Science.gov

Sample records for cholinergic ligands biochemical

  1. Acetylcholine receptors and cholinergic ligands: biochemical and genetic aspects in Torpedo californica and Drosophila melanogaster

    SciTech Connect

    Rosenthal, L.S.

    1987-01-01

    This study evaluates the biochemical and genetic aspects of the acetylcholine receptor proteins and cholinergic ligands in Drosophila melanogaster and Torpedo californica. Included are (1) a comparative study of nicotinic ligand-induced cation release from acetylcholine receptors isolated from Torpedo californica and from Drosophila melanogaster, (2) solution studies of the cholinergic ligands, nikethamide and ethamivan, aimed at measuring internal molecular rotational barriers in solvents of different polarity; and (3) the isolation and characterization of the gene(s) for the acetylcholine receptor in Drosophila melasogaster. Acetylcholine receptor proteins isolated from Drosphila melanogaster heads were found to behave kinetically similar (with regards to cholinergic ligand-induced /sup 155/Eu:/sup 3 +/ displacement from prelabeled proteins) to receptor proteins isolated from Torpedo californica electric tissue, providing additional biochemical evidence for the existence of a Drosophila acetylcholine receptor.

  2. [Probable mechanism of recognition of cholinergic ligands by acetylcholine receptors].

    PubMed

    Demushkin, V P; Kotelevtsev, Iu V; Pliashkevich, Iu G; Khramtsov, N V

    1982-01-01

    Dryding's models were used for the conformational analysis of compounds affecting muscarin-specific acetylcholine receptor and nicotin-specific acetylcholine receptor. Ammonium group and ether oxygen (3.6 A apart from the ammonium group) specifically oriented to each other were shown to be necessary structural elements to reveal muscarin-type cholinergic activity. Ammonium group along with carbonyl oxygen or its substituent (5 A distance) are the necessary structural units providing nicotin-type cholinergic activity. The presence of two hydrophobic substituents (one in the ammonium area and the other neighbouring the second active grouping) is the additional factor. The developed principles were justified by the use of a series of synthetic samples. The compounds were obtained likely favouring affinitive modification of acetylcholine receptor (dissociation constants of acetylcholine receptor complexes equalling to 10(-4)--10(-7) M-1).

  3. Small pial vessels, but not choroid plexus, exhibit specific biochemical correlates of functional cholinergic innervation.

    PubMed

    Hamel, E; Assumel Lurdin, C; Fage, D; Edvinsson, L; MacKenzie, E T

    1990-05-21

    In an attempt to provide the biochemical foundations for a putative cholinergic innervation of small pial vessels and choroid plexus, we have assessed their ability to specifically accumulate choline, synthesize and release acetylcholine (ACh) in response to depolarization. Our results show that both small pial vessels and choroid plexus avidly accumulate choline via a sodium-dependent mechanism which could be inhibited by hemicholinium-3 (IC50 in pial vessels = 47.8 microM). Light microscopic examination of radioautographs from vessels incubated with [3H]choline revealed two distinct sites of accumulation in the vessel wall. One site probably corresponded to nerve terminals and the other was closely associated with the endothelial cells. In small pial vessels, a major proportion (60%-70%) of the choline acetyltransferase (ChAT) activity could be inhibited by 4-naphthylvinylpyridine (4-NVP), a potent inhibitor of neuronal ChAT; and, following either K+ or veratridine depolarization, a Ca2(+)-dependent release of authentic [3H]ACh could be measured. In contrast, the choroid plexus exhibited a rather low ChAT activity which was not inhibited by 4-NVP and no release of ACh could be detected in this tissue following depolarization. Altogether, the results of the present study show that (1) small pial vessels exhibit all the most selective biochemical markers that are characteristic of cholinergic nerves; (2) [3H]choline in pial vessels can be accumulated in non-neuronal elements which probably correspond to the endothelial cells; and (3) the choroid plexus failed to exhibit convincing biochemical markers that would attest in favor of a functional cholinergic innervation.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Cholinergic Modulation by Opioid Receptor Ligands: Potential Application to Alzheimer’s Disease

    PubMed Central

    Motel, William C.; Coop, Andrew; Cunningham, Christopher W.

    2013-01-01

    Morphinans have a storied history in medicinal chemistry as pain management drugs but have received attention as modulators of cholinergic signaling for the treatment of Alzheimer’s Disease (AD). Galantamine is a reversible, competitive acetylcholinesterase (AChE) inhibitor and allosteric potentiating ligand of nicotinic acetylcholine receptors (nAChR-APL) that shares many common structural elements with morphinan-based opioids. The structurally diverse opioids codeine and eseroline, like galantamine, are also nAChR-APL that have greatly diminished affinity for AChE, representing potential lead compounds for selective nAChR-APL development. In accordance with the emerging repurposing trend of evaluating known compounds for novel pharmacological activity, ongoing research on augmentation of cholinergic signaling that has been aided by the use of opioids will be reviewed. PMID:22931533

  5. New pharmacological approaches to the cholinergic system: an overview on muscarinic receptor ligands and cholinesterase inhibitors.

    PubMed

    Greig, Nigel H; Reale, Marcella; Tata, Ada M

    2013-08-01

    The cholinergic system is expressed in neuronal and in non-neuronal tissues. Acetylcholine (ACh), synthesized in and out of the nervous system can locally contribute to modulation of various cell functions (e.g. survival, proliferation). Considering that the cholinergic system and its functions are impaired in a number of disorders, the identification of new pharmacological approaches to regulate cholinergic system components appears of great relevance. The present review focuses on recent pharmacological drugs able to modulate the activity of cholinergic receptors and thereby, cholinergic function, with an emphasis on the muscarinic receptor subtype, and additionally covers the cholinesterases, the main enzymes involved in ACh hydrolysis. The presence and function of muscarinic receptor subtypes both in neuronal and non-neuronal cells has been demonstrated using extensive pharmacological data emerging from studies on transgenic mice. The possible involvement of ACh in different pathologies has been proposed in recent years and is becoming an important area of study. Although the lack of selective muscarinic receptor ligands has for a long time limited the definition of therapeutic treatment based on muscarinic receptors as targets, some muscarinic ligands such as cevimeline (patents US4855290; US5571918) or xanomeline (patent, US5980933) have been developed and used in pre-clinical or in clinical studies for the treatment of nervous system diseases (Alzheimer' and Sjogren's diseases). The present review focuses on the potential implications of muscarinic receptors in different pathologies, including tumors. Moreover, the future use of muscarinic ligands in therapeutic protocols in cancer therapy will be discussed, considering that some muscarinic antagonists currently used in the treatment of genitourinary disease (e.g. darifenacin, patent, US5096890; US6106864) have also been demonstrated to arrest tumor progression in nude mice. The involvement of muscarinic

  6. Ligands for SPECT and PET imaging of muscarinic-cholinergic receptors of the heart and brain

    SciTech Connect

    Knapp, F.F. Jr.; McPherson, D.W.; Luo, H.

    1995-06-01

    Interest in the potential use of cerebral SPECT and PET imaging for determination of the density and activity of muscarinic-cholinergic receptors (mAChR) has been stimulated by the changes in these receptors which occur in many neurological diseases. In addition, the important involvement of mAChR in modulating negative inotropic cardiac activity suggests that such receptor ligands may have important applications in evaluation of changes which may occur in cardiac disease. In this paper, the properties of several key muscarinic receptor ligands being developed or which have been used for clinical SPECT and PET are discussed. In addition, the ORNL development of the new iodinated IQNP ligand based on QNB and the results of in vivo biodistribution studies in rats, in vitro competitive binding studies and ex vivo autoradiographic experiments are described. The use of radioiodinated IQNP may offer several advantages in comparison to IQNB because of its easy and high yield preparation and high brain uptake and the potential usefulness of the {open_quotes}partial{close_quotes} subtype selective IONP isomers. We also describe the development of new IQNP-type analogues which offer the opportunity for radiolabeling with positron-emitting radioisotopes (carbon-11, fluorine-18 and bromine-76) for potential use with PET.

  7. CHOLINERGIC NEURONS OF THE BASAL FOREBRAIN MEDIATE BIOCHEMICAL AND ELECTROPHYSIOLOGICAL MECHANISMS UNDERLYING SLEEP HOMEOSTASIS

    PubMed Central

    Kalinchuk, Anna V.; Porkka-Heiskanen, Tarja; McCarley, Robert W.; Basheer, Radhika

    2015-01-01

    The tight coordination of biochemical and electrophysiological mechanisms underlies the homeostatic sleep pressure (HSP) produced by sleep deprivation (SD). We have reported that during SD the levels of inducible nitric oxide synthase (iNOS), extracellular nitric oxide (NO), adenosine [AD]ex, lactate [Lac]ex and pyruvate [Pyr]ex increase in the basal forebrain (BF). However, it is not clear whether all of them contribute to HSP leading to increased electroencephalogram (EEG) delta activity during non-rapid eye movement (NREM) recovery sleep (RS) following SD. Previously, we showed that NREM delta increase evident during RS depends on the presence of BF cholinergic (ChBF) neurons. Here, we investigated the role of ChBF cells in coordination of biochemical and EEG changes seen during SD and RS in the rat. Increases in low theta power (5–7Hz), but not high theta (7–9Hz), during SD correlated with the increase in NREM delta power during RS, and with the changes in nitrate/nitrite [NOx]ex and [AD]ex. Lesions of ChBF cells using IgG 192-saporin prevented increases in [NOx]ex, [AD]ex and low theta activity, during SD, but did not prevent increases in [Lac]ex and [Pyr]ex. Infusion of NO donor DETA NONOate into the saporin-treated BF failed to increase NREM RS and delta power, suggesting ChBF cells are important for mediating NO homeostatic effects. Finally, SD-induced iNOS was mostly expressed in ChBF cells, and the intensity of iNOS induction correlated with the increase in low theta activity. Together, our data indicate ChBF cells are important in regulating the biochemical and EEG mechanisms that contribute to HSP. PMID:25369989

  8. A monoclonal antibody to a synthetic fragment of rabies virus glycoprotein binds ligands of the nicotinic cholinergic receptor.

    PubMed

    Rustici, M; Santucci, A; Lozzi, L; Petreni, S; Spreafico, A; Neri, P; Bracci, L; Soldani, P

    1989-09-01

    Rabies virus glycoprotein and snake venom curaremimetic neurotoxins share a region of high homology (30-45 for neurotoxins and 190-203 for the glycoprotein) in the regions that are believed to be responsible for binding the nicotinic acetylcholine receptor. Monoclonal antibodies raised to the 190-203 synthetic fragment of rabies virus glycoprotein were immobilized on a high performance affinity chromatography column and were able to bind neurotoxins. Toxins were displaced from the affinity column by elution at acidic pH and by affinity competition with acetylcholine at neutral pH. Furthermore, the affinity column proved to be useful for the purification of cholinergic ligands. Overall, these results indicate that the paratope of our monoclonal antibodies could behave as an 'internal image' of the nicotinic cholinergic receptor acetylcholine binding site.

  9. ALX receptor ligands define a biochemical endotype for severe asthma.

    PubMed

    Ricklefs, Isabell; Barkas, Ioanna; Duvall, Melody G; Cernadas, Manuela; Grossman, Nicole L; Israel, Elliot; Bleecker, Eugene R; Castro, Mario; Erzurum, Serpil C; Fahy, John V; Gaston, Benjamin M; Denlinger, Loren C; Mauger, David T; Wenzel, Sally E; Comhair, Suzy A; Coverstone, Andrea M; Fajt, Merritt L; Hastie, Annette T; Johansson, Mats W; Peters, Michael C; Phillips, Brenda R; Levy, Bruce D

    2017-07-20

    In health, inflammation resolution is an active process governed by specialized proresolving mediators and receptors. ALX/FPR2 receptors (ALX) are targeted by both proresolving and proinflammatory ligands for opposing signaling events, suggesting pivotal roles for ALX in the fate of inflammatory responses. Here, we determined if ALX expression and ligands were linked to severe asthma (SA). ALX expression and levels of proresolving ligands (lipoxin A4 [LXA4], 15-epi-LXA4, and annexin A1 [ANXA1]), and a proinflammatory ligand (serum amyloid A [SAA]) were measured in bronchoscopy samples collected in Severe Asthma Research Program-3 (SA [n = 69], non-SA [NSA, n = 51] or healthy donors [HDs, n = 47]). Bronchoalveolar lavage (BAL) fluid LXA4 and 15-epi-LXA4 were decreased and SAA was increased in SA relative to NSA. BAL macrophage ALX expression was increased in SA. Subjects with LXA4loSAAhi levels had increased BAL neutrophils, more asthma symptoms, lower lung function, increased relative risk for asthma exacerbation, sinusitis, and gastroesophageal reflux disease, and were assigned more frequently to SA clinical clusters. SAA and aliquots of LXA4loSAAhi BAL fluid induced IL-8 production by lung epithelial cells expressing ALX receptors, which was inhibited by coincubation with 15-epi-LXA4. Together, these findings have established an association between select ALX receptor ligands and asthma severity that define a potentially new biochemical endotype for asthma and support a pivotal functional role for ALX signaling in the fate of lung inflammation. Severe Asthma Research Program-3 (SARP-3; ClinicalTrials.gov NCT01606826)FUNDING Sources. National Heart, Lung and Blood Institute, the NIH, and the German Society of Pediatric Pneumology.

  10. ALX receptor ligands define a biochemical endotype for severe asthma

    PubMed Central

    Ricklefs, Isabell; Barkas, Ioanna; Duvall, Melody G.; Grossman, Nicole L.; Israel, Elliot; Bleecker, Eugene R.; Castro, Mario; Erzurum, Serpil C.; Fahy, John V.; Gaston, Benjamin M.; Denlinger, Loren C.; Mauger, David T.; Wenzel, Sally E.; Comhair, Suzy A.; Coverstone, Andrea M.; Fajt, Merritt L.; Hastie, Annette T.; Johansson, Mats W.; Peters, Michael C.; Phillips, Brenda R.; Levy, Bruce D.

    2017-01-01

    BACKGROUND. In health, inflammation resolution is an active process governed by specialized proresolving mediators and receptors. ALX/FPR2 receptors (ALX) are targeted by both proresolving and proinflammatory ligands for opposing signaling events, suggesting pivotal roles for ALX in the fate of inflammatory responses. Here, we determined if ALX expression and ligands were linked to severe asthma (SA). METHODS. ALX expression and levels of proresolving ligands (lipoxin A4 [LXA4], 15-epi-LXA4, and annexin A1 [ANXA1]), and a proinflammatory ligand (serum amyloid A [SAA]) were measured in bronchoscopy samples collected in Severe Asthma Research Program-3 (SA [n = 69], non-SA [NSA, n = 51] or healthy donors [HDs, n = 47]). RESULTS. Bronchoalveolar lavage (BAL) fluid LXA4 and 15-epi-LXA4 were decreased and SAA was increased in SA relative to NSA. BAL macrophage ALX expression was increased in SA. Subjects with LXA4loSAAhi levels had increased BAL neutrophils, more asthma symptoms, lower lung function, increased relative risk for asthma exacerbation, sinusitis, and gastroesophageal reflux disease, and were assigned more frequently to SA clinical clusters. SAA and aliquots of LXA4loSAAhi BAL fluid induced IL-8 production by lung epithelial cells expressing ALX receptors, which was inhibited by coincubation with 15-epi-LXA4. CONCLUSIONS. Together, these findings have established an association between select ALX receptor ligands and asthma severity that define a potentially new biochemical endotype for asthma and support a pivotal functional role for ALX signaling in the fate of lung inflammation. TRIAL REGISTRATION. Severe Asthma Research Program-3 (SARP-3; ClinicalTrials.gov NCT01606826) FUNDING Sources. National Heart, Lung and Blood Institute, the NIH, and the German Society of Pediatric Pneumology. PMID:28724795

  11. Behavioral and biochemical effects of neonicotinoid thiamethoxam on the cholinergic system in rats.

    PubMed

    Rodrigues, K J A; Santana, M B; Do Nascimento, J L M; Picanço-Diniz, D L W; Maués, L A L; Santos, S N; Ferreira, V M M; Alfonso, M; Durán, R; Faro, L R F

    2010-01-01

    Thiamethoxam is a neonicotinoid insecticide, a group of pesticides that acts selectively on insect nicotinic acetylcholine receptors (nAChRs), with only a little action on mammalian nAChRs. Nevertheless, the selectivity of neonicotinoids for the insect nAChRs may change when these substances are metabolized. Therefore, we aimed to determine the potential effects of thiamethoxam on mammalian brain, testing the performance in the open field and elevated plus-maze of rats exposed to this insecticide and, in order to establish the neurochemical endpoints, we measured the acetylcholinesterase activity in different brain regions (hippocampus, striatum and cortex) and the high-affinity choline uptake (HACU) in synaptosomes from rat hippocampus. Treated animals received thiamethoxam (25, 50 or 100mg/kg) for 7 consecutive days. The results showed that treatment with thiamethoxam induced an increase in the anxiety behavior at two doses (50 or 100mg/kg). Moreover, there was a significant decrease in both HACU and acetylcholinesterase activity. Our hypothesis is that thiamethoxam (or its metabolites) could be acting on the central rats nAChRs. This would produce an alteration on the cholinergic transmission, modulating the anxiety behavior, acetylcholinesterase levels and HACU.

  12. Long-lasting rescue of age-associated deficits in cognition and the CNS cholinergic phenotype by a partial agonist peptidomimetic ligand of TrkA.

    PubMed

    Bruno, Martin A; Clarke, Paul B S; Seltzer, Alicia; Quirion, Rémi; Burgess, Kevin; Cuello, A Claudio; Saragovi, H Uri

    2004-09-15

    Previously, we developed a proteolytically stable small molecule peptidomimetic termed D3 as a selective ligand of the extracellular domain of the TrkA receptor for the NGF. Ex vivo D3 was defined as a selective, partial TrkA agonist. Here, the in vivo efficacy of D3 as a potential therapeutic for cholinergic neurons was tested in cognitively impaired aged rats, and we compared the consequence of partial TrkA activation (D3) versus full TrkA/p75 activation (NGF). We show that in vivo D3 binds to TrkA receptors and affords a significant and long-lived phenotypic rescue of the cholinergic phenotype both in the cortex and in the nucleus basalis. The cholinergic rescue was selective and correlates with a significant improvement of memory/learning in cognitively impaired aged rats. The effects of the synthetic ligand D3 and the natural ligand NGF were comparable. Small, proteolytically stable ligands with selective agonistic activity at a growth factor receptor may have therapeutic potential for neurodegenerative disorders.

  13. Dynamic biochemical tissue analysis detects functional L-selectin ligands on colon cancer tissues.

    PubMed

    Carlson, Grady E; Martin, Eric W; Shirure, Venktesh S; Malgor, Ramiro; Resto, Vicente A; Goetz, Douglas J; Burdick, Monica M

    2017-01-01

    A growing body of evidence suggests that L-selectin ligands presented on circulating tumor cells facilitate metastasis by binding L-selectin presented on leukocytes. Commonly used methods for detecting L-selectin ligands on tissues, e.g., immunostaining, are performed under static, no-flow conditions. However, such analysis does not assay for functional L-selectin ligands, specifically those ligands that promote adhesion under shear flow conditions. Recently our lab developed a method, termed dynamic biochemical tissue analysis (DBTA), to detect functional selectin ligands in situ by probing tissues with L-selectin-coated microspheres under hemodynamic flow conditions. In this investigation, DBTA was used to probe human colon tissues for L-selectin ligand activity. The detection of L-selectin ligands using DBTA was highly specific. Furthermore, DBTA reproducibly detected functional L-selectin ligands on diseased, e.g., cancerous or inflamed, tissues but not on noncancerous tissues. In addition, DBTA revealed a heterogeneous distribution of functional L-selectin ligands on colon cancer tissues. Most notably, detection of L-selectin ligands by immunostaining using HECA-452 antibody only partially correlated with functional L-selectin ligands detected by DBTA. In summation, the results of this study demonstrate that DBTA detects functional selectin ligands to provide a unique characterization of pathological tissue.

  14. Dynamic biochemical tissue analysis detects functional L-selectin ligands on colon cancer tissues

    PubMed Central

    Carlson, Grady E.; Martin, Eric W.; Shirure, Venktesh S.; Malgor, Ramiro; Resto, Vicente A.; Goetz, Douglas J.; Burdick, Monica M.

    2017-01-01

    A growing body of evidence suggests that L-selectin ligands presented on circulating tumor cells facilitate metastasis by binding L-selectin presented on leukocytes. Commonly used methods for detecting L-selectin ligands on tissues, e.g., immunostaining, are performed under static, no-flow conditions. However, such analysis does not assay for functional L-selectin ligands, specifically those ligands that promote adhesion under shear flow conditions. Recently our lab developed a method, termed dynamic biochemical tissue analysis (DBTA), to detect functional selectin ligands in situ by probing tissues with L-selectin-coated microspheres under hemodynamic flow conditions. In this investigation, DBTA was used to probe human colon tissues for L-selectin ligand activity. The detection of L-selectin ligands using DBTA was highly specific. Furthermore, DBTA reproducibly detected functional L-selectin ligands on diseased, e.g., cancerous or inflamed, tissues but not on noncancerous tissues. In addition, DBTA revealed a heterogeneous distribution of functional L-selectin ligands on colon cancer tissues. Most notably, detection of L-selectin ligands by immunostaining using HECA-452 antibody only partially correlated with functional L-selectin ligands detected by DBTA. In summation, the results of this study demonstrate that DBTA detects functional selectin ligands to provide a unique characterization of pathological tissue. PMID:28282455

  15. [F-18]-(-,-)-FQNPe - an attractive ligand for evaluation of muscarinic-cholinergic neuron activity by PET

    SciTech Connect

    Luo, H.; McPherson, D.W.; Beets, A.L.; Knapp, F.F. Jr.

    1997-05-01

    The stereoisomers of 1-azabicyclo[2.2.2]oct-3-yl {alpha}-{alpha}-(1-fluoropentan-5-yl)-{alpha}-hydroxy-{alpha}-phenylacetate ({open_quotes}FQNPe{close_quotes}) have been resolved. (-,-)- receptors (K{sub i}, nM; ml, 0.3; m2, 0.1). [F-18]-(-,-)-FQNPe demonstrated high cerebral and myocardial uptake in rats in vivo. We now report significant blocking of [F-18]-(-.-)-FQNPe uptake in receptor-rich tissues in rats in vivo after (R)-QNB pretreatment and the absence of any TLC detectable FQNPe metabolites in tissue extracts. Rats were injected with (R)-QNB (3 mg/kg) 1 h prior to [F-18]-FQNPe injection (370-629 KBq). After 1 h, rats were sacrificed and tissues removed and counted. (R)-QNB significantly decreased FQNPe uptake in heart and all receptor-rich regions but not blood (Table; Mean % ID/g, n=5); C, control; Q, (R)-QNB; Hrt, heart; Cer, cerebellum; Pon, pons; Med, medulla; Cor, cortex; Stri, striatum; Hip, hippocampus; Th, thallamus; SuC, superior colliculi; InC, inferior colliculi. Tissues from untreated rats were Folch-extracted and 71-77% of activity was in organic extracts from brain and heart. TLC of organic extracts indicated a single radioactive component with R{sub f} of FQNPe. These combined results demonstrate that [F-18]-(-,-)-FQNPe does not appear to be metabolized in heart and brain, shows good receptor localization and is thus an attractive ligand for evaluation as a potential imaging agent by PET.

  16. A Small Molecule p75NTR Ligand, LM11A-31, Reverses Cholinergic Neurite Dystrophy in Alzheimer's Disease Mouse Models with Mid- to Late-Stage Disease Progression

    PubMed Central

    Simmons, Danielle A.; Knowles, Juliet K.; Belichenko, Nadia P.; Banerjee, Gargi; Finkle, Carly; Massa, Stephen M.; Longo, Frank M.

    2014-01-01

    Degeneration of basal forebrain cholinergic neurons contributes significantly to the cognitive deficits associated with Alzheimer's disease (AD) and has been attributed to aberrant signaling through the neurotrophin receptor p75 (p75NTR). Thus, modulating p75NTR signaling is considered a promising therapeutic strategy for AD. Accordingly, our laboratory has developed small molecule p75NTR ligands that increase survival signaling and inhibit amyloid-β-induced degenerative signaling in in vitro studies. Previous work found that a lead p75NTR ligand, LM11A-31, prevents degeneration of cholinergic neurites when given to an AD mouse model in the early stages of disease pathology. To extend its potential clinical applications, we sought to determine whether LM11A-31 could reverse cholinergic neurite atrophy when treatment begins in AD mouse models having mid- to late stages of pathology. Reversing pathology may have particular clinical relevance as most AD studies involve patients that are at an advanced pathological stage. In this study, LM11A-31 (50 or 75 mg/kg) was administered orally to two AD mouse models, Thy-1 hAPPLond/Swe (APPL/S) and Tg2576, at age ranges during which marked AD-like pathology manifests. In mid-stage male APPL/S mice, LM11A-31 administered for 3 months starting at 6–8 months of age prevented and/or reversed atrophy of basal forebrain cholinergic neurites and cortical dystrophic neurites. Importantly, a 1 month LM11A-31 treatment given to male APPL/S mice (12–13 months old) with late-stage pathology reversed the degeneration of cholinergic neurites in basal forebrain, ameliorated cortical dystrophic neurites, and normalized increased basal forebrain levels of p75NTR. Similar results were seen in female Tg2576 mice. These findings suggest that LM11A-31 can reduce and/or reverse fundamental AD pathologies in late-stage AD mice. Thus, targeting p75NTR is a promising approach to reducing AD-related degenerative processes that have progressed

  17. Small Molecule p75NTR Ligands Reduce Pathological Phosphorylation and Misfolding of Tau, Inflammatory Changes, Cholinergic Degeneration, and Cognitive Deficits in AβPPL/S Transgenic Mice

    PubMed Central

    Nguyen, Thuy-Vi V.; Shen, Lin; Griend, Lilith Vander; Quach, Lisa N.; Belichenko, Nadia P.; Saw, Nay; Yang, Tao; Shamloo, Mehrdad; Wyss-Coray, Tony; Massa, Stephen M.; Longo, Frank M.

    2014-01-01

    The p75 neurotrophin receptor (p75NTR ) is involved in degenerative mechanisms related to Alzheimer’s disease (AD). In addition, p75NTR levels are increased in AD and the receptor is expressed by neurons that are particularly vulnerable in the disease. Therefore, modulating p75NTR function may be a significant disease-modifying treatment approach. Prior studies indicated that the non-peptide, small molecule p75NTR ligands LM11A-31, and chemically unrelated LM11A-24, could block amyloid-β-induced deleterious signaling and neurodegeneration in vitro, and LM11A-31 was found to mitigate neuritic degeneration and behavioral deficits in a mouse model of AD. In this study, we determined whether these in vivo findings represent class effects of p75NTR ligands by examining LM11A-24 effects. In addition, the range of compound effects was further examined by evaluating tau pathology and neuroinflammation. Following oral administration, both ligands reached brain concentrations known to provide neuroprotection in vitro. Compound induction of p75NTR cleavage provided evidence for CNS target engagement. LM11A-31 and LM11A-24 reduced excessive phosphorylation of tau, and LM11A-31 also inhibited its aberrant folding. Both ligands decreased activation of microglia, while LM11A-31 attenuated reactive astrocytes. Along with decreased inflammatory responses, both ligands reduced cholinergic neurite degeneration. In addition to the amelioration of neuropathology in AD model mice, LM11A-31, but not LM11A-24, prevented impairments in water maze performance, while both ligands prevented deficits in fear conditioning. These findings support a role for p75NTR ligands in preventing fundamental tau-related pathologic mechanisms in AD, and further validate the development of these small molecules as a new class of therapeutic compounds. PMID:24898660

  18. Small molecule p75NTR ligands reduce pathological phosphorylation and misfolding of tau, inflammatory changes, cholinergic degeneration, and cognitive deficits in AβPP(L/S) transgenic mice.

    PubMed

    Nguyen, Thuy-Vi V; Shen, Lin; Vander Griend, Lilith; Quach, Lisa N; Belichenko, Nadia P; Saw, Nay; Yang, Tao; Shamloo, Mehrdad; Wyss-Coray, Tony; Massa, Stephen M; Longo, Frank M

    2014-01-01

    The p75 neurotrophin receptor (p75NTR) is involved in degenerative mechanisms related to Alzheimer's disease (AD). In addition, p75NTR levels are increased in AD and the receptor is expressed by neurons that are particularly vulnerable in the disease. Therefore, modulating p75NTR function may be a significant disease-modifying treatment approach. Prior studies indicated that the non-peptide, small molecule p75NTR ligands LM11A-31, and chemically unrelated LM11A-24, could block amyloid-β-induced deleterious signaling and neurodegeneration in vitro, and LM11A-31 was found to mitigate neuritic degeneration and behavioral deficits in a mouse model of AD. In this study, we determined whether these in vivo findings represent class effects of p75NTR ligands by examining LM11A-24 effects. In addition, the range of compound effects was further examined by evaluating tau pathology and neuroinflammation. Following oral administration, both ligands reached brain concentrations known to provide neuroprotection in vitro. Compound induction of p75NTR cleavage provided evidence for CNS target engagement. LM11A-31 and LM11A-24 reduced excessive phosphorylation of tau, and LM11A-31 also inhibited its aberrant folding. Both ligands decreased activation of microglia, while LM11A-31 attenuated reactive astrocytes. Along with decreased inflammatory responses, both ligands reduced cholinergic neurite degeneration. In addition to the amelioration of neuropathology in AD model mice, LM11A-31, but not LM11A-24, prevented impairments in water maze performance, while both ligands prevented deficits in fear conditioning. These findings support a role for p75NTR ligands in preventing fundamental tau-related pathologic mechanisms in AD, and further validate the development of these small molecules as a new class of therapeutic compounds.

  19. In vivo biodistribution of two ( sup 18 F)-labelled muscarinic cholinergic receptor ligands: 2-( sup 18 F)- and 4-( sup 18 F)-fluorodexetimide

    SciTech Connect

    Wilson, A.A.; Scheffel, U.A.; Dannals, R.F.; Stathis, M.; Ravert, H.T.; Wagner, H.N. Jr. )

    1991-01-01

    Two ({sup 18}F)-labelled analogues of the potent muscarinic cholinergic receptor (m-AChR) antagonist, dexetimide, were evaluated as potential ligands for imaging m-AChR by positron emission tomography (PET). Intravenous administration of both 2-({sup 18}F)- or 4-({sup 18}F)-fluorodexetimide resulted in high brain uptake of radioactivity in mice. High binding levels were observed in m-AChR rich areas, such as cortex and striatum, with low levels in the receptor-poor cerebellum. Uptake of radioactivity was saturable and could be blocked by pre-administration of dexetimide or atropine. Drugs with different sites of action were ineffective at blocking receptor binding. The results indicate that both radiotracers are promising candidates for use in PET studies.

  20. Structural and biochemical studies of GH family 12 cellulases: improved thermal stability, and ligand complexes.

    PubMed

    Sandgren, Mats; Ståhlberg, Jerry; Mitchinson, Colin

    2005-11-01

    In this review we will describe how we have gathered structural and biochemical information from several homologous cellulases from one class of glycoside hydrolases (GH family 12), and used this information within the framework of a protein-engineering program for the design of new variants of these enzymes. These variants have been characterized to identify some of the positions and the types of mutations in the enzymes that are responsible for some of the biochemical differences in thermal stability and activity between the homologous enzymes. In this process we have solved the three-dimensional structure of four of these homologous GH 12 cellulases: Three fungal enzymes, Humicola grisea Cel12A, Hypocrea jecorina Cel12A and Hypocrea schweinitzii Cel12A, and one bacterial, Streptomyces sp. 11AG8 Cel12A. We have also determined the three-dimensional structures of the two most stable H. jecorina Cel12A variants. In addition, four ligand-complex structures of the wild-type H. grisea Cel12A enzyme have been solved and have made it possible to characterize some of the interactions between substrate and enzyme. The structural and biochemical studies of these related GH 12 enzymes, and their variants, have provided insight on how specific residues contribute to protein thermal stability and enzyme activity. This knowledge can serve as a structural toolbox for the design of Cel12A enzymes with specific properties and features suited to existing or new applications.

  1. Antidepressant-like effects of the cannabinoid receptor ligands in the forced swimming test in mice: mechanism of action and possible interactions with cholinergic system.

    PubMed

    Kruk-Slomka, Marta; Michalak, Agnieszka; Biala, Grazyna

    2015-05-01

    The purpose of the experiments was to explore the role of the endocannabinoid system, through cannabinoid (CB) receptor ligands, nicotine and scopolamine, in the depression-related responses using the forced swimming test (FST) in mice. Our results revealed that acute injection of oleamide (10 and 20 mg/kg), a CB1 receptor agonist, caused antidepressant-like effect in the FST, while AM 251 (0.25-3 mg/kg), a CB1 receptor antagonist, did not provoke any effect in this test. Moreover, acute administration of both CB2 receptor agonist, JWH 133 (0.5 and 1 mg/kg) and CB2 receptor antagonist, AM 630 (0.5 mg/kg), exhibited antidepressant action. Antidepressant effects of oleamide and JWH 133 were attenuated by acute injection of both non-effective dose of AM 251, as well as AM 630. Among the all CB compounds used, only the combination of non-effective dose of oleamide (2.5 mg/kg) with non-effective dose of nicotine (0.5 mg/kg) caused an antidepressant effect. However, none of the CB receptor ligands, had influence on the antidepressant effects provoked by nicotine (0.2 mg/kg) injection. In turn, the combination of non-effective dose of oleamide (2.5 mg/kg); JWH (2 mg/kg) or AM 630 (2 mg/kg), but not of AM 251 (0.25 mg/kg), with non-effective dose of scopolamine (0.1 mg/kg), exhibited antidepressant properties. Indeed, all of the CB compounds used, intensified the antidepressant-like effects induced by an acute injection of scopolamine (0.3 mg/kg). Our results provide clear evidence that the endocannabinoid system participates in the depression-related behavior and through interactions with cholinergic system modulate these kind of responses.

  2. Structural and biochemical determinants of ligand binding by the c-di-GMP riboswitch†,‡

    PubMed Central

    Smith, Kathryn D.; Lipchock, Sarah V.; Livingston, Alison L.; Shanahan, Carly A.; Strobel, Scott A.

    2011-01-01

    The bacterial second messenger c-di-GMP is used in many species to control essential processes that allow the organism to adapt to its environment. The c-di-GMP riboswitch (GEMM) is an important downstream target in this signaling pathway and alters gene expression in response to changing concentrations of c-di-GMP. The riboswitch selectively recognizes its second messenger ligand primarily through contacts with two critical nucleotides. However, these two nucleotides are not the most highly conserved residues within the riboswitch sequence. Instead, nucleotides that stack with c-di-GMP and that form tertiary RNA contacts are the most invariant. Biochemical and structural evidence reveals that the most common natural variants are able to make alternative pairing interactions with both guanine bases of the ligand. Additionally, a high resolution (2.3 Å) crystal structure of the native complex reveals that a single metal coordinates the c-di-GMP backbone. Evidence is also provided that after transcription of the first nucleotide on the 3′-side of the P1 helix, which is predicted to be the molecular switch, the aptamer is functional for ligand binding. Although large energetic effects occur when several residues in the RNA are altered, mutations at the most conserved positions, rather than at positions that base pair with c-di-GMP, have the most detrimental effects on binding. Many mutants retain sufficient c-di-GMP affinity for the RNA to remain biologically relevant, which suggests that this motif is quite resilient to mutation. PMID:20690679

  3. Nematode cholinergic pharmacology

    SciTech Connect

    Segerberg, M.A.

    1989-01-01

    Nematode acetylcholine (ACh) receptors were characterized using both biochemical and electrophysiological techniques, including: (1) receptor binding studies in crude homogenates of the free-living nematode Caenorhabditis elegans and the parasitic nematode Ascaris lumbricoides with the high-affinity probe ({sup 3}H)N-methylscopolamine (({sup 3}H)NMS) which binds to muscarinic receptors in many vertebrate and invertebrate tissues (2) measurement of depolarization and contraction induced by a variety of cholinergic agents, including N-methylscopolamine (NMS), in an innervated dorsal muscle strip preparation of Ascaris; (3) examination of the antagonistic actions of d-tubocurarine (dTC) and NMS at dorsal neuromuscular junction; (4) measurement of input resistance changes in Ascaris commissural motorneurons induced by ACh, dTC, NMS, pilocarpine and other cholinergic drugs.

  4. Biochemical characterization and ligand-binding properties of trehalose-6-phosphate phosphatase from Mycobacterium tuberculosis.

    PubMed

    Shi, Lina; Zhang, Haiping; Qiu, Yu; Wang, Qian; Wu, Xueji; Wang, Honghai; Zhang, Xuelian; Lin, Donghai

    2013-10-01

    Trehalose-6-phosphate phosphatase (TPP) is an essential enzyme for growth of mycobacteria, which has been identified to be a potential anti-tuberculosis drug target. However, the biochemical and ligand-binding properties and the 3D structure of TPP remain unclear so far. In the present study, we expressed the recombinant TPP protein from Mycobacterium tuberculosis (otsB2/Rv3372). Results from the far-ultraviolet circular dichroism experiments indicated that the secondary structure of TPP was rich in α-helix with a lower structural stability (Cm = 2.099 ± 0.134 M). Ligand-binding assay by isothermal titration calorimetry demonstrated that the recombinant TPP protein could bind with trehalose-6-P in the presence of Mg(2+) (Kd = 39.52 ± 1.78 μM) with a molar ratio of 1 : 1. In addition, the 3D structure of TPP was modeled by I-TASSER, indicating that the TPP protein was composed of a hydrolase domain, a cap domain, and an N-terminal domain. Flexible docking was further conducted by using the Simulations/Dock module of the Molecular Operating Environment software. The binding pocket of TPP for both trehalose-6-P and Mg(2+) was determined, which was located on the interface between the hydrolase domain and the cap domain. Asp149, Gly186, Arg187, Arg291, and Glu295 were identified to be the key residues for TPP binding with trehalose-6-P. This work may lay the basis for further structural and functional studies of TPP and TPP-related novel drug development.

  5. Cholinergic innervation of human mesenteric lymphatic vessels.

    PubMed

    D'Andrea, V; Bianchi, E; Taurone, S; Mignini, F; Cavallotti, C; Artico, M

    2013-11-01

    The cholinergic neurotransmission within the human mesenteric lymphatic vessels has been poorly studied. Therefore, our aim is to analyse the cholinergic nerve fibres of lymphatic vessels using the traditional enzymatic techniques of staining, plus the biochemical modifications of acetylcholinesterase (AChE) activity. Specimens obtained from human mesenteric lymphatic vessels were subjected to the following experimental procedures: 1) drawing, cutting and staining of tissues; 2) staining of total nerve fibres; 3) enzymatic staining of cholinergic nerve fibres; 4) homogenisation of tissues; 5) biochemical amount of proteins; 6) biochemical amount of AChE activity; 6) quantitative analysis of images; 7) statistical analysis of data. The mesenteric lymphatic vessels show many AChE positive nerve fibres around their wall with an almost plexiform distribution. The incubation time was performed at 1 h (partial activity) and 6 h (total activity). Moreover, biochemical dosage of the same enzymatic activity confirms the results obtained with morphological methods. The homogenates of the studied tissues contain strong AChE activity. In our study, the lymphatic vessels appeared to contain few cholinergic nerve fibres. Therefore, it is expected that perivascular nerve stimulation stimulates cholinergic nerves innervating the mesenteric arteries to release the neurotransmitter AChE, which activates muscarinic or nicotinic receptors to modulate adrenergic neurotransmission. These results strongly suggest, that perivascular cholinergic nerves have little or no effect on the adrenergic nerve function in mesenteric arteries. The cholinergic nerves innervating mesenteric arteries do not mediate direct vascular responses.

  6. In vivo pharmacological characterization of (+/-)-4-[2-(1-methyl-2-pyrrolidinyl)ethyl]thiophenol hydrochloride (SIB-1553A), a novel cholinergic ligand: microdialysis studies.

    PubMed

    Rao, Tadimeti S; Reid, Richard T; Correa, Lucia D; Santori, Emily M; Gardner, Michael F; Sacaan, Aida I; Lorrain, Daniel; Vernier, Jean-Michel

    2003-10-03

    SIB-1553A ((+/-)-4-[2-(1-methyl-2-pyrrolidinyl)ethyl]thiophenol HCl) is a neuronal nicotinic acetylcholine receptor (nAChR) ligand which is active in rodent and primate models of cognition. In functional assays, SIB-1553A exhibits marked subtype selectivity for nAChRs as compared to nicotine. In addition SIB-1553A also exhibits affinities to histaminergic (H3) and serotonergic (5-HT1 and 5HT2) receptors and sigma binding sites. In the present investigation, we characterized SIB-1553A-induced neurotransmitter release in vivo. Following subcutaneous injection (s.c., 10 mg/kg), SIB-1553A rapidly entered the brain achieving concentration of approximately 20 microM 15 min post-injection and was eliminated from plasma with a terminal half-life of approximately 32 min. In freely moving rats, SIB-1553A (1-40 mg/kg, s.c.), markedly increased ACh release in the hippocampus and prefrontal cortex. In both regions, the magnitude of SIB-1553A-induced ACh release was greater than that seen with the prototypical nAChR agonist, nicotine (0.4 mg/kg, s.c.). Both isomers of SIB-1553A induced similar levels of increase in hippocampal ACh release. Increased hippocampal ACh release was also observed following oral administration of SIB-1553A (40 mg/kg) or after local perfusion into the hippocampus (1 mM). SIB-1553A-induced hippocampal ACh release was significantly attenuated by two nAChR antagonists, mecamylamine (MEC) and dihydro-beta-erythroidine (DHbetaE), and by the dopamine (DA) (D1) antagonist, SCH-23390, arguing that ACh release, in part, involves activation of nAChRs and a permissive DA synapse. In contrast to its robust effects on ACh release, SIB-1553A (40 mg/kg, s.c.) modestly increased striatal DA release (approximately 180% of baseline). Due to the proposed role of cholinergic pathways in learning and memory, the neurochemical profile of SIB-1553A suggests a potential for it to treat cognitive dysfunction.

  7. Synthesis of four stereoisomers of 1-azabiocyclo[2.2.2]OCT-3-YL-{alpha}-fluoroalkyl-{alpha}-hydroxy-{alpha}-phenylacetate (FQNPe): Potential imaging ligands for the muscarinic-cholinergic receptor (m-AChR) by PET

    SciTech Connect

    Luo, H.; McPherson, D.W.; Knapp, F.F. Jr.

    1996-10-01

    Earlier studies with the racemic 1-azabiocyclo[2.2.2]oct-3-yl {alpha}-fluoroalkyl-{alpha}-hydroxy-{alpha}-phenylacetate (FQNPe) mixture had demonstrated high in vitro binding affinity for the muscarinic-cholinergic receptor (m-AChR). Pre-treatment of rats with this new agent significantly blocked receptor localization of subsequently injected [I-131]-Z-(-,-)-IQNP, which is an established high affinity m-AChR ligand. Syntheses and characterization of the four FQNPe stereoisomers: (-)(-) FQNPe, (-)(+) FQNPe, (+)(-) FQNPe, and (+)(+) FQNPe will be presented. The interesting NMR spectra of the diastereomeric salts formed in the resolution of racemic {alpha}-(1-chloropent-5-yl)-{alpha}-hydroxy {alpha}-phenylacetic acid will also be discussed.

  8. Tumor Necrosis Factor Related Apoptosis Inducing Ligand (Trail) in endothelial response to biomechanical and biochemical stresses in arteries.

    PubMed

    D'Auria, F; Centurione, L; Centurione, M A; Angelini, A; Di Pietro, R

    2015-11-01

    Shear stress is determined by three physical components described in a famous triad: blood flow, blood viscosity and vessel geometry. Through the direct action on endothelium, shear stress is able to radically interfere with endothelial properties and the physiology of the vascular wall. Endothelial cells (ECs) have also to sustain biochemical stresses represented by chemokines, growth factors, cytokines, complement, hormones, nitric oxide (NO), oxygen and reactive oxygen species (ROS). Many growth factors, cytokines, chemokines, hormones, and chemical substances, like NO, act and regulate endothelium functions and homeostasis. Among these cytokines Tumor Necrosis Factor Related Apoptosis Inducing Ligand (TRAIL) has been assigned a regulatory role in ECs physiology and physiopathology. Thus, the aim of this review is to provide a general overview of the endothelial response pathways after different types of biomechanical and biochemical stress in in vitro models and to analyze the crucial role of TRAIL under pathological conditions of the cardiocirculatory system like atherosclerosis, coronary artery disease, and diabetes. © 2015 Wiley Periodicals, Inc.

  9. Endosulfan and cholinergic (muscarinic) transmission: effect on electroencephalograms and (/sup 3/H)quinuclidinyl benzilate in pigeon brain

    SciTech Connect

    Anand, M.; Agrawal, A.K.; Gopal, K.; Sur, R.N.; Seth, P.K.

    1986-08-01

    Single exposure of endosulfan (5 mg/kg) to pigeons (Columbia livia) caused neuronal hyperexcitability as evidence by spike discharges of 200-500 ..mu..V in the electroencephalograms (EEG) from the telencephalon and hyperstriatum, but there was not effect on the ectostriatal area. Cholinergic (muscarinic) receptor binding study using (/sup 3/H)quinuclidinyl benzilate ((/sup 3/H)QNB) as a specific ligand indicated that a single exposure to 5 mg/kg of endosulfan caused a significant increase in (/sup 3/H)QNB binding to the striatal membrane. Behavior study further indicated that a single dose of 200 ..mu..g/kg of oxotremorine produced a significant induction in the tremor in endosulfan-pretreated pigeons. The results of this behavioral and biochemical study indicate the involvement of a cholinergic (muscarinic) transmitter system in endosulfan-induced neurotoxicity.

  10. Biochemical and Cellular Analysis Reveals Ligand Binding Specificities, a Molecular Basis for Ligand Recognition, and Membrane Association-dependent Activities of Cripto-1 and Cryptic.

    PubMed

    Aykul, Senem; Parenti, Anthony; Chu, Kit Yee; Reske, Jake; Floer, Monique; Ralston, Amy; Martinez-Hackert, Erik

    2017-03-10

    Transforming growth factor β (TGF-β) pathways are key determinants of cell fate in animals. Their basic mechanism of action is simple. However, to produce cell-specific responses, TGF-β pathways are heavily regulated by secondary factors, such as membrane-associated EGF-CFC family proteins. Cellular activities of EGF-CFC proteins have been described, but their molecular functions, including how the mammalian homologs Cripto-1 and Cryptic recognize and regulate TGF-β family ligands, are less clear. Here we use purified human Cripto-1 and mouse Cryptic produced in mammalian cells to show that these two EGF-CFC homologs have distinct, highly specific ligand binding activities. Cripto-1 interacts with BMP-4 in addition to its known partner Nodal, whereas Cryptic interacts only with Activin B. These interactions depend on the integrity of the protein, as truncated or deglycosylated Cripto-1 lacked BMP-4 binding activity. Significantly, Cripto-1 and Cryptic blocked binding of their cognate ligands to type I and type II TGF-β receptors, indicating that Cripto-1 and Cryptic contact ligands at their receptor interaction surfaces and, thus, that they could inhibit their ligands. Indeed, soluble Cripto-1 and Cryptic inhibited ligand signaling in various cell-based assays, including SMAD-mediated luciferase reporter gene expression, and differentiation of a multipotent stem cell line. But in agreement with previous work, the membrane bound form of Cripto-1 potentiated signaling, revealing a critical role of membrane association for its established cellular activity. Thus, our studies provide new insights into the mechanism of ligand recognition by this enigmatic family of membrane-anchored TGF-β family signaling regulators and link membrane association with their signal potentiating activities.

  11. Synthesis, structural and biochemical activity studies of a new hexadentate Schiff base ligand and its Cu(II), Ni(II), and Co(II) complexes

    NASA Astrophysics Data System (ADS)

    Ekmekcioglu, Pinar; Karabocek, Nevin; Karabocek, Serdar; Emirik, Mustafa

    2015-11-01

    A new Schiff base ligand (H2L) and its metal complexes have been prepared and characterized by elemental analysis, magnetic moment and spectral studies. The comparative in-vitro antimicrobial activities against various pathogens with reference to known antibiotics activity under the standard control of different concentrations revealed that the metal complexes (6-8) showed enhanced antimicrobial activities in general as compared to free ligand. As an exception, the free ligand showed better activity against Trichoderma. The antifungal activity experiments were performed in triplicate. The order of biochemical activity for metal complexes were observed as in the following. CuL > CoL > NiL, which is exactly same as the order of stability constants of these complexes. Additionally, we performed DFT and TD-DFT calculation for free ligand and Cu(II) complex to support the experimental data. The geometries of the Cu(II) complex have been optimized using the B3LYP level of theory. The theoretical calculations confirm that the copper (II) center exhibits a distorted square pyramidal geometry which is favored by experimental results.

  12. Cholinergic Modulation of Inflammation

    PubMed Central

    Pavlov, Valentin A.

    2008-01-01

    Recent studies have demonstrated that cytokine levels and inflammation can be regulated by specifically augmenting cholinergic signaling via the efferent vagus nerve and the α7 subunit-containing nicotinic acetylcholine receptor (α7nAChR). Cholinergic modalities, acting through vagus nerve- and/or α7nAChR-mediated mechanisms have been shown to suppress excessive inflammation in several experimental models of disease, including endotoxemic shock, sepsis, ischemia-reperfusion injury, hemorrhagic shock, colitis, postoperative ileus and pancreatitis. These studies have advanced the current understanding of the mechanisms regulating inflammation. They have also provided a rationale for exploring new possibilities to treat excessive, disease-underlying inflammation by applying selective cholinergic modalities in preclinical and clinical settings. An overview of this research is presented here. PMID:19079659

  13. Cholinergic modulation of inflammation.

    PubMed

    Pavlov, Valentin A

    2008-01-01

    Recent studies have demonstrated that cytokine levels and inflammation can be regulated by specifically augmenting cholinergic signaling via the efferent vagus nerve and the alpha7 subunit-containing nicotinic acetylcholine receptor (alpha7nAChR). Cholinergic modalities, acting through vagus nerve- and/or alpha7nAChR-mediated mechanisms have been shown to suppress excessive inflammation in several experimental models of disease, including endotoxemic shock, sepsis, ischemia-reperfusion injury, hemorrhagic shock, colitis, postoperative ileus and pancreatitis. These studies have advanced the current understanding of the mechanisms regulating inflammation. They have also provided a rationale for exploring new possibilities to treat excessive, disease-underlying inflammation by applying selective cholinergic modalities in preclinical and clinical settings. An overview of this research is presented here.

  14. Structural and biochemical characterization of ligand recognition by CysB, the master regulator of sulfate metabolism.

    PubMed

    Mittal, Monica; Singh, Appu Kumar; Kumaran, S

    2017-08-21

    CysB, a member of LysR-type transcriptional regulators, up-regulates the expression of genes associated with sulfate metabolism and cysteine biosynthesis. CysB is activated under sulfur limiting conditions by O-acetylserine (OAS) and N-acetylserine (NAS), but the activation mechanism of CysB remain unknown. Here, we report four crystal structures of ligand binding domains of CysB (CysB-LBD) in apo form and in complex with sulfate, OAS, and NAS. Our results show that CysB has two distinct allosteric ligand binding sites; a sulfate and NAS specific site-1 and a second, NAS and OAS specific site-2. All three ligands bind through the induced-fit mechanism. Surprisingly, OAS remodels the site-1 by binding to site-2, suggesting that site-1 and site-2 are coupled allosterically. Using DNA binding and site-directed mutagenesis approach, we show that OAS enhances NAS mediated activation and mutation at site-1 has no effect on site-2 mediated OAS activation. Results indicate that inducer binding triggered signals from OAS-Specific site-2 are relayed to DBD through site-1. Together, results presented here suggest that induced-fit binding and allosteric coupling between two ligand binding sites and DBD underlie the key feature of CysB activation. Further, this study provides first structural glimpse into recognition of inducer ligands by CysB and provides a general framework to understand how LTTR family regulators respond to dual activators. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  15. Muscarinic and nicotinic cholinergic agonists: structural analogies and discrepancies.

    PubMed

    Bikádi, Zsolt; Simonyi, Miklós

    2003-12-01

    Acetylcholine, the first identified neurotransmitter acts on both types of cholinergic receptors. Both rigid and flexible derivatives of acetylcholine could either be selective muscarinic or selective nicotinic agonists while some compounds show activity at both receptor subclasses. Earlier structure-activity considerations are revisited. Ligand and receptor based calculations have been applied in the hope to identify characteristic geometrical and steric requirements for the activity on the receptor subtypes. Results are treated critically and applied cautiously for predicting selective structural requirements by the cholinergic receptor subclasses.

  16. Computational and Biochemical Docking of the Irreversible Cocaine Analog RTI 82 Directly Demonstrates Ligand Positioning in the Dopamine Transporter Central Substrate-binding Site*

    PubMed Central

    Dahal, Rejwi Acharya; Pramod, Akula Bala; Sharma, Babita; Krout, Danielle; Foster, James D.; Cha, Joo Hwan; Cao, Jianjing; Newman, Amy Hauck; Lever, John R.; Vaughan, Roxanne A.; Henry, L. Keith

    2014-01-01

    The dopamine transporter (DAT) functions as a key regulator of dopaminergic neurotransmission via re-uptake of synaptic dopamine (DA). Cocaine binding to DAT blocks this activity and elevates extracellular DA, leading to psychomotor stimulation and addiction, but the mechanisms by which cocaine interacts with DAT and inhibits transport remain incompletely understood. Here, we addressed these questions using computational and biochemical methodologies to localize the binding and adduction sites of the photoactivatable irreversible cocaine analog 3β-(p-chlorophenyl)tropane-2β-carboxylic acid, 4′-azido-3′-iodophenylethyl ester ([125I]RTI 82). Comparative modeling and small molecule docking indicated that the tropane pharmacophore of RTI 82 was positioned in the central DA active site with an orientation that juxtaposed the aryliodoazide group for cross-linking to rat DAT Phe-319. This prediction was verified by focused methionine substitution of residues flanking this site followed by cyanogen bromide mapping of the [125I]RTI 82-labeled mutants and by the substituted cysteine accessibility method protection analyses. These findings provide positive functional evidence linking tropane pharmacophore interaction with the core substrate-binding site and support a competitive mechanism for transport inhibition. This synergistic application of computational and biochemical methodologies overcomes many uncertainties inherent in other approaches and furnishes a schematic framework for elucidating the ligand-protein interactions of other classes of DA transport inhibitors. PMID:25179220

  17. Computational and biochemical docking of the irreversible cocaine analog RTI 82 directly demonstrates ligand positioning in the dopamine transporter central substrate-binding site.

    PubMed

    Dahal, Rejwi Acharya; Pramod, Akula Bala; Sharma, Babita; Krout, Danielle; Foster, James D; Cha, Joo Hwan; Cao, Jianjing; Newman, Amy Hauck; Lever, John R; Vaughan, Roxanne A; Henry, L Keith

    2014-10-24

    The dopamine transporter (DAT) functions as a key regulator of dopaminergic neurotransmission via re-uptake of synaptic dopamine (DA). Cocaine binding to DAT blocks this activity and elevates extracellular DA, leading to psychomotor stimulation and addiction, but the mechanisms by which cocaine interacts with DAT and inhibits transport remain incompletely understood. Here, we addressed these questions using computational and biochemical methodologies to localize the binding and adduction sites of the photoactivatable irreversible cocaine analog 3β-(p-chlorophenyl)tropane-2β-carboxylic acid, 4'-azido-3'-iodophenylethyl ester ([(125)I]RTI 82). Comparative modeling and small molecule docking indicated that the tropane pharmacophore of RTI 82 was positioned in the central DA active site with an orientation that juxtaposed the aryliodoazide group for cross-linking to rat DAT Phe-319. This prediction was verified by focused methionine substitution of residues flanking this site followed by cyanogen bromide mapping of the [(125)I]RTI 82-labeled mutants and by the substituted cysteine accessibility method protection analyses. These findings provide positive functional evidence linking tropane pharmacophore interaction with the core substrate-binding site and support a competitive mechanism for transport inhibition. This synergistic application of computational and biochemical methodologies overcomes many uncertainties inherent in other approaches and furnishes a schematic framework for elucidating the ligand-protein interactions of other classes of DA transport inhibitors.

  18. Detection Efficacy of Hybrid (68)Ga-PSMA Ligand PET/CT in Prostate Cancer Patients with Biochemical Recurrence After Primary Radiation Therapy Defined by Phoenix Criteria.

    PubMed

    Einspieler, Ingo; Rauscher, Isabel; Düwel, Charlotte; Krönke, Markus; Rischpler, Christoph; Habl, Gregor; Dewes, Sabrina; Ott, Armin; Wester, Hans-Jürgen; Schwaiger, Markus; Maurer, Tobias; Eiber, Matthias

    2017-07-01

    The aim of this retrospective study was to evaluate the detection rate of Glu-NH-CO-NH-Lys-(Ahx)-[(68)Ga(HBED-CC)] ((68)Ga-PSMA ligand; PSMA is prostate-specific membrane antigen) PET/CT in patients with biochemical recurrent prostate cancer defined by Phoenix criteria after external-beam radiotherapy or brachytherapy as primary treatment. Methods: One hundred eighteen patients with a median prostate-specific antigen (PSA) of 6.4 ng/mL (range, 2.2-158.4 ng/mL; interquartile range, 4.2-10.2 ng/mL) were finally eligible for this retrospective analysis. Seventy-seven and 41 patients had been treated by external-beam radiotherapy or brachytherapy, respectively. Of the 118 patients, 45 were receiving androgen-deprivation therapy (ADT) within at least 6 mo before the PET/CT. The detection rates were stratified by PSA. The influence of primary Gleason score and ADT was assessed. Relationships between SUV and clinical as well as pathologic features in patients with positive findings were analyzed using univariate and multivariable linear regression models. Results: One hundred seven of 118 patients (90.7%) showed pathologic findings indicative for tumor recurrence in (68)Ga-PSMA ligand PET/CT. The detection rates were 81.8% (36/44), 95.3% (41/43), and 96.8% (30/31) for PSA of 2 to <5, 5 to <10, and ≥10 ng/mL, respectively (P = 0.0377). (68)Ga-PSMA ligand PET/CT indicated local recurrence in 68 of 107 patients (63.5%), distant lesions in 64 of 107 patients (59.8%), and local recurrence as well as distant lesions in 25 of 107 patients (23.4%). The detection rate was significantly higher in patients with ADT (97.7%) versus without ADT (86.3%, P = 0.0381), but independent from primary Gleason score ≥ 8 (92.0%) versus ≤ 7 (90.2%, P = 0.6346). SUVmax and SUVmean were significantly associated with PSA and ADT (P = 0.018 and 0.004 for SUVmax, respectively; P = 0.025 and 0.007 for SUVmean, respectively). Conclusion:(68)Ga-PSMA ligand PET/CT demonstrates high detection rates

  19. Cholinergic neurotransmission in human corpus cavernosum. II. Acetylcholine synthesis

    SciTech Connect

    Blanco, R.; De Tejada, S.; Goldstein, I.; Krane, R.J.; Wotiz, H.H.; Cohen, R.A. )

    1988-03-01

    Physiological and histochemical evidence indicates that cholinergic nerves may participate in mediating penile erection. Acetylcholine synthesis and release was studied in isolated human corporal tissue. Human corpus cavernosum incubated with ({sup 3}H)choline accumulated ({sup 3}H)choline and synthesized ({sup 3}H)acethylcholine in an concentration-dependent manner. ({sup 3}H)Acetylcholine accumulation by the tissue was inhibited by hemicholinium-3, a specific antagonist of the high-affinity choline transport in cholinergic nerves. Transmural electrical field stimulation caused release of ({sup 3}H)acetylcholine which was significantly diminished by inhibiting neurotransmission with calcium-free physiological salt solution or tetrodotoxin. These observations provide biochemical and physiological evidence for the existence of cholinergic innervation in human corpus cavernosum.

  20. Chemical and biochemical issues related to X-ray crystallography of the ligand-binding domain of estrogen receptor alpha.

    PubMed

    Goldstein, S W; Bordner, J; Hoth, L R; Geoghegan, K F

    2001-01-01

    Careful attention to technical issues preceded successful crystallography of the ligand-binding domain of estrogen receptor alpha (ERalpha) complexed with CP-336156, a nonsteroidal estrogen agonist/antagonist. An affinity column based on immobilized estradiol was prepared according to the scheme of Greene et al. (Greene, G. L., Nolan, C., Engler, J. P., and Jensen, E. V. (1980) Proc. Natl. Acad. Sci. U.S.A. 77, 5115-5119). It was shown by X-ray crystallography that the major and less polar isomer of the affinity column precursor was 17alpha-((S)-2',3'-epoxyprop-1'-yl)estra-1,3,5(10)-triene-3,17beta-diol. This diastereomer was coupled to Thiopropyl Sepharose, with coupling monitored by observing loss of the phenolic absorption band of estradiol from the reaction supernatant, and gave an affinity matrix containing about 9 micromol of estradiol per milliliter of wet gel. Recombinant ERalpha ligand binding domain was selectively removed from E. coli cell lysate by binding to the column and was partly S-carboxymethylated by treatment with iodoacetic acid while bound to the column as described by previous workers. After being eluted from the column as a complex with drug, the receptor fragment was shown by mass spectrometry to be a mixture of differently modified forms. It was further S-carboxymethylated in solution, after which anion-exchange chromatography was used to isolate protein in which two of the four cysteine residues were S-carboxymethylated. This material, which afforded diffraction-quality crystals, was subjected to digestion with trypsin and peptide mapping analysis by HPLC coupled with mass spectrometry. For this experiment, the two previously unmodified cysteines were alkylated with 4-vinylpyridine to allow definitive identification. It was shown that Cys-417 and Cys-530 were S-carboxymethylated in the crystallized protein, while Cys-381 and Cys-447 remained unmodified. Close attention to such technical issues may be important in structural studies of

  1. Neurotrophin-3 promotes the cholinergic differentiation of sympathetic neurons

    PubMed Central

    Brodski, Claude; Schnürch, Harald; Dechant, Georg

    2000-01-01

    Neurotrophins influence the epigenetic shaping of the vertebrate nervous system by regulating neuronal numbers during development and synaptic plasticity. Here we attempt to determine whether these growth factors can also regulate neurotransmitter plasticity. As a model system we used the selection between noradrenergic and cholinergic neurotransmission by paravertebral sympathetic neurons. Developing sympathetic neurons express the neurotrophin receptors TrkA and TrkC, two highly related receptor tyrosine kinases. Whereas the TrkA ligand nerve growth factor (NGF) has long been known to regulate both the survival and the expression of noradrenergic traits in sympathetic neurons, the role of TrkC and of its ligand neurotrophin-3 (NT3) has remained unclear. We found that TrkC expression in the avian sympathetic chain overlaps substantially with that of choline acetyltransferase. In sympathetic chain explants, transcripts of the cholinergic marker genes choline acetyltransferase and vasoactive intestinal polypeptide were strongly enriched in the presence of NT3 compared with NGF, whereas the noradrenergic markers tyrosine hydroxylase and norepinephrine transporter were reduced. The transcription factor chicken achaete scute homolog 1 was coexpressed with cholinergic markers. The effects of NT3 are reversed and antagonized by NGF. They are independent of neuronal survival and developmentally regulated. These results suggest a role for NT3 as a differentiation factor for cholinergic neurons and establish a link between neurotrophins and neurotransmitter plasticity. PMID:10931939

  2. Cholinergic circuits in cognitive flexibility.

    PubMed

    Prado, Vania F; Janickova, Helena; Al-Onaizi, Mohammed A; Prado, Marco A M

    2017-03-14

    Cognitive flexibility, the ability to adjust behavior in response to new and unexpected conditions in the environment, is essential for adaptation to new challenges and survival. The cholinergic system is an important modulator of this complex behavior however, the exact cholinergic circuits involved in this modulation and the precise influence of acetylcholine (ACh) in the process is still not fully understood. Here we review the role of different cholinergic circuits in cognitive flexibility. Strong evidence indicates that cholinergic interneurons (CINs) from the dorsomedial striatum are essential for facilitating the establishment of a new selected strategy; an effect that seems to depend mainly on activation of muscarinic receptors. Cholinergic neurons from the nucleus basalis magnocellularis (nBM), which project to the prefrontal cortex, seem to modulate the initial inhibition of a previously learned strategy, however, this concept is still controversial. Additionally, some studies suggest that basal forebrain cholinergic neurons projecting to the hippocampus, basolateral amygdala, and posterior parietal cortex may also participate on the modulation of cognitive flexibility. We highlight the fact that when investigating effects of ACh on behavioral flexibility, or any other behavior, one has to keep in mind two important particularities of the cholinergic system: (1) Many cholinergic neurons in the brain co-release glutamate or GABA with ACh. Methodologies that rely on neuronal silencing or ablation lead to simultaneous elimination of both neurotransmitters, making interpretation of results complex. (2) The cholinergic gene locus has a unique organization, with the vesicular acetylcholine transporter (VAChT) gene present within the intron between the first and second exons of the choline acetyltransferase (ChAT) gene. Thus, behavioral studies using transgenic animals generated with ChAT bacterial artificial chromosome (BAC) clones should be considered

  3. Perchlorate mixed-ligand copper(II) complexes of beta-diketone and ethylene diamine derivatives: thermal, spectroscopic and biochemical studies.

    PubMed

    El-Ayaan, Usama; El-Metwally, Nashwa M; Youssef, Magdy M; El Bialy, Serry A A

    2007-12-31

    The present work carried out a study on perchlorate mixed-ligand copper(II) complexes which have been synthesized from ethylenediamine derivatives (3a-c) and beta-diketones. These complexes, namely [Cu(DA-Cl)(acac)H(2)O]ClO(4)4, [Cu(DA-Cl)(bzac)H(2)O]H(2)O.ClO(4)5, [Cu(DA-OMe)(acac)H(2)O]ClO(4)6, [Cu(DA-OMe)(bzac)H(2)O]ClO(4)7, [Cu(DA-H)(acac)H(2)O]2H(2)O.ClO(4)8 and [Cu(DA-H)(bzac)H(2)O]ClO(4)9 (where acac, acetylacetonate and bzac, benzoylacetonate) were characterized by elemental analysis, spectral (IR and UV-vis) and magnetic moment measurements. Thermal properties and decomposition kinetics of all complexes are investigated. The interpretation, mathematical analysis and evaluation of kinetic parameters (E, A, DeltaH, DeltaS and DeltaG) of all thermal decomposition stages have been evaluated using Coats-Redfern equation. The biochemical studies showed that, the diamines 3a-c have powerful effects on degradation of DNA and protein. The antibacterial screening demonstrated that, the diamine (DA-Cl), 3b has the maximum and broad activities against Gram +ve and Gram -ve bacterial strains.

  4. Perchlorate mixed-ligand copper(II) complexes of β-diketone and ethylene diamine derivatives: Thermal, spectroscopic and biochemical studies

    NASA Astrophysics Data System (ADS)

    El-Ayaan, Usama; El-Metwally, Nashwa M.; Youssef, Magdy M.; El Bialy, Serry A. A.

    2007-12-01

    The present work carried out a study on perchlorate mixed-ligand copper(II) complexes which have been synthesized from ethylenediamine derivatives ( 3a- c) and β-diketones. These complexes, namely [Cu(DA-Cl)(acac)H 2O]ClO 44, [Cu(DA-Cl)(bzac)H 2O]H 2O.ClO 45, [Cu(DA-OMe)(acac)H 2O]ClO 46, [Cu(DA-OMe)(bzac)H 2O]ClO 47, [Cu(DA-H)(acac)H 2O]2H 2O.ClO 48 and [Cu(DA-H)(bzac)H 2O]ClO 49 (where acac, acetylacetonate and bzac, benzoylacetonate) were characterized by elemental analysis, spectral (IR and UV-vis) and magnetic moment measurements. Thermal properties and decomposition kinetics of all complexes are investigated. The interpretation, mathematical analysis and evaluation of kinetic parameters ( E, A, Δ H, Δ S and Δ G) of all thermal decomposition stages have been evaluated using Coats-Redfern equation. The biochemical studies showed that, the diamines 3a- c have powerful effects on degradation of DNA and protein. The antibacterial screening demonstrated that, the diamine (DA-Cl), 3b has the maximum and broad activities against Gram +ve and Gram -ve bacterial strains.

  5. The place of choline acetyltransferase activity measurement in the "cholinergic hypothesis" of neurodegenerative diseases.

    PubMed

    Contestabile, Antonio; Ciani, Elisabetta; Contestabile, Andrea

    2008-02-01

    The so-called "cholinergic hypothesis" assumes that degenerative dysfunction of the cholinergic system originating in the basal forebrain and innervating several cortical regions and the hippocampus, is related to memory impairment and neurodegeneration found in several forms of dementia and in brain aging. Biochemical methods measuring the activity of the key enzyme for acetylcholine synthesis, choline acetyltransferase, have been used for many years as a reliable marker of the integrity or the damage of the cholinergic pathways. Stereologic counting of the basal forebrain cholinergic cell bodies, has been additionally used to assess neurodegenerative changes of the forebrain cholinergic system. While initially believed to mark relatively early stages of disease, cholinergic dysfunction is at present considered to occur in advanced dementia of Alzheimer's type, while its involvement in mild and prodromal stages of the disease has been questioned. The issue is relevant to better understand the neuropathological basis of the diseases, but it is also of primary importance for therapy. During the last few years, indeed, cholinergic replacement therapies, mainly based on the use of acetylcholinesterase inhibitors to increase synaptic availability of acetylcholine, have been exploited on the assumption that they could ameliorate the progression of the dementia from its initial stages. In the present paper, we review data from human studies, as well as from animal models of Alzheimer's and Down's diseases, focusing on different ways to evaluate cholinergic dysfunction, also in relation to the time point at which these dysfunctions can be demonstrated, and on some discrepancy arising from the use of different methodological approaches. The reviewed literature, as well as some recent data from our laboratories on a mouse model of Down's syndrome, stress the importance of performing biochemical evaluation of choline acetyltransferase activity to assess cholinergic

  6. Binding of /sup 3/H-acetylcholine to cholinergic receptors in bovine cerebral arteries

    SciTech Connect

    Shimohama, S.; Tsukahara, T.; Taniguchi, T.; Fujiwara, M.

    1985-11-18

    Cholinergic receptor sites in bovine cerebral arteries were analyzed using radioligand binding techniques with the cholinergic agonist, /sup 3/H-acetylcholine (ACh), as the ligand. Specific binding of /sup 3/H-ACh to membrane preparations of bovine cerebral arteries was saturable, of two binding sites, with dissociation constant (K/sub D/) values of 0.32 and 23.7 nM, and maximum binding capacity (Bmax) values of 67 and 252 fmol/mg protein, respectively. Specific binding of /sup 3/H-ACh was displaced effectively by muscarinic cholinergic agents and less effectively by nicotinic cholinergic agents. IC/sub 50/ values of cholinergic drugs for /sup 3/H-ACh binding were as follows: atropine, 38.5 nM; ACh, 59.8 nM; oxotremorine, 293 nM; scopolamine 474 nM; carbamylcholine, 990 nM. IC/sub 50/ values of nicotinic cholinergic agents such as nicotine, cytisine and ..cap alpha..-bungarotoxin exceeded 50 ..mu..M. Choline acetyltransferase activity was 1.09 nmol/mg protein/hour in the cerebral arteries. These findings suggest that the cholinergic nerves innervate the bovine cerebral arteries and that there are at least two classes of ACh binding sites of different affinities on muscarinic reporters in these arteries. 18 references, 2 figures, 2 tables.

  7. Different cholinergic synapses converging onto neurons in Aplysia produce the same synaptic action.

    PubMed

    Segal, M; Koester, J

    1980-10-20

    We have investigated neurons that receive inputs from more than one cholinergic interneuron, to see whether one cholinergic input can depolarize and the other hyperpolarize by virtue of activating different ACh receptors. We have examined synapses made in the abdominal ganglion of Aplysia californica by 3 cholinergic interneurons. Two of those interneurons have previously been shown to be cholinergic. Using both biochemical and pharmacological tests we have shown a third interneuron to be cholinergic. For 7 postsynaptic cells, we compared 6 new connections that we have identified from cholinergic interneurons, and 12 previously known connections. In each case we found that different cholinergic inputs onto any given cell produced the same synaptic action. This finding held even for L7, a cell known to have two types of ACh receptors. These data are consistent with the hypothesis that a postsynaptic cell does not segregate different types of ACh receptors. If generally true, this lack of segregation may help explain why a nervous system uses more than one neurotransmitter as well as why certain interneurons are needed in neural networks.

  8. Persisting cholinergic erythema: a variant of cholinergic urticaria.

    PubMed

    Murphy, G M; Black, A K; Greaves, M W

    1983-09-01

    A new variant of cholinergic urticaria is described. Four patients each had a similar persistent macular skin rash distributed maximally over the upper limbs and upper trunk. Though the rash was persistent, individual macules were of short duration but new macules continually appeared at adjacent sites. Exercise and hot baths exacerbated pruritus and provoked lesions in previously unaffected areas. Topically applied benzoyl scopolamine blocked the appearance of the lesions after challenge. Tests of cholinergic function were normal, apart from an exaggerated pupillary response to arecoline in one patient.

  9. Cholinergic shaping of neural correlations

    PubMed Central

    Minces, Victor; Pinto, Lucas; Dan, Yang; Chiba, Andrea A.

    2017-01-01

    A primary function of the brain is to form representations of the sensory world. Its capacity to do so depends on the relationship between signal correlations, associated with neuronal receptive fields, and noise correlations, associated with neuronal response variability. It was recently shown that the behavioral relevance of sensory stimuli can modify the relationship between signal and noise correlations, presumably increasing the encoding capacity of the brain. In this work, we use data from the visual cortex of the awake mouse watching naturalistic stimuli and show that a similar modification is observed under heightened cholinergic modulation. Increasing cholinergic levels in the cortex through optogenetic stimulation of basal forebrain cholinergic neurons decreases the dependency that is commonly observed between signal and noise correlations. Simulations of correlated neural networks with realistic firing statistics indicate that this change in the correlation structure increases the encoding capacity of the network. PMID:28507133

  10. Cholinergic Targets in Lung Cancer.

    PubMed

    Spindel, Eliot R

    2016-01-01

    Lung cancers express an autocrine cholinergic loop in which secreted acetylcholine can stimulate tumor growth through both nicotinic and muscarinic receptors. Because activation of mAChR and nAChR stimulates growth; tumor growth can be stimulated by both locally synthesized acetylcholine as well as acetylcholine from distal sources and from nicotine in the high percentage of lung cancer patients who are smokers. The stimulation of lung cancer growth by cholinergic agonists offers many potential new targets for lung cancer therapy. Cholinergic signaling can be targeted at the level of choline transport; acetylcholine synthesis, secretion and degradation; and nicotinic and muscarinic receptors. In addition, the newly describe family of ly-6 allosteric modulators of nicotinic signaling such as lynx1 and lynx2 offers yet another new approach to novel lung cancer therapeutics. Each of these targets has their potential advantages and disadvantages for the development of new lung cancer therapies which are discussed in this review.

  11. [Cholinergic hypothesis in psychosis following traumatic brain injury and cholinergic hypothesis in schizophrenia: a link?].

    PubMed

    Bennouna, M; Greene, V B; Defranoux, L

    2007-09-01

    While traumatic brain injury is a major public health issue, schizophrenia-like psychosis following traumatic brain injury is relatively rare and poorly studied. Yet the risk of developing schizophrenia-like psychosis after traumatic brain injury is 3 times more important than in the general population. Risk factors associated with onset of psychosis after traumatic brain injury include: left hemispheric lesions, closed head injury and coma of duration superior to 24 hours. Most patients develop symptoms of psychosis after a moderate to severe traumatic brain injury and often have lesions of the frontal and temporal lobes. CHOLINERGIC HYPOTHESIS: Neuropathologic, electrophysiological and pharmacologic evidence show that cognitive impairment including attention, memory and executive functioning impairment may be related with cholinergic dysfunction in patients with traumatic brain injury. The cholinergic hypothesis is also incriminated in the genesis of schizophrenia. The same biochemical disorders found in schizophrenia which imply many neurotransmitters are often present immediately after traumatic brain injury. However in chronic cognitive disorders secondary to traumatic brain injury, the cholinergic system alone seems to be specifically implied. This is due to the fragility of the cholinergic fibres and a chronic yet reversible reduction of the cholinergic reserves after traumatic brain injury. Cholinergic function can be studied by the P50 evoked response to paired auditory stimuli.While this is disturbed in patients presenting with cognitive impairment after traumatic brain injury its normalisation can be obtained after administration of an acetylcholine esterase inhibitor. In schizophrenic patients there is also an abnormal P50 evoked response due in part to a low number of alpha 7 nicotinic receptors which are implicated in sensory filtering in the frontal lobe. Moreover in schizophrenia, post-mortem studies show a negative correlation between the activity

  12. Assessment of Cholinergic Properties of Ashwagandha Leaf-Extract in the Amnesic Mouse Brain

    PubMed Central

    Gautam, Akash; Wadhwa, Renu; Thakur, Mahendra K.

    2016-01-01

    Background In our earlier study, we have shown the memory enhancing and scopolamine-induced amnesia recovery properties of Ashwagandha leaf extract using behavioral paradigm and expression analysis of synaptic plasticity genes. Purpose However, the exact mechanism through which Ashwagandha demonstrates these effects is still unknown. Methods In the present study, we hypothesized that the alcoholic extract of Ashwagandha leaves (i-Extract) possesses cholinergic properties, which in turn inhibit the anti-cholinergic nature of scopolamine. Therefore, the potential of i-Extract to recover from the scopolamine-induced cholinergic deficits was assessed by measuring acetylcholine (neurotransmitter) and Arc (synaptic activity-related gene) expression level in the mouse brain. Results The enzymatic activity of acetyl cholinesterase and choline acetyltransferase was assessed through colorimetric assays, and expression level of Arc protein was examined by Western blotting. Furthermore, mRNA level of these genes was examined by semi-quantitative reverse-transcriptase PCR. We observed that the treatment of i-Extract in scopolamine-induced amnesic mouse attenuates scopolamine-induced detrimental alterations in the cholinergic system. Conclusion Thus, our study provided biochemical and molecular evidence of cholinergic properties of Ashwagandha leaf extract during brain disorders associated with cholinergic dysfunction. PMID:27647956

  13. Assessment of Cholinergic Properties of Ashwagandha Leaf-Extract in the Amnesic Mouse Brain.

    PubMed

    Gautam, Akash; Wadhwa, Renu; Thakur, Mahendra K

    2016-07-01

    In our earlier study, we have shown the memory enhancing and scopolamine-induced amnesia recovery properties of Ashwagandha leaf extract using behavioral paradigm and expression analysis of synaptic plasticity genes. However, the exact mechanism through which Ashwagandha demonstrates these effects is still unknown. In the present study, we hypothesized that the alcoholic extract of Ashwagandha leaves (i-Extract) possesses cholinergic properties, which in turn inhibit the anti-cholinergic nature of scopolamine. Therefore, the potential of i-Extract to recover from the scopolamine-induced cholinergic deficits was assessed by measuring acetylcholine (neurotransmitter) and Arc (synaptic activity-related gene) expression level in the mouse brain. The enzymatic activity of acetyl cholinesterase and choline acetyltransferase was assessed through colorimetric assays, and expression level of Arc protein was examined by Western blotting. Furthermore, mRNA level of these genes was examined by semi-quantitative reverse-transcriptase PCR. We observed that the treatment of i-Extract in scopolamine-induced amnesic mouse attenuates scopolamine-induced detrimental alterations in the cholinergic system. Thus, our study provided biochemical and molecular evidence of cholinergic properties of Ashwagandha leaf extract during brain disorders associated with cholinergic dysfunction.

  14. Cholinergic neurotransmission in the mammalian retina. Annual report (Summary), 30 September 1983-29 September 1984

    SciTech Connect

    Pourcho, R.G.

