Rare earth elements geochemistry in springs from Taftan geothermal area SE Iran
NASA Astrophysics Data System (ADS)
Shakeri, Ata; Ghoreyshinia, Sayedkazem; Mehrabi, Behzad; Delavari, Morteza
2015-10-01
Concentrations of rare earth elements (REEs) were determined in springs and andesitic-dacitic rocks of Taftan geothermal field. Hydrochemical results of major ions indicate that thermal springs are Na-SO4-Cl and Ca-SO4-Cl types. Concentrations of REEs are in ranges of 10- 4 to 1.2 and 49 to 62 times of chondrite for springwater and rock samples, respectively. The thermal (STS and TTS) and the cold (APS) springs with low pH values exhibit a very high REE contents (0.64 to 3.15 mg/l). Saturation index indicates that Fe and Al phases can control dissolved REE concentration in FTS and PF cold springs. The speciation of REE complexes indicates dominant presence of LnSO4+ and free ion in the Taftan thermal springs. In APS cold spring with pH 4, fluoride complexes are dominate over the free ion and sulfate species, while in PF and FTS cold springs with pH 6.4 and 7, respectively, carbonate complexes (LnCO3+) are predominant species. Chondrite-normalized pattern for the low-pH waters show very distinctive gull-wing patterns, characteristic feature of acid-sulfate geothermal systems, and are similar to those of the host rocks. Chemical characteristics of rare earth elements in spring and volcanic rock samples indicate that REEs are originated from the andesitic-dacitic host rocks. Whole-rock-normalized REE patterns and petrographic evidences show that rare earth elements leached mainly from marginal alteration of minerals and matrix decomposition in volcanic rocks. In chondrite-normalized REE patterns, significant negative Eu anomaly in the cold springs compare to the thermal and acidic springs indicates that alteration of plagioclase is more intense in the later, corresponding to increasing in temperature and acidic state of reactant water.
NASA Astrophysics Data System (ADS)
Amedjoe, Chiri G.; Gawu, S. K. Y.; Ali, B.; Aseidu, D. K.; Nude, P. M.
2018-06-01
Many researchers have investigated the provenance and tectonic setting of the Voltaian sediments using the geochemistry of sandstones in the basin. The shales and siltstones in the basin have not been used much in the provenance studies. In this paper, the geochemistry of shales and siltstones in the Kwahu Group and Oti Group of the Voltaian Supergroup from Agogo and environs in the southeastern section of the basin has constrained the provenance and tectonic setting. Trace element ratios La/Sc, Th/Sc and Cr/Th and REEs sensitive to average source compositions revealed sediments in the shales and siltstones may mainly be from felsic rocks, though contributions from old recycled sediments and some andesitic rock sediments were identified. The felsic rocks may be granites and/or granodiorites. Some intermediate rocks of andesitic composition are also identified, while the recycled sediments were probably derived from the basement metasedimentary rocks. The enrichment of light REE (LaN/YbN c. 7.47), negative Eu anomalies (Eu/Eu* c. 0.59), and flat heavy REE chondrite-normalized patterns, denote an upper-continental-crustal granitic source materials for the sediments. Trace-element ternary discriminant diagrams reveal passive margin settings for sediments, though some continental island arc settings sediments were also depicted. Mixing calculations based on REE concentrations and modeled chondrite-normalized REE patterns suggest that the Birimian basement complex may be the source of detritus in the Voltaian Basin. REEs are more associated with shales than siltstones. On this basis chondrite-normalized REE patterns show that shale lithostratigraphic units may be distinguished from siltstone lithostratigraphic units. The significant variability in shales elemental ratios can therefore be used to distinguish between shales of the Oti Group from that of the Kwahu Group.
