistribution, oxidative metabolism, dephosphorylation, lipid incorporation and renal excretion show moderate effects of the presence of the radiofluorine atom in [18F]FCH. The decrease in phosphorylation of exogenous choline by cancer cells should be considered in interpretation of PET images in characteristically hypoxic tumors. PMID:18264706
Navarro-Pelayo Láinez, M M; Rodríguez-Fernández, A; Gómez-Río, M; Vázquez-Alonso, F; Cózar-Olmo, J M; Llamas-Elvira, J M
2014-11-01
prostate cancer is the most frequent solid malignant tumor in Western Countries. Positron emission tomography/x-ray computed tomography imaging with radiolabeled choline analogues is a useful tool for restaging prostate cancer in patients with rising prostate-specific antigen after radical treatment (in whom conventional imaging techniques have important limitations) as well as in the initial assessment of a selected group of prostate cancer patients. For this reason a literature review is necessary in order to evaluate the usefulness of this imaging test for the diagnosis and treatment of prostate cancer. a MEDLINE (PubMed way) literature search was performed using the search parameters: «Prostate cancer» and «Choline-PET/CT». Other search terms were «Biochemical failure» and/or «Staging» and/or «PSA kinetics». English and Spanish papers were selected; original articles, reviews, systematic reviews and clinical guidelines were included. according to available data, radiolabeled choline analogues plays an important role in the management of prostate cancer, especially in biochemical relapse because technique accuracy is properly correlated with prostate-specific antigen values and kinetics. Although is an emerging diagnostic technique useful in treatment planning of prostate cancer, final recommendations have not been submitted. Copyright © 2013 AEU. Published by Elsevier Espana. All rights reserved.
Report on the development and application of PET/CT in mainland China.
Chen, Yumei; Chen, Ruohua; Zhou, Xiang; Liu, Jianjun; Huang, Gang
2017-09-08
To examine the development and application of systems combining positron emission and x-ray-computed tomography systems (PET/CTs) in mainland China. Using a questionnaire, we surveyed Chinese medical institutions on a variety topics relating to their PET/CT systems and its use. The respondents had PET/CTs installed and in clinical use before 31 December 2015. We examined the clinical scenarios to which Chinese PET/CTs were applied by reviewing the related Chinese and international literature from the start of 1995 to the end of 2013; these papers were found by searching the Wanfang and PubMed databases, respectively. The data were then classified and analyzed statistically. At the end of 2015, there were 240 PET/CTs and 101 medical cyclotrons in mainland China. The total number of PET studies performed in 2015 was 469,364. The main clinical applications of PET were found to be diagnostic fludeoxyglucose ( 18 F-FDG) imaging and oncological imaging. A minority of PET/CT studies were performed using 11 C-choline and other imaging agents. The number of papers relating to clinical use of PET/CT in mainland China increased each year over the period of study, in both the Chinese and international literature. Despite this progress, important problems were also apparent, including unbalanced regional development and the limited quality of the research. This study provides detailed information for understanding the development PET/CT technology in mainland China, along with its geographical distribution and clinical application. It may thus prove a useful reference for all those involved in planning the future of PET/CT in China.
Johnson, Alison C; Dugué, Audrey Emmanuelle; Silva, Marlon; Moise, Laura; Tillou, Xavier; Joly, Florence; Aide, Nicolas
2016-12-01
The objective of this study is to explore the impact of PSA nadirs on detection rates of prostate cancer (PCa) recurrence with 18 F-choline (CH) PET/CT after external beam radiation therapy (EBRT). In this retrospective study, data were collected from 54 patients with suspicion of PCa biochemical recurrence after EBRT (28 patients treated initially with EBRT and 26 as salvage therapy in the absence of PSA decrease after initial treatment), who underwent 18 F-CH PET/CT between 2010 and 2015. PSA nadir and trigger PSA were collected from patient files. Relative PSA was calculated by subtracting the nadir from the trigger PSA. Median PSA nadir was 0.31 (0.01-13.31) ng/mL, trigger PSA was 7.85 (0.47-111.60) ng/mL, and relative PSA was 6.05 (0.24-104.59) ng/mL. Overall, 40 (74%) PET/CT scans were positive: recurrence was local and/or regional in 29 patients, distant in 15 and combined both in four, with no association between PSA values and sites of recurrence. In univariate analysis, trigger (p = 0.015) and relative (p = 0.0005) PSA values and PSA velocity (p = 0.01) were significantly linked to positive PET/CT, but PSA nadir was not. In subgroup analysis, these significant differences were only found in the salvage EBRT group. Akaike Information Criterion multivariate model comparison found that relative PSA was a better predictor of positive PET/CT than trigger PSA (PSAt). 18 F-CH PET/CT detection rates increased with trigger and relative PSA: 0% (0/4 patients), 71% (5/7 patients), and 81% (35/43 patients) for PSAt <2 ng/mL, 2≤ PSAt ≤4 ng/mL, and PSAt >4 ng/mL, respectively, and 14% (1/7 patients), 50% (5/10 patients), and 92% (34/37 patients) when relative PSA was taken into account instead of trigger PSA, with seven (13%) patients changing subgroups. We found a high overall detection rate and an increase in detection rates proportional to trigger and relative PSAs. Although relative PSA, taking into account PSA nadir, was a better predictive factor of PET/CT positivity in univariate analysis, this was most noticeable for high PSAs. For low PSAs, trigger PSA remains most relevant. Larger series with intermediate PSA values need to be studied to fully apprehend nadir impact.
Analytical approaches to determination of total choline in foods and dietary supplements.
Phillips, Melissa M
2012-06-01
Choline is a quaternary amine that is synthesized in the body or consumed through the diet. Choline is critical for cell membrane structure and function and in synthesis of the neurotransmitter acetylcholine. Although the human body produces this micronutrient, dietary supplementation of choline is necessary for good health. The major challenge in the analysis of choline in foods and dietary supplements is in the extraction and/or hydrolysis approach. In many products, choline is present as choline esters, which can be quantitated individually or treated with acid, base, or enzymes in order to release choline ions for analysis. A critical review of approaches based on extraction and quantitation of each choline ester as well as hydrolysis-based methods for determination of total choline in foods and dietary supplements is presented.
Novel choline esterase based sensor for monitoring of organophosphorus pollutants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilkins, E.S.; Ghindilis, A.L.; Atanasov, P.
1996-12-31
Organophosphorus compounds are significant major environmental pollutants due to their intensive use as pesticides. The modern techniques based on inhibition of choline esterase enzyme activity are discussed. Potentiometric electrodes based on detection of choline esterase inhibition by analytes has been developed. The detection of choline esterase activity is based on the novel principle of molecular transduction. Immobilized peroxidase acting as the molecular transducer, catalyzes the electroreduction of hydrogen peroxide by direct (mediatorless) electron transfer. The sensing element consists of a carbon based electrode containing an assembly of co-immobilized enzymes: choline esterase, choline oxidase and peroxidase.
Is the detection rate of 18F-choline PET/CT influenced by androgen-deprivation therapy?
Chondrogiannis, Sotirios; Marzola, Maria Cristina; Ferretti, Alice; Grassetto, Gaia; Maffione, Anna Margherita; Rampin, Lucia; Fanti, Stefano; Giammarile, Francesco; Rubello, Domenico
2014-07-01
To evaluate if the detection rate (DR) of (18)F-choline (18F-CH) PET/CT is influenced by androgen-deprivation therapy (ADT) in patients with prostate cancer (PC) already treated with radical intent and presenting biochemical relapse. We have retrospectively evaluated (18)F-CH PET/CT scans of 325 consecutive PC patients enrolled in the period November 2009 to December 2012 previously treated with radical intent and referred to our centre to perform (18)F-CH PET/CT for biochemical relapse. Two different groups of patients were evaluated. group A included the whole sample of 325 patients (mean age 70 years, range: 49-86) who presented trigger PSA between 0.1 and 80 ng/ml (mean 5.5 ng/ml), and group B included 187 patients (mean age 70 years, range 49-86) with medium-low levels of trigger PSA ranging between 0.5 and 5 ng/ml (mean PSA 2.1 ng/ml); group B was chosen in order to obtain a more homogeneous group of patients in terms of PSA values also excluding both very low and very high PSA levels avoiding the "a priori" higher probability of negative or positive PET scan, respectively. At the time of examination, 139 patients from group A and 72 patients from group B were under ADT: these patients were considered to be hormone-resistant PC patients because from their oncologic history (>18 months) an increase of PSA levels emerged despite the ongoing ADT. The relationship between (18)F-CH PET/CT findings and possible clinical predictors was investigated using both univariate and multivariate binary logistic regression analyses, including trigger PSA and ADT. Considering the whole population, overall DR of (18)F-CH PET was 58.2 % (189/325 patients). In the whole sample of patients (group A), both at the univariate and multivariate logistic regression analysis, trigger PSA and ADT were significantly correlated with the DR of (18)F-CH PET (p < 0.05). Moreover, the DR in patients under ADT (mean PSA 7.8 ng/ml) was higher than in patients not under ADT (mean PSA 3.9 ng/ml), (DR was 70.5 % and 48.9 %, respectively; p < 0.001), therefore, demonstrating the existence of a significant correlation between the DR of (18)F-CH PET and ADT. In group B patients only trigger PSA resulted a reliable predictor of the (18)F-CH positivity, since ADT was not correlated to the DR of (18)F-CH PET (p = 0.061). Also in group B the DR of (18)F-CH PET in patients under ADT was higher than in patients not under ADT (65.3 % and 51.3 %, respectively) but the difference was not significant without a statistically significant correlation in the Mann Whitney test (p = 0.456) therefore, suggesting the lack of correlation between DR (18)F-CH PET/CT and ADT. Similarly to previous published studies, in our series the overall DR of (18)F-CH PET/CT was 58 % and was significantly correlated to trigger PSA. The most important finding of the present study is that ADT does not negatively influence DR of (18)F-CH PET/CT in PC patients with biochemical relapse; therefore, it can be suggested that it is not necessary to withdraw ADT before performing (18)F-CH PET/CT.
Transport and Metabolism of Radiolabeled Choline in Hepatocellular Carcinoma
Kuang, Yu; Salem, Nicolas; Corn, David J.; Erowku, Bernadette; Tian, Haibin; Wang, Fangjing; Lee, Zhenghong
2010-01-01
Objectives Altered choline (Cho) metabolism in cancerous cells can be used as a basis for molecular imaging with PET using radiolabeled Cho. In this study, the metabolism of tracer Cho was investigated in a woodchuck hepatocellular carcinoma (HCC) cell line (WCH17) and in freshly-derived rat hepatocytes. The transporter responsible for [11C]-Cho uptake in HCC was also characterized in WCH17 cells. The study helped to define the specific mechanisms responsible for radio-Cho uptake seen on the PET images of primary liver cancer such as HCC. Methods Cells were pulsed with [14C]-Cho for 5 min and chased for varying durations in cold media to simulate the rapid circulation and clearance of [11C]-Cho. Radioactive metabolites were extracted and analyzed by radio-HPLC and radio-TLC. The Cho transporter (ChoT) was characterized in WCH17 cells. Results WCH17 cells showed higher 14C uptake than rat primary hepatocytes. [14C]-Phosphocholine (PC) was the major metabolite in WCH17. In contrast, the intracellular Cho in primary hepatocytes was found to be oxidized to betaine (partially released into media) and to a less degree, phosphorylated to PC. [14C]-Cho uptake by WCH17 cells was found to have both facilitative transport and non-facilitative diffusion components. The facilitative transport was characterized by Na+ dependence and low affinity (Km = 28.59 ± 6.75 μM) with partial energy dependence. In contrast, ChoT in primary hepatocytes is Na+ independent and low affinity. Conclusions Our data suggest that transport and phosphorylation of Cho are responsible for the tracer accumulation during [11C]-Cho PET imaging of HCC. WCH17 cells incorporate [14C]-Cho preferentially into PC. Conversion of [14C]-PC into phosphatidylcholine occurred slowly in vitro. Basal oxidation and phosphorylation activities in surrounding hepatic tissue contribute to the background seen in [11C]-Cho PET images. PMID:20698576
Report on the development and application of PET/CT in mainland China
Zhou, Xiang; Liu, Jianjun; Huang, Gang
2017-01-01
Purpose To examine the development and application of systems combining positron emission and x-ray-computed tomography systems (PET/CTs) in mainland China. Methods Using a questionnaire, we surveyed Chinese medical institutions on a variety topics relating to their PET/CT systems and its use. The respondents had PET/CTs installed and in clinical use before 31 December 2015. We examined the clinical scenarios to which Chinese PET/CTs were applied by reviewing the related Chinese and international literature from the start of 1995 to the end of 2013; these papers were found by searching the Wanfang and PubMed databases, respectively. The data were then classified and analyzed statistically. Results At the end of 2015, there were 240 PET/CTs and 101 medical cyclotrons in mainland China. The total number of PET studies performed in 2015 was 469,364. The main clinical applications of PET were found to be diagnostic fludeoxyglucose (18F-FDG) imaging and oncological imaging. A minority of PET/CT studies were performed using 11C-choline and other imaging agents. The number of papers relating to clinical use of PET/CT in mainland China increased each year over the period of study, in both the Chinese and international literature. Despite this progress, important problems were also apparent, including unbalanced regional development and the limited quality of the research. Conclusions This study provides detailed information for understanding the development PET/CT technology in mainland China, along with its geographical distribution and clinical application. It may thus prove a useful reference for all those involved in planning the future of PET/CT in China. PMID:28969081
PET imaging in adaptive radiotherapy of prostate tumors.
Beuthien-Baumann, Bettina; Koerber, Stefan A
2018-06-04
The integration of data from positron-emission-tomography, combined with computed tomography as PET/CT or combined with magnet resonance imaging as PET/MRI, into radiation treatment planning of prostate cancer is gaining higher impact with the development of more sensitive and specific radioligands. The classic PET-tracer for prostate cancer imaging are [11C]choline and [11C]acetate, which are currently outperformed by ligands binding to the prostate-specific- membrane-antigen (PSMA). [68Ga]PSMA-11, which is the most frequently applied tracer, has shown to detect lymph node metastases, local recurrences, distant metastases and intraprostatic foci with high sensitivity, even at relatively low PSA levels. The results from PET-imaging may influence radiotherapeutic (RT) management at different stages of the disease i.e. during primary staging or biochemical recurrence, when the detection of distant metastases may alter the curative treatment concept into a palliative approach. On the other hand, the clinical target volume could be adapted by visualizing lymph node metastases at locations, which might not have been suspicious on morphologic imaging alone. The treatment plan might contain a boost to the dominant intraprostatic lesion, which could be delineated by a combination of PET-tracer uptake and multiparametric MRI. Therefore, PSMA-PET imaging is well suited for being integrated into prostate radiation planning. However, further prospective trials evaluating the impact on oncological outcome are indicated.
Schwarzenböck, Sarah Marie; Schmeja, Philipp; Kurth, Jens; Souvatzoglou, Michael; Nawroth, Roman; Treiber, Uwe; Kundt, Guenther; Berndt, Sandra; Graham, Keith; Senekowitsch-Schmidtke, Reingard; Schwaiger, Markus; Ziegler, Sibylle I; Dinkelborg, Ludger; Wester, Hans-Jürgen; Krause, Bernd Joachim
2016-06-01
Carbon-11- and fluorine-18-labeled choline derivatives are commonly used in prostate cancer imaging in the clinical setting for staging and re-staging of prostate cancer. Due to a limited detection rate of established positron emission tomography (PET) tracers, there is a clinical need for innovative tumor-specific PET compounds addressing new imaging targets. The aim of this study was to compare the properties of [(18)F]Bombesin (BAY 86-4367) as an innovative biomarker for prostate cancer imaging targeting the gastrin-releasing peptide receptor and [(11)C]Choline ([(11)C]CHO) in a human prostate tumor mouse xenograft model by small animal PET/X-ray computed tomography (CT). We carried out a dual-tracer small animal PET/CT study comparing [(18)F]Bombesin and [(11)C]CHO. The androgen-independent human prostate tumor cell line PC-3 was implanted subcutaneously in the flanks of nu/nu NMRI mice (n = 10) (PET/CT measurements of two [(11)C]Choline mice could not be analyzed due to technical reasons). [(18)F]Bombesin and [(11)C]CHO PET/CT imaging was performed about 3-4 weeks after the implantation of PC-3 cells on two separate days. After the intravenous tail vein injection of 14 MBq [(18)F]Bombesin and 37 MBq [(11)C]CHO, respectively, a dynamic study over 60 min was acquired in list mode using an Inveon animal PET/CT scanner (Siemens Medical Solutions). The sequence of [(18)F]Bombesin and [(11)C]CHO was randomized. Image analysis was performed using summed images as well as dynamic data. To calculate static and dynamic tumor-to-muscle (T/M), tumor-to-blood (T/B), liver-to-blood (L/B), and kidney-to-blood (K/B) ratios, 4 × 4 × 4 mm(3) volumes of interest (VOIs) of tumor, muscle (thigh), liver, kidney, and blood derived from transversal slices were used. The mean T/M ratio of [(18)F]Bombesin and [(11)C]CHO was 6.54 ± 2.49 and 1.35 ± 0.30, respectively. The mean T/B ratio was 1.83 ± 0.79 for [(18)F]Bombesin and 0.55 ± 0.10 for [(11)C]CHO. The T/M ratio as well as the T/B ratio for [(18)F]Bombesin were significantly higher compared to those for [(11)C]CHO (p < 0.001, respectively). Kidney and liver uptake was statistically significantly lower for [(18)F]Bombesin (K/B 3.41 ± 0.81, L/B 1.99 ± 0.38) compared to [(11)C]CHO [K/B 7.91 ± 1.85 (p < 0.001), L/B 6.27 ± 1.99 (p < 0.001)]. The magnitudes of the time course of T/M and T/B ratios (T/M and T/Bdyn ratios) were statistically significantly different (showing a higher uptake of [(18)F]Bombesin compared to [(11)C]CHO); additionally, also the change of the T/M and T/B ratios over time was significantly different between both tracers in the dynamic analysis (p < 0.001, respectively). Furthermore, there was a statistically significantly different change of the K/B and L/B ratios over time between the two tracers in the dynamic analysis (p = 0.026 and p < 0.001, respectively). [(18)F]Bombesin (BAY 86-4367) visually and semi-quantitatively outperforms [(11)C]CHO in the PC-3 prostate cancer xenograft model. [(18)F]Bombesin tumor uptake was significantly higher compared to [(11)C]CHO. [(18)F]Bombesin showed better imaging properties compared to the clinically utilized [(11)C]CHO due to a higher tumor uptake as well as a lower liver and kidney uptake.
How to use PET/CT in the evaluation of response to radiotherapy.
Decazes, Pierre; Thureau, Sébastien; Dubray, Bernard; Vera, Pierre
2018-06-01
Radiotherapy is a major treatment modality for many cancers. Tumor response after radiotherapy determines the subsequent steps of the patient's management (surveillance, adjuvant or salvage treatment and palliative care). Tumor response assessed during radiotherapy offers a promising opportunity to adapt the treatment plan to reduced or increased target volume, to specifically target sub-volumes with relevant biological characteristics (metabolism, hypoxia, proliferation, etc.) and to further spare the organs at risk. In addition to its role in the diagnosis and the initial staging, Positron Emission Tomography combined with a Computed Tomography (PET/CT) provides functional information and is therefore attractive to evaluate tumor response. The aim of this paper is to review the published data addressing PET/CT as an evaluation tool in irradiated tumors. Reports on PET/CT acquired at various times (during radiotherapy, after initial (chemo-) radiotherapy, after definitive radiotherapy and during posttreatment follow-up) in solid tumors (lung, head-and-neck, cervix, esophagus, prostate and rectum) were collected and reviewed. Various tracers and technical aspects are also discussed. 18F-FDG PET/CT has a well-established role in clinical routine after definitive chemo-radiotherapy for locally advanced head-and-neck cancers. 18F-choline PET/CT is indicated in prostate cancer patients with biochemical failure. 18F-FDG PET/CT is optional in many other circumstances and the clinical benefits of assessing tumor response with PET/CT remain a field of very active research. The combination of PET with Magnetic Resonance Imaging (PET/MRI) may prove to be valuable in irradiated rectal and cervix cancers. Tumor response can be evaluated by PET/CT with clinical consequences in multiple situations, notably in head and neck and prostate cancers, after radiotherapy. Further clinical evaluation for most cancers is still needed, possibly in association to MRI.
[Significance of PSMA imaging in prostate cancer].
Gasch, C; Düwel, C; Kopka, K; Kratochwil, C; Vinsensia, M; Eiber, M; Maurer, T; Haberkorn, U; Hadaschik, B; Giesel, F L
2017-01-01
Prostate cancer (PCa) is one of the most common malignancies of men in developed countries. To improve clinical diagnostics of PCa, 68 Ga-PSMA-11 was recently introduced as a new PET tracer. 68 Ga-PSMA-11 is able to specifically bind to the prostate-specific membrane antigen (PSMA), which is upregulated on the surface of prostate cancer cells in most patients. To analyse the current significance of 68 Ga-PSMA-11 PET imaging in prostate cancer in relation to staging of men with initial diagnosis, biochemical recurrence and metastatic disease. Retrospective analysis of current literature (PubMed search) regarding 68 Ga-PSMA-11 PET diagnostics in primary staging, in biochemical recurrence and in metastasized disease. Compared to conventional imaging, 68 Ga-PSMA-11 PET/CT reaches a higher sensitivity with an excellent specificity in the clinical diagnosis of primary staging as well as staging for recurrence and advanced, metastasized disease. In biochemical recurrence, 68 Ga-PSMA-11 PET/CT shows significantly higher detection rates in comparison to choline PET/CT, especially in patients with low PSA values. In the clinical diagnosis of recurrent disease, therapy concepts were changed in more than a quarter of the patients due to the use of 68 Ga-PSMA-11 PET/CT. The significance of staging with 68 Ga-PSMA-11 PET/CT in advanced metastasized patients remains uncertain. Due to the excellent results of 68 Ga-PSMA-11 PET imaging, even in patients with slightly elevated PSA levels, it will continue to play an important role in clinical diagnostics of prostate cancer and, thus, its clinical utilization will become more widely spread.
Pasqualetti, Francesco; Panichi, Marco; Sainato, Aldo; Matteucci, Fabrizio; Galli, Luca; Cocuzza, Paola; Ferrazza, Patrizia; Coraggio, Gabriele; Pasqualetti, Giuseppe; Derosa, Lisa; Sollini, Martina; Mannelli, Lorenzo; Ortori, Simona; Monzani, Fabio; Ricci, Sergio; Greco, Carlo; Fabrini, Maria Grazia; Erba, Paola Anna
2016-01-22
A new entity of patients with recurrent prostate cancer limited to a small number of active metastatic lesions is having growing interest: the oligometastatic patients. Patients with oligometastatic disease could eventually be managed by treating all the active lesions with local therapy, i.e. either surgery or ablative stereotactic body radiotherapy. This study aims to assess the impact of [(18)F]Choline ([(18)F]FMCH) PET/CT and the use stereotactic body radiotherapy (SBRT) in patients (pts) with oligometastatic prostate cancer (PCa). Twenty-nine pts with oligometastatic PCa (≤3 synchronous active lesions detected with [(18)F]FMCHPET/CT) were treated with repeated salvage SBRT until disease progression (development of > three active synchronous metastases). Primary endpoint was systemic therapy-free survival measured from the baseline [(18)F]FMCHPET/CT. A total of 45 lesions were treated with SBRT. After a median follow-up of 11.5 months (range 3-40 months), 20 pts were still in the study and did not receive any systemic therapy. Nine pts started systemic therapy, and the median time of the primary endpoint was 39.7 months (CI 12.20-62.14 months). No grade 3 or 4 toxicity was recorded. Repeated salvage [(18)F]FMCHPET/CT-guided SBRT is well tolerated and could defer the beginning of systemic therapy in selected patients with oligometastatic PCa.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanoun, Salim, E-mail: Salim.kanoun@gmail.com; LE2I UMR6306, Centre national de la recherche scientifique, Arts et Métiers, Université Bourgogne Franche-Comté, Dijon; MRI Unit, Centre Hospitalier Régional Universitaire, Hôpital François Mitterrand, Dijon
Purpose: To compare the diagnostic performance of {sup 18}F-fluorocholine positron emission tomography/computed tomography (FCH-PET/CT), multiparametric prostate magnetic resonance imaging (mpMRI), and a combination of both techniques for the detection of local recurrence of prostate cancer initially treated by radiation therapy. Methods and Materials: This was a retrospective, single-institution study of 32 patients with suspected prostate cancer recurrence who underwent both FCH-PET/CT and 3T mpMRI within 3 months of one another for the detection of recurrence. All included patients had to be cleared for metastatic recurrence. The reference procedure was systematic 3-dimensional (3D)-transperineal prostate biopsy for the final assessment of local recurrence.more » Both imaging modalities were analyzed by 2 experienced readers blinded to clinical data. The analysis was made per-patient and per-segment using a 4-segment model. Results: The median prostate-specific antigen value at the time of imaging was 2.92 ng/mL. The mean prostate-specific antigen doubling time was 14 months. Of the 32 patients, 31 had a positive 3D-transperineal mapping biopsy for a local relapse. On a patient-based analysis, the detection rate was 71% (22 of 31) for mpMRI and 74% (23 of 31) for FCH-PET/CT. On a segment-based analysis, the sensitivity and specificity were, respectively, 32% and 87% for mpMRI, 34% and 87% for FCH-PET/CT, and 43% and 83% for the combined analysis of both techniques. Accuracy was 64%, 65%, and 66%, respectively. The interobserver agreement was κ = 0.92 for FCH-PET/CT and κ = 0.74 for mpMRI. Conclusions: Both mpMRI and FCH-PET/CT show limited sensitivity but good specificity for the detection of local cancer recurrence after radiation therapy, when compared with 3D-transperineal mapping biopsy. Prostate biopsy still seems to be mandatory to diagnose local relapse and select patients who could benefit from local salvage therapy.« less
The Utility of PET/CT in the Planning of External Radiation Therapy for Prostate Cancer.
Calais, Jeremie; Cao, Minsong; Nickols, Nicholas G
2018-04-01
Radiotherapy and radical prostatectomy are the definitive treatment options for patients with localized prostate cancer. A rising level of prostate-specific antigen after radical prostatectomy indicates prostate cancer recurrence, and these patients may still be cured with salvage radiotherapy. To maximize chance for cure, the irradiated volumes should completely encompass the extent of disease. Therefore, accurate estimation of the location of disease is critical for radiotherapy planning in both the definitive and the salvage settings. Current first-line imaging for prostate cancer has limited sensitivity for detection of disease both at initial staging and at biochemical recurrence. Integration of PET into routine evaluation of prostate cancer patients may improve both staging accuracy and radiotherapy planning. 18 F-FDG PET/CT is now routinely used in radiation planning for several cancer types. However, 18 F-FDG PET/CT has low sensitivity for prostate cancer. Additional PET probes evaluated in prostate cancer include 18 F-sodium fluoride, 11 C-acetate, 11 C- or 18 F-choline, 18 F-fluciclovine, and 68 Ga- or 18 F-labeled ligands that bind prostate-specific membrane antigen (PSMA). PSMA ligands appear to be the most sensitive and specific but have not yet received Food and Drug Administration New Drug Application approval for use in the United States. Retrospective and prospective investigations suggest a potential major impact of PET/CT on prostate radiation treatment planning. Prospective trials randomizing patients to routine radiotherapy planning versus PET/CT-aided planning may show meaningful clinical outcomes. Prospective clinical trials evaluating the addition of 18 F-fluciclovine PET/CT for planning of salvage radiotherapy with clinical endpoints are under way. Prospective trials evaluating the clinical impact of PSMA PET/CT on prostate radiation planning are indicated. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.
PSMA PET and radionuclide therapy in prostate cancer
Bouchelouche, Kirsten; Turkbey, Baris; Choyke, Peter L.
2016-01-01
Prostate cancer (Pca) is the most common malignancy in men and a major cause of cancer death. Accurate imaging plays an important role in diagnosis, staging, restaging, detection of biochemical recurrence, and for therapy of PCa patients. Since no effective treatment is available for advanced PCa, there is an urgent need to develop new and more effective therapeutic strategies. In order to optimize treatment outcome, especially in high risk PCa patients, therapy of PCa is moving rapidly towards personalization. Medical imaging, including positron emission tomography (PET)/computed tomography (CT), plays an important role in personalized medicine in oncology. In the recent years, much focus has been on prostate specific membrane antigen (PSMA) as a promising target for imaging and therapy with radionuclides, since it is upregulated in most PCa. In the prostate, one potential role for PSMA PET imaging is to help guiding focal therapy. Several studies have shown great potential of PSMA PET/CT for initial staging, lymph node staging, and detection of recurrence of PCa, even at very low PSA values after primary therapy. Furthermore, studies have shown that PSMA PET/CT has a higher detection rate than choline PET/CT. Radiolabeled PSMA ligands for therapy show promise in several studies with metastatic PCa, and is an area of active investigation. The “Image and treat” strategy, with radiolabeled PSMA ligands, has the potential to improve the treatment outcome of PCa patients, and is paving the way for precision medicine in PCa. The aim of this review is to give an overview of recent advancement in PSMA PET and radionuclide therapy of PCa. PMID:27825432
PSMA Ligands for Radionuclide Imaging and Therapy of Prostate Cancer: Clinical Status
Lütje, Susanne; Heskamp, Sandra; Cornelissen, Alexander S.; Poeppel, Thorsten D.; van den Broek, Sebastiaan A. M. W.; Rosenbaum-Krumme, Sandra; Bockisch, Andreas; Gotthardt, Martin; Rijpkema, Mark; Boerman, Otto C.
2015-01-01
Prostate cancer (PCa) is the most common malignancy in men worldwide, leading to substantial morbidity and mortality. At present, imaging of PCa has become increasingly important for staging, restaging, and treatment selection. Until recently, choline-based positron emission tomography/computed tomography (PET/CT) represented the state-of-the-art radionuclide imaging technique for these purposes. However, its application is limited to patients with high PSA levels and Gleason scores. Prostate-specific membrane antigen (PSMA) is a promising new target for specific imaging of PCa, because it is upregulated in the majority of PCa. Moreover, PSMA can serve as a target for therapeutic applications. Currently, several small-molecule PSMA ligands with excellent in vivo tumor targeting characteristics are being investigated for their potential in theranostic applications in PCa. Here, a review of the recent developments in PSMA-based diagnostic imaging and therapy in patients with PCa with radiolabeled PSMA ligands is provided. PMID:26681984
Batra, Vipen; Kislay, Binita; Devasagayam, Thomas Paul Asir
2011-12-01
The objective of this study was to examine the effect of 60Co-gamma (γ) radiation on acute phase modulation, if any, of choline and choline-containing moieties in choline-deficient subjects. Corresponding results could provide information that might be useful in the management of adverse effects of γ-radiation. Male Swiss mice maintained on a choline-sufficient diet (CSD) and choline-free diet (CFD) based on AIN-93M formula, were subjected to whole body γ-irradiation (2-6 Gy). Liver, serum and brain samples from each group were then tested for: (i) Alterations in choline and choline-containing moieties such as phosphatidylcholine (PC) and sphingomyeline (SM); and (ii) modulation of choline profile modulating enzymes such as phospholipase D (PLD) and total sphingomyelinase (t-SMase). Liver and brain samples were also subjected to histo-pathological examinations. No significant changes were observed in folate, choline, choline-containing moieties and choline-modulating enzymes in choline-sufficient mice. In contrast, interaction between cytotoxic effects of γ-radiation and choline deficiency modulated choline and choline-containing moieties. Feeding CFD reduced hepatic concentrations of choline, PC and SM whereas PLD and t-SMase activities were significantly raised. The decrease in liver choline and choline-containing moieties was accompanied by an increase in blood choline concentration. Despite choline deficiency, the level of choline and acetylcholine synthesizing enzyme choline acetyltransfease (ChAT) significantly increased in the brain. We propose that choline deprivation and γ-radiation interact to modulate choline reserves of hepatic tissue, which might release choline to blood. Our studies also clearly showed that interaction between choline deficiency and γ-radiation might substantially enhance liver adipogenesis.
Arsenault, Frédéric; Beauregard, Jean-Mathieu; Pouliot, Frédéric
2018-06-22
In recent years, major advances in molecular imaging of prostate cancers (PCa) were made with the development and clinical validation of highly accurate PET tracers to stage and restage the disease. Prostate-specific membrane antigen (PSMA) is a transmembrane protein highly expressed in PCa, and its expression has led to the development of PSMA-binding radiopharmaceuticals for molecular imaging or radioligand therapy (RLT). We herein review the recent literature published on diagnostic and therapeutic (i.e. theranostic) PSMA tracers. Development in small PSMA-targeted molecules labeled with gallium-68 and fluorine-18 show promising results for primary staging and detection of disease at biochemical recurrence using PET/computed tomography (PET/CT). Studies show a higher sensitivity and specificity, along with an improved detection rate over conventional imaging (CT scan and bone scan) or choline PET tracers, especially for restaging after prostate-specific antigen failure following loco-regional therapy. In addition, some PSMA tracers can be labeled with beta-minus and alpha particle emitters, yielding encouraging response rates and low toxicity, and potentially offering a new line of targeted therapy for metastatic castration-resistant PCa. PSMA-targeted tracers have shown unprecedented accuracy to stage and restage PCa using PET/CT. Given their specific biodistribution toward PCa tissue, PSMA RLT now offers new therapeutic possibilities to target metastatic PCa. Prospective multicenter randomized studies investigating the clinical impact management impacts of PSMA-targeted molecules are urgently needed.
Nikzad, Nasrin; Karami, Zahra
2018-04-14
Changes in choline levels can be associated with diseases such as Alzheimer, Parkinson, Huntington, fatty liver, interstitial lung abnormalities, autism and so on. Therefore, quantitative determination of choline is important in the biological and clinical analysis. So far, several methods have been investigated for measuring choline in the body fluids, each of which has disadvantages such as the need for specialist ability, complexity, and high cost. For this purpose, a facile and sensitive colorimetric biosensor based on DNAzyme-choline oxidase coupling used for the determination of choline. In this method, the first, choline oxidase produces H 2 O 2 and betaine in the presence of choline and oxygen, then, the DNAzyme converts colorless ABTS into green ABTS + radicals. Compared to the previous methods, the linear range and the limit of detection of this talented biosensor were 0.1-25 μM and 22 nM. Choline measurement using this biosensor has shown satisfactory selectivity and repeatability. Its recovery was 96.9-103.7%, which shows the reliability of biosensor assay in biological samples. Simplicity, low cost, naked eye, high sensitivity, and precision are the benefits of this biosensor. Taken to gather, the proposed system can be considered as a great biosensor for measuring choline levels especially in point of care diagnostic. Copyright © 2018 Elsevier B.V. All rights reserved.
Chen, Yu-ming; Liu, Yan; Zhou, Rui-fen; Chen, Xiao-ling; Wang, Cheng; Tan, Xu-ying; Wang, Li-jun; Zheng, Rui-dan; Zhang, Hong-wei; Ling, Wen-hua; Zhu, Hui-lian
2016-01-08
Many studies suggest that trimethylamine-N-oxide (TMAO), a gut-flora-dependent metabolite of choline, contributes to the risk of cardiovascular diseases, but little is known for non-alcoholic fatty liver disease (NAFLD). We examined the association of circulating TMAO, choline and betaine with the presence and severity of NAFLD in Chinese adults. We performed a hospital-based case-control study (CCS) and a cross-sectional study (CSS). In the CCS, we recruited 60 biopsy-proven NAFLD cases and 35 controls (18-60 years) and determined serum concentrations of TMAO, choline and betaine by HPLC-MS/MS. For the CSS, 1,628 community-based adults (40-75 years) completed the blood tests and ultrasonographic NAFLD evaluation. In the CCS, analyses of covariance showed adverse associations of ln-transformed serum levels of TMAO, choline and betaine/choline ratio with the scores of steatosis and total NAFLD activity (NAS) (all P-trend <0.05). The CSS revealed that a greater severity of NAFLD was independently correlated with higher TMAO but lower betaine and betaine/choline ratio (all P-trend <0.05). No significant choline-NAFLD association was observed. Our findings showed adverse associations between the circulating TMAO level and the presence and severity of NAFLD in hospital- and community-based Chinese adults, and a favorable betaine-NAFLD relationship in the community-based participants.
Chen, Yu-ming; Liu, Yan; Zhou, Rui-fen; Chen, Xiao-ling; Wang, Cheng; Tan, Xu-ying; Wang, Li-jun; Zheng, Rui-dan; Zhang, Hong-wei; Ling, Wen-hua; Zhu, Hui-lian
2016-01-01
Many studies suggest that trimethylamine-N-oxide (TMAO), a gut-flora-dependent metabolite of choline, contributes to the risk of cardiovascular diseases, but little is known for non-alcoholic fatty liver disease (NAFLD). We examined the association of circulating TMAO, choline and betaine with the presence and severity of NAFLD in Chinese adults. We performed a hospital-based case-control study (CCS) and a cross-sectional study (CSS). In the CCS, we recruited 60 biopsy-proven NAFLD cases and 35 controls (18–60 years) and determined serum concentrations of TMAO, choline and betaine by HPLC-MS/MS. For the CSS, 1,628 community-based adults (40-75 years) completed the blood tests and ultrasonographic NAFLD evaluation. In the CCS, analyses of covariance showed adverse associations of ln-transformed serum levels of TMAO, choline and betaine/choline ratio with the scores of steatosis and total NAFLD activity (NAS) (all P-trend <0.05). The CSS revealed that a greater severity of NAFLD was independently correlated with higher TMAO but lower betaine and betaine/choline ratio (all P-trend <0.05). No significant choline-NAFLD association was observed. Our findings showed adverse associations between the circulating TMAO level and the presence and severity of NAFLD in hospital- and community-based Chinese adults, and a favorable betaine-NAFLD relationship in the community-based participants. PMID:26743949
Parikh, V; Sarter, M
2006-04-01
The capacity of the high-affinity choline transporter (CHT) to import choline into presynaptic terminals is essential for acetylcholine synthesis. Ceramic-based microelectrodes, coated at recording sites with choline oxidase to detect extracellular choline concentration changes, were attached to multibarrel glass micropipettes and implanted into the rat frontoparietal cortex. Pressure ejections of hemicholinium-3 (HC-3), a selective CHT blocker, dose-dependently reduced the uptake rate of exogenous choline as well as that of choline generated in response to terminal depolarization. Following the removal of CHTs, choline signal recordings confirmed that the demonstration of potassium-induced choline signals and HC-3-induced decreases in choline clearance require the presence of cholinergic terminals. The results obtained from lesioned animals also confirmed the selectivity of the effects of HC-3 on choline clearance in intact animals. Residual cortical choline clearance correlated significantly with CHT-immunoreactivity in lesioned and intact animals. Finally, synaptosomal choline uptake assays were conducted under conditions reflecting in vivo basal extracellular choline concentrations. Results from these assays confirmed the capacity of CHTs measured in vivo and indicated that diffusion of substrate away from the electrode did not confound the in vivo findings. Collectively, these results indicate that increases in extracellular choline concentrations, irrespective of source, are rapidly cleared by CHTs.
Bombardieri, E; Setti, L; Kirienko, M; Antunovic, L; Guglielmo, P; Ciocia, G
2015-12-01
Prostate cancer bone metastases occur frequently in advanced cancer and this is matter of particular attention, due to the great impact on patient's management and considering that a lot of new emerging therapeutic options have been recently introduced. Imaging bone metastases is essential to localize lesions, to establish their size and number, to study characteristics and changes during therapy. Besides radiological imaging, nuclear medicine modalities can image their features and offer additional information about their metabolic behaviour. They can be classified according to physical characteristics, type of detection, mechanism of uptake, availability for daily use. The physiopathology of metastases formation and the mechanisms of tracer uptake are essential to understand the interpretation of nuclear medicine images. Therefore, radiopharmaceuticals for bone metastases can be classified in agents targeting bone (99mTc-phosphonates, 18F-fluoride) and those targeting prostatic cancer cells (18F-fluoromethylcholine, 11C-choline, 18F-fluorodeoxyglucose). The modalities using the first group of tracers are planar bone scan, SPECT or SPECT/CT with 99mTc-diphosphonates, and 18F-fluoride PET/CT, while the modalities using the second group include 18F/11C-choline derivatives PET/CT, 18F-FDG PET/CT and PET/CT scans with several other radiopharmaceuticals described in the literature, such as 18F/11C-acetate derivatives, 18F-fluoro-5α-dihydrotestosterone (FDHT), 18F-anti-1-amino-3-fluorocyclobutane-1-carboxylic acid (FACBC), 18F-2'-fluoro-5-methyl-1-β-D-arabinofuranosyluracil (FMAU) and 68Ga-labeled-prostate specific membrane antigen (PMSA) PET/TC. However, since data on clinical validation for these last novel modalities are not conclusive and/or are not still sufficient in number, at present they can be still considered as promising tools under evaluation. The present paper considers the nuclear modalities today available for the clinical routine. This overview wants to discuss the opportunities and the drawbacks of these current diagnostic tests in a scenario where planar scintigraphy and/or SPECT with phosphonates, is the only metabolic imaging recommended by the most important Guidelines of the Scientific Societies dealing with prostate cancer. Other nuclear medicine modalities are in very few cases just cited, never recommended except in rare situations. Is there space for agents other than 99mTc-phosphonates to image bone lesions from prostate cancer?
Compartmental model of 18F-choline
NASA Astrophysics Data System (ADS)
Janzen, T.; Tavola, F.; Giussani, A.; Cantone, M. C.; Uusijärvi, H.; Mattsson, S.; Zankl, M.; Petoussi-Henß, N.; Hoeschen, C.
2010-03-01
The MADEIRA Project (Minimizing Activity and Dose with Enhanced Image quality by Radiopharmaceutical Administrations), aims to improve the efficacy and safety of 3D functional imaging by optimizing, among others, the knowledge of the temporal variation of the radiopharmaceuticals' uptake in and clearance from tumor and healthy tissues. With the help of compartmental modeling it is intended to optimize the time schedule for data collection and improve the evaluation of the organ doses to the patients. Administration of 18F-choline to screen for recurrence or the occurrence of metastases in prostate cancer patients is one of the diagnostic applications under consideration in the frame of the project. PET and CT images have been acquired up to four hours after injection of 18F-choline. Additionally blood and urine samples have been collected and measured in a gamma counter. The radioactivity concentration in different organs and data of plasma clearance and elimination into urine were used to set-up a compartmental model of the biokinetics of the radiopharmaceutical. It features a central compartment (blood) exchanging with organs. The structure describes explicitly liver, kidneys, spleen, plasma and bladder as separate units with a forcing function approach. The model is presented together with an evaluation of the individual and population kinetic parameters, and a revised time schedule for data collection is proposed. This optimized time schedule will be validated in a further set of patient studies.
Tateishi-Karimata, Hisae; Nakano, Miki; Sugimoto, Naoki
2014-01-08
The instability of Hoogsteen base pairs relative to Watson-Crick base pairs has limited biological applications of triplex-forming oligonucleotides. Hydrated ionic liquids (ILs) provide favourable environments for a wide range of chemical reactions and are known to impact the stabilities of Watson-Crick base pairs. We found that DNA triplex formation was significantly stabilized in hydrated choline dihydrogen phosphate as compared with an aqueous buffer at neutral pH. Interestingly, the stability of Hoogsteen base pairs was found to be comparable with that of Watson-Crick base pairs in the hydrated IL. Molecular dynamics simulations of a DNA triplex in the presence of choline ions revealed that the DNA triplex was stabilized because of the binding of choline ion around the third strand in the grooves. Our finding will facilitate the development of new DNA materials. Our data also indicate that triplex formation may be stabilized inside cells where choline ions and their derivatives are abundant in vivo.
Tateishi-Karimata, Hisae; Nakano, Miki; Sugimoto, Naoki
2014-01-01
The instability of Hoogsteen base pairs relative to Watson–Crick base pairs has limited biological applications of triplex-forming oligonucleotides. Hydrated ionic liquids (ILs) provide favourable environments for a wide range of chemical reactions and are known to impact the stabilities of Watson–Crick base pairs. We found that DNA triplex formation was significantly stabilized in hydrated choline dihydrogen phosphate as compared with an aqueous buffer at neutral pH. Interestingly, the stability of Hoogsteen base pairs was found to be comparable with that of Watson–Crick base pairs in the hydrated IL. Molecular dynamics simulations of a DNA triplex in the presence of choline ions revealed that the DNA triplex was stabilized because of the binding of choline ion around the third strand in the grooves. Our finding will facilitate the development of new DNA materials. Our data also indicate that triplex formation may be stabilized inside cells where choline ions and their derivatives are abundant in vivo. PMID:24399194
Dietary S-methylmethionine, a component of foods, has choline-sparing activity in chickens.
Augspurger, Nathan R; Scherer, Colleen S; Garrow, Timothy A; Baker, David H
2005-07-01
Acid hydrolysis of dehulled soybean meal (SBM) and corn gluten meal (CGM) followed by chromatographic amino acid analysis (ninhydrin detection) revealed substantial quantities of S-methylmethionine (SMM) in both ingredients (1.65 g SMM/kg SBM; 0.5 g SMM/kg CGM). Young chicks were used to quantify the methionine- (Met) and choline-sparing bioactivity of crystalline L-SMM, relative to L-Met and choline chloride standards in 3 assays. A soy isolate basal diet was developed that could be made markedly deficient in Met, choline, or both. When singly deficient in choline or in both choline and Met, dietary SMM addition produced a significant (P < 0.01) growth response. In Assay 2, dietary SMM did not affect (P > 0.10) growth of chicks fed a Met-deficient, choline-adequate diet. A standard-curve growth assay revealed choline bioactivity values (wt:wt) of 14.2 +/- 0.8 and 25.9 +/- 5.1 g/100 g SMM based on weight gain and gain:food responses, respectively. A fourth assay, using standard-curve procedures, showed choline bioactivity values of 20.1 +/- 1.1 and 22.9 +/- 1.7 g/100 g SMM based on weight gain and gain:food responses, respectively. It is apparent that SMM in foods and feeds has methylation bioactivity, and this has implications for proper assessment of dietary Met and choline requirements as well as their bioavailability in foods and feeds.
Eissa, Ahmed; El Sherbiny, Ahmed; Coelho, Rafael F; Rassweiler, Jens; Davis, John W; Porpiglia, Francesco; Patel, Vipul R; Prandini, Napoleone; Micali, Salvatore; Sighinolfi, Maria C; Puliatti, Stefano; Rocco, Bernardo; Bianchi, Giampaolo
2018-04-17
Recurrence after primary treatment of prostate cancer is one of the major challenges facing urologists. Biochemical recurrence is not rare and occurs in up to one third of the patients undergoing radical prostatectomy. Management of biochemical recurrence is tailored according to the site and the burden of recurrence. Therefore, developing an imaging technique to early detect recurrent lesions represents an urgent need. Positron emission tomography (PET) of 68Ga-labelled prostate-specific membrane antigen (68Ga-PSMA) is an emerging imaging modality that seems to be a promising tool with capability to localize recurrent prostate cancer. Our aim was a systematic review of literature was done to evaluate the role of 68Ga-PSMA PET/CT scan in patients with recurrent prostate cancer after primary radical treatment. A systematic and comprehensive review of literature was performed in September 2017 analyzing the MEDLINE and Cochrane Library following the Preferred Reporting Items for Systematic Review and Meta-analysis (PRISMA) statement. The following key terms were used for the search "PSMA", "prostate-specific membrane antigen", "positron emission tomography", "PET", "recurrent", "prostate cancer", "prostate neoplasm", "prostate malignancy" and "68Ga". Risk of bias was assessed using the Quality Assessment of Diagnostic Accuracy Studies-2 tool. Thirty-seven articles met our inclusion criteria and were included in the analysis of this systematic review. Of the 37 articles selected for analysis only four studies were prospective. The overall detection rate of 68Ga PSMA PET scan ranged from 47% up to 96.6%. The main advantage of this imaging technique is its relatively high detection rates at low serum PSA levels below 0.5 ng/ml (ranging from 11.1% to 75%). Higher serum PSA level was strongly associated with increased positivity on 68Ga PSMA PET scan. 68Ga PSMA PET scan was found superior to conventional imaging techniques (CT and MRI) in this setting of patients and even it seems to outperform choline-based PET scan. This technique provided significant changes in the therapeutic management of 28.6% - 87.1% of patients. After biochemical recurrence, the primary goal is to locate the recurrent lesions' site. 68Ga-PSMA PET/CT seems to be effective in identifying recurrence localization also for very low levels of PSA (< 0.5 ng/ml) thus permitting to choose the best therapeutic strategy as early as possible. However, data available cannot be considered exhaustive and prospective randomized trials are needed.
Evaluation of Prostate Cancer with Radiolabeled Amino Acid Analogs.
Schuster, David M; Nanni, Cristina; Fanti, Stefano
2016-10-01
Conventional imaging of prostate cancer has limitations related to the frequently indolent biology of the disease. PET is a functional imaging method that can exploit various aspects of tumor biology to enable greater detection of prostate cancer than can be provided by morphologic imaging alone. Radiotracers that are in use or under investigation for targeting salient features of prostate cancer include those directed to glucose, choline, acetate, prostate-specific membrane antigen, bombesin, and amino acids. The tumor imaging features of this last class of radiotracers mirror the upregulation of transmembrane amino acid transport that is necessary in carcinomas because of increased amino acid use for energy requirements and protein synthesis. Natural and synthetic amino acids radiolabeled for PET imaging have been investigated in prostate cancer patients. Early work with naturally occurring amino acid-derived radiotracers, such as l- 11 C-methionine and l-1- 11 C-5-hydroxytryptophan, demonstrated promising results, including greater sensitivity than 18 F-FDG for intraprostatic and extraprostatic cancer detection. However, limitations with naturally occurring amino acid-derived compounds, including metabolism of the radiotracer itself, led to the development of synthetic amino acid radiotracers, which are not metabolized and therefore more accurately reflect transmembrane amino acid transport. Of the synthetic amino acid-derived PET radiotracers, anti-1-amino-3- 18 F-fluorocyclobutane-1-carboxylic acid ( 18 F-FACBC or 18 F-fluciclovine) has undergone the most promising translation to human use, including the availability of simplified radiosynthesis. Several studies have indicated advantageous biodistribution in the abdomen and pelvis with little renal excretion and bladder activity-characteristics beneficial for prostate cancer imaging. Studies have demonstrated improved lesion detection and diagnostic performance of 18 F-fluciclovine in comparison with conventional imaging, especially for recurrent prostate cancer, although issues with nonspecific uptake limit the potential role of 18 F-fluciclovine in the diagnosis of primary prostate cancer. Although work is ongoing, recently published intrapatient comparisons of 18 F-fluciclovine with 11 C-choline reported higher overall diagnostic performance of the former, especially for the detection of disease relapse. This review is aimed at providing a detailed overview of amino acid-derived PET compounds that have been studied for use in prostate cancer imaging. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
High intakes of choline and betaine reduce breast cancer mortality in a population-based study
Xu, Xinran; Gammon, Marilie D.; Zeisel, Steven H.; Bradshaw, Patrick T.; Wetmur, James G.; Teitelbaum, Susan L.; Neugut, Alfred I.; Santella, Regina M.; Chen, Jia
2009-01-01
Choline and betaine provide methyl groups for one-carbon metabolism. Humans obtain these nutrients from a wide range of foods. Betaine can also be synthesized endogenously from its precursor, choline. Although animal studies have implied a causal relationship between choline deficiency and carcinogenesis, the role of these two nutrients in human carcinogenesis and tumor progression is not well understood. We investigated the associations of dietary intakes of choline and betaine and breast cancer risk and mortality in the population-based Long Island Breast Cancer Study Project. Among the 1508 case-group women, 308 (20.2%) deaths occurred, among whom 164 (53.2%) died of breast cancer by December 31, 2005. There was an indication that a higher intake of free choline was associated with reduced risk of breast cancer (Ptrend=0.04). Higher intakes of betaine, phosphocholine, and free choline were associated with reduced all-cause as well as breast cancer-specific mortality in a dose-dependent fashion. We also explored associations of polymorphisms of three key choline- and betaine-metabolizing genes and breast cancer mortality. The betaine-homocysteine methyltransferase gene (BHMT) rs3733890 polymorphism was associated with reduced breast cancer-specific mortality (hazard ratio, 0.64; 95% confidence interval, 0.42–0.97). Our study supports the important roles of choline and betaine in breast carcinogenesis. It suggests that high intake of these nutrients may be a promising strategy to prevent the development of breast cancer and to reduce its mortality.—Xu, X., Gammon, M. D., Zeisal, S. H., Bradshaw, P. T., Wetmur, J. G., Teitelbaum, S. L., Neugut, A. I., Santella, R. M., Chen, J. High intakes of choline and betaine reduce breast cancer mortality in a population-based study. PMID:19635752
Choline-based ionic liquids-enhanced biodegradation of azo dyes.
Sekar, Sudharshan; Surianarayanan, Mahadevan; Ranganathan, Vijayaraghavan; MacFarlane, Douglas R; Mandal, Asit Baran
2012-05-01
Industrial wastewaters such as tannery and textile processing effluents are often characterized by a high content of dissolved organic dyes, resulting in large values of chemical and biological oxygen demand (COD and BOD) in the aquatic systems into which they are discharged. Such wastewater streams are of rapidly growing concern as a major environmental issue in developing countries. Hence there is a need to mitigate this challenge by effective approaches to degrade dye-contaminated wastewater. In this study, several choline-based salts originally developed for use as biocompatible hydrated ionic liquids (i.e., choline sacchrinate (CS), choline dihydrogen phosphate (CDP), choline lactate (CL), and choline tartarate (CT)) have been successfully employed as the cosubstrate with S. lentus in the biodegradation of an azo dye in aqueous solution. We also demonstrate that the azo dye has been degraded to less toxic components coupled with low biomass formation. © 2012 American Chemical Society
A comparative uptake study of multiplexed PET tracers in mice with turpentine-induced inflammation.
Huang, Tingting; Wang, Hongliang; Tang, Ganghua; Liang, Xiang; Nie, Dahong; Yi, Chang; Wu, Kening
2012-11-26
The potential value of multiplexed positron emission tomography (PET) tracers in mice with turpentine-induced inflammation was evaluated and compared with 2-[¹⁸F]fluoro-2-deoxy-D-glucose ([¹⁸F]FDG) for glucose metabolism imaging. These PET tracers included [¹⁸F]fluoromethylcholine ([¹⁸F]FCH) for choline metabolism imaging, (S-[¹¹C]methyl)-D-cysteine ([¹¹C]DMCYS) for amino acid metabolism imaging, [¹¹C]bis(zinc(II)-dipicolylamine) ([¹¹C]DPA-Zn²⁺) for apoptosis imaging, 2-(4-N-[¹¹C]-methylaminophenyl)-6-hydroxybenzothiazole ([¹¹C]PIB) for β amyloid binding imaging, and [¹⁸F]fluoride (¹⁸F⁻) for bone metabolism imaging. In mice with turpentine-induced inflammation mice, the biodistribution of all the tracers mentioned above at 5, 15, 30, 45, and 60 min postinjection was determined. Also, the time-course curves of the tracer uptake ratios for inflammatory thigh muscle (IM) to normal uninflammatory thigh muscle (NM), IM to blood (BL), IM to brain (BR), and IM to liver (LI) were acquired, respectively. Moreover, PET imaging with the tracers within 60 min postinjection on a clinical PET/CT scanner was also conducted. [¹⁸F]FDG and ¹⁸F⁻ showed relatively higher uptake ratios for IM to NM, IM to BL, IM to BR, and IM to LI than [¹⁸F]FCH, [¹¹C]DPA-Zn²⁺, [¹¹C]DMCYS and [¹¹C]PIB, which were highly consistent with the results delineated in PET images. The results demonstrate that ¹⁸F⁻ seems to be a potential PET tracer for inflammation imaging. [¹⁸F]FCH and [¹¹C]DMCYS, with lower accumulation in inflammatory tissue than [¹⁸F]FDG, are not good PET tracers for inflammation imaging. As a promising inflammatory tracer, the chemical structure of [¹¹C]DPA-Zn²⁺ needs to be further optimized.
Santos de Almeida, Tânia; Júlio, Ana; Saraiva, Nuno; Fernandes, Ana Sofia; Araújo, Maria Eduarda M; Baby, André Rolim; Rosado, Catarina; Mota, Joana Portugal
2017-11-01
Poor drug solubility represents a problem for the development of topical formulations. Since ionic liquids (ILs) can be placed in either lipophilic or hydrophilic solutions, they may be advantageous vehicles in such delivery systems. Nonetheless, it is vital to determine their usefulness when used at concentrations were cell viability is maintained, which was considered herein. Five different ILs were prepared-three imidazole-based ILs: [C2mim][Br], [C4mim][Br], and [C6mim][Br]; and two choline-based ILs: [Cho][Phe] and [Cho][Glu]. Their cytotoxicity in human keratinocytes (HaCat cells), their influence in drug solubility and in percutaneous permeation, using pig skin membranes, was evaluated. Caffeine and salicylic acid were used as model actives. Choline-based ILs proved to be more suitable as functional ingredients, since they showed higher impact on drug solubility and a lower cytotoxicity. The major solubility enhancement was observed for caffeine and further solubility studies were carried out with this active in several concentrations of the choline-based ILs (0.1; 0.2; 0.5; 1.0; 3.0 and 5.0%, w/w) at 25 °C and 32 °C. Solubility was greatly influenced by concentrations up to 0.5%. The choline-based ILs showed no significant impact on the skin permeation, for both actives. The size of the imidazole-based ILs alkyl chain enhances the caffeine solubility and permeation, but also the ILs cytotoxicity. Stable O/W emulsions and gels were prepared containing the less toxic choline-based ILs and caffeine. Our results indicate that the choline-based ILs were effective functional ingredients, since, when used at nontoxic concentrations, they allowed a higher drug loading, while maintaining the stability of the formulations.
Bridged Bicyclic Oximes as Acetylcholinesterase Reactivators
1988-04-03
with acetylcholine as substrate, is based on coupling away the choline produced from the esterase reaction with choline kinase, which catalyzes the...transfer of the y-phosphate from ATP to choline , producing ADP, and then removed with the pyruvate kinase-lactate dehydrogenase couple, and disappearance...nitrobenzoic acid absorbs strongly at 412 nm. Choline kinase and acetylcholinesterase were purchased from Sigma as the lyophilized powders. Each enzyme
Choline chloride-thiourea, a deep eutectic solvent for the production of chitin nanofibers.
Mukesh, Chandrakant; Mondal, Dibyendu; Sharma, Mukesh; Prasad, Kamalesh
2014-03-15
Deep eutectic solvents (DESs) consisting of the mixtures of choline halide (chloride/bromide)-urea and choline chloride-thiourea were used as solvents to prepare α-chitin nanofibers (CNFs). CNFs of diameter 20-30 nm could be obtained using the DESs comprising of the mixture of choline chloride and thiourea (CCT 1:2); however, NFs could not be obtained using the DESs having urea (CCU 1:2) as hydrogen bond donor. The physicochemical properties of thus obtained NFs were compared with those obtained using a couple of imidazolium based ionic liquids namely, 1-butyl-3-methylimidazolium hydrogen sulphate [(Bmim)HSO4] and 1-methylimidazolium hydrogen sulphate [(Hmim)HSO4] as well as choline based bio-ILs namely, choline hydrogen sulphate [(Chol)HSO4] and choline acrylate. The CNFs obtained using the DES as a solvent were used to prepare calcium alginate bio-nanocomposite gel beads having enhanced elasticity in comparison to Ca-alginate beads. The bio-nanocomposite gel beads thus obtained were used to study slow release of 5-fluorouracil, an anticancer drug. Copyright © 2014 Elsevier Ltd. All rights reserved.
Bindel, D J; Titgemeyer, E C; Drouillard, J S; Ives, S E
2005-07-01
Ruminally cannulated steers (281 +/- 18 kg) were used to evaluate effects of choline on digestion and metabolism. Four steers were implanted with 24 mg of estradiol and 120 mg of trenbolone acetate, and four steers were not implanted. Cattle were assigned to concurrent 4 x 4 Latin squares. Dietary treatments were a 2 x 2 factorial: 0 or 4% tallow (DM basis) in corn-based diets, and 0 or 5 g/d supplemental choline administered abomasally. Blood collected before and 6 h after the initial choline infusion was used to assess acute responses to choline. Digestibility and blood metabolites were measured after adaptation to choline, as well as after an abomasal dose of 100 g of lipid. Digestibilities of dietary DM (P = 0.29) and of dietary total fatty acids (P = 0.42) were not affected by choline. Apparent digestibilities of C18:0 and C18:1 fatty acids were greater (P < 0.05) when diets contained 4% tallow. Digestibilities of fatty acids in the lipid dose were less than those in the diet, and no biologically important differences in fatty acid disappearance resulted from the treatments. No significant acute responses to choline were detected. After adaptation to choline, no important differences in plasma metabolites occurred in response to choline infusion. Plasma urea was less (P < 0.05) for implanted cattle, reflecting increased deposition of protein. Plasma cholesterol was greater (P < 0.05) for steers fed 4% tallow. Changes in plasma triglycerides in response to an abomasal lipid dose were less (P < 0.05) for steers fed 4% tallow, probably due to greater triglyceride concentrations at the time of lipid dosing. In summary, few responses to abomasally infused choline were observed in either digestion or plasma metabolites.
Martínez-del Campo, Ana; Bodea, Smaranda; Hamer, Hilary A; Marks, Jonathan A; Haiser, Henry J; Turnbaugh, Peter J; Balskus, Emily P
2015-04-14
Elucidation of the molecular mechanisms underlying the human gut microbiota's effects on health and disease has been complicated by difficulties in linking metabolic functions associated with the gut community as a whole to individual microorganisms and activities. Anaerobic microbial choline metabolism, a disease-associated metabolic pathway, exemplifies this challenge, as the specific human gut microorganisms responsible for this transformation have not yet been clearly identified. In this study, we established the link between a bacterial gene cluster, the choline utilization (cut) cluster, and anaerobic choline metabolism in human gut isolates by combining transcriptional, biochemical, bioinformatic, and cultivation-based approaches. Quantitative reverse transcription-PCR analysis and in vitro biochemical characterization of two cut gene products linked the entire cluster to growth on choline and supported a model for this pathway. Analyses of sequenced bacterial genomes revealed that the cut cluster is present in many human gut bacteria, is predictive of choline utilization in sequenced isolates, and is widely but discontinuously distributed across multiple bacterial phyla. Given that bacterial phylogeny is a poor marker for choline utilization, we were prompted to develop a degenerate PCR-based method for detecting the key functional gene choline TMA-lyase (cutC) in genomic and metagenomic DNA. Using this tool, we found that new choline-metabolizing gut isolates universally possessed cutC. We also demonstrated that this gene is widespread in stool metagenomic data sets. Overall, this work represents a crucial step toward understanding anaerobic choline metabolism in the human gut microbiota and underscores the importance of examining this microbial community from a function-oriented perspective. Anaerobic choline utilization is a bacterial metabolic activity that occurs in the human gut and is linked to multiple diseases. While bacterial genes responsible for choline fermentation (the cut gene cluster) have been recently identified, there has been no characterization of these genes in human gut isolates and microbial communities. In this work, we use multiple approaches to demonstrate that the pathway encoded by the cut genes is present and functional in a diverse range of human gut bacteria and is also widespread in stool metagenomes. We also developed a PCR-based strategy to detect a key functional gene (cutC) involved in this pathway and applied it to characterize newly isolated choline-utilizing strains. Both our analyses of the cut gene cluster and this molecular tool will aid efforts to further understand the role of choline metabolism in the human gut microbiota and its link to disease. Copyright © 2015 Martínez-del Campo et al.
Bruce, Stephen J; Guy, Philippe A; Rezzi, Serge; Ross, Alastair B
2010-02-24
Betaine and choline are important components of the one-carbon metabolism cycle, linked with the amino acid homocysteine and lipid metabolism. Analyses of broad ranges of foods point to cereal based foods being important sources of betaine and choline, however to date there has been no detailed analysis of these compounds in cereal flours or cereal products. An analytical method based on optimization of an existing extraction followed by LC-MS/MS analysis was used to analyze 47 plasma samples, 32 cereal flours and cereal fractions, and 51 cereal products. For the method validation LLOQ, recovery, inter- and intraday repeatability were all performed. Whole-grain wheat and rye flours, and products based on these were the best whole cereal sources of betaine (747-1508 microg/g) and to a lesser extent choline (76-159 microg/g), while the bran fraction contained the highest concentrations of betaine and free-choline (2350-2899 microg/g and 366-384 microg/g respectively). Refined wheat flour and products contained lower concentrations, while rice and maize contained only very low and no detectable amounts of betaine respectively (0-10 microg/g), and low amounts of free-choline (<31 microg/g). These results were mirrored in cereal products analyzed, with whole-grain wheat or rye-based cereal products having the highest concentrations of the two metabolites. Plasma concentrations for betaine and free-choline in a group of 47 subjects ranged from 15.2-66.3 and 9.8-18.5 micromol/L respectively, within the range of previous reports. This LC-MS/MS method can be used to rapidly and sensitively quantify betaine and free-choline in plasma and cereal products. Whole-grain cereal products and products containing cereal bran appear to be excellent dietary sources of betaine and free-choline.
Homeostasis and catabolism of choline and glycine betaine: lessons from Pseudomonas aeruginosa.
Wargo, Matthew J
2013-04-01
Most sequenced bacteria possess mechanisms to import choline and glycine betaine (GB) into the cytoplasm. The primary role of choline in bacteria appears to be as the precursor to GB, and GB is thought to primarily act as a potent osmoprotectant. Choline and GB may play accessory roles in shaping microbial communities, based on their limited availability and ability to enhance survival under stress conditions. Choline and GB enrichment near eukaryotes suggests a role in the chemical relationships between these two kingdoms, and some of these interactions have been experimentally demonstrated. While many bacteria can convert choline to GB for osmoprotection, a variety of soil- and water-dwelling bacteria have catabolic pathways for the multistep conversion of choline, via GB, to glycine and can thereby use choline and GB as sole sources of carbon and nitrogen. In these choline catabolizers, the GB intermediate represents a metabolic decision point to determine whether GB is catabolized or stored as an osmo- and stress protectant. This minireview focuses on this decision point in Pseudomonas aeruginosa, which aerobically catabolizes choline and can use GB as an osmoprotectant and a nutrient source. P. aeruginosa is an experimentally tractable and ecologically relevant model to study the regulatory pathways controlling choline and GB homeostasis in choline-catabolizing bacteria. The study of P. aeruginosa associations with eukaryotes and other bacteria also makes this a powerful model to study the impact of choline and GB, and their associated regulatory and catabolic pathways, on host-microbe and microbe-microbe relationships.
High intakes of choline and betaine reduce breast cancer mortality in a population-based study.
Xu, Xinran; Gammon, Marilie D; Zeisel, Steven H; Bradshaw, Patrick T; Wetmur, James G; Teitelbaum, Susan L; Neugut, Alfred I; Santella, Regina M; Chen, Jia
2009-11-01
Choline and betaine provide methyl groups for one-carbon metabolism. Humans obtain these nutrients from a wide range of foods. Betaine can also be synthesized endogenously from its precursor, choline. Although animal studies have implied a causal relationship between choline deficiency and carcinogenesis, the role of these two nutrients in human carcinogenesis and tumor progression is not well understood. We investigated the associations of dietary intakes of choline and betaine and breast cancer risk and mortality in the population-based Long Island Breast Cancer Study Project. Among the 1508 case-group women, 308 (20.2%) deaths occurred, among whom 164 (53.2%) died of breast cancer by December 31, 2005. There was an indication that a higher intake of free choline was associated with reduced risk of breast cancer (P(trend)=0.04). Higher intakes of betaine, phosphocholine, and free choline were associated with reduced all-cause as well as breast cancer-specific mortality in a dose-dependent fashion. We also explored associations of polymorphisms of three key choline- and betaine-metabolizing genes and breast cancer mortality. The betaine-homocysteine methyltransferase gene (BHMT) rs3733890 polymorphism was associated with reduced breast cancer-specific mortality (hazard ratio, 0.64; 95% confidence interval, 0.42-0.97). Our study supports the important roles of choline and betaine in breast carcinogenesis. It suggests that high intake of these nutrients may be a promising strategy to prevent the development of breast cancer and to reduce its mortality.
Structure, stability and behaviour of nucleic acids in ionic liquids
Tateishi-Karimata, Hisae; Sugimoto, Naoki
2014-01-01
Nucleic acids have become a powerful tool in nanotechnology because of their conformational polymorphism. However, lack of a medium in which nucleic acid structures exhibit long-term stability has been a bottleneck. Ionic liquids (ILs) are potential solvents in the nanotechnology field. Hydrated ILs, such as choline dihydrogen phosphate (choline dhp) and deep eutectic solvent (DES) prepared from choline chloride and urea, are ‘green’ solvents that ensure long-term stability of biomolecules. An understanding of the behaviour of nucleic acids in hydrated ILs is necessary for developing DNA materials. We here review current knowledge about the structures and stabilities of nucleic acids in choline dhp and DES. Interestingly, in choline dhp, A–T base pairs are more stable than G–C base pairs, the reverse of the situation in buffered NaCl solution. Moreover, DNA triplex formation is markedly stabilized in hydrated ILs compared with aqueous solution. In choline dhp, the stability of Hoogsteen base pairs is comparable to that of Watson–Crick base pairs. Moreover, the parallel form of the G-quadruplex is stabilized in DES compared with aqueous solution. The behaviours of various DNA molecules in ILs detailed here should be useful for designing oligonucleotides for the development of nanomaterials and nanodevices. PMID:25013178
Dilger, Ryan N; Garrow, Timothy A; Baker, David H
2007-10-01
The ability of betaine to serve as a methyl donor in chicks was assessed in 3 bioassays using a choline-free purified diet that contained adequate methionine (Met). In assay 1, choline and betaine were each supplemented at 300 mg/kg in a 2 x 2 factorial arrangement of diets. Supplemental choline improved (P < 0.05) growth performance over the 9-d growth period, whereas betaine alone had no effect. In assay 2, graded supplements of choline produced a linear increase (P < 0.05) in growth performance criteria over a 9-d growth period. Additionally, hepatic betaine-homocysteine (Hcy) methyltransferase (BHMT) activity decreased linearly (P < 0.05), whereas plasma total Hcy remained unchanged. Addition of 260 or 600 mg/kg betaine to the choline-free basal diet did not affect growth performance or BHMT activity, but 600 mg/kg betaine reduced (P < 0.05) plasma total Hcy. Assay 3 was designed to quantify the ability of betaine to spare choline. Minimal supplemental choline requirements of 20.8 +/- 1.50 mg/d (722 mg/kg diet) and 10.5 +/- 1.03 mg/d (412 mg/kg diet) were estimated in the absence and presence of 1000 mg/kg supplemental betaine, respectively. Based on these estimates, 50% of the dietary choline requirement must be supplied as choline per se, but the remaining 50% can be replaced by betaine. Collectively, these data suggest betaine and Met have minimal choline-sparing activity in chicks fed purified diets devoid of preformed choline. However, addition of betaine to diets containing minimal choline allows a marked reduction in the total dietary choline requirement.
Compher, Charlene W; Kinosian, Bruce P; Stoner, Nancy E; Lentine, Deborah C; Buzby, Gordon P
2002-01-01
Choline has recently been recognized as an essential nutrient, in part based on deficiency data in long-term home total parenteral nutrition (TPN) patients. Choline, a methyl donor in the metabolism of homocysteine, is intricately related to folate status, but little is known about choline and vitamin B12 status. Long-term TPN patients are also subject to vitamin B12 deficiency. The objective of the study was to evaluate any interaction between choline, vitamin B12, and folate in patients with severe malabsorption syndromes, requiring long-term TPN. Plasma free choline, serum and red blood cell (RBC) folate, serum vitamin B12 methylmalonic acid, B6, and plasma total homocysteine concentrations were assayed by standard methods. Low choline was defined as values that fall 1 to < or =3 and marked low choline concentration as >3 SD below the control mean. Both low choline concentrations (52% were marked low, 33% low, 14% normal) and elevated methylmalonic acid concentrations (47%) were prevalent. Choline concentration was significantly lower and RBC folate higher in patients with elevated methylmalonic acid. Total homocysteine elevations were rare (3 of 21) and mild. These data suggest a strong interaction between vitamin B12 and choline deficiencies and folate status in this population, which may be due in part to variations in vitamin and choline delivery by TPN. Folate adequacy may increase B12 use for homocysteine metabolism, thus limiting B12 availability for methylmaIonic acid metabolism. Choline use may also increase, and choline deficiency may worsen if choline substitutes when the vitamin B12 side of the homocysteine metabolic pathway cannot be used.