    1984-11-30

    This study is directed toward the cytochemical localization of cholinergic markers in a mammalian (cat) retina and biochemical characterization of the interactions of cholinergic neurons with other neurotransmitters in the retina. Particular attention is paid to localization of acetylcholinesterase and the effects of anticholinesterase organophosphates on normal retinal function. Studies to date have shown the presence of newly synthesized acetylcholine in amacrine and displaced amacrine cells. Acetylcholinesterase was localized in both amacrine and ganglion cells. The presumed cholinotoxin, AF64A, causes severe destruction in the cat retina, involving both amacrine and ganglion cells. Although the evidence to date indicates that only amacrine cells are cholinergic, ganglion cells appear to play a major role in cholinergic or related pathways and may be particularly susceptible to organophosphate poisoning. The biochemical component of the study has centered on the development of a superfusion system in which to monitor the release of various amino acid transmitters in response to application of acetylcholine. Preliminary experiments suggest that cholinergic amacrine cells are presynaptic to glycinergic cells in the cat retina. After the normal pattern has been established, it should be possible to investigate the effects of changes in the level of acetylcholinesterase on these responses.

  15. The cholinergic system, sigma-1 receptors and cognition.

    PubMed

    van Waarde, Aren; Ramakrishnan, Nisha K; Rybczynska, Anna A; Elsinga, Philip H; Ishiwata, Kiichi; Nijholt, Ingrid M; Luiten, Paul G M; Dierckx, Rudi A

    2011-08-10

    This article provides an overview of present knowledge regarding the relationship between the cholinergic system and sigma-1 receptors, and discusses potential applications of sigma-1 receptor agonists in the treatment of memory deficits and cognitive disorders. Sigma-1 receptors, initially considered as a subtype of the opioid family, are unique ligand-regulated molecular chaperones in the endoplasmatic reticulum playing a modulatory role in intracellular calcium signaling and in the activity of several neurotransmitter systems, particularly the cholinergic and glutamatergic pathways. Several central nervous system (CNS) drugs show high to moderate affinities for sigma-1 receptors, including acetylcholinesterase inhibitors (donepezil), antipsychotics (haloperidol, rimcazole), selective serotonin reuptake inhibitors (fluvoxamine, sertraline) and monoamine oxidase inhibitors (clorgyline). These compounds can influence cognitive functions both via their primary targets and by activating sigma-1 receptors in the CNS. Sigma-1 agonists show powerful anti-amnesic and neuroprotective effects in a large variety of animal models of cognitive dysfunction involving, among others (i) pharmacologic target blockade (with muscarinic or NMDA receptor antagonists or p-chloroamphetamine); (ii) selective lesioning of cholinergic neurons; (iii) CNS administration of β-amyloid peptides; (iv) aging-induced memory loss, both in normal and senescent-accelerated rodents; (v) neurodegeneration induced by toxic compounds (CO, trimethyltin, cocaine), and (vi) prenatal restraint stress.

  16. Cholinergic modulation of hippocampal network function

    PubMed Central

    Teles-Grilo Ruivo, Leonor M.; Mellor, Jack R.

    2013-01-01

    Cholinergic septohippocampal projections from the medial septal area to the hippocampus are proposed to have important roles in cognition by modulating properties of the hippocampal network. However, the precise spatial and temporal profile of acetylcholine release in the hippocampus remains unclear making it difficult to define specific roles for cholinergic transmission in hippocampal dependent behaviors. This is partly due to a lack of tools enabling specific intervention in, and recording of, cholinergic transmission. Here, we review the organization of septohippocampal cholinergic projections and hippocampal acetylcholine receptors as well as the role of cholinergic transmission in modulating cellular excitability, synaptic plasticity, and rhythmic network oscillations. We point to a number of open questions that remain unanswered and discuss the potential for recently developed techniques to provide a radical reappraisal of the function of cholinergic inputs to the hippocampus. PMID:23908628

  17. The historical significance of work with electric organs for the study of cholinergic transmission.

    PubMed

    Whittaker, V P

    1989-01-01

    The historical significance of work with electric organs for the development of electrobiology and our understanding of the cholinergic synapse at the cell and molecular biological level is traced from its earliest beginning in folk medicine, through the controversy on bioelectricity between Galvani and Volta to the present day, the last decades of which have seen the sequencing of the nicotinic acetylcholine receptor, the isolation and biochemical characterization of the cholinergic vesicle and much else. In the concluding section of the review the continued relevance and usefulness of the electromotor system as a model for future neurobiological research is emphasized.

  18. Biochemical Analysis of Pathogenic Ligand-Dependent FGFR2 Mutations Suggests Distinct Pathophysiological Mechanisms for Craniofacial and Limb Abnormalities in Human Skeletal Disorders

    SciTech Connect

    Ibrahimi,O.; Zhang, F.; Eliseenkova, A.; Itoh, N.; Linhardt, R.; Mohammadi, M.

    2004-01-01

    Gain-of-function missense mutations in FGF receptor 2 (FGFR2) are responsible for a variety of craniosynostosis syndromes including Apert syndrome (AS), Pfeiffer syndrome (PS) and Crouzon syndrome (CS). Unlike the majority of FGFR2 mutations, S252W and P253R AS mutations and a D321A PS mutation retain ligand-dependency and are also associated with severe limb pathology. In addition, a recently identified ligand-dependent S252L/A315S double mutation in FGFR2 was shown to cause syndactyly in the absence of craniosynostosis. Here, we analyze the effect of the canonical AS mutations, the D321A PS mutation and the S252L/A315S double mutation on FGFR2 ligand binding affinity and specificity using surface plasmon resonance. Both AS mutations and the D321A PS mutation, but not the S252L/A315S double mutation, increase the binding affinity of FGFR2c to multiple FGFs expressed in the cranial suture. Additionally, all four pathogenic mutations also violate FGFR2c ligand binding specificity and enable this receptor to bind FGF10. Based on our data, we propose that an increase in mutant FGFR2c binding to multiple FGFs results in craniosynostosis, whereas binding of mutant FGFR2c to FGF10 results in severe limb pathology. Structural and biophysical analysis shows that AS mutations in FGFR2b also enhance and violate FGFR2b ligand binding affinity and specificity, respectively. We suggest that elevated AS mutant FGFR2b signaling may account for the dermatological manifestations of AS.

  19. Regional development of muscarinic cholinergic binding sites in the prenatal rat brain.

    PubMed

    Schlumpf, M; Palacios, J M; Cortes, R; Lichtensteiger, W

    1991-01-01

    The ontogeny of muscarinic cholinergic binding sites was studied in rat fetal central nervous system by in vitro autoradiographic techniques using [3H]N-methyl scopolamine as ligand (1 nM). Nonspecific binding was determined after the addition of 1 microM atropine. The main findings of this study are the early appearance of muscarinic cholinergic binding sites in fetal rat central nervous system before gestational day 14, their subsequent spread in a caudofrontal direction and the rapid change of patterns within individual brain regions. Muscarinic cholinergic sites are present shortly after cell birth, though the time-lag between cell generation and expression of muscarinic sites differs between neuronal cell populations. High receptor densities are noted in certain brainstem nuclei that are important for early fetal and neonatal behaviors.

  20. Cellular and molecular basis of cholinergic function

    SciTech Connect

    Dowdall, M.J.; Hawthorne, J.N.

    1987-01-01

    This book contains 105 selections. Some of the titles are: Functional correlates of brain nicotine receptors; Muscarinic receptor subclasses; Cholinergic innervation and levels of nerve growth factor and its mRNA in the central nervous system; Developmentally regulated neurontrophic activities of Torpedo electric organ tissue; and Association of a regulatory peptide with cholinergic neurons.

  1. What do phasic cholinergic signals do?

    PubMed

    Sarter, Martin; Lustig, Cindy; Berry, Anne S; Gritton, Howard; Howe, William M; Parikh, Vinay

    2016-04-01

    In addition to the neuromodulatory role of cholinergic systems, brief, temporally discrete cholinergic release events, or "transients", have been associated with the detection of cues in attention tasks. Here we review four main findings about cholinergic transients during cognitive processing. Cholinergic transients are: (1) associated with the detection of a cue and influenced by cognitive state; (2) not dependent on reward outcome, although the timing of the transient peak co-varies with the temporal relationship between detection and reward delivery; (3) correlated with the mobilization of the cue-evoked response; (4) causal mediators of shifts from monitoring to cue detection. We next discuss some of the key questions concerning the timing and occurrence of transients within the framework of available evidence including: (1) Why does the shift from monitoring to cue detection require a transient? (2) What determines whether a cholinergic transient will be generated? (3) How can cognitive state influence transient occurrence? (4) Why do cholinergic transients peak at around the time of reward delivery? (5) Is there evidence of cholinergic transients in humans? We conclude by outlining future research studies necessary to more fully understand the role of cholinergic transients in mediating cue detection.

  2. Cholinergic regulation of fear learning and extinction.

    PubMed

    Wilson, Marlene A; Fadel, Jim R

    2017-03-01

    Cholinergic activation regulates cognitive function, particularly long-term memory consolidation. This Review presents an overview of the anatomical, neurochemical, and pharmacological evidence supporting the cholinergic regulation of Pavlovian contextual and cue-conditioned fear learning and extinction. Basal forebrain cholinergic neurons provide inputs to neocortical regions and subcortical limbic structures such as the hippocampus and amygdala. Pharmacological manipulations of muscarinic and nicotinic receptors support the role of cholinergic processes in the amygdala, hippocampus, and prefrontal cortex in modulating the learning and extinction of contexts or cues associated with threat. Additional evidence from lesion studies and analysis of in vivo acetylcholine release with microdialysis similarly support a critical role of cholinergic neurotransmission in corticoamygdalar or corticohippocampal circuits during acquisition of fear extinction. Although a few studies have suggested a complex role of cholinergic neurotransmission in the cellular plasticity essential for extinction learning, more work is required to elucidate the exact cholinergic mechanisms and physiological role of muscarinic and nicotinic receptors in these fear circuits. Such studies are important for elucidating the role of cholinergic neurotransmission in disorders such as posttraumatic stress disorder that involve deficits in extinction learning as well as for developing novel therapeutic approaches for such disorders. © 2016 Wiley Periodicals, Inc.

  3. Functional changes after prenatal opiate exposure related to opiate receptors' regulated alterations in cholinergic innervation.

    PubMed

    Yanai, Joseph; Huleihel, Rabab; Izrael, Michal; Metsuyanim, Sally; Shahak, Halit; Vatury, Ori; Yaniv, Shiri P

    2003-09-01

    Opioid drugs act primarily on the opiate receptors; they also exert their effect on other innervations resulting in non-opioidergic behavioural deficits. Similarly, opioid neurobehavioural teratogenicity is attested in numerous behaviours and neural processes which hinder the research on the mechanisms involved. Therefore, in order to be able to ascertain the mechanism we have established an animal (mouse) model for the teratogenicity induced by opioid abuse, which focused on behaviours related to specific brain area and innervation. Diacetylmorphine (heroin) and not morphine was applied because heroin exerts a unique action, distinguished from that of morphine. Pregnant mice were exposed to heroin (10 mg/kg per day) and the offspring were tested for behavioural deficits and biochemical alterations related to the septohippocampal cholinergic innervation. Some studies employing the chick embryo were concomitantly added as a control for the confounding indirect variables. Prenatal exposure to heroin in mice induced global hyperactivation both pre- and post-synaptic along the septohippocampal cholinergic innervation, including basal protein kinase C (PKC) activity accompanied by a desensitization of PKC activity in response to cholinergic agonist. Functionally, the heroin-exposed offspring displayed deficits in hippocampus-related behaviours, suggesting deficits in the net output of the septohippocampal cholinergic innervation. Grafting of cholinergic cells to the impaired hippocampus reversed both pre- and post-synaptic hyperactivity, resensitized PKC activity, and restored the associated behaviours to normality. Consistently, correlation studies point to the relative importance of PKC to the behavioural deficits. The chick model, which dealt with imprinting related to a different brain region, confirmed that the effect of heroin is direct. Taken together with studies by others on the effect of prenatal exposure to opioids on the opioidergic innervation and with what

  4. Amyloid beta-peptide disrupts carbachol-induced muscarinic cholinergic signal transduction in cortical neurons.

    PubMed Central

    Kelly, J F; Furukawa, K; Barger, S W; Rengen, M R; Mark, R J; Blanc, E M; Roth, G S; Mattson, M P

    1996-01-01

    Cholinergic pathways serve important functions in learning and memory processes, and deficits in cholinergic transmission occur in Alzheimer disease (AD). A subset of muscarinic cholinergic receptors are linked to G-proteins that activate phospholipase C, resulting in the liberation of inositol trisphosphate and Ca2+ release from intracellular stores. We now report that amyloid beta-peptide (Abeta), which forms plaques in the brain in AD, impairs muscarinic receptor activation of G proteins in cultured rat cortical neurons. Exposure of rodent fetal cortical neurons to Abeta25-35 and Abeta1-40 resulted in a concentration and time-dependent attenuation of carbachol-induced GTPase activity without affecting muscarinic receptor ligand binding parameters. Downstream events in the signal transduction cascade were similarly attenuated by Abeta. Carbachol-induced accumulation of inositol phosphates (IP, IP2, IP3, and IP4) was decreased and calcium imaging studies revealed that carbachol-induced release of calcium was severely impaired in neurons pretreated with Abeta. Muscarinic cholinergic signal transduction was disrupted with subtoxic levels of exposure to AP. The effects of Abeta on carbachol-induced GTPase activity and calcium release were attenuated by antioxidants, implicating free radicals in the mechanism whereby Abeta induced uncoupling of muscarinic receptors. These data demonstrate that Abeta disrupts muscarinic receptor coupling to G proteins that mediate induction of phosphoinositide accumulation and calcium release, findings that implicate Abeta in the impairment of cholinergic transmission that occurs in AD. PMID:8692890

  5. Prenatal neuroleptic exposure alters postnatal striatal cholinergic activity in the rat.

    PubMed

    Miller, J C; Friedhoff, A J

    1986-01-01

    Previous studies in our laboratory have shown that prenatal exposure to a neuroleptic during a critical period of gestation in the rat results in a marked deficit in the number of striatal dopamine-binding sites and in a diminution of dopamine agonist-induced stereotyped behavior. In the present studies, we examined the effect of prenatal neuroleptic exposure on biochemical parameters of cholinergic activity to determine whether the balance between striatal dopaminergic and cholinergic activity might be altered. The number of muscarinic cholinergic-binding sites and the specific activity of choline acetyltransferase were found to be significantly increased by prenatal treatment with the neuroleptics haloperidol or (+)-butaclamol. From the present studies and previous observations made in our laboratory, it is concluded that the ability of a neuroleptic to affect the number of muscarinic cholinergic receptors in postnatal life may be a result of the phenotypically undifferentiated state of the developing dopamine-binding site. Our findings of increased striatal cholinergic activity accompanied by a marked decrease in dopaminergic activity may have implications for an increased vulnerability to extrapyramidal motor disturbances during postnatal development.

  6. Muscimol increases acetylcholine release by directly stimulating adult striatal cholinergic interneurons.

    PubMed

    Login, I S; Pal, S N; Adams, D T; Gold, P E

    1998-01-01

    Because GabaA ligands increase acetylcholine (ACh) release from adult striatal slices, we hypothesized that activation of GabaA receptors on striatal cholinergic interneurons directly stimulates ACh secretion. Fractional [3H]ACh release was recorded during perifusion of acutely dissociated, [3H]choline-labeled, adult male rat striata. The GabaA agonist, muscimol, immediately stimulated release maximally approximately 300% with EC50 = approximately 1 microM. This action was enhanced by the allosteric GabaA receptor modulators, diazepam and secobarbital, and inhibited by the GabaA antagonist, bicuculline, by ligands for D2 or muscarinic cholinergic receptors or by low calcium buffer, tetrodotoxin or vesamicol. Membrane depolarization inversely regulated muscimol-stimulated secretion. Release of endogenous and newly synthesized ACh was stimulated in parallel by muscimol without changing choline release. Muscimol pretreatment inhibited release evoked by K+ depolarization or by receptor-mediated stimulation with glutamate. Thus, GabaA receptors on adult striatal cholinergic interneurons directly stimulate voltage- and calcium-dependent exocytosis of ACh stored in vesamicol-sensitive synaptic vesicles. The action depends on the state of membrane polarization and apparently depolarizes the membrane in turn. This functional assay demonstrates that excitatory GabaA actions are not limited to neonatal tissues. GabaA-stimulated ACh release may be prevented in situ by normal tonic dopaminergic and muscarinic input to cholinergic neurons.

  7. Developmental specification of forebrain cholinergic neurons.

    PubMed

    Allaway, Kathryn C; Machold, Robert

    2017-01-01

    Striatal cholinergic interneurons and basal forebrain cholinergic projection neurons, which together comprise the forebrain cholinergic system, regulate attention, memory, reward pathways, and motor activity through the neuromodulation of multiple brain circuits. The importance of these neurons in the etiology of neurocognitive disorders has been well documented, but our understanding of their specification during embryogenesis is still incomplete. All forebrain cholinergic projection neurons and interneurons appear to share a common developmental origin in the embryonic ventral telencephalon, a region that also gives rise to GABAergic projection neurons and interneurons. Significant progress has been made in identifying the key intrinsic and extrinsic factors that promote a cholinergic fate in this precursor population. However, how cholinergic interneurons and projection neurons differentiate from one another during development, as well as how distinct developmental programs contribute to heterogeneity within those two classes, is not yet well understood. In this review we summarize the transcription factors and signaling molecules known to play a role in the specification and early development of striatal and basal forebrain cholinergic neurons. We also discuss the heterogeneity of these populations and its possible developmental origins. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Basal Forebrain Cholinergic Modulation of Sleep Transitions

    PubMed Central

    Ozen Irmak, Simal; de Lecea, Luis

    2014-01-01

    Objectives: The basal forebrain cholinergic system is involved in cognitive processes that require an attentive state, an increased level of arousal, and/or cortical activation associated with low amplitude fast EEG activity. The activity of most neurons in the basal forebrain cholinergic space is tightly correlated with the cortical EEG and the activity state. While most cholinergic neurons fire maximally during waking and REM sleep, the activity of other types of basal forebrain neurons vastly differs across different arousal and sleep states. Numerous studies have suggested a role for the basal forebrain cholinergic neurons in eliciting cortical activation and arousal. However, the intricate local connectivity within the region requires the use of cell-specific manipulation methods to demonstrate such a causal relationship. Design and Measurements: Here we have combined optogenetics with surface EEG recordings in freely moving mice in order to investigate the effects of acute cholinergic activation on the dynamics of sleep-to-wake transitions. We recorded from naturally sleeping animals and analyzed transitions from NREM sleep to REM sleep and/or wakefulness in response to photo-stimulation of cholinergic neurons in substantia innominata. Results and Conclusions: Our results show that optogenetic activation of basal forebrain cholinergic neurons during NREM sleep is sufficient to elicit cortical activation and facilitate state transitions, particularly transitions to wakefulness and arousal, at a time scale similar to the activation induced by other subcortical systems. Our results provide in vivo cell-specific demonstration for the role of basal forebrain cholinergic system in induction of wakefulness and arousal. Citation: Ozen Irmak S, de Lecea L. Basal forebrain cholinergic modulation of sleep transitions. SLEEP 2014;37(12):1941-1951. PMID:25325504

  9. Both pre- and post-synaptic alterations contribute to aberrant cholinergic transmission in superior cervical ganglia of APP(-/-) mice.

    PubMed

    Cai, Zhao-Lin; Zhang, Jia-Jia; Chen, Ming; Wang, Jin-Zhao; Xiao, Peng; Yang, Li; Long, Cheng

    2016-11-01

    Though amyloid precursor protein (APP) can potentially be cleaved to generate the pathological amyloid β peptide (Aβ), APP itself plays an important role in regulating neuronal activity. APP deficiency causes functional impairment in cholinergic synaptic transmission and cognitive performance. However, the mechanisms underlying altered cholinergic synaptic transmission in APP knock-out mice (APP(-/-)) are poorly understood. In this study, we conducted in vivo extracellular recording to investigate cholinergic compound action potentials (CAPs) of the superior cervical ganglion (SCG) in APP(-/-) and littermate wild-type (WT) mice. Our results demonstrate that APP not only regulates presynaptic activity, but also affects postsynaptic function at cholinergic synapses in SCG. APP deficiency reduces the number of vesicles in presynaptic terminalsand attenuatesthe amplitude of CAPs, likely due to dysfunction of high-affinity choline transporters. Pharmacological and biochemical examination showed that postsynaptic responsesmediated by α4β2 and α7 nicotinic acetylcholine receptors are reduced in the absence of APP. Our research provides evidences on how APP regulates cholinergic function and therefore may help to identify potential therapeutic targets to treat cholinergic dysfunction associated with Alzheimer's disease pathogenesis.

  10. Oral Administration of Gintonin Attenuates Cholinergic Impairments by Scopolamine, Amyloid-β Protein, and Mouse Model of Alzheimer's Disease.

    PubMed

    Kim, Hyeon-Joong; Shin, Eun-Joo; Lee, Byung-Hwan; Choi, Sun-Hye; Jung, Seok-Won; Cho, Ik-Hyun; Hwang, Sung-Hee; Kim, Joon Yong; Han, Jung-Soo; Chung, ChiHye; Jang, Choon-Gon; Rhim, Hyewon; Kim, Hyoung-Chun; Nah, Seung-Yeol

    2015-09-01

    Gintonin is a novel ginseng-derived lysophosphatidic acid (LPA) receptor ligand. Oral administration of gintonin ameliorates learning and memory dysfunctions in Alzheimer's disease (AD) animal models. The brain cholinergic system plays a key role in cognitive functions. The brains of AD patients show a reduction in acetylcholine concentration caused by cholinergic system impairments. However, little is known about the role of LPA in the cholinergic system. In this study, we used gintonin to investigate the effect of LPA receptor activation on the cholinergic system in vitro and in vivo using wild-type and AD animal models. Gintonin induced [Ca(2+)]i transient in cultured mouse hippocampal neural progenitor cells (NPCs). Gintonin-mediated [Ca(2+)]i transients were linked to stimulation of acetylcholine release through LPA receptor activation. Oral administration of gintonin-enriched fraction (25, 50, or 100 mg/kg, 3 weeks) significantly attenuated scopolamine-induced memory impairment. Oral administration of gintonin (25 or 50 mg/kg, 2 weeks) also significantly attenuated amyloid-β protein (Aβ)-induced cholinergic dysfunctions, such as decreased acetylcholine concentration, decreased choline acetyltransferase (ChAT) activity and immunoreactivity, and increased acetylcholine esterase (AChE) activity. In a transgenic AD mouse model, long-term oral administration of gintonin (25 or 50 mg/kg, 3 months) also attenuated AD-related cholinergic impairments. In this study, we showed that activation of G protein-coupled LPA receptors by gintonin is coupled to the regulation of cholinergic functions. Furthermore, this study showed that gintonin could be a novel agent for the restoration of cholinergic system damages due to Aβ and could be utilized for AD prevention or therapy.

  11. Clinical Characteristics of Cholinergic Urticaria in Korea

    PubMed Central

    Kim, Jung Eun; Eun, Young Sun; Park, Young Min; Park, Hyun Jeong; Yu, Dong Su; Kang, Hoon; Cho, Sang Hyun; Park, Chul Jong; Kim, Si Yong

    2014-01-01

    Background Cholinergic urticaria is a type of physical urticaria characterized by heat-associated wheals. Several reports are available about cholinergic urticaria; however, the clinical manifestations and pathogenesis are incompletely understood. Objective The purpose of this study was to investigate the clinical characteristics of cholinergic urticaria in Korea. Methods We performed a retrospective study of 92 patients with cholinergic urticaria who were contacted by phone and whose diagnoses were confirmed by the exercise provocation test among those who had visited The Catholic University of Korea, Catholic Medical Center from January 2001 to November 2010. Results All 92 patients were male, and their average age was 27.8 years (range, 17~51 years). Most of the patients had onset of the disease in their 20s and 30s. Non-follicular wheals were located on the trunk and upper extremities of many patients, and the symptoms were aggravated by exercise. Eight patients showed general urticaria symptoms and 15 had accompanying atopic disease. Forty-three patients complained of seasonal aggravation. Most patients were treated with first and second-generation antihistamines. Conclusion Dermatologists should consider these characteristics in patients with cholinergic urticaria. Further investigation and follow-up studies are necessary to better understand the epidemiological and clinical findings of cholinergic urticaria. PMID:24882973

  12. Cholinergic connectivity: it's implications for psychiatric disorders

    PubMed Central

    Scarr, Elizabeth; Gibbons, Andrew S.; Neo, Jaclyn; Udawela, Madhara; Dean, Brian

    2013-01-01

    Acetylcholine has been implicated in both the pathophysiology and treatment of a number of psychiatric disorders, with most of the data related to its role and therapeutic potential focusing on schizophrenia. However, there is little thought given to the consequences of the documented changes in the cholinergic system and how they may affect the functioning of the brain. This review looks at the cholinergic system and its interactions with the intrinsic neurotransmitters glutamate and gamma-amino butyric acid as well as those with the projection neurotransmitters most implicated in the pathophysiologies of psychiatric disorders; dopamine and serotonin. In addition, with the recent focus on the role of factors normally associated with inflammation in the pathophysiologies of psychiatric disorders, links between the cholinergic system and these factors will also be examined. These interfaces are put into context, primarily for schizophrenia, by looking at the changes in each of these systems in the disorder and exploring, theoretically, whether the changes are interconnected with those seen in the cholinergic system. Thus, this review will provide a comprehensive overview of the connectivity between the cholinergic system and some of the major areas of research into the pathophysiologies of psychiatric disorders, resulting in a critical appraisal of the potential outcomes of a dysregulated central cholinergic system. PMID:23653591

  13. Cardiac Resynchronization Therapy Restores Sympathovagal Balance in the Failing Heart by Differential Remodeling of Cholinergic Signaling

    PubMed Central

    DeMazumder, Deeptankar; Kass, David A.; O’Rourke, Brian; Tomaselli, Gordon F.

    2015-01-01

    Rationale Cardiac resynchronization therapy (CRT) is the only heart failure (HF) therapy documented to improve left ventricular (LV) function and reduce mortality. The underlying mechanisms are incompletely understood. While β-adrenergic signaling has been studied extensively, the effect of CRT on cholinergic signaling is unexplored. Objective We hypothesized that remodeling of cholinergic signaling plays an important role in the aberrant calcium signaling and depressed contractile and β-adrenergic responsiveness in dyssynchronous HF (DHF) that are restored by CRT. Methods and Results Canine tachypaced DHF and CRT models were generated to interrogate responses specific to dyssynchronous vs. resynchronized ventricular contraction during hemodynamic decompensation. Echocardiographic, electrocardiographic and invasive hemodynamic data were collected from normal controls, DHF and CRT models. LV tissue was used for biochemical analyses and functional measurements (calcium transient, sarcomere shortening) from isolated myocytes (N=42–104 myocytes/model; 6–9 hearts/model). Human LV myocardium was obtained for biochemical analyses from explanted failing (N=18) and non-failing (N=7) hearts. The M2 subtype of muscarinic acetylcholine receptors (M2-mAChR) was upregulated in human and canine HF compared to non-failing controls. CRT attenuated the increased M2-mAChR expression and Gαi-coupling, and enhanced M3-mAChR expression in association with enhanced calcium cycling, sarcomere shortening and β-adrenergic responsiveness. Despite model-dependent remodeling, cholinergic stimulation completely abolished isoproterenol-induced triggered activity in both DHF and CRT myocytes. Conclusions Remodeling of cholinergic signaling is a critical pathological component of human and canine HF. Differential remodeling of cholinergic signaling represents a novel mechanism for enhancing sympathovagal balance with CRT and may identify new targets for treatment of systolic HF. PMID

  14. A comprehensive study of clinical, biochemical, radiological, vascular, cardiac, and sleep parameters in an unselected cohort of patients with acromegaly undergoing presurgical somatostatin receptor ligand therapy.

    PubMed

    Annamalai, Anand K; Webb, Alison; Kandasamy, Narayanan; Elkhawad, Maysoon; Moir, Samantha; Khan, Fakhar; Maki-Petaja, Kaisa; Gayton, Emma L; Strey, Christopher H; O'Toole, Samuel; Ariyaratnam, Shaumya; Halsall, David J; Chaudhry, Afzal N; Berman, Laurence; Scoffings, Daniel J; Antoun, Nagui M; Dutka, David P; Wilkinson, Ian B; Shneerson, John M; Pickard, John D; Simpson, Helen L; Gurnell, Mark

    2013-03-01

    Attainment of safe GH and IGF-1 levels is a central goal of acromegaly management. The aim of this study was to determine the extent to which reductions in GH and IGF-1 concentrations correlate with amelioration of radiological, metabolic, vascular, cardiac, and respiratory sequelae in a single unselected patient cohort. This was a prospective, within-subject comparison in 30 patients with newly diagnosed acromegaly (15 women and 15 men: mean age, 54.3 years; range, 23-78 years) before and after 24 weeks of lanreotide Autogel (ATG) therapy. Reductions in GH and IGF-1 concentrations and tumor volume were observed in all but 2 patients (median changes [Δ]: GH, -6.88 μg/L [interquartile range -16.78 to -3.32, P = .000001]; IGF-1, -1.95 × upper limit of normal [-3.06 to -1.12, P = .000002]; and pituitary tumor volume, -256 mm(3) [-558 to -72.5, P = .0002]). However, apnea/hypopnea index scores showed highly variable responses (P = .11), which were independent of ΔGH or ΔIGF-1, but moderately correlated with Δweight (R(2) = 0.42, P = .0001). Although systolic (P = .33) and diastolic (P = .76) blood pressure were unchanged, improvements in arterial stiffness (aortic pulse wave velocity, -0.4 m/s [-1.2 to +0.2, P = .046]) and endothelial function (flow mediated dilatation, +1.73% [-0.32 to +6.19, P = .0013]) were observed. Left ventricular mass index regressed in men (-11.8 g/cm(2) [-26.6 to -1.75], P = .019) but not in women (P = .98). Vascular and cardiac changes were independent of ΔGH or ΔIGF-1 and also showed considerable interindividual variation. Metabolic parameters were largely unchanged. Presurgical ATG therapy lowers GH and IGF-1 concentrations, induces tumor shrinkage, and ameliorates/reverses cardiac, vascular, and sleep complications in many patients with acromegaly. However, responses vary considerably between individuals, and attainment of biochemical control cannot be assumed to equate to universal complication control.

  15. Cholinergic and non-cholinergic mesopontine tegmental neurons projecting to the subthalamic nucleus in the rat

    PubMed Central

    Kita, Takako; Kita, Hitoshi

    2010-01-01

    The subthalamic nucleus (STN) receives cholinergic and non-cholinergic projections from the mesopontine tegmentum. This study investigated the numbers and distributions of neurons involved in these projections in rats using Fluorogold (FG) retrograde tracing combined with immunostaining of choline acetyltransferase and a neuron-specific nuclear protein. The results suggest that a small population of cholinergic neurons mainly in the caudoventral part of the pedunculopontine tegmental nucleus (PPN), approximately 360 neurons (≈10% of total) in the homolateral and 80 neurons (≈2%) in the contralateral PPN, projects to the STN. In contrast, the number of non-cholinergic neurons projecting to the STN was estimated to be 9 times as much, with approximately 3300 in the homolateral side and 1300 neurons in the contralateral side. A large gathering of the FG-labeled non-cholinergic neurons was found rostrodorsomedial to the caudolateral PPN. The biotinylated dextran amine (BDA) anterograde tracing method was used to substantiate the mesopontine-STN projections. Injection of BDA into the caudoventral PPN labeled numerous thin fibers with small en-passant varicosities in the STN. Injection of BDA into the non-cholinergic neuron-rich area labeled a moderate number of thicker fibers with patches of aggregates of larger boutons. The densities of labeled fibers and the number of retrogradely labeled cells in the mesopontine tegmentum suggested that the terminal field formed in the STN by each cholinergic neuron is more extensive than that by each non-cholinergic neuron. The findings suggest that cholinergic and non-cholinergic mesopontine afferents may carry different information to the STN. PMID:21198985

  16. Cholinergic regulation of the vasopressin neuroendocrine system

    SciTech Connect

    Michels, K.M.

    1987-01-01

    To clarify the physical and functional relationship between the cholinergic system, and the neurodocrine cells of the supraoptic nucleus, a combination of experiments on receptor binding, localization and function were carried out. The putative nicotinic receptor probe (/sup 125/I)alpha bungarotoxin ((/sup 125/I)alpha BTX) bound with high affinity and specificity to the vasopressin and oxytocin magnocellular neurons of the supraoptic nucleus, nucleus circularis, and paraventricular nucleus. Binding of (/sup 125/I)alpha BTX within the neural lobe was very low. In contrast, the muscarinic cholinergic receptor probe (/sup 3/H)quinuclidinylbenzilate ((/sup 3/H)QNB) did not bind to magnocellular vasopressin and oxytocin cell groups. The median eminence, which contains the neurosecretory axons, and the neural lobe of the pituitary contain low levels of (/sup 3/H)QNB binding. The physiological significance of these cholinergic receptors in regulation of vasopressin release was tested using an in vitro preparation of the supraoptic - neural lobe system.

  17. Basal Forebrain Cholinergic System and Memory.

    PubMed

    Blake, M G; Boccia, M M

    2017-02-18

    Basal forebrain cholinergic neurons constitute a way station for many ascending and descending pathways. These cholinergic neurons have a role in eliciting cortical activation and arousal. It is well established that they are mainly involved in cognitive processes requiring increased levels of arousal, attentive states and/or cortical activation with desynchronized activity in the EEG. These cholinergic neurons are modulated by several afferents of different neurotransmitter systems. Of particular importance within the cortical targets of basal forebrain neurons is the hippocampal cortex. The septohippocampal pathway is a bidirectional pathway constituting the main septal efferent system, which is widely known to be implicated in every memory process investigated. The present work aims to review the main neurotransmitter systems involved in modulating cognitive processes related to learning and memory through modulation of basal forebrain neurons.

  18. Cholinergic modulation of cognition: Insights from human pharmacological functional neuroimaging

    PubMed Central

    Bentley, Paul; Driver, Jon; Dolan, Raymond J.

    2011-01-01

    Evidence from lesion and cortical-slice studies implicate the neocortical cholinergic system in the modulation of sensory, attentional and memory processing. In this review we consider findings from sixty-three healthy human cholinergic functional neuroimaging studies that probe interactions of cholinergic drugs with brain activation profiles, and relate these to contemporary neurobiological models. Consistent patterns that emerge are: (1) the direction of cholinergic modulation of sensory cortex activations depends upon top-down influences; (2) cholinergic hyperstimulation reduces top-down selective modulation of sensory cortices; (3) cholinergic hyperstimulation interacts with task-specific frontoparietal activations according to one of several patterns, including: suppression of parietal-mediated reorienting; decreasing ‘effort’-associated activations in prefrontal regions; and deactivation of a ‘resting-state network’ in medial cortex, with reciprocal recruitment of dorsolateral frontoparietal regions during performance-challenging conditions; (4) encoding-related activations in both neocortical and hippocampal regions are disrupted by cholinergic blockade, or enhanced with cholinergic stimulation, while the opposite profile is observed during retrieval; (5) many examples exist of an ‘inverted-U shaped’ pattern of cholinergic influences by which the direction of functional neural activation (and performance) depends upon both task (e.g. relative difficulty) and subject (e.g. age) factors. Overall, human cholinergic functional neuroimaging studies both corroborate and extend physiological accounts of cholinergic function arising from other experimental contexts, while providing mechanistic insights into cholinergic-acting drugs and their potential clinical applications. PMID:21708219

  19. Modes and Models of Forebrain Cholinergic Neuromodulation of Cognition

    PubMed Central

    Hasselmo, Michael E; Sarter, Martin

    2011-01-01

    As indicated by the profound cognitive impairments caused by cholinergic receptor antagonists, cholinergic neurotransmission has a vital role in cognitive function, specifically attention and memory encoding. Abnormally regulated cholinergic neurotransmission has been hypothesized to contribute to the cognitive symptoms of neuropsychiatric disorders. Loss of cholinergic neurons enhances the severity of the symptoms of dementia. Cholinergic receptor agonists and acetylcholinesterase inhibitors have been investigated for the treatment of cognitive dysfunction. Evidence from experiments using new techniques for measuring rapid changes in cholinergic neurotransmission provides a novel perspective on the cholinergic regulation of cognitive processes. This evidence indicates that changes in cholinergic modulation on a timescale of seconds is triggered by sensory input cues and serves to facilitate cue detection and attentional performance. Furthermore, the evidence indicates cholinergic induction of evoked intrinsic, persistent spiking mechanisms for active maintenance of sensory input, and planned responses. Models have been developed to describe the neuronal mechanisms underlying the transient modulation of cortical target circuits by cholinergic activity. These models postulate specific locations and roles of nicotinic and muscarinic acetylcholine receptors and that cholinergic neurotransmission is controlled in part by (cortical) target circuits. The available evidence and these models point to new principles governing the development of the next generation of cholinergic treatments for cognitive disorders. PMID:20668433

  20. Cholinergic antagonists in a solitary wasp venom.

    PubMed

    Piek, T; Mantel, P

    1986-01-01

    The venom of the solitary wasp Philanthus triangulum contains a cholinergic antagonist of the nicotinic receptor of the rectus abdominis muscle of the frog, Xenopus laevis. The venom of African P. triangulum contains two different cholinergic factors, a competitive and a non-competitive antagonist. The venom of the European P. triangulum may not contain a competitive antagonist of the nicotinic receptor of X. laevis, but only a very strong non-competitive antagonist. The possible non-synonymity of both groups of P. triangulum is discussed.

  1. Activated cholinergic signaling provides a target in squamous cell lung carcinoma.

    PubMed

    Song, Pingfang; Sekhon, Harmanjatinder S; Fu, Xiao Wen; Maier, Michelle; Jia, Yibing; Duan, Jie; Proskosil, Becky J; Gravett, Courtney; Lindstrom, Jon; Mark, Gregory P; Saha, Saurabh; Spindel, Eliot R

    2008-06-15

    The binding of exogenous nicotine to nicotinic acetylcholine (ACh) receptors (nAChR) and the binding of endogenous ACh to both nAChR and muscarinic ACh receptors (mAChR) stimulate growth of both small cell and non-small cell lung carcinomas. Understanding how cholinergic signaling is up-regulated in lung cancer may suggest new therapeutic approaches. Analysis of 28 squamous cell lung carcinomas (SCC) showed increased levels of alpha5 and beta3 nAChR mRNA and increased levels of ACh associated with increased levels of choline acetyltransferase mRNA and decreased cholinesterase mRNAs. Lynx1, an allosteric inhibitor of nAChR activity, was also decreased in SCC. Thus, cholinergic signaling is broadly increased in SCC caused by increased levels of receptors, increased levels of ligands, and decreased levels of receptor inhibitors. Partially explaining the cholinergic up-regulation seen in SCC, incubation of the H520 SCC cell line with nicotine increased levels of ACh secretion, increased expression of nAChR, and, as measured by electrophysiologic recording, increased activity of the expressed nAChR. Consistent with these effects, nicotine stimulated proliferation of H520 cells. One approach to blocking proliferative effects of nicotine and ACh on growth of lung cancers may be through M3 mAChR antagonists, which can limit the activation of mitogen-activated protein kinase that is caused by both nicotinic and muscarinic signaling. This was tested with the M3-selective muscarinic antagonist darifenacin. Darifenacin blocked nicotine-stimulated H520 growth in vitro and also blocked H520 growth in nude mice in vivo. Thus, cholinergic signaling is broadly up-regulated in SCC and blocking cholinergic signaling can limit basal and nicotine-stimulated growth of SCC.

  2. Activated cholinergic signaling provides a target in squamous cell lung carcinoma

    PubMed Central

    Song, Pingfang; Sekhon, Harmanjatinder S.; Fu, Xiao Wen; Maier, Michelle; Jia, Yibing; Duan, Jie; Proskosil, Becky J.; Gravett, Courtney; Lindstrom, Jon; Mark, Gregory P.; Saha, Saurabh; Spindel, Eliot R.

    2010-01-01

    The binding of exogenous nicotine to nicotinic acetylcholine receptors (nAChR) and the binding of endogenous acetylcholine to both nAChR and muscarinic acetylcholine receptors (mAChR) stimulates growth of both small cell and non-small cell lung carcinomas. Understanding how cholinergic signaling is upregulated in lung cancer may suggest new therapeutic approaches. Analysis of 28 squamous cell lung carcinomas (SCC) showed increased levels of a5 and β3 nAChR mRNA and increased levels of acetylcholine associated with increased levels of ChAT mRNA and decreased cholinesterase mRNAs. Lynx1, an allosteric inhibitor of nAChR activity, was also decreased in SCC. Thus cholinergic signaling is broadly increased in SCC caused by increased levels of receptors, increased levels of ligands and decreased levels of receptor inhibitors. Partially explaining the cholinergic upregulation seen in SCC, incubation of the H520 SCC cell line with nicotine increased levels of ACh secretion, increased expression of nAChR and, as measured by electrophysiologic recording, increased activity of the expressed nAChR. Consistent with these effects, nicotine stimulated proliferation of H520 cells. One approach to blocking proliferative effects of nicotine and acetylcholine on growth of lung cancers may be through M3 mAChR antagonists which can limit the activation of MAPK that is caused by both nicotinic and muscarinic signaling. This was tested with the M3-selective muscarinic antagonist darifenacin. Darifenacin blocked nicotine-stimulated H520 growth in vitro and also blocked H520 growth in nude mice in vivo. Thus cholinergic signaling is broadly upregulated in SCC and blocking cholinergic signaling can limit basal and nicotine-stimulated growth of SCC. PMID:18559515

  3. Alterations in Cholinergic Pathways and Therapeutic Strategies Targeting Cholinergic System after Traumatic Brain Injury

    PubMed Central

    Shin, Samuel S.

    2015-01-01

    Abstract Traumatic brain injury (TBI) results in varying degrees of disability in a significant number of persons annually. The mechanisms of cognitive dysfunction after TBI have been explored in both animal models and human clinical studies for decades. Dopaminergic, serotonergic, and noradrenergic dysfunction has been described in many previous reports. In addition, cholinergic dysfunction has also been a familiar topic among TBI researchers for many years. Although pharmacological agents that modulate cholinergic neurotransmission have been used with varying degrees of success in previous studies, improving their function and maximizing cognitive recovery is an ongoing process. In this article, we review the previous findings on the biological mechanism of cholinergic dysfunction after TBI. In addition, we describe studies that use both older agents and newly developed agents as candidates for targeting cholinergic neurotransmission in future studies. PMID:25646580

  4. Rabbit forebrain cholinergic system: morphological characterization of nuclei and distribution of cholinergic terminals in the cerebral cortex and hippocampus.

    PubMed

    Varga, Csaba; Härtig, Wolfgang; Grosche, Jens; Keijser, Jan; Luiten, Paul G M; Seeger, Johannes; Brauer, Kurt; Harkany, Tibor

    2003-06-09

    Although the rabbit brain, in particular the basal forebrain cholinergic system, has become a common model for neuropathological changes associated with Alzheimer's disease, detailed neuroanatomical studies on the morphological organization of basal forebrain cholinergic nuclei and on their output pathways are still awaited. Therefore, we performed quantitative choline acetyltransferase (ChAT) immunocytochemistry to localize major cholinergic nuclei and to determine the number of respective cholinergic neurons in the rabbit forebrain. The density of ChAT-immunoreactive terminals in layer V of distinct neocortical territories and in hippocampal subfields was also measured. Another cholinergic marker, the low-affinity neurotrophin receptor (p75(NTR)), was also employed to identify subsets of cholinergic neurons. Double-immunofluorescence labeling of ChAT and p75(NTR), calbindin D-28k (CB), parvalbumin, calretinin, neuronal nitric oxide synthase (nNOS), tyrosine hydroxylase, or substance P was used to elucidate the neuroanatomical borders of cholinergic nuclei and to analyze the neurochemical complexity of cholinergic cell populations. Cholinergic projection neurons with heterogeneous densities were found in the medial septum, vertical and horizontal diagonal bands of Broca, ventral pallidum, and magnocellular nucleus basalis (MBN)/substantia innominata (SI) complex; cholinergic interneurons were observed in the caudate nucleus, putamen, accumbens nucleus, and olfactory tubercule, whereas the globus pallidus was devoid of cholinergic nerve cells. Cholinergic interneurons were frequently present in the hippocampus and to a lesser extent in cerebral cortex. Cholinergic projection neurons, except those localized in SI, abundantly expressed p75(NTR), and a subset of cholinergic neurons in posterior MBN was immunoreactive for CB and nNOS. A strict laminar distribution pattern of cholinergic terminals was recorded both in the cerebral cortex and in CA1-CA3 and dentate gyrus

  5. Targeting the Cholinergic System to Develop a Novel Therapy for Huntington’s Disease

    PubMed Central

    D’Souza, Gary X.; Waldvogel, Henry J.

    2016-01-01

    In this review, we outline the role of the cholinergic system in Huntington’s disease, and briefly describe the dysfunction of cholinergic transmission, cholinergic neurons, cholinergic receptors and cholinergic survival factors observed in post-mortem human brains and animal models of Huntington’s disease. We postulate how the dysfunctional cholinergic system can be targeted to develop novel therapies for Huntington’s disease, and discuss the beneficial effects of cholinergic therapies in pre-clinical and clinical studies. PMID:27983560

  6. Targeting the Cholinergic System to Develop a Novel Therapy for Huntington's Disease.

    PubMed

    D'Souza, Gary X; Waldvogel, Henry J

    2016-12-15

    In this review, we outline the role of the cholinergic system in Huntington's disease, and briefly describe the dysfunction of cholinergic transmission, cholinergic neurons, cholinergic receptors and cholinergic survival factors observed in post-mortem human brains and animal models of Huntington's disease. We postulate how the dysfunctional cholinergic system can be targeted to develop novel therapies for Huntington's disease, and discuss the beneficial effects of cholinergic therapies in pre-clinical and clinical studies.

  7. Clinical Markers for Identifying Cholinergic Deficits in Parkinson's Disease

    PubMed Central

    Müller, Martijn L.T.M.; Bohnen, Nicolaas I.; Kotagal, Vikas; Scott, Peter J.H.; Koeppe, Robert A.; Frey, Kirk A.; Albin, Roger L.

    2014-01-01

    Background Cholinergic projection systems degeneration is associated with dopamine non-responsive features of Parkinson's disease (PD). Cholinergic deficits are variable in non-demented PD. Identification of cholinergic deficits in PD may help with selection of suitable patients for targeted cholinergic drug treatment in PD. The objective of this retrospective multivariate predictor analysis study was to identify clinical markers indicative of cholinergic deficits in PD patients, as assessed by acetylcholinesterase ([11C]PMP) positron emission tomography. Methods One hundred thirty-seven PD patients (34 female) participated; median modified Hoehn and Yahr score was 2.5 (range 1–4), average age of 65.6 ± 7.4 years, and average duration of motor disease symptoms of 6.0 ± 4.2 years. Subjects were dichotomized as “normocholinergic” or “hypocholinergic” based on a 5th percentile cutoff from normal for the basal forebrain-cortical and pedunculopontine nucleus-thalamic cholinergic projection systems. Previously identified clinical indices of cholinergic denervation were used for statistical prediction of cholinergic deficits. Logistic regression determined which risk factors predicted cholinergic deficits. Sensitivity, specificity, and accuracy were determined for the (combinations of) significant predictor variables. Results There were 49 (35.8%) hypocholinergic PD subjects. The combination of RBD symptoms and fall history showed highest diagnostic accuracy (81.1%) for predicting combined thalamic and cortical cholinergic deficits. A combined assessment of 8.5 meter walk time and lower score on the Montreal cognitive assessment scale provided diagnostic accuracy of 80.7 % for predicting isolated cortical cholinergic denervation. Conclusion Assessment of clinical indices of cholinergic denervation may be useful for identifying suitable subjects for trials of targeted cholinergic drug treatments in PD. PMID:25393613

  8. Decreased subcortical cholinergic arousal in focal seizures

    PubMed Central

    Motelow, Joshua E.; Li, Wei; Zhan, Qiong; Mishra, Asht M.; Sachdev, Robert N. S.; Liu, Geoffrey; Gummadavelli, Abhijeet; Zayyad, Zaina; Lee, Hyun Seung; Chu, Victoria; Andrews, John P.; Englot, Dario J.; Herman, Peter; Sanganahalli, Basavaraju G.; Hyder, Fahmeed; Blumenfeld, Hal

    2015-01-01

    SUMMARY Impaired consciousness in temporal lobe seizures has a major negative impact on quality of life. The prevailing view holds that this disorder impairs consciousness by seizure spread to the bilateral temporal lobes. We propose instead that seizures invade subcortical regions and depress arousal, causing impairment through decreases rather than through increases in activity. Using functional magnetic resonance imaging in a rodent model, we found increased activity in regions known to depress cortical function including lateral septum and anterior hypothalamus. Importantly, we found suppression of intralaminar thalamic and brainstem arousal systems and suppression of the cortex. At a cellular level, we found reduced firing of identified cholinergic neurons in the brainstem pedunculopontine tegmental nucleus and basal forebrain. Finally, we used enzyme-based amperometry to demonstrate reduced cholinergic neurotransmission in both cortex and thalamus. Decreased subcortical arousal is a novel mechanism for loss of consciousness in focal temporal lobe seizures. PMID:25654258

  9. Cholinergic circuit control of postnatal neurogenesis

    PubMed Central

    Asrican, Brent; Paez-Gonzalez, Patricia; Erb, Joshua; Kuo, Chay T.

    2016-01-01

    abstract New neuron addition via continued neurogenesis in the postnatal/adult mammalian brain presents a distinct form of nervous system plasticity. During embryonic development, precise temporal and spatial patterns of neurogenesis are necessary to create the nervous system architecture. Similar between embryonic and postnatal stages, neurogenic proliferation is regulated by neural stem cell (NSC)-intrinsic mechanisms layered upon cues from their local microenvironmental niche. Following developmental assembly, it remains relatively unclear what may be the key driving forces that sustain continued production of neurons in the postnatal/adult brain. Recent experimental evidence suggests that patterned activity from specific neural circuits can also directly govern postnatal/adult neurogenesis. Here, we review experimental findings that revealed cholinergic modulation, and how patterns of neuronal activity and acetylcholine release may differentially or synergistically activate downstream signaling in NSCs. Higher-order excitatory and inhibitory inputs regulating cholinergic neuron firing, and their implications in neurogenesis control are also considered. PMID:27468423

  10. Glucocorticoid programing of the mesopontine cholinergic system.

    PubMed

    Borges, Sónia; Coimbra, Bárbara; Soares-Cunha, Carina; Ventura-Silva, Ana P; Pinto, Luisa; Carvalho, Miguel M; Pêgo, José-Miguel; Rodrigues, Ana João; Sousa, Nuno

    2013-01-01

    Stress perception, response, adaptation, and coping strategies are individually distinct, and the sequel of stress and/or glucocorticoids (GCs) is also distinct between subjects. In the last years, it has become clear that early life stress is a powerful modulator of neuroendocrine stress-responsive circuits, programing intrinsic susceptibility to stress, and potentiating the appearance of stress-related disorders such as depression, anxiety, and addiction. Herein we were interested in understanding how early life experiences reset the normal processing of negative stimuli, leading to emotional dysfunction. Animals prenatally exposed to GCs (in utero glucocorticoid exposure, iuGC) present hyperanxiety, increased fear behavior, and hyper-reactivity to negative stimuli. In parallel, we found a remarkable increase in the number of aversive 22 kHz ultrasonic vocalizations in response to an aversive cue. Considering the suggested role of the mesopontine tegmentum cholinergic pathway, arising from the laterodorsal tegmental nucleus (LDT) and pedunculopontine tegmental nucleus (PPT), in the initiation of 22 kHz vocalizations and hypothetically in the control of emotional arousal and tone, we decided to evaluate the condition of this circuit in iuGC animals. Notably, in a basal situation, iuGC animals present increased choline acetyltransferase (ChAT) expression in the LDT and PPT, but not in other cholinergic nuclei, namely in the nucleus basalis of Meynert. In addition, and in accordance with the amplified response to an adverse stimulus of iuGC animals, we found marked changes in the cholinergic activation pattern of LDT and PPT regions. Altogether, our results suggest a specific cholinergic pathway programing by prenatal GC, and hint that this may be of relevance in setting individual stress vulnerability threshold.

  11. Cholinergic urticaria and exercise-induced anaphylaxis.

    PubMed

    Montgomery, Stefan L

    2015-01-01

    In this article, we will present the physical manifestations of two similar conditions. The first is cholinergic urticaria. This is chronic urticaria precipitated by an elevated body temperature. The second is exercise-induced anaphylaxis. Anaphylaxis can be idiopathic, a result of a specific allergenic trigger (food, medication, or insect sting), or exercise induced. We will focus on the third subtype. We describe the causes, symptoms, pathophysiology, testing, treatment, and prognosis of these two conditions.

  12. Tonic cholinergic inhibition of spinal mechanical transmission.

    PubMed

    Zhuo, M; Gebhart, G F

    1991-08-01

    The present study examined the role of spinal cholinergic modulation of spinal mechanical and thermal transmission. Intrathecal administration of the cholinergic muscarinic receptor antagonists atropine or scopolamine in awake rats produced a dose-dependent decrease in the nociceptive mechanical withdrawal threshold of the rat tail. Pirenzepine, a selective muscarinic receptor type 1 antagonist, produced a similar effect at greater doses while mecamylamine, a nicotinic receptor antagonist, was without effect. The nociceptive tail flick (TF) reflex evoked by noxious heating was unaffected by the above drugs. Intrathecal administration of the cholinesterase inhibitor physostigmine produced a rapid, reversible and significant increase in the mechanical withdrawal threshold; TF latency was increased slightly but not significantly. Intrathecal administration of morphine, carbachol or clonidine all produced dose-dependent increases in TF latency; morphine and carbachol, but not clonidine, also increased the mechanical withdrawal threshold significantly. Intrathecal pretreatment with atropine reversed carbachol-produced increases in TF latency and the mechanical withdrawal threshold but did not affect increases in TF latency produced by intrathecal morphine or clonidine. The morphine-produced increase in the mechanical withdrawal threshold, however, was shifted rightward in a parallel fashion by intrathecal pretreatment with atropine. Intrathecal pretreatment with yohimbine did not affect the inhibitory effect of carbachol on either TF latency or the mechanical withdrawal threshold. These results suggest that a tonic, endogenous cholinergic muscarinic influence in the spinal cord, independent of spinal adrenergic mechanisms, modulates spinal mechanical transmission.

  13. Alzheimer's Disease: Targeting the Cholinergic System

    PubMed Central

    Ferreira-Vieira, Talita H.; Guimaraes, Isabella M.; Silva, Flavia R.; Ribeiro, Fabiola M.

    2016-01-01

    Acetylcholine (ACh) has a crucial role in the peripheral and central nervous systems. The enzyme choline acetyltransferase (ChAT) is responsible for synthesizing ACh from acetyl-CoA and choline in the cytoplasm and the vesicular acetylcholine transporter (VAChT) uptakes the neurotransmitter into synaptic vesicles. Following depolarization, ACh undergoes exocytosis reaching the synaptic cleft, where it can bind its receptors, including muscarinic and nicotinic receptors. ACh present at the synaptic cleft is promptly hydrolyzed by the enzyme acetylcholinesterase (AChE), forming acetate and choline, which is recycled into the presynaptic nerve terminal by the high-affinity choline transporter (CHT1). Cholinergic neurons located in the basal forebrain, including the neurons that form the nucleus basalis of Meynert, are severely lost in Alzheimer’s disease (AD). AD is the most ordinary cause of dementia affecting 25 million people worldwide. The hallmarks of the disease are the accumulation of neurofibrillary tangles and amyloid plaques. However, there is no real correlation between levels of cortical plaques and AD-related cognitive impairment. Nevertheless, synaptic loss is the principal correlate of disease progression and loss of cholinergic neurons contributes to memory and attention deficits. Thus, drugs that act on the cholinergic system represent a promising option to treat AD patients. PMID:26813123

  14. Cortical cholinergic dysfunction after human head injury.

    PubMed

    Murdoch, I; Perry, E K; Court, J A; Graham, D I; Dewar, D

    1998-05-01

    Loss of cholinergic neurotransmission is implicated in memory impairment and cognitive dysfunction after head injury. The aim of the present study was to investigate presynaptic markers, particularly in relation to cholinergic neurotransmission in human postmortem brain from patients who died following a head injury and age-matched controls. Choline acetyltransferase activity and high-affinity nicotinic receptor binding sites were assayed in the inferior temporal gyrus, cingulate gyrus, and superior parietal cortex of 16 head-injured patients and 8 controls. Synaptophysin immunoreactivity was determined in the left cingulate gyrus from the same patient groups. In the head-injured group, choline acetyltransferase activity was consistently reduced in each cortical region compared to control subjects. The presence of a subdural haematoma and a prolonged survival period after head injury tended to be associated with lower choline acetyltransferase activity. In contrast to the marked reduction in choline acetyltransferase activity, nicotine receptor binding was unchanged in head-injured compared to control patients. Synaptophysin immunoreactivity in the cingulate gyrus was reduced by approximately 30% (p < 0.05) in the head-injured group compared to controls. Correlation of choline acetyltransferase activity with synaptophysin immunoreactivity indicated there is a deficit of cholinergic presynaptic terminals in postmortem human brain following head injury.

  15. Brain cholinergic impairment in liver failure

    PubMed Central

    García-Ayllón, María-Salud; Cauli, Omar; Silveyra, María-Ximena; Rodrigo, Regina; Candela, Asunción; Compañ, Antonio; Jover, Rodrigo; Pérez-Mateo, Miguel; Martínez, Salvador; Felipo, Vicente

    2008-01-01

    The cholinergic system is involved in specific behavioural responses and cognitive processes. Here, we examined potential alterations in the brain levels of key cholinergic enzymes in cirrhotic patients and animal models with liver failure. An increase (∼30%) in the activity of the acetylcholine-hydrolyzing enzyme, acetylcholinesterase (AChE) is observed in the brain cortex from patients deceased from hepatic coma, while the activity of the acetylcholine-synthesizing enzyme, choline acetyltransferase, remains unaffected. In agreement with the human data, AChE activity in brain cortical extracts of bile duct ligated (BDL) rats was increased (∼20%) compared to controls. A hyperammonemic diet did not result in any further increase of AChE levels in the BDL model, and no change was observed in hyperammonemic diet rats without liver disease. Portacaval shunted rats which display increased levels of cerebral ammonia did not show any brain cholinergic abnormalities, confirming that high ammonia levels do not play a role in brain AChE changes. A selective increase of tetrameric AChE, the major AChE species involved in hydrolysis of acetylcholine in the brain, was detected in both cirrhotic humans and BDL rats. Histological examination of BDL and non-ligated rat brains shows that the subcellular localization of both AChE and choline acetyltransferase, and thus the accessibility to their substrates, appears unaltered by the pathological condition. The BDL-induced increase in AChE activity was not parallelled by an increase in mRNA levels. Increased AChE in BDL cirrhotic rats leads to a pronounced decrease (∼50–60%) in the levels of acetylcholine. Finally, we demonstrate that the AChE inhibitor rivastigmine is able to improve memory deficits in BDL rats. One week treatment with rivastigmine (0.6 mg/kg; once a day, orally, for a week) resulted in a 25% of inhibition in the enzymatic activity of AChE with no change in protein composition, as assessed by sucrose density

  16. Cholinergic interneurons control the excitatory input to the striatum.

    PubMed

    Pakhotin, Pavel; Bracci, Enrico

    2007-01-10

    How the extent and time course of presynaptic inhibition depend on the action potentials of the neuron controlling the terminals is unknown. We investigated this issue in the striatum using paired recordings from cholinergic interneurons and projection neurons. Glutamatergic EPSCs were evoked in projection neurons and cholinergic interneurons by stimulation of afferent fibers in the cortex and the striatum, respectively. A single spike in a cholinergic interneuron caused significant depression of the evoked glutamatergic EPSC in 34% of projection neurons located within 100 microm and 41% of cholinergic interneurons located within 200 microm. The time course of these effects was similar in the two cases, with EPSC inhibition peaking 20-30 ms after the spike and disappearing after 40-80 ms. Maximal depression of EPSC amplitude was up to 27% in projection neurons and to 19% in cholinergic interneurons. These effects were reversibly blocked by muscarinic receptor antagonists (atropine or methoctramine), which also significantly increased baseline EPSC (evoked without a preceding spike in the cholinergic interneuron), suggesting that some tonic cholinergic presynaptic inhibition was present. This was confirmed by the fact that lowering extracellular potassium, which silenced spontaneously active cholinergic interneurons, also increased baseline EPSC amplitude, and these effects were occluded by previous application of muscarinic receptor antagonists. Collectively, these results show that a single spike in a cholinergic interneuron exerts a fast and powerful inhibitory control over the glutamatergic input to striatal neurons.

  17. Cholinergic Dysfunction in Fragile X Syndrome and Potential Intervention

    PubMed Central

    Kesler, Shelli R; Lightbody, Amy A; Reiss, Allan L

    2009-01-01

    Males with fragile X syndrome are at risk for significant cognitive and behavioral deficits, particularly those involving executive prefrontal systems. Disruption of the cholinergic system secondary to fragile X mental retardation protein deficiency may contribute to the cognitive-behavioral impairments associated with fragile X. We measured choline in the dorsolateral prefrontal cortex of 9 males with fragile X syndrome and 9 age-matched typically developing controls using 1H magnetic resonance spectroscopy. Right choline/creatine was significantly reduced in the fragile X group compared to controls. In controls, both left and right choline was significantly positively correlated with intelligence and age was significantly negatively correlated with left choline. There were no correlations in the fragile X group. Subjects with fragile X syndrome participating in a pilot open-label trial of donepezil, an acetylcholinesterase inhibitor, demonstrated significantly improved cognitive-behavioral function. Studies utilizing biochemical neuroimaging techniques such as these have the potential to significantly impact the design of treatment strategies for fragile X syndrome and other genetic disorders by helping identify neurochemical targets for intervention as well as serving as metrics for treatment efficacy. PMID:19215057

  18. Lipid modulation of neuronal cholinergic activity

    SciTech Connect

    Bottiglieri, D.F.

    1986-01-01

    Phospholipids are the major lipids in the plasma membrane, and it is now evident that the function of phospholipids exceeds that of the role of barrier between different aqueous compartments. Several lines of evidence suggest that a major plasma membrane lipids, phosphatidylcholine, may be a useful compound for modulating presynaptic cholinergic transmission. In order to investigate the effects of PC on cholinergic terminals, rat cortical synaptosomes were preloaded with (/sup 3/H)-ACh and then treated with small unilamellar vesicles (SUV) composed of dipalmitoylphosphatidylcholine (DPPC) at concentrations (0.8-1.5 mg/ml) similar to those found circulating in plasma. The effects of DPPC on levels, hydrolysis, release, and synthesis of (/sup 3/H)-ACh were then examined. Dipalmitoylphosphatidylcholine decreased the levels of (/sup 3/H)-ACh. This decrease does not result from a dilution of the radioactive (/sup 3/H)-choline by nonradioactive choline derived from PC. Specifically, it is the S/sub 3/ (cytoplasmic) level of (/sup 3/H)-ACh that is decreased by DPPC treatment. This decrease appears to be partially due to lipid activation of an intraterminal cholinesterase which results in hydrolysis of nonvesicular (/sup 3/H)-ACh. The ability of the lipid to interfere with exocytosis may account for the blockade of the K/sup +/ induced (/sup 3/H)-ACh release from the P/sub 3/ (vesicular) fraction. The high affinity choline transporter was competitively inhibited by DPPC treatment when synaptosomes were treated with DPPC prior to (/sup 3/H)-choline loading; the ubiquitous low affinity transport was not affected. These effects were specific for cholinergic neurons since the uptake and release of dopamine and norepinephrine from the substantia nigra and the cortex, respectively, were not affected.

  19. Probing peripheral and central cholinergic system responses.

    PubMed Central

    Naranjo, C A; Fourie, J; Herrmann, N; Lanctôt, K L; Birt, C; Yau, K K

    2000-01-01

    OBJECTIVE: The pharmacological response to drugs that act on the cholinergic system of the iris has been used to predict deficits in central cholinergic functioning due to diseases such as Alzheimer's disease, yet correlations between central and peripheral responses have not been properly studied. This study assessed the effect of normal aging on (1) the tropicamide-induced increase in pupil diameter, and (2) the reversal of this effect with pilocarpine. Scopolamine was used as a positive control to detect age-dependent changes in central cholinergic functioning in the elderly. DESIGN: Randomized double-blind controlled trial. PARTICIPANTS: Ten healthy elderly (mean age 70) and 9 young (mean age 33) volunteers. INTERVENTIONS: Pupil diameter was monitored using a computerized infrared pupillometer over 4 hours. The study involved 4 sessions. In 1 session, tropicamide (20 microL, 0.01%) was administered to one eye and placebo to the other. In another session, tropicamide (20 microL, 0.01%) was administered to both eyes, followed 23 minutes later by the application of pilocarpine (20 microL, 0.1%) to one eye and placebo to the other. All eye drops were given in a randomized order. In 2 separate sessions, a single dose of scopolamine (0.5 mg, intravenously) or placebo was administered, and the effects on word recall were measured using the Buschke Selective Reminding Test over 2 hours. OUTCOME MEASURES: Pupil size at time points after administration of tropicamide and pilocarpine; scopolamine-induced impairment in word recall. RESULTS: There was no significant difference between elderly and young volunteers in pupillary response to tropicamide at any time point (p > 0.05). The elderly group had a significantly greater pilocarpine-induced net decrease in pupil size 85, 125, 165 and 215 minutes after administration, compared with the young group (p < 0.05). Compared with the young group, the elderly group had greater scopolamine-induced impairment in word recall 60, 90

  20. Cholinergic modulation of hippocampal cells and circuits

    PubMed Central

    Cobb, Stuart R; Davies, Ceri H

    2005-01-01

    Septo-hippocampal cholinergic fibres ramify extensively throughout the hippocampal formation to release acetylcholine upon a diverse range of muscarinic and nicotinic acetylcholine receptors that are differentially expressed by distinct populations of neurones. The resultant modulation of cellular excitability and synaptic transmission within hippocampal circuits underlies the ability of acetylcholine to influence the dynamic properties of the hippocampal network and results in the emergence of a range of stable oscillatory network states. Recent findings suggest a multitude of actions contribute to the oscillogenic properties of acetylcholine which are principally induced by activation of muscarinic receptors but also regulated through activation of nicotinic receptor subtypes. PMID:15528238

  1. Stress, Chemical Defense Agents and Cholinergic Receptors

    DTIC Science & Technology

    1989-11-30

    permitted to avoid a comparable 1 -mA scrambled footshock in the chamber by reaching the safe platform within 10 sec of being placed in the apparatus. For...rate constant h was compared for the incorporation into and decline in specl.ic 3ctlvities of choline and ACh (see Smith et al., 1984a; tac’gni et al...to detect cholinergic function was assessed (Table 2). When compared with controls (no CS presentation), rats which had been exposed to the CS

  2. Aging elevates metabolic gene expression in brain cholinergic neurons.

    PubMed

    Baskerville, Karen A; Kent, Caroline; Personett, David; Lai, Weil R; Park, Peter J; Coleman, Paul; McKinney, Michael

    2008-12-01

    The basal forebrain (BF) cholinergic system is selectively vulnerable in human brain diseases, while the cholinergic groups in the upper pons of the brainstem (BS) resist neurodegeneration. Cholinergic neurons (200 per region per animal) were laser-microdissected from five young (8 months) and five aged (24 months) F344 rats from the BF and the BS pontine lateral dorsal tegmental/pedunculopontine nuclei (LDTN/PPN) and their expression profiles were obtained. The bioinformatics program SigPathway was used to identify gene groups and pathways that were selectively affected by aging. In the BF cholinergic system, aging most significantly altered genes involved with a variety of metabolic functions. In contrast, BS cholinergic neuronal age effects included gene groupings related to neuronal plasticity and a broad range of normal cellular functions. Transcription factor GA-binding protein alpha (GABPalpha), which controls expression of nuclear genes encoding mitochondrial proteins, was more strongly upregulated in the BF cholinergic neurons (+107%) than in the BS cholinergic population (+40%). The results suggest that aging elicits elevates metabolic activity in cholinergic populations and that this occurs to a much greater degree in the BF group than in the BS group.

  3. Optogenetic cholinergic modulation of the mouse superior colliculus in vivo

    PubMed Central

    Thompson, John A.; Felsen, Gidon

    2015-01-01

    The superior colliculus (SC) plays a critical role in orienting movements, in part by integrating modulatory influences on the sensorimotor transformations it performs. Many species exhibit a robust brain stem cholinergic projection to the intermediate and deep layers of the SC arising mainly from the pedunculopontine tegmental nucleus (PPTg), which may serve to modulate SC function. However, the physiological effects of this input have not been examined in vivo, preventing an understanding of its functional role. Given the data from slice experiments, cholinergic input may have a net excitatory effect on the SC. Alternatively, the input could have mixed effects, via activation of inhibitory neurons within or upstream of the SC. Distinguishing between these possibilities requires in vivo experiments in which endogenous cholinergic input is directly manipulated. Here we used anatomical and optogenetic techniques to identify and selectively activate brain stem cholinergic terminals entering the intermediate and deep layers of the awake mouse SC and recorded SC neuronal responses. We first quantified the pattern of the cholinergic input to the mouse SC, finding that it was predominantly localized to the intermediate and deep layers. We then found that optogenetic stimulation of cholinergic terminals in the SC significantly increased the activity of a subpopulation of SC neurons. Interestingly, cholinergic input had a broad range of effects on the magnitude and timing of SC responses, perhaps reflecting both monosynaptic and polysynaptic innervation. These findings begin to elucidate the functional role of this cholinergic projection in modulating the processing underlying sensorimotor transformations in the SC. PMID:26019317

  4. Synaptic mechanisms underlying cholinergic control of thalamic reticular nucleus neurons

    PubMed Central

    Beierlein, Michael

    2014-01-01

    Neuronal networks of the thalamus are the target of extensive cholinergic projections from the basal forebrain and the brainstem. Activation of these afferents can regulate neuronal excitability, transmitter release, and firing patterns in thalamic networks, thereby altering the flow of sensory information during distinct behavioural states. However, cholinergic regulation in the thalamus has been primarily examined by using receptor agonist and antagonist, which has precluded a detailed understanding of the spatiotemporal dynamics that govern cholinergic signalling under physiological conditions. This review summarizes recent studies on cholinergic synaptic transmission in the thalamic reticular nucleus (TRN), a brain structure intimately involved in the control of sensory processing and the generation of rhythmic activity in the thalamocortical system. This work has shown that acetylcholine (ACh) released from individual axons can rapidly and reliably activate both pre- and postsynaptic cholinergic receptors, thereby controlling TRN neuronal activity with high spatiotemporal precision. PMID:24973413

  5. Muscarinic cholinergic receptor binding: in vivo depiction using single photon emission computed tomography and radioiodinated quinuclidinyl benzilate

    SciTech Connect

    Drayer, B.; Jaszczak, R.; Coleman, E.; Storni, A.; Greer, K.; Petry, N.; Lischko, M.; Flanagan, S.

    1982-06-01

    An attempt was made to characterize, in vivo, specific binding to the muscarinic cholinergic receptor in the calf using the radioiodinated ligand quinuclidinyl benzilate (/sup 123/I-OH-QNB) and single photon detection emission computed tomography (SPECT). The supratentorial brain activity was significantly increased after the intravenous infusion of /sup 123/I-OH-QNB as compared to free /sup 123/I. Scopolamine, a muscarinic cholinergic receptor antagonist, decreased the measured brain activity when infused prior to /sup 123/I-OH-QNB consistent with pharmacologic blockade of specific receptor binding. Quantitative in vitro tissue distribution studies obtained following SPECT imaging were consistent with regionally distinct specific receptor binding in the striatum and cortical gray matter, nonspecific binding in the cerebellum, and pharmacologic blockade of specific binding sites with scopolamine. Although /sup 123/I-OH-QNB is not the ideal radioligand, our limited success will hopefully encourage the development of improved binding probes for SPECT imaging and quantitation.

  6. Estrogen-Cholinergic Interactions: Implications for Cognitive Aging

    PubMed Central

    Newhouse, Paul; Dumas, Julie

    2015-01-01

    While many studies in humans have investigated the effects of estrogen and hormone therapy on cognition, potential neurobiological correlates of these effects have been less well studied. An important site of action for estrogen in the brain is the cholinergic system. Several decades of research support the critical role of CNS cholinergic systems in cognition in humans, particularly in learning and memory formation and attention. In humans, the cholinergic system has been implicated in many aspects of cognition including the partitioning of attentional resources, working memory, inhibition of irrelevant information, and improved performance on effort-demanding tasks. Studies support the hypothesis that estradiol helps to maintain aspects of attention and verbal and visual memory. Such cognitive domains are exactly those modulated by cholinergic systems and extensive basic and preclinical work over the past several decades has clearly shown that basal forebrain cholinergic systems are dependent on estradiol support for adequate functioning. This paper will review recent human studies from our laboratories and others that have extended preclinical research examining estrogen-cholinergic interactions to humans. Studies examined include estradiol and cholinergic antagonist reversal studies in normal older women, examinations of the neural representations of estrogen-cholinergic interactions using functional brain imaging, and studies of the ability of selective estrogen receptor modulators such as tamoxifen to interact with cholinergic-mediated cognitive performance. We also discuss the implications of these studies for the underlying hypotheses of cholinergic-estrogen interactions and cognitive aging, and indications for prophylactic and therapeutic potential that may exploit these effects. PMID:26187712

  7. Macromolecular Instabilities and Dynamical Coding in Brain Enzymes, Polypeptide Ligands, Polypeptide and Cholinergic Receptors, and Sodium and Cholinergic Channel Proteins

    DTIC Science & Technology

    1988-03-01

    digital computers using dynamical equations (including those of the reduced Hodgkin - Huxley variety) as well as data-analytic tools which ha-e been and are...behavior of an enzyme, a receptor, a neuron , the heart, the EEG, and even hydrostatic pressure in the kidney is a sign of loss of regulatory potential ...hydrophobic minima. Certain polypeptide families am examirud in this context and the actions of a group of equally potent corticotrophic releasing facrs

  8. Cholinergic vasodilator mechanism in human fingers

    SciTech Connect

    Coffman, J.D.; Cohen, R.A.

    1987-03-01

    The effect of a cholinergic agonist and antagonist on finger blood flow (FBF) was studied in 10 normal subjects. Total finger blood flow was measured by venous occlusion, air plethysmography, and capillary blood flow (FCF) by the disappearance rate of a radio-isotope from a fingertip injection. Methacholine in doses of 10-80 ..mu..g/min was given by constant infusion via a brachial artery catheter. Average FBF and vascular resistance were not significantly affected. However, the half time (t/sub 1/2/) of the disappearance rate decreased from 50.8 +/- 13.4 to 11.1 +/- 1.5 min; a decrease occurred in all subjects. In seven subjects, atropine (0.2 mg) had no affect alone but inhibited the effect of methacholine on FCF and prevented the redness and sweating of the forearm and hand that occurs with this agent. This study demonstrates a muscarinic cholinergic vasodilator mechanism in the fingertip that uniquely increase capillary blood flow.

  9. [Modulation of the cholinergic system during inflammation].

    PubMed

    Nezhinskaia, G I; Vladykin, A L; Sapronov, N S

    2008-01-01

    This review describes the effects of realization of the central and peripheral "cholinergic antiinflammatory pathway" in a model of endotoxic and anaphylactic shock. Under endotoxic shock conditions, a pharmacological correction by means of the central m-cholinomimetic action (electrical stimulation of the distal ends of nervus vagus after bilateral cervical vagotomy, surgical implantation of the stimulant devise, activation of efferent vagal neurons by means of muscarinic agonist) is directed toward the elimination of LPS-induced hypotension. During the anaphylaxis, peripheral effects of the cholinergic system induced by blocking m-AChR on the target cells (neuronal and non-neuronal lung cells) and acetylcholinesterase inhibition are related to suppression of the bronchoconstrictor response. The role of immune system in the pathogenesis of endotoxic shock is associated with the production of proinflammatory cytokines by macrophages, increase in IgM concentration, and complement activation, while the role in the pathogenesis of anaphylactic shock is associated with IgE, IgG1 augmentation. Effects of B cell stimulation may be important in hypoxia and in the prophylaxis of stress ulcers and other diseases. Plasma proteins can influence the effects of the muscarinic antagonist methacine: IgG enhance its action while albumin and CRP abolish it.

  10. CHOLINERGIC REGULATION OF KERATINOCYTE INNATE IMMUNITY AND PERMEABILITY BARRIER INTEGRITY: NEW PERSPECTIVES IN EPIDERMAL IMMUNITY AND DISEASE

    PubMed Central

    Curtis, Brenda J.; Radek, Katherine A.

    2015-01-01

    Several cutaneous inflammatory diseases and their clinical phenotypes are recapitulated in animal models of skin disease. However, the identification of shared pathways for disease progression is limited by the ability to delineate the complex biochemical processes fundamental for development of the disease. Identifying common signaling pathways that contribute to cutaneous inflammation and immune function will facilitate better scientific and therapeutic strategies to span a variety of inflammatory skin diseases. Aberrant antimicrobial peptide (AMP) expression and activity is one mechanism behind the development and severity of several inflammatory skin diseases and directly influences the susceptibility of skin to microbial infections. Our studies have recently exposed a newly identified pathway for negative regulation of AMPs in the skin by the cholinergic anti-inflammatory pathway via acetylcholine (ACh). The role of ACh in AMP regulation of immune and permeability barrier function in keratinocytes is reviewed, and the importance for a better comprehension of cutaneous disease progression by cholinergic signaling is discussed. PMID:21918536

  11. Analgesic and Antineuropathic Drugs Acting Through Central Cholinergic Mechanisms

    PubMed Central

    Bartolini, Alessandro; Cesare Mannelli, Lorenzo Di; Ghelardini, Carla

    2011-01-01

    The role of muscarinic and nicotinic cholinergic receptors in analgesia and neuropathic pain relief is relatively unknown. This review describes how such drugs induce analgesia or alleviate neuropathic pain by acting on the central cholinergic system. Several pharmacological strategies are discussed which increase synthesis and release of acetylcholine (ACh) from cholinergic neurons. The effects of their acute and chronic administration are described. The pharmacological strategies which facilitate the physiological functions of the cholinergic system without altering the normal modulation of cholinergic signals are highlighted. It is proposed that full agonists of muscarinic or nicotinic receptors should be avoided. Their activation is too intense and un-physiological because neuronal signals are distorted when these receptors are constantly activated. Good results can be achieved by using agents that are able to a) increase ACh synthesis, b) partially inhibit cholinesterase activity c) selectively block the autoreceptor or heteroreceptor feedback mechanisms. Activation of M1 subtype muscarinic receptors induces analgesia. Chronic stimulation of nicotinic (N1) receptors has neuronal protective effects. Recent experimental results indicate a relationship between repeated cholinergic stimulation and neurotrophic activation of the glial derived neurotrophic factor (GDNF) family. At least 9 patents covering novel chemicals for cholinergic system modulation and pain control are discussed. PMID:21585331

  12. Cortical cholinergic signaling controls the detection of cues

    PubMed Central

    Gritton, Howard J.; Howe, William M.; Mallory, Caitlin S.; Hetrick, Vaughn L.; Berke, Joshua D.; Sarter, Martin

    2016-01-01

    The cortical cholinergic input system has been described as a neuromodulator system that influences broadly defined behavioral and brain states. The discovery of phasic, trial-based increases in extracellular choline (transients), resulting from the hydrolysis of newly released acetylcholine (ACh), in the cortex of animals reporting the presence of cues suggests that ACh may have a more specialized role in cognitive processes. Here we expressed channelrhodopsin or halorhodopsin in basal forebrain cholinergic neurons of mice with optic fibers directed into this region and prefrontal cortex. Cholinergic transients, evoked in accordance with photostimulation parameters determined in vivo, were generated in mice performing a task necessitating the reporting of cue and noncue events. Generating cholinergic transients in conjunction with cues enhanced cue detection rates. Moreover, generating transients in noncued trials, where cholinergic transients normally are not observed, increased the number of invalid claims for cues. Enhancing hits and generating false alarms both scaled with stimulation intensity. Suppression of endogenous cholinergic activity during cued trials reduced hit rates. Cholinergic transients may be essential for synchronizing cortical neuronal output driven by salient cues and executing cue-guided responses. PMID:26787867

  13. Beyond Acetylcholinesterase Inhibitors: Novel Cholinergic Treatments for Alzheimer's Disease.

    PubMed

    Kamkwalala, Asante R; Newhouse, Paul A

    2017-01-01

    The major components of the cholinergic receptor system of the human brain include projections from the basal forebrain nuclei, and utilize the two types of receptors that they synapse on, nicotinic and muscarinic acetylcholine receptors. With the widespread cortical and subcortical projections of the basal forebrain, activity of these two receptor systems provide modulation of neurotransmitter activity underlying normal cognitive processes, such as attention, episodic memory, and working memory. Alzheimer's disease (AD) targets and damages cholinergic neurons in the basal forebrain, and as these projections are lost, cognitive performance progressively declines. Currently, the most widely prescribed treatment for AD is acetylcholinesterase inhibitor medications, which work by partially blocking the degradation of acetylcholine in the synapse and enabling more of the neurotransmitter to reach and activate cholinergic receptors. However since these medications have limited effectiveness, alternate treatments that focus on augmenting the activity of the receptors themselves, independent of acetylcholinesterase inhibition, are being explored. This review will discuss: 1) the role of the cholinergic system in modulating cognition, 2) novel cholinergic treatment strategies for AD-related cognitive decline, in particular treatments intended to increase cholinergic system activity by selectively targeting muscarinic and nicotinic acetylcholinergic receptors to improve cognitive performance, 3) risks, and additional considerations for cholinergic cognitive treatments for AD.