Anomalous REE patterns in unequilibrated enstatite chondrites: Evidence and implications
NASA Technical Reports Server (NTRS)
Crozaz, Ghislaine; Hsu, Weibiao
1993-01-01
We present here a study of Rare Earth Element (REE) microdistributions in unequilibrated enstatite chondrites (EOC's). Although the whole rock REE contents are similar in both unequilibrated and equilibrated chondrites, the host minerals of these refractory elements are different. In the least equilibrated ordinary chondrites (UOC's), the REE reside mainly in glass whereas, in their more equilibrated counterparts, the bulk of the REE is in calcium phosphate, a metamorphic mineral that formed by oxidation of phosphorous originally contained in metal. In the smaller group of enstatite (E) chondrites, calcium phosphate is absent and the phase that contains the highest REE concentrations is a minor mineral, CaS (oldhamite), which contains approximately 50 percent of the total Ca present. In E chondrites, elements typically considered to be lithophiles (such as Ca and Mn) occur in sulfides rather than silicates. This indicates formation under extremely reducing conditions, thus in a region of the solar nebula distinct from those that supplied the more abundant ordinary and carbonaceous chondrites. Previously, we observed a variety of REE patterns in the oldhamite of UEC's; they range from almost flat to some with pronounced positive Eu and Yb anomalies. Here, we searched for complementary REE patterns in other minerals from E chondrites and found them in the major mineral, enstatite. Whenever Eu and Yb anomalies are present in this mineral, they are always negative.
Lanthanide and actinide chemistry at high C/O ratios in the solar nebula
NASA Technical Reports Server (NTRS)
Lodders, Katharina; Fegley, Bruce, Jr.
1993-01-01
Chemical equilibrium calculations were performed to study the condensation chemistry of the REE and actinides under the highly reducing conditions which are necessary for the formation of the enstatite chondrites. Our calculations confirm that the REE and actinides condensed into oldhamite (CaS), the major REE and actinide host phase in enstatite chondrites, at a carbon-oxygen (C/O) ratio not less than 1 in an otherwise solar gas. Five basic types of REE abundance patterns, several of which are analogous to REE abundance patterns observed in the Ca, Al-rich inclusions in carbonaceous chondrites, are predicted to occur in meteoritic oldhamites. All of the reported REE patterns in oldhamites in enstatite chondrites can be interpreted in terms of our condensation calculations. The observed patterns fall into three of the five predicted categories. The reported Th and U enrichments and ratios in meteoritic oldhamites are also consistent with predictions of the condensation calculations. Pure REE sulfides are predicted to condense in the 10 exp -6 to 10 exp -9 bar range and may be found in enstatite chondrites if they formed in this pressure range.
Possible impact-induced refractory-lithophile fractionations in EL chondrites
NASA Astrophysics Data System (ADS)
Rubin, Alan E.; Huber, Heinz; Wasson, John T.
2009-03-01
Literature data show that refractory-lithophile elements in most chondrite groups are unfractionated relative to CI chondrites; the principal exception is the EL-chondrite group whose observed falls (all of which are type 6) are depleted in Ca and light REE. In contrast, literature data and our new INAA data on EL3 PCA 91020, EL3 MAC 88136 and EL4 Grein 002 show that some replicates of these samples have nearly flat REE patterns (unlike those of EL6 chondrites); other replicates exhibit fractionated REE patterns similar to those of EL6 chondrites. Petrographic examination shows that many EL6 (and some EL3 and EL4) chondrites are impact-melt breccias or contain impact-melted portions. We suggest that the same impact processes that formed these breccias and produced melt are responsible for the observed bulk compositional fractionations in refractory-lithophile elements, i.e., EL6 chondrites were produced from initially unequilibrated EL3 material. When large amounts of impact heat were deposited, plagioclase and/or oldhamite (CaS) (the major REE carriers in enstatite chondrites) may have been melted and then transported appreciable (>10 cm) distances. EL6 chondrites represent the residuum that is depleted in REE (particularly in LREE) and Ca. Unlike the case for EL chondrites, our new INAA data on ALH 84170, EET 87746 and SAH 97096 (all EH3) show some scatter but are consistent with the EH group having uniform refractory-lithophile abundances.
Rare-earth abundances in chondritic meteorites
NASA Technical Reports Server (NTRS)
Evensen, N. M.; Hamilton, P. J.; Onions, R. K.
1978-01-01
Fifteen chondrites, including eight carbonaceous chondrites, were analyzed for rare earth element abundances by isotope dilution. Examination of REE for a large number of individual chondrites shows that only a small proportion of the analyses have flat unfractionated REE patterns within experimental error. While some of the remaining analyses are consistent with magmatic fractionation, many patterns, in particular those with positive Ce anomalies, can not be explained by known magmatic processes. Elemental abundance anomalies are found in all major chondrite classes. The persistence of anomalies in chondritic materials relatively removed from direct condensational processes implies that anomalous components are resistant to equilibrium or were introduced at a late stage of chondrite formation. Large-scale segregation of gas and condensate is implied, and bulk variations in REE abundances between planetary bodies is possible.