Maternal Dietary Choline Status Influences Brain Gray and White Matter Development in Young Pigs
Mudd, Austin T; Getty, Caitlyn M; Dilger, Ryan N
2018-01-01
Abstract Background Choline is an essential nutrient that is pivotal to proper brain development. Research in animal models suggests that perinatal choline deficiency influences neuron development in the hippocampus and cortex, yet these observations require invasive techniques. Objective This study aimed to characterize the effects of perinatal choline deficiency on gray and white matter development with the use of noninvasive neuroimaging techniques in young pigs. Methods During the last 64 d of the 114-d gestation period Yorkshire sows were provided with a choline-sufficient (CS) or choline-deficient (CD) diet, analyzed to contain 1214 mg or 483 mg total choline/kg diet, respectively. Upon farrowing, pigs (Sus scrofa domesticus) were allowed colostrum consumption for ≤48 h, were further stratified into postnatal treatment groups, and were provided either CS or CD milk replacers, analyzed to contain 1591 or 518 mg total choline/kg diet, respectively, for 28 d. At 30 d of age, pigs were subjected to MRI procedures to assess brain development. Gray and white matter development was assessed through voxel-based morphometry (VBM) and tract-based spatial statistics (TBSS) to assess the effects of prenatal and postnatal dietary choline status. Results VBM analysis indicated that prenatally CS pigs exhibited increased (P < 0.01) gray matter in the left and right cortex compared with prenatally CD pigs. Analysis of white matter indicated that prenatally CS pigs exhibited increased (P < 0.01) white matter in the internal capsule, putamen–globus pallidus, and right cortex compared with prenatally CD pigs. No postnatal effects (P > 0.05) of choline status were noted for VBM analyses of gray and white matter. TBSS also showed no significant effects (P > 0.05) of prenatal or postnatal choline status for diffusion values along white matter tracts. Conclusions Observations from this study suggest that prenatal choline deficiency results in altered cortical gray matter and reduced white matter in the internal capsule and putamen of young pigs. With the use of noninvasive neuroimaging techniques, results from our study indicate that prenatal choline deficiency greatly alters gray and white matter development in pigs, thereby providing a translational assessment that may be used in clinical populations.
Martínez-del Campo, Ana; Bodea, Smaranda; Hamer, Hilary A.; Marks, Jonathan A.; Haiser, Henry J.; Turnbaugh, Peter J.
2015-01-01
ABSTRACT Elucidation of the molecular mechanisms underlying the human gut microbiota’s effects on health and disease has been complicated by difficulties in linking metabolic functions associated with the gut community as a whole to individual microorganisms and activities. Anaerobic microbial choline metabolism, a disease-associated metabolic pathway, exemplifies this challenge, as the specific human gut microorganisms responsible for this transformation have not yet been clearly identified. In this study, we established the link between a bacterial gene cluster, the choline utilization (cut) cluster, and anaerobic choline metabolism in human gut isolates by combining transcriptional, biochemical, bioinformatic, and cultivation-based approaches. Quantitative reverse transcription-PCR analysis and in vitro biochemical characterization of two cut gene products linked the entire cluster to growth on choline and supported a model for this pathway. Analyses of sequenced bacterial genomes revealed that the cut cluster is present in many human gut bacteria, is predictive of choline utilization in sequenced isolates, and is widely but discontinuously distributed across multiple bacterial phyla. Given that bacterial phylogeny is a poor marker for choline utilization, we were prompted to develop a degenerate PCR-based method for detecting the key functional gene choline TMA-lyase (cutC) in genomic and metagenomic DNA. Using this tool, we found that new choline-metabolizing gut isolates universally possessed cutC. We also demonstrated that this gene is widespread in stool metagenomic data sets. Overall, this work represents a crucial step toward understanding anaerobic choline metabolism in the human gut microbiota and underscores the importance of examining this microbial community from a function-oriented perspective. PMID:25873372
Homeostasis and Catabolism of Choline and Glycine Betaine: Lessons from Pseudomonas aeruginosa
2013-01-01
Most sequenced bacteria possess mechanisms to import choline and glycine betaine (GB) into the cytoplasm. The primary role of choline in bacteria appears to be as the precursor to GB, and GB is thought to primarily act as a potent osmoprotectant. Choline and GB may play accessory roles in shaping microbial communities, based on their limited availability and ability to enhance survival under stress conditions. Choline and GB enrichment near eukaryotes suggests a role in the chemical relationships between these two kingdoms, and some of these interactions have been experimentally demonstrated. While many bacteria can convert choline to GB for osmoprotection, a variety of soil- and water-dwelling bacteria have catabolic pathways for the multistep conversion of choline, via GB, to glycine and can thereby use choline and GB as sole sources of carbon and nitrogen. In these choline catabolizers, the GB intermediate represents a metabolic decision point to determine whether GB is catabolized or stored as an osmo- and stress protectant. This minireview focuses on this decision point in Pseudomonas aeruginosa, which aerobically catabolizes choline and can use GB as an osmoprotectant and a nutrient source. P. aeruginosa is an experimentally tractable and ecologically relevant model to study the regulatory pathways controlling choline and GB homeostasis in choline-catabolizing bacteria. The study of P. aeruginosa associations with eukaryotes and other bacteria also makes this a powerful model to study the impact of choline and GB, and their associated regulatory and catabolic pathways, on host-microbe and microbe-microbe relationships. PMID:23354714
Bagley, Bradford D; Chang, Shu-Ching; Ehresman, David J; Eveland, Alan; Parker, George A; Peters, Jeffrey M; Butenhoff, John L
2017-10-01
Choline is an essential nutrient utilized for phosphatidylcholine biosynthesis and lipoprotein packaging and secretion. Recently, choline supplementation has been used by athletes and the public for weight loss. However, the potential toxicological impact of choline dietary supplementation requires further investigation. This study examined the effects of choline dietary supplementation in Sprague Dawley rats for 4 weeks. Rats were fed diets containing basal choline levels (control) or 5-, 10-, or 15-fold (5×, 10×, or 15×) basal diet concentration. In groups fed choline-supplemented diets, there were no toxicologically relevant findings in clinical observations, food intake, clinical chemistry, liver weights, or liver histopathology. However, decreased mean body weights (8.5-10.2%) and body weight gains (24-31%) were noted for the 10× choline-supplemented (females only) and 15× choline-supplemented (both sexes) groups relative to the control groups from day 3 onward. These body weight effects were not related to a persistent reduction in average food intake. Serum cholesterol was increased in the 15× choline-supplemented male rats relative to the controls, an expected effect of choline supplementation; however, there were no changes in the serum cholesterol of female rats. Serum choline concentrations were increased in female rats relative to the male rats across all treatment groups. The maximum tolerated dose for male and female rats were the 15× and 10× choline supplements, respectively, based on decreased mean body weight and body weight gains. This study supported the conclusions of a clinical trial that showed a high choline diet can decrease body weight in humans.
Malek, Adel A.; Chen, Chiliang; Wargo, Matthew J.; Beattie, Gwyn A.; Hogan, Deborah A.
2011-01-01
Pseudomonas aeruginosa uses the quaternary amine choline as a carbon source, osmoprotectant, and macromolecular precursor. The importance of choline in P. aeruginosa physiology is highlighted by the presence of multiple known and putative choline transporters encoded within its genome. This report describes the relative roles of three choline transporters, the ABC transporter CbcXWV and two symporters, BetT1 and BetT3, in P. aeruginosa growth on choline under osmotic conditions that are physiologically relevant to eukaryotic hosts. The increased lag phases exhibited by the ΔbetT1 and ΔbetT1 ΔbetT3 mutants relative to the wild type upon transfer to medium with choline as a sole carbon source suggested roles for BetT1 and BetT3 in cells newly exposed to choline. BetT3 and CbcXWV, but not BetT1, were sufficient to support growth on choline. betT1 and betT3 expression was regulated by the repressor BetI and choline, whereas cbcXWV expression was induced by the activator GbdR and glycine betaine. The data support a model in which, upon transfer to a choline-based medium, the glycine betaine derived from choline taken up by BetT1 and BetT3 promotes subsequent GbdR-mediated cbcXWV induction. Furthermore, growth data indicated that the relative contributions of each transporter varied under different conditions, as BetT1 and CbcXWV were the primary choline transporters under hypo-osmolar conditions whereas BetT3 was the major choline transporter under hyperosmolar conditions. This work represents the first systematic approach to unravel the mechanisms of choline uptake in P. aeruginosa, which has the most complex bacterial choline uptake systems characterized to date. PMID:21478341
Jia, Chuandong; Zuo, Wei; Yang, Dong; Chen, Yanming; Cao, Liping; Custelcean, Radu; Hostaš, Jiří; Hobza, Pavel; Glaser, Robert; Wang, Yao-Yu; Yang, Xiao-Juan; Wu, Biao
2017-10-16
In nature, proteins have evolved sophisticated cavities tailored for capturing target guests selectively among competitors of similar size, shape, and charge. The fundamental principles guiding the molecular recognition, such as self-assembly and complementarity, have inspired the development of biomimetic receptors. In the current work, we report a self-assembled triple anion helicate (host 2) featuring a cavity resembling that of the choline-binding protein ChoX, as revealed by crystal and density functional theory (DFT)-optimized structures, which binds choline in a unique dual-site-binding mode. This similarity in structure leads to a similarly high selectivity of host 2 for choline over its derivatives, as demonstrated by the NMR and fluorescence competition experiments. Furthermore, host 2 is able to act as a fluorescence displacement sensor for discriminating choline, acetylcholine, L-carnitine, and glycine betaine effectively.The choline-binding protein ChoX exhibits a synergistic dual-site binding mode that allows it to discriminate choline over structural analogues. Here, the authors design a biomimetic triple anion helicate receptor whose selectivity for choline arises from a similar binding mechanism.
Koshy Cherian, Ajeesh; Parikh, Vinay; Wu, Qi; Mao-Draayer, Yang; Wang, Qin; Blakely, Randy D; Sarter, Martin
2017-09-01
The synaptic uptake of choline via the high-affinity, hemicholinium-3-dependent choline transporter (CHT) strongly influences the capacity of cholinergic neurons to sustain acetylcholine (ACh) synthesis and release. To advance research on the impact of CHT capacity in humans, we established the presence of the neuronal CHT protein in human T lymphocytes. Next, we demonstrated CHT-mediated choline transport in human T cells. To address the validity of T cell-based choline uptake as a proxy for brain CHT capacity, we isolated T cells from the spleen, and synaptosomes from cortex and striatum, of wild type and CHT-overexpressing mice (CHT-OXP). Choline uptake capacity in T cells from CHT-OXP mice was two-fold higher than in wild type mice, mirroring the impact of CHT over-expression on synaptosomal CHT-mediated choline uptake. Monitoring T lymphocyte CHT protein and activity may be useful for estimating human CNS cholinergic capacity and for testing hypotheses concerning the contribution of CHT and, more generally, ACh signaling in cognition, neuroinflammation and disease. Copyright © 2017 Elsevier Ltd. All rights reserved.
Chiaravalloti, Agostino; Di Biagio, Daniele; Tavolozza, Mario; Calabria, Ferdinando; Schillaci, Orazio
2016-07-01
To investigate the performance of (18)F-fluorocholine ((18)F-FCH) PET/CT in relation to the prostate-specific antigen (PSA) kinetic indexes, PSA doubling time (PSAdt) and PSA velocity (PSAve), in detecting recurrent prostate cancer (PC) in a selected population of patients treated with radical prostatectomy and with PSA ≤2 ng/ml. The study group comprised 79 patients (mean age 70 ± 7 years, range 58 - 77 years) who had been treated with radical surgery 30 to 90 months previously and with biochemical failure (defined as a measurable serum PSA level) who were evaluated with (18)F-FCH PET/CT. In order to establish the optimal threshold for PSAdt and PSAve, the diagnostic performance of PSA, PSAdt and PSAve were compared by receiver operating characteristic analysis. In the population examined, PSA (mean ± SD) was 1.37 ± 0.44 ng/ml (range 0.21 - 2 ng/ml) before PET/CT examination, PSAdt was 10.04 ± 16.67 months and PSAve was 2.75 ± 3.11 ng/ml per year. (18)F-FCH PET/CT was positive in 44 patients (55 %). PSAve and PSAdt were significantly different between patients with a positive and a negative (18)F-FCH PET/CT scan. Thresholds of 6 months for PSAdt and 1 ng/ml per year for PSAve were selected. For PSAdt ≤6 months the detection rate (DR) was 65 %, and for PSAve >1 ng/ml per year the DR was 67 %. PSA values were not significantly different between patients with a positive and a negative PET/CT scan. The results of our study suggest that (18)F-FCH PET/CT could be considered for the evaluation of patients with biochemical recurrence of PC and with low PSA levels. Fast PSA kinetics could be useful in the selection of these patients.
Identification and Characterization of a High-Affinity Choline Uptake System of Brucella abortus
Herrmann, Claudia K.; Bukata, Lucas; Melli, Luciano; Marchesini, M. Ines; Caramelo, Julio J.
2013-01-01
Phosphatidylcholine (PC), a common phospholipid of the eukaryotic cell membrane, is present in the cell envelope of the intracellular pathogen Brucella abortus, the etiological agent of bovine brucellosis. In this pathogen, the biosynthesis of PC proceeds mainly through the phosphatidylcholine synthase pathway; hence, it relies on the presence of choline in the milieu. These observations imply that B. abortus encodes an as-yet-unknown choline uptake system. Taking advantage of the requirement of choline uptake for PC synthesis, we devised a method that allowed us to identify a homologue of ChoX, the high-affinity periplasmic binding protein of the ABC transporter ChoXWV. Disruption of the choX gene completely abrogated PC synthesis at low choline concentrations in the medium, thus indicating that it is a high-affinity transporter needed for PC synthesis via the PC synthase (PCS) pathway. However, the synthesis of PC was restored when the mutant was incubated in media with higher choline concentrations, suggesting the presence of an alternative low-affinity choline uptake activity. By means of a fluorescence-based equilibrium-binding assay and using the kinetics of radiolabeled choline uptake, we show that ChoX binds choline with an extremely high affinity, and we also demonstrate that its activity is inhibited by increasing choline concentrations. Cell infection assays indicate that ChoX activity is required during the first phase of B. abortus intracellular traffic, suggesting that choline concentrations in the early and intermediate Brucella-containing vacuoles are limited. Altogether, these results suggest that choline transport and PC synthesis are strictly regulated in B. abortus. PMID:23161032
Ray, Balmiki; Bailey, Jason A.; Simon, Jay R.; Lahiri, Debomoy K.
2012-01-01
Acetylcholine (ACh) is the neurotransmitter used by cholinergic neurons at the neuromuscular junction and in parasympathetic nerve terminals in the periphery, as well as important memory-related circuits in the brain and also takes part in several critical functions. ACh is synthesized from choline and acetyl coenzyme-A by the enzyme choline acetyltransferase (ChAT). The formation of acetylcholine in cholinergic nerve terminals requires both the transport of choline into the cells from the extracellular space, and the activity of ChAT. High affinity choline uptake (HACU) represents the majority of choline uptake into the nerve terminal, and is the acutely regulated, rate-limiting step in ACh synthesis. The HACU component of choline uptake can be differentiated from non-specific choline uptake by inhibition of the choline transporter with hemicholinium. Several methods have been described previously to measure HACU and ChAT simultaneously in synaptosomes, but a well-documented protocol for cultured cells is lacking. We describe a procedure to simultaneously measure HACU and ChAT in cultured cells by simple radionuclide-based techniques. In this procedure we have quantitatively determined HACU and ChAT activity in cholinergically differentiated human neuroblastoma (SK-N-SH) cells. These simple methods can be used for neurochemical and drug discovery studies relevant to several disorders including Alzheimer’s disease, myasthenia gravis, and cardiovascular disease. PMID:22752895
Kobayashi, Shingo; Mizuike, Aya; Horiuchi, Hiroyuki; Fukuda, Ryouichi; Ohta, Akinori
2014-09-01
In eukaryotic cells, phospholipids are synthesized exclusively in the defined organelles specific for each phospholipid species. To explain the reason for this compartmental specificity in the case of phosphatidylcholine (PC) synthesis, we constructed and characterized a Saccharomyces cerevisiae strain that lacked endogenous phosphatidylethanolamine (PE) methyltransferases but had a recombinant PE methyltransferase from Acetobacter aceti, which was fused with a mitochondrial targeting signal from yeast Pet100p and a 3×HA epitope tag. This fusion protein, which we named as mitopmt, was determined to be localized to the mitochondria by fluorescence microscopy and subcellular fractionation. The expression of mitopmt suppressed the choline auxotrophy of a double deletion mutant of PEM1 and PEM2 (pem1Δpem2Δ) and enabled it to synthesize PC in the absence of choline. This growth suppression was observed even if the Kennedy pathway was inactivated by the repression of PCT1 encoding CTP:phosphocholine cytidylyltransferase, suggesting that PC synthesized in the mitochondria is distributed to other organelles without going through the salvage pathway. The pem1Δpem2Δ strain deleted for PSD1 encoding the mitochondrial phosphatidylserine decarboxylase was able to grow because of the expression of mitopmt in the presence of ethanolamine, implying that PE from other organelles, probably from the ER, was converted to PC by mitopmt. These results suggest that PC could move out of the mitochondria, and raise the possibility that its movement is not under strict directional limitations. Copyright © 2014 Elsevier B.V. All rights reserved.
Parrish, William R; Rosas-Ballina, Mauricio; Gallowitsch-Puerta, Margot; Ochani, Mahendar; Ochani, Kanta; Yang, Li-Hong; Hudson, LaQueta; Lin, Xinchun; Patel, Nirav; Johnson, Sarah M; Chavan, Sangeeta; Goldstein, Richard S; Czura, Christopher J; Miller, Edmund J; Al-Abed, Yousef; Tracey, Kevin J; Pavlov, Valentin A
2008-01-01
The α7 subunit-containing nicotinic acetylcholine receptor (α7nAChR) is an essential component in the vagus nerve-based cholinergic anti-inflammatory pathway that regulates the levels of TNF, high mobility group box 1 (HMGB1), and other cytokines during inflammation. Choline is an essential nutrient, a cell membrane constituent, a precursor in the biosynthesis of acetylcholine, and a selective natural α7nAChR agonist. Here, we studied the anti-inflammatory potential of choline in murine endotoxemia and sepsis, and the role of the α7nAChR in mediating the suppressive effect of choline on TNF release. Choline (0.1–50 mM) dose-dependently suppressed TNF release from endotoxin-activated RAW macrophage-like cells, and this effect was associated with significant inhibition of NF-κB activation. Choline (50 mg/kg, intraperitoneally [i.p.]) treatment prior to endotoxin administration in mice significantly reduced systemic TNF levels. In contrast to its TNF suppressive effect in wild type mice, choline (50 mg/kg, i.p.) failed to inhibit systemic TNF levels in α7nAChR knockout mice during endotoxemia. Choline also failed to suppress TNF release from endotoxin-activated peritoneal macrophages isolated from α7nAChR knockout mice. Choline treatment prior to endotoxin resulted in a significantly improved survival rate as compared with saline-treated endotoxemic controls. Choline also suppressed HMGB1 release in vitro and in vivo, and choline treatment initiated 24 h after cecal ligation and puncture (CLP)-induced polymicrobial sepsis significantly improved survival in mice. In addition, choline suppressed TNF release from endotoxin-activated human whole blood and macrophages. Collectively, these data characterize the anti-inflammatory efficacy of choline and demonstrate that the modulation of TNF release by choline requires α7nAChR-mediated signaling. PMID:18584048
Poly, Coreyann; Massaro, Joseph M; Seshadri, Sudha; Wolf, Philip A; Cho, Eunyoung; Krall, Elizabeth; Jacques, Paul F; Au, Rhoda
2011-01-01
Background: Choline is the precursor to the neurotransmitter acetylcholine. Loss of cholinergic neurons is associated with impaired cognitive function, particularly memory loss and Alzheimer disease (AD). Brain atrophy and white-matter hyperintensity (WMH) are also associated with impaired cognitive function and AD. Objective: The objective was to determine whether a relation exists between dietary choline intake, cognitive function, and brain morphology in a large, nondemented community-based cohort. Design: A dementia-free cohort of 1391 subjects (744 women, 647 men; age range: 36–83 y; mean ± SD age: 60.9 ± 9.29 y) from the Framingham Offspring population completed a food-frequency questionnaire administered from 1991 to 1995 (exam 5; remote intake) and from 1998 to 2001 (exam 7; concurrent intake). Participants underwent neuropsychological evaluation and brain MRI at exam 7. Four neuropsychological factors were constructed: verbal memory (VM), visual memory (VsM), verbal learning, and executive function. MRI measures included WMH volume (WMHV). Results: Performance on the VM and VsM factors was better with higher concurrent choline intake in multivariable-adjusted models for VM (average change in neuropsychological factor per 1-unit change in choline = 0.60; 95% CI: 0.29, 0.91; P < 0.01) and VsM (0.66; 95% CI: 0.19, 1.13; P < 0.01). Remote choline intake was inversely related to log-transformed WMHV (average change in log WMHV per 1-unit change in choline = −0.05; 95% CI: −0.10, −0.01; P = 0.02). Furthermore, an inverse association was observed between remote higher choline intake and presence of large WMVH (OR: 0.56; 95% CI: 0.34, 0.92; P = 0.01). Conclusion: In this community-based population of nondemented individuals, higher concurrent choline intake was related to better cognitive performance, whereas higher remote choline intake was associated with little to no WMHV. PMID:22071706
Rahman, Md Aminur; Park, Deog-Soo; Shim, Yoon-Bo
2004-07-15
Amperometric choline biosensors were fabricated by the covalent immobilization of an enzyme of choline oxidase (ChO) and a bi-enzyme of ChO/horseradish peroxidase (ChO/HRP) onto poly-5,2':5',2"-terthiophene-3'-carboxylic acid (poly-TTCA) modified electrodes (CPMEs). A sensor modified with ChO utilized the oxidation process of enzymatically generated H(2)O(2) in a choline solution at +0.6V. The other one modified with ChO/HRP utilized the reduction process of H(2)O(2) in a choline solution at -0.2V. Experimental parameters affecting the sensitivity of sensors, such as pH, applied potential, and temperature were optimized. A performance comparison of two sensors showed that one based on ChO/HRP/CPME had a linear range from 1.0 x 10(-6) to 8.0 x 10(-5) M and the other based on ChO/CPME from 1.0 x 10(-6) to 5.0 x 10(-5) M. The detection limits for choline employing ChO/HRP/CPME and ChO/CPME were determined to be about 1.0 x 10(-7) and 4.0 x 10(-7) M, respectively. The response time of sensors was less than 5s. Sensors showed good selectivity to interfering species. The long-term storage stability of the sensor based on ChO/HRP/CPME was longer than that based on ChO/CPME.
USDA-ARS?s Scientific Manuscript database
In the present paper, we test the suitability of Choline-Cl/urea (DES-U) and Choline-Cl/glycerol (DES-G) eutectic mixtures at 1:2 molar ratios for the production of agar biodegradable films. A three-step process is proposed: pre-solubilization of polymer in DES followed by compression-molding and s...
Zhang, Hui; Yin, Yajing; Wu, Ping; Cai, Chenxin
2012-01-15
Choline, as a marker of cholinergic activity in brain tissue, is very important in biological and clinical analysis, especially in the clinical detection of the neurodegenerative disorders disease. This work presents an electrochemical approach for the detection of choline based on prussian blue modified iron phosphate nanostructures (PB-FePO(4)). The obtained nanostructures showed a good catalysis toward the electroreduction of H(2)O(2), and an amperometric choline biosensor was developed by immobilizing choline oxidase on the PB-FePO(4) nanostructures. The biosensor exhibited a rapid response (ca. 2s), low detection limit (0.4±0.05 μM), wide linear range (2 μM to 3.2 mM), high sensitivity (~75.2 μAm M(-1) cm(-2)), as well as good stability and repeatability. In addition, the common interfering species, such as ascorbic acid, uric acid and 4-acetamidophenol did not cause obvious interference due to the low detection potential (-0.05 V versus saturated calomel electrode). This nanostructure could be used as a promise platform for the construction of other oxidase-based biosensors. Copyright © 2011 Elsevier B.V. All rights reserved.
Dietary choline and betaine intakes vary in an adult multiethnic population.
Yonemori, Kim M; Lim, Unhee; Koga, Karin R; Wilkens, Lynne R; Au, Donna; Boushey, Carol J; Le Marchand, Loïc; Kolonel, Laurence N; Murphy, Suzanne P
2013-06-01
Choline and betaine are important nutrients for human health, but reference food composition databases for these nutrients became available only recently. We tested the feasibility of using these databases to estimate dietary choline and betaine intakes among ethnically diverse adults who participated in the Multiethnic Cohort (MEC) Study. Of the food items (n = 965) used to quantify intakes for the MEC FFQ, 189 items were exactly matched with items in the USDA Database for the Choline Content of Common Foods for total choline, choline-containing compounds, and betaine, and 547 items were matched to the USDA National Nutrient Database for Standard Reference for total choline (n = 547) and 148 for betaine. When a match was not found, choline and betaine values were imputed based on the same food with a different form (124 food items for choline, 300 for choline compounds, 236 for betaine), a similar food (n = 98, 284, and 227, respectively) or the closest item in the same food category (n = 6, 191, and 157, respectively), or the values were assumed to be zero (n = 1, 1, and 8, respectively). The resulting mean intake estimates for choline and betaine among 188,147 MEC participants (aged 45-75) varied by sex (372 and 154 mg/d in men, 304 and 128 mg/d in women, respectively; P-heterogeneity < 0.0001) and by race/ethnicity among Caucasians, African Americans, Japanese Americans, Latinos, and Native Hawaiians (P-heterogeneity < 0.0001), largely due to the variation in energy intake. Our findings demonstrate the feasibility of assessing choline and betaine intake and characterize the variation in intake that exists in a multiethnic population.
Du, Yu-Feng; Luo, Wei-Ping; Lin, Fang-Yu; Lian, Zhen-Qiang; Mo, Xiong-Fei; Yan, Bo; Xu, Ming; Huang, Wu-Qing; Huang, Jing; Zhang, Cai-Xia
2016-09-01
Choline and betaine are essential nutrients involved in one-carbon metabolism and have been hypothesised to affect breast cancer risk. Functional polymorphisms in genes encoding choline-related one-carbon metabolism enzymes, including phosphatidylethanolamine N-methyltransferase (PEMT), choline dehydrogenase (CHDH) and betaine-homocysteine methyltransferase (BHMT), have important roles in choline metabolism and may thus interact with dietary choline and betaine intake to modify breast cancer risk. This study aimed to investigate the interactive effect of polymorphisms in PEMT, BHMT and CHDH genes with choline/betaine intake on breast cancer risk among Chinese women. This hospital-based case-control study consecutively recruited 570 cases with histologically confirmed breast cancer and 576 age-matched (5-year interval) controls. Choline and betaine intakes were assessed by a validated FFQ, and genotyping was conducted for PEMT rs7946, CHDH rs9001 and BHMT rs3733890. OR and 95 % CI were estimated using unconditional logistic regression. Compared with the highest quartile of choline intake, the lowest intake quartile showed a significant increased risk of breast cancer. The SNP PEMT rs7946, CHDH rs9001 and BHMT rs3733890 had no overall association with breast cancer, but a significant risk reduction was observed among postmenopausal women with AA genotype of BHMT rs3733890 (OR 0·49; 95 % CI 0·25, 0·98). Significant interactions were observed between choline intake and SNP PEMT rs7946 (P interaction=0·029) and BHMT rs3733890 (P interaction=0·006) in relation to breast cancer risk. Our results suggest that SNP PEMT rs7946 and BHMT rs3733890 may interact with choline intake on breast cancer risk.
Dietary Choline and Betaine Intakes Vary in an Adult Multiethnic Population123
Yonemori, Kim M.; Lim, Unhee; Koga, Karin R.; Wilkens, Lynne R.; Au, Donna; Boushey, Carol J.; Le Marchand, Loïc; Kolonel, Laurence N.; Murphy, Suzanne P.
2013-01-01
Choline and betaine are important nutrients for human health, but reference food composition databases for these nutrients became available only recently. We tested the feasibility of using these databases to estimate dietary choline and betaine intakes among ethnically diverse adults who participated in the Multiethnic Cohort (MEC) Study. Of the food items (n = 965) used to quantify intakes for the MEC FFQ, 189 items were exactly matched with items in the USDA Database for the Choline Content of Common Foods for total choline, choline-containing compounds, and betaine, and 547 items were matched to the USDA National Nutrient Database for Standard Reference for total choline (n = 547) and 148 for betaine. When a match was not found, choline and betaine values were imputed based on the same food with a different form (124 food items for choline, 300 for choline compounds, 236 for betaine), a similar food (n = 98, 284, and 227, respectively) or the closest item in the same food category (n = 6, 191, and 157, respectively), or the values were assumed to be zero (n = 1, 1, and 8, respectively). The resulting mean intake estimates for choline and betaine among 188,147 MEC participants (aged 45–75) varied by sex (372 and 154 mg/d in men, 304 and 128 mg/d in women, respectively; P-heterogeneity < 0.0001) and by race/ethnicity among Caucasians, African Americans, Japanese Americans, Latinos, and Native Hawaiians (P-heterogeneity < 0.0001), largely due to the variation in energy intake. Our findings demonstrate the feasibility of assessing choline and betaine intake and characterize the variation in intake that exists in a multiethnic population. PMID:23616508
Guseva, M V; Kamenskii, A A; Gusev, V B
2013-06-01
Choline diet promotes improvement of the brain cognitive functions in rats with moderate-to-severe traumatic brain injury. In previous studies, the rats received choline being standard (0.2%) or choline-supplemented (2%) diet for 2 weeks prior to and 2 weeks after experimental brain injury. To the end of the experiments (in 4 weeks), the post-traumatic disturbances in the cognitive functions were observed in both groups, although they were less pronounced than in the rats kept on the choline-supplemented diet. Based on original mathematical model, this paper proposes a method to calculate the most efficient use of choline to correct the brain cognitive functions. In addition to evaluating the cognitive functions, the study assessed expression of α7 nicotinic acetylcholine receptors, the amount of consumed food and water, and the dynamics of body weight.
Tarannum, Aafiya; Rao, J Raghava; Fathima, N Nishad
2018-01-25
Given the potential of productive interaction between choline-based amino acid ionic liquids (CAAILs) and collagen, we investigated the role of four CAAILs, viz., choline serinate, threoninate, lysinate, and phenylalaninate, and the changes mediated by them in the structure of collagen at different hierarchical orderings, that is, at molecular and fibrillar levels. The rheological, dielectric behavior and the secondary structural changes signify the alteration in the triple helical structure of collagen at higher concentrations of CAAILs. A marginal swelling and slight decrease in the thermal stability of rat tail tendon collagen fibers were observed for choline serinate and threoninate, albeit distortions in banding patterns were noticed for choline lysinate and phenylalaninate, suggesting chaotropicity of the ions at the fibrillar level. This signifies the changes in the hydrogen-bonding environment of collagen with increasing concentrations of CAAILs, which could be due to competitive hydrogen bonding between the carbonyl group of amino acid ionic liquids and the hydroxyl groups of collagen.
Molecular Basis of C–N Bond Cleavage by the Glycyl Radical Enzyme Choline Trimethylamine-Lyase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bodea, Smaranda; Funk, Michael A.; Balskus, Emily P.
We report that deamination of choline catalyzed by the glycyl radical enzyme choline trimethylamine-lyase (CutC) has emerged as an important route for the production of trimethylamine, a microbial metabolite associated with both human disease and biological methane production. Here, we have determined five high-resolution X-ray structures of wild-type CutC and mechanistically informative mutants in the presence of choline. Within an unexpectedly polar active site, CutC orients choline through hydrogen bonding with a putative general base, and through close interactions between phenolic and carboxylate oxygen atoms of the protein scaffold and the polarized methyl groups of the trimethylammonium moiety. These structuralmore » data, along with biochemical analysis of active site mutants, support a mechanism that involves direct elimination of trimethylamine. Lastly, this work broadens our understanding of radical-based enzyme catalysis and will aid in the rational design of inhibitors of bacterial trimethylamine production.« less
Weaver, Katherine D; Van Vorst, Matthew P; Vijayaraghavan, R; Macfarlane, Douglas R; Elliott, Gloria D
2013-08-01
To better understand the relationship between the relative cytotoxicity of diluted ionic liquids and their specific interaction with biological membranes, the thermotropic behavior of model lipid membrane systems formulated in a series of choline based organic salts was investigated. Unilamellar vesicles prepared from dipalmitoylphosphatidylcholine were exposed to a series of choline phosphate salts at a concentration of 10mM at pH7.40, and the gel to liquid-crystalline state transition was examined using differential scanning calorimetry. The choline salts that were observed to have a low relative toxicity in previous studies induced minimal changes in the lipid phase transition behavior of these model membranes. In contrast, the salts choline bis(2,4,4-trimethylpentyl)phosphinate and choline bis(2-ethylhexyl)phosphate, both of which were observed to have high relative toxicity, caused distinct disruptions in the lipid phase transition behavior, consistent with penetration of the salts into the acyl chains of the phospholipids. choline bis(2,4,4-trimethylpentyl)phosphinate reduced the Tm and enthalpy of the main transition of dipalmitoylphosphatidylcholine while choline bis(2-ethylhexyl)phosphate induced the equilibration of alternate phases. Copyright © 2013 Elsevier B.V. All rights reserved.
1H- 14N HSQC detection of choline-containing compounds in solutions
NASA Astrophysics Data System (ADS)
Mao, Jiezhen; Jiang, Ling; Jiang, Bin; Liu, Maili; Mao, Xi-an
2010-09-01
Choline nitrogen ( 14N) has a long relaxation time (seconds) which is due to the highly symmetric chemical environments. 14N in choline also has coupling constants with protons (0.6 Hz to methyl protons, 2.7 Hz to CH 2O protons and 0.2 Hz to NCH 2 protons). Based on these properties, we introduce a two-dimensional NMR method to detect choline and its derivatives in solutions. This method is the 1H- 14N hetero-nuclear single-quantum correlation (HSQC) experiment which has been developed in solid-state NMR in recent years. Experiments have demonstrated that the 1H- 14N HSQC technique is a sensitive method for detection of choline-containing compounds in solutions. From 1 mM choline solution in 16 min on a 500 MHz NMR spectrometer, a 1H- 14N HSQC spectrum has been recorded with a signal-to-noise ratio of 1700. Free choline, phosphocholine and glycerophosphocholine in milk can be well separated in 1H- 14N HSQC spectra. This technique would become a promising analytical approach to mixture analyses where choline-containing compounds are of interest, such as tissue extracts, body fluids and food solutions.
Gao, Xiang; Wang, Yongbo; Randell, Edward; Pedram, Pardis; Yi, Yanqing; Gulliver, Wayne; Sun, Guang
2016-01-01
Choline is an essential nutrient and betaine is an osmolyte and methyl donor. Both are important to maintain health including adequate lipid metabolism. Supplementation of dietary choline and betaine increase muscle mass and reduce body fat in animals. However, little data is available regarding the role of dietary choline and betaine on body composition in humans. To investigate the association between dietary choline and betaine intakes with body composition in a large population based cross-sectional study. A total of 3214 subjects from the CODING (Complex Disease in Newfoundland population: Environment and Genetics) study were assessed. Dietary choline and betaine intakes were computed from the Willett Food Frequency questionnaire. Body composition was measured using dual-energy X-ray absorptiometry following a 12-hour fast. Major confounding factors including age, sex, total calorie intake and physical activity level were controlled in all analyses. Significantly inverse correlations were found between dietary choline and betaine intakes, with all obesity measurements: total percent body fat (%BF), percent trunk fat (%TF), percent android fat (%AF), percent gynoid fat (%GF) and anthropometrics: weight, body mass index, waist circumference, waist-to-hip ratio in both women and men (r range from -0.13 to -0.47 for choline and -0.09 to -0.26 for betaine, p<0.001 for all). Dietary choline intake had stronger association than betaine. Moreover, obese subjects had the lowest dietary choline and betaine intakes, with overweight subjects in the middle, and normal weight subjects consumed the highest dietary choline and betaine (p<0.001). Vice versa, when subjects were ranked according to dietary choline and betaine intakes, subjects with the highest intake of both had the lowest %TF, %AF, %GF, %BF and highest %LM among the groups in both sexes. Our findings indicate that high dietary choline and betaine intakes are significantly associated with favorable body composition in humans.
Gao, Xiang; Wang, Yongbo; Randell, Edward; Pedram, Pardis; Yi, Yanqing; Gulliver, Wayne; Sun, Guang
2016-01-01
Background Choline is an essential nutrient and betaine is an osmolyte and methyl donor. Both are important to maintain health including adequate lipid metabolism. Supplementation of dietary choline and betaine increase muscle mass and reduce body fat in animals. However, little data is available regarding the role of dietary choline and betaine on body composition in humans. Objective To investigate the association between dietary choline and betaine intakes with body composition in a large population based cross-sectional study. Design A total of 3214 subjects from the CODING (Complex Disease in Newfoundland population: Environment and Genetics) study were assessed. Dietary choline and betaine intakes were computed from the Willett Food Frequency questionnaire. Body composition was measured using dual-energy X-ray absorptiometry following a 12-hour fast. Major confounding factors including age, sex, total calorie intake and physical activity level were controlled in all analyses. Result Significantly inverse correlations were found between dietary choline and betaine intakes, with all obesity measurements: total percent body fat (%BF), percent trunk fat (%TF), percent android fat (%AF), percent gynoid fat (%GF) and anthropometrics: weight, body mass index, waist circumference, waist-to-hip ratio in both women and men (r range from -0.13 to -0.47 for choline and -0.09 to -0.26 for betaine, p<0.001 for all). Dietary choline intake had stronger association than betaine. Moreover, obese subjects had the lowest dietary choline and betaine intakes, with overweight subjects in the middle, and normal weight subjects consumed the highest dietary choline and betaine (p<0.001). Vice versa, when subjects were ranked according to dietary choline and betaine intakes, subjects with the highest intake of both had the lowest %TF, %AF, %GF, %BF and highest %LM among the groups in both sexes. Conclusion Our findings indicate that high dietary choline and betaine intakes are significantly associated with favorable body composition in humans. PMID:27166611
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wixtroma, Alex I.; Buhlera, Jessica E.; Reece, Charles E.
2013-06-01
Recent research has shown that choline chloride-based solutions can be used to replace acid-based electrochemical polishing solutions. In this study niobium metal was successfully deposited on the surface of copper substrate via electrochemical deposition using a novel choline chloride-based ionic liquid. The niobium metal used for deposition on the Cu had been dissolved in the solution from electrochemical polishing of a solid niobium piece prior to the deposition. The visible coating on the surface of the Cu was analyzed using scanning electron microscopy (SEM) and electron dispersive x-ray spectroscopy (EDX). This deposition method effectively recycles previously dissolved niobium from electrochemicalmore » polishing.« less
Pascali, Giancarlo; D'Antonio, Luca; Bovone, Paola; Gerundini, Paolo; August, Thorsten
2009-07-01
PET tumor imaging is gaining importance in current clinical practice. FDG-PET is the most utilized approach but suffers from inflammation influences and is not utilizable in prostate cancer detection. Recently, (11)C-choline analogues have been employed successfully in this field of imaging, leading to a growing interest in the utilization of (18)F-labeled analogues: [(18)F]fluoroethylcholine (FEC) has been demonstrated to be promising, especially in prostate cancer imaging. In this work we report an automatic radiosynthesis of this tracer with high yields, short synthesis time and ease of performance, potentially utilizable in routine production sites. We used a Modular Lab system to automatically perform the two-step/one-pot synthesis. In the first step, we labeled ethyleneglycolditosylate obtaining [(18)F]fluoroethyltosylate; in the second step, we performed the coupling of the latter intermediate with neat dimethylethanolamine. The final mixture was purified by means of solid phase extraction; in particular, the product was trapped into a cation-exchange resin and eluted with isotonic saline. The optimized procedure resulted in a non decay corrected yield of 36% and produced a range of 30-45 GBq of product already in injectable form. The product was analyzed for quality control and resulted as pure and sterile; in addition, residual solvents were under the required threshold. In this work, we present an automatic FEC radiosynthesis that has been optimized for routine production. This findings should foster the interest for a wider utilization of this radiomolecule for imaging of prostate cancer with PET, a field for which no gold-standard tracer has yet been validated.
Almeida, Fabio D; Yen, Chi-Kwan; Scholz, Mark C; Lam, Richard Y; Turner, Jeffrey; Bans, Larry L; Lipson, Robert
2017-01-01
An elevated serum prostate-specific antigen (PSA) level alone cannot distinguish between local-regional recurrences and distant metastases after treatment with curative intent. With available salvage treatments, it has become important to localize the site of recurrence. 11 C-Acetate PET/CT was performed in patients with rising PSA, with statistical analysis of detection rates, sites/location of detection, PSA kinetics and comparison with other tracers (FDG and Choline). Correlation to biopsy, subsequent imaging and PSA response to focal treatment was also performed. 88% (637) of 721 11 C-Acetate PET/CT scans performed were positive. There was a statistically significant difference in PSA values between the positive and negative scans (P < 0.001 for mean difference) with the percentage of positive scans and PSA having a positive correlation. A PSA of 1.09 ng/mL was found to be an optimal cutoff. PSAdT was significantly correlated with a positive scan only when the PSA was < 1.0 ng/mL. For this subgroup, a PSAdT of < 3.8 months appeared significant (P < 0.05) as an optimal cutoff point. 11 C-Acetate PET/CT demonstrates a high detection rate for the site of recurrence/metastasis in biochemical relapsed prostate cancer (88% overall detection rate, PPV 90.8%). This analysis suggests an optimal PSA threshold of > 1.09 ng/mL or a PSAdT of < 3.8 months when the PSA is below 1.0 ng/mL as independent predictors of positive findings.
Zhou, Rui-Fen; Chen, Xiao-Lin; Zhou, Zhong-Guo; Zhang, Yao-Jun; Lan, Qiu-Ye; Liao, Gong-Cheng; Chen, Yu-Ming; Zhu, Hui-Lian
2017-04-06
The dietary intake of methyl donors is favorably associated with many diseases, but the findings regarding primary liver cancer (PLC) risk are limited. This study investigated the association between the intake of choline, betaine and methionine and PLC risk in adults. This 1:1 matched case-control study enrolled 644 hospital-based PLC patients and 644 community-based controls who were matched by sex and age, in Guangzhou, China. An interviewer-administered questionnaire and a food-frequency questionnaire were used to collect general information and dietary intake information. Conditional logistic regression showed a significantly inverse association between total choline and betaine intakes and PLC risk. The multivariable-adjusted odds ratios (ORs) and their 95% confidence intervals (CIs) for PLC for the top (vs. bottom) tertile were 0.34 (0.24-0.49; P -trend < 0.001) for total choline and 0.67 (0.48-0.93; P -trend = 0.011) for betaine. No significant association was observed between the intake of methionine and PLC risk (P > 0.05). For individual choline compounds, higher consumptions of free choline, glycerophosphocholine, phosphocholine, phosphatidylcholine and sphingomyelin were associated with a lower PLC risk (all P-trend < 0.05). The studied associations were not significantly modified by the folate intake (P-interactions: 0.488-0.890). Our findings suggest that higher choline and betaine intakes may be associated with a lower risk of PLC.
Stott, W T; Kleinert, K M
2008-02-01
Aminoalcohols differ in mammalian toxicity at least in part based upon their ability to alter the metabolism of phospholipids and to cause depletion of the essential nutrient choline in animals. This study examined the incorporation of diisopropanolamine (DIPA) into phospholipids (PLs) and effects of DIPA upon choline uptake and phospholipid synthesis in Chinese hamster ovary (CHO) cells. Results were compared to those of a related secondary alcohol amine, diethanolamine (DEA), whose systemic toxicity is closely associated with its metabolic incorporation into PLs and depletion of choline pools. DIPA caused a dose-related inhibition of (3)H-choline uptake by CHO cells that was approximately 3-4 fold less potent, based upon an IC50, than that reported for DEA. DIPA, in contrast to DEA, did not cause changes in the synthesis rates of (33)P-phosphatidylethanolamine, (33)P-phosphatidylcholine or (33)P-sphingomyelin at either non-toxic or moderately toxic concentrations. Only approximately 0.004%, of administered (14)C-DIPA was metabolically incorporated into PLs, over 30-fold less than the incorporation of (14)C-DEA under similar conditions. Overall, these data and previous pharmacokinetic and toxicity data obtained in vivo suggests that DIPA is distinct from DEA and lacks significant choline and PL metabolism related toxicity in animals.
Liang, Xiang; Tang, Ganghua; Wang, Hongliang; Hu, Kongzhen; Tang, Xiaolan; Nie, Dahong; Sun, Ting; Huang, Tingting
2014-08-01
The aim of this study is to evaluate uptake of 2-(18)F-fluoroethyl-bis(zinc(II)-dipicolylamine) ((18)F-FEN-DPAZn2) as a promising cell death imaging agent, a choline analog (18)F-fluoroethylcholine ((18)F-FECH), (18)F-fluoride as a bone imaging agent, and a glucose analog 2-(18)F-fluoro-2-deoxy-d-glucose ((18)F-FDG) in the combined S180 fibrosarcoma and turpentine-induced inflammation mice models. The results showed that (18)F-FDG had the highest tumor-to-blood uptake ratio and tumor-to-muscle ratio, and high inflammation-to-blood ratio and inflammation-to-muscle ratio. (18)F -FECH showed moderate tumor-to-blood ratio and tumor-to-muscle ratio, and low inflammation-to-blood ratio and inflammation-to-muscle ratio. However, accumulation of (18)F FEN-DPAZn2 in tumor was similar to that in normal muscle. Also, (18)F-FEN-DPAZn2 and (18)F-fluoride exhibited the best selectivity to inflammation. (18)F-FECH positron emission tomography (PET) imaging demonstrates some advantages over (18)F-FDG PET for the differentiation of tumor from inflammation. (18)F FEN-DPAZn2 and (18)F-fluoride can be used for PET imaging of aseptic inflammation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Bidulescu, Aurelian; Chambless, Lloyd E; Siega-Riz, Anna Maria; Zeisel, Steven H; Heiss, Gerardo
2009-02-20
The repeatability of a risk factor measurement affects the ability to accurately ascertain its association with a specific outcome. Choline is involved in methylation of homocysteine, a putative risk factor for cardiovascular disease, to methionine through a betaine-dependent pathway (one-carbon metabolism). It is unknown whether dietary intake of choline meets the recommended Adequate Intake (AI) proposed for choline (550 mg/day for men and 425 mg/day for women). The Estimated Average Requirement (EAR) remains to be established in population settings. Our objectives were to ascertain the reliability of choline and related nutrients (folate and methionine) intakes assessed with a brief food frequency questionnaire (FFQ) and to estimate dietary intake of choline and betaine in a bi-ethnic population. We estimated the FFQ dietary instrument reliability for the Atherosclerosis Risk in Communities (ARIC) study and the measurement error for choline and related nutrients from a stratified random sample of the ARIC study participants at the second visit, 1990-92 (N = 1,004). In ARIC, a population-based cohort of 15,792 men and women aged 45-64 years (1987-89) recruited at four locales in the U.S., diet was assessed in 15,706 baseline study participants using a version of the Willett 61-item FFQ, expanded to include some ethnic foods. Intraindividual variability for choline, folate and methionine were estimated using mixed models regression. Measurement error was substantial for the nutrients considered. The reliability coefficients were 0.50 for choline (0.50 for choline plus betaine), 0.53 for folate, 0.48 for methionine and 0.43 for total energy intake. In the ARIC population, the median and the 75th percentile of dietary choline intake were 284 mg/day and 367 mg/day, respectively. 94% of men and 89% of women had an intake of choline below that proposed as AI. African Americans had a lower dietary intake of choline in both genders. The three-year reliability of reported dietary intake was similar for choline and related nutrients, in the range as that published in the literature for other micronutrients. Using a brief FFQ to estimate intake, the majority of individuals in the ARIC cohort had an intake of choline below the values proposed as AI.
Bidulescu, Aurelian; Chambless, Lloyd E; Siega-Riz, Anna Maria; Zeisel, Steven H; Heiss, Gerardo
2009-01-01
Background The repeatability of a risk factor measurement affects the ability to accurately ascertain its association with a specific outcome. Choline is involved in methylation of homocysteine, a putative risk factor for cardiovascular disease, to methionine through a betaine-dependent pathway (one-carbon metabolism). It is unknown whether dietary intake of choline meets the recommended Adequate Intake (AI) proposed for choline (550 mg/day for men and 425 mg/day for women). The Estimated Average Requirement (EAR) remains to be established in population settings. Our objectives were to ascertain the reliability of choline and related nutrients (folate and methionine) intakes assessed with a brief food frequency questionnaire (FFQ) and to estimate dietary intake of choline and betaine in a bi-ethnic population. Methods We estimated the FFQ dietary instrument reliability for the Atherosclerosis Risk in Communities (ARIC) study and the measurement error for choline and related nutrients from a stratified random sample of the ARIC study participants at the second visit, 1990–92 (N = 1,004). In ARIC, a population-based cohort of 15,792 men and women aged 45–64 years (1987–89) recruited at four locales in the U.S., diet was assessed in 15,706 baseline study participants using a version of the Willett 61-item FFQ, expanded to include some ethnic foods. Intraindividual variability for choline, folate and methionine were estimated using mixed models regression. Results Measurement error was substantial for the nutrients considered. The reliability coefficients were 0.50 for choline (0.50 for choline plus betaine), 0.53 for folate, 0.48 for methionine and 0.43 for total energy intake. In the ARIC population, the median and the 75th percentile of dietary choline intake were 284 mg/day and 367 mg/day, respectively. 94% of men and 89% of women had an intake of choline below that proposed as AI. African Americans had a lower dietary intake of choline in both genders. Conclusion The three-year reliability of reported dietary intake was similar for choline and related nutrients, in the range as that published in the literature for other micronutrients. Using a brief FFQ to estimate intake, the majority of individuals in the ARIC cohort had an intake of choline below the values proposed as AI. PMID:19232103
Niculescu, Mihai D.; Yamamuro, Yutaka; Zeisel, Steven H.
2006-01-01
Choline is an important methyl donor and a component of membrane phospholipids. In this study, we tested the hypothesis that choline availability can modulate cell proliferation and the methylation of genes that regulate cell cycling. In several other model systems, hypomethylation of cytosine bases that are followed by a guanosine (CpG) sites in the promoter region of a gene is associated with increased gene expression. We found that in choline-deficient IMR-32 neuroblastoma cells, the promoter of the cyclin-dependent kinase inhibitor 3 gene (CDKN3) was hypomethylated. This change was associated with increased expression of CDKN3 and increased levels of its gene product, kinase-associated phosphatase (KAP), which inhibits the G1/S transition of the cell cycle by dephosphorylating cyclin-dependent kinases. Choline deficiency also reduced global DNA methylation. The percentage of cells that accumulated bromodeoxyuridine (proportional to cell proliferation) was 1.8 times lower in the choline-deficient cells than in the control cells. Phosphorylated retinoblastoma (p110) levels were 3 times lower in the choline-deficient cells than in control cells. These findings suggest that the mechanism whereby choline deficiency inhibits cell proliferation involves hypomethylation of key genes regulating cell cycling. This may be a mechanism for our previously reported observation that stem cell proliferation in hippocampus neuroepithelium is decreased in choline-deficient rat and mouse fetuses. PMID:15147518
Aparicio, Santiago; Atilhan, Mert
2012-08-02
Choline-based ionic liquids show very adequate environmental, toxicological, and economical profiles for their application in many different technological areas. We report in this work a computational study on the properties of choline benzoate and choline salicylate ionic liquids, as representatives of this family of compounds, in the pure state and after CO(2) adsorption. Quantum chemistry calculations using the density functional theory approach for ionic pairs and ions, CO(2) pairs, were carried out, and the results analyzed using natural bond orbital and atoms in a molecule approaches. Classical molecular dynamics simulations of ionic liquids were done as a function of pressure, temperature, and CO(2) concentration. Microscopic structuring and intermolecular forces are analyzed together with the dynamic behavior of the studied fluids.
2014-10-01
Imaging (EP-JRESI); Citrate, Choline, Creatine , Spermine, 3Tesla MRI scanner, Endo-rectal MR coil, WET Water Suppression, prostate cancer (PCa...spectroscopic imaging are due to the overlap of metabolite resonances, quantifying few metabolites only (citrate (Cit), choline (Ch), creatine (Cr...concentrations of citrate (Cit), creatine (Cr), choline (Ch) and polyamines that are used to detect and diagnose PCa (2). The challenging task in 1D MRS
Common Genetic Variants Alter Metabolism and Influence Dietary Choline Requirements.
Ganz, Ariel B; Klatt, Kevin C; Caudill, Marie A
2017-08-04
Nutrient needs, including those of the essential nutrient choline, are a population wide distribution. Adequate Intake (AI) recommendations for dietary choline (put forth by the National Academies of Medicine to aid individuals and groups in dietary assessment and planning) are grouped to account for the recognized unique needs associated with age, biological sex, and reproductive status (i.e., pregnancy or lactation). Established and emerging evidence supports the notion that common genetic variants are additional factors that substantially influence nutrient requirements. This review summarizes the genetic factors that influence choline requirements and metabolism in conditions of nutrient deprivation, as well as conditions of nutrient adequacy, across biological sexes and reproductive states. Overall, consistent and strong associative evidence demonstrates that common genetic variants in choline and folate pathway enzymes impact the metabolic handling of choline and the risk of nutrient inadequacy across varied dietary contexts. The studies characterized in this review also highlight the substantial promise of incorporating common genetic variants into choline intake recommendations to more precisely target the unique nutrient needs of these subgroups within the broader population. Additional studies are warranted to facilitate the translation of this evidence to nutrigenetics-based dietary approaches.
Common Genetic Variants Alter Metabolism and Influence Dietary Choline Requirements
Ganz, Ariel B.; Klatt, Kevin C.; Caudill, Marie A.
2017-01-01
Nutrient needs, including those of the essential nutrient choline, are a population wide distribution. Adequate Intake (AI) recommendations for dietary choline (put forth by the National Academies of Medicine to aid individuals and groups in dietary assessment and planning) are grouped to account for the recognized unique needs associated with age, biological sex, and reproductive status (i.e., pregnancy or lactation). Established and emerging evidence supports the notion that common genetic variants are additional factors that substantially influence nutrient requirements. This review summarizes the genetic factors that influence choline requirements and metabolism in conditions of nutrient deprivation, as well as conditions of nutrient adequacy, across biological sexes and reproductive states. Overall, consistent and strong associative evidence demonstrates that common genetic variants in choline and folate pathway enzymes impact the metabolic handling of choline and the risk of nutrient inadequacy across varied dietary contexts. The studies characterized in this review also highlight the substantial promise of incorporating common genetic variants into choline intake recommendations to more precisely target the unique nutrient needs of these subgroups within the broader population. Additional studies are warranted to facilitate the translation of this evidence to nutrigenetics-based dietary approaches. PMID:28777294
Evaluation of toxicity and biodegradability of choline chloride based deep eutectic solvents.
Radošević, Kristina; Bubalo, Marina Cvjetko; Srček, Višnje Gaurina; Grgas, Dijana; Dragičević, Tibela Landeka; Redovniković, Ivana Radojčić
2015-02-01
Deep eutectic solvents (DESs) have been dramatically expanding in popularity as a new generation of environmentally friendly solvents with possible applications in various industrial fields, but their ecological footprint has not yet been thoroughly investigated. In the present study, three choline chloride-based DESs with glucose, glycerol and oxalic acid as hydrogen bond donors were evaluated for in vitro toxicity using fish and human cell line, phytotoxicity using wheat and biodegradability using wastewater microorganisms through closed bottle test. Obtained in vitro toxicity data on cell lines indicate that choline chloride: glucose and choline chloride:glycerol possess low cytotoxicity (EC50>10 mM for both cell lines) while choline chloride:oxalic acid possess moderate cytotoxicity (EC50 value 1.64 mM and 4.19 mM for fish and human cell line, respectively). Results on phytotoxicity imply that tested DESs are non-toxic with seed germination EC50 values higher than 5000 mg L(-1). All tested DESs were classified as'readily biodegradable' based on their high levels of mineralization (68-96%). These findings indicate that DESs have a green profile and a good prospect for a wider use in the field of green technologies. Copyright © 2014 Elsevier Inc. All rights reserved.
Konstantinova, Svetlana V; Tell, Grethe S; Vollset, Stein Emil; Nygård, Ottar; Bleie, Øyvind; Ueland, Per Magne
2008-05-01
Choline is involved in the synthesis of phospholipids, including blood lipids, and is the immediate precursor of betaine, which serves as a methyl group donor in a reaction converting homocysteine to methionine. Several cardiovascular risk factors are associated with plasma homocysteine, whereas little is known about their relationship to choline and betaine. We examined the relation of plasma choline and betaine to smoking, physical activity, BMI, percent body fat, waist circumference, blood pressure, serum lipids, and glucose in a population-based study of 7074 men and women aged 47-49 and 71-74 y. Overall plasma concentrations (means +/- SD) were 9.9 +/- 2.3 micromol/L for choline and 39.5 +/- 12.5 micromol/L for betaine. Choline and betaine were lower in women than in men and in younger subjects compared with older (P < 0.0001). Multivariate analyses showed that choline was positively associated with serum triglycerides, glucose, BMI, percent body fat, waist circumference (P < 0.0001 for all), and physical activity (P < 0.05) and inversely related to HDL cholesterol (P < 0.05) and smoking (P < 0.0001). Betaine was inversely associated with serum non-HDL cholesterol, triglycerides, BMI, percent body fat, waist circumference, systolic and diastolic blood pressure (P < 0.0001 for all), and smoking (P < 0.05) and positively associated with HDL cholesterol (P < 0.01) and physical activity (P < 0.0001). Thus, an unfavorable cardiovascular risk factor profile was associated with high choline and low betaine concentrations. Choline and betaine were associated in opposite directions with key components of metabolic syndrome, suggesting a disruption of mitochondrial choline dehydrogenase pathway.
Batra, Vipen; Devasagayam, Thomas Paul Asir
2009-01-08
The search for non-toxic radio-protective drugs has yielded many potential agents but most of these compounds have certain amount of toxicity. Recent studies have indicated that bio-molecules such as folate and choline might be of radio-protective value as they are, within broad dose ranges, non-toxic to humans and experimental animals. The objective of the present study was to investigate choline dependent adaptive response to potential synergistic cytotoxic effect of folate deficiency and gamma-radiation. Male Swiss mice maintained on folate sufficient diet (FSD) and folate free diet (FFD) based on AIN-93M formula, were subjected to 1-4Gy total body gamma-irradiation. To investigate liver DNA damage, apurinic/apyrimidinic sites (AP sites) were quantified. A significant increase in liver DNA AP sites with concomitant depletion of liver choline reserves was observed when gamma-radiation was combined with folate deficiency. Further work in this direction suggested that cytotoxic interaction between folate deficiency and gamma radiation might induce utilization of choline and choline containing moieties by modifying levels of key regulatory enzymes dihydrofolate reductase (DHFR) and choline oxidase (ChoOx). Another major finding of these studies is that significant liver damage at higher doses of radiation (3-4Gy), might release considerable amounts of choline reserves to serum. In conclusion, a plausible interpretation of the present studies is that folate deprivation and gamma-radiation interact to mobilize additional choline reserves of hepatic tissue, for redistribution to other organs, which could not be utilized by folate deficiency alone. Present results clearly indicated a distinct choline pool in liver and kidney tissues that could be utilized by folate deficient animals only under radiation stress conditions.
Pan, Zhi-Yuan; Wang, Hai
2014-05-01
The simultaneous use of drugs with different mechanisms of anti-inflammatory action is a strategy for achieving effective control of inflammation while minimizing dose-related side effects. Choline was described to potentiate the antinociceptive action of aspirin at small doses in several inflammatory pain models. However, these findings are only limited to alleviating pain, more associated data are required to confirm the effectiveness of the combined choline and aspirin therapy against inflammatory disorders. Moreover, no report is available regarding the mechanism responsible for their synergism. Here, we first investigated the anti-inflammatory activity and pharmacological mechanisms of co-administration of choline and aspirin in 2 commonly studied inflammation models, carrageenan-induced paw edema and lipopolysaccharide (LPS)-induced sepsis in mice. Isobolographic analysis revealed that combined choline and aspirin administration exhibited a strong synergistic interaction in reducing carrageenan-mediated edema, and the estimated combination index values at 50%, 75%, and 90% effective dose (ED50, ED75, and ED90) were 0.25, 0.32, and 0.44. Drug co-administration also afforded synergistic protection against LPS-induced sepsis and mortality, since aspirin or choline alone was inadequate to improve survival. The effects of choline-aspirin co-administration were blocked by methyllycaconitine, suggesting that activation of alpha 7 nicotinic acetylcholine receptor participates in the interaction between choline and aspirin. Furthermore, co-administration of choline and aspirin was more likely to inhibit the production of pro-inflammatory mediators induced by LPS. Our results indicated that combined choline and aspirin therapy represented a significant synergistic interaction in attenuating acute inflammatory response. This preclinical relevant evidence provides a promising approach to treat inflammation-based diseases such as arthritis and sepsis. Copyright © 2014 Elsevier B.V. All rights reserved.
Arlauckas, Sean P; Kumar, Manoj; Popov, Anatoliy V; Poptani, Harish; Delikatny, Edward J
2017-03-07
Choline kinase alpha (ChoKα) overexpression is associated with an aggressive tumor phenotype. ChoKα inhibitors induce apoptosis in tumors, however validation of their specificity is difficult in vivo. We report the use of optical imaging to assess ChoKα status in cells and in vivo using JAS239, a carbocyanine-based ChoKα inhibitor with inherent near infrared fluorescence. JAS239 attenuated choline phosphorylation and viability in a panel of human breast cancer cell lines. Antibody blockade prevented cellular retention of JAS239 indicating direct interaction with ChoKα independent of the choline transporters and catabolic choline pathways. In mice bearing orthotopic MCF7 breast xenografts, optical imaging with JAS239 distinguished tumors overexpressing ChoKα from their empty vector counterparts and delineated tumor margins. Pharmacological inhibition of ChoK by the established inhibitor MN58b led to a growth inhibition in 4175-Luc+ tumors that was accompanied by concomitant reduction in JAS239 uptake and decreased total choline metabolite levels as measured using magnetic resonance spectroscopy. At higher therapeutic doses, JAS239 was as effective as MN58b at arresting tumor growth and inducing apoptosis in MDA-MB-231 tumors, significantly reducing tumor choline below baseline levels without observable systemic toxicity. These data introduce a new method to monitor therapeutically effective inhibitors of choline metabolism in breast cancer using a small molecule companion diagnostic.
Choline in anxiety and depression: the Hordaland Health Study.
Bjelland, Ingvar; Tell, Grethe S; Vollset, Stein E; Konstantinova, Svetlana; Ueland, Per M
2009-10-01
Despite its importance in the central nervous system as a precursor for acetylcholine and membrane phosphatidylcholine, the role of choline in mental illness has been little studied. We examined the cross-sectional association between plasma choline concentrations and scores of anxiety and depression symptoms in a general population sample. We studied a subsample (n = 5918) of the Hordaland Health Study, including both sexes and 2 age groups of 46-49 and 70-74 y who had valid information on plasma choline concentrations and symptoms of anxiety and depression measured by the Hospital Anxiety and Depression Scale--the latter 2 as continuous measures and dichotomized at a score > or =8 for both subscales. The lowest choline quintile was significantly associated with high anxiety levels (odds ratio: 1.33; 95% CI: 1.06, 1.69) in the fully adjusted (age group, sex, time since last meal, educational level, and smoking habits) logistic regression model. Also, the trend test in the anxiety model was significant (P = 0.007). In the equivalent fully adjusted linear regression model, a significant inverse association was found between choline quintiles and anxiety levels (standardized regression coefficient = -0.027, P = 0.045). We found no significant associations in the corresponding analyses of the relation between plasma choline and depression symptoms. In this large population-based study, choline concentrations were negatively associated with anxiety symptoms but not with depression symptoms.
Lu, Jun-Qi; Wang, Shan; Yin, Jia; Wu, Shan; He, Yan; Zheng, Hui-Min; Sheng, Hua-Fang; Zhou, Hong-Wei
2017-03-20
To establish a machine learning model based on gut microbiota for predicting the level of trimethylamine N-oxide (TMAO) metabolism in vivo after choline intake to provide guidance of individualized precision diet and evidence for screening population at high risks of cardiovascular disease. We quantified plasma levels of TMAO in 18 healthy volunteers before and 8 h after a choline challenge (ingestion of two boiled eggs). The volunteers were divided into two groups with increased or decreased TMAO level following choline challenge. Fresh fecal samples were collected before taking fasting blood samples for amplifying 16S rRNA V4 tags, and the PCR products were sequenced using the platform of Illumina HiSeq 2000. The differences in gut microbiata between subjects with increased and decreased plasma TMAO were analyzed using QIIME. Based on the gut microbiota data and TMAO levels in the two groups, the prediction model was established using the machine learning random forest algorithm, and the validity of the model was tested using a verified dataset. An obvious difference was found in beta diversity of the gut microbota between the subjects with increased and decreased plasma TMAO level following choline challenge. The area under the curve (AUC) of the model was 86.39% (95% CI: 72.7%-100%). Using the verified dataset, the model showed a much higher probability for correctly predicting TMAO variation following choline challenge. The model is feasible and reliable for predicting the level of TMAO metabolism in vivo based on gut microbiota.
Jia, Chuandong; Zuo, Wei; Yang, Dong; ...
2017-10-16
In nature, proteins have evolved sophisticated cavities tailored for capturing target guests selectively among competitors of similar size, shape, and charge. The fundamental principles guiding the molecular recognition, such as self-assembly and complementarity, have inspired the development of biomimetic receptors. In the current work, we report a self-assembled triple anion helicate (host 2) featuring a cavity resembling that of the choline-binding protein ChoX, as revealed by crystal and density functional theory (DFT)-optimized structures, which binds choline in a unique dual-site-binding mode. Here, this similarity in structure leads to a similarly high selectivity of host 2 for choline over its derivatives,more » as demonstrated by the NMR and fluorescence competition experiments. Furthermore, host 2 is able to act as a fluorescence displacement sensor for discriminating choline, acetylcholine, l-carnitine, and glycine betaine effectively.« less
Inhibition of pneumococcal choline-binding proteins and cell growth by esters of bicyclic amines.
Maestro, Beatriz; González, Ana; García, Pedro; Sanz, Jesús M
2007-01-01
Streptococcus pneumoniae is one of the major pathogens worldwide. The use of currently available antibiotics to treat pneumococcal diseases is hampered by increasing resistance levels; also, capsular polysaccharide-based vaccination is of limited efficacy. Therefore, it is desirable to find targets for the development of new antimicrobial drugs specifically designed to fight pneumococcal infections. Choline-binding proteins are a family of polypeptides, found in all S. pneumoniae strains, that take part in important physiologic processes of this bacterium. Among them are several murein hydrolases whose enzymatic activity is usually inhibited by an excess of choline. Using a simple chromatographic procedure, we have identified several choline analogs able to strongly interact with the choline-binding module (C-LytA) of the major autolysin of S. pneumoniae. Two of these compounds (atropine and ipratropium) display a higher binding affinity to C-LytA than choline, and also increase the stability of the protein. CD and fluorescence spectroscopy analyses revealed that the conformational changes of C-LytA upon binding of these alkaloids are different to those induced by choline, suggesting a different mode of binding. In vitro inhibition assays of three pneumococcal, choline-dependent cell wall lytic enzymes also demonstrated a greater inhibitory efficiency of those molecules. Moreover, atropine and ipratropium strongly inhibited in vitro pneumococcal growth, altering cell morphology and reducing cell viability, a very different response than that observed upon addition of an excess of choline. These results may open up the possibility of the development of bicyclic amines as new antimicrobials for use against pneumococcal pathologies.
Positron emission tomography-guided magnetic resonance spectroscopy in Alzheimer disease.
Sheikh-Bahaei, Nasim; Sajjadi, S Ahmad; Manavaki, Roido; McLean, Mary; O'Brien, John T; Gillard, Jonathan H
2018-04-01
To determine whether the level of metabolites in magnetic resonance spectroscopy (MRS) is a representative marker of underlying pathological changes identified in positron emission tomographic (PET) images in Alzheimer disease (AD). We performed PET-guided MRS in cases of probable AD, mild cognitive impairment (MCI), and healthy controls (HC). All participants were imaged by 11 C-Pittsburgh compound B ( 11 C-PiB) and 18 F-fluorodeoxyglucose ( 18 F-FDG) PET followed by 3T MRS. PET images were assessed both visually and using standardized uptake value ratios (SUVRs). MRS voxels were placed in regions with maximum abnormality on amyloid (Aβ+) and FDG (hypometabolic) areas on PET scans. Corresponding normal areas were selected in controls. The ratios of total N-acetyl (tNA) group, myoinositol (mI), choline, and glutamate + glutamine over creatine (Cr) were compared between these regions. Aβ + regions had significantly higher (p = 0.02) mI/Cr and lower tNA/Cr (p = 0.02), whereas in hypometabolic areas only tNA/Cr was reduced (p = 0.003). Multiple regression analysis adjusting for sex, age, and education showed mI/Cr was only associated with 11 C-PiB SUVR (p < 0.0001). tNA/Cr, however, was associated with both PiB (p = 0.0003) and 18 F-FDG SUVR (p = 0.006). The level of mI/Cr was not significantly different between MCI and AD (p = 0.28), but tNA/Cr showed significant decline from HC to MCI to AD (p = 0.001, p = 0.04). mI/Cr has significant temporal and spatial associations with Aβ and could potentially be considered as a disease state biomarker. tNA is an indicator of early neurodegenerative changes and might have a role as disease stage biomarker and also as a valuable surrogate marker for treatment response. Ann Neurol 2018;83:771-778. © 2018 American Neurological Association.
Prenatal choline and the development of schizophrenia
FREEDMAN, Robert; ROSS, Randal G.
2015-01-01
Background The primary prevention of illness at the population level, the ultimate aim of medicine, seems out of reach for schizophrenia. Schizophrenia has a strong genetic component, and its pathogenesis begins long before the emergence of psychosis, as early as fetal brain development. Cholinergic neurotransmission at nicotinic receptors is a pathophysiological mechanism related to one aspect of this genetic risk. Choline activates these nicotinic receptors during fetal brain development. Dietary supplementation of maternal choline thus emerges as a possible intervention in pregnancy to alter the earliest developmental course of the illness. Aim Review available literature on the relationship of choline supplementation or choline levels during pregnancy and fetal brain development. Methods A Medline search was used to identify studies assessing effects of choline in human fetal development. Studies of other prenatal risk factors for schizophrenia and the role of cholinergic neurotransmission in its pathophysiology were also identified. Results Dietary requirements for choline are high during pregnancy because of its several uses, including membrane biosynthesis, one-carbon metabolism, and cholinergic neurotransmission. Its ability to act directly at high concentrations as a nicotinic agonist is critical for normal brain circuit development. Dietary supplementation in the second and third trimesters with phosphatidyl-choline supports these functions and is associated generally with better fetal outcome. Improvement in inhibitory neuronal functions whose deficit is associated with schizophrenia and attention deficit disorder has been observed. Conclusion Prenatal dietary supplementation with phosphatidyl-choline and promotion of diets rich in choline-containing foods (meats, soybeans, and eggs) are possible interventions to promote fetal brain development and thereby decrease the risk of subsequent mental illnesses. The low risk and short (sixmonth) duration of the intervention makes it especially conducive to population-wide adoption. Similar findings with folate for the prevention of cleft palate led to recommendations for prenatal pharmacological supplementation and dietary improvement. However, definitive proof of the efficacy of prenatal choline supplementation will not be available for decades (because of the 20-year lag until the onset of schizophrenia), so public health officials need to decide whether or not promoting choline supplementation is justified based on the limited information available. PMID:26120259
Davenport, Crystal; Yan, Jian; Taesuwan, Siraphat; Shields, Kelsey; West, Allyson A; Jiang, Xinyin; Perry, Cydne A; Malysheva, Olga V; Stabler, Sally P; Allen, Robert H; Caudill, Marie A
2015-09-01
Demand for the vital nutrient choline is high during lactation; however, few studies have examined choline metabolism and requirements in this reproductive state. The present study sought to discern the effects of lactation and varied choline intake on maternal biomarkers of choline metabolism and breast milk choline content. Lactating (n=28) and control (n=21) women were randomized to 480 or 930 mg choline/day for 10-12 weeks as part of a controlled feeding study. During the last 4-6 weeks, 20% of the total choline intake was provided as an isotopically labeled choline tracer (methyl-d9-choline). Blood, urine and breast milk samples were collected for choline metabolite quantification, enrichment measurements, and gene expression analysis of choline metabolic genes. Lactating (vs. control) women exhibited higher (P < .001) plasma choline concentrations but lower (P ≤ .002) urinary excretion of choline metabolites, decreased use of choline as a methyl donor (e.g., lower enrichment of d6-dimethylglycine, P ≤ .08) and lower (P ≤ .02) leukocyte expression of most choline-metabolizing genes. A higher choline intake during lactation differentially influenced breast milk d9- vs. d3-choline metabolite enrichment. Increases (P ≤ .03) were detected among the d3-metabolites, which are generated endogenously via the hepatic phosphatidylethanolamine N-methyltransferase (PEMT), but not among the d9-metabolites generated from intact exogenous choline. These data suggest that lactation induces metabolic adaptations that increase the supply of intact choline to the mammary epithelium, and that extra maternal choline enhances breast milk choline content by increasing supply of PEMT-derived choline metabolites. This trial was registered at clinicaltrials.gov as NCT01127022. Copyright © 2015 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jansen, Jacobus F.A.; Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, New York; Department of Radiology, Maastricht University Medical Center, Maastricht
2012-01-01
Purpose: To correlate proton magnetic resonance spectroscopy ({sup 1}H-MRS), dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), and {sup 18}F-labeled fluorodeoxyglucose positron emission tomography ([{sup 18}F]FDG PET) of nodal metastases in patients with head and neck squamous cell carcinoma (HNSCC) for assessment of tumor biology. Additionally, pretreatment multimodality imaging was evaluated for its efficacy in predicting short-term response to treatment. Methods and Materials: Metastatic neck nodes were imaged with {sup 1}H-MRS, DCE-MRI, and [{sup 18}F]FDG PET in 16 patients with newly diagnosed HNSCC, before treatment. Short-term patient radiological response was evaluated at 3 to 4 months. Correlations among {sup 1}H-MRS (choline concentrationmore » relative to water [Cho/W]), DCE-MRI (volume transfer constant [K{sup trans}]; volume fraction of the extravascular extracellular space [v{sub e}]; and redistribution rate constant [k{sub ep}]), and [{sup 18}F]FDG PET (standard uptake value [SUV] and total lesion glycolysis [TLG]) were calculated using nonparametric Spearman rank correlation. To predict short-term responses, logistic regression analysis was performed. Results: A significant positive correlation was found between Cho/W and TLG ({rho} = 0.599; p = 0.031). Cho/W correlated negatively with heterogeneity measures of standard deviation std(v{sub e}) ({rho} = -0.691; p = 0.004) and std(k{sub ep}) ({rho} = -0.704; p = 0.003). Maximum SUV (SUVmax) values correlated strongly with MRI tumor volume ({rho} = 0.643; p = 0.007). Logistic regression indicated that std(K{sup trans}) and SUVmean were significant predictors of short-term response (p < 0.07). Conclusion: Pretreatment multimodality imaging using {sup 1}H-MRS, DCE-MRI, and [{sup 18}F]FDG PET is feasible in HNSCC patients with nodal metastases. Additionally, combined DCE-MRI and [{sup 18}F]FDG PET parameters were predictive of short-term response to treatment.« less
Kumar, Manoj; Arlauckas, Sean P.; Saksena, Sona; Verma, Gaurav; Ittyerah, Ranjit; Pickup, Stephen; Popov, Anatoliy V.; Delikatny, Edward J.; Poptani, Harish
2015-01-01
Abnormal choline metabolism is a hallmark of cancer and is associated with oncogenesis and tumor progression. Increased choline is consistently observed in both pre-clinical tumor models and in human brain tumors by proton magnetic resonance spectroscopy (MRS). Thus, inhibition of choline metabolism using specific choline kinase inhibitors such as MN58b may be a promising new strategy for treatment of brain tumors. We demonstrate the efficacy of MN58b in suppressing phosphocholine production in three brain tumor cell lines. In vivo MRS studies of rats with intra-cranial F98-derived brain tumors showed a significant decrease in tumor total choline concentration after treatment with MN58b. High resolution MRS of tissue extracts confirmed that this decrease was due to a significant reduction in phosphocholine. Concomitantly, a significant increase in poly-unsaturated lipid resonances was also observed in treated tumors, indicating apoptotic cell death. Magnetic resonance imaging (MRI) based volume measurements demonstrated a significant growth arrest in the MN58b-treated tumors in comparison to saline-treated controls. Histologically, MN58b-treated tumors showed decreased cell density, as well as increased apoptotic cells. These results suggest that inhibition of choline kinase can be used as an adjuvant to chemotherapy in the treatment of brain tumors and that decreases in total choline observed by MRS can be used as an effective phamacodynamic biomarker of treatment response. PMID:25657334
Dai, Hong; Chi, Yuwu; Wu, Xiaoping; Wang, Youmei; Wei, Mingdeng; Chen, Guonan
2010-02-15
A new biocompatible ECL biosensor based on enzyme/titanate nanotubes/chitosan composite film was developed for the determination of analytes in biological samples. In the fabrication of the new ECL biosensor, biocompatible titanate nanotubes (TNTs) and a model enzyme, i.e., choline oxidase (ChOX), were immobilized on a chitosan modified glassy carbon electrode (GCE) via electrostatic adsorption and covalent interaction, respectively. By this ECL biosensor, choline was enzymatically oxidized to hydrogen peroxide and detected by a sensitive luminol ECL system. The use of TNTs not only provided a biocompatible microenvironment for the immobilized enzyme, which resulted in an excellent stability and long lifetime of the ECL biosensor, but also exhibited great enhancement towards luminol ECL and thus led to a significant improvement in sensitivity of ECL biosensor. Satisfactory results were obtained when employing this biosensor in assaying the total choline in milk samples. The work would provide a common platform to develop various sensitive, selective and biocompatible ECL biosensors based on using enzyme/TNTs/CHIT composite films. Copyright 2009 Elsevier B.V. All rights reserved.