  14. A cholinergic basal forebrain feeding circuit modulates appetite suppression.

    PubMed

    Herman, Alexander M; Ortiz-Guzman, Joshua; Kochukov, Mikhail; Herman, Isabella; Quast, Kathleen B; Patel, Jay M; Tepe, Burak; Carlson, Jeffrey C; Ung, Kevin; Selever, Jennifer; Tong, Qingchun; Arenkiel, Benjamin R

    2016-10-13

    Atypical food intake is a primary cause of obesity and other eating and metabolic disorders. Insight into the neural control of feeding has previously focused mainly on signalling mechanisms associated with the hypothalamus, the major centre in the brain that regulates body weight homeostasis. However, roles of non-canonical central nervous system signalling mechanisms in regulating feeding behaviour have been largely uncharacterized. Acetylcholine has long been proposed to influence feeding owing in part to the functional similarity between acetylcholine and nicotine, a known appetite suppressant. Nicotine is an exogenous agonist for acetylcholine receptors, suggesting that endogenous cholinergic signalling may play a part in normal physiological regulation of feeding. However, it remains unclear how cholinergic neurons in the brain regulate food intake. Here we report that cholinergic neurons of the mouse basal forebrain potently influence food intake and body weight. Impairment of cholinergic signalling increases food intake and results in severe obesity, whereas enhanced cholinergic signalling decreases food consumption. We found that cholinergic circuits modulate appetite suppression on downstream targets in the hypothalamus. Together our data reveal the cholinergic basal forebrain as a major modulatory centre underlying feeding behaviour.

  15. Rapid desensitization with autologous sweat in cholinergic urticaria.

    PubMed

    Kozaru, Takeshi; Fukunaga, Atsushi; Taguchi, Kumiko; Ogura, Kanako; Nagano, Tohru; Oka, Masahiro; Horikawa, Tatsuya; Nishigori, Chikako

    2011-09-01

    The majority of patients with cholinergic urticaria presents with strong hypersensitivity to autologous sweat. Patients with severe cholinergic urticaria are frequently resistant to H(1) antagonists which are used in conventional therapies for various types of urticaria. It has been reported that desensitization using partially purified sweat antigen was effective in a patient with cholinergic urticaria. The aim of this study is to determine the usefulness of rapid desensitization with autologous sweat in severe cholinergic urticaria, because rapid desensitization has proven to be a quick and effective immunotherapy for allergies to various allergens. Six patients with severe cholinergic urticaria who are resistant to H(1) antagonists and have sweat hypersensitivity were enrolled in a rapid desensitization protocol. In all six patients, the responses for skin tests with autologous sweat were attenuated after rapid desensitization with autologous sweat. Two of the three cholinergic urticaria patients showed reduced histamine release with autologous sweat after the rapid desensitization with autologous sweat. Further, the rapid desensitization and subsequent maintenance treatment reduced the symptoms in five of the six patients. This study provides evidence that rapid desensitization with autologous sweat is beneficial for treating cholinergic urticaria patients resistant to conventional therapy who have sweat hypersensitivity.

  16. Cholinergic synaptic circuitry in the macaque prefrontal cortex.

    PubMed

    Mrzljak, L; Pappy, M; Leranth, C; Goldman-Rakic, P S

    1995-07-10

    Surprisingly little is known about the synaptic architecture of the cholinergic innervation in the primate cerebral cortex in spite of its acknowledged relevance to cognitive processing and Alzheimer's disease. To address this knowledge gap, we examined serially sectioned cholinergic axons in supra- and infragranular layers of the macaque prefrontal cortex by using an antibody against the acetylcholine synthesizing enzyme, choline acetyltransferase (ChAT). The tissue bound antibody was visualized with both immunoperoxidase and silver-enhanced diaminobenzidine sulfide (SEDS) techniques. Both methods revealed that cholinergic axons make synapses in all cortical layers and that these synapses are exclusively symmetric. Cholinergic axons formed synapses primarily on dendritic shafts (70.5%), dendritic spines (25%), and, to a lesser extent, cell bodies (4.5%). Both pyramidal neurons and cells exhibiting the morphological features of GABAergic cells were targets of the cholinergic innervation. Some spiny dendritic shafts received multiple, closely spaced synapses, suggesting that a subset of pyramidal neurons may be subject to a particularly strong cholinergic influence. Analysis of synaptic incidence of cholinergic profiles in the supragranular layers of the prefrontal cortex by the SEDS technique revealed that definitive synaptic junctions were formed by 44% of the cholinergic boutons. An unexpected finding was that cholinergic boutons were frequently apposed to spines and small dendrites without making any visible synaptic specializations. These same spines and dendrites often received asymmetric synapses, presumably of thalamocortical or corticocortical origin. Present ultrastructural findings suggest that acetylcholine may have a dual modulatory effect in the neocortex: one through classical synaptic junctions on dendritic shafts and spines, and the other through nonsynaptic appositions in close vicinity to asymmetric synapses. Further physiological studies are

  17. Local cholinergic and non-cholinergic neural pathways to the rat supraoptic nucleus

    SciTech Connect

    Meeker, M.L.

    1986-01-01

    An estimated two thirds of the input to the supraoptic nucleus of the rat hypothalamus (SON) including a functionally significant cholinergic innervation, arise from local sources of unknown origin. The sources of these inputs were identified utilizing Golgi-Cox, retrograde tracing, choline acetyltransferase immunocytochemistry and anterograde tracing methodologies. Multipolar Golgi impregnated neurons located dorsal and lateral to the SON extend spiney processes into the nucleus. Injections of the retrograde tracers, wheat germ agglutinin or wheat germ agglutinin-horseradish peroxidase, into the SON labeled cells bilaterally in the arcuate nucleus, and ipsilaterally in the lateral hypothalamus, anterior hypothalamus, nucleus of the diagonal band, subfornical organ, medial preoptic area, lateral preoptic area and in the region dorsolateral to the nucleus. Immunocytochemistry for choline acetyltransferase revealed cells within the ventro-caudal portion of cholinergic cell group, Ch4, which cluster dorsolateral to the SON, and extend axon- and dendrite-like processes into the SON. Cells double-labeled by choline acetyltransferase immunocytochemistry and retrograde tracer injections into the SON are localized within the same cholinergic cell group dorsolateral to the SON. Injections of the anterograde tracer, Phaseolus vulgaris-leucoagglutinin, deposited dorsolateral to the SON results in labeled pre-and post-synaptic processes within the SON. The identification and characterization of endogenous immunoglobulin within the SON and other neurons innervating areas lacking a blood-brain barrier established a novel and potentially important system for direct communication of the supraoptic cells with blood-borne constitutents.

  18. Pure Cold-Induced Cholinergic Urticaria in a Pediatric Patient

    PubMed Central

    Abraham, Tina; Frith, John; Tcheurekdjian, Haig; Hostoffer, Robert

    2016-01-01

    Cold urticaria and cholinergic urticaria are two distinct entities. The presentation of exclusive cold-induced cholinergic urticaria is very rare. The patient described herein had experienced urticaria in the exclusive setting of exercising in a cold environment. Urticarial testing including laboratory and in-office testing was all negative. The patient has prevented urticaria symptoms with oral antihistamine therapy. Pure cold-induced cholinergic urticaria is rarely described in literature. This form of urticaria has yet to be described in a pediatric patient. PMID:28025628

  19. Basic and modern concepts on cholinergic receptor: A review

    PubMed Central

    Tiwari, Prashant; Dwivedi, Shubhangi; Singh, Mukesh Pratap; Mishra, Rahul; Chandy, Anish

    2013-01-01

    Cholinergic system is an important system and a branch of the autonomic nervous system which plays an important role in memory, digestion, control of heart beat, blood pressure, movement and many other functions. This article serves as both structural and functional sources of information regarding cholinergic receptors and provides a detailed understanding of the determinants governing specificity of muscarinic and nicotinic receptor to researchers. The study helps to give overall information about the fundamentals of the cholinergic system, its receptors and ongoing research in this field.

  20. Cholinergic mechanism in Liriope tetraphylla (Cnidaria, Hydrozoa).

    PubMed

    Scemes, E; Garcia Mendes, E

    1986-01-01

    Crude whole body homogenates of Liriope tetraphylla exhibit a cholinesterase particularly active on acetylthiocholine but not on butyrylthiocholine. The acetylthiocholine hydrolysis is completely blocked by neostigmine. The Michaelis-Menten constant for acetylthiocholine is 0.14 mM. The pharmacological analysis of the responses to the choline esters nicotine and atropine suggests the involvement in Liriope tetraphylla of a cholinergic mechanism in the pointing reflex. Butyrylcholine, nicotine and atropine (but not muscarinic agonists) caused the contraction of the subumbrellar radial muscles. The effects of atropine were dose-dependent and were depressed in competition with muscarinic agonists. MgCl2 interfered with the action of atropine. The results were explained by suggesting the existence, at least at the neuromuscular junction, of excitatory (nicotinic) and inhibitory (muscarinic) pre-synaptic receptors modulating the release of the (unknown) transmitter acting post-synaptically.

  1. Dopamine-galanin receptor heteromers modulate cholinergic neurotransmission in the rat ventral hippocampus

    PubMed Central

    Moreno, Estefanía; Vaz, Sandra H.; Cai, Ning-Sheng; Ferrada, Carla; Quiroz, César; Barodia, Sandeep; Kabbani, Nadine; Canela, Enric I.; McCormick, Peter J.; Lluis, Carme; Franco, Rafael; Ribeiro, Joaquim A; Sebastião, Ana M.; Ferré, Sergi

    2011-01-01

    Previous studies have shown that dopamine and galanin modulate cholinergic transmission in the hippocampus, but little is known about the mechanisms involved and their possible interactions. By using resonance energy transfer techniques in transfected mammalian cells we demonstrated the existence of heteromers between the dopamine D1-like receptors (D1 and D5) and galanin Gal1, but not Gal2 receptors. Within the D1-Gal1 and D5-Gal1 receptor heteromers, dopamine receptor activation potentiated and dopamine receptor blockade counteracted MAPK activation induced by stimulation of Gal1 receptors, while Gal1 receptor activation or blockade did not modify D1-like receptor-mediated MAPK activation. Ability of a D1-like receptor antagonist to block galanin-induced MAPK activation (cross-antagonism) was used as a “biochemical fingerprint” of D1-like-Gal1 receptor heteromers, allowing their identification in the rat ventral hippocampus. The functional role of D1-like-Gal receptor heteromers was demonstrated in synaptosomes from rat ventral hippocampus, where galanin facilitated acetylcholine release, but only with co-stimulation of D1-like receptors. Electrophysiological experiments in rat ventral hippocampal slices showed that these receptor interactions modulate hippocampal synaptic transmission. Thus, a D1-like receptor agonist, that was ineffective when administered alone, turned an inhibitory effect of galanin into an excitatory effect, an interaction that required cholinergic neurotransmission. Altogether, our results strongly suggest that D1-like-Gal1 receptor heteromers act as processors that integrate signals of two different neurotransmitters, dopamine and acetylcholine, to modulate hippocampal cholinergic neurotransmission. PMID:21593325

  2. Striatal cholinergic interneurons Drive GABA release from dopamine terminals.

    PubMed

    Nelson, Alexandra B; Hammack, Nora; Yang, Cindy F; Shah, Nirao M; Seal, Rebecca P; Kreitzer, Anatol C

    2014-04-02

    Striatal cholinergic interneurons are implicated in motor control, associative plasticity, and reward-dependent learning. Synchronous activation of cholinergic interneurons triggers large inhibitory synaptic currents in dorsal striatal projection neurons, providing one potential substrate for control of striatal output, but the mechanism for these GABAergic currents is not fully understood. Using optogenetics and whole-cell recordings in brain slices, we find that a large component of these inhibitory responses derive from action-potential-independent disynaptic neurotransmission mediated by nicotinic receptors. Cholinergically driven IPSCs were not affected by ablation of striatal fast-spiking interneurons but were greatly reduced after acute treatment with vesicular monoamine transport inhibitors or selective destruction of dopamine terminals with 6-hydroxydopamine, indicating that GABA release originated from dopamine terminals. These results delineate a mechanism in which striatal cholinergic interneurons can co-opt dopamine terminals to drive GABA release and rapidly inhibit striatal output neurons. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Centrality of Striatal Cholinergic Transmission in Basal Ganglia Function

    PubMed Central

    Bonsi, Paola; Cuomo, Dario; Martella, Giuseppina; Madeo, Graziella; Schirinzi, Tommaso; Puglisi, Francesca; Ponterio, Giulia; Pisani, Antonio

    2011-01-01

    Work over the past two decades revealed a previously unexpected role for striatal cholinergic interneurons in the context of basal ganglia function. The recognition that these interneurons are essential in synaptic plasticity and motor learning represents a significant step ahead in deciphering how the striatum processes cortical inputs, and why pathological circumstances cause motor dysfunction. Loss of the reciprocal modulation between dopaminergic inputs and the intrinsic cholinergic innervation within the striatum appears to be the trigger for pathophysiological changes occurring in basal ganglia disorders. Accordingly, there is now compelling evidence showing profound changes in cholinergic markers in these disorders, in particular Parkinson's disease and dystonia. Based on converging experimental and clinical evidence, we provide an overview of the role of striatal cholinergic transmission in physiological and pathological conditions, in the context of the pathogenesis of movement disorders. PMID:21344017

  4. Cholinergic drugs as diagnostic and therapeutic tools in affective disorders.

    PubMed

    Berger, M; Riemann, D; Krieg, C

    1991-01-01

    The hypothesis of a significant involvement of the cholinergic system in the pathogenesis of affective disorders still lacks strong experimental support. This is mainly because of missing specific peripheral markers of the central nervous activity of the cholinergic system and the lack of specific cholinergic agonists and antagonists without severe peripheral side effects. As the direct cholinergic agonist RS 86 seems to be more suitable because of its minor side effects, long half-life and oral applicability, it was tested for its antimanic property and its effect on the hypothalamo-pituitary adrenal system and the rapid eye movement (REM) sleep-generating system. RS 86 exhibited antimanic and REM sleep-inducing properties, but failed to stimulate the cortisol system.

  5. Striatal cholinergic interneurons drive GABA release from dopamine terminals

    PubMed Central

    Nelson, Alexandra B.; Hammack, Nora; Yang, Cindy F.; Shah, Nirao M.; Seal, Rebecca P.; Kreitzer, Anatol C.

    2014-01-01

    Summary Striatal cholinergic interneurons are implicated in motor control, associative plasticity, and reward-dependent learning. Synchronous activation of cholinergic interneurons triggers large inhibitory synaptic currents in dorsal striatal projection neurons, providing one potential substrate for control of striatal output, but the mechanism for these GABAergic currents is not fully understood. Using optogenetics and whole-cell recordings in brain slices, we find that a large component of these inhibitory responses derive from action-potential-independent disynaptic neurotransmission mediated by nicotinic receptors. Cholinergically-driven IPSCs were not affected by ablation of striatal fast-spiking interneurons, but were greatly reduced after acute treatment with vesicular monoamine transport inhibitors or selective destruction of dopamine terminals with 6-hydroxydopamine, indicating that GABA release originated from dopamine terminals. These results delineate a mechanism in which striatal cholinergic interneurons can co-opt dopamine terminals to drive GABA release and rapidly inhibit striatal output neurons. PMID:24613418

  6. Disruption of cardiac cholinergic neurons enhances susceptibility to ventricular arrhythmias

    PubMed Central

    Jungen, Christiane; Scherschel, Katharina; Eickholt, Christian; Kuklik, Pawel; Klatt, Niklas; Bork, Nadja; Salzbrunn, Tim; Alken, Fares; Angendohr, Stephan; Klene, Christiane; Mester, Janos; Klöcker, Nikolaj; Veldkamp, Marieke W.; Schumacher, Udo; Willems, Stephan; Nikolaev, Viacheslav O.; Meyer, Christian

    2017-01-01

    The parasympathetic nervous system plays an important role in the pathophysiology of atrial fibrillation. Catheter ablation, a minimally invasive procedure deactivating abnormal firing cardiac tissue, is increasingly becoming the therapy of choice for atrial fibrillation. This is inevitably associated with the obliteration of cardiac cholinergic neurons. However, the impact on ventricular electrophysiology is unclear. Here we show that cardiac cholinergic neurons modulate ventricular electrophysiology. Mechanical disruption or pharmacological blockade of parasympathetic innervation shortens ventricular refractory periods, increases the incidence of ventricular arrhythmia and decreases ventricular cAMP levels in murine hearts. Immunohistochemistry confirmed ventricular cholinergic innervation, revealing parasympathetic fibres running from the atria to the ventricles parallel to sympathetic fibres. In humans, catheter ablation of atrial fibrillation, which is accompanied by accidental parasympathetic and concomitant sympathetic denervation, raises the burden of premature ventricular complexes. In summary, our results demonstrate an influence of cardiac cholinergic neurons on the regulation of ventricular function and arrhythmogenesis. PMID:28128201

  7. Stress, chemical defense agents, and cholinergic receptors. Midterm report, 1 November 1987-31 July 1989

    SciTech Connect

    Lane, J.D.

    1989-11-30

    This project is assessing the affects of exposure to a chemical defense agent on anxiety and stress, by using rat models of anxiety (conditioned emotional response (CER); conditioned suppression) and unconditioned non-specific stres (exposure to footshock). The specific experiments determined the plasticity of muscarinic cholinergic binding sites in the central nervous system. The neuroanatomical locus and neuropharmacological profile of changes in binding sites were assessed in brain areas enriched in cholinergic markers. Acetylcholine turnover was measured to determine if the receptor response is compensatory or independent. The effects of acute exposure to doses of a chemical defense agent (soman--XGD) on lethality and behaviors were examined. The experiments involved training and conditioning adult rats to CER using standard operant/respondent techniques. The binding of radiolabelled ligand was studied in vitro using brain membranes and tissue sections (autoradiography). The major findings are that CER produces increases in acetylcholine turnover in brain areas involved in anxiety, and that primarily post-synaptic M1 receptors compensatorly decrease in response. These neurochemical phenomena are directly correlated with several behaviors, including onset and extinction of CER and non-specific stress. Followup experiments have been designed to test the interaction of CER, XGD and neurochemistry.

  8. [Development of therapies for Alzheimer's disease based on cholinergic hypothesis-status quo and future directions].

    PubMed

    Shimohama, Shun

    2013-01-01

    Numerous approaches have been explored to treat individuals with Alzheimer's disease (AD). General approaches include the following treatment; treatment of cognitive symptoms, slowing decline, delaying onset of disease, and primary prevention. 2011 is the new era for the drug therapy for AD in Japan, because three anti-dementia drugs, galantamine, rivastigmine and memantine, were admitted to use for AD in addition to donepezil. Donepezil, galantamine and rivastigmine has been developed based on cholinergic hypothesis that acetylcholine (ACh) acts a chief neurotransmitter as a cognitive neurotransmitter. Donepezil a specific acetylcholinesterase inhibitor (AChEI). Galantamine acts as an allosteric potentiating ligand of nicotinic acetylcholine receptors in addition to the function of AChEI. Rivastigmine increase acetylcholine in the cholinergic synapse by inhibition of both AChE and butyrylcholinesterase. Recent study shows that these anti-dementia drugs afford symptomatic effect and also act as disease-modifiers which inhibit neuronal death and abnormal amyloid-beta deposition. These effects can slow the rate of decline of the disease. While in the past many of our attempts have been to treat secondary symptoms or improve the cognitive deficits, future attempts are likely to focus on slowing the rate of decline, delaying the onset of appearance, or preventing the disease.

  9. Subjective memory impairment and cholinergic transmission: a TMS study.

    PubMed

    Nardone, Raffaele; Höller, Yvonne; Bathke, Arne C; Höller, Peter; Lochner, Piergiorgio; Tezzon, Frediano; Trinka, Eugen; Brigo, Francesco

    2015-06-01

    Subjective memory impairment (SMI) is being increasingly recognized as a preclinical phase of Alzheimer disease (AD). Short latency afferent inhibition (SAI) is helpful in demonstrating dysfunction of central cholinergic circuits, and was reported to be abnormal in patients with AD and amnestic multiple domain mild cognitive impairment. In this study, we found normal SAI in 20 subjects with SMI. SAI could be a useful biomarker for identifying, among individuals with memory complaints, those in whom cholinergic degeneration has occurred.

  10. Personalized genetics of the cholinergic blockade of neuroinflammation.

    PubMed

    Simchovitz, Alon; Heneka, Michael T; Soreq, Hermona

    2017-03-21

    Acetylcholine signaling is essential for cognitive functioning and blocks inflammation. To maintain homeostasis, cholinergic signaling is subjected to multi-leveled and bidirectional regulation by both proteins and non-coding microRNAs ('CholinomiRs'). CholinomiRs coordinate the cognitive and inflammatory aspects of cholinergic signaling by targeting major cholinergic transcripts including the acetylcholine hydrolyzing enzyme acetylcholinesterase (AChE). Notably, AChE inhibitors are the only currently approved line of treatment for Alzheimer's disease patients. Since cholinergic signaling blocks neuroinflammation which is inherent to Alzheimer's disease, genomic changes modifying AChE's properties and its susceptibility to inhibitors and/or to CholinomiRs regulation may affect the levels and properties of inflammasome components such as NLRP3. This calls for genomic-based medicine approaches based on genotyping of both coding and non-coding single nucleotide polymorphisms (SNPs) in the genes involved in cholinergic signaling. An example is a SNP in a recognition element for the primate-specific microRNA-608 within the 3' untranslated region of the AChE transcript. Carriers of the minor allele of that SNP present massively elevated brain AChE levels, increased trait anxiety and inflammation, accompanied by perturbed CholinomiR-608 regulatory networks and elevated prefrontal activity under exposure to stressful insults. Several additional SNPs in the AChE and other cholinergic genes await further studies, and might likewise involve different CholinomiRs and pathways including those modulating the initiation and progression of neurodegenerative diseases. CholinomiRs regulation of the cholinergic system thus merits in-depth interrogation and is likely to lead to personalized medicine approaches for achieving better homeostasis in health and disease. This is an article for the special issue XVth International Symposium on Cholinergic Mechanisms.

  11. A second wind for the cholinergic system in Alzheimer's therapy.

    PubMed

    Douchamps, Vincent; Mathis, Chantal

    2017-04-01

    Notwithstanding tremendous research efforts, the cause of Alzheimer's disease (AD) remains elusive and there is no curative treatment. The cholinergic hypothesis presented 35 years ago was the first major evidence-based hypothesis on the etiology of AD. It proposed that the depletion of brain acetylcholine was a primary cause of cognitive decline in advanced age and AD. It relied on a series of observations obtained in aged animals, elderly, and AD patients that pointed to dysfunctions of cholinergic basal forebrain, similarities between cognitive impairments induced by anticholinergic drugs and those found in advanced age and AD, and beneficial effects of drugs stimulating cholinergic activity. This review revisits these major results to show how this hypothesis provided the drive for the development of anticholinesterase inhibitor-based therapies of AD, the almost exclusively approved treatment in use despite transient and modest efficacy. New ideas for improving cholinergic therapies are also compared and discussed in light of the current revival of the cholinergic hypothesis on the basis of two sets of evidence from new animal models and refined imagery techniques in humans. First, human and animal studies agree in detecting signs of cholinergic dysfunctions much earlier than initially believed. Second, alterations of the cholinergic system are deeply intertwined with its reactive responses, providing the brain with efficient compensatory mechanisms to delay the conversion into AD. Active research in this field should provide new insight into development of multitherapies incorporating cholinergic manipulation, as well as early biomarkers of AD enabling earlier diagnostics. This is of prime importance to counteract a disease that is now recognized to start early in adult life.

  12. Noradrenaline hyperpolarizes identified rat mesopontine cholinergic neurons in vitro.

    PubMed

    Williams, J A; Reiner, P B

    1993-09-01

    Inhibition of brainstem cholinergic neurons by noradrenergic neurons of the locus ceruleus has long been suggested as a key mechanism of behavioral state control. In particular, the commonly held view is that noradrenaline (NA) plays a permissive role in rapid eye movement (REM) sleep generation by disinhibiting brainstem cholinergic neurons. While this notion has been supported by numerous investigations, the inhibition of cholinergic neurons by NA has never been directly demonstrated. The purpose of this study was to investigate the effects of NA upon identified cholinergic neurons in the rat mesopontine tegmentum. Using whole-cell patch-clamp recordings in slices, 175 cells were studied during bath application of 50 microM NA. Cholinergic neurons were positively identified by intracellular labeling with biocytin and subsequent staining with NADPH-diaphorase, a reliable marker for brainstem cholinergic neurons (Vincent et al., 1983). Successful intracellular labeling was obtained in 96 cells. Ninety-two percent (36 of 39) of cholinergic neurons hyperpolarized in response to NA, while noncholinergic cells (n = 57) exhibited mixed responses. Application of NA in a low-Ca2+, high-Mg2+ solution elicited the same hyperpolarizing effect as in normal solution, which indicated that the effect of NA on cholinergic neurons was direct. The noradrenergic hyperpolarization was mimicked by the alpha 2-adrenoceptor agonist UK-14,304, and was blocked by the alpha 2-adrenoceptor antagonist idazoxan, which suggested an alpha 2-mediated response. Finally, voltage-clamp experiments revealed that NA activates the inwardly rectifying potassium current, IKG.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Corelease of acetylcholine and GABA from cholinergic forebrain neurons

    PubMed Central

    Saunders, Arpiar; Granger, Adam J; Sabatini, Bernardo L

    2015-01-01

    Neurotransmitter corelease is emerging as a common theme of central neuromodulatory systems. Though corelease of glutamate or GABA with acetylcholine has been reported within the cholinergic system, the full extent is unknown. To explore synaptic signaling of cholinergic forebrain neurons, we activated choline acetyltransferase expressing neurons using channelrhodopsin while recording post-synaptic currents (PSCs) in layer 1 interneurons. Surprisingly, we observed PSCs mediated by GABAA receptors in addition to nicotinic acetylcholine receptors. Based on PSC latency and pharmacological sensitivity, our results suggest monosynaptic release of both GABA and ACh. Anatomical analysis showed that forebrain cholinergic neurons express the GABA synthetic enzyme Gad2 and the vesicular GABA transporter (Slc32a1). We confirmed the direct release of GABA by knocking out Slc32a1 from cholinergic neurons. Our results identify GABA as an overlooked fast neurotransmitter utilized throughout the forebrain cholinergic system. GABA/ACh corelease may have major implications for modulation of cortical function by cholinergic neurons. DOI: http://dx.doi.org/10.7554/eLife.06412.001 PMID:25723967

  14. The nicotinic cholinergic system function in the human brain.

    PubMed

    Nees, Frauke

    2015-09-01

    Research on the nicotinic cholinergic system function in the brain was previously mainly derived from animal studies, yet, research in humans is growing. Up to date, findings allow significant advances on the understanding of nicotinic cholinergic effects on human cognition, emotion and behavior using a range of functional brain imaging approaches such as pharmacological functional magnetic resonance imaging or positron emission tomography. Studies provided insights across various mechanistic psychological domains using different tasks as well as at rest in both healthy individuals and patient populations, with so far partly mixed results reporting both enhancements and decrements of neural activity related to the nicotinic cholinergic system. Moreover, studies on the relation between brain structure and the nicotinic cholinergic system add important information in this context. The present review summarizes the current status of human brain imaging studies and presents the findings within a theoretical and clinical perspective as they may be useful not only for an advancement of the understanding of basic nicotinic cholinergic-related mechanisms, but also for the development and integration of psychological and pharmacological treatment approaches. Patterns of functional neuroanatomy and neural circuitry across various cognitive and emotional domains may be used as neuropsychological markers of mental disorders such as addiction, Alzheimer's disease, Parkinson disease or schizophrenia, where nicotinic cholinergic system changes are characteristic. This article is part of the Special Issue entitled 'The Nicotinic Acetylcholine Receptor: From Molecular Biology to Cognition'. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. On the interaction of drugs with the cholinergic nervous system. II. Cross-tolerance between phencyclidine derivatives and cholinergic drugs.

    PubMed

    Pinchasi, I; Maayani, S; Egozi, Y; Sokolovsky, M

    1978-01-31

    A symmetrical cross-tolerance was found between two phencyclidine derivatives--phencyclidine and cyclohexamine--and also between two cholinergic drugs--physostigmine and oxotremorine. On the other hand, mice rendered tolerant to the phencyclidine derivatives showed cross-tolerance to these cholinergic drugs, but no cross-tolerance was observed in the opposite direction. The applicability of such experiments to the elucidation of neurochemical interactions of centrally acting drugs is discussed.

  16. Enhanced sensitivity of muscarinic cholinergic receptor associated with dopaminergic receptor subsensitivity after chronic antidepressant treatment

    SciTech Connect

    Koide, T.; Matsushita, H.

    1981-03-09

    The chronic effects of antidepressant treatment on striatal dopaminergic (DA) and muscarinic cholinergic (mACh) receptors of the rat brain have been examined comparatively in this study using /sup 3/H-spiroperidol (/sup 3/H-SPD) and /sup 3/H-quinuclidinyl benzilate (/sup 3/H-QNB) as the respective radioactive ligands. Imipramine and desipramine were used as prototype antidepressants. Although a single administration of imipramine or desipramine did not affect each receptor sensitivity, chronic treatment with each drug caused a supersensitivity of mACh receptor subsequent to DA receptor subsensitivity. Furthermore, it has been suggested that anti-mACh properties of imipramine or desipramine may not necessarily be related to the manifestation of mACh receptor supersensitivity and that sustained DA receptor subsensitivity may play some role in the alterations of mACh receptor sensitivity.

  17. In vivo functional neurochemistry of human cortical cholinergic function during visuospatial attention.

    PubMed

    Lindner, Michael; Bell, Tiffany; Iqbal, Somya; Mullins, Paul Gerald; Christakou, Anastasia

    2017-01-01

    Cortical acetylcholine is involved in key cognitive processes such as visuospatial attention. Dysfunction in the cholinergic system has been described in a number of neuropsychiatric disorders. Levels of brain acetylcholine can be pharmacologically manipulated, but it is not possible to directly measure it in vivo in humans. However, key parts of its biochemical cascade in neural tissue, such as choline, can be measured using magnetic resonance spectroscopy (MRS). There is evidence that levels of choline may be an indirect but proportional measure of acetylcholine availability in brain tissue. In this study, we measured relative choline levels in the parietal cortex using functional (event-related) MRS (fMRS) during performance of a visuospatial attention task, with a modelling approach verified using simulated data. We describe a task-driven interaction effect on choline concentration, specifically driven by contralateral attention shifts. Our results suggest that choline MRS has the potential to serve as a proxy of brain acetylcholine function in humans.

  18. In vivo functional neurochemistry of human cortical cholinergic function during visuospatial attention

    PubMed Central

    Lindner, Michael; Bell, Tiffany; Iqbal, Somya; Mullins, Paul Gerald

    2017-01-01

    Cortical acetylcholine is involved in key cognitive processes such as visuospatial attention. Dysfunction in the cholinergic system has been described in a number of neuropsychiatric disorders. Levels of brain acetylcholine can be pharmacologically manipulated, but it is not possible to directly measure it in vivo in humans. However, key parts of its biochemical cascade in neural tissue, such as choline, can be measured using magnetic resonance spectroscopy (MRS). There is evidence that levels of choline may be an indirect but proportional measure of acetylcholine availability in brain tissue. In this study, we measured relative choline levels in the parietal cortex using functional (event-related) MRS (fMRS) during performance of a visuospatial attention task, with a modelling approach verified using simulated data. We describe a task-driven interaction effect on choline concentration, specifically driven by contralateral attention shifts. Our results suggest that choline MRS has the potential to serve as a proxy of brain acetylcholine function in humans. PMID:28192451

  19. Differential effects of unilateral olfactory deprivation on noradrenergic and cholinergic systems in the main olfactory bulb of the rat.

    PubMed

    Gómez, C; Briñón, J G; Colado, M I; Orio, L; Vidal, M; Barbado, M V; Alonso, J R

    2006-09-15

    The lack of environmental olfactory stimulation produced by sensory deprivation causes significant changes in the deprived olfactory bulb. Olfactory transmission in the main olfactory bulb (MOB) is strongly modulated by centrifugal systems. The present report examines the effects of unilateral deprivation on the noradrenergic and cholinergic centrifugal systems innervating the MOB. The morphology, distribution, and density of positive axons were studied in the MOBs of control and deprived rats, using dopamine-beta-hydroxylase (DBH)-immunohistochemistry and acetylcholinesterase (AChE) histochemistry in serial sections. Catecholamine content was compared among the different groups of MOBs (control, contralateral, and ipsilateral to the deprivation) using high-performance liquid chromatography analysis. Sensory deprivation revealed that the noradrenergic system developed adaptive plastic changes after olfactory deprivation, including important modifications in its fiber density and distribution, while no differences in cholinergic innervation were observed under the same conditions. The noradrenergic system underwent an important alteration in the glomerular layer, in which some glomeruli showed a dense noradrenergic innervation that was not detected in control animals. The DBH-positive glomeruli with the highest noradrenergic fiber density were compared with AChE-stained sections and it was observed that the strongly noradrenergic-innervated glomeruli were always atypical glomeruli (characterized by their strong degree of cholinergic innervation). In addition to the morphological findings, our biochemical data revealed that olfactory deprivation caused a decrease in the content of dopamine and its metabolite 3,4-dihydroxyphenylacetic acid in the ipsilateral MOB in comparison to the contralateral and control MOBs, together with an increase in noradrenaline levels in both the ipsilateral and contralateral MOBs. Our results show that regulation of the noradrenergic

  20. The cholinergic system, circadian rhythmicity, and time memory.

    PubMed

    Hut, R A; Van der Zee, E A

    2011-08-10

    This review provides an overview of the interaction between the mammalian cholinergic system and circadian system, and its possible role in time memory. Several studies made clear that circadian (daily) fluctuations in acetylcholine (ACh) release, cholinergic enzyme activity and cholinergic receptor expression varies remarkably between species and even strains. Apparently, cholinergic features can be flexibly adjusted to the needs of a species or strain. Nevertheless, it can be generalized that circadian rhythmicity in the cholinergic system is characterized by high ACh release during the active phase of an individual. During the active phase, the activity of the ACh synthesizing enzyme Choline Acetyltransferase (ChAT) is enhanced, and the activity of the ACh degrading enzyme Acetylcholinesterase (AChE) is reduced. The number of free, unbound and thus available muscarinic acetylcholine receptors (mAChRs) is highest when ACh release is lowest. The cholinergic innervation of the suprachiasmatic nucleus (SCN), the hypothalamic circadian master clock, arises from the cholinergic forebrain and brain stem nuclei. The density of cholinergic fibers and terminals is modest as compared to other hypothalamic nuclei. This is the case for rat, hamster and mouse, three chronobiological model rodent species studied by us. A new finding is that the rat SCN contains some local cholinergic neurons. Hamster SCN contains less cholinergic neurons, whereas the mouse SCN is devoid of such cells. ACh has an excitatory effect on SCN cells (at least in vivo), and functions in close interaction with other neurotransmitters. Originally it was thought that ACh transferred retinal light information to the SCN. This turned out to be wrong. Thereafter, the phase shifting effects of ACh prompted researches to view ACh as an agent for nocturnal clock resetting. It is still not clear, however, what the function consequence is of SCN cholinergic neurotransmission. Here, we postulate the hypothesis

  1. Cholinergic adaptations to chronic oxotremorine infusion.

    PubMed

    Marks, M J; Artman, L D; Patinkin, D M; Collins, A C

    1981-08-01

    The development of tolerance to cholinergic agonists such as oxotremorine is a well established phenomenon. The hypothesis that such tolerance may be explained by a decrease in the number of affinity of muscarinic receptors was tested by chronically treating C3H mice with oxotremorine. Chronic treatment was achieved by continuously infusing oxotremorine via an indwelling i.v. catheter. Doses ranged from 0.03 to 1.0 mg/kg/hr. Clear tolerance was observed in that symptoms such as salivation, lacrimation and muscle tremor decreased or disappeared during the infusion period. Similarly, chronically treated animals exhibited minimal hypothermia or impairment of rotarod performance when challenged with an oxotremorine dose which significantly depressed both of these measures in naive animals. The activities of the enzymes, acetylcholinesterase and choline acetyltransferase, as well as the binding of [3H]-3-quinuclidinyl benzilate in seven brain regions, were assessed. Chronic oxotremorine treatment failed to alter acetyltransferase activity in any of the brain regions. Choline acetyltransferase activity was only marginally decreased in several brain regions. A significant decrease in maximal [3H]-3-quinudidinyl binding was observed in six of the regions examined. No alteration in [3H]-3-quinuclidinyl affinity was detected. Tolerance to oxotremorine was detected at doses which failed to alter choline acetyltransferase activity or receptor number. These data support the observations of others who noted that chronic muscarinic stimulation results in a decrease in muscarinic receptors, but suggest the importance of mechanisms other than decreased receptor number in early stages of tolerance development.

  2. Striatal cholinergic interneuron regulation and circuit effects

    PubMed Central

    Lim, Sean Austin O.; Kang, Un Jung; McGehee, Daniel S.

    2014-01-01

    The striatum plays a central role in motor control and motor learning. Appropriate responses to environmental stimuli, including pursuit of reward or avoidance of aversive experience all require functional striatal circuits. These pathways integrate synaptic inputs from limbic and cortical regions including sensory, motor and motivational information to ultimately connect intention to action. Although many neurotransmitters participate in striatal circuitry, one critically important player is acetylcholine (ACh). Relative to other brain areas, the striatum contains exceptionally high levels of ACh, the enzymes that catalyze its synthesis and breakdown, as well as both nicotinic and muscarinic receptor types that mediate its postsynaptic effects. The principal source of striatal ACh is the cholinergic interneuron (ChI), which comprises only about 1–2% of all striatal cells yet sends dense arbors of projections throughout the striatum. This review summarizes recent advances in our understanding of the factors affecting the excitability of these neurons through acute effects and long term changes in their synaptic inputs. In addition, we discuss the physiological effects of ACh in the striatum, and how changes in ACh levels may contribute to disease states during striatal dysfunction. PMID:25374536

  3. Cholinergic Neurons Excite Cortically Projecting Basal Forebrain GABAergic Neurons

    PubMed Central

    Yang, Chun; McKenna, James T.; Zant, Janneke C.; Winston, Stuart; Basheer, Radhika

    2014-01-01

    The basal forebrain (BF) plays an important role in the control of cortical activation and attention. Understanding the modulation of BF neuronal activity is a prerequisite to treat disorders of cortical activation involving BF dysfunction, such as Alzheimer's disease. Here we reveal the interaction between cholinergic neurons and cortically projecting BF GABAergic neurons using immunohistochemistry and whole-cell recordings in vitro. In GAD67-GFP knock-in mice, BF cholinergic (choline acetyltransferase-positive) neurons were intermingled with GABAergic (GFP+) neurons. Immunohistochemistry for the vesicular acetylcholine transporter showed that cholinergic fibers apposed putative cortically projecting GABAergic neurons containing parvalbumin (PV). In coronal BF slices from GAD67-GFP knock-in or PV-tdTomato mice, pharmacological activation of cholinergic receptors with bath application of carbachol increased the firing rate of large (>20 μm diameter) BF GFP+ and PV (tdTomato+) neurons, which exhibited the intrinsic membrane properties of cortically projecting neurons. The excitatory effect of carbachol was blocked by antagonists of M1 and M3 muscarinic receptors in two subpopulations of BF GABAergic neurons [large hyperpolarization-activated cation current (Ih) and small Ih, respectively]. Ion substitution experiments and reversal potential measurements suggested that the carbachol-induced inward current was mediated mainly by sodium-permeable cation channels. Carbachol also increased the frequency of spontaneous excitatory and inhibitory synaptic currents. Furthermore, optogenetic stimulation of cholinergic neurons/fibers caused a mecamylamine- and atropine-sensitive inward current in putative GABAergic neurons. Thus, cortically projecting, BF GABAergic/PV neurons are excited by neighboring BF and/or brainstem cholinergic neurons. Loss of cholinergic neurons in Alzheimer's disease may impair cortical activation, in part, through disfacilitation of BF cortically

  4. Intrinsic Cholinergic Neurons in the Hippocampus: Fact or Artifact?

    PubMed Central

    Blusztajn, Jan Krzysztof; Rinnofner, Jasmine

    2016-01-01

    It is generally agreed that hippocampal acetylcholine (ACh) is synthesized and released exclusively from the terminals of the long-axon afferents whose cell bodies reside in the medial septum and diagonal band. The search for intrinsic cholinergic neurons in the hippocampus has a long history; however evidence for the existence of these neurons has been inconsistent, with most investigators failing to detect them using in situ hybridization or immunohistochemical staining of the cholinergic markers, choline acetyltransferase (ChAT) or vesicular acetylcholine transporter (VAChT). Advances in the use of bacterial artificial chromosome (BAC) transgenic mice expressing a reporter protein under the control of the genomic elements of the Chat gene (Chat-BAC mice) have facilitated studies of cholinergic neurons. Such mice show robust and faithful expression of the reporter proteins in all known cholinergic cell populations. The availability of the Chat-BAC mice re-ignited interest in hippocampal cholinergic interneurons, because a small number of such reporter-expressing cells is frequently observed in the hippocampus of these mice. However, to date, attempts to confirm that these neurons co-express the endogenous cholinergic marker ChAT, or release ACh, have been unsuccessful. Without such confirmatory evidence it is best to conclude that there are no cholinergic neurons in the hippocampus. Similar considerations apply to other BAC transgenic lines, whose utility as a discovery tool for cell populations heretofore not known to express the genes of interest encoded by the BACs, must be validated by methods that detect expression of the endogenous genes. PMID:27014052

  5. Estrogen receptors colocalize with low-affinity nerve growth factor receptors in cholinergic neurons of the basal forebrain.

    PubMed Central

    Toran-Allerand, C D; Miranda, R C; Bentham, W D; Sohrabji, F; Brown, T J; Hochberg, R B; MacLusky, N J

    1992-01-01

    The rodent and primate basal forebrain is a target of a family of endogenous peptide signaling molecules, the neurotrophins--nerve growth factor, brain-derived neurotrophic factor, and neurotrophin 3--and of the gonadal steroid hormone estrogen, both of which have been implicated in cholinergic function. To investigate whether or not these ligands may act on the same neurons in the developing and adult rodent basal forebrain, we combined autoradiography with 125I-labeled estrogen and either nonisotopic in situ hybridization histochemistry or immunohistochemistry. We now report colocalization of intranuclear estrogen binding sites with the mRNA and immunoreactive protein for the low-affinity nerve growth factor receptor, which binds all three neurotrophins, and for the cholinergic marker enzyme choline acetyltransferase (acetyl-CoA:choline O-acetyltransferase, EC 2.3.1.6). Colocalization of estrogen and low-affinity nerve growth factor receptors implies that their ligands may act on the same neuron, perhaps synergistically, to regulate the expression of specific genes or gene networks that may influence neuronal survival, differentiation, regeneration, and plasticity. That cholinergic neurons in brain regions subserving cognitive functions may be regulated not only by the neurotrophins but also by estrogen may have considerable relevance for the development and maintenance of neural substrates of cognition. If estrogen-neurotrophin interactions are important for survival of target neurons, then clinical conditions associated with estrogen deficiency could contribute to the atrophy or death of these neurons. These findings have implications for the subsequent decline in those differentiated neural functions associated with aging and Alzheimer disease. Images PMID:1316615

  6. Cholinergic medication for neuroleptic-induced tardive dyskinesia.

    PubMed

    Tammenmaa, I A; McGrath, J J; Sailas, E; Soares-Weiser, K

    2002-01-01

    Tardive dyskinesia remains a troublesome adverse effect of conventional antipsychotic (neuroleptic) medication. It has been proposed that tardive dyskinesia could have a component of central cholinergic deficiency. Cholinergic drugs have been used to treat tardive dyskinesia. To determine the effects of cholinergic drugs (arecoline, choline, deanol, lecithin, meclofenoxate, physostigmine, RS 86, tacrine, metoxytacrine, galantamine, ipidacrine, donepezil, rivastigmine, eptastigmine, metrifonate, xanomeline, cevimeline) for treating neuroleptic-induced tardive dyskinesia in people with schizophrenia or other chronic mental illness. An electronic search of the Cochrane Schizophrenia Group's register (October 2001) was undertaken. This register is assembled by extensive searches for randomised controlled trials in many electronic databases, registers of conference proceedings and dissertations. References of all identified studies were searched for further trial citations. Principal authors of trials were contacted. Reports identified by the search were included if they were of controlled trials dealing with people with neuroleptic-induced tardive dyskinesia and chronic mental illness, who had been randomly allocated to either a cholinergic agent or to a placebo or no intervention. Two reviewers independently assessed methodological quality of trials. Two researchers extracted data and, where possible, estimated relative risks (RR) or weighted mean differences (WMD), with 95% confidence intervals (CI). Data were analysed on an intention-to-treat basis, with the assumption that people who dropped out had no improvement. We included eleven studies investigating the use of older cholinergic drugs compared with placebo. Most studies involved small numbers of participants (5-20 people). We found no completed trials of the new cholinergic Alzheimer drugs for the treatment of tardive dyskinesia. Cholinergic drugs did not result in any substantial improvement in tardive

  7. Endogenous Cholinergic Neurotransmission Contributes to Behavioral Sensitization to Morphine

    PubMed Central

    Bajic, Dusica; Soiza-Reilly, Mariano; Spalding, Allegra L.; Berde, Charles B.; Commons, Kathryn G.

    2015-01-01

    Neuroplasticity in the mesolimbic dopaminergic system is critical for behavioral adaptations associated with opioid reward and addiction. These processes may be influenced by cholinergic transmission arising from the laterodorsal tegmental nucleus (LDTg), a main source of acetylcholine to mesolimbic dopaminergic neurons. To examine this possibility we asked if chronic systemic morphine administration affects expression of genes in ventral and ventrolateral periaqueductal gray at the level of the LDTg using rtPCR. Specifically, we examined gene expression changes in the area of interest using Neurotransmitters and Receptors PCR array between chronic morphine and saline control groups. Analysis suggested that chronic morphine administration led to changes in expression of genes associated, in part, with cholinergic neurotransmission. Furthermore, using a quantitative immunofluorescent technique, we found that chronic morphine treatment produced a significant increase in immunolabeling of the cholinergic marker (vesicular acetylcholine transporter) in neurons of the LDTg. Finally, systemic administration of the nonselective and noncompetitive neuronal nicotinic antagonist mecamylamine (0.5 or 2 mg/kg) dose-dependently blocked the expression, and to a lesser extent the development, of locomotor sensitization. The same treatment had no effect on acute morphine antinociception, antinociceptive tolerance or dependence to chronic morphine. Taken together, the results suggest that endogenous nicotinic cholinergic neurotransmission selectively contributes to behavioral sensitization to morphine and this process may, in part, involve cholinergic neurons within the LDTg. PMID:25647082

  8. Interaction between organophosphate compounds and cholinergic functions during development.

    PubMed

    Aluigi, M G; Angelini, C; Falugi, C; Fossa, R; Genever, P; Gallus, L; Layer, P G; Prestipino, G; Rakonczay, Z; Sgro, M; Thielecke, H; Trombino, S

    2005-12-15

    Organophosphate (OP) compounds exert inhibition on cholinesterase (ChE) activity by irreversibly binding to the catalytic site of the enzymes. For this reason, they are employed as insecticides for agricultural, gardening and indoor pest control. The biological function of the ChE enzymes is well known and has been studied since the beginning of the XXth century; in particular, acetylcholinesterase (AChE, E.C. 3.1.1.7) is an enzyme playing a key role in the modulation of neuromuscular impulse transmission. However, in the past decades, there has been increasing interest concerning its role in regulating non-neuromuscular cell-to-cell interactions mediated by electrical events, such as intracellular ion concentration changes, as the ones occurring during gamete interaction and embryonic development. An understanding of the mechanisms of the cholinergic regulation of these events can help us foresee the possible impact on environmental and human health, including gamete efficiency and possible teratogenic effects on different models, and help elucidate the extent to which OP exposure may affect human health. The chosen organophosphates were the ones mainly used in Europe: diazinon, chlorpyriphos, malathion, and phentoate, all of them belonging to the thionophosphate chemical class. This research has focused on the comparison between the effects of exposure on the developing embryos at different stages, identifying biomarkers and determining potential risk factors for sensitive subpopulations. The effects of OP oxonisation were not taken into account at this level, because embryonic responses were directly correlated to the changes of AChE activity, as determined by histochemical localisation and biochemical measurements. The identified biomarkers of effect for in vitro experiments were: cell proliferation/apoptosis as well as cell differentiation. For in vivo experiments, the endpoints were: developmental speed, size and shape of pre-gastrula embryos; developmental

  9. Association with the cholinergic precursor choline alphoscerate and the cholinesterase inhibitor rivastigmine: an approach for enhancing cholinergic neurotransmission.

    PubMed

    Amenta, Francesco; Tayebati, Seyed Khosrow; Vitali, Daniela; Di Tullio, Maria Antonietta

    2006-02-01

    The effects of association of cholinergic precursors choline or choline alphoscerate with the cholinesterase inhibitor rivastigmine on acetylcholine levels and [(3)H]hemicholinium-3 binding were assessed in rat frontal cortex, hippocampus and striatum. Acetylcholine immunoreactivity was also evaluated in cerebrocortical cholinergic fibers by immunohistochemistry. Choline alphoscerate or rivastigmine, but not choline increased acetylcholine levels as well as [(3)H]hemicholinium-3 binding used as a marker of high affinity cholinergic transporter. The association of choline alphoscerate with rivastigmine dose-dependently increased both acetylcholine levels and [(3)H]hemicholinium-3 binding. Rivastigmine alone or in association with either choline or choline alphoscerate decreased acetylcholinesterase (AChE), whereas choline or choline alphoscerate alone did not affect AChE activity. Choline alphoscerate or rivastigmine alone or in association, but not choline increased acetylcholine immunoreactivity in nerve fibers supplying cerebral cortex. These data suggest that combination of a suitable precursor of brain acetylcholine such as choline alphoscerate and of a cholinesterase inhibitor may represent an association worthwhile of being further investigated as a cholinergic replacement therapy in pathologies characterized by altered cholinergic neurotransmission.

  10. Cholinergic pesticides cause mushroom body neuronal inactivation in honeybees.

    PubMed

    Palmer, Mary J; Moffat, Christopher; Saranzewa, Nastja; Harvey, Jenni; Wright, Geraldine A; Connolly, Christopher N

    2013-01-01

    Pesticides that target cholinergic neurotransmission are highly effective, but their use has been implicated in insect pollinator population decline. Honeybees are exposed to two widely used classes of cholinergic pesticide: neonicotinoids (nicotinic receptor agonists) and organophosphate miticides (acetylcholinesterase inhibitors). Although sublethal levels of neonicotinoids are known to disrupt honeybee learning and behaviour, the neurophysiological basis of these effects has not been shown. Here, using recordings from mushroom body Kenyon cells in acutely isolated honeybee brain, we show that the neonicotinoids imidacloprid and clothianidin, and the organophosphate miticide coumaphos oxon, cause a depolarization-block of neuronal firing and inhibit nicotinic responses. These effects are observed at concentrations that are encountered by foraging honeybees and within the hive, and are additive with combined application. Our findings demonstrate a neuronal mechanism that may account for the cognitive impairments caused by neonicotinoids, and predict that exposure to multiple pesticides that target cholinergic signalling will cause enhanced toxicity to pollinators.

  11. Cholinergic pesticides cause mushroom body neuronal inactivation in honeybees

    PubMed Central

    Palmer, Mary J.; Moffat, Christopher; Saranzewa, Nastja; Harvey, Jenni; Wright, Geraldine A.; Connolly, Christopher N.

    2013-01-01

    Pesticides that target cholinergic neurotransmission are highly effective, but their use has been implicated in insect pollinator population decline. Honeybees are exposed to two widely used classes of cholinergic pesticide: neonicotinoids (nicotinic receptor agonists) and organophosphate miticides (acetylcholinesterase inhibitors). Although sublethal levels of neonicotinoids are known to disrupt honeybee learning and behaviour, the neurophysiological basis of these effects has not been shown. Here, using recordings from mushroom body Kenyon cells in acutely isolated honeybee brain, we show that the neonicotinoids imidacloprid and clothianidin, and the organophosphate miticide coumaphos oxon, cause a depolarization-block of neuronal firing and inhibit nicotinic responses. These effects are observed at concentrations that are encountered by foraging honeybees and within the hive, and are additive with combined application. Our findings demonstrate a neuronal mechanism that may account for the cognitive impairments caused by neonicotinoids, and predict that exposure to multiple pesticides that target cholinergic signalling will cause enhanced toxicity to pollinators. PMID:23535655

  12. Astrocyte Intermediaries of Septal Cholinergic Modulation in the Hippocampus.

    PubMed

    Pabst, Milan; Braganza, Oliver; Dannenberg, Holger; Hu, Wen; Pothmann, Leonie; Rosen, Jurij; Mody, Istvan; van Loo, Karen; Deisseroth, Karl; Becker, Albert J; Schoch, Susanne; Beck, Heinz

    2016-05-18

    The neurotransmitter acetylcholine, derived from the medial septum/diagonal band of Broca complex, has been accorded an important role in hippocampal learning and memory processes. However, the precise mechanisms whereby acetylcholine released from septohippocampal cholinergic neurons acts to modulate hippocampal microcircuits remain unknown. Here, we show that acetylcholine release from cholinergic septohippocampal projections causes a long-lasting GABAergic inhibition of hippocampal dentate granule cells in vivo and in vitro. This inhibition is caused by cholinergic activation of hilar astrocytes, which provide glutamatergic excitation of hilar inhibitory interneurons. These results demonstrate that acetylcholine release can cause slow inhibition of principal neuronal activity via astrocyte intermediaries.

  13. Cholinergic neuronal defect without cell loss in Huntington's disease.

    PubMed

    Smith, Ruben; Chung, Hinfan; Rundquist, Sara; Maat-Schieman, Marion L C; Colgan, Lesley; Englund, Elisabet; Liu, Yong-Jian; Roos, Raymund A C; Faull, Richard L M; Brundin, Patrik; Li, Jia-Yi

    2006-11-01

    Huntington's disease (HD) is a neurodegenerative disorder caused by a CAG-repeat expansion in the huntingtin (IT15) gene. The striatum is one of the regions most affected by neurodegeneration, resulting in the loss of the medium-sized spiny neurons. Traditionally, the large cholinergic striatal interneurons are believed to be spared. Recent studies demonstrate that neuronal dysfunction without cell death also plays an important role in early and mid-stages of the disease. Here, we report that cholinergic transmission is affected in a HD transgenic mouse model (R6/1) and in tissues from HD patients. Stereological analysis shows no loss of cholinergic neurons in the striatum or septum in R6/1 mice. In contrast, the levels of mRNA and protein for vesicular acetylcholine transporter (VAChT) and choline acetyltransferase (ChAT) are decreased in the striatum and cortex, and acetylcholine esterase activity is lowered in the striatum of R6/1 mice already at young ages. Accordingly, VAChT is also reduced in striatal tissue from patients with HD. The decrease of VAChT in the patient samples studied is restricted to the striatum and does not occur in the hippocampus or the spinal cord. The expression and localization of REST/NRSF, a transcriptional regulator for the VAChT and ChAT genes, are not altered in cholinergic neurons. We show that the R6/1 mice exhibit severe deficits in learning and reference memory. Taken together, our data show that the cholinergic system is dysfunctional in R6/1 and HD patients. Consequently, they provide a rationale for testing of pro-cholinergic drugs in this disease.

  14. Cholinergic modulation of food and drug satiety and withdrawal.

    PubMed

    Avena, Nicole M; Rada, Pedro V

    2012-06-06

    Although they comprise only a small portion of the neurons in the region, cholinergic interneurons in the dorsal striatum appear to play an important role in the regulation of various appetitive behaviors, in part, through their interactions with mesolimbic dopamine (DA) systems. In this review, we describe studies that suggest that the activity of cholinergic interneurons in the nucleus accumbens (NAc) and cholinergic projections to the ventral tegmental area (VTA) affect feeding behavior. In vivo microdialysis studies in rats have revealed that the cessation of a meal is associated with a rise in acetylcholine (ACh) levels in the NAc. ACh activation will suppress feeding, and this is also associated with an increase in synaptic accumulation of ACh. Further, we discuss how, in addition to their role in the ending of a meal, cholinergic interneurons in the NAc play an integral role in the cessation of drug use. Another cholinergic system involved in different aspects of appetitive behavior is the projection from the pedunculpontine nuclei directly to the VTA. Activation of this system enhances behaviors through activation of the mesolimbic DA system, and antagonism of ACh receptors in the VTA can reduce drug self-administration. Finally, we discuss the role of accumbens ACh in both drug and palatable food withdrawal. Studies reveal that accumbens ACh is increased during withdrawal from several different drugs of abuse (including cocaine, nicotine and morphine). This rise in extracellular levels of ACh, coupled with a decrease in extracellular levels of DA, is believed to contribute to an aversive state, which can manifest as behaviors associated with drug withdrawal. This theory has also been applied to studies of overeating and/or "food addiction," and the findings suggest a similar imbalance in DA/ACh levels, which is associated with behavioral indications of drug-like withdrawal. In summary, cholinergic neurons play an important role in the modulation of both

  15. Interaction of nerve agent antidotes with cholinergic systems.

    PubMed

    Soukup, O; Tobin, G; Kumar, U K; Binder, J; Proska, J; Jun, D; Fusek, J; Kuca, K

    2010-01-01

    The poisoning with organophosphorus compounds represents a life threatening danger especially in the time of terroristic menace. No universal antidote has been developed yet and other therapeutic approaches not related to reactivation of acetylcholinesterase are being investigated. This review describes the main features of the cholinergic system, cholinergic receptors, cholinesterases and their inhibitors. It also focuses on the organophosphorus nerve agents, their properties, effects and a large part describes various possibilities in treatments, mainly traditional oxime therapies based on reactivation of AChE. Furthermore, non-cholinesterase coupled antidotal effects of the oximes are thoroughly discussed. These antidotal effects principally include oxime interactions with muscarinic and nicotinic receptors.

  16. Basal Forebrain Cholinergic System and Orexin Neurons: Effects on Attention

    PubMed Central

    Villano, Ines; Messina, Antonietta; Valenzano, Anna; Moscatelli, Fiorenzo; Esposito, Teresa; Monda, Vincenzo; Esposito, Maria; Precenzano, Francesco; Carotenuto, Marco; Viggiano, Andrea; Chieffi, Sergio; Cibelli, Giuseppe; Monda, Marcellino; Messina, Giovanni

    2017-01-01

    The basal forebrain (BF) cholinergic system has an important role in attentive functions. The cholinergic system can be activated by different inputs, and in particular, by orexin neurons, whose cell bodies are located within the postero-lateral hypothalamus. Recently the orexin-producing neurons have been proved to promote arousal and attention through their projections to the BF. The aim of this review article is to summarize the evidence showing that the orexin system contributes to attentional processing by an increase in cortical acetylcholine release and in cortical neurons activity. PMID:28197081

  17. Cold-induced cholinergic urticaria--case report.

    PubMed

    Geller, M

    1989-07-01

    A 9-year-old child with cold-induced cholinergic urticaria was studied. When exposed to cold water or ambient cold air, the patient developed generalized urticaria. The lesions consisted of punctate wheals and surrounding erythema similar to that seen in cholinergic urticaria. The patient did not react to cutaneous challenge with an ice cube and a cold water immersion test was negative. Urticaria was not provoked by vigorous exercise sufficient to cause profuse sweating. The methacholine skin test was reactive. The patient was well controlled by combination therapy with hydroxyzine plus cyproheptadine.

  18. Physiology and immunology of the cholinergic antiinflammatory pathway

    PubMed Central

    Tracey, Kevin J.

    2007-01-01

    Cytokine production by the immune system contributes importantly to both health and disease. The nervous system, via an inflammatory reflex of the vagus nerve, can inhibit cytokine release and thereby prevent tissue injury and death. The efferent neural signaling pathway is termed the cholinergic antiinflammatory pathway. Cholinergic agonists inhibit cytokine synthesis and protect against cytokine-mediated diseases. Stimulation of the vagus nerve prevents the damaging effects of cytokine release in experimental sepsis, endotoxemia, ischemia/reperfusion injury, hemorrhagic shock, arthritis, and other inflammatory syndromes. Herein is a review of this physiological, functional anatomical mechanism for neurological regulation of cytokine-dependent disease that begins to define an immunological homunculus. PMID:17273548

  19. Adenylate cyclase in striatal cholinergic interneurons regulates acetylcholine release.

    PubMed

    Login, I S; Hewlett, E L

    1996-10-07

    Fractional [3H]ACH efflux from dissociated rat striata tested whether tonic inhibition prevents stimulation of acetylcholine (ACH) release by adenylate cyclase. Forskolin stimulated release from the dissociated cells (threshold at 300 nM; EC50 > or = 1 MicroM). Release was also stimulated by 3-isobutyl-1-methylxanthine and was additive with forskolin. The 1,9-dideoxy forskolin analog that lacks cyclase-stimulating activity was ineffective. Thus, stimulation of adenylate cyclase within striatal cholinergic interneurons increases ACH secretion but is tonically inhibited by endogenous striatal transmitters. Disinhibition of the excitatory cyclase by denervation of striatal cholinergic interneurons in situ could contribute to supersensitivity without receptor upregulation.

  20. Short-term ethanol exposure causes imbalanced neurotrophic factor allocation in the basal forebrain cholinergic system: a novel insight into understanding the initial processes of alcohol addiction.

    PubMed

    Miki, Takanori; Kusaka, Takashi; Yokoyama, Toshifumi; Ohta, Ken-ichi; Suzuki, Shingo; Warita, Katsuhiko; Jamal, Mostofa; Wang, Zhi-Yu; Ueki, Masaaki; Liu, Jun-Qian; Yakura, Tomiko; Tamai, Motoki; Sumitani, Kazunori; Hosomi, Naohisa; Takeuchi, Yoshiki

    2014-02-01

    Alcohol ingestion affects both motor and cognitive functions. One brain system that is influenced by ethanol is the basal forebrain (BF) cholinergic projection system, which projects to diverse neocortical and limbic areas. The BF is associated with memory and cognitive function. Our primary interest is the examination of how regions that receive BF cholinergic projections are influenced by short-term ethanol exposure through alterations in the mRNA levels of neurotrophic factors [nerve growth factor/TrkA, brain-derived neurotrophic factor/TrkB, and glial-derived neurotrophic factor (GDNF)/GDNF family receptor α1]. Male BALB/C mice were fed a liquid diet containing 5 % (v/v) ethanol. Pair-fed control mice were maintained on an identical liquid diet, except that the ethanol was isocalorically substituted with sucrose. Mice exhibiting signs of ethanol intoxication (stages 1-2) were used for real-time reverse transcription-polymerase chain reaction analyses. Among the BF cholinergic projection regions, decreased levels of GDNF mRNA and increased levels of TrkB mRNA were observed in the basal nucleus, and increased levels of TrkB mRNA were observed in the cerebral cortex. There were no significant alterations in the levels of expression of relevant neurotrophic factors in the septal nucleus and hippocampus. Given that neurotrophic factors function in retrograde/anterograde or autocrine/paracrine mechanisms and that BF cholinergic projection regions are neuroanatomically connected, these findings suggested that an imbalanced allocation of neurotrophic factor ligands and receptors is an initial phenomenon in alcohol addiction. The exact mechanisms underlying this phenomenon in the BF cholinergic system are unknown. However, our results provide a novel notion for the understanding of the initial processes in alcohol addiction.

  1. Age-Related Changes in Pre- and Postsynaptic Partners of the Cholinergic C-Boutons in Wild-Type and SOD1G93A Lumbar Motoneurons.

    PubMed

    Milan, Léa; Courtand, Gilles; Cardoit, Laura; Masmejean, Frédérique; Barrière, Grégory; Cazalets, Jean-René; Garret, Maurice; Bertrand, Sandrine S

    2015-01-01

    Large cholinergic synaptic terminals known as C-boutons densely innervate the soma and proximal dendrites of motoneurons that are prone to neurodegeneration in amyotrophic lateral sclerosis (ALS). Studies using the Cu/Zn-superoxide dismutase (SOD1) mouse model of ALS have generated conflicting data regarding C-bouton alterations exhibited during ALS pathogenesis. In the present work, a longitudinal study combining immunohistochemistry, biochemical approaches and extra- and intra-cellular electrophysiological recordings revealed that the whole spinal cholinergic system is modified in the SOD1 mouse model of ALS compared to wild type (WT) mice as early as the second postnatal week. In WT motoneurons, both C-bouton terminals and associated M2 postsynaptic receptors presented a complex age-related dynamic that appeared completely disrupted in SOD1 motoneurons. Indeed, parallel to C-bouton morphological alterations, analysis of confocal images revealed a clustering process of M2 receptors during WT motoneuron development and maturation that was absent in SOD1 motoneurons. Our data demonstrated for the first time that the lamina X cholinergic interneurons, the neuronal source of C-boutons, are over-abundant in high lumbar segments in SOD1 mice and are subject to neurodegeneration in the SOD1 animal model. Finally, we showed that early C-bouton system alterations have no physiological impact on the cholinergic neuromodulation of newborn motoneurons. Altogether, these data suggest a complete reconfiguration of the spinal cholinergic system in SOD1 spinal networks that could be part of the compensatory mechanisms established during spinal development.

  2. Age-Related Changes in Pre- and Postsynaptic Partners of the Cholinergic C-Boutons in Wild-Type and SOD1G93A Lumbar Motoneurons

    PubMed Central

    Milan, Léa; Courtand, Gilles; Cardoit, Laura; Masmejean, Frédérique; Barrière, Grégory; Cazalets, Jean-René; Garret, Maurice; Bertrand, Sandrine S.

    2015-01-01

    Large cholinergic synaptic terminals known as C-boutons densely innervate the soma and proximal dendrites of motoneurons that are prone to neurodegeneration in amyotrophic lateral sclerosis (ALS). Studies using the Cu/Zn-superoxide dismutase (SOD1) mouse model of ALS have generated conflicting data regarding C-bouton alterations exhibited during ALS pathogenesis. In the present work, a longitudinal study combining immunohistochemistry, biochemical approaches and extra- and intra-cellular electrophysiological recordings revealed that the whole spinal cholinergic system is modified in the SOD1 mouse model of ALS compared to wild type (WT) mice as early as the second postnatal week. In WT motoneurons, both C-bouton terminals and associated M2 postsynaptic receptors presented a complex age-related dynamic that appeared completely disrupted in SOD1 motoneurons. Indeed, parallel to C-bouton morphological alterations, analysis of confocal images revealed a clustering process of M2 receptors during WT motoneuron development and maturation that was absent in SOD1 motoneurons. Our data demonstrated for the first time that the lamina X cholinergic interneurons, the neuronal source of C-boutons, are over-abundant in high lumbar segments in SOD1 mice and are subject to neurodegeneration in the SOD1 animal model. Finally, we showed that early C-bouton system alterations have no physiological impact on the cholinergic neuromodulation of newborn motoneurons. Altogether, these data suggest a complete reconfiguration of the spinal cholinergic system in SOD1 spinal networks that could be part of the compensatory mechanisms established during spinal development. PMID:26305672

  3. Mixed nicotinic and muscarinic features of cholinergic receptor coupled to secretion in bovine chromaffin cells

    SciTech Connect

    Shirvan, M.H.; Pollard, H.B.; Heldman, E. )

    1991-06-01

    Acetylcholine evokes release from cultured bovine chromaffin cells by a mechanism that is believed to be classically nicotinic. However, the authors found that the full muscarinic agonist oxotremorine-M (Oxo-M) induced a robust catecholamine (CA) secretion. By contrast, muscarine, pilocarpine, bethanechol, and McN-A-343 did not elicit any secretory response. Desensitization of the response to nicotine by Oxo-M and desensitization of the response to Oxo-M by nicotine suggest that both nicotine and Oxo-M were acting at the same receptor. Additional experiments supporting this conclusion show that nicotine-induced secretion and Oxo-M-induced secretion were similarly blocked by various muscarinic and nicotinic antagonists. Moreover, secretion induced by nicotine and Oxo-M were Ca{sup 2+} dependent, and both agonists induced {sup 45}Ca{sup 2+} uptake. Equilibrium binding studies showed that ({sup 3}H)Oxo-M bound to chromaffin cell membranes with a K{sub d} value of 3.08 {times} 10{sup {minus}8}M and a Hill coefficient of 1.00, suggesting one binding site for this ligand. Nicotine inhibited Oxo-M binding in a noncompetitive manner, suggesting that both ligands bind at two different sites on the same receptor. They propose that the receptor on bovine chromaffin cells that is coupled to secretion represents an unusual cholinergic receptor that has both nicotinic and muscarinic features.

  4. Physical Chemistry to the Rescue: Differentiating Nicotinic and Cholinergic Agonists

    ERIC Educational Resources Information Center

    King, Angela G.

    2005-01-01

    Researches suggest that two agonists can bind to the same binding site of an important transmembrane protein and elicit a biological response through strikingly different binding interactions. Evidence is provided which suggests two possible types of nicotinic acetylcholine receptor agonist binding like acetlycholine (cholinergic) or like nicotine…

  5. Selective optogenetic stimulation of cholinergic axons in neocortex.

    PubMed

    Kalmbach, Abigail; Hedrick, Tristan; Waters, Jack

    2012-04-01

    Acetylcholine profoundly affects neocortical function, being involved in arousal, attention, learning, memory, sensory and motor function, and plasticity. The majority of cholinergic afferents to neocortex are from neurons in nucleus basalis. Nucleus basalis also contains projecting neurons that release other transmitters, including GABA and possibly glutamate. Hence, electrical stimulation of nucleus basalis evokes the release of a mixture of neurotransmitters in neocortex, and this lack of selectivity has impeded research on cholinergic signaling in neocortex. We describe a method for the selective stimulation of cholinergic axons in neocortex. We used the Cre-lox system and a viral vector to express the light-activated protein channelrhodopsin-2 in cholinergic neurons in nucleus basalis and their axons in neocortex. Labeled neurons depolarized on illumination with blue light but were otherwise unchanged. In anesthetized mice, illumination of neocortex desynchronized the local field potential, indicating that light evoked release of ACh. This novel technique will enable many new studies of the cellular, network, and behavioral physiology of ACh in neocortex.

  6. The catecholaminergic-cholinergic balance hypothesis of bipolar disorder revisited

    PubMed Central

    van Enkhuizen, Jordy; Janowsky, David S; Olivier, Berend; Minassian, Arpi; Perry, William; Young, Jared W; Geyer, Mark A

    2014-01-01

    Bipolar disorder is a unique illness characterized by fluctuations between mood states of depression and mania. Originally, an adrenergic-cholinergic balance hypothesis was postulated to underlie these different affective states. In this review, we update this hypothesis with recent findings from human and animal studies, suggesting that a catecholaminergic-cholinergic hypothesis may be more relevant. Evidence from neuroimaging studies, neuropharmacological interventions, and genetic associations support the notion that increased cholinergic functioning underlies depression, whereas increased activations of the catecholamines (dopamine and norepinephrine) underlie mania. Elevated functional acetylcholine during depression may affect both muscarinic and nicotinic acetylcholine receptors in a compensatory fashion. Increased functional dopamine and norepinephrine during mania on the other hand may affect receptor expression and functioning of dopamine reuptake transporters. Despite increasing evidence supporting this hypothesis, a relationship between these two neurotransmitter systems that could explain cycling between states of depression and mania is missing. Future studies should focus on the influence of environmental stimuli and genetic susceptibilities that may affect the catecholaminergic-cholinergic balance underlying cycling between the affective states. Overall, observations from recent studies add important data to this revised balance theory of bipolar disorder, renewing interest in this field of research. PMID:25107282

  7. Physical Chemistry to the Rescue: Differentiating Nicotinic and Cholinergic Agonists

    ERIC Educational Resources Information Center

    King, Angela G.

    2005-01-01

    Researches suggest that two agonists can bind to the same binding site of an important transmembrane protein and elicit a biological response through strikingly different binding interactions. Evidence is provided which suggests two possible types of nicotinic acetylcholine receptor agonist binding like acetlycholine (cholinergic) or like nicotine…

  8. Mitochondrial Transplantation Attenuates Airway Hyperresponsiveness by Inhibition of Cholinergic Hyperactivity

    PubMed Central

    Su, Yuan; Zhu, Liping; Yu, Xiangyuan; Cai, Lei; Lu, Yankai; Zhang, Jiwei; Li, Tongfei; Li, Jiansha; Xia, Jingyan; Xu, Feng; Hu, Qinghua

    2016-01-01

    Increased cholinergic activity has been highlighted in the pathogenesis of airway hyperresponsiveness, and alternations of mitochondrial structure and function appear to be involved in many lung diseases including airway hyperresponsiveness. It is crucial to clarify the cause-effect association between mitochondrial dysfunction and cholinergic hyperactivity in the pathogenesis of airway hyperresponsiveness. Male SD rats and cultured airway epithelial cells were exposed to cigarette smoke plus lipopolysaccharide administration; mitochondria isolated from airway epithelium were delivered into epithelial cells in vitro and in vivo. Both the cigarette smoke plus lipopolysaccharide-induced cholinergic hyperactivity in vitro and the airway hyperresponsiveness to acetylcholine in vivo were reversed by the transplantation of exogenous mitochondria. The rescue effects of exogenous mitochondria were imitated by the elimination of excessive reactive oxygen species or blockage of muscarinic M3 receptor, but inhibited by M receptor enhancer. Mitochondrial transplantation effectively attenuates cigarette smoke plus lipopolysaccharide-stimulated airway hyperresponsiveness through the inhibition of ROS-enhanced epithelial cholinergic hyperactivity. PMID:27279915

  9. Cholinergic modulation of event-related oscillations (ERO)

    PubMed Central

    Sanchez-Alavez, Manuel; Robledo, Patricia; Wills, Derek N.; Havstad, James; Ehlers, Cindy L.

    2014-01-01

    The cholinergic system in the brain modulates patterns of activity involved in general arousal, attention processing, memory and consciousness. In the present study we determined the effects of selective cholinergic lesions of the medial septum area (MS) or nucleus basalis magnocellularis (NBM) on amplitude and phase characteristics of event related oscillations (EROs). A time–frequency based representation was used to determine ERO energy, phase synchronization across trials, recorded within a structure (phase lock index, PLI), and phase synchronization across trials, recorded between brain structures (phase difference lock index, PDLI), in the frontal cortex (Fctx), dorsal hippocampus (DHPC) and central amygdala (Amyg). Lesions in MS produced: (1) decreases in ERO energy in delta, theta, alpha, beta and gamma frequencies in Amyg, (2) reductions in gamma ERO energy and PLI in Fctx, (3) decreases in PDLI between the Fctx–Amyg in the theta, alpha, beta and gamma frequencies, and (4) decreases in PDLI between the DHPC–Amyg and Fctx–DHPC in the theta frequency bands. Lesions in NBM resulted in: (1) increased ERO energy in delta and theta frequency bands in Fctx, (2) reduced gamma ERO energy in Fctx and Amyg, (3) reductions in PLI in the theta, beta and gamma frequency ranges in Fctx, (4) reductions in gamma PLI in DHPC and (5) reduced beta PLI in Amyg. These studies suggest that the MS cholinergic system can alter phase synchronization between brain areas whereas the NBM cholinergic system modifies phase synchronization/phase resetting within a brain area. PMID:24594019

  10. Cellular mechanisms underlying spatiotemporal features of cholinergic retinal waves

    PubMed Central

    Ford, Kevin J.; Félix, Aude L.; Feller, Marla B.

    2012-01-01

    Prior to vision, a transient network of recurrently connected cholinergic interneurons, called starburst amacrine cells (SACs), generates spontaneous retinal waves. Despite an absence of robust inhibition, cholinergic retinal waves initiate infrequently and propagate within finite boundaries. Here we combine a variety of electrophysiological and imaging techniques and computational modeling to elucidate the mechanisms underlying these spatial and temporal properties of waves in developing mouse retina. Waves initiate via rare spontaneous depolarizations of SACs. Waves propagate through recurrent cholinergic connections between SACs and volume release of ACh as demonstrated using paired recordings and a cell-based ACh optical sensor. Perforated patch recordings and two-photon calcium imaging reveal that individual SACs have slow afterhyperpolarizations that induce SACs to have variable depolarizations during sequential waves. Using a computational model in which the properties of SACs are based on these physiological measurements, we reproduce the slow frequency, speed, and finite size of recorded waves. This study represents a detailed description of the circuit that mediates cholinergic retinal waves and indicates that variability of the interneurons that generate this network activity may be critical for the robustness of waves across different species and stages of development. PMID:22262883

  11. Muscarinic and dopaminergic receptor subtypes on striatal cholinergic interneurons

    SciTech Connect

    Dawson, V.L.; Dawson, T.M.; Wamsley, J.K. )

    1990-12-01

    Unilateral stereotaxic injection of small amounts of the cholinotoxin, AF64A, caused minimal nonselective tissue damage and resulted in a significant loss of the presynaptic cholinergic markers (3H)hemicholinium-3 (45% reduction) and choline acetyltransferase (27% reduction). No significant change from control was observed in tyrosine hydroxylase or tryptophan hydroxylase activity; presynaptic neuronal markers for dopamine- and serotonin-containing neurons, respectively. The AF64A lesion resulted in a significant reduction of dopamine D2 receptors as evidenced by a decrease in (3H)sulpiride binding (42% reduction) and decrease of muscarinic non-M1 receptors as shown by a reduction in (3H)QNB binding in the presence of 100 nM pirenzepine (36% reduction). Saturation studies revealed that the change in (3H)sulpiride and (3H)QNB binding was due to a change in Bmax not Kd. Intrastriatal injection of AF64A failed to alter dopamine D1 or muscarinic M1 receptors labeled with (3H)SCH23390 and (3H)pirenzepine, respectively. In addition, no change in (3H)forskolin-labeled adenylate cyclase was observed. These results demonstrate that a subpopulation of muscarinic receptors (non-M1) are presynaptic on cholinergic interneurons (hence, autoreceptors), and a subpopulation of dopamine D2 receptors are postsynaptic on cholinergic interneurons. Furthermore, dopamine D1, muscarinic M1 and (3H)forskolin-labeled adenylate cyclase are not localized to striatal cholinergic interneurons.