NASA Technical Reports Server (NTRS)
Ma, M.-S.; Schmitt, R. A.; Laul, J. C.
1982-01-01
Abundances of major, minor, and trace elements are determined in the Antarctic achondrite Allan Hills (ALHA) 77005 via sequential instrumental and radiochemical neutron activation analysis. The rare earth element (REE) abundances of ALHA 77005 reveal a unique chondritic normalized pattern; that is, the REEs are nearly unfractionated from La to Pr at approximately 1.0X chondrites, monotonically increased from Pr to Gd at approximately 3.4X with no Eu anomaly, nearly unfractionated from Gd and Ho and monotonically decreased from Ho to Lu at approximately 2.2X. It is noted that this unique REE pattern of ALHA 77005 can be modeled by a melting process involving a continuous melting and progressive partial removal of melt from a light REE enriched source material. In a model of this type, ALHA 77005 could represent either a crystallized cumulate from such a melt or the residual source material. Calculations show that the parent liquids for the shergottites could also be derived from a light REE enriched source material similar to that for ALHA 77005.
NASA Astrophysics Data System (ADS)
Ying, Yuancan; Chen, Wei; Lu, Jue; Jiang, Shao-Yong; Yang, Yueheng
2017-10-01
The Miaoya carbonatite complex in the South Qinling orogenic belt hosts one of the largest rare earth element (REE)-Nb deposits in China that is composed of carbonatite and syenite. The emplacement age of the complex and the geochronological relationship between the carbonatite and syenite have long been debated. In this study, in situ U-Th-Pb ages have been obtained for the constituent minerals zircon, monazite and columbite from carbonatite and syenite of the Miaoya complex, together with their chemical and isotopic compositions. In situ trace element compositions for zircon from carbonatite and syenite are highly variable. The zircon displays slightly heavy REE (HREE)-enriched chondrite-normalized patterns with no Eu anomaly and various light REE (LREE) contents. In situ Th-Pb dating for zircon from the Miaoya complex by laser ablation ICP-MS yields ages of 442.6 ± 4.0 Ma (n = 53) for syenite and 426.5 ± 8.0 Ma (n = 23) for carbonatite. Monazite from carbonatite and syenite shows similar chondrite-normalized REE patterns and yields a consistent Th-Pb age of 240 Ma. Based on petrographic and chemical composition, columbite from the carbonatite can be identified into two groups. The columbite dispersed within carbonatite is characterized by slightly LREE-enriched chondrite-normalized REE patterns, whereas columbite associated with apatite is characterized by LREE-depleted trends. Columbite has been further determined to have a weighted mean 206Pb/238U age of 232.8 ± 4.5 Ma (n = 9) using LA-ICP-MS. Detailed geochronological and chemical investigations suggest that there were two major episodes of magmatic/metasomatic activities in the formational history of the Miaoya carbonatite complex. The early alkaline magmatism emplaced in the Silurian was related to the opening of the Mianlue Ocean, whereas the late metasomatism or hydrothermal overprint occurred during the Triassic South Qinling orogeny. The latter serves as the major ore formation period for both REE (e.g., monazite) and Nb (e.g., columbite).
NASA Astrophysics Data System (ADS)
Gannoun, A.; Boyet, M.; El Goresy, A.; Devouard, B.