Choline metabolism and risk of breast cancer in a population-based study
Xu, Xinran; Gammon, Marilie D.; Zeisel, Steven H.; Lee, Yin Leng; Wetmur, James G.; Teitelbaum, Susan L.; Bradshaw, Patrick T.; Neugut, Alfred I.; Santella, Regina M.; Chen, Jia
2008-01-01
Choline is an essential nutrient required for methyl group metabolism, but its role in carcinogenesis and tumor progression is not well understood. By utilizing a population-based study of 1508 cases and 1556 controls, we investigated the associations of dietary intake of choline and two related micronutrients, methionine and betaine, and risk of breast cancer. The highest quintile of choline consumption was associated with a lower risk of breast cancer [odds ratio (OR): 0.76; 95% confidence interval (CI): 0.58−1.00] compared with the lowest quintile. Two putatively functional single nucleotide polymorphisms of cholinemetabolizing genes, PEMT −774G>C (rs12325817) and CHDH +432G>T (rs12676), were also found be related to breast cancer risk. Compared with the PEMT GG genotype, the variant CC genotype was associated with an increased risk of breast cancer (OR: 1.30; 95% CI: 1.01−1.67). The CHDH minor T allele was also associated with an increased risk (OR: 1.19; 95% CI: 1.00−1.41) compared with the major G allele. The BHMT rs3733890 polymorphism was also examined but was found not to be associated with breast cancer risk. We observed a significant interaction between dietary betaine intake and the PEMT rs7926 polymorphism (Pinteraction=0.04). Our findings suggest that choline metabolism may play an important role in breast cancer etiology.—Xu, X., Gammon, M. D., Zeisel, S. H., Lee, Y. L., Wetmur, J. G., Teitelbaum, S. L., Bradshaw, P. T., Neugut, A. I., Santella, R. M., Chen, J. Choline metabolism and risk of breast cancer in a population-based study. PMID:18230680
Choline intake in a large cohort of patients with nonalcoholic fatty liver disease123
Guerrerio, Anthony L; Colvin, Ryan M; Schwartz, Amy K; Molleston, Jean P; Murray, Karen F; Diehl, AnnaMae; Mohan, Parvathi; Schwimmer, Jeffrey B; Lavine, Joel E; Torbenson, Michael S
2012-01-01
Background: There is significant histologic and biochemical overlap between nonalcoholic fatty liver disease (NAFLD) and steatohepatitis associated with choline deficiency. Objective: We sought to determine whether subjects with biopsy-proven NAFLD and evidence of an inadequate intake of choline had more severe histologic features. Design: We performed a cross-sectional analysis of 664 subjects enrolled in the multicenter, prospective Nonalcoholic Steatohepatitis Clinical Research Network (NASH CRN) with baseline data on diet composition (from a recall-based food-frequency questionnaire) within 6 mo of a liver biopsy. Food questionnaires were analyzed with proprietary software to estimate daily intakes of choline. Liver biopsies were centrally read, and consensus was scored with the NASH CRN–developed scoring system. Because choline needs vary by age, sex, and menopausal status, participants were segregated into corresponding categories (children 9–13 y old, males ≥14 y old, premenopausal women ≥19 y old, and postmenopausal women) on the basis of the Institute of Medicine's definition of adequate intake (AI) for choline. Deficient intake was defined as <50% AI. Results: Postmenopausal women with deficient choline intake had worse fibrosis (P = 0.002) once factors associated with NAFLD (age, race-ethnicity, obesity, elevated triglycerides, diabetes, alcohol use, and steroid use) were considered in multiple ordinal logistic regression models. Choline intake was not identified as a contributor to disease severity in children, men, or premenopausal women. Conclusion: Decreased choline intake is significantly associated with increased fibrosis in postmenopausal women with NAFLD. The Pioglitazone vs Vitamin E vs Placebo for Treatment of Non-Diabetic Patients With Nonalcoholic Steatohepatitis trial was registered at clinicaltrials.gov as NCT00063622, and the Treatment of Nonalcoholic Fatty Liver Disease in Children trial was registered at clinicaltrials.gov as NCT00063635. PMID:22338037
Choline intake in a large cohort of patients with nonalcoholic fatty liver disease.
Guerrerio, Anthony L; Colvin, Ryan M; Schwartz, Amy K; Molleston, Jean P; Murray, Karen F; Diehl, AnnaMae; Mohan, Parvathi; Schwimmer, Jeffrey B; Lavine, Joel E; Torbenson, Michael S; Scheimann, Ann O
2012-04-01
There is significant histologic and biochemical overlap between nonalcoholic fatty liver disease (NAFLD) and steatohepatitis associated with choline deficiency. We sought to determine whether subjects with biopsy-proven NAFLD and evidence of an inadequate intake of choline had more severe histologic features. We performed a cross-sectional analysis of 664 subjects enrolled in the multicenter, prospective Nonalcoholic Steatohepatitis Clinical Research Network (NASH CRN) with baseline data on diet composition (from a recall-based food-frequency questionnaire) within 6 mo of a liver biopsy. Food questionnaires were analyzed with proprietary software to estimate daily intakes of choline. Liver biopsies were centrally read, and consensus was scored with the NASH CRN-developed scoring system. Because choline needs vary by age, sex, and menopausal status, participants were segregated into corresponding categories (children 9-13 y old, males ≥14 y old, premenopausal women ≥19 y old, and postmenopausal women) on the basis of the Institute of Medicine's definition of adequate intake (AI) for choline. Deficient intake was defined as <50% AI. Postmenopausal women with deficient choline intake had worse fibrosis (P = 0.002) once factors associated with NAFLD (age, race-ethnicity, obesity, elevated triglycerides, diabetes, alcohol use, and steroid use) were considered in multiple ordinal logistic regression models. Choline intake was not identified as a contributor to disease severity in children, men, or premenopausal women. Decreased choline intake is significantly associated with increased fibrosis in postmenopausal women with NAFLD. The Pioglitazone vs Vitamin E vs Placebo for Treatment of Non-Diabetic Patients With Nonalcoholic Steatohepatitis trial was registered at clinicaltrials.gov as NCT00063622, and the Treatment of Nonalcoholic Fatty Liver Disease in Children trial was registered at clinicaltrials.gov as NCT00063635.
Interaction and dynamics of ionic liquids based on choline and amino acid anions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campetella, M.; Bodo, E., E-mail: enrico.bodo@uniroma1.it; Caminiti, R., E-mail: ruggero.caminiti@uniroma1.it
2015-06-21
The combination of amino acid anions with the choline cation gives origin to a new and potentially important class of organic ionic liquids that might represent a viable and bio-compatible alternative with respect to the traditional ones. We present here a detailed study of the bulk phase of the prototype system composed of the simplest amino acid (alanine) anion and the choline cation, based on ab initio and classical molecular dynamics. Theoretical findings have been validated by comparing with accurate experimental X-ray diffraction data and infrared spectra. We find that hydrogen bonding (HB) features in these systems are crucial inmore » establishing their local geometric structure. We have also found that these HBs once formed are persistent and that the proton resides exclusively on the choline cation. In addition, we show that a classical force field description for this particular ionic liquid can be accurately performed by using a slightly modified version of the generalized AMBER force field.« less
Interaction and dynamics of ionic liquids based on choline and amino acid anions
NASA Astrophysics Data System (ADS)
Campetella, M.; Bodo, E.; Caminiti, R.; Martino, A.; D'Apuzzo, F.; Lupi, S.; Gontrani, L.
2015-06-01
The combination of amino acid anions with the choline cation gives origin to a new and potentially important class of organic ionic liquids that might represent a viable and bio-compatible alternative with respect to the traditional ones. We present here a detailed study of the bulk phase of the prototype system composed of the simplest amino acid (alanine) anion and the choline cation, based on ab initio and classical molecular dynamics. Theoretical findings have been validated by comparing with accurate experimental X-ray diffraction data and infrared spectra. We find that hydrogen bonding (HB) features in these systems are crucial in establishing their local geometric structure. We have also found that these HBs once formed are persistent and that the proton resides exclusively on the choline cation. In addition, we show that a classical force field description for this particular ionic liquid can be accurately performed by using a slightly modified version of the generalized AMBER force field.
de Veth, M J; Artegoitia, V M; Campagna, S R; Lapierre, H; Harte, F; Girard, C L
2016-12-01
The metabolites of choline have a central role in many mammalian biological processes, and choline supplementation to the periparturient dairy cow improves hepatic lipid metabolism. However, variability in responses to choline supplementation has highlighted a lack of understanding of choline absorption in the lactating dairy cow. Our objective was to determine net choline absorption by measuring net portal fluxes of choline and choline metabolites in cows receiving either dietary supplements of rumen-protected choline (RPC) or abomasal delivery of choline (ADC). We also evaluated markers for choline bioavailability by examining relationships between net portal absorption of choline and choline metabolites in plasma and milk. Five late-lactation Holstein cows were used in a 5×5 Latin square design, with 5-d treatment periods and a 2-d interval between periods. Treatments were (1) control (0g/d of choline), (2) 12.5g/d of choline fed as RPC, (3) 25g/d of choline fed as RPC, (4) 12.5g/d of choline provided as ADC, and (5) 25g/d of choline provided as ADC. At the end of each 5-d period, milk was sampled and 9 blood samples were collected simultaneously from an artery and portal vein at 30-min intervals. Plasma, milk, and feed ingredient concentrations of acetylcholine, betaine, free choline, glycerophosphocholine, lysophosphatidylcholine, phosphatidylcholine, phosphocholine, and sphingomyelin were quantified by hydrophilic interaction liquid chromatography-tandem mass spectrometry. With an increasing dose of ADC, the net portal flux of free choline increased and regression analysis indicated 61% net absorption of the infused dose. Among the choline metabolites, only concentrations of betaine, free choline, and phosphocholine increased in both arterial plasma (3.9, 1.9, and 0.4 times, respectively) and milk (2.5, 1.4, and 1.0 times, respectively) with 25g/d of ADC relative to the control. For RPC, the net portal flux of free choline was low relative to ADC (13%), which was similar to the relative difference observed in the concentrations and yields of milk free choline and betaine (averaged 21%). When evaluating markers for choline bioavailability, betaine was the leading candidate. Betaine in plasma and milk (alone or in combination with phosphocholine) was strongly associated with net free choline portal flux (coefficient of determination ranging from 0.64 to 0.79). In summary, free choline supply to the lactating dairy cow increases only specific choline metabolites in plasma and milk, which can be potential markers for choline bioavailability. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Uluisik, Rizvan; Romero, Elvira; Gadda, Giovanni
2017-11-01
The effect of temperature on the reaction of alcohol oxidation catalyzed by choline oxidase was investigated with the S101A variant of choline oxidase. Anaerobic enzyme reduction in a stopped-flow spectrophotometer was biphasic using either choline or 1,2-[ 2 H 4 ]-choline as a substrate. The limiting rate constants k lim1 and k lim2 at saturating substrate were well separated (k lim1 /k lim2 >9), and were >15-fold slower than for wild-type choline oxidase. Solvent deuterium kinetic isotope effects (KIEs) ~4 established that k lim1 probes the proton transfer from the substrate hydroxyl to a catalytic base. Primary substrate deuterium KIEs ≥7 demonstrated that k lim2 reports on hydride transfer from the choline alkoxide to the flavin. Between 15°C and 39°C the k lim1 and k lim2 values increased with increasing temperature, allowing for the analyses of H + and H - transfers using Eyring and Arrhenius formalisms. Temperature-independent KIE on the k lim1 value ( H2O k lim1 / D2O k lim1 ) suggests that proton transfer occurs within a highly reorganized tunneling-ready-state with a narrow distribution of donor-acceptor distances. Eyring analysis of the k lim2 value gave lines with the slope (choline) >slope (D-choline) , suggesting kinetic complexity. Spectral evidence for the transient occurrence of a covalent flavin-substrate adduct during the first phase of the anaerobic reaction of S101A CHO with choline is presented, supporting the notion that an important role of amino acid residues in the active site of flavin-dependent enzymes is to eliminate alternative reactions of the versatile enzyme-bound flavin for the reaction that needs to be catalyzed. Copyright © 2017 Elsevier B.V. All rights reserved.
Rationale for Modernising Imaging in Advanced Prostate Cancer.
Padhani, Anwar R; Lecouvet, Frederic E; Tunariu, Nina; Koh, Dow-Mu; De Keyzer, Frederik; Collins, David J; Sala, Evis; Fanti, Stefano; Vargas, H Alberto; Petralia, Giuseppe; Schlemmer, Heinz Peter; Tombal, Bertrand; de Bono, Johann
2017-04-01
To effectively manage patients with advanced prostate cancer (APC), it is essential to have accurate, reproducible, and validated methods for detecting and quantifying the burden of bone and soft tissue metastases and for assessing their response to therapy. Current standard of care imaging with bone and computed tomography (CT) scans have significant limitations for the assessment of bone metastases in particular. We aimed to undertake a critical comparative review of imaging methods used for diagnosis and disease monitoring of metastatic APC from the perspective of their availability and ability to assess disease presence, extent, and response of bone and soft tissue disease. An expert panel of radiologists, nuclear medicine physicians, and medical physicists with the greatest experience of imaging in advanced prostate cancer prepared a review of the practicalities, performance, merits, and limitations of currently available imaging methods. Meta-analyses showed that positron emission tomography (PET)/CT with different radiotracers and whole-body magnetic resonance imaging (WB-MRI) are more accurate for bone lesion detection than CT and bone scans (BSs). At a patient level, the pooled sensitivities for bone disease by using choline (CH)-PET/CT, WB-MRI, and BS were 91% (95% confidence interval [CI], 83-96%), 97% (95% CI, 91-99%), and 79% (95% CI, 73-83%), respectively. The pooled specificities for bone metastases detection using CH-PET/CT, WB-MRI, and BS were 99% (95% CI, 93-100%), 95% (95% CI, 90-97%), and 82% (95% CI, 78-85%), respectively. The ability of PET/CT and WB-MRI to assess therapeutic benefits is promising but has not been comprehensively evaluated. There is variability in the cost, availability, and quality of PET/CT and WB-MRI. Standardisation of acquisition, interpretation, and reporting of WB-MRI and PET/CT scans is required to assess the performance of these techniques in clinical trials of treatment approaches in APC. PET/CT and whole-body MRI scans have the potential to improve detection and to assess response to treatment of all states of advanced prostate cancer. Consensus recommendations on quality standards, interpretation, and reporting are needed but will require validation in clinical trials of established and new treatment approaches. Copyright © 2016 European Association of Urology. Published by Elsevier B.V. All rights reserved.
Tanzi, Luana; Ramondo, Fabio; Caminiti, Ruggero; Campetella, Marco; Di Luca, Andrea; Gontrani, Lorenzo
2015-09-21
We report a X-ray diffraction and molecular dynamics study on three choline-based bio-ionic liquids, choline formate, [Ch] [For], choline propanoate, [Ch][Pro], and choline butanoate, [Ch][But]. For the first time, this class of ionic liquids has been investigated by X-ray diffraction. Experimental and theoretical structure factors have been compared for each term of the series. Local structural organization has been obtained from ab initio calculations through static models of isolated ion pairs and dynamic simulations of small portions of liquids through twelve, ten, and nine ion pairs for [Ch][For], [Ch][Pro], and [Ch][But], respectively. All the theoretical models indicate that cations and anions are connected by strong hydrogen bonding and form stable ion pairs in the liquid that are reminiscent of the static ab initio ion pairs. Different structural aspects may affect the radial distribution function, like the local structure of ion pairs and the conformation of choline. When small portions of liquids have been simulated by dynamic quantum chemical methods, some key structural features of the X-ray radial distribution function were well reproduced whereas the classical force fields here applied did not entirely reproduce all the observed structural features.
NASA Astrophysics Data System (ADS)
Tanzi, Luana; Ramondo, Fabio; Caminiti, Ruggero; Campetella, Marco; Di Luca, Andrea; Gontrani, Lorenzo
2015-09-01
We report a X-ray diffraction and molecular dynamics study on three choline-based bio-ionic liquids, choline formate, [Ch] [For], choline propanoate, [Ch][Pro], and choline butanoate, [Ch][But]. For the first time, this class of ionic liquids has been investigated by X-ray diffraction. Experimental and theoretical structure factors have been compared for each term of the series. Local structural organization has been obtained from ab initio calculations through static models of isolated ion pairs and dynamic simulations of small portions of liquids through twelve, ten, and nine ion pairs for [Ch][For], [Ch][Pro], and [Ch][But], respectively. All the theoretical models indicate that cations and anions are connected by strong hydrogen bonding and form stable ion pairs in the liquid that are reminiscent of the static ab initio ion pairs. Different structural aspects may affect the radial distribution function, like the local structure of ion pairs and the conformation of choline. When small portions of liquids have been simulated by dynamic quantum chemical methods, some key structural features of the X-ray radial distribution function were well reproduced whereas the classical force fields here applied did not entirely reproduce all the observed structural features.
Böttcher, Christoph; von Roepenack-Lahaye, Edda; Schmidt, Jürgen; Clemens, Stephan; Scheel, Dierk
2009-04-01
Total phenolic choline ester fractions prepared from seeds of Arabidopsis thaliana and Brassica napus were analyzed by capillary LC/ESI-QTOF-MS and direct infusion ESI-FTICR-MS. In addition to the dominating sinapoylcholine, 30 phenolic choline esters could be identified based on accurate mass measurements, interpretation of collision-induced dissociation (CID) mass spectra, and synthesis of selected representatives. The compounds identified so far include substituted hydroxycinnamoyl- and hydroxybenzoylcholines, respective monohexosides as well as oxidative coupling products of phenolic choline esters and monolignols. Phenolic choline esters are well separable by reversed-phase liquid chromatography and sensitively detectable using electrospray ionization mass spectrometry in positive ion mode. CID mass spectra obtained from molecular ions facilitate the characterization of both the type and substitution pattern of such compounds. Therefore, LC/ESI-MS/MS represents a valuable tool for comprehensive qualitative and quantitative analysis of this compound class. Copyright (c) 2009 John Wiley & Sons, Ltd.
Ultrasensitive chemosensory responses by a protozoan to epinephrine and other neurochemicals.
Hauser, D C; Levandowsky, M; Glassgold, J M
1975-10-17
A behavioral assay was developed based on differential tendency of a protozoan to attach to an agar gel containing the test substance. The heterotrophic marine dinoflagellate Crypthecodinium (Gyrodinium) cohnii responded negatively (less tendency to attach) to epinephrine at concentrations above 5 X 10(-15)M and to norepinephrine at concentrations above 5 X 10(-9)M. Response to choline as choline H2 citrate, choline bitartrate, and choline chloride was negative above 10(-7)M, but response to the choline analog carbachol was positve (greater tendency to attach) in the range 5 X 10(-6) to 5 X 10(-4)M. Other responses to neurochemicals at comparable concentrations were: dopa, betaine, and glycine--positive; L-glutamic acid, tryptophan, putrescine, and taurine--negative. Serotonin was inert, responses to tyrosine and gamma-aminobutyric acid were variable, and phenylalanine (6 X 10(-3)M) and 5-hydroxytryptophan (5 X 10(-4)M) were negative only at the highest concentrations tested.
Maternal choline intake modulates maternal and fetal biomarkers of choline metabolism in humans.
Yan, Jian; Jiang, Xinyin; West, Allyson A; Perry, Cydne A; Malysheva, Olga V; Devapatla, Srisatish; Pressman, Eva; Vermeylen, Francoise; Stabler, Sally P; Allen, Robert H; Caudill, Marie A
2012-05-01
In 1998 choline Adequate Intakes of 425 and 450 mg/d were established for nonpregnant and pregnant women, respectively. However, to our knowledge, no dose-response studies have been conducted to evaluate the effects of pregnancy or maternal choline intake on biomarkers of choline metabolism. We sought to quantify the effects of pregnancy and maternal choline intake on maternal and fetal indicators of choline metabolism. Healthy pregnant (n = 26; 27 wk gestation) and nonpregnant (n = 21) women were randomly assigned to receive 480 or 930 mg choline/d for 12 wk. Fasting blood samples and placental tissue and umbilical cord venous blood were collected and analyzed for choline and its metabolites. Regardless of the choline intake, pregnant women had higher circulating concentrations of choline (30%; P < 0.001) but lower concentrations of betaine, dimethylglycine, sarcosine, and methionine (13-55%; P < 0.001). Obligatory losses of urinary choline and betaine in pregnant women were ∼2-4 times as high (P ≤ 0.02) as those in nonpregnant women. A higher choline intake yielded higher concentrations of choline, betaine, dimethylglycine, and sarcosine (12-46%; P ≤ 0.08) in both pregnant and nonpregnant women without affecting urinary choline excretion. The higher maternal choline intake also led to a doubling of dimethylglycine in cord plasma (P = 0.002). These data suggest that an increment of 25 mg choline/d to meet the demands of pregnancy is insufficient and show that a higher maternal choline intake increases the use of choline as a methyl donor in both maternal and fetal compartments. This trial was registered at clinicaltrials.gov as NCT01127022.
Yan, Jian; Wang, Wei; Gregory, Jesse F; Malysheva, Olga; Brenna, J Thomas; Stabler, Sally P; Allen, Robert H; Caudill, Marie A
2011-02-01
Homozygosity for the variant 677T allele in the methylenetetrahydrofolate reductase (MTHFR) gene increases the requirement for folate and may alter the metabolic use of choline. The choline adequate intake is 550 mg/d for men, although the metabolic consequences of consuming extra choline are unclear. Deuterium-labeled choline (d9-choline) as tracer was used to determine the differential effects of the MTHFR C677T genotype and the effect of various choline intakes on the isotopic enrichment of choline derivatives in folate-compromised men. Mexican American men with the MTHFR 677CC or 677TT genotype consumed a diet providing 300 mg choline/d plus supplemental choline chloride for total choline intakes of 550 (n = 11; 4 with 677CC and 7 with 677TT) or 1100 (n = 12; 4 with 677CC and 8 with 677TT) mg/d for 12 wk. During the last 3 wk, 15% of the total choline intake was provided as d9-choline. Low but measurable enrichments of the choline metabolites were achieved, including that of d3-phosphatidylcholine (d3-PtdCho)--a metabolite produced in the de novo pathway via choline-derived methyl groups. Men with the MTHFR 677TT genotype had a higher urinary enrichment ratio of betaine to choline (P = 0.041), a higher urinary enrichment of sarcosine (P = 0.041), and a greater plasma enrichment ratio of d9-betaine to d9-PtdCho with the 1100 mg choline/d intake (P = 0.033). These data show for the first time in humans that choline itself is a source of methyl groups for de novo PtdCho biosynthesis and indicate that the MTHFR 677TT genotype favors the use of choline as a methyl donor.
Sardans, J; Gargallo-Garriga, A; Pérez-Trujillo, M; Parella, T J; Seco, R; Filella, I; Peñuelas, J
2014-03-01
Plants defend themselves against herbivory at several levels. One of these is the synthesis of inducible chemical defences. Using NMR metabolomic techniques, we studied the metabolic changes of plant leaves after a wounding treatment simulating herbivore attack in the Mediterranean sclerophyllous tree Quercus ilex. First, an increase in glucose content was observed in wounded plants. There was also an increase in the content of C-rich secondary metabolites such as quinic acid and quercitol, both related to the shikimic acid pathway and linked to defence against biotic stress. There was also a shift in N-storing amino acids, from leucine and isoleucine to asparagine and choline. The observed higher content of asparagine is related to the higher content of choline through serine that was proved to be the precursor of choline. Choline is a general anti-herbivore and pathogen deterrent. The study shows the rapid metabolic response of Q. ilex in defending its leaves, based on a rapid increase in the production of quinic acid, quercitol and choline. The results also confirm the suitability of (1)H NMR-based metabolomic profiling studies to detect global metabolome shifts after wounding stress in tree leaves, and therefore its suitability in ecometabolomic studies. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.
Fonnum, F.
1969-01-01
1. The methods for the assay of choline acetyltransferase were based on the reaction between labelled acetyl-CoA and unlabelled choline to give labelled acetylcholine. 2. Both synthetic acetyl-CoA and acetyl-CoA formed from sodium [1-14C]acetate or sodium [3H]acetate by incubation with CoA, ATP, Mg2+ and extract from acetone-dried pigeon liver were used. 3. [1-14C]Acetylcholine was isolated by extraction with ketonic sodium tetraphenylboron. 4. [3H]Acetylcholine was precipitated with sodium tetraphenylboron to remove a ketone-soluble contaminant in sodium [3H]acetate and then extracted with ketonic sodium tetraphenylboron. 5. The values of choline acetyltransferase activity obtained in the presence of sodium cyanide or EDTA and synthetic acetyl-CoA were similar to those obtained with acetyl-CoA synthesized in situ. 6. The assay of acetylcholinesterase was based on the formation of labelled acetate from labelled acetylcholine. The labelled acetylcholine could be quantitatively removed from the acetate by extraction with ketonic sodium tetraphenylboron. 7. The methods were tested with samples from central and peripheral nervous tissues and purified enzymes. 8. The blank values for choline acetyltransferase and acetylcholinesterase corresponded to the activities in 20ng. and 5ng. of brain tissue respectively. PMID:4982085
Mazul, Angela L; Siega-Riz, Anna Maria; Weinberg, Clarice R; Engel, Stephanie M.; Zou, Fei; Carrier, Kathryn S.; Basta, Patricia V; Vaksman, Zalman; Maris, John M; Diskin, Sharon J; Maxen, Charlene; Naranjo, Arlene; Olshan, Andrew F
2016-01-01
Purpose Neuroblastoma is a childhood cancer of the sympathetic nervous system with embryonic origins. Previous epidemiologic studies suggest maternal vitamin supplementation during pregnancy reduces the risk of neuroblastoma. We hypothesized offspring and maternal genetic variants in folate-related and choline-related genes are associated with neuroblastoma and modify the effects of maternal intake of folate, choline and folic acid. Methods The Neuroblastoma Epidemiology in North America (NENA) study recruited 563 affected children and their parents through the Children’s Oncology Group’s Childhood Cancer Research Network. We used questionnaires to ascertain pre-pregnancy supplementation and estimate usual maternal dietary intake of folate, choline and folic acid. We genotyped 955 genetic variants related to folate or choline using DNA extracted from saliva samples and used a log-linear model to estimate both child and maternal risk ratios and stratum-specific risk ratios for gene-environment interactions. Results Overall, no maternal or offspring genotypic results met criteria for a false discovery rate (FDR) Q-value <0.2. Associations were also null for gene-environment interaction with pre-pregnancy vitamin supplementation, dietary folic acid and folate. FDR significant gene-choline interactions were found for offspring SNPs rs10489810 and rs9966612 located in MTHFD1L and TYMS, respectively, with maternal choline dietary intake dichotomized at the first quartile. Conclusion These results suggest that variants related to one-carbon metabolism are not strongly associated with neuroblastoma. Choline-related variants may play a role; however, the functional consequences of the interacting variants are unknown and require independent replication. PMID:27541142
Du, Yu-Feng; Lin, Fang-Yu; Long, Wei-Qing; Luo, Wei-Ping; Yan, Bo; Xu, Ming; Mo, Xiong-Fei; Zhang, Cai-Xia
2017-04-01
Choline and betaine are important for DNA methylation and synthesis, and may affect tumor carcinogenesis. To our knowledge, no previous study has examined the association between serum choline and betaine and breast cancer risk. This study aimed to examine whether serum choline and betaine were inversely associated with breast cancer risk among Chinese women. This hospital-based case-control study consecutively recruited 510 breast cancer cases and 518 frequency-matched (age and residence) controls, and blood samples were available for 500 cases and 500 controls. Serum choline and betaine were assayed by high-performance liquid chromatography-tandem mass spectrometry. Multiple unconditional logistic regression was used to estimate odds ratios (ORs) and 95 % confidence intervals (CIs). An inverse association with breast cancer risk was observed for serum betaine (fourth vs first quartile adjusted OR 0.68, 95 % CI 0.47-0.97) and for the ratio of serum betaine to choline (fourth vs first quartile adjusted OR 0.70, 95 % CI 0.48-1.00), but not for serum choline (fourth vs first quartile adjusted OR 0.80, 95 % CI 0.56-1.15). Serum betaine was inversely associated with breast cancer risk in subjects with below-median dietary folate intake (fourth vs first quartile adjusted OR 0.48, 95 % CI 0.30-0.77). This study suggested that serum betaine but not choline was inversely associated with breast cancer risk. This result needed to be further confirmed by the prospective studies.
Mazul, Angela L; Siega-Riz, Anna Maria; Weinberg, Clarice R; Engel, Stephanie M; Zou, Fei; Carrier, Kathryn S; Basta, Patricia V; Vaksman, Zalman; Maris, John M; Diskin, Sharon J; Maxen, Charlene; Naranjo, Arlene; Olshan, Andrew F
2016-10-01
Neuroblastoma is a childhood cancer of the sympathetic nervous system with embryonic origins. Previous epidemiologic studies suggest maternal vitamin supplementation during pregnancy reduces the risk of neuroblastoma. We hypothesized offspring and maternal genetic variants in folate-related and choline-related genes are associated with neuroblastoma and modify the effects of maternal intake of folate, choline, and folic acid. The Neuroblastoma Epidemiology in North America (NENA) study recruited 563 affected children and their parents through the Children's Oncology Group's Childhood Cancer Research Network. We used questionnaires to ascertain pre-pregnancy supplementation and estimate usual maternal dietary intake of folate, choline, and folic acid. We genotyped 955 genetic variants related to folate or choline using DNA extracted from saliva samples and used a log-linear model to estimate both child and maternal risk ratios and stratum-specific risk ratios for gene-environment interactions. Overall, no maternal or offspring genotypic results met criteria for a false discovery rate (FDR) Q-value <0.2. Associations were also null for gene-environment interaction with pre-pregnancy vitamin supplementation, dietary folic acid, and folate. FDR-significant gene-choline interactions were found for offspring SNPs rs10489810 and rs9966612 located in MTHFD1L and TYMS, respectively, with maternal choline dietary intake dichotomized at the first quartile. These results suggest that variants related to one-carbon metabolism are not strongly associated with neuroblastoma. Choline-related variants may play a role; however, the functional consequences of the interacting variants are unknown and require independent replication.
Fischer, Leslie M; da Costa, Kerry Ann; Galanko, Joseph; Sha, Wei; Stephenson, Brigitte; Vick, Julie; Zeisel, Steven H
2010-01-01
Background: Choline is essential for infant nutrition, and breast milk is a rich source of this nutrient. Common single nucleotide polymorphisms (SNPs) change dietary requirements for choline intake. Objective: The aim of this study was to determine whether total choline intake and/or SNPs influence concentrations of choline and its metabolites in human breast milk and plasma. Design: We gave a total of 103 pregnant women supplemental choline or a placebo from 18 wk gestation to 45 d postpartum and genotyped the women for 370 common SNPs. At 45 d postpartum, we measured choline metabolite concentrations in breast milk and plasma and assessed the dietary intake of choline by using a 3-d food record. Results: On average, lactating women in our study ate two-thirds of the recommended intake for choline (Adequate Intake = 550 mg choline/d). Dietary choline intake (no supplement) correlated with breast-milk phosphatidylcholine and plasma choline concentrations. A supplement further increased breast-milk choline, betaine, and phosphocholine concentrations and increased plasma choline and betaine concentrations. We identified 5 SNPs in MTHFR that altered the slope of the intake–metabolite concentration relations, and we identified 2 SNPs in PEMT that shifted these curves upward. Individuals who shared sets of common SNPs were outliers in plots of intake–metabolite concentration curves; we suggest that these SNPs should be further investigated to determine how they alter choline metabolism. Conclusion: Total intake of choline and genotype can influence the concentrations of choline and its metabolites in the breast milk and blood of lactating women and thereby affect the amount of choline available to the developing infant. This study was registered at clinicaltrials.gov as NCT00678925. PMID:20534746
Martino, Pasquale; Scattoni, Vincenzo; Galosi, Andrea B; Consonni, Paolo; Trombetta, Carlo; Palazzo, Silvano; Maccagnano, Carmen; Liguori, Giovanni; Valentino, Massimo; Battaglia, Michele; Barozzi, Libero
2011-10-01
Defining the site of recurrent disease early after definitive treatment for a localized prostate cancer is a critical issue as it may greatly influence the subsequent therapeutic strategy or patient management. A systematic review of the literature was performed by searching Medline from January 1995 up to January 2011. Electronic searches were limited to the English language, and the keywords prostate cancer, radiotherapy [RT], high intensity focused ultrasound [HIFU], cryotherapy [CRIO], transrectal ultrasound [TRUS], magnetic resonance [MRI], PET/TC, and prostate biopsy were used. Despite the fact that diagnosis of a local recurrence is based on PSA values and kinetics, imaging by means of different techniques may be a prerequisite for effective disease management. Unfortunately, prostate cancer local recurrences are very difficult to detect by TRUS and conventional imaging that have shown limited accuracy at least at early stages. On the contrary, functional and molecular imaging such as dynamic contrast-enhanced MRI (DCE-MRI), and diffusion-weighted imaging (DWI), offers the possibility of imaging molecular or cellular processes of individual tumors. Recently, PET/CT, using 11C-choline, 18F-fluorocholine or 11C-acetate has been successfully proposed in detecting local recurrences as well as distant metastases. Nevertheless, in controversial cases, it is necessary to perform a biopsy of the prostatic fossa or a biopsy of the prostate to assess the presence of a local recurrence under guidance of MRI or TRUS findings. It is likely that imaging will be extensively used in the future to detect and localize prostate cancer local recurrences before salvage treatment.
Ilcol, Yesim Ozarda; Dönmez, Osman; Yavuz, Mahmut; Dilek, Kamil; Yurtkuran, Mustafa; Ulus, Ismail H
2002-06-01
This study tested whether continuous ambulatory peritoneal dialysis (CAPD) changes free or phospholipid-bound choline concentrations in serum or peritoneal dialysis fluid of patients with end stage renal disease (ESRD). Serum and dialysate choline and phospholipid-bound choline were measured before, during and after 6 h CAPD. Serum choline concentrations were higher in patients with ESRD compared with age-matched controls. CAPD lowered serum choline concentrations significantly although it did not influence phospholipid-bound choline. Choline accumulated in the dialysate, reaching 28.4 +/- 2.7 microM in children and 18.2 +/- 1.4 microM in adults, during six hours CAPD; phospholipid-bound choline increased to 22.9 +/- 2.5 microM and 10.8 +/- 1.4 microM in children and adults, respectively. The total daily loss of choline into the dialysate was 181 +/- 20 micromoles in children and 260 +/- 18 micromoles in adults. CAPD causes a substantial loss of choline into peritoneal dialysates and reduces serum choline concentrations significantly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crehange, Gilles, E-mail: gcrehange@cgfl.fr; Parfait, Sebastien; Liegard, Melanie
2011-07-15
Purpose: To determine whether a relationship exists between the tumor volume (TV) or relative choline content determined using magnetic resonance spectroscopy imaging (MRSI) at 3T and the clinical prognostic parameters for patients with localized prostate cancer (PCa). Methods and Materials: A total of 72 men (mean age, 67.8 {+-} 6.2 years) were stratified as having low-risk (n = 26), intermediate-risk (n = 24), or high-risk (n = 22) PCa. MRSI was performed at 3T using a phased-array coil. Spectra are expressed as the total choline/citrate, total choline plus creatine/citrate, and total choline plus polyamines plus creatine/citrate ratios. The mean ratiomore » of the most pathologic voxels and the MRSI-based TV were also determined. Results: The mean values of the total choline/citrate, total choline plus creatine/citrate, and total choline plus polyamine plus creatine/citrate ratios were greater for Stage T2b or greater tumors vs. Stage T2a or less tumors: 7.53 {+-} 13.60 vs. 2.31 {+-} 5.65 (p = .018), 8.98 {+-} 14.58 vs. 2.56 {+-} 5.70 (p = .016), and 10.32 {+-} 15.47 vs. 3.55 {+-} 6.16 (p = .014), respectively. The mean MRSI-based TV for Stage T2b or greater and Stage T2a or less tumors was significantly different (2.23 {+-} 2.62 cm{sup 3} vs. 1.26 {+-} 2.06 cm{sup 3}, respectively; p = .030). This TV correlated with increased prostate-specific antigen levels (odds ratio, 1.293; p = .012). Patients with high-risk PCa had a larger TV than did the patients with intermediate-risk PCa. A similar result was found for the intermediate-risk group compared with the low-risk group (odds ratio, 1.225; p = .041). Conclusion: Biomarkers expressing the relative choline content and TV were significant parameters for the localization of PCa and could be helpful for determining the prognosis more accurately.« less
Reexamining the role of choline transporter-like (Ctlp) proteins in choline transport.
Zufferey, Rachel; Santiago, Teresa C; Brachet, Valerie; Ben Mamoun, Choukri
2004-02-01
In Saccharomyces cerevisiae, choline enters the cell via a single high-affinity transporter, Hnmlp. hnm1delta cells lacking HNM1 gene are viable. However, they are unable to transport choline suggesting that no additional active choline transporters are present in this organism. A complementation study of a choline auxotrophic mutant, ctrl-ise (hnm1-ise), using a cDNA library from Torpedo marmorata electric lobe identified a membrane protein named Torpedo marmorata choline transporter-like, tCtl1p. tCtllp was proposed to mediate a high-affinity choline transport (O'Regan et al., 1999, Proc. Natl. Acad. Sci.). Homologs of tCtl1p have been identified in other organisms, including yeast (Pns1p, YOR161c) and are postulated to function as choline transporters. Here we provide several lines of evidence indicating that Ctlp proteins are not involved in choline transport. Loss of PNS1 has no effect on choline transport and overexpression of either PNS1 or tCTL1 does not restore choline uptake activity of choline transport-defective mutants. The data presented here call into question the role of proteins of the CTL family in choline transport and suggest that the mechanism by which tCTL1 complements hnm1-ise mutant is independent of its ability to transport choline.
Wagle, Durgesh V; Deakyne, Carol A; Baker, Gary A
2016-07-14
We report quantum chemical calculations performed on three popular deep eutectic solvents (DESs) in order to elucidate the molecular interactions, charge transfer interactions, and thermodynamics associated with these systems. The DESs studied comprise 1:2 choline chloride/urea (reline), 1:2 choline chloride/ethylene glycol (ethaline), and 1:1 choline chloride/malonic acid (maloline). The excellent correlation between calculated and experimental vibrational spectra allowed for identification of dominant interactions in the DES systems. The DESs were found to be stabilized by both conventional hydrogen bonds and C-H···O/C-H···π interactions between the components. The hydrogen-bonding network established in the DES is clearly distinct from that which exists within the neat hydrogen-bond donor dimer. Charge decomposition analysis indicates significant charge transfer from choline and chloride to the hydrogen-bond donor with a higher contribution from the cation, and a density of states analysis confirms the direction of the charge transfer. Consequently, the sum of the bond orders of the choline-Cl(-) interactions in the DESs correlates directly with the melting temperatures of the DESs, a correlation that offers insight into the effect of the tuning of the choline-Cl(-) interactions by the hydrogen-bond donors on the physical properties of the DESs. Finally, the differences in the vibrational entropy changes upon DES formation are consistent with the trend in the overall entropy changes upon DES formation.
Nau-Wagner, Gabriele; Opper, Daniela; Rolbetzki, Anne; Boch, Jens; Kempf, Bettina; Hoffmann, Tamara; Bremer, Erhard
2012-05-01
Synthesis of the compatible solute glycine betaine confers a considerable degree of osmotic stress tolerance to Bacillus subtilis. This osmoprotectant is produced through the uptake of the precursor choline via the osmotically inducible OpuB and OpuC ABC transporters and a subsequent two-step oxidation process by the GbsB and GbsA enzymes. We characterized a regulatory protein, GbsR, controlling the transcription of both the structural genes for the glycine betaine biosynthetic enzymes (gbsAB) and those for the choline-specific OpuB transporter (opuB) but not of that for the promiscuous OpuC transporter. GbsR acts genetically as a repressor and functions as an intracellular choline sensor. Spectroscopic analysis of the purified GbsR protein showed that it binds the inducer choline with an apparent K(D) (equilibrium dissociation constant) of approximately 165 μM. Based on the X-ray structure of a protein (Mj223) from Methanococcus jannaschii, a homology model for GbsR was derived. Inspection of this GbsR in silico model revealed a possible ligand-binding pocket for choline resembling those of known choline-binding sites present in solute receptors of microbial ABC transporters, e.g., that of the OpuBC ligand-binding protein of the OpuB ABC transporter. GbsR was not only needed to control gbsAB and opuB expression in response to choline availability but also required to genetically tune down glycine betaine production once cellular adjustment to high osmolarity has been achieved. The GbsR regulatory protein from B. subtilis thus records and integrates cellular and environmental signals for both the onset and the repression of the synthesis of the osmoprotectant glycine betaine.
Nau-Wagner, Gabriele; Opper, Daniela; Rolbetzki, Anne; Boch, Jens; Kempf, Bettina; Hoffmann, Tamara
2012-01-01
Synthesis of the compatible solute glycine betaine confers a considerable degree of osmotic stress tolerance to Bacillus subtilis. This osmoprotectant is produced through the uptake of the precursor choline via the osmotically inducible OpuB and OpuC ABC transporters and a subsequent two-step oxidation process by the GbsB and GbsA enzymes. We characterized a regulatory protein, GbsR, controlling the transcription of both the structural genes for the glycine betaine biosynthetic enzymes (gbsAB) and those for the choline-specific OpuB transporter (opuB) but not of that for the promiscuous OpuC transporter. GbsR acts genetically as a repressor and functions as an intracellular choline sensor. Spectroscopic analysis of the purified GbsR protein showed that it binds the inducer choline with an apparent KD (equilibrium dissociation constant) of approximately 165 μM. Based on the X-ray structure of a protein (Mj223) from Methanococcus jannaschii, a homology model for GbsR was derived. Inspection of this GbsR in silico model revealed a possible ligand-binding pocket for choline resembling those of known choline-binding sites present in solute receptors of microbial ABC transporters, e.g., that of the OpuBC ligand-binding protein of the OpuB ABC transporter. GbsR was not only needed to control gbsAB and opuB expression in response to choline availability but also required to genetically tune down glycine betaine production once cellular adjustment to high osmolarity has been achieved. The GbsR regulatory protein from B. subtilis thus records and integrates cellular and environmental signals for both the onset and the repression of the synthesis of the osmoprotectant glycine betaine. PMID:22408163
Measurement of the abundance of choline and the distribution of choline-containing moieties in meat.
Lewis, Erin D; Zhao, Yuan-Yuan; Richard, Caroline; Bruce, Heather L; Jacobs, René L; Field, Catherine J; Curtis, Jonathan M
2015-01-01
Epidemiological studies identify meat as a major source of choline; however, the most comprehensive reference for food choline content, the United States Department of Agriculture (USDA) database for dietary choline, does not include values for meats of importance in some regions. In this work, the total choline and choline-containing moieties of 20 samples of meat were analyzed by LC-MS/MS; 16 samples analyzed are absent from the USDA database and 4 samples included for comparison. Average total choline for one serving (75 g) was 50 ± 12 mg, which was 82.6% ± 5.5% phosphatidylcholine. There was general agreement between total choline levels in the meats analyzed in this work and USDA values. A strong negative correlation (r = -0.777, p < 0.001) between total choline and fat content was found. This research added choline composition data to a food group that is a major source of choline and ultimately this data will assist in obtaining more accurate estimates of dietary choline.
Dietary choline requirement of juvenile hybrid striped bass.
Griffin, M E; Wilson, K A; White, M R; Brown, P B
1994-09-01
Two experiments were conducted to estimate the dietary choline requirement and to determine the effects of dietary choline on liver lipid deposition in juvenile hybrid striped bass (Monrone saxatilis x M. chrysops). Experimental diets contained 0.73 g total sulfur amino acids/100 g diet (0.47 g methionine + 0.26 g cyst(e)ine/100 g diet), thus meeting, but not exceeding, the requirement. Graded levels of choline bitartrate in Experiment 1 and choline chloride in Experiment 2 were added to the basal diet, resulting in eight dietary treatments in each experiment. Dietary treatments were 0, 250, 500, 1000, 2000, 4000, 6000 and 8000 mg choline/kg dry diet. Diets were fed for 12 and 10 wk in Experiments 1 and 2, respectively. Dietary choline concentrations significantly affected weight gain, feed efficiency, survival and total liver lipid concentrations in each experiment. Weight gain and feed efficiency were greatest in fish fed 500 mg choline/kg dry diet as choline bitartrate. Total liver lipid concentrations were variable but tended to be lowest in fish fed diets containing at least 2000 mg choline/kg diet. Survival was significantly lower in the group of fish fed 8000 mg choline/kg diet supplied by choline bitartrate. Weight gain and feed efficiency were greatest and total liver lipid concentration was lowest in groups of fish fed at least 500 mg choline/kg diet as choline chloride; survival was unaffected by dietary treatment. Therefore, choline chloride seems to be a better source of dietary choline than choline bitartrate and 500 mg choline/kg diet is adequate for maximum weight gain and prevention of increased liver lipid concentration in juvenile hybrid striped bass.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanzi, Luana; Ramondo, Fabio, E-mail: fabio.ramondo@univaq.it; Caminiti, Ruggero
2015-09-21
We report a X-ray diffraction and molecular dynamics study on three choline-based bio-ionic liquids, choline formate, [Ch] [For], choline propanoate, [Ch][Pro], and choline butanoate, [Ch][But]. For the first time, this class of ionic liquids has been investigated by X-ray diffraction. Experimental and theoretical structure factors have been compared for each term of the series. Local structural organization has been obtained from ab initio calculations through static models of isolated ion pairs and dynamic simulations of small portions of liquids through twelve, ten, and nine ion pairs for [Ch][For], [Ch][Pro], and [Ch][But], respectively. All the theoretical models indicate that cations andmore » anions are connected by strong hydrogen bonding and form stable ion pairs in the liquid that are reminiscent of the static ab initio ion pairs. Different structural aspects may affect the radial distribution function, like the local structure of ion pairs and the conformation of choline. When small portions of liquids have been simulated by dynamic quantum chemical methods, some key structural features of the X-ray radial distribution function were well reproduced whereas the classical force fields here applied did not entirely reproduce all the observed structural features.« less
Zuo, Hui; Svingen, Gard F T; Tell, Grethe S; Ueland, Per M; Vollset, Stein E; Pedersen, Eva R; Ulvik, Arve; Meyer, Klaus; Nordrehaug, Jan E; Nilsen, Dennis W T; Bønaa, Kaare H; Nygård, Ottar
2018-04-12
Although choline metabolism has been associated with atherosclerotic heart disease, less research attention has been paid to the associations of choline and its oxidative metabolite betaine with cardiac arrhythmias. We evaluated associations of plasma concentrations and dietary intakes of choline and betaine with long-term atrial fibrillation (AF) risk in a community-based cohort, HUSK ([the Hordaland Health Study] n=6949), and validated the findings in 2 patient cohorts: the Western Norway Coronary Angiography Cohort (n=4164) and the NORVIT (Norwegian B-Vitamin) Trial (n=3733). Information on AF was obtained from the CVDNOR (Cardiovascular Disease in Norway) project. In HUSK, WECAC (Western Norway Coronary Angiography Cohort), and NORVIT, 552, 411, and 663 AF cases were identified during a median follow-up time of 10.9, 7.3, and, 8.7 years, respectively. Plasma concentrations of choline and betaine were significantly positively associated with later AF risk after multivariable adjustments in HUSK. Such associations were independently replicated in the 2 external prospective patient cohorts. The pooled hazard ratio was 1.13 (95% confidence interval 1.08-1.19, P <0.001) and 1.16 (95% confidence interval 1.10-1.22, P <0.001) per SD increment for log-transformed choline and betaine, respectively. Moreover, dietary intake of choline was marginally associated with AF risk (pooled hazard ratio 1.29, 95% confidence interval 1.01-1.66, fifth versus first quintile), whereas no significant association was observed between dietary betaine and AF risk. Our findings indicate that plasma concentrations as well as dietary intake of choline, but not betaine, are associated with subsequent risk of AF, suggesting a potential role of choline metabolism in the pathogenesis of AF. URL: https://www.clinicaltrials.gov.Unique identifier: NCT00671346. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.
Choline and polyunsaturated fatty acids in preterm infants' maternal milk.
Maas, Christoph; Franz, Axel R; Shunova, Anna; Mathes, Michaela; Bleeker, Christine; Poets, Christian F; Schleicher, Erwin; Bernhard, Wolfgang
2017-06-01
Choline, docosahexaenoic acid (DHA), and arachidonic acid (ARA) are essential to fetal development, particularly of the brain. These components are actively enriched in the fetus. Deprivation from placental supply may therefore result in impaired accretion in preterm infants. To determine choline, choline metabolites, DHA, and ARA in human breast milk (BM) of preterm infants compared to BM of term born infants. We collected expressed BM samples from 34 mothers (N = 353; postnatal day 6-85), who had delivered 35 preterm infants undergoing neonatal intensive care (postmenstrual age 30 weeks, range 25.4-32.0), and from mothers after term delivery (N = 9; postnatal day 6-118). Target metabolites were analyzed using tandem mass spectrometry and gas chromatography and reported as medians and 25th/75th percentiles. In BM, choline was mainly present in the form of phosphocholine and glycerophosphocholine, followed by free choline, phosphatidylcholine, sphingomyelin, and lyso-phosphatidylcholine. In preterm infants' BM total choline ranged from 61 to 360 mg/L (median: 158 mg/L) and was decreased compared to term infants' BM (range 142-343 mg/L; median: 258 mg/L; p < 0.01). ARA and DHA comprised 0.81 (range: 0.46-1.60) and 0.43 (0.15-2.42) % of total preterm BM lipids, whereas term BM values were 0.68 (0.52-0.88) and 0.35 (0.18-0.75) %, respectively. Concentrations of all target parameters decreased after birth, and frequently 150 ml/kg/d BM did not meet the estimated fetal accretion rates. Following preterm delivery, BM choline concentrations are lower, whereas ARA and DHA levels are comparable versus term delivery. Based on these findings we suggest a combined supplementation of preterm infants' BM with choline, ARA and DHA combined to improve the nutritional status of preterm infants. This study was registered at www.clinicaltrials.gov. Identifier: NCT01773902.
Functional analysis of choline transporters in rheumatoid arthritis synovial fibroblasts.
Seki, Masayuki; Kawai, Yuiko; Ishii, Chikanao; Yamanaka, Tsuyoshi; Odawara, Masato; Inazu, Masato
2017-11-01
In this study, we examined the functional characteristics of choline uptake and sought to identify the transporters in rheumatoid arthritis synovial fibroblasts (RASFs). The expression of choline transporters was evaluated by quantitative real-time PCR, western blotting, and immunocytochemistry. Time course, Na + -dependency, and kinetics of [ 3 H]choline uptake were investigated. Effects of cationic drugs on the uptake of [ 3 H]choline, cell viability, and caspase-3/7 activity were also examined. Finally, we investigated the influence of choline uptake inhibitor, hemicholinium-3 (HC-3), and choline deficiency on cell viability and caspase-3/7 activity. Choline transporter-like protein 1 (CTL1) and CTL2 mRNA and protein were highly expressed in RASFs and were localized to the plasma membrane. [ 3 H]Choline uptake occurred via a Na + -independent and pH-dependent transport system. The cells have two different [ 3 H]choline transport systems, high- and low-affinity. Various organic cations, HC-3 and choline deficiency inhibited both [ 3 H]choline uptake and cell viability, and enhanced the caspase-3/7 activity. The functional inhibition of choline transporters could promote apoptotic cell death. In RASFs, [ 3 H]choline uptake was significantly increased compared with that in OASFs without a change in gene expression. These results suggest that CTL1 (high-affinity) and CTL2 (low-affinity) are highly expressed in RASFs and choline may be transported by a choline/H + antiport system. Identification of this CTL1- and CTL2-mediated choline transport system should provide a potential new target for RA therapy.
Ganz, Ariel B.; Cohen, Vanessa V.; Swersky, Camille C.; Stover, Julie; Vitiello, Gerardo A.; Lovesky, Jessica; Chuang, Jasmine C.; Shields, Kelsey; Fomin, Vladislav G.; Lopez, Yusnier S.; Mohan, Sanjay; Ganti, Anita; Carrier, Bradley; Malysheva, Olga V.; Caudill, Marie A.
2017-01-01
Single nucleotide polymorphisms (SNPs) in choline metabolizing genes are associated with disease risk and greater susceptibility to organ dysfunction under conditions of dietary choline restriction. However, the underlying metabolic signatures of these variants are not well characterized and it is unknown whether genotypic differences persist at recommended choline intakes. Thus, we sought to determine if common genetic risk factors alter choline dynamics in pregnant, lactating, and non-pregnant women consuming choline intakes meeting and exceeding current recommendations. Women (n = 75) consumed 480 or 930 mg choline/day (22% as a metabolic tracer, choline-d9) for 10–12 weeks in a controlled feeding study. Genotyping was performed for eight variant SNPs and genetic differences in metabolic flux and partitioning of plasma choline metabolites were evaluated using stable isotope methodology. CHKA rs10791957, CHDH rs9001, CHDH rs12676, PEMT rs4646343, PEMT rs7946, FMO3 rs2266782, SLC44A1 rs7873937, and SLC44A1 rs3199966 altered the use of choline as a methyl donor; CHDH rs9001 and BHMT rs3733890 altered the partitioning of dietary choline between betaine and phosphatidylcholine synthesis via the cytidine diphosphate (CDP)-choline pathway; and CHKA rs10791957, CHDH rs12676, PEMT rs4646343, PEMT rs7946 and SLC44A1 rs7873937 altered the distribution of dietary choline between the CDP-choline and phosphatidylethanolamine N-methyltransferase (PEMT) denovo pathway. Such metabolic differences may contribute to disease pathogenesis and prognosis over the long-term. PMID:28134761
Ganz, Ariel B; Cohen, Vanessa V; Swersky, Camille C; Stover, Julie; Vitiello, Gerardo A; Lovesky, Jessica; Chuang, Jasmine C; Shields, Kelsey; Fomin, Vladislav G; Lopez, Yusnier S; Mohan, Sanjay; Ganti, Anita; Carrier, Bradley; Malysheva, Olga V; Caudill, Marie A
2017-01-26
Single nucleotide polymorphisms (SNPs) in choline metabolizing genes are associated with disease risk and greater susceptibility to organ dysfunction under conditions of dietary choline restriction. However, the underlying metabolic signatures of these variants are not well characterized and it is unknown whether genotypic differences persist at recommended choline intakes. Thus, we sought to determine if common genetic risk factors alter choline dynamics in pregnant, lactating, and non-pregnant women consuming choline intakes meeting and exceeding current recommendations. Women ( n = 75) consumed 480 or 930 mg choline/day (22% as a metabolic tracer, choline-d9) for 10-12 weeks in a controlled feeding study. Genotyping was performed for eight variant SNPs and genetic differences in metabolic flux and partitioning of plasma choline metabolites were evaluated using stable isotope methodology. CHKA rs10791957, CHDH rs9001, CHDH rs12676, PEMT rs4646343, PEMT rs7946, FMO3 rs2266782, SLC44A1 rs7873937, and SLC44A1 rs3199966 altered the use of choline as a methyl donor; CHDH rs9001 and BHMT rs3733890 altered the partitioning of dietary choline between betaine and phosphatidylcholine synthesis via the cytidine diphosphate (CDP)-choline pathway; and CHKA rs10791957, CHDH rs12676, PEMT rs4646343, PEMT rs7946 and SLC44A1 rs7873937 altered the distribution of dietary choline between the CDP-choline and phosphatidylethanolamine N -methyltransferase (PEMT) denovo pathway. Such metabolic differences may contribute to disease pathogenesis and prognosis over the long-term.
Caudill, Marie A; Strupp, Barbara J; Muscalu, Laura; Nevins, Julie E H; Canfield, Richard L
2018-04-01
Rodent studies demonstrate that supplementing the maternal diet with choline during pregnancy produces life-long cognitive benefits for the offspring. In contrast, the two experimental studies examining cognitive effects of maternal choline supplementation in humans produced inconsistent results, perhaps because of poor participant adherence and/or uncontrolled variation in intake of choline or other nutrients. We examined the effects of maternal choline supplementation during pregnancy on infant cognition, with intake of choline and other nutrients tightly controlled. Women entering their third trimester were randomized to consume, until delivery, either 480 mg choline/d ( n = 13) or 930 mg choline/d ( n = 13). Infant information processing speed and visuospatial memory were tested at 4, 7, 10, and 13 mo of age ( n = 24). Mean reaction time averaged across the four ages was significantly faster for infants born to mothers in the 930 ( vs. 480) mg choline/d group. This result indicates that maternal consumption of approximately twice the recommended amount of choline during the last trimester improves infant information processing speed. Furthermore, for the 480-mg choline/d group, there was a significant linear effect of exposure duration (infants exposed longer showed faster reaction times), suggesting that even modest increases in maternal choline intake during pregnancy may produce cognitive benefits for offspring.-Caudill, M. A., Strupp, B. J., Muscalu, L., Nevins, J. E. H., Canfield, R. L. Maternal choline supplementation during the third trimester of pregnancy improves infant information processing speed: a randomized, double-blind, controlled feeding study.
The association of serum choline with linear growth failure in young children from rural Malawi.
Semba, Richard D; Zhang, Pingbo; Gonzalez-Freire, Marta; Moaddel, Ruin; Trehan, Indi; Maleta, Kenneth M; Ordiz, M Isabel; Ferrucci, Luigi; Manary, Mark J
2016-07-01
Choline is an essential nutrient for cell structure, cell signaling, neurotransmission, lipid transport, and bone formation. Choline can be irreversibly converted to betaine, a major source of methyl groups. Trimethylene N-oxide (TMAO), a proatherogenic molecule, is produced from the metabolism of dietary choline by the gut microbiome. The relation between serum choline and its closely related metabolites with linear growth in children is unknown. The aim was to characterize the relation between serum choline and its closely related metabolites, betaine and TMAO, with linear growth and stunting in young children. We measured serum choline, betaine, and TMAO concentrations by using liquid chromatography isotopic dilution tandem mass spectrometry in a cross-sectional study in 325 Malawian children, aged 12-59 mo, of whom 62% were stunted. Median (25th, 75th percentile) serum choline, betaine, and TMAO concentrations were 6.4 (4.8, 8.3), 12.4 (9.1, 16.3), and 1.2 (0.7, 1.8) μmol/L, respectively. Spearman correlation coefficients of age with serum choline, betaine, and TMAO were -0.57 (P < 0.0001), -0.26 (P < 0.0001), and -0.10 (P = 0.07), respectively. Correlation coefficients of height-for-age z score with serum choline, betaine-to-choline ratio, and TMAO-to-choline ratio were 0.31 (P < 0.0001), -0.24 (P < 0.0001), and -0.29 (P < 0.0001), respectively. Serum choline concentrations were strongly and significantly associated with stunting. Children with and without stunting had median (25th, 75th percentile) serum choline concentrations of 5.6 (4.4, 7.4) and 7.3 (5.9, 9.1) μmol/L (P < 0.0001). Linear growth failure in young children is associated with low serum choline and elevated betaine-to-choline and TMAO-to-choline ratios. Further work is needed to understand whether low dietary choline intake explains low circulating choline among stunted children living in low-income countries and whether increasing choline intake may correct choline deficiency and improve growth and development. This trial was registered in the ISRCTN registry (www.isrctn.com) as ISRCTN14597012. © 2016 American Society for Nutrition.
Use of canonical variate analysis biplot in examination of choline content data of some foods.
Alkan, Baris; Atakan, Cemal
2011-03-01
Adequate intake (AI) of choline as part of the daily diet can help prevent major diseases. Low choline intake is a major risk factor for liver and several neurological disorders. Extreme choline consumption may cause diseases such as hypotension, sweating, diarrhea, and fishy body odor. The AI of choline is 425 mg/day for adult women; higher for pregnant and lactating women. The AI for adult men is 550 mg/day. The total choline content of foods is calculated as the sum of free choline, glycerophosphocholine, phosphocholine, phosphatidylcholine and sphingomyelin. These are called the choline variables. Observed values of choline variables may be different in amounts of nutrients. So different food groups in terms of choline variables are useful to compare. The present paper shows the advantages of using canonical variate analysis biplot to optimally separate groups and explore the differentiality of choline variables amounts in foods.
Phosphatidylcholine and the CDP-Choline Cycle
Fagone, Paolo; Jackowski, Suzanne
2012-01-01
The CDP-choline pathway of phosphatidylcholine (PtdCho) biosynthesis was first described more than 50 years ago. Investigation of the CDP-choline pathway in yeast provides a basis for understanding the CDP-choline pathway in mammals. PtdCho is considered as an intermediate in a cycle of synthesis and degradation, and the activity of a CDP-choline cycle is linked to subcellular membrane lipid movement. The components of the mammalian CDP-choline pathway include choline transport, choline kinase, phosphocholine cytidylyltransferase, and choline phosphotransferase activities. The protein isoforms and biochemical mechanisms of regulation of the pathway enzymes are related to their cell and tissue-specific functions. Regulated PtdCho turnover mediated by phospholipases or neuropathy target esterase participates in the mammalian CDP-choline cycle. Knockout mouse models define the biological functions of the CDP-choline cycle in mammalian cells and tissues. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism. PMID:23010477
Metabolism and transfer of choline in hamster small intestine
Flower, R. J.; Pollitt, R. J.; Sanford, P. A.; Smyth, D. H.
1972-01-01
1. The transfer and metabolism of choline was studied with sacs of everted intestine of hamster. 2. Approximately half the choline transferred from the mucosal fluid may be metabolized. High voltage electrophoresis, paper chromatography and ion exchange chromatography have been used to identify this meta bolite as betaine. 3. The concentration of choline and betaine together accumulating in the gut wall and serosal fluid are greater than that of choline present initially in the mucosal fluid indicating some kind of specific mechanism for choline transport. 4. A detailed analysis of choline transfer suggests that the movement of choline cannot be accounted for by simple diffusion. The concentration of choline accumulating in the gut wall and serosal fluid, the inhibitory effects of hemicholinium-3 and α-methylglucoside on choline transfer, and the insensitivity of betaine transfer to hemicholinium-3 suggest a specific active transport process for choline independent of active betaine transport. PMID:5085340
Dieterle, Frank; Schlotterbeck, Götz; Ross, Alfred; Niederhauser, Urs; Senn, Hans
2006-09-01
Selecting drug candidates based on toxicity is an important step in early drug development. In this case study, it is shown how metabonomics is applied to a ranking study, in which drug candidates with equal pharmacological activities are selected based on least toxic side effects. The metabonomic analyses were carried out on an animal study that followed an established protocol for pilot toxicology/ranking studies in rats, however, not specifically modified for a metabonomic assessment. It is shown how conditions not specificially adopted for metabonomics investigations can significantly influence the metabolic profiles recorded by NMR. Furthermore, it is shown how the multivariate analysis of the NMR spectra identified an extreme excretion of an endogenous metabolite into urine induced by two out of the five drug candidates. The subsequent structure elucidation by two-dimensional NMR experiments and a subsequent validation by spiking experiments identified the metabolite as choline. The discussion of the mechanistic background for the excretion of choline, which is usually well-conserved in the body, results in two hypotheses of either a massive degradation of cell membranes or an inhibition of the choline oxidation. Although the validation of these hypotheses needs a follow-up study, the finding of a increased excretion of the important metabolite choline warrants exclusion of these two compounds as viable drug candidates from a metabonomics point of view.
Schall, Joan I; Mascarenhas, Maria R; Maqbool, Asim; Dougherty, Kelly A; Elci, Okan; Wang, Dah-Jyuu; Altes, Talissa A; Hommel, Kevin A; Shaw, Walter; Moore, Jeff; Stallings, Virginia A
2016-04-01
Choline depletion is seen in cystic fibrosis (CF) and pancreatic insufficiency in spite of enzyme treatment and may result in liver, fatty acid, and muscle abnormalities. This study evaluated the efficacy and safety of an easily absorbed choline-rich structured lipid (LYM-X-SORB™ [LXS]) to improve choline status. Children with CF and pancreatic insufficiency were randomized to LXS or placebo in a 12-month double blind trial. Dietary choline intake, plasma cholines, plasma and fecal phospholipids, coefficient of fat absorption, pulmonary function, growth status, body composition, and safety measures were assessed. Magnetic resonance spectroscopy for calf muscle choline and liver fat were assessed in a subgroup and compared with a healthy comparison group matched for age, sex, and body size. A total of 110 subjects were enrolled (age 10.4 ± 3.0 years). Baseline dietary choline, 88% recommended, increased 3-fold in the LXS group. Plasma choline, betaine, and dimethylglycine increased in the LXS but not placebo (P = 0.007). Plasma lysophosphatidylcholine and phosphatidylcholine increased, and fecal phosphatidylcholine/phosphatidylethanolamine ratio decreased (P ≤ 0.05) in LXS only, accompanied by a 6% coefficient of fat absorption increase (P = 0.001). Children with CF had higher liver fat than healthy children and depleted calf muscle choline at baseline. Muscle choline concentration increased in LXS and was associated with improvement in plasma choline status. No relevant changes in safety measures were evident. LXS had improved choline intake, plasma choline status, and muscle choline stores compared with placebo group. The choline-rich supplement was safe, accepted by participants, and improved choline status in children with CF.
Yan, Jian; Jiang, Xinyin; West, Allyson A; Perry, Cydne A; Malysheva, Olga V; Brenna, J Thomas; Stabler, Sally P; Allen, Robert H; Gregory, Jesse F; Caudill, Marie A
2013-12-01
Although biomarkers of choline metabolism are altered by pregnancy, little is known about the influence of human pregnancy on the dynamics of choline-related metabolic processes. This study used stable isotope methodology to examine the effects of pregnancy on choline partitioning and the metabolic activity of choline-related pathways. Healthy third-trimester pregnant (n = 26; initially week 27 of gestation) and nonpregnant (n = 21) women consumed 22% of their total choline intake (480 or 930 mg/d) as methyl-d9-choline for the final 6 wk of a 12-wk feeding study. Plasma d9-betaine:d9-phosphatidylcholine (PC) was lower (P ≤ 0.04) in pregnant than in nonpregnant women, suggesting greater partitioning of choline into the cytidine diphosphate-choline (CDP-choline) PC biosynthetic pathway relative to betaine synthesis during pregnancy. Pregnant women also used more choline-derived methyl groups for PC synthesis via phosphatidylethanolamine N-methyltransferase (PEMT) as indicated by comparable increases in PEMT-PC enrichment in pregnant and nonpregnant women despite unequal (pregnant > nonpregnant; P < 0.001) PC pool sizes. Pregnancy enhanced the hydrolysis of PEMT-PC to free choline as shown by greater (P < 0.001) plasma d3-choline:d3-PC. Notably, d3-PC enrichment increased (P ≤ 0.011) incrementally from maternal to placental to fetal compartments, signifying the selective transfer of PEMT-PC to the fetus. The enhanced use of choline for PC production via both the CDP-choline and PEMT pathways shows the substantial demand for choline during late pregnancy. Selective partitioning of PEMT-PC to the fetal compartment may imply a unique requirement of PEMT-PC by the developing fetus.
Ilcol, Yesim Ozarda; Yilmaz, Zeki; Cansev, Mehmet; Ulus, Ismail H
2009-09-01
We showed previously that choline administration protects dogs from endotoxin-induced multiple organ injury and platelet dysfunctions. Because sepsis/endotoxemia is associated with alterations in lipid metabolism, we have investigated whether choline or cytidine-5'-diphosphate choline, a choline donor, alters serum lipid responses to endotoxin in dogs and rats. In response to endotoxin, serum concentrations of triglycerides, choline-containing phospholipids, total cholesterol, and high-density lipoprotein cholesterol increased in a dose- and time-related manner. Administration of choline (20 mg/kg i.v. in dogs or 90 mg/kg i.p. in rats) or cytidine-5'-diphosphate choline (70 mg/kg i.v. in dogs) 5 min before and 4 and 8 h after endotoxin blocked or attenuated the increases in serum triglycerides, total cholesterol, and nonesterified fatty acids. Endotoxin-induced elevations in serum phospholipid levels did not change in rats and were enhanced in dogs by choline. In rats, serum lipid response to endotoxin was accompanied by severalfold elevations in serum levels of hepatorenal injury markers; their elevations were also blocked by choline. Pretreatment with hexamethonium blocked choline's effects on serum lipids and hepatorenal injury markers. Pretreatment with atropine blocked endotoxin-induced elevations in serum lipid and hepatorenal injury markers, but failed to alter choline's actions on these parameters. Choline treatment improved survival rate of rats in lethal endotoxin shock. In conclusion, these data show that choline treatment alters serum lipid responses to endotoxin and prevents hepatorenal injury during endotoxemia through a nicotinic acetylcholine receptor-mediated mechanism. Hence, choline and choline-containing compounds may have a therapeutic potential in the treatment of endotoxemia/sepsis.
Schall, Joan I.; Mascarenhas, Maria R.; Maqbool, Asim; Dougherty, Kelly A.; Elci, Okan; Wang, Dah-Jyuu; Altes, Talissa A.; Hommel, Kevin A.; Shaw, Walter; Moore, Jeff; Stallings, Virginia A.