  12. Cholinergic Pathway Suppresses Pulmonary Innate Immunity Facilitating Pneumonia After Stroke.

    PubMed

    Engel, Odilo; Akyüz, Levent; da Costa Goncalves, Andrey C; Winek, Katarzyna; Dames, Claudia; Thielke, Mareike; Herold, Susanne; Böttcher, Chotima; Priller, Josef; Volk, Hans Dieter; Dirnagl, Ulrich; Meisel, Christian; Meisel, Andreas

    2015-11-01

    Temporary immunosuppression has been identified as a major risk factor for the development of pneumonia after acute central nervous system injury. Although overactivation of the sympathetic nervous system was previously shown to mediate suppression of systemic cellular immune responses after stroke, the role of the parasympathetic cholinergic anti-inflammatory pathway in the antibacterial defense in lung remains largely elusive. The middle cerebral artery occlusion model in mice was used to examine the influence of the parasympathetic nervous system on poststroke immunosuppression. We used heart rate variability measurement by telemetry, vagotomy, α7 nicotinic acetylcholine receptor-deficient mice, and parasympathomimetics (nicotine, PNU282987) to measure and modulate parasympathetic activity. Here, we demonstrate a rapidly increased parasympathetic activity in mice after experimental stroke. Inhibition of cholinergic signaling by either vagotomy or by using α7 nicotinic acetylcholine receptor-deficient mice reversed pulmonary immune hyporesponsiveness and prevented pneumonia after stroke. In vivo and ex vivo studies on the role of α7 nicotinic acetylcholine receptor on different lung cells using bone marrow chimeric mice and isolated primary cells indicated that not only macrophages but also alveolar epithelial cells are a major cellular target of cholinergic anti-inflammatory signaling in the lung. Thus, cholinergic pathways play a pivotal role in the development of pulmonary infections after acute central nervous system injury. © 2015 American Heart Association, Inc.

  13. Modulation of the Cholinergic Mechanisms in the Bronchial Smooth Muscle.

    DTIC Science & Technology

    1984-06-01

    1975. Basic mecanisms and local feedback control of secretion of adrenergic and cholinergic neurotransmitters. In: Handbook of psycopharmacology , Vol. 6...cells are expressed in percentage of the total Mast cells were prepared essentially as earlier de- number of counted cells. scribed (Kruger 1976. Male

  14. Unique Contributions of Distinct Cholinergic Projections to Motor Cortical Plasticity and Learning

    PubMed Central

    Kulczycki, M.; Tuszynski, M.H.

    2010-01-01

    The cholinergic basal forebrain projects throughout the neocortex, exerting a critical role in modulating plasticity associated with normal learning. Cholinergic modulation of cortical plasticity could arise from 3 distinct mechanisms by 1) “direct” modulation via cholinergic inputs to regions undergoing plasticity, 2) “indirect” modulation via cholinergic projections to anterior, prefrontal attentional systems, or 3) modulating more global aspects of processing via distributed inputs throughout the cortex. To segregate these potential mechanisms, we investigated cholinergic-dependent reorganization of cortical motor representations in rats undergoing skilled motor learning. Behavioral and electrophysiological consequences of depleting cholinergic inputs to either motor cortex, prefrontal cortex, or globally, were compared. We find that local depletion of cholinergic afferents to motor cortex significantly disrupts map plasticity and skilled motor behavior, whereas prefrontal cholinergic depletion has no effect on these measures. Global cholinergic depletion perturbs map plasticity comparable with motor cortex depletions but results in significantly greater impairments in skilled motor acquisition. These findings indicate that local cholinergic activation within motor cortex, as opposed to indirect regulation of prefrontal systems, modulate cortical map plasticity and motor learning. More globally acting cholinergic mechanisms provide additional support for the acquisition of skilled motor behaviors, beyond those associated with cortical map reorganization. PMID:20181623

  15. Contribution of the Cholinergic System to Verbal Memory Performance in Mild Cognitive Impairment.

    PubMed

    Peter, Jessica; Lahr, Jacob; Minkova, Lora; Lauer, Eliza; Grothe, Michel J; Teipel, Stefan; Köstering, Lena; Kaller, Christoph P; Heimbach, Bernhard; Hüll, Michael; Normann, Claus; Nissen, Christoph; Reis, Janine; Klöppel, Stefan

    2016-06-18

    Acetylcholine is critically involved in modulating learning and memory function, which both decline in neurodegeneration. It remains unclear to what extent structural and functional changes in the cholinergic system contribute to episodic memory dysfunction in mild cognitive impairment (MCI), in addition to hippocampal degeneration. A better understanding is critical, given that the cholinergic system is the main target of current symptomatic treatment in mild to moderate Alzheimer's disease. We simultaneously assessed the structural and functional integrity of the cholinergic system in 20 patients with MCI and 20 matched healthy controls and examined their effect on verbal episodic memory via multivariate regression analyses. Mediating effects of either cholinergic function or hippocampal volume on the relationship between cholinergic structure and episodic memory were computed. In MCI, a less intact structure and function of the cholinergic system was found. A smaller cholinergic structure was significantly correlated with a functionally more active cholinergic system in patients, but not in controls. This association was not modulated by age or disease severity, arguing against compensational processes. Further analyses indicated that neither functional nor structural changes in the cholinergic system influence verbal episodic memory at the MCI stage. In fact, those associations were fully mediated by hippocampal volume. Although the cholinergic system is structurally and functionally altered in MCI, episodic memory dysfunction results primarily from hippocampal neurodegeneration, which may explain the inefficiency of cholinergic treatment at this disease stage.

  16. Brainstem cholinergic modulation of muscle tone in infant rats.

    PubMed

    Gall, Andrew J; Poremba, Amy; Blumberg, Mark S

    2007-06-01

    In week-old rats, lesions of the dorsolateral pontine tegmentum (DLPT) and nucleus pontis oralis (PnO) have opposing effects on nuchal muscle tone. Specifically, pups with DLPT lesions exhibit prolonged bouts of nuchal muscle atonia (indicative of sleep) and pups with PnO lesions exhibit prolonged bouts of high nuchal muscle tone (indicative of wakefulness). Here we test the hypothesis that nuchal muscle tone is modulated, at least in part, by cholinergically mediated interactions between these two regions. First, in unanesthetized pups, we found that chemical infusion of the cholinergic agonist carbachol (22 mm, 0.1 microL) within the DLPT produced high muscle tone. Next, chemical lesions of the PnO were used to produce a chronic state of high nuchal muscle tone, at which time the cholinergic antagonist scopolamine (10 mm, 0.1 microL) was infused into the DLPT. Scopolamine effectively decreased nuchal muscle tone, thus suggesting that lesions of the PnO increase muscle tone via cholinergic activation of the DLPT. Using 2-deoxyglucose autoradiography, metabolic activation throughout the DLPT was observed after PnO lesions. Finally, consistent with the hypothesis that PnO inactivation produces high muscle tone, infusion of the sodium channel blocker lidocaine (2%) into the PnO of unanesthetized pups produced rapid increases in muscle tone. We conclude that, even early in infancy, the DLPT is critically involved in the regulation of muscle tone and behavioral state, and that its activity is modulated by a cholinergic mechanism that is directly or indirectly controlled by the PnO.

  17. Involvement of the cholinergic system in conditioning and perceptual memory.

    PubMed

    Robinson, Lianne; Platt, Bettina; Riedel, Gernot

    2011-08-10

    The cholinergic systems play a pivotal role in learning and memory, and have been the centre of attention when it comes to diseases containing cognitive deficits. It is therefore not surprising, that the cholinergic transmitter system has experienced detailed examination of its role in numerous behavioural situations not least with the perspective that cognition may be rescued with appropriate cholinergic 'boosters'. Here we reviewed the literature on (i) cholinergic lesions, (ii) pharmacological intervention of muscarinic or nicotinic system, or (iii) genetic deletion of selective receptor subtypes with respect to sensory discrimination and conditioning procedures. We consider visual, auditory, olfactory and somatosensory processing first before discussing more complex tasks such as startle responses, latent inhibition, negative patterning, eye blink and fear conditioning, and passive avoidance paradigms. An overarching reoccurring theme is that lesions of the cholinergic projection neurones of the basal forebrain impact negatively on acquisition learning in these paradigms and blockade of muscarinic (and to a lesser extent nicotinic) receptors in the target structures produce similar behavioural deficits. While these pertain mainly to impairments in acquisition learning, some rare cases extend to memory consolidation. Such single case observations warranted replication and more in-depth studies. Intriguingly, receptor blockade or receptor gene knockout repeatedly produced contradictory results (for example in fear conditioning) and combined studies, in which genetically altered mice are pharmacological manipulated, are so far missing. However, they are desperately needed to clarify underlying reasons for these contradictions. Consistently, stimulation of either muscarinic (mainly M(1)) or nicotinic (predominantly α7) receptors was beneficial for learning and memory formation across all paradigms supporting the notion that research into the development and

  18. Cholinergic and perfusion brain networks in Parkinson disease dementia

    PubMed Central

    McKeith, Ian G.; Burn, David J.; Wyper, David J.; O'Brien, John T.; Taylor, John-Paul

    2016-01-01

    Objective: To investigate muscarinic M1/M4 cholinergic networks in Parkinson disease dementia (PDD) and their association with changes in Mini-Mental State Examination (MMSE) after 12 weeks of treatment with donepezil. Methods: Forty-nine participants (25 PDD and 24 elderly controls) underwent 123I-QNB and 99mTc-exametazime SPECT scanning. We implemented voxel principal components (PC) analysis, producing a series of PC images of patterns of interrelated voxels across individuals. Linear regression analyses derived specific M1/M4 and perfusion spatial covariance patterns (SCPs). Results: We found an M1/M4 SCP of relative decreased binding in basal forebrain, temporal, striatum, insula, and anterior cingulate (F1,47 = 31.9, p < 0.001) in cholinesterase inhibitor–naive patients with PDD, implicating limbic-paralimbic and salience cholinergic networks. The corresponding regional cerebral blood flow SCP showed relative decreased uptake in temporoparietal and prefrontal areas (F1,47 = 177.5, p < 0.001) and nodes of the frontoparietal and default mode networks (DMN). The M1/M4 pattern that correlated with an improvement in MMSE (r = 0.58, p = 0.005) revealed relatively preserved/increased pre/medial/orbitofrontal, parietal, and posterior cingulate areas coinciding with the DMN and frontoparietal networks. Conclusion: Dysfunctional limbic-paralimbic and salience cholinergic networks were associated with PDD. Established cholinergic maintenance of the DMN and frontoparietal networks may be prerequisite for cognitive remediation following cholinergic treatment in this condition. PMID:27306636

  19. Immunization Against Specific Fragments of Neurotrophin p75 Receptor Protects Forebrain Cholinergic Neurons in the Olfactory Bulbectomized Mice

    PubMed Central

    Bobkova, Natalia; Vorobyov, Vasily; Medvinskaya, Natalia; Nesterova, Inna; Tatarnikova, Olga; Nekrasov, Pavel; Samokhin, Alexander; Deev, Alexander; Sengpiel, Frank; Koroev, Dmitry; Volpina, Olga

    2016-01-01

    Alzheimer’s disease (AD) is characterized by progressive cognitive impairment associated with marked cholinergic neuron loss and amyloid-β (Aβ) peptide accumulation in the brain. The cytotoxicity in AD is mediated, at least in part, by Aβ binding with the extracellular domain of the p75 neurotrophin receptor (p75NTR), localized predominantly in the membranes of acetylcholine-producing neurons in the basal forebrain. Hypothesizing that an open unstructured loop of p75NTR might be the effective site for Aβ binding, we have immunized both olfactory bulbectomized (OBX) and sham-operated (SO) mice (n = 82 and 49, respectively) with synthetic peptides, structurally similar to different parts of the loops, aiming to block them by specific antibodies. OBX-mice have been shown in previous studies, and confirmed in the present one, to be characterized by typical behavioral, morphological, and biochemical AD hallmarks, including cholinergic deficits in forebrain neurons. Immunization of OBX- or SO-mice with KLH conjugated fragments of p75NTR induced high titers of specific serum antibodies for each of nine chosen fragments. However, maximal protective effects on spatial memory, evaluated in a Morris water maze, and on activity of choline acetyltransferase in forebrain neurons, detected by immunoreactivity to specific antibodies, were revealed only for peptides with amino acid residue sequences of 155–164 and 167–176. We conclude that the approach based on immunological blockade of specific p75NTR sites, linked with the cytotoxicity, is a useful and effective tool for study of AD-associated mechanisms and for development of highly selective therapy of cholinergic malfunctioning in AD patients. PMID:27163825

  20. Attention and the Cholinergic System: Relevance to Schizophrenia.

    PubMed

    Lustig, Cindy; Sarter, Martin

    Traditional methods of drug discovery often rely on a unidirectional, "bottom-up" approach: A search for molecular compounds that target a particular neurobiological substrate (e.g., a receptor type), the refinement of those compounds, testing in animal models using high-throughput behavioral screening methods, and then human testing for safety and effectiveness. Many attempts have found the "effectiveness" criterion to be a major stumbling block, and we and others have suggested that success may be improved by an alternative approach that considers the neural circuits mediating the effects of genetic and molecular manipulations on behavior and cognition. We describe our efforts to understand the cholinergic system's role in attention using parallel approaches to test main hypotheses in both rodents and humans as well as generating converging evidence using methods and levels of analysis tailored to each species. The close back-and-forth between these methods has enhanced our understanding of the cholinergic system's role in attention both "bottom-up" and "top-down"-that is, the basic neuroscience identifies potential neuronal circuit-based mechanisms of clinical symptoms, and the patient and genetic populations serve as natural experiments to test and refine hypotheses about its contribution to specific processes. Together, these studies have identified (at least) two major and potentially independent contributions of the cholinergic system to attention: a neuromodulatory component that influences cognitive control in response to challenges from distractors that either make detection more difficult or draw attention away from the distractor, and a phasic or transient cholinergic signal that instigates a shift from ongoing behavior and the activation of cue-associated response. Right prefrontal cortex appears to play a particularly important role in the neuromodulatory component integrating motivational and cognitive influences for top-down control across

  1. Local cholinergic-GABAergic circuitry within the basal forebrain is modulated by galanin.

    PubMed

    Damborsky, Joanne C; Smith, Kathleen G; Jensen, Patricia; Yakel, Jerrel L

    2017-04-01

    The basal forebrain (BF) is an important regulator of hippocampal and cortical activity. In Alzheimer's disease (AD), there is a significant loss and dysfunction of cholinergic neurons within the BF, and also a hypertrophy of fibers containing the neuropeptide galanin. Understanding how galanin interacts with BF circuitry is critical in determining what role galanin overexpression plays in the progression of AD. Here, we examined the location and function of galanin in the medial septum/diagonal band (MS/DBB) region of the BF. We show that galanin fibers are located throughout the MS/DBB and intermingled with both cholinergic and GABAergic neurons. Whole-cell patch clamp recordings from MS/DBB neurons in acute slices reveal that galanin decreases tetrodotoxin-sensitive spontaneous GABA release and dampens muscarinic receptor-mediated increases in GABA release in the MS/DBB. These effects are not blocked by pre-exposure to β-amyloid peptide (Aβ1-42). Optogenetic activation of cholinergic neurons in the MS/DBB increases GABA release back onto cholinergic neurons, forming a functional circuit within the MS/DBB. Galanin disrupts this cholinergic-GABAergic circuit by blocking the cholinergic-induced increase in GABA release. These data suggest that galanin works in the BF to reduce inhibitory input onto cholinergic neurons and to prevent cholinergic-induced increase in inhibitory tone. This disinhibition of cholinergic neurons could serve as a compensatory mechanism to counteract the loss of cholinergic signaling that occurs during the progression of AD.

  2. Pontine cholinergic neurons depend on three neuroprotection systems to resist nitrosative stress.

    PubMed

    McKinney, Michael; Williams, Katrina; Personett, David; Kent, Caroline; Bryan, David; Gonzalez, John; Baskerville, Karen

    2004-03-26

    Brainstem cholinergic populations survive in neurodegenerative disease, while basal forebrain cholinergic neurons degenerate. We have postulated that variable resistance to oxidative stress may in part explain this. Rat primary cultures were used to study the effects of several nitrosative/oxidative stressors on brainstem (upper pons, containing pedunculopontine and lateraldorsal tegmental nuclei; BS) cholinergic neurons, comparing them with medial septal (MS), and striatal cholinergic neurons. BS cholinergic neurons were significantly more resistant to S-nitro-N-acetyl-d,l-penicillamine (SNAP), sodium nitroprusside (SNP), and hydrogen peroxide than were MS cholinergic neurons, which in turn were more resistant than striatal cholinergic neurons. Pharmacological analyses using specific inhibitors of neuroprotective systems also revealed differences between these three cholinergic populations with respect to their vulnerability to SNAP. Toxicity of SNAP to BS neurons was exacerbated by blocking NF-kappaB activation with SN50 or ERK1/2 activation by PD98059, or by inhibition of phosphoinositide-3 kinase (PI3K) activity by LY294002. In contrast, SNAP toxicity to MS neurons was augmented only by SN50, and SNAP toxicity to striatal cholinergic neurons was not increased by any of these three pharmacological agents. In neuron-enriched primary cultures, BS cholinergic neurons remained resistant to SNAP while MS cholinergic neurons remained vulnerable to this agent. Immunohistochemical experiments demonstrated nitric oxide (NO)-induced increases in nuclear levels of phospho-epitopes for ERK1/2 and Akt, and of the p65 subunit of NF-kappaB, within BS cholinergic neurons. These data indicate that the relative resistance of BS cholinergic neurons to toxic levels of nitric oxide involves three intrinsic neuroprotective pathways that control transcriptional and anti-apoptotic cellular functions.

  3. Neurocircuitry of the nicotinic cholinergic system

    PubMed Central

    Bertrand, Daniel

    2010-01-01

    Continuing to discover how the brain works is one of the great challenges ahead of us. Although understanding the brain anatomy and its functional organization provided a first and indispensable foundation, it became clear that a static view was insufficient. To understand the complexity of neuronal communication, it is necessary to examine the chemical nature of the neurotransmission and, using the example of the acetylcholine receptors, follow the different layers of networks that can be distinguished. The natural alkaloid nicotine contained in tobacco leaves acts as an agonist with a subclass of acetylcholine receptors, and provides an interesting tool to approach brain functions. Analysis of the nicotinic acetylcholine receptors, which are ligand gated channels, revealed that these receptors are expressed at different critical locations on the neurons including the synaptic boutons, neurites, cell bodies, and even on the axons. These receptors can modulate the activity at the microcircuit synaptic level, in the cell processing of information, and, by acting on the velocity of action potential, the synchrony of communication between brain areas. These actions at multiple levels of brain organization provide an example of the complexity of brain neurocircuitry and an illustration of the relevance of this knowledge for psychiatry. PMID:21319492

  4. Genetic influences on cholinergic drug response.

    PubMed

    Marks, M J; Patinkin, D M; Artman, L D; Burch, J B; Collins, A C

    1981-08-01

    Three mouse strains were tested for oxotremorine effects on open-field activity and body temperature. Open-field activity was depressed less severely in C3H mice than in C57BL, which were less affected than DBA. While no differences in the hypothermic effects of oxotremorine were observed 15 min after injection, the time courses of the drug effect on body temperature indicated that C3H were less affected than C57BL or DBA. No differences in the activities of acetylcholinesterase of choline acetyltransferase were found among the three strains in cortex, cerebellum, hindbrain (pons-medulla), or total midbrain. While no differences in muscarinic receptor levels were found in the four large brain areas, finer dissection of the midbrain revealed small differences in total receptor number in striatum, hippocampus, and remaining midbrain areas. C3H mice exhibited greater QNB binding than C57BL and DBA mice in striatum; DBA mice exhibited greater QNB binding in hippocampus than C57BL (C3H mice were not different from either strain); and C57BL had less QNB binding than the other two strains in midbrain. All of these differences were small (20% or less). No differences in KD were observed. The inhibition of receptor binding by either oxotremorine or nicotine was the same in all strains, but the IC50 for oxotremorine varied from region to region. While behavioral differences in the effects of oxotremorine are clear, there is no obvious biochemical explanation for these differences.

  5. Cholinergic Neurons in the Basal Forebrain Promote Wakefulness by Actions on Neighboring Non-Cholinergic Neurons: An Opto-Dialysis Study

    PubMed Central

    Zant, Janneke C.; Kim, Tae; Prokai, Laszlo; Szarka, Szabolcs; McNally, James; McKenna, James T.; Shukla, Charu; Yang, Chun; Kalinchuk, Anna V.; McCarley, Robert W.; Brown, Ritchie E.

    2016-01-01

    Understanding the control of sleep–wake states by the basal forebrain (BF) poses a challenge due to the intermingled presence of cholinergic, GABAergic, and glutamatergic neurons. All three BF neuronal subtypes project to the cortex and are implicated in cortical arousal and sleep–wake control. Thus, nonspecific stimulation or inhibition studies do not reveal the roles of these different neuronal types. Recent studies using optogenetics have shown that “selective” stimulation of BF cholinergic neurons increases transitions between NREM sleep and wakefulness, implicating cholinergic projections to cortex in wake promotion. However, the interpretation of these optogenetic experiments is complicated by interactions that may occur within the BF. For instance, a recent in vitro study from our group found that cholinergic neurons strongly excite neighboring GABAergic neurons, including the subset of cortically projecting neurons, which contain the calcium-binding protein, parvalbumin (PV) (Yang et al., 2014). Thus, the wake-promoting effect of “selective” optogenetic stimulation of BF cholinergic neurons could be mediated by local excitation of GABA/PV or other non-cholinergic BF neurons. In this study, using a newly designed opto-dialysis probe to couple selective optical stimulation with simultaneous in vivo microdialysis, we demonstrated that optical stimulation of cholinergic neurons locally increased acetylcholine levels and increased wakefulness in mice. Surprisingly, the enhanced wakefulness caused by cholinergic stimulation was abolished by simultaneous reverse microdialysis of cholinergic receptor antagonists into BF. Thus, our data suggest that the wake-promoting effect of cholinergic stimulation requires local release of acetylcholine in the basal forebrain and activation of cortically projecting, non-cholinergic neurons, including the GABAergic/PV neurons. SIGNIFICANCE STATEMENT Optogenetics is a revolutionary tool to assess the roles of

  6. Muscarinic cholinergic inhibition of beta-adrenergic stimulation of phospholamban phosphorylation and CaS transport in guinea pig ventricles

    SciTech Connect

    Lindemann, J.P.; Watanabe, A.M.

    1985-10-25

    The effects of muscarinic cholinergic stimulation on beta-adrenergic induced increases in phospholamban phosphorylation and CaS transport were studied in intact myocardium. Isolated guinea pig ventricles were perfused via the coronary arteries with TSPi, after which membrane vesicles were isolated from individual hearts. Isoproterenol produced reversible increases in TSP incorporation into phospholamban. Associated with the increases in TSP incorporation were increases in the initial rate of phosphate-facilitated CaS uptake measured in aliquots of the same membrane vesicles isolated from the perfused hearts. The increases in TSP incorporation and calcium transport were significantly attenuated by the simultaneous administration of acetylcholine. Acetylcholine also attenuated increases in phospholamban phosphorylation and CaS uptake produced by the phosphodiesterase inhibitor isobutylmethylxanthine and forskolin. The contractile effects of all agents which increased cAMP levels (increased contractility and a reduction in the t1/2 of relaxation) were also attenuated by acetylcholine. The inhibitory effects of acetylcholine were associated with attenuation of the increases in cAMP levels produced by isoproterenol and isobutylmethylxanthine but not by forskolin. Acetylcholine also increased the rate of reversal of the functional and biochemical effects of isoproterenol by propranolol without affecting cAMP levels. These results suggest that cholinergic agonists inhibit the functional effects of beta-adrenergic stimulation in part by inhibition of phospholamban phosphorylation. This inhibition may be mediated by two potential mechanisms: inhibition of beta-adrenergic activation of adenylate cyclase and stimulation of dephosphorylation.

  7. Evaluation of a patient with cold and cholinergic urticaria.

    PubMed

    Sigler, R W; Levinson, A I; Evans, R; Horakova, Z; Kaplan, A P

    1979-01-01

    A-20-year-old male Army paratrooper presented with a history of inducible urticaria associated with exercise as well as cold exposure. Upon evaluation, he not only had a positive ice cube test, but also had a positive mecholyl skin test with numberous satellite lesions and generalized punctate urticaria following exercise challenge. Thus, he appeared to have combined cold and cholinergic urticaria. When mediator release was examined during cold and exercise challenge, histamine release was observed in each instance; a rapid rise and fall of plasma histamine was seen after cold challenge, while a lag phase followed by sustained elevation of plasma histamine was associated with exercise challenge. This represents the fourth reported case of combined cold and cholinergic urticaria and is the first in whom mediator release was assessed. The time-course of histamine release was characteristic of each disorder.

  8. Carrageenans solubilize asymmetric acetylcholinesterase from nicotinic cholinergic synapses.

    PubMed

    von Bernhardi, R; Ayal, H; Inestrosa, N C

    1990-01-01

    1. Acetylcholinesterase (AChE) catalyzes the hydrolysis of acetylcholine at cholinergic synapses in both vertebrate and invertebrates organisms. 2. The asymmetric synaptic AChE is attached to the extracellular matrix (ECM) of the neuromuscular junction through heparin sulphate proteoglycans (HSPGs). 3. It has been shown previously that heparin-like glycosaminoglycans (GAGs) can solubilize this enzyme from the cholinergic synapses. 4. The present paper describes the solubilization of asymmetric AChE by different marine macroalgal polysaccharides, called carrageenans. 5. Important differences were found among all the carrageenans tested; they released 15-50% of the total AChE activity normally solubilized by heparin. 6. Carrageenans extracted from tetrasporic stages of Iridaea ciliata and I. membranacea were always better extracting agents than those from the cystocarpic stages of these algae, suggesting that lambda-like carrageenans are involved. 7. This hypothesis was confirmed by extracting AChE with purified carrageenans.

  9. A cholinergic mechanism for reward timing within primary visual cortex

    PubMed Central

    Chubykin, Alexander A.; Roach, Emma B.; Bear, Mark F.; Shuler, Marshall G. Hussain

    2013-01-01

    Summary Neurons in rodent primary visual cortex (V1) relate operantly conditioned stimulus-reward intervals with modulated patterns of spiking output, but little is known about the locus or mechanism of this plasticity. Here we show that cholinergic basal forebrain projections to V1 are necessary for the neural acquisition, but not the expression, of reward timing in the visual cortex of awake, behaving animals. We then mimic reward timing in vitro by pairing white matter stimulation with muscarinic receptor activation at a fixed interval, and show that this protocol results in the prolongation of electrically-evoked spike train durations out to the conditioned interval. Together, these data suggest that (1) V1 possesses the circuitry and plasticity to support reward time prediction learning and (2) the cholinergic system serves as an important reinforcement signal which, in vivo, conveys to the cortex the outcome of behavior. PMID:23439124

  10. Mathematical modelling of the enteric nervous network. 1: Cholinergic neuron.

    PubMed

    Miftakhov, R N; Wingate, D L

    1994-01-01

    A mathematical model is proposed to describe the coupled electrochemical mechanisms of nerve-pulse transmission via cholinergic synapse. Based on pharmacological and morphophysiological data, the model describes the dynamics of the propagation of the electric signal along the unmyelinated geometrically non-uniform axon of the neuron and the chemical mechanisms of the transformation of the electrical signal in the synaptic zone into the postsynaptic output. The combined nonlinear system of partial and ordinary differential equations has been obtained and solved numerically. The results of numerical simulation of the function of the cholinergic neuron quantitatively and qualitatively describe the dynamics of Ca2+ ions influx into the terminal, acetylcholine release from the vesicles, accumulation of its free fraction, diffusion into the synaptic cleft, and binding with the receptors on the postsynaptic structures with the generation of the fast excitatory postsynaptic potential. They are in good agreement with the observed experimental findings.

  11. Cholinergic modulation of the hippocampal region and memory function.

    PubMed

    Haam, Juhee; Yakel, Jerrel L

    2017-08-01

    Acetylcholine (ACh) plays an important role in memory function and has been implicated in aging-related dementia, in which the impairment of hippocampus-dependent learning strongly manifests. Cholinergic neurons densely innervate the hippocampus, mediating the formation of episodic as well as semantic memory. Here, we will review recent findings on acetylcholine's modulation of memory function, with a particular focus on hippocampus-dependent learning, and the circuits involved. In addition, we will discuss the complexity of ACh actions in memory function to better understand the physiological role of ACh in memory. This is an article for the special issue XVth International Symposium on Cholinergic Mechanisms. © 2017 International Society for Neurochemistry.

  12. Inhibition of central angiotensin converting enzyme ameliorates scopolamine induced memory impairment in mice: role of cholinergic neurotransmission, cerebral blood flow and brain energy metabolism.

    PubMed

    Tota, Santoshkumar; Nath, Chandishwar; Najmi, Abul Kalam; Shukla, Rakesh; Hanif, Kashif

    2012-06-15

    Evidences indicate that inhibition of central Renin angiotensin system (RAS) ameliorates memory impairment in animals and humans. Earlier we have reported involvement of central angiotensin converting enzyme (ACE) in streptozotocin induced neurodegeneration and memory impairment. The present study investigated the role of central ACE in cholinergic neurotransmission, brain energy metabolism and cerebral blood flow (CBF) in model of memory impairment induced by injection of scopolamine in mice. Perindopril (0.05 and 0.1 mg/kg, PO) was given orally for one week before administration of scopolamine (3mg/kg, IP). Then, memory function was evaluated by Morris water maze and passive avoidance tests. CBF was measured by laser Doppler flowmetry. Biochemical and molecular parameters were estimated after the completion of behavioral studies. Scopolamine caused impairment in memory which was associated with reduced CBF, acetylcholine (ACh) level and elevated acetylcholinesterase (AChE) activity and malondialdehyde (MDA) level. Perindopril ameliorated scopolamine induced amnesia in both the behavioral paradigms. Further, perindopril prevented elevation of AChE and MDA level in mice brain. There was a significant increase in CBF and ACh level in perindopril treated mice. However, scopolamine had no significant effect on ATP level and mRNA expression of angiotensin receptors and ACE in cortex and hippocampus. But, perindopril significantly decreased ACE activity in brain without affecting its mRNA expression. The study clearly showed the interaction between ACE and cholinergic neurotransmission and beneficial effect of perindopril can be attributed to improvement in central cholinergic neurotransmission and CBF.

  13. Cholinergic Receptor Substrates of Neuronal Plasticity and Learning

    DTIC Science & Technology

    1992-01-29

    M2, GABAA, L2, P1, 5-HT1 , Mp opoid, delta opiod and neurotensin receptors. Additional assays of nor-epinephrine (NE), serotonin (5-HT) and of...specific to GABAA and opiod receptors, are in preparation. b. OXO Binding in Limbic Thalamus. OXO binding increased significantly during training, in the...battery of behavioral treatments followed by assay for M2 GABAA, and opiod receptors. 5. Cholinergic deafferentation of cingulate cortex induced by

  14. Cholinergic Urticaria with Anaphylaxis: An Underrecognized Clinical Entity.

    PubMed

    Vadas, Peter; Sinilaite, Angela; Chaim, Marcus

    2016-01-01

    Cholinergic urticaria is a form of physical urticaria triggered by high ambient temperature, strenuous physical activity, and strong emotion. These same triggers may cause multisystem reactions that can be life-threatening. A study of patients with cholinergic urticaria with anaphylaxis was undertaken to describe the demographic and clinical features of this form of anaphylaxis. To describe a cohort of patients with anaphylaxis triggered by high ambient temperature, exertion, and stress. Patients from an academic allergy practice in a university teaching hospital were identified by retrospective chart review. A total of 19 patients with recurrent episodes of anaphylaxis due to cholinergic triggers were identified. The female:male ratio was 15:4 (79% females). The mean age of onset was 27.5 years. Patients experienced a mean of 9.41 episodes per year. All 19 patients (100%) reported anaphylaxis triggered by high ambient temperature, 89.5% reported anaphylaxis triggered by strenuous exertion, and 78.9% reported anaphylaxis triggered by stress. Cutaneous involvement was present in 94.7%; 78.9% had upper airway obstructive symptoms, 78.9% had lower airway involvement, 57.9% had gastrointestinal involvement, and 78.9% had cardiovascular manifestations. Anaphylaxis severity scores were grade 1 (mild) in 11.1%, grade 2 (moderate) in 44.4%, and grade 3 (severe) in 44.4%. Baseline tryptase levels were normal in all but 1 patient. Anaphylaxis due to cholinergic triggers is underreported, with only several case reports in the literature. Reactions are multisystem with cutaneous, upper and lower airway, and cardiovascular involvement in most patients. Manifestations may be life-threatening, and reactions are often severe. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  15. Atopic predisposition in cholinergic urticaria patients and its implications.

    PubMed

    Altrichter, S; Koch, K; Church, M K; Maurer, M

    2016-12-01

    Cholinergic urticaria (CholU) is a frequent chronic urticaria disorder with itchy weal and flare-type skin reactions in response to physical exercise or passive warming. A higher frequency of atopy among CholU patients has been reported, but the significance of this observation is unclear. To assess the prevalence and relevance of atopy in CholU patients. Thirty CholU patients were assessed for atopic skin diathesis (atopic predisposition) by use of the Erlangen Atopy Score and divided into atopic and non-atopic predisposed CholU individuals. Both groups were assessed for disease severity (CholUSI) and activity (CholUAS7), quality of life impairment [Dermatology Life Quality Index (DLQI) and CU-Q2 OL], seasonal exacerbation, total and specific serum IgE and comorbidities. CholU patients were found to exhibit high rates of atopic predisposition (57%), with higher prevalence and scores in female than in male patients. High Erlangen Atopy Scores were linked to high CholU severity, activity and impact on QoL. Atopic predisposed CholU patients show different seasonal exacerbation patterns, IgE specificity and comorbidity profiles as compared to non-atopic CholU patients. Atopic predisposition and cholinergic urticaria appear to be linked more closely than previously thought, which suggests shared pathogenetic mechanisms. Atopic patients with cholinergic urticaria have more severe disease and poorer quality of life than those who do not. Thus, all cholinergic urticaria patients should be assessed for atopic predisposition. © 2016 European Academy of Dermatology and Venereology.

  16. Cholinergic regulation of epithelial ion transport in the mammalian intestine

    PubMed Central

    Hirota, C L; McKay, D M

    2006-01-01

    Acetylcholine (ACh) is critical in controlling epithelial ion transport and hence water movements for gut hydration. Here we review the mechanism of cholinergic control of epithelial ion transport across the mammalian intestine. The cholinergic nervous system affects basal ion flux and can evoke increased active ion transport events. Most studies rely on measuring increases in short-circuit current (ISC = active ion transport) evoked by adding ACh or cholinomimetics to intestinal tissue mounted in Ussing chambers. Despite subtle species and gut regional differences, most data indicate that, under normal circumstances, the effect of ACh on intestinal ion transport is mainly an increase in Cl- secretion due to interaction with epithelial M3 muscarinic ACh receptors (mAChRs) and, to a lesser extent, neuronal M1 mAChRs; however, AChR pharmacology has been plagued by a lack of good receptor subtype-selective compounds. Mice lacking M3 mAChRs display intact cholinergically-mediated intestinal ion transport, suggesting a possible compensatory mechanism. Inflamed tissues often display perturbations in the enteric cholinergic system and reduced intestinal ion transport responses to cholinomimetics. The mechanism(s) underlying this hyporesponsiveness are not fully defined. Inflammation-evoked loss of mAChR-mediated control of epithelial ion transport in the mouse reveals a role for neuronal nicotinic AChRs, representing a hitherto unappreciated braking system to limit ACh-evoked Cl- secretion. We suggest that: i) pharmacological analyses should be supported by the use of more selective compounds and supplemented with molecular biology techniques targeting specific ACh receptors and signalling molecules, and ii) assessment of ion transport in normal tissue must be complemented with investigations of tissues from patients or animals with intestinal disease to reveal control mechanisms that may go undetected by focusing on healthy tissue only. PMID:16981004

  17. Genetically Induced Cholinergic Hyper-Innervation Enhances Taste Learning

    PubMed Central

    Neseliler, Selin; Narayanan, Darshana; Fortis-Santiago, Yaihara; Katz, Donald B.; Birren, Susan J.

    2011-01-01

    Acute inhibition of acetylcholine (ACh) has been shown to impair many forms of simple learning, and notably conditioned taste aversion (CTA). The most adhered-to theory that has emerged as a result of this work – that ACh increases a taste’s perceived novelty, and thereby its associability – would be further strengthened by evidence showing that enhanced cholinergic function improves learning above normal levels. Experimental testing of this corollary hypothesis has been limited, however, by side-effects of pharmacological ACh agonism and by the absence of a model that achieves long-term increases in cholinergic signaling. Here, we present this further test of the ACh hypothesis, making use of mice lacking the p75 pan-neurotrophin receptor gene, which show a resultant over-abundance of cholinergic neurons in sub-regions of the basal forebrain (BF). We first demonstrate that the p75−/− abnormality directly affects portions of the CTA circuit, locating mouse gustatory cortex (GC) using a functional assay and then using immunohistochemisty to demonstrate cholinergic hyper-innervation of GC in the mutant mice – hyper-innervation that is unaccompanied by changes in cell numbers or compensatory changes in muscarinic receptor densities. We then demonstrate that both p75−/− and wild-type (WT) mice learn robust CTAs, which extinguish more slowly in the mutants. Further testing to distinguish effects on learning from alterations in memory retention demonstrate that p75−/− mice do in fact learn stronger CTAs than WT mice. These data provide novel evidence for the hypothesis linking ACh and taste learning. PMID:22144949

  18. In vivo cholinergic circuit evaluation in frontotemporal and Alzheimer dementias.

    PubMed

    Di Lazzaro, V; Pilato, F; Dileone, M; Saturno, E; Oliviero, A; Marra, C; Daniele, A; Ranieri, F; Gainotti, G; Tonali, P A

    2006-04-11

    The test of short latency afferent inhibition (SAI) of the motor cortex is helpful in demonstrating dysfunction of central cholinergic circuits in Alzheimer disease (AD). The authors evaluated SAI in 20 patients with frontotemporal dementia (FTD) and compared data with those from 20 patients with AD and 20 controls. SAI was normal in FTD, whereas it was reduced in AD. SAI may represent an additional tool to discriminate FTD from AD.

  19. Cholinergic modulation of event-related oscillations (ERO).

    PubMed

    Sanchez-Alavez, Manuel; Robledo, Patricia; Wills, Derek N; Havstad, James; Ehlers, Cindy L

    2014-04-22

    The cholinergic system in the brain modulates patterns of activity involved in general arousal, attention processing, memory and consciousness. In the present study we determined the effects of selective cholinergic lesions of the medial septum area (MS) or nucleus basalis magnocellularis (NBM) on amplitude and phase characteristics of event related oscillations (EROs). A time-frequency based representation was used to determine ERO energy, phase synchronization across trials, recorded within a structure (phase lock index, PLI), and phase synchronization across trials, recorded between brain structures (phase difference lock index, PDLI), in the frontal cortex (Fctx), dorsal hippocampus (DHPC) and central amygdala (Amyg). Lesions in MS produced: (1) decreases in ERO energy in delta, theta, alpha, beta and gamma frequencies in Amyg, (2) reductions in gamma ERO energy and PLI in Fctx, (3) decreases in PDLI between the Fctx-Amyg in the theta, alpha, beta and gamma frequencies, and (4) decreases in PDLI between the DHPC-Amyg and Fctx-DHPC in the theta frequency bands. Lesions in NBM resulted in: (1) increased ERO energy in delta and theta frequency bands in Fctx, (2) reduced gamma ERO energy in Fctx and Amyg, (3) reductions in PLI in the theta, beta and gamma frequency ranges in Fctx, (4) reductions in gamma PLI in DHPC and (5) reduced beta PLI in Amyg. These studies suggest that the MS cholinergic system can alter phase synchronization between brain areas whereas the NBM cholinergic system modifies phase synchronization/phase resetting within a brain area. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Estrogen modulates cognitive and cholinergic processes in surgically menopausal monkeys.

    PubMed

    Tinkler, Gregory Paul; Voytko, Mary Lou

    2005-03-01

    Estrogen deficiency in postmenopausal women is associated with changes in physiological processes. The extent to which estrogen loss is associated with cognitive changes noted by postmenopausal women has been more difficult to determine for a variety of reasons. Primate models of menopause are now being used to determine the effects of estrogen loss and replacement on cognitive abilities and to investigate the neural mechanisms by which estrogen may influence cognitive function. The present report presents data from cognitive and neurobiological studies in surgically menopausal monkeys that have examined how estrogen loss and replacement may be affecting cognitive abilities and the cholinergic system; a neural system that is known to influence memory and attention function. These studies are indicating that visuospatial attention function is especially sensitive to estrogen states in young monkeys, but that multiple cognitive domains are sensitive to estrogen states in middle-aged monkeys. In addition, anatomical and functional imaging studies indicate that the primate cholinergic system is modulated by estrogen, and pharmacological studies demonstrate that estrogen uses cholinergic muscarinic receptors to influence visuospatial attention. These studies demonstrate that estrogen influences cognitive abilities in monkey models of menopause and the cholinergic system may be one of the mechanisms by which estrogen modulates cognitive function. Given the current unknowns and concerns regarding the use of hormone replacement therapy in postmenopausal women, continued studies in monkey models of menopause are especially needed to further elucidate the effects of estrogen on cognitive and neurobiological processes, with particular emphasis on studies in middle-aged monkeys, determining the optimal aspects of ERT regimens, and identifying the relationships between estrogen effects on cognitive and neurobiological function.

  1. Nicotinic cholinergic receptors in rat brain. Annual report No. 3, 1 May 85-30 Apr 86

    SciTech Connect

    Kellar, K.J.

    1986-05-01

    We have compared the characteristics of the recognition sites for 3(H)acetylcholine and 3H(-)nicotine in rat brain and found that the pharmacology, distribution, disulfide bond requirement, and regulation by chronic administration of nicotine and soman are identical. From these studies we conclude that 3Hacetylcholine and 3H(-)nicotine recognize the same recognition site which has the characteristics expected of a nicotinic cholinergic receptor. We have also determined that 3Hacetylcholine of high specific radioactivity (80 Ci/mmol) is an excellent ligand with which to study muscarinic receptors that have high affinity for agonists. These receptors may represent a subtype of muscarinic receptors found in brain, heart, glands, an some smooth muscle. (JS)

  2. A cholinergic hypothesis of the unconscious in affective disorders

    PubMed Central

    Vakalopoulos, Costa

    2013-01-01

    The interactions between distinct pharmacological systems are proposed as a key dynamic in the formation of unconscious memories underlying rumination and mood disorder, but also reflect the plastic capacity of neural networks that can aid recovery. An inverse and reciprocal relationship is postulated between cholinergic and monoaminergic receptor subtypes. M1-type muscarinic receptor transduction facilitates encoding of unconscious, prepotent behavioral repertoires at the core of affective disorders and ADHD. Behavioral adaptation to new contingencies is mediated by the classic prototype receptor: 5-HT1A (Gi/o) and its modulation of M1-plasticity. Reversal of learning is dependent on increased phasic activation of midbrain monoaminergic nuclei and is a function of hippocampal theta. Acquired hippocampal dysfunction due to abnormal activation of the hypothalamic-pituitary-adrenal (HPA) axis predicts deficits in hippocampal-dependent memory and executive function and further impairments to cognitive inhibition. Encoding of explicit memories is mediated by Gq/11 and Gs signaling of monoamines only. A role is proposed for the phasic activation of the basal forebrain cholinergic nucleus by cortical projections from the complex consisting of the insula and claustrum. Although controversial, recent studies suggest a common ontogenetic origin of the two structures and a functional coupling. Lesions of the region result in loss of motivational behavior and familiarity based judgements. A major hypothesis of the paper is that these lost faculties result indirectly, from reduced cholinergic tone. PMID:24319409

  3. Potential Mechanisms Underlying Intercortical Signal Regulation via Cholinergic Neuromodulators

    PubMed Central

    Whittington, Miles A.; Kopell, Nancy J.

    2015-01-01

    The dynamical behavior of the cortex is extremely complex, with different areas and even different layers of a cortical column displaying different temporal patterns. A major open question is how the signals from different layers and different brain regions are coordinated in a flexible manner to support function. Here, we considered interactions between primary auditory cortex and adjacent association cortex. Using a biophysically based model, we show how top-down signals in the beta and gamma regimes can interact with a bottom-up gamma rhythm to provide regulation of signals between the cortical areas and among layers. The flow of signals depends on cholinergic modulation: with only glutamatergic drive, we show that top-down gamma rhythms may block sensory signals. In the presence of cholinergic drive, top-down beta rhythms can lift this blockade and allow signals to flow reciprocally between primary sensory and parietal cortex. SIGNIFICANCE STATEMENT Flexible coordination of multiple cortical areas is critical for complex cognitive functions, but how this is accomplished is not understood. Using computational models, we studied the interactions between primary auditory cortex (A1) and association cortex (Par2). Our model is capable of replicating interaction patterns observed in vitro and the simulations predict that the coordination between top-down gamma and beta rhythms is central to the gating process regulating bottom-up sensory signaling projected from A1 to Par2 and that cholinergic modulation allows this coordination to occur. PMID:26558772

  4. Inhibition of airway surface fluid absorption by cholinergic stimulation

    PubMed Central

    Joo, Nam Soo; Krouse, Mauri E.; Choi, Jae Young; Cho, Hyung-Ju; Wine, Jeffrey J.

    2016-01-01

    In upper airways airway surface liquid (ASL) depth and clearance rates are both increased by fluid secretion. Secretion is opposed by fluid absorption, mainly via the epithelial sodium channel, ENaC. In static systems, increased fluid depth activates ENaC and decreased depth inhibits it, suggesting that secretion indirectly activates ENaC to reduce ASL depth. We propose an alternate mechanism in which cholinergic input, which causes copious airway gland secretion, also inhibits ENaC-mediated absorption. The conjoint action accelerates clearance, and the increased transport of mucus out of the airways restores ASL depth while cleansing the airways. We were intrigued by early reports of cholinergic inhibition of absorption by airways in some species. To reinvestigate this phenomenon, we studied inward short-circuit currents (Isc) in tracheal mucosa from human, sheep, pig, ferret, and rabbit and in two types of cultured cells. Basal Isc was inhibited 20–70% by the ENaC inhibitor, benzamil. Long-lasting inhibition of ENaC-dependent Isc was also produced by basolateral carbachol in all preparations except rabbit and the H441 cell line. Atropine inhibition produced a slow recovery or prevented inhibition if added before carbachol. The mechanism for inhibition was not determined and is most likely multi-factorial. However, its physiological significance is expected to be increased mucus clearance rates in cholinergically stimulated airways. PMID:26846701

  5. Dysfunctional penile cholinergic nerves in diabetic impotent men

    SciTech Connect

    Blanco, R.; Saenz de Tejada, I.; Goldstein, I.; Krane, R.J.; Wotiz, H.H.; Cohen, R.A. )

    1990-08-01

    Impotence in the diabetic man may be secondary to a neuropathic condition of the autonomic penile nerves. The relationship between autonomic neuropathy and impotence in diabetes was studied in human corporeal tissue obtained during implantation of a penile prosthesis in 19 impotent diabetic and 15 nondiabetic patients. The functional status of penile cholinergic nerves was assessed by determining their ability to accumulate tritiated choline (34), and synthesize (34) and release (19) tritiated-acetylcholine after incubation of corporeal tissue with tritiated-choline (34). Tritiated-choline accumulation, and tritiated-acetylcholine synthesis and release were significantly reduced in the corporeal tissue from diabetic patients compared to that from nondiabetic patients (p less than 0.05). The impairment in acetylcholine synthesis worsened with the duration of diabetes (p less than 0.025). No differences in the parameters measured were found between insulin-dependent (11) and noninsulin-dependent (8) diabetic patients. The ability of the cholinergic nerves to synthesize acetylcholine could not be predicted clinically with sensory vibration perception threshold testing. It is concluded that there is a functional penile neuropathic condition of the cholinergic nerves in the corpus cavernosum of diabetic impotent patients that may be responsible for the erectile dysfunction.

  6. Modulatory compartments in cortex and local regulation of cholinergic tone.

    PubMed

    Coppola, Jennifer J; Ward, Nicholas J; Jadi, Monika P; Disney, Anita A

    2016-09-01

    Neuromodulatory signaling is generally considered broad in its impact across cortex. However, variations in the characteristics of cortical circuits may introduce regionally-specific responses to diffuse modulatory signals. Features such as patterns of axonal innervation, tissue tortuosity and molecular diffusion, effectiveness of degradation pathways, subcellular receptor localization, and patterns of receptor expression can lead to local modification of modulatory inputs. We propose that modulatory compartments exist in cortex and can be defined by variation in structural features of local circuits. Further, we argue that these compartments are responsible for local regulation of neuromodulatory tone. For the cholinergic system, these modulatory compartments are regions of cortical tissue within which signaling conditions for acetylcholine are relatively uniform, but between which signaling can vary profoundly. In the visual system, evidence for the existence of compartments indicates that cholinergic modulation likely differs across the visual pathway. We argue that the existence of these compartments calls for thinking about cholinergic modulation in terms of finer-grained control of local cortical circuits than is implied by the traditional view of this system as a diffuse modulator. Further, an understanding of modulatory compartments provides an opportunity to better understand and perhaps correct signal modifications that lead to pathological states.

  7. Impaired NGF/TrkA Signaling Causes Early AD-Linked Presynaptic Dysfunction in Cholinergic Primary Neurons

    PubMed Central

    Latina, Valentina; Caioli, Silvia; Zona, Cristina; Ciotti, Maria T.; Amadoro, Giuseppina; Calissano, Pietro

    2017-01-01

    Alterations in NGF/TrkA signaling have been suggested to underlie the selective degeneration of the cholinergic basal forebrain neurons occurring in vivo in AD (Counts and Mufson, 2005; Mufson et al., 2008; Niewiadomska et al., 2011) and significant reduction of cognitive decline along with an improvement of cholinergic hypofunction have been found in phase I clinical trial in humans affected from mild AD following therapeutic NGF gene therapy (Tuszynski et al., 2005, 2015). Here, we show that the chronic (10–12 D.I.V.) in vitro treatment with NGF (100 ng/ml) under conditions of low supplementation (0.2%) with the culturing serum-substitute B27 selectively enriches the basal forebrain cholinergic neurons (+36.36%) at the expense of other non-cholinergic, mainly GABAergic (−38.45%) and glutamatergic (−56.25%), populations. By taking advantage of this newly-developed septo-hippocampal neuronal cultures, our biochemical and electrophysiological investigations demonstrate that the early failure in excitatory neurotransmission following NGF withdrawal is paralleled by concomitant and progressive loss in selected presynaptic and vesicles trafficking proteins including synapsin I, SNAP-25 and α-synuclein. This rapid presynaptic dysfunction: (i) precedes the commitment to cell death and is reversible in a time-dependent manner, being suppressed by de novo external administration of NGF within 6 hr from its initial withdrawal; (ii) is specific because it is not accompanied by contextual changes in expression levels of non-synaptic proteins from other subcellular compartments; (ii) is not secondary to axonal degeneration because it is insensible to pharmacological treatment with known microtubule-stabilizing drug such paclitaxel; (iv) involves TrkA-dependent mechanisms because the effects of NGF reapplication are blocked by acute exposure to specific and cell-permeable inhibitor of its high-affinity receptor. Taken together, this study may have important clinical

  8. Cholinergic mechanisms in spinal locomotion—potential target for rehabilitation approaches

    PubMed Central

    Jordan, Larry M.; McVagh, J. R.; Noga, B. R.; Cabaj, A. M.; Majczyński, H.; Sławińska, Urszula; Provencher, J.; Leblond, H.; Rossignol, Serge

    2014-01-01

    Previous experiments implicate cholinergic brainstem and spinal systems in the control of locomotion. Our results demonstrate that the endogenous cholinergic propriospinal system, acting via M2 and M3 muscarinic receptors, is capable of consistently producing well-coordinated locomotor activity in the in vitro neonatal preparation, placing it in a position to contribute to normal locomotion and to provide a basis for recovery of locomotor capability in the absence of descending pathways. Tests of these suggestions, however, reveal that the spinal cholinergic system plays little if any role in the induction of locomotion, because MLR-evoked locomotion in decerebrate cats is not prevented by cholinergic antagonists. Furthermore, it is not required for the development of stepping movements after spinal cord injury, because cholinergic agonists do not facilitate the appearance of locomotion after spinal cord injury, unlike the dramatic locomotion-promoting effects of clonidine, a noradrenergic α-2 agonist. Furthermore, cholinergic antagonists actually improve locomotor activity after spinal cord injury, suggesting that plastic changes in the spinal cholinergic system interfere with locomotion rather than facilitating it. Changes that have been observed in the cholinergic innervation of motoneurons after spinal cord injury do not decrease motoneuron excitability, as expected. Instead, the development of a “hyper-cholinergic” state after spinal cord injury appears to enhance motoneuron output and suppress locomotion. A cholinergic suppression of afferent input from the limb after spinal cord injury is also evident from our data, and this may contribute to the ability of cholinergic antagonists to improve locomotion. Not only is a role for the spinal cholinergic system in suppressing locomotion after SCI suggested by our results, but an obligatory contribution of a brainstem cholinergic relay to reticulospinal locomotor command systems is not confirmed by our

  9. Anticholinesterase Effects on Number and Function of Brain Muscarinic Receptors and Central Cholinergic Activity: Drug Intervention.

    DTIC Science & Technology

    1986-04-11

    still unresolved problem connected with the mechanisms by which the anticholinesterases affect cholinergic nerves which should lead to a more thorough...understanding of their most adverse reactions, i.e the generalized cholinergic stimulation, convulsions and neuromuscular paralysis. This may lead to...which the anticholinesterases affect cholinergic nerves which should lead to a more thorough understanding of their most adverse reactions, i.e the

  10. Cholinergic Inputs from Basal Forebrain Add an Excitatory Bias to Odor Coding in the Olfactory Bulb

    PubMed Central

    Rothermel, Markus; Carey, Ryan M.; Puche, Adam; Shipley, Michael T.

    2014-01-01

    Cholinergic modulation of central circuits is associated with active sensation, attention, and learning, yet the neural circuits and temporal dynamics underlying cholinergic effects on sensory processing remain unclear. Understanding the effects of cholinergic modulation on particular circuits is complicated by the widespread projections of cholinergic neurons to telencephalic structures that themselves are highly interconnected. Here we examined how cholinergic projections from basal forebrain to the olfactory bulb (OB) modulate output from the first stage of sensory processing in the mouse olfactory system. By optogenetically activating their axons directly in the OB, we found that cholinergic projections from basal forebrain regulate OB output by increasing the spike output of presumptive mitral/tufted cells. Cholinergic stimulation increased mitral/tufted cell spiking in the absence of inhalation-driven sensory input and further increased spiking responses to inhalation of odorless air and to odorants. This modulation was rapid and transient, was dependent on local cholinergic signaling in the OB, and differed from modulation by optogenetic activation of cholinergic neurons in basal forebrain, which led to a mixture of mitral/tufted cell excitation and suppression. Finally, bulbar cholinergic enhancement of mitral/tufted cell odorant responses was robust and occurred independent of the strength or even polarity of the odorant-evoked response, indicating that cholinergic modulation adds an excitatory bias to mitral/tufted cells as opposed to increasing response gain or sharpening response spectra. These results are consistent with a role for the basal forebrain cholinergic system in dynamically regulating the sensitivity to or salience of odors during active sensing of the olfactory environment. PMID:24672011

  11. Molecular decoys: ligand-binding recombinant proteins protect mice from curarimimetic neurotoxins.

    PubMed Central

    Gershoni, J M; Aronheim, A

    1988-01-01

    Mimic ligand-binding sites of the nicotinic acetylcholine receptor bind d-tubocurarine and alpha-bungarotoxin in vitro. Injection of such binding sites into mice could act as molecular decoys in vivo, providing protection against toxic ligands. This hypothesis of molecular "decoyance" has been tested in greater than 250 mice. Bacterially produced cholinergic binding sites provided a 2-fold increase in the survival rate of animals challenged with curarimimetic neurotoxins. Possible considerations for decoy designs and their applications are discussed. Images PMID:3375254

  12. Extrinsic Sources of Cholinergic Innervation of the Striatal Complex: A Whole-Brain Mapping Analysis

    PubMed Central

    Dautan, Daniel; Hacioğlu Bay, Husniye; Bolam, J. Paul; Gerdjikov, Todor V.; Mena-Segovia, Juan

    2016-01-01

    Acetylcholine in the striatal complex plays an important role in normal behavior and is affected in a number of neurological disorders. Although early studies suggested that acetylcholine in the striatum (STR) is derived almost exclusively from cholinergic interneurons (CIN), recent axonal mapping studies using conditional anterograde tracing have revealed the existence of a prominent direct cholinergic pathway from the pedunculopontine and laterodorsal tegmental nuclei to the dorsal striatum and nucleus accumbens. The identification of the importance of this pathway is essential for creating a complete model of cholinergic modulation in the striatum, and it opens the question as to whether other populations of cholinergic neurons may also contribute to such modulation. Here, using novel viral tracing technologies based on phenotype-specific fluorescent reporter expression in combination with retrograde tracing, we aimed to define other sources of cholinergic innervation of the striatum. Systematic mapping of the projections of all cholinergic structures in the brain (Ch1 to Ch8) by means of conditional tracing of cholinergic axons, revealed that the only extrinsic source of cholinergic innervation arises in the brainstem pedunculopontine and laterodorsal tegmental nuclei. Our results thus place the pedunculopontine and laterodorsal nuclei in a key and exclusive position to provide extrinsic cholinergic modulation of the activity of the striatal systems. PMID:26834571

  13. Modified expression of peripheral blood lymphocyte muscarinic cholinergic receptors in asthmatic children.

    PubMed

    Cherubini, Emanuela; Tabbì, Luca; Scozzi, Davide; Mariotta, Salvatore; Galli, Elena; Carello, Rossella; Avitabile, Simona; Tayebati, Seyed Koshrow; Amenta, Francesco; De Vitis, Claudia; Mancini, Rita; Ricci, Alberto

    2015-07-15

    Lymphocytes possess an independent cholinergic system. We assessed the expression of muscarinic cholinergic receptors in lymphocytes from 49 asthmatic children and 10 age matched controls using Western blot. We demonstrated that CD4+ and CD8+ T cells expressed M2 and M4 muscarinic receptors which density were significantly increased in asthmatic children in comparison with controls. M2 and M4 receptor increase was strictly related with IgE and fraction of exhaled nitric oxide (FeNO) measurements and with impairment in objective measurements of airway obstruction. Increased lymphocyte muscarinic cholinergic receptor expression may concur with lung cholinergic dysfunction and with inflammatory molecular framework in asthma.

  14. Maturation and maintenance of cholinergic medial septum neurons require glucocorticoid receptor signaling.

    PubMed

    Guijarro, Christian; Rutz, Susanne; Rothmaier, Katharina; Turiault, Marc; Zhi, Qixia; Naumann, Thomas; Frotscher, Michael; Tronche, Francois; Jackisch, Rolf; Kretz, Oliver

    2006-05-01

    Glucocorticoids have been shown to influence trophic processes in the nervous system. In particular, they seem to be important for the development of cholinergic neurons in various brain regions. Here, we applied a genetic approach to investigate the role of the glucocorticoid receptor (GR) on the maturation and maintenance of cholinergic medial septal neurons between P15 and one year of age by using a mouse model carrying a CNS-specific conditional inactivation of the GR gene (GRNesCre). The number of choline acetyltransferase and p75NTR immuno-positive neurons in the medial septum (MS) was analyzed by stereology in controls versus mutants. In addition, cholinergic fiber density, acetylcholine release and cholinergic key enzyme activity of these neurons were determined in the hippocampus. We found that in GRNesCre animals the number of medial septal cholinergic neurons was significantly reduced during development. In addition, cholinergic cell number further decreased with aging in these mutants. The functional GR gene is therefore required for the proper maturation and maintenance of medial septal cholinergic neurons. However, the loss of cholinergic neurons in the medial septum is not accompanied by a loss of functional cholinergic parameters of these neurons in their target region, the hippocampus. This pinpoints to plasticity of the septo-hippocampal system, that seems to compensate for the septal cell loss by sprouting of the remaining neurons.

  15. Development of myenteric cholinergic neurons in ChAT-Cre;R26R-YFP mice.

    PubMed

    Hao, Marlene M; Bornstein, Joel C; Young, Heather M

    2013-10-01

    Cholinergic neurons are the major excitatory neurons of the enteric nervous system (ENS), and include intrinsic sensory neurons, interneurons, and excitatory motor neurons. Cholinergic neurons have been detected in the embryonic ENS; however, the development of these neurons has been difficult to study as they are difficult to detect prior to birth using conventional immunohistochemistry. In this study we used ChAT-Cre;R26R-YFP mice to examine the development of cholinergic neurons in the gut of embryonic and postnatal mice. Cholinergic (YFP+) neurons were first detected at embryonic day (E)11.5, and the proportion of cholinergic neurons gradually increased during pre- and postnatal development. At birth, myenteric cholinergic neurons comprised less than half of their adult proportions in the small intestine (25% of myenteric neurons were YFP+ at P0 compared to 62% in adults). The earliest cholinergic neurons appear to mainly project anally. Projections into the presumptive circular muscle were first observed at E14.5. A subpopulation of cholinergic neurons coexpress calbindin through embryonic and postnatal development, but only a small proportion coexpressed neuronal nitric oxide synthase. Our study shows that cholinergic neurons in the ENS develop over a protracted period of time.

  16. Effect of Trasina, an ayurvedic herbal formulation, on experimental models of Alzheimer's disease and central cholinergic markers in rats.

    PubMed

    Bhattacharya, S K; Kumar, A

    1997-01-01

    Trasina is a herbal formulation of some Indian medicinal plants classified in Ayurveda, the classic Indian system of medicine, as Medhyarasayanas or drugs reputed to improve memory and intellect. Earlier experimental and clinical investigations have indicated that the formulation has a memory-facilitating action. In this investigation, the effect of Trasina, after subchronic administration for 21 days, was assessed on two rodent models simulating some biochemical features known to be associated with Alzheimer's disease (AD). The models, in rats, included intracerebroventricularly (i.c.v.) administered colchicine (15 micrograms/rat) and lesioning of nucleus basalis magnocellularis (nbm) by ibotenic acid (10 micrograms/rat). Retention of an active avoidance response was used as the memory parameter. In addition, the effect of Trasina was evaluated on i.c.v. colchicine-induced depletion of acetylcholine (ACh) concentrations, reduction in choline acetyltransferase (ChAT) activity, and decrease in muscarinic cholinergic receptor (MCR) binding in rat brain frontal cortex and hippocampus. The behavioral and biochemical investigations were done 7, 14, and 21 days after colchicine or ibotenic acid lesioning. Trasina (200 and 500 mg/kg) was administered orally (p.o.) once daily for 21 days, the first drug administration being given just prior to lesioning. Colchicine and ibotenic acid induced marked retention deficit of active avoidance learning that was attenuated in a dose-dependent manner by Trasina after 14 and 21 days of treatment. Frontal cortical and hippocampal ACh concentrations, ChAT activity and MCR binding was significantly reduced after colchicine treatment. Trasina (200 and 500 mg/kg) reversed these deficits after 14 and 21 days of treatment. The findings indicate that the herbal formulation exerts a significant nootropic effect after subchronic treatment that may be due to reversal of perturbed cholinergic function.

  17. Tumor Targeting via Integrin Ligands

    PubMed Central

    Marelli, Udaya Kiran; Rechenmacher, Florian; Sobahi, Tariq Rashad Ali; Mas-Moruno, Carlos; Kessler, Horst

    2013-01-01

    Selective and targeted delivery of drugs to tumors is a major challenge for an effective cancer therapy and also to overcome the side-effects associated with current treatments. Overexpression of various receptors on tumor cells is a characteristic structural and biochemical aspect of tumors and distinguishes them from physiologically normal cells. This abnormal feature is therefore suitable for selectively directing anticancer molecules to tumors by using ligands that can preferentially recognize such receptors. Several subtypes of integrin receptors that are crucial for cell adhesion, cell signaling, cell viability, and motility have been shown to have an upregulated expression on cancer cells. Thus, ligands that recognize specific integrin subtypes represent excellent candidates to be conjugated to drugs or drug carrier systems and be targeted to tumors. In this regard, integrins recognizing the RGD cell adhesive sequence have been extensively targeted for tumor-specific drug delivery. Here we review key recent examples on the presentation of RGD-based integrin ligands by means of distinct drug-delivery systems, and discuss the prospects of such therapies to specifically target tumor cells. PMID:24010121

  18. Comparative peptide mapping of adrenergic and cholinergic neutrotransmitter receptors by reverse-HPLC

    SciTech Connect

    Kerlavage, A.R.; Fraser, C.M.; Venter, J.C.; Shreeve, S.M.

    1986-05-01

    The authors have developed a methodology for unambiguously identifying neutrotransmitter receptor proteins and comparing structural features of related receptors as well as those in different classes. These techniques have been applied to the study of the ..cap alpha..- and ..beta..-adrenergic receptors as well as the muscarinic and nicotinic cholinergic receptors. The method involves comparative peptide mapping of total proteolytic digests of receptor proteins by microbore reverse-phase HPLC in conjunction with covalent modification by specific receptor ligands or (/sup 125/I)-labeling. Femtomole amounts of receptor can be analyzed. The maps of all the (/sup 125/I)-labeled receptors contain between 20 and 25 peaks and each receptor has a unique profile although all are similar in the very hydrophobic region of the map. The ..cap alpha../sub 2/-adrenergic receptor from human platelets has a higher total percentage of hydrophilic peaks than either the guinea pig lung ..beta../sub 2/-adrenergic receptor or the porcine atria muscarinic receptor. Two forms of the muscarinic receptor have very similar but clearly distinct profiles. The nicotinic receptor subunits show a higher degree of homology by this method than was revealed by previous mapping studies which utilized SDS-PAGE or thin-layer techniques.

  19. Nipecotic acid ethyl ester: a cholinergic agonist that may differentiate muscarinic receptor subtypes

    SciTech Connect

    Zorn, S.H.; Duman, R.S.; Enna, S.J.; Krogsgaard-Larsen, P.; Micheletti, R.; Giraldo, E.; Giachetti, A.

    1986-03-05

    Reports indicate that nipecotic acid ethyl ester (NAEE) displays cholinomimetic properties in vivo. In the present study a series of physiological and biochemical tests were conducted to characterize this action. NAEE had a negative inotropic effect on the guinea pig atrium, and stimulated contraction of the guinea pig ileum and isolated mouse stomach strip at concentrations similar to bethanechol (BCH). The atrial and ilial effects were reversed by atropine. Unlike BCH, NAEE had no effect on basal acid secretion in the isolated mouse stomach at concentrations < 100 ..mu..M. NAEE was more potent than carbachol (CCH) in displacing /sup 3/H-ONB binding from rat brain membranes. The potency of NAEE to inhibit antagonist binding in rat heart membranes was enhanced by Mg/sup + +/ (Hill coefficient < 1.0) and reduced by Gpp(NH)p. Like CCH, NAEE inhibited GTP-stimulated adenylate cyclase in rat brain striatal membranes. As compared to CCH, NAEE had little effect (< 5%) as a stimulator of inositol phosphate (IP) production in rat brain slices. The results indicate that NAEE is a direct-acting muscarinic receptor agonist. Moreover, its differential effects on acid secretion, IP accumulation, and adenylate cyclase suggest that it may be useful for defining cholinergic receptor subclasses.

  20. Biochemical and immunological studies of the Muscarinic acetylcholine receptor

    SciTech Connect

    Gainer, M.W.

    1985-01-01

    Muscarinic acetylcholine receptors were solubilized from bovine brain membranes with 3(3-cholamidopropyl)dimethylammonio)propanesulfonate (CHAPS). A combination of 10 mM CHAPS and 1 M NaCl solubilized 15-40% of the specific receptor binding sites from these membranes. The solubilized receptors displayed high affinity binding of the muscarinic antagonist, (/sup 3/H)quinuclidinyl benzilate with a K/sub D/ = 300 pM. In addition, the solubilized and retained guanyl nucleotide regulation of agonist binding characteristic of membrane bound receptors. Gel filtration experiments showed that solubilized receptors from cortex and cerebellum had different elution profiles. Analysis by sucrose density gradient centrifugation showed that receptors in the lower molecular weight peak sedimented with a coefficient of 5S. Receptors in the larger molecular weight peak sedimented to the bottom of the gradient. Attempts to purify receptors by chromatography on propylbenzilycholine Sepharose were unsuccessful. The technique used to attach the ligand to the solid support, however, was used to synthesize a PrBCM-BSA conjugate and the conjugate used as an antigen in the production of anti-ligand antibodies. Two anti-PrBCM monoclonal antibodies were isolated that recognize muscarinic but not nicotinic cholinergic ligands. The abilities of the antibodies to recognize other muscarinic ligands indicated the antibodies recognized a portion of PrBCM involved in binding to the receptor. Construction of an antibody affinity resin resulted in the purification of this fragment a minimum of 170 fold.

  1. Characterization of Channelrhodopsin and Archaerhodopsin in Cholinergic Neurons of Cre-Lox Transgenic Mice

    PubMed Central

    Hedrick, Tristan; Danskin, Bethanny; Larsen, Rylan S.; Ollerenshaw, Doug; Groblewski, Peter; Valley, Matthew; Olsen, Shawn; Waters, Jack

    2016-01-01

    The study of cholinergic signaling in the mammalian CNS has been greatly facilitated by the advent of mouse lines that permit the expression of reporter proteins, such as opsins, in cholinergic neurons. However, the expression of opsins could potentially perturb the physiology of opsin-expressing cholinergic neurons or mouse behavior. Indeed, the published literature includes examples of cellular and behavioral perturbations in preparations designed to drive expression of opsins in cholinergic neurons. Here we investigate expression of opsins, cellular physiology of cholinergic neurons and behavior in two mouse lines, in which channelrhodopsin-2 (ChR2) and archaerhodopsin (Arch) are expressed in cholinergic neurons using the Cre-lox system. The two mouse lines were generated by crossing ChAT-Cre mice with Cre-dependent reporter lines Ai32(ChR2-YFP) and Ai35(Arch-GFP). In most mice from these crosses, we observed expression of ChR2 and Arch in only cholinergic neurons in the basal forebrain and in other putative cholinergic neurons in the forebrain. In small numbers of mice, off-target expression occurred, in which fluorescence did not appear limited to cholinergic neurons. Whole-cell recordings from fluorescently-labeled basal forebrain neurons revealed that both proteins were functional, driving depolarization (ChR2) or hyperpolarization (Arch) upon illumination, with little effect on passive membrane properties, spiking pattern or spike waveform. Finally, performance on a behavioral discrimination task was comparable to that of wild-type mice. Our results indicate that ChAT-Cre x reporter line crosses provide a simple, effective resource for driving indicator and opsin expression in cholinergic neurons with few adverse consequences and are therefore an valuable resource for studying the cholinergic system. PMID:27243816

  2. Glutamatergic contributions to nicotinic acetylcholine receptor agonist-evoked cholinergic transients in the prefrontal cortex.

    PubMed

    Parikh, Vinay; Man, Kingson; Decker, Michael W; Sarter, Martin

    2008-04-02

    Because modulation of cortical cholinergic neurotransmission has been hypothesized to represent a necessary mechanism mediating the beneficial cognitive effects of nicotine and nicotinic acetylcholine receptor (nAChR) subtype-selective agonists, we used choline-sensitive microelectrodes for the real-time measurement of ACh release in vivo, to characterize cholinergic transients evoked by nicotine and the alpha4beta2*-selective nAChR partial agonist 2-methyl-3-(2-(S)-pyrrolindinylmethoxy)pyridine dihydrochloride (ABT-089), a clinically effective cognition enhancer. In terms of cholinergic signal amplitudes, ABT-089 was significantly more potent than nicotine in evoking ACh cholinergic transients. Moreover, cholinergic signals evoked by ABT-089 were characterized by faster signal rise time and decay rate. The nAChR antagonist mecamylamine attenuated the cholinergic signals evoked by either compound. Cholinergic signals evoked by ABT-089 were more efficaciously attenuated by the relatively beta2*-selective nAChR antagonist dihydro-beta-erythroidine. The alpha7 antagonist methyllycaconitine did not affect choline signal amplitudes but partly attenuated the relatively slow decay rate of nicotine-evoked cholinergic signals. Furthermore, the AMPA receptor antagonist DNQX as well as the NMDA receptor antagonist APV more potently attenuated cholinergic signals evoked by ABT-089. Using glutamate-sensitive microelectrodes to measure glutamatergic transients, ABT-089 was more potent than nicotine in evoking glutamate release. Glutamatergic signals were highly sensitive to tetrodotoxin-induced blockade of voltage-regulated sodium channels. Together, the present evidence indicates that compared with nicotine, ABT-089 evokes more potent and sharper cholinergic transients in prefrontal cortex. Glutamatergic mechanisms necessarily mediate the cholinergic effects of nAChR agonists in the prefrontal cortex.

  3. Biochemical transformation of coals

    DOEpatents

    Lin, M.S.; Premuzic, E.T.

    1999-03-23

    A method of biochemically transforming macromolecular compounds found in solid carbonaceous materials, such as coal is provided. The preparation of new microorganisms, metabolically weaned through challenge growth processes to biochemically transform solid carbonaceous materials at extreme temperatures, pressures, pH, salt and toxic metal concentrations is also disclosed. 7 figs.

  4. Biochemical transformation of coals

    DOEpatents

    Lin, Mow S.; Premuzic, Eugene T.

    1999-03-23

    A method of biochemically transforming macromolecular compounds found in solid carbonaceous materials, such as coal is provided. The preparation of new microorganisms, metabolically weaned through challenge growth processes to biochemically transform solid carbonaceous materials at extreme temperatures, pressures, pH, salt and toxic metal concentrations is also disclosed.

  5. Cholinergic Interneurons Are Differentially Distributed in the Human Striatum

    PubMed Central

    Bernácer, Javier; Prensa, Lucía; Giménez-Amaya, José Manuel

    2007-01-01

    Background The striatum (caudate nucleus, CN, and putamen, Put) is a group of subcortical nuclei involved in planning and executing voluntary movements as well as in cognitive processes. Its neuronal composition includes projection neurons, which connect the striatum with other structures, and interneurons, whose main roles are maintaining the striatal organization and the regulation of the projection neurons. The unique electrophysiological and functional properties of the cholinergic interneurons give them a crucial modulating function on the overall striatal response. Methodology/Principle Findings This study was carried out using stereological methods to examine the volume and density (cells/mm3) of these interneurons, as visualized by choline acetyltransferase (ChAT) immunoreactivity, in the following territories of the CN and Put of nine normal human brains: 1) precommissural head; 2) postcommissural head; 3) body; 4) gyrus and 5) tail of the CN; 6) precommissural and 7) postcommissural Put. The distribution of ChAT interneurons was analyzed with respect to the topographical, functional and chemical territories of the dorsal striatum. The CN was more densely populated by cholinergic neurons than the Put, and their density increased along the anteroposterior axis of the striatum with the CN body having the highest neuronal density. The associative territory of the dorsal striatum was by far the most densely populated. The striosomes of the CN precommissural head and the postcommissural Put contained the greatest number of ChAT-ir interneurons. The intrastriosomal ChAT-ir neurons were abundant on the periphery of the striosomes throughout the striatum. Conclusions/Significance All these data reveal that cholinergic interneurons are differentially distributed in the distinct topographical and functional territories of the human dorsal striatum, as well as in its chemical compartments. This heterogeneity may indicate that the posterior aspects of the CN require a

  6. Cholinergic Machinery as Relevant Target in Acute Lymphoblastic T Leukemia.

    PubMed

    Dobrovinskaya, Oxana; Valencia-Cruz, Georgina; Castro-Sánchez, Luis; Bonales-Alatorre, Edgar O; Liñan-Rico, Liliana; Pottosin, Igor

    2016-01-01

    Various types of non-neuronal cells, including tumors, are able to produce acetylcholine (ACh), which acts as an autocrine/paracrine growth factor. T lymphocytes represent a key component of the non-neuronal cholinergic system. T cells-derived ACh is involved in a stimulation of their activation and proliferation, and acts as a regulator of immune response. The aim of the present work was to summarize the data about components of cholinergic machinery in T lymphocytes, with an emphasis on the comparison of healthy and leukemic T cells. Cell lines derived from acute lymphoblastic leukemias of T lineage (T-ALL) were found to produce a considerably higher amount of ACh than healthy T lymphocytes. Additionally, ACh produced by T-ALL is not efficiently hydrolyzed, because acetylcholinesterase (AChE) activity is drastically decreased in these cells. Up-regulation of muscarinic ACh receptors was also demonstrated at expression and functional level, whereas nicotinic ACh receptors seem to play a less important role and not form functional channels in cells derived from T-ALL. We hypothesized that ACh over-produced in T-ALL may act as an autocrine growth factor and play an important role in leukemic clonal expansion through shaping of intracellular Ca(2+) signals. We suggest that cholinergic machinery may be attractive targets for new drugs against T-ALL. Specifically, testing of high affinity antagonists of muscarinic ACh receptors as well as antagomiRs, which interfere with miRNAs involved in the suppression of AChE expression, may be the first choice options.