2011-06-01
We report the results of rare earth elements (REEs) and U-Th inventory of individual minerals (oldhamite, enstatite and niningerite) in two of the most unequilibrated and primitive EH3 known so far, ALHA77295 and Sahara 97072. Under the highly reducing condition that prevailed during the formation of enstatite chondrites, REEs are mainly chalcophile and concentrated in oldhamite. The study is guided by detailed petrographic investigations of the individual minerals in chondrules, complex sulfide-metal clasts and enstatite-dominated matrices. We developed two textural parameters in order to resolve the evolution of oldhamite condensates and their residence in the solar gas prior to their accretion in the individual objects or in matrices and relate these textural features to the measured REE patterns of the individual oldhamite crystals. These textural parameters are the crystal habit of oldhamite grains (idiomorphic or anhedral) and their host assemblages. REE concentrations were measured by SIMS and LA-ICPMS. Oldhamite grains display REE enrichments (10-100 × CI). Four types of REE patterns are encountered in oldhamite in ALHA77295. In general the REE distributions cannot be assigned to a specific oldhamite-bearing assemblage. The most represented REE pattern is characterized by both slight to large positive Eu and Yb anomalies and is enriched in light REEs relative to heavy REEs. This pattern is present in 97% of oldhamite in Sahara 97072, suggesting a different source region in the reduced part of the nebula or different parental EH asteroids for the two EH3 chondrites. Different parental asteroids are also supported by MgS-FeS zoning profiles in niningerite grains adjacent to troilite revealing both normal and reverse zoning trends and different MnS contents. The observed homogeneity of REE distribution in oldhamite grains in Sahara 97072 is not related to the mild metamorphic event identified in this meteorite that caused breakdown of the major K- and Rb-bearing sulfide (djerfisherite). REE concentrations in enstatite range between 0.2 and 8 × CI. Hence, enstatite is an important REE host next to oldhamite. Most patterns are characterized by negative Eu and Yb anomalies. Niningerites are negligible contributors to bulk EH3 REE inventory. Average positive Eu and Yb anomalies observed in most oldhamite are complimentary to the negative ones in enstatite thus explaining the flat patterns of the bulk meteorites. The condensation calculations based on cosmic abundances predict that the first oldhamite condensates should have flat REE patterns with Eu and Yb depletions since Eu and Yb condense at lower temperature than other REE. However, this pattern is seen in enstatite. Our findings are at odds with the predicted negative Eu and Yb anomalies in oldhamite earliest condensates from a closed system in a reduced solar source. Our petrographic, mineral chemistry and REE abundances of oldhamite, enstatite and niningerite discards an origin of oldhamite by impact melting ( Rubin et al., 2009). Our results do not support in first order the scenario of the incorporation of REE in the Earth's core to explain 142Nd excess in terrestrial samples relative to chondrites because oldhamite is the major REE carrier phase and has super-chondritic Sm/Nd ratios.
NASA Astrophysics Data System (ADS)
Pourkhorsandi, Hamed; D'Orazio, Massimo; Rochette, Pierre; Valenzuela, Millarca; Gattacceca, Jérôme; Mirnejad, Hassan; Sutter, Brad; Hutzler, Aurore; Aboulahris, Maria
2017-09-01
The behavior of rare earth elements (REEs) during hot desert weathering of meteorites is investigated. Ordinary chondrites (OCs) from Atacama (Chile) and Lut (Iran) deserts show different variations in REE composition during this process. Inductively coupled plasma-mass spectrometry (ICP-MS) data reveal that hot desert OCs tend to show elevated light REE concentrations, relative to OC falls. Chondrites from Atacama are by far the most enriched in REEs and this enrichment is not necessarily related to their degree of weathering. Positive Ce anomaly of fresh chondrites from Atacama and the successive formation of a negative Ce anomaly with the addition of trivalent REEs are similar to the process reported from Antarctic eucrites. In addition to REEs, Sr and Ba also show different concentrations when comparing OCs from different hot deserts. The stability of Atacama surfaces and the associated old terrestrial ages of meteorites from this region give the samples the necessary time to interact with the terrestrial environment and to be chemically modified. Higher REE contents and LREE-enriched composition are evidence of contamination by terrestrial soil. Despite their low degrees of weathering, special care must be taken into account while working on the REE composition of Atacama meteorites for cosmochemistry applications. In contrast, chondrites from the Lut desert show lower degrees of REE modification, despite significant weathering signed by Sr content. This is explained by the relatively rapid weathering rate of the meteorites occurring in the Lut desert, which hampers the penetration of terrestrial material by forming voluminous Fe oxide/oxyhydroxides shortly after the meteorite fall.