2015-01-01
Background Choline depletion is seen in cystic fibrosis (CF) and pancreatic insufficiency (PI) in spite of enzyme treatment and may result in liver, fatty acid and muscle abnormalities. This study evaluated the efficacy and safety of an easily absorbed choline-rich structured lipid (LYM-X-SORB™ [LXS]) to improve choline status. Methods Children with CF and PI were randomized to LXS or placebo in a 12-month double blind trial. Dietary choline intake, plasma cholines, plasma and fecal phospholipids, coefficient of fat absorption (CFA), pulmonary function, growth status, body composition, and safety measures were assessed. Magnetic resonance spectroscopy for calf muscle choline and liver fat were assessed in a subgroup and compared to a healthy comparison group matched for age, sex and body size. Results 110 subjects were enrolled (age 10.4±3.0 years). Baseline dietary choline, 88% recommended, increased 3-fold in the LXS group. Plasma choline, betaine, and dimethylglycine increased in the LXS but not placebo (P=0.007). Plasma lysophosphatidylcholine and phosphatidylcholine (PC) increased and fecal PC/phosphatidylethanolamine ratio decreased (P≤0.05) in LXS only, accompanied by a 6% CFA increase (P=0.001). Children with CF had higher liver fat than healthy children and depleted calf muscle choline at baseline. Muscle choline concentration increased in LXS and was associated with improvement in plasma choline status. No relevant changes in safety measures were evident. Conclusions LXS had improved choline intake, plasma choline status and muscle choline stores, compared with placebo. The choline-rich supplement was safe, accepted by participants and improved choline status in children with CF. PMID:26465792
Cohen, B M; Renshaw, P F; Stoll, A L; Wurtman, R J; Yurgelun-Todd, D; Babb, S M
1995-09-20
To test the hypothesis that uptake of circulating choline into the brain decreases with age, because alterations in metabolism of choline may be a factor contributing to age-related degenerative changes in the brain. Cohort comparison in younger and older adults. Subjects were chosen consecutively from lists of healthy volunteers screened by medical and psychiatric interviews and laboratory tests. Younger adults (n = 12) were between the ages of 20 and 40 years (mean age, 32 years), and older adults (n = 16) were between the ages of 60 and 85 years (mean age, 73 years). After fasting overnight, subjects received choline, as the bitartrate, to yield free choline equal to 50 mg/kg of body weight. Blood was drawn for determination of plasma choline concentration by high-performance liquid chromatography, and proton magnetic resonance spectroscopy (1H-MRS) was performed to determine the relative concentration of cytosolic choline-containing compounds in the brain at baseline and after ingestion of choline. Plasma choline and cytosolic choline-containing compounds in the brain, estimated as the ratio of the choline resonance to the creatine resonance on 1H-MRS scans of the basal ganglia, were compared following blinded analyses of data from subject cohorts studied at baseline and 3 hours after choline ingestion. Levels of plasma choline and cytosolic choline-containing compounds in brain were similar at baseline in younger and older subjects. Following ingestion of choline, plasma choline concentration increased by similar proportions (76% and 80%) in both younger and older subjects. Brain cytosolic choline--containing compounds increased substantially in younger subjects (mean increase, 60%; P < .001 vs baseline). Older subjects showed a much smaller increase in brain choline-containing compounds (mean, 16%; P < .001 vs the increase in younger subjects). Uptake of circulating choline into the brain decreases with age. Given the key role of choline in neuronal structure and function, this change may be a contributing factor in onset in late life of neurodegenerative, particularly dementing, illnesses in which cholinergic neurons show particular susceptibility to loss.
NASA Astrophysics Data System (ADS)
Wang, Hong; Cao, Xiaojian; Jia, Ke; Chai, Xueting; Lu, Hua; Lu, Zuhong
2001-10-01
A fiber optic fluorescence biosensor for choline is introduced in this paper. Choline is an important neurotransmitter in mammals. Due to the growing needs for on-site clinical monitoring of the choline, much effect has been devoted to develop choline biosensors. Fiber-optic fluorescence biosensors have many advantages, including miniaturization, flexibility, and lack of electrical contact and interference. The choline fiber-optic biosensor we designed implemented a bifurcated fiber to perform fluorescence measurements. The light of the blue LED is coupled into one end of the fiber as excitation and the emission spectrum from sensing film is monitored by fiber-spectrometer (S2000, Ocean Optics) through the other end of the fiber. The sensing end of the fiber is coated with Nafion film dispersed with choline oxidase and oxygen sensitive luminescent Ru(II) complex (Tris(2,2'-bipyridyl)dichlororuthenium(II), hexahydrate). Choline oxidase catalyzes the oxidation of choline to betaine and hydrogen peroxide while consuming oxygen. The fluorescence intensity of oxygen- sensitive Ru(II) are related to the choline concentration. The response of the fiber-optic sensor in choline solution is represented and discussed. The result indicates a low-cost, high-performance, portable choline biosensor.
Deanol affects choline metabolism in peripheral tissues of mice.
Haubrich, D R; Gerber, N H; Pflueger, A B
1981-08-01
Administration of 2-dimethylaminoethanol (deanol) to mice induced an increase in both the concentration and the rate of turnover of free choline in blood. Treatment with deanol also caused an increase in the concentration of choline in kidneys, and markedly inhibited the rates of oxidation and phosphorylation of intravenously administered [3H-methyl]choline. In the liver, deanol inhibited the rate of phosphorylation of [3H-methyl]choline, but did not inhibit its rate of oxidation or cause an increase in the level of free choline. These findings suggest that deanol increases the choline concentration in blood by inhibition of its metabolism in tissues. Deanol may ultimately produce its central cholinergic effects by inhibition of choline metabolism in peripheral tissues, causing free choline choline to accumulate in blood, enter the brain, and stimulate cholinergic receptors.
Anceschi, M M; Di Renzo, G C; Venincasa, M D; Bleasdale, J E
1984-01-01
When type II pneumonocytes from adult rats were maintained in a medium that lacked choline, the incorporation of [14C]glycerol into phosphatidylcholine was not greatly diminished during the period that the cells displayed characteristics of type II pneumonocytes. Cells that were maintained in choline-free medium that contained choline oxidase and catalase, however, became depleted of choline and subsequent synthesis of phosphatidylcholine by these cells was responsive to choline in the extracellular medium. Incorporation of [14C]glycerol into phosphatidylcholine by choline-depleted cells was stimulated maximally (approx. 6-fold) by extracellular choline at a concentration (0.05 mM) that also supported the greatest incorporation into phosphatidylglycerol. The incorporation of [14C]glycerol into other glycerophospholipids by choline-depleted cells was not increased by extracellular choline. When cells were incubated in the presence of [3H]cytidine, the choline-dependent stimulation of the synthesis of phosphatidylcholine and phosphatidylglycerol was accompanied by an increased recovery of [3H]CMP. This increased recovery of [3H]CMP reflected an increase in the intracellular amount of CMP from 48 +/- 9 to 76 +/- 16 pmol/10(6) cells. Choline-depleted cells that were exposed to [3H]choline contained [3H]CDP-choline as the principal water-soluble choline derivative. As the extracellular concentration of choline was increase, however, the amount of 3H in phosphocholine greatly exceeded that in all other water-soluble derivatives. Choline-depletion of cells resulted in an increase in the specific activity of CTP:phosphocholine cytidylyltransferase in cell homogenates (from 0.40 +/- 0.15 to 1.31 +/- 0.20 nmol X min-1 X mg of protein-1). These data are indicative that the biosynthesis of phosphatidylcholine is integrated with that of phosphatidylglycerol and are consistent with the proposed involvement of CMP in this integration. The choline-depleted type II pneumonocyte provides a new model for investigating the regulation of CTP:phosphocholine cytidylyltransferase activity. PMID:6548908
The association of serum choline with linear growth failure in young children from rural Malawi12
Semba, Richard D; Zhang, Pingbo; Gonzalez-Freire, Marta; Moaddel, Ruin; Trehan, Indi; Maleta, Kenneth M; Ordiz, M Isabel; Ferrucci, Luigi; Manary, Mark J
2016-01-01
Background: Choline is an essential nutrient for cell structure, cell signaling, neurotransmission, lipid transport, and bone formation. Choline can be irreversibly converted to betaine, a major source of methyl groups. Trimethylene N-oxide (TMAO), a proatherogenic molecule, is produced from the metabolism of dietary choline by the gut microbiome. The relation between serum choline and its closely related metabolites with linear growth in children is unknown. Objective: The aim was to characterize the relation between serum choline and its closely related metabolites, betaine and TMAO, with linear growth and stunting in young children. Design: We measured serum choline, betaine, and TMAO concentrations by using liquid chromatography isotopic dilution tandem mass spectrometry in a cross-sectional study in 325 Malawian children, aged 12–59 mo, of whom 62% were stunted. Results: Median (25th, 75th percentile) serum choline, betaine, and TMAO concentrations were 6.4 (4.8, 8.3), 12.4 (9.1, 16.3), and 1.2 (0.7, 1.8) μmol/L, respectively. Spearman correlation coefficients of age with serum choline, betaine, and TMAO were −0.57 (P < 0.0001), −0.26 (P < 0.0001), and −0.10 (P = 0.07), respectively. Correlation coefficients of height-for-age z score with serum choline, betaine-to-choline ratio, and TMAO-to-choline ratio were 0.31 (P < 0.0001), −0.24 (P < 0.0001), and −0.29 (P < 0.0001), respectively. Serum choline concentrations were strongly and significantly associated with stunting. Children with and without stunting had median (25th, 75th percentile) serum choline concentrations of 5.6 (4.4, 7.4) and 7.3 (5.9, 9.1) μmol/L (P < 0.0001). Conclusions: Linear growth failure in young children is associated with low serum choline and elevated betaine-to-choline and TMAO-to-choline ratios. Further work is needed to understand whether low dietary choline intake explains low circulating choline among stunted children living in low-income countries and whether increasing choline intake may correct choline deficiency and improve growth and development. This trial was registered in the ISRCTN registry (www.isrctn.com) as ISRCTN14597012. PMID:27281303
Oral choline supplementation in children with intestinal failure.
Guerrerio, Anthony L; Mattis, Lynn; Conner, Kim G; Hampsey, Jenifer; Stasinopoulos, D Mikis; DeJong, Robert; Boctor, Emad M; Sheth, Shelia; Hamper, Ulrike M; Scheimann, Ann O
2011-07-01
Choline deficiency leads to steatohepatitis, elevated transaminases, susceptibility to septic shock, and an increased risk of central catheter thrombosis. Children with intestinal failure (IF) are at risk for choline deficiency. In an unblinded, open-label study, we studied 7 children with IF on parenteral nutrition, measured their plasma free choline level, and, if low, supplemented enterally with adequate intake (AI) doses of choline. Four to 6 weeks later we remeasured their plasma free choline. Unlike adults, infants did not respond to oral choline supplementation at AI doses. Additionally, we have calculated plasma free choline percentiles versus age for normal children.
Morita, Junko; Kano, Kuniyuki; Kato, Kazuki; Takita, Hiroyuki; Sakagami, Hideki; Yamamoto, Yasuo; Mihara, Emiko; Ueda, Hirofumi; Sato, Takanao; Tokuyama, Hidetoshi; Arai, Hiroyuki; Asou, Hiroaki; Takagi, Junichi; Ishitani, Ryuichiro; Nishimasu, Hiroshi; Nureki, Osamu; Aoki, Junken
2016-01-01
Choline is an essential nutrient for all living cells and is produced extracellularly by sequential degradation of phosphatidylcholine (PC). However, little is known about how choline is produced extracellularly. Here, we report that ENPP6, a choline-specific phosphodiesterase, hydrolyzes glycerophosphocholine (GPC), a degradation product of PC, as a physiological substrate and participates in choline metabolism. ENPP6 is highly expressed in liver sinusoidal endothelial cells and developing oligodendrocytes, which actively incorporate choline and synthesize PC. ENPP6-deficient mice exhibited fatty liver and hypomyelination, well known choline-deficient phenotypes. The choline moiety of GPC was incorporated into PC in an ENPP6-dependent manner both in vivo and in vitro. The crystal structure of ENPP6 in complex with phosphocholine revealed that the choline moiety of the phosphocholine is recognized by a choline-binding pocket formed by conserved aromatic and acidic residues. The present study provides the molecular basis for ENPP6-mediated choline metabolism at atomic, cellular and tissue levels. PMID:26888014
Wiedeman, Alejandra M.; March, Kaitlin M.; Chen, Nancy N.; Kroeun, Hou; Sokhoing, Ly; Sophonneary, Prak; Dyer, Roger A.; Xu, Zhaoming; Kitts, David D.; Innis, Sheila M.
2018-01-01
Choline has critical roles during periods of rapid growth and development, such as infancy. In human milk, choline is mostly present in water-soluble forms (free choline, phosphocholine, and glycerophosphocholine). It is thought that milk choline concentration is influenced by maternal choline intake, and the richest food sources for choline are of animal origin. Scarce information exists on milk choline from countries differing in animal-source food availability. In this secondary analysis of samples from previous trials, the concentrations of the water-soluble forms of choline were quantified by liquid chromatography-tandem mass spectrometry in mature milk samples collected from lactating women in Canada (n = 301) and in Cambodia (n = 67). None of the water-soluble forms of choline concentrations in milk differed between Canada and Cambodia. For all milk samples (n = 368), free choline, phosphocholine, glycerophosphocholine, and the sum of water-soluble forms of choline concentrations in milk were (mean (95%CI)) 151 (141, 160, 540 (519, 562), 411 (396, 427), and 1102 (1072, 1133) µmol/L, respectively. Theoretically, only 19% of infants would meet the current Adequate Intake (AI) for choline. Our findings suggest that the concentrations in milk of water-soluble forms of choline are similar in Canada and Cambodia, and that the concentration used to set the infant AI might be inaccurate. PMID:29558412
Wiedeman, Alejandra M; Whitfield, Kyly C; March, Kaitlin M; Chen, Nancy N; Kroeun, Hou; Sokhoing, Ly; Sophonneary, Prak; Dyer, Roger A; Xu, Zhaoming; Kitts, David D; Green, Timothy J; Innis, Sheila M; Barr, Susan I
2018-03-20
Choline has critical roles during periods of rapid growth and development, such as infancy. In human milk, choline is mostly present in water-soluble forms (free choline, phosphocholine, and glycerophosphocholine). It is thought that milk choline concentration is influenced by maternal choline intake, and the richest food sources for choline are of animal origin. Scarce information exists on milk choline from countries differing in animal-source food availability. In this secondary analysis of samples from previous trials, the concentrations of the water-soluble forms of choline were quantified by liquid chromatography-tandem mass spectrometry in mature milk samples collected from lactating women in Canada ( n = 301) and in Cambodia ( n = 67). None of the water-soluble forms of choline concentrations in milk differed between Canada and Cambodia. For all milk samples ( n = 368), free choline, phosphocholine, glycerophosphocholine, and the sum of water-soluble forms of choline concentrations in milk were (mean (95%CI)) 151 (141, 160, 540 (519, 562), 411 (396, 427), and 1102 (1072, 1133) µmol/L, respectively. Theoretically, only 19% of infants would meet the current Adequate Intake (AI) for choline. Our findings suggest that the concentrations in milk of water-soluble forms of choline are similar in Canada and Cambodia, and that the concentration used to set the infant AI might be inaccurate.
Visentin, Carly E; Masih, Shannon; Plumptre, Lesley; Malysheva, Olga; Nielsen, Daiva E; Sohn, Kyoung-Jin; Ly, Anna; Lausman, Andrea Y; Berger, Howard; Croxford, Ruth; El-Sohemy, Ahmed; Caudill, Marie A; O'Connor, Deborah L; Kim, Young-In
2015-07-01
Choline deficiency during pregnancy can lead to adverse birth outcomes, including impaired neurodevelopment and birth defects. Genetic variants of choline and one-carbon metabolism may also influence birth outcomes by altering plasma choline concentrations. The effects of maternal ad libitum choline intake during pregnancy and fetal genetic variants on maternal and cord concentrations of choline and its metabolites are unknown. This prospective study sought to assess the effect of 1) maternal dietary choline intake on maternal and cord plasma concentrations of choline and its metabolites, and 2) fetal genetic polymorphisms on cord plasma concentrations. The dietary choline intake of 368 pregnant Canadian women was assessed in early (0-16 wk) and late (23-37 wk) pregnancy with the use of a food frequency questionnaire. Plasma concentrations of free choline and its metabolites were measured in maternal samples at recruitment and delivery, and in the cord blood. Ten fetal genetic variants in choline and one-carbon metabolism were assessed for their association with cord plasma concentrations of free choline and its metabolites. Mean maternal plasma free choline, dimethylglycine, and trimethylamine N-oxide (TMAO) concentrations increased during pregnancy by 49%, 17%, and 13%, respectively (P < 0.005), whereas betaine concentrations decreased by 21% (P < 0.005). Cord plasma concentrations of free choline, betaine, dimethylglycine, and TMAO were 3.2, 2.0, 1.3, and 0.88 times corresponding maternal concentrations at delivery, respectively (all P < 0.005). Maternal plasma concentrations of betaine, dimethylglycine, and TMAO (r(2) = 0.19-0.51; P < 0.0001) at delivery were moderately strong, whereas maternal concentrations of free choline were not significant (r(2) = 0.12; P = 0.06), predictors of cord plasma concentrations of these metabolites. Neither maternal dietary intake nor fetal genetic variants predicted maternal or cord plasma concentrations of choline and its metabolites. These data collectively indicate that maternal choline status, but not fetal genotype, influences cord plasma concentrations of choline metabolites. This trial was registered at clinicaltrials.gov as NCT02244684. © 2015 American Society for Nutrition.
Yan, Jian; Ginsberg, Stephen D.; Powers, Brian; Alldred, Melissa J.; Saltzman, Arthur; Strupp, Barbara J.; Caudill, Marie A.
2014-01-01
Maternal choline supplementation (MCS) induces lifelong cognitive benefits in the Ts65Dn mouse, a trisomic mouse model of Down syndrome and Alzheimer's disease. To gain insight into the mechanisms underlying these beneficial effects, we conducted a study to test the hypothesis that MCS alters choline metabolism in adult Ts65Dn offspring. Deuterium-labeled methyl-d9-choline was administered to adult Ts65Dn and disomic (2N) female littermates born to choline-unsupplemented or choline-supplemented Ts65Dn dams. Enrichment of d9-choline metabolites (derived from intact choline) and d3 + d6-choline metabolites [produced when choline-derived methyl groups are used by phosphatidylethanolamine N-methyltransferase (PEMT)] was measured in harvested tissues. Adult offspring (both Ts65Dn and 2N) of choline-supplemented (vs. choline-unsupplemented) dams exhibited 60% greater (P≤0.007) activity of hepatic PEMT, which functions in de novo choline synthesis and produces phosphatidylcholine (PC) enriched in docosahexaenoic acid. Higher (P<0.001) enrichment of PEMT-derived d3 and d6 metabolites was detected in liver, plasma, and brain in both genotypes but to a greater extent in the Ts65Dn adult offspring. MCS also yielded higher (P<0.05) d9 metabolite enrichments in liver, plasma, and brain. These data demonstrate that MCS exerts lasting effects on offspring choline metabolism, including up-regulation of the hepatic PEMT pathway and enhanced provision of choline and PEMT-PC to the brain.—Yan, J., Ginsberg, S. D., Powers, B., Alldred, M. J., Saltzman, A., Strupp, B. J., Caudill, M. A. Maternal choline supplementation programs greater activity of the phosphatidylethanolamine N-methyltransferase (PEMT) pathway in adult Ts65Dn trisomic mice. PMID:24963152
Luo, Zhi; Wei, Chuan-Chuan; Ye, Han-Mei; Zhao, Hai-Ping; Song, Yu-Feng; Wu, Kun
2016-12-01
The present experiment was conducted to determine the effect and mechanism of dietary choline levels on growth performance and lipid deposition of yellow catfish Pelteobagrus fulvidraco. Dietary choline was included at three levels of 239.2 (control (without extra choline addition), 1156.4 and 2273.6mg choline per kg diet, respectively) and fed to yellow catfish (mean initial weight: 3.45±0.02g mean±standard errors of mean (SEM)) for 8weeks. Fish fed the diet containing 1156.4mgkg -1 choline showed the higher weight gain (WG), specific growth rate (SGR) and feed intake (FI), but the lower feed conversion rate (FCR), than those in control and highest choline group. Hepatosomatic index (HSI) and hepatic lipid content declined with increasing dietary choline levels. Muscle lipid content was the lowest for fish fed adequate choline diets and showed no significant difference between other two groups. Choline contents in liver and muscle increased with increasing dietary choline levels. Dietary choline levels significantly influenced mRNA levels of genes involved in lipid homeostasis in muscle and liver, such as CTP:phosphocholine cytidylyltransferase a (CCTa), phosphatidylethanolamine N-methyl-transferase (PEMT), microsomal triglyceride transfer protein (MTP), apolipoprotein b (APOBb), apolipoprotein E (ApoE) and lipoprotein lipase (LPL), and effects of dietary choline levels on lipid deposition and metabolism were tissue-specific. Different responses of these genes at the mRNA levels partially explained the profiles of lipid deposition in liver and muscle for fish fed different choline diets. To our knowledge, this is the first to explore the effect of dietary choline level on mRNA expression of these genes, which provides new insights into choline nutrition in fish. Copyright © 2016 Elsevier Inc. All rights reserved.
Emmert, J L; Baker, D H
1997-05-01
Our objectives were to use a soy protein isolate (SPI) diet containing 2-amino-2-methyl-1-propanol, an inhibitor of choline biosynthesis, to determine the bioavailable choline content of normal and overheated soybean meal (SBM), canola meal (CM) and peanut meal (PM). In the first four experiments, it was determined that weight gain of chicks fed the basal diet would respond linearly (P < 0.05) to graded levels of crystalline choline and would not respond to betaine, and that when fortified with adequate choline, no weight gain or feed intake response would occur upon addition of 100 g/kg SBM, CM or PM to the basal diet. Furthermore, addition of crystalline amino acids simulating the amino acid composition of 100 g/kg SBM did not alter the utilization of crystalline choline. In Experiment 5, feeding graded doses of choline, SBM, CM or PM resulted in linear (P < 0.05) increases in weight gain. Multiple linear regression analysis indicated bioavailable choline concentrations of 1708, 1545 and 1203 mg/kg for SBM, CM and PM, respectively. In Experiment 6, no differences (P > 0.05) in bioavailable choline concentrations occurred between normal and overheated SBM, CM or PM, and the bioavailable choline concentration of normal SBM, CM and PM was 2002, 1464 and 1320 mg/kg, respectively. Average bioavailable choline levels were 83, 24 and 76% of analytically determined choline levels in SBM, CM and PM, respectively. Canola meal, although three times as rich in total choline as SBM, has less bioavailable choline than SBM. A substantial portion of choline in SBM, CM and PM is unavailable, and overheating does not appear to decrease the bioavailability of choline in these products.
Scholz, Anica; Stahl, Julia; de Berardinis, Veronique; Müller, Volker; Averhoff, Beate
2016-04-01
Acinetobacter baylyi, a ubiquitous soil bacterium, can cope with high salinity by uptake of choline as precursor of the compatible solute glycine betaine. Here, we report on the identification of a choline dehydrogenase (BetA) and a glycine betaine aldehyde dehydrogenase (BetB) mediating the oxidation of choline to glycine betaine. The betAB genes were found to form an operon together with the potential transcriptional regulator betI. The transcription of the betIBA operon and the two recently identified choline transporters was upregulated in response to choline and choline plus salt. The finding that the osmo-independent transporter BetT1 undergoes a higher upregulation in response to choline alone than betT2 suggests that BetT1 does not primarily function in osmoadaptation. Electrophoretic mobility shift assays led to the conclusion that BetI mediates transcriptional regulation of both, the betIBA gene operon and the choline transporters. BetI was released from the DNA in response to choline which together with the transcriptional upregulation of the bet genes in the presence of choline suggests that BetI is a choline sensing transcriptional repressor. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.
Determination of picomole quantities of acetylcholine and choline in physiologic salt solutions.
Gilberstadt, M L; Russell, J A
1984-04-01
An assay capable of detecting tens-of-picomole quantities of choline and acetylcholine in milliliter volumes of a physiological salt solution has been developed. Silica column chromatography was used to bind and separate 10-3000 pmol [14C]choline and [14C]acetylcholine standards made up in 3 ml of a bicarbonate-buffered Krebs-Ringer solution. The silica columns bound 95-98% of both choline and acetylcholine. Of the bound choline 84-87% was eluted in 1.5 ml of 0.075 N HCl, whereas 95-98% of the bound acetylcholine was eluted in a subsequent wash with 1.5 ml of 0.030 N HCl in 10% 2-butanone. Vacuum centrifugation of the eluants yielded small white pellets with losses of choline and acetylcholine of only 1%. Dried pellets of unlabeled choline and acetylcholine standards were assayed radioenzymatically using [gamma-32P]ATP, choline kinase, and acetylcholinesterase. The net disintegrations per minute of choline[32P]phosphate product was proportional to both the acetylcholine (10-3000 pmol) and choline (30-3000 pmol) standards. The "limit sensitivity" was 8.5 pmol for acetylcholine and 11.4 pmol for choline. Cross-contamination of the choline assay by acetylcholine averaged 1.3%, whereas contamination of the acetylcholine assay by choline averaged 3.1%.
Choline and betaine food sources and intakes in Taiwanese.
Chu, Da-Ming; Wahlqvist, Mark L; Chang, Hsing-Yi; Yeh, Nai-Hua; Lee, Meei-Shyuan
2012-01-01
Choline and betaine are involved in several similar health-relevant metabolic pathways, but the foods sources are different. We have assessed their intakes (individual, sums and ratios) from a dominantly Chinese food cultural point of view. A representative free-living Taiwanese population aged 13-64 years was drawn from the Nutrition and Health Survey in Taiwan (NAHSIT) 1993-1996. Food intake was derived from interviews as 24-hour recalls. The USDA database, with adaptations for Taiwan, provided choline and betaine food compositions. Major food contributors of these nutrients were identified and compared with data from the US Framingham offspring study. Mean and variance reduced median nutrient intakes were calculated. Top ten major food contributors of choline in Taiwan were eggs, pork, chicken, fish, soybean and its products, dark leafy vegetables, dairy, fruit, wheat products and light leafy vegetables in sequence. For betaine, the top ten were dark leafy vegetables, wheat products, fish, pork, bread, chicken, cake/cookies, grain-based alcoholic beverages, rice and its products and sauces. The main contributors of choline in Taiwan and the USA were, respectively, eggs and red meat; and for betaine, greens were similarly best contributor. The rankings of the main food contributors of choline and betaine differed substantially between Taiwan and the USA. The total daily intakes (mean±SE, mg) in Taiwan for choline were 372±19 (median=348) in men and 265±9 (median 261) for women; for betaine, values were 101±3 (median 93) in men and 78±8 (median 76) for women. These allow for health outcome considerations.
Garner, S C; Mar, M H; Zeisel, S H
1995-11-01
Choline supplementation of pregnant rats between d 12 and 17 of pregnancy permanently enhances the spatial memory of offspring; however, the mechanism is unknown. We examined the effect of choline supplementation on metabolism of orally ingested choline by nonmated rats and pregnant rats and their fetuses. We studied the metabolism of an acute oral dose of 14C-choline chloride in pregnant and nonmated rats with and without choline supplementation (25 mmol/L choline chloride in water) on d 12-17 of pregnancy. During the first 2 h after oral dosing, plasma radiolabeled choline was detectable, whereas plasma choline metabolites contributed little to total radioactivity at any time. The pattern of accumulation of label in placentas was similar in all groups. Fetal tissues (i.e., brain, liver and carcass remnant) contained primarily 14C-phosphatidylcholine and 14C-phosphorylcholine. Also, we examined the fetal tissue distribution of isotopically labeled (deuterated) choline derived from the diet and from the dietary choline supplement. The distribution patterns for radiolabeled choline metabolites in fetuses of supplemented dams accumulated significantly (P < 0.01) more of their total choline and its metabolites than fetuses of control dams during d 12-17 of gestation (50 vs. 20%). In fetuses from supplemented dams, betaine concentrations were greater than in fetuses from control dams in all organs assayed (by 36-57%). Phosphorylcholine concentrations in brain of fetuses from supplemented dams were also greater. These experiments identify potential metabolites of choline that might mediate the observed effects on brain development in the rats.
Yan, Jian; Ginsberg, Stephen D; Powers, Brian; Alldred, Melissa J; Saltzman, Arthur; Strupp, Barbara J; Caudill, Marie A
2014-10-01
Maternal choline supplementation (MCS) induces lifelong cognitive benefits in the Ts65Dn mouse, a trisomic mouse model of Down syndrome and Alzheimer's disease. To gain insight into the mechanisms underlying these beneficial effects, we conducted a study to test the hypothesis that MCS alters choline metabolism in adult Ts65Dn offspring. Deuterium-labeled methyl-d9-choline was administered to adult Ts65Dn and disomic (2N) female littermates born to choline-unsupplemented or choline-supplemented Ts65Dn dams. Enrichment of d9-choline metabolites (derived from intact choline) and d3 + d6-choline metabolites [produced when choline-derived methyl groups are used by phosphatidylethanolamine N-methyltransferase (PEMT)] was measured in harvested tissues. Adult offspring (both Ts65Dn and 2N) of choline-supplemented (vs. choline-unsupplemented) dams exhibited 60% greater (P≤0.007) activity of hepatic PEMT, which functions in de novo choline synthesis and produces phosphatidylcholine (PC) enriched in docosahexaenoic acid. Higher (P<0.001) enrichment of PEMT-derived d3 and d6 metabolites was detected in liver, plasma, and brain in both genotypes but to a greater extent in the Ts65Dn adult offspring. MCS also yielded higher (P<0.05) d9 metabolite enrichments in liver, plasma, and brain. These data demonstrate that MCS exerts lasting effects on offspring choline metabolism, including up-regulation of the hepatic PEMT pathway and enhanced provision of choline and PEMT-PC to the brain. © FASEB.
Direct renal tubular effects of choline on electrolyte excretion in the chicken.
Besseghir, K; Rennick, B
1981-03-01
Direct local effects of choline on electrolyte effects did not reappear. Acetylcholine was more potent than choline in producing the electrolyte effects. These results suggest that choline-induced changes in renal electrolyte excretion are mediated by a muscarinic receptor completely separate from the choline transport system. These effects imply that choline is not an "inert" cation.
Mudd, Austin T; Alexander, Lindsey S; Johnson, Stacey K; Getty, Caitlyn M; Malysheva, Olga V; Caudill, Marie A; Dilger, Ryan N
2016-11-01
Choline is essential for synthesis of phospholipids, neurodevelopment, and DNA methylation. It is unknown whether dietary perinatal choline deficiency affects maternal milk composition. We examined whether perinatal maternal dietary choline deficiency influences porcine-milk composition. Yorkshire sows were fed choline-deficient (CD) or choline-sufficient (CS) gestation diets [544 or 1887 mg choline/kg dry matter (DM), respectively] from 65 d before to 48 h after parturition and then fed lactation diets (517 or 1591 mg choline/kg DM, respectively) through day 19 of lactation. Milk was collected from 7 sows fed each diet at days 0 (colostrum), 7-9 (mature milk), and 17-19 (preweaning) of lactation. Sow plasma was collected 65 d before and 19 d after parturition. Milk was analyzed for choline metabolite, fatty acid (FA), and amino acid composition. All outcomes were analyzed to assess main and interactive effects of choline intake and time. Plasma choline metabolites did not differ before treatment, but free choline, betaine, and dimethylglycine concentrations were lower in CD-fed than in CS-fed sows at day 19 of lactation (interaction; P < 0.05). Milk betaine concentrations responded similarly, with no differences due to choline intake at day 0 of lactation, but lower concentrations in CD-fed than in CS-fed sows at day 18 of lactation (interaction; P < 0.001). Certain milk long-chain FAs also exhibited no differences at day 0 of lactation but higher concentrations in CD-fed than in CS-fed sows at day 18 of lactation (P < 0.05). These data indicate that, in pigs, dietary choline deficiency induces alterations in plasma choline metabolites that are evident at the end of lactation. Betaine and select FAs in milk are sensitive to maternal dietary choline deficiency and day of lactation. Alterations in concentrations of these nutrients may affect early-life neonatal development. © 2016 American Society for Nutrition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jun; Liu, Guodong; Lin, Yuehe
2006-03-01
We report a flow injection amperometric choline biosensors based on the electrostatic assembly of an enzyme of choline oxidase (ChO) and a bi-enzyme of ChO and horseradish peroxidase (HRP) onto multi-wall carbon nanotubes (MWCNT) modified glassy carbon (GC) electrodes. These choline biosensors were fabricated by immobilization of enzymes on the negatively charged MWCNT surface through alternatively assembling a cationic polydiallydiimethylammonium chloride (PDDA) layer and an enzyme layer. Using this layer-by-layer assembling approach, bioactive nanocomposite film of a PDDA/ChO/PDDA/HRP/PDDA/CNT (ChO/HRP/CNT) and a PDDA/ChO/PDDA/ CNT (ChO/ CNT) were fabricated on GC surface, respectively. Owning to the electrocatalytic effect of carbon nanotubes, themore » measurement of faradic responses resulting from enzymatic reactions has been realized at low potential with acceptable sensitivity. It is found the ChO/HRP/CNT biosensor is more sensitive than the ChO/CNT one. Experimental parameters affecting the sensitivity of biosensors, e.g. applied potential, flow rate, etc. were optimized and potential interference was examined. The response time for this choline biosensor is fast (less than a few seconds). The linear range of detection for the choline biosensor is from 5 x 10-5 to 5 x 10-3 M and the detection limit is determined to be about 1.0 x 10-5 M.« less
Membrane transport mechanisms of choline in human intestinal epithelial LS180 cells.
Horie, Asuka; Ishida, Kazuya; Watanabe, Yuri; Shibata, Kaito; Hashimoto, Yukiya
2014-12-01
The aim of the present study was to investigate the membrane transport mechanisms of choline using human intestinal epithelial LS180 cells. The mRNA of choline transporter-like proteins (CTLs) was expressed significantly in LS180 cells, and the rank order was CTL1 > CTL4 > CTL3 > CTL2 > CTL5. In contrast, the mRNA expression of other choline transporters, organic cation transporter (OCT) 1, OCT2 and high-affinity choline transporter 1 (CHT1), was considerably lower in LS180 cells. Five mm unlabelled choline, hemicolinium-3 and guanidine, but not tetraethylammonium, inhibited the cellular uptake of 100 µm choline in LS180 cells. The uptake of choline into LS180 cells was virtually Na(+)-independent. The uptake of choline was significantly decreased by acidification of the extracellular pH; however, it was not increased by alkalization of the extracellular pH. In addition, both acidification and alkalization of intracellular pH decreased the uptake of choline, indicating that the choline uptake in LS180 cells is not stimulated by the outward H(+) gradient. On the other hand, the uptake of choline was decreased by membrane depolarization along with increasing extracellular K(+) concentration. In addition, the Na(+)-independent uptake of choline was saturable, and the Km value was estimated to be 108 µm. These findings suggest that the uptake of choline into LS180 cells is membrane potential-dependent, but not outward H(+) gradient-dependent. Copyright © 2014 John Wiley & Sons, Ltd.
Deanol acetamidobenzoate inhibits the blood-brain barrier transport of choline.
Millington, W R; McCall, A L; Wurtman, R J
1978-10-01
Competition by deanol (dimethylaminoethanol) with choline for uptake from the bloodstream into the brain was demonstrated by simultaneous intracarotid administration of carbon 14-labeled choline with deanol (plus tritiated water and indium 113m, to calculate a brain uptake index) and by measuring the brain uptake of 14C-labeled choline mixed with sera from rats pretreated with deanol (300 or 500 mg/kg 8 or 30 minutes earlier). The inhibition constant for inhibition of choline uptake by deanol (159 micrograms) was actually lower than the Michaelis constant for choline itself (442 micrograms); hence, the affinity of the carrier mechanism for deanol is at least as great as it is for choline. Deanol administration also elevated blood choline levels; thus, the effect of the drug on brain choline (and acetylcholine) levels is the result of the increase it produces in blood choline and the suppression it causes in choline uptake. These findings may explain discrepant results from laboratories seeking increases in brain acetylcholine or clinical improvement in patients with tardive dyskinesia after deanol treatment.
Concentrations of choline-containing compounds and betaine in common foods.
Zeisel, Steven H; Mar, Mei-Heng; Howe, Juliette C; Holden, Joanne M
2003-05-01
Choline is important for normal membrane function, acetylcholine synthesis and methyl group metabolism; the choline requirement for humans is 550 mg/d for men (Adequate Intake). Betaine, a choline derivative, is important because of its role in the donation of methyl groups to homocysteine to form methionine. In tissues and foods, there are multiple choline compounds that contribute to total choline concentration (choline, glycerophosphocholine, phosphocholine, phosphatidylcholine and sphingomyelin). In this study, we collected representative food samples and analyzed the choline concentration of 145 common foods using liquid chromatography-mass spectrometry. Foods with the highest total choline concentration (mg/100 g) were: beef liver (418), chicken liver (290), eggs (251), wheat germ (152), bacon (125), dried soybeans (116) and pork (103). The foods with the highest betaine concentration (mg/100 g) were: wheat bran (1339), wheat germ (1241), spinach (645), pretzels (237), shrimp (218) and wheat bread (201). A number of epidemiologic studies have examined the relationship between dietary folic acid and cancer or heart disease. It may be helpful to also consider choline intake as a confounding factor because folate and choline methyl donation can be interchangeable.
Fine-tuning of choline metabolism is important for pneumococcal colonization.
Johnston, Calum; Hauser, Christoph; Hermans, Peter W M; Martin, Bernard; Polard, Patrice; Bootsma, Hester J; Claverys, Jean-Pierre
2016-06-01
The human pathogen Streptococcus pneumoniae (the pneumococcus) is rare in having a strict requirement for the amino alcohol choline, which decorates pneumococcal teichoic acids. This process relies on the lic locus, containing the lic1 and lic2 operons. These operons produce eight proteins that import and metabolize choline, generate teichoic acid precursors and decorate these with choline. Three promoters control expression of lic operons, with Plic1P1 and Plic1P2 controlling lic1 and Plic2 controlling lic2. To investigate the importance of lic regulation for pneumococci, we assayed the activity of transcriptional fusions of the three lic promoters to the luciferase reporter gene. Plic1P1 , whose activity depends on the response regulator CiaR, responded to fluctuations in extracellular choline, with activity increasing greatly upon choline depletion. We uncovered a complex regulatory mechanism controlling Plic1P1 , involving activity driven by CiaR, repression by putative repressor LicR in the presence of choline, and derepression upon choline depletion mediated by LicC, a choline metabolism enzyme. Finally, the ability to regulate Plic1P1 in response to choline was important for pneumococcal colonization. We suggest that derepression of Plic1P1 upon choline depletion maximizing choline internalization constitutes an adaptive response mechanism allowing pneumococci to optimize growth and survival in environments where choline is scarce. © 2016 John Wiley & Sons Ltd.
Uptake of Free Choline by Isolated Perfused Rat Liver
NASA Astrophysics Data System (ADS)
Zeisel, Steven H.; Story, David L.; Wurtman, Richard J.; Brunengraber, Henri
1980-08-01
The uptake of free choline by isolated perfused rat liver was characterized. A saturable uptake mechanism [Ka=0.17± 0.07 mM (SD); Vmax=0.84± 0.16\\ μ mol/min × g dry weight] and a nonsaturable mechanism (through which uptake is proportional to choline concentration in the perfusate) were identified. Most of the choline transported into hepatocytes was converted to betaine, phosphorylcholine, or lecithin. Free choline also accumulated within the intracellular space, suggesting that choline oxidase activity does not always limit choline's uptake by the liver.
A comparison of choline:urea and choline:oxalic acid deep eutectic solvents at 338 K
NASA Astrophysics Data System (ADS)
Gilmore, Mark; Moura, Leila M.; Turner, Adam H.; Swadźba-Kwaśny, Małgorzata; Callear, Samantha K.; McCune, Jade A.; Scherman, Oren A.; Holbrey, John D.
2018-05-01
1:2 choline chloride:urea and 1:1 choline chloride:oxalic acid deep eutectic solvents are compared at 338 K using liquid-phase neutron diffraction with H/D isotopic substitution to obtain differential neutron scattering cross sections and fitting of models to the experimental data using Empirical Potential Structure Refinement. In comparison to the previously reported study of choline chloride:urea at 303 K, we observed significant weakening and lengthening of choline-OH⋯Cl- and choline-OH⋯hydrogen-bond acceptor correlations.
Wallace, Julie M W; McCormack, Jacqueline M; McNulty, Helene; Walsh, Paula M; Robson, Paula J; Bonham, Maxine P; Duffy, Maresa E; Ward, Mary; Molloy, Anne M; Scott, John M; Ueland, Per M; Strain, J J
2012-10-01
Choline is an essential nutrient and can also be obtained by de novo synthesis via an oestrogen responsive pathway. Choline can be oxidised to the methyl donor betaine, with short-term supplementation reported to lower plasma total homocysteine (tHcy); however, the effects of longer-term choline supplementation are less clear. We investigated the effect of choline supplementation on plasma concentrations of free choline, betaine and tHcy and B-vitamin status in postmenopausal women, a group more susceptible to low choline status. We also assessed whether supplementation altered plasma lipid profiles. In this randomised, double-blinded, placebo-controlled study, forty-two healthy postmenopausal women received 1 g choline per d (as choline bitartrate), or an identical placebo supplement with their habitual diet. Fasting blood samples were collected at baseline, week 6 and week 12. Administration of choline increased median choline and betaine concentrations in plasma, with significant effects evident after 6 weeks of supplementation (P<0·001) and remaining significant at 12 weeks (P<0·001); no effect was observed on folate status or on plasma lipids. Choline supplementation induced a median (25th, 75th percentile) change in plasma tHcy concentration at week 6 of -0·9 (-1·6, 0·2) μmol, a change which, when compared to that observed in the placebo group 0·6 (-0·4, 1·9) μmol, approached statistical significance (P=0·058). Choline supplementation at a dose of 1 g/d significantly increases the circulating concentration of free choline, and can also significantly increase the concentration of the methyl donor, betaine, thereby potentially enhancing the betaine-homocysteine methyltransferase-mediated remethylation of tHcy.
Uptake of choline by rat mammary-gland epithelial cells.
Chao, C K; Pomfret, E A; Zeisel, S H
1988-01-01
The neonatal mammal requires especially large amounts of choline to sustain growth. Much of this choline is derived from the newborn's only source of food, milk. The concentration of choline in rat milk [182 +/- 24 microM (S.E.M.)] was much higher than that in maternal serum (11.6 +/- 0.9 microM), suggesting that a mechanism capable of concentrating choline into milk must exist. We characterized choline uptake by mammary epithelial cells (the site of milk production) of the lactating rat. We observed two uptake processes, one saturable and obeying Michaelis-Menten kinetics, and the other non-saturable and linear. At physiological blood choline concentrations, the saturable component of choline uptake predominated. The saturable component had Kapp. = 35 +/- 16 microM, and Vmax. = 1.24 +/- 0.19 nmol/h per mg of protein. Saturable uptake of choline was inhibited by hemicholinium-3. Ca2+ was required for uptake, but Mg2+ was not. Replacement Na+ with K+, Li+ or sucrose inhibited transport. Ouabain did not inhibit choline uptake. Choline concentration in epithelial cells was 67.7 +/- 1.9 nmol/g wet wt. at the start of incubation at 37 degrees C and rose to 80.9 +/- 6.5 nmol/g wet wt. over 30 min. Much of the choline accumulated by the mammary gland (in the presence of endogenous concentrations of choline) remained in the form of choline (50 +/- 1.2%), phosphatidylcholine (12 +/- 2.3%), lysophosphatidylcholine (0.1 +/- 0.03%), betaine (7 +/- 0.3% and phosphocholine (6 +/- 0.5%). In addition, we isolated 25 +/- 1.2% of choline-derived radiolabel in an unidentified compound. Images Fig. 1. Fig. 3. PMID:3178755
Breast milk choline contents are associated with inflammatory status of breastfeeding women.
Ozarda, Yesim; Cansev, Mehmet; Ulus, Ismail H
2014-05-01
Choline is an important component of human breast milk and its content varies considerably among breastfeeding women and lactation periods. The aim of this study was to assess the relationship between breast milk choline contents and inflammatory status in breastfeeding women. Breast milk choline compounds and serum C-reactive protein (CRP) concentrations were determined in breastfeeding women at 1 to 3 (n = 53) or 22 to 180 (n = 54) days postpartum, expressing colostrum or mature milk, respectively. Median concentrations of free choline, phosphocholine, glycerophosphocholine, phospholipid-bound choline, and total choline were 71, 38, 96, 194, and 407 µmol/L or 93, 351, 958, 186, and 1532 µmol/L in colostrum or mature milk, respectively. Median serum CRP concentrations were 4.13 mg/L and 0.33 mg/L at 1 to 3 days and 22 to 180 days postpartum, respectively. At 1 to 3 days postpartum, milk free choline, phosphocholine, glycerophosphocholine, and total choline as well as serum CRP concentrations were significantly higher in breastfeeding women who delivered by cesarean section than those who delivered via the vaginal route. Serum CRP concentration was positively correlated with colostrum free choline (r = 0.703; P < .001), phosphocholine (r = 0.759; P < .001), glycerophosphocholine (r = 0.706; P < .001), and total choline (r = 0.693; P < .001), whereas it was negatively correlated (r = -0.442; P < .001) with colostrum phospholipid-bound choline. Serum CRP was also negatively correlated with mature milk free choline (r = -0.278; P < .05), but no correlation was found between serum CRP and other choline compounds in mature milk. These data show that the concentrations of milk choline compounds are associated with inflammatory status of breastfeeding women, particularly during the first few days after delivery.
Kohlmeier, Martin; da Costa, Kerry-Ann; Fischer, Leslie M; Zeisel, Steven H
2005-11-01
Choline is a required nutrient, and some humans deplete quickly when fed a low-choline diet, whereas others do not. Endogenous choline synthesis can spare some of the dietary requirement and requires one-carbon groups derived from folate metabolism. We examined whether major genetic variants of folate metabolism modify susceptibility of humans to choline deficiency. Fifty-four adult men and women were fed diets containing adequate choline and folate, followed by a diet containing almost no choline, with or without added folate, until they were clinically judged to be choline-deficient, or for up to 42 days. Criteria for clinical choline deficiency were a more than five times increase in serum creatine kinase activity or a >28% increase of liver fat after consuming the low-choline diet that resolved when choline was returned to the diet. Choline deficiency was observed in more than half of the participants, usually within less than a month. Individuals who were carriers of the very common 5,10-methylenetetrahydrofolate dehydrogenase-1958A gene allele were more likely than noncarriers to develop signs of choline deficiency (odds ratio, 7.0; 95% confidence interval, 2.0-25; P < 0.01) on the low-choline diet unless they were also treated with a folic acid supplement. The effects of the C677T and A1298C polymorphisms of the 5,10-methylene tetrahydrofolate reductase gene and the A80C polymorphism of the reduced folate carrier 1 gene were not statistically significant. The most remarkable finding was the strong association in premenopausal women of the 5,10-methylenetetrahydrofolate dehydrogenase-1958A gene allele polymorphism with 15 times increased susceptibility to developing organ dysfunction on a low-choline diet.
Lemos, Bruno S; Medina-Vera, Isabel; Malysheva, Olga V; Caudill, Marie A; Fernandez, Maria Luz
2018-05-15
Plasma trimethylamine-N-oxide (TMAO) concentrations have been associated with cardiovascular disease risk. Eggs are a rich source of choline, which is a precursor of TMAO. The effects of egg intake versus daily choline supplementation were evaluated on plasma choline and TMAO in a young, healthy population. Thirty participants (14 males, 16 females; 25.6 ± 2.3 years; body mass index = 24.3 ± 2.9 kg/m 2 ) were enrolled in this 13-week crossover intervention. After a 2-week washout, participants were randomized to consume either 3 eggs/d or a choline bitartrate supplement (∼ 400 mg choline total in eggs or supplement) for 4 weeks. Following a 3-week washout, participants were switched to the alternate treatment. Dietary records were measured at the end of each period. Plasma TMAO and choline were measured at baseline and at the end of each dietary intervention. Gene expression of scavenger receptors associated with plasma TMAO were quantified at the end of each intervention. Compared to the choline supplement, intake of total fat, cholesterol, selenium, and vitamin E were higher (p < 0.05), whereas carbohydrate intake was lower (p < 0.001) with consumption of 3 eggs/d. Fasting plasma choline increased 20% (p = 0.023) with egg intake, while no changes were observed with choline supplementation. Plasma TMAO levels were not different between dietary treatments or compared to baseline. Dietary choline appears to be more bioavailable via egg consumption when compared to a choline supplement. Plasma TMAO concentrations were not affected in healthy participants after 4 weeks of taking ∼400 mg/d choline either via eggs or choline supplementation.
Quantitative myocardial blood flow imaging with integrated time-of-flight PET-MR.
Kero, Tanja; Nordström, Jonny; Harms, Hendrik J; Sörensen, Jens; Ahlström, Håkan; Lubberink, Mark
2017-12-01
The use of integrated PET-MR offers new opportunities for comprehensive assessment of cardiac morphology and function. However, little is known on the quantitative accuracy of cardiac PET imaging with integrated time-of-flight PET-MR. The aim of the present work was to validate the GE Signa PET-MR scanner for quantitative cardiac PET perfusion imaging. Eleven patients (nine male; mean age 59 years; range 46-74 years) with known or suspected coronary artery disease underwent 15 O-water PET scans at rest and during adenosine-induced hyperaemia on a GE Discovery ST PET-CT and a GE Signa PET-MR scanner. PET-MR images were reconstructed using settings recommended by the manufacturer, including time-of-flight (TOF). Data were analysed semi-automatically using Cardiac VUer software, resulting in both parametric myocardial blood flow (MBF) images and segment-based MBF values. Correlation and agreement between PET-CT-based and PET-MR-based MBF values for all three coronary artery territories were assessed using regression analysis and intra-class correlation coefficients (ICC). In addition to the cardiac PET-MR reconstruction protocol as recommended by the manufacturer, comparisons were made using a PET-CT resolution-matched reconstruction protocol both without and with TOF to assess the effect of time-of-flight and reconstruction parameters on quantitative MBF values. Stress MBF data from one patient was excluded due to movement during the PET-CT scanning. Mean MBF values at rest and stress were (0.92 ± 0.12) and (2.74 ± 1.37) mL/g/min for PET-CT and (0.90 ± 0.23) and (2.65 ± 1.15) mL/g/min for PET-MR (p = 0.33 and p = 0.74). ICC between PET-CT-based and PET-MR-based regional MBF was 0.98. Image quality was improved with PET-MR as compared to PET-CT. ICC between PET-MR-based regional MBF with and without TOF and using different filter and reconstruction settings was 1.00. PET-MR-based MBF values correlated well with PET-CT-based MBF values and the parametric PET-MR images were excellent. TOF and reconstruction settings had little impact on MBF values.
Novel channel-mediated choline transport in cholinergic neurons of the mouse retina.
Ishii, Toshiyuki; Homma, Kohei; Mano, Asuka; Akagi, Takumi; Shigematsu, Yasuhide; Shimoda, Yukio; Inoue, Hiroyoshi; Kakinuma, Yoshihiko; Kaneda, Makoto
2017-10-01
Choline uptake into the presynaptic terminal of cholinergic neurons is mediated by the high-affinity choline transporter and is essential for acetylcholine synthesis. In a previous study, we reported that P2X 2 purinoceptors are selectively expressed in OFF-cholinergic amacrine cells of the mouse retina. Under specific conditions, P2X 2 purinoceptors acquire permeability to large cations, such as N -methyl-d-glucamine, and therefore potentially could act as a noncanonical pathway for choline entry into neurons. We tested this hypothesis in OFF-cholinergic amacrine cells of the mouse retina. ATP-induced choline currents were observed in OFF-cholinergic amacrine cells, but not in ON-cholinergic amacrine cells, in mouse retinal slice preparations. High-affinity choline transporters are expressed at higher levels in ON-cholinergic amacrine cells than in OFF-cholinergic amacrine cells. In dissociated preparations of cholinergic amacrine cells, ATP-activated cation currents arose from permeation of extracellular choline. We also examined the pharmacological properties of choline currents. Pharmacologically, α,β-methylene ATP did not produce a cation current, whereas ATPγS and benzoyl-benzoyl-ATP (BzATP) activated choline currents. However, the amplitude of the choline current activated by BzATP was very small. The choline current activated by ATP was strongly inhibited by pyridoxalphosphate-6-azophenyl-2',4'-sulfonic acid. Accordingly, P2X 2 purinoceptors expressed in HEK-293T cells were permeable to choline and similarly functioned as a choline uptake pathway. Our physiological and pharmacological findings support the hypothesis that P2 purinoceptors, including P2X 2 purinoceptors, function as a novel choline transport pathway and may provide a new regulatory mechanism for cholinergic signaling transmission at synapses in OFF-cholinergic amacrine cells of the mouse retina. NEW & NOTEWORTHY Choline transport across the membrane is exerted by both the high-affinity and low-affinity choline transporters. We found that choline can permeate P2 purinergic receptors, including P2X 2 purinoceptors, in cholinergic neurons of the retina. Our findings show the presence of a novel choline transport pathway in cholinergic neurons. Our findings also indicate that the permeability of P2X 2 purinergic receptors to choline observed in the heterologous expression system may have a physiological relevance in vivo. Copyright © 2017 the American Physiological Society.
[Folate metabolism--epigenetic role of choline and vitamin B12 during pregnancy].
Drews, Krzysztof
2015-12-01
Adequate choline intake during pregnancy is essential for proper fetal development. Nowadays studies suggest that even in high income countries regular pregnant women diet does not provide the satisfactory amount of choline. Choline demand during pregnancy is high and it seems to exceed present choline intake recommendations. Moreover lactation period also demands choline supplementation because of its high concentration in female milk. Numerous studies on animal model proved correlation between choline supplementation during pregnancy and proper fetal cognitive function development. Despite increased synthesis in maternal liver during pregnancy choline demand is much higher than common dietary uptake. Nowadays studies as to the nutritional recommendations during pregnancy concern also vitamin B12 supplementation. Vitamin B12 deficiency may be an important risk factor of neural tube defects development. Presented article contains a review of data on proper choline and vitamin B12 uptake during pregnancy and lactation and potential results of choline and vitamin B12 poor maternal status.
Dechent, P; Pouwels, P J; Frahm, J
1999-08-01
This study reexamined conflicting proton magnetic resonance spectroscopy (MRS) reports of increased or unaffected choline-containing compounds (Cho) in human brain in response to a single dose of 50 mg/kg choline bitartrate. The present work was based on a well-established strategy for quantitative proton MRS (2.0 T, STEAM localization sequence, TR/TE/TM = 6000/20/10 ms, LCModel automated spectral evaluation) that allows the determination of cerebral metabolite concentrations rather than T1-weighted resonance intensity ratios. Moreover, the investigations were extended to a possible long-term effect of oral choline by monitoring the continuous ingestion of 2 x 16 g of lecithin per day for 4 weeks. Six young healthy volunteers participated in each study and metabolite concentrations were determined in standardized locations in gray matter, white matter, cerebellum, and thalamus. Neither for short-term nor for long-term administration of choline do the data reveal statistically significant deviations from the basal concentrations of Cho, total N-acetyl-containing compounds (neuronal markers), total creatine, and myo-inositol (glial marker) in any of the investigated brain regions. Previous reports of increased Cho are not confirmed.
Gao, Xiang; Randell, Edward; Zhou, Haicheng; Sun, Guang
2018-01-01
Animal studies proved that choline and betaine have beneficial effect on reducing body fat. However, evidence in humans is scarce. We aim to investigate the association between serum choline and betaine levels with body composition in general population. This is an observational cross-sectional study performed in 1081 subjects from the CODING (Complex Disease in Newfoundland population: Environment and Genetics) study. Serum choline and betaine levels were measured based on liquid chromatography coupled with tandem mass spectrometry technology. Body composition was measured using dual-energy X-ray absorptiometry following a 12-hour fast. Major confounding factors including age, sex, total calorie intake and physical activity level were controlled in all analyses. Significantly inverse correlations were found between serum betaine levels and all obesity measurements in males (r ranged from -0.12 to -0.23, and p<0.01 for all) but not in females. Serum choline was negatively associated with total percent body fat (%BF), percent trunk fat (%TF), weight, body mass index (BMI), waist circumference (WC), and waist-to-hip ratio (r ranged from -0.11 to -0.19, and p<0.05 for all) in males and positively associated with weight, BMI and WC (r ranged from 0.09 to 0.10, and p<0.05 for all) in females. The negative associations between serum choline and betaine levels with obesity in males were more profound in those not on any medication than those taking medications. Moreover, obese males had the lowest serum choline and betaine levels, followed by overweight males, and normal weight males having the highest serum choline and betaine levels, especially in those not taking medications (p<0.05). Likewise, subjects with the highest serum levels of both had the lowest obesity indexes, especially those not taking medications. Higher serum choline and betaine levels were associated with a more favorable body composition (lower body fat and higher lean body mass) in males and the favorable association was more pronounced in non-medication users.
Gao, Xiang; Randell, Edward; Zhou, Haicheng
2018-01-01
Background Animal studies proved that choline and betaine have beneficial effect on reducing body fat. However, evidence in humans is scarce. We aim to investigate the association between serum choline and betaine levels with body composition in general population. Methods This is an observational cross-sectional study performed in 1081 subjects from the CODING (Complex Disease in Newfoundland population: Environment and Genetics) study. Serum choline and betaine levels were measured based on liquid chromatography coupled with tandem mass spectrometry technology. Body composition was measured using dual-energy X-ray absorptiometry following a 12-hour fast. Major confounding factors including age, sex, total calorie intake and physical activity level were controlled in all analyses. Results Significantly inverse correlations were found between serum betaine levels and all obesity measurements in males (r ranged from -0.12 to -0.23, and p<0.01 for all) but not in females. Serum choline was negatively associated with total percent body fat (%BF), percent trunk fat (%TF), weight, body mass index (BMI), waist circumference (WC), and waist-to-hip ratio (r ranged from -0.11 to -0.19, and p<0.05 for all) in males and positively associated with weight, BMI and WC (r ranged from 0.09 to 0.10, and p<0.05 for all) in females. The negative associations between serum choline and betaine levels with obesity in males were more profound in those not on any medication than those taking medications. Moreover, obese males had the lowest serum choline and betaine levels, followed by overweight males, and normal weight males having the highest serum choline and betaine levels, especially in those not taking medications (p<0.05). Likewise, subjects with the highest serum levels of both had the lowest obesity indexes, especially those not taking medications. Conclusions Higher serum choline and betaine levels were associated with a more favorable body composition (lower body fat and higher lean body mass) in males and the favorable association was more pronounced in non-medication users. PMID:29462191
Pre- and postnatal health: evidence of increased choline needs.
Caudill, Marie A
2010-08-01
Choline, a micronutrient found in food, serves as the starting material for several important metabolites that play key roles in fetal development, particularly the brain. Although human beings' requirement for choline is unknown, an Adequate Intake level of 425 mg/day was established for women with upward adjustments to 450 and 550 mg/day during pregnancy and lactation, respectively. The importance of choline in human development is supported by observations that a human fetus receives a large supply of choline during gestation; pregnancy causes depletion of hepatic choline pools in rats consuming a normal diet; human neonates are born with blood levels that are three times higher than maternal blood concentrations; and large amounts of choline are present in human milk. The development of the central nervous system is particularly sensitive to choline availability with evidence of effects on neural tube closure and cognition. Existing data show that the majority of pregnant (and presumably lactating) women are not achieving the target intake levels and that certain common genetic variants may increase requirements for choline beyond current recommendations. Because choline is not found in most varieties of prenatal vitamins (or regular multivitamins), increased consumption of choline-rich foods may be needed to meet the high pre- and postnatal demands for choline. 2010 American Dietetic Association. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rand, J.B.; Johnson, C.D.
1981-09-15
A single-vial liquid extraction assay for choline acetyltransferase that uses (/sup 3/H)choline as the labeled substrate has been devised. (/sup 3/H)Choline is incubated with an excess of acetyl-CoA in a small reaction vial which also serves as a scintillation vial. After a suitable reaction period, unreacted (/sup 3/H)choline is quickly and quantitatively converted to phosphoryl-(/sup 3/H)choline by the addition of an excess of choline kinase. This treatment is followed by the addition of scintillation fluid containing sodium tetraphenylboron after which the vial is capped, shaken, and counted. A two-phase system is produced in which product (/sup 3/H)choline is selectively extractedmore » into the scintillation fluid, where is is counted. Phosphoryl-(/sup 3/H)choline remains in the aqueous phase and is not counted. This assay is rapid, simple, and quite sensitive. In comparison to assays using acetyl-CoA as the labeled substrate, it is less sensitive to interference by other enzymes and thus more suitable for measuring choline acetyltransferase in crude extracts and in the initial stages of purificaton. Similar single-vial radiometric assays are described for choline kinase and acetyl-CoA hydrolases.« less
Choline oxidation by intact spinach chloroplasts. [Spinacia oleracea L
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weigel, P.; Lerma, C.; Hanson, A.D.
1988-01-01
Plants synthesize betaine by a two-step oxidation of choline (choline ..-->.. betaine aldehyde ..-->.. betaine). Protoplast-derived chloroplasts of spinach (Spinacia oleracea L.) carry out both reactions, more rapidly in light than in darkness. We investigated the light-stimulated oxidation of choline, using spinach chloroplasts isolated directly from leaves. The rates of choline oxidation obtained (dark and light rates: 10-50 and 100-300 nanomoles per hour per milligram chlorophyll, respectively) were approximately 20-fold higher than for protoplast-derived chloroplasts. Betaine aldehyde was the main product. Choline oxidation in darkness and light was suppressed by hypoxia. Neither uncouplers not the Calvin cycle inhibitor glyceraldehyde greatlymore » affected choline oxidation in the light, and maximal choline oxidation was attained far below light saturation of CO/sub 2/ fixation. The light stimulation of choline oxidation was abolished by the PSII inhibitors DCMU and dibromothymoquinone, and was partially restored by adding reduced diaminodurene, an electron donor to PSI. Both methyl viologen and phenazine methosulfate prevented choline oxidation. Adding dihydroxyacetone phosphate, which can generate NADPH in organello, doubled the dark rate of choline oxidation. These results indicate that choline oxidation in chloroplasts requires oxygen, and reducing power generated from PSI. Enzymic reactions consistent with these requirements are discussed.« less
Schenkel, Laila C; Singh, Ratnesh K; Michel, Vera; Zeisel, Steven H; da Costa, Kerry-Ann; Johnson, Amy R; Mudd, Harvey S; Bakovic, Marica
2015-05-01
Fibroblasts from a patient with postural orthostatic tachycardia syndrome (POTS), who presented with low plasma choline and betaine, were studied to determine the metabolic characteristics of the choline deficiency. Choline is required for the synthesis of the phospholipid phosphatidylcholine (PC) and for betaine, an important osmoregulator. Here, choline transport, lipid homeostasis, and mitochondria function were analyzed in skin fibroblasts from POTS and compared with control cells. The choline transporter-like protein 1/solute carrier 44A1 (CTL1/SLC44A1) and mRNA expression were 2-3 times lower in POTS fibroblasts, and choline uptake was reduced 60% (P < 0.05). Disturbances of membrane homeostasis were observed by reduced ratios between PC:phosphatidylethanolamine and sphingomyelin:cholesterol, as well as by modified phospholipid fatty acid composition. Choline deficiency also impaired mitochondria function, which was observed by a reduction in oxygen consumption, mitochondrial potential, and glycolytic activity. When POTS cells were treated with choline, transporter was up-regulated, and uptake of choline increased, offering an option for patient treatment. The characteristics of the POTS fibroblasts described here represent a first model of choline and CTL1/SLC44A1 deficiency, in which choline transport, membrane homeostasis, and mitochondrial function are impaired. © FASEB.
Zhu, Cui-Hong; Wu, Ting; Jin, Yu; Huang, Bi-Xia; Zhou, Rui-Fen; Wang, Yi-Qin; Luo, Xiao-Lin; Zhu, Hui-Lian
2016-06-01
Prenatal intake of choline has been reported to lead to enhanced cognitive function in offspring, but little is known about the effects on spatial learning deficits. The present study examined the effects of prenatal choline supplementation on developmental low-protein exposure and its potential mechanisms. Pregnant female rats were fed either a normal or low-protein diet containing sufficient choline (1.1g/kg choline chloride) or supplemented choline (5.0g/kg choline chloride) until delivery. The Barnes maze test was performed at postnatal days 31-37. Choline and its metabolites, the synaptic structural parameters of the CA1 region in the brain of the newborn rat, were measured. The Barnes maze test demonstrated that prenatal low-protein pups had significantly greater error scale values, hole deviation scores, strategy scores and spatial search strategy and had lesser random search strategy values than normal protein pups (all P<.05). These alterations were significantly reversed by choline supplementation. Choline supplementation increased the brain levels of choline, betaine, phosphatidylethanolamine and phosphatidylcholine of newborns by 51.35% (P<.05), 33.33% (P<.001), 28.68% (P<.01) and 23.58% (P<.05), respectively, compared with the LPD group. Prenatal choline supplementation reversed the increased width of the synaptic cleft (P<.05) and decreased the curvature of the synaptic interface (P<.05) induced by a low-protein diet. Prenatal choline supplementation could attenuate the spatial learning deficits caused by prenatal protein malnutrition by increasing brain choline, betaine and phospholipids and by influencing the hippocampus structure. Copyright © 2016 Elsevier Inc. All rights reserved.
Fitzsimmons, Liam F.; Flemer, Stevenson; Wurthmann, A. Sandy; Deker, P. Bruce; Sarkar, Indra Neil; Wargo, Matthew J.
2011-01-01
Choline is abundant in association with eukaryotes and plays roles in osmoprotection, thermoprotection, and membrane biosynthesis in many bacteria. Aerobic catabolism of choline is widespread among soil proteobacteria, particularly those associated with eukaryotes. Catabolism of choline as a carbon, nitrogen, and/or energy source may play important roles in association with eukaryotes, including pathogenesis, symbioses, and nutrient cycling. We sought to generate choline analogues to study bacterial choline catabolism in vitro and in situ. Here we report the characterization of a choline analogue, propargylcholine, which inhibits choline catabolism at the level of Dgc enzyme-catalyzed dimethylglycine demethylation in Pseudomonas aeruginosa. We used genetic analyses and 13C nuclear magnetic resonance to demonstrate that propargylcholine is catabolized to its inhibitory form, propargylmethylglycine. Chemically synthesized propargylmethylglycine was also an inhibitor of growth on choline. Bioinformatic analysis suggests that there are genes encoding DgcA homologues in a variety of proteobacteria. We examined the broader utility of propargylcholine and propargylmethylglycine by assessing growth of other members of the proteobacteria that are known to grow on choline and possess putative DgcA homologues. Propargylcholine showed utility as a growth inhibitor in P. aeruginosa but did not inhibit growth in other proteobacteria tested. In contrast, propargylmethylglycine was able to inhibit choline-dependent growth in all tested proteobacteria, including Pseudomonas mendocina, Pseudomonas fluorescens, Pseudomonas putida, Burkholderia cepacia, Burkholderia ambifaria, and Sinorhizobium meliloti. We predict that chemical inhibitors of choline catabolism will be useful for studying this pathway in clinical and environmental isolates and could be a useful tool to study proteobacterial choline catabolism in situ. PMID:21602374
Choline and betaine in health and disease.
Ueland, Per Magne
2011-02-01
Choline is an essential nutrient, but is also formed by de novo synthesis. Choline and its derivatives serve as components of structural lipoproteins, blood and membrane lipids, and as a precursor of the neurotransmitter acetylcholine. Pre-and postnatal choline availability is important for neurodevelopment in rodents. Choline is oxidized to betaine that serves as an osmoregulator and is a substrate in the betaine-homocysteine methyltransferase reaction, which links choline and betaine to the folate-dependent one-carbon metabolism. Choline and betaine are important sources of one-carbon units, in particular, during folate deficiency. Choline or betaine supplementation in humans reduces concentration of total homocysteine (tHcy), and plasma betaine is a strong predictor of plasma tHcy in individuals with low plasma concentration of folate and other B vitamins (B₂, B₆, and B₁₂) in combination TT genotype of the methylenetetrahydrofolate reductase 677 C->T polymorphism. The link to one-carbon metabolism and the recent availability of food composition data have motivated studies on choline and betaine as risk factors of chronic diseases previously studied in relation to folate and homocysteine status. High intake and plasma level of choline in the mother seems to afford reduced risk of neural tube defects. Intake of choline and betaine shows no consistent relation to cancer or cardiovascular risk or risk factors, whereas an unfavorable cardiovascular risk factor profile was associated with high choline and low betaine concentrations in plasma. Thus, choline and betaine showed opposite relations with key components of metabolic syndrome, suggesting a disruption of mitochondrial choline oxidation to betaine as part of the mitochondrial dysfunction in metabolic syndrome.
2012-01-01
Current therapies to enhance CNS cholinergic function rely primarily on extracellular acetylcholinesterase (AChE) inhibition, a pharmacotherapeutic strategy that produces dose-limiting side effects. The Na+-dependent, high-affinity choline transporter (CHT) is an unexplored target for cholinergic medication development. Although functional at the plasma membrane, CHT at steady-state is localized to synaptic vesicles such that vesicular fusion can support a biosynthetic response to neuronal excitation. To identify allosteric potentiators of CHT activity, we mapped endocytic sequences in the C-terminus of human CHT, identifying transporter mutants that exhibit significantly increased transport function. A stable HEK-293 cell line was generated from one of these mutants (CHT LV-AA) and used to establish a high-throughput screen (HTS) compatible assay based on the electrogenic nature of the transporter. We established that the addition of choline to these cells, at concentrations appropriate for high-affinity choline transport at presynaptic terminals, generates a hemicholinium-3 (HC-3)-sensitive, membrane depolarization that can be used for the screening of CHT inhibitors and activators. Using this assay, we discovered that staurosporine increased CHT LV-AA choline uptake activity, an effect mediated by a decrease in choline KM with no change in Vmax. As staurosporine did not change surface levels of CHT, nor inhibit HC-3 binding, we propose that its action is directly or indirectly allosteric in nature. Surprisingly, staurosporine reduced choline-induced membrane depolarization, suggesting that increased substrate coupling to ion gradients, arising at the expense of nonstoichiometric ion flow, accompanies a shift of CHT to a higher-affinity state. Our findings provide a new approach for the identification of CHT modulators that is compatible with high-throughput screening approaches and presents a novel model by which small molecules can enhance substrate flux through enhanced gradient coupling. PMID:23077721
Ruggiero, Alicia M; Wright, Jane; Ferguson, Shawn M; Lewis, Michelle; Emerson, Katie S; Iwamoto, Hideki; Ivy, Michael T; Holmstrand, Ericka C; Ennis, Elizabeth A; Weaver, C David; Blakely, Randy D
2012-10-17
Current therapies to enhance CNS cholinergic function rely primarily on extracellular acetylcholinesterase (AChE) inhibition, a pharmacotherapeutic strategy that produces dose-limiting side effects. The Na(+)-dependent, high-affinity choline transporter (CHT) is an unexplored target for cholinergic medication development. Although functional at the plasma membrane, CHT at steady-state is localized to synaptic vesicles such that vesicular fusion can support a biosynthetic response to neuronal excitation. To identify allosteric potentiators of CHT activity, we mapped endocytic sequences in the C-terminus of human CHT, identifying transporter mutants that exhibit significantly increased transport function. A stable HEK-293 cell line was generated from one of these mutants (CHT LV-AA) and used to establish a high-throughput screen (HTS) compatible assay based on the electrogenic nature of the transporter. We established that the addition of choline to these cells, at concentrations appropriate for high-affinity choline transport at presynaptic terminals, generates a hemicholinium-3 (HC-3)-sensitive, membrane depolarization that can be used for the screening of CHT inhibitors and activators. Using this assay, we discovered that staurosporine increased CHT LV-AA choline uptake activity, an effect mediated by a decrease in choline K(M) with no change in V(max). As staurosporine did not change surface levels of CHT, nor inhibit HC-3 binding, we propose that its action is directly or indirectly allosteric in nature. Surprisingly, staurosporine reduced choline-induced membrane depolarization, suggesting that increased substrate coupling to ion gradients, arising at the expense of nonstoichiometric ion flow, accompanies a shift of CHT to a higher-affinity state. Our findings provide a new approach for the identification of CHT modulators that is compatible with high-throughput screening approaches and presents a novel model by which small molecules can enhance substrate flux through enhanced gradient coupling.
21 CFR 172.370 - Iron-choline citrate complex.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Iron-choline citrate complex. 172.370 Section 172... CONSUMPTION Special Dietary and Nutritional Additives § 172.370 Iron-choline citrate complex. Iron-choline citrate complex made by reacting approximately equimolecular quantities of ferric hydroxide, choline, and...
Fernández-Murray, J. Pedro; Ngo, Michael H.; McMaster, Christopher R.
2013-01-01
Choline is a precursor for the synthesis of phosphatidylcholine through the CDP-choline pathway. Saccharomyces cerevisiae expresses a single high affinity choline transporter at the plasma membrane, encoded by the HNM1 gene. We show that exposing cells to increasing levels of choline results in two different regulatory mechanisms impacting Hnm1 activity. Initial exposure to choline results in a rapid decrease in Hnm1-mediated transport at the level of transporter activity, whereas chronic exposure results in Hnm1 degradation through an endocytic mechanism that depends on the ubiquitin ligase Rsp5 and the casein kinase 1 redundant pair Yck1/Yck2. We present details of how the choline transporter is a major regulator of phosphatidylcholine synthesis. PMID:24187140
Prenatal choline availability alters the context sensitivity of Pavlovian conditioning in adult rats
Lamoureux, Jeffrey A.; Meck, Warren H.; Williams, Christina L.