  7. Novel aspects of cholinergic regulation of colonic ion transport

    PubMed Central

    Bader, Sandra; Diener, Martin

    2015-01-01

    Nicotinic receptors are not only expressed by excitable tissues, but have been identified in various epithelia. One aim of this study was to investigate the expression of nicotinic receptors and their involvement in the regulation of ion transport across colonic epithelium. Ussing chamber experiments with putative nicotinic agonists and antagonists were performed at rat colon combined with reverse transcription polymerase chain reaction (RT-PCR) detection of nicotinic receptor subunits within the epithelium. Dimethylphenylpiperazinium (DMPP) and nicotine induced a tetrodotoxin-resistant anion secretion leading to an increase in short-circuit current (Isc) across colonic mucosa. The response was suppressed by the nicotinic receptor antagonist hexamethonium. RT-PCR experiments revealed the expression of α2, α4, α5, α6, α7, α10, and β4 nicotinic receptor subunits in colonic epithelium. Choline, the product of acetylcholine hydrolysis, is known for its affinity to several nicotinic receptor subtypes. As a strong acetylcholinesterase activity was found in colonic epithelium, the effect of choline on Isc was examined. Choline induced a concentration-dependent, tetrodotoxin-resistant chloride secretion which was, however, resistant against hexamethonium, but was inhibited by atropine. Experiments with inhibitors of muscarinic M1 and M3 receptors revealed that choline-evoked secretion was mainly due to a stimulation of epithelial M3 receptors. Although choline proved to be only a partial agonist, it concentration-dependently desensitized the response to acetylcholine, suggesting that it might act as a modulator of cholinergically induced anion secretion. Thus the cholinergic regulation of colonic ion transport – up to now solely explained by cholinergic submucosal neurons stimulating epithelial muscarinic receptors – is more complex than previously assumed. PMID:26236483

  8. Cholinergic Machinery as Relevant Target in Acute Lymphoblastic T Leukemia

    PubMed Central

    Dobrovinskaya, Oxana; Valencia-Cruz, Georgina; Castro-Sánchez, Luis; Bonales-Alatorre, Edgar O.; Liñan-Rico, Liliana; Pottosin, Igor

    2016-01-01

    Various types of non-neuronal cells, including tumors, are able to produce acetylcholine (ACh), which acts as an autocrine/paracrine growth factor. T lymphocytes represent a key component of the non-neuronal cholinergic system. T cells-derived ACh is involved in a stimulation of their activation and proliferation, and acts as a regulator of immune response. The aim of the present work was to summarize the data about components of cholinergic machinery in T lymphocytes, with an emphasis on the comparison of healthy and leukemic T cells. Cell lines derived from acute lymphoblastic leukemias of T lineage (T-ALL) were found to produce a considerably higher amount of ACh than healthy T lymphocytes. Additionally, ACh produced by T-ALL is not efficiently hydrolyzed, because acetylcholinesterase (AChE) activity is drastically decreased in these cells. Up-regulation of muscarinic ACh receptors was also demonstrated at expression and functional level, whereas nicotinic ACh receptors seem to play a less important role and not form functional channels in cells derived from T-ALL. We hypothesized that ACh over-produced in T-ALL may act as an autocrine growth factor and play an important role in leukemic clonal expansion through shaping of intracellular Ca2+ signals. We suggest that cholinergic machinery may be attractive targets for new drugs against T-ALL. Specifically, testing of high affinity antagonists of muscarinic ACh receptors as well as antagomiRs, which interfere with miRNAs involved in the suppression of AChE expression, may be the first choice options. PMID:27630569

  9. Enhanced Cholinergic Activity Improves Cerebral Blood Flow during Orthostatic Stress

    PubMed Central

    Serrador, Jorge M.; Freeman, Roy

    2017-01-01

    Cerebral blood flow (CBF) and consequently orthostatic tolerance when upright depends on dilation of the cerebral vasculature in the face of reduced perfusion pressure associated with the hydrostatic gradient. However, it is still unclear if cholinergic activation plays a role in this dilation. To determine if enhancing central cholinergic activity with the centrally acting acetylcholinesterase inhibitor, physostigmine would increase CBF when upright compared to the peripherally acting acetylcholinesterase inhibitor, neostigmine, or saline. We performed a randomized double-blind dose-ranging study that took place over 3 days in a hospital-based research lab. Eight healthy controls (six women and two men, mean age, 26 years; range 21–33) were given infusions of physostigmine, neostigmine, or saline on three different days. Five-minute tilts were repeated at baseline (no infusion), Dose 1 (0.2 μg/kg/min physostigmine; 0.1 μg/kg/min neostigmine) and Dose 2 (0.6 μg/kg/min physostigmine or 0.3 μg/kg/min neostigmine), and placebo (0.9% NaCl). Cerebral blood velocity, beat-to-beat blood pressure, and end-tidal CO2 were continuously measured during tilts. Physostigmine (0.6 μg/kg/min) resulted in higher cerebral blood velocity during tilt (90.5 ± 1.5%) than the equivalent neostigmine (85.5 ± 2.6%) or saline (84.8 ± 1.7%) trials (P < 0.05). This increase occurred despite a greater postural hypocapnia, suggesting physostigmine had a direct vasodilatory effect on the cerebral vasculature. Cerebral hypoperfusion induced by repeated tilts was eliminated by infusion of physostigmine not neostigmine. In conclusion, this study provides the first evidence that enhancement of central, not peripheral, cholinergic activity attenuates the physiological decrease in CBF seen during upright tilt. These data support the need for further research to determine if enhancing central cholinergic activity may improve symptoms in patients with symptomatic

  10. Cholinergic and neurogenic mechanisms in obstructive airways disease.

    PubMed

    Bleecker, E R

    1986-11-14

    Although primary neural control of airway function is through parasympathetic pathways, more recent evidence indicates that there are important adrenergic and non-adrenergic, non-cholinergic neural mechanisms that may also influence respiratory function. The parasympathetic nervous system component includes neural receptors in the airways as well as afferent and efferent pathways that travel in the vagus nerves. Afferent vagal sensory receptors mediate the response to irritant or rapidly adapting receptor activation, Hering-Breuer, and the unmyelinated "C" fibers or "J" receptor pathways. The motor component of the parasympathetic nervous system has several important functions that regulate tone in normal system has several important functions that regulate tone in normal and obstructed airways. These pathways affect the following respiratory structures: bronchial smooth muscle; the mucociliary system; the larynx; and the nose. Finally, the parasympathetic nervous system may play a role in some species in the control of breathing and in the hyperpneic responses associated with airflow obstruction. In addition to cholinergic neural mechanisms, bronchomotor tone may also be influenced by adrenergic mechanisms and non-adrenergic, non-cholinergic neural pathways. Although there is minimal innervation of the airways by the sympathetic nervous system, there is ample evidence that beta-adrenoreceptors are present on bronchial smooth muscle. Beta-receptor stimulation not only relaxes airway smooth muscle, but also inhibits mediator release from mast cells in the airways and may alter vascular permeability. Alpha-adrenoreceptors are found in human airways and stimulation of these receptors causes bronchoconstriction. Although the importance of alpha-adrenoreceptors has been questioned, recent evidence suggests that alpha stimulation may play a role in cold air- and exercise-induced asthma. Finally, non-adrenergic, non-cholinergic nerves have been shown to cause relaxation

  11. Mechanisms mediating cholinergic antral circular smooth muscle contraction in rats

    PubMed Central

    Wrzos, Helena F; Tandon, Tarun; Ouyang, Ann

    2004-01-01

    AIM: To investigate the pathway (s) mediating rat antral circular smooth muscle contractile responses to the cholinomimetic agent, bethanechol and the subtypes of muscarinic receptors mediating the cholinergic contraction. METHODS: Circular smooth muscle strips from the antrum of Sprague-Dawley rats were mounted in muscle baths in Krebs buffer. Isometric tension was recorded. Cumulative concentration-response curves were obtained for (+)-cis-dioxolane (cD), a nonspecific muscarinic agonist, at 10-8-10-4 mol/L, in the presence of tetrodotoxin (TTX, 10-7 mol/L). Results were normalized to cross sectional area. A repeat concentration-response curve was obtained after incubation of the muscle for 90 min with antagonists for M1 (pirenzepine), M2 (methoctramine) and M3 (darifenacin) muscarinic receptor subtypes. The sensitivity to PTX was tested by the ip injection of 100 mg/kg of PTX 5 d before the experiment. The antral circular smooth muscles were removed from PTX-treated and non-treated rats as strips and dispersed smooth muscle cells to identify whether PTX-linked pathway mediated the contractility to bethanechol. RESULTS: A dose-dependent contractile response observed with bethanechol, was not affected by TTX. The pretreatment of rats with pertussis toxin decreased the contraction induced by bethanechol. Lack of calcium as well as the presence of the L-type calcium channel blocker, nifedipine, also inhibited the cholinergic contraction, with a reduction in response from 2.5 ± 0.4 g/mm2 to 1.2 ± 0.4 g/mm2 (P < 0.05). The dose-response curves were shifted to the right by muscarinic antagonists in the following order of affinity: darifenacin (M3) > methocramine (M2) > pirenzepine (M1). CONCLUSION: The muscarinic receptors-dependent contraction of rat antral circular smooth muscles was linked to the signal transduction pathway(s) involving pertussis-toxin sensitive GTP-binding proteins and to extracellular calcium via L-type voltage gated calcium channels. The

  12. Cholinergic Interneurons Underlie Spontaneous Dopamine Release in Nucleus Accumbens.

    PubMed

    Yorgason, Jordan T; Zeppenfeld, Douglas M; Williams, John T

    2017-02-22

    The release of dopamine from terminals in the NAc is regulated by a number of factors, including voltage-gated ion channels, D2-autoreceptors, and nAChRs. Cholinergic interneurons (CINs) drive dopamine release through activation of nAChRs on dopamine terminals. Using cyclic voltammetry in mouse brain slices, nAChR-dependent spontaneous dopamine transients and the mechanisms underlying the origin were examined in the NAc. Spontaneous events were infrequent (0.3 per minute), but the rate and amplitude were increased after blocking Kv channels with 4-aminopyridine. Although the firing frequency of CINs was increased by blocking glutamate reuptake with TBOA and the Sk blocker apamin, only 4-aminopyridine increased the frequency of dopamine transients. In contrast, inhibition of CIN firing with the μ/δ selective opioid [Met(5)]enkephalin (1 μm) decreased spontaneous dopamine transients. Cocaine increased the rate and amplitude of dopamine transients, suggesting that the activity of the dopamine transporter limits the detection of these events. In the presence of cocaine, the rate of spontaneous dopamine transients was further increased after blocking D2-autoreceptors. Blockade of muscarinic receptors had no effect on evoked dopamine release, suggesting that feedback inhibition of acetylcholine release was not involved. Thus, although spontaneous dopamine transients are reliant on nAChRs, the frequency was not strictly governed by the activity of CINs. The increase in frequency of spontaneous dopamine transients induced by cocaine was not due to an increase in cholinergic tone and is likely a product of an increase in detection resulting from decreased dopamine reuptake.SIGNIFICANCE STATEMENT The actions of dopamine in the NAc are thought to be responsible for endogenous reward and the reinforcing properties of drugs of abuse, such as psychostimulants. The present work examines the mechanisms underlying nAChR-induced spontaneous dopamine release. This study

  13. Features of cholinergic cardia regulation under conditions of hypokinesia

    NASA Technical Reports Server (NTRS)

    Markova, Y. A.; Bondarenko, Y. I.; Bolyarskaya, V. A.; Fayfura, V. V.; Rosolovskiy, A. P.; Babinskaya, L. N.

    1980-01-01

    The features of cholinergic processes in the heart on the 4th, 8th, 16th and 30th days of hypokinesia were studied in experiments on 382 albino rats. It was shown that hypokinesia is attended by increased acetylcholine content in the atria, reduced choline acetyltransferase activity in the atria and ventricles and by increased activity of acetylcholinesterase in the ventricles and of pseudocholinesterase in both parts of the heart. The sensitivity of the heart to exogenic acetylcholine and to stimulation of the vagus nerve increases.

  14. Down regulation of the muscarinic cholinergic receptor of the rat prostate following castration

    SciTech Connect

    Shapiro, E.; Miller, A.R.; Lepor, H.

    1985-07-01

    Prostatic secretion is dependent upon the integrity of the endocrine and autonomic nervous systems and is dramatically influenced by muscarinic cholinergic analogs. In this study, the authors have used radioligand receptor binding methods on whole tissue homogenates and slide mounted tissue sections of rat prostate to determine whether androgens regulate the density of muscarinic cholinergic receptors in the prostate. The muscarinic cholinergic receptor binding affinities (Kd) of (/sup 3/H) N-methylscopolamine in prostatic homogenates obtained from intact, castrate, and castrate rats receiving testosterone replacement (castrate + T) were similar (0.07 to 0.10 nM). The muscarinic cholinergic receptor binding capacity decreased 73 per cent following castration. Testosterone administration restored the density of muscarinic cholinergic receptors in castrate rats to intact levels. In order to ensure that the loss of receptor density was not due to a decrease in the epithelial: stromal cell ratio, the number of muscarinic cholinergic receptors per unit area of epithelium was determined in the 3 treatment groups using autoradiography on slide mounted tissue sections. The density of muscarinic cholinergic receptors in a unit area of epithelium was decreased 91 per cent following castration. Testosterone administration restored the density of muscarinic cholinergic receptors in the castrate rats to intact levels. The modulation of neurotransmitter receptors by steroid hormones may be a mechanism by which sex steroids regulate biological responsiveness of target tissues.

  15. Interactions between β-amyloid and central cholinergic neurons: implications for Alzheimer's disease

    PubMed Central

    Kar, Satyabrata; Slowikowski, Stephen P.M.; Westaway, David; Mount, Howard T.J.

    2004-01-01

    Alzheimer's disease is an age-related neurodegenerative disorder that is characterized by a progressive loss of memory and deterioration of higher cognitive functions. The brain of an individual with Alzheimer's disease exhibits extracellular plaques of aggregated β-amyloid protein (Aβ), intracellular neurofibrillary tangles that contain hyperphosphorylated tau protein and a profound loss of basal forebrain cholinergic neurons that innervate the hippocampus and the neocortex. Aβ accumulation may trigger or contribute to the process of neurodegeneration. However, the mechanisms whereby Aβ induces basal forebrain cholinergic cell loss and cognitive impairment remain obscure. Physiologically relevant concentrations of Aβ-related peptides have acute, negative effects on multiple aspects of acetylcholine (ACh) synthesis and release, without inducing toxicity. These data suggest a neuromodulatory influence of the peptides on central cholinergic functions. Long-term exposure to micromolar Aβ induces cholinergic cell toxicity, possibly via hyperphosphorylation of tau protein. Conversely, activation of selected cholinergic receptors has been shown to alter the processing of the amyloid precursor protein as well as phosphorylation of tau protein. A direct interaction between Aβ and nicotinic ACh receptors has also been demonstrated. This review addresses the role of Aβ-related peptides in regulating the function and survival of central cholinergic neurons and the relevance of these effects to cholinergic deficits in Alzheimer's disease. Understanding the functional interrelations between Aβ peptides, cholinergic neurons and tau phosphorylation will unravel the biologic events that precede neurodegeneration and may lead to the development of more effective pharmacotherapies for Alzheimer's disease. PMID:15644984

  16. Dietary polyunsaturated fatty acids improve cholinergic transmission in the aged brain

    USDA-ARS?s Scientific Manuscript database

    The cholinergic theory of aging states that dysfunction of cholinergic neurons arising from the basal forebrain and terminating in the cortex and hippocampus may be involved in the cognitive decline that occurs during aging and Alzheimer’s disease. Despite years of research, pharmacological interven...

  17. Modeling Parkinson’s Disease Falls Associated With Brainstem Cholinergic Systems Decline

    PubMed Central

    Kucinski, Aaron; Sarter, Martin

    2015-01-01

    In addition to the primary disease-defining symptoms, approximately half of patients with Parkinson’s disease (PD) suffer from postural instability, impairments in gait control and a propensity for falls. Consistent with evidence from patients, we previously demonstrated that combined striatal dopamine (DA) and basal forebrain (BF) cholinergic cell loss causes falls in rats traversing dynamic surfaces. Because evidence suggests that degeneration of brainstem cholinergic neurons arising from the pedunculopontine nucleus (PPN) also contributes to impaired gait and falls, here we assessed the effects of selective cholinergic PPN lesions in combination with striatal DA loss or BF cholinergic cells loss as well as losses in all 3 regions. Results indicate that all combination losses that included the BF cholinergic system slowed traversal and increased slips and falls. However, the performance of rats with losses in all 3 regions (PPN, BF, and DA) was not more severely impaired than following combined BF cholinergic and striatal DA lesions. These results confirm the hypothesis that BF cholinergic-striatal disruption of attentional-motor interactions is a primary source of falls. Additional losses of PPN cholinergic neurons may worsen posture and gait control in situations not captured by the current testing conditions. PMID:25798629

  18. Effect of ageing on post-lesion oestradiol treatment on mouse cholinergic neurones in vivo.

    PubMed

    Kőszegi, Z; Abrahám, I M

    2012-09-01

    A single 17β-oestradiol (E(2)) treatment reduces the loss in cholinergic fibre density in the cortex after NMDA lesion into the nucleus basalis magnocellularis (NBM) of the basal forebrain (BF) in young female mice. In the present study, we examined whether age influences this protective effect of E(2) on cholinergic neurones in male and female mice. Gonad-intact young and aged animals of both sexes were treated with E(2) after unilateral NMDA lesion into the NBM. NMDA lesion elicited ipsilateral cholinergic cell loss in the NBM and ipsilateral fibre loss in the somatosensory cortex to the same extent, irrespective of age or sex. A single E(2) injection performed 1 h post-lesion did not affect the cholinergic cell loss but reduced the loss of fibres in the ipsilateral cortex in young male and female mice. By contrast, E(2) did not have an effect on the NMDA-induced cholinergic cell and fibre loss in aged male or female mice. The oestrous stage of young female mice did not alter the number of cholinergic cells/fibres or the protective effect of E(2) on cholinergic fibres after NMDA injection. Our results show that E(2) has a protective action on BF cholinergic fibres in young males and females, although the treatment potential of E(2) declines with age.

  19. The interrelationship between cholinergic pathway in the magnocellular paraventricular nucleus and natriuresis.

    PubMed

    Wang, Chun Y; Wang, Min; Zhang, Heng A; Deng, Xi J; Wang, Peng X; Mao, Hui Z; Lin, Yuan; Jiang, Chun L

    2015-07-01

    The central nervous system is known to play important roles in the regulation of renal sodium excretion. The present study was designed to reveal the interrelationship between cholinergic pathway in the magnocellular paraventricular nucleus (PVN) and the natriuresis induced by brain cholinergic stimuli. The results indicated that urinary sodium excretion was significantly increased at 40 min after intracerebroventricular (ICV) injection of carbachol (CBC). Immunohistochemical studies showed that CBC increased choline acetyltransferase-immunoreactivity (ChAT-IR) in the magnocellular PVN and renal proximal convoluted tubule (PCT), respectively. After pretreatment with atropine, urinary sodium excretion was significantly reduced, and carbachol-increased ChAT-IR in the magnocellular PVN and PCT was also significantly decreased. These results suggested that brain cholinergic stimuli induced the natriuresis and increased the activity of cholinergic neurons in the magnocellular PVN and cholinergic system in the PCT. The blockade of muscarinic receptor completely abolished the natriuresis and partially inhibited carbachol-exerted stimulatory effects in the magnocellular PVN and PCT. To summarize, brain cholinergic pathway and peripheral cholinergic system in kidney were found to contribute to the natriuresis following brain cholinergic stimulation. Our findings revealed novel evidence that PVN was involved in the natriuresis via humoral mechanisms.

  20. Differential effects of ω-conotoxin GVIA on cholinergic and non-cholinergic secretomotor neurones in the guinea-pig small intestine

    PubMed Central

    Vremec, Melinda A; Bornstein, Joel C; Wright, Christine E; Humphrey, Andrea

    1997-01-01

    Ussing chambers were used to study the effects of the specific N-type Ca2+ channel antagonist, ω-conotoxin GVIA, on neurally evoked secretion across isolated submucosa/mucosa preparations from the small intestine of the guinea-pig. Cholinergic and non-cholinergic neurones were stimulated with 10 μM dimethylphenylpiperazinium (DMPP). Non-cholinergic secretomotor neurones were preferentially stimulated with 100 nM 5-hydroxytryptamine (5-HT), while cholinergic secretomotor neurones were preferentially stimulated with 3 μM 5-HT in the presence of the 5-HT2 receptor antagonist ketanserin (30 nM). ω-Conotoxin GVIA (1 nM–1 μM) depressed the secretion evoked by DMPP in a concentration-dependent manner, but a substantial residual response was observed. Hyoscine (100 nM) significantly depressed secretion evoked by DMPP, but did not prevent further depression of secretion by ω-conotoxin GVIA. The toxin was substantially more effective when the non-cholinergic secretomotor neurones were preferentially activated with 100 nM 5-HT, with a decrease in the response of more than 75% of the control value in the presence of 1 μM ω-conotoxin GVIA. ω-Conotoxin GVIA (1 μM) was relatively ineffective against secretion evoked by preferential activation of cholinergic secretomotor neurones with 3 μM 5-HT in the presence of 30 nM ketanserin, inhibiting the response by less than 33%. However, this inhibition was significant. Both 100 nM hyoscine and 300 nM tetrodotoxin abolished this effect of ω-conotoxin GVIA. It is concluded that N-type Ca2+ channels play a major role in transmitter release from non-cholinergic secretomotor neurones, but are not important for release from cholinergic secretomotor neurones in the guinea-pig small intestine. PMID:9154332

  1. A cellular and regulatory map of the cholinergic nervous system of C. elegans

    PubMed Central

    Pereira, Laura; Kratsios, Paschalis; Serrano-Saiz, Esther; Sheftel, Hila; Mayo, Avi E; Hall, David H; White, John G; LeBoeuf, Brigitte; Garcia, L Rene; Alon, Uri; Hobert, Oliver

    2015-01-01

    Nervous system maps are of critical importance for understanding how nervous systems develop and function. We systematically map here all cholinergic neuron types in the male and hermaphrodite C. elegans nervous system. We find that acetylcholine (ACh) is the most broadly used neurotransmitter and we analyze its usage relative to other neurotransmitters within the context of the entire connectome and within specific network motifs embedded in the connectome. We reveal several dynamic aspects of cholinergic neurotransmitter identity, including a sexually dimorphic glutamatergic to cholinergic neurotransmitter switch in a sex-shared interneuron. An expression pattern analysis of ACh-gated anion channels furthermore suggests that ACh may also operate very broadly as an inhibitory neurotransmitter. As a first application of this comprehensive neurotransmitter map, we identify transcriptional regulatory mechanisms that control cholinergic neurotransmitter identity and cholinergic circuit assembly. DOI: http://dx.doi.org/10.7554/eLife.12432.001 PMID:26705699

  2. Optogenetic stimulation of cholinergic brainstem neurons during focal limbic seizures: Effects on cortical physiology.

    PubMed

    Furman, Moran; Zhan, Qiong; McCafferty, Cian; Lerner, Benjamin A; Motelow, Joshua E; Meng, Jin; Ma, Chanthia; Buchanan, Gordon F; Witten, Ilana B; Deisseroth, Karl; Cardin, Jessica A; Blumenfeld, Hal

    2015-12-01

    Focal temporal lobe seizures often cause impaired cortical function and loss of consciousness. Recent work suggests that the mechanism for depressed cortical function during focal seizures may depend on decreased subcortical cholinergic arousal, which leads to a sleep-like state of cortical slow-wave activity. To test this hypothesis, we sought to directly activate subcortical cholinergic neurons during focal limbic seizures to determine the effects on cortical function. Here we used an optogenetic approach to selectively stimulate cholinergic brainstem neurons in the pedunculopontine tegmental nucleus during focal limbic seizures induced in a lightly anesthetized rat model. We found an increase in cortical gamma activity and a decrease in delta activity in response to cholinergic stimulation. These findings support the mechanistic role of reduced subcortical cholinergic arousal in causing cortical dysfunction during seizures. Through further work, electrical or optogenetic stimulation of subcortical arousal networks may ultimately lead to new treatments aimed at preventing cortical dysfunction during seizures.

  3. Cholinergic deficiency involved in vascular dementia: possible mechanism and strategy of treatment

    PubMed Central

    Wang, Juan; Zhang, Hai-yan; Tang, Xi-can

    2009-01-01

    Vascular dementia (VaD) is a progressive neurodegenerative disease with a high prevalence. Several studies have recently reported that VaD patients present cholinergic deficits in the brain and cerebrospinal fluid (CSF) that may be closely related to the pathophysiology of cognitive impairment. Moreover, cholinergic therapies have shown promising effects on cognitive improvement in VaD patients. The precise mechanisms of these cholinergic agents are currently not fully understood; however, accumulating evidence indicates that these drugs may act through the cholinergic anti-inflammatory pathway, in which the efferent vagus nerve signals suppress pro-inflammatory cytokine release and inhibit inflammation, although regulation of oxidative stress and energy metabolism, alleviation of apoptosis may also be involved. In this paper, we provide a brief overview of the cholinergic treatment strategy for VaD and its relevant mechanisms of anti-inflammation. PMID:19574993

  4. Aging causes partial loss of basal forebrain but no loss of pontine reticular cholinergic neurons.

    PubMed

    Baskerville, Karen A; Kent, Caroline; Nicolle, Michelle M; Gallagher, Michela; McKinney, Michael

    2006-11-27

    Cholinergic degeneration occurs in several neurodegenerative diseases. To investigate whether normal aging causes selective neurodegeneration, we compared counts of cholinergic neurons in the medial septum/vertical limb of the diagonal band and pedunculopontine and laterodorsal tegmental nuclei of the brainstem in young and aged Long-Evans rats characterized for their spatial learning ability in the Morris water maze. A subset of aged rats (aged-unimpaired) learned the spatial learning task as young rats, whereas another group (age-impaired) showed poorer learning than young animals. In the medial septum/diagonal band, there was a significant loss (-23%, P < 0.02) of cholinergic neurons in aged-impaired animals compared with young subjects. In the brainstem, there were no significant differences in cholinergic cell number in any group. This selective loss of cholinergic neurons may, in part, account for the cognitive deficits observed in aging and, considering previous findings in this model, may be related to oxidative stress.

  5. Cholinergic regulatory lymphocytes reestablish neuromodulation of innate immune responses in sepsis

    PubMed Central

    Peña, Geber; Cai, Bolin; Ramos, Laura; Vida, Gergely; Deitch, Edwin A.; Ulloa, Luis

    2011-01-01

    Many anti-inflammatory strategies successful in healthy animals fail in clinical trials for sepsis, in part, because sepsis normally involves immunocompromised patients, and massive lymphocyte apoptosis prevents immunomodulation. Here we report a new set of regulatory lymphocytes able to reestablish the cholinergic anti-inflammatory modulation and to provide therapeutic advantages in sepsis. Vagus nerve controls inflammation in healthy, but not in septic mice. Likewise, vagus nerve and cholinergic agonists fail to control inflammation in splenectomized and nude animals. Unlike typical suppressor CD25+ cells, CD4+CD25− lymphocytes reestablish the anti-inflammatory potential of the vagus nerve and cholinergic agonists in immunocompromised and septic animals. These cholinergic lymphocytes reestablish splenic protection and the potential of cholinergic agonists to rescue immunocompromised animals from established sepsis. These results reveal these new regulatory lymphocytes as the first known physiological target for neuromodulation of the innate immune responses, and a potential therapeutic target for sepsis. PMID:21666060

  6. Selectively driving cholinergic fibers optically in the thalamic reticular nucleus promotes sleep.

    PubMed

    Ni, Kun-Ming; Hou, Xiao-Jun; Yang, Ci-Hang; Dong, Ping; Li, Yue; Zhang, Ying; Jiang, Ping; Berg, Darwin K; Duan, Shumin; Li, Xiao-Ming

    2016-02-11

    Cholinergic projections from the basal forebrain and brainstem are thought to play important roles in rapid eye movement (REM) sleep and arousal. Using transgenic mice in which channelrhdopsin-2 is selectively expressed in cholinergic neurons, we show that optical stimulation of cholinergic inputs to the thalamic reticular nucleus (TRN) activates local GABAergic neurons to promote sleep and protect non-rapid eye movement (NREM) sleep. It does not affect REM sleep. Instead, direct activation of cholinergic input to the TRN shortens the time to sleep onset and generates spindle oscillations that correlate with NREM sleep. It does so by evoking excitatory postsynaptic currents via α7-containing nicotinic acetylcholine receptors and inducing bursts of action potentials in local GABAergic neurons. These findings stand in sharp contrast to previous reports of cholinergic activity driving arousal. Our results provide new insight into the mechanisms controlling sleep.

  7. Selectively driving cholinergic fibers optically in the thalamic reticular nucleus promotes sleep

    PubMed Central

    Ni, Kun-Ming; Hou, Xiao-Jun; Yang, Ci-Hang; Dong, Ping; Li, Yue; Zhang, Ying; Jiang, Ping; Berg, Darwin K; Duan, Shumin; Li, Xiao-Ming

    2016-01-01

    Cholinergic projections from the basal forebrain and brainstem are thought to play important roles in rapid eye movement (REM) sleep and arousal. Using transgenic mice in which channelrhdopsin-2 is selectively expressed in cholinergic neurons, we show that optical stimulation of cholinergic inputs to the thalamic reticular nucleus (TRN) activates local GABAergic neurons to promote sleep and protect non-rapid eye movement (NREM) sleep. It does not affect REM sleep. Instead, direct activation of cholinergic input to the TRN shortens the time to sleep onset and generates spindle oscillations that correlate with NREM sleep. It does so by evoking excitatory postsynaptic currents via α7-containing nicotinic acetylcholine receptors and inducing bursts of action potentials in local GABAergic neurons. These findings stand in sharp contrast to previous reports of cholinergic activity driving arousal. Our results provide new insight into the mechanisms controlling sleep. DOI: http://dx.doi.org/10.7554/eLife.10382.001 PMID:26880556

  8. Diminished trkA receptor signaling reveals cholinergic-attentional vulnerability of aging

    PubMed Central

    Parikh, Vinay; Howe, William M.; Welchko, Ryan M.; Naughton, Sean X.; D'Amore, Drew E.; Han, Daniel H.; Deo, Monika; Turner, David L.; Sarter, Martin

    2012-01-01

    The cellular mechanisms underlying the exceptional vulnerability of the basal forebrain (BF) cholinergic neurons during pathological aging have remained elusive. Here we employed an adeno-associated viral vector-based RNA interference (AAV-RNAi) strategy to suppress the expression of trkA receptors by cholinergic neurons in the nucleus basalis of Meynert/ substantia innominata (nMB/SI) of adult and aged rats. Suppression of trkA receptor expression impaired attentional performance selectively in aged rats. Performance correlated with trkA levels in the nMB/SI. TrkA knockdown neither affected nMB/SI cholinergic cell counts nor the decrease in cholinergic cell size observed in aged rats. However, trkA suppression augmented an age-related decrease in the density of cortical cholinergic processes and attenuated the capacity of cholinergic neurons to release ACh. The capacity of cortical synapses to release acetylcholine (ACh) in vivo was also lower in aged/trkA-AAV-infused rats than in aged or young controls, and it correlated with their attentional performance. Furthermore, age-related increases in cortical proNGF and p75 receptor levels interacted with the vector-induced loss of trkA receptors to shift NGF signaling toward p75-mediated suppression of the cholinergic phenotype, thereby attenuating cholinergic function and impairing attentional performance. These effects model the abnormal trophic regulation of cholinergic neurons and cognitive impairments in patients with early Alzheimer's disease. This rat model is useful for identifying the mechanisms rendering aging cholinergic neurons vulnerable as well as for studying the neuropathological mechanisms that are triggered by disrupted trophic signaling. PMID:23228124

  9. Cholinergic Signaling Exerts Protective Effects in Models of Sympathetic Hyperactivity-Induced Cardiac Dysfunction

    PubMed Central

    Gavioli, Mariana; Lara, Aline; Almeida, Pedro W. M.; Lima, Augusto Martins; Damasceno, Denis D.; Rocha-Resende, Cibele; Ladeira, Marina; Resende, Rodrigo R.; Martinelli, Patricia M.; Melo, Marcos Barrouin; Brum, Patricia C.; Fontes, Marco Antonio Peliky; Souza Santos, Robson A.; Prado, Marco A. M.; Guatimosim, Silvia

    2014-01-01

    Cholinergic control of the heart is exerted by two distinct branches; the autonomic component represented by the parasympathetic nervous system, and the recently described non-neuronal cardiomyocyte cholinergic machinery. Previous evidence has shown that reduced cholinergic function leads to deleterious effects on the myocardium. Yet, whether conditions of increased cholinergic signaling can offset the pathological remodeling induced by sympathetic hyperactivity, and its consequences for these two cholinergic axes are unknown. Here, we investigated two models of sympathetic hyperactivity: i) the chronic beta-adrenergic receptor stimulation evoked by isoproterenol (ISO), and ii) the α2A/α2C-adrenergic receptor knockout (KO) mice that lack pre-synaptic adrenergic receptors. In both models, cholinergic signaling was increased by administration of the cholinesterase inhibitor, pyridostigmine. First, we observed that isoproterenol produces an autonomic imbalance characterized by increased sympathetic and reduced parasympathetic tone. Under this condition transcripts for cholinergic proteins were upregulated in ventricular myocytes, indicating that non-neuronal cholinergic machinery is activated during adrenergic overdrive. Pyridostigmine treatment prevented the effects of ISO on autonomic function and on the ventricular cholinergic machinery, and inhibited cardiac remodeling. α2A/α2C-KO mice presented reduced ventricular contraction when compared to wild-type mice, and this dysfunction was also reversed by cholinesterase inhibition. Thus, the cardiac parasympathetic system and non-neuronal cardiomyocyte cholinergic machinery are modulated in opposite directions under conditions of increased sympathetic drive or ACh availability. Moreover, our data support the idea that pyridostigmine by restoring ACh availability is beneficial in heart disease. PMID:24992197

  10. Cholinergic transmission underlies modulation of frustration by open field exposure.

    PubMed

    Psyrdellis, Mariana; Pautassi, Ricardo Marcos; Mustaca, Alba; Justel, Nadia

    2016-01-01

    Frustration can be defined as an emotional state generated by the omission or devaluation in the quantity or quality of an expected appetitive reward. Thus, reactivity to a reward is affected by prior experience with the different reinforcer values of that reward. This phenomenon is known as incentive relativity, and can be studied by different paradigms. Although methodologically simple, the exploration of a novel open field (OF) is a complex situation that involves several behavioral processes, including stress induction and novelty detection. OF exposure can enhance or block the acquisition of associative and non-associative memories. These experiments evaluated the effect of OF exploration on frustration and the role played by the cholinergic system in this phenomenon. OF exploration before first or second trial of incentive downshift modulated the expression of frustration. This effect of OF was blocked by the administration of scopolamine either before or after OF exploration. These results indicate that the cholinergic system is involved in the acquisition and consolidation of OF information.

  11. Evaluation of a patient with both aquagenic and cholinergic urticaria.

    PubMed

    Davis, R S; Remigio, L K; Schocket, A L; Bock, S A

    1981-12-01

    An 11-yr-old girl presented with a history of urticaria induced by warm or cool showers, exercise, and emotional stimuli. During evaluation she repeatedly developed generalized punctate urticaria, pruritus, palpitations, and headaches after warm baths or exercise, and she had a positive methacholine skin test. She developed similar lesions and pruritus after local application of sterile water, tap water, ethanol, normal saline, or 3% saline. The diagnosis of combined aquagenic and cholinergic urticaria was made and presented a unique opportunity to study and compare mediator release and clinical symptoms in both conditions. The patient was submerged in bath water at either 37 degree or 41 degree C to induce either aquagenic or cholinergic urticaria, respectively. Histamine was released into the systemic circulation in both conditions in a similar time course; however, systemic symptoms occurred only after the 41 degree C bath. After failure to induce tolerance to the 41 degree C bath water, hydroxyzine therapy was instituted. One week later she was rechallenged; few symptoms appeared, and a rise in serum histamine was not detected as had been shown in previous challenges. The data suggest that in our patient, hydroxyzine may have contributed to the inhibition of both histamine release and the appearance of symptoms during hot bath challenging.

  12. Dopamine depresses cholinergic oscillatory network activity in rat hippocampus.

    PubMed

    Weiss, Torsten; Veh, Rüdiger W; Heinemann, Uwe

    2003-11-01

    The dopaminergic neuronal system is implicated in cognitive processes in a variety of brain regions including the mesolimbic system. We have investigated whether dopamine also affects synchronized network activity in the hippocampus, which has been ascribed to play a pivotal role in memory formation. Gamma frequency (20-80 Hz) oscillations were induced by the cholinergic agonist carbachol. Oscillatory activity was examined in area CA3 of Wistar rat hippocampal slices, employing field potential and intracellular recordings. Application of carbachol initiated synchronized population activity in the gamma band at 40 Hz. Induced gamma activity persisted over hours and required GABAA receptors. Dopamine reversibly decreased the integrated gamma band power of the carbachol rhythm by 62%, while its frequency was not changed. By contrast, individual pyramidal cells recorded during carbachol-induced field gamma activity exhibited theta frequency (5-15 Hz) membrane potential oscillations that were not altered by dopamine. The dopamine effect on the field gamma activity was mimicked by the D1 receptor agonist SKF-383393 and partially antagonized by the D1 antagonist SCH-23390. Conversely, the D2 receptor agonist quinpirole failed to depress the oscillations, and the D2 antagonist sulpiride did not prevent the suppressive dopamine effect. The data indicate that dopamine strongly depresses cholinergic gamma oscillations in area CA3 of rat hippocampus by activation of D1-like dopamine receptors and that this effect is most likely mediated via impairment of interneurons involved in generation and maintenance of the carbachol-induced network rhythm.

  13. Repeated effects of asenapine on adrenergic and cholinergic muscarinic receptors.

    PubMed

    Choi, Yong Kee; Wong, Erik H F; Henry, Brian; Shahid, Mohammed; Tarazi, Frank I

    2010-04-01

    Adrenergic (alpha1 and alpha2) and cholinergic muscarinic (M1-M5) receptor binding in rat forebrain was quantified after 4 wk of twice-daily subcutaneous administration of asenapine or vehicle. Asenapine (0.03, 0.1, and 0.3 mg/kg) produced increases in [3H]prazosin binding to alpha1-adrenergic receptors in the medial prefrontal cortex (mPFC: 30%, 39%, 57%) and dorsolateral frontal cortex (DFC: 27%, 37%, 53%) and increased [3H]RX821002 binding to alpha2-adrenergic receptors in mPFC (36%, 43%, 50%) and DFC (41%, 44%, 52%). Despite showing no appreciable affinity for muscarinic receptors, asenapine produced regionally selective increases in binding of [3H]QNB to M1-M5 receptors in mPFC (26%, 31%, 43%), DFC (27%, 34%, 41%), and hippocampal CA1 (40%, 44%, 42%) and CA3 (25%, 52%, 48%) regions. These regionally selective effects of asenapine on adrenergic and cholinergic muscarinic receptor subtypes may contribute to its beneficial clinical effects in the treatment of schizophrenia and bipolar disorder.

  14. A Reaction-Diffusion Model of Cholinergic Retinal Waves

    PubMed Central

    Lansdell, Benjamin; Ford, Kevin; Kutz, J. Nathan

    2014-01-01

    Prior to receiving visual stimuli, spontaneous, correlated activity in the retina, called retinal waves, drives activity-dependent developmental programs. Early-stage waves mediated by acetylcholine (ACh) manifest as slow, spreading bursts of action potentials. They are believed to be initiated by the spontaneous firing of Starburst Amacrine Cells (SACs), whose dense, recurrent connectivity then propagates this activity laterally. Their inter-wave interval and shifting wave boundaries are the result of the slow after-hyperpolarization of the SACs creating an evolving mosaic of recruitable and refractory cells, which can and cannot participate in waves, respectively. Recent evidence suggests that cholinergic waves may be modulated by the extracellular concentration of ACh. Here, we construct a simplified, biophysically consistent, reaction-diffusion model of cholinergic retinal waves capable of recapitulating wave dynamics observed in mice retina recordings. The dense, recurrent connectivity of SACs is modeled through local, excitatory coupling occurring via the volume release and diffusion of ACh. In addition to simulation, we are thus able to use non-linear wave theory to connect wave features to underlying physiological parameters, making the model useful in determining appropriate pharmacological manipulations to experimentally produce waves of a prescribed spatiotemporal character. The model is used to determine how ACh mediated connectivity may modulate wave activity, and how parameters such as the spontaneous activation rate and sAHP refractory period contribute to critical wave size variability. PMID:25474327

  15. Low-level microwave irradiation and central cholinergic systems

    SciTech Connect

    Lai, H.; Carino, M.A.; Horita, A.; Guy, A.W. )

    1989-05-01

    Our previous research showed that 45 min of exposure to low-level, pulsed microwaves (2450-MHz, 2-microseconds pulses, 500 pps, whole-body average specific absorption rate 0.6 W/kg) decreased sodium-dependent high-affinity choline uptake in the frontal cortex and hippocampus of the rat. The effects of microwaves on central cholinergic systems were further investigated in this study. Increases in choline uptake activity in the frontal cortex, hippocampus, and hypothalamus were observed after 20 min of acute microwave exposure, and tolerance to the effect of microwaves developed in the hypothalamus, but not in the frontal cortex and hippocampus, of rats subjected to ten daily 20-min exposure sessions. Furthermore, the effects of acute microwave irradiation on central choline uptake could be blocked by pretreating the animals before exposure with the narcotic antagonist naltrexone. In another series of experiments, rats were exposed to microwaves in ten daily sessions of either 20 or 45 min, and muscarinic cholinergic receptors in different regions of the brain were studied by 3H-QNB binding assay. Decreases in concentration of receptors occurred in the frontal cortex and hippocampus of rats subjected to ten 20-min microwave exposure sessions, whereas increase in receptor concentration occurred in the hippocampus of animals exposed to ten 45-min sessions. This study also investigated the effects of microwave exposure on learning in the radial-arm maze. Rats were trained in the maze to obtain food reinforcements immediately after 20 or 45 min of microwave exposure.

  16. Bovine pancreatic polypeptide as an antagonist of muscarinic cholinergic receptors

    SciTech Connect

    Pan, G.Z.; Lu, L.; Qian, J.; Xue, B.G.

    1987-03-01

    In dispersed acini from rat pancreas, it was found that bovine pancreatic polypeptide (BPP) and its C-fragment hexapeptide amide (PP-6), at concentrations of 0.1 and 30 ..mu..M, respectively, could significantly inhibit amylase secretion stimulated by carbachol, and this inhibition by BPP was dose dependent. /sup 45/Ca outflux induced by carbachol was also inhibited by BPP or PP-6, but they had no effect on cholecystokinin octapeptide- (CCK-8) or A23187-stimulated /sup 45/Ca outflux. BPP was also capable of displacing the specific binding of (/sup 3/H)-quinuclidinyl benzilate to its receptors, and it possessed a higher affinity (K/sub i/35nM) than carbachol (K/sub i/ 1.8 ..mu..M) in binding with M-receptors. It is concluded from this study that BPP acts as an antagonist of muscarinic cholinergic receptors in rat pancreatic acini. In addition, BPP inhibited the potentiation of amylase secretion caused by the combination of carbachol plus secretin or vasoactive intestinal peptide. This may be a possible explanation of the inhibitory effect of BPP on secretin-induced pancreatic enzyme secretion shown in vivo, since pancreatic enzyme secretion stimulated by secretin under experimental conditions may be the result of potentiation of enzyme release produced by the peptide in combination with a cholinergic stimulant.

  17. Somatostatin modulates cholinergic neurotransmission in canine antral muscle

    SciTech Connect

    Koelbel, C.B.; van Deventer, G.; Khawaja, S.; Mogard, M.; Walsh, J.H.; Mayer, E.A. UCLA Medical Center, Torrance, CA )

    1988-02-01

    Somatostatin has been shown to inhibit antral motility in vivo. To examine the effect of somatostatin on cholinergic neurotransmission in the canine antrum, we studied the mechanical response of and the release of ({sup 3}H)acetylcholine from canine longitudinal antral muscle in response to substance P, gastrin 17, and electrical stimulation. In unstimulated tissues, somatostatin had a positive inotropic effect on spontaneous phasic contractions. In tissues stimulated with substance P and gastrin 17, but not with electrical stimulation, somatostatin inhibited the phasic inotropic response dose dependently. This inhibitory effect was abolished by indomethacin. Somatostatin stimulated the release of prostaglandin E{sub 2} radioimmunoreactivity, and prostaglandin E{sub 2} inhibited the release of ({sup 3}H)acetylcholine induced by substance P and electrical stimulation. Somatostatin increased the release of ({sup 3}H)acetylcholine from unstimulated tissues by a tetrodotoxin-sensitive mechanism but inhibited the release induced by substance P and electrical stimulation. These results suggest that somatostatin has a dual modulatory effect on cholinergic neutrotransmission in canine longitudinal antral muscle. This effect is excitatory in unstimulated tissues and inhibitory in stimulated tissues. The inhibitory effect is partially mediated by prostaglandins.

  18. Dopaminergic and Cholinergic Modulation of Striatal Tyrosine Hydroxylase Interneurons

    PubMed Central

    Ibáñez-Sandoval, Osvaldo; Xenias, Harry S.; Tepper, James M.; Koós, Tibor

    2015-01-01

    The recent electrophysiological characterization of TH-expressing GABAergic interneurons (THINs) in the neostriatum revealed an unexpected degree of diversity of interneurons in this brain area (Ibáñez-Sandoval et al., 2010, Unal et al., 2011, 2013). Despite being relatively few in number, THINs may play a significant role in transmitting and distributing extra- and intrastriatal neuromodulatory signals in the striatal circuitry. Here we investigated the dopaminergic and cholinergic regulation of THINs in vitro. We found that the dominant effect of dopamine was a dramatic enhancement of the ability of THINs to generate long-lasting depolarizing plateau potentials (PPs). Interestingly, the same effect could also be elicited by amphetamine-induced release of endogenous dopamine suggesting that THINs may exhibit similar responses to changes in extracellular dopamine concentration in vivo. The enhancement of PPs in THINs is perhaps the most pronounced effect of dopamine on the intrinsic excitability of neostriatal neurons described to date. Further, we demonstrate that all subtypes of THINSs tested also express nicotinic cholinergic receptors. All THIS responded, albeit differentially, with depolarization, PPs and spiking to brief application of nicotinic agonists. Powerful modulation of the nonlinear integrative properties of THINs by dopamine and the direct depolarization of these neurons by acetylcholine may play important roles in mediating the effects of these neuromodulators in the neostriatum with potentially important implications for understanding the mechanisms of neuropsychiatric disorders affecting the basal ganglia. PMID:25908399

  19. Biochemical Engineering Fundamentals

    ERIC Educational Resources Information Center

    Bailey, J. E.; Ollis, D. F.

    1976-01-01

    Discusses a biochemical engineering course that is offered as part of a chemical engineering curriculum and includes topics that influence the behavior of man-made or natural microbial or enzyme reactors. (MLH)

  20. Cholinergic ventral forebrain grafts into the neocortex improve passive avoidance memory in a rat model of Alzheimer disease.

    PubMed Central

    Fine, A; Dunnett, S B; Björklund, A; Iversen, S D

    1985-01-01

    The memory dysfunction of Alzheimer disease has been associated with a cortical cholinergic deficiency and loss of cholinergic neurons of the nucleus basalis of Meynert. This cholinergic component of Alzheimer disease can be modeled in the rat by ibotenic acid lesions of the cholinergic nucleus basalis magnocellularis. The memory impairment caused by such unilateral lesions, as reflected in passive avoidance behavior, is reversed by grafts into the deafferented neocortex of embryonic neurons of the cholinergic ventral forebrain, but not by grafts of noncholinergic hippocampal cells. Images PMID:3860857

  1. LIBRA: LIgand Binding site Recognition Application.

    PubMed

    Hung, Le Viet; Caprari, Silvia; Bizai, Massimiliano; Toti, Daniele; Polticelli, Fabio

    2015-12-15

    In recent years, structural genomics and ab initio molecular modeling activities are leading to the availability of a large number of structural models of proteins whose biochemical function is not known. The aim of this study was the development of a novel software tool that, given a protein's structural model, predicts the presence and identity of active sites and/or ligand binding sites. The algorithm implemented by ligand binding site recognition application (LIBRA) is based on a graph theory approach to find the largest subset of similar residues between an input protein and a collection of known functional sites. The algorithm makes use of two predefined databases for active sites and ligand binding sites, respectively, derived from the Catalytic Site Atlas and the Protein Data Bank. Tests indicate that LIBRA is able to identify the correct binding/active site in 90% of the cases analyzed, 90% of which feature the identified site as ranking first. As far as ligand binding site recognition is concerned, LIBRA outperforms other structure-based ligand binding sites detection tools with which it has been compared. The application, developed in Java SE 7 with a Swing GUI embedding a JMol applet, can be run on any OS equipped with a suitable Java Virtual Machine (JVM), and is available at the following URL: http://www.computationalbiology.it/software/LIBRAv1.zip. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. Selective Inducible Nitric Oxide Synthase Inhibitor Reversed Zinc Chloride-Induced Spatial Memory Impairment via Increasing Cholinergic Marker Expression.

    PubMed

    Tabrizian, Kaveh; Azami, Kian; Belaran, Maryam; Soodi, Maliheh; Abdi, Khosrou; Fanoudi, Sahar; Sanati, Mehdi; Mottaghi Dastjerdi, Negar; Soltany Rezaee-Rad, Mohammad; Sharifzadeh, Mohammad

    2016-10-01

    Zinc, an essential micronutrient and biochemical element of the human body, plays structural, catalytic, and regulatory roles in numerous physiological functions. In the current study, the effects of a pretraining oral administration of zinc chloride (10, 25, and 50 mg/kg) for 14 consecutive days and post-training bilateral intra-hippocampal infusion of 1400W as a selective inducible nitric oxide synthase (iNOS) inhibitor (10, 50, and 100 μM/side), alone and in combination, on the spatial memory retention in Morris water maze (MWM) were investigated. Animals were trained for 4 days and tested 48 h after completion of training. Also, the molecular effects of these compounds on the expression of choline acetyltransferase (ChAT), as a cholinergic marker in the CA1 region of the hippocampus and medial septal area (MSA), were evaluated. Behavioral and molecular findings of this study showed that a 2-week oral administration of zinc chloride (50 mg/kg) impaired spatial memory retention in MWM and decreased ChAT expression. Immunohistochemical analysis of post-training bilateral intra-hippocampal infusion of 1400W revealed a significant increase in ChAT immunoreactivity. Furthermore, post-training bilateral intra-hippocampal infusion of 1400W into the CA1 region of the hippocampus reversed zinc chloride-induced spatial memory impairment in MWM and significantly increased ChAT expression in comparison with zinc chloride-treated animals. Taken together, these results emphasize the role of selective iNOS inhibitors in reversing zinc chloride-induced spatial memory deficits via modulation of cholinergic marker expression.

  3. Sex differences in brain cholinergic activity in MSG-obese rats submitted to exercise.

    PubMed

    Sagae, Sara Cristina; Grassiolli, Sabrina; Raineki, Charlis; Balbo, Sandra Lucinei; Marques da Silva, Ana Carla

    2011-11-01

    Obesity is an epidemic disease most commonly caused by a combination of increased energy intake and lack of physical activity. The cholinergic system has been shown to be involved in the regulation of food intake and energy expenditure. Moreover, physical exercise promotes a reduction of fat pads and body mass by increasing energy expenditure, but also influences the cholinergic system. The aim of this study is to evaluate the interaction between physical exercise (swimming) and central cholinergic activity in rats treated with monosodium glutamate (MSG, a model for obesity) during infancy. Our results show that MSG treatment is able to induce obesity in male and female rats. Specifically, MSG-treated rats presented a reduced body mass and nasoanal length, and increased perigonadal and retroperitoneal fat pads in relation to the body mass. Physical exercise was able to reduce body mass in both male and female rats, but did not change the fat pads in MSG-treated rats. Increased food intake was only seen in MSG-treated females submitted to exercise. Cholinergic activity was increased in the cortex of MSG-treated females and physical exercise was able to reduce this activity. Thalamic cholinergic activity was higher in sedentary MSG-treated females and exercised MSG-treated males. Hypothalamic cholinergic activity was higher in male and female MSG-treated rats, and was not reduced by exercise in the 2 sexes. Taken together, these results show that MSG treatment and physical exercise have different effects in the cholinergic activity of males and females.

  4. [Comparison of distribution of cholinergic nerves and M2 receptors between rat atria and ventricles].

    PubMed

    Xu, Xiao-li; Zang, Wei-jin; Kang, Xin-qin; Li, Ming; Yu, Xiao-jiang; Chen, Li-na; Luo, Hong-li

    2006-08-01

    To investigate the general pattern of cholinergic nerve distribution and M(2) receptors in adult rat heart. Karnovsky-Roots histochemical staining combining point counting method and immunochemical SABC method with image analysis were used to identify the cholinergic nerves and M(2) receptors, respectively, in adult rat heart. Positive staining of cholinergic nerves and M(2) receptors was found in all regions of the rat heart, and the point count of cholinergic nerves in the atria was 4.6 times as much as that in ventricles, and the area of immunoreactive substance for M(2) receptors two-fold higher in the atria than in the ventricles. The point counts of the cholinergic nerves in the medial-layer myocardium were fewer than that in subepicardial and endocardial tissues of the left ventricular free wall. However, M(2) receptors were comparable among the 3 layers of the left free ventricular wall. Cholinergic nerves and M(2) receptors are located in both rat atria and ventricles, but their density is much higher in the atria than in the ventricles. Transmural heterogeneity characterizes cholinergic nerve innervation in the left ventricular free wall without significant differences in M(2) receptor density.

  5. Effect of voluntary running on adult hippocampal neurogenesis in cholinergic lesioned mice

    PubMed Central

    Ho, New Fei; Han, Siew Ping; Dawe, Gavin S

    2009-01-01

    Background Cholinergic neuronal dysfunction of the basal forebrain is observed in patients with Alzheimer's disease and dementia, and has been linked to decreased neurogenesis in the hippocampus, a region involved in learning and memory. Running is a robust inducer of adult hippocampal neurogenesis. This study aims to address the effect of running on hippocampal neurogenesis in lesioned mice, where septohippocampal cholinergic neurones have been selectively eliminated in the medial septum and diagonal band of Broca of the basal forebrain by infusion of mu-p75-saporin immunotoxin. Results Running increased the number of newborn cells in the dentate gyrus of the hippocampus in cholinergic denervated mice compared to non-lesioned mice 24 hours after injection of bromodeoxyuridine (BrdU). Although similar levels of surviving cells were present in cholinergic depleted animals and their respective controls four weeks after injection of BrdU, the majority of progenitors that proliferate in response to the initial period of running were not able to survive beyond one month without cholinergic input. Despite this, the running-induced increase in the number of surviving neurones was not affected by cholinergic depletion. Conclusion The lesion paradigm used here models aspects of the cholinergic deficits associated with Alzheimer's Disease and aging. We showed that running still increased the number of newborn cells in the adult hippocampal dentate gyrus in this model of neurodegenerative disease. PMID:19500352

  6. Time to pay attention: attentional performance time-stamped prefrontal cholinergic activation, diurnality, and performance.

    PubMed

    Paolone, Giovanna; Lee, Theresa M; Sarter, Martin

    2012-08-29

    Although the impairments in cognitive performance that result from shifting or disrupting daily rhythms have been demonstrated, the neuronal mechanisms that optimize fixed-time daily performance are poorly understood. We previously demonstrated that daily practice of a sustained attention task (SAT) evokes a diurnal activity pattern in rats. Here, we report that SAT practice at a fixed time produced practice time-stamped increases in prefrontal cholinergic neurotransmission that persisted after SAT practice was terminated and in a different environment. SAT time-stamped cholinergic activation occurred regardless of whether the SAT was practiced during the light or dark phase or in constant-light conditions. In contrast, prior daily practice of an operant schedule of reinforcement, albeit generating more rewards and lever presses per session than the SAT, neither activated the cholinergic system nor affected the animals' nocturnal activity pattern. Likewise, food-restricted animals exhibited strong food anticipatory activity (FAA) and attenuated activity during the dark phase but FAA was not associated with increases in prefrontal cholinergic activity. Removal of cholinergic neurons impaired SAT performance and facilitated the reemergence of nocturnality. Shifting SAT practice away from a fixed time resulted in significantly lower performance. In conclusion, these experiments demonstrated that fixed-time, daily practice of a task assessing attention generates a precisely practice time-stamped activation of the cortical cholinergic input system. Time-stamped cholinergic activation benefits fixed-time performance and, if practiced during the light phase, contributes to a diurnal activity pattern.

  7. Overnight Fasting Regulates Inhibitory Tone to Cholinergic Neurons of the Dorsomedial Nucleus of the Hypothalamus

    PubMed Central

    Groessl, Florian; Jeong, Jae Hoon; Talmage, David A.; Role, Lorna W.; Jo, Young-Hwan

    2013-01-01

    The dorsomedial nucleus of the hypothalamus (DMH) contributes to the regulation of overall energy homeostasis by modulating energy intake as well as energy expenditure. Despite the importance of the DMH in the control of energy balance, DMH-specific genetic markers or neuronal subtypes are poorly defined. Here we demonstrate the presence of cholinergic neurons in the DMH using genetically modified mice that express enhanced green florescent protein (eGFP) selectively in choline acetyltransferase (Chat)-neurons. Overnight food deprivation increases the activity of DMH cholinergic neurons, as shown by induction of fos protein and a significant shift in the baseline resting membrane potential. DMH cholinergic neurons receive both glutamatergic and GABAergic synaptic input, but the activation of these neurons by an overnight fast is due entirely to decreased inhibitory tone. The decreased inhibition is associated with decreased frequency and amplitude of GABAergic synaptic currents in the cholinergic DMH neurons, while glutamatergic synaptic transmission is not altered. As neither the frequency nor amplitude of miniature GABAergic or glutamatergic postsynaptic currents is affected by overnight food deprivation, the fasting-induced decrease in inhibitory tone to cholinergic neurons is dependent on superthreshold activity of GABAergic inputs. This study reveals that cholinergic neurons in the DMH readily sense the availability of nutrients and respond to overnight fasting via decreased GABAergic inhibitory tone. As such, altered synaptic as well as neuronal activity of DMH cholinergic neurons may play a critical role in the regulation of overall energy homeostasis. PMID:23585854

  8. Cholinergic enhancement of visual attention and neural oscillations in the human brain.

    PubMed

    Bauer, Markus; Kluge, Christian; Bach, Dominik; Bradbury, David; Heinze, Hans Jochen; Dolan, Raymond J; Driver, Jon

    2012-03-06

    Cognitive processes such as visual perception and selective attention induce specific patterns of brain oscillations. The neurochemical bases of these spectral changes in neural activity are largely unknown, but neuromodulators are thought to regulate processing. The cholinergic system is linked to attentional function in vivo, whereas separate in vitro studies show that cholinergic agonists induce high-frequency oscillations in slice preparations. This has led to theoretical proposals that cholinergic enhancement of visual attention might operate via gamma oscillations in visual cortex, although low-frequency alpha/beta modulation may also play a key role. Here we used MEG to record cortical oscillations in the context of administration of a cholinergic agonist (physostigmine) during a spatial visual attention task in humans. This cholinergic agonist enhanced spatial attention effects on low-frequency alpha/beta oscillations in visual cortex, an effect correlating with a drug-induced speeding of performance. By contrast, the cholinergic agonist did not alter high-frequency gamma oscillations in visual cortex. Thus, our findings show that cholinergic neuromodulation enhances attentional selection via an impact on oscillatory synchrony in visual cortex, for low rather than high frequencies. We discuss this dissociation between high- and low-frequency oscillations in relation to proposals that lower-frequency oscillations are generated by feedback pathways within visual cortex.

  9. Single-Cell Gene Expression Analysis of Cholinergic Neurons in the Arcuate Nucleus of the Hypothalamus

    PubMed Central

    Chua, Streamson; Jo, Young-Hwan

    2016-01-01

    The cholinoceptive system in the hypothalamus, in particular in the arcuate nucleus (ARC), plays a role in regulating food intake. Neurons in the ARC contain multiple neuropeptides, amines, and neurotransmitters. To study molecular and neurochemical heterogeneity of ARC neurons, we combine single-cell qRT-PCR and single-cell whole transcriptome amplification methods to analyze expression patterns of our hand-picked 60 genes in individual neurons in the ARC. Immunohistochemical and single-cell qRT-PCR analyses show choline acetyltransferase (ChAT)-expressing neurons in the ARC. Gene expression patterns are remarkably distinct in each individual cholinergic neuron. Two-thirds of cholinergic neurons express tyrosine hydroxylase (Th) mRNA. A large subset of these Th-positive cholinergic neurons is GABAergic as they express the GABA synthesizing enzyme glutamate decarboxylase and vesicular GABA transporter transcripts. Some cholinergic neurons also express the vesicular glutamate transporter transcript gene. POMC and POMC-processing enzyme transcripts are found in a subpopulation of cholinergic neurons. Despite this heterogeneity, gene expression patterns in individual cholinergic cells appear to be highly regulated in a cell-specific manner. In fact, membrane receptor transcripts are clustered with their respective intracellular signaling and downstream targets. This novel population of cholinergic neurons may be part of the neural circuitries that detect homeostatic need for food and control the drive to eat. PMID:27611685

  10. Orexin Receptor Activation Generates Gamma Band Input to Cholinergic and Serotonergic Arousal System Neurons and Drives an Intrinsic Ca(2+)-Dependent Resonance in LDT and PPT Cholinergic Neurons.

    PubMed

    Ishibashi, Masaru; Gumenchuk, Iryna; Kang, Bryan; Steger, Catherine; Lynn, Elizabeth; Molina, Nancy E; Eisenberg, Leonard M; Leonard, Christopher S

    2015-01-01

    A hallmark of the waking state is a shift in EEG power to higher frequencies with epochs of synchronized intracortical gamma activity (30-60 Hz) - a process associated with high-level cognitive functions. The ascending arousal system, including cholinergic laterodorsal (LDT) and pedunculopontine (PPT) tegmental neurons and serotonergic dorsal raphe (DR) neurons, promotes this state. Recently, this system has been proposed as a gamma wave generator, in part, because some neurons produce high-threshold, Ca(2+)-dependent oscillations at gamma frequencies. However, it is not known whether arousal-related inputs to these neurons generate such oscillations, or whether such oscillations are ever transmitted to neuronal targets. Since key arousal input arises from hypothalamic orexin (hypocretin) neurons, we investigated whether the unusually noisy, depolarizing orexin current could provide significant gamma input to cholinergic and serotonergic neurons, and whether such input could drive Ca(2+)-dependent oscillations. Whole-cell recordings in brain slices were obtained from mice expressing Cre-induced fluorescence in cholinergic LDT and PPT, and serotonergic DR neurons. After first quantifying reporter expression accuracy in cholinergic and serotonergic neurons, we found that the orexin current produced significant high frequency, including gamma, input to both cholinergic and serotonergic neurons. Then, by using a dynamic clamp, we found that adding a noisy orexin conductance to cholinergic neurons induced a Ca(2+)-dependent resonance that peaked in the theta and alpha frequency range (4-14 Hz) and extended up to 100 Hz. We propose that this orexin current noise and the Ca(2+) dependent resonance work synergistically to boost the encoding of high-frequency synaptic inputs into action potentials and to help ensure cholinergic neurons fire during EEG activation. This activity could reinforce thalamocortical states supporting arousal, REM sleep, and intracortical gamma.

  11. Orexin Receptor Activation Generates Gamma Band Input to Cholinergic and Serotonergic Arousal System Neurons and Drives an Intrinsic Ca2+-Dependent Resonance in LDT and PPT Cholinergic Neurons

    PubMed Central

    Ishibashi, Masaru; Gumenchuk, Iryna; Kang, Bryan; Steger, Catherine; Lynn, Elizabeth; Molina, Nancy E.; Eisenberg, Leonard M.; Leonard, Christopher S.

    2015-01-01

    A hallmark of the waking state is a shift in EEG power to higher frequencies with epochs of synchronized intracortical gamma activity (30–60 Hz) – a process associated with high-level cognitive functions. The ascending arousal system, including cholinergic laterodorsal (LDT) and pedunculopontine (PPT) tegmental neurons and serotonergic dorsal raphe (DR) neurons, promotes this state. Recently, this system has been proposed as a gamma wave generator, in part, because some neurons produce high-threshold, Ca2+-dependent oscillations at gamma frequencies. However, it is not known whether arousal-related inputs to these neurons generate such oscillations, or whether such oscillations are ever transmitted to neuronal targets. Since key arousal input arises from hypothalamic orexin (hypocretin) neurons, we investigated whether the unusually noisy, depolarizing orexin current could provide significant gamma input to cholinergic and serotonergic neurons, and whether such input could drive Ca2+-dependent oscillations. Whole-cell recordings in brain slices were obtained from mice expressing Cre-induced fluorescence in cholinergic LDT and PPT, and serotonergic DR neurons. After first quantifying reporter expression accuracy in cholinergic and serotonergic neurons, we found that the orexin current produced significant high frequency, including gamma, input to both cholinergic and serotonergic neurons. Then, by using a dynamic clamp, we found that adding a noisy orexin conductance to cholinergic neurons induced a Ca2+-dependent resonance that peaked in the theta and alpha frequency range (4–14 Hz) and extended up to 100 Hz. We propose that this orexin current noise and the Ca2+ dependent resonance work synergistically to boost the encoding of high-frequency synaptic inputs into action potentials and to help ensure cholinergic neurons fire during EEG activation. This activity could reinforce thalamocortical states supporting arousal, REM sleep, and intracortical gamma. PMID

  12. Melanoma Cell Galectin-1 Ligands Functionally Correlate with Malignant Potential.

    PubMed

    Yazawa, Erika M; Geddes-Sweeney, Jenna E; Cedeno-Laurent, Filiberto; Walley, Kempland C; Barthel, Steven R; Opperman, Matthew J; Liang, Jennifer; Lin, Jennifer Y; Schatton, Tobias; Laga, Alvaro C; Mihm, Martin C; Qureshi, Abrar A; Widlund, Hans R; Murphy, George F; Dimitroff, Charles J

    2015-07-01

    Galectin-1 (Gal-1)-binding to Gal-1 ligands on immune and endothelial cells can influence melanoma development through dampening antitumor immune responses and promoting angiogenesis. However, whether Gal-1 ligands are functionally expressed on melanoma cells to help control intrinsic malignant features remains poorly understood. Here, we analyzed expression, identity, and function of Gal-1 ligands in melanoma progression. Immunofluorescent analysis of benign and malignant human melanocytic neoplasms revealed that Gal-1 ligands were abundant in severely dysplastic nevi, as well as in primary and metastatic melanomas. Biochemical assessments indicated that melanoma cell adhesion molecule (MCAM) was a major Gal-1 ligand on melanoma cells that was largely dependent on its N-glycans. Other melanoma cell Gal-1 ligand activity conferred by O-glycans was negatively regulated by α2,6 sialyltransferase ST6GalNAc2. In Gal-1-deficient mice, MCAM-silenced (MCAM(KD)) or ST6GalNAc2-overexpressing (ST6(O/E)) melanoma cells exhibited slower growth rates, underscoring a key role for melanoma cell Gal-1 ligands and host Gal-1 in melanoma growth. Further analysis of MCAM(KD) or ST6(O/E) melanoma cells in cell migration assays indicated that Gal-1 ligand-dependent melanoma cell migration was severely inhibited. These findings provide a refined perspective on Gal-1/melanoma cell Gal-1 ligand interactions as contributors to melanoma malignancy.

  13. Ultrasensitive biochemical sensing device and method of sensing analytes

    DOEpatents

    Pinchuk, Anatoliy

    2017-06-06

    Systems and methods biochemically sense a concentration of a ligand using a sensor having a substrate having a metallic nanoparticle array formed onto a surface of the substrate. A light source is incident on the surface. A matrix is deposited over the nanoparticle array and contains a protein adapted to binding the ligand. A detector detects s-polarized and p-polarized light from the reflective surface. Spacing of nanoparticles in the array and wavelength of light are selected such that plasmon resonance occurs with an isotropic point such that -s and -p polarizations of the incident light result in substantially identical surface Plasmon resonance, wherein binding of the ligand to the protein shifts the resonance such that differences between the -S and -P polarizations give in a signal indicative of presence of the ligand.

  14. Extracellular calcium and cholinergic stimulation of isolated canine parietal cells.

    PubMed Central

    Soll, A H

    1981-01-01

    The role of calcium gating in cholinergic stimulation of the function of parietal cells was studied using cells isolated from canine fundic mucosa by treatment with collagenase and EDTA and enriched by velocity separation in an elutriator rotor. Monitoring the accumulation of [14C[ aminopyrine as an index of parietal cell response, stimulation by carbachol, but not by histamine, was highly dependent upon the concentration of extracellular calcium. Incubation of parietal cells in 0-.1 mM calcium, rather than the usual 1.8 mM concentration, reduced the response to 100 microM carbachol by 92 +/- 2%, whereas histamine stimulation was impaired by 28 +/- 5%. A similar reduction in extracellular calcium suppressed the response to gastrin (100 nM) by 67 +/- 7%. The impairment of cholinergic stimulation found at low extracellular calcium concentrations was rapidly reversed with the readdition of calcium. Lanthanum, which blocks calcium movement across membranes, caused a similar pattern of effects on secretagogue stimulation of aminopyrine accumulation, with 100 microM lanthanum suppressing carbachol stimulation by 83 +/- 2%. This concentration of lanthanum suppressed gastrin stimulation by 40 +/- 7% and histamine stimulation by only 12 +/- 9%. Carbachol, but not histamine nor gastrin, stimulated 45Ca++ uptake. The magnitude of carbachol-stimulated calcium uptake correlated with the parietal cell content of the fractions examined (r = 0.88), and was dose responsive over carbachol concentrations from 1 microM to 1 mM. Atropine (100 nM) caused surmountable inhibition, and these effects of carbachol and atropine on calcium uptake correlated with their effects on oxygen consumption (r = 0.93) and [14C]-aminopyrine accumulation (r = 0.90). Cells preloaded with 45Ca++ lost cellular calcium in a time-dependent fashion; however, this rate of egress was not accelerated by treatment with histamine, gastrin, or carbachol, thus failing to implicate mobilization of intracellular calcium

  15. Adenosine receptor expression and function in rat striatal cholinergic interneurons.

    PubMed

    Preston, Z; Lee, K; Widdowson, L; Freeman, T C; Dixon, A K; Richardson, P J

    2000-06-01

    Cholinergic neurons were identified in rat striatal slices by their size, membrane properties, sensitivity to the NK(1) receptor agonist (Sar(9), Met(O(2))(11)) Substance P, and expression of choline acetyltransferase mRNA. A(1) receptor mRNA was detected in 60% of the neurons analysed, and A(2A) receptor mRNA in 67% (n=15). The A(1) receptor agonist R-N(6)-(2-phenylisopropyl)adenosine (R-PIA) hyperpolarized cholinergic neurons in a concentration dependent manner sensitive to the A(1) antagonist 8-cyclopentyl-1, 3-dipropylxanthine (DPCPX, 100 nM). In dual stimulus experiments, the A(2A) receptor antagonist 8-(3-chlorostyryl)caffeine (CSC, 500 nM) decreased release of [(3)H]-acetylcholine from striatal slices (S2/S1 0.78+/-0.07 versus 0.95+/-0.05 in control), as did adenosine deaminase (S2/S1 ratio 0.69+/-0.05), whereas the A(1) receptor antagonist DPCPX (100 nM) had no effect (S2/S1 1.05+/-0.14). In the presence of adenosine deaminase the adenosine A(2A) receptor agonist 2-p-((carboxyethyl)phenylethylamino)-5'-N-ethylcarboxamidoadeno sin e (CGS21680, 10 nM) increased release (S2/S1 ratio 1.03+/-0.05 versus 0.88+/-0.05 in control), an effect blocked by the antagonist CSC (500 nM, S2/S1 0.68+/-0.05, versus 0.73+/-0.08 with CSC alone). The combined superfusion of bicuculline (10 microM), saclofen (1 microM) and naloxone (10 microM) had no effect on the stimulation by CGS21680 (S2/S1 ratio 0.99+/-0.04). The A(1) receptor agonist R-PIA (100 nM) inhibited the release of [(3)H]-acetylcholine (S2/S1 ratio 0.70+/-0.03), an effect blocked by DPCPX (S2/S1 ratio 1.06+/-0.07). It is concluded that both A(1) and A(2A) receptors are expressed on striatal cholinergic neurons where they are functionally active.

  16. Obesity and Metabolic Syndrome Affect the Cholinergic Transmission a nd Cognitive Functions.

    PubMed

    Martinelli, Ilenia; Tomassoni, Daniele; Moruzzi, Michele; Traini, Enea; Amenta, Francesco; Tayebati, Seyed Khosrow

    2017-01-01

    Worldwide, at least 2.8 million people die each year as a result of being overweight or obese. Obesity leads to metabolic syndrome, a pathological condition characterized by adverse metabolic effects on blood pressure, cholesterol, triglycerides and insulin resistance. Population- based investigations have suggested that obesity and metabolic syndrome may be associated with poorer cognitive performance. A structured search of bibliographic source (PubMed) was undertaken. The following terms "inflammation and obesity and brain", "cholinergic system and obesity", "cholinergic system and metabolic syndrome", "Cognitive impairment and obesity" and "metabolic syndrome and brain" were used as search strings. Over 200 papers, mainly published in the past 10 years were analysed. The major results regarded keyword "metabolic syndrome and brain" followed by, "Cognitive impairment and obesity", "inflammation and obesity and brain", "cholinergic system and obesity" and "cholinergic system and metabolic syndrome". Most papers were pre-clinical but, in general, they were inhomogeneous. Therefore, the results were cited according their contribution to clarify the molecular involvement of obesity and/or metabolic syndrome in cholinergic impairment. This review focuses on the correlation between brain cholinergic system alterations and high-fat diet, describing the involvement of cholinergic system in inflammatory processes related to metabolic syndrome and obesity, which may lead to cognitive decline. Metabolic syndrome has been suggested as a risk factor for cerebrovascular diseases and has been associated with cognitive impairment in different functional brain domains. Preclinical and clinical studies have identified the cholinergic system as a specific target of metabolic syndrome and obesity. The modifications of cholinergic neurotransmission and its involvement in neuro-inflammation may be related to cognitive impairment that affects obese patients. Copyright© Bentham

  17. Structural basis for cholinergic regulation of neural circuits in the mouse olfactory bulb.

    PubMed

    Hamamoto, Masakazu; Kiyokage, Emi; Sohn, Jaerin; Hioki, Hiroyuki; Harada, Tamotsu; Toida, Kazunori

    2017-02-15

    Odor information is regulated by olfactory inputs, bulbar interneurons, and centrifugal inputs in the olfactory bulb (OB). Cholinergic neurons projecting from the nucleus of the horizontal limb of the diagonal band of Broca and the magnocellular preoptic nucleus are one of the primary centrifugal inputs to the OB. In this study, we focused on cholinergic regulation of the OB and analyzed neural morphology with a particular emphasis on the projection pathways of cholinergic neurons. Single-cell imaging of a specific neuron within dense fibers is critical to evaluate the structure and function of the neural circuits. We labeled cholinergic neurons by infection with virus vector and then reconstructed them three-dimensionally. We also examined the ultramicrostructure of synapses by electron microscopy tomography. To further clarify the function of cholinergic neurons, we performed confocal laser scanning microscopy to investigate whether other neurotransmitters are present within cholinergic axons in the OB. Our results showed the first visualization of complete cholinergic neurons, including axons projecting to the OB, and also revealed frequent axonal branching within the OB where it innervated multiple glomeruli in different areas. Furthermore, electron tomography demonstrated that cholinergic axons formed asymmetrical synapses with a morphological variety of thicknesses of the postsynaptic density. Although we have not yet detected the presence of other neurotransmitters, the range of synaptic morphology suggests multiple modes of transmission. The present study elucidates the ways that cholinergic neurons could contribute to the elaborate mechanisms involved in olfactory processing in the OB. J. Comp. Neurol. 525:574-591, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. The Role Of Basal Forebrain Cholinergic Neurons In Fear and Extinction Memory

    PubMed Central

    Knox, Dayan

    2016-01-01

    Cholinergic input to the neocortex, dorsal hippocampus (dHipp), and basolateral amygdala (BLA) is critical for neural function and synaptic plasticity in these brain regions. Synaptic plasticity in the neocortex, dHipp, ventral Hipp (vHipp), and BLA has also been implicated in fear and extinction memory. This finding raises the possibility that basal forebrain (BF) cholinergic neurons, the predominant source of acetylcholine in these brain regions, have an important role in mediating fear and extinction memory. While empirical studies support this hypothesis, there are interesting inconsistencies among these studies that raise questions about how best to define the role of BF cholinergic neurons in fear and extinction memory. Nucleus basalis magnocellularis (NBM) cholinergic neurons that project to the BLA are critical for fear memory and contextual fear extinction memory. NBM cholinergic neurons that project to the neocortex are critical for cued and contextual fear conditioned suppression, but are not critical for fear memory in other behavioral paradigms and in the inhibitory avoidance paradigm may even inhibit contextual fear memory formation. Medial septum and diagonal band of Broca cholinergic neurons are critical for contextual fear memory and acquisition of cued fear extinction. Thus, even though the results of previous studies suggest BF cholinergic neurons modulate fear and extinction memory, inconsistent findings among these studies necessitates more research to better define the neural circuits and molecular processes through which BF cholinergic neurons modulate fear and extinction memory. Furthermore, studies determining if BF cholinergic neurons can be manipulated in such a manner so as to treat excessive fear in anxiety disorders are needed. PMID:27264248

  19. Nociceptin inhibits non-adrenergic non-cholinergic contraction in guinea-pig airway.

    PubMed

    Shah, S; Page, C P; Spina, D

    1998-10-01

    1. Electrical field stimulation (EFS) of guinea-pig isolated main bronchi induced a non-adrenergic non-cholinergic (NANC) contractile response. Nociceptin (0.01-1 microm) significantly inhibited the contractile response to EFS (P<0.01), but not to capsaicin (P>0.05). 2. The mu-, delta- and kappa-opioid receptor antagonists, naloxone (0.3 microM), naltrindole (3 microM) and norbinaltorphimine (1 microm), respectively, did not significantly affect the inhibitory effect of nociceptin (0.03 microM; P>0.05). 3. The novel nociceptin antagonist, [Phe1psi(CH2-NH)Gly2]nociceptin(1-13)NH2 (0.03-1 microM); the sigma ligands, carbetapentane (30 microM), 3-phenylpiperidine (30-100 microM) and (+)-cyclazocine (10-100 microM) significantly reversed the inhibitory effect of nociceptin (0.03 microM, P<0.05). In contrast, rimcazole, did not significantly reverse the inhibitory effect of nociceptin (0.03 microM) at any concentration tested (P>0.05). 4. EFS of guinea-pig bronchial preparations significantly increased SP-LI release above basal SP-LI (P<0.05). In the presence of nociceptin (1 microM), EFS induced a significant increase in SP-LI release above basal SP-LI release (P<0.05). Nociceptin caused a 59+11% (n=5) inhibition of EFS-induced release of SP-LI. 5. Nociceptin reduces the release of sensory neuropeptides induced by EFS, but not capsaicin, from guinea-pig airways. These experiments provide further evidence for a role for nociceptin in regulating the release of sensory neuropeptides in response to EFS.

  20. Sigma receptor ligand N,N'-di-(ortho-tolyl)guanidine inhibits release of acetylcholine in the guinea pig ileum.

    PubMed

    Cambell, B G; Keana, J F; Weber, E

    1991-11-26

    The inhibition of stimulated contractions of the guinea pig ileum longitudinal muscle/myenteric plexus preparation by sigma receptor ligands has been previously described. In this study, the stimulated release of [3H]acetylcholine from cholinergic nerve terminals in this same preparation was monitored in the presence and absence of sigma receptor ligands. N,N'-Di-(orthotolyl)guanidine (DTG) and other compounds selective for the sigma receptor inhibited stimulated [3H]acetylcholine release. These results suggest that their inhibition of stimulated contractions in this preparation was mediated by inhibition of acetylcholine release.

  1. Effects of cholinergic drugs on neocortical EEG and flash-visual evoked potentials in the mouse.

    PubMed

    Tebano, M T; Luzi, M; Palazzesi, S; Pomponi, M; Loizzo, A

    1999-01-01

    The effects of single intraperitoneal injection of two cholinesterase inhibitors, physostigmine (PHY; 0.01, 0.025, 0.05, 0. 1, 0.2 mg/kg) and heptylphysostigmine (HEP; 0.5, 2, 6 mg/kg) on electroencephalographic (EEG) activity and flash visual evoked potentials (f-VEP) in the occipital cortex were compared in DBA/2 mice. EEG spectral analysis of awake periods showed that PHY at all doses and HEP at 2 mg/kg induced an increase of power in the 4.25- to 7-Hz frequency band. Furthermore, PHY at the higher doses and HEP at all doses induced a decrease of power in the 7.25- to 12-Hz frequency band, while the lower doses of PHY (0.01, 0.025 mg/kg) produced an increase of this band. EEG effects elicited by the two drugs were similar, when doses displaying analogous biochemical effects (acetylcholinesterase inhibition) were used (i.e. 0.01 and 0. 025 mg/kg of PHY versus 0.5 and 2 mg/kg of HEP). PHY and HEP induced similar changes in f-VEPs. Amplitudes of early and late components (P1N1, N1P2, P4N4 and particularly N1P3) were enhanced, while amplitudes of middle components were depressed after all doses. The peak latency measures were generally delayed, even though, after the lower doses, a trend to a latency reduction was evident in late components. This finding might indicate a possible effect on stimulus speed diffusion by 'low therapeutic' doses, analogous to the ones used in men. Our data show that both drugs are effective in modifying EEG and f-VEP parameters connected with brain cholinergic function, although in a very narrow dose range.