Watson: A new link in the IIE iron chain
NASA Technical Reports Server (NTRS)
Olsen, Edward; Davis, Andrew; Clarke, Roy S., Jr.; Schultz, Ludolf; Weber, Hartwig W.; Clayton, Robert; Mayeda, Toshiko; Jarosewich, Eugene; Sylvester, Paul; Grossman, Lawrence
1994-01-01
Watson, which was found in 1972 in South Australia, contains the largest single silicate rock mass seen in any known iron meteorite. A comprehensive study has been completed on this unusual meteorite: petrography, metallography, analyses of the silicate inclusion (whole rock chemical analysis, INAA, RNAA, noble gases, and oxygen isotope analysis) and mineral compositions (by electron microprobe and ion microprobe). The whole rock has a composition of an H-chondrite minus the normal H-group metal and troilite content. The oxygen isotope composition is that of the silicates in the IIE iron meteorites and lies along an oxygen isotope fractionation line with the H-group chondrites. Trace elements in the metal confirm Watson is a new IIE iron. Whole rock Watson silicate shows an enrichment in K and P (each approximately 2X H-chondrites). The silicate inclusion has a highly equilibrated igneous (peridotite-like) texture with olivine largely poikilitic within low-Ca pyroxene: olivine (Fa20), opx (Fs17Wo3), capx (Fs9Wo14)(with very fine exsolution lamellae), antiperthite feldspar (An1-3Or5) with less than 1 micron exsolution lamellae (An1-3Or greater than 40), shocked feldspar with altered stoichiometry, minor whitlockite (also a poorly characterized interstitial phosphate-rich phase) and chromite, and only traces of metal and troilite. The individual silicate minerals have normal chondritic REE patterns, but whitlockite has a remarkable REE pattern. It is very enriched in light REE (La is 720X C1, and Lu is 90X C1, as opposed to usual chonditic values of approximately 300X and 100-150X, respectively) with a negative Eu anomaly. The enrichment of whole rock K is expressed both in an unusually high mean modal Or content of the feldspar, Or13, and in the presence of antiperthite.
NASA Astrophysics Data System (ADS)
Moggi-Cecchi, V.; Pratesi, G.
2004-03-01
SEM, EMPA and LA-ICP-MS analyses have been performed on HaH 317, an EL4 enstatite chondrite. Phases detected are En, Kam, Tro, Dio, Pla, Nin, Old. Diopside and enstatite grains display similar REEs patterns with marked Ce and LREE enrichments.
Typical aqueous rare earth element behavior in co-produced Brines, Wyoming
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nye, Charles; Quillinan, Scott; McLing, Travis
Normalization of Rare Earth Elements (REEs) is important to remove the distracting effects of the Oddo–Harkins rule and provide a meaningful baseline. Normalizations for rocks are well developed and include chondritic meteorites, UCC, PM, PAAS, and NASC. However normalizations for aqueous REEs are limited to oceanic regions such as the North Pacific Deep Water or North Atlantic Surface Water. This leaves water in contact with continental lithologies without a suitable normalization. We present a preliminary continental aqueous REE normalization derived from 38 deep basin hydrocarbon brines in Wyoming. The REEs in these waters are seven orders of magnitude more dilutemore » than NASC but with significant europium enrichment. Gromet 1984 reports NASC Eu/Eu* is 0.2179, whereas in the normalization offered here, Eu/Eu* is 3.868. These waters also are free from the distracting reduction-oxidation cerium behavior found in ocean normalizations. Because these samples exhibit both the uniform behavior of NASC and the absolute concentration of seawater, a normalization based upon them offers a unique combination of the advantages of both. We used single-peak gaussian analysis to quantify the mean values for each REE and estimate the distribution variability. Additional sample collection during the last year revealed that the Powder River Basin (PRB) is atypical relative to the other sampled basins of Wyoming. Those other basins are the Wind River Basin (WRB) Green River Basin (GRB) and Wamsutter Area (WA). A pre-normalization gadolinium anomaly (Gd/Gd*) of between 4 and 23 with a mean of 11.5, defines the PRB samples. Other basins in this study range from 1 to 7 with a mean of 2.8. Finally, we present a preliminary model for ligand-based behavior of REEs in these samples. This model identifies bicarbonate, bromide, and chloride as forming significant complexes with REEs contributing to REE solubility. The ligand model explains observed REEs in the sampled Cretaceous and Paleocene clastic reservoirs. However, the presence of more REEs than predicted in six samples suggests that there is an additional, unconsidered ligand contributing to REE dissolution. Further work will identify this ligand, which appears to be confined to calcium-cemented and dolostone systems.« less
NASA Astrophysics Data System (ADS)
Ravisankar, R.; Manikandan, E.; Dheenathayalu, M.; Rao, Brahmaji; Seshadreesan, N. P.; Nair, K. G. M.
2006-10-01
Beach rocks are a peculiar type of formation when compared to other types of rocks. Rare earth element (REE) concentrations in beach rock samples collected from the South East Coast of Tamilnadu, India, have been measured using the instrumental neutron activation analysis (INAA) single comparator K0 method. The irradiations were carried out using a thermal neutron flux of ˜10 11 n cm -2 s -1 at 20 kW power using the Kalpakkam mini reactor (KAMINI), IGCAR, Kalpakkam, Tamilnadu. Accuracy and precision were evaluated by assaying irradiated standard reference material (SRM 1646a estuarine sediment). The results being found to be in good agreement with certified values. REE elements have been determined from 15 samples using high-resolution gamma spectrometry. The geochemical behavior of REE in beach rock, in particular REE (chondrite-normalized) pattern has been studied.