2008-01-01
The effects of prenatal choline availability on Pavlovian conditioning were assessed in adult male rats (3–4 mo). Neither supplementation nor deprivation of prenatal choline affected the acquisition and extinction of simple Pavlovian conditioned excitation, or the acquisition and retardation of conditioned inhibition. However, prenatal choline availability significantly altered the contextual control of these learned behaviors. Both control and choline-deprived rats exhibited context specificity of conditioned excitation as exhibited by a loss in responding when tested in an alternate context after conditioning; in contrast, choline-supplemented rats showed no such effect. When switched to a different context following extinction, however, both choline-supplemented and control rats showed substantial contextual control of responding, whereas choline-deficient rats did not. These data support the view that configural associations that rely on hippocampal function are selectively sensitive to prenatal manipulations of dietary choline during prenatal development. PMID:19050158
Stoll, A L; Sachs, G S; Cohen, B M; Lafer, B; Christensen, J D; Renshaw, P F
1996-09-01
This study examined choline augmentation of lithium for rapid-cycling bipolar disorder. Choline bitartrate was given openly to 6 consecutive lithium-treated outpatients with rapid-cycling bipolar disorder. Five patients also underwent brain proton magnetic resonance spectroscopy. Five of 6 rapid-cycling patients had a substantial reduction in manic symptoms, and 4 patients had a marked reduction in all mood symptoms during choline therapy. The patients who responded to choline all exhibited a substantial rise in the basal ganglia concentration of choline-containing compounds. Choline was well tolerated in all cases. Choline, in the presence of lithium, was a safe and effective treatment for 4 of 6 rapid-cycling patients in our series. A hypothesis is suggested to explain both lithium refractoriness in patients with bipolar disorder and the action of choline in mania, which involves the interaction between phosphatidylinositol and phosphatidylcholine second-messenger systems.
Increased choline kinase activity in 1,2-dimethylhydrazine-induced rat colon cancer.
Nakagami, K; Uchida, T; Ohwada, S; Koibuchi, Y; Morishita, Y
1999-11-01
Cancer cells acquire particular characteristics that benefit their proliferation. We previously reported that human colon cancers examined had increased choline kinase activity and phosphocholine levels. The elevated phosphocholine levels were in part due to both activation of choline kinase and increased choline kinase alpha protein levels. In this report, we analyzed choline kinase, which catalyzes the phosphorylation of choline to produce phosphocholine, in rat 1,2-dimethylhydrazine (DMH)-induced colon cancer. This study is the first to demonstrate increased choline kinase alpha enzymatic activity, protein levels, and mRNA levels in DMH-induced colon cancer as well as human colon cancer, although phosphocholine was not increased in DMH-induced rat cancer. The increase in the mRNA level was partly due to an increase in the transcription of the choline kinase alpha gene. The increased choline kinase activity may be a specific characteristic acquired by cancer cells that benefits their proliferation.
Zeng, F-f; Xu, C-h; Liu, Y-t; Fan, Y-y; Lin, X-l; Lu, Y-k; Zhang, C-x; Chen, Y-m
2014-02-04
Intakes of choline and betaine have been inversely related to the risk of various neoplasms, but scant data exist on nasopharyngeal carcinoma (NPC). We examined the association between consumption of choline and betaine and risk of NPC. We conducted a case-control study with 600 incident NPC patients and 600 controls 1 : 1 matched by age, sex and household type in Guangdong, China. Dietary intake was assessed by a food frequency questionnaire through face-to-face interview. Intakes of total choline, betaine and choline+betaine were inversely related to NPC after adjustment for various lifestyle and dietary factors (all P-trend <0.001). Adjusted odds ratios (95% CI) for quartile 4 (vs quartile 1) were 0.42 (0.29, 0.61) for total choline, 0.50 (0.35, 0.72) for betaine and 0.44 (0.30, 0.64) for betaine+total choline. Regarding various sources of choline, lower NPC risk was associated with greater intakes of choline from phosphatidylcholine, free choline, glycerophosphocholine and phosphocholine, but not sphingomyelin. These findings are consistent with a beneficial effect of choline and betaine intakes on carcinogenesis.
Zeng, F-f; Xu, C-h; Liu, Y-t; Fan, Y-y; Lin, X-l; Lu, Y-k; Zhang, C-x; Chen, Y-m
2014-01-01
Background: Intakes of choline and betaine have been inversely related to the risk of various neoplasms, but scant data exist on nasopharyngeal carcinoma (NPC). We examined the association between consumption of choline and betaine and risk of NPC. Methods: We conducted a case–control study with 600 incident NPC patients and 600 controls 1 : 1 matched by age, sex and household type in Guangdong, China. Dietary intake was assessed by a food frequency questionnaire through face-to-face interview. Results: Intakes of total choline, betaine and choline+betaine were inversely related to NPC after adjustment for various lifestyle and dietary factors (all P-trend <0.001). Adjusted odds ratios (95% CI) for quartile 4 (vs quartile 1) were 0.42 (0.29, 0.61) for total choline, 0.50 (0.35, 0.72) for betaine and 0.44 (0.30, 0.64) for betaine+total choline. Regarding various sources of choline, lower NPC risk was associated with greater intakes of choline from phosphatidylcholine, free choline, glycerophosphocholine and phosphocholine, but not sphingomyelin. Conclusion: These findings are consistent with a beneficial effect of choline and betaine intakes on carcinogenesis. PMID:24169354
Haberberger, Rainer Viktor; Pfeil, Uwe; Lips, Katrin Susanne; Kummer, Wolfgang
2002-10-01
Choline is an essential component in acetylcholine biosynthesis, and is involved in cell signaling. It is unable to permeate the cell membrane and requires a transporter to enter the cell. Neurons that synthesize acetylcholine take up choline by a recently cloned high-affinity choline transporter (choline transporter 1) that is Na+-dependent and can be blocked by hemicholinium-3. The aim of this study was to determine the expression and to analyze the distribution of choline transporter 1 in human and rat skin. The mRNA for choline transporter 1 was detected in rat and human skin and in the human keratinocyte cell line HaCaT. A polyclonal anti-serum was developed against the N-terminal region of the human and rat protein. In rat and human skin, choline transporter 1 immunoreactivity was present in nerve fibers. In addition, keratinocytes, HaCaT cells and cells of the internal root sheath of the hair follicle contained choline transporter 1 immunoreactivity. The labeling patterns of nonconfluent vs confluent cultured cells and the distribution of choline transporter 1 along the epidermal layer suggest an association of choline transporter 1 with keratinocyte differentiation. In conclusion, this study shows the presence of the high-affinity choline transporter choline transporter 1 in nerve fibers and epithelial cells in the human and rat skin supporting the pivotal role of this transporter in both the neuronal and non-neuronal cholinergic system of the skin.
Schenkel, Laila C.; Singh, Ratnesh K.; Michel, Vera; Zeisel, Steven H.; da Costa, Kerry-Ann; Johnson, Amy R.; Mudd, Harvey S.; Bakovic, Marica
2015-01-01
Fibroblasts from a patient with postural orthostatic tachycardia syndrome (POTS), who presented with low plasma choline and betaine, were studied to determine the metabolic characteristics of the choline deficiency. Choline is required for the synthesis of the phospholipid phosphatidylcholine (PC) and for betaine, an important osmoregulator. Here, choline transport, lipid homeostasis, and mitochondria function were analyzed in skin fibroblasts from POTS and compared with control cells. The choline transporter-like protein 1/solute carrier 44A1 (CTL1/SLC44A1) and mRNA expression were 2–3 times lower in POTS fibroblasts, and choline uptake was reduced 60% (P < 0.05). Disturbances of membrane homeostasis were observed by reduced ratios between PC:phosphatidylethanolamine and sphingomyelin:cholesterol, as well as by modified phospholipid fatty acid composition. Choline deficiency also impaired mitochondria function, which was observed by a reduction in oxygen consumption, mitochondrial potential, and glycolytic activity. When POTS cells were treated with choline, transporter was up-regulated, and uptake of choline increased, offering an option for patient treatment. The characteristics of the POTS fibroblasts described here represent a first model of choline and CTL1/SLC44A1 deficiency, in which choline transport, membrane homeostasis, and mitochondrial function are impaired.—Schenkel, L. C., Singh, R. K., Michel, V., Zeisel, S. H., da Costa, K.-A., Johnson, A. R., Mudd, H. S., Bakovic, M. Mechanism of choline deficiency and membrane alteration in postural orthostatic tachycardia syndrome primary skin fibroblasts. PMID:25466896
Robinson, B S; Snoswell, A M; Runciman, W B; Upton, R N
1984-01-01
The net uptake and output of plasma unesterified choline, glycerophosphocholine, phosphocholine and lipid choline by organs of the conscious chronically catheterized sheep were measured. There was significant production of plasma unesterified choline by the upper- and lower-body regions and the alimentary tract and uptake by the liver, lungs and kidneys. The upper- and lower-body regions drained by the venae cavae provided the bulk (about 82%) of the total body venous return of plasma unesterified choline. Production of plasma unesterified choline by the alimentary tract was approximately balanced by the plasma unesterified choline taken up by the liver, and was almost equal to the amount of choline secreted in the bile. There was a considerable amount of glycerophosphocholine in the liver and there was production of plasma glycerophosphocholine by the liver and uptake by the lungs and kidneys. Glycerophosphocholine was higher in the plasma of sheep than in that of rats. Plasma phosphocholine was produced by the alimentary tract and kidneys. There was production of plasma lipid choline by the upper- and lower-body regions drained by the venae cavae. The results suggest that the sheep synthesizes substantial amounts of choline in ectrahepatic tissues and has the capacity for extensive retention and recycling of bile choline. These observations, coupled with a slow turnover of the endogenous choline body pool, explain the low requirement of sheep for dietary choline in contrast with non-ruminant species. PMID:6696739
Mellott, Tiffany J; Kowall, Neil W; Lopez-Coviella, Ignacio; Blusztajn, Jan Krzysztof
2007-06-02
Supplementation of maternal diet with the essential nutrient, choline, during the second half of pregnancy in rats causes long-lasting improvements in spatial memory in the offspring and protects them from the memory decline characteristic of old age. In contrast, prenatal choline deficiency is associated with poor performance in certain cognitive tasks. The mechanism by which choline influences learning and memory remains unclear; however, it may involve changes to the hippocampal cholinergic system. Previously, we showed that the hippocampi of prenatally [embryonic days (E) 11-17] choline-deficient animals have increased synthesis of acetylcholine (ACh) from choline transported by the high-affinity choline transporter (CHT) and reduced ACh content relative to the control and to the E11-17 choline-supplemented rats. In the current study, we found that, during postnatal period [postnatal days (P) 18-480], prenatal choline deficiency increased the expression of CHT mRNA in the septum and CHT mRNA and protein levels in the hippocampus and altered the pattern of CHT immunoreactivity in the dentate gyrus. CHT immunoreactivity was more prominent in the inner molecular layer in prenatally choline-deficient rats compared to controls and prenatally choline-supplemented animals. In addition, in all groups, we observed a population of hilar interneurons that were CHT-immunoreactive. These neurons are the likely source of the hippocampal CHT mRNA as their number correlated with the levels of this mRNA. The abundance of hippocampal CHT mRNA rose between P1 and P24 and then declined reaching 60% of the P1 value by P90. These data show that prenatal availability of choline alters its own metabolism (i.e., CHT expression). While the upregulated CHT expression during the period of prenatal choline deficiency may be considered as a compensatory mechanism that could enhance ACh synthesis when choline supply is low, the persistent upregulation of CHT expression subsequent to the brief period of prenatal deprivation of choline in utero might be beneficial during choline deficiency in adulthood.
Novel choline-based ionic liquids as safe electrolytes for high-voltage lithium-ion batteries
NASA Astrophysics Data System (ADS)
Yong, Tianqiao; Zhang, Lingzhi; Wang, Jinglun; Mai, Yongjin; Yan, Xiaodan; Zhao, Xinyue
2016-10-01
Three choline-based ionic liquids functionalized with trimethylsilyl, allyl, and cynoethyl groups are synthesized in an inexpensive route as safe electrolytes for high-voltage lithium-ion batteries. The thermal stabilities, viscosities, conductivities, and electrochemical windows of these ILs are reported. Hybrid electrolytes were formulated by doping with 0.6 M LiPF6/0.4 M lithium oxalydifluoroborate (LiODFB) as salts and dimethyl carbonate (DMC) as co-solvent. By using 0.6 M LiPF6/0.4 M LiODFB trimethylsilylated choline-based IL (SN1IL-TFSI)/DMC as electrolyte, LiCoO2/graphite full cell showed excellent cycling performance with a capacity of 152 mAh g-1 and 99% capacity retention over 90 cycles at a cut-off voltage of 4.4 V. The propagation rate of SN1IL-TFSI)/DMC electrolyte is only one quarter of the commercial electrolyte (1 M LiPF6 EC/DEC/DMC, v/v/v = 1/1/1), suggesting a better safety feature.
Konstantinova, Svetlana V; Tell, Grethe S; Vollset, Stein E; Ulvik, Arve; Drevon, Christian A; Ueland, Per M
2008-12-01
Choline and betaine are linked to phospholipid and one-carbon metabolism. Blood concentrations or dietary intake of these quaternary amines have been related to the risk of chronic diseases, including cardiovascular disease and the metabolic syndrome. We aimed to determine dietary predictors of plasma choline and betaine among middle-aged and elderly subjects recruited from an area without folic acid fortification. This is a population-based study of 5812 men and women aged 47-49 and 71-74 y, within the Hordaland Health Study cohort. Plasma concentrations per increasing quartile of intake of foods, beverages, and nutrients were assessed by multiple linear regression analysis, and dietary patterns were assessed by factor analysis. Plasma choline was predicted by egg consumption (0.16 micromol/L; P < 0.0001) and cholesterol intake (0.16 micromol/L; P < 0.0001), and betaine was predicted by consumption of high-fiber bread (0.65 micromol/L; P < 0.0001); high-fat dairy products (-0.70 micromol/L; P < 0.0001); complex carbohydrates, fiber, folate, and thiamine (0.66-1.44 micromol/L; P
Phillips, Melissa M; Sander, Lane C
2012-01-01
The Stakeholder Panel on Infant Formula and Adult Nutritionals of AOAC INTERNATIONAL has declared both choline and carnitine to be priority nutrients in infant formulas, and ongoing efforts exist to develop or improve Official Methods of Analysis for these nutrients. As a result, matrix-based certified reference materials are needed with assigned values for these compounds. In this work, traditional acid and enzymatic hydrolysis procedures were compared to microwave-assisted acid hydrolysis, and conditions optimized to provide complete sample hydrolysis and recovery of total choline from four food standard reference materials (SRMs): whole milk powder, whole egg powder, infant formula, and soy flour. The extracts were analyzed using LC on a mixed-mode column (simultaneous RP and ion exchange) with isotope dilution-MS detection to achieve simultaneous quantification of total choline and free carnitine. Total choline has been determined in these four food matrixes with excellent precision (0.65 to 2.60%) and accuracy, as confirmed by use of SRM 1849 Infant/Adult Nutritional Formula as a control material. Free carnitine has been determined in two of these food matrixes with excellent precision (0.69 to 2.19%) and accuracy, as confirmed by use of SRM 1849 Infant/Adult Nutritional Formula as a control material. Limitations in simultaneous determination of total choline and free carnitine resulted from extreme differences in concentration of the two components in egg powder and soy flour (at least three orders of magnitude). Samples required dilution to prevent poor LC peak shape, which caused decreased precision in the determination of low concentrations of free carnitine. Despite this limitation, the described method yields results comparable to current AOAC Official Method 999.14 Choline in Infant Formula, with a decrease of more than 2 h in sample preparation time.
Muijs, Christina T; Beukema, Jannet C; Woutersen, Dankert; Mul, Veronique E; Berveling, Maaike J; Pruim, Jan; van der Jagt, Eric J; Hospers, Geke A P; Groen, Henk; Plukker, John Th; Langendijk, Johannes A
2014-11-01
The aim of this prospective study was to determine the proportion of locoregional recurrences (LRRs) that could have been prevented if radiotherapy treatment planning for oesophageal cancer was based on PET/CT instead of CT. Ninety oesophageal cancer patients, eligible for high dose (neo-adjuvant) (chemo)radiotherapy, were included. All patients underwent a planning FDG-PET/CT-scan. Radiotherapy target volumes (TVs) were delineated on CT and patients were treated according to the CT-based treatment plans. The PET images remained blinded. After treatment, TVs were adjusted based on PET/CT, when appropriate. Follow up included CT-thorax/abdomen every 6months. If LRR was suspected, a PET/CT was conducted and the site of recurrence was compared to the original TVs. If the LRR was located outside the CT-based clinical TV (CTV) and inside the PET/CT-based CTV, we considered this LRR possibly preventable. Based on PET/CT, the gross tumour volume (GTV) was larger in 23% and smaller in 27% of the cases. In 32 patients (36%), >5% of the PET/CT-based GTV would be missed if the treatment planning was based on CT. The median follow up was 29months. LRRs were seen in 10 patients (11%). There were 3 in-field recurrences, 4 regional recurrences outside both CT-based and PET/CT-based CTV and 3 recurrences at the anastomosis without changes in TV by PET/CT; none of these recurrences were considered preventable by PET/CT. No LRR was found after CT-based radiotherapy that could have been prevented by PET/CT. The value of PET/CT for radiotherapy seems limited. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Wecker, L
1991-10-01
The objective of these experiments was to determine whether preincubating hippocampal slices with choline provides precursor that can be used during a subsequent incubation to support or enhance the synthesis of acetylcholine (ACh). Slices were preincubated for 60 min with 0, 10, 25, or 50 microM choline, washed, resuspended, and then incubated for 10 min in choline-free buffer containing 4.74 (Krebs-Ringer bicarbonate, KRB) or 25 mM KCl. The tissue contents of ACh and choline were determined prior to and after the preincubation, as well as after the incubation; the amounts of ACh and choline released were measured, and ACh synthesis was calculated. Preincubation in the absence of choline increased the tissue content of ACh to 242% of original levels; preincubation with 10 microM choline did not lead to a further increase, but preincubation with 25 or 50 microM choline increased the ACh content to 272% of original levels, significantly greater than that of slices preincubated with either 0 or 10 microM choline. When tissues were subsequently incubated for 10 min with either KRB or 25 mM KCl, ACh release from slices preincubated with 50 microM choline was greater than from slices preincubated with 0, 10, or 25 microM choline. Incubation of slices with KRB did not alter the tissue content of ACh, but when tissues were incubated with 25 mM KCl, the ACh content of slices preincubated with 0 or 10 microM choline decreased significantly, whereas that of slices preincubated with 25 or 50 microM choline did not.(ABSTRACT TRUNCATED AT 250 WORDS)
Choline Metabolites: Gene by Diet Interactions
Smallwood, Tangi; Allayee, Hooman; Bennett, Brian J.
2015-01-01
Purpose of review This review highlights recent advances in our understanding of the interactions between genetic polymorphisms in genes that metabolize choline and the dietary requirements of choline and how these interactions relate to human health and disease. Recent findings The importance of choline as an essential nutrient has been well established but our appreciation of the interaction between our underlying genetic architecture and dietary choline requirements is only beginning. It has been shown in both human and animal studies that choline deficiencies contribute to diseases such as non-alcoholic fatty liver disease and various neurodegenerative diseases. An adequate supply of dietary choline is important for optimum development, highlighted by the increased maternal requirements during fetal development and in breast-fed infants. We discuss recent studies investigating variants in PEMT and MTHFR1 that are associated with a variety of birth defects. In addition to genetic interactions, we discuss several recent studies that uncover changes in fetal global methylation patterns in response to maternal dietary choline intake that result in changes in gene expression in the offspring. In contrast to the developmental role of adequate choline, there is now an appreciation of the role choline has in cardiovascular disease through the gut microbiota-mediated metabolite trimethylamine N-oxide. This pathway highlights some of our understanding of how the microbiome affects nutrient processing and bioavailability. Finally, in order to better characterize the genetic architecture regulating choline requirements, we discuss recent results focused on identifying polymorphisms that regulate choline and its derivative products. Summary Here we discuss recent studies that have advanced our understanding of how specific alleles in key choline metabolism genes are related to dietary choline requirements and human disease. PMID:26655287
Silver, Matt J.; Corbin, Karen D.; Hellenthal, Garrett; da Costa, Kerry-Ann; Dominguez-Salas, Paula; Moore, Sophie E.; Owen, Jennifer; Prentice, Andrew M.; Hennig, Branwen J.; Zeisel, Steven H.
2015-01-01
Choline is an essential nutrient, and the amount needed in the diet is modulated by several factors. Given geographical differences in dietary choline intake and disparate frequencies of single-nucleotide polymorphisms (SNPs) in choline metabolism genes between ethnic groups, we tested the hypothesis that 3 SNPs that increase dependence on dietary choline would be under negative selection pressure in settings where choline intake is low: choline dehydrogenase (CHDH) rs12676, methylenetetrahydrofolate reductase 1 (MTHFD1) rs2236225, and phosphatidylethanolamine-N-methyltransferase (PEMT) rs12325817. Evidence of negative selection was assessed in 2 populations: one in The Gambia, West Africa, where there is historic evidence of a choline-poor diet, and the other in the United States, with a comparatively choline-rich diet. We used 2 independent methods, and confirmation of our hypothesis was sought via a comparison with SNP data from the Maasai, an East African population with a genetic background similar to that of Gambians but with a traditional diet that is higher in choline. Our results show that frequencies of SNPs known to increase dependence on dietary choline are significantly reduced in the low-choline setting of The Gambia. Our findings suggest that adequate intake levels of choline may have to be reevaluated in different ethnic groups and highlight a possible approach for identifying novel functional SNPs under the influence of dietary selective pressure.—Silver, M. J., Corbin, K. D., Hellenthal, G., da Costa, K.-A., Dominguez-Salas, P., Moore, S. E., Owen, J., Prentice, A. M., Hennig, B. J., Zeisel, S. H. Evidence for negative selection of gene variants that increase dependence on dietary choline in a Gambian cohort. PMID:25921832
Wong-Goodrich, Sarah J.E.; Glenn, Melissa J.; Mellott, Tiffany J.; Blusztajn, Jan K.; Meck, Warren H.; Williams, Christina L.
2009-01-01
Altered dietary choline availability early in life leads to persistent changes in spatial memory and hippocampal plasticity in adulthood. Developmental programming by early choline nutrition may determine the range of adult choline intake that is optimal for the types of neural plasticity involved in cognitive function. To test this, male Sprague-Dawley rats were exposed to a choline chloride deficient (DEF), sufficient (CON), or supplemented (SUP) diet during embryonic days 12-17 and then returned to a control diet (1.1 g choline chloride/kg). At 70 days of age, we found that DEF and SUP rats required fewer choices to locate 8 baited arms of a 12-arm radial maze than CON rats. When switched to a choline-deficient diet (0 g/kg), SUP rats showed impaired performance while CON and DEF rats were unaffected. In contrast, when switched to a choline-supplemented diet (5.0 g/kg), DEF rats' performance was significantly impaired while CON and SUP rats were less affected. These changes in performance were reversible when the rats were switched back to a control diet. In a second experiment, DEF, CON, and SUP rats were either maintained on a control diet, or the choline-supplemented diet. After 12 weeks, DEF rats were significantly impaired by choline supplementation on a matching-to-place water-maze task, which was also accompanied by a decrease in dentate cell proliferation in DEF rats only. IGF-1 levels were elevated by both prenatal and adult choline supplementation. Taken together, these findings suggest that the in utero availability of an essential nutrient, choline, causes differential behavioral and neuroplastic sensitivity to the adult choline supply. PMID:18778697
Wong-Goodrich, Sarah J E; Glenn, Melissa J; Mellott, Tiffany J; Blusztajn, Jan K; Meck, Warren H; Williams, Christina L
2008-10-27
Altered dietary choline availability early in life leads to persistent changes in spatial memory and hippocampal plasticity in adulthood. Developmental programming by early choline nutrition may determine the range of adult choline intake that is optimal for the types of neural plasticity involved in cognitive function. To test this, male Sprague-Dawley rats were exposed to a choline chloride deficient (DEF), sufficient (CON), or supplemented (SUP) diet during embryonic days 12-17 and then returned to a control diet (1.1 g choline chloride/kg). At 70 days of age, we found that DEF and SUP rats required fewer choices to locate 8 baited arms of a 12-arm radial maze than CON rats. When switched to a choline-deficient diet (0 g/kg), SUP rats showed impaired performance while CON and DEF rats were unaffected. In contrast, when switched to a choline-supplemented diet (5.0 g/kg), DEF rats' performance was significantly impaired while CON and SUP rats were less affected. These changes in performance were reversible when the rats were switched back to a control diet. In a second experiment, DEF, CON, and SUP rats were either maintained on a control diet, or the choline-supplemented diet. After 12 weeks, DEF rats were significantly impaired by choline supplementation on a matching-to-place water-maze task, which was also accompanied by a decrease in dentate cell proliferation in DEF rats only. IGF-1 levels were elevated by both prenatal and adult choline supplementation. Taken together, these findings suggest that the in utero availability of an essential nutrient, choline, causes differential behavioral and neuroplastic sensitivity to the adult choline supply.
Lee, N-Y; Choi, H-M; Kang, Y-S
2009-04-01
Choline is an essential nutrient for phospholipids and acetylcholine biosynthesis in normal development of fetus. In the present study, we investigated the functional characteristics of choline transport system and inhibitory effect of cationic drugs on choline transport in rat conditionally immortalized syncytiotrophoblast cell line (TR-TBT). Choline transport was weakly Na(+) dependent and significantly influenced by extracellular pH and by membrane depolarization. The transport process of choline is saturable with Michaelis-Menten constants (K(m)) of 68microM and 130microM in TR-TBT 18d-1 and TR-TBT 18d-2 respectively. Choline uptake in the cells was inhibited by unlabeled choline and hemicholinium-3 as well as various organic cations including guanidine, amiloride and acetylcholine. However, the prototypical organic cation tetraethylammonium and cimetidine showed very little inhibitory effect of choline uptake in TR-TBT cells. RT-PCR revealed that choline transporter-like protein 1 (CTL1) and organic cation transporter 2 (OCT2) are expressed in TR-TBT cells. The transport properties of choline in TR-TBT cells were similar or identical to that of CTL1 but not OCT2. CTL1 was also detected in human placenta. In addition, several cationic drugs such as diphenhydramine and verapamil competitively inhibited choline uptake in TR-TBT 18d-1 with K(i) of 115microM and 55microM, respectively. Our results suggest that choline transport system, which has intermediate affinity and weakly Na(+) dependent, in TR-TBT seems to occur through a CTL1 and this system may have relevance with the uptake of pharmacologically important organic cation drugs.
Storm, Christian; Danne, Oliver; Ueland, Per Magne; Leithner, Christoph; Hasper, Dietrich; Schroeder, Tim
2013-01-01
Objective Choline is related to phospholipid metabolism and is a marker for global ischaemia with a small reference range in healthy volunteers. The aim of our study was to characterize the early kinetics of plasma free choline in patients after cardiac arrest. Additionally, we investigated the potential of plasma free choline to predict neurological outcome. Methods Twenty patients admitted to our medical intensive care unit were included in this prospective, observational trial. All patients were enrolled between May 2010 and May 2011. They received post cardiac arrest treatment including mild therapeutic hypothermia which was initiated with a combination of cold fluid and a feedback surface cooling device according to current guidelines. Sixteen blood samples per patient were analysed for plasma free choline levels within the first week after resuscitation. Choline was detected by liquid chromatography-tandem mass spectrometry. Results Most patients showed elevated choline levels on admission (median 14.8 µmol/L; interquartile range; IQR 9.9-20.1) which subsequently decreased. 48 hours after cardiac arrest choline levels in all patients reached subnormal levels at a median of 4.0 µmol/L (IQR 3-4.9; p = 0.001). Subsequently, choline levels normalized within seven days. There was no significant difference in choline levels when groups were analyzed in relation to neurological outcome. Conclusions Our data indicate a choline deficiency in the early postresucitation phase. This could potentially result in impaired cell membrane recovery. The detailed characterization of the early choline time course may aid in planning of choline supplementation trials. In a limited number of patients, choline was not promising as a biomarker for outcome prediction. PMID:24098804
Storm, Christian; Danne, Oliver; Ueland, Per Magne; Leithner, Christoph; Hasper, Dietrich; Schroeder, Tim
2013-01-01
Choline is related to phospholipid metabolism and is a marker for global ischaemia with a small reference range in healthy volunteers. The aim of our study was to characterize the early kinetics of plasma free choline in patients after cardiac arrest. Additionally, we investigated the potential of plasma free choline to predict neurological outcome. Twenty patients admitted to our medical intensive care unit were included in this prospective, observational trial. All patients were enrolled between May 2010 and May 2011. They received post cardiac arrest treatment including mild therapeutic hypothermia which was initiated with a combination of cold fluid and a feedback surface cooling device according to current guidelines. Sixteen blood samples per patient were analysed for plasma free choline levels within the first week after resuscitation. Choline was detected by liquid chromatography-tandem mass spectrometry. Most patients showed elevated choline levels on admission (median 14.8 µmol/L; interquartile range; IQR 9.9-20.1) which subsequently decreased. 48 hours after cardiac arrest choline levels in all patients reached subnormal levels at a median of 4.0 µmol/L (IQR 3-4.9; p = 0.001). Subsequently, choline levels normalized within seven days. There was no significant difference in choline levels when groups were analyzed in relation to neurological outcome. Our data indicate a choline deficiency in the early postresucitation phase. This could potentially result in impaired cell membrane recovery. The detailed characterization of the early choline time course may aid in planning of choline supplementation trials. In a limited number of patients, choline was not promising as a biomarker for outcome prediction.
Nano interfaced biosensor for detection of choline in triple negative breast cancer cells.
Thiagarajan, Vignesh; Madhurantakam, Sasya; Sethuraman, Swaminathan; Balaguru Rayappan, John Bosco; Maheswari Krishnan, Uma
2016-01-15
Choline, a type of Vitamin B, is an important nutrient in the human body and is involved in key metabolic pathways. Abnormal levels of choline leads to diseased conditions. The levels of choline and its associated compounds are found to be elevated in triple negative breast cancer (TNBC) patients. The choline level ranges from 0.4 to 4.9mmol/kg in TNBC. Thus the detection of choline levels in cells can aid in diagnosing breast cancer. The present work aims to develop a nano-interfaced electrochemical biosensor for the rapid detection of choline in cancer cells. For electrochemical detection, glassy carbon electrode coated with a zinc oxide nano-interface was used as the working electrode. Zinc oxide synthesized by hydrothermal method was characterized using SEM and XRD. The choline oxidase (ChOx) enzyme was immobilized on the nano-interface by drop-casting. Choline oxidase (ChOx) converts choline to betaine and H2O2 in the presence of oxygen. The H2O2 produced was determined amperometrically. The amount of H2O2 produced is directly proportional to concentration of choline present. The sensitivity, selectivity, stability and concentration studies were carried out and quantification of choline in TNBC was also carried out. The results demonstrate that this biosensor has the potential to be developed as a clinical tool for breast cancer detection. Copyright © 2015 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bligny, R.; Foray, M.F.; Roby, C.
1989-03-25
When sycamore cells were suspended in basal medium containing choline, the latter was taken up by the cells very rapidly. A facilitated diffusion system appertained at low concentrations of choline and exhibited Michaelis-Menten kinetics. At higher choline concentrations simple diffusion appeared to be the principal mode of uptake. Addition of choline to the perfusate of compressed sycamore cells monitored by /sup 31/P NMR spectroscopy resulted in a dramatic accumulation of P-choline in the cytoplasmic compartment containing choline kinase and not in the vacuole. The total accumulation of P-choline over a 10-h period exhibited Michaelis-Menten kinetics. During this period, in themore » absence of Pi in the perfusion medium there was a marked depletion of glucose-6-P, and the cytoplasmic Pi resonance disappeared almost completely. When a threshold of cytoplasmic Pi was attained, the phosphorylation of choline was sustained by the continuous release of Pi from the vacuole although at a much lower rate. However, when 100 microM inorganic phosphate was present in the perfusion medium, externally added Pi was preferentially used to sustain P-choline synthesis. It is clear, therefore, that cytosolic choline kinase associated with a carrier-mediated transport system for choline uptake appeared as effective systems for continuously trapping cytoplasmic Pi including vacuolar Pi entering the cytoplasm.« less
75 FR 53577 - Choline hydroxide; Exemption from the Requirement of a Tolerance
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-01
... endogenously in the human body. Humans are currently exposed to choline on a daily basis through commonly eaten... dietary consumption of choline, choline is made endogenously in the human body. Choline is a precursor to... human health. In order to determine the risks from aggregate exposure to pesticide inert ingredients...
Total choline and choline-containing moieties of commercially available pulses.
Lewis, Erin D; Kosik, Sarah J; Zhao, Yuan-Yuan; Jacobs, René L; Curtis, Jonathan M; Field, Catherine J
2014-06-01
Estimating dietary choline intake can be challenging due to missing foods in the current United States Department of Agriculture (USDA) database. The objectives of the study were to quantify the choline-containing moieties and the total choline content of a variety of pulses available in North America and use the expanded compositional database to determine the potential contribution of pulses to dietary choline intake. Commonly consumed pulses (n = 32) were analyzed by hydrophilic interaction liquid chromatography-tandem mass spectrometry (HILIC LC-MS/MS) and compared to the current USDA database. Cooking was found to reduce the relative percent from free choline and increased the contribution of phosphatidylcholine to total choline for most pulses (P < 0.05). Using the expanded database to estimate choline content of recipes using pulses as meat alternatives, resulted in a different estimation of choline content per serving (±30%), compared to the USDA database. These results suggest that when pulses are a large part of a meal or diet, the use of accurate food composition data should be used.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ancelin, M.L.; Torpier, G.; Vial, H.J.
1987-06-01
Choline metabolism was investigated in Schistosoma mansoni during the main phases of its development, namely, schistosomula, 11- and 15-day-old worms, and adults. At the physiological choline concentration used in the assay (20 microM), betaine was, along with phosphatidylcholine, one of the most abundant choline metabolites, revealing considerable choline oxidation activity. Very little radioactivity was associated with CDP-choline, whereas a sustained incorporation into phosphocholine occurred. These results provide good evidence that CTP:phosphocholine cytidylyltransferase plays a regulatory role in the de novo pathway of phosphatidylcholine biosynthesis. During development, the incorporation of choline into its various metabolites was maximal in 11-day-old worms. Atmore » this stage, the oxidative pathway predominated over the Kennedy pathway, whereas at all other stages the de novo phosphatidylcholine biosynthesis was predominant. Furthermore, choline incorporation into betaine was much more important in the adult female worm than in the male, indicating a major difference in choline incorporation and distribution between the 2 sexes of the adult worms.« less
Biosensor based on Butyrylcholinesterase for Detection of Carbofuran
NASA Astrophysics Data System (ADS)
Dey, Mousumi; Bhuvanagayathri, R.; Daniel, David K.
2015-04-01
Esterase enzymes play an important role in biology because they are responsible for the hydrolysis of choline esters. In their absence, the original state of the post synaptic membranes cannot be reestablished. Therefore, the aim of the work is to study the inhibiting action exerted by the group of compounds on these enzymes. Among these class of inhibiting compounds, pesticides are important because of the potential danger as a result of their large scale use in agriculture. Pesticides are generally determined using liquid or gas chromatography methods with various detection techniques. These methods are very sensitive and discriminating, however they require sample pretreatment such as extraction, preconcentration and clean up, which are skilled techniques and high cost treatment and also time consuming. In this study, acetyl cholinesterase and butyrylcholinesterase based biosensors have emerged as a promising tool for the detection and characterization of pesticides which are inhibitors of these enzymes. Although the physiological function of butyrylcholinesterase in comparison with acetyl cholinesterase is ambiguous, it has larger substrate specificity towards choline esters. Therefore, the development of a more selective electrode against choline, can lead to more sensitive determination of the inhibitor being investigated. Hence in the present work, a method based on inhibition of butyrylcholinesterase was attempted for quantification of carbofuran on the basis of cholinesterase inhibition. Butyrylcholinesterase with an activity of 10.2 units/mg was immobilized on a solid surface by cross linking with glutaraldehyde. The immobilized system was calibrated by correlating the inhibition of the butyrylcholinesterase activity with varying concentrations of the butyryl choline chloride and carbofuran. The sensing mechanism was investigated for its response to carbofuran concentrations ranging from 125 to 1,000 ppm. The effects of butyryl choline chloride concentration on the response of the sensing strip were also determined. Through this work, a sensing element made up of a carbon based electrode, containing the immobilized butyrylcholinesterase, has been described. This element has certain practical advantages like smaller size, user friendly, easy portability and disposability.
Getty, Caitlyn M; Dilger, Ryan N
2015-01-01
Few studies have evaluated the impact of dietary choline on the health and well-being of swine, and those pivotal papers were aimed at determining dietary requirements for sows and growing pigs. This is of importance as the piglet is becoming a widely accepted model for human infant nutrition, but little is known about the impacts of perinatal choline status on overall health and metabolism of the growing piglet. In the present study, sows were provided either a choline deficient (CD, 625 mg choline/kg dry matter) or choline sufficient (CS, 1306 mg choline/kg dry matter) diet for the last 65 d of gestation (prenatal intervention). Piglets were weaned from the sow 48 h after farrowing and provided either a CD (477 mg choline/kg dry matter) or CS (1528 mg choline/kg dry matter) milk replacer (postnatal intervention) for 29 ± 2 d, resulting in a factorial arrangement of 4 treatment (prenatal/postnatal) groups: CS/CS, CS/CD, CD/CS, and CD/CD. Piglet growth was normal for artificially-reared piglets, and was not impacted by perinatal choline status. Piglets receiving the postnatal CD treatment had lower (P < 0.01) plasma choline and choline-containing phospholipid concentrations and higher (P < 0.05) liver enzyme (alkaline phosphatase and gamma-glutamyl transferase) values compared with piglets receiving the postnatal CS treatment. Hepatic lipid content of piglets receiving the postnatal CD treatment was higher (P < 0.01) compared with piglets receiving the postnatal CS treatment. Additionally, postnatally CD piglets had lower (P = 0.01) plasma cholesterol than postnatally CS piglets. Brain development was also impacted by perinatal choline status, with brains of piglets exposed to prenatal CD being smaller (P = 0.01) than those of prenatally CS piglets. These findings support the hypothesis that the piglet is a sensitive model for choline deficiency during the perinatal period. In the present study, piglets exhibited similarities in health markers and metabolomic profiles to rodents and humans when exposed to moderate choline deficiency.
Fully automated SPE-based synthesis and purification of 2-[18F]fluoroethyl-choline for human use.
Schmaljohann, Jörn; Schirrmacher, Esther; Wängler, Björn; Wängler, Carmen; Schirrmacher, Ralf; Guhlke, Stefan
2011-02-01
2-[(18)F]Fluoroethyl-choline ([(18)F]FECH) is a promising tracer for the detection of prostate cancer as well as brain tumors with positron emission tomography (PET). [(18)F]FECH is actively transported into mammalian cells, becomes phosphorylated by choline kinase and gets incorporated into the cell membrane after being metabolized to phosphatidylcholine. So far, its synthesis is a two-step procedure involving at least one HPLC purification step. To allow a wider dissemination of this tracer, finding a purification method avoiding HPLC is highly desirable and would result in easier accessibility and more reliable production of [(18)F]FECH. [(18)F]FECH was synthesized by reaction of 2-bromo-1-[(18)F]fluoroethane ([(18)F]BFE) with dimethylaminoethanol (DMAE) in DMSO. We applied a novel and very reliable work-up procedure for the synthesis of [(18)F]BFE. Based on a combination of three different solid-phase cartridges, the purification of [(18)F]BFE from its precursor 2-bromoethyl-4-nitrobenzenesulfonate (BENos) could be achieved without using HPLC. Following the subsequent reaction of the purified [(18)F]BFE with DMAE, the final product [(18)F]FECH was obtained as a sterile solution by passing the crude reaction mixture through a combination of two CM plus cartridges and a sterile filter. The fully automated synthesis was performed using as well a Raytest SynChrom module (Raytest, Germany) or a Scintomics HotboxIII module (Scintomics, Germany). The radiotracer [(18)F]FECH can be synthesized in reliable radiochemical yields (RCY) of 37±5% (Synchrom module) and 33±5% (Hotbox III unit) in less than 1 h using these two fully automated commercially available synthesis units without HPLC involvement for purification. Detailed quality control of the final injectable [(18)F]FECH solution proved the high radiochemical purity and the absence of Kryptofix2.2.2, DMAE and DMSO used in the course of synthesis. Sterility and bacterial endotoxin testing following standard procedures verified that the described production method for [(18)F]FECH is suitable for human applications. The routine production of [(18)F]FECH with sufficient RCYs was established by reliable and fast solid-phase extraction purifications of both the secondary labeling precursor [(18)F]BFE and the final product [(18)F]FECH, avoiding complex and sensitive HPLC equipment. The purity of the product was >95%, rendering the tracer suitable for human application. The newly developed purification procedure for [(18)F]BFE significantly reduces the complexity of the automated synthesis unit, hence reducing the cost for routine production in a clinical setup and allowing easy transfer to different synthesis modules. Copyright © 2011 Elsevier Inc. All rights reserved.
Choline metabolism in malignant transformation
Glunde, Kristine; Bhujwalla, Zaver M.; Ronen, Sabrina M.
2015-01-01
Abnormal choline metabolism is emerging as a metabolic hallmark that is associated with oncogenesis and tumour progression. Following transformation, the modulation of enzymes that control anabolic and catabolic pathways causes increased levels of choline-containing precursors and breakdown products of membrane phospholipids. These increased levels are associated with proliferation, and recent studies emphasize the complex reciprocal interactions between oncogenic signalling and choline metabolism. Because choline-containing compounds are detected by non-invasive magnetic resonance spectroscopy (MRS), increased levels of these compounds provide a non-invasive biomarker of transformation, staging and response to therapy. Furthermore, enzymes of choline metabolism, such as choline kinase, present novel targets for image-guided cancer therapy. PMID:22089420
Choline: Dietary Requirements and Role in Brain Development.
Sanders, Lisa M; Zeisel, Steven H
2007-01-01
Choline is needed for the maintenance of the structural integrity and signaling functions of cell membranes, for neurotransmission, and for transport of lipids and as a source of methyl groups. Choline can be made de novo in the body, but some individuals must also obtain choline in the diet to prevent deficiency symptoms. A number of environmental and genetic factors influence dietary requirements for choline, and average intakes in the population vary widely. Therefore, certain individuals may be at greater risk of choline deficiency. Choline is critical during fetal development, particularly during the development of the brain, where it can influence neural tube closure and lifelong memory and learning functions.
Dietary Choline Deficiency causes DNA Strand Breaks and Alters Epigenetic Marks on DNA and Histones
Zeisel, Steven H.
2011-01-01
Dietary choline is an important modulator of gene expression (via epigenetic marks) and of DNA integrity. Choline was discovered to be an essential nutrient for some humans approximately one decade ago. This requirement is diminished in young women because estrogen drives endogenous synthesis of phosphatidylcholine, from which choline can be derived. Almost half of women have a single nucleotide polymorphism that abrogates estrogen-induction of endogenous synthesis, and these women require dietary choline just as do men. In the US, dietary intake of choline is marginal. Choline deficiency in people is associated with liver and muscle dysfunction and damage, with apoptosis, and with increased DNA strand breaks. Several mechanisms explain these modifications to DNA. Choline deficiency increases leakage of reactive oxygen species from mitochondria consequent to altered mitochondrial membrane composition and enhanced fatty acid oxidation. Choline deficiency impairs folate metabolism, resulting in decreased thymidylate synthesis and increased uracil misincorporation into DNA, with strand breaks resulting during error-prone repair attempts. Choline deficiency alters DNA methylation, which alters gene expression for critical genes involved in DNA mismatch repair, resulting in increased mutation rates. Any dietary deficiency which increases mutation rates should be associated with increased risk of cancers, and this is the case for choline deficiency. In rodent models, diets low in choline and methyl-groups result in spontaneous hepatocarcinomas. In human epidemiological studies, there are interesting data that suggest that this also may be the case for humans, especially those with SNPs that increase the dietary requirement for choline. PMID:22041500
Dietary choline deficiency causes DNA strand breaks and alters epigenetic marks on DNA and histones.
Zeisel, Steven H
2012-05-01
Dietary choline is an important modulator of gene expression (via epigenetic marks) and of DNA integrity. Choline was discovered to be an essential nutrient for some humans approximately one decade ago. This requirement is diminished in young women because estrogen drives endogenous synthesis of phosphatidylcholine, from which choline can be derived. Almost half of women have a single nucleotide polymorphism that abrogates estrogen-induction of endogenous synthesis, and these women require dietary choline just as do men. In the US, dietary intake of choline is marginal. Choline deficiency in people is associated with liver and muscle dysfunction and damage, with apoptosis, and with increased DNA strand breaks. Several mechanisms explain these modifications to DNA. Choline deficiency increases leakage of reactive oxygen species from mitochondria consequent to altered mitochondrial membrane composition and enhanced fatty acid oxidation. Choline deficiency impairs folate metabolism, resulting in decreased thymidylate synthesis and increased uracil misincorporation into DNA, with strand breaks resulting during error-prone repair attempts. Choline deficiency alters DNA methylation, which alters gene expression for critical genes involved in DNA mismatch repair, resulting in increased mutation rates. Any dietary deficiency which increases mutation rates should be associated with increased risk of cancers, and this is the case for choline deficiency. In rodent models, diets low in choline and methyl-groups result in spontaneous hepatocarcinomas. In human epidemiological studies, there are interesting data that suggest that this also may be the case for humans, especially those with SNPs that increase the dietary requirement for choline. Copyright © 2011 Elsevier B.V. All rights reserved.
Pharmacological action of choline and aspirin coadministration on acute inflammatory pain.
Yong-Ping, Shi; Jin-Da, Wang; Ru-Huan, Wang; Xiang-Di, Zhao; Hai-Tao, Yu; Hai, Wang
2011-09-01
Non-steroidal anti-inflammatory drugs (NSAIDs) are effective for relieving pain but undesirable side effects limit their clinical usefulness. Choline is a α7 nicotinic receptor agonist that has antinociceptive effects in a variety of pain models. Drug combination is a strategy in the management of pain to reduce side effects. The aim of the study was to evaluate the nature of the interaction between choline and aspirin in two distinct inflammatory pain models. The analgesic mechanism of choline was also investigated. In the writhing test, intravenous administration of choline or aspirin showed dose-dependent antinociceptive activity, and isobolographic analysis revealed a synergistic nature of the interaction between choline and aspirin. More importantly, coadministration choline with aspirin could significantly shorten the antinociceptive latency of aspirin and prolong the antinociceptive duration of aspirin in the writhing test. In the carrageenan test, single administration of choline or aspirin significantly attenuated carrageenan-induced thermal hyperalgesia in a dose-dependent relationship. Coadministration of non-analgesic doses of aspirin with choline significantly suppressed the thermal hyperalgesia, with a longer duration efficacy. Furthermore, we found that α7 nicotinic, muscarinic, and opioid-receptors are involved in the antinociceptive effect of choline in the writhing test and the antinociceptive effect produced by systemically administered choline may be via a peripheral mechanism. In conclusion, coadministration of choline and aspirin holds promise for development as a safe analgesic drug combination for inflammatory pain, with a higher potency and longer duration than either aspirin or choline alone. Copyright © 2011 European Federation of International Association for the Study of Pain Chapters. Published by Elsevier Ltd. All rights reserved.
Effects of CDP-choline on striatal dopamine level and behavior in rats.
Shibuya, M; Kageyama, N; Taniguchi, T; Hidaka, H; Fujiwara, M
1981-02-01
To further assess the effects of CDP (cytidine diphosphate)-choline on Parkinsonian symptoms, striatal dopamine (DA) was measured fluorometrically in rats after injection of CDP-choline. CDP-choline (300 mg/kg, i.p.) increased the DA content in the striatum (p less than 0.05) one hour after injection. The behavioral effect of CDP-choline was then tested in rats in which the unilateral nigro-striatal DA neurons had degenerated following an intranigral injection of 6-hydroxydopamine (6-OHDA). CDP-choline alone did not produce behavioral changes in these rats. However, pretreatment with a single dose of CDP-choline (900 mg/kg, i.p.) suppressed both the apomorphine-induced contralateral and the d-amphetamine-induced ipsilateral circling. The same dose of CDP-choline suppressed the number of treadmill revolutions in mice. On the other hand, a 7-day consecutive treatment with 300 mg/kg of CDP-choline enhanced the apomorphine-induced contralateral circling (by 42%, p less than 0.05). The same treatment with CDP-choline raised the striatal DA content by 29% (p less than 0.05) on the intact side, but not on the 6-OHDA injected side. These results indicate that CDP-choline has either a direct nor an indirect DA agonistic effect. The increase in DA content, decrease in locomotion and enhancement of the effect of apomorphine can be explained on the hypothesis that CDP-choline may act as an antagonist on the DA neurons and receptors. The validity of this apparently paradoxical use of CDP-choline with antagonistic effect on DA neurons in the treatment of Parkinson's disease is discussed.
[Anti-platelet actions of salicylates: in vivo, ex vivo and in vitro effects of choline salicylate].
Irino, O; Saitoh, K; Ohkubo, K
1985-07-01
Effects of choline salicylate, sodium salicylate, choline chloride and acetylsalicylic acid on platelet aggregation in vivo, ex vivo and in vitro in mice were studied. These drugs all inhibited adenosine diphosphate (ADP)-induced respiratory depression, which is closely related to platelet aggregation in vivo, with choline salicylate showing the strongest inhibitory effect. Choline salicylate had a tendency to reduce the mortality of animals injected intravenously with endotoxin, but the other drugs had no such effect. The inhibitory effects of these drugs on ADP-induced platelet aggregation ex vivo were in the order of choline salicylate greater than acetylsalicylic acid congruent to sodium salicylate greater than choline chloride congruent to no effect, and plasma concentrations of protein-unbound salicylic acid at 1 hr after oral administration of drugs were in the order of choline salicylate greater than acetylsalicylic acid congruent to sodium salicylate. The in vitro effects of these drugs were in the order of choline salicylate congruent to sodium salicylate greater than choline chloride congruent to acetylsalicylic acid congruent to no effect. Therefore, it was considered that salicylic acid played an important role on the in vivo, ex vivo and in vitro effects of choline salicylate and that choline increased plasma concentrations of salicylic acid and consequently enhanced the in vivo and ex vivo effects of salicylic acid. Furthermore, the ex vivo effects of choline salicylate were found when ADP-induced platelet aggregation was measured with platelet-rich plasma prepared from blood collected with heparin as anti-coagulant, but not when blood was collected with citrate.(ABSTRACT TRUNCATED AT 250 WORDS)
Autoregulation of Neuromuscular Transmission by Nerve Terminals
1985-12-01
converted to choline by AChE (EC 3.1.1.7); second, choline 24 is converted to betaine and H2 02 by choline oxidase (ChOx) (EC 1.1.3.17); and finally, H2...obtained that choline avail- ability can influence ACh release. Low levels of choline decrease release. However, this modulatory mechanism appears to...fects of various toxic agents on the axonal transport of these binding sites. The effects of organophosphate agents in vitro and in vivo on choline efflux
Khezeli, Tahere; Daneshfar, Ali
2017-09-01
Two novel magnetic deep eutectic solvents (MDESs), comprised of cheap and simple components named [choline chloride/phenol] [FeCl 4 ] and [choline chloride/ethylene glycol] [FeCl 4 ] were prepared and characterized by CHN elemental analysis, proton nuclear magnetic resonance ( 1 H NMR), vibrating sample magnetometery (VSM), Raman, Fourier transform-infrared (FT-IR) and UV-Vis spectrometery. The extraction efficiency of the prepared MDESs has been investigated in ultrasound assisted liquid-liquid microextraction based MDES (UALLME-MDES). Briefly, MDESs were added to n-heptan containing thiophene. Then, MDESs were dispersed in n-heptane by sonication. After that, microdroplets of MDESs were collected by a magnet and the remained concentration of thiophene in n-heptane phase was analyzed by GC-FID. The results indicated that [choline chloride/phenol] [FeCl 4 ] has higher extraction efficiency than [choline chloride/ethylene glycol] [FeCl 4 ]. This work opens a new way to the application of MDESs. Copyright © 2016 Elsevier B.V. All rights reserved.
Comparative genomics and mutagenesis analyses of choline metabolism in the marine R oseobacter clade
Lidbury, Ian; Kimberley, George; Scanlan, David J.; Murrell, J. Colin
2015-01-01
Summary Choline is ubiquitous in marine eukaryotes and appears to be widely distributed in surface marine waters; however, its metabolism by marine bacteria is poorly understood. Here, using comparative genomics and molecular genetic approaches, we reveal that the capacity for choline catabolism is widespread in marine heterotrophs of the marine Roseobacter clade (MRC). Using the model bacterium R uegeria pomeroyi, we confirm that the bet A, bet B and bet C genes, encoding choline dehydrogenase, betaine aldehyde dehydrogenase and choline sulfatase, respectively, are involved in choline metabolism. The bet T gene, encoding an organic solute transporter, was essential for the rapid uptake of choline but not glycine betaine (GBT). Growth of choline and GBT as a sole carbon source resulted in the re‐mineralization of these nitrogen‐rich compounds into ammonium. Oxidation of the methyl groups from choline requires formyltetrahydrofolate synthetase encoded by fhs in R . pomeroyi, deletion of which resulted in incomplete degradation of GBT. We demonstrate that this was due to an imbalance in the supply of reducing equivalents required for choline catabolism, which can be alleviated by the addition of formate. Together, our results demonstrate that choline metabolism is ubiquitous in the MRC and reveal the role of Fhs in methyl group oxidation in R . pomeroyi. PMID:26058574
Nishiyama, Ryohta; Nagashima, Fumiaki; Iwao, Beniko; Kawai, Yuiko; Inoue, Kana; Midori, Arisa; Yamanaka, Tsuyoshi; Uchino, Hiroyuki; Inazu, Masato
2016-06-01
We examined the functional characteristics of choline uptake in human tongue carcinoma using the cell line HSC-3. Furthermore, we explored the possible correlation between the inhibition of choline uptake and apoptotic cell death. Both choline transporter-like protein 1 (CTL1) and CTL2 mRNAs and proteins were expressed, and were located in plasma membrane and mitochondria, respectively. Choline uptake was saturable and mediated by a single transport system, which is pH-dependent. Several cationic drugs inhibited cell viability and [(3)H]choline uptake. Choline uptake inhibitors and choline deficiency inhibited cell viability and increased caspase-3/7 activity. We conclude that extracellular choline is mainly transported via a CTL1 that relies on a directed H(+) gradient as a driving force. The functional inhibition of CTL1 by cationic drugs could promote apoptotic cell death. Furthermore, CTL2 may be the major site for the control of choline oxidation in mitochondria and hence for the supply of endogenous betaine and S-adenosyl methionine, which serves as a major methyl donor. Identification of this CTL1- and CTL2-mediated choline transport system provides a potential new target for tongue cancer therapy. Copyright © 2016 The Authors. Production and hosting by Elsevier B.V. All rights reserved.
Conductive choline transport by alveolar epithelial plasma membrane vesicles.
Oelberg, D G; Xu, F
1998-11-01
Choline is an important substrate in alveolar epithelia for both surfactant production and cellular maintenance. The underlying mechanisms of uptake and sites of membrane transport remain uncertain. To test the hypothesis that choline transport occurs at the basolateral side of alveolar epithelia by both Na+-independent and -dependent mechanisms, plasma membrane vesicles were prepared from the apical and basolateral membranes of mature porcine type II pneumocytes. Choline+ transport was assayed by uptake of [3H]choline+ by enriched apical or basolateral vesicles. In the presence of imposed, inside-negative charge gradients, basolateral vesicles exhibited early overshoot of [3H]choline+ uptake unaffected by the presence or absence of external Na+ (541 +/- 53 vs 564 +/- 79 pmol/mg protein (NS)). High sensitivity to hemicholinium-3 was observed in the presence or absence of Na+. In the absence of inside-negative charge gradients, uptake was reduced 12-fold in the presence or absence of Na+, and external choline+ induced internal alkalization of acidified basolateral vesicles. Accumulative [3H]choline+ uptakes by apical vesicles in the presence or absence of inside-negative charge gradients and Na+ were insignificant. We conclude that predominant choline+ uptake by type II pneumocytes occurs at the basolateral membrane by Na+-independent, electrogenic choline+ conductance. The presence of electroneutral choline+/H+ exchange is suggested. Copyright 1998 Academic Press.
Eiber, Matthias; Martinez-Möller, Axel; Souvatzoglou, Michael; Holzapfel, Konstantin; Pickhard, Anja; Löffelbein, Dennys; Santi, Ivan; Rummeny, Ernst J; Ziegler, Sibylle; Schwaiger, Markus; Nekolla, Stephan G; Beer, Ambros J
2011-09-01
In this study, the potential contribution of Dixon-based MR imaging with a rapid low-resolution breath-hold sequence, which is a technique used for MR-based attenuation correction (AC) for MR/positron emission tomography (PET), was evaluated for anatomical correlation of PET-positive lesions on a 3T clinical scanner compared to low-dose CT. This technique is also used in a recently installed fully integrated whole-body MR/PET system. Thirty-five patients routinely scheduled for oncological staging underwent (18)F-fluorodeoxyglucose (FDG) PET/CT and a 2-point Dixon 3-D volumetric interpolated breath-hold examination (VIBE) T1-weighted MR sequence on the same day. Two PET data sets reconstructed using attenuation maps from low-dose CT (PET(AC_CT)) or simulated MR-based segmentation (PET(AC_MR)) were evaluated for focal PET-positive lesions. The certainty for the correlation with anatomical structures was judged in the low-dose CT and Dixon-based MRI on a 4-point scale (0-3). In addition, the standardized uptake values (SUVs) for PET(AC_CT) and PET(AC_MR) were compared. Statistically, no significant difference could be found concerning anatomical localization for all 81 PET-positive lesions in low-dose CT compared to Dixon-based MR (mean 2.51 ± 0.85 and 2.37 ± 0.87, respectively; p = 0.1909). CT tended to be superior for small lymph nodes, bone metastases and pulmonary nodules, while Dixon-based MR proved advantageous for soft tissue pathologies like head/neck tumours and liver metastases. For the PET(AC_CT)- and PET(AC_MR)-based SUVs (mean 6.36 ± 4.47 and 6.31 ± 4.52, respectively) a nearly complete concordance with a highly significant correlation was found (r = 0.9975, p < 0.0001). Dixon-based MR imaging for MR AC allows for anatomical allocation of PET-positive lesions similar to low-dose CT in conventional PET/CT. Thus, this approach appears to be useful for future MR/PET for body regions not fully covered by diagnostic MRI due to potential time constraints.
Øyen, Jannike; Gjesdal, Clara Gram; Karlsson, Therese; Svingen, Gard Ft; Tell, Grethe S; Strand, Elin; Drevon, Christian A; Vinknes, Kathrine J; Meyer, Klaus; Ueland, Per Magne; Nygård, Ottar
2017-04-01
Background: Choline is an important nutrient either obtained from a variety of foods or synthesized endogenously, and it is the precursor of betaine. We previously reported positive associations between plasma free choline and bone mineral density (BMD). Animal studies suggest an impact of dietary choline on bone metabolism, but the role of dietary intake of choline and betaine for human bone health is unknown. Objectives: The main aims were to examine the associations of dietary choline, choline species, and betaine with BMD and to study the relations between dietary and plasma free choline and betaine. Methods: Study subjects were participants in the Hordaland Health Study, including 2649 women and 1983 men (aged 46-49 or 71-74 y). BMD was measured by dual-energy X-ray absorptiometry, and dietary intake was obtained by using a validated 169-item food-frequency questionnaire. Risk associations were assessed by logistic regression and correlations by ρ (Spearman's bivariate rank order correlation). Results: Subjects in the lowest compared with the highest tertile of dietary total choline, free choline, glycerophosphocholine, phosphocholine, phosphatidylcholine, and sphingomyelin had a higher risk of low-femoral neck BMD, defined as the lowest BMD quintile. Particularly strong associations were found among middle-aged men for intake of free choline (OR: 1.83; 95% CI: 1.24, 2.69; P = 0.002) and glycerophosphocholine (OR: 2.13; 95% CI: 1.43, 3.16; P < 0.001) and among elderly women for total choline (OR: 1.96; 95% CI: 1.33, 2.88; P = 0.001) and phosphatidylcholine (OR: 1.94; 95% CI: 1.33, 2.84: P = 0.001) intake. No significant associations were observed between dietary betaine and BMD. Dietary total choline, free choline, glycerophosphocholine, phosphatidylcholine, and sphingomyelin correlated weakly with plasma free choline (ρ: 0.07, 0.05, 0.07, 0.07, and 0.05, respectively; P < 0.01). Dietary betaine correlated with plasma betaine (ρ: 0.23; P < 0.001). Conclusion: Dietary choline was positively associated with BMD in middle-aged and elderly participants. © 2017 American Society for Nutrition.
Jin, H; Yuan, L; Li, C; Kan, Y; Hao, R; Yang, J
2014-03-01
The purpose of this study was to systematically review and perform a meta-analysis of published data regarding the diagnostic performance of positron emission tomography (PET) or PET/computed tomography (PET/CT) in prosthetic infection after arthroplasty. A comprehensive computer literature search of studies published through May 31, 2012 regarding PET or PET/CT in patients suspicious of prosthetic infection was performed in PubMed/MEDLINE, Embase and Scopus databases. Pooled sensitivity and specificity of PET or PET/CT in patients suspicious of prosthetic infection on a per prosthesis-based analysis were calculated. The area under the receiver-operating characteristic (ROC) curve was calculated to measure the accuracy of PET or PET/CT in patients with suspicious of prosthetic infection. Fourteen studies comprising 838 prosthesis with suspicious of prosthetic infection after arthroplasty were included in this meta-analysis. The pooled sensitivity of PET or PET/CT in detecting prosthetic infection was 86% (95% confidence interval [CI] 82-90%) on a per prosthesis-based analysis. The pooled specificity of PET or PET/CT in detecting prosthetic infection was 86% (95% CI 83-89%) on a per prosthesis-based analysis. The area under the ROC curve was 0.93 on a per prosthesis-based analysis. In patients suspicious of prosthetic infection, FDG PET or PET/CT demonstrated high sensitivity and specificity. FDG PET or PET/CT are accurate methods in this setting. Nevertheless, possible sources of false positive results and influcing factors should kept in mind.
Buchman, A L; Ament, M E; Sohel, M; Dubin, M; Jenden, D J; Roch, M; Pownall, H; Farley, W; Awal, M; Ahn, C
2001-01-01
Previous studies have shown that plasma free choline concentrations are significantly decreased in many long-term home total parenteral nutrition (TPN) patients. Furthermore, low choline status has been associated with both hepatic morphologic and hepatic aminotransferase abnormalities. A preliminary pilot study suggested choline-supplemented TPN may be useful in reversal of these hepatic abnormalities. Fifteen patients (10 M, 5 F) who had required TPN for > or =80% of their nutritional needs were randomized to receive their usual TPN (n = 8), or TPN to which 2 g choline chloride had been added (n = 7) for 24 weeks. Baseline demographic data were similar between groups. Patients had CT scans of the liver and spleen, and blood for plasma free and phospholipid-bound choline, alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase, gamma glutamyl transferase (GGT), bilirubin, serum lipids, complete blood count (CBC), and chemistry profile obtained at baseline, and weeks 2, 4, 6, 12, 16, 20, 24, and 34. CT scans were analyzed for Hounsfield unit (HU) densities. There were no significant differences in any measured parameters after 2 weeks. However, at 4 weeks, a significant difference in liver HU between groups was observed (13.3+/-5.0 HU [choline] vs 5.8+/-5.2 HU [placebo], p = .04). This significant trend continued through week 24. Recurrent hepatic steatosis and decreased HU were observed at week 34, 10 weeks after choline supplementation had been discontinued. A significant increase in the liver-spleen differential HU was also observed in the choline group (10.6+/-6.2 HU [choline] vs 1.3+/-3.3 HU [placebo], p = .01). Serum ALT decreased significantly (p = .01 to .05) in the choline group vs placebo at weeks 6,12, 20, and 24. Serum AST was significantly decreased in the choline group by week 24 (p = .02). The serum alkaline phosphatase was significantly reduced in the choline group at weeks 2, 12, 20, 24, and 34 (p = .02 to 0.07). Total bilirubin was normal in these patients and remained unchanged during the study. Serum GGT tended to decrease more in the choline group, but the greater decrease was not statistically significant. Choline deficiency is a significant contributor to the development of TPN-associated liver disease. The data suggest choline is a required nutrient for long-term home TPN patients.
Tan, J; Bluml, S; Hoang, T; Dubowitz, D; Mevenkamp, G; Ross, B
1998-06-01
Recent reports suggest that oral choline supplement may alter the cerebral choline/creatine (Cho/Cr) ratio and might be used to treat neurodegenerative disorders of cholinergic transmission. Using both 1H and 31P MRS, we reexamined the Cho/Cr ratio and quantified cerebral choline and its major constituents: phosphoethanolamine (PE), phosphorylcholine (PC), glycerophosphorylethanolamine (GPE), and glycerophosphorylcholine (GPC). In the four brain locations examined, no significant increases in Cho/Cr, [Cho], or in its major constituents were found in response to an oral challenge of 50 mg/kg of choline bitartrate. Oral choline did not significantly affect human cerebral metabolism in the short term.
Huang, Jun; Rozwadowski, Kevin; Bhinu, V S; Schäfer, Ulrike; Hannoufa, Abdelali
2008-07-01
Sinapoylcholine (sinapine) is the most abundant antinutritional phenolic compound in cruciferous seeds. The quaternary ammonium compounds, choline, betaine and N,N-dimethylglycine, reside along a biosynthetic pathway linked to the synthesis of membrane phospholipids and neurotransmitters with various biological functions. In chicken, choline intake is required for optimal egg-laying performance and a choline supplement in diet is positively correlated with weight gains. A key step in sinapine biosynthesis is catalyzed by sinapoylglucose: choline sinapoyltransferase (SCT; EC 2.3.1.91) to form an ester linkage with sinapoylglucose and choline. The objective of this work was to reduce the sinapine content and simultaneously enhance free choline levels in cruciferous seeds. We report here the characterization of an Arabidopsis T-DNA insertion mutant lacking SCT activity in the seed. The sct mutant seeds contain less than 1% of sinapine and a more than 2-fold increase in free choline compared with wild type. We further expressed a choline oxidase (COX; EC 1.1.3.17) gene from Arthrobacter pascens in the Arabidopsis sct mutant and wild-type background using a napin gene promoter to convert free choline into betaine, an effective stress-alleviating compound in plants. Betaine was not detected in WT or sct mutant seeds. The sct+COX seeds contain nearly 2-fold greater levels of betaine relative to WT+COX seeds, demonstrating a positive correlation between endogenous choline and betaine production. In contrast, stable comparable levels of free choline were detected between sct+COX and WT+COX plants suggesting choline homeostasis likely prevent high levels of betaine production in the seed of transgenic COX plants.
Zhang, Cai-Xia; Pan, Mei-Xia; Li, Bin; Wang, Lian; Mo, Xiong-Fei; Chen, Yu-Ming; Lin, Fang-Yu; Ho, Suzanne C
2013-02-01
Few epidemiological studies have evaluated the association of choline and betaine intake with breast cancer risk and the results remain inconsistent. This study aimed to assess the relationship between dietary intake of choline and betaine and the risk of breast cancer among Chinese women. A two-stage case-control study was conducted, with 807 cases and 807 age- (5-year interval) and residence (rural/urban)-matched controls. A validated food frequency questionnaire was used to assess dietary intake by face-to-face interview. An unconditional logistic regression model was used to calculate multivariate-adjusted odds ratios (OR) and 95% confidence intervals (CI). A significant inverse association was found between dietary choline and betaine consumption and breast cancer risk. The adjusted OR for the highest quartile of intake compared with the lowest were 0.40 (95% CI = 0.28-0.57, P(trend) < 0.001) for total choline intake, 0.58 (95% CI = 0.42-0.80, P(trend) < 0.001) for betaine intake and 0.38 (0.27-0.53, P(trend) < 0.001) for choline plus betaine intake, respectively. Intakes of individual choline compouds, choline from glycerophosphocholine, phosphocholine, phosphatidylcholine, sphingomyelin and free choline were also negatively associated with breast cancer risk. The inverse association between choline intake and breast cancer risk was primarily confined to participants with low folate level (<242 g/day), with an OR (95% CI) of 0.46 (0.23-0.91) comparing the fourth quartile with the first quartile of choline intake (P(trend) = 0.005). The present study suggests that consumption of choline and betaine is inversely associated with the risk of breast cancer. The association of choline intake with breast cancer risk is probably modified by folate intake. © 2012 Japanese Cancer Association.
Mills, James L; Fan, Ruzong; Brody, Lawrence C; Liu, Aiyi; Ueland, Per M; Wang, Yifan; Kirke, Peadar N; Shane, Barry; Molloy, Anne M
2014-10-01
Low maternal choline intake and blood concentration may be risk factors for having a child with a neural tube defect (NTD); however, the data are inconsistent. This is an important question to resolve because choline, if taken periconceptionally, might add to the protective effect currently being achieved by folic acid. We examined the relation between NTDs, choline status, and genetic polymorphisms reported to influence de novo choline synthesis to investigate claims that taking choline periconceptionally could reduce NTD rates. Two study groups of pregnant women were investigated: women who had a current NTD-affected pregnancy (AP; n = 71) and unaffected controls (n = 214) and women who had an NTD in another pregnancy but not in the current pregnancy [nonaffected pregnancy (NAP); n = 98] and unaffected controls (n = 386). Blood samples to measure betaine and total choline concentrations and single nucleotide polymorphisms related to choline metabolism were collected at their first prenatal visit. Mean (±SD) plasma total choline concentrations in the AP (2.8 ± 1.0 mmol/L) and control (2.9 ± 0.9 mmol/L) groups did not differ significantly. Betaine concentrations were not significantly different between the 2 groups. Total choline and betaine in the NAP group did not differ from controls. Cases were significantly more likely to have the G allele of phosphatidylethanolamine-N-methyltransferase (PEMT; V175M, +5465 G>A) rs7946 (P = 0.02). Our results indicate that maternal betaine and choline concentrations are not strongly associated with NTD risk. The association between PEMT rs7946 and NTDs requires confirmation. The addition of choline to folic acid supplements may not further reduce NTD risk. © 2014 American Society for Nutrition.
Mills, James L; Fan, Ruzong; Brody, Lawrence C; Liu, Aiyi; Ueland, Per M; Wang, Yifan; Kirke, Peadar N; Shane, Barry; Molloy, Anne M
2014-01-01
Background: Low maternal choline intake and blood concentration may be risk factors for having a child with a neural tube defect (NTD); however, the data are inconsistent. This is an important question to resolve because choline, if taken periconceptionally, might add to the protective effect currently being achieved by folic acid. Objective: We examined the relation between NTDs, choline status, and genetic polymorphisms reported to influence de novo choline synthesis to investigate claims that taking choline periconceptionally could reduce NTD rates. Design: Two study groups of pregnant women were investigated: women who had a current NTD-affected pregnancy (AP; n = 71) and unaffected controls (n = 214) and women who had an NTD in another pregnancy but not in the current pregnancy [nonaffected pregnancy (NAP); n = 98] and unaffected controls (n = 386). Blood samples to measure betaine and total choline concentrations and single nucleotide polymorphisms related to choline metabolism were collected at their first prenatal visit. Results: Mean (±SD) plasma total choline concentrations in the AP (2.8 ± 1.0 mmol/L) and control (2.9 ± 0.9 mmol/L) groups did not differ significantly. Betaine concentrations were not significantly different between the 2 groups. Total choline and betaine in the NAP group did not differ from controls. Cases were significantly more likely to have the G allele of phosphatidylethanolamine-N-methyltransferase (PEMT; V175M, +5465 G>A) rs7946 (P = 0.02). Conclusions: Our results indicate that maternal betaine and choline concentrations are not strongly associated with NTD risk. The association between PEMT rs7946 and NTDs requires confirmation. The addition of choline to folic acid supplements may not further reduce NTD risk. PMID:25240073
Choline concentrations are lower in postnatal plasma of preterm infants than in cord plasma.
Bernhard, Wolfgang; Raith, Marco; Kunze, Rebecca; Koch, Vera; Heni, Martin; Maas, Christoph; Abele, Harald; Poets, Christian F; Franz, Axel R
2015-08-01
Choline is essential to human development, particularly of the brain in the form of phosphatidylcholine, sphingomyelin and acetylcholine, for bile and lipoprotein formation, and as a methyl group donator. Choline is actively transported into the fetus, and maternal supply correlates with cognitive outcome. Interruption of placental supply may therefore impair choline homeostasis in preterm infants. Determination of postnatal plasma concentrations of choline and its derivatives betaine and dimethylglycine (DMG) in preterm infants compared to cord and maternal blood matched for postmenstrual age (PMA). We collected plasma of very low-birth-weight infants undergoing neonatal intensive care (n = 162), cord plasma of term and preterm infants (n = 176, 24-42-week PMA), serum of parturients (n = 36), and plasma of healthy premenopausal women (n = 40). Target metabolites were analyzed with tandem mass spectrometry and reported as median (25th/75th percentiles). Cord plasma choline concentration was 41.4 (31.8-51.2) µmol/L and inversely correlated with PMA. In term but not in preterm infants, cord plasma choline was lower in girls than in boys. Prenatal glucocorticoid treatment did not affect choline levels in cord plasma, whereas betaine was decreased and DMG increased. In parturients and non-pregnant women, choline concentrations were 14.1 (10.3-16.9) and 8.8 (5.7-11.2) µmol/L, respectively, whereas betaine was lowest in parturients. After delivery, preterm infant plasma choline decreased to 20.8 (16.0-27.6) µmol/L within 48 h. Betaine and DMG correlated with plasma choline in all groups. In preterm infants, plasma choline decreases to 50 % of cord plasma concentrations, reflecting choline undernourishment and postnatal metabolic adaptation, and potentially contributing to impaired outcome.