  2. Spin labeled acetylcholine analogs: studies of cholinergic receptor.

    PubMed

    Rosen, G M; Abou-Donia, M B; Yeh, J Z; Menzel, D B

    1975-10-01

    Some spin-labeled acetylcholine analogs, in which the number of methylene groups between the quaternary nitrogen and the ether oxygen ranged between 1-5, were synthesized to study drug interacitons with acetylcholine receptors. None of the compounds tested, with the exception of the one that contained 2 methylene groups (SL-2) had any cholinergic activity. SL-2 was not capable of producing any nicotinic cholinomimetic activity. On the other hand it proved to have a very weak nicotinic cholinolytic activity on the receptors of the frog satorius muscle. This compound exhibited strong antagonism against muscarinic receptors of the isolated frog heart. The muscarinic cholinolytic action of the spin-label ACh analog is discussed in terms of the molecular perturbation theory of drug action.

  3. Disordered cholinergic neurotransmission and dysautoregulation after acute cerebral infarction.

    PubMed

    Ott, E O; Abraham, J; Meyer, J S; Achari, A N; Chee, A N; Mathew, N T

    1975-01-01

    The possible role of displaced neurotransmitter acetylcholine (ACHh) in dysautoregulation was examined after experimental regional cerebral infarction was produced by occluding the middle cerebral artery (MCA) in babons. Regional cerebral blood flow (rCBF) was measured after intracarotid injection of 133Xenon using the gamma camera. Autoregulation was tested with metaraminol or angiotensin infusion and the autoregulation index (A.I.) was calculated. Acetylcholinesterase (ACHhE) was measured in brain tissue of noninfarcted and infarcted hemispheres. Cerebral arteriovenous (A-V) differences for cholinesterase (ChE) were also measured. Regional dysautoregulation was found in infarcted gray matter and correlated with increased AChE levels in the same zones of cortex and basal ganglia. The time course of onset of dysautoregulation correlated with increased ChE uptake by the brain. Intravenous infusion of the cholinergic neurotransmitter blocker, scopolamine, restored autoregulation to the ischemic zones. Autoregulation appears to be a myogenic reflex, influenced by neurogenic and metabolic mechanisms.

  4. The electromotor system of Torpedo. A model cholinergic system.

    PubMed

    Whittaker, V P

    1977-12-01

    The electric organ of Torpedo, besides providing abundant amounts of cholinoceptive post-synaptic membrane for the isolation of the acetylcholine receptor protein, is a rich source of cholinergic nerve terminals. Using perfused, innervated tissue blocks from which synaptic vesicles in different functional states can be isolated, much information can be obtained about synaptic-vesicle dynamics. So far this is consistent with the view that the synaptic vesicles are the source of transmitter released on stimulation and that uptake of newly synthesized transmitter by the vesicles is dependent on their having discharged their previous charge of transmitter in at least one cycle of exo- and endocytosis. Studies of the protein composition of the vesicle membrane, especially when combined with similar information about the external presynaptic membrane, purified samples of which are now available from synaptosome (T-sac) preparations, promise to throw new light on the molecular mechanism underlying vesicle exo-/endocytosis.

  5. Phenotypic spandrel: absolute discrimination and ligand antagonism

    NASA Astrophysics Data System (ADS)

    François, Paul; Hemery, Mathieu; Johnson, Kyle A.; Saunders, Laura N.

    2016-12-01

    We consider the general problem of sensitive and specific discrimination between biochemical species. An important instance is immune discrimination between self and not-self, where it is also observed experimentally that ligands just below the discrimination threshold negatively impact response, a phenomenon called antagonism. We characterize mathematically the generic properties of such discrimination, first relating it to biochemical adaptation. Then, based on basic biochemical rules, we establish that, surprisingly, antagonism is a generic consequence of any strictly specific discrimination made independently from ligand concentration. Thus antagonism constitutes a ‘phenotypic spandrel’: a phenotype existing as a necessary by-product of another phenotype. We exhibit a simple analytic model of discrimination displaying antagonism, where antagonism strength is linear in distance from the detection threshold. This contrasts with traditional proofreading based models where antagonism vanishes far from threshold and thus displays an inverted hierarchy of antagonism compared to simpler models. The phenotypic spandrel studied here is expected to structure many decision pathways such as immune detection mediated by TCRs and FCɛRIs, as well as endocrine signalling/disruption.

  6. Cholinergic urethral brush cells are widespread throughout placental mammals.

    PubMed

    Deckmann, Klaus; Krasteva-Christ, Gabriela; Rafiq, Amir; Herden, Christine; Wichmann, Judy; Knauf, Sascha; Nassenstein, Christina; Grevelding, Christoph G; Dorresteijn, Adriaan; Chubanov, Vladimir; Gudermann, Thomas; Bschleipfer, Thomas; Kummer, Wolfgang

    2015-11-01

    We previously identified a population of cholinergic epithelial cells in murine, human and rat urethrae that exhibits a structural marker of brush cells (villin) and expresses components of the canonical taste transduction signaling cascade (α-gustducin, phospholipase Cβ2 (PLCβ2), transient receptor potential cation channel melanostatin 5 (TRPM5)). These cells serve as sentinels, monitoring the chemical composition of the luminal content for potentially hazardous compounds such as bacteria, and initiate protective reflexes counteracting further ingression. In order to elucidate cross-species conservation of the urethral chemosensory pathway we investigated the occurrence and molecular make-up of urethral brush cells in placental mammals. We screened 11 additional species, at least one in each of the five mammalian taxonomic units primates, carnivora, perissodactyla, artiodactyla and rodentia, for immunohistochemical labeling of the acetylcholine synthesizing enzyme, choline acetyltransferase (ChAT), villin, and taste cascade components (α-gustducin, PLCβ2, TRPM5). Corresponding to findings in previously investigated species, urethral epithelial cells with brush cell shape were immunolabeled in all 11 mammals. In 8 species, immunoreactivities against all marker proteins and ChAT were observed, and double-labeling immunofluorescence confirmed the cholinergic nature of villin-positive and chemosensory (TRPM5-positive) cells. In cat and horse, these cells were not labeled by the ChAT antiserum used in this study, and unspecific reactions of the secondary antiserum precluded conclusions about ChAT-expression in the bovine epithelium. These data indicate that urethral brush cells are widespread throughout the mammalian kingdom and evolved not later than about 64.5millionyears ago.

  7. Short-term cholinergic desensitization of rat pancreatic secretory response

    SciTech Connect

    Asselin, J.; Larose, L.; Morisset, J.

    1987-03-01

    Dispersed pancreatic acini were first exposed to carbamylcholine (10/sup -7/-10/sup -4/ M) for 60 min, washed, and reexposed to this same agonist (10/sup -8/-10/sup -3/ M) for 15 min. During this second incubation, the functional secretory capacity of these acini was evaluated by measuring amylase release. Acini preexposed to concentrations of carbamylcholine of 10/sup -6/ M or greater showed shifts to the right in the subsequent carbamylcholine dose-response curves of amylase release. A 3-h recovery period (without carbamylcholine) did not restore the altered carbamylcholine dose-response curve. Ca/sup 2 +/ concentrations of 10/sup -7/ M or 2.5 x 10/sup -3/ M instead of 0.5 x 10/sup -3/ M during the 60-min preincubation did not affect the desensitization process. With use of N-(/sup 3/H)methylscopolamine to evaluate muscarinic receptors, the only changes observed after desensitization were a significant decrease in the high-affinity and an equivalent increase in that of the low-affinity receptors. After cholinergic exposure amylase release stimulated by caerulein was only slightly modified, whereas amylase release in response to a phorbol ester 12-O-tetradecanoylphorbol-13-acetate and to the ionophore A23187 was not altered. These data indicate that short-term desensitization with a cholinergic agent is relatively specific to muscarinic agonists, causes changes in the muscarinic receptor high-and low-affinity concentration but does not alter intracellular steps after calcium mobilization or protein kinase C activation known to be involved in the secretion process.

  8. A non-neuronal cholinergic system of the ovarian follicle.

    PubMed

    Mayerhofer, Artur; Kunz, Lars

    2005-11-01

    We have recently provided evidence that acetylcholine (ACh) is a non-neuronal intraovarian signalling molecule, produced by granulosa cells (GCs) and which appears to act as signalling factor in the growing follicle. The ACh biosynthesis enzyme, choline-acetyltransferase (ChAT), is expressed only in growing, antral follicles in rodent and primate species. This restriction to follicle stages, which depend on the activity of follicle-stimulating hormone (FSH), may suggest that ACh could be an as yet unknown local mediator of FSH actions. In respect of ACh actions, our ongoing studies indicate that they may be exerted via different muscarinic ACh-receptors (MR) in GCs, but also in oocytes in an overlapping fashion. To elucidate functional details we have studied cultured human GCs isolated from preovulatory follicles. Activation of MRs increases intracellular calcium and, e.g., induces the master transcription factor egr-1, implying involvement in cell differentiation events. ACh agonists also activate a calcium-activated potassium channel (BK(Ca)) resulting in membrane hyperpolarization, which allows activation of other voltage-dependent ion channels. Experimental modulation of the chain of these events causes altered steroidogenesis, implying a crucial role of ACh in endocrine functions. Further ACh actions include phosphorylation of the gap junction molecule connexin 43 and disruption of intercellular communication between GCs. This may allow strongly coupled GCs to escape from the functional syncytium of the follicle in order to initiate proliferation. Proliferation is indeed strongly increased in cultured human GCs when treated with cholinergic agents. The repertoire of ACh/MR actions is far from being fully appreciated and may include epigenetic regulation in healthy growing follicles. Although many aspects of the ovarian cholinergic system, including, for instance, influence of follicular ACh on the MR-bearing oocyte, remain to be examined. The present data

  9. Accumbal Cholinergic Interneurons Differentially Influence Motivation Related to Satiety Signaling

    PubMed Central

    Aitta-aho, Teemu; Pappa, Elpiniki; Harnischfeger, Fiona; Heath, Christopher J.

    2017-01-01

    Abstract Satiety, rather than all or none, can instead be viewed as a cumulative decrease in the drive to eat that develops over the course of a meal. The nucleus accumbens (NAc) is known to play a critical role in this type of value reappraisal, but the underlying circuits that influence such processes are unclear. Although NAc cholinergic interneurons (CINs) comprise only a small proportion of NAc neurons, their local impact on reward-based processes provides a candidate cell population for investigating the neural underpinnings of satiety. The present research therefore aimed to determine the role of NAc-CINs in motivation for food reinforcers in relation to satiety signaling. Through bidirectional control of CIN activity in mice, we show that when motivated by food restriction, increasing CIN activity led to a reduction in palatable food consumption while reducing CIN excitability enhanced food intake. These activity-dependent changes developed only late in the session and were unlikely to be driven by the innate reinforcer strength, suggesting that CIN modulation was instead impacting the cumulative change in motivation underlying satiety signaling. We propose that on a circuit level, an overall increase in inhibitory tone onto NAc output neurons played a role in the behavioral results, as activating NAc-CINs led to an inhibition of medium spiny neurons that was dependent on nicotinic receptor activation. Our results reveal an important role for NAc-CINs in controlling motivation for food intake and additionally provide a circuit-level framework for investigating the endogenous cholinergic circuits that signal satiety. PMID:28497110

  10. New Tools for Targeted Disruption of Cholinergic Synaptic Transmission in Drosophila melanogaster

    PubMed Central

    Mejia, Monica; Heghinian, Mari D.; Marí, Frank; Godenschwege, Tanja A.

    2013-01-01

    Nicotinic acetylcholine receptors (nAChRs) are pentameric ligand-gated ion channels. The α7 subtype of nAChRs is involved in neurological pathologies such as Parkinson’s disease, Alzheimer’s disease, addiction, epilepsy and autism spectrum disorders. The Drosophila melanogaster α7 (Dα7) has the closest sequence homology to the vertebrate α7 subunit and it can form homopentameric receptors just as the vertebrate counterpart. The Dα7 subunits are essential for the function of the Giant Fiber circuit, which mediates the escape response of the fly. To further characterize the receptor function, we generated different missense mutations in the Dα7 nAChR’s ligand binding domain. We characterized the effects of targeted expression of two UAS-constructs carrying a single mutation, D197A and Y195T, as well as a UAS-construct carrying a triple D77T, L117Q, I196P mutation in a Dα7 null mutant and in a wild type background. Expression of the triple mutation was able to restore the function of the circuit in Dα7 null mutants and had no disruptive effects when expressed in wild type. In contrast, both single mutations severely disrupted the synaptic transmission of Dα7-dependent but not glutamatergic or gap junction dependent synapses in wild type background, and did not or only partially rescued the synaptic defects of the null mutant. These observations are consistent with the formation of hybrid receptors, consisting of D197A or Y195T subunits and wild type Dα7 subunits, in which the binding of acetylcholine or acetylcholine-induced conformational changes of the Dα7 receptor are altered and causes inhibition of cholinergic responses. Thus targeted expression of D197A or Y195T can be used to selectively disrupt synaptic transmission of Dα7-dependent synapses in neuronal circuits. Hence, these constructs can be used as tools to study learning and memory or addiction associated behaviors by allowing the manipulation of neuronal processing in the circuits

  11. Methamidophos Exposure During the Early Postnatal Period of Mice: Immediate and Late-Emergent Effects on the Cholinergic and Serotonergic Systems and Behavior

    PubMed Central

    Abreu-Villaça, Yael

    2013-01-01

    Organophosphates (OPs) are among the most used pesticides. Although some OPs have had their use progressively more restricted, other OPs are being used without sufficient investigation of their effects. Here, we investigated the immediate neurochemical and delayed neurochemical and behavioral actions of the OP methamidophos to verify whether there are concerns regarding exposure during early postnatal development. From the third to the nineth postnatal day (PN), Swiss mice were sc injected with methamidophos (1mg/kg). At PN10, we assessed cholinergic and serotonergic biomarkers in the cerebral cortex and brainstem. From PN60 to PN63, mice were submitted to a battery of behavioral tests and subsequently to biochemical analyses. At PN10, the effects were restricted to females and to the cholinergic system: Methamidophos promoted increased choline transporter binding in the brainstem. At PN63, in the brainstem, there was a decrease in choline transporter, a female-only decrease in 5HT1A and a male-only increase in 5HT2 receptor binding. In the cortex, choline acetyltransferase activity was decreased and 5HT2 receptor binding was increased both in males and females. Methamidophos elicited behavioral alterations, suggestive of increased depressive-like behavior and impaired decision making. There were no significant alterations on anxiety-related measures and on memory/learning. Methamidophos elicited cholinergic and serotonergic alterations that depended on brain region, sex, and age of the animals. These outcomes, together with the behavioral effects, indicate that this OP is deleterious to the developing brain and that alterations are indeed identified long after the end of exposure. PMID:23596261

  12. The association of cholinergic and cold-induced urticaria: diagnosis and management

    PubMed Central

    Torabi, Bahar; Ben-Shoshan, Moshe

    2015-01-01

    Physical urticaria is often challenging to diagnose and manage. We present a case of both cholinergic and cold-induced urticaria and discuss the diagnosis and management strategies of these two important conditions. PMID:25694628

  13. Effects of cholinergic deafferentation of the rhinal cortex on visual recognition memory in monkeys.

    PubMed

    Turchi, Janita; Saunders, Richard C; Mishkin, Mortimer

    2005-02-08

    Excitotoxic lesion studies have confirmed that the rhinal cortex is essential for visual recognition ability in monkeys. To evaluate the mnemonic role of cholinergic inputs to this cortical region, we compared the visual recognition performance of monkeys given rhinal cortex infusions of a selective cholinergic immunotoxin, ME20.4-SAP, with the performance of monkeys given control infusions into this same tissue. The immunotoxin, which leads to selective cholinergic deafferentation of the infused cortex, yielded recognition deficits of the same magnitude as those produced by excitotoxic lesions of this region, providing the most direct demonstration to date that cholinergic activation of the rhinal cortex is essential for storing the representations of new visual stimuli and thereby enabling their later recognition.

  14. Optogenetic activation of cholinergic neurons in the PPT or LDT induces REM sleep.

    PubMed

    Van Dort, Christa J; Zachs, Daniel P; Kenny, Jonathan D; Zheng, Shu; Goldblum, Rebecca R; Gelwan, Noah A; Ramos, Daniel M; Nolan, Michael A; Wang, Karen; Weng, Feng-Ju; Lin, Yingxi; Wilson, Matthew A; Brown, Emery N

    2015-01-13

    Rapid eye movement (REM) sleep is an important component of the natural sleep/wake cycle, yet the mechanisms that regulate REM sleep remain incompletely understood. Cholinergic neurons in the mesopontine tegmentum have been implicated in REM sleep regulation, but lesions of this area have had varying effects on REM sleep. Therefore, this study aimed to clarify the role of cholinergic neurons in the pedunculopontine tegmentum (PPT) and laterodorsal tegmentum (LDT) in REM sleep generation. Selective optogenetic activation of cholinergic neurons in the PPT or LDT during non-REM (NREM) sleep increased the number of REM sleep episodes and did not change REM sleep episode duration. Activation of cholinergic neurons in the PPT or LDT during NREM sleep was sufficient to induce REM sleep.

  15. Opposing regulation of dopaminergic activity and exploratory motor behavior by forebrain and brainstem cholinergic circuits.

    PubMed

    Patel, Jyoti C; Rossignol, Elsa; Rice, Margaret E; Machold, Robert P

    2012-01-01

    Dopamine transmission is critical for exploratory motor behaviour. A key regulator is acetylcholine; forebrain acetylcholine regulates striatal dopamine release, whereas brainstem cholinergic inputs regulate the transition of dopamine neurons from tonic to burst firing modes. How these sources of cholinergic activity combine to control dopamine efflux and exploratory motor behaviour is unclear. Here we show that mice lacking total forebrain acetylcholine exhibit enhanced frequency-dependent striatal dopamine release and are hyperactive in a novel environment, whereas mice lacking rostral brainstem acetylcholine are hypoactive. Exploratory motor behaviour is normalized by the removal of both cholinergic sources. Involvement of dopamine in the exploratory motor phenotypes observed in these mutants is indicated by their altered sensitivity to the dopamine D2 receptor antagonist raclopride. These results support a model in which forebrain and brainstem cholinergic systems act in tandem to regulate striatal dopamine signalling for proper control of motor activity.

  16. Cholinergic inhibition of adrenergic neurosecretion in the rabbit iris-ciliary body

    SciTech Connect

    Jumblatt, J.E.; North, G.T.

    1988-04-01

    The prejunctional effects of cholinergic agents on release of norepinephrine from sympathetic nerve endings were investigated in the isolated, superfused rabbit iris-ciliary body. Stimulation-evoked release of /sup 3/H-norepinephrine was inhibited by the cholinergic agonists methacholine, oxotremorine, muscarine, carbamylcholine and acetylcholine (plus eserine), but was unmodified by pilocarpine or nicotine. Agonist-induced inhibition was antagonized selectively by atropine, indicating a muscarinic response. Atropine alone markedly enhanced norepinephrine release, revealing considerable tonic activation of prejunctional cholinergic receptors in this system. Prejunctional inhibition by carbamylcholine was found to completely override the facilitative action of forskolin or 8-bromo-cyclic AMP on neurotransmitter release. Cholinergic and alpha 2-adrenergic effects on neurosecretion were non-additive, suggesting that the underlying receptors coexist at neurotransmitter release sites.

  17. Choline metabolism as a basis for the selective vulnerability of cholinergic neurons

    NASA Technical Reports Server (NTRS)

    Wurtman, R. J.

    1992-01-01

    The unique propensity of cholinergic neurons to use choline for two purposes--ACh and membrane phosphatidylcholine synthesis--may contribute to their selective vulnerability in Alzheimer's disease and other cholinergic neurodegenerative disorders. When physiologically active, the neurons use free choline taken from the 'reservoir' in membrane phosphatidylcholine to synthesize ACh; this can lead to an actual decrease in the quantity of membrane per cell. Alzheimer's disease (but not Down's syndrome, or other neurodegenerative disorders) is associated with characteristic neurochemical lesions involving choline and ethanolamine: brain levels of these compounds are diminished, while those of glycerophosphocholine and glycerophosphoethanolamine (breakdown products of their respective membrane phosphatides) are increased, both in cholinergic and noncholinergic brain regions. Perhaps this metabolic disturbance and the tendency of cholinergic neurons to 'export' choline--in the form of ACh--underlie the selective vulnerability of the neurons. Resulting changes in membrane composition could abnormally expose intramembraneous proteins such as amyloid precursor protein to proteases.

  18. Optogenetic activation of cholinergic neurons in the PPT or LDT induces REM sleep

    PubMed Central

    Van Dort, Christa J.; Zachs, Daniel P.; Kenny, Jonathan D.; Zheng, Shu; Goldblum, Rebecca R.; Gelwan, Noah A.; Ramos, Daniel M.; Nolan, Michael A.; Wang, Karen; Weng, Feng-Ju; Lin, Yingxi; Wilson, Matthew A.; Brown, Emery N.

    2015-01-01

    Rapid eye movement (REM) sleep is an important component of the natural sleep/wake cycle, yet the mechanisms that regulate REM sleep remain incompletely understood. Cholinergic neurons in the mesopontine tegmentum have been implicated in REM sleep regulation, but lesions of this area have had varying effects on REM sleep. Therefore, this study aimed to clarify the role of cholinergic neurons in the pedunculopontine tegmentum (PPT) and laterodorsal tegmentum (LDT) in REM sleep generation. Selective optogenetic activation of cholinergic neurons in the PPT or LDT during non-REM (NREM) sleep increased the number of REM sleep episodes and did not change REM sleep episode duration. Activation of cholinergic neurons in the PPT or LDT during NREM sleep was sufficient to induce REM sleep. PMID:25548191

  19. Choline metabolism as a basis for the selective vulnerability of cholinergic neurons

    NASA Technical Reports Server (NTRS)

    Wurtman, R. J.

    1992-01-01

    The unique propensity of cholinergic neurons to use choline for two purposes--ACh and membrane phosphatidylcholine synthesis--may contribute to their selective vulnerability in Alzheimer's disease and other cholinergic neurodegenerative disorders. When physiologically active, the neurons use free choline taken from the 'reservoir' in membrane phosphatidylcholine to synthesize ACh; this can lead to an actual decrease in the quantity of membrane per cell. Alzheimer's disease (but not Down's syndrome, or other neurodegenerative disorders) is associated with characteristic neurochemical lesions involving choline and ethanolamine: brain levels of these compounds are diminished, while those of glycerophosphocholine and glycerophosphoethanolamine (breakdown products of their respective membrane phosphatides) are increased, both in cholinergic and noncholinergic brain regions. Perhaps this metabolic disturbance and the tendency of cholinergic neurons to 'export' choline--in the form of ACh--underlie the selective vulnerability of the neurons. Resulting changes in membrane composition could abnormally expose intramembraneous proteins such as amyloid precursor protein to proteases.

  20. Measures of Biochemical Sociology

    ERIC Educational Resources Information Center

    Snell, Joel; Marsh, Mitchell

    2008-01-01

    In a previous article, the authors introduced a new sub field in sociology that we labeled "biochemical sociology." We introduced the definition of a sociology that encompasses sociological measures, psychological measures, and biological indicators Snell & Marsh (2003). In this article, we want to demonstrate a research strategy that would assess…

  1. Biochemical upgrading of oils

    DOEpatents

    Premuzic, E.T.; Lin, M.S.

    1999-01-12

    A process for biochemical conversion of heavy crude oils is provided. The process includes contacting heavy crude oils with adapted biocatalysts. The resulting upgraded oil shows, a relative increase in saturated hydrocarbons, emulsions and oxygenates and a decrease in compounds containing organic sulfur, organic nitrogen and trace metals. Adapted microorganisms which have been modified under challenged growth processes are also disclosed. 121 figs.

  2. Biochemical upgrading of oils

    DOEpatents

    Premuzic, Eugene T.; Lin, Mow S.

    1999-01-12

    A process for biochemical conversion of heavy crude oils is provided. The process includes contacting heavy crude oils with adapted biocatalysts. The resulting upgraded oil shows, a relative increase in saturated hydrocarbons, emulsions and oxygenates and a decrease in compounds containing in organic sulfur, organic nitrogen and trace metals. Adapted microorganisms which have been modified under challenged growth processes are also disclosed.

  3. Biochemical Education in Brazil.

    ERIC Educational Resources Information Center

    Vella, F.

    1988-01-01

    Described are discussions held concerning the problems of biochemical education in Brazil at a meeting of the Sociedade Brazileira de Bioquimica in April 1988. Also discussed are other visits that were made to universities in Brazil. Three major recommendations to improve the state of biochemistry education in Brazil are presented. (CW)

  4. Nanoparticles as biochemical sensors

    PubMed Central

    El-Ansary, Afaf; Faddah, Layla M

    2010-01-01

    There is little doubt that nanoparticles offer real and new opportunities in many fields, such as biomedicine and materials science. Such particles are small enough to enter almost all areas of the body, including cells and organelles, potentially leading to new approaches in nanomedicine. Sensors for small molecules of biochemical interest are of critical importance. This review is an attempt to trace the use of nanomaterials in biochemical sensor design. The possibility of using nanoparticles functionalized with antibodies as markers for proteins will be elucidated. Moreover, capabilities and applications for nanoparticles based on gold, silver, magnetic, and semiconductor materials (quantum dots), used in optical (absorbance, luminescence, surface enhanced Raman spectroscopy, surface plasmon resonance), electrochemical, and mass-sensitive sensors will be highlighted. The unique ability of nanosensors to improve the analysis of biochemical fluids is discussed either through considering the use of nanoparticles for in vitro molecular diagnosis, or in the biological/biochemical analysis for in vivo interaction with the human body. PMID:24198472

  5. Biochemical Education in Brazil.

    ERIC Educational Resources Information Center

    Vella, F.

    1988-01-01

    Described are discussions held concerning the problems of biochemical education in Brazil at a meeting of the Sociedade Brazileira de Bioquimica in April 1988. Also discussed are other visits that were made to universities in Brazil. Three major recommendations to improve the state of biochemistry education in Brazil are presented. (CW)

  6. Measures of Biochemical Sociology

    ERIC Educational Resources Information Center

    Snell, Joel; Marsh, Mitchell

    2008-01-01

    In a previous article, the authors introduced a new sub field in sociology that we labeled "biochemical sociology." We introduced the definition of a sociology that encompasses sociological measures, psychological measures, and biological indicators Snell & Marsh (2003). In this article, we want to demonstrate a research strategy that would assess…

  7. Interactions between Aβ oligomers and presynaptic cholinergic signaling: age-dependent effects on attentional capacities

    PubMed Central

    Parikh, Vinay; Bernard, Carcha S.; Naughton, Sean X.; Yegla, Brittney

    2014-01-01

    Substantial evidence suggests that cerebral deposition of the neurotoxic fibrillar form of amyloid precursor protein, β-amyloid (Aβ), plays a critical role in the pathogenesis of Alzheimer's disease (AD). Yet, many aspects of AD pathology including the cognitive symptoms and selective vulnerability of cortically-projecting basal forebrain (BF) cholinergic neurons are not well explained by this hypothesis. Specifically, it is not clear why cognitive decline appears early when the loss of BF cholinergic neurons and plaque deposition are manifested late in AD. Soluble oligomeric forms of Aβ are proposed to appear early in the pathology and to be better predictors of synaptic loss and cognitive deficits. The present study was designed to examine the impact of Aβ oligomers on attentional functions and presynaptic cholinergic transmission in young and aged rats. Chronic intracranial infusions of Aβ oligomers produced subtle decrements in the ability of rats to sustain attentional performance with time on task, irrespective of the age of the animals. However, Aβ oligomers produced robust detrimental effects on performance under conditions of enhanced attentional load in aged animals. In vivo electrochemical recordings show reduced depolarization-evoked cholinergic signals in Aβ-infused aged rats. Moreover, soluble Aβ disrupted the capacity of cholinergic synapses to clear exogenous choline from the extracellular space in both young and aged rats, reflecting impairments in the choline transport process that is critical for acetylcholine (ACh) synthesis and release. Although aging per se reduced the cross-sectional area of BF cholinergic neurons and presynaptic cholinergic proteins in the cortex, attentional performance and ACh release remained unaffected in aged rats infused with the control peptide. Taken together, these data suggest that soluble Aβ may marginally influence attentional functions at young ages primarily by interfering with the choline uptake

  8. Cholinergic dysregulation produced by selective inactivation of the dystonia-associated protein torsinA.

    PubMed

    Sciamanna, Giuseppe; Hollis, Robert; Ball, Chelsea; Martella, Giuseppina; Tassone, Annalisa; Marshall, Andrea; Parsons, Dee; Li, Xinru; Yokoi, Fumiaki; Zhang, Lin; Li, Yuqing; Pisani, Antonio; Standaert, David G

    2012-09-01

    DYT1 dystonia, a common and severe primary dystonia, is caused by a 3-bp deletion in TOR1A which encodes torsinA, a protein found in the endoplasmic reticulum. Several cellular functions are altered by the mutant protein, but at a systems level the link between these and the symptoms of the disease is unclear. The most effective known therapy for DYT1 dystonia is the use of anticholinergic drugs. Previous studies have revealed that in mice, transgenic expression of human mutant torsinA under a non-selective promoter leads to abnormal function of striatal cholinergic neurons. To investigate what pathological role torsinA plays in cholinergic neurons, we created a mouse model in which the Dyt1 gene, the mouse homolog of TOR1A, is selectively deleted in cholinergic neurons (ChKO animals). These animals do not have overt dystonia, but do have subtle motor abnormalities. There is no change in the number or size of striatal cholinergic cells or striatal acetylcholine content, uptake, synthesis, or release in ChKO mice. There are, however, striking functional abnormalities of striatal cholinergic cells, with paradoxical excitation in response to D2 receptor activation and loss of muscarinic M2/M4 receptor inhibitory function. These effects are specific for cholinergic interneurons, as recordings from nigral dopaminergic neurons revealed normal responses. Amphetamine stimulated dopamine release was also unaltered. These results demonstrate a cell-autonomous effect of Dyt1 deletion on striatal cholinergic function. Therapies directed at modifying the function of cholinergic neurons may prove useful in the treatment of the human disorder.

  9. Increase in cortical endocannabinoid signaling in a rat model of basal forebrain cholinergic dysfunction.

    PubMed

    Llorente-Ovejero, Alberto; Manuel, Iván; Giralt, Maria Teresa; Rodríguez-Puertas, Rafael

    2017-08-18

    The basal forebrain cholinergic pathways progressively degenerate during the progression of Alzheimer's disease, leading to an irreversible impairment of memory and thinking skills. The stereotaxic lesion with 192IgG-saporin in the rat brain has been used to eliminate basal forebrain cholinergic neurons and is aimed at emulating the cognitive damage described in this disease in order to explore its effects on behavior and on neurotransmission. Learning and memory processes that are controlled by cholinergic neurotransmission are also modulated by the endocannabinoid (eCB) system. The objective of the present study is to evaluate the eCB signaling in relation to the memory impairment induced in adult rats following a specific cholinergic lesion of the basal forebrain. Therefore, CB1 receptor-mediated signaling was analyzed using receptor and functional autoradiography, and cellular distribution by immunofluorescence. The passive avoidance test and histochemical data revealed a relationship between impaired behavioral responses and a loss of approximately 75% of cholinergic neurons in the nucleus basalis magnocellularis (NBM), accompanied by cortical cholinergic denervation. The decrease in CB1 receptor density observed in the hippocampus, together with hyperactivity of eCB signaling in the NBM and cortex, suggest an interaction between the eCB and cholinergic systems. Moreover, following basal forebrain cholinergic denervation, the presynaptic GABAergic immunoreactivity was reduced in cortical areas. In conclusion, CB1 receptors present in presynaptic GABAergic terminals in the hippocampus are down regulated, but not those in cortical glutamatergic synapses. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Cortical afferent inhibition abnormalities reveal cholinergic dysfunction in Parkinson's disease: a reappraisal.

    PubMed

    Nardone, Raffaele; Brigo, Francesco; Versace, Viviana; Höller, Yvonne; Tezzon, Frediano; Saltuari, Leopold; Trinka, Eugen; Sebastianelli, Luca

    2017-08-12

    Parkinson's disease (PD) is a multisystem neurodegenerative disorder affecting, besides the dopaminergic function, multiple neurotransmission systems, including the cholinergic system. Central cholinergic circuits of human brain can be tested non-invasively by coupling peripheral nerve stimulation with transcranial magnetic stimulation (TMS) of motor cortex; this test is named short latency afferent inhibition (SAI). SAI abnormalities have been reported in PD patients with gait disturbances and many non-motor symptoms, such as visual hallucinations (VHs), REM sleep behavior disorder (RBD), dysphagia, and olfactory impairment. The findings of these TMS studies strongly suggest that cholinergic degeneration is an important contributor to a number of clinical features of PD. TMS and neuropsychological raise the possibility that the presence of RBD, VHs and olfactory dysfunction indicate increased risk of cognitive impairment in patients with PD. Longitudinal studies of the patients are required to verify whether SAI abnormalities can predict a future severe cognitive decline. TMS can provide simple measures that may represent suitable biomarkers of cholinergic neurotransmission in PD. SAI studies enable an early recognition of PD patients with cholinergic system degeneration, and this might allow future targeted cholinergic treatment approaches, in addition to dopaminergic therapy, to ameliorate non-motor and motor clinical symptoms in PD patients.

  11. Evaluating the Evidence Surrounding Pontine Cholinergic Involvement in REM Sleep Generation

    PubMed Central

    Grace, Kevin P.; Horner, Richard L.

    2015-01-01

    Rapid eye movement (REM) sleep – characterized by vivid dreaming, motor paralysis, and heightened neural activity – is one of the fundamental states of the mammalian central nervous system. Initial theories of REM sleep generation posited that induction of the state required activation of the “pontine REM sleep generator” by cholinergic inputs. Here, we review and evaluate the evidence surrounding cholinergic involvement in REM sleep generation. We submit that: (i) the capacity of pontine cholinergic neurotransmission to generate REM sleep has been firmly established by gain-of-function experiments, (ii) the function of endogenous cholinergic input to REM sleep generating sites cannot be determined by gain-of-function experiments; rather, loss-of-function studies are required, (iii) loss-of-function studies show that endogenous cholinergic input to the PTF is not required for REM sleep generation, and (iv) cholinergic input to the pontine REM sleep generating sites serve an accessory role in REM sleep generation: reinforcing non-REM-to-REM sleep transitions making them quicker and less likely to fail. PMID:26388832

  12. Silencing of Cholinergic Basal Forebrain Neurons Using Archaerhodopsin Prolongs Slow-Wave Sleep in Mice.

    PubMed

    Shi, Yu-Feng; Han, Yong; Su, Yun-Ting; Yang, Jun-Hua; Yu, Yan-Qin

    2015-01-01

    The basal forebrain (BF) plays a crucial role in cortical activation. Our previous study showed that activation of cholinergic BF neurons alone is sufficient to suppress slow-wave sleep (SWS) and promote wakefulness and rapid-eye-movement (REM) sleep. However, the exact role of silencing cholinergic BF neurons in the sleep-wake cycle remains unclear. We inhibitied the cholinergic BF neurons genetically targeted with archaerhodopsin (Arch) with yellow light to clarify the role of cholinergic BF neurons in the sleep-wake cycle. Bilateral inactivation of cholinergic BF neurons genetically targeted with archaerhodopsin prolonged SWS and decreased the probability of awakening from SWS in mice. However, silencing these neurons changed neither the duration of wakefulness or REM sleep, nor the probability of transitions to other sleep-wake episodes from wakefulness or REM sleep. Furthermore, silencing these neurons for 6 h within the inactive or active period increased the duration of SWS at the expense of the duration of wakefulness, as well as increasing the number of prolonged SWS episodes (120-240 s). The lost wakefulness was compensated by a delayed increase of wakefulness, so the total duration of SWS and wakefulness during 24 h was kept stable. Our results indicate that the main effect of these neurons is to terminate SWS, whereas wakefulness or REM sleep may be determined by co-operation of the cholinergic BF neurons with other arousal-sleep control systems.

  13. Identification of a new physically induced urticaria: cold-induced cholinergic urticaria.

    PubMed

    Kaplan, A P; Garofalo, J

    1981-12-01

    Four patients with symptoms suggestive of either cold urticaria or a combination of cold and cholinergic urticaria were studied. However, all patients were negative to an ice-cube test or cold-immersion test and had no urticaria after exercise in a warm environment. When each patient was seated in a cold room (4 degree C) for 5 to 15 min, generalized urticaria appeared, consisting of puncture wheals and surrounding erythema as seen in cholinergic urticaria. Two patients had weakly positive methacholine skin tests and the other two had completely negative tests. When serial venous blood samples were obtained to test for mediator release, three of four patients had evidence of histamine release and the time course was similar to that previously reported for patients with cholinergic urticaria. These four cases represent a new syndrome with features suggestive of cold and/or cholinergic urticaria, but the results of all the tests usually utilized to diagnose these conditions were negative. We have called this disorder cold-induced cholinergic urticaria to indicate that it is cold dependent and visually indistinguishable from cholinergic urticaria.

  14. Anesthetic actions of thiopental remain largely unaffected during cholinergic overstimulation in cultured cortical networks.

    PubMed

    Weimer, Isabel; Worek, Franz; Seeger, Thomas; Thiermann, Horst; Grasshoff, Christian; Antkowiak, Bernd; Balk, Monika

    2016-02-26

    In case of military or terrorist use of organophosphorus (OP) compounds victims are likely to suffer from not only intoxication but physical trauma as well. Appropriate emergency care may therefore include general anesthesia to allow life-saving surgical intervention. Since there is evidence that drug potency and efficacy of several anesthetics are attenuated by high concentrations of acetylcholine in the CNS, this study was designed to evaluate the anesthetic actions of thiopental during cholinergic overstimulation. Making use of organotypic slice cultures derived from the mouse neocortex, drug effects were assessed by extracellular voltage recordings of network activity at basal cholinergic tone and during simulated cholinergic crisis (high cholinergic tone). The latter was achieved by inhibition of acetylcholinesterases via soman and an ambient acetylcholine concentration of 10μM. The induction of cholinergic crisis in vitro increased the network activity of cortical neurons significantly. Surprisingly, differences in network activity between basal and high cholinergic tone became less pronounced with rising concentrations of thiopental and drug potency and efficacy were almost equivalent. These results clearly distinguish thiopental from previously tested general anesthetics and make it a promising candidate for in vivo studies to identify suitable anesthetics for victims of OP intoxication.

  15. Cholinergic systems are essential for late-stage maturation and refinement of motor cortical circuits

    PubMed Central

    Ramanathan, Dhakshin S.; Conner, James M.; Anilkumar, Arjun A.

    2014-01-01

    Previous studies reported that early postnatal cholinergic lesions severely perturb early cortical development, impairing neuronal cortical migration and the formation of cortical dendrites and synapses. These severe effects of early postnatal cholinergic lesions preclude our ability to understand the contribution of cholinergic systems to the later-stage maturation of topographic cortical representations. To study cholinergic mechanisms contributing to the later maturation of motor cortical circuits, we first characterized the temporal course of cortical motor map development and maturation in rats. In this study, we focused our attention on the maturation of cortical motor representations after postnatal day 25 (PND 25), a time after neuronal migration has been accomplished and cortical volume has reached adult size. We found significant maturation of cortical motor representations after this time, including both an expansion of forelimb representations in motor cortex and a shift from proximal to distal forelimb representations to an extent unexplainable by simple volume enlargement of the neocortex. Specific cholinergic lesions placed at PND 24 impaired enlargement of distal forelimb representations in particular and markedly reduced the ability to learn skilled motor tasks as adults. These results identify a novel and essential role for cholinergic systems in the late refinement and maturation of cortical circuits. Dysfunctions in this system may constitute a mechanism of late-onset neurodevelopmental disorders such as Rett syndrome and schizophrenia. PMID:25505106

  16. Substance P selectively modulates GABA(A) receptor-mediated synaptic transmission in striatal cholinergic interneurons.

    PubMed

    Govindaiah, G; Wang, Yanyan; Cox, Charles L

    2010-02-01

    Substance P (SP) is co-localized and co-released with gamma-amino butyric acid (GABA) from approximately 50% of GABAergic medium spiny neurons (MSNs) in the striatum. MSNs innervate several cellular targets including neighboring MSNs and cholinergic interneurons via collaterals. However, the functional role of SP release onto striatal interneurons is unknown. Here we examined SP-mediated actions on inhibitory synaptic transmission in cholinergic interneurons using whole-cell recordings in mouse corticostriatal slices. We found that SP selectively suppressed GABA(A) receptor-mediated inhibitory post-synaptic currents (IPSCs), but not excitatory post-synaptic currents (EPSCs) in cholinergic interneurons. In contrast, SP did not alter IPSCs in fast-spiking interneurons and MSNs. SP suppressed IPSC amplitude in a concentration-dependent and reversible manner, and the NK1 receptor antagonist RP67580 attenuated the SP-mediated suppression. In addition, RP67580 alone enhanced the evoked IPSC amplitude in cholinergic interneurons, suggesting an endogenous action of SP on regulation of inhibitory synaptic transmission. SP did not alter the paired-pulse ratio, but reduced the amplitudes of GABA(A) agonist muscimol-induced outward currents and miniature IPSCs in cholinergic interneurons, suggesting SP exerts its effects primarily at the post-synaptic site. Our results indicate that the physiological effects of SP are to enhance the activity of striatal cholinergic interneurons and provide a rationale for designing potential new antiparkinsonian agents.

  17. Brain vascular damage of cholinergic pathways and EEG markers in mild cognitive impairment.

    PubMed

    Moretti, Davide Vito; Pievani, Michela; Fracassi, Claudia; Geroldi, Cristina; Calabria, Marco; De Carli, Charles S; Rossini, Paolo Maria; Frisoni, Giovanni Battista

    2008-11-01

    We evaluated changes of brain rhythmicity correlating with the cerebrovascular damage of long-range (capsular tract) and short-range (medial and perisylvian tracts) cholinergic pathways in subjects with mild cognitive impairment (MCI). Ninety-four MCI subjects underwent electroencephalographic (EEG) recordings and magnetic resonance imaging (MRI). The EEG relative power spectrum was computed in delta, theta, alpha1, alpha2, alpha3, beta1, beta2, gamma frequency bands. White matter hyperintensities along each cholinergic tract was segmented on MRI. Three MCI subgroups were identified based on increasing damage. A significant increase of delta and theta power band was found in patients with the highest total cholinergic burden as well as in patients with highest capsular pathway damage; total load of cholinergic damage was also associated with decreased gamma power band. Alpha frequency was differentially affected: decrease of alpha3 power band was associated with the greatest damage of the capsular pathway whereas increase of alpha3 power band was associated with the greatest damage of the perisylvian pathway. Multiple regression linear analysis showed independent association of cholinergic damage with delta, theta and gamma frequency, not with alpha frequency. In conclusion, the damage of long-range and short range cholinergic tracts has possible different implications for cognitive functions in MCI subjects.

  18. A D1 dopamine agonist stimulates acetylcholine release from dissociated striatal cholinergic neurons.

    PubMed

    Login, I S; Harrison, M B

    1996-07-15

    We tested the hypothesis that a D1 dopamine agonist could stimulate acetylcholine release directly from striatal cholinergic neurons. A suspension of viable dissociated striatal cells was made enzymatically and mechanically from normal adult male rats. The heterogeneous suspension was incubated in [3H]choline to allow synthesis of [3H]acetylcholine selectively by cholinergic neurons. Fractional [3H]acetylcholine release from the cholinergic cells in the suspension was recorded during continuous dynamic perifusion. The D1 agonist, 50 microM (+/-) SKF 38393, increased the basal rate of release from the cholinergic cells by 50% and the action was inhibited by the D1 antagonist, SKF 83566. Stimulation of [3H]acetylcholine secretion was recorded as low as 500 nM SKF 38393. The (S, -) SKF 38393 stereoisomer was significantly less effective than the (R, +) isomer in stimulating release. The D1-mediated stimulation of acetylcholine secretion was abolished in a low-calcium environment that also inhibited basal release. The data suggest that striatal cholinergic cells express D1 receptors functionally coupled to the regulation of acetylcholine release. These D1 actions in the absence of synaptic circuitry imply that such circuitry is not required in situ. In vivo however, indirectly mediated D1 actions and those of other transmitters may modify the manifestations of this direct cholinergic stimulation.

  19. Impact of the NGF maturation and degradation pathway on the cortical cholinergic system phenotype.

    PubMed

    Allard, Simon; Leon, Wanda C; Pakavathkumar, Prateep; Bruno, Martin A; Ribeiro-da-Silva, Alfredo; Cuello, A Claudio

    2012-02-08

    Cortical cholinergic atrophy plays a significant role in the cognitive loss seen with aging and in Alzheimer's disease (AD), but the mechanisms leading to it remain unresolved. Nerve growth factor (NGF) is the neurotrophin responsible for the phenotypic maintenance of basal forebrain cholinergic neurons in the mature and fully differentiated CNS. In consequence, its implication in cholinergic atrophy has been suspected; however, no mechanistic explanation has been provided. We have previously shown that the precursor of NGF (proNGF) is cleaved extracellularly by plasmin to form mature NGF (mNGF) and that mNGF is degraded by matrix metalloproteinase 9. Using cognitive-behavioral tests, Western blotting, and confocal and electron microscopy, this study demonstrates that a pharmacologically induced chronic failure in extracellular NGF maturation leads to a reduction in mNGF levels, proNGF accumulation, cholinergic degeneration, and cognitive impairment in rats. It also shows that inhibiting NGF degradation increases endogenous levels of the mature neurotrophin and increases the density of cortical cholinergic boutons. Together, the data point to a mechanism explaining cholinergic loss in neurodegenerative conditions such as AD and provide a potential therapeutic target for the protection or restoration of this CNS transmitter system in aging and AD.

  20. Evaluating the Evidence Surrounding Pontine Cholinergic Involvement in REM Sleep Generation.

    PubMed

    Grace, Kevin P; Horner, Richard L

    2015-01-01

    Rapid eye movement (REM) sleep - characterized by vivid dreaming, motor paralysis, and heightened neural activity - is one of the fundamental states of the mammalian central nervous system. Initial theories of REM sleep generation posited that induction of the state required activation of the "pontine REM sleep generator" by cholinergic inputs. Here, we review and evaluate the evidence surrounding cholinergic involvement in REM sleep generation. We submit that: (i) the capacity of pontine cholinergic neurotransmission to generate REM sleep has been firmly established by gain-of-function experiments, (ii) the function of endogenous cholinergic input to REM sleep generating sites cannot be determined by gain-of-function experiments; rather, loss-of-function studies are required, (iii) loss-of-function studies show that endogenous cholinergic input to the PTF is not required for REM sleep generation, and (iv) cholinergic input to the pontine REM sleep generating sites serve an accessory role in REM sleep generation: reinforcing non-REM-to-REM sleep transitions making them quicker and less likely to fail.

  1. Novel ligands of Choline Acetyltransferase designed by in silico molecular docking, hologram QSAR and lead optimization

    PubMed Central

    Kumar, Rajnish; Långström, Bengt; Darreh-Shori, Taher

    2016-01-01

    Recent reports have brought back the acetylcholine synthesizing enzyme, choline acetyltransferase in the mainstream research in dementia and the cholinergic anti-inflammatory pathway. Here we report, a specific strategy for the design of novel ChAT ligands based on molecular docking, Hologram Quantitative Structure Activity Relationship (HQSAR) and lead optimization. Molecular docking was performed on a series of ChAT inhibitors to decipher the molecular fingerprint of their interaction with the active site of ChAT. Then robust statistical fragment HQSAR models were developed. A library of novel ligands was generated based on the pharmacophoric and shape similarity scoring function, and evaluated in silico for their molecular interactions with ChAT. Ten of the top scoring invented compounds are reported here. We confirmed the activity of α-NETA, the only commercially available ChAT inhibitor, and one of the seed compounds in our model, using a new simple colorimetric ChAT assay (IC50 ~ 88 nM). In contrast, α-NETA exhibited an IC50 of ~30 μM for the ACh-degrading cholinesterases. In conclusion, the overall results may provide useful insight for discovering novel ChAT ligands and potential positron emission tomography tracers as in vivo functional biomarkers of the health of central cholinergic system in neurodegenerative disorders, such as Alzheimer’s disease. PMID:27507101

  2. Novel ligands of Choline Acetyltransferase designed by in silico molecular docking, hologram QSAR and lead optimization

    NASA Astrophysics Data System (ADS)

    Kumar, Rajnish; Långström, Bengt; Darreh-Shori, Taher

    2016-08-01

    Recent reports have brought back the acetylcholine synthesizing enzyme, choline acetyltransferase in the mainstream research in dementia and the cholinergic anti-inflammatory pathway. Here we report, a specific strategy for the design of novel ChAT ligands based on molecular docking, Hologram Quantitative Structure Activity Relationship (HQSAR) and lead optimization. Molecular docking was performed on a series of ChAT inhibitors to decipher the molecular fingerprint of their interaction with the active site of ChAT. Then robust statistical fragment HQSAR models were developed. A library of novel ligands was generated based on the pharmacophoric and shape similarity scoring function, and evaluated in silico for their molecular interactions with ChAT. Ten of the top scoring invented compounds are reported here. We confirmed the activity of α-NETA, the only commercially available ChAT inhibitor, and one of the seed compounds in our model, using a new simple colorimetric ChAT assay (IC50 ~ 88 nM). In contrast, α-NETA exhibited an IC50 of ~30 μM for the ACh-degrading cholinesterases. In conclusion, the overall results may provide useful insight for discovering novel ChAT ligands and potential positron emission tomography tracers as in vivo functional biomarkers of the health of central cholinergic system in neurodegenerative disorders, such as Alzheimer’s disease.

  3. Ligand modeling and design

    SciTech Connect

    Hay, B.P.

    1997-10-01

    The purpose of this work is to develop and implement a molecular design basis for selecting organic ligands that would be used in the cost-effective removal of specific radionuclides from nuclear waste streams. Organic ligands with metal ion specificity are critical components in the development of solvent extraction and ion exchange processes that are highly selective for targeted radionuclides. The traditional approach to the development of such ligands involves lengthy programs of organic synthesis and testing, which in the absence of reliable methods for screening compounds before synthesis, results in wasted research effort. The author`s approach breaks down and simplifies this costly process with the aid of computer-based molecular modeling techniques. Commercial software for organic molecular modeling is being configured to examine the interactions between organic ligands and metal ions, yielding an inexpensive, commercially or readily available computational tool that can be used to predict the structures and energies of ligand-metal complexes. Users will be able to correlate the large body of existing experimental data on structure, solution binding affinity, and metal ion selectivity to develop structural design criteria. These criteria will provide a basis for selecting ligands that can be implemented in separations technologies through collaboration with other DOE national laboratories and private industry. The initial focus will be to select ether-based ligands that can be applied to the recovery and concentration of the alkali and alkaline earth metal ions including cesium, strontium, and radium.

  4. Cholinergic modulation of anaphylactic shock: plasma proteins influence.

    PubMed

    Nezhinskaya, Galina I; Vladykin, Aleksandr L; Sapronov, Nikolay S

    2007-05-30

    Cholinergic drugs can modulate anaphylactic shock and change lymphocyte functions. Plasma proteins modulate effects of muscarinic antagonists during anaphylactic shock. The present investigation was carried out to study the antianaphylactic activity of methacine (antagonist at muscarinic receptors) in combination with neostigmine (anticholinesterase drug). However, it is not known whether plasma proteins-albumin, C-reactive protein (CRP) and immunoglobulin G (IgG) - modify the effects of cholinergic drugs like methacine, serotonin (5-HT) level in the lymphoid organs and quantity of antibody-forming cells (AFC) in the spleen of guinea pigs during experimental anaphylactic shock. It was shown that administration of methacine with neostigmine (40 min and 15 min prior to shock induction, accordingly) at the pathochemical stage revokes shock development. By blocking cholinesterase endogenous acetylcholine is increased and methacine blocks muscarinic receptors and therewith unwanted side effects in the airways (bronchoconstriction) and heart (bradycardia). Administration of the combination of methacine with neostigmine at the immunological stage (guinea pig sensitization) does not affect the course of anaphylactic shock. Administration of methacine with IgG at the pathochemical stage of shock significantly decreases shock intensity, while administration of methacine with CRP or albumin has no influence on the shock. Administration of IgG or CRP (not albumin) at the immunological stage of shock and albumin or IgG (not CRP) at the pathochemical stage leads to reduction of the anaphylactic reaction. Application of methacine with neostigmine or IgG (effective combinations of drugs) results in normalization of antibody response in the spleen and 5-HT level in the lymphoid organs. Administration of methacine with CRP or albumin (ineffective combinations of drugs) leads to increase of antibody response in the spleen and 5-HT level in the lymphoid organs. Administration of

  5. TASK Channels on Basal Forebrain Cholinergic Neurons Modulate Electrocortical Signatures of Arousal by Histamine

    PubMed Central

    Vu, Michael T.; Du, Guizhi; Bayliss, Douglas A.

    2015-01-01

    Basal forebrain cholinergic neurons are the main source of cortical acetylcholine, and their activation by histamine elicits cortical arousal. TWIK-like acid-sensitive K+ (TASK) channels modulate neuronal excitability and are expressed on basal forebrain cholinergic neurons, but the role of TASK channels in the histamine-basal forebrain cholinergic arousal circuit is unknown. We first expressed TASK channel subunits and histamine Type 1 receptors in HEK cells. Application of histamine in vitro inhibited the acid-sensitive K+ current, indicating a functionally coupled signaling mechanism. We then studied the role of TASK channels in modulating electrocortical activity in vivo using freely behaving wild-type (n = 12) and ChAT-Cre:TASKf/f mice (n = 12), the latter lacking TASK-1/3 channels on cholinergic neurons. TASK channel deletion on cholinergic neurons significantly altered endogenous electroencephalogram oscillations in multiple frequency bands. We then identified the effect of TASK channel deletion during microperfusion of histamine into the basal forebrain. In non-rapid eye movement sleep, TASK channel deletion on cholinergic neurons significantly attenuated the histamine-induced increase in 30–50 Hz activity, consistent with TASK channels contributing to histamine action on basal forebrain cholinergic neurons. In contrast, during active wakefulness, histamine significantly increased 30–50 Hz activity in ChAT-Cre:TASKf/f mice but not wild-type mice, showing that the histamine response depended upon the prevailing cortical arousal state. In summary, we identify TASK channel modulation in response to histamine receptor activation in vitro, as well as a role of TASK channels on cholinergic neurons in modulating endogenous oscillations in the electroencephalogram and the electrocortical response to histamine at the basal forebrain in vivo. SIGNIFICANCE STATEMENT Attentive states and cognitive function are associated with the generation of γ EEG activity

  6. Cholinergic, but not dopaminergic or noradrenergic, enhancement sharpens visual spatial perception in humans.

    PubMed

    Gratton, Caterina; Yousef, Sahar; Aarts, Esther; Wallace, Deanna L; D'Esposito, Mark; Silver, Michael A

    2017-03-23

    The neuromodulator acetylcholine (ACh) modulates spatial integration in visual cortex by altering the balance of inputs that generate neuronal receptive fields. These cholinergic effects may provide a neurobiological mechanism underlying the modulation of visual representations by visual spatial attention. However, the consequences of cholinergic enhancement on visuospatial perception in humans are unknown. We conducted two experiments to test whether enhancing cholinergic signaling selectively alters perceptual measures of visuospatial interactions in human subjects. In Experiment 1, a double-blind placebo-controlled pharmacology study, we measured how flanking distractors influenced detection of a small contrast decrement of a peripheral target, as a function of target/flanker distance. We found that cholinergic enhancement with the cholinesterase inhibitor donepezil improved target detection, and modeling suggested that this was mainly due to a narrowing of the extent of facilitatory perceptual spatial interactions. In Experiment 2, we tested whether these effects were selective to the cholinergic system or would also be observed following enhancements of related neuromodulators dopamine (DA) or norepinephrine (NE). Unlike cholinergic enhancement, DA (bromocriptine) and NE (guanfacine) manipulations did not improve performance or systematically alter the spatial profile of perceptual interactions between targets and distractors. These findings reveal mechanisms by which cholinergic signaling influences visual spatial interactions in perception and improves processing of a visual target among distractors - effects that are notably similar to those of spatial selective attention.Significance StatementAcetylcholine influences how visual cortical neurons integrate signals across space - perhaps providing a neurobiological mechanism for the effects of visual selective attention. However, the influence of cholinergic enhancement on visuospatial perception remains

  7. Ligand modeling and design

    SciTech Connect

    Hay, B.

    1996-10-01

    The purpose of this work is to develop and implement a molecular design basis for selecting organic ligands that would be used tin applications for the cost-effective removal of specific radionuclides from nuclear waste streams.

  8. Cholinergic modulation of working memory activity in primate prefrontal cortex.

    PubMed

    Zhou, Xin; Qi, Xue-Lian; Douglas, Kristy; Palaninathan, Kathini; Kang, Hyun Sug; Buccafusco, Jerry J; Blake, David T; Constantinidis, Christos

    2011-11-01

    The prefrontal cortex, a cortical area essential for working memory and higher cognitive functions, is modulated by a number of neurotransmitter systems, including acetylcholine; however, the impact of cholinergic transmission on prefrontal activity is not well understood. We relied on systemic administration of a muscarinic receptor antagonist, scopolamine, to investigate the role of acetylcholine on primate prefrontal neuronal activity during execution of working memory tasks and recorded neuronal activity with chronic electrode arrays and single electrodes. Our results indicated a dose-dependent decrease in behavioral performance after scopolamine administration in all the working memory tasks we tested. The effect could not be accounted for by deficits in visual processing, eye movement responses, or attention, because the animals performed a visually guided saccade task virtually error free, and errors to distracting stimuli were not increased. Performance degradation under scopolamine was accompanied by decreased firing rate of the same cortical sites during the delay period of the task and decreased selectivity for the spatial location of the stimuli. These results demonstrate that muscarinic blockade impairs performance in working memory tasks and prefrontal activity mediating working memory.

  9. Mechanisms Underlying Desynchronization of Cholinergic-Evoked Thalamic Network Activity

    PubMed Central

    Pita-Almenar, Juan Diego; Yu, Dinghui; Lu, Hui-Chen

    2014-01-01

    Synchronous neuronal activity in the thalamocortical system is critical for a number of behaviorally relevant computations, but hypersynchrony can limit information coding and lead to epileptiform responses. In the somatosensory thalamus, afferent inputs are transformed by networks of reciprocally connected thalamocortical neurons in the ventrobasal nucleus (VB) and GABAergic neurons in the thalamic reticular nucleus (TRN). These networks can generate oscillatory activity, and studies in vivo and in vitro have suggested that thalamic oscillations are often accompanied by synchronous neuronal activity, in part mediated by widespread divergence and convergence of both reticulothalamic and thalamoreticular pathways, as well as by electrical synapses interconnecting TRN neurons. However, the functional organization of thalamic circuits and its role in shaping input-evoked activity patterns remain poorly understood. Here we show that optogenetic activation of cholinergic synaptic afferents evokes near-synchronous firing in mouse TRN neurons that is rapidly desynchronized in thalamic networks. We identify several mechanisms responsible for desynchronization: (1) shared inhibitory inputs in local VB neurons leading to asynchronous and imprecise rebound bursting; (2) TRN-mediated lateral inhibition that further desynchronizes firing in the VB; and (3) powerful yet sparse thalamoreticular connectivity that mediates re-excitation of the TRN but preserves asynchronous firing. Our findings reveal how distinct local circuit features interact to desynchronize thalamic network activity. PMID:25339757

  10. Combined cold- and heat-induced cholinergic urticaria.

    PubMed

    Farnam, J; Grant, J A; Lett-Brown, M A; Lord, R A; Russell, W L; Henry, D P

    1986-08-01

    A 36-year-old white woman with a 20-year history of cutaneous, respiratory, and cardiovascular symptoms triggered by physical activity and by exposure to either heat or cold was evaluated. A routine evaluation for the cause of her condition was positive only for certain physical factors. Cutaneous testing for dermatographism, ice-cube challenge, and exposure to ultraviolet A and ultraviolet B light were negative. A methacholine skin test was positive. Sitting in a cold room (4 degrees C) induced micropapular wheals on exposed areas similar to those classically associated with cholinergic urticaria. Placing both feet in warm water (44 degrees C) induced similar but more intense cutaneous lesions at sites not exposed to heat, light headedness, and severe asthma. Exercise for 10 minutes caused confluent and punctate urticarial lesions. Simultaneous measurement of plasma histamine during cold and heat challenges revealed increases paralleling the course of symptoms. Repeat challenge with cold, heat, and exercise after beginning treatment with both H1 and H2 histamine antagonists resulted in marked reduction in symptoms; however, significant rises in plasma histamines were still noted.

  11. Characterization of muscarinic cholinergic receptor subtypes in human peripheral lung

    SciTech Connect

    Bloom, J.W.; Halonen, M.; Yamamura, H.I.

    1988-02-01

    The authors have characterized the muscarinic cholinergic receptor subtypes in human peripheral lung membranes using the selective muscarinic antagonist (/sup 3/H)pirenzepine ((/sup 3/H)PZ) and the classical muscarinic antagonist (/sup 3/H)(-)-quinuclidinyl benzilate. High-affinity binding with pharmacologic specificity was demonstrated for both radioligands. The high affinity Kd for (/sup 3/H)PZ binding determined from saturation isotherms was 5.6 nM, and the Kd for (/sup 3/H)(-)-quinuclidinyl benzilate binding was 14.3 pM. Approximately 62% of the total muscarinic binding sites in human peripheral lung bind (/sup 3/H)PZ with high affinity. There was no significant effect of the guanine nucleotide, guanyl-5'-yl imidodiphosphate, on the inhibition of (/sup 3/H)(-)-quinyclidinyl benzilate binding by the muscarinic agonist carbachol in peripheral lung membranes. If the muscarinic receptor with high affinity for PZ has an important role in bronchoconstriction, its characterization could result in the development of more selective bronchodilators.

  12. Structural analysis of beta-adrenergic and muscarinic cholinergic receptors

    SciTech Connect

    Kerlavage, A.R.; Fraser, C.M.; Venter, J.C.

    1987-05-01

    The authors have recently cloned the gene encoding the human brain beta-adrenergic receptor. Beta-adrenergic and muscarinic cholinergic receptors have also been cloned from other tissues. In order to correlate the primary structures of these receptors with their function, they have undertaken detailed mapping of their functionally important sites. Purified guinea pig lung beta receptor was radioiodinated and digested with trypsin. The resultant peptides were resolved by reverse phase HPLC into nine peaks containing /sup 125/I, corresponding exactly with the predicted number of tyrosine containing peptides in the beta receptor. Hamster lung beta receptor was labeled with (/sup 125/I)-iodocyanopindolol diazarine ((/sup 125/I)CYPD) and partially purified by SDS-PAGE. The (/sup 125/I)CYPD-labeled receptor was extracted from the gel, digested with either trypsin or CNBr and the digests were resolved by reverse phase HPLC. The tryptic digest contained one (/sup 125/I)CYPD-labeled peak and the CNBr digest contained two. Rat brain muscarinic receptor was specifically labeled with (/sup 3/H)-propylbenzilyl-choline mustard ((/sup 3/H)PrBCM) and partially purified by SDS-PABE. The (/sup 3/H)PrBCM-labeled receptor was extracted from the gel and digested with CNBr. The resultant HPLC profile revealed a single (/sup 3/H)PrBCM-labeled peak. These data yield information on the location of functional sites within the primary sequences of these receptors.

  13. Replicated Risk Nicotinic Cholinergic Receptor Genes for Nicotine Dependence.

    PubMed

    Zuo, Lingjun; Garcia-Milian, Rolando; Guo, Xiaoyun; Zhong, Chunlong; Tan, Yunlong; Wang, Zhiren; Wang, Jijun; Wang, Xiaoping; Kang, Longli; Lu, Lu; Chen, Xiangning; Li, Chiang-Shan R; Luo, Xingguang

    2016-11-07

    It has been hypothesized that the nicotinic acetylcholine receptors (nAChRs) play important roles in nicotine dependence (ND) and influence the number of cigarettes smoked per day (CPD) in smokers. We compiled the associations between nicotinic cholinergic receptor genes (CHRNs) and ND/CPD that were replicated across different studies, reviewed the expression of these risk genes in human/mouse brains, and verified their expression using independent samples of both human and mouse brains. The potential functions of the replicated risk variants were examined using cis-eQTL analysis or predicted using a series of bioinformatics analyses. We found replicated and significant associations for ND/CPD at 19 SNPs in six genes in three genomic regions (CHRNB3-A6, CHRNA5-A3-B4 and CHRNA4). These six risk genes are expressed in at least 18 distinct areas of the human/mouse brain, with verification in our independent human and mouse brain samples. The risk variants might influence the transcription, expression and splicing of the risk genes, alter RNA secondary or protein structure. We conclude that the replicated associations between CHRNB3-A6, CHRNA5-A3-B4,CHRNA4 and ND/CPD are very robust. More research is needed to examine how these genetic variants contribute to the risk for ND/CPD.

  14. Replicated Risk Nicotinic Cholinergic Receptor Genes for Nicotine Dependence

    PubMed Central

    Zuo, Lingjun; Garcia-Milian, Rolando; Guo, Xiaoyun; Zhong, Chunlong; Tan, Yunlong; Wang, Zhiren; Wang, Jijun; Wang, Xiaoping; Kang, Longli; Lu, Lu; Chen, Xiangning; Li, Chiang-Shan R.; Luo, Xingguang

    2016-01-01

    It has been hypothesized that the nicotinic acetylcholine receptors (nAChRs) play important roles in nicotine dependence (ND) and influence the number of cigarettes smoked per day (CPD) in smokers. We compiled the associations between nicotinic cholinergic receptor genes (CHRNs) and ND/CPD that were replicated across different studies, reviewed the expression of these risk genes in human/mouse brains, and verified their expression using independent samples of both human and mouse brains. The potential functions of the replicated risk variants were examined using cis-eQTL analysis or predicted using a series of bioinformatics analyses. We found replicated and significant associations for ND/CPD at 19 SNPs in six genes in three genomic regions (CHRNB3-A6, CHRNA5-A3-B4 and CHRNA4). These six risk genes are expressed in at least 18 distinct areas of the human/mouse brain, with verification in our independent human and mouse brain samples. The risk variants might influence the transcription, expression and splicing of the risk genes, alter RNA secondary or protein structure. We conclude that the replicated associations between CHRNB3-A6, CHRNA5-A3-B4, CHRNA4 and ND/CPD are very robust. More research is needed to examine how these genetic variants contribute to the risk for ND/CPD. PMID:27827986

  15. Cortical Control of Striatal Dopamine Transmission via Striatal Cholinergic Interneurons

    PubMed Central

    Kosillo, Polina; Zhang, Yan-Feng; Threlfell, Sarah; Cragg, Stephanie J.

    2016-01-01

    Corticostriatal regulation of striatal dopamine (DA) transmission has long been postulated, but ionotropic glutamate receptors have not been localized directly to DA axons. Striatal cholinergic interneurons (ChIs) are emerging as major players in striatal function, and can govern DA transmission by activating nicotinic receptors (nAChRs) on DA axons. Cortical inputs to ChIs have historically been perceived as sparse, but recent evidence indicates that they strongly activate ChIs. We explored whether activation of M1/M2 corticostriatal inputs can consequently gate DA transmission, via ChIs. We reveal that optogenetic activation of channelrhodopsin-expressing corticostriatal axons can drive striatal DA release detected with fast-scan cyclic voltammetry and requires activation of nAChRs on DA axons and AMPA receptors on ChIs that promote short-latency action potentials. By contrast, DA release driven by optogenetic activation of intralaminar thalamostriatal inputs involves additional activation of NMDA receptors on ChIs and action potential generation over longer timescales. Therefore, cortical and thalamic glutamate inputs can modulate DA transmission by regulating ChIs as gatekeepers, through ionotropic glutamate receptors. The different use of AMPA and NMDA receptors by cortical versus thalamic inputs might lead to distinct input integration strategies by ChIs and distinct modulation of the function of DA and striatum. PMID:27566978

  16. Dopaminergic and cholinergic learning mechanisms in nicotine addiction

    PubMed Central

    Subramaniyan, Manivannan

    2015-01-01

    Nicotine addiction drives tobacco use by one billion people worldwide, causing nearly six million deaths a year. Nicotine binds to nicotinic acetylcholine receptors that are normally activated by the endogenous neurotransmitter acetylcholine. The widespread expression of nicotinic receptors throughout the nervous system accounts for the diverse physiological effects triggered by nicotine. A crucial influence of nicotine is on the synaptic mechanisms underlying learning that contribute to the addiction process. Here, we focus on the acquisition phase of smoking addiction and review animal model studies on how nicotine modifies dopaminergic and cholinergic signaling in key nodes of the reinforcement circuitry: ventral tegmental area, nucleus accumbens (NAc), amygdala, and hippocampus. Capitalizing on mechanisms that subserve natural rewards, nicotine activates midbrain dopamine neurons directly and indirectly, and nicotine causes dopamine release in very broad target areas throughout the brain, including the NAc, amygdala, and hippocampus. In addition, nicotine orchestrates local changes within those target structures, alters the release of virtually all major neurotransmitters, and primes the nervous system to the influence of other addictive drugs. Hence, understanding how nicotine affects the circuitry for synaptic plasticity and learning may aid in developing reasoned therapies to treat nicotine addiction. PMID:26301866

  17. Cholinergic modulation of cognitive processing: insights drawn from computational models

    PubMed Central

    Newman, Ehren L.; Gupta, Kishan; Climer, Jason R.; Monaghan, Caitlin K.; Hasselmo, Michael E.

    2012-01-01

    Acetylcholine plays an important role in cognitive function, as shown by pharmacological manipulations that impact working memory, attention, episodic memory, and spatial memory function. Acetylcholine also shows striking modulatory influences on the cellular physiology of hippocampal and cortical neurons. Modeling of neural circuits provides a framework for understanding how the cognitive functions may arise from the influence of acetylcholine on neural and network dynamics. We review the influences of cholinergic manipulations on behavioral performance in working memory, attention, episodic memory, and spatial memory tasks, the physiological effects of acetylcholine on neural and circuit dynamics, and the computational models that provide insight into the functional relationships between the physiology and behavior. Specifically, we discuss the important role of acetylcholine in governing mechanisms of active maintenance in working memory tasks and in regulating network dynamics important for effective processing of stimuli in attention and episodic memory tasks. We also propose that theta rhythm plays a crucial role as an intermediary between the physiological influences of acetylcholine and behavior in episodic and spatial memory tasks. We conclude with a synthesis of the existing modeling work and highlight future directions that are likely to be rewarding given the existing state of the literature for both empiricists and modelers. PMID:22707936

  18. Memory-Relevant Mushroom Body Output Synapses Are Cholinergic.

    PubMed

    Barnstedt, Oliver; Owald, David; Felsenberg, Johannes; Brain, Ruth; Moszynski, John-Paul; Talbot, Clifford B; Perrat, Paola N; Waddell, Scott

    2016-03-16

    Memories are stored in the fan-out fan-in neural architectures of the mammalian cerebellum and hippocampus and the insect mushroom bodies. However, whereas key plasticity occurs at glutamatergic synapses in mammals, the neurochemistry of the memory-storing mushroom body Kenyon cell output synapses is unknown. Here we demonstrate a role for acetylcholine (ACh) in Drosophila. Kenyon cells express the ACh-processing proteins ChAT and VAChT, and reducing their expression impairs learned olfactory-driven behavior. Local ACh application, or direct Kenyon cell activation, evokes activity in mushroom body output neurons (MBONs). MBON activation depends on VAChT expression in Kenyon cells and is blocked by ACh receptor antagonism. Furthermore, reducing nicotinic ACh receptor subunit expression in MBONs compromises odor-evoked activation and redirects odor-driven behavior. Lastly, peptidergic corelease enhances ACh-evoked responses in MBONs, suggesting an interaction between the fast- and slow-acting transmitters. Therefore, olfactory memories in Drosophila are likely stored as plasticity of cholinergic synapses.

  19. Memory-Relevant Mushroom Body Output Synapses Are Cholinergic

    PubMed Central

    Barnstedt, Oliver; Owald, David; Felsenberg, Johannes; Brain, Ruth; Moszynski, John-Paul; Talbot, Clifford B.; Perrat, Paola N.; Waddell, Scott

    2016-01-01

    Summary Memories are stored in the fan-out fan-in neural architectures of the mammalian cerebellum and hippocampus and the insect mushroom bodies. However, whereas key plasticity occurs at glutamatergic synapses in mammals, the neurochemistry of the memory-storing mushroom body Kenyon cell output synapses is unknown. Here we demonstrate a role for acetylcholine (ACh) in Drosophila. Kenyon cells express the ACh-processing proteins ChAT and VAChT, and reducing their expression impairs learned olfactory-driven behavior. Local ACh application, or direct Kenyon cell activation, evokes activity in mushroom body output neurons (MBONs). MBON activation depends on VAChT expression in Kenyon cells and is blocked by ACh receptor antagonism. Furthermore, reducing nicotinic ACh receptor subunit expression in MBONs compromises odor-evoked activation and redirects odor-driven behavior. Lastly, peptidergic corelease enhances ACh-evoked responses in MBONs, suggesting an interaction between the fast- and slow-acting transmitters. Therefore, olfactory memories in Drosophila are likely stored as plasticity of cholinergic synapses. PMID:26948892

  20. Pharmacological doses of Zn2+ induce a muscarinic cholinergic supersensitivity.

    PubMed

    Bonfante-Cabarcas, R; Bravo, I; Nello, C; Gutiérrez-Reyes, E; Loureiro Dos Santos, N E; Moreno-Yanes, J A

    2002-01-01

    The goal of this study was to evaluate the effect of chronic Zn2+ administration (1 mg/kg/day for 1 month) in Sprague-Dawley rats (n = 11) on motility and rearing behaviors (number of events/10 min measured in motility cage), on memory (percentage of failures using a foot-shock double T maze), on the number of muscarinic receptors (using [(3)H]-QNB as a marker) and on the cholinacetyltransferase (Chat) activity (determined by Fonnun's method) in various brain areas (striatum, hippocampus and frontal cortex), as compared with saline-treated rats (n = 10). Our results showed that Zn2+ induced a decrease in rearing (control: 24.6 +/- 3; Zn2+: 15.91 +/- 2.19) and in locomotor activity (control: 37 +/- 3.79; Zn2+: 25 +/- 4.37), a decrease in failures during memory trials (control: 26.12 +/- 5.6; Zn2+: 5.33 +/- 2.71) and an increase in muscarinic receptor density (fmol/mg) in the striatum (control: 539 +/- 6.18; Zn2+: 720 +/- 14.69), hippocampus (control: 396 +/- 7.41; Zn 2+: 458 +/- 5.05) and frontal cortex (control: 506 +/- 10.28; Zn2+: 716 +/- 16.54). Chat activity (pmol/mg/min) was decreased only in the striatum (control: 4240 +/- 158; Zn2+: 2311 +/- 69). We conclude that Zn 2+ induces a cholinergic functional supersensitivity which is related to receptor upregulation. Copyright 2002 National Science Council, ROC and S. Karger AG, Basel

  1. Biphasic cholinergic synaptic transmission controls action potential activity in thalamic reticular nucleus neurons.

    PubMed

    Sun, Yan-Gang; Pita-Almenar, Juan D; Wu, Chia-Shan; Renger, John J; Uebele, Victor N; Lu, Hui-Chen; Beierlein, Michael

    2013-01-30

    Cholinergic neurons in the basal forebrain and the brainstem form extensive projections to a number of thalamic nuclei. Activation of cholinergic afferents during distinct behavioral states can regulate neuronal firing, transmitter release at glutamatergic and GABAergic synapses, and synchrony in thalamic networks, thereby controlling the flow of sensory information. These effects are thought to be mediated by slow and persistent increases in extracellular ACh levels, resulting in the modulation of populations of thalamic neurons over large temporal and spatial scales. However, the synaptic mechanisms underlying cholinergic signaling in the thalamus are not well understood. Here, we demonstrate highly reliable cholinergic transmission in the mouse thalamic reticular nucleus (TRN), a brain structure essential for sensory processing, arousal, and attention. We find that ACh release evoked by low-frequency stimulation leads to biphasic excitatory-inhibitory (E-I) postsynaptic responses, mediated by the activation of postsynaptic α4β2 nicotinic ACh receptors (nAChRs) and M2 muscarinic ACh receptors (mAChRs), respectively. In addition, ACh can bind to mAChRs expressed near cholinergic release sites, resulting in autoinhibition of release. We show that the activation of postsynaptic nAChRs by transmitter release from only a small number of individual axons is sufficient to trigger action potentials in TRN neurons. Furthermore, short trains of cholinergic synaptic inputs can powerfully entrain ongoing TRN neuronal activity. Our study demonstrates fast and precise synaptic E-I signaling mediated by ACh, suggesting novel computational mechanisms for the cholinergic control of neuronal activity in thalamic circuits.

  2. Deletion of neurturin impairs development of cholinergic nerves and heart rate control in postnatal mouse hearts.

    PubMed

    Downs, Anthony M; Jalloh, Hawa B; Prater, Kayla J; Fregoso, Santiago P; Bond, Cherie E; Hampton, Thomas G; Hoover, Donald B

    2016-05-01

    The neurotrophic factor neurturin is required for normal cholinergic innervation of adult mouse heart and bradycardic responses to vagal stimulation. Our goals were to determine effects of neurturin deletion on development of cardiac chronotropic and dromotropic functions, vagal baroreflex response, and cholinergic nerve density in nodal regions of postnatal mice. Experiments were performed on postnatal C57BL/6 wild-type (WT) and neurturin knockout (KO) mice. Serial electrocardiograms were recorded noninvasively from conscious pups using an ECGenie apparatus. Mice were treated with atenolol to evaluate and block sympathetic effects on heart rate (HR) and phenylephrine (PE) to stimulate the baroreflex. Immunohistochemistry was used to label cholinergic nerves in paraffin sections. WT and KO mice showed similar age-dependent increases in HR and decreases in PR interval between postnatal days (P) 2.5 and 21. Treatment with atenolol reduced HR significantly in WT and KO pups at P7.5. PE caused a reflex bradycardia that was significantly smaller in KO pups. Cholinergic nerve density was significantly less in nodal regions of P7.5 KO mice. We conclude that cholinergic nerves have minimal influence on developmental changes in HR and PR, QRS, and QTc intervals in mouse pups. However, cholinergic nerves mediate reflex bradycardia by 1 week postnatally. Deletion of neurturin impairs cholinergic innervation of the heart and the vagal efferent component of the baroreflex early during postnatal development. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  3. Early presymptomatic cholinergic dysfunction in a murine model of amyotrophic lateral sclerosis

    PubMed Central

    Casas, Caty; Herrando-Grabulosa, Mireia; Manzano, Raquel; Mancuso, Renzo; Osta, Rosario; Navarro, Xavier

    2013-01-01

    Sporadic and familiar amyotrophic lateral sclerosis (ALS) cases presented lower cholinergic activity than in healthy individuals in their still preserved spinal motoneurons (MNs) suggesting that cholinergic reduction might occur before MN death. To unravel how and when cholinergic function is compromised, we have analyzed the spatiotemporal expression of choline acetyltransferase (ChAT) from early presymptomatic stages of the SOD1G93A ALS mouse model by confocal immunohistochemistry. The analysis showed an early reduction in ChAT content in soma and presynaptic boutons apposed onto MNs (to 76%) as well as in cholinergic interneurons in the lumbar spinal cord of the 30-day-old SOD1G93A mice. Cholinergic synaptic stripping occurred simultaneously to the presence of abundant surrounding major histocompatibility complex II (MHC-II)-positive microglia and the accumulation of nuclear Tdp-43 and the appearance of mild oxidative stress within MNs. Besides, there was a loss of neuronal MHC-I expression, which is necessary for balanced synaptic stripping after axotomy. These events occurred before the selective raise of markers of denervation such as ATF3. By the same time, alterations in postsynaptic cholinergic-related structures were also revealed with a loss of the presence of sigma-1 receptor, a Ca2+ buffering chaperone in the postsynaptic cisternae. By 2 months of age, ChAT seemed to accumulate in the soma of MNs, and thus efferences toward Renshaw interneurons were drastically diminished. In conclusion, cholinergic dysfunction in the local circuitry of the spinal cord may be one of the earliest events in ALS etiopathogenesis. PMID:23531559

  4. Whole-brain mapping of inputs to projection neurons and cholinergic interneurons in the dorsal striatum.

    PubMed

    Guo, Qingchun; Wang, Daqing; He, Xiaobin; Feng, Qiru; Lin, Rui; Xu, Fuqiang; Fu, Ling; Luo, Minmin

    2015-01-01

    The dorsal striatum integrates inputs from multiple brain areas to coordinate voluntary movements, associative plasticity, and reinforcement learning. Its projection neurons consist of the GABAergic medium spiny neurons (MSNs) that express dopamine receptor type 1 (D1) or dopamine receptor type 2 (D2). Cholinergic interneurons account for a small portion of striatal neuron populations, but they play important roles in striatal functions by synapsing onto the MSNs and other local interneurons. By combining the modified rabies virus with specific Cre- mouse lines, a recent study mapped the monosynaptic input patterns to MSNs. Because only a small number of extrastriatal neurons were labeled in the prior study, it is important to reexamine the input patterns of MSNs with higher labeling efficiency. Additionally, the whole-brain innervation pattern of cholinergic interneurons remains unknown. Using the rabies virus-based transsynaptic tracing method in this study, we comprehensively charted the brain areas that provide direct inputs to D1-MSNs, D2-MSNs, and cholinergic interneurons in the dorsal striatum. We found that both types of projection neurons and the cholinergic interneurons receive extensive inputs from discrete brain areas in the cortex, thalamus, amygdala, and other subcortical areas, several of which were not reported in the previous study. The MSNs and cholinergic interneurons share largely common inputs from areas outside the striatum. However, innervations within the dorsal striatum represent a significantly larger proportion of total inputs for cholinergic interneurons than for the MSNs. The comprehensive maps of direct inputs to striatal MSNs and cholinergic interneurons shall assist future functional dissection of the striatal circuits.