Foley, Nora K.; Ayuso, Robert A.; Simandl, G.J.; Neetz, M.
2015-01-01
The Southeastern United States contains numerous anorogenic, or A-type, granites, which constitute promising source rocks for REE-enriched ion adsorption clay deposits due to their inherently high concentrations of REE. These granites have undergone a long history of chemical weathering, resulting in thick granite-derived regoliths, akin to those of South China, which supply virtually all heavy REE and Y, and a significant portion of light REE to global markets. Detailed comparisons of granite regolith profiles formed on the Stewartsville and Striped Rock plutons, and the Robertson River batholith (Virginia) indicate that REE are mobile and can attain grades comparable to those of deposits currently mined in China. A REE-enriched parent, either A-type or I-type (highly fractionated igneous type) granite, is thought to be critical for generating the high concentrations of REE in regolith profiles. One prominent feature we recognize in many granites and mineralized regoliths is the tetrad behaviour displayed in REE chondrite-normalized patterns. Tetrad patterns in granite and regolith result from processes that promote the redistribution, enrichment, and fractionation of REE, such as late- to post- magmatic alteration of granite and silicate hydrolysis in the regolith. Thus, REE patterns showing tetrad effects may be a key for discriminating highly prospective source rocks and regoliths with potential for REE ion adsorption clay deposits.
Ashraf, Ahmadreza; Saion, Elias; Gharibshahi, Elham; Mohamed Kamari, Halimah; Chee Kong, Yap; Suhaimi Hamzah, Mohd; Suhaimi Elias, Md
2016-01-01
A study was carried out on the concentration of REEs (Dy, Sm, Eu,Yb, Lu, La and Ce) that are present in the core marine sediments of East Malaysia from three locations at South China Sea and one location each at Sulu Sea and Sulawesi Sea. The sediment samples were collected at a depth of between 49 and 109 m, dried, and crushed to powdery form. The entire core sediments prepared for Instrumental Neutron Activation Analysis (INAA) were weighted approximately 0.0500 g to 0.1000 g for short irradiation and 0.1500 g to 0.2000 g for long irradiation. The samples were irradiated with a thermal neutron flux of 4.0×10(12) cm(-2) s(-1) in a TRIGA Mark II research reactor operated at 750 kW. Blank samples and standard reference materials SL-1 were also irradiated for calibration and quality control purposes. It was found that the concentration of REEs varies in the range from 0.11 to 36.84 mg/kg. The chondrite-normalized REEs for different stations suggest that all the REEs are from similar origins. There was no significant REEs contamination as the enrichment factors normalized for Fe fall in the range of 0.42-2.82. Copyright © 2015 Elsevier Ltd. All rights reserved.
Non-CI refractory lithophile abundances in bulk planetary materials
NASA Astrophysics Data System (ADS)
Dauphas, N.
2015-12-01
Refractory inclusions in meteorites show evidence for fractionation of refractory lithophile elements relative to one another. For bulk planetary materials, it is most often assumed that refractory lithophile elements (e.g., Ca, Al, Ti, REEs) are in proportions similar to CI carbonaceous chondrites, which is taken to be a proxy for solar composition. A diagnostic feature of REE patterns in refractory inclusions in meteorites is the presence of thulium anomalies, arising from the fact that this heavy REE is more volatile than the highly refractory HREEs surrounding it (Tm/Tm* is defined relative to either Er-Yb or Er-Lu). Tm anomalies thus represent an excellent diagnostic tool to test the assumption that refractory lithophile elements have uniform relative abundances at a bulk planetary scale. Prior to this work, high precision Tm measurements were lacking because it is mono-isotopic and as such is not amenable to high-precision single spike measurements. We have developed a multi-collector REE abundance measurement technique to measure all REEs at high precision, including the mono-isotopic ones. This technique was used to revise the abundance of CI and PAAS REE abundances (Pourmand et al. 2012) and the CI composition agrees well with an independent study (Barrat et al. 2012). The same technique was applied to measure REE patterns in 41 chondrites as well as terrestrial rocks (Dauphas and Pourmand, 2015). Our results reveal the presence of Tm anomalies of about -4.5 % in terrestrial rocks, enstatite and ordinary chondrites, relative to carbonaceous chondrites including CIs. This demonstrates that the assumption that refractory lithophile elements are in constant proportions among planetary bodies is unwarranted. It also shows that carbonaceous chondrites cannot be a major constituent of the Earth. The presence of Tm anomalies in meteorites and terrestrial rocks suggests that either (i) the material in the inner part of the solar system was formed from a gas reservoir that had been depleted in refractory dust or (ii) CI are enriched in refractory dust and are not representative of solar composition for refractory elements. Barrat J.A. et al. (2012) GCA 83, 79-92. Dauphas N., Pourmand A. (2015) GCA 163, 234-261. Pourmand et al. (2012) Chem. Geol. 291, 38-54.