Sex and menopausal status influence human dietary requirements for the nutrient choline.
Fischer, Leslie M; daCosta, Kerry Ann; Kwock, Lester; Stewart, Paul W; Lu, Tsui-Shan; Stabler, Sally P; Allen, Robert H; Zeisel, Steven H
2007-05-01
Although humans require dietary choline for methyl donation, membrane function, and neurotransmission, choline can also be derived from the de novo synthesis of phosphatidylcholine, which is up-regulated by estrogen. A recommended Adequate Intake (AI) exists for choline; however, an Estimated Average Requirement has not been set because of a lack of sufficient human data. The objective of the study was to evaluate the dietary requirements for choline in healthy men and women and to investigate the clinical sequelae of choline deficiency. Fifty-seven adult subjects (26 men, 16 premenopausal women, 15 postmenopausal women) were fed a diet containing 550 mg choline x 70 kg(-1) x d(-1) for 10 d followed by <50 mg choline x 70 kg(-1) x d(-1) with or without a folic acid supplement (400 microg/d per randomization) for up to 42 d. Subjects who developed organ dysfunction during this diet had normal organ function restored after incremental amounts of choline were added back to the diet. Blood and urine were monitored for signs of toxicity and metabolite concentrations, and liver fat was assessed by using magnetic resonance imaging. When deprived of dietary choline, 77% of men and 80% of postmenopausal women developed fatty liver or muscle damage, whereas only 44% of premenopausal women developed such signs of organ dysfunction. Moreover, 6 men developed these signs while consuming 550 mg choline x 70 kg(-1) x d(-1), the AI for choline. Folic acid supplementation did not alter the subjects' response. Subject characteristics (eg, menopausal status) modulated the dietary requirement for choline, and a daily intake at the current AI was not sufficient to prevent organ dysfunction in 19 of the subjects.
Influence of chain length and double bond on the aqueous behavior of choline carboxylate soaps.
Rengstl, Doris; Diat, Olivier; Klein, Regina; Kunz, Werner
2013-02-26
In preceding studies, we demonstrated that choline carboxylates ChC(m) with alkyl chain lengths of m = 12 - 18 are highly water-soluble (for m = 12, soluble up to 93 wt % soap and 0 °C). In addition, choline soaps are featured by an extraordinary lyotropic phase behavior. With decreasing water concentration, the following phases were found: micellar phase (L(1)), discontinuous cubic phase (I(1)' and I(1)"), hexagonal phase (H(1)), bicontinuous cubic phase (V(1)), and lamellar phase (L(α)). The present work is also focused on the lyotropic phase behavior of choline soaps but with shorter alkyl chains or different alkyl chain properties. We have investigated the aqueous phase behavior of choline soaps with C(8) and C(10) chain-lengths (choline octanoate and choline decanoate) and with a C(18) chain-length with a cis-double bond (choline oleate). We found that choline decanoate follows the lyotropic phase behavior of the longer-chain homologues mentioned above. Choline octanoate in water shows no discontinuous cubic phases, but an extended, isotropic micellar solution phase. In addition, choline octanoate is at the limit between a surfactant and a hydrotrope. The double bond in choline oleate leads also to a better solubility in water and a decrease of the solubilization temperature. It also influences the Gaussian curvature of the aggregates which results in a loss of discontinuous cubic phases in the binary phase diagram. The different lyotropic mesophases were identified by the penetration scan technique with polarizing light microscope and visual observations. To clarify the structural behavior small (SAXS) and wide (WAXS) angle X-ray scattering were performed. To further characterize the extended, isotropic micellar solution phase in the binary phase diagram of choline octanoate viscosity and conductivity measurements were also carried out.
Sex and menopausal status influence human dietary requirements for the nutrient choline2
Fischer, Leslie M; daCosta, Kerry Ann; Kwock, Lester; Stewart, Paul W; Lu, Tsui-Shan; Stabler, Sally P; Allen, Robert H; Zeisel, Steven H
2008-01-01
Background Although humans require dietary choline for methyl donation, membrane function, and neurotransmission, choline can also be derived from the de novo synthesis of phosphatidylcholine, which is up-regulated by estrogen. A recommended Adequate Intake (AI) exists for choline; however, an Estimated Average Requirement has not been set because of a lack of sufficient human data. Objective The objective of the study was to evaluate the dietary requirements for choline in healthy men and women and to investigate the clinical sequelae of choline deficiency. Design Fifty-seven adult subjects (26 men, 16 premenopausal women, 15 postmenopausal women) were fed a diet containing 550 mg choline · 70 kg−1 · d−1 for 10 d followed by <50 mg choline · 70 kg−1 · d−1 with or without a folic acid supplement (400 μg/d per randomization) for up to 42 d. Subjects who developed organ dysfunction during this diet had normal organ function restored after incremental amounts of choline were added back to the diet. Blood and urine were monitored for signs of toxicity and metabolite concentrations, and liver fat was assessed by using magnetic resonance imaging. Results When deprived of dietary choline, 77% of men and 80% of postmenopausal women developed fatty liver or muscle damage, whereas only 44% of premenopausal women developed such signs of organ dysfunction. Moreover, 6 men developed these signs while consuming 550 mg choline · 70 kg−1 · d−1, the AI for choline. Folic acid supplementation did not alter the subjects’ response. Conclusion Subject characteristics (eg, menopausal status) modulated the dietary requirement for choline, and a daily intake at the current AI was not sufficient to prevent organ dysfunction in 19 of the subjects. PMID:17490963
Choline-mediated modulation of hippocampal sharp wave-ripple complexes in vitro.
Fischer, Viktoria; Both, Martin; Draguhn, Andreas; Egorov, Alexei V
2014-06-01
The cholinergic system is critically involved in the modulation of cognitive functions, including learning and memory. Acetylcholine acts through muscarinic (mAChRs) and nicotinic receptors (nAChRs), which are both abundantly expressed in the hippocampus. Previous evidence indicates that choline, the precursor and degradation product of Acetylcholine, can itself activate nAChRs and thereby affects intrinsic and synaptic neuronal functions. Here, we asked whether the cellular actions of choline directly affect hippocampal network activity. Using mouse hippocampal slices we found that choline efficiently suppresses spontaneously occurring sharp wave-ripple complexes (SPW-R) and can induce gamma oscillations. In addition, choline reduces synaptic transmission between hippocampal subfields CA3 and CA1. Surprisingly, these effects are mediated by activation of both mAChRs and α7-containing nAChRs. Most nicotinic effects became only apparent after local, fast application of choline, indicating rapid desensitization kinetics of nAChRs. Effects were still present following block of choline uptake and are, therefore, likely because of direct actions of choline at the respective receptors. Together, choline turns out to be a potent regulator of patterned network activity within the hippocampus. These actions may be of importance for understanding state transitions in normal and pathologically altered neuronal networks. In this study we asked whether choline, the precursor and degradation product of acetylcholine, directly affects hippocampal network activity. Using mouse hippocampal slices we found that choline efficiently suppresses spontaneously occurring sharp wave-ripple complexes (SPW-R). In addition, choline reduces synaptic transmission between hippocampal subfields. These effects are mediated by direct activation of muscarinic as well as nicotinic cholinergic pathways. Together, choline turns out to be a potent regulator of patterned activity within hippocampal networks. © 2014 International Society for Neurochemistry.
Huang, Jun; Hirji, Rozina; Adam, Luc; Rozwadowski, Kevin L.; Hammerlindl, Joe K.; Keller, Wilf A.; Selvaraj, Gopalan
2000-01-01
Glycinebetaine (betaine) affords osmoprotection in bacteria, plants and animals, and protects cell components against harsh conditions in vitro. This and a compelling body of other evidence have encouraged the engineering of betaine production in plants lacking it. We have installed the metabolic step for oxidation of choline, a ubiquitous substance, to betaine in three diverse species, Arabidopsis, Brassica napus, and tobacco (Nicotiana tabacum), by constitutive expression of a bacterial choline oxidase gene. The highest levels of betaine in independent transgenics were 18.6, 12.8, and 13 μmol g−1 dry weight, respectively, values 10- to 20-fold lower than the levels found in natural betaine producers. However, choline-fed transgenic plants synthesized substantially more betaine. Increasing the choline supplementation further enhanced betaine synthesis, up to 613 μmol g−1 dry weight in Arabidopsis, 250 μmol g−1 dry weight in B. napus, and 80 μmol g−1 dry weight in tobacco. These studies demonstrate the need to enhance the endogenous choline supply to support accumulation of physiologically relevant amounts of betaine. A moderate stress tolerance was noted in some but not all betaine-producing transgenic lines based on relative shoot growth. Furthermore, the responses to stresses such as salinity, drought, and freezing were variable among the three species. PMID:10712538
Webb, R A; Xue, L
1998-02-01
Absorption of exogenous choline by the cestode Hymenolepis diminuta was found to be both Na+- and HCO3--dependent and, at pH 6 to 7, accounted for up to 65% of the total choline uptake. Na+/HCO3- dependent choline uptake was activated at approximately 6 mM HCO3- (EC50 approximately 9 mM), and, above 100 mM Na+, the rate of uptake was directly proportional to the Na+ concentration. Atempts to uncouple Na+-dependent uptake from HCO3--dependent uptake were not successful: K+-depolarization was without effect on HCO3--dependent choline uptake, and use of valinoomycin to hyperpolarize the brush-border membrane resulted in inhibition of uptake. Na-/HCO3--dependent choline uptake was not associated with solvent drag. The Na+/HCO3--dependent choline uptake displayed a Q10 of 6.4 (27 degrees to 37 degrees) and a relatively high activation energy of 126 kJ x mol(-1). At pH 6.0 and 7.0, Na-/HCO3--dependent choline uptake rates were similar, but Na+/HCO3--dependent choline uptake was reduced at pH 5.0. The Na+/HCO3--dependent choline uptake, at pH 7.0, displayed a Kt of approximately 500 microM and a Vmax of 4.01 pmol x mg wet weight(-1) x min(-1). The Na+/HCO3--dependent choline uptake was hemicholinium-3 sensitive, but not significantly inhibited by 200 microM bumetanide, 100 microM amiloride, benzamil, or EIPA or by 1 mM 4,4'-diisothiocyano-2,2'-stilbene disulfonate (DIDS) or 4-acetamido-4'-isothiocvanostilbene-2,2'-disulfonic acid (SITS). Although it remains to be shown that HCO3- uptake is coupled directly to both choline and Na+ uptake, the data suggest that choline up take occurs via choline/Na+/HCO3--co-trans porter.
Repression of choline kinase by inositol and choline in Saccharomyces cerevisiae.
Hosaka, K; Murakami, T; Kodaki, T; Nikawa, J; Yamashita, S
1990-01-01
The regulation of choline kinase (EC 2.7.1.32), the initial enzyme in the CDP-choline pathway, was examined in Saccharomyces cerevisiae. The addition of myo-inositol to a culture of wild-type cells resulted in a significant decrease in choline kinase activity. Additional supplementation of choline caused a further reduction in the activity. The coding frame of the choline kinase gene, CK1, was joined to the carboxyl terminus of lacZ and expressed in Escherichia coli as a fusion protein, which was then used to prepare an anti-choline kinase antibody. Upon Western (immuno-) and Northern (RNA) blot analyses using the antibody and a CK1 probe, respectively, the decrease in the enzyme activity was found to be correlated with decreases in the enzyme amount and mRNA abundance. The molecular mass of the enzyme was estimated to be 66 kilodaltons, in agreement with the value predicted previously from the nucleotide sequence of the gene. The coding region of CK1 was replaced with that of lacZ, and CK1 expression was measured by assaying beta-galactosidase. The expression of beta-galactosidase from this fusion was repressed by myo-inositol and choline and derepressed in a time-dependent manner upon their removal. The present findings indicate that yeast choline kinase is regulated by myo-inositol and choline at the level of mRNA abundance. Images FIG. 3 FIG. 4 PMID:2156807
Effect of choline supplementation on fatigue in trained cyclists.
Spector, S A; Jackman, M R; Sabounjian, L A; Sakkas, C; Landers, D M; Willis, W T
1995-05-01
The availability of choline, the precurser of the neurotransmitter, acetylcholine, in the diet is sufficient to provide the body's requirements under normal conditions. However, preliminary evidence indicates that depletion of choline may limit performance, while oral supplementation may delay fatigue during prolonged efforts. A double-blind cross-over design was used to determine the relationship between plasma choline and fatigue during supramaximal brief and submaximal prolonged activities. Twenty male cyclists (ages 23-29) with maximal aerobic power (VO2max) between 58 and 81 ml.min-1.kg-1 were randomly divided into BRIEF (N = 10) and PROLONGED (N = 10) groups. One hour after drinking a beverage with or without choline bitartrate (2.43 g), cyclists began riding at a power output equivalent to approximately 150% (BRIEF) and 70% (PROLONGED) of VO2max at a cadence of 80-90 rpm. Time to exhaustion, indirect calorimetry and serum choline, lactate, and glucose were measured. Increases in choline levels of 37 and 52% were seen within one hour of ingestion for BRIEF and PROLONGED groups, respectively. Neither group depleted choline during exercise under the choline or placebo conditions. Fatigue times and work performed under either test condition for the BRIEF or PROLONGED groups were similar. Consequently, trained cyclists do not deplete choline during supramaximal brief or prolonged submaximal exercise, nor do they benefit from choline supplementation to delay fatigue under these conditions.
Damjanovic, Marlen; Kharat, Arun S.; Eberhardt, Alice; Tomasz, Alexander; Vollmer, Waldemar
2007-01-01
Streptococcus pneumoniae has an absolute nutritional requirement for choline, and the choline molecules are known to incorporate exclusively into the cell wall and membrane teichoic acids of the bacterium. We describe here the isolation of a mutant of strain R6 in which a single G→T point mutation in the gene tacF (formerly designated spr1150) is responsible for generating a choline-independent phenotype. The choline-independent phenotype could be transferred to the laboratory strain R6 and to the encapsulated strain D39 by genetic transformation with a PCR product or with a plasmid carrying the mutated tacF gene. The tacF gene product belongs to the protein family of polysaccharide transmembrane transporters (flippases). A model is presented in which TacF is required for the transport of the teichoic acid subunits across the cytoplasmic membrane. According to this model, wild-type TacF has a strict specificity for choline-containing subunits, whereas the TacF present in the choline-independent mutant strain is able to transport both choline-containing and choline-free teichoic acid chains. The proposed transport specificity of parental-type TacF for choline-containing subunits would ensure the loading of the cell wall with teichoic acid chains decorated with choline residues, which appear to be essential for the virulence of this pathogen. PMID:17660291
The addition of choline to parenteral nutrition.
Buchman, Alan L
2009-11-01
Choline is a quaternary amine endogenously synthesized from the amino acid methionine or absorbed via the portal circulation. It is ubiquitous in the diet, although it has a greater presence in organ meats. Choline is an essential component of all cell membranes, and has been considered a required dietary nutrient since 1998 by the US Institute of Medicine's Food and Nutrition Board. Choline is necessary for DNA repair, mediated by its role as a methyl donor. It also serves as the precursor for the neurotransmitter acetylcholine. Evidence has accumulated that hepatic steatosis, which occurs during parenteral nutrition therapy, develops as a result of choline deficiency because endogenous production of choline from parenterally infused methionine is deficient. In addition, memory deficits and skeletal muscle abnormalities have been described, and choline deficiency appears to activate cellular apoptosis. Provision of intravenous choline ameliorates hepatic steatosis associated with parenteral nutrition infusion.
Caffeine potentiates the enhancement by choline of striatal acetylcholine release
NASA Technical Reports Server (NTRS)
Johnson, D. A.; Ulus, I. H.; Wurtman, R. J.
1992-01-01
We investigated the effect of peripherally administered caffeine (50 mg/kg), choline (30, 60, or 120 mg/kg) or combinations of both drugs on the spontaneous release of acetylcholine (ACh) from the corpus striatum of anesthetized rats using in vivo microdialysis. Caffeine alone or choline in the 30 or 60 mg/kg dose failed to increase ACh in microdialysis samples; the 120 mg/kg choline dose significantly enhanced ACh during the 80 min following drug administration. Coadministration of caffeine with choline significantly increased ACh release after each of the choline doses tested. Peak microdialysate levels with the 120 mg/kg dose were increased 112% when caffeine was additionally administered, as compared with 54% without caffeine. These results indicate that choline administration can enhance spontaneous ACh release from neurons, and that caffeine, a drug known to block adenosine receptors on these neurons, can amplify the choline effect.
Consolo, S; Garattini, S; Ladinsky, H; Thoenen, H
1972-02-01
1. Acetylcholine and choline were measured in the spleens and irides of normal and 6-hydroxydopamine-treated cats. In addition, choline acetyltransferase activity was measured in the spleens.2. No acetylcholine or choline acetyltransferase activity were found in spleens of normal or treated cats. The choline content of normal spleens was 12.4 +/- 1.5 mug/g wet wt. (mean +/- S.E. of mean), which was not significantly altered by chemical sympathectomy.3. The acetylcholine and choline contents of the cat iris were 3.0 +/- 0.3 mug/g wet wt. and 7.7 +/- 0.9 mug/g wet wt., respectively. There was no difference in acetylcholine and choline concentrations between left and right or normal and sympathectomized irides.4. These results are discussed in relation to the question of a cholinergic link in post-ganglionic sympathetic transmission.
Intestinal transfer of choline in rat and hamster
Sanford, P. A.; Smyth, D. H.
1971-01-01
1. The transfer of choline was studied with sacs of everted intestine of rat and hamster. 2. The choline transfer can be divided into two components, a diffusion process and a saturable process. The latter plays a relatively greater part at low concentrations of choline, which include the physiological concentration in the plasma. The saturable process is better seen in the hamster than in the rat. 3. Intestinal transfer of choline is influenced by substances altering the availability of energy in the cell, and by some substances chemically or pharmacologically related to choline. These findings are consistent with some kind of specific mechanism for choline transfer. 4. Part of the choline taken up by the cell appears as a metabolite not yet identified. The formation of the metabolite is a saturable process and is abolished by anaerobic conditions and by homogenization. 5. The results are also discussed in relation to parameters of transfer. PMID:5090994
Nocianitri, K A; Aoyama, Y
2001-04-01
Rats of the Donryu, Wistar, Fischer, and Sprague-Dawley strains were examined for the effects of choline deficiency on liver lipids, serum lipids, and serum ornithine carbamoyltransferase. The liver total lipid, triacylglycerol, cholesterol and phospholipid contents in the choline-deficient rats were significantly higher than those in choline-sufficient rats. The contents of total lipids and phospholipids in the liver of the Wistar and Fischer rats fed on a choline-deficient diet were significantly higher than those of the Donryu and Sprague-Dawley rats. The levels of triacylglycerol, cholesterol and phospholipids in the serum were significantly decreased by feeding with the choline-deficient diet. The serum ornithine carbamoyltransferase activity was increased in the Wistar and Fischer strains by feeding with the choline-deficient diet. The Wistar and Fischer strains were consequently the most sensitive to both lipid accumulation and liver lesions induced by the choline deficiency.
Ganz, Ariel B.; Shields, Kelsey; Fomin, Vlad G.; Lopez, Yusnier S.; Mohan, Sanjay; Lovesky, Jessica; Chuang, Jasmine C.; Ganti, Anita; Carrier, Bradley; Yan, Jian; Taeswuan, Siraphat; Cohen, Vanessa V.; Swersky, Camille C.; Stover, Julie A.; Vitiello, Gerardo A.; Malysheva, Olga V.; Mudrak, Erika; Caudill, Marie A.
2016-01-01
Although single nucleotide polymorphisms (SNPs) in folate-mediated pathways predict susceptibility to choline deficiency during severe choline deprivation, it is unknown if effects persist at recommended intakes. Thus, we used stable isotope liquid chromatography-mass spectrometry (LC-MS) methodology to examine the impact of candidate SNPs on choline metabolism in a long-term, randomized, controlled feeding trial among pregnant, lactating, and nonpregnant (NP) women consuming 480 or 930 mg/d choline (22% as choline-d9, with d9 indicating a deuterated trimethyl amine group) and meeting folate-intake recommendations. Variants impairing folate metabolism, methylenetetrahydrofolate reductase (MTHFR) rs1801133, methionine synthase (MTR) rs1805087 [wild-type (WT)], MTR reductase (MTRR) rs1801394, and methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase-formyltetrahydrofolate synthetase (MTHFD1) rs2236225, influenced choline dynamics, frequently through interactions with reproductive state and choline intake, with fewer genotypic alterations observed among pregnant women. Women with these variants partitioned more dietary choline toward phosphatidylcholine (PC) biosynthesis via the cytidine diphosphate (CDP)-choline pathway at the expense of betaine synthesis even when use of betaine as a methyl donor was increased. Choline intakes of 930 mg/d restored partitioning of dietary choline between betaine and CDP-PC among NP (MTHFR rs1801133 and MTR rs1805087 WT) and lactating (MTHFD1 rs2236225) women with risk genotypes. Overall, our findings indicate that loss-of-function variants in folate-metabolizing enzymes strain cellular PC production, possibly via impaired folate-dependent phosphatidylethanolamine-N-methyltransferase (PEMT)-PC synthesis, and suggest that women with these risk genotypes may benefit from choline intakes exceeding current recommendations.—Ganz, A. B., Shields, K., Fomin, V. G., Lopez, Y. S., Mohan, S., Lovesky, J., Chuang, J. C., Ganti, A., Carrier, B., Yan, J., Taeswuan, S., Cohen, V. V., Swersky, C. C., Stover, J. A., Vitiello, G. A., Malysheva, O. V., Mudrak, E., Caudill, M. A. Genetic impairments in folate enzymes increase dependence on dietary choline for phosphatidylcholine production at the expense of betaine synthesis. PMID:27342765
Ganz, Ariel B; Shields, Kelsey; Fomin, Vlad G; Lopez, Yusnier S; Mohan, Sanjay; Lovesky, Jessica; Chuang, Jasmine C; Ganti, Anita; Carrier, Bradley; Yan, Jian; Taeswuan, Siraphat; Cohen, Vanessa V; Swersky, Camille C; Stover, Julie A; Vitiello, Gerardo A; Malysheva, Olga V; Mudrak, Erika; Caudill, Marie A
2016-10-01
Although single nucleotide polymorphisms (SNPs) in folate-mediated pathways predict susceptibility to choline deficiency during severe choline deprivation, it is unknown if effects persist at recommended intakes. Thus, we used stable isotope liquid chromatography-mass spectrometry (LC-MS) methodology to examine the impact of candidate SNPs on choline metabolism in a long-term, randomized, controlled feeding trial among pregnant, lactating, and nonpregnant (NP) women consuming 480 or 930 mg/d choline (22% as choline-d 9 , with d 9 indicating a deuterated trimethyl amine group) and meeting folate-intake recommendations. Variants impairing folate metabolism, methylenetetrahydrofolate reductase (MTHFR) rs1801133, methionine synthase (MTR) rs1805087 [wild-type (WT)], MTR reductase (MTRR) rs1801394, and methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase-formyltetrahydrofolate synthetase (MTHFD1) rs2236225, influenced choline dynamics, frequently through interactions with reproductive state and choline intake, with fewer genotypic alterations observed among pregnant women. Women with these variants partitioned more dietary choline toward phosphatidylcholine (PC) biosynthesis via the cytidine diphosphate (CDP)-choline pathway at the expense of betaine synthesis even when use of betaine as a methyl donor was increased. Choline intakes of 930 mg/d restored partitioning of dietary choline between betaine and CDP-PC among NP (MTHFR rs1801133 and MTR rs1805087 WT) and lactating (MTHFD1 rs2236225) women with risk genotypes. Overall, our findings indicate that loss-of-function variants in folate-metabolizing enzymes strain cellular PC production, possibly via impaired folate-dependent phosphatidylethanolamine-N-methyltransferase (PEMT)-PC synthesis, and suggest that women with these risk genotypes may benefit from choline intakes exceeding current recommendations.-Ganz, A. B., Shields, K., Fomin, V. G., Lopez, Y. S., Mohan, S., Lovesky, J., Chuang, J. C., Ganti, A., Carrier, B., Yan, J., Taeswuan, S., Cohen, V. V., Swersky, C. C., Stover, J. A., Vitiello, G. A., Malysheva, O. V., Mudrak, E., Caudill, M. A. Genetic impairments in folate enzymes increase dependence on dietary choline for phosphatidylcholine production at the expense of betaine synthesis. © FASEB.
Zhao, Hua-Fu; Jiang, Wei-Dan; Liu, Yang; Jiang, Jun; Wu, Pei; Kuang, Sheng-Yao; Tang, Ling; Tang, Wu-Neng; Zhang, Yong-An; Zhou, Xiao-Qiu; Feng, Lin
2016-05-01
An 8-week feeding trial was conducted to determine the effects of graded levels of choline (197-1795 mg/kg) on antibacterial properties, inflammatory status and barrier function in the gills of grass carp. The results showed that optimal dietary choline supplementation significantly improved lysozyme and acid phosphatase activities, complement component 3 (C3) content, and the liver expressed antimicrobial peptide 2 and Hepcidin mRNA levels in the gills of fish (P < 0.05). In addition, appropriate dietary choline significantly decreased the oxidative damage, which might be partly due to increase copper, zinc superoxide dismutase (Cu/Zn-SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST) and glutathione reductase (GR) activities and increased glutathione content in the gills of fish (P < 0.05). Moreover, appropriate dietary choline significantly up-regulated the mRNA levels of interleukin 10 and transforming growth factor β1, Zonula occludens 1, Occludin, Claudin-b, c, 3 and 12, inhibitor of κBα, target of rapamycin, Cu/Zn-SOD, CAT, GR, GPx, GST and NF-E2-related factor 2 in the gills of fish (P < 0.05). Conversely, appropriate dietary choline significantly down-regulated the mRNA levels of pro-inflammatory cytokines, tumor necrosis factor α, interleukin 8, interferon γ, interleukin 1β, and related signaling factors, nuclear factor kappa B p65, IκB kinase β, IκB kinase γ, myosin light chain kinase and Kelch-like-ECH-associated protein 1a (Keap1a) in the gills of fish (P < 0.05). However, choline did not have a significant effect on the mRNA levels of IκB kinase α, Claudin-15 and Keap1b in the gills of fish. Collectively, appropriate dietary choline levels improved gill antibacterial properties and relative gene expression levels of tight junction proteins, and decreased inflammatory status, as well as up-regulated the mRNA levels of related signaling molecules in the gills of fish. Based on gill C3 content and AHR activity, the dietary choline requirements for young grass carp (266.5-787.1 g) were estimated to be 1191.0 and 1555.0 mg/kg diet, respectively. Copyright © 2016. Published by Elsevier Ltd.
Nutritional genomics: defining the dietary requirement and effects of choline.
Zeisel, Steven H
2011-03-01
As it becomes evident that single nucleotide polymorphisms (SNPs) in humans can create metabolic inefficiencies, it is reasonable to ask if such SNPs influence dietary requirements. Epidemiologic studies that examine SNPs relative to risks for diseases are common, but there are few examples of clinically sized nutrition studies that examine how SNPs influence metabolism. Studies on how SNPs influence the dietary requirement for choline provide a model for how we might begin examining the effects of SNPs on nutritional phenotypes using clinically sized studies (clinical nutrigenomics). Most men and postmenopausal women develop liver or muscle dysfunction when deprived of dietary choline. More than one-half of premenopausal women may be resistant to choline deficiency-induced organ dysfunction, because estrogen induces the gene [phosphatidylethanolamine-N-methyltransferase (PEMT)] that catalyzes endogenous synthesis of phosphatidylcholine, which can subsequently yield choline. Those premenopausal women that do require a dietary source of choline have a SNP in PEMT, making them unresponsive to estrogen induction of PEMT. It is important to recognize differences in dietary requirements for choline in women, because during pregnancy, maternal dietary choline modulates fetal brain development in rodent models. Because choline metabolism and folate metabolism intersect at the methylation of homocysteine, manipulations that limit folate availability also increase the use of choline as a methyl donor. People with a SNPs in MTHFD1 (a gene of folate metabolism that controls the use of folate as a methyl donor) are more likely to develop organ dysfunction when deprived of choline; their dietary requirement is increased because of increased need for choline as a methyl donor.
Albiñana, E; Luengo, J G; Baraibar, A M; Muñoz, M D; Gandía, L; Solís, J M; Hernández-Guijo, J M
2017-06-01
Choline is present at cholinergic synapses as a product of acetylcholine degradation. In addition, it is considered a selective agonist for α5 and α7 nicotinic acetylcholine receptors (nAChRs). In this study, we determined how choline affects action potentials and excitatory synaptic transmission using extracellular and intracellular recording techniques in CA1 area of hippocampal slices obtained from both mice and rats. Choline caused a reversible depression of evoked field excitatory postsynaptic potentials (fEPSPs) in a concentration-dependent manner that was not affected by α7 nAChR antagonists. Moreover, this choline-induced effect was not mimicked by either selective agonists or allosteric modulators of α7 nAChRs. Additionally, this choline-mediated effect was not prevented by either selective antagonists of GABA receptors or hemicholinium, a choline uptake inhibitor. The paired pulse facilitation paradigm, which detects whether a substance affects presynaptic release of glutamate, was not modified by choline. On the other hand, choline induced a robust increase of population spike evoked by orthodromic stimulation but did not modify that evoked by antidromic stimulation. We also found that choline impaired recurrent inhibition recorded in the pyramidal cell layer through a mechanism independent of α7 nAChR activation. These choline-mediated effects on fEPSP and population spike observed in rat slices were completely reproduced in slices obtained from α7 nAChR knockout mice, which reinforces our conclusion that choline modulates synaptic transmission and neuronal excitability by a mechanism independent of nicotinic receptor activation.
Metabolism of acetylcholine in human erythrocytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chapman, E.S.
1990-01-01
In order to examine the possible role of erythrocyte acetylcholinesterase in the maintenance of membrane phospholipid content and membrane fluidity, experiments were performed to monitor the activity of the enzyme and follow the fate of one of its hydrolytic products, choline. Intact human erythrocytes were incubated with acetylcholine (choline methyl-{sup 14}C). The incubation resulted in the hydrolysis of acetylcholine to acetate and choline; the reaction was catalyzed by membrane acetylcholinesterase. The studies demonstrate the further metabolism of choline. Experiments were carried out to determine rate of hydrolysis of acetylcholine, uptake of choline, identification of intracellular metabolites of choline, and identificationmore » of radiolabeled membrane components. Erythrocytes at a 25% hematocrit were incubated in an isoosmotic bicarbonate buffer pH 7.4, containing glucose, adenosine, streptomycin and penicillin with 0.3 {mu}Ci of acetylcholine (choline methyl-{sup 14}C), for 24 hours. Aliquots of the erythrocyte suspension were taken throughout for analysis. Erythrocytes were washed free of excess substrate, lysed, and the hemolysate was extracted for choline and its metabolites. Blank samples containing incubation buffer and radiolabeled acetylcholine only, and erythrocyte hemolysate extracts were analyzed for choline content, the difference between blank samples and hemolysate extracts was the amount of choline originating from acetylcholine and attributable to acetylcholinesterase activity. The conversion of choline to {sup 14}C-betaine is noted after several minutes of incubation; at 30 minutes, more than 80% of {sup 14}C-choline is taken up and after several hours, detectable levels of radiolabeled S-adenosylmethionine were present in the hemolysate extract.« less
Mygind, Vanessa L; Evans, Sophie E; Peddie, Meredith C; Miller, Jody C; Houghton, Lisa A
2013-01-01
Recently, choline has been associated with neurodevelopment, cognitive function and neural tube defect incidence. However, data on usual intakes are limited, and estimates of dietary intakes of choline and its metabolite betaine, are not available for New Zealanders. The objective of the present study was to determine usual intake and food sources of choline and betaine in a group of New Zealand reproductive age women. Dietary intake data were collected from a sample of 125 women, aged 18-40 years, by means of a 3-day weighed food record, and usual choline and betaine intake distributions were determined. The mean (SD) daily intakes of choline and betaine were 316 (66) mg and 178 (66) mg, respectively. The total choline intake relative to energy intake and body weight was 0.18 mg/kcal and 5.1 mg/kg, respectively. Only 16% of participants met or exceeded the Adequate Intake (AI) for adult women of 425 mg of choline. The top five major food contributors of choline were eggs, red meat, milk, bread and chicken; and of betaine were bread, breakfast cereal, pasta, grains and root vegetables (carrots, parsnips, beetroot, swedes). Our findings contribute towards the recent emergence of published reports on the range of dietary choline and betaine intakes consumed by free-living populations. In our sample of New Zealand women, few participants were meeting or exceeding the AI level. Given recent epidemiological evidence suggesting health benefits of increased choline and betaine intakes, recommendations should be made to encourage the consumption of choline and betaine-rich foods.
Choline deficiency increases lymphocyte apoptosis and DNA damage in humans.
da Costa, Kerry-Ann; Niculescu, Mihai D; Craciunescu, Corneliu N; Fischer, Leslie M; Zeisel, Steven H
2006-07-01
Whereas deficiency of the essential nutrient choline is associated with DNA damage and apoptosis in cell and rodent models, it has not been shown in humans. The objective was to ascertain whether lymphocytes from choline-deficient humans had greater DNA damage and apoptosis than did those from choline-sufficient humans. Fifty-one men and women aged 18-70 y were fed a diet containing the recommended adequate intake of choline (control) for 10 d. They then were fed a choline-deficient diet for up to 42 d before repletion with 138-550 mg choline/d. Blood was collected at the end of each phase, and peripheral lymphocytes were isolated. DNA damage and apoptosis were then assessed by activation of caspase-3, terminal deoxynucleotide transferase-mediated dUTP nick end-labeling, and single-cell gel electrophoresis (COMET) assays. All subjects fed the choline-deficient diet had lymphocyte DNA damage, as assessed by COMET assay, twice that found when they were fed the control diet. The subjects who developed organ dysfunction (liver or muscle) when fed the choline-deficient diet had significantly more apoptotic lymphocytes, as assessed by the activated caspase-3 assay, than when fed the control diet. A choline-deficient diet increased DNA damage in humans. Subjects in whom these diets induced liver or muscle dysfunction also had higher rates of apoptosis in their peripheral lymphocytes than did subjects who did not develop organ dysfunction. Assessment of DNA damage and apoptosis in lymphocytes appears to be a clinically useful measure in humans (such as those receiving parenteral nutrition) in whom choline deficiency is suspected.
Maternal choline supplementation: a nutritional approach for improving offspring health?
Jiang, Xinyin; West, Allyson A; Caudill, Marie A
2014-05-01
The modulatory role of choline on the fetal epigenome and the impact of in utero choline supply on fetal programming and health are of great interest. Studies in animals and/or humans suggest that maternal choline supplementation during pregnancy benefits important physiologic systems such as offspring cognitive function, response to stress, and cerebral inhibition. Because alterations in offspring phenotype frequently coincide with epigenetic modifications and changes in gene expression, maternal choline supplementation may be a nutritional strategy to improve lifelong health of the child. Future studies are warranted to elucidate further the effect of choline on the fetal epigenome and to determine the level of maternal choline intake required for optimal offspring physiologic function. Copyright © 2014 Elsevier Ltd. All rights reserved.
Zeisel, Steven H
2011-10-01
The consequences of fetal exposure to alcohol are very diverse and the likely molecular mechanisms involved must be able to explain how so many developmental processes could go awry. If pregnant rat dams are fed alcohol, their pups develop abnormalities characteristic of fetal alcohol spectrum disorders (FASD), but if these rat dams were also treated with choline, the effects from ethanol were attenuated in their pups. Choline is an essential nutrient in humans, and is an important methyl group donor. Alcohol exposure disturbs the metabolism of choline and other methyl donors. Availability of choline during gestation directly influences epigenetic marks on DNA and histones, and alters gene expression needed for normal neural and endothelial progenitor cell proliferation. Maternal diets low in choline alter development of the mouse hippocampus, and decrement memory for life. Women eating low-choline diets have an increased risk of having an infant with a neural tube or orofacial cleft birth defect. Thus, the varied effects of choline could affect the expression of FASD, and studies on choline might shed some light on the underlying molecular mechanisms responsible for FASD.
Sherriff, Jill L; O’Sullivan, Therese A; Properzi, Catherine; Oddo, Josephine-Lee; Adams, Leon A
2016-01-01
Our understanding of the impact of poor hepatic choline/phosphatidylcholine availability in promoting the steatosis characteristic of human nonalcoholic fatty liver disease (NAFLD) has recently advanced and possibly relates to phosphatidylcholine/phosphatidylethanolamine concentrations in various, membranes as well as cholesterol dysregulation. A role for choline/phosphatidylcholine availability in the progression of NAFLD to liver injury and serious hepatic consequences in some individuals requires further elucidation. There are many reasons for poor choline/phosphatidylcholine availability in the liver, including low intake, estrogen status, and genetic polymorphisms affecting, in particular, the pathway for hepatic de novo phosphatidylcholine synthesis. In addition to free choline, phosphatidylcholine has been identified as a substrate for trimethylamine production by certain intestinal bacteria, thereby reducing host choline bioavailability and providing an additional link to the increased risk of cardiovascular disease faced by those with NAFLD. Thus human choline requirements are highly individualized and biomarkers of choline status derived from metabolomics studies are required to predict those at risk of NAFLD induced by choline deficiency and to provide a basis for human intervention trials. PMID:26773011
CDP-choline liposomes provide significant reduction in infarction over free CDP-choline in stroke
Adibhatla, Rao Muralikrishna; Hatcher, J.F.; Tureyen, K.
2007-01-01
Cytidine-5′-diphosphocholine (CDP-choline, Citicoline, Somazina) is in clinical use (intravenous administration) for stroke treatment in Europe and Japan, while USA phase III stroke clinical trials (oral administration) were disappointing. Others showed that CDP-choline liposomes significantly increased brain uptake over the free drug in cerebral ischemia models. Liposomes were formulated as DPPC, DPPS, cholesterol, GM1 ganglioside; 7/4/7/1.57 molar ratio or 35.8/20.4/35.8/8.0 mol%. GM1 ganglioside confers long-circulating properties to the liposomes by suppressing phagocytosis. CDP-choline liposomes deliver the agent intact to the brain, circumventing the rate-limiting, cytidine triphosphate:phosphocholine cytidylyltransferase in phosphatidylcholine synthesis. Our data show that CDP-choline liposomes significantly ( P < 0.01) decreased cerebral infarction (by 62%) compared to the equivalent dose of free CDP-choline (by 26%) after 1 h focal cerebral ischemia and 24 h reperfusion in spontaneously hypertensive rats. Beneficial effects of CDP-choline liposomes in stroke may derive from a synergistic effect between the phospholipid components of the liposomes and the encapsulated CDP-choline. PMID:16153613
Sherriff, Jill L; O'Sullivan, Therese A; Properzi, Catherine; Oddo, Josephine-Lee; Adams, Leon A
2016-01-01
Our understanding of the impact of poor hepatic choline/phosphatidylcholine availability in promoting the steatosis characteristic of human nonalcoholic fatty liver disease (NAFLD) has recently advanced and possibly relates to phosphatidylcholine/phosphatidylethanolamine concentrations in various, membranes as well as cholesterol dysregulation. A role for choline/phosphatidylcholine availability in the progression of NAFLD to liver injury and serious hepatic consequences in some individuals requires further elucidation. There are many reasons for poor choline/phosphatidylcholine availability in the liver, including low intake, estrogen status, and genetic polymorphisms affecting, in particular, the pathway for hepatic de novo phosphatidylcholine synthesis. In addition to free choline, phosphatidylcholine has been identified as a substrate for trimethylamine production by certain intestinal bacteria, thereby reducing host choline bioavailability and providing an additional link to the increased risk of cardiovascular disease faced by those with NAFLD. Thus human choline requirements are highly individualized and biomarkers of choline status derived from metabolomics studies are required to predict those at risk of NAFLD induced by choline deficiency and to provide a basis for human intervention trials. © 2016 American Society for Nutrition.
Towards quantitative PET/MRI: a review of MR-based attenuation correction techniques.
Hofmann, Matthias; Pichler, Bernd; Schölkopf, Bernhard; Beyer, Thomas
2009-03-01
Positron emission tomography (PET) is a fully quantitative technology for imaging metabolic pathways and dynamic processes in vivo. Attenuation correction of raw PET data is a prerequisite for quantification and is typically based on separate transmission measurements. In PET/CT attenuation correction, however, is performed routinely based on the available CT transmission data. Recently, combined PET/magnetic resonance (MR) has been proposed as a viable alternative to PET/CT. Current concepts of PET/MRI do not include CT-like transmission sources and, therefore, alternative methods of PET attenuation correction must be found. This article reviews existing approaches to MR-based attenuation correction (MR-AC). Most groups have proposed MR-AC algorithms for brain PET studies and more recently also for torso PET/MR imaging. Most MR-AC strategies require the use of complementary MR and transmission images, or morphology templates generated from transmission images. We review and discuss these algorithms and point out challenges for using MR-AC in clinical routine. MR-AC is work-in-progress with potentially promising results from a template-based approach applicable to both brain and torso imaging. While efforts are ongoing in making clinically viable MR-AC fully automatic, further studies are required to realize the potential benefits of MR-based motion compensation and partial volume correction of the PET data.
Some actions of substituted choline phenyl ethers, particularly of choline 2:6-xylyl ether
Edge, N. D.; Mason, D. F. J.; Wyllie, J. H.
1957-01-01
Marked nicotine-like stimulant properties are possessed by choline phenyl ether and choline o-tolyl ether, and to a decreasing extent by choline 2:6-xylyl ether and choline 2:4:6-mesityl ether. The compounds all show neuromuscular blocking properties, which are of short duration and pass from mainly decamethonium-like to mainly curare-like as more methyl groups are added to the phenyl nucleus. This series of compounds also possesses muscarinic, weak anti-adrenaline and vasodilator properties, as well as long-lasting local anaesthetic effects in the two compounds tested by intradermal injection. PMID:13460236
Topuz, Bora B; Altinbas, Burcin; Yilmaz, Mustafa S; Saha, Sikha; Batten, Trevor F; Savci, Vahide; Yalcin, Murat
2014-05-01
CDP-choline is an endogenous metabolite in phosphatidylcholine biosynthesis. Exogenous administration of CDP-choline has been shown to affect brain metabolism and to exhibit cardiovascular, neuroendocrine neuroprotective actions. On the other hand, little is known regarding its respiratory actions and/or central mechanism of its respiratory effect. Therefore the current study was designed to investigate the possible effects of centrally injected CDP-choline on respiratory system and the mediation of the central cholinergic receptors and phospholipase to thromboxane signaling pathway on CDP-choline-induced respiratory effects in anaesthetized rats. Intracerebroventricularly (i.c.v.) administration of CDP-choline induced dose- and time-dependent increased respiratory rates, tidal volume and minute ventilation of male anaesthetized Spraque Dawley rats. İ.c.v. pretreatment with atropine failed to alter the hyperventilation responses to CDP-choline whereas mecamylamine, cholinergic nicotinic receptor antagonist, mepacrine, phospholipase A2 inhibitor, and neomycin phospholipase C inhibitor, blocked completely the hyperventilation induced by CDP-choline. In addition, central pretreatment with furegrelate, thromboxane A2 synthesis inhibitor, also partially blocked CDP-choline-evoked hyperventilation effects. These data show that centrally administered CDP-choline induces hyperventilation which is mediated by activation of central nicotinic receptors and phospholipase to thromboxane signaling pathway. Copyright © 2014 Elsevier B.V. All rights reserved.
Anaerobic choline metabolism in microcompartments promotes growth and swarming of Proteus mirabilis.
Jameson, Eleanor; Fu, Tiantian; Brown, Ian R; Paszkiewicz, Konrad; Purdy, Kevin J; Frank, Stefanie; Chen, Yin
2016-09-01
Gammaproteobacteria are important gut microbes but only persist at low levels in the healthy gut. The ecology of Gammaproteobacteria in the gut environment is poorly understood. Here, we demonstrate that choline is an important growth substrate for representatives of Gammaproteobacteria. Using Proteus mirabilis as a model, we investigate the role of choline metabolism and demonstrate that the cutC gene, encoding a choline-trimethylamine lyase, is essential for choline degradation to trimethylamine by targeted mutagenesis of cutC and subsequent complementation experiments. Proteus mirabilis can rapidly utilize choline to enhance growth rate and cell yield in broth culture. Importantly, choline also enhances swarming-associated colony expansion of P. mirabilis under anaerobic conditions on a solid surface. Comparative transcriptomics demonstrated that choline not only induces choline-trimethylamine lyase but also genes encoding shell proteins for the formation of bacterial microcompartments. Subsequent analyses by transmission electron microscopy confirmed the presence of such novel microcompartments in cells cultivated in liquid broth and hyper-flagellated swarmer cells from solid medium. Together, our study reveals choline metabolism as an adaptation strategy for P. mirabilis and contributes to better understand the ecology of this bacterium in health and disease. © 2015 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.
Thomas Rajarethnem, Huban; Megur Ramakrishna Bhat, Kumar; Jc, Malsawmzuali; Kumar Gopalkrishnan, Siva; Mugundhu Gopalram, Ramesh Babu; Rai, Kiranmai Sesappa
2017-01-01
Choline is an essential nutrient for humans which plays an important role in structural integrity and signaling functions. Docosahexaenoic acid (DHA) is a polyunsaturated fatty acid, highly enriched in cell membranes of the brain. Dietary intake of choline or DHA alone by pregnant mothers directly affects fetal brain development and function. But no studies show the efficacy of combined supplementation of choline and DHA on fetal neurodevelopment. The aim of the present study was to analyze fetal neurodevelopment on combined supplementation of pregnant dams with choline and DHA. Pregnant dams were divided into five groups: normal control [NC], saline control [SC], choline [C], DHA, and C + DHA. Saline, choline, and DHA were given as supplements to appropriate groups of dams. NC dams were undisturbed during entire gestation. On postnatal day (PND) 40, brains were processed for Cresyl staining. Pups from choline or DHA supplemented group showed significant ( p < 0.05) increase in number of neurons in hippocampus when compared to the same in NC and SC groups. Moreover, pups from C + DHA supplemented group showed significantly higher number of neurons ( p < 0.001) in hippocampus when compared to the same in NC and SC groups. Thus combined supplementation of choline and DHA during normal pregnancy enhances fetal hippocampal neurodevelopment better than supplementation of choline or DHA alone.
Naber, Marnix; Hommel, Bernhard; Colzato, Lorenza S
2015-08-14
Only few nutrients are known to enhance cognition. Here we explore whether visuomotor performance can be improved through the intake of the nutrient choline, an essential chemical compound in a vertebrate's diet. Choline is abundant in for example eggs and shrimps and many animal studies suggest that it serves as a cognitive enhancer. As choline is important for the communication between motor neurons and the control of skeletal muscles, we assumed that choline supplementation may have positive effects on action coordination in humans. A group of twenty-eight individuals ingested two grams of choline bitartrate or a placebo in two separate sessions. Seventy minutes post ingestion, participants performed a visuomotor aiming task in which they had to rapidly hit the centers of targets. Results showed that participants hit targets more centrally after choline supplementation. Pupil size (a cognition-sensitive biomarker) also significantly decreased after choline intake and correlated positively with the hit distance to the targets and the number of target misses, and negatively with reaction times. These findings point to a choline-induced bias towards action precision in the trade-off between speed and accuracy. The changes in pupil size suggest that choline uptake alters cholinergic functions in the nervous system.
Contents of lecithin and choline in crude drugs.
Yamasaki, K; Kikuoka, M; Nishi, H; Kokusenya, Y; Miyamoto, T; Matsuo, M; Sato, T
1994-01-01
The determination of lecithin and choline in crude drugs was established by a combination of high performance liquid chromatography (HPLC) with electrochemical detector (ECD) and enzyme reaction. Lecithin in crude drugs extracted with a mixture of chloroform-methanol (2:1) at room temperature was hydrolyzed by phospholipase D. The hydrolyzate was injected to HPLC, and choline was separated from impurities by reverse phase column. The choline was converted to betaine and hydrogen peroxide by passing through column packed with immobilized choline oxidase. This hydrogen peroxide was detected by ECD. The peak area of hydrogen peroxide derived from lecithin was proportional to the concentration of lecithin from 0.10 to 1.52 microgram/ml. Choline in crude drugs was extracted with ethanol under reflux and determined under the same HPLC conditions as lecithin. The peak area of hydrogen peroxide derived from choline was proportional to the concentration of choline from 0.01 to 0.45 microgram/ml. The contents of lecithin and choline in 31 kinds of crude drugs were determined by these established methods. The results showed that Cervi Parvum Cornu, Kokurozin, Foenigraeci Semen and Psoraleae Semen contained more lecithin than other crude drugs, while Angelicae Radix, Foenigraeci Semen, Psoraleae Semen, and especially Hippocampus were found to contain more choline than other crude drugs.
Naber, Marnix; Hommel, Bernhard; Colzato, Lorenza S.
2015-01-01
Only few nutrients are known to enhance cognition. Here we explore whether visuomotor performance can be improved through the intake of the nutrient choline, an essential chemical compound in a vertebrate’s diet. Choline is abundant in for example eggs and shrimps and many animal studies suggest that it serves as a cognitive enhancer. As choline is important for the communication between motor neurons and the control of skeletal muscles, we assumed that choline supplementation may have positive effects on action coordination in humans. A group of twenty-eight individuals ingested two grams of choline bitartrate or a placebo in two separate sessions. Seventy minutes post ingestion, participants performed a visuomotor aiming task in which they had to rapidly hit the centers of targets. Results showed that participants hit targets more centrally after choline supplementation. Pupil size (a cognition-sensitive biomarker) also significantly decreased after choline intake and correlated positively with the hit distance to the targets and the number of target misses, and negatively with reaction times. These findings point to a choline-induced bias towards action precision in the trade-off between speed and accuracy. The changes in pupil size suggest that choline uptake alters cholinergic functions in the nervous system. PMID:26271904
Fitzsimmons, Liam F; Hampel, Ken J; Wargo, Matthew J
2012-09-01
Choline is abundantly produced by eukaryotes and plays an important role as a precursor of the osmoprotectant glycine betaine. In Pseudomonas aeruginosa, glycine betaine has additional roles as a nutrient source and an inducer of the hemolytic phospholipase C, PlcH. The multiple functions for glycine betaine suggested that the cytoplasmic pool of glycine betaine is regulated in P. aeruginosa. We used (13)C nuclear magnetic resonance ((13)C-NMR) to demonstrate that P. aeruginosa maintains both choline and glycine betaine pools under a variety of conditions, in contrast to the transient glycine betaine pool reported for most bacteria. We were able to experimentally manipulate the choline and glycine betaine pools by overexpression of the cognate catabolic genes. Depletion of either the choline or glycine betaine pool reduced phospholipase production, a result unexpected for choline depletion. Depletion of the glycine betaine pool, but not the choline pool, inhibited growth under conditions of high salt with glucose as the primary carbon source. Depletion of the choline pool inhibited growth under high-salt conditions with choline as the sole carbon source, suggesting a role for the choline pool under these conditions. Here we have described the presence of a choline pool in P. aeruginosa and other pseudomonads that, with the glycine betaine pool, regulates osmoprotection and phospholipase production and impacts growth under high-salt conditions. These findings suggest that the levels of both pools are actively maintained and that perturbation of either pool impacts P. aeruginosa physiology.
Yara, M; Iwao, B; Hara, N; Yamanaka, T; Uchino, H; Inazu, M
2015-06-01
Choline is essential for the synthesis of the major membrane phospholipid phosphatidylcholine (PC), the methyl donor betaine and the neurotransmitter acetylcholine (ACh), which is involved in several vital biological functions that play key roles in fetal development. In this study, we examined the molecular and functional characteristics of choline uptake in the human trophoblastic cell line JEG-3. We examined [(3)H]choline uptake in the human trophoblastic cell line JEG-3. The expression of CTL1 and CTL2 was evaluated by quantitative real-time PCR, western blotting and immunocytochemistry. We demonstrated that JEG-3 cells take up [(3)H] choline by a saturable process that is mediated by a Na(+)-independent and pH-dependent transport system. The cells have two different [(3)H] choline transport systems, high- and low-affinity, with Km values of 28.4 ± 5.0 μM and 210.6 ± 55.1 μM, respectively. Cationic compounds and hemicholinium-3 (HC-3) inhibited choline uptake. Choline transporter-like protein 1 (CTL1) and CTL2 mRNA and protein were highly expressed in JEG-3 cells and were localized to the plasma membrane. The present results suggest that choline is mainly transported via a high-affinity choline transport system (CTL1) and a low-affinity choline transport system (CTL2) in human trophoblastic JEG-3 cells. These transporters play an important role in the growth of the fetus. Copyright © 2015 Elsevier Ltd. All rights reserved.
Effects of choline on health across the life course: a systematic review.
Leermakers, Elisabeth T M; Moreira, Eduardo M; Kiefte-de Jong, Jessica C; Darweesh, Sirwan K L; Visser, Thirsa; Voortman, Trudy; Bautista, Paula K; Chowdhury, Rajiv; Gorman, Donal; Bramer, Wichor M; Felix, Janine F; Franco, Oscar H
2015-08-01
Choline is a precursor of both betaine and acetylcholine and might, therefore, influence cardiovascular and cognitive outcomes. There has been concern, however, that it may influence blood lipid levels because it is an essential component of very-low-density lipoproteins. The aim was to systematically review, using PRISMA guidelines, the literature pertaining to the effects of choline on body composition and on metabolic, cardiovascular, respiratory, and neurological outcomes in different life stages. The MEDLINE, Embase, Cochrane Central, Web of Science, PubMed, and Google Scholar databases were searched up to July 2014. Fifty relevant articles were identified. These comprised trials and cohort, case-control, and cross-sectional studies that assessed blood levels of choline, dietary intake of choline, and supplementation with choline in a population free of diseases at baseline. There is some observational evidence that choline during pregnancy may be beneficial for the neurological health of the child. In adults, choline may have beneficial effects on cognition, but high-quality (intervention) studies are lacking. Results on the effects of choline on body composition, blood lipids, and cardiovascular health were inconsistent. Evidence to confirm the suggested effects of choline on health in different stages of life is scarce. Potential effects of choline need to be confirmed by intervention studies. Possible harmful effects on cardiometabolic health need careful evaluation. © The Author(s) 2015. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
The supply of choline is important for fetal progenitor cells
Zeisel, Steven H.
2011-01-01
Fetal progenitor cells proliferate, migrate, differentiate and undergo apoptosis at specific times during fetal development. Choline is needed by these cells for membrane synthesis and for methylation. There is growing evidence that this nutrient also modulates epigenetic regulation of gene expression in both neuronal and endothelial progenitor cells, thereby modifying brain development. It is likely that these mechanisms explain why, in rodent models, maternal dietary intake of choline influences both angiogenesis and neurogenesis in fetal hippocampus, and results in life-long changes in memory function. This also may explain why women eating diets low in choline have a greater risk of having a baby with a birth defect. Choline is mainly found in foods that contain fat and cholesterol, and intake of such foods has diminished in response dietary advice from nutritionists and physicians. Forty years ago, diets commonly contained choline-rich foods but now women in the USA tend to eat diets low in choline content. Premenopausal women normally may require less choline in their diet than do men and postmenopausal women, because estrogen induces the gene for the enzyme catalyzing endogenous biosynthesis of the choline-containing phospholipid phosphatidylcholine. However, many women have a single nucleotide polymorphism (SNP) that blocks the induction of endogenous biosynthesis, thereby making them require more dietary choline. When these women eat diets low in choline, the supply of this nutrient to the fetus is likely to be inadequate, and may perturb progenitor cell proliferation, migration, differentiation and apoptosis. PMID:21693194
Fitzsimmons, Liam F.; Hampel, Ken J.
2012-01-01
Choline is abundantly produced by eukaryotes and plays an important role as a precursor of the osmoprotectant glycine betaine. In Pseudomonas aeruginosa, glycine betaine has additional roles as a nutrient source and an inducer of the hemolytic phospholipase C, PlcH. The multiple functions for glycine betaine suggested that the cytoplasmic pool of glycine betaine is regulated in P. aeruginosa. We used 13C nuclear magnetic resonance (13C-NMR) to demonstrate that P. aeruginosa maintains both choline and glycine betaine pools under a variety of conditions, in contrast to the transient glycine betaine pool reported for most bacteria. We were able to experimentally manipulate the choline and glycine betaine pools by overexpression of the cognate catabolic genes. Depletion of either the choline or glycine betaine pool reduced phospholipase production, a result unexpected for choline depletion. Depletion of the glycine betaine pool, but not the choline pool, inhibited growth under conditions of high salt with glucose as the primary carbon source. Depletion of the choline pool inhibited growth under high-salt conditions with choline as the sole carbon source, suggesting a role for the choline pool under these conditions. Here we have described the presence of a choline pool in P. aeruginosa and other pseudomonads that, with the glycine betaine pool, regulates osmoprotection and phospholipase production and impacts growth under high-salt conditions. These findings suggest that the levels of both pools are actively maintained and that perturbation of either pool impacts P. aeruginosa physiology. PMID:22753069
Influence of dietary protein and excess methionine on choline needs for young bobwhite quail
Serafin, J.A.
1982-01-01
Experiments were conducted with young Bobwhite quail (Colinus virginianus) to investigate the effect of differing dietary protein levels and nondetrimental amounts of excess methionine on choline needs. Growth and feed consumption of quail fed an adequate (27.3%) protein purified diet supplemented with 2000 mg/kg of choline were unaffected by increasing the level of excess methionine to 1.75%; however, greater amounts (2.0%, 2.25%) of excess methionine depressed growth (P less than .01), reduced feed consumption (P less than .01), and decreased feed utilization (P less than .05). Quail fed a purified diet containing 13.85% protein and 515 mg/kg of choline grew poorly. Growth was unaffected by additional choline in this diet. Growth was suboptimal among quail fed purified diets containing adequate or high (41.55%) levels of protein in which choline was limiting; however, a high level of protein did not in itself affect performance. Growth was improved by supplemental choline in these diets. Growth of quail fed purified diets with up to 1.35% excess methionine which were limiting (531 mg/kg) in choline was less than that of groups fed 2000 mg/kg of added dietary choline (P less than .01); however, excess methionine did not significantly influence growth of quail fed choline-deficient diets. These experiments indicate that neither high dietary protein nor excess methionine, fed at non-growth-depressing levels, increases dietary choline needs for young Bobwhite quail.
Amenta, F; Tayebati, S K
2008-01-01
Acetylcholine (ACh) is a neurotransmitter widely diffused in central, peripheral, autonomic and enteric nervous system. This paper has reviewed the main mechanisms of ACh synthesis, storage, and release. Presynaptic choline transport supports ACh production and release, and cholinergic terminals express a unique transporter critical for neurotransmitter release. Neurons cannot synthesize choline, which is ultimately derived from the diet and is delivered through the blood stream. ACh released from cholinergic synapses is hydrolyzed by acetylcholinesterase into choline and acetyl coenzyme A and almost 50% of choline derived from ACh hydrolysis is recovered by a high-affinity choline transporter. Parallel with the development of cholinergic hypothesis of geriatric memory dysfunction, cholinergic precursor loading strategy was tried for treating cognitive impairment occurring in Alzheimer's disease. Controlled clinical studies denied clinical usefulness of choline and lecithin (phosphatidylcholine), whereas for other phospholipids involved in choline biosynthetic pathways such as cytidine 5'-diphosphocholine (CDP-choline) or alpha-glyceryl-phosphorylcholine (choline alphoscerate) a modest improvement of cognitive dysfunction in adult-onset dementia disorders is documented. These inconsistencies have probably a metabolic explanation. Free choline administration increases brain choline availability but it does not increase ACh synthesis/or release. Cholinergic precursors to serve for ACh biosynthesis should be incorporate and stored into phospholipids in brain. It is probable that appropriate ACh precursors and other correlated molecules (natural or synthesized) could represent a tool for developing therapeutic strategies by revisiting and updating treatments/supplementations coming out from this therapeutic stalemate.
Morley, B J; Garner, L L
1990-06-11
Sodium-dependent, high-affinity choline uptake (HACU) and the density of alpha-bungarotoxin (BuTX) receptor-binding sites were measured in the hippocampus following the intraventricular infusion of ethylcholine aziridinium ion (AF64A), a neurotoxin that competes with choline at high-affinity choline transport sites and may result in the degeneration of cholinergic axons. Eight days after the infusion of AF64A into the lateral ventricles (2.5 nmol/side), HACU was depleted by 60% in the hippocampus of experimental animals in comparison with controls, but the density of BuTX-binding sites was not altered. The administration of 15 mg/ml of choline chloride in the drinking water increased the density of BuTX-binding sites, as previously reported by this laboratory. The administration of AF64A did not prevent the effect of exogenous choline on the density of binding sites, nor did choline treatment alter the effect of AF64A on HACU. These data indicate that the density of BuTX-binding sites in the hippocampus is not altered following a substantial decrease in HACU and presumed degeneration of cholinergic axons. Since the effect of exogenous choline was not prevented by AF64A treatment, the data are interpreted to support the hypothesis that the increase in the density of BuTX-binding sites following dietary choline supplementation is attributable to a direct effect of choline on receptor sites.
West, Allyson A; Shih, Yun; Wang, Wei; Oda, Keiji; Jaceldo-Siegl, Karen; Sabaté, Joan; Haddad, Ella; Rajaram, Sujatha; Caudill, Marie A; Burns-Whitmore, Bonny
2014-10-01
The lacto-ovo-vegetarian (LOV) dietary regimen allows eggs, which are a rich source of choline. Consumption of eggs by LOV women may be especially important during pregnancy and lactation when demand for choline is high. The aim of this single blind, randomized, crossover-feeding study was to determine how near-daily egg consumption influenced biomarkers of choline metabolism in healthy LOV women of reproductive age (n=15). Because long-chain n-3 fatty acids could influence choline metabolism, the effect of n-3-enriched vs nonenriched eggs on choline metabolites was also investigated. Three 8-week dietary treatments consisting of six n-3-enriched eggs per week, six nonenriched eggs per week, and an egg-free control phase were separated by 4-week washout periods. Choline metabolites were quantified in fasted plasma collected before and after each treatment and differences in posttreatment choline metabolite concentrations were determined with linear mixed models. The n-3-enriched and nonenriched egg treatments produced different choline metabolite profiles compared with the egg-free control; however, response to the eggs did not differ (P>0.1). Consumption of the n-3-enriched egg treatment yielded higher plasma free choline (P=0.02) and betaine (P<0.01) (vs egg-free control) concentrations, whereas consumption of the nonenriched egg treatment yielded borderline higher (P=0.06) plasma phosphatidylcholine (vs egg-free control) levels. Neither egg treatment increased levels of plasma trimethylamine oxide, a gut-flora-dependent oxidative choline metabolite implicated as a possible risk factor for cardiovascular disease. Overall these data suggest that egg fatty-acid composition modulates the metabolic use of choline. Copyright © 2014 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.
Choline Ameliorates Deficits in Balance Caused by Acute Neonatal Ethanol Exposure.
Bearer, Cynthia F; Wellmann, Kristen A; Tang, Ningfeng; He, Min; Mooney, Sandra M
2015-08-01
Fetal alcohol spectrum disorder (FASD) is estimated to occur in 1 % of all live births. The developing cerebellum is vulnerable to the toxic effects of alcohol. People with FASD have cerebellar hypoplasia and developmental deficits associated with cerebellar injury. Choline is an essential nutrient, but many diets in the USA are choline deficient. In rats, choline given with or following alcohol exposure reduces many alcohol-induced neurobehavioral deficits but not those associated with cerebellar function. Our objective was to determine if choline supplementation prior to alcohol exposure would ameliorate the impact of ethanol on a cerebellar-associated behavioral test in mice. Pregnant C57Bl6/J mice were maintained on a choline-deficient diet from embryonic day 4.5. On postnatal day 1 (P1), pups were assigned to one of eight treatment groups: choline (C) or saline (S) pre-treatment from P1 to P5, ethanol (6 g/kg) or Intralipid(®) on P5, C and or S post-treatment from P6 to P20. On P30, balance and coordination were tested using the dowel crossing test. Overall, there was a significant effect of treatment and females crossed longer distances than males. Ethanol exposure significantly reduced the total distance crossed. Choline pre-treatment increased the distance crossed by males, and both pre- and post-treatment with choline significantly increased total distance crossed for females and males. There was no effect of choline on Intralipid®-exposed animals. This is the first study to show that choline ameliorates ethanol-induced effects on balance and coordination when given before ethanol exposure. Choline fortification of common foodstuffs may reduce the effects of alcohol.
Hang, Pengzhou; Zhao, Jing; Su, Zhenli; Sun, Hanqi; Chen, Tingting; Zhao, Lihui; Du, Zhimin
2018-01-01
Backgroud/Aims: Growing evidence suggests that both cardiomyocyte apoptosis and excessive autophagy exacerbates cardiac dysfunction during myocardial ischemia-reperfusion (IR). As a precursor of acetylcholine, choline has been found to protect the heart by repressing ischemic cardiomyocyte apoptosis. However, the relationship between choline and cardiomyocyte autophagy is unclear. The present study aimed to investigate whether autophagy was involved in the cardioprotection of choline during IR. Rats were subjected to 30 min reversible ischemia by ligation of left anterior descending coronary artery followed by reperfusion for 2 h. Choline (5 mg/kg, i.v.) alone or along with rapamycin (5 mg/ kg, i.p.) were injected 30 min before ischemia. Transmission electron microscopy, hematoxylin and eosin (HE) and TUNEL staining were conducted to evaluate the effect of choline on cardiac apoptosis and autophagy. Protein levels of autophagic markers including LC3, beclin-1 and p62 as well as Akt and mammalian target of rapamycin (mTOR) were examined by Western blotting. Myocardial IR-induced cardiac apoptosis and accumulation of autophagosomes was attenuated by choline. Choline treatment significantly ameliorated myocardial IR-induced autophagic activity characterized by repression of beclin-1 over-activation, the reduction of autophagosomes, the LC3-II/LC3-I ratio, and p62 protein abundance. In addition, IR-induced downregulation of p-Akt/mTOR cascade was increased by choline. However, the above functions of choline were abolished by rapamycin. These findings suggest that choline plays a protective role against myocardial IR injury by inhibiting excessive autophagy, which might be associated with the activation of Akt/mTOR pathway. This study provides new mechanistic understanding of cardioprotective effect of choline and suggests novel potential therapeutic targets for cardiac IR injury. © 2018 The Author(s). Published by S. Karger AG, Basel.
Bernhard, Wolfgang; Full, Anna; Arand, Jörg; Maas, Christoph; Poets, Christian F; Franz, Axel R
2013-04-01
Choline forms the head group of phosphatidylcholines, comprising 40-50 % of cellular membranes and 70-95 % of phospholipids in surfactant, bile, and lipoproteins. Moreover, choline serves as the precursor of acetylcholine and is important for brain differentiation and function. While accepted as essential for fetal and neonatal development, its role in preterm infant nutrition has not yet gained much attention. The adequate intake of choline of preterm infants was estimated from international recommendations for infants, children, and adults. Choline intake relative to other nutrients was determined retrospectively in all inborn infants below 1,000 g (extremely low birth weight) or below 28 weeks gestational age, admitted to our department in 2006 and 2007 (N = 93). Estimation of adequate intake showed that children with 290 g body weight need more choline than those with 1,200 g (31.4 and 25.2 mg/kg/day, respectively). Day-by-day variability was high for all nutrient intakes including choline. In contrast to the continuous intrauterine choline delivery, median supply reached a plateau at d11 (21.7 mg/kg/day; 25th/75th percentile: 19.6; 23.9). Individual choline supply at d0-d1 and d2-d3 was <10 mg/kg/day in 100 and 69 % of infants, respectively. Furthermore, intakes <10 mg/kg/day were frequently observed beyond day 11. Median adequate intakes (27.4 mg/kg/day at 735 g body weight) were achieved in <2 %. Nutritional intake of choline in this cohort of preterm infants was frequently less than the estimated adequate intake, with particular shortage until postnatal d10. Because choline is important for brain development, future studies are needed to investigate the effects of adequate nutritional choline intake on long-term neurodevelopment in VLBW infants.
CHOLINE AMELIORATES DEFICITS IN BALANCE CAUSED BY ACUTE NEONATAL ETHANOL EXPOSURE
Bearer, Cynthia F.; Wellmann, Kristen A.; Tang, Ningfeng; He, Min; Mooney, Sandra M.
2015-01-01
Fetal alcohol spectrum disorder (FASD) is estimated to occur in 1% of all live births. The developing cerebellum is vulnerable to the toxic effects of alcohol. People with FASD have cerebellar hypoplasia and developmental deficits associated with cerebellar injury. Choline is an essential nutrient but many diets in the USA are choline deficient. In rats, choline given with or following alcohol exposure reduces many alcohol-induced neurobehavioral deficits, but not those associated with cerebellar function. Our objective was to determine if choline supplementation prior to alcohol exposure would ameliorate the impact of ethanol on a cerebellar-associated behavioral test in mice. Pregnant C57Bl6/J mice were maintained on a choline deficient diet from embryonic day 4.5. On postnatal day 1 (P1), pups were assigned to one of 8 treatment groups: choline (C) or saline (S) pre-treatment from P1-5, ethanol (6 g/kg) or Intralipid® on P5, C or S post-treatment from P6-20. On P30, balance and coordination were tested using the dowel crossing test. Overall, there was a significant effect of treatment and females crossed longer distances than males. Ethanol exposure significantly reduced the total distance crossed. Choline pre-treatment increased the distance crossed by males, and both pre- and post-treatment with choline significantly increased total distance crossed for females and males. There was no effect of choline on Intralipid®-exposed animals. This is the first study to show that choline ameliorates ethanol-induced effects on balance and coordination when given before ethanol exposure. Choline fortification of common foodstuffs may reduce the effects of alcohol. PMID:26085462
Folate Intake, Mthfr Genotype, and Sex Modulate Choline Metabolism in Mice123
Chew, Tina W.; Jiang, Xinyin; Yan, Jian; Wang, Wei; Lusa, Amanda L.; Carrier, Bradley J.; West, Allyson A.; Malysheva, Olga V.; Brenna, J. Thomas; Gregory, Jesse F.; Caudill, Marie A.
2011-01-01
Choline and folate are interrelated in 1-carbon metabolism, mostly because of their shared function as methyl donors for homocysteine remethylation. Folate deficiency and mutations of methylenetetrahydrofolate reductase (MTHFR) reduce the availability of a major methyl donor, 5-methyltetrahydrofolate, which in turn may lead to compensatory changes in choline metabolism. This study investigated the hypothesis that reductions in methyl group supply, either due to dietary folate deficiency or Mthfr gene deletion, would modify tissue choline metabolism in a sex-specific manner. Mthfr wild type (+/+) or heterozygous (+/−) knockout mice were randomized to a folate-deficient or control diet for 8 wk during which time deuterium-labeled choline (d9-choline) was consumed in the drinking water (~10 μmol/d). Mthfr heterozygosity did not alter brain choline metabolite concentrations, but it did enhance their labeling in males (P < 0.05) and tended to do so in females (P < 0.10), a finding consistent with greater turnover of dietary choline in brains of +/− mice. Dietary folate deficiency in females yielded 52% higher (P = 0.027) hepatic glycerophosphocholine, which suggests that phosphatidylcholine (PtdCho) degradation was enhanced. Labeling of the hepatic PtdCho in d3 form was also reduced (P < 0.001) in females, which implies that fewer of the dietary choline-derived methyl groups were used for de novo PtdCho biosynthesis under conditions of folate insufficiency. Males responded to folate restriction with a doubling (P < 0.001) of hepatic choline dehydrogenase transcripts, a finding consistent with enhanced conversion of choline to the methyl donor, betaine. Collectively, these data show that several adaptations in choline metabolism transpire as a result of mild perturbations in folate metabolism, presumably to preserve methyl group homeostasis. PMID:21697299
Choline deficiency increases lymphocyte apoptosis and DNA damage in humans2,3
da Costa, Kerry-Ann; Niculescu, Mihai D; Craciunescu, Corneliu N; Fischer, Leslie M; Zeisel, Steven H
2008-01-01
Background: Whereas deficiency of the essential nutrient choline is associated with DNA damage and apoptosis in cell and rodent models, it has not been shown in humans. Objective: The objective was to ascertain whether lymphocytes from choline-deficient humans had greater DNA damage and apoptosis than did those from choline-sufficient humans. Design: Fifty-one men and women aged 18–70 y were fed a diet containing the recommended adequate intake of choline (control) for 10 d. They then were fed a choline-deficient diet for up to 42 d before repletion with 138–550 mg choline/d. Blood was collected at the end of each phase, and peripheral lymphocytes were isolated. DNA damage and apoptosis were then assessed by activation of caspase-3, terminal deoxynucleotide transferase–mediated dUTP nick end-labeling, and single-cell gel electrophoresis (COMET) assays. Results: All subjects fed the choline-deficient diet had lymphocyte DNA damage, as assessed by COMET assay, twice that found when they were fed the control diet. The subjects who developed organ dysfunction (liver or muscle) when fed the choline-deficient diet had significantly more apoptotic lymphocytes, as assessed by the activated caspase-3 assay, than when fed the control diet. Conclusions: A choline-deficient diet increased DNA damage in humans. Subjects in whom these diets induced liver or muscle dys-function also had higher rates of apoptosis in their peripheral lymphocytes than did subjects who did not develop organ dysfunction. Assessment of DNA damage and apoptosis in lymphocytes appears to be a clinically useful measure in humans (such as those receiving parenteral nutrition) in whom choline deficiency is suspected. PMID:16825685
Dietary choline requirements of women: effects of estrogen and genetic variation.