  5. Gain Modulation of Cholinergic Neurons in the Medial Septum-Diagonal Band of Broca Through Hyperpolarization.

    PubMed

    Melonakos, Eric D; White, John A; Fernandez, Fernando R

    2016-12-01

    Hippocampal network oscillations are important for learning and memory. Theta rhythms are involved in attention, navigation, and memory encoding, whereas sharp wave-ripple complexes are involved in memory consolidation. Cholinergic neurons in the medial septum-diagonal band of Broca (MS-DB) influence both types of hippocampal oscillations, promoting theta rhythms and suppressing sharp wave-ripples. They also receive frequency-dependent hyperpolarizing feedback from hippocamposeptal connections, potentially affecting their role as neuromodulators in the septohippocampal circuit. However, little is known about how the integration properties of cholinergic MS-DB neurons change with hyperpolarization. By potentially altering firing behavior in cholinergic neurons, hyperpolarizing feedback from the hippocampal neurons may, in turn, change hippocampal network activity. To study changes in membrane integration properties in cholinergic neurons in response to hyperpolarizing inputs, we used whole-cell patch-clamp recordings targeting genetically labeled, choline acetyltransferase-positive neurons in mouse brain slices. Hyperpolarization of cholinergic MS-DB neurons resulted in a long-lasting decrease in spike firing rate and input-output gain. Additionally, voltage-clamp measures implicated a slowly inactivating, 4-AP-insensitive, outward K(+) conductance. Using a conductance-based model of cholinergic MS-DB neurons, we show that the ability of this conductance to modulate firing rate and gain depends on the expression of an experimentally verified shallow intrinsic spike frequency-voltage relationship. Together, these findings point to a means through which negative feedback from hippocampal neurons can influence the role of cholinergic MS-DB neurons. © 2016 Wiley Periodicals, Inc.

  6. Whole-Brain Mapping of Inputs to Projection Neurons and Cholinergic Interneurons in the Dorsal Striatum

    PubMed Central

    Guo, Qingchun; Wang, Daqing; He, Xiaobin; Feng, Qiru; Lin, Rui; Xu, Fuqiang; Fu, Ling; Luo, Minmin

    2015-01-01

    The dorsal striatum integrates inputs from multiple brain areas to coordinate voluntary movements, associative plasticity, and reinforcement learning. Its projection neurons consist of the GABAergic medium spiny neurons (MSNs) that express dopamine receptor type 1 (D1) or dopamine receptor type 2 (D2). Cholinergic interneurons account for a small portion of striatal neuron populations, but they play important roles in striatal functions by synapsing onto the MSNs and other local interneurons. By combining the modified rabies virus with specific Cre- mouse lines, a recent study mapped the monosynaptic input patterns to MSNs. Because only a small number of extrastriatal neurons were labeled in the prior study, it is important to reexamine the input patterns of MSNs with higher labeling efficiency. Additionally, the whole-brain innervation pattern of cholinergic interneurons remains unknown. Using the rabies virus-based transsynaptic tracing method in this study, we comprehensively charted the brain areas that provide direct inputs to D1-MSNs, D2-MSNs, and cholinergic interneurons in the dorsal striatum. We found that both types of projection neurons and the cholinergic interneurons receive extensive inputs from discrete brain areas in the cortex, thalamus, amygdala, and other subcortical areas, several of which were not reported in the previous study. The MSNs and cholinergic interneurons share largely common inputs from areas outside the striatum. However, innervations within the dorsal striatum represent a significantly larger proportion of total inputs for cholinergic interneurons than for the MSNs. The comprehensive maps of direct inputs to striatal MSNs and cholinergic interneurons shall assist future functional dissection of the striatal circuits. PMID:25830919

  7. Neuroligin 2 is expressed in synapses established by cholinergic cells in the mouse brain.

    PubMed

    Takács, Virág T; Freund, Tamás F; Nyiri, Gábor

    2013-01-01

    Neuroligin 2 is a postsynaptic protein that plays a critical role in the maturation and proper function of GABAergic synapses. Previous studies demonstrated that deletion of neuroligin 2 impaired GABAergic synaptic transmission, whereas its overexpression caused increased inhibition, which suggest that its presence strongly influences synaptic function. Interestingly, the overexpressing transgenic mouse line showed increased anxiety-like behavior and other behavioral phenotypes, not easily explained by an otherwise strengthened GABAergic transmission. This suggested that other, non-GABAergic synapses may also express neuroligin 2. Here, we tested the presence of neuroligin 2 at synapses established by cholinergic neurons in the mouse brain using serial electron microscopic sections double labeled for neuroligin 2 and choline acetyltransferase. We found that besides GABAergic synapses, neuroligin 2 is also present in the postsynaptic membrane of cholinergic synapses in all investigated brain areas (including dorsal hippocampus, somatosensory and medial prefrontal cortices, caudate putamen, basolateral amygdala, centrolateral thalamic nucleus, medial septum, vertical- and horizontal limbs of the diagonal band of Broca, substantia innominata and ventral pallidum). In the hippocampus, the density of neuroligin 2 labeling was similar in GABAergic and cholinergic synapses. Moreover, several cholinergic contact sites that were strongly labeled with neuroligin 2 did not resemble typical synapses, suggesting that cholinergic axons form more synaptic connections than it was recognized previously. We showed that cholinergic cells themselves also express neuroligin 2 in a subset of their input synapses. These data indicate that mutations in human neuroligin 2 gene and genetic manipulations of neuroligin 2 levels in rodents will potentially cause alterations in the cholinergic system as well, which may also have a profound effect on the functional properties of brain circuits

  8. Aluminium and Acrylamide Disrupt Cerebellum Redox States, Cholinergic Function and Membrane-Bound ATPase in Adult Rats and Their Offspring.

    PubMed

    Ghorbel, Imen; Amara, Ibtissem Ben; Ktari, Naourez; Elwej, Awatef; Boudawara, Ons; Boudawara, Tahia; Zeghal, Najiba

    2016-12-01

    Accumulation of aluminium and acrylamide in food is a major source of human exposure. Their adverse effects are well documented, but there is no information about the health problems arising from their combined exposure. The aim of the present study was to examine the possible neurotoxic effects after co-exposure of pregnant and lactating rats to aluminium and acrylamide in order to evaluate redox state, cholinergic function and membrane-bound ATPases in the cerebellum of adult rats and their progeny. Pregnant female rats have received aluminium (50 mg/kg body weight) via drinking water and acrylamide (20 mg/kg body weight) by gavage, either individually or in combination from the 14th day of pregnancy until day 14 after delivery. Exposure to these toxicants provoked an increase in malondialdehyde (MDA) and advanced oxidation protein product (AOPP) levels and a decrease in SOD, CAT, GPx, Na(+)K(+)-ATPase, Mg(2+)-ATPase and AChE activities in the cerebellum of mothers and their suckling pups. A reduction in GSH, NPSH and vitamin C levels was also observed. These changes were confirmed by histological results. Interestingly, co-exposure to these toxicants exhibited synergism based on physical and biochemical variables in the cerebellum of mothers and their progeny.

  9. Participation of nitric oxide and cyclic GMP in the supersensitivity of acute diabetic rat myocardium by cholinergic stimuli.

    PubMed

    Wald, M R; Borda, E S; Sterin-Borda, L

    1998-06-15

    The purpose of this study was to explore the pharmacological and biochemical mechanisms involved in diabetic cardiomyopathy, with particular interest in the abnormal function of cholinergic neurotransmission at the onset of the pathology. The muscarinic acethylcholine agonist carbachol showed a negative inotropic response on both normal and diabetic isolated atria, but the latter showed a supersensitive response. No changes were found in muscarinic acethylcholine receptor (mAChR) expression. Measurements of mAChR-associated second messengers indicated no significant differences between normal and diabetic rat atria in the stimulatory effect of carbachol on protein kinase C activity and the production of inositol phosphates, or in the inhibitory effect induced by carbachol on cyclic AMP (cAMP) production. On the contrary, nitric oxide (NO) synthase activity and cyclic GMP production were higher in diabetic cardiac preparations than in normal ones. Moreover, in diabetic atria, nitric oxide synthase and guanylate cyclase inhibitors shifted the carbachol concentration-response curve on contractility to the right, reaching values similar to those of normal atria. These results suggest an early alteration in the mACh system during the diabetic state, associated with increased production of nitric oxide and cyclic GMP (cGMP). This, in turn, could increase the biological mechanical activity of the mAChR agonist, inducing in this way a higher pharmacological response, without changes in mAChR expression.

  10. Stem cell derived basal forebrain cholinergic neurons from Alzheimer's disease patients are more susceptible to cell death.

    PubMed

    Duan, Lishu; Bhattacharyya, Bula J; Belmadani, Abdelhak; Pan, Liuliu; Miller, Richard J; Kessler, John A

    2014-01-08

    An early substantial loss of basal forebrain cholinergic neurons (BFCNs) is a constant feature of Alzheimer's disease (AD) and is associated with deficits in spatial learning and memory. Induced pluripotent stem cells (iPSCs) derived from patients with AD as well as from normal controls could be efficiently differentiated into neurons with characteristics of BFCNs. We used BFCNs derived from iPSCs to model sporadic AD with a focus on patients with ApoE3/E4 genotypes (AD-E3/E4). BFCNs derived from AD-E3/E4 patients showed typical AD biochemical features evidenced by increased Aβ42/Aβ40 ratios. AD-E3/E4 neurons also exhibited altered responses to treatment with γ-secretase inhibitors compared to control BFCNs or neurons derived from patients with familial AD. BFCNs from patients with AD-E3/E4 also exhibited increased vulnerability to glutamate-mediated cell death which correlated with increased intracellular free calcium upon glutamate exposure. The ability to generate BFCNs with an AD phenotype is a significant step both for understanding disease mechanisms and for facilitating screening for agents that promote synaptic integrity and neuronal survival.

  11. Isolation and characterization of secretory granules storing a vasoactive intestinal polypeptide-like peptide in Torpedo cholinergic electromotor neurones.

    PubMed

    Agoston, D V; Dowe, G H; Whittaker, V P

    1989-06-01

    Previous immunocytochemical work showed that the cholinergic electromotor neurones of Torpedo marmorata contain a vasoactive intestinal polypeptide-like immunoreactivity (VIPLI) that is conveyed to the terminals by axonal transport from the cell bodies where it is presumably synthesized. In extension of this work, we have now succeeded in isolating the VIPLI storage granules from both the terminals and the axons of these neurones and characterizing them morphologically and biochemically. They were readily separated from synaptic vesicles but contained several components in common that had previously been regarded as specific for synaptic vesicles. Among these were a heparan sulphate type of proteoglycan, synaptophysin, and a Mg2+-dependent ATPase. The VIPLI concentration in lobe tissue and the amount of tissue available were both insufficient to permit the isolation of granules from the electromotor cell bodies by the same technique but it was possible to establish the presence of such granules by particle-exclusion chromatography, using the stable markers mentioned above. In contrast to the VIPLI-containing granules, axonal synaptic vesicles differed from their terminal counterparts in having a very low acetylcholine content relative to stable vesicle markers: they presumably fill up on reaching the terminal where they are exposed to higher concentrations of cytoplasmic acetylcholine.

  12. Balancing specificity, sensitivity, and speed of ligand discrimination by zero-order ultraspecificity

    NASA Astrophysics Data System (ADS)

    Kajita, Masashi K.; Aihara, Kazuyuki; Kobayashi, Tetsuya J.

    2017-07-01

    Specific interactions between receptors and their target ligands in the presence of nontarget ligands are crucial for biological processes such as T cell ligand discrimination. To discriminate between the target and nontarget ligands, cells have to increase specificity to the target ligands by amplifying the small differences in affinity among ligands. In addition, sensitivity to the ligand concentration and quick discrimination are also important to detect low amounts of target ligands and facilitate fast cellular decision making after ligand recognition. In this work we propose a mechanism for nonlinear specificity amplification (ultraspecificity) based on zero-order saturating reactions, which was originally proposed to explain nonlinear sensitivity amplification (ultrasensitivity) to the ligand concentration. In contrast to the previously proposed proofreading mechanisms that amplify the specificity by a multistep reaction, our model can produce an optimal balance of specificity, sensitivity, and quick discrimination. Furthermore, we show that a model for insensitivity to a large number of nontarget ligands can be naturally derived from a model with the zero-order ultraspecificity. The zero-order ultraspecificity, therefore, may provide an alternative way to understand ligand discrimination from the viewpoint of nonlinear properties in biochemical reactions.

  13. On the significance of the retention of ligand by protein.

    PubMed Central

    Silhavy, T J; Szmelcman, S; Boos, W; Schwartz, M

    1975-01-01

    When a solution of binding protein and its ligand is dialyzed against a large volume of ligand-free medium the rate of exit of the ligand from the protein-containing compartment can be extremely slow, much slower than the rate observed in the absence of protein. This is what we call retention of ligand by protein. A simple calculation demonstrates that when the protein concentration is in large excess over the total ligand concentration, the exit of ligand follows quasi-first-order kinetics, the half-life being proportional to (1 + (P)/Kd), where (P) is the concentration of binding sites, and Kd the dissociation constant characteristic of the equilibrium between the ligand and the protein. Experimental verification of this relation is provided in the case of the periplasmic maltose-binding protein of Escherichia coli; The implications of the retention effect in biochemical techniques are discussed, as well as its possible significance in biological phenomena, such as bacterial chemotaxis and transport, mechanism of hormone action, or transmission of the nerve impulse. PMID:1094454

  14. Using cholinergic M1 receptor positive allosteric modulators to improve memory via enhancement of brain cholinergic communication.

    PubMed

    Chambon, Caroline; Jatzke, Claudia; Wegener, Nico; Gravius, Andreas; Danysz, Wojciech

    2012-12-15

    Benzylquinolone carboxylic acid (BQCA) is a recently described cholinergic muscarinic M(1) receptor positive allosteric modulator having potential as cognitive enhancer in dementia. The present study focused on the characterisation of BQCA's mode of action in relation to positive effects on memory and side-effects in an animal model. To get insight into this mode of action, in vitro receptor potency/left shift experiments in cells stably expressing the rat's M(1) receptor were performed. They revealed an inflection point value of BQCA corresponding to 306nM, and potentiation of the agonist response up to 47-fold in presence of 10μM of BQCA. In vivo, brain microdialysis showed a maximal brain level of 270nM, 40min after i.p. administration at 10mg/kg. Based on in vitro data obtained with this dose, it can be concluded that BQCA reaches brain levels which should potentiate the agonist response about 4-fold. Behavioural data confirmed that BQCA used at 10mg/kg attenuated scopolamine-induced memory deficit in a spontaneous alternation task. Moreover, BQCA showed no side effect at 10mg/kg and above in spontaneous locomotion and salivation tests. The profile of BQCA observed in the present study displays a clear advantage over the M(1)-M(3) agonist cevimeline. The present data show the therapeutic potential of the M(1) receptor positive allosteric modulator BQCA for the treatment of memory deficits observed in Alzheimer's disease.

  15. APOE-Sensitive Cholinergic Sprouting Compensates for Hippocampal Dysfunctions Due to Reduced Entorhinal Input.

    PubMed

    Bott, Jean-Bastien; Héraud, Céline; Cosquer, Brigitte; Herbeaux, Karine; Aubert, Julien; Sartori, Maxime; Goutagny, Romain; Mathis, Chantal

    2016-10-05

    Brain mechanisms compensating for cerebral lesions may mitigate the progression of chronic neurodegenerative disorders such as Alzheimer's disease (AD). Mild cognitive impairment (MCI), which often precedes AD, is characterized by neuronal loss in the entorhinal cortex (EC). This loss leads to a hippocampal disconnection syndrome that drives clinical progression. The concomitant sprouting of cholinergic terminals in the hippocampus has been proposed to compensate for reduced EC glutamatergic input. However, in absence of direct experimental evidence, the compensatory nature of the cholinergic sprouting and its putative mechanisms remain elusive. Transgenic mice expressing the human APOE4 allele, the main genetic risk factor for sporadic MCI/AD, display impaired cholinergic sprouting after EC lesion. Using these mice as a tool to manipulate cholinergic sprouting in a disease-relevant way, we showed that this sprouting was necessary and sufficient for the acute compensation of EC lesion-induced spatial memory deficit before a slower glutamatergic reinnervation took place. We also found that partial EC lesion generates abnormal hyperactivity in EC/dentate networks. Dentate hyperactivity was abolished by optogenetic stimulation of cholinergic fibers. Therefore, control of dentate hyperactivity by cholinergic sprouting may be involved in functional compensation after entorhinal lesion. Our results also suggest that dentate hyperactivity in MCI patients may be directly related to EC neuronal loss. Impaired sprouting during the MCI stage may contribute to the faster cognitive decline reported in APOE4 carriers. Beyond the amyloid contribution, the potential role of both cholinergic sprouting and dentate hyperactivity in AD symptomatogenesis should be considered in designing new therapeutic approaches. Currently, curative treatment trials for Alzheimer's disease (AD) have failed. The endogenous ability of the brain to cope with neuronal loss probably represents one of the

  16. A Biochemical Double Slit

    NASA Astrophysics Data System (ADS)

    Kominis, Iannis

    2011-03-01

    Radical-ion-pair reactions, fundamental in photosynthesis and at the basis of the avian magnetic compass mechanism, have been recently shown to offer a rich playground for applying methods and concepts from quantum measurement/quantum information science. We will demonstrate that radical-ion-pair reactions are almost the exact analog of the optical double slit experiment, i.e. Nature has already engineered biochemical reactions performing the act of quantum interference. We will further elaborate on the non-trivial quantum effects pertaining in these reactions and the recent debate on their fundamental theoretical description that these effects have sparked.

  17. Sensorimotor deficit and cholinergic changes following coexposure with pyridostigmine bromide and sarin in rats.

    PubMed

    Abou-Donia, Mohamed B; Dechkovskaia, Anjelika M; Goldstein, Larry B; Bullman, Sarah L; Khan, Wasiuddin A

    2002-03-01

    A myriad of neurological symptoms including muscle and joint pain, ataxia, chronic fatigue, headache, and difficulty in concentration have been reported by Persian Gulf War (PGW) veterans. A large number of these veterans were prophylactically treated with pyridostigmine bromide (PB) and possibly exposed to sarin. In the present study we investigated the effects of PB and sarin, alone and in combination, on sensorimotor performance and the central cholinergic system of rats. Male Sprague-Dawley rats were treated with PB (1.3 mg/kg, 15 daily doses, oral) and sarin (50, 75, 90, and 100 microg/kg, single im dose on day 15), alone and in combination. The animals were evaluated for postural reflexes, limb placing, orienting to vibrissae touch, incline plane performance, beam-walk time, and forepaw grip time 7 and 15 days following treatment with sarin. Treatment with either PB or sarin alone resulted in significant sensorimotor impairments. Coexposure to sarin and PB resulted in significant sensorimotor deficits that worsened over time. By 15 days following sarin treatment, plasma butyrylcholinesterase (BChE) activity returned to normal levels in the animals treated with sarin alone, whereas in the animals exposed to PB or PB plus sarin, there was an increase in the enzyme activity. Cortical acetylcholinesterase (AChE) activity remained inhibited in the animals treated with sarin alone and in combination with PB. Muscarinic acetylcholine receptor (m2 mAChR) ligand binding with [(3)H]AFDX-384 in cortex and brain stem showed significant increases (approximately 120-130% of control) following coexposure to PB and sarin at higher doses. To evaluate the potential of PB for augmentation or inhibition of the toxicity induced by acute sarin exposure, the animals were exposed to either 10 or 100 microg/kg sarin (single im injection) with or without pretreatment with PB, and sacrificed 3 h after treatment with sarin. Pretreatment with PB offered slight protection in the plasma as

  18. A Janus Chelator Enables Biochemically Responsive MRI Contrast with Exceptional Dynamic Range

    PubMed Central

    Gale, Eric M.; Jones, Chloe M.; Ramsay, Ian; Farrar, Christian T.; Caravan, Peter

    2017-01-01

    We introduce a new biochemically responsive Mn-based MRI contrast agent that provides a 9-fold change in relaxivity via switching between the Mn3+ and Mn2+ oxidation states. Interchange between oxidation states is promoted by a “Janus” ligand that isomerizes between binding modes that favor Mn3+ or Mn2+. It is the only ligand that supports stable complexes of Mn3+ and Mn2+ in biological milieu. Rapid interconversion between oxidation states is mediated by peroxidase activity (oxidation) and L-cysteine (reduction). This Janus system provides a new paradigm for the design of biochemically responsive MRI contrast agents. PMID:27960350

  19. TrkA Gene Ablation in Basal Forebrain Results in Dysfunction of the Cholinergic Circuitry

    PubMed Central

    Sanchez-Ortiz, Efrain; Yui, Daishi; Song, Dongli; Li, Yun; Rubenstein, John L.; Reichardt, Louis F.; Parada, Luis F.

    2012-01-01

    Dysfunction of basal forebrain cholinergic neurons (BFCNs) is an early pathological hallmark of Alzheimer's disease (AD). Numerous studies have indicated that nerve growth factor (NGF) supports survival and phenotypic differentiation of BFCNs. Consistent with a potential link to AD pathogenesis, TrkA, a NGF receptor, is expressed in cholinergic forebrain neuronal populations including those in basal forebrain (BF) and striatum, and is markedly reduced in individuals with mild cognitive impairment (MCI) without dementia and early-stage AD. To investigate the role of TrkA in the development, connectivity, and function of the BF cholinergic system and its contribution to AD pathology, we have generated a forebrain-specific conditional TrkA knockout mouse line. Our findings show a key role for TrkA signaling in establishing the BF cholinergic circuitry through the ERK pathway, and demonstrate that the normal developmental increase of choline acetyltransferase (ChAT) expression becomes critically dependent on TrkA signaling before neuronal connections are established. Moreover, the anatomical and physiological deficits caused by lack of TrkA signaling in BFCNs have selective impact on cognitive activity. These data demonstrate that TrkA loss results in cholinergic BF dysfunction and cognitive decline that is reminiscent of MCI and early AD. PMID:22442072

  20. A two-layer biophysical model of cholinergic neuromodulation in olfactory bulb

    PubMed Central

    Li, Guoshi; Cleland, Thomas A.

    2013-01-01

    Cholinergic inputs from the basal forebrain regulate multiple olfactory bulb (OB) functions including odor discrimination, perceptual learning, and short term memory. Previous studies have shown that nicotinic cholinergic receptor activation sharpens mitral cell chemoreceptive fields, likely via intraglomerular circuitry. Muscarinic cholinergic activation is less well understood, though muscarinic receptors are implicated in olfactory learning and in the regulation of synchronized oscillatory dynamics in hippocampus and cortex. To understand the mechanisms underlying cholinergic neuromodulation in OB, we developed a biophysical model of the OB neuronal network including both glomerular layer and external plexiform layer (EPL) computations and incorporating both nicotinic and muscarinic neuromodulatory effects. Our simulations show how nicotinic activation within glomerular circuits sharpens mitral cell chemoreceptive fields, even in the absence of EPL circuitry, but does not facilitate intrinsic oscillations or spike synchronization. In contrast, muscarinic receptor activation increases mitral cell spike synchronization and field oscillatory power by potentiating granule cell excitability and lateral inhibitory interactions within the EPL, but has little effect on mitral cell firing rates and hence will not sharpen olfactory representations under a rate metric. These results are consistent with the theory that EPL interactions regulate the timing, rather than the existence, of mitral cell action potentials, and perform their computations with respect to a spike timing-based metric. This general model suggests that the roles of nicotinic and muscarinic receptors in olfactory bulb are both distinct and complementary to one another, together regulating the effects of ascending cholinergic inputs on olfactory bulb transformations. PMID:23407960

  1. The non-neuronal cholinergic system as novel drug target in the airways.

    PubMed

    Pieper, Michael Paul

    2012-11-27

    The parasympathetic nervous system is a key regulator of the human organism involved in the pathophysiology of various disorders through cholinergic mechanisms. In the lungs, acetylcholine (ACh) released by vagal nerve endings stimulates muscarinic receptors thereby increasing airway smooth muscle tone. Contraction of airway smooth muscle cells leads to increased respiratory resistance and dyspnea. An additional branch of the cholinergic system is the non-neuronal cholinergic system expressed in nearly all cell types present in the airways. Activation of this system may contribute to an increased cholinergic tone in the lungs, inducing pathophysiological processes like inflammation, remodeling, mucus hypersecretion and chronic cough. Selective muscarinic receptor antagonists specifically inhibit acetylcholine at the receptor inducing bronchodilation in patients with obstructive airway diseases. This paper reviews preclinical pharmacological research activities on anticholinergics including experimental models of asthma and chronic obstructive pulmonary disease, COPD. It discloses various options to follow up the non-neuronal cholinergic system as a novel drug target for the treatment of key aspects of obstructive airway diseases, in particular those of a chronic nature.

  2. Caffeine elicits c-Fos expression in horizontal diagonal band cholinergic neurons.

    PubMed

    Reznikov, Leah R; Pasumarthi, Ravi K; Fadel, Jim R

    2009-12-09

    Caffeine is a widely self-administered psychostimulant with purported neuroprotective and procognitive effects in rodent models of aging. The cholinergic basal forebrain is important for arousal and attention and is implicated in age-related cognitive decline. Accordingly, we determined the effects of caffeine on cholinergic neuron activation in the rat basal forebrain. Young adult (age 2 months) male rats were treated with caffeine (0, 10, or 50 mg/kg) and killed 2 h later. Caffeine significantly increased c-Fos expression in cholinergic neurons of the horizontal limb of the diagonal band of Broca but not other basal forebrain regions such as the medial septum or substantia innominata. The horizontal limb of the diagonal band of Broca provides cholinergic innervation to the olfactory bulb, suggesting that deficits in this structure may contribute to diminished olfactory function observed in Alzheimer's disease patients. These results suggest that part of the cognitive-enhancing effects of caffeine may be mediated through activation of this part of the cholinergic basal forebrain.

  3. Internal Cholinergic Regulation of Learning and Recall in a Model of Olfactory Processing

    PubMed Central

    de Almeida, Licurgo; Idiart, Marco; Dean, Owen; Devore, Sasha; Smith, David M.; Linster, Christiane

    2016-01-01

    In the olfactory system, cholinergic modulation has been associated with contrast modulation and changes in receptive fields in the olfactory bulb, as well the learning of odor associations in olfactory cortex. Computational modeling and behavioral studies suggest that cholinergic modulation could improve sensory processing and learning while preventing pro-active interference when task demands are high. However, how sensory inputs and/or learning regulate incoming modulation has not yet been elucidated. We here use a computational model of the olfactory bulb, piriform cortex (PC) and horizontal limb of the diagonal band of Broca (HDB) to explore how olfactory learning could regulate cholinergic inputs to the system in a closed feedback loop. In our model, the novelty of an odor is reflected in firing rates and sparseness of cortical neurons in response to that odor and these firing rates can directly regulate learning in the system by modifying cholinergic inputs to the system. In the model, cholinergic neurons reduce their firing in response to familiar odors—reducing plasticity in the PC, but increase their firing in response to novel odor—increasing PC plasticity. Recordings from HDB neurons in awake behaving rats reflect predictions from the model by showing that a subset of neurons decrease their firing as an odor becomes familiar. PMID:27877112

  4. Phospholipase C beta 4 in the medial septum controls cholinergic theta oscillations and anxiety behaviors.

    PubMed

    Shin, Jonghan; Gireesh, Gangadharan; Kim, Seong-Wook; Kim, Duk-Soo; Lee, Sukyung; Kim, Yeon-Soo; Watanabe, Masahiko; Shin, Hee-Sup

    2009-12-09

    Anxiety is among the most prevalent and costly diseases of the CNS, but its underlying mechanisms are not fully understood. Although attenuated theta rhythms have been observed in human subjects with increased anxiety, no study has been done on the possible physiological link between these two manifestations. We found that the mutant mouse for phospholipase C beta 4 (PLC-beta 4(-/-)) showed attenuated theta rhythm and increased anxiety, presenting the first animal model for the human condition. PLC-beta 4 is abundantly expressed in the medial septum, a region implicated in anxiety behavior. RNA interference-mediated PLC-beta 4 knockdown in the medial septum produced a phenotype similar to that of PLC-beta 4(-/-) mice. Furthermore, increasing cholinergic signaling by administering an acetylcholinesterase inhibitor cured the anomalies in both cholinergic theta rhythm and anxiety behavior observed in PLC-beta 4(-/-) mice. These findings suggest that (1) PLC-beta 4 in the medial septum is involved in controlling cholinergic theta oscillation and (2) cholinergic theta rhythm plays a critical role in suppressing anxiety. We propose that defining the cholinergic theta rhythm profile may provide guidance in subtyping anxiety disorders in humans for more effective diagnosis and treatments.

  5. The cholinergic REM induction test with RS 86 after scopolamine pretreatment in healthy subjects.

    PubMed

    Riemann, D; Hohagen, F; Fleckenstein, P; Schredl, M; Berger, M

    1991-09-01

    A shortened latency of rapid eye movement (REM) sleep is one of the most stable biological abnormalities described in depressive patients. According to the reciprocal interaction model of non-REM and REM sleep regulation, REM sleep disinhibition at the beginning of the night in depression is a consequence of heightened central nervous system cholinergic transmitter activity in relation to aminergic transmitter activity. A recent study has indicated that muscarinic supersensitivity, rather than quantitatively enhanced cholinergic activity, may be the primary cause of REM sleep abnormalities in depression. The present study tested this hypothesis by treating healthy volunteers for 3 days with a cholinergic antagonist (scopolamine) in the morning, in an effort to induce muscarinic receptor supersensitivity. On the last day of scopolamine administration, RS 86, an orally active cholinergic agonist, was administered before bedtime to test whether this procedure would induce sleep onset REM periods. Whereas scopolamine treatment tended to advance REM sleep and to heighten REM density in healthy controls in comparison to NaCl administration, the additional cholinergic stimulation did not provoke further REM sleep disinhibition. This result underlines the need to take a hypofunction of aminergic transmitter systems into account in attempts to explain the pronounced advance of REM sleep typically seen in depressives.

  6. GABAergic terminals are a source of galanin to modulate cholinergic neuron development in the neonatal forebrain.

    PubMed

    Keimpema, Erik; Zheng, Kang; Barde, Swapnali Shantaram; Berghuis, Paul; Dobszay, Márton B; Schnell, Robert; Mulder, Jan; Luiten, Paul G M; Xu, Zhiqing David; Runesson, Johan; Langel, Ülo; Lu, Bai; Hökfelt, Tomas; Harkany, Tibor

    2014-12-01

    The distribution and (patho-)physiological role of neuropeptides in the adult and aging brain have been extensively studied. Galanin is an inhibitory neuropeptide that can coexist with γ-aminobutyric acid (GABA) in the adult forebrain. However, galanin's expression sites, mode of signaling, impact on neuronal morphology, and colocalization with amino acid neurotransmitters during brain development are less well understood. Here, we show that galaninergic innervation of cholinergic projection neurons, which preferentially express galanin receptor 2 (GalR2) in the neonatal mouse basal forebrain, develops by birth. Nerve growth factor (NGF), known to modulate cholinergic morphogenesis, increases GalR2 expression. GalR2 antagonism (M871) in neonates reduces the in vivo expression and axonal targeting of the vesicular acetylcholine transporter (VAChT), indispensable for cholinergic neurotransmission. During cholinergic neuritogenesis in vitro, GalR2 can recruit Rho-family GTPases to induce the extension of a VAChT-containing primary neurite, the prospective axon. In doing so, GalR2 signaling dose-dependently modulates directional filopodial growth and antagonizes NGF-induced growth cone differentiation. Galanin accumulates in GABA-containing nerve terminals in the neonatal basal forebrain, suggesting its contribution to activity-driven cholinergic development during the perinatal period. Overall, our data define the cellular specificity and molecular complexity of galanin action in the developing basal forebrain. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. Cholinergic and VIPergic effects on thyroid hormone secretion in the mouse

    SciTech Connect

    Ahren, B.

    1985-07-01

    The thyroid gland is known to harbor cholinergic and VIPergic nerves. In the present study, the influences of cholinergic stimulation by carbachol, cholinergic blockade by methylatropine and stimulation with various VIP sequences on basal, TSH-induced and VIP-induced thyroid hormone secretion were investigated in vivo in mice. The mice were pretreated with /sup 125/I and thyroxine; the subsequent release of /sup 125/I is an estimation of thyroid hormone secretion. It was found that basal radioiodine secretion was inhibited by both carbachol and methylatropine. Furthermore, TSH-induced radioiodine secretion was inhibited already by a low dose of carbachol. Moreover, a high dose of carbachol could inhibit VIP-induced radioiodine secretion. Methylatropine did not influence TSH- or VIP-stimulated radioiodine secretion, but counteracted the inhibitory action of carbachol on TSH- and VIP-induced radioiodine release. In addition, contrary to VIP, six various synthesized VIP fragments had no effect on basal or stimulated radioiodine release. It is concluded that basal thyroid hormone secretion is inhibited by both cholinergic activation and blockade. Furthermore, TSH-induced thyroid hormone secretion is more sensitive to inhibition with cholinergic stimulation than is VIP-induced thyroid hormone secretion. In addition, the VIP stimulation of thyroid hormone secretion seems to require the full VIP sequence.

  8. Cognitive Performance as a Zeitgeber: Cognitive Oscillators and Cholinergic Modulation of the SCN Entrain Circadian Rhythms

    PubMed Central

    Gritton, Howard J.; Stasiak, Ashley M.; Sarter, Martin; Lee, Theresa M.

    2013-01-01

    The suprachiasmatic nucleus (SCN) is the primary circadian pacemaker in mammals that can synchronize or entrain to environmental cues. Although light exerts powerful influences on SCN output, other non-photic stimuli can modulate the SCN as well. We recently demonstrated that daily performance of a cognitive task requiring sustained periods of attentional effort that relies upon basal forebrain (BF) cholinergic activity dramatically alters circadian rhythms in rats. In particular, normally nocturnal rats adopt a robust diurnal activity pattern that persists for several days in the absence of cognitive training. Although anatomical and pharmacological data from non-performing animals support a relationship between cholinergic signaling and circadian rhythms, little is known about how endogenous cholinergic signaling influences SCN function in behaving animals. Here we report that BF cholinergic projections to the SCN provide the principal signal allowing for the expression of cognitive entrainment in light-phase trained animals. We also reveal that oscillator(s) outside of the SCN drive cognitive entrainment as daily timed cognitive training robustly entrains SCN-lesioned arrhythmic animals. Ablation of the SCN, however, resulted in significant impairments in task acquisition, indicating that SCN-mediated timekeeping benefits new learning and cognitive performance. Taken together, we conclude that cognition entrains non-photic oscillators, and cholinergic signaling to the SCN serves as a temporal timestamp attenuating SCN photic-driven rhythms, thereby permitting cognitive demands to modulate behavior. PMID:23441168

  9. Nerve growth factor promotes survival of septal cholinergic neurons after fimbrial transections.

    PubMed

    Hefti, F

    1986-08-01

    Several findings obtained in recent years suggest that NGF, aside from its well-established function as a neurotrophic factor for peripheral sympathetic and sensory neurons, also has trophic influence on the cholinergic neurons of the basal forebrain. The present study assessed whether NGF was able to affect survival of central cholinergic neurons after axonal transections in adult rats. The septo-hippocampal pathway was transected unilaterally by cutting the fimbria, and animals were implanted with a cannula through which NGF or control solutions were injected intraventricularly over 4 weeks. The lesions reduced the number of large cell bodies, as visualized by Nissl staining in the medial septal nucleus and in the vertical limb of the diagonal band of Broca. Furthermore, in the same nuclei, they reduced the number of cell bodies positively stained for AChE after pretreatment with diisopropylfluorophosphate (a method known to result in reliable identification of cholinergic neurons in the septal area). On lesioned sides, the number of cholinergic cells in medial septal nucleus and the vertical limb of the diagonal band was reduced by 50 +/- 4%, as compared to the number on contralateral sides. On lesioned sides of animals chronically treated with NGF, the number of AChE-positive cells in these areas was reduced only by 12 +/- 6%, as compared to control levels. These findings suggest that fimbrial transections resulted in retrograde degeneration of cholinergic septo-hippocampal neurons and that NGF treatment strongly attenuated this lesion-induced degeneration.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Cholinergic involvement in Alzheimer's disease. A link with NGF maturation and degradation.

    PubMed

    Cuello, A Claudio; Bruno, Martin A; Allard, Simon; Leon, Wanda; Iulita, M Florencia

    2010-01-01

    Basal forebrain cholinergic neurons are highly dependent on nerve growth factor (NGF) supply for the maintenance of their cholinergic phenotype as well as their cholinergic synaptic integrity. The precursor form of NGF, proNGF, abounds in the CNS and is highly elevated in Alzheimer's disease. In order to obtain a deeper understanding of the NGF biology in the CNS, we have performed a series of ex vivo and in vivo investigations to elucidate the mechanisms of release, maturation and degradation of this neurotrophin. In this short review, we describe this NGF metabolic pathway, its significance for the maintenance of basal cholinergic neurons, and its dysregulation in Alzheimer's disease. We are proposing that the conversion of proNGF to mature NGF occurs in the extracellular space by the coordinated action of zymogens, convertases, and endogenous regulators, which are released in the extracellular space in an activity-dependent fashion. We further discuss our findings of a diminished conversion of the NGF precursor molecule to its mature form in Alzheimer's disease as well as an augmented degradation of mature NGF. These combined effects on NGF metabolism would explain the well-known cholinergic atrophy found in Alzheimer's disease and would offer new therapeutic opportunities aimed at correcting the NGF dysmetabolism along with Abeta-induced inflammatory responses.

  11. Cholinergic Circuitry of the Human Nucleus Basalis and Its Fate in Alzheimer's Disease

    PubMed Central

    Mesulam, M.-Marsel

    2014-01-01

    The nucleus basalis is located at the confluence of the limbic and reticular activating systems. It receives dopaminergic input from the ventral tegmental area/substantia nigra, serotonergic input from the raphe nuclei, and noradrenergic input from the nucleus locus coeruleus. Its cholinergic contingent, known as Ch4, provides the principal source of acetylcholine for the cerebral cortex and amygdala. More than half of presynaptic varicosities along its cholinergic axons make traditional synaptic contacts with cortical neurons. Limbic and paralimbic cortices of the brain receive the heaviest cholinergic input from Ch4 and are also the principal sources of reciprocal cortical projections back to the nucleus basalis. This limbic affiliation explains the role of the nucleus basalis in modulating the impact and memorability of incoming sensory information. The anatomical continuity of the nucleus basalis with other basomedial limbic structures may underlie its early and high vulnerability to the tauopathy and neurofibrillary degeneration of Alzheimer's disease. The tauopathy in Ch4 eventually leads to the degeneration of the cholinergic axons that it sends to the cerebral cortex. The early involvement of Ch4 has a magnifying effect on Alzheimer's pathology, because neurofibrillary degeneration in a small number of neurons can perturb neurotransmission in all cortical areas. Although the exact contribution of the Ch4 lesion to the cognitive changes of Alzheimer's disease remains poorly understood, the cholinergic circuitry of the nucleus basalis is emerging as one of the most strategically positioned and behaviorally consequential modulatory systems of the human cerebral cortex. PMID:23852922

  12. Postsynaptic muscarinic m2 receptors at cholinergic and glutamatergic synapses of mouse brainstem motoneurons.

    PubMed

    Csaba, Zsolt; Krejci, Eric; Bernard, Véronique

    2013-06-15

    In many brain areas, few cholinergic synapses are identified. Acetylcholine is released into the extracellular space and acts through diffuse transmission. Motoneurons, however, are contacted by numerous cholinergic terminals, indicating synaptic cholinergic transmission on them. The muscarinic m2 receptor is the major acetylcholine receptor subtype of motoneurons; therefore, we analyzed the localization of the m2 receptor in correlation with synapses by electron microscopic immunohistochemistry in the mouse trigeminal, facial, and hypoglossal motor nuclei. In all nuclei, m2 receptors were localized at the membrane of motoneuronal perikarya and dendrites. The m2 receptors were concentrated at cholinergic synapses located on the perikarya and most proximal dendrites. However, m2 receptors at cholinergic synapses represented only a minority (<10%) of surface m2 receptors. The m2 receptors were also enriched at glutamatergic synapses in both motoneuronal perikarya and dendrites. A relatively large proportion (20-30%) of plasma membrane-associated m2 receptors were located at glutamatergic synapses. In conclusion, the effect of acetylcholine on motoneuron populations might be mediated through a synaptic as well as diffuse type of transmission.

  13. Acute and chronic effects of clozapine on cholinergic transmission in cultured mouse superior cervical ganglion neurons.

    PubMed

    Saur, Taixiang; Cohen, Bruce M; Ma, Qi; Babb, Suzann M; Buttner, Edgar A; Yao, Wei-Dong

    Cholinergic dysfunction contributes to cognitive deficits in schizophrenia. The atypical antipsychotic clozapine improves cognition in patients with schizophrenia, possibly through modulation of the cholinergic system. However, little is known about specific underlying mechanisms. We investigated the acute and chronic effects of clozapine on cholinergic synaptic transmission in cultured superior cervical ganglion (SCG) neurons. Spontaneous excitatory postsynaptic currents (sEPSCs) were detected and were reversibly inhibited by the nicotinic receptor antagonist d-tubocurarine, confirming that the synaptic responses were primarily mediated by nicotinic receptors. Bath application of clozapine at therapeutic concentrations rapidly and reversely inhibited both the amplitude and frequency of sEPSCs in a concentration-dependent manner, without changing either rise or decay time, suggesting that clozapine effects have both presynaptic and postsynaptic origins. The acute effects of clozapine on sEPSCs were recapitulated by chronic treatment of SCG cultures with similar concentrations of clozapine, as clozapine treatment for 4 d reduced the frequency and amplitude of sEPSCs without affecting their kinetics. Cell survival analysis indicated that SCG neuron cell counts after chronic clozapine treatment were comparable to the control group. These results demonstrate that therapeutic concentrations of clozapine suppress nicotinic synaptic transmission in SCG cholinergic synapses, a simple in vitro preparation of cholinergic transmission.

  14. Chronic cerebral ischaemia forms new cholinergic mechanisms of learning and memory.

    PubMed

    Zakharova, E I; Storozheva, Z I; Dudchenko, A M; Kubatiev, A A

    2010-12-20

    The purpose of this research was a comparative analysis of cholinergic synaptic organization following learning and memory in normal and chronic cerebral ischaemic rats in the Morris water maze model. Choline acetyltransferase and protein content were determined in subpopulations of presynapses of "light" and "heavy" synaptosomal fractions of the cortex and the hippocampus, and the cholinergic projective and intrinsic systems of the brain structures were taken into consideration. We found a strong involvement of cholinergic systems, both projective and intrinsic, in all forms of cognition. Each form of cognition had an individual cholinergic molecular profile and the cholinergic synaptic compositions in the ischaemic rat brains differed significantly from normal ones. Our data demonstrated that under ischaemic conditions, instead of damaged connections new key synaptic relationships, which were stable against pathological influences and able to restore damaged cognitive functions, arose. The plasticity of neurochemical links in the individual organization of certain types of cognition gave a new input into brain pathology and can be used in the future for alternative corrections of vascular and other degenerative dementias.

  15. Layer-specific cholinergic control of human and mouse cortical synaptic plasticity

    PubMed Central

    Verhoog, Matthijs B.; Obermayer, Joshua; Kortleven, Christian A.; Wilbers, René; Wester, Jordi; Baayen, Johannes C.; De Kock, Christiaan P. J.; Meredith, Rhiannon M.; Mansvelder, Huibert D.

    2016-01-01

    Individual cortical layers have distinct roles in information processing. All layers receive cholinergic inputs from the basal forebrain (BF), which is crucial for cognition. Acetylcholinergic receptors are differentially distributed across cortical layers, and recent evidence suggests that different populations of BF cholinergic neurons may target specific prefrontal cortical (PFC) layers, raising the question of whether cholinergic control of the PFC is layer dependent. Here we address this issue and reveal dendritic mechanisms by which endogenous cholinergic modulation of synaptic plasticity is opposite in superficial and deep layers of both mouse and human neocortex. Our results show that in different cortical layers, spike timing-dependent plasticity is oppositely regulated by the activation of nicotinic acetylcholine receptors (nAChRs) either located on dendrites of principal neurons or on GABAergic interneurons. Thus, layer-specific nAChR expression allows functional layer-specific control of cortical processing and plasticity by the BF cholinergic system, which is evolutionarily conserved from mice to humans. PMID:27604129

  16. Key role of striatal cholinergic interneurons in processes leading to arrest of motor stereotypies.

    PubMed

    Aliane, Verena; Pérez, Sylvie; Bohren, Yohann; Deniau, Jean-Michel; Kemel, Marie-Louise

    2011-01-01

    Motor stereotypy is a key symptom of various disorders such as Tourette's syndrome and punding. Administration of nicotine or cholinesterase inhibitors is effective in treating some of these symptoms. However, the role of cholinergic transmission in motor stereotypy remains unknown. During strong cocaine-induced motor stereotypy, we showed earlier that increased dopamine release results in decreased acetylcholine release in the territory of the dorsal striatum related to the prefrontal cortex. Here, we investigated the role of striatal cholinergic transmission in the arrest of motor stereotypy. Analysis of N-methyl-d-aspartic acid-evoked release of dopamine and acetylcholine during declining intensity of motor stereotypy revealed a dissociation between dopamine and acetylcholine release. Whereas dopamine release remained increased, the inhibition of acetylcholine release decreased, mirroring the time course of motor stereotypy. Furthermore, pharmacological treatments restoring striatal acetylcholine release (raclopride, dopamine D2 antagonist; intraperitoneal or local injection in prefrontal territory of the dorsal striatum) rapidly stopped motor stereotypy. In contrast, pharmacological treatments that blocked the post-synaptic effects of acetylcholine (scopolamine, muscarinic antagonist; intraperitoneal or striatal local injection) or induced degeneration of cholinergic interneurons (AF64A, cholinergic toxin) in the prefrontal territory of the dorsal striatum robustly prolonged the duration of strong motor stereotypy. Thus, we propose that restoration of cholinergic transmission in the prefrontal territory of the dorsal striatum plays a key role in the arrest of motor stereotypy.

  17. Cholinergic modulation of activation sequence in the atrial myocardium of non-mammalian vertebrates.

    PubMed

    Abramochkin, Denis V; Kuzmin, Vladislav S; Sukhova, Galina S; Rosenshtraukh, Leonid V

    2010-02-01

    Cholinergic changes of electric activity were studied in isolated atrium preparations from fishes (cod and carp), amphibians (frog) and reptilians (lizard) using the microelectrode technique and high-resolution optical mapping. Perfusion of isolated atrium with acetylcholine (10(-6)-5.10(-5) M) caused gradual suppression of action potential generation and, eventually, completely blocked the excitation in a part of the preparation. Other regions of atrium, situated close to the sinoatrial and atrioventricular junctions, remained excitable. Such cholinergic suppression of electric activity was observed in the atrial myocardium of frog and in both fish species, but not in reptilians. Ba(2+) (10(-4) M), which blocks the acetylcholine-dependent potassium current (I(KACh)), prevented cholinergic reduction of action potential amplitude. In several preparations of frog atrium, cholinergic suppression of excitation coincided with episodes of atrial fibrillation. We conclude that the phenomenon of cholinergic suppression of electric activity is typical for atria of fishes and amphibians. It is likely to be caused by I(KACh) activation and may be important for initiation of atrial arrhythmias. 2009 Elsevier Inc. All rights reserved.

  18. Cholinergic mechanisms of high-frequency stimulation in entopeduncular nucleus

    PubMed Central

    Luo, Feng

    2015-01-01

    Chronic, high-frequency (>100 Hz) electrical stimulation, known as deep brain stimulation (DBS), of the internal segment of the globus pallidus (GPi) is a highly effective therapy for Parkinson's disease (PD) and dystonia. Despite some understanding of how it works acutely in PD models, there remain questions about its mechanisms of action. Several hypotheses have been proposed, such as depolarization blockade, activation of inhibitory synapses, depletion of neurotransmitters, and/or disruption/alteration of network oscillations. In this study we investigated the cellular mechanisms of high-frequency stimulation (HFS) in entopeduncular nucleus (EP; rat equivalent of GPi) neurons using whole cell patch-clamp recordings. We found that HFS applied inside the EP nucleus induced a prolonged afterdepolarization that was dependent on stimulation frequency, pulse duration, and current amplitude. The high frequencies (>100 Hz) and pulse widths (>0.15 ms) used clinically for dystonia DBS could reliably induce these afterdepolarizations, which persisted under blockade of ionotropic glutamate (kynurenic acid, 2 mM), GABAA (picrotoxin, 50 μM), GABAB (CGP 55845, 1 μM), and acetylcholine nicotinic receptors (DHβE, 2 μM). However, this effect was blocked by atropine (2 μM; nonselective muscarinic antagonist) or tetrodotoxin (0.5 μM). Finally, the muscarinic-dependent afterdepolarizations were sensitive to Ca2+-sensitive nonspecific cationic (CAN) channel blockade. Hence, these data suggest that muscarinic receptor activation during HFS can lead to feedforward excitation through the opening of CAN channels. This study for the first time describes a cholinergic mechanism of HFS in EP neurons and provides new insight into the underlying mechanisms of DBS. PMID:26334006

  19. Interaction of a radiolabeled agonist with cardiac muscarinic cholinergic receptors

    SciTech Connect

    Harden, T.K.; Meeker, R.B.; Martin, M.W.

    1983-12-01

    The interaction of a radiolabeled muscarinic cholinergic receptor agonist, (methyl-/sup 3/H)oxotremorine acetate ((/sup 3/H)OXO), with a washed membrane preparation derived from rat heart, has been studied. In binding assays at 4 degrees C, the rate constants for association and dissociation of (/sup 3/H)OXO were 2 X 10(7) M-1 min-1 and 5 X 10(-3) min-1, respectively, Saturation binding isotherms indicated that binding was to a single population of sites with a Kd of approximately 300 pM. The density of (/sup 3/H)OXO binding sites (90-100 fmol/mg of protein) was approximately 75% of that determined for the radiolabeled receptor antagonist (/sup 3/H)quinuclidinyl benzilate. Both muscarinic receptor agonists and antagonists inhibited the binding of (/sup 3/H)OXO with high affinity and Hill slopes of approximately one. Guanine nucleotides completely inhibited the binding of (/sup 3/H)OXO. This effect was on the maximum binding (Bmax) of (/sup 3/H)OXO with no change occurring in the Kd; the order of potency for five nucleotides was guanosine 5'-O-(3-thio-triphosphate) greater than 5'-guanylylimidodiphosphate greater than GTP greater than or equal to guanosine/diphosphate greater than GMP. The (/sup 3/H)OXO-induced interaction of muscarinic receptors with a guanine nucleotide binding protein was stable to solubilization. That is, membrane receptors that were prelabeled with (/sup 3/H)OXO could be solubilized with digitonin, and the addition of guanine nucleotides to the soluble, (/sup 3/H)OXO-labeled complex resulted in dissociation of (/sup 3/H)OXO from the receptor. Pretreatment of membranes with relatively low concentrations of N-ethylmaleimide inhibited (/sup 3/H)OXO binding by 85% with no change in the Kd of (/sup 3/H)OXO, and with no effect on (/sup 3/H)quinuclidinyl benzilate binding.

  20. A cholinergic chloride conductance in neurones of Helix aspersa.

    PubMed Central

    Finkel, A S

    1983-01-01

    Inhibitory Cl- -mediated currents through cholinergic channels on the soma of identified neurones from the right parietal ganglion of Helix aspersa were studied under voltage clamp. Voltage-jump relaxation analysis showed that these currents decreased with hyperpolarization. In 3 microM-acetylcholine (ACh), the normalized fraction of channels in the open configuration (rho) decreased e-fold with each 191 mV of membrane hyperpolarization. The steady-state membrane conductance, G(infinity), decreased e-fold with each 128 mV of membrane hyperpolarization. The difference in the voltage sensitivities of rho and G(infinity) arose because of the voltage sensitivity of the instantaneous membrane conductance, G(0). G(0) rectified in the direction predicted by the Goldman-Hodgkin-Katz conductance model. The degree of rectification decreased when the internal Cl- concentration was raised. The relaxing currents were composed of two exponential components. At membrane potential (Vm) = -160 mV, 12 degrees C, the time constants of the two components were 4.1 ms and 21 ms in 3 microM-ACh, and 3.6 ms and 18 ms in 100 microM-tetramethylammonium (TMA). Fluctuation analysis in neurones loaded with Cl- yielded spectra which were composed of two Lorentzian components. In 3 microM-ACh the mean single-channel conductance (gamma) appeared to rise from a low value observed in cells with normal intracellular Cl- to 2.7 pS in cells whose internal Cl- concentration was raised four-fold. The voltage sensitivity of rho was attributed to the conformational change step of a gating mechanism having three kinetically distinguishable states. PMID:6317849

  1. Cholinergic synaptic vesicle heterogeneity: evidence for regulation of acetylcholine transport

    SciTech Connect

    Gracz, L.M.; Wang, W.; Parsons, S.M.

    1988-07-12

    Crude cholinergic synaptic vesicles from a homogenate of the electric organ of Torpedo californica were centrifuged to equilibrium in an isosmotic sucrose density gradient. The classical VP/sub 1/ synaptic vesicles banding at 1.055 g/mL actively transported (/sup 3/H)acetylcholine (AcCh). An organelle banding at about 1.071 g/mL transported even more (/sup 3/H)AcCh. Transport by both organelles was inhibited by the known AcCh storage blockers trans-2-(4-phenylpiperidino)cyclohexanol (vesamicol, formerly AH5183) and nigericin. Relative to VP/sub 1/ vesicles the denser organelle was slightly smaller as shown by size-exclusion chromatography. It is concluded that the denser organelle corresponds to the recycling VP/sub 2/ synaptic vesicle originally described in intact Torpedo marmorata electric organ. The properties of the receptor for vesamicol were studied by measuring binding of (/sup 3/H)vesamicol, and the amount of SV2 antigen characteristic of secretory vesicles was assayed with a monoclonal antibody directed against it. Relative to VP/sub 1/ vesicles the VP/sub 2/ vesicles had a ratio of (/sup 3/H)AcCh transport activity to vesamicol receptor concentration that typically was 4-7-fold higher, whereas the ratio of SV2 antigen concentration to vesamicol receptor concentration was about 2-fold higher. The Hill coefficients ..cap alpha../sub H/ and equilibrium dissociation constants K for vesamicol binding to VP/sub 1/ and VP/sub 2/ vesicles were essentially the same. The positive Hill coefficient suggests that the vesamicol receptor exists as a homotropic oligomeric complex. The results demonstrate that VP/sub 1/ and VP/sub 2/ synaptic vesicles exhibit functional differences in the AcCh transport system, presumably as a result of regulatory phenomena.

  2. Non-cholinergic intervention of sarin nerve agent poisoning.

    PubMed

    Sawyer, Thomas W; Mikler, John; Tenn, Catherine; Bjarnason, Stephen; Frew, Robert

    2012-04-11

    The protective effects of selected anesthetic regimens on sarin (GB) were investigated in domestic swine. At 30% oxygen, the toxicity of this agent in isoflurane anesthetized animals (LD(50)=10.1μg/kg) was similar to literature sited values in awake swine (LD(50)=11.8μg/kg) and slightly higher than that of both ketamine (LD(50)=15.6μg/kg) and propofol (LD(50)=15.3μg/kg) anesthetized swine. Use of 100% oxygen in ketamine anesthetized animals resulted in three-fold protective effects compared to 30% oxygen. Use of 100% oxygen in both isoflurane and propofol anesthetized animals, compared to 30% resulted in profound protection against GB poisoning (>33×). There were no differences in the severity of the poisoning or recovery time in animals treated over dose ranges of 10-350μg/kg (isoflurane) or 15-500μg/kg GB (propofol). Survivors of high GB challenges that were revived from propofol anesthetic exhibited no signs of cognitive impairment seven days later. Protective treatments did not attenuate cholinesterase (ChE) inhibition; survivors of otherwise supralethal GB concentrations exhibited very low blood ChE activities. This work indicates that propofol has protective effects against GB, and that oxygen tension may have an important role in treating nerve agent casualties. More importantly, it demonstrates that non-cholinergic protective mechanisms exist that may be exploited in the future development of medical countermeasures against organophosphorous nerve agents.

  3. Cholinergic blockade frees fear extinction from its contextual dependency

    PubMed Central

    Zelikowsky, Moriel; Hast, Timothy A.; Bennett, Rebecca Z.; Merjanian, Michael; Nocera, Nathaniel A.; Ponnusamy, Ravikumar; Fanselow, Michael S.

    2012-01-01

    Background Fears that are maladaptive or inappropriate can be reduced through extinction training. However, extinction is highly context-sensitive, resulting in the renewal of fear following shifts in context, and limiting the clinical efficacy of extinction training. Lesion and inactivation studies have shown that the contextualization of extinction depends on the hippocampus. Parallel studies have found that intrahippocampal scopolamine blocks contextual fear conditioning. Importantly, this effect was replicated using a non-invasive technique in which a low dose of scopolamine was administered systemically. We aimed to transfer the effects of this non-invasive approach to block the contextualization of fear extinction. Methods Rats were tone fear conditioned and extinguished under various systemic doses of scopolamine or the saline vehicle. They were subsequently tested (off drug) for tone fear in a context that was the same (controls) or shifted (renewal group) with respect to the extinction context. Results The lowest dose of scopolamine produced a significant attenuation of fear renewal when renewal was tested either in the original training context or a novel context. The drug also slowed the rate of long-term extinction memory formation, which was readily overcome by extending extinction training. Scopolamine only gave this effect when it was administered during, but not after extinction training. Higher doses of scopolamine severely disrupted extinction learning. Conclusions We discovered that disrupting contextual processing during extinction with the cholinergic antagonist scopolamine blocked subsequent fear renewal. Low doses of scopolamine may be a clinically promising adjunct to exposure therapy by making extinction more relapse-resistant. PMID:22981655

  4. Historical landmarks in the histochemistry of the cholinergic synapse: Perspectives for future researches.

    PubMed

    Anglade, Philippe; Larabi-Godinot, Yamina

    2010-02-01

    Nearly one hundred years ago, acetylcholine (ACh) was proposed as a chemical agent responsible for nerve transmission at the synapse, the junction area between one neuron and its target cell. Since it has been proved that ACh played, indeed, a major role in the functioning of the nerve system in the vertebrates, cholinergic nerve transmission became a basic field of study in neuroscience. The birth of histochemistry and its ulterior developments allowed in situ localization of the molecular agents related to the functioning of the cholinergic synapse. This report presents historical landmarks in the histochemistry of major cholinergic agents (acetylcholinesterase, nicotinic acetylcholine receptor, choline acetyltransferase, and ACh), a domain which has greatly contributed to the knowledge of the nerve system. It is emphasized that despite extraordinary progresses made in this field, basic problems, such as in situ localization of ACh, still remain to be solved.

  5. Nerve growth factor corrects developmental impairments of basal forebrain cholinergic neurons in the trisomy 16 mouse.

    PubMed Central

    Corsi, P; Coyle, J T

    1991-01-01

    The trisomy 16 (Ts16) mouse, which shares genetic and phenotypic homologies with Down syndrome, exhibits impaired development of the basal forebrain cholinergic system. Basal forebrains obtained from Ts16 and euploid littermate fetuses at 15 days of gestation were dissociated and cultured in completely defined medium, with cholinergic neurons identified by choline acetyltransferase (ChAT) immunoreactivity. The Ts16 cultures exhibited fewer ChAT-immunoreactive neurons, which were smaller and emitted shorter, smoother, and more simplified neurites than those from euploid littermates. Whereas the addition of beta-nerve growth factor (100 ng/ml) augmented the specific activity of ChAT and neuritic extension for both Ts16 and euploid cholinergic neurons, only Ts16 cultures exhibited an increase in the number and size of ChAT-immunoreactive neurons. Furthermore, Ts16 ChAT-immunoreactive neurites formed varicosities only in the presence of beta-nerve growth factor. Images PMID:2000385

  6. Selective retrograde labeling of cholinergic neurons with (/sup 3/H)choline

    SciTech Connect

    Bagnoli, P.; Beaudet, A.; Stella, M.; Cuenod, M.

    1981-07-01

    Evidence is presented which is consistent with a specific retrograde labeling of cholinergic neurons following (/sup 3/H)choline application in their zone of termination. (/sup 3/H)Choline injection in the rat hippocampus leads to perikaryal retrograde labeling in the ipsilateral medial septal nuclease and nucleus of the diagonal band, thus delineating an established cholinergic pathway, while only diffuse presumably anterograde labeling was observed in the lateral septum, the entorhinal cortex, and the opposite hippocampus. After (/sup 3/H)choline injection in the pigeon visual Wulst, only the ipsilateral thalamic relay, of all inputs, showed similar perikaryal retrograde labeling, an observation supporting the suggestion that at least some thalamo-Wulst neurons are cholinergic.

  7. Immunocytochemical analysis of cholinergic amacrine cells in the tiger salamander retina.

    PubMed

    Zhang, J; Wu, S M

    2001-05-25

    Cholinergic amacrine cells in the tiger salamander retina were observed for the first time by using antibodies against choline acetyltransferase (ChAT). ChAT-immunoreactive cells were present in the inner nuclear layer (INL) and in the ganglion cell layer (GCL), and the somas of the former population (average diameter = 15.13 microm) were slightly smaller than those of the latter population (average diameter = 16.42 microm). The processes of these cells form two distinct narrow bands in the inner plexiform layer (IPL), one located near 0.2 inner plexiform units (IU) and the other near 0.65-0.7 IU. Soma size, cell density and spatial distribution of ChAT-positive cells were quantitatively analyzed. Our results suggest that cholinergic amacrine cells in the salamander retina are very similar to their counter parts in other species, and they can be used as a model system for studying cholinergic functions in the visual system.

  8. Reversal of androgen inhibition of estrogen-activated sexual behavior by cholinergic agents.

    PubMed

    Dohanich, G P; Cada, D A

    1989-12-01

    Androgens have been found to inhibit lordosis activated by estrogen treatment of ovariectomized female rats. In the present experiments, dihydrotestosterone propionate (200 micrograms for 3 days) inhibited the incidence of lordosis in ovariectomized females treated with estradiol benzoate (1 microgram for 3 days). This inhibition of lordosis was reversed 15 min after bilateral intraventricular infusion of physostigmine (10 micrograms/cannula), an acetylcholinesterase inhibitor, or carbachol (0.5 microgram/cannula), a cholinergic receptor agonist. This reversal of inhibition appears to be mediated by cholinergic muscarinic receptors since pretreatment with scopolamine (4 mg/kg, ip), a muscarinic receptor blocker, prevented the reversal of androgen inhibition by physostigmine. These results indicate that androgens may inhibit estrogen-activated lordosis through interference with central cholinergic muscarinic mechanisms.

  9. Neuro-immune interactions via the cholinergic anti-inflammatory pathway

    PubMed Central

    Gallowitsch-Puerta, Margot; Pavlov, Valentin A.

    2010-01-01

    The overproduction of TNF and other cytokines can cause the pathophysiology of numerous diseases. Controlling cytokine synthesis and release is critical for preventing unrestrained inflammation and maintaining health. Recent studies identified an efferent vagus nerve-based mechanism termed “the cholinergic anti-inflammatory pathway” that controls cytokine production and inflammation. Here we review current advances related to the role of this pathway in neuro-immune interactions that prevent excessive inflammation. Experimental evidence indicates that vagus nerve cholinergic anti-inflammatory signaling requires alpha7 nicotinic acetylcholine receptors expressed on non-neuronal cytokine producing cells. Alpha7 nicotinic acetylcholine receptor agonists inhibit cytokine release and protect animals in a variety of experimental lethal inflammatory models. Knowledge related to the cholinergic anti-inflammatory pathway can be exploited in therapeutic approaches directed towards counteracting abnormal chronic and hyper-activated inflammatory responses. PMID:17289087

  10. Spatially precise visual gain control mediated by a cholinergic circuit in the midbrain attention network

    PubMed Central

    Asadollahi, Ali; Knudsen, Eric I.

    2016-01-01

    A primary function of the midbrain stimulus selection network is to compute the highest-priority location for attention and gaze. Here we report the contribution of a specific cholinergic circuit to this computation. We functionally disconnected the tegmental cholinergic nucleus isthmi pars parvocellularis (Ipc) from the optic tectum (OT) in barn owls by reversibly blocking excitatory transmission in the Ipc. Focal blockade in the Ipc decreases the gain and spatial discrimination of OT units specifically for the locations represented by the visual receptive fields (VRFs) of the disconnected Ipc units, and causes OT VRFs to shift away from that location. The results demonstrate mechanisms by which this cholinergic circuit controls bottom-up stimulus competition and by which top-down signals can bias this competition, and they establish causal linkages between a particular circuit, gain control and dynamic shifts of VRFs. This circuit may perform the same function in all vertebrate species. PMID:27853140

  11. A model of cholinergic modulation in olfactory bulb and piriform cortex

    PubMed Central

    de Almeida, Licurgo; Idiart, Marco

    2013-01-01

    In this work we investigate in a computational model how cholinergic inputs to the olfactory bulb (OB) and piriform cortex (PC) modulate odor representations. We use experimental data derived from different physiological studies of ACh modulation of the bulbar and cortical circuitry and the interaction between these two areas. The results presented here indicate that cholinergic modulation in the OB significantly increases contrast and synchronization in mitral cell output. Each of these effects is derived from distinct neuronal interactions, with different groups of interneurons playing different roles. Both bulbar modulation effects contribute to more stable learned representations in PC, with pyramidal networks trained with cholinergic-modulated inputs from the bulb exhibiting more robust learning than those trained with unmodulated bulbar inputs. This increased robustness is evidenced as better recovery of memories from corrupted patterns and lower-concentration inputs as well as increased memory capacity. PMID:23221406

  12. Checks and balances on cholinergic signaling in brain and body function.

    PubMed

    Soreq, Hermona

    2015-07-01

    A century after the discovery of acetylcholine (ACh), we recognize both ACh receptors, transporters, and synthesizing and degrading enzymes and regulators of their expression as contributors to cognition, metabolism, and immunity. Recent discoveries indicate that pre- and post-transcriptional ACh signaling controllers coordinate the identity, functioning, dynamics, and brain-to-body communication of cholinergic cells. Checks and balances including epigenetic mechanisms, alternative splicing, and miRNAs may all expand or limit the diversity of these cholinergic components by consistently performing genome-related surveillance. This regulatory network enables homeostatic maintenance of brain-to-body ACh signaling as well as reactions to nicotine, Alzheimer's disease anticholinesterase therapeutics, and agricultural pesticides. Here I review recent reports on the functional implications of these controllers of cholinergic signaling in and out of the brain. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. [The cholinergic non-excitability phenomenon in the atrial myocardium of lower vertebrates].

    PubMed

    Abramochkin, D V; Kuz'min, V S; Sukhova, G S; Rozenshtraukh, L V

    2009-06-01

    Changes of electric activity induced by acetylcholine were studied in atrial myocardium of fishes (cod and carp) and reptilians (lizard and grass-snake). Standart microelectrode technique and novel method of optical mapping were used in the study. Acetylcholine (1-50 microM) provoked decrease of the action potential amplitude down to full inhibition of electrical activity in wide regions of atrium of cod and carp. We define this phenomenon as cholinergic inexcitability. In other regions excitation persisted even during action of 500 microM acetylcholine. In atria of lizard and grass-snake acetylcholine caused shortening of action potential without changes in it's amplitude. Local cholinergic inexcitability, shown in the atrial myocardium of fishes, is quite similar to the phenomenon, that was described earlier in the atria of frogs. It presents the heart of fish as an interesting model for study of mechanisms of cholinergic atrial arrhythmias initiation.

  14. Cholinergic innervation of parvalbumin- and calbindin-containing neurones in the hippocampus during postnatal development of the rat brain.

    PubMed

    Ludkiewicz, Beata; Wójcik, Sławomir; Spodnik, Edyta; Domaradzka-Pytel, Beata; Klejbor, Ilona; Moryś, Janusz

    2002-01-01

    Immunohistochemical study of the cholinergic innervation of the parvalbumin- and calbindin-containing cells in the hippocampus was conducted on 30 rat brains of various postnatal ages: P0, P4, P7, P14, P21, P30, P60 and P180. Sections with double immunostaining for vesicular acetylcholine transporter (VAChT; the marker of cholinergic cells, fibres and terminals) and parvalbumin (PV) or calbindin (CB) were analysed using confocal laser-scanning microscope. Obtained data demonstrate that the pattern of cholinergic innervation of calbindin- and parvalbumin-immunoreactive hippocampal neurones shows some differences. During development as well as in the adult species cholinergic terminals preferentially innervate CB-containing neurones, while cholinergic terminals on PV-containing cells were observed rarely. Cholinergic endings on the CB-ir neurones are localised both on their somata and dendrites, whereas on PV-ir cells they form synaptic contact predominantly with processes. In spite of the unquestionable cholinergic influence particularly on CB-ir cells, the number of cholinergic endings suggests that this input seems not to be crucial for the activity of the studied cell populations.

  15. Tryptophan and cystein residues of the acetylcholine receptors of Torpedo species. Relationship to binding of cholinergic ligands.

    PubMed

    Eldefrawi, M E; Eldefrawi, A T; Wilson, D B

    1975-09-23

    Several methods were used to analyze for tryptophan in the acetylcholine (ACh) receptors purified from the electric organs of the electric rays, Torpedo californica and Torpedo marmorata. The best value of tryptophan was 2.4 mol %. When excited at 290 nm, both receptors fluoresced with a maximum at 336, but there was no change in the fluorescence emission spectra upon binding of carbamylcholine, d-tubocurarine, ACh, or decamethonium. The free SH content of the Torpedo receptors varied in different preparations, and was highest in that purified from fresh T. californica using deaerated solutions and dialysis under nitrogen, and lowest in that prepared from the aged lyophilized membranes of T. marmorata. The maximum free SH content was 20 nmol/mg of protein or 0.22 mol %, equal to at most 18% of the total cysteic acid residues. Reaction of either 33% or of all the SH residues with p-chloromercuribenzoate reduced maximum ACh binding to the pure receptor prepared from fresh T. californica by only 23%.

  16. Establishment of cholinergic neuron-like cell lines with differential vulnerability to nitrosative stress.

    PubMed

    Personett, David A; Williams, Katrina; Baskerville, Karen A; McKinney, Michael

    2007-05-01

    Cholinergic cell lines were established by fusion of embryonic day 17 wild-type neurons from rat basal forebrain (BF) and upper brainstem (BS) with N18tg neuroblastoma cells. Isolated clones expressed choline acetyltransferase (ChAT) and neuronal nitric oxide synthase (nNOS) activities that were increased upon differentiation with retinoic acid. Clones from the BF expressed high levels of the tyrosine kinase type A (TrkA) receptor expression and activation of the mitogen-activated kinase ERK2 upon treatment with nerve growth factor. Like wild-type cholinergic populations, the six clones studied were variably resistant to nitric oxide (NO) excess from addition of S-nitroso-N-acetyl-D, L-penicillamine (SNAP). Of these, the BS2 clone exhibited resistance like in vivo BS cholinergic neurons, while the MS10 clone mimicked in vivo BF vulnerability. Apoptosis in response to NO excess was preceded by increases in mitochondrial responses bax/bcl-2 ratios, but cytochrome C was not released. Mitochondrial levels of apoptosis initiating factor (AIF) were either unchanged or increased, and only in MS clones was endonuclease G (EndoG) released. Microarray data indicated the existence of endoplasmic reticular (ER) stress and caspase-4 and caspase-12 were involved in the pathway to DNA fragmentation. The array data also indicated a survival role for mdm2, and its blockade rendered vulnerable the brainstem survivor clone BS2. Akt and ERK1/2 pathways were activated in response to NO and their blockade increased DNA fragmentation. Blockade of GSK-3 alpha/beta, a downstream target of Akt, reduced SNAP toxicity and this was more prominent in basal forebrain clones. We have identified two cholinergic cell lines useful for molecular studies of cholinergic vulnerability. We hypothesize that, in cholinergic neurons, control of ER stress signaling may be a major factor in differential vulnerability.

  17. Cholinergic dysfunction and amnesia in patients with Wernicke-Korsakoff syndrome: a transcranial magnetic stimulation study.

    PubMed

    Nardone, Raffaele; Bergmann, Jürgen; De Blasi, Pierpaolo; Kronbichler, Martin; Kraus, Jörg; Caleri, Francesca; Tezzon, Frediano; Ladurner, Gunther; Golaszewski, Stefan

    2010-03-01

    The specific neurochemical substrate underlying the amnesia in patients with Wernicke-Korsakoff syndrome (WKS) is still poorly defined. Memory impairment has been linked to dysfunction of neurons in the cholinergic system. A transcranial magnetic stimulation (TMS) protocol, the short latency afferent inhibition (SAI), may give direct information about the function of some cholinergic pathways in the human motor cortex. In the present study, we measured SAI in eight alcoholics with WKS and compared the data with those from a group of age-matched healthy individuals; furthermore, we correlated the individual SAI values of the WKS patients with memory and other cognitive functions. Mean SAI was significantly reduced in WKS patients when compared with the controls. SAI was increased after administration of a single dose of donezepil in a subgroup of four patients. The low score obtained in the Rey Complex Figure delayed recall test, the Digit Span subtest of the Wechsler Adult Intelligence Scale-Revised (WAIS-R) and the Corsi's Block Span subtest of the WAIS-R documented a severe impairment in the anterograde memory and short-term memory. None of the correlations between SAI values and these neuropsychological tests reached significance. We provide physiological evidence of cholinergic involvement in WKS. However, this putative marker of central cholinergic activity did not significantly correlate with the memory deficit in our patients. These findings suggest that the cholinergic dysfunction does not account for the memory disorder and that damage to the cholinergic system is not sufficient to cause a persisting amnesic syndrome in WKS.

  18. Pitx3 deficiency in mice affects cholinergic modulation of GABAergic synapses in the nucleus accumbens.

    PubMed

    de Rover, Mischa; Lodder, Johannes C; Smidt, Marten P; Brussaard, Arjen B

    2006-10-01

    We investigated to what extent Pitx3 deficiency, causing hyperdopaminergic transmission in the nucleus accumbens microcircuitry, may lead to developmental changes. First, spontaneous firing activity of cholinergic interneurons in the nucleus accumbens was recorded in vitro. Firing patterns in the Pitx3-deficient mice were more variable and intrinsically different from those observed in wild-type mice. Next, to test whether the irregular firing patterns observed in mutant mice affected the endogenous nicotinic modulation of the GABAergic input of medium spiny neurons, we recorded spontaneous GABAergic inputs to these cells before and after the application of the nicotinic receptor blocker mecamylamine. Effects of mecamylamine were found in slices of either genotype, but in a rather inconsistent manner. Possibly this was attributable to heterogeneity in firing of nearby cholinergic interneurons. Thus paired recordings of cholinergic interneurons and medium spiny neurons were performed to more precisely control the experimental conditions of the cholinergic modulation of GABAergic synaptic transmission. We found that controlling action potential firing in cholinergic neurons leads to a conditional increase in GABAergic input frequency in wild-type mice but not in Pitx3-deficient mice. We conclude that Pitx3-deficient mice have neural adaptations at the level of the nucleus accumbens microcircuitry that in turn may have behavioral consequences. It is discussed to what extent dopamine release in the nucleus accumbens may be a long-term gating mechanism leading to alterations in cholinergic transmission in the nucleus accumbens, in line with previously reported neural adaptations found as consequences of repeated drug treatment in rodents.

  19. Cholinergic suppression of excitatory synaptic transmission in layers II/III of the parasubiculum.

    PubMed

    Glasgow, S D; Glovaci, I; Karpowicz, L S; Chapman, C A

    2012-01-10

    Layer II of the parasubiculum (PaS) receives excitatory synaptic input from the CA1 region of the hippocampus and sends a major output to layer II of the medial and lateral entorhinal cortex. The PaS also receives heavy cholinergic innervation from the medial septum, which contributes to the generation of theta-frequency (4-12 Hz) electroencephalographic (EEG) activity. Cholinergic receptor activation exerts a wide range of effects in other areas of the hippocampal formation, including membrane depolarization, changes in neuronal excitability, and suppression of excitatory synaptic responses. The present study was aimed at determining how cholinergic receptor activation modulates excitatory synaptic input to the layer II/III neurons of the PaS in acute brain slices. Field excitatory postsynaptic potentials (fEPSPs) in layer II/III of the PaS were evoked by stimulation of either layer I afferents, or ascending inputs from layer V. Bath-application of the cholinergic agonist carbachol (0.5-10 μM) suppressed the amplitude of fEPSPs evoked by both superficial- and deep layer stimulation, and also enhanced paired-pulse facilitation. Constant bath-application of the GABA(A) antagonist bicuculline (10 μM) failed to eliminate the suppression, indicating that the cholinergic suppression of fEPSPs is not due to increased inhibitory tone. The muscarinic receptor antagonist atropine (1 μM) blocked the suppression of fEPSPs, and the selective M(1)-preferring receptor antagonist pirenzepine (1 μM), but not the M(2)-preferring antagonist methoctramine (1-5 μM), also significantly attenuated the suppression. Therefore, cholinergic receptor activation suppresses excitatory synaptic input to layer II/III neurons of the PaS, and this suppression is mediated in part by M(1) receptor activation.