Petrogenesis of Alta'ameem meteorite (Iraq) inferred from major, trace, REE and PGE+Au content
NASA Astrophysics Data System (ADS)
Kettanah, Yawooz A.; Ismail, Sabah A.
2018-03-01
Alta'ameem Meteorite (AM) is an unaltered ordinary LL chondrite that hit an area near Kirkuk City in northern Iraq on 1977. It has an ash-gray colour with a thin black fusion crust, and consists of spheroidal chondrules and variously shaped clasts aggregated together by a fine grained matrix. The chondrules of Alta'ameem Meteorite include all known types in similar meteorites elsewhere. Mineralogically, the AM consists of silicates (olivine - Fa27.7; pyroxene - Fs23.2 (Opx) and 20.5 (Cpx); plagioclase - Ab73.5An22.1Or4.7), alloys and metals (taenite, tetrataenite, kamacite, and native copper), oxides (ilmenite and chromite), sulfides (troilite), and phosphates (apatite) as well as few unidentified minerals including a Fe-Ti-Cr oxide and Fe-Ni sulfide. The chemistry of AM is dominated by SiO2, MgO, and FeOt accounting for >91 wt% of the bulk composition with minor amounts of Al2O3, CaO, Na2O, S, Ni and Cr. It contains 3675 ppb REE which is within the range of most chondrites, with a negative (-0.8) Sm- and positive (+1.2) Tb-anomalies and a near flat normalized trend (LaN/YbN = 1.16). The concentration of PGEs and Au, Ni, Co, and Cr is low in comparison to most chondrites. The K/La, Ru/Rh vs. Pt/Pd, and Pd/Ir ratio (1.85), and low PGE indicates that the AM is somewhat distinct from other meteorites. The AM has W0 weathering grade and very weak (S2) shock metamorphism. Although the AM has some petrographical and geochemical differences with other chondrites, it still can be considered as LL5 chondrite.
REE partitioning between apatite and melt in a peralkaline volcanic suite, Kenya Rift Valley
Macdonald, R.; Baginski, B.; Belkin, H.E.; Dzierzanowski, P.; Jezak, L.
2009-01-01
Electron microprobe analyses are presented for fluorapatite phenocrysts from a benmoreite-peralkaline rhyolite volcanic suite from the Kenya Rift Valley. The rocks have previously been well characterized petrographically and their crystallization conditions are reasonably well known. The REE contents in the M site increase towards the rhyolites, with a maximum britholite component of ~35 mol.%. Chondrite-normalized REE patterns are rather flat between La and Sm and then decrease towards Yb. Sodium and Fe occupy up to 1% and 4%, respectively, of the M site. The major coupled substitution is REE3+ + Si4+ ??? Ca2+ + P5+. The substitution REE3+ + Na+ ??? 2Ca2+ has been of minor importance. The relatively large Fe contents were perhaps facilitated by the low fo2 conditions of crystallization. Zoning is ubiquitous and resulted from both fractional crystallization and magma mixing. Apatites in some rhyolites are relatively Y-depleted, perhaps reflecting crystallization from melts which had precipitated zircon. Mineral/glass (melt) ratios for two rhyolites are unusually high, with maxima at Sm (762, 1123). ?? 2008 The Mineralogical Society.
NASA Astrophysics Data System (ADS)
Ali, Arshad; Nasir, Sobhi J.; Jabeen, Iffat; Al Rawas, Ahmed; Banerjee, Neil R.; Osinski, Gordon R.