Fischer, Leslie M; da Costa, Kerry-Ann; Kwock, Lester; Galanko, Joseph; Zeisel, Steven H
2010-11-01
Choline is obtained from the diet and from the biosynthesis of phosphatidylcholine. Phosphatidylcholine is catalyzed by the enzyme phosphatidylethanolamine-N-methyltransferase (PEMT), which is induced by estrogen. Because they have lower estrogen concentrations, postmenopausal women are more susceptible to the risk of organ dysfunction in response to a low-choline diet. A common genetic polymorphism (rs12325817) in the PEMT gene can also increase this risk. The objective was to determine whether the risk of low choline-related organ dysfunction increases with the number of alleles of rs12325817 in premenopausal women and whether postmenopausal women (with or without rs12325817) treated with estrogen are more resistant to developing such symptoms. Premenopausal women (n = 27) consumed a choline-sufficient diet followed by a very-low-choline diet until they developed organ dysfunction (or for 42 d), which was followed by a high-choline diet. Postmenopausal women (n = 22) were placed on the same diets but were first randomly assigned to receive estrogen or a placebo. The women were monitored for organ dysfunction and plasma choline metabolites and were genotyped for rs12325817. A dose-response effect of rs12325817 on the risk of choline-related organ dysfunction was observed in premenopausal women: 80%, 43%, and 13% of women with 2, 1, or 0 alleles, respectively, developed organ dysfunction. Among postmenopausal women, 73% who received placebo but only 18% who received estrogen developed organ dysfunction during the low-choline diet. Because of their lower estrogen concentrations, postmenopausal women have a higher dietary requirement for choline than do premenopausal women. Choline requirements for both groups of women are further increased by rs12325817. This trial was registered at clinicaltrials.gov as NCT00065546.
Kovacheva, Vesela P; Davison, Jessica M; Mellott, Tiffany J; Rogers, Adrianne E; Yang, Shi; O'Brien, Michael J; Blusztajn, Jan Krzysztof
2009-04-01
Choline is an essential nutrient that serves as a donor of metabolic methyl groups used during gestation to establish the epigenetic DNA methylation patterns that modulate tissue-specific gene expression. Because the mammary gland begins its development prenatally, we hypothesized that choline availability in utero may affect the gland's susceptibility to cancer. During gestational days 11-17, pregnant rats were fed a control, choline-supplemented, or choline-deficient diet (8, 36, and 0 mmol/kg of choline, respectively). On postnatal day 65, the female offspring received 25 mg/kg of a carcinogen 7,12-dimethylbenz[alpha]anthracene. Approximately 70% of the rats developed mammary adenocarcinomas; prenatal diet did not affect tumor latency, incidence, size, and multiplicity. Tumor growth rate was inversely related to choline content in the prenatal diet, resulting in 50% longer survival until euthanasia, determined by tumor size, of the prenatally choline-supplemented rats compared with the prenatally choline-deficient rats. This was accompanied by distinct expression patterns of approximately 70 genes in tumors derived from the three dietary groups. Tumors from the prenatally choline-supplemented rats overexpressed genes that confer favorable prognosis in human cancers (Klf6, Klf9, Nid2, Ntn4, Per1, and Txnip) and underexpressed those associated with aggressive disease (Bcar3, Cldn12, Csf1, Jag1, Lgals3, Lypd3, Nme1, Ptges2, Ptgs1, and Smarcb1). DNA methylation within the tumor suppressor gene, stratifin (Sfn, 14-3-3sigma), was proportional to the prenatal choline supply and correlated inversely with the expression of its mRNA and protein in tumors, suggesting that an epigenetic mechanism may underlie the altered molecular phenotype and tumor growth. Our results suggest a role for adequate maternal choline nutrition during pregnancy in prevention/alleviation of breast cancer in daughters.
Woodbury, M M; Woodbury, M A
1993-06-01
Choline supplementation has been used with moderate success in subgroups of adult patients with neuropsychiatric and medical problems. The dietary fish oils have also been used in adults with hypercholesterolemia. We report on two young children with multiple neurodevelopmental delays, one who responded to choline and eicosapentaenoic acid, and the other to choline alone. A brief discussion about choline's metabolic pathways and benefits is included.
Fei, Baowei; Yang, Xiaofeng; Nye, Jonathon A.; Aarsvold, John N.; Raghunath, Nivedita; Cervo, Morgan; Stark, Rebecca; Meltzer, Carolyn C.; Votaw, John R.
2012-01-01
Purpose: Combined MR/PET is a relatively new, hybrid imaging modality. A human MR/PET prototype system consisting of a Siemens 3T Trio MR and brain PET insert was installed and tested at our institution. Its present design does not offer measured attenuation correction (AC) using traditional transmission imaging. This study is the development of quantification tools including MR-based AC for quantification in combined MR/PET for brain imaging. Methods: The developed quantification tools include image registration, segmentation, classification, and MR-based AC. These components were integrated into a single scheme for processing MR/PET data. The segmentation method is multiscale and based on the Radon transform of brain MR images. It was developed to segment the skull on T1-weighted MR images. A modified fuzzy C-means classification scheme was developed to classify brain tissue into gray matter, white matter, and cerebrospinal fluid. Classified tissue is assigned an attenuation coefficient so that AC factors can be generated. PET emission data are then reconstructed using a three-dimensional ordered sets expectation maximization method with the MR-based AC map. Ten subjects had separate MR and PET scans. The PET with [11C]PIB was acquired using a high-resolution research tomography (HRRT) PET. MR-based AC was compared with transmission (TX)-based AC on the HRRT. Seventeen volumes of interest were drawn manually on each subject image to compare the PET activities between the MR-based and TX-based AC methods. Results: For skull segmentation, the overlap ratio between our segmented results and the ground truth is 85.2 ± 2.6%. Attenuation correction results from the ten subjects show that the difference between the MR and TX-based methods was <6.5%. Conclusions: MR-based AC compared favorably with conventional transmission-based AC. Quantitative tools including registration, segmentation, classification, and MR-based AC have been developed for use in combined MR/PET. PMID:23039679
Lewis, Erin D; Subhan, Fatheema B; Bell, Rhonda C; McCargar, Linda J; Curtis, Jonathan M; Jacobs, René L; Field, Catherine J
2014-07-14
Despite recommendations for higher choline intakes during pregnancy and lactation, there is limited research regarding maternal intake during these important periods. In the present study, we estimated dietary choline intake during pregnancy and lactation in a population of Albertan women and the contribution of egg and milk consumption to intake. Dietary intake data were collected from the first 600 women enrolled in a prospective cohort study carried out in Alberta, Canada. During the first and/or second trimester, the third trimester and 3 months postpartum, 24 h dietary intake recall data were collected. A database was constructed including foods consumed by the cohort and used to estimate dietary choline intake. The mean total choline intake value during pregnancy was 347 (SD 149) mg/d, with 23% of the participants meeting the adequate intake (AI) recommendation. During lactation, the mean total choline intake value was 346 (SD 151) mg/d, with 10% of the participants meeting the AI recommendation. Phosphatidylcholine was the form of choline consumed in the highest proportion and the main dietary sources of choline were dairy products, eggs and meat. Women who consumed at least one egg in a 24 h period had higher (P< 0·001) total choline intake and were eight times more likely (95% CI 5·2, 12·6) to meet choline intake recommendations compared with those who did not consume eggs during pregnancy. Women who reported consuming ≥ 500 ml of milk in a 24 h period were 2·8 times more likely (95 % CI 1·7, 4·8) to meet daily choline intake recommendations compared with those consuming < 250 ml of milk/d during pregnancy. Choline intake is below the recommendation levels in this population and the promotion of both egg and milk consumption may assist in meeting the daily choline intake recommendations.
Choline is required in the diet of lactating dams to maintain maternal immune function.
Dellschaft, Neele S; Ruth, Megan R; Goruk, Susan; Lewis, Erin D; Richard, Caroline; Jacobs, René L; Curtis, Jonathan M; Field, Catherine J
2015-06-14
Choline demands during lactation are high; however, detailed knowledge is lacking regarding the optimal dietary intake during this critical period. The present study was designed to determine the effects of varying intakes of choline on maternal immune function during lactation. Primiparous Sprague-Dawley rats (n 42) were randomised 24-48 h before birth and fed the following diets for 21 d: choline-devoid (0 g choline/kg diet; D, n 10); 1·0 g choline/kg diet (C1, n 11); 2·5 g choline/kg diet (C2·5, n 10); 6·2 g choline/kg diet (C6, n 11). Splenocytes were isolated and stimulated ex vivo with concanavalin A, lipopolysaccharide (LPS) or CD3/CD28. D and C6 dams had lower final body weight, spleen weight and average pup weight than C1 dams (P< 0·05). There was a linear relationship between free choline concentration in pup stomach contents with maternal dietary choline content (P< 0·001, r² 0·415). Compared with C1 and C2·5, D spleens had a lower proportion of mature T cells and activated suppressor cells, and this resulted in reduced cytokine production after stimulation (P< 0·05). Feeding 6·2 g choline/kg diet resulted in a higher cytokine production after stimulation with CD3/CD28 (P< 0·05). Except for a higher IL-6 production after LPS stimulation with cells from the C2·5 dams (P< 0·05), there were no differences between the C1 and C2·5 dams. For the first time, we show that feeding lactating mothers a diet free of choline has substantial effects on their immune function and on offspring growth. Additionally, excess dietary choline had adverse effects on maternal and offspring body weight but only minimal effects on maternal immune function.
Setoue, Minoru; Ohuchi, Seiya; Morita, Tatsuya; Sugiyama, Kimio
2008-07-01
Rats were fed 25% casein (25C) diets differing in choline levels (0-0.5%) with and without 0.5% guanidinoacetic acid (GAA) or 0.75% L-methionine for 7 d to determine the effects of dietary choline level on experimental hyperhomocysteinemia. The effects of dietary choline (0.30%) and betaine (0.34%) on GAA- and methionine-induced hyperhomocysteinemia were also compared. Dietary choline suppressed hyperhomocysteinemia induced by GAA, but not by methionine, in a dose-dependent manner. GAA-induced enhancement of the plasma homocysteine concentration was suppressed by choline and betaine to the same degree, but the effects of these compounds were relatively small on methionine-induced hyperhomocysteinemia. Dietary supplementation with choline and betaine significantly increased the hepatic betaine concentration in rats fed a GAA diet, but not in rats fed a methionine diet. These results indicate that choline and betaine are effective at relatively low levels in reducing plasma homocysteine, especially under the condition of betaine deficiency without a loading of homocysteine precursor.
Perinatal choline deficiency produces abnormal sensory inhibition in Sprague-Dawley rats
Stevens, Karen E.; Adams, Catherine E.; Mellott, Tiffany J.; Robbins, Emily; Kisley, Michael A.
2008-01-01
Adequate choline levels in rodents during gestation have been shown to be critical to several functions, including certain learning and memory functions, when tested at adulthood. Choline is a selective agonist for the α7 nicotinic receptor which appears in development before acetylcholine is present. Normal sensory inhibition is dependent, in part, upon sufficient numbers of this receptor in the hippocampus. The present study assessed sensory inhibition in Sprague-Dawley rats gestated on normal (1.1 g/kg), deficient (0 g/kg) or supplemented (5 g/kg) choline in the maternal diet during the critical period for cholinergic cell development (E12-18). Rats gestated on deficient choline showed abnormal sensory inhibition when tested at adulthood, while rats gestated on normal or supplemented choline showed normal sensory inhibition. Assessment of hippocampal α-bungarotoxin to visualize nicotinic α7 receptors revealed no difference between the gestational choline levels. These data suggest that attention to maternal choline levels for human pregnancy may be important to the normal functioning of the offspring. PMID:18778692
NASA Astrophysics Data System (ADS)
Duan, S. H.; Kai, T.; Chowdhury, F. A.; Taniguchi, I.; Kazama, S.
2018-01-01
Poly(amidoamine) (PAMAM) dendrimers were incorporated into cross-linked poly(ethylene glycol) (PEGDMA) matrix to improve carbon dioxide (CO2) separation performance at elevated pressures. In our previous studies, PAMAM/PEGDMA hybrid membranes showed high CO2 separation properties from CO2/H2 mixed gases. In this study, proline, choline and ionic liquid [Choline][Pro] compounds were selected as rate promoters that were used to prepare PAMAM/PEGDMA hybrid membranes. The effect of addition of proline, choline, IL [Choline][Pro] on separation performance of PAMAM/PEGDMA) hybrid membranes for CO2/H2 separation was investigated. Amino acid proline, choline, and IL [Choline][Pro] were used to promote CO2 and amine reaction. With the addition of [Choline][Pro] into PAMAM/PEG membrane, CO2 permeance of PAMAM/PEG hybrid membranes are increased up to 46% without any change of selectivity of membrane for CO2.
Consolo, S.; Garattini, S.; Ladinsky, H.; Thoenen, H.
1972-01-01
1. Acetylcholine and choline were measured in the spleens and irides of normal and 6-hydroxydopamine-treated cats. In addition, choline acetyltransferase activity was measured in the spleens. 2. No acetylcholine or choline acetyltransferase activity were found in spleens of normal or treated cats. The choline content of normal spleens was 12·4 ± 1·5 μg/g wet wt. (mean ± S.E. of mean), which was not significantly altered by chemical sympathectomy. 3. The acetylcholine and choline contents of the cat iris were 3·0 ± 0·3 μg/g wet wt. and 7·7 ± 0·9 μg/g wet wt., respectively. There was no difference in acetylcholine and choline concentrations between left and right or normal and sympathectomized irides. 4. These results are discussed in relation to the question of a cholinergic link in post-ganglionic sympathetic transmission. PMID:4335730
Perinatal choline deficiency produces abnormal sensory inhibition in Sprague-Dawley rats.
Stevens, Karen E; Adams, Catherine E; Mellott, Tiffany J; Robbins, Emily; Kisley, Michael A
2008-10-27
Adequate choline levels in rodents during gestation have been shown to be critical to several functions, including certain learning and memory functions, when tested at adulthood. Choline is a selective agonist for the alpha7 nicotinic receptor which appears in development before acetylcholine is present. Normal sensory inhibition is dependent, in part, upon sufficient numbers of this receptor in the hippocampus. The present study assessed sensory inhibition in Sprague-Dawley rats gestated on normal (1.1 g/kg), deficient (0 g/kg) or supplemented (5 g/kg) choline in the maternal diet during the critical period for cholinergic cell development (E12-18). Rats gestated on deficient choline showed abnormal sensory inhibition when tested at adulthood, while rats gestated on normal or supplemented choline showed normal sensory inhibition. Assessment of hippocampal alpha-bungarotoxin to visualize nicotinic alpha7 receptors revealed no difference between the gestational choline levels. These data suggest that attention to maternal choline levels for human pregnancy may be important to the normal functioning of the offspring.
Current management of advanced and castration resistant prostate cancer.
Gomella, Leonard G; Petrylak, Daniel P; Shayegan, Bobby
2014-04-01
Newer approaches to the management of advanced prostate cancer have rapidly evolved. While basic androgen deprivation remains as the first line in newly diagnosed hormone naïve metastatic prostate cancer, the agents used and strategies followed have undergone significant changes. Numerous new agents such as sipuleucel-T, abiraterone, enzalutamide, cabazitaxel and radium 223 have all been approved since 2010 to treat metastatic castration resistant prostate cancer (CRPC). New imaging techniques to detect advanced disease such as F-18 PET, 11 C-choline PET and other modalities are becoming available. The concepts of "bone health" and the management of side effects related to androgen deprivation therapy are also gaining attention as men are being treated with longer courses of androgen deprivation. Understanding the theory behind these new agents and management approaches while focusing on the practical clinical considerations are essential to improve outcomes in advanced prostate cancer. A review of the current state of the art in the management of advanced and castration resistant prostate cancer presented in this Canadian Journal of Urology International supplement was performed. Key findings are summarized and presented along with critical updates based on recent publications and meeting presentations. Key concepts identified in the management of advanced prostate cancer included the new understanding of prostate cancer based on translational discoveries, applications of various hormonally based strategies in advanced disease including traditional and recently approved agents. The use of new imaging modalities to identify metastatic disease, immunotherapy approaches and discussions of sequencing and which new agents are likely to be available in the future in the management of CRPC were identified. Bone targeted strategies are also addressed in the setting of androgen deprivation and metastatic disease. The management of men with advanced prostate cancer has become more multidisciplinary as treatment options have expanded. As the use of these agents and new strategies expand, urologists, medical oncologists and radiation oncologists must all become familiar with this rapidly changing field in order to maximize the outcome of patients with advanced and castration resistant prostate cancer.
32nd International Austrian Winter Symposium : Zell am See, the Netherlands. 20-23 January 2016.
Langsteger, W; Rezaee, A; Loidl, W; Geinitz, H S; Fitz, F; Steinmair, M; Broinger, G; Pallwien-Prettner, L; Beheshti, M; Imamovic, L; Beheshti, M; Rendl, G; Hackl, D; Tsybrovsky, O; Steinmair, M; Emmanuel, K; Moinfar, F; Pirich, C; Langsteger, W; Bytyqi, A; Karanikas, G; Mayerhöfer, M; Koperek, O; Niederle, B; Hartenbach, M; Beyer, T; Herrmann, K; Czernin, J; Rausch, I; Rust, P; DiFranco, M D; Lassen, M; Stadlbauer, A; Mayerhöfer, M E; Hartenbach, M; Hacker, M; Beyer, T; Binzel, K; Magnussen, R; Wei, W; Knopp, M U; Flanigan, D C; Kaeding, C; Knopp, M V; Leisser, A; Nejabat, M; Hartenbach, M; Kramer, G; Krainer, M; Hacker, M; Haug, A; Lehnert, Wencke; Schmidt, Karl; Kimiaei, Sharok; Bronzel, Marcus; Kluge, Andreas; Wright, C L; Binzel, K; Zhang, J; Wuthrick, Evan; Maniawski, Piotr; Knopp, M V; Blaickner, M; Rados, E; Huber, A; Dulovits, M; Kulkarni, H; Wiessalla, S; Schuchardt, C; Baum, R P; Knäusl, B; Georg, D; Bauer, M; Wulkersdorfer, B; Wadsak, W; Philippe, C; Haslacher, H; Zeitlinger, M; Langer, O; Bauer, M; Feldmann, M; Karch, R; Wadsak, W; Zeitlinger, M; Koepp, M J; Asselin, M-C; Pataraia, E; Langer, O; Zeilinger, M; Philippe, C; Dumanic, M; Pichler, F; Pilz, J; Hacker, M; Wadsak, W; Mitterhauser, M; Nics, L; Steiner, B; Hacker, M; Mitterhauser, M; Wadsak, W; Traxl, A; Wanek, Thomas; Kryeziu, Kushtrim; Mairinger, Severin; Stanek, Johann; Berger, Walter; Kuntner, Claudia; Langer, Oliver; Mairinger, S; Wanek, T; Traxl, A; Krohn, M; Stanek, J; Filip, T; Sauberer, M; Kuntner, C; Pahnke, J; Langer, O; Svatunek, D; Denk, C; Wilkovitsch, M; Wanek, T; Filip, T; Kuntner-Hannes, C; Fröhlich, J; Mikula, H; Denk, C; Svatunek, D; Wanek, T; Mairinger, S; Stanek, J; Filip, T; Fröhlich, J; Mikula, H; Kuntner-Hannes, C; Balber, T; Singer, J; Fazekas, J; Rami-Mark, C; Berroterán-Infante, N; Jensen-Jarolim, E; Wadsak, W; Hacker, M; Viernstein, H; Mitterhauser, M; Denk, C; Svatunek, D; Sohr, B; Mikula, H; Fröhlich, J; Wanek, T; Kuntner-Hannes, C; Filip, T; Pfaff, S; Philippe, C; Mitterhauser, M; Hartenbach, M; Hacker, M; Wadsak, W; Wanek, T; Halilbasic, E; Visentin, M; Mairinger, S; Stieger, B; Kuntner, C; Trauner, M; Langer, O; Lam, P; Aistleitner, M; Eichinger, R; Artner, C; Eidherr, H; Vraka, C; Haug, A; Mitterhauser, M; Nics, L; Hartenbach, M; Hacker, M; Wadsak, W; Kvaternik, H; Müller, R; Hausberger, D; Zink, C; Aigner, R M; Cossío, U; Asensio, M; Montes, A; Akhtar, S; Te Welscher, Y; van Nostrum, R; Gómez-Vallejo, V; Llop, J; VandeVyver, F; Barclay, T; Lippens, N; Troch, M; Hehenwarter, L; Egger, B; Holzmannhofer, J; Rodrigues-Radischat, M; Pirich, C; Pötsch, N; Rausch, I; Wilhelm, D; Weber, M; Furtner, J; Karanikas, G; Wöhrer, A; Mitterhauser, M; Hacker, M; Traub-Weidinger, T; Cassou-Mounat, T; Balogova, S; Nataf, V; Calzada, M; Huchet, V; Kerrou, K; Devaux, J-Y; Mohty, M; Garderet, L; Talbot, J-N; Stanzel, S; Pregartner, G; Schwarz, T; Bjelic-Radisic, V; Liegl-Atzwanger, B; Aigner, R; Stanzel, S; Quehenberger, F; Aigner, R M; Marković, A Koljević; Janković, Milica; Jerković, V Miler; Paskaš, M; Pupić, G; Džodić, R; Popović, D; Fornito, M C; Familiari, D; Koranda, P; Polzerová, H; Metelková, I; Henzlová, L; Formánek, R; Buriánková, E; Kamínek, M; Thomson, W H; Lewis, C; Thomson, W H; O'Brien, J; James, G; Notghi, A; Huber, H; Stelzmüller, I; Wunn, R; Mandl, M; Fellner, F; Lamprecht, B; Gabriel, M; Fornito, M C; Leonardi, G; Thomson, W H; O'Brien, J; James, G; Hudzietzová, J; Sabol, J; Fülöp, M
2016-04-01
A1 68Ga-PSMA PET/CT in staging and restaging of Prostate Cancer Patients: comparative study with 18F-Choline PET/CTW Langsteger, A Rezaee, W Loidl, HS Geinitz, F Fitz, M Steinmair, G Broinger, L Pallwien-Prettner, M BeheshtiA2 F18 Choline PET - CT: an accurate diagnostic tool for the detection of parathyroid adenoma?L Imamovic, M Beheshti, G Rendl, D Hackl, O Tsybrovsky, M Steinmair, K Emmanuel, F Moinfar, C Pirich, W LangstegerA3 [18F]Fluoro-DOPA-PET/CT in the primary diagnosis of medullary thyroid carcinomaA Bytyqi, G Karanikas, M Mayerhöfer, O Koperek, B Niederle, M HartenbachA4 Variations of clinical PET/MR operations: An international survey on the clinical utilization of PET/MRIT Beyer, K Herrmann, J CzerninA5 Standard Dixon-based attenuation correction in combined PET/MRI: Reproducibility and the possibility of Lean body mass estimationI Rausch, P Rust, MD DiFranco, M Lassen, A Stadlbauer, ME Mayerhöfer, M Hartenbach, M Hacker, T BeyerA6 High resolution digital FDG PET/MRI imaging for assessment of ACL graft viabilityK Binzel, R Magnussen, W Wei, MU Knopp, DC Flanigan, C Kaeding, MV KnoppA7 Using pre-existing hematotoxicity as predictor for severe side effects and number of treatment cycles of Xofigo therapyA Leisser, M Nejabat, M Hartenbach, G Kramer, M Krainer, M Hacker, A HaugA8 QDOSE - comprehensive software solution for internal dose assessmentWencke Lehnert, Karl Schmidt, Sharok Kimiaei, Marcus Bronzel, Andreas KlugeA9 Clinical impact of Time-of-Flight on next-generation digital PET imaging of Yttrium-90 radioactivity following liver radioembolizationCL Wright, K Binzel, J Zhang, Evan Wuthrick, Piotr Maniawski, MV KnoppA10 Snakes in patients! Lessons learned from programming active contours for automated organ segmentationM Blaickner, E Rados, A Huber, M Dulovits, H Kulkarni, S Wiessalla, C Schuchardt, RP Baum, B Knäusl, D GeorgA11 Influence of a genetic polymorphism on brain uptake of the dual ABCB1/ABCG2 substrate [11C]tariquidarM Bauer, B Wulkersdorfer, W Wadsak, C Philippe, H Haslacher, M Zeitlinger, O LangerA12 Outcome prediction of temporal lobe epilepsy surgery from P-glycoprotein activity. Pooled analysis of (R)-[11C]-verapamil PET data from two European centresM Bauer, M Feldmann, R Karch, W Wadsak, M Zeitlinger, MJ Koepp, M-C Asselin, E Pataraia, O LangerA13 In-vitro and in-vivo characterization of [18F]FE@SNAP and derivatives for the visualization of the melanin concentrating hormone receptor 1M Zeilinger, C Philippe, M Dumanic, F Pichler, J Pilz, M Hacker, W Wadsak, M MitterhauserA14 Reducing time in quality control leads to higher specific radioactivity of short-lived radiotracersL Nics, B Steiner, M Hacker, M Mitterhauser, W WadsakA15 In vitro 11C-erlotinib binding experiments in cancer cell lines with epidermal growth factor receptor mutationsA Traxl, Thomas Wanek, Kushtrim Kryeziu, Severin Mairinger, Johann Stanek, Walter Berger, Claudia Kuntner, Oliver LangerA16 7-[11C]methyl-6-bromopurine, a PET tracer to measure brain Mrp1 function: radiosynthesis and first PET evaluation in miceS Mairinger, T Wanek, A Traxl, M Krohn, J Stanek, T Filip, M Sauberer, C Kuntner, J Pahnke, O LangerA17 18F labeled azidoglucose derivatives as "click" agents for pretargeted PET imagingD Svatunek, C Denk, M Wilkovitsch, T Wanek, T Filip, C Kuntner-Hannes, J Fröhlich, H MikulaA18 Bioorthogonal tools for PET imaging: development of radiolabeled 1,2,4,5-TetrazinesC Denk, D Svatunek, T Wanek, S Mairinger, J Stanek, T Filip, J Fröhlich, H Mikula, C Kuntner-HannesA19 Preclinical evaluation of [18F]FE@SUPPY- a new PET-tracer for oncologyT Balber, J Singer, J Fazekas, C Rami-Mark, N Berroterán-Infante, E Jensen-Jarolim, W Wadsak, M Hacker, H Viernstein, M MitterhauserA20 Investigation of Small [18F]-Fluoroalkylazides for Rapid Radiolabeling and In Vivo Click ChemistryC Denk, D Svatunek, B Sohr, H Mikula, J Fröhlich, T Wanek, C Kuntner-Hannes, T FilipA21 Microfluidic 68Ga-radiolabeling of PSMA-HBED-CC using a flow-through reactorS Pfaff, C Philippe, M Mitterhauser, M Hartenbach, M Hacker, W WadsakA22 Influence of 24-nor-ursodeoxycholic acid on hepatic disposition of [18F]ciprofloxacin measured with positron emission tomographyT Wanek, E Halilbasic, M Visentin, S Mairinger, B Stieger, C Kuntner, M Trauner, O LangerA23 Automated 18F-flumazenil production using chemically resistant disposable cassettesP Lam, M Aistleitner, R Eichinger, C ArtnerA24 Similarities and differences in the synthesis and quality control of 177Lu-DOTA-TATE, 177Lu -HA-DOTA-TATE and 177Lu-DOTA-PSMA (PSMA-617)H Eidherr, C Vraka, A Haug, M Mitterhauser, L Nics, M Hartenbach, M Hacker, W WadsakA25 68Ga- and 177Lu-labelling of PSMA-617H Kvaternik, R Müller, D Hausberger, C Zink, RM AignerA26 Radiolabelling of liposomes with 67Ga and biodistribution studies after administration by an aerosol inhalation systemU Cossío, M Asensio, A Montes, S Akhtar, Y te Welscher, R van Nostrum, V Gómez-Vallejo, J LlopA27 Fully automated quantification of DaTscan SPECT: Integration of age and gender differencesF VandeVyver, T Barclay, N Lippens, M TrochA28 Lesion-to-background ratio in co-registered 18F-FET PET/MR imaging - is it a valuable tool to differentiate between low grade and high grade brain tumor?L Hehenwarter, B Egger, J Holzmannhofer, M Rodrigues-Radischat, C PirichA29 [11C]-methionine PET in gliomas - a retrospective data analysis of 166 patientsN Pötsch, I Rausch, D Wilhelm, M Weber, J Furtner, G Karanikas, A Wöhrer, M Mitterhauser, M Hacker, T Traub-WeidingerA30 18F-Fluorocholine versus 18F-Fluorodeoxyglucose for PET/CT imaging in patients with relapsed or progressive multiple myeloma: a pilot studyT Cassou-Mounat, S Balogova, V Nataf, M Calzada, V Huchet, K Kerrou, J-Y Devaux, M Mohty, L Garderet, J-N TalbotA31 Prognostic benefit of additional SPECT/CT in sentinel lymph node mapping of breast cancer patientsS Stanzel, G Pregartner, T Schwarz, V Bjelic-Radisic, B Liegl-Atzwanger, R AignerA32 Evaluation of diagnostic value of TOF-18F-FDG PET/CT in patients with suspected pancreatic cancerS Stanzel, F Quehenberger, RM AignerA33 New quantification method for diagnosis of primary hyperpatahyroidism lesions and differential diagnosis vs thyropid nodular disease in dynamic scintigraphyA Koljević Marković, Milica Janković, V Miler Jerković, M Paskaš, G Pupić, R Džodić, D PopovićA34 A rare case of diffuse pancreatic involvement in patient with merkel cell carcinoma detected by 18F-FDGMC Fornito, D FamiliariA35 TSH-stimulated 18F-FDG PET/CT in the diagnosis of recurrent/metastatic radioiodine-negative differentiated thyroid carcinomas in patients with various thyroglobuline levelsP Koranda, H Polzerová, I Metelková, L Henzlová, R Formánek, E Buriánková, M KamínekA36 Breast Dose from lactation following I131 treatmentWH Thomson, C LewisA37 A new concept for performing SeHCAT studies with the gamma cameraWH Thomson, J O'Brien, G James, A NotghiA38 Whole body F-18-FDG-PET and tuberculosis: sensitivity compared to x-ray-CTH Huber, I Stelzmüller, R Wunn, M Mandl, F Fellner, B Lamprecht, M GabrielA39 Emerging role 18F-FDG PET-CT in the diagnosis and follow-up of the infection in heartware ventricular assist system (HVAD)MC Fornito, G LeonardiA40 Validation of Poisson resampling softwareWH Thomson, J O'Brien, G JamesA41 Protection of PET nuclear medicine personnel: problems in satisfying dose limit requirementsJ Hudzietzová, J Sabol, M Fülöp.
Biosynthesis and accumulation of osmoprotective compounds by halophytic plants of the genus Limonium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanson, A.D.; Rathinasabapathi, B.; Gage, D.A.
1991-05-01
Analyses of quaternary ammonium compounds in leaf and root tissues of halophytic Limonium spp. using fast atom bombardment mass spectrometry revealed that only 3 out of 21 spp. accumulated glycine betaine, the common angiosperm osmolyte. The 18 other spp. accumulated {beta}-alanine betaine instead. However, all the Limonium spp. studied accumulated choline-O-sulfate and their leaf disks metabolized ({sup 14}C) choline to choline-O-sulfate. Only the glycine betaine accumulators oxidized ({sup 14}C) choline to glycine betaine and only {beta}-alanine betaine accumulators converted {beta}-({sup 14}C)alanine to {beta}-alanine betaine. When {beta}-alanine betaine and glycine betaine accumulators were salinized with NaCl, the levels of their respectivemore » betaines and of choline sulfate were closely correlated with solute potential. Glycine betaine accumulators had less choline-O-sulfate than {beta}-alanine betaine accumulators and increasing the SO{sub 4}{sup 2}/Cl ratio in the medium increased choline-O-sulfate and caused a matching decrease in glycine betaine. Thus, it appears that {beta}-alanine betaine has replaced glycine betaine in most members of this genus, eliminating a possible competition between glycine betaine and choline-O-sulfate for choline.« less
Choline deficiency impairs intestinal lipid metabolism in the lactating rat.
da Silva, Robin P; Kelly, Karen B; Lewis, Erin D; Leonard, Kelly-Ann; Goruk, Sue; Curtis, Jonathan M; Vine, Donna F; Proctor, Spencer D; Field, Catherine J; Jacobs, René L
2015-10-01
Choline is a precursor to phosphatidylcholine (PC), a structural molecule in cellular membranes that is crucial for cell growth and function. PC is also required for the secretion of lipoprotein particles from liver and intestine. Choline requirements are increased during lactation when maternal choline is supplied to the offspring through breast milk. To investigate the effect of dietary choline on intestinal lipid metabolism during lactation, choline-supplemented (CS), phosphatidylcholine-supplemented (PCS) or choline-deficient (CD) diets were fed to dams during the suckling period. CD dams had lower plasma triacylglycerol, cholesterol and apoB in the fasted state and following a fat-challenge (P < .05). There was a higher content of neutral lipids and lower content of PC in the intestine of CD dams, compared with CS and PCS fed animals (P < .05). In addition, there was lower (P < .05) villus height in CD dams, which indicated a reduced absorptive surface area in the intestine. Choline is critical for the absorption of fat in lactating rats and choline deficiency alters intestinal morphology and impairs chylomicron secretion by limiting the supply of PC. Copyright © 2015 Elsevier Inc. All rights reserved.
Singh, Abinav K; Singh, Bhanu P; Prasad, G B K S; Gaur, Shailendra N; Arora, Naveen
2008-12-24
Genetically modified crops have resistance to abiotic stress by introduction of choline oxidase protein. In the present study, the safety of choline oxidase protein derived from Arthrobacter globiformis was assessed for toxicity and allergenicity. The protein was stable at 90 degrees C for 1 h. Toxicity studies of choline oxidase in mice showed no significant difference (p > 0.05) from control in terms of growth, body weight, food consumption, and blood biochemical indices. Histology of gut tissue of mice fed protein showed normal gastric mucosal lining and villi in jejunum and ileum sections. Specific IgE in serum and IL-4 release in splenic culture supernatant were low in choline oxidase treated mice, comparable to control. Intravenous challenge with choline oxidase did not induce any adverse reaction, unlike ovalbumin group mice. Histology of lung tissues from choline oxidase sensitized mice showed normal airways, whereas ovalbumin-sensitized mice showed inflamed airways with eosinophilic infiltration and bronchoconstriction. ELISA carried out with food allergic patients' sera revealed no significant IgE affinity with choline oxidase. Also, choline oxidase did not show any symptoms of toxicity and allergenicity in mice.
Crocodile choline from Crocodylus siamensis induces apoptosis of human gastric cancer.
Mao, Xiao-Mei; Fu, Qi-Rui; Li, Hua-Liang; Zheng, Ya-Hui; Chen, Shu-Ming; Hu, Xin-Yi; Chen, Qing-Xi; Chen, Qiong-Hua
2017-03-01
Crocodile choline, an active compound isolated from Crocodylus siamensis, was found to exert potent anti-cancer activities against human gastric cancer cells in vitro and in vivo. Our study revealed that crocodile choline led to cell cycle arrest at the G2/M phase through attenuating the expressions of cyclins, Cyclin B1, and CDK-1. Furthermore, crocodile choline accelerated apoptosis through the mitochondrial apoptotic pathway with the decrease in mitochondrial membrane potential, the increase in reactive oxygen species production and Bax/Bcl-2 ratio, and the activation of caspase-3 along with the release of cytochrome c. In addition, this study, for the first time, shows that Notch pathway is remarkably deregulated by crocodile choline. The combination of crocodile choline and Notch1 short interfering RNA led to dramatically increased cytotoxicity than observed with either agent alone. Notch1 short interfering RNA sensitized and potentiated the capability of crocodile choline to suppress the cell progression and invasion of gastric cancer. Taken together, these data suggested that crocodile choline was a potent progression inhibitor of gastric cancer cells, which was correlated with mitochondrial apoptotic pathway and Notch pathway. Combining Notch1 inhibitors with crocodile choline might represent a novel approach for gastric cancer.
2013-01-01
The consequences of fetal exposure to alcohol are very diverse and the likely molecular mechanisms involved must be able to explain how so many developmental processes could go awry. If pregnant rat dams are fed alcohol, their pups develop abnormalities characteristic of fetal alcohol spectrum disorders (FASD), but if these rat dams were also treated with choline, the effects from ethanol were attenuated in their pups. Choline is an essential nutrient in humans, and is an important methyl group donor. Alcohol exposure disturbs the metabolism of choline and other methyl donors. Availability of choline during gestation directly influences epigenetic marks on DNA and histones, and alters gene expression needed for normal neural and endothelial progenitor cell proliferation. Maternal diets low in choline alter development of the mouse hippocampus, and decrement memory for life. Women eating low-choline diets have an increased risk of having an infant with a neural tube or or ofacial cleft birth defect. Thus, the varied effects of choline could affect the expression of FASD, and studies on choline might shed some light on the underlying molecular mechanisms responsible for FASD. PMID:21259123
Basolateral choline transport in isolated rabbit renal proximal tubules.
Dantzler, W H; Evans, K K; Wright, S H
1998-11-01
Choline can undergo both net secretion and net reabsorption by renal proximal tubules, but at physiological plasma levels net reabsorption occurs. During this process, choline enters the cells at the luminal side down an electrochemical gradient via a specific transporter with a high affinity for choline. It appeared likely that choline was then transported out of the cells against an electrochemical gradient at the basolateral membrane by countertransport for another organic cation. This possibility was examined by studying net transepithelial reabsorption and basolateral uptake and efflux of [14C]choline in isolated S2 segments of rabbit renal proximal tubules. Basolateral uptake, which was inhibited by other organic cations such as tetraethylammonium (TEA), appeared to occur by the standard organic cation transport pathway. However, the addition of TEA to the bathing medium not only failed to trans-stimulate net transepithelial reabsorption and basolateral efflux of [14C]choline but it actually inhibited transepithelial reabsorption by @60%. The results do not support the presence of a countertransport step for choline against an electrochemical gradient at the basolateral membrane. Instead, they suggest that choline crosses this membrane by some form of carrier-mediated diffusion even during the reabsorptive process.
Albright, Craig D; Siwek, Donald F; Craciunescu, Corneliu N; Mar, Mei-Heng; Kowall, Neil W; Williams, Christina L; Zeisel, Steven H
2003-04-01
Choline availability in the diet during pregnancy alters fetal brain biochemistry with resulting behavioral changes that persist throughout the lifetime of the offspring. In the present study, the effects of dietary choline on the onset of GABAergic neuronal differentiation in developing fetal brain, as demarcated by the expression of calcium binding protein calretinin, are described. In these studies, timed-pregnant mice were fed choline supplemented, control or choline deficient AIN-76 diet from day 12-17 of pregnancy and the brains of their fetuses were studied on day 17 of gestation. In the primordial dentate gyrus, we found that pups from choline deficient-dams had more calretinin protein (330% increase), and pups from choline supplemented-dams had less calretinin protein (70% decrease), than did pups from control-dams. Importantly, decreased calretinin protein was still detectable in hippocampus in aged, 24-month-old mice, born of choline supplemented-dams and maintained since birth on a control diet. Thus, alterations in the level of calretinin protein in fetal brain hippocampus could underlie the known, life long effects of maternal dietary choline availability on brain development and behavior.
21 CFR 182.8252 - Choline chloride.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Choline chloride. 182.8252 Section 182.8252 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8252 Choline chloride. (a) Product. Choline chloride. (b) Conditions of use. This substance is generally recognized as...
21 CFR 182.8252 - Choline chloride.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Choline chloride. 182.8252 Section 182.8252 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8252 Choline chloride. (a) Product. Choline chloride. (b) Conditions of use. This substance is generally recognized as...
21 CFR 182.8250 - Choline bitartrate.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Choline bitartrate. 182.8250 Section 182.8250 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8250 Choline bitartrate. (a) Product. Choline bitartrate. (b) Conditions of use. This substance is generally recognized as...
21 CFR 182.8250 - Choline bitartrate.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Choline bitartrate. 182.8250 Section 182.8250 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8250 Choline bitartrate. (a) Product. Choline bitartrate. (b) Conditions of use. This substance is generally recognized as...
21 CFR 182.8252 - Choline chloride.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Choline chloride. 182.8252 Section 182.8252 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8252 Choline chloride. (a) Product. Choline chloride. (b) Conditions of use. This substance is generally recognized as...
21 CFR 182.8252 - Choline chloride.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Choline chloride. 182.8252 Section 182.8252 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8252 Choline chloride. (a) Product. Choline chloride. (b...
21 CFR 182.8250 - Choline bitartrate.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Choline bitartrate. 182.8250 Section 182.8250 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8250 Choline bitartrate. (a) Product. Choline bitartrate. (b) Conditions of use. This substance is generally recognized as...
21 CFR 182.8250 - Choline bitartrate.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Choline bitartrate. 182.8250 Section 182.8250 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8250 Choline bitartrate. (a) Product. Choline bitartrate. (b...
21 CFR 182.8250 - Choline bitartrate.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Choline bitartrate. 182.8250 Section 182.8250 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8250 Choline bitartrate. (a) Product. Choline bitartrate. (b) Conditions of use. This substance is generally recognized as...
Choline and betaine intake and the risk of colorectal cancer in men.
Lee, Jung Eun; Giovannucci, Edward; Fuchs, Charles S; Willett, Walter C; Zeisel, Steven H; Cho, Eunyoung
2010-03-01
Dietary choline and betaine have been hypothesized to decrease the risk of cancer because of their role as methyl donors in the one-carbon metabolism. However, it remains unknown whether dietary intake of choline and betaine is associated with colorectal cancer risk. We prospectively examined the associations between dietary choline and betaine intake and risk of colorectal cancer in men in the Health Professionals Follow-up Study. We followed 47,302 men and identified a total of 987 incident colorectal cancer cases from 1986 to 2004. We assessed dietary and supplemental choline and betaine intake every 4 years using a validated semiquantitative food frequency questionnaire. The Cox proportional hazards model was used to estimate multivariate relative risks and 95% confidence intervals. All statistical tests were two-sided. We did not find any statistically significant associations between choline intake or betaine intake and risk of colorectal cancer. Comparing the top quintile with bottom quintile, multivariate relative risks (95% confidence interval) were 0.97 (0.79-1.20; P(trend) = 0.87) for choline intake and 0.94 (0.77-1.16; P(trend) = 0.79) for betaine intake. Similarly, we observed no associations between colorectal cancer risk and choline from free choline, glycerophosphocholine, phosphocholine, phosphatidylcholine, or sphingomyelin. Our data do not support the hypothesis that choline and betaine intake is inversely associated with colorectal cancer risk.
Choline and betaine intake and the risk of colorectal cancer in men
Lee, Jung Eun; Giovannucci, Edward; Fuchs, Charles S.; Willett, Walter C.; Zeisel, Steven H.; Cho, Eunyoung
2010-01-01
Dietary choline and betaine have been hypothesized to decrease the risk of cancer because of their role as methyl donors in the one-carbon metabolism. However, it remains unknown whether dietary intake of choline and betaine is associated with colorectal cancer risk. We prospectively examined the associations between dietary choline and betaine intake and risk of colorectal cancer in men in the Health Professionals Follow-up Study. We followed 47,302 men and identified a total of 987 incident colorectal cancer cases from 1986 to 2004. We assessed dietary and supplemental choline and betaine intake every four years using a validated semi-quantitative food frequency questionnaire. The Cox proportional hazards model was used to estimate multivariate relative risks (RRs) and 95% confidence intervals (95% CIs). All statistical tests were two-sided. We did not find any statistically significant associations between choline intake or betaine intake and risk of colorectal cancer. Comparing the top quintile with bottom quintile, multivariate RRs (95% CI) were 0.97 (0.79-1.20; Ptrend = 0.87) for choline intake and 0.94 (0.77-1.16; Ptrend = 0.79) for betaine intake. Similarly, we observed no associations between colorectal cancer risk and choline from free choline, glycerophosphocholine, phosphocholine, phosphatidylcholine, or sphingomyelin. Our data do not support that choline and betaine intake is inversely associated with colorectal cancer risk. PMID:20160273
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chander, A.; Gullo, J.; Reicherter, J.
1987-05-01
Regulation of phosphatidylcholine (PC) synthesis in rat granular pneumocytes isolated by tryptic digestion of lungs and maintained in primary culture for 24 h was investigated by following effects of exogenous fatty acids on (/sup 3/H-methyl)choline incorporation into PC and disaturated PC (DSPC). At 0.1 mM choline, the rate of choline incorporation into PC and DSPC was 440 +/- and 380 +/- 50 pmol/h/ug Pi (mean +/- SE, n=3-5), respectively, and was linear for up to 3 h. PC synthesis was significantly increased by 0.1 mM each of palmitic, oleic, linoleic, or linolenic acid. However, synthesis of DSPC was increased onlymore » by palmitic acid and this increase was prevented by addition of oleic acid suggesting lack of effect on the remodeling pathway. Pulse-chase experiments with choline in absence or presence of palmitic or oleic acid showed that the label declined in choline phosphate and increased in PC more rapidly in presence of either of the fatty acids, suggesting rapid conversion of choline phosphate to PC. Microsomal choline phosphate cytidyltransferase activity in cells preincubated without or with palmitic acid for 3 h was 0.81 +/- 0.07 and 1.81 +/- 0.09 nmol choline phosphate converted/min/mg protein (n=4). These results suggest that in granular pneumocytes, exogenous fatty acids modulate PC synthesis by increasing choline phosphate cytidyltransferase activity.« less
Adaptations to excess choline in insulin resistant and Pcyt2 deficient skeletal muscle.
Taylor, Adrian; Schenkel, Laila Cigana; Yokich, Maiya; Bakovic, Marica
2017-04-01
It was hypothesized that choline supplementation in insulin resistant (IR) CTP:phosphoethanolamine cytidylyltransferase deficient (Pcyt2 +/- ) mice would ameliorate muscle function by remodeling glucose and fatty acid (FA) metabolism. Pcyt2 +/- mice either received no treatment or were allowed access to 2 mg/mL choline in drinking water for 4 weeks. Skeletal muscle was harvested from choline treated and untreated mice. Lipid analysis and metabolic gene expression and signaling pathways were compared between untreated Pcyt2 +/- mice, treated Pcyt2 +/- mice, and Pcyt2 +/+ mice. The major positive effect of choline supplementation on IR muscle was the reduction of glucose utilization for FA and triglyceride (TAG) synthesis and increased muscle glucose storage as glycogen. Choline reduced the expression of genes for FA and TAG formation (Scd1, Fas, Srebp1c, Dgat1/2), upregulated the genes for FA oxidation (Cpt1, Pparα, Pgc1α), and had minor effects on phospholipid and lipolysis genes. Pcyt2 +/- muscle had reduced insulin signaling (IRS1), autophagy (LC3), and choline transport (CTL1) proteins that were restored by choline treatment. Additionally, choline activated AMPK and Akt while inhibiting mTORC1 phosphorylation. These data established that choline supplementation could restore muscle glucose metabolism by reducing lipogenesis and improving mitochondrial and intracellular signaling for protein and energy metabolism in insulin resistant Pcyt2 deficient mice.
Ren, Daoyuan; Liu, Yafei; Zhao, Yan; Yang, Xingbin
2016-08-01
The involvement of choline and its metabolite trimethylamine-N-oxide (TMAO) in endothelial dysfunction and atherosclerosis has been repeatedly confirmed. Phloretin, a dihydrochalcone flavonoid usually present in apples, possesses a variety of biological activities including vascular nutrition. This study was designed to investigate whether phloretin could alleviate or prevent high choline-induced vascular endothelial dysfunction and liver injury in mice. Mice were provided with 3% high choline water and given phloretin orally daily for 10 weeks. The high choline-treated mice showed the significant dyslipidemia and hyperglycemia with the impaired liver and vascular endothelium (p < 0.01). Administration of phloretin at 200 and 400 mg/kg bw significantly reduced the choline-induced elevation of serum TC, TG, LDL-C, AST, ALT, ET-1 and TXA2 (p < 0.01), and markedly antagonized the choline-induced decrease of serum PGI2, HDL-C and NO levels. Furthermore, phloretin elevated hepatic SOD and GSH-Px activities and decreased hepatic MDA levels of the mice exposed to high choline water. Moreover, histopathological test with the H&E and Oil Red O staining of liver sections confirmed the high choline diet-caused liver steatosis and the hepatoprotective effect of phloretin. These findings suggest that high choline causes oxidative damage, and phloretin alleviate vascular endothelial dysfunction and liver injury. Copyright © 2016 Elsevier Ltd. All rights reserved.
Strilakou, Athina A; Tsakiris, Stylianos T; Kalafatakis, Konstantinos G; Stylianaki, Aikaterini T; Karkalousos, Petros L; Koulouris, Andreas V; Mourouzis, Iordanis S; Liapi, Charis A
2014-01-01
Choline is an essential nutrient, and choline deficiency has been associated with cardiovascular morbidity. Choline is also the precursor of acetylcholine (cholinergic component of the heart's autonomic nervous system), whose levels are regulated by acetylcholinesterase (AChE). Cardiac contraction-relaxation cycles depend on ion gradients established by pumps like the adenosine triphosphatases (ATPases) Na(+)/K(+)-ATPase and Mg(2+)-ATPase. This study aimed to investigate the impact of dietary choline deprivation on the activity of rat myocardial AChE (cholinergic marker), Na(+)/K(+)-ATPase, and Mg(2+)-ATPase, and the possible effects of carnitine supplementation (carnitine, structurally relevant to choline, is used as an adjunct in treating cardiac diseases). Adult male albino Wistar rats were distributed among 4 groups, and were fed a standard or choline-deficient diet for one month with or without carnitine in their drinking water (0.15% w/v). The enzyme activities were determined spectrophotometrically in the myocardium homogenate. Choline deficiency seems to affect the activity of the aforementioned parameters, but only the combination of choline deprivation and carnitine supplementation increased myocardial Na(+)/K(+)-ATPase activity along with a concomitant decrease in the activities of Mg(2+)-ATPase and AChE. The results suggest that carnitine, in the setting of choline deficiency, modulates cholinergic myocardial neurotransmission and the ATPase activity in favour of cardiac work efficiency.
Chen, Xi; Qiu, Heng; Wang, Chao; Yuan, Yu; Tickner, Jennifer; Xu, Jiake; Zou, Jun
2017-02-01
Choline, a hydrophilic cation, has versatile physiological roles throughout the body, including cholinergic neurotransmission, memory consolidation and membrane biosynthesis and metabolism. Choline kinases possess enzyme activity that catalyses the conversion of choline to phosphocholine, which is further converted to cytidine diphosphate-coline (CDP-choline) in the biosynthesis of phosphatidylcholine (PC). PC is a major constituent of the phospholipid bilayer which constitutes the eukaryotic cell membrane, and regulates cell signal transduction. Choline Kinase consists of three isoforms, CHKα1, CHKα2 and CHKβ, encoded by two separate genes (CHKA(Human)/Chka(Mouse) and CHKB(Human)/Chkb(Mouse)). Both isoforms have similar structures and enzyme activity, but display some distinct molecular structural domains and differential tissue expression patterns. Whilst Choline Kinase was discovered in early 1950, its pivotal role in the development of muscular dystrophy, bone deformities, and cancer has only recently been identified. CHKα has been proposed as a cancer biomarker and its inhibition as an anti-cancer therapy. In contrast, restoration of CHKβ deficiency through CDP-choline supplements like citicoline may be beneficial for the treatment of muscular dystrophy, bone metabolic diseases, and cognitive conditions. The molecular structure and expression pattern of Choline Kinase, the differential roles of Choline Kinase isoforms and their potential as novel therapeutic targets for muscular dystrophy, bone deformities, cognitive conditions and cancer are discussed. Copyright © 2016. Published by Elsevier Ltd.
Exercise and neuromodulators: choline and acetylcholine in marathon runners
NASA Technical Reports Server (NTRS)
Conlay, L. A.; Sabounjian, L. A.; Wurtman, R. J.
1992-01-01
Certain neurotransmitters (i.e., acetylcholine, catecholamines, and serotonin) are formed from dietary constituents (i.e., choline, tyrosine and tryptophan). Changing the consumption of these precursors alters release of their respective neurotransmitter products. The neurotransmitter acetylcholine is released from the neuromuscular junction and from brain. It is formed from choline, a common constituent in fish, liver, and eggs. Choline is also incorporated into cell membranes; membranes may likewise serve as an alternative choline source for acetylcholine synthesis. In trained athletes, running a 26 km marathon reduced plasma choline by approximately 40%, from 14.1 to 8.4 uM. Changes of similar magnitude have been shown to reduce acetylcholine release from the neuromuscular junction in vivo. Thus, the reductions in plasma choline associated with strenuous exercise may reduce acetylcholine release, and could thereby affect endurance or performance.
Zhang, Chao; Jia, Yongzhong; Jing, Yan; Wang, Huaiyou; Hong, Kai
2014-08-01
The infrared spectrum of deep eutectic solvent of choline chloride and magnesium chloride hexahydrate was measured by the FTIR spectroscopy and analyzed with the aid of DFT calculations. The main chemical species and molecular structure in deep eutectic solvent of [MgClm(H2O)6-m]2-m and [ChxCly]x+y complexes were mainly identified and the active ion of magnesium complex during the electrochemical process was obtained. The mechanism of the electrochemical process of deep eutectic solvent of choline chloride and magnesium chloride hexahydrate was well explained by combination theoretical calculations and experimental. Besides, based on our results we proposed a new system for the dehydration study of magnesium chloride hexahydrate.
Imbard, Apolline; Smulders, Yvo M; Barto, Rob; Smith, Desiree E C; Kok, Robert M; Jakobs, Cornelis; Blom, Henk J
2013-03-01
Choline is essential for mammalian cell function. It plays a critical role in cell membrane integrity, neurotransmission, cell signaling and lipid metabolism. Moreover, choline is involved in methylation in two ways: a) its synthesis requires methyl groups donated by S-adenosyl-methionine (AdoMet); and b) choline oxidation product betaine methylates homocysteine (Hcy) to methionine (Met) and produces dimethylglycine. This later donates one carbon units to tetrahydrofolate (THF). To evaluate the correlations of choline and betaine with folate, AdoMet, S-anenosyl-homocysteine (AdoHcy), total homocysteine (tHcy), and DNA methylation, choline, betaine and dimethylglycine were measured by LC-MS/MS in plasma of 109 healthy volunteers, in whom folate, AdoMet, AdoHcy, tHcy, and DNA methylation have previously been reported. Using a bivariate model, choline and betaine showed strong positive correlations with folate (r = 0.346 and r = 0.226), AdoHcy (r = 0.468 and r = 0.296), and correlated negatively with AdoMet/AdoHcy ratio (r = – 0.246 and r = – 0.379). Only choline was positively correlated with AdoMet (r = 0.453). Using a multivariate linear regression model, choline correlated strongly with folate ( β = 17.416), AdoMet ( β = 61.272), and AdoHcy ( β = 9.215). Betaine correlated positively with folate ( β = 0.133) and negatively with tHcy ( β = – 0.194) ratio. Choline is an integral part of folate and methylation pathways. Our data highlight the importance of integrating choline in studies concerning addressing pathological conditions related to folate, homocysteine and methylation metabolism.
Chen, Chiliang; Li, Shanshan; McKeever, Dana R; Beattie, Gwyn A
2013-09-01
The quaternary ammonium compound (QAC) choline is a major component of membrane lipids in eukaryotes and, if available to microbial colonists of plants, could provide benefits for growth and protection from stress. Free choline is found in homogenized plant tissues, but its subcellular location and availability to plant microbes are not known. Whole-cell bacterial bioreporters of the phytopathogen Pseudomonas syringae were constructed that couple a QAC-responsive transcriptional fusion with well-characterized bacterial QAC transporters. These bioreporters demonstrated the presence of abundant free choline compounds released from germinating seeds and seedlings of the bean Phaseolus vulgaris, and a smaller but consistently detectable amount of QACs, probably choline, from leaves. The localization of P. syringae bioreporter cells to the surface and intercellular sites of plant tissues demonstrated the extracellular location of these QAC pools. Moreover, P. syringae mutants that were deficient in the uptake of choline compounds exhibited reduced fitness on leaves, highlighting the importance of extracellular choline to P. syringae on leaves. Our data support a model in which this choline pool is derived from the phospholipid phosphatidylcholine through plant-encoded phospholipases that release choline into the intercellular spaces of plant tissues, such as for membrane lipid recycling. The consequent extracellular release of choline compounds enables their interception and exploitation by plant-associated microbes, and thus provides a selective advantage for microbes such as P. syringae that are adapted to maximally exploit choline. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.
Haeffner, E W
1975-02-03
The initial rate of incorporation of 14C or 3H-labeled choline into Ehrlich-Lettre ascites cells of the glycogen-free strain seven days after inoculation was investigated in vitro. 1. At choline concentrations in the medium between 6 to 30 muM and 100 to 500 muM the choline uptake by the cells followed Michaelis-Menton Kinetics with V values between 31 to 100 and 59 to 500 pmol per minute at a given cell density, and average Q10-values of 2.1 at the high and of 2.4 at the low choline molarity. The K-m-values increased from 27 muM to 58.8 muM at low and from 0.11 mM to 0.22 mM at high choline concentrations over a temperature range between 15 degrees C and 37 degrees C. Arrhenius plot of the V values gave two lines, one with a transition temperature at 25 degrees C at low and one straight line at high choline concentrations, from which the energy of activation for choline uptake was determined to be 16 kcal/mol. 2. It is assumed that two systems exist for the choline uptake by the ascites cells. One, operative at low substrate concentrations, which is saturable and probably is to be classified as a carrier-mediated facilitated diffusion process, can be strongly inhibited by deoxyglucose or 2,4-dinitrophenol and also by substrate analogues such as chlorocholine or benzoylcholine. Ouabain affects this system to a lesser extent. The other system functioning at high choline concentrations may be a simple diffusion process, which is little inhibited by substrate analogues, ouabain and deoxyglucose; however, it is also inhibited by 2,4-dinitrophenol and p-chloromercuribenzoate. 3. Choline incorporation into the acid-insoluble material (lecithin) gave linear Michaelis-Menton kinetics at the low and the high substrate concentration respectively. K-m-values decreased with an increase in temperature at low and increased with rising temperature at high substrate concentrations thus reflecting a close relationship between choline uptake and its metabolism. Labeling of lecithin choline in the various subcellular fractions under the conditions of the functioning of a carrier-mediated process was in the order: mitochondria (50%) greater than plasma membranes (25%) greater nuclei (14%) greater than microsomes (9%) greater than supernatant (1.5%). 4. Treatment of the cells with p-chloromercuribenzoate or heat shock at 50 degrees C markedly reduced the cholinee uptake and concomitantly its conversion into lecithin. Kinetic analysis revealed that the inhibitory effect of p-chloromercuribenzoate was competitive and that of the heat shock non-competitive in nature. Further the choline uptake by the cells was found to be the rate-limiting step, since the rate of choline phosphorylation was determined by the extracellular choline concentration. Pulse chase experiments showed a rapid turnover of the choline moiety with a concomitant increase in activity of the lecithin fraction and little change within the choline phosphate pool.
Structure of the choline-binding domain of Spr1274 in Streptococcus pneumoniae.
Zhang, Zhenyi; Li, Wenzhe; Frolet, Cecile; Bao, Rui; di Guilmi, Anne Marie; Vernet, Thierry; Chen, Yuxing
2009-08-01
Spr1274 is a putative choline-binding protein that is bound to the cell wall of Streptococcus pneumoniae through noncovalent interactions with the choline moieties of teichoic and lipoteichoic acids. Its function is still unknown. The crystal structure of the choline-binding domain of Spr1274 (residues 44-129) was solved at 2.38 A resolution with three molecules in the asymmetric unit. It may provide a structural basis for functional analysis of choline-binding proteins.
Effects of ingesting soy or egg lecithins on serum choline, brain choline and brain acetylcholine.
Magil, S G; Zeisel, S H; Wurtman, R J
1981-01-01
Rats were fed lecithins, derived from eggs or soybeans, to determine whether the fatty acid composition of the phosphatidylcholine altered choline availability. Rats were fed either a single meal containing 5 g phosphatidylcholine or a lecithin-containing diet for 3 weeks, including approximately 5 g phosphatidylcholine per day. Each form of dietary lecithin elevated blood choline, brain choline and brain acetylcholine significantly (P < 0.05). There was no difference in response to egg- or soy-derived lecithin.
Stefanovic, Ryan; Ludwig, Michael; Webber, Grant B; Atkin, Rob; Page, Alister J
2017-01-25
Deep eutectic solvents (DESs) are a mixture of a salt and a molecular hydrogen bond donor, which form a eutectic liquid with a depressed melting point. Quantum mechanical molecular dynamics (QM/MD) simulations have been used to probe the 1 : 2 choline chloride-urea (ChCl : U), choline chloride-ethylene glycol (ChCl : EG) and choline chloride-glycerol (ChCl : Gly) DESs. DES nanostructure and interactions between the ions is used to rationalise differences in DES eutectic point temperatures and viscosity. Simulations show that the structure of the bulk hydrogen bond donor is largely preserved for hydroxyl based hydrogen bond donors (ChCl:Gly and ChCl:EG), resulting in a smaller melting point depression. By contrast, ChCl:U exhibits a well-established hydrogen bond network between the salt and hydrogen bond donor, leading to a larger melting point depression. This extensive hydrogen bond network in ChCl:U also leads to substantially higher viscosity, compared to ChCl:EG and ChCl:Gly. Of the two hydroxyl based DESs, ChCl:Gly also exhibits a higher viscosity than ChCl:EG. This is attributed to the over-saturation of hydrogen bond donor groups in the ChCl:Gly bulk, which leads to more extensive hydrogen bond donor self-interaction and hence higher cohesive forces within the bulk liquid.
Choline and Inositol Distribution in Algae and Fungi1
Ikawa, Miyoshi; Borowski, Paul T.; Chakravarti, Ashima
1968-01-01
Inositol and choline were present in varying amounts among the species of Rhodophyta, Phaeophyta, Chlorophyta, and Euglenophyta examined. However, in the two members of the order Fucales (division Phaeophyta) examined, no detectable amounts of choline were found. In contrast, the species of Cyanophyta examined contained no detectable amounts of either choline or inositol. All species of the fungal classes Phycomyceteae, Ascomyceteae, and Basidiomyceteae collected contained both inositol and choline in varying amounts. The red, brown, and blue-green algae usually contained much less inositol and choline than do plant and animals sources, but the fungi and the algae Chlorella and Euglena contained amounts comparable to those present in plant sources. PMID:5647522
Reproducibility of Quantitative Brain Imaging Using a PET-Only and a Combined PET/MR System
Lassen, Martin L.; Muzik, Otto; Beyer, Thomas; Hacker, Marcus; Ladefoged, Claes Nøhr; Cal-González, Jacobo; Wadsak, Wolfgang; Rausch, Ivo; Langer, Oliver; Bauer, Martin
2017-01-01
The purpose of this study was to test the feasibility of migrating a quantitative brain imaging protocol from a positron emission tomography (PET)-only system to an integrated PET/MR system. Potential differences in both absolute radiotracer concentration as well as in the derived kinetic parameters as a function of PET system choice have been investigated. Five healthy volunteers underwent dynamic (R)-[11C]verapamil imaging on the same day using a GE-Advance (PET-only) and a Siemens Biograph mMR system (PET/MR). PET-emission data were reconstructed using a transmission-based attenuation correction (AC) map (PET-only), whereas a standard MR-DIXON as well as a low-dose CT AC map was applied to PET/MR emission data. Kinetic modeling based on arterial blood sampling was performed using a 1-tissue-2-rate constant compartment model, yielding kinetic parameters (K1 and k2) and distribution volume (VT). Differences for parametric values obtained in the PET-only and the PET/MR systems were analyzed using a 2-way Analysis of Variance (ANOVA). Comparison of DIXON-based AC (PET/MR) with emission data derived from the PET-only system revealed average inter-system differences of −33 ± 14% (p < 0.05) for the K1 parameter and −19 ± 9% (p < 0.05) for k2. Using a CT-based AC for PET/MR resulted in slightly lower systematic differences of −16 ± 18% for K1 and −9 ± 10% for k2. The average differences in VT were −18 ± 10% (p < 0.05) for DIXON- and −8 ± 13% for CT-based AC. Significant systematic differences were observed for kinetic parameters derived from emission data obtained from PET/MR and PET-only imaging due to different standard AC methods employed. Therefore, a transfer of imaging protocols from PET-only to PET/MR systems is not straightforward without application of proper correction methods. Clinical Trial Registration: www.clinicaltrialsregister.eu, identifier 2013-001724-19 PMID:28769742
Kwan, Sze Ting Cecilia; King, Julia H; Grenier, Jennifer K; Yan, Jian; Jiang, Xinyin; Roberson, Mark S; Caudill, Marie A
2018-03-28
The placental epigenome regulates processes that affect placental and fetal development, and could be mediating some of the reported effects of maternal choline supplementation (MCS) on placental vascular development and nutrient delivery. As an extension of work previously conducted in pregnant mice, the current study sought to explore the effects of MCS on various epigenetic markers in the placenta. RNA and DNA were extracted from placentas collected on embryonic day 15.5 from pregnant mice fed a 1X or 4X choline diet, and were subjected to genome-wide sequencing procedures or mass-spectrometry-based assays to examine placental imprinted gene expression, DNA methylation patterns, and microRNA (miRNA) abundance. MCS yielded a higher (fold change = 1.63-2.25) expression of four imprinted genes ( Ampd3 , Tfpi2 , Gatm and Aqp1 ) in the female placentas and a lower (fold change = 0.46-0.62) expression of three imprinted genes ( Dcn , Qpct and Tnfrsf23 ) in the male placentas (false discovery rate (FDR) ≤ 0.05 for both sexes). Methylation in the promoter regions of these genes and global placental DNA methylation were also affected ( p ≤ 0.05). Additionally, a lower (fold change = 0.3; P unadjusted = 2.05 × 10 -4 ; FDR = 0.13) abundance of miR-2137 and a higher (fold change = 1.25-3.92; p < 0.05) expression of its target genes were detected in the 4X choline placentas. These data demonstrate that the placental epigenome is responsive to maternal choline intake during murine pregnancy and likely mediates some of the previously described choline-induced effects on placental and fetal outcomes.
Effect of choline carboxylate ionic liquids on biological membranes
Rengstl, Doris; Kraus, Birgit; Van Vorst, Matthew; Elliott, Gloria D.; Kunz, Werner
2015-01-01
Choline carboxylates, ChCm, with m = 2–10 and choline oleate are known as biocompatible substances, yet their influence on biological membranes is not well-known, and the effect on human skin has not previously been investigated. The short chain choline carboxylates ChCm with m = 2, 4, 6 act as hydrotropes, solubilizing hydrophobic compounds in aqueous solution, while the longer chain choline carboxylates ChCm with m = 8,10 and oleate are able to form micelles. In the present study, the cytotoxicity of choline carboxylates was tested using HeLa and SK-MEL-28 cells. The influence of these substances on liposomes prepared from dipalmitoylphosphatidylcholine (DPPC) was also evaluated to provide insights on membrane interactions. It was observed that the choline carboxylates with a chain length of m > 8 distinctly influence the bilayer, while the shorter ones had minimal interaction with the liposomes. PMID:25444662
An introduction to the nutrition and metabolism of choline.
Hollenbeck, Clarie B
2012-06-01
Choline is a ubiquitous water soluble nutrient, often associated with the B vitamins; however, not yet officially defined as a B vitamin. It is important in the synthesis of phospholipid components of cell membranes, and plasma lipoproteins, providing structural integrity as well as being important in cell signaling; it is also important in the synthesis of the neurotransmitter acetylcholine, and the oxidized form of choline, glycine betaine, serves as an important methyl donor in the methionine cycle. It is present in a wide variety of foods, and is endogenously synthesized in humans through the sequential methylation of phosphatidylethanolamine. The present article represents an introduction to the nutrition, metabolism, and physiological functions of choline and choline derivatives in humans. The association of choline and choline derivatives in risk of chronic disease, including: neural tube defects, coronary artery disease, cancer, Alzheimer's disease, dementia, and memory, and cystic fibrosis is reviewed.
USDA-ARS?s Scientific Manuscript database
Background: There is a potential role of choline in cardiovascular and cerebrovascular disease through its involvement in lipid and one-carbon metabolism. Objective: We evaluated the associations of plasma choline and choline-related compounds with cardiometabolic risk factors, history of cardiovas...
21 CFR 573.580 - Iron-choline citrate complex.
Code of Federal Regulations, 2012 CFR
2012-04-01
...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.580 Iron-choline citrate complex. Iron-choline citrate complex made by... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Iron-choline citrate complex. 573.580 Section 573...
21 CFR 573.580 - Iron-choline citrate complex.
Code of Federal Regulations, 2011 CFR
2011-04-01
...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.580 Iron-choline citrate complex. Iron-choline citrate complex made by... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Iron-choline citrate complex. 573.580 Section 573...
21 CFR 573.580 - Iron-choline citrate complex.
Code of Federal Regulations, 2014 CFR
2014-04-01
...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.580 Iron-choline citrate complex. Iron-choline citrate complex made by... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Iron-choline citrate complex. 573.580 Section 573...
21 CFR 573.580 - Iron-choline citrate complex.
Code of Federal Regulations, 2010 CFR
2010-04-01
...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.580 Iron-choline citrate complex. Iron-choline citrate complex made by... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Iron-choline citrate complex. 573.580 Section 573...
21 CFR 573.580 - Iron-choline citrate complex.
Code of Federal Regulations, 2013 CFR
2013-04-01
...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.580 Iron-choline citrate complex. Iron-choline citrate complex made by... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Iron-choline citrate complex. 573.580 Section 573...
The choline requirement of broiler chicks during the seventh week of life.
Molitoris, B A; Baker, D H
1976-01-01
Male crossbred chicks were used to quantify the choline requirement and choline-sparing value of methionine and betaine for broiler chicks during the seventh week of life. The sulfur amino acid (SAA) requirement of male and female chicks was also determined. In all assays a crystalline amino acid diet containing 14.9% protein equivalent and 3400 kcal. M.E./kg, was employed. Increasing increments (0.08%) of SAA (equal mixture of DL-methionine and L-cystine) were fed from 0.38 to 0.70% of the diet. Least squares analysis indicated SAA requirements for maximal weight gain of 0.61 and 0.62% of the diet for males and females, respectively. The choline requirement was determined by feeding six levels of choline in the presence of 0.62% SAA. Gain but not gain/feed responded linearly to choline addition. Least squares analysis of gain indicated a dietary choline requirement of 358 p.p.m. of 30.6 mg./day. The choline-replacement value of methionine and betaine was found to be minimal.
Choline, Other Methyl-Donors and Epigenetics
Zeisel, Steven H.
2017-01-01
Choline dietary intake varies such that many people do not achieve adequate intakes. Diet intake of choline can modulate methylation because, via betaine homocysteine methyltransferase (BHMT), this nutrient (and its metabolite, betaine) regulate the concentrations of S-adenosylhomocysteine and S-adenosylmethionine. Some of the epigenetic mechanisms that modify gene expression without modifying the genetic code depend on the methylation of DNA or of histones; and diet availability of choline and other methyl-group donors influences both of these methylations. Examples of methyl-donor mediated epigenetic effects include the changes in coat color and body weight in offspring when pregnant agouti mice are fed high choline, high methyl diets; the changes in tail kinking in offspring when pregnant Axin(Fu) mice are fed high choline, high methyl diets; the changes in Cdkn3 methylation and altered brain development that occurs in offspring when pregnant rodents are fed low choline diets. When choline metabolism is disrupted by deleting the gene Bhmt, DNA methylation is affected (especially in a region of chromosome 13), expression of specific genes is suppressed, and liver cancers develop. Better understanding of how nutrients such as choline and methyl-donors influence epigenetic programs has importance for our understanding of not only developmental abnormalities but also for understanding the origins of chronic diseases. PMID:28468239
Diethanolamine alters proliferation and choline metabolism in mouse neural precursor cells.
Niculescu, Mihai D; Wu, Renan; Guo, Zhong; da Costa, Kerry Ann; Zeisel, Steven H
2007-04-01
Diethanolamine (DEA) is a widely used ingredient in many consumer products and in a number of industrial applications. It has been previously reported that dermal administration of DEA to mice diminished hepatic stores of choline and altered brain development in the fetus. The aim of this study was to use mouse neural precursor cells in vitro to assess the mechanism underlying the effects of DEA. Cells exposed to DEA treatment (3mM) proliferated less (by 5-bromo-2-deoxyuridine incorporation) at 48 h (24% of control [CT]), and had increased apoptosis at 72 h (308% of CT). Uptake of choline into cells was reduced by DEA treatment (to 52% of CT), resulting in diminished intracellular concentrations of choline and phosphocholine (55 and 12% of CT, respectively). When choline concentration in the growth medium was increased threefold (to 210 microM), the effects of DEA exposure on cell proliferation and apoptosis were prevented, however, intracellular phosphocholine concentrations remained low. In choline kinase assays, we observed that DEA can be phosphorylated to phospho-DEA at the expense of choline. Thus, the effects of DEA are likely mediated by inhibition of choline transport into neural precursor cells and by altered metabolism of choline. Our study suggests that prenatal exposure to DEA may have a detrimental effect on brain development.
Diethanolamine Alters Proliferation and Choline Metabolism in Mouse Neural Precursor Cells
Niculescu, Mihai D.; Wu, Renan; Guo, Zhong; da Costa, Kerry Ann; Zeisel, Steven H.