  20. Sox2 regulates cholinergic amacrine cell positioning and dendritic stratification in the retina.

    PubMed

    Whitney, Irene E; Keeley, Patrick W; St John, Ace J; Kautzman, Amanda G; Kay, Jeremy N; Reese, Benjamin E

    2014-07-23

    The retina contains two populations of cholinergic amacrine cells, one positioned in the ganglion cell layer (GCL) and the other in the inner nuclear layer (INL), that together comprise ∼1/2 of a percent of all retinal neurons. The present study examined the genetic control of cholinergic amacrine cell number and distribution between these two layers. The total number of cholinergic amacrine cells was quantified in the C57BL/6J and A/J inbred mouse strains, and in 25 recombinant inbred strains derived from them, and variations in their number and ratio (GCL/INL) across these strains were mapped to genomic loci. The total cholinergic amacrine cell number was found to vary across the strains, from 27,000 to 40,000 cells, despite little variation within individual strains. The number of cells was always lower within the GCL relative to the INL, and the sizes of the two populations were strongly correlated, yet there was variation in their ratio between the strains. Approximately 1/3 of that variation in cell ratio was mapped to a locus on chromosome 3, where Sex determining region Y box 2 (Sox2) was identified as a candidate gene due to the presence of a 6-nucleotide insertion in the protein-coding sequence in C57BL/6J and because of robust and selective expression in cholinergic amacrine cells. Conditionally deleting Sox2 from the population of nascent cholinergic amacrine cells perturbed the normal ratio of cells situated in the GCL versus the INL and induced a bistratifying morphology, with dendrites distributed to both ON and OFF strata within the inner plexiform layer.

  1. Sox2 Regulates Cholinergic Amacrine Cell Positioning and Dendritic Stratification in the Retina

    PubMed Central

    Whitney, Irene E.; Keeley, Patrick W.; St. John, Ace J.; Kautzman, Amanda G.; Kay, Jeremy N.

    2014-01-01

    The retina contains two populations of cholinergic amacrine cells, one positioned in the ganglion cell layer (GCL) and the other in the inner nuclear layer (INL), that together comprise ∼1/2 of a percent of all retinal neurons. The present study examined the genetic control of cholinergic amacrine cell number and distribution between these two layers. The total number of cholinergic amacrine cells was quantified in the C57BL/6J and A/J inbred mouse strains, and in 25 recombinant inbred strains derived from them, and variations in their number and ratio (GCL/INL) across these strains were mapped to genomic loci. The total cholinergic amacrine cell number was found to vary across the strains, from 27,000 to 40,000 cells, despite little variation within individual strains. The number of cells was always lower within the GCL relative to the INL, and the sizes of the two populations were strongly correlated, yet there was variation in their ratio between the strains. Approximately 1/3 of that variation in cell ratio was mapped to a locus on chromosome 3, where Sex determining region Y box 2 (Sox2) was identified as a candidate gene due to the presence of a 6-nucleotide insertion in the protein-coding sequence in C57BL/6J and because of robust and selective expression in cholinergic amacrine cells. Conditionally deleting Sox2 from the population of nascent cholinergic amacrine cells perturbed the normal ratio of cells situated in the GCL versus the INL and induced a bistratifying morphology, with dendrites distributed to both ON and OFF strata within the inner plexiform layer. PMID:25057212

  2. Muscarinic signaling influences the patterning and phenotype of cholinergic amacrine cells in the developing chick retina

    PubMed Central

    Stanke, Jennifer J; Lehman, Bret; Fischer, Andy J

    2008-01-01

    Background Many studies in the vertebrate retina have characterized the differentiation of amacrine cells as a homogenous class of neurons, but little is known about the genes and factors that regulate the development of distinct types of amacrine cells. Accordingly, the purpose of this study was to characterize the development of the cholinergic amacrine cells and identify factors that influence their development. Cholinergic amacrine cells in the embryonic chick retina were identified by using antibodies to choline acetyltransferase (ChAT). Results We found that as ChAT-immunoreactive cells differentiate they expressed the homeodomain transcription factors Pax6 and Islet1, and the cell-cycle inhibitor p27kip1. As differentiation proceeds, type-II cholinergic cells, displaced to the ganglion cell layer, transiently expressed high levels of cellular retinoic acid binding protein (CRABP) and neurofilament, while type-I cells in the inner nuclear layer did not. Although there is a 1:1 ratio of type-I to type-II cells in vivo, in dissociated cell cultures the type-I cells (ChAT-positive and CRABP-negative) out-numbered the type-II cells (ChAT and CRABP-positive cells) by 2:1. The relative abundance of type-I to type-II cells was not influenced by Sonic Hedgehog (Shh), but was affected by compounds that act at muscarinic acetylcholine receptors. In addition, the abundance and mosaic patterning of type-II cholinergic amacrine cells is disrupted by interfering with muscarinic signaling. Conclusion We conclude that: (1) during development type-I and type-II cholinergic amacrine cells are not homotypic, (2) the phenotypic differences between these subtypes of cells is controlled by the local microenvironment, and (3) appropriate levels of muscarinic signaling between the cholinergic amacrine cells are required for proper mosaic patterning. PMID:18254959

  3. Habenula cholinergic neurons regulate anxiety during nicotine withdrawal via nicotinic acetylcholine receptors.

    PubMed

    Pang, Xueyan; Liu, Liwang; Ngolab, Jennifer; Zhao-Shea, Rubing; McIntosh, J Michael; Gardner, Paul D; Tapper, Andrew R

    2016-08-01

    Cholinergic neurons in the medial habenula (MHb) modulate anxiety during nicotine withdrawal although the molecular neuroadaptation(s) within the MHb that induce affective behaviors during nicotine cessation is largely unknown. MHb cholinergic neurons are unique in that they robustly express neuronal nicotinic acetylcholine receptors (nAChRs), although their behavioral role as autoreceptors in these neurons has not been described. To test the hypothesis that nAChR signaling in MHb cholinergic neurons could modulate anxiety, we expressed novel "gain of function" nAChR subunits selectively in MHb cholinergic neurons of adult mice. Mice expressing these mutant nAChRs exhibited increased anxiety-like behavior that was alleviated by blockade with a nAChR antagonist. To test the hypothesis that anxiety induced by nicotine withdrawal may be mediated by increased MHb nicotinic receptor signaling, we infused nAChR subtype selective antagonists into the MHb of nicotine naïve and withdrawn mice. While antagonists had little effect on nicotine naïve mice, blocking α4β2 or α6β2, but not α3β4 nAChRs in the MHb alleviated anxiety in mice undergoing nicotine withdrawal. Consistent with behavioral results, there was increased functional expression of nAChRs containing the α6 subunit in MHb neurons that also expressed the α4 subunit. Together, these data indicate that MHb cholinergic neurons regulate nicotine withdrawal-induced anxiety via increased signaling through nicotinic receptors containing the α6 subunit and point toward nAChRs in MHb cholinergic neurons as molecular targets for smoking cessation therapeutics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Extracts and constituents of Leontopodium alpinum enhance cholinergic transmission: Brain ACh increasing and memory improving properties

    PubMed Central

    Hornick, Ariane; Schwaiger, Stefan; Rollinger, Judith M.; Vo, Nguyen Phung; Prast, Helmut; Stuppner, Hermann

    2012-01-01

    Leontopodium alpinum (‘Edelweiss’) was phytochemically investigated for constituents that might enhance cholinergic neurotransmission. The potency to increase synaptic availability of acetylcholine (ACh) in rat brain served as key property for the bioguided isolation of cholinergically active compounds using different chromatographic techniques. The dichlormethane (DCM) extract of the root, fractions and isolated constituents were injected i.c.v. and the effect on brain ACh was detected via the push–pull technique. The DCM extract enhanced extracellular ACh concentration in rat brain and inhibited acetylcholinesterase (AChE) in vitro. The extracellular level of brain ACh was significantly increased by the isolated sesquiterpenes, isocomene and 14-acetoxyisocomene, while silphiperfolene acetate and silphinene caused a small increasing tendency. Only silphiperfolene acetate showed in vitro AChE inhibitory activity, thus suggesting the other sesquiterpenes to stimulate cholinergic transmission by an alternative mechanism of action. Isocomene was further investigated with behavioural tasks in mice. It restored object recognition in scopolamine-impaired mice and showed nootropic effects in the T-maze alternation task in normal and scopolamine-treated mice. Additionally, this sesquiterpene reduced locomotor activity of untreated mice in the open field task, while the activity induced by scopolamine was abolished. The enhancement of synaptic availability of ACh, the promotion of alternation, and the amelioration of scopolamine-induced deficit are in accordance with a substance that amplifies cholinergic transmission. Whether the mechanism of action is inhibition of AChE or another pro-cholinergic property remains to be elucidated. Taken together, isocomene and related constituents of L. alpinum deserve further interest as potential antidementia agents in brain diseases associated with cholinergic deficits. PMID:18541221

  5. Adenosine Inhibits the Excitatory Synaptic Inputs to Basal Forebrain Cholinergic, GABAergic, and Parvalbumin Neurons in Mice

    PubMed Central

    Yang, Chun; Franciosi, Serena; Brown, Ritchie E.

    2013-01-01

    Coffee and tea contain the stimulants caffeine and theophylline. These compounds act as antagonists of adenosine receptors. Adenosine promotes sleep and its extracellular concentration rises in association with prolonged wakefulness, particularly in the basal forebrain (BF) region involved in activating the cerebral cortex. However, the effect of adenosine on identified BF neurons, especially non-cholinergic neurons, is incompletely understood. Here we used whole-cell patch-clamp recordings in mouse brain slices prepared from two validated transgenic mouse lines with fluorescent proteins expressed in GABAergic or parvalbumin (PV) neurons to determine the effect of adenosine. Whole-cell recordings were made from BF cholinergic neurons and from BF GABAergic and PV neurons with the size (>20 μm) and intrinsic membrane properties (prominent H-currents) corresponding to cortically projecting neurons. A brief (2 min) bath application of adenosine (100 μM) decreased the frequency but not the amplitude of spontaneous excitatory postsynaptic currents (EPSCs) in all groups of BF cholinergic, GABAergic, and PV neurons we recorded. In addition, adenosine decreased the frequency of miniature EPSCs in BF cholinergic neurons. Adenosine had no effect on the frequency of spontaneous inhibitory postsynaptic currents in cholinergic neurons or GABAergic neurons with large H-currents but reduced them in a group of GABAergic neurons with smaller H-currents. All effects of adenosine were blocked by a selective, adenosine A1 receptor antagonist, cyclopentyltheophylline (CPT, 1 μM). Adenosine had no postsynaptic effects. Taken together, our work suggests that adenosine promotes sleep by an A1 receptor-mediated inhibition of glutamatergic inputs to cortically projecting cholinergic and GABA/PV neurons. Conversely, caffeine and theophylline promote attentive wakefulness by inhibiting these A1 receptors in BF thereby promoting the high-frequency oscillations in the cortex required

  6. Mutual Control of Cholinergic and Low-Threshold Spike Interneurons in the Striatum

    PubMed Central

    Elghaba, Rasha; Vautrelle, Nicolas; Bracci, Enrico

    2016-01-01

    The striatum is the largest nucleus of the basal ganglia and is crucially involved in action selection and reward processing. Cortical and thalamic inputs to the striatum are processed by local networks in which several classes of interneurons play an important, but still poorly understood role. Here we investigated the interactions between cholinergic and low-threshold spike (LTS) interneurons. LTS interneurons were hyperpolarized by co-application of muscarinic and nicotinic receptor antagonists (atropine and mecamylamine, respectively). Mecamylamine alone also caused hyperpolarizations, while atropine alone caused depolarizations and increased firing. LTS interneurons were also under control of tonic GABA, as application of the GABAA receptor antagonist picrotoxin caused depolarizations and increased firing. Frequency of spontaneous GABAergic events in LTS interneurons was increased by co-application of atropine and mecamylamine or by atropine alone, but reduced by mecamylamine alone. In the presence of picrotoxin and tetrodotoxin (TTX), atropine and mecamylamine depolarized the LTS interneurons. We concluded that part of the excitatory effects of tonic acetylcholine (ACh) on LTS interneurons were due to cholinergic modulation of tonic GABA. We then studied the influence of LTS interneurons on cholinergic interneurons. Application of antagonists of somatostatin or neuropeptide Y (NPY) receptors or of an inhibitor of nitric oxide synthase (L-NAME) did not cause detectable effects in cholinergic interneurons. However, prolonged synchronized depolarizations of LTS interneurons (elicited with optogenetics tools) caused slow-onset depolarizations in cholinergic interneurons, which were often accompanied by strong action potential firing and were fully abolished by L-NAME. Thus, a mutual excitatory influence exists between LTS and cholinergic interneurons in the striatum, providing an opportunity for sustained activation of the two cell types. This activation may

  7. Ventral tegmental area cholinergic mechanisms mediate behavioral responses in the forced swim test.

    PubMed

    Addy, N A; Nunes, E J; Wickham, R J

    2015-07-15

    Recent studies revealed a causal link between ventral tegmental area (VTA) phasic dopamine (DA) activity and pro-depressive and antidepressant-like behavioral responses in rodent models of depression. Cholinergic activity in the VTA has been demonstrated to regulate phasic DA activity, but the role of VTA cholinergic mechanisms in depression-related behavior is unclear. The goal of this study was to determine whether pharmacological manipulation of VTA cholinergic activity altered behavioral responding in the forced swim test (FST) in rats. Here, male Sprague-Dawley rats received systemic or VTA-specific administration of the acetylcholinesterase inhibitor, physostigmine (systemic; 0.06 or 0.125mg/kg, intra-cranial; 1 or 2μg/side), the muscarinic acetylcholine receptor (AChR) antagonist scopolamine (2.4 or 24μg/side), or the nicotinic AChR antagonist mecamylamine (3 or 30μg/side), prior to the FST test session. In control experiments, locomotor activity was also examined following systemic and intra-cranial administration of cholinergic drugs. Physostigmine administration, either systemically or directly into the VTA, significantly increased immobility time in FST, whereas physostigmine infusion into a dorsal control site did not alter immobility time. In contrast, VTA infusion of either scopolamine or mecamylamine decreased immobility time, consistent with an antidepressant-like effect. Finally, the VTA physostigmine-induced increase in immobility was blocked by co-administration with scopolamine, but unaltered by co-administration with mecamylamine. These data show that enhancing VTA cholinergic tone and blocking VTA AChRs has opposing effects in FST. Together, the findings provide evidence for a role of VTA cholinergic mechanisms in behavioral responses in FST.

  8. Co-expression of alpha7 and beta2 nicotinic acetylcholine receptor subunit mRNAs within rat brain cholinergic neurons.

    PubMed

    Azam, L; Winzer-Serhan, U; Leslie, F M

    2003-01-01

    Nicotine enhances cognitive and attentional processes through stimulation of the basal forebrain cholinergic system. Although muscarinic cholinergic autoreceptors have been well characterized, pharmacological characterization of nicotinic autoreceptors has proven more difficult. The present study used double-labeling in situ hybridization to determine expression of nicotinic acetylcholine receptor (nAChR) subunit mRNAs within basal forebrain cholinergic neurons in order to gain information about possible nAChR autoreceptor properties. Cholinergic cells of the mesopontine tegmentum and striatal interneurons were also examined, as were septohippocampal GABAergic neurons that interact with cholinergic neurons to regulate hippocampal activity. alpha7 and beta2 nAChR mRNAs were found to be co-expressed in almost all cholinergic cells and in the majority of GABAergic neurons examined. alpha4 nAChR mRNA expression was restricted to cholinergic cells of the nucleus basalis magnocellularis, and to non-cholinergic cells of the medial septum and mesopontine tegmentum. These data suggest possible regional differences in the pharmacological properties of nicotinic autoreceptors on cholinergic cells. Whereas most cholinergic cells express rapidly desensitizing alpha7 homomers or alpha7beta2 heteromers, cortical projection neurons may also express a pharmacologically distinct alpha4beta2 nAChR subtype. There may also be differential nAChR regulation of cholinergic and non-cholinergic cells within the mesopontine tegmentum that are implicated in acquisition of nicotine self-administration.

  9. Biochemical Reversal of Aging

    NASA Astrophysics Data System (ADS)

    Ely, John T. A.

    2006-03-01

    We cite our progress on biochemical reversal of aging. However, it may be circa 2 years before we have necessary substances at low cost. Meanwhile, without them, a number of measures can be adopted providing marked improvement for the problems of aging in modern societies. For example, enzymes are needed to excrete toxins that accelerate aging; Hg is the ultimate toxin that disables all enzymes (including those needed to excrete Hg itself). Low Hg level in the urine, due to loss of excretory ability, causes the diagnosis of Hg toxicity to almost always be missed. Hg sources must be removed from the body! Another example is excess sugar; hyperglycemia decreases intracellular ascorbic acid (AA) by competitively inhibiting the insulin- mediated active transport of AA into cells. Thus, immunity is impaired by low leucocyte AA. AA is needed for new proteins in aging tissues. Humans must supplement AA; their need same as in AA-synthesizing mammals.

  10. Misleading biochemical laboratory test results

    PubMed Central

    Nanji, Amin A.

    1984-01-01

    This article reviews the general and specific factors that interfere with the performance of common biochemical laboratory tests and the interpretation of their results. The clinical status of the patient, drug interactions, and in-vivo and in-vitro biochemical interactions and changes may alter the results obtained from biochemical analysis of blood constituents. Failure to recognize invalid laboratory test results may lead to injudicious and dangerous management of patients. PMID:6375845

  11. The influence of taipoxin on cholinergic synapses in the electric organ of Torpedo marmorata.

    PubMed

    Naef, W; Waser, P G

    1978-01-01

    The influences of the snake venom taipoxin on the cholinergic synapses of the electric organ of Torpedo mamorata were investigated. 1. In ultrathin sections presynaptic membrane indentations are noted under the influence of taipoxin/NaCl. 2. The presynaptic membranes often show small interruptions. 3. In taipoxin/horseradish peroxidase incubated organ pieces typical omega-shaped indentations are found, but on the postsynaptic side. 4. The vesicle density decreased under the influence of the taipoxin in contrast untreated cholinergic synapses. 5. In freeze etched preparations no membrane indentations and interruptions are observed, but only a small vesicle density was seen.

  12. Dichotomous Distribution of Putative Cholinergic Interneurons in Mouse Accessory Olfactory Bulb

    PubMed Central

    Marking, Sarah; Krosnowski, Kurt; Ogura, Tatsuya; Lin, Weihong

    2017-01-01

    Sensory information processing in the olfactory bulb (OB) relies on diverse populations of bulbar interneurons. In rodents, the accessory OB (AOB) is divided into two bulbar regions, the anterior (aAOB) and posterior (pAOB), which differ substantially in their circuitry connections and associated behaviors. We previously identified and characterized a large number of morphologically diverse cholinergic interneurons in the main OB (MOB) using transgenic mice to visualize the cell bodies of choline acetyltransferase (ChAT-expressing neurons and immunolabeling (Krosnowski et al., 2012)). However, whether there are cholinergic neurons in the AOB is controversial and there is no detailed characterization of such neurons. Using the same line of ChAT(bacterial artificial chromosome, BAC)-enhanced green fluorescent protein (eGFP) transgenic mice, we investigated cholinergic neurons in the AOB. We found significant differences in the number and location of GFP-expressing (GFP+), putative cholinergic interneurons between the aAOB and pAOB. The highest numbers of GFP+ interneurons were found in the aAOB glomerular layer (aGL) and pAOB mitral/tufted cell layer (pMCL). We also noted a high density of GFP+ interneurons encircling the border region of the pMCL. Interestingly, a small subset of glomeruli in the middle of the GL receives strong MCL GFP+ nerve processes. These local putative cholinergic-innervated glomeruli are situated just outside the aGL, setting the boundary between the pGL and aGL. Many but not all GFP+ neurons in the AOB were weakly labeled with antibodies against ChAT and vesicular acetylcholine transporter (VAChT). We further determined if these GFP+ interneurons differ from other previously characterized interneuron populations in the AOB and found that AOB GFP+ interneurons express neither GABAergic nor dopaminergic markers and most also do not express the glutamatergic marker. Similar to the cholinergic interneurons of the MOB, some AOB GFP+ interneurons

  13. Thalamic cholinergic innervation and postural sensory integration function in Parkinson's disease.

    PubMed

    Müller, Martijn L T M; Albin, Roger L; Kotagal, Vikas; Koeppe, Robert A; Scott, Peter J H; Frey, Kirk A; Bohnen, Nicolaas I

    2013-11-01

    The pathophysiology of postural instability in Parkinson's disease remains poorly understood. Normal postural function depends in part on the ability of the postural control system to integrate visual, proprioceptive, and vestibular sensory information. Degeneration of cholinergic neurons in the brainstem pedunculopontine nucleus complex and their thalamic efferent terminals has been implicated in postural control deficits in Parkinson's disease. Our aim was to investigate the relationship of cholinergic terminal loss in thalamus and cortex, and nigrostriatal dopaminergic denervation, on postural sensory integration function in Parkinson's disease. We studied 124 subjects with Parkinson's disease (32 female/92 male; 65.5 ± 7.4 years old; 6.0 ± 4.2 years motor disease duration; modified Hoehn and Yahr mean stage 2.4 ± 0.5) and 25 control subjects (10 female/15 male, 66.8 ± 10.1 years old). All subjects underwent (11)C-dihydrotetrabenazine vesicular monoaminergic transporter type 2 and (11)C-methylpiperidin-4-yl propionate acetylcholinesterase positron emission tomography and the sensory organization test balance platform protocol. Measures of dopaminergic and cholinergic terminal integrity were obtained, i.e. striatal vesicular monoaminergic transporter type 2 binding (distribution volume ratio) and thalamic and cortical acetylcholinesterase hydrolysis rate per minute (k3), respectively. Total centre of pressure excursion (speed), a measure of total sway, and sway variability were determined for individual sensory organization test conditions. Based on normative data, principal component analysis was performed to reduce postural sensory organization functions to robust factors for regression analysis with the dopaminergic and cholinergic terminal data. Factor analysis demonstrated two factors with eigenvalues >2 that explained 52.2% of the variance, mainly reflecting postural sway during sensory organization test Conditions 1-3 and 5, respectively. Regression

  14. Alteration of the Cytotoxic Action of Sensitized Lymphocytes by Cholinergic Agents and Activators of Adenylate Cyclase

    PubMed Central

    Strom, Terry B.; Deisseroth, Albert; Morganroth, Joel; Carpenter, Charles B.; Merrill, John P.

    1972-01-01

    The cytotoxic action of lymphocytes upon cells bearing alloantigens to which they are sensitized is inhibited by agents that elevate intracellular amounts of 3′:5′-cyclic AMP: prostaglandin E1, cholera toxin, and theophylline. Cholinergic agents, added in the range of 1 to 100 pM, enhance cytotoxicity, an effect that is blocked by atropine. Because cholinergic agents elevate cyclic GMP in other in vitro systems, these findings suggest that the cytotoxic process effected by sensitized lymphocytes is a secretory phenomenon modulated by cyclic AMP and cyclic GMP. PMID:4342971

  15. Induction of choline acetyltransferase activity in cholinergic neurons by stolonidiol: structure-activity relationship.

    PubMed

    Yabe, T; Yamada, H; Shimomura, M; Miyaoka, H; Yamada, Y

    2000-04-01

    The effect of stolonidiol (1), a bioactive marine diterpenoid from the Japanese soft coral Clavularia sp., on choline acetyltransferase (ChAT) activity was examined using cultured cholinergic neurons. Stolonidiol (1) showed potent ChAT inducible activity in primary cultured basal forebrain cells and clonal septal SN49 cells, suggesting that it may act as a potent neurotrophic factor-like agent on the cholinergic nervous system. Further expansion of the structure-activity relationship to include stolonidiol (1) and its derivatives demonstrated that the exo-methylene group and the epoxide group are essential for ChAT-inducing activity. Stolonidiol (1) showed the highest activity among the test samples.

  16. Thalamic cholinergic innervation is spared in Alzheimer disease compared to parkinsonian disorders.

    PubMed

    Kotagal, Vikas; Müller, Martijn L T M; Kaufer, Daniel I; Koeppe, Robert A; Bohnen, Nicolaas I

    2012-04-18

    There are two major sources of cholinergic projections in the brain. The nucleus basalis of Meynert provides the principal cholinergic input of the cortical mantle and the pedunculopontine nucleus-laterodorsal tegmental complex (PPN-LDTC; hereafter referred to as PPN) provides the major cholinergic input to the thalamus. Cortical cholinergic denervation has previously been shown to be part of Alzheimer and parkinsonian dementia but there is less information about subcortical thalamic cholinergic denervation. We investigated thalamic cholinergic afferent integrity by measuring PPN-Thalamic (PPN-Thal) acetylcholinesterase (AChE) activity via PET imaging in Alzheimer (AD), Parkinson disease without dementia (PD), Parkinson disease with dementia (PDD) and dementia with Lewy bodies (DLB). AD (n=13; mean age 75.4 ± 5.5), PD (n=11; age 71.4 ± 6.4), PDD (n=6; age 70.8±4.7), DLB (n=6; age 68.0 ± 8.6) and normal controls (NC; n=14; age 69.0 ± 7.5) subjects underwent AChE [¹¹C]-methyl-4-piperidinyl propionate (PMP) PET imaging. PPN-Thal PET data were analyzed using the Nagatsuka method. There were no significant differences in mean age between the groups (F=1.86, p=0.134). Kruskal-Wallis testing demonstrated a significant group effect for PPN-Thal AChE hydrolysis rates (F=9.62, p<0.0001). Compared to NC, reduced thalamic k3 hydrolysis rate was noted in subjects with PDD (-19.8%; AChE k3 hydrolysis rates 0.1072 ± 0.0143 min⁻¹), DLB (-17.4%; 0.1103 ± 0.0112 min⁻¹) and PD (-12.8%; 0.1165 ± 0.0114 min⁻¹). Each of these 3 subgroups was statistically different from AD subjects (-0.7%; 0.1326 ± 0.0095 min⁻¹) who showed relatively spared thalamic k3 hydrolysis rates which were comparable to NC (0.1336 ± 0.0142 min⁻¹). Thalamic cholinergic denervation is present in PD, PDD, and DLB but not in AD. Neurodegenerative involvement of thalamic cholinergic afferent projections may contribute to disease-specific motor and cognitive abnormalities. Copyright © 2012

  17. Role of GABAA and GABAB receptors and peripheral cholinergic mechanisms in the antinociceptive action of taurine.

    PubMed

    Serrano, M I; Serrano, J S; Guerrero, M R; Fernández, A

    1994-10-01

    1. Gabaergic and cholinergic mediation in the antinociceptive effect of taurine has been investigated in mice (acetic acid test) and rats (tail-flick test). 2. Scopolamine sulfate and methylnitrate exhibit intrinsic antinociceptive activity and increase the effect of taurine in mice. 3. Baclofen also increases the antinociceptive effect of taurine in mice. 4. Anticholinergic agents and bicuculline but not CGP 35348 antagonize the effect of taurine in rats. 5. These results suggest that the antinociceptive effect of taurine may be partly mediated by spinal GABAA receptors and peripheral cholinergic mechanisms.

  18. Ligand fitting with CCP4

    PubMed Central

    2017-01-01

    Crystal structures of protein–ligand complexes are often used to infer biology and inform structure-based drug discovery. Hence, it is important to build accurate, reliable models of ligands that give confidence in the interpretation of the respective protein–ligand complex. This paper discusses key stages in the ligand-fitting process, including ligand binding-site identification, ligand description and conformer generation, ligand fitting, refinement and subsequent validation. The CCP4 suite contains a number of software tools that facilitate this task: AceDRG for the creation of ligand descriptions and conformers, Lidia and JLigand for two-dimensional and three-dimensional ligand editing and visual analysis, Coot for density interpretation, ligand fitting, analysis and validation, and REFMAC5 for macromolecular refinement. In addition to recent advancements in automatic carbohydrate building in Coot (LO/Carb) and ligand-validation tools (FLEV), the release of the CCP4i2 GUI provides an integrated solution that streamlines the ligand-fitting workflow, seamlessly passing results from one program to the next. The ligand-fitting process is illustrated using instructive practical examples, including problematic cases such as post-translational modifications, highlighting the need for careful analysis and rigorous validation. PMID:28177312

  19. Cell mechanosensory recognizes ligand compliance at biomaterial interface.

    PubMed

    Cosenza, Chiara; Lettera, Vincenzo; Causa, Filippo; Scognamiglio, Pasqualina Liana; Battista, Edmondo; Netti, Paolo Antonio

    2016-01-01

    Cells activate signalling through ligand-receptor bonds by sensing the mechanical properties of the surrounding extracellular matrix (ECM). Ligands, indeed, have to withstand the pulling force elicited by cell receptors through focal adhesions (FAs). On this basis, we developed functional ligands to be simply adsorbed on surfaces and constituted by a two-domain peptide: one derived from ECM proteins and available to receptors to offer biochemical cues, and another adsorbed on material to withstand the tension upon receptor engagement. Tuneable compliance of the anchoring domain of the peptide ligand was verified by single peptide analysis through molecular dynamics and adsorption measurements. We showed that the highest adsorbed peptides combined with integrin cell-binding motifs allow for the cell recognition and polarization with larger mature FA areas. On the contrary, the lowest adsorbed sequences did not provide mechanical resistance to the integrin pulling action, leading to more rounded cells with smaller FA areas. This evidence demonstrates that cell mechanosensory can discriminate ligands on surfaces and should be considered as a criterion in ligand design for material bioactivation.

  20. Ligand efficiency metrics considered harmful

    NASA Astrophysics Data System (ADS)

    Kenny, Peter W.; Leitão, Andrei; Montanari, Carlos A.

    2014-07-01

    Ligand efficiency metrics are used in drug discovery to normalize biological activity or affinity with respect to physicochemical properties such as lipophilicity and molecular size. This Perspective provides an overview of ligand efficiency metrics and summarizes thermodynamics of protein-ligand binding. Different classes of ligand efficiency metric are critically examined and the study concludes with suggestions for alternative ways to account for physicochemical properties when prioritizing and optimizing leads.

  1. Quantitation of Membrane-Ligand Interactions Using Backscattering Interferometry

    PubMed Central

    Baksh, Michael M.; Kussrow, Amanda K.; Mileni, Mauro; Finn, M.G.; Bornhop, Darryl J.

    2011-01-01

    Though membrane-associated proteins are ubiquitous within all living organisms and represent the majority of drug targets, a general method for direct, label-free measurement of ligand binding to native membranes has not been reported. Here we show backscattering interferometry (BSI) to be a viable technique for quantifying ligand-receptor binding affinities in a variety of membrane environments. By detecting minute changes in the refractive index of a solution, BSI allows binding interactions of proteins with their ligands to be measured at picomolar concentrations. Equilibrium binding constants in the micromolar to picomolar range were obtained for small- and large-molecule interactions in both synthetic- and cell-derived membranes without the use of labels or supporting substrates. The simple and low-cost hardware, high sensitivity, and label-free nature of BSI should make it readily applicable to the study of many membrane-associated proteins of biochemical and pharmacological interest. PMID:21399645

  2. Evaluation of Prolonged Exposure to Varenicline in Adult Rats: Hematological, Biochemical and Anatomopathological Studies.

    PubMed

    Zaccarelli-Magalhães, Julia; Moreira, Natalia; Sandini, Thaisa Meira; de Abreu, Gabriel Ramos; Sánchez-Sarmiento, Angélica Maria; Ricci, Esther Lopes; Fukushima, André Rinaldi; de Souza Spinosa, Helenice

    2017-09-25

    Varenicline is a synthetic chemical substance produced from the alkaloid cytisine, used for smoking treatment, which acts as a partial agonist for α4β2 and α3β4 nicotinic cholinergic receptors and as a total agonist for α7 receptor. While there are studies regarding varenicline's non-smoking-related effects, as in treatment for drug dependence, there are no studies in the literature evaluating the long-term toxicity of varenicline through a physiological approach. Thus, the aim of this study was to evaluate possible toxicity through hematological, biochemical and anatomopathological parameters of prolonged exposure (30 days) to varenicline in rats. Three doses of varenicline were used: 0.03 (therapeutic dose for humans), 0.1 and 0.3 mg/kg orally (gavage). Body weight, water and food intake were measured weekly during treatment. On the 30(th) treatment day, blood and various organs were collected for hematological, biochemical and anatomopathological evaluation. The results show a decrease in some biochemical parameters in animals from the 0.1 and 0.3 mg/kg group, although the values are within the normal range of the species. There were no changes in the other evaluations performed. Together, these data indicate that prolonged exposure of rats to different doses of varenicline was not able to alter hematological, biochemical and anatomopathological parameters. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  3. LigandRNA: computational predictor of RNA-ligand interactions.

    PubMed

    Philips, Anna; Milanowska, Kaja; Lach, Grzegorz; Bujnicki, Janusz M

    2013-12-01

    RNA molecules have recently become attractive as potential drug targets due to the increased awareness of their importance in key biological processes. The increase of the number of experimentally determined RNA 3D structures enabled structure-based searches for small molecules that can specifically bind to defined sites in RNA molecules, thereby blocking or otherwise modulating their function. However, as of yet, computational methods for structure-based docking of small molecule ligands to RNA molecules are not as well established as analogous methods for protein-ligand docking. This motivated us to create LigandRNA, a scoring function for the prediction of RNA-small molecule interactions. Our method employs a grid-based algorithm and a knowledge-based potential derived from ligand-binding sites in the experimentally solved RNA-ligand complexes. As an input, LigandRNA takes an RNA receptor file and a file with ligand poses. As an output, it returns a ranking of the poses according to their score. The predictive power of LigandRNA favorably compares to five other publicly available methods. We found that the combination of LigandRNA and Dock6 into a "meta-predictor" leads to further improvement in the identification of near-native ligand poses. The LigandRNA program is available free of charge as a web server at http://ligandrna.genesilico.pl.

  4. Analysis of macromolecules, ligands and macromolecule-ligand complexes

    DOEpatents

    Von Dreele, Robert B [Los Alamos, NM

    2008-12-23

    A method for determining atomic level structures of macromolecule-ligand complexes through high-resolution powder diffraction analysis and a method for providing suitable microcrystalline powder for diffraction analysis are provided. In one embodiment, powder diffraction data is collected from samples of polycrystalline macromolecule and macromolecule-ligand complex and the refined structure of the macromolecule is used as an approximate model for a combined Rietveld and stereochemical restraint refinement of the macromolecule-ligand complex. A difference Fourier map is calculated and the ligand position and points of interaction between the atoms of the macromolecule and the atoms of the ligand can be deduced and visualized. A suitable polycrystalline sample of macromolecule-ligand complex can be produced by physically agitating a mixture of lyophilized macromolecule, ligand and a solvent.

  5. Rapamycin regulates biochemical metabolites

    PubMed Central

    Tucci, Paola; Porta, Giovanni; Agostini, Massimiliano; Antonov, Alexey; Garabadgiu, Alexander Vasilievich; Melino, Gerry; Willis, Anne E

    2013-01-01

    The mammalian target of rapamycin (mTOR) kinase is a master regulator of protein synthesis that couples nutrient sensing to cell growth, and deregulation of this pathway is associated with tumorigenesis. p53, and its less investigated family member p73, have been shown to interact closely with mTOR pathways through the transcriptional regulation of different target genes. To investigate the metabolic changes that occur upon inhibition of the mTOR pathway and the role of p73 in this response primary mouse embryonic fibroblast from control and TAp73−/− were treated with the macrocyclic lactone rapamycin. Extensive gas chromatography/mass spectrometry (GC/MS) and liquid chromatography/mass spectrometry (LC/MS/MS) analysis were used to obtain a rapamycin-dependent global metabolome profile from control or TAp73−/− cells. In total 289 metabolites involved in selective pathways were identified; 39 biochemical metabolites were found to be significantly altered, many of which are known to be associated with the cellular stress response. PMID:23839040

  6. Cholinergic neurotransmission and olfactory function in obstructive sleep apnea syndrome: a TMS study.

    PubMed

    Versace, Viviana; Langthaler, Patrick B; Sebastianelli, Luca; Golaszewski, Stefan; Kunz, Alexander B; Brigo, Francesco; Saltuari, Leopold; Nardone, Raffaele

    2017-09-01

    Odor identification and discrimination are reduced in subjects with obstructive sleep apnea syndrome (OSAS), but the pathophysiology of the olfactory dysfunction in OSAS is still poorly understood. Experimental evidence suggests that olfactory impairment could be related to central cholinergic dysfunction. Short latency afferent inhibition (SAI) is a paired-pulse transcranial magnetic stimulation (TMS) protocol that gives the opportunity to test an inhibitory cholinergic circuit in the human cerebral motor cortex. The objective of the study was to assess the cholinergic function, as measured by SAI, in OSAS patients with olfactory impairment. We applied SAI technique in 20 patients with OSAS and in 20 healthy control subjects; SAI values were correlated with the Sniffin' Sticks olfactory test results. SAI was reduced in OSAS patients when compared with control subjects. We also found a strong negative correlation between olfactory parameters and SAI. These findings suggest that cholinergic dysfunction is a robust determinant of hyposmia also in OSAS patients. Reduced SAI values and presence of olfactory impairment might indicate an increased risk of cognitive decline in patients with OSAS. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. The Conqueror Worm: recent advances with cholinergic anthelmintics and techniques excite research for better therapeutic drugs

    PubMed Central

    Martin, R.J.; Puttachary, S.; Buxton, S.K.; Verma, S.; Robertson, A.P.

    2014-01-01

    The following account is based on a review lecture given recently at the British Society of Parasitology. We point out that nematode parasites cause very widespread infections of humans, particularly in economically underdeveloped areas where sanitation and hygiene are not adequate. In the absence of adequate clean water and effective vaccines, control and prophylaxis relies on anthelmintic drugs. Widespread use of anthelmintics to control nematode parasites of animals has given rise to the development of resistance and so there is a concern that similar problems will occur in humans if mass drug administration is continued. Recent research on the cholinergic anthelmintic drugs has renewed enthusiasm for the further development of cholinergic anthelmintics. Here we illustrate the use of three parasite nematode models, Ascaris suum, Oesophagostomum dentatum and Brugia malayi, microfluidic techniques and the Xenopus oocyte expression system for testing and examining the effects of cholinergic anthelmintics. We also show how the combination of derquantel, the selective nematode cholinergic antagonist and abamectin produce increased inhibition of the nicotinic acetylcholine receptors on the nematode body muscle. We are optimistic that new compounds and combinations of compounds can limit the effects of drug resistance, allowing anthelmintics to be continued to be used for effective treatment of human and animal helminth parasites. PMID:24871674

  8. Neuronal adrenergic and muscular cholinergic contractile hypersensitivity in canine jejunum after extrinsic denervation.

    PubMed

    Balsiger, Bruno M; He, Chong-Liang; Zyromski, Nicholas J; Sarr, Michael G

    2003-01-01

    Extrinsic denervation may be responsible for motor dysfunction after small bowel transplantation. The aim of this study was to examine the role of extrinsic innervation of canine jejunum on contractile activity. An in vitro dose response of cholinergic and adrenergic agonists was evaluated in canine jejunal strips of circular muscle at 0, 2, and 8 weeks in a control group and after jejunoileal extrinsic denervation (EX DEN). Neurons in circular muscle were quantitated by means of immunohistochemical techniques. Adrenergic and cholinergic responses did not differ at any time in the control group. However, at 2 and 8 weeks, extrinsic denervation caused an increased sensitivity to the procontractile effects of the cholinergic agonist bethanechol at the level of the smooth muscle cells, and increased sensitivity to the inhibitory effects of the adrenergic agent norepinephrine mediated at the level of the enteric nervous system. Immunohistochemical analysis showed a reduction in all neurons and a complete lack of adrenergic fibers in the EX DEN group after 2 and 8 weeks. Extrinsic denervation induces enteric neuronal cholinergic and adrenergic smooth muscle hypersensitivity in canine jejunal circular muscle.

  9. Cholinergic profiles in the Goettingen miniature pig (Sus scrofa domesticus) brain.

    PubMed

    Mahady, Laura J; Perez, Sylvia E; Emerich, Dwaine F; Wahlberg, Lars U; Mufson, Elliott J

    2017-02-15

    Central cholinergic structures within the brain of the even-toed hoofed Goettingen miniature domestic pig (Sus scrofa domesticus) were evaluated by immunohistochemical visualization of choline acetyltransferase (ChAT) and the low-affinity neurotrophin receptor, p75(NTR) . ChAT-immunoreactive (-ir) perikarya were seen in the olfactory tubercle, striatum, medial septal nucleus, vertical and horizontal limbs of the diagonal band of Broca, and the nucleus basalis of Meynert, medial habenular nucleus, zona incerta, neurosecretory arcuate nucleus, cranial motor nuclei III and IV, Edinger-Westphal nucleus, parabigeminal nucleus, pedunculopontine nucleus, and laterodorsal tegmental nucleus. Cholinergic ChAT-ir neurons were also found within transitional cortical areas (insular, cingulate, and piriform cortices) and hippocampus proper. ChAT-ir fibers were seen throughout the dentate gyrus and hippocampus, in the mediodorsal, laterodorsal, anteroventral, and parateanial thalamic nuclei, the fasciculus retroflexus of Meynert, basolateral and basomedial amygdaloid nuclei, anterior pretectal and interpeduncular nuclei, as well as select laminae of the superior colliculus. Double immunofluorescence demonstrated that virtually all ChAT-ir basal forebrain neurons were also p75(NTR) -positive. The present findings indicate that the central cholinergic system in the miniature pig is similar to other mammalian species. Therefore, the miniature pig may be an appropriate animal model for preclinical studies of neurodegenerative diseases where the cholinergic system is compromised. J. Comp. Neurol. 525:553-573, 2017. © 2016 Wiley Periodicals, Inc.

  10. Red Dermographism in Autism Spectrum Disorders: A Clinical Sign of Cholinergic Dysfunction?

    ERIC Educational Resources Information Center

    Lemonnier, E.; Grandgeorge, M.; Jacobzone-Leveque, C.; Bessaguet, C.; Peudenier, S.; Misery, L.

    2013-01-01

    The authors hypothesised that red dermographism--a skin reaction involving the cholinergic system--is more frequent in children with autism spectrum disorders (ASDs) than in children exhibiting typical development. We used a dermatological examination to study red dermographism in this transverse study, which compared forty six children with ASDs…

  11. Brain atrophy in primary progressive aphasia involves the cholinergic basal forebrain and Ayala’s nucleus

    PubMed Central

    Teipel, Stefan J.; Flatz, Wilhelm; Ackl, Nibal; Grothe, Michel; Kilimann, Ingo; Bokde, Arun L.W.; Grinberg, Lea; Amaro, Edson; Kljajevic, Vanja; Alho, Eduardo; Knels, Christina; Ebert, Anne; Heinsen, Helmut; Danek, Adrian

    2014-01-01

    Primary progressive aphasia (PPA) is characterized by left hemispheric frontotemporal cortical atrophy. Evidence from anatomical studies suggests that the nucleus subputaminalis (NSP), a subnucleus of the cholinergic basal forebrain, may be involved in the pathological process of PPA. Therefore, we studied the pattern of cortical and basal forebrain atrophy in 10 patients with a clinical diagnosis of PPA and 18 healthy age-matched controls using high-resolution magnetic resonance imaging (MRI). We determined the cholinergic basal forebrain nuclei according to Mesulam’s nomenclature and the NSP in MRI reference space based on histological sections and the MRI scan of a post-mortem brain in cranio. Using voxel-based analysis, we found left hemispheric cortical atrophy in PPA patients compared with controls, including prefrontal, lateral temporal and medial temporal lobe areas. We detected cholinergic basal forebrain atrophy in left predominant localizations of Ch4p, Ch4am, Ch4al, Ch3 and NSP. For the first time, we have described the pattern of basal forebrain atrophy in PPA and confirmed the involvement of NSP that had been predicted based on theoretical considerations. Our findings may enhance understanding of the role of cholinergic degeneration for the regional specificity of the cortical destruction leading to the syndrome of PPA. PMID:24434193

  12. Deficits in attentional control: cholinergic mechanisms and circuitry-based treatment approaches.

    PubMed

    Sarter, Martin; Paolone, Giovanna

    2011-12-01

    The cognitive control of attention involves maintaining task rules in working memory (or "online"), monitoring reward and error rates, filtering distractors, and suppressing prepotent, and competitive responses. Weak attentional control increases distractibility and causes attentional lapses, impulsivity, and attentional fatigue. Levels of tonic cholinergic activity (changes over tens of seconds or minutes) modulate cortical circuitry as a function of the demands on cognitive control. Increased cholinergic modulation enhances the representation of cues, by augmenting cue-evoked activity in thalamic glutamatergic afferents, thereby increasing the rate of detection. Such cholinergic modulation is mediated primarily via α4β2* nicotinic acetylcholine receptors. Animal experiments and clinical trials in adult patients with ADHD indicate that attentional symptoms and disorders may benefit from drugs that stimulate this receptor. Tonic cholinergic modulation of cue-evoked glutamatergic transients in prefrontal regions is an essential component of the brain's executive circuitry. This circuitry model guides the development of treatments of deficits in attentional control. PsycINFO Database Record (c) 2011 APA, all rights reserved.

  13. FER-1/Dysferlin promotes cholinergic signaling at the neuromuscular junction in C. elegans and mice

    PubMed Central

    Krajacic, Predrag; Pistilli, Emidio E.; Tanis, Jessica E.; Khurana, Tejvir S.; Lamitina, S. Todd

    2013-01-01

    Summary Dysferlin is a member of the evolutionarily conserved ferlin gene family. Mutations in Dysferlin lead to Limb Girdle Muscular Dystrophy 2B (LGMD2B), an inherited, progressive and incurable muscle disorder. However, the molecular mechanisms underlying disease pathogenesis are not fully understood. We found that both loss-of-function mutations and muscle-specific overexpression of C. elegans fer-1, the founding member of the Dysferlin gene family, caused defects in muscle cholinergic signaling. To determine if Dysferlin-dependent regulation of cholinergic signaling is evolutionarily conserved, we examined the in vivo physiological properties of skeletal muscle synaptic signaling in a mouse model of Dysferlin-deficiency. In addition to a loss in muscle strength, Dysferlin −/− mice also exhibited a cholinergic deficit manifested by a progressive, frequency-dependent decrement in their compound muscle action potentials following repetitive nerve stimulation, which was observed in another Dysferlin mouse model but not in a Dysferlin-independent mouse model of muscular dystrophy. Oral administration of Pyridostigmine bromide, a clinically used acetylcholinesterase inhibitor (AchE.I) known to increase synaptic efficacy, reversed the action potential defect and restored in vivo muscle strength to Dysferlin −/− mice without altering muscle pathophysiology. Our data demonstrate a previously unappreciated role for Dysferlin in the regulation of cholinergic signaling and suggest that such regulation may play a significant pathophysiological role in LGMD2B disease. PMID:24244862

  14. Central cholinergic activation of a vagus nerve-to-spleen circuit alleviates experimental colitis.

    PubMed

    Ji, H; Rabbi, M F; Labis, B; Pavlov, V A; Tracey, K J; Ghia, J E

    2014-03-01

    The cholinergic anti-inflammatory pathway is an efferent vagus nerve-based mechanism that regulates immune responses and cytokine production through α7 nicotinic acetylcholine receptor (α7nAChR) signaling. Decreased efferent vagus nerve activity is observed in inflammatory bowel disease. We determined whether central activation of this pathway alters inflammation in mice with colitis and the mediating role of a vagus nerve-to-spleen circuit and α7nAChR signaling. Two experimental models of colitis were used in C57BL/6 mice. Central cholinergic activation induced by the acetylcholinesterase inhibitor galantamine or a muscarinic acetylcholine receptor agonist treatments resulted in reduced mucosal inflammation associated with decreased major histocompatibility complex II level and pro-inflammatory cytokine secretion by splenic CD11c⁺ cells mediated by α7nAChR signaling. The cholinergic anti-inflammatory efficacy was abolished in mice with vagotomy, splenic neurectomy, or splenectomy. In conclusion, central cholinergic activation of a vagus nerve-to-spleen circuit controls intestinal inflammation and this regulation can be explored to develop novel therapeutic strategies.

  15. Cholinergic Modulation during Acquisition of Olfactory Fear Conditioning Alters Learning and Stimulus Generalization in Mice

    ERIC Educational Resources Information Center

    Pavesi, Eloisa; Gooch, Allison; Lee, Elizabeth; Fletcher, Max L.

    2013-01-01

    We investigated the role of cholinergic neurotransmission in olfactory fear learning. Mice receiving pairings of odor and foot shock displayed fear to the trained odor the following day. Pretraining injections of the nicotinic antagonist mecamylamine had no effect on subsequent freezing, while the muscarinic antagonist scopolamine significantly…

  16. An autoradiographic analysis of cholinergic receptors in mouse brain after chronic nicotine treatment

    SciTech Connect

    Pauly, J.R.; Marks, M.J.; Gross, S.D.; Collins, A.C. )

    1991-09-01

    Quantitative autoradiographic procedures were used to examine the effects of chronic nicotine infusion on the number of central nervous system nicotinic cholinergic receptors. Female DBA mice were implanted with jugular cannulas and infused with saline or various doses of nicotine (0.25, 0.5, 1.0 or 2.0 mg/kg/hr) for 10 days. The animals were then sacrificed and the brains were removed and frozen in isopentane. Cryostat sections were collected and prepared for autoradiographic procedures as previously described. Nicotinic cholinergic receptors were labeled with L-(3H)nicotine or alpha-(125I)bungarotoxin; (3H)quinuclidinyl benzilate was used to measure muscarinic cholinergic receptor binding. Chronic nicotine infusion increased the number of sites labeled by (3H)nicotine in most brain areas. However, the extent of the increase in binding as well as the dose-response curves for the increase were widely different among brain regions. After the highest treatment dose, binding was increased in 67 of 86 regions measured. Septal and thalamic regions were most resistant to change. Nicotinic binding measured by alpha-(125I)bungarotoxin also increased after chronic treatment, but in a less robust fashion. At the highest treatment dose, only 26 of 80 regions were significantly changes. Muscarinic binding was not altered after chronic nicotine treatment. These data suggest that brain regions are not equivalent in the mechanisms that regulate alterations in nicotinic cholinergic receptor binding after chronic nicotine treatment.

  17. Changes in brain cholinergic markers and spatial learning in old galanin-overexpressing mice.

    PubMed

    Pirondi, S; D'Intino, G; Gusciglio, M; Massella, A; Giardino, L; Kuteeva, E; Ogren, S-O; Hökfelt, T; Calzà, L

    2007-03-23

    The cholinergic forebrain system is involved in learning and memory, and its age-dependent decline correlates with a decrease in cognitive performance. Since the neuropeptide galanin participates in cholinergic neuron regulation, we have studied 19- to 23-month-old male mice overexpressing galanin under the platelet-derived growth factor B promoter (GalOE) and wild-type (WT) littermates by monitoring behavioral, neurochemical and morphological/histochemical parameters. In the Morris water maze test, old transgenic animals showed a significant impairment in escape latency in the hidden platform test compared to age-matched WT animals. The morphological/histochemical studies revealed that cholinergic neurons in the basal forebrain display a slight, age- but not genotype-related, alteration in choline acetyltransferase- (ChAT) immunoreactivity. The neurochemical studies showed an age-related decline in ChAT activity in the cerebral cortex of all mice, whereas in the hippocampal formation this effect was seen in GalOE but not WT animals. Expression of BDNF mRNA in the hippocampal formation, as evaluated by RT-PCR, was reduced in old animals; no age- or genotype-induced variations in NGF mRNA expression were observed. These data suggest that galanin overexpression further accentuates the age-related decline of the cholinergic system activity in male mice, resulting in impairment of water maze performance in old animals.

  18. Cholinergic Axons Modulate GABAergic Signaling among Hippocampal Interneurons via Postsynaptic α7 Nicotinic Receptors

    PubMed Central

    Wanaverbecq, Nicolas; Semyanov, Alexey; Pavlov, Ivan; Walker, Matthew C.; Kullmann, Dimitri M.

    2010-01-01

    Homopentameric α7 nicotinic receptors have a high affinity for acetylcholine (ACh), are permeable to Ca2+ ions, and are abundant in hippocampal interneurons. Although nicotinic agonists evoke inward currents and Ca2+ transients in stratum radiatum interneurons, the role of endogenous ACh in modulating synaptic integration by interneurons is incompletely understood. Many cholinergic axonal varicosities do not have postsynaptic specializations, but α7 receptors frequently occur close to synaptic GABAA receptors. These observations raise the possibility that α7 nicotinic receptors activated by ACh released from cholinergic axons modulate GABAergic transmission in interneurons. We show that agonists of α7 receptors profoundly depress GABAergic IPSCs recorded in stratum radiatum interneurons in the CA1 region of the hippocampus. This depression is accompanied by a small increase in GABA release. α7 nicotinic receptor agonists also depress GABA- or muscimol-evoked currents in interneurons, indicating that the major effect is a postsynaptic modulation of GABAA receptors. The depression of GABA-evoked currents is abolished by chelating Ca2+ in the recorded interneuron and attenuated by inhibitors of PKC. We also show that stimuli designed to release endogenous ACh from cholinergic axons evoke an α7 receptor-dependent heterosynaptic depression of GABAergic IPSCs in interneurons. This heterosynaptic modulation is amplified by blocking cholinesterases. These results reveal a novel mechanism by which cholinergic neurons modulate information processing in the hippocampus. PMID:17522313

  19. Cholinergic Modulation during Acquisition of Olfactory Fear Conditioning Alters Learning and Stimulus Generalization in Mice

    ERIC Educational Resources Information Center

    Pavesi, Eloisa; Gooch, Allison; Lee, Elizabeth; Fletcher, Max L.

    2013-01-01

    We investigated the role of cholinergic neurotransmission in olfactory fear learning. Mice receiving pairings of odor and foot shock displayed fear to the trained odor the following day. Pretraining injections of the nicotinic antagonist mecamylamine had no effect on subsequent freezing, while the muscarinic antagonist scopolamine significantly…

  20. Striatal cholinergic functional alterations in hypoxic neonatal rats: role of glucose, oxygen, and epinephrine resuscitation.

    PubMed

    Anju, T R; Paulose, C S

    2013-10-01

    Molecular processes regulating cholinergic functions play an important role in the control of respiration under hypoxia. Cholinergic alterations and its further complications in respiration due to hypoxic insult in neonatal rats and the effect of glucose, oxygen, and epinephrine resuscitation was evaluated in the present study. Receptor binding and gene expression studies were done in the corpus striatum to analyse the changes in total muscarinic receptors, muscarinic M1, M2, M3 receptors, and the enzymes involved in acetylcholine metabolism, choline acetyltransferase and acetylcholinesterase. Neonatal hypoxia decreased total muscarinic receptors with reduced expression of muscarinic M1, M2, and M3 receptor genes. The reduction in acetylcholine metabolism is indicated by the downregulated choline acetyltransferase and upregulated acetyl cholinesterase expression. These cholinergic disturbances were reversed to near control in glucose-resuscitated hypoxic neonates. The adverse effects of immediate oxygenation and epinephrine administration are also reported. The present findings points to the cholinergic alterations due to neonatal hypoxic shock and suggests a proper resuscitation method to ameliorate these striatal changes.

  1. Slow Cholinergic Modulation of Spike Probability in Ultra-Fast Time-Coding Sensory Neurons

    PubMed Central

    Goyer, David; Kurth, Stefanie; Rübsamen, Rudolf

    2016-01-01

    Abstract Sensory processing in the lower auditory pathway is generally considered to be rigid and thus less subject to modulation than central processing. However, in addition to the powerful bottom-up excitation by auditory nerve fibers, the ventral cochlear nucleus also receives efferent cholinergic innervation from both auditory and nonauditory top–down sources. We thus tested the influence of cholinergic modulation on highly precise time-coding neurons in the cochlear nucleus of the Mongolian gerbil. By combining electrophysiological recordings with pharmacological application in vitro and in vivo, we found 55–72% of spherical bushy cells (SBCs) to be depolarized by carbachol on two time scales, ranging from hundreds of milliseconds to minutes. These effects were mediated by nicotinic and muscarinic acetylcholine receptors, respectively. Pharmacological block of muscarinic receptors hyperpolarized the resting membrane potential, suggesting a novel mechanism of setting the resting membrane potential for SBC. The cholinergic depolarization led to an increase of spike probability in SBCs without compromising the temporal precision of the SBC output in vitro. In vivo, iontophoretic application of carbachol resulted in an increase in spontaneous SBC activity. The inclusion of cholinergic modulation in an SBC model predicted an expansion of the dynamic range of sound responses and increased temporal acuity. Our results thus suggest of a top–down modulatory system mediated by acetylcholine which influences temporally precise information processing in the lower auditory pathway. PMID:27699207

  2. Evidence for Cholinergic Synapses Between Dissociated Rat Sympathetic Neurons in Cell Culture

    PubMed Central

    O'Lague, P. H.; Obata, K.; Claude, P.; Furshpan, E. J.; Potter, D. D.

    1974-01-01

    Sympathetic principal neurons were dissociated from superior cervical ganglia of new-born rats, and grown in cell culture. In electrophysiological experiments two types of excitatory synapses were found. One, which was relatively rare, was shown to operate by electrical transmission. The other, the predominant type, had several characteristics of chemical transmission, and pharmacological evidence indicated it was cholinergic. Images PMID:4372629

  3. Red Dermographism in Autism Spectrum Disorders: A Clinical Sign of Cholinergic Dysfunction?

    ERIC Educational Resources Information Center

    Lemonnier, E.; Grandgeorge, M.; Jacobzone-Leveque, C.; Bessaguet, C.; Peudenier, S.; Misery, L.

    2013-01-01

    The authors hypothesised that red dermographism--a skin reaction involving the cholinergic system--is more frequent in children with autism spectrum disorders (ASDs) than in children exhibiting typical development. We used a dermatological examination to study red dermographism in this transverse study, which compared forty six children with ASDs…

  4. Decreased number of parvalbumin and cholinergic interneurons in the striatum of individuals with Tourette syndrome.

    PubMed

    Kataoka, Yuko; Kalanithi, Paul S A; Grantz, Heidi; Schwartz, Michael L; Saper, Clifford; Leckman, James F; Vaccarino, Flora M

    2010-02-01

    Corticobasal ganglia neuronal ensembles bring automatic motor skills into voluntary control and integrate them into ongoing motor behavior. A 5% decrease in caudate (Cd) nucleus volume is the most consistent structural finding in the brain of patients with Tourette syndrome (TS), but the cellular abnormalities that underlie this decrease in volume are unclear. In this study the density of different types of interneurons and medium spiny neurons (MSNs) in the striatum was assessed in the postmortem brains of 5 TS subjects as compared with normal controls (NC) by unbiased stereological analyses. TS patients demonstrated a 50%-60% decrease of both parvalbumin (PV)+ and choline acetyltransferase (ChAT)+ cholinergic interneurons in the Cd and the putamen (Pt). Cholinergic interneurons were decreased in TS patients in the associative and sensorimotor regions but not in the limbic regions of the striatum, such that the normal gradient in density of cholinergic cells (highest in associative regions, intermediate in sensorimotor and lowest in limbic regions) was abolished. No significant difference was present in the densities of medium-sized calretinin (CR)+ interneurons, MSNs, and total neurons. The selective deficit of PV+ and cholinergic striatal interneurons in TS subjects may result in an impaired cortico/thalamic control of striatal neuron firing in TS.

  5. The interface between cholinergic pathways and the immune system and its relevance to arthritis.

    PubMed

    McAllen, Robin M; Cook, Andrew D; Khiew, Hsu Wei; Martelli, Davide; Hamilton, John A

    2015-03-31

    The nervous and immune systems are likely to be interacting in arthritis, with the possible involvement of both neural and non-neural cholinergic transmission. Centrally acting muscarinic agonists, electrical stimulation of the vagus and treatment with nicotinic receptor agonists can all act systemically to reduce inflammation, although the responsible pathways are incompletely understood. While this 'cholinergic anti-inflammatory pathway' is widely viewed as a significant pathophysiological mechanism controlling inflammation, the evidence supporting this view is critically reviewed and considered inconclusive; an alternative pathway via sympathetic nerves is implicated. This review also discusses how cholinergic pathways, both neural and non-neural, may impact on inflammation and specifically arthritis. Nicotinic agonists have been reported to reduce the incidence and severity of murine arthritis, albeit an observation we could not confirm, and clinical studies in rheumatoid arthritis have been proposed and/or are underway. While the therapeutic potential of nicotinic agonists and vagal stimulation is clear, we suggest that the 'cholinergic anti-inflammatory pathway' should not be uncritically embraced as a significant factor in the pathogenesis of rheumatoid arthritis.

  6. Cholinergic Septo-Hippocampal Innervation Is Required for Trace Eyeblink Classical Conditioning

    ERIC Educational Resources Information Center

    Fontan-Lozano, Angela; Troncoso, Julieta; Munera, Alejandro; Carrion, Angel Manuel; Delgado-Garcia, Jose Maria

    2005-01-01

    We studied the effects of a selective lesion in rats, with 192-IgG-saporin, of the cholinergic neurons located in the medial septum/diagonal band (MSDB) complex on the acquisition of classical and instrumental conditioning paradigms. The MSDB lesion induced a marked deficit in the acquisition, but not in the retrieval, of eyeblink classical…

  7. Cholinergic Modulation of the Hippocampus during Encoding and Retrieval of Tone/Shock-Induced Fear Conditioning

    ERIC Educational Resources Information Center

    Rogers, Jason L.; Kesner, Raymond P.

    2004-01-01

    We investigated the role of acetylcholine (ACh) during encoding and retrieval of tone/shock-induced fear conditioning with the aim of testing Hasselmo's cholinergic modulation model of encoding and retrieval using a task sensitive to hippocampal disruption. Lesions of the hippocampus impair acquisition and retention of contextual conditioning with…

  8. A Computational Model of How Cholinergic Interneurons Protect Striatal-Dependent Learning

    ERIC Educational Resources Information Center

    Ashby, F. Gregory; Crossley, Matthew J.

    2011-01-01

    An essential component of skill acquisition is learning the environmental conditions in which that skill is relevant. This article proposes and tests a neurobiologically detailed theory of how such learning is mediated. The theory assumes that a key component of this learning is provided by the cholinergic interneurons in the striatum known as…

  9. Extensive Lesions of Cholinergic Basal Forebrain Neurons Do Not Impair Spatial Working Memory

    ERIC Educational Resources Information Center

    Vuckovich, Joseph A.; Semel, Mara E.; Baxter, Mark G.

    2004-01-01

    A recent study suggests that lesions to all major areas of the cholinergic basal forebrain in the rat (medial septum, horizontal limb of the diagonal band of Broca, and nucleus basalis magnocellularis) impair a spatial working memory task. However, this experiment used a surgical technique that may have damaged cerebellar Purkinje cells. The…

  10. Cholinergic Modulation of the Hippocampus during Encoding and Retrieval of Tone/Shock-Induced Fear Conditioning

    ERIC Educational Resources Information Center

    Rogers, Jason L.; Kesner, Raymond P.

    2004-01-01

    We investigated the role of acetylcholine (ACh) during encoding and retrieval of tone/shock-induced fear conditioning with the aim of testing Hasselmo's cholinergic modulation model of encoding and retrieval using a task sensitive to hippocampal disruption. Lesions of the hippocampus impair acquisition and retention of contextual conditioning with…

  11. Cholinergic modulation of pavlovian fear conditioning: effects of intrahippocampal scopolamine infusion.

    PubMed

    Gale, G D; Anagnostaras, S G; Fanselow, M S

    2001-01-01

    Cholinergic neurotransmission has been implicated in the acquisition of a variety of tasks, including Pavlovian fear conditioning. To more precisely define the role of cholinergic modulation in this process, the effect of site-specific cholinergic antagonism was assessed. Male Long-Evans rats were implanted with chronic, bilateral cannulae aimed at the dorsal hippocampus. Infusions of scopolamine hydrobromide (50 microg bilaterally) or phosphate-buffered saline (PBS) were made immediately prior to a signaled Pavlovian fear conditioning procedure. On consecutive days following training, all rats were given independent tests assessing freezing to both the training context and the tone conditional stimulus (CS). Relative to PBS infused controls, rats that received intrahippocampal infusions of scopolamine showed a significant attenuation of contextual freezing but comparable levels of freezing to the tone CS. Neither shock sensitivity nor general activity levels differed between rats infused with scopolamine or PBS. These findings suggest that fear conditioning to context, but not discrete CS, requires intact cholinergic neurotransmission in the hippocampus.

  12. Cholinergic vasodilative system in the cerebral cortex: effects of acupuncture and aging.

    PubMed

    Uchida, Sae

    2014-08-01

    This article presents a review of our studies on the cholinergic vasodilative system in the cerebral cortex in relation to the effects of acupuncture and aging. In anesthetized rats, manual acupuncture-like stimulation of the cheek, forepaw, upper arm, and hindpaw increases the cortical cerebral blood flow (CBF). The mechanism for the increased response of CBF due to forepaw stimulation has been found to be a reflex response whose afferents are Groups III and IV somatic afferent fibers and whose efferents are cholinergic fibers that originate in the nucleus basalis of Meynert. Although the cholinergic cortical vasodilation to nucleus basalis of Meynert stimulation at high intensities declines with age, the increased response of CBF induced by natural somatic afferent stimulation, such as an acupuncture-like stimulation of a forepaw, is well maintained even in very old rats (approximately 3 years of age). These findings in anesthetized rats may support the application of acupuncture to elderly people and patients with disturbances in the CBF by activating the intracranial cholinergic vasodilative system.

  13. Deficits in Attentional Control: Cholinergic Mechanisms and Circuitry-Based Treatment Approaches

    PubMed Central

    Sarter, Martin; Paolone, Giovanna

    2011-01-01

    The cognitive control of attention involves maintaining task rules in working memory (or “online”), monitoring reward and error rates, filtering distractors, and suppressing prepotent and competitive responses. Weak attentional control increases distractibility and causes attentional lapses, impulsivity and attentional fatigue. Levels of tonic cholinergic activity (changes over tens of seconds or minutes) modulate cortical circuitry as a function of the demands on cognitive control. Increased cholinergic modulation enhances the representation of cues, by augmenting cue-evoked activity in thalamic glutamatergic afferents, thereby increasing the rate of detection. Such cholinergic modulation is mediated primarily via α4β2* nicotinic acetylcholine receptors. Animal experiments and clinical trials in adult patients with ADHD indicate that attentional symptoms and disorders may benefit from drugs that stimulate this receptor. Tonic cholinergic modulation of cue-evoked glutamatergic transients in prefrontal regions is an essential component of the brain’s executive circuitry. This circuitry model guides the development of treatments of deficits in attentional control. PMID:22122146

  14. Significance of cholinergic and peptidergic nerves in stress-induced ulcer and MALT lymphoma formation.

    PubMed

    Nakamura, Masahiko; Øverby, Anders; Uehara, Akina; Oda, Masaya; Takahashi, Shinichi; Murayama, Somay Y; Matsui, Hidenori

    2017-02-10

    Backgound: The role of enteric nerves has previously been demonstrated in the formation of several gastric diseases. In the present review, the significance of the cholinergic nerves in stress-induced ulcer formation as well as the importance of substance P in the formation of gastric MALT lymphoma is discussed.

  15. FER-1/Dysferlin promotes cholinergic signaling at the neuromuscular junction in C. elegans and mice.

    PubMed

    Krajacic, Predrag; Pistilli, Emidio E; Tanis, Jessica E; Khurana, Tejvir S; Lamitina, S Todd

    2013-01-01

    Dysferlin is a member of the evolutionarily conserved ferlin gene family. Mutations in Dysferlin lead to Limb Girdle Muscular Dystrophy 2B (LGMD2B), an inherited, progressive and incurable muscle disorder. However, the molecular mechanisms underlying disease pathogenesis are not fully understood. We found that both loss-of-function mutations and muscle-specific overexpression of C. elegans fer-1, the founding member of the Dysferlin gene family, caused defects in muscle cholinergic signaling. To determine if Dysferlin-dependent regulation of cholinergic signaling is evolutionarily conserved, we examined the in vivo physiological properties of skeletal muscle synaptic signaling in a mouse model of Dysferlin-deficiency. In addition to a loss in muscle strength, Dysferlin -/- mice also exhibited a cholinergic deficit manifested by a progressive, frequency-dependent decrement in their compound muscle action potentials following repetitive nerve stimulation, which was observed in another Dysferlin mouse model but not in a Dysferlin-independent mouse model of muscular dystrophy. Oral administration of Pyridostigmine bromide, a clinically used acetylcholinesterase inhibitor (AchE.I) known to increase synaptic efficacy, reversed the action potential defect and restored in vivo muscle strength to Dysferlin -/- mice without altering muscle pathophysiology. Our data demonstrate a previously unappreciated role for Dysferlin in the regulation of cholinergic signaling and suggest that such regulation may play a significant pathophysiological role in LGMD2B disease.

  16. A Computational Model of How Cholinergic Interneurons Protect Striatal-Dependent Learning

    ERIC Educational Resources Information Center

    Ashby, F. Gregory; Crossley, Matthew J.

    2011-01-01

    An essential component of skill acquisition is learning the environmental conditions in which that skill is relevant. This article proposes and tests a neurobiologically detailed theory of how such learning is mediated. The theory assumes that a key component of this learning is provided by the cholinergic interneurons in the striatum known as…

  17. Estimation of the chloramphenicol and cycloheximide inhibition of protein synthesis in brain cholinergic synaptosomes.

    PubMed

    Corbaton, V; Muiño, M T; Fernández-Silva, P; López-Pérez, M J; Montoya, J

    1991-03-15

    Cholinergic synaptosomes have been prepared from sheep brain cortex by means of an immunoaffinity method using a specific anti-(Chol I) antiserum. The [14C]leucine incorporation into proteins of this preparation shows a low cycloheximide and a high chloramphenicol sensitivity. This fact suggests that the mitochondrial protein synthesis system is the only one present in this fraction.

  18. Houttuynia cordata Improves Cognitive Deficits in Cholinergic Dysfunction Alzheimer’s Disease-Like Models

    PubMed Central

    Huh, Eugene; Kim, Hyo Geun; Park, Hanbyeol; Kang, Min Seo; Lee, Bongyong; Oh, Myung Sook

    2014-01-01

    Cognitive impairment is a result of dementia of diverse causes, such as cholinergic dysfunction and Alzheimer’s disease (AD). Houttuynia cordata Thunb. (Saururaceae) has long been used as a traditional herbal medicine. It has biological activities including protective effects against amyloid beta (Aβ) toxicity, via regulation of calcium homeostasis, in rat hippocampal cells. To extend previous reports, we investigated the effects of water extracts of H. cordata herb (HCW) on tauopathies, also involving calcium influx. We then confirmed the effects of HCW in improving memory impairment and neuronal damage in mice with Aβ-induced neurotoxicity. We also investigated the effects of HCW against scopolamine-induced cholinergic dysfunction in mice. In primary neuronal cells, HCW inhibited the phosphorylation of tau by regulating p25/p35 expression in Aβ-induced neurotoxicity. In mice with Aβ-induced neurotoxicity, HCW improved cognitive impairment, as assessed with behavioral tasks, such as novel object recognition, Y-maze, and passive avoidance tasks. HCW also inhibited the degeneration of neurons in the CA3 region of the hippocampus in Aβ-induced neurotoxicity. Moreover, HCW, which had an IC50 value of 79.7 μg/ml for acetylcholinesterase inhibition, ameliorated scopolamine-induced cognitive impairment significantly in Y-maze and passive avoidance tasks. These results indicate that HCW improved cognitive impairment, due to cholinergic dysfunction, with inhibitory effects against tauopathies and cholinergic antagonists, suggesting that HCW may be an interesting candidate to investigate for the treatment of AD. PMID:25009697

  19. Effects of Pyridostigmine in Flinders Line Rats Differing in Cholinergic Sensitivity.

    DTIC Science & Technology

    1998-07-01

    Within 30 min, acute pyridostigmine treatment induced elevations of seruni growth hormone levels to a greater extent in Flinders Sensitive Line (FSL...cholinergic supersensitivity of the FSL rats but also indicates that the FRL rats are very resistant as well. All groups exhibited growth hormone elevations

  20. Cholinergic Septo-Hippocampal Innervation Is Required for Trace Eyeblink Classical Conditioning

    ERIC Educational Resources Information Center

    Fontan-Lozano, Angela; Troncoso, Julieta; Munera, Alejandro; Carrion, Angel Manuel; Delgado-Garcia, Jose Maria

    2005-01-01

    We studied the effects of a selective lesion in rats, with 192-IgG-saporin, of the cholinergic neurons located in the medial septum/diagonal band (MSDB) complex on the acquisition of classical and instrumental conditioning paradigms. The MSDB lesion induced a marked deficit in the acquisition, but not in the retrieval, of eyeblink classical…

  1. The Cholinergic Lesion of Alzheimer's Disease: Pivotal Factor or Side Show?

    ERIC Educational Resources Information Center

    Mesulam, Marsel

    2004-01-01

    A profound loss of cortical cholinergic innervation is a nearly invariant feature of advanced Alzheimer's disease (AD). The temporal course of this lesion and its relationship to other aspects of the disease have not yet been fully clarified. Despite assertions to the contrary, a review of the evidence suggests that a perturbation of cholinergic…

  2. Extensive Lesions of Cholinergic Basal Forebrain Neurons Do Not Impair Spatial Working Memory

    ERIC Educational Resources Information Center

    Vuckovich, Joseph A.; Semel, Mara E.; Baxter, Mark G.

    2004-01-01

    A recent study suggests that lesions to all major areas of the cholinergic basal forebrain in the rat (medial septum, horizontal limb of the diagonal band of Broca, and nucleus basalis magnocellularis) impair a spatial working memory task. However, this experiment used a surgical technique that may have damaged cerebellar Purkinje cells. The…

  3. Reexposure to nicotine during withdrawal increases the pacemaking activity of cholinergic habenular neurons

    PubMed Central

    Görlich, Andreas; Antolin-Fontes, Beatriz; Ables, Jessica L.; Frahm, Silke; Ślimak, Marta A.; Dougherty, Joseph D.; Ibañez-Tallon, Inés

    2013-01-01

    The discovery of genetic variants in the cholinergic receptor nicotinic CHRNA5-CHRNA3-CHRNB4 gene cluster associated with heavy smoking and higher relapse risk has led to the identification of the midbrain habenula–interpeduncular axis as a critical relay circuit in the control of nicotine dependence. Although clear roles for α3, β4, and α5 receptors in nicotine aversion and withdrawal have been established, the cellular and molecular mechanisms that participate in signaling nicotine use and contribute to relapse have not been identified. Here, using translating ribosome affinity purification (TRAP) profiling, electrophysiology, and behavior, we demonstrate that cholinergic neurons, but not peptidergic neurons, of the medial habenula (MHb) display spontaneous tonic firing of 2–10 Hz generated by hyperpolarization-activated cyclic nucleotide-gated (HCN) pacemaker channels and that infusion of the HCN pacemaker antagonist ZD7288 in the habenula precipitates somatic and affective signs of withdrawal. Further, we show that a strong, α3β4-dependent increase in firing frequency is observed in these pacemaker neurons upon acute exposure to nicotine. No change in the basal or nicotine-induced firing was observed in cholinergic MHb neurons from mice chronically treated with nicotine. We observe, however, that, during withdrawal, reexposure to nicotine doubles the frequency of pacemaking activity in these neurons. These findings demonstrate that the pacemaking mechanism of cholinergic MHb neurons controls withdrawal, suggesting that the heightened nicotine sensitivity of these neurons during withdrawal may contribute to smoking relapse. PMID:24082085

  4. Hippocampal "cholinergic interneurons" visualized with the choline acetyltransferase promoter: anatomical distribution, intrinsic membrane properties, neurochemical characteristics, and capacity for cholinergic modulation.

    PubMed

    Yi, Feng; Catudio-Garrett, Elizabeth; Gábriel, Robert; Wilhelm, Marta; Erdelyi, Ferenc; Szabo, Gabor; Deisseroth, Karl; Lawrence, Josh

    2015-01-01

    Release of acetylcholine (ACh) in the hippocampus (HC) occurs during exploration, arousal, and learning. Although the medial septum-diagonal band of Broca (MS-DBB) is the major extrinsic source of cholinergic input to the HC, cholinergic neurons intrinsic to the HC also exist but remain poorly understood. Here, ChAT-tauGFP and ChAT-CRE/Rosa26YFP (ChAT-Rosa) mice were examined in HC. The HC of ChAT-tauGFP mice was densely innervated with GFP-positive axons, often accompanied by large GFP-positive structures, some of which were Neurotrace/DAPI-negative and likely represent large axon terminals. In the HC of ChAT-Rosa mice, ChAT-YFP cells were Neurotrace-positive and more abundant in CA3 and dentate gyrus than CA1 with partial overlap with calretinin/VIP. Moreover, an anti-ChAT antibody consistently showed ChAT immunoreactivity in ChAT-YFP cells from MS-DBB but rarely from HC. Furthermore, ChAT-YFP cells from CA1 stratum radiatum/stratum lacunosum moleculare (SR/SLM) exhibited a stuttering firing phenotype but a delayed firing phenotype in stratum pyramidale (SP) of CA3. Input resistance and capacitance were also different between CA1 SR/LM and CA3 SP ChAT-YFP cells. Bath application of ACh increased firing frequency in all ChAT-YFP cells; however, cholinergic modulation was larger in CA1 SR/SLM than CA3 SP ChAT-YFP cells. Finally, CA3 SP ChAT-YFP cells exhibited a wider AP half-width and weaker cholinergic modulation than YFP-negative CA3 pyramidal cells. Consistent with CRE expression in a subpopulation of principal cells, optogenetic stimulation evoked glutamatergic postsynaptic currents in CA1 SR/SLM interneurons. In conclusion, the presence of fluorescently labeled hippocampal cells common to both ChAT-tauGFP and ChAT-Rosa mice are in good agreement with previous reports on the existence of cholinergic interneurons, but both transgenic mouse lines exhibited unexpected anatomical features that departed considerably from earlier observations.

  5. Cholinergic and Dopaminergic Alterations in Nigrostriatal Neurons Are Involved in Environmental Enrichment Motor Protection in a Mouse Model of Parkinson's Disease.

    PubMed

    Hilario, Willyan Franco; Herlinger, Alice Laschuk; Areal, Lorena Bianchine; de Moraes, Lívia Silveira; Ferreira, Tamara Andrea Alarcon; Andrade, Tassiane Emanuelle Servane; Martins-Silva, Cristina; Pires, Rita Gomes Wanderley

    2016-12-01

    Parkinson's disease (PD) is the second most common neurodegenerative disease in the world, being characterized by dopaminergic neurodegeneration of substantia nigra pars compacta. PD pharmacotherapy has been based on dopamine replacement in the striatum with the dopaminergic precursor 3,4-dihydroxyphenylalanine (L-DOPA) and/or with dopaminergic agonists, alongside anticholinergic drugs in order to mitigate the motor abnormalities. However, these practices neither prevent nor stop the progression of the disease. Environmental enrichment (EE) has effectively prevented several neurodegenerative processes, mainly in preclinical trials. Several studies have demonstrated that EE induces biological changes, bearing on cognitive enhancement, neuroprotection, and on the attenuation of the effects of stress, anxiety, and depression. Herein, we investigated whether EE could prevent the motor, biochemical, and molecular abnormalities in a murine model of PD induced by 1-methyl-4-phenyl-2,3-dihydropyridine (MPTP). Our results show that EE does not prevent the dopaminergic striatal depletion induced by MPTP, despite having averted the MPTP-induced hyperlocomotion. However, it was able to slow down and avoid, respectively, the 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) depletion. Analysis of dopaminergic mRNA alterations in the midbrain showed that D1R expression was increased by MPTP, while the normal expression level of this receptor was restored by EE. As for the cholinergic system, MPTP led to a decrease in the ChAT gene expression while increasing the expression of both AChE and M1R. EE attenuated and prevented-respectively-ChAT and M1R gene expression alterations triggered by MPTP in the midbrain. Overall, our data brings new evidence supporting the neuroprotective potential of EE in PD, focusing on the interaction between dopaminergic and cholinergic systems.

  6. Selective cholinergic denervation of the cingulate cortex impairs the acquisition and performance of a conditional visual discrimination in rats.

    PubMed

    Winters, Boyer D; Robbins, Trevor W; Everitt, Barry J

    2004-01-01

    Results from excitotoxic lesion studies have implicated the cingulate cortex and its basal forebrain afferents in the acquisition and performance of conditional discrimination tasks. In the present work, we sought to