2008-01-01
Diethanolamine (DEA) is a widely used ingredient in many consumer products and in a number of industrial applications. It has been previously reported that dermal administration of DEA to mice diminished hepatic stores of choline and altered brain development in the fetus. The aim of this study was to use mouse neural precursor cells in vitro to assess the mechanism underlying the effects of DEA. Cells exposed to DEA treatment (3mM) proliferated less (by 5-bromo-2-deoxyuridine incorporation) at 48 h (24% of control [CT]), and had increased apoptosis at 72 h (308% of CT). Uptake of choline into cells was reduced by DEA treatment (to 52% of CT), resulting in diminished intracellular concentrations of choline and phosphocholine (55 and 12% of CT, respectively). When choline concentration in the growth medium was increased threefold (to 210μM), the effects of DEA exposure on cell proliferation and apoptosis were prevented, however, intracellular phosphocholine concentrations remained low. In choline kinase assays, we observed that DEA can be phosphorylated to phospho-DEA at the expense of choline. Thus, the effects of DEA are likely mediated by inhibition of choline transport into neural precursor cells and by altered metabolism of choline. Our study suggests that prenatal exposure to DEA may have a detrimental effect on brain development. PMID:17204582
Choline, Other Methyl-Donors and Epigenetics.
Zeisel, Steven
2017-04-29
Choline dietary intake varies such that many people do not achieve adequate intakes. Diet intake of choline can modulate methylation because, via betaine homocysteine methyltransferase (BHMT), this nutrient (and its metabolite, betaine) regulate the concentrations of S-adenosylhomocysteine and S-adenosylmethionine. Some of the epigenetic mechanisms that modify gene expression without modifying the genetic code depend on the methylation of DNA or of histones; and diet availability of choline and other methyl-group donors influences both of these methylations. Examples of methyl-donor mediated epigenetic effects include the changes in coat color and body weight in offspring when pregnant agouti mice are fed high choline, high methyl diets; the changes in tail kinking in offspring when pregnant Axin(Fu) mice are fed high choline, high methyl diets; the changes in Cdkn3 methylation and altered brain development that occurs in offspring when pregnant rodents are fed low choline diets. When choline metabolism is disrupted by deleting the gene Bhmt, DNA methylation is affected (especially in a region of chromosome 13), expression of specific genes is suppressed, and liver cancers develop. Better understanding of how nutrients such as choline and methyl-donors influence epigenetic programs has importance for our understanding of not only developmental abnormalities but also for understanding the origins of chronic diseases.
Choline requirements of White Pekin ducks from hatch to 21 days of age.
Wen, Z G; Tang, J; Hou, S S; Guo, Y M; Huang, W; Xie, M
2014-12-01
A dose-response experiment with 8 dietary choline levels (302, 496, 778, 990, 1,182, 1,414, 1,625, and 1,832 mg/kg) was conducted with male White Pekin ducks to estimate the choline requirement from hatch to 21 d of age. Three hundred eighty-four 1-d-old male White Pekin ducks were randomly assigned to 8 dietary treatments, each containing 6 replicate pens with 8 birds per pen. At 21 d of age, weight gain, feed intake, and feed/gain from each pen were calculated for feeding period, and 2 ducks selected randomly from each pen were euthanized and the liver was collected to determine total lipids, triglycerides, and phospholipids. In our study, perosis, poor growth, and high liver fat were all observed in choline-deficient ducks and incidence of perosis was zero when dietary choline was 1,182 mg/kg. As dietary choline increased, the weight gain and feed intake increased linearly or quadratically (P < 0.05). On the other hand, as dietary choline increased, the total lipid and triglyceride in liver decreased linearly and liver phospholipid increased linearly (P < 0.05), and the lipotropic activity of choline may be associated with increasing phospholipid at a high dietary choline level. According to broken-line regression, the choline requirements for weight gain and feed intake were 810 and 823 mg/kg, respectively, but higher requirement should be considered to prevent perosis and excess liver lipid deposition completely. ©2014 Poultry Science Association Inc.
Moreno, Hayarelis C; de Brugada, Isabel; Carias, Diamela; Gallo, Milagros
2013-11-01
Choline is an essential nutrient required for early development. Previous studies have shown that prenatal choline availability influences adult memory abilities depending on the medial temporal lobe integrity. The relevance of prenatal choline availability on object recognition memory was assessed in adult Wistar rats. Three groups of pregnant Wistar rats were fed from E12 to E18 with choline-deficient (0 g/kg choline chloride), standard (1.1 g/kg choline chloride), or choline-supplemented (5 g/kg choline chloride) diets. The offspring was cross-fostered to rat dams fed a standard diet during pregnancy and tested at the age of 3 months in an object recognition memory task applying retention tests 24 and 48 hours after acquisition. Although no significant differences have been found in the performance of the three groups during the first retention test, the supplemented group exhibited improved memory compared with both the standard and the deficient group in the second retention test, 48 hours after acquisition. In addition, at the second retention test the deficient group did not differ from chance. Taken together, the results support the notion of a long-lasting beneficial effect of prenatal choline supplementation on object recognition memory which is evident when the rats reach adulthood. The results are discussed in terms of their relevance for improving the understanding of the cholinergic involvement in object recognition memory and the implications of the importance of maternal diet for lifelong cognitive abilities.
The effect of cytidine-diphosphate choline (CDP-choline) on brain lipid changes during aging
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Medio, G.E.; Trovarelli, G.; Piccinin, G.L.
1984-01-01
Lipid synthesis has been tested in vivo in different brain areas of 12-month-old male rats. Cortex, striatum, brainstem, and subcortex of brain have been examined. The cerebellum was discarded. Mixtures of (2-/sup 3/H)glycerol and (Me-/sup 14/C)choline were injected into the lateral ventricle of the brain as lipid precursors, and their incorporation into total lipid, water-soluble intermediates and choline-containing phospholipids was examined 1 hr after isotope injection. In another series of experiments cytidine-5'-diphosphate choline (CDP-choline) was injected intraventricularly to the aged rats 10 min before sacrifice with a simultaneous injection, and radioactivity assays were performed as above. Distribution of radioactivity contentmore » of CDP-choline among brain areas 10 min after its administration showed a noticeable enrichment of the nucleotide and water-soluble-related compounds in the examined areas, but to a lesser degree in the cerebral cortex. The incorporation of labelled glycerol, which is severely depressed in aged rats in all four areas (Gaiti et al, 1982, 1983), was increased only in the cortex, and apparently decreased in the other areas. This last result is probably due to a dilution effect brought about by the administered cold CDP-choline upon the (/sup 14/C)-containing water-soluble metabolites. As a consequence, the (/sup 3/H)/(/sup 14/C) ratio in total lipid and in isolated phosphatidylcholine and choline plasmalogen increased after CDP-choline treatment.« less
Lesion-induced plasticity of high affinity choline uptake in the developing rat fascia dentata.
Nadler, J V; Shelton, D L; Cotman, C W
1979-03-23
After removal of the perforant path input to the rat fascia dentata at the age of 11 days, cholinergic septohippocampal fibers invade the denervated area. We have examined the effect of this lesion on hemicholinium-sensitive, high affinity choline uptake and its coupling to acetylcholine synthesis, specific properties of the septohippocampal input. Removal of the ipsilateral perforant path fibers increased the velocity of high affinity choline uptake by dentate particulate preparations, usually within 1 day. Studies conducted 5--104 days after operation showed a consistent 50--65% elevation in the molecular (denervated) layer. In contrast, the choline uptake rate in the granular layer eventually decreased slightly. Calculation of choline uptake rates independently of protein (per whole region) revealed that fasciae dentatae from operated and control sides accumulated choline at approximately equal rates, but on the operated side a greater percentage was transported by structures from the molecular layer and a lesser percentage by those from the granular layer. The rate of acetylcholine synthesis from exogenous choline increased to the same extent as high affinity choline uptake from 3 days after operation onwards. The changes in high affinity choline uptake and acetylcholine synthesis coincided spatially and temporally with the reactive growth of septohippocampal fibers. Our results support the view that a perforant path lesion during development permanently alters the distribution of functional septohippocampal boutons in the fascia dentata. Acetylcholine synthesis is regulated to the same extent by high affinity choline uptake in the anomalous boutons as in normally located boutons.
Cho, Eunyoung; Zeisel, Steven H; Jacques, Paul; Selhub, Jacob; Dougherty, Lauren; Colditz, Graham A; Willett, Walter C
2008-01-01
Background: Epidemiologic studies of choline and betaine intakes have been sparse because a food-composition database was not available until recently. The physiologic relevance of a variation in dietary choline and betaine in the general population and the validity of intake assessed by food-frequency questionnaire (FFQ) have not been evaluated. Objective: This study was conducted to examine the physiologic relevance and validity of choline and betaine intakes measured by an FFQ. Design: We examined the relations between choline and betaine intakes measured by FFQ and plasma total homocysteine (tHcy) concentrations in 1960 participants from the Framingham Offspring Study. Results: Higher intakes of dietary choline and betaine were related to lower tHcy concentrations independent of other determinants, including folate and other B vitamins. For the lowest and highest quintiles of dietary choline plus betaine, the multivariate geometric means for tHcy were 10.9 and 9.9 μmol/L (P for trend < 0.0001). The inverse association was manifested primarily in participants with low folate intakes (P for interaction < 0.0001). Among participants with folate intakes ≤250 μg/d, the geometric mean tHcy concentrations in the lowest and highest quintiles of choline plus betaine intakes were 12.4 and 10.2 μmol/L (P for trend < 0.0001). Except for choline from phosphatidylcholine, individual forms of choline were inversely associated with tHcy concentrations. Conclusions: Our findings provide support for a physiologically important variation in choline and betaine intakes in the general population and for the validity of intake measured by FFQ. PMID:16600945
Chiuve, Stephanie E; Giovannucci, Edward L; Hankinson, Susan E; Zeisel, Steven H; Dougherty, Lauren W; Willett, Walter C; Rimm, Eric B
2007-10-01
Elevated total homocysteine (tHcy), a risk factor for many chronic diseases, can be remethylated to methionine by folate. Alternatively, tHcy can be metabolized by other 1-carbon nutrients, ie, betaine and its precursor, choline. We aimed to assess the association between the dietary intakes of betaine and choline and the concentration of tHcy. We conducted a cross-sectional analysis in 1477 women by using linear regression models to predict mean fasting tHcy by intakes of of betaine and choline. tHcy was 8% lower in the highest quintile of total betaine + choline intake than in the lowest quintile, even after control for folate intake (P for trend = 0.07). Neither choline nor betaine intake individually was significantly associated with tHcy. Choline from 2 choline-containing compounds, glycerophosphocholine and phosphocholine, was inversely associated with tHcy. These inverse associations were more pronounced in women with folate intake < 400 mug/d than in those with intakes >or=400 microg/d (P for interaction = 0.03 for phosphocholine) and in moderate alcohol drinkers (>or=15 g/d) than in nondrinkers or light drinkers (<15 g/d) (P for interaction = 0.02 for glycerophosphocholine and 0.04 for phosphocholine). The strongest dose response was seen in women with a low-methyl diet (high alcohol and low folate intake) (P for interaction = 0.002 for glycerophosphocholine and 0.001 for phosphocholine). Total choline + betaine intake was inversely associated with tHcy, as was choline from 2 water-soluble choline-containing compounds. Remethylation of tHcy may be more dependent on the betaine pathway when methyl sources are low as a result of either inadequate folate intake or heavier alcohol consumption.
West, Allyson A; Yan, Jian; Jiang, Xinyin; Perry, Cydne A; Innis, Sheila M; Caudill, Marie A
2013-04-01
Phosphatidylcholine (PC) produced via the S-adenosylmethionine-dependent phosphatidylethanolamine (PE) N-methyltransferase (PEMT) pathway is enriched with docosahexaenoic acid (DHA). DHA plays a critical role in fetal development and is linked to health endpoints in adulthood. It is unknown whether choline, which can serve as a source of S-adenosylmethionine methyl groups, influences PC-DHA or the PC:PE ratio in pregnant and nonpregnant women. This study tested whether choline intake affects indicators of choline-related lipid metabolism, including erythrocyte and plasma PC-DHA and PC:PE ratios, in pregnant women in the third trimester and nonpregnant women. Pregnant (n = 26) and nonpregnant (n = 21) women consumed 480 or 930 mg choline/d and a daily DHA supplement for 12 wk. Blood was collected at baseline and at the midpoint and end of the study. PC-DHA was analyzed as the proportion of total PC fatty acids. Pregnant women had greater (P = 0.002) PC-DHA concentrations than did nonpregnant women at baseline. The proportion of erythrocyte and plasma PC-DHA increased (P ≤ 0.002) in pregnant and nonpregnant women regardless of choline intake. However, in nonpregnant women, consumption of 930 mg choline/d led to greater (P < 0.001) erythrocyte PC-DHA and a more rapid increase (P < 0.001) in plasma PC-DHA. Lower (P = 0.001-0.024) erythrocyte and plasma PC:PE in pregnant women was not modified by choline intake. A higher choline intake may increase PEMT activity, resulting in greater PC-DHA enrichment of the PC molecule in nonpregnant women. Increased production of PC-DHA during pregnancy indicates elevated PEMT activity and a higher demand for methyl donors. This trial was registered at clinicaltrials.gov as NCT01127022.
Gao, Xiang; Wang, Yongbo; Sun, Guang
2017-01-01
Dietary betaine supplement could ameliorate insulin resistance (IR) in animals, but no data are available for choline. Reports on humans are rare. The aim of this study was to investigate the association between dietary choline and betaine intake and IR in humans. We assessed 2394 adults from the CODING (Complex Diseases in the Newfoundland population: Environment and Genetics) study. Intake of dietary choline and betaine was evaluated from the Willett Food Frequency Questionnaire. IR was estimated by homeostatic model assessment (HOMA-IR) and the quantitative insulin-sensitivity check index (QUICKI). Partial correlation analysis was used to determine the correlations of dietary choline and betaine intake with IR adjusted for major confounding factors. Dietary choline and betaine intake was inversely correlated with levels of fasting glucose and insulin, HOMA-IR, HOMA-β (r = -0.08 to -0.27 for choline and r = -0.06 to -0.16 for betaine; P < 0.05) and positively related to QUICKI (r = 0.16-0.25 for choline and r = 0.11-0.16 for betaine; P < 0.01) in both sexes after controlling for age, total calorie intake, and physical activity level. The significant associations disappeared in men after percent trunk fat was added as a confounding factor. Furthermore, individuals with the highest tertile of dietary choline and betaine intake had the lowest IR severity. Dietary choline and betaine intake, however, was the lowest in the high IR group, intermediate in the medium group, and the highest in the low IR group. This study demonstrated that higher intake of dietary choline and betaine is associated with lower IR in the general population. Copyright © 2016 Elsevier Inc. All rights reserved.
Choline Alleviates Parenteral Nutrition-Associated Duodenal Motility Disorder in Infant Rats.
Zhu, Jie; Wu, Yang; Guo, Yonggao; Tang, Qingya; Lu, Ting; Cai, Wei; Huang, Haiyan
2016-09-01
Parenteral nutrition (PN) has been found to influence duodenal motility in animals. Choline is an essential nutrient, and its deficiency is related to PN-associated organ diseases. Therefore, this study was aimed to investigate the role of choline supplementation in an infant rat model of PN-associated duodenal motility disorder. Three-week-old Sprague-Dawley male rats were fed chow and water (controls), PN solution (PN), or PN plus intravenous choline (600 mg/kg) (PN + choline). Rats underwent jugular vein cannulation for infusion of PN solution or 0.9% saline (controls) for 7 days. Duodenal oxidative stress status, concentrations of plasma choline, phosphocholine, and betaine and serum tumor necrosis factor (TNF)-α were assayed. The messenger RNA (mRNA) and protein expression of c-Kit proto-oncogene protein (c-Kit) and membrane-bound stem cell factor (mSCF) together with the electrophysiological features of slow waves in the duodenum were also evaluated. Rats on PN showed increased reactive oxygen species; decreased total antioxidant capacity in the duodenum; reduced plasma choline, phosphocholine, and betaine; and enhanced serum TNF-α concentrations, which were reversed by choline intervention. In addition, PN reduced mRNA and protein expression of mSCF and c-Kit, which were inversed under choline administration. Moreover, choline attenuated depolarized resting membrane potential and declined the frequency and amplitude of slow waves in duodenal smooth muscles of infant rats induced by PN, respectively. The addition of choline to PN may alleviate the progression of duodenal motor disorder through protecting smooth muscle cells from injury, promoting mSCF/c-Kit signaling, and attenuating impairment of interstitial cells of Cajal in the duodenum during PN feeding. © 2015 American Society for Parenteral and Enteral Nutrition.
Chiuve, Stephanie E; Giovannucci, Edward L; Hankinson, Susan E; Zeisel, Steven H; Dougherty, Lauren W; Willett, Walter C; Rimm, Eric B
2008-01-01
Background Elevated total homocysteine (tHcy), a risk factor for many chronic diseases, can be remethylated to methionine by folate. Alternatively, tHcy can be metabolized by other 1-carbon nutrients, ie, betaine and its precursor, choline. Objective We aimed to assess the association between the dietary intakes of betaine and choline and the concentration of tHcy. Design We conducted a cross-sectional analysis in 1477 women by using linear regression models to predict mean fasting tHcy by intakes of of betaine and choline. Results tHcy was 8% lower in the highest quintile of total betaine + choline intake than in the lowest quintile, even after control for folate intake (P for trend = 0.07). Neither choline nor betaine intake individually was significantly associated with tHcy. Choline from 2 choline-containing compounds, glycerophosphocholine and phosphocholine, was inversely associated with tHcy. These inverse associations were more pronounced in women with folate intake < 400 μg/d than in those with intakes ≥400 μg/d (P for interaction = 0.03 for phosphocholine) and in moderate alcohol drinkers (≥15 g/d) than in nondrinkers or light drinkers (<15 g/d) (P for interaction = 0.02 for glycerophosphocholine and 0.04 for phosphocholine). The strongest dose response was seen in women with a low-methyl diet (high alcohol and low folate intake) (P for interaction = 0.002 for glycerophosphocholine and 0.001 for phosphocholine). Conclusions Total choline + betaine intake was inversely associated with tHcy, as was choline from 2 water-soluble choline-containing compounds. Remethylation of tHcy may be more dependent on the betaine pathway when methyl sources are low as a result of either inadequate folate intake or heavier alcohol consumption. PMID:17921386
Yoon, Sujung J; Lyoo, In Kyoon; Kim, Hengjun J; Kim, Tae-Suk; Sung, Young Hoon; Kim, Namkug; Lukas, Scott E; Renshaw, Perry F
2010-04-01
Cytidine-5'-diphosphate choline (CDP-choline), as an important intermediate for major membrane phospholipids, may exert neuroprotective effects in various neurodegenerative disorders. This longitudinal proton magnetic resonance spectroscopy ((1)H-MRS) study aimed to examine whether a 4-week CDP-choline treatment could alter neurometabolite levels in patients with methamphetamine (MA) dependence and to investigate whether changes in neurometabolite levels would be associated with MA use. We hypothesized that the prefrontal levels of N-acetyl-aspartate (NAA), a neuronal marker, and choline-containing compound (Cho), which are related to membrane turnover, would increase with CDP-choline treatment in MA-dependent patients. We further hypothesized that this increase would correlate with the total number of negative urine results. Thirty-one treatment seekers with MA dependence were randomly assigned to receive CDP-choline (n=16) or placebo (n=15) for 4 weeks. Prefrontal NAA and Cho levels were examined using (1)H-MRS before medication, and at 2 and 4 weeks after treatment. Generalized estimating equation regression analyses showed that the rate of change in prefrontal NAA (p=0.005) and Cho (p=0.03) levels were greater with CDP-choline treatment than with placebo. In the CDP-choline-treated patients, changes in prefrontal NAA levels were positively associated with the total number of negative urine results (p=0.03). Changes in the prefrontal Cho levels, however, were not associated with the total number of negative urine results. These preliminary findings suggest that CDP-choline treatment may exert potential neuroprotective effects directly or indirectly because of reductions in drug use by the MA-dependent patients. Further studies with a larger sample size of MA-dependent patients are warranted to confirm a long-term efficacy of CDP-choline in neuroprotection and abstinence.
Dietary choline requirements of women: effects of estrogen and genetic variation123
Fischer, Leslie M; da Costa, Kerry-Ann; Kwock, Lester; Galanko, Joseph
2010-01-01
Background: Choline is obtained from the diet and from the biosynthesis of phosphatidylcholine. Phosphatidylcholine is catalyzed by the enzyme phosphatidylethanolamine-N-methyltransferase (PEMT), which is induced by estrogen. Because they have lower estrogen concentrations, postmenopausal women are more susceptible to the risk of organ dysfunction in response to a low-choline diet. A common genetic polymorphism (rs12325817) in the PEMT gene can also increase this risk. Objective: The objective was to determine whether the risk of low choline–related organ dysfunction increases with the number of alleles of rs12325817 in premenopausal women and whether postmenopausal women (with or without rs12325817) treated with estrogen are more resistant to developing such symptoms. Design: Premenopausal women (n = 27) consumed a choline-sufficient diet followed by a very-low-choline diet until they developed organ dysfunction (or for 42 d), which was followed by a high-choline diet. Postmenopausal women (n = 22) were placed on the same diets but were first randomly assigned to receive estrogen or a placebo. The women were monitored for organ dysfunction and plasma choline metabolites and were genotyped for rs12325817. Results: A dose-response effect of rs12325817 on the risk of choline-related organ dysfunction was observed in premenopausal women: 80%, 43%, and 13% of women with 2, 1, or 0 alleles, respectively, developed organ dysfunction. Among postmenopausal women, 73% who received placebo but only 18% who received estrogen developed organ dysfunction during the low-choline diet. Conclusions: Because of their lower estrogen concentrations, postmenopausal women have a higher dietary requirement for choline than do premenopausal women. Choline requirements for both groups of women are further increased by rs12325817. This trial was registered at clinicaltrials.gov as NCT00065546. PMID:20861172
Wang, Zeneng; Tang, W H Wilson; Buffa, Jennifer A; Fu, Xiaoming; Britt, Earl B; Koeth, Robert A; Levison, Bruce S; Fan, Yiying; Wu, Yuping; Hazen, Stanley L
2014-04-01
Recent metabolomics and animal model studies show trimethylamine-N-oxide (TMAO), an intestinal microbiota-dependent metabolite formed from dietary trimethylamine-containing nutrients such as phosphatidylcholine (PC), choline, and carnitine, is linked to coronary artery disease pathogenesis. Our aim was to examine the prognostic value of systemic choline and betaine levels in stable cardiac patients. We examined the relationship between fasting plasma choline and betaine levels and risk of major adverse cardiac events (MACE = death, myocardial infraction, stroke) in relation to TMAO over 3 years of follow-up in 3903 sequential stable subjects undergoing elective diagnostic coronary angiography. In our study cohort, median (IQR) TMAO, choline, and betaine levels were 3.7 (2.4-6.2)μM, 9.8 (7.9-12.2)μM, and 41.1 (32.5-52.1)μM, respectively. Modest but statistically significant correlations were noted between TMAO and choline (r = 0.33, P < 0.001) and less between TMAO and betaine (r = 0.09, P < 0.001). Higher plasma choline and betaine levels were associated with a 1.9-fold and 1.4-fold increased risk of MACE, respectively (Quartiles 4 vs. 1; P < 0.01, each). Following adjustments for traditional cardiovascular risk factors and high-sensitivity C-reactive protein, elevated choline [1.34 (1.03-1.74), P < 0.05], and betaine levels [1.33 (1.03-1.73), P < 0.05] each predicted increased MACE risk. Neither choline nor betaine predicted MACE risk when TMAO was added to the adjustment model, and choline and betaine predicted future risk for MACE only when TMAO was elevated. Elevated plasma levels of choline and betaine are each associated with incident MACE risk independent of traditional risk factors. However, high choline and betaine levels are only associated with higher risk of future MACE with concomitant increase in TMAO.
Wang, Zeneng; Tang, W. H. Wilson; Buffa, Jennifer A.; Fu, Xiaoming; Britt, Earl B.; Koeth, Robert A.; Levison, Bruce S.; Fan, Yiying; Wu, Yuping; Hazen, Stanley L.
2014-01-01
Aims Recent metabolomics and animal model studies show trimethylamine-N-oxide (TMAO), an intestinal microbiota-dependent metabolite formed from dietary trimethylamine-containing nutrients such as phosphatidylcholine (PC), choline, and carnitine, is linked to coronary artery disease pathogenesis. Our aim was to examine the prognostic value of systemic choline and betaine levels in stable cardiac patients. Methods and results We examined the relationship between fasting plasma choline and betaine levels and risk of major adverse cardiac events (MACE = death, myocardial infraction, stroke) in relation to TMAO over 3 years of follow-up in 3903 sequential stable subjects undergoing elective diagnostic coronary angiography. In our study cohort, median (IQR) TMAO, choline, and betaine levels were 3.7 (2.4–6.2)μM, 9.8 (7.9–12.2)μM, and 41.1 (32.5–52.1)μM, respectively. Modest but statistically significant correlations were noted between TMAO and choline (r = 0.33, P < 0.001) and less between TMAO and betaine (r = 0.09, P < 0.001). Higher plasma choline and betaine levels were associated with a 1.9-fold and 1.4-fold increased risk of MACE, respectively (Quartiles 4 vs. 1; P < 0.01, each). Following adjustments for traditional cardiovascular risk factors and high-sensitivity C-reactive protein, elevated choline [1.34 (1.03–1.74), P < 0.05], and betaine levels [1.33 (1.03–1.73), P < 0.05] each predicted increased MACE risk. Neither choline nor betaine predicted MACE risk when TMAO was added to the adjustment model, and choline and betaine predicted future risk for MACE only when TMAO was elevated. Conclusion Elevated plasma levels of choline and betaine are each associated with incident MACE risk independent of traditional risk factors. However, high choline and betaine levels are only associated with higher risk of future MACE with concomitant increase in TMAO. PMID:24497336
Choline nutrition programs brain development via DNA and histone methylation.
Blusztajn, Jan Krzysztof; Mellott, Tiffany J
2012-06-01
Choline is an essential nutrient for humans. Metabolically choline is used for the synthesis of membrane phospholipids (e.g. phosphatidylcholine), as a precursor of the neurotransmitter acetylcholine, and, following oxidation to betaine, choline functions as a methyl group donor in a pathway that produces S-adenosylmethionine. As a methyl donor choline influences DNA and histone methylation--two central epigenomic processes that regulate gene expression. Because the fetus and neonate have high demands for choline, its dietary intake during pregnancy and lactation is particularly important for normal development of the offspring. Studies in rodents have shown that high choline intake during gestation improves cognitive function in adulthood and prevents memory decline associated with old age. These behavioral changes are accompanied by electrophysiological, neuroanatomical, and neurochemical changes and by altered patterns of expression of multiple cortical and hippocampal genes including those encoding key proteins that contribute to the biochemical mechanisms of learning and memory. These actions of choline are observed long after the exposure to the nutrient ended (months) and correlate with fetal hepatic and cerebral cortical choline-evoked changes in global- and gene-specific DNA cytosine methylation and with dramatic changes of the methylation pattern of lysine residues 4, 9 and 27 of histone H3. Moreover, gestational choline modulates the expression of DNA (Dnmt1, Dnmt3a) and histone (G9a/Ehmt2/Kmt1c, Suv39h1/Kmt1a) methyltransferases. In addition to the central role of DNA and histone methylation in brain development, these processes are highly dynamic in adult brain, modulate the expression of genes critical for synaptic plasticity, and are involved in mechanisms of learning and memory. A recent study documented that in a cohort of normal elderly people, verbal and visual memory function correlated positively with the amount of dietary choline consumption. It will be important to determine if these actions of choline on human cognition are mediated by epigenomic mechanisms or by its influence on acetylcholine or phospholipid synthesis.
Wu, Brian T F; Dyer, Roger A; King, D Janette; Richardson, Kelly J; Innis, Sheila M
2012-01-01
The importance of maternal dietary choline for fetal neural development and later cognitive function has been well-documented in experimental studies. Although choline is an essential dietary nutrient for humans, evidence that low maternal choline in pregnancy impacts neurodevelopment in human infants is lacking. We determined potential associations between maternal plasma free choline and its metabolites betaine and dimethylglycine in pregnancy and infant neurodevelopment at 18 months of age. This was a prospective study of healthy pregnant women and their full-term, single birth infants. Maternal blood was collected at 16 and 36 weeks of gestation and infant neurodevelopment was assessed at 18 months of age for 154 mother-infant pairs. Maternal plasma choline, betaine, dimethylglycine, methionine, homocysteine, cysteine, total B12, holotranscobalamin and folate were quantified. Infant neurodevelopment was evaluated using the Bayley Scales of Infant Development-III. Multivariate regression, adjusting for covariates that impact development, was used to determine the associations between maternal plasma choline, betaine and dimethylglycine and infant neurodevelopment. The maternal plasma free choline at 16 and 36 weeks gestation was median (interquartile range) 6.70 (5.78-8.03) and 9.40 (8.10-11.3) µmol/L, respectively. Estimated choline intakes were (mean ± SD) 383 ± 98.6 mg/day, and lower than the recommended 450 mg/day. Betaine intakes were 142 ± 70.2 mg/day. Significant positive associations were found between infant cognitive test scores and maternal plasma free choline (B=6.054, SE=2.283, p=0.009) and betaine (B=7.350, SE=1.933, p=0.0002) at 16 weeks of gestation. Maternal folate, total B12, or holotranscobalamin were not related to infant development. We show that choline status in the first half of pregnancy is associated with cognitive development among healthy term gestation infants. More work is needed on the potential limitation of choline or betaine in the diets of pregnant women.
Monk, Bradley R; Leslie, Frances M; Thomas, Jennifer D
2012-08-01
Prenatal alcohol exposure leads to long-lasting cognitive and attention deficits, as well as hyperactivity. Using a rat model, we have previously shown that perinatal supplementation with the essential nutrient, choline, can reduce the severity of some fetal alcohol effects, including hyperactivity and deficits in learning and memory. In fact, choline can mitigate alcohol-related learning deficits even when administered after developmental alcohol exposure, during the postnatal period. However, it is not yet known how choline is able to mitigate alcohol-related behavioral alterations. Choline may act by altering cholinergic signaling in the hippocampus. This study examined the effects of developmental alcohol exposure and perinatal choline supplementation on hippocampal M(1) and M(2/4) muscarinic receptors. Sprague-Dawley rat pups were orally intubated with ethanol (5.25 mg/kg/day) from postnatal days (PD) 4-9, a period of brain development equivalent to the human third trimester; control subjects received sham intubations. From PD 4-30, subjects were injected s.c. with choline chloride (100 mg/kg/day) or saline vehicle. Open field activity was assessed from PD 30 through 33, and brain tissue was collected on PD 35 for autoradiographic analysis. Ethanol-exposed subjects were more active compared to controls during the first 2 days of testing, an effect attenuated with choline supplementation. Developmental alcohol exposure significantly decreased the density of muscarinic M(1) receptors in the dorsal hippocampus, an effect that was not altered by choline supplementation. In contrast, developmental alcohol exposure significantly increased M(2/4) receptor density, an effect mitigated by choline supplementation. In fact, M(2/4) receptor density of subjects exposed to alcohol and treated with choline did not differ significantly from that of controls. These data suggest that developmental alcohol exposure can cause long-lasting changes in the hippocampal cholinergic system and that perinatal choline supplementation may attenuate alcohol-related behavioral changes by influencing cholinergic systems. Copyright © 2012 Wiley Periodicals, Inc.
Monk, Bradley R.; Leslie, Frances M.; Thomas, Jennifer D.
2012-01-01
Prenatal alcohol exposure leads to long-lasting cognitive and attention deficits, as well as hyperactivity. Using a rat model, we have previously shown that perinatal supplementation with the essential nutrient, choline, can reduce the severity of some fetal alcohol effects, including hyperactivity and deficits in learning and memory. In fact, choline can mitigate alcohol-related learning deficits even when administered after developmental alcohol exposure, during the postnatal period. However, it is not yet known how choline is able to mitigate alcohol-related behavioral alterations. Choline may act by altering cholinergic signaling in the hippocampus. This study examined the effects of developmental alcohol exposure and perinatal choline supplementation on hippocampal M1 and M2/4 muscarinic receptors. Sprague-Dawley rat pups were orally intubated with ethanol (5.25 mg/kg/day) from postnatal days (PD) 4-9, a period of brain development equivalent to the human 3rd trimester; control subjects received sham intubations. From PD 4-30, subjects were injected s.c. with choline chloride (100 mg/kg/day) or saline vehicle. Open field activity was assessed from PD 30-33 and brain tissue was collected on PD 35 for autoradiographic analysis. Ethanol-exposed subjects were more active compared to controls during the first two days of testing, an effect attenuated with choline supplementation. Developmental alcohol exposure significantly decreased the density of muscarinic M1 receptors in the dorsal hippocampus, an effect that was not altered by choline supplementation. In contrast, developmental alcohol exposure significantly increased M2/4 receptor density, an effect mitigated by choline supplementation. In fact, M2/4 receptor density of subjects exposed to alcohol and treated with choline did not differ significantly from that of controls. These data suggest that developmental alcohol exposure can cause long-lasting changes in the hippocampal cholinergic system and that perinatal choline supplementation may attenuate alcohol-related behavioral changes by influencing cholinergic systems. PMID:22431326
da Costa, Kerry-Ann; Corbin, Karen D.; Niculescu, Mihai D.; Galanko, Joseph A.; Zeisel, Steven H.
2014-01-01
Effect alleles (alleles with a polymorphism that is associated with the effect being measured) in a small number of single-nucleotide polymorphisms (SNPs) are known to influence the dietary requirement for choline. In this study, we examined a much larger number of SNPs (n=200) in 10 genes related to choline metabolism for associations with development of organ dysfunction (liver or muscle) when 79 humans were fed a low-choline diet. We confirmed that effect alleles in SNPs such as the C allele of PEMT rs12325817 increase the risk of developing organ dysfunction in women when they consume a diet low in choline, and we identified novel effect alleles, such as the C allele of CHKA SNP rs7928739, that alter dietary choline requirements. When fed a low-choline diet, some people presented with muscle damage rather than liver damage; several effect alleles in SLC44A1 (rs7873937, G allele; rs2771040, G; rs6479313, G; rs16924529, A; and rs3199966, C) and one in CHKB (rs1557502, A) were more common in these individuals. This suggests that pathways related to choline metabolism are more important for normal muscle function than previously thought. In European, Mexican, and Asian Americans, and in individuals of African descent, we examined the prevalence of the effect alleles in SNPs that alter choline requirement and found that they are differentially distributed among people of different ethnic and racial backgrounds. Overall, our study has identified novel genetic variants that modulate choline requirements and suggests that the dietary requirement for choline may be different across racial and ethnic groups.—Da Costa, K.-A., Corbin, K. D., Niculescu, M. D., Galanko, J. A., Zeisel, S. H. Identification of new genetic polymorphisms that alter the dietary requirement for choline and vary in their distribution across ethnic and racial groups. PMID:24671709
Choline nutrition programs brain development via DNA and histone methylation
Blusztajn, Jan Krzysztof; Mellott, Tiffany J.
2017-01-01
Choline is an essential nutrient for humans. Metabolically choline is used for the synthesis of membrane phospholipids (e.g. phosphatidylcholine), as a precursor of the neurotransmitter acetylcholine, and, following oxidation to betaine, choline functions as a methyl group donor in a pathway that produces S-adenosylmethionine. As a methyl donor choline influences DNA and histone methylation – two central epigenomic processes that regulate gene expression. Because the fetus and neonate have high demands for choline, its dietary intake during pregnancy and lactation is particularly important for normal development of the offspring. Studies in rodents have shown that high choline intake during gestation improves cognitive function in adulthood and prevents memory decline associated with old age. These behavioral changes are accompanied by electrophysiological, neuroanatomical, and neurochemical changes and by altered patterns of expression of multiple cortical and hippocampal genes including those encoding key proteins that contribute to the biochemical mechanisms of learning and memory. These actions of choline are observed long after the exposure to the nutrient ended (months) and correlate with fetal hepatic and cerebral cortical choline-evoked changes in global- and gene-specific DNA cytosine methylation and with dramatic changes of the methylation pattern of lysine residues 4, 9 and 27 of histone H3. Moreover, gestational choline modulates the expression of DNA (Dnmt1, Dnmt3a) and histone (G9a/Ehmt2/Kmt1c, Suv39h1/Kmt1a) methyltransferases. In addition to the central role of DNA and histone methylation in brain development, these processes are highly dynamic in adult brain, modulate the expression of genes critical for synaptic plasticity, and are involved in mechanisms of learning and memory. A recent study documented that in a cohort of normal elderly people, verbal and visual memory function correlated positively with the amount of dietary choline consumption. It will be important to determine if these actions of choline on human cognition are mediated by epigenomic mechanisms or by its influence on acetylcholine or phospholipid synthesis. PMID:22483275
Magnetic Resonance-based Motion Correction for Quantitative PET in Simultaneous PET-MR Imaging.
Rakvongthai, Yothin; El Fakhri, Georges
2017-07-01
Motion degrades image quality and quantitation of PET images, and is an obstacle to quantitative PET imaging. Simultaneous PET-MR offers a tool that can be used for correcting the motion in PET images by using anatomic information from MR imaging acquired concurrently. Motion correction can be performed by transforming a set of reconstructed PET images into the same frame or by incorporating the transformation into the system model and reconstructing the motion-corrected image. Several phantom and patient studies have validated that MR-based motion correction strategies have great promise for quantitative PET imaging in simultaneous PET-MR. Copyright © 2017 Elsevier Inc. All rights reserved.
Nguyen, Tanya T; Risbud, Rashmi D; Mattson, Sarah N; Chambers, Christina D; Thomas, Jennifer D
2016-12-01
Prenatal alcohol exposure results in a broad range of cognitive and behavioral impairments. Because of the long-lasting problems that are associated with fetal alcohol spectrum disorders (FASDs), the development of effective treatment programs is critical. Preclinical animal studies have shown that choline, which is an essential nutrient, can attenuate the severity of alcohol-related cognitive impairments. We aimed to translate preclinical findings to a clinical population to investigate whether choline supplementation can ameliorate the severity of memory, executive function, and attention deficits in children with FASDs. In the current study, which was a randomized, double-blind, placebo-controlled clinical trial, we explored the effectiveness of a choline intervention for children with FASDs who were aged 5-10 y. Fifty-five children with confirmed histories of heavy prenatal alcohol exposure were randomly assigned to either the choline (n = 29) or placebo (n = 26) treatment arms. Participants in the choline group received 625 mg choline/d for 6 wk, whereas subjects in the placebo group received an equivalent dose of an inactive placebo treatment. Primary outcomes, including the performance on neuropsychological measures of memory, executive function, and attention and hyperactivity, were assessed at baseline and postintervention. Compared with the placebo group, participants in the choline group did not differentially improve in cognitive performance in any domain. Treatment compliance and mean dietary choline intake were not predictive of treatment outcomes. Findings of the current study do not support that choline, administered at a dose of 625 mg/d for 6 wk, is an effective intervention for school-aged (5-10 y old) children with FASDs. This research provides important information about choline's therapeutic window. Combined with other studies of choline and nutritional interventions in this population, this study emphasizes a further need for the continued study of the role of nutritional status and supplementation in children with FASDs and the contributions of nutrition to neurocognition. This trial was registered at clinicaltrials.gov as NCT01911299. © 2016 American Society for Nutrition.
CDP-choline: pharmacological and clinical review.
Secades, J J; Frontera, G
1995-10-01
Cytidine 5'-diphosphocholine, CDP-choline or citicoline, is an essential intermediate in the biosynthetic pathway of the structural phospholipids of cell membranes, especially in that of phosphatidylcholine. Upon oral or parenteral administration, CDP-choline releases its two principle components, cytidine and choline. When administered orally, it is absorbed almost completely, and its bioavailability is approximately the same as when administered intravenously. Once absorbed, the cytidine and choline disperse widely throughout the organism, cross the blood-brain barrier and reach the central nervous system (CNS), where they are incorporated into the phospholipid fraction of the membrane and microsomes. CDP-choline activates the biosynthesis of structural phospholipids in the neuronal membranes, increases cerebral metabolism and acts on the levels of various neurotransmitters. Thus, it has been experimentally proven that CDP-choline increases noradrenaline and dopamine levels in the CNS. Due to these pharmacological activities, CDP-choline has a neuroprotective effect in situations of hypoxia and ischemia, as well as improved learning and memory performance in animal models of brain aging. Furthermore, it has been demonstrated that CDP-choline restores the activity of mitochondrial ATPase and of membranal Na+/K+ ATPase, inhibits the activation of phospholipase A2 and accelerates the reabsorption of cerebral edema in various experimental models. CDP-choline is a safe drug, as toxicological tests have shown; it has no serious effects on the cholinergic system and it is perfectly tolerated. These pharmacological characteristics, combined with CDP-choline's mechanisms of action, suggest that this drug may be suitable for the treatment of cerebral vascular disease, head trauma of varying severity and cognitive disorders of diverse etiology. In studies carried out on the treatment of patients with head trauma, CDP-choline accelerated the recovery from post-traumatic coma and the recuperation of walking ability, achieved a better final functional result and reduced the hospital stay of these patients, in addition to improving the cognitive and memory disturbances which are observed after a head trauma of lesser severity and which constitute the disorder known as postconcussion syndrome. In the treatment of patients with acute cerebral vascular disease of the ischemic type, CDP-choline accelerated the recovery of consciousness and motor deficit, attaining a better final result and facilitating the rehabilitation of these patients. The other important use for CDP-choline is in the treatment of senile cognitive impairment, which is secondary to degenerative diseases (e.g., Alzheimer's disease) and to chronic cerebral vascular disease. In patients with chronic cerebral ischemia, CDP-choline improves scores on cognitive evaluation scales, while in patients with senile dementia of the Alzheimer's type, it slows the disease's evolution. Beneficial neuroendocrine, neuroimmunomodulatory and neurophysiological effects have been described. CDP-choline has also been shown to be effective as co-therapy for Parkinson's disease. No serious side effects have been found in any of the groups of patients treated with CDP-choline, which demonstrates the safety of the treatment.
Investigation of optimization-based reconstruction with an image-total-variation constraint in PET
NASA Astrophysics Data System (ADS)
Zhang, Zheng; Ye, Jinghan; Chen, Buxin; Perkins, Amy E.; Rose, Sean; Sidky, Emil Y.; Kao, Chien-Min; Xia, Dan; Tung, Chi-Hua; Pan, Xiaochuan
2016-08-01
Interest remains in reconstruction-algorithm research and development for possible improvement of image quality in current PET imaging and for enabling innovative PET systems to enhance existing, and facilitate new, preclinical and clinical applications. Optimization-based image reconstruction has been demonstrated in recent years of potential utility for CT imaging applications. In this work, we investigate tailoring the optimization-based techniques to image reconstruction for PET systems with standard and non-standard scan configurations. Specifically, given an image-total-variation (TV) constraint, we investigated how the selection of different data divergences and associated parameters impacts the optimization-based reconstruction of PET images. The reconstruction robustness was explored also with respect to different data conditions and activity up-takes of practical relevance. A study was conducted particularly for image reconstruction from data collected by use of a PET configuration with sparsely populated detectors. Overall, the study demonstrates the robustness of the TV-constrained, optimization-based reconstruction for considerably different data conditions in PET imaging, as well as its potential to enable PET configurations with reduced numbers of detectors. Insights gained in the study may be exploited for developing algorithms for PET-image reconstruction and for enabling PET-configuration design of practical usefulness in preclinical and clinical applications.
Garcia-Vicente, Ana María; Molina, David; Pérez-Beteta, Julián; Amo-Salas, Mariano; Martínez-González, Alicia; Bueno, Gloria; Tello-Galán, María Jesús; Soriano-Castrejón, Ángel
2017-12-01
To study the influence of dual time point 18F-FDG PET/CT in textural features and SUV-based variables and their relation among them. Fifty-six patients with locally advanced breast cancer (LABC) were prospectively included. All of them underwent a standard 18F-FDG PET/CT (PET-1) and a delayed acquisition (PET-2). After segmentation, SUV variables (SUVmax, SUVmean, and SUVpeak), metabolic tumor volume (MTV), and total lesion glycolysis (TLG) were obtained. Eighteen three-dimensional (3D) textural measures were computed including: run-length matrices (RLM) features, co-occurrence matrices (CM) features, and energies. Differences between all PET-derived variables obtained in PET-1 and PET-2 were studied. Significant differences were found between the SUV-based parameters and MTV obtained in the dual time point PET/CT, with higher values of SUV-based variables and lower MTV in the PET-2 with respect to the PET-1. In relation with the textural parameters obtained in dual time point acquisition, significant differences were found for the short run emphasis, low gray-level run emphasis, short run high gray-level emphasis, run percentage, long run emphasis, gray-level non-uniformity, homogeneity, and dissimilarity. Textural variables showed relations with MTV and TLG. Significant differences of textural features were found in dual time point 18F-FDG PET/CT. Thus, a dynamic behavior of metabolic characteristics should be expected, with higher heterogeneity in delayed PET acquisition compared with the standard PET. A greater heterogeneity was found in bigger tumors.
Yang, Jaewon; Jian, Yiqiang; Jenkins, Nathaniel; Behr, Spencer C; Hope, Thomas A; Larson, Peder E Z; Vigneron, Daniel; Seo, Youngho
2017-07-01
Purpose To assess the patient-dependent accuracy of atlas-based attenuation correction (ATAC) for brain positron emission tomography (PET) in an integrated time-of-flight (TOF) PET/magnetic resonance (MR) imaging system. Materials and Methods Thirty recruited patients provided informed consent in this institutional review board-approved study. All patients underwent whole-body fluorodeoxyglucose PET/computed tomography (CT) followed by TOF PET/MR imaging. With use of TOF PET data, PET images were reconstructed with four different attenuation correction (AC) methods: PET with patient CT-based AC (CTAC), PET with ATAC (air and bone from an atlas), PET with ATAC patientBone (air and tissue from the atlas with patient bone), and PET with ATAC boneless (air and tissue from the atlas without bone). For quantitative evaluation, PET mean activity concentration values were measured in 14 1-mL volumes of interest (VOIs) distributed throughout the brain and statistical significance was tested with a paired t test. Results The mean overall difference (±standard deviation) of PET with ATAC compared with PET with CTAC was -0.69 kBq/mL ± 0.60 (-4.0% ± 3.2) (P < .001). The results were patient dependent (range, -9.3% to 0.57%) and VOI dependent (range, -5.9 to -2.2). In addition, when bone was not included for AC, the overall difference of PET with ATAC boneless (-9.4% ± 3.7) was significantly worse than that of PET with ATAC (-4.0% ± 3.2) (P < .001). Finally, when patient bone was used for AC instead of atlas bone, the overall difference of PET with ATAC patientBone (-1.5% ± 1.5) improved over that of PET with ATAC (-4.0% ± 3.2) (P < .001). Conclusion ATAC in PET/MR imaging achieves similar quantification accuracy to that from CTAC by means of atlas-based bone compensation. However, patient-specific anatomic differences from the atlas causes bone attenuation differences and misclassified sinuses, which result in patient-dependent performance variation of ATAC. © RSNA, 2017 Online supplemental material is available for this article.
Dietary intake and food sources of choline in European populations.
Vennemann, Francy B C; Ioannidou, Sofia; Valsta, Liisa M; Dumas, Céline; Ocké, Marga C; Mensink, Gert B M; Lindtner, Oliver; Virtanen, Suvi M; Tlustos, Christina; D'Addezio, Laura; Mattison, Irene; Dubuisson, Carine; Siksna, Inese; Héraud, Fanny
2015-12-28
Choline is an important nutrient for humans. Choline intake of the European population was assessed considering the European Food Safety Authority European Comprehensive Food Consumption Database and the United States Department of Agriculture Nutrient Database. Average choline intake ranges were 151-210 mg/d among toddlers (1 to ≤3 years old), 177-304 mg/d among other children (3 to ≤10 years old), 244-373 mg/d among adolescents (10 to ≤18 years old), 291-468 mg/d among adults (18 to ≤65 years old), 284-450 mg/d among elderly people (65 to ≤75 years old) and 269-444 mg/d among very elderly people (≥75 years old). The intakes were higher among males compared with females, mainly due to larger quantities of food consumed per day. In most of the population groups considered, the average choline intake was below the adequate intake (AI) set by the Institute of Medicine in the USA. The main food groups contributing to choline intake were meat, milk, grain, egg and their derived products, composite dishes and fish. The main limitations of this study are related to the absence of choline composition data of foods consumed by the European population and the subsequent assumption made to assess their intake levels. Given the definition of AI, no conclusion on the adequacy of choline intake can be drawn for most European population groups. Such results improve the knowledge on choline intake in Europe that could be further refined by the collection of choline composition data for foods as consumed in Europe.
Choline and betaine intake and colorectal cancer risk in Chinese population: a case-control study.
Lu, Min-Shan; Fang, Yu-Jing; Pan, Zhi-Zhong; Zhong, Xiao; Zheng, Mei-Chun; Chen, Yu-Ming; Zhang, Cai-Xia
2015-01-01
Few studies have examined the association of choline and betaine intake with colorectal cancer risk, although they might play an important role in colorectal cancer development because of their role as methyl donors. The aim of this study was to examine the relationship between consumption of choline and betaine and colorectal cancer risk in a Chinese population. A case-control study was conducted between July 2010 and December 2013 in Guangzhou, China. Eight hundred and ninety consecutively recruited colorectal cancer cases were frequency matched to 890 controls by age (5-year interval) and sex. Dietary information was assessed with a validated food frequency questionnaire by face-to-face interviews. The logistic regression model was used to estimate multivariate odds ratios (ORs) and 95% confidence intervals (CIs). Total choline intake was inversely associated with colorectal cancer risk after adjustment for various lifestyle and dietary factors. The multivariate-adjusted OR was 0.54 (95%CI = 0.37-0.80, Ptrend <0.01) comparing the highest with the lowest quartile. No significant associations were observed for betaine or total choline+betaine intakes. For choline-containing compounds, lower colorectal cancer risk was associated with higher intakes of choline from phosphatidylcholine, glycerophosphocholine and sphingomyelin but not for free choline and phosphocholine. The inverse association of total choline intake with colorectal cancer risk was observed in both men and women, colon and rectal cancer. These inverse associations were not modified by folate intake. These results indicate that high intake of total choline is associated with a lower risk of colorectal cancer.
Choline and Betaine Intake and Colorectal Cancer Risk in Chinese Population: A Case-Control Study
Pan, Zhi-Zhong; Zhong, Xiao; Zheng, Mei-Chun; Chen, Yu-Ming; Zhang, Cai-Xia
2015-01-01
Background Few studies have examined the association of choline and betaine intake with colorectal cancer risk, although they might play an important role in colorectal cancer development because of their role as methyl donors. The aim of this study was to examine the relationship between consumption of choline and betaine and colorectal cancer risk in a Chinese population. Methodology/Principal Findings A case-control study was conducted between July 2010 and December 2013 in Guangzhou, China. Eight hundred and ninety consecutively recruited colorectal cancer cases were frequency matched to 890 controls by age (5-year interval) and sex. Dietary information was assessed with a validated food frequency questionnaire by face-to-face interviews. The logistic regression model was used to estimate multivariate odds ratios (ORs) and 95% confidence intervals (CIs). Total choline intake was inversely associated with colorectal cancer risk after adjustment for various lifestyle and dietary factors. The multivariate-adjusted OR was 0.54 (95%CI = 0.37-0.80, Ptrend <0.01) comparing the highest with the lowest quartile. No significant associations were observed for betaine or total choline+betaine intakes. For choline-containing compounds, lower colorectal cancer risk was associated with higher intakes of choline from phosphatidylcholine, glycerophosphocholine and sphingomyelin but not for free choline and phosphocholine. The inverse association of total choline intake with colorectal cancer risk was observed in both men and women, colon and rectal cancer. These inverse associations were not modified by folate intake. Conclusions These results indicate that high intake of total choline is associated with a lower risk of colorectal cancer. PMID:25785727
Choline+ is a low-affinity ligand for alpha 1-adrenoceptors.
Unelius, L; Cannon, B; Nedergaard, J
1994-10-07
The effect of choline+, a commonly used Na+ substitute, on ligand binding to alpha 1-adrenoceptors was investigated. It was found that replacement of 25% of the Na+ in a Krebs-Ringer bicarbonate buffer with choline+ led to a 3-fold decrease in the apparent affinity of [3H]prazosin for its binding site (i.e. the alpha 1-receptor) in a membrane preparation from brown adipose tissue, while no decrease in the total number of binding sites was observed. Similar effects were seen in membrane preparations from liver and brain. In competition experiments, it was found that choline+ could inhibit [3H]prazosin binding; from the inhibition curve, an affinity (Ki) of 31 mM choline+ for the [3H]prazosin-binding site could be calculated. In fully choline(+)-substituted buffers, where the level of [3H]prazosin binding was substantially reduced, both phentolamine and norepinephrine could still compete with [3H]prazosin for its binding site, with virtually unaltered affinity; thus choline+ did not substantially affect the characteristics of those receptors to which it did not bind. Choline+ did not affect the binding characteristics of the beta 1/beta 2 radioligand [3H]CGP-12177; thus, the effect on alpha 1-receptors was not due to general, unspecific effects on the membrane preparations. It is concluded that choline+ possesses characteristics similar to those of a competitive ligand for the alpha 1-adrenoceptor; it has a low affinity but the competitive type of interaction of choline may nonetheless under experimental conditions interfere with agonist interaction with the alpha 1-receptor.
Choline as an agonist: determination of its agonistic potency on cholinergic receptors.
Ulus, I H; Millington, W R; Buyukuysal, R L; Kiran, B K
1988-07-15
These experiments examined the potency of choline as a cholinergic agonist at both muscarinic and nicotinic receptors in rat brain and peripheral tissues. Choline stimulated the contraction of isolated smooth muscle preparations of the stomach fundus, urinary bladder and trachea and reduced the frequency of spontaneous contractions of the right atrium at high micromolar and low millimolar concentrations. The potency of choline to elicit a biological response varied markedly among these tissues; EC50 values ranged between 0.41 mM in the fundus to 14.45 mM in the atrium. Choline also displaced [3H]quinuclidinyl benzilate binding in a concentration-dependent manner although, again, its potency varied among different brain regions (Ki = 1.2 to 3.5 mM) and peripheral tissues (Ki = 0.28 to 3.00 mM). Choline exhibited a comparable affinity for nicotinic receptors. It stimulated catecholamine release from the vascularly perfused adrenal gland (EC50 = 1.3 mM) and displaced L-[3H]nicotine binding to membrane preparations of brain and peripheral tissues (Ki = 0.38 to 1.17 mM). However, the concentration of choline required to bind to cholinergic receptors in most tissues was considerably higher than serum levels either in controls (8-13 microM) or following the administration of choline chloride (200 microM). These results clearly demonstrate that choline is a weak cholinergic agonist. Its potency is too low to account for the central nervous system effects produced by choline administration, although the direct activation of cholinergic receptors in several peripheral tissues may explain some of its side effects.
CDP-choline modulates matrix metalloproteinases in rat sciatic injury.
Gundogdu, Elif Basaran; Bekar, Ahmet; Turkyilmaz, Mesut; Gumus, Abdullah; Kafa, Ilker Mustafa; Cansev, Mehmet
2016-02-01
CDP-choline (cytidine-5'-diphosphocholine) improves functional recovery, promotes nerve regeneration, and decreases perineural scarring in rat peripheral nerve injury. The aim of the present study was to investigate the mechanism of action of CDP-choline with regard to matrix metalloproteinase (MMP) activity in the rat-transected sciatic nerve injury model. Male Wistar rats were randomized into Sham, Saline, and CDP-choline groups. Rats in Sham group received Sham surgery, whereas rats in Saline and CDP-choline groups underwent right sciatic nerve transection followed by immediate primary saturation and injected intraperitoneally with 0.9% NaCl (1 mL/kg) and CDP-choline (600 μg/kg), respectively. Sciatic nerve samples were obtained 1, 3, and 7 d after the surgery and analyzed for levels and activities of MMP-2 and MMP-9, levels of tissue inhibitor of metalloproteinases-1 (TIMP-1) and TIMP-3, and axonal regeneration. CDP-choline treatment decreased the levels and activities of MMP-2 and MMP-9, whereas increasing levels of TIMP-1 and TIMP-3 significantly on the third and seventh day after injury compared to Saline group. In addition, CDP-choline administration resulted in new axon formation and formation and advancement of myelination on newly formed islets (compartments) of axonal regrowth. Our data show, for the first time, that CDP-choline modulates MMP activity and promotes the expression of TIMPs to stimulate axonal regeneration. These data help to explain one mechanism by which CDP-choline provides neuroprotection in peripheral nerve injury. Copyright © 2016 Elsevier Inc. All rights reserved.
Spencer, Melanie D; Hamp, Timothy J; Reid, Robert W; Fischer, Leslie M; Zeisel, Steven H; Fodor, Anthony A
2011-03-01
Nonalcoholic fatty liver disease affects up to 30% of the US population, but the mechanisms underlying this condition are incompletely understood. We investigated how diet standardization and choline deficiency influence the composition of the microbial community in the human gastrointestinal tract and the development of fatty liver under conditions of choline deficiency. We performed a 2-month inpatient study of 15 female subjects who were placed on well-controlled diets in which choline levels were manipulated. We used 454-FLX pyrosequencing of 16S ribosomal RNA bacterial genes to characterize microbiota in stool samples collected over the course of the study. The compositions of the gastrointestinal microbial communities changed with choline levels of diets; each individual's microbiome remained distinct for the duration of the experiment, even though all subjects were fed identical diets. Variations between subjects in levels of Gammaproteobacteria and Erysipelotrichi were directly associated with changes in liver fat in each subject during choline depletion. Levels of these bacteria, change in amount of liver fat, and a single nucleotide polymorphism that affects choline were combined into a model that accurately predicted the degree to which subjects developed fatty liver on a choline-deficient diet. Host factors and gastrointestinal bacteria each respond to dietary choline deficiency, although the gut microbiota remains distinct in each individual. We identified bacterial biomarkers of fatty liver that result from choline deficiency, adding to the accumulating evidence that gastrointestinal microbes have a role in metabolic disorders. Copyright © 2011 AGA Institute. Published by Elsevier Inc. All rights reserved.
Schulz, Kalynn M; Pearson, Jennifer N; Gasparrini, Mary E; Brooks, Kayla F; Drake-Frazier, Chakeer; Zajkowski, Megan E; Kreisler, Alison D; Adams, Catherine E; Leonard, Sherry; Stevens, Karen E
2014-07-15
Brain cholinergic dysfunction is associated with neuropsychiatric illnesses such as depression, anxiety, and schizophrenia. Maternal stress exposure is associated with these same illnesses in adult offspring, yet the relationship between prenatal stress and brain cholinergic function is largely unexplored. Thus, using a rodent model, the current study implemented an intervention aimed at buffering the potential effects of prenatal stress on the developing brain cholinergic system. Specifically, control and stressed dams were fed choline-supplemented or control chow during pregnancy and lactation, and the anxiety-related behaviors of adult offspring were assessed in the open field, elevated zero maze and social interaction tests. In the open field test, choline supplementation significantly increased center investigation in both stressed and nonstressed female offspring, suggesting that choline-supplementation decreases female anxiety-related behavior irrespective of prenatal stress exposure. In the elevated zero maze, prenatal stress increased anxiety-related behaviors of female offspring fed a control diet (normal choline levels). However, prenatal stress failed to increase anxiety-related behaviors in female offspring receiving supplemental choline during gestation and lactation, suggesting that dietary choline supplementation ameliorated the effects of prenatal stress on anxiety-related behaviors. For male rats, neither prenatal stress nor diet impacted anxiety-related behaviors in the open field or elevated zero maze. In contrast, perinatal choline supplementation mitigated prenatal stress-induced social behavioral deficits in males, whereas neither prenatal stress nor choline supplementation influenced female social behaviors. Taken together, these data suggest that perinatal choline supplementation ameliorates the sex-specific effects of prenatal stress. Published by Elsevier B.V.
Schulz, Kalynn M.; Pearson, Jennifer N.; Gasparrini, Mary E.; Brooks, Kayla F.; Drake-Frazier, Chakeer; Zajkowski, Megan E.; Kreisler, Alison D.; Adams, Catherine E.; Leonard, Sherry; Stevens, Karen E.
2014-01-01
Brain cholinergic dysfunction is associated with neuropsychiatric illnesses such as depression, anxiety, and schizophrenia. Maternal stress exposure is associated with these same illnesses in adult offspring, yet the relationship between prenatal stress and brain cholinergic function is largely unexplored. Thus, using a rodent model, the current study implemented an intervention aimed at buffering the potential effects of prenatal stress on the developing brain cholinergic system. Specifically, control and stressed dams were fed choline-supplemented or control chow during pregnancy and lactation, and the anxiety-related behaviors of adult offspring were assessed in the open field, elevated zero maze and social interaction tests. In the open field test, choline supplementation significantly increased center investigation in both stressed and nonstressed female offspring, suggesting that choline-supplementation decreases female anxiety-related behavior irrespective of prenatal stress exposure. In the elevated zero maze, prenatal stress increased anxiety-related behaviors of female offspring fed a control diet (normal choline levels). However, prenatal stress failed to increase anxiety-related behaviors in female offspring receiving supplemental choline during gestation and lactation, suggesting that dietary choline supplementation ameliorated the effects of prenatal stress on anxiety-related behaviors. For male rats, neither prenatal stress nor diet impacted anxiety-related behaviors in the open field or elevated zero maze. In contrast, perinatal choline supplementation mitigated prenatal stress-induced social behavioral deficits in males, whereas neither prenatal stress nor choline supplementation influenced female social behaviors. Taken together, these data suggest that perinatal choline supplementation ameliorates the sex-specific effects of prenatal stress. PMID:24675162
Jiang, Xinyin; Bar, Haim Y; Yan, Jian; Jones, Sara; Brannon, Patsy M; West, Allyson A; Perry, Cydne A; Ganti, Anita; Pressman, Eva; Devapatla, Srisatish; Vermeylen, Francoise; Wells, Martin T; Caudill, Marie A
2013-03-01
This study investigated the influence of maternal choline intake on the human placental transcriptome, with a special interest in its role in modulating placental vascular function. Healthy pregnant women (n=26, wk 26-29 gestation) were randomized to 480 mg choline/d, an intake level approximating the adequate intake of 450 mg/d, or 930 mg/d for 12 wk. Maternal blood and placental samples were retrieved at delivery. Whole genome expression microarrays were used to identify placental genes and biological processes impacted by maternal choline intake. Maternal choline intake influenced a wide array of genes (n=166) and biological processes (n=197), including those related to vascular function. Of special interest was the 30% down-regulation (P=0.05) of the antiangiogenic factor and preeclampsia risk marker fms-like tyrosine kinase-1 (sFLT1) in the placenta tissues obtained from the 930 vs. 480 mg/d choline intake group. Similar decreases (P=0.04) were detected in maternal blood sFLT1 protein concentrations. The down-regulation of sFLT1 by choline treatment was confirmed in a human trophoblast cell culture model and may be related to enhanced acetylcholine signaling. These findings indicate that supplementing the maternal diet with extra choline may improve placental angiogenesis and mitigate some of the pathological antecedents of preeclampsia.
Wu, Gengshu; Sher, Roger B; Cox, Gregory A; Vance, Dennis E
2010-04-01
Choline kinase in mammals is encoded by two genes, Chka and Chkb. Disruption of murine Chka leads to embryonic lethality, whereas a spontaneous genomic deletion in murine Chkb results in neonatal forelimb bone deformity and hindlimb muscular dystrophy. Surprisingly, muscular dystrophy isn't significantly developed in the forelimb. We have investigated the mechanism by which a lack of choline kinase beta, encoded by Chkb, results in minimal muscular dystrophy in forelimbs. We have found that choline kinase beta is the major isoform in hindlimb muscle and contributes more to choline kinase activity, while choline kinase alpha is predominant in forelimb muscle and contributes more to choline kinase activity. Although choline kinase activity is decreased in forelimb muscles of Chkb(-/-) mice, the activity of CTP:phosphocholine cytidylyltransferase is increased, resulting in enhanced phosphatidylcholine biosynthesis. The activity of phosphatidylcholine phospholipase C is up-regulated while the activity of phospholipase A(2) in forelimb muscle is not altered. Regeneration of forelimb muscles of Chkb(-/-) mice is normal when challenged with cardiotoxin. In contrast to hindlimb muscle, mega-mitochondria are not significantly formed in forelimb muscle of Chkb(-/-) mice. We conclude that the relative lack of muscle degeneration in forelimbs of Chkb(-/-) mice is due to abundant choline kinase alpha and the stable homeostasis of phosphatidylcholine. 2009 Elsevier B.V. All rights reserved.
Raubenheimer, Peter J; Nyirenda, Moffat J; Walker, Brian R
2006-07-01
Liver fat accumulation is proposed to link obesity and insulin resistance. To dissect the role of liver fat in the insulin resistance of diet-induced obesity, we altered liver fat using a choline-deficient diet. C57Bl/6 mice were fed a low-fat (10% of calories) or high-fat (45% of calories) diet for 8 weeks; during the final 4 weeks, diets were either choline deficient or choline supplemented. In choline replete animals, high-fat feeding induced weight gain, elevated liver triglycerides (171%), hyperinsulinemia, and glucose intolerance. Choline deficiency did not affect body or adipose depot weights but amplified liver fat accumulation with high-fat diet (281%, P < 0.01). However, choline deficiency lowered fasting plasma insulin (from 983 +/- 175 to 433 +/- 36 pmol/l, P < 0.01) and improved glucose tolerance on a high-fat diet. In mice on 30% fat diet, choline deficiency increased liver mRNA levels of the rate-limiting enzyme in phosphatidylcholine synthesis and of enzymes involved in free fatty acid esterification, without affecting those of de novo lipogenesis or fatty acid oxidation. We conclude that liver fat accumulation per se does not cause insulin resistance during high-fat feeding and that choline deficiency may shunt potentially toxic free fatty acids toward innocuous storage triglyceride in the liver.
Choline Uptake in Agrobacterium tumefaciens by the High-Affinity ChoXWV Transporter▿
Aktas, Meriyem; Jost, Kathinka A.; Fritz, Christiane; Narberhaus, Franz
2011-01-01
Agrobacterium tumefaciens is a facultative phytopathogen that causes crown gall disease. For successful plant transformation A. tumefaciens requires the membrane lipid phosphatidylcholine (PC), which is produced via the methylation and the PC synthase (Pcs) pathways. The latter route is dependent on choline. Although choline uptake has been demonstrated in A. tumefaciens, the responsible transporter(s) remained elusive. In this study, we identified the first choline transport system in A. tumefaciens. The ABC-type choline transporter is encoded by the chromosomally located choXWV operon (ChoX, binding protein; ChoW, permease; and ChoV, ATPase). The Cho system is not critical for growth and PC synthesis. However, [14C]choline uptake is severely reduced in A. tumefaciens choX mutants. Recombinant ChoX is able to bind choline with high affinity (equilibrium dissociation constant [KD] of ≈2 μM). Since other quaternary amines are bound by ChoX with much lower affinities (acetylcholine, KD of ≈80 μM; betaine, KD of ≈470 μM), the ChoXWV system functions as a high-affinity transporter with a preference for choline. Two tryptophan residues (W40 and W87) located in the predicted ligand-binding pocket are essential for choline binding. The structural model of ChoX built on Sinorhizobium meliloti ChoX resembles the typical structure of substrate binding proteins with a so-called “Venus flytrap mechanism” of substrate binding. PMID:21803998
King, Julia H; Kwan, Sze Ting Cecilia; Yan, Jian; Klatt, Kevin C; Jiang, Xinyin; Roberson, Mark S; Caudill, Marie A
2017-07-18
Impairments in placental development can adversely affect pregnancy outcomes. The bioactive nutrient choline may mitigate some of these impairments, as suggested by data in humans, animals, and human trophoblasts. Herein, we investigated the effects of maternal choline supplementation (MCS) on parameters of fetal growth in a Dlx3 +/- (distal-less homeobox 3) mouse model of placental insufficiency. Dlx3 +/- female mice were assigned to 1X (control), 2X, or 4X choline intake levels during gestation. Dams were sacrificed at embryonic days E10.5, 12.5, 15.5, and 18.5. At E10.5, placental weight, embryo weight, and placental efficiency were higher in 4X versus 1X choline. Higher concentrations of hepatic and placental betaine were detected in 4X versus 1X choline, and placental betaine was positively associated with embryo weight. Placental mRNA expression of Igf1 was downregulated by 4X (versus 1X) choline at E10.5. No differences in fetal growth parameters were detected at E12.5 and 15.5, whereas a small but significant reduction in fetal weight was detected at E18.5 in 4X versus 1X choline. MCS improved fetal growth during early pregnancy in the Dlx3 +/- mice with the compensatory downregulation of Igf1 to slow growth as gestation progressed. Placental betaine may be responsible for the growth-promoting effects of choline.
González-Pacheco, Héctor; Méndez-Domínguez, Aurelio; Hernández, Salomón; López-Marure, Rebeca; Vazquez-Mellado, Maria J.; Aguilar, Cecilia; Rocha-Zavaleta, Leticia
2014-01-01
Background. CDP-choline is a key intermediate in the biosynthesis of phosphatidylcholine, which is an essential component of cellular membranes, and a cell signalling mediator. CDP-choline has been used for the treatment of cerebral ischaemia, showing beneficial effects. However, its potential benefit for the treatment of myocardial ischaemia has not been explored yet. Aim. In the present work, we aimed to evaluate the potential use of CDP-choline as a cardioprotector in an in vitro model of ischaemia/reperfusion injury. Methods. Neonatal rat cardiac myocytes were isolated and subjected to hypoxia/reperfusion using the coverslip hypoxia model. To evaluate the effect of CDP-choline on oxidative stress-induced reperfusion injury, the cells were incubated with H2O2 during reperfusion. The effect of CDP-choline pre- and postconditioning was evaluated using the cell viability MTT assay, and the proportion of apoptotic and necrotic cells was analyzed using the Annexin V determination by flow cytometry. Results. Pre- and postconditioning with 50 mg/mL of CDP-choline induced a significant reduction of cells undergoing apoptosis after hypoxia/reperfusion. Preconditioning with CDP-choline attenuated postreperfusion cell death induced by oxidative stress. Conclusion. CDP-choline administration reduces cell apoptosis induced by oxidative stress after hypoxia/reperfusion of cardiac myocytes. Thus, it has a potential as cardioprotector in ischaemia/reperfusion-injured cardiomyocytes. PMID:24578622
Jacobs, René L; Zhao, Yang; Koonen, Debby P Y; Sletten, Torunn; Su, Brian; Lingrell, Susanne; Cao, Guoqing; Peake, David A; Kuo, Ming-Shang; Proctor, Spencer D; Kennedy, Brian P; Dyck, Jason R B; Vance, Dennis E
2010-07-16
Phosphatidylcholine (PC) is synthesized from choline via the CDP-choline pathway. Liver cells can also synthesize PC via the sequential methylation of phosphatidylethanolamine, catalyzed by phosphatidylethanolamine N-methyltransferase (PEMT). The current study investigates whether or not hepatic PC biosynthesis is linked to diet-induced obesity. Pemt(+/+) mice fed a high fat diet for 10 weeks increased in body mass by 60% and displayed insulin resistance, whereas Pemt(-/-) mice did not. Compared with Pemt(+/+) mice, Pemt(-/-) mice had increased energy expenditure and maintained normal peripheral insulin sensitivity; however, they developed hepatomegaly and steatosis. In contrast, mice with impaired biosynthesis of PC via the CDP-choline pathway in liver became obese when fed a high fat diet. We, therefore, hypothesized that insufficient choline, rather than decreased hepatic phosphatidylcholine, was responsible for the lack of weight gain in Pemt(-/-) mice despite the presence of 1.3 g of choline/kg high fat diet. Supplementation with an additional 2.7 g of choline (but not betaine)/kg of diet normalized energy metabolism, weight gain, and insulin resistance in high fat diet-fed Pemt(-/-) mice. Furthermore, Pemt(+/+) mice that were fed a choline-deficient diet had increased oxygen consumption, had improved glucose tolerance, and gained less weight. Thus, de novo synthesis of choline via PEMT has a previously unappreciated role in regulating whole body energy metabolism.
Zeisel, Steven H.
2015-01-01
In 1850, Theodore Gobley, working in Paris, described a substance “lecithine”, which he named after the Greek “lekithos” for egg yolk. Adolph Strecker noted in 1862 that when lecithin from bile was heated, it generated a new nitrogenous chemical that he named “choline”. Three years later, Oscar Liebreich identified a new substance, “neurine”, in the brain. After a period of confusion, neurine and choline were found to be the same molecule, and the name choline was adapted. Lecithin was eventually characterized chemically as being phosphatidylcholine. In 1954, Eugene Kennedy described the cytidine 5-dihphosphocholine pathway by which choline is incorporated into phosphatidylcholine. A second route, the phosphatidylethanolamine-N-methyltransferase pathway, was identified by Jon Bremer and David Greenberg in 1960. The role of choline as part of the neurotransmitter acetylcholine was established by Otto Loewi and Henry Dale. Working in the 1930s at the University of Toronto, Charles Best showed that choline prevented fatty liver in dogs and rats. The importance of choline as an essential nutrient for human health was determined in the 1990s through controlled feeding studies in humans. Recently, an understanding of the role of genetic variation in setting the dietary requirement for choline in people is being unraveled. PMID:23183298