2017-10-01
Mean bulk chemical data of recently found H5 and L6 ordinary chondrites from the deserts of Oman generally reflect isochemical features which are consistent with the progressive thermal metamorphism of a common, unequilibrated starting material. Relative differences in abundances range from 0.5-10% in REE (Eu = 14%), 6-13% in siderophile elements (Co = 48%), and >10% in lithophile elements (exceptions are Ba, Sr, Zr, Hf, U = >30%) between H5 and L6 groups. These differences may have accounted for variable temperature conditions during metamorphism on their parent bodies. The CI/Mg-normalized mean abundances of refractory lithophile elements (Al, Ca, Sm, Yb, Lu, V) show no resolvable differences between H5 and L6 suggesting that both groups have experienced the same fractionation. The REE diagram shows subtle enrichment in LREE with a flat HREE pattern. Furthermore, overall mean REE abundances are 0.6 × CI with enriched La abundance ( 0.9 × CI) in both groups. Precise oxygen isotope compositions demonstrate the attainment of isotopic equilibrium by progressive thermal metamorphism following a mass-dependent isotope fractionation trend. Both groups show a slope-1/2 line on a three-isotope plot with subtle negative deviation in Δ17O associated with δ18O enrichment relative to δ17O. These deviations are interpreted as the result of liberation of water from phyllosilicates and evaporation of a fraction of the water during thermal metamorphism. The resultant isotope fractionations caused by the water loss are analogous to those occurring between silicate melt and gas phase during CAI and chondrule formation in chondrites and are controlled by cooling rates and exchange efficiency.
Sun, Guangyi; Li, Zhonggen; Liu, Ting; Chen, Ji; Wu, Tingting; Feng, Xinbin
2017-12-01
The content levels, distribution characteristics, and health risks associated with 15 rare earth elements (REEs) in urban street dust from an industrial city, Zhuzhou, in central China were investigated. The total REE content (∑REE) ranged from 66.1 to 237.4 mg kg -1 , with an average of 115.9 mg kg -1 , which is lower than that of Chinese background soil and Yangtze river sediment. Average content of the individual REE in street dust decreased in the order Ce > La > Nd > Y > Pr > Sm > Gd > Dy > Er > Yb > Eu > Ho > Tb > Tm > Lu. The chondrite-normalized REE pattern indicated light REE (LREE) enrichment, a relatively steep LREE trend, heavy REE (HREE) depletion, a flat HREE trend, a Eu-negative anomaly and a Ce-positive anomaly. Foremost heavy local soil and to less degree anthropogenic pollution are the main sources of REE present in street dust. Health risk associated with the exposure of REE in street dust was assessed based on the carcinogenic and non-carcinogenic effect and lifetime average daily dose. The obtained cancer and non-cancer risk values prompt for no augmented health hazard. However, children had greater health risks than that of adults.
NASA Astrophysics Data System (ADS)
Allen, Douglas E.; Seyfried, W. E.
2005-02-01
A hydrothermal experiment involving peridotite and a coexisting aqueous fluid was conducted to assess the role of dissolved Cl - and redox on REE mobility at 400°C, 500 bars. Data show that the onset of reducing conditions enhances the stability of soluble Eu +2 species. Moreover, Eu +2 forms strong aqueous complexes with dissolved Cl - at virtually all redox conditions. Thus, high Cl - concentrations and reducing conditions can combine to reinforce Eu mobility. Except for La, trivalent REE are not greatly affected by fluid speciation under the chemical and physical condition considered, suggesting control by secondary mineral-fluid partitioning. LREE enrichment and positive Eu anomalies observed in fluids from the experiment are remarkably similar to patterns of REE mobility in vent fluids issuing from basalt- and peridotite-hosted hydrothermal systems. This suggests that the chondrite normalized REE patterns are influenced greatly by fluid speciation effects and secondary mineral formation processes. Accordingly, caution must be exercised when using REE in hydrothermal vent fluids to infer REE sources in subseafloor reaction zones from which the fluids are derived. Although vent fluid patterns having LREE enrichment and positive Eu anomalies are typically interpreted to suggest plagioclase recrystallization reactions, this need not always be the case.
Hunter, D.R.; Barker, F.; Millard, H.T.
1984-01-01
The bimodal suite (BMS) comprises leucotonalitic and trondhjemitic gneisses interlayered with amphibolites. Based on geochemical parameters three main groups of siliceous gneiss are recognized: (i) SiO2 14%, and fractionated light rare-earth element (REE) and flat heavy REE patterns; (ii) SiO2 and Al2O3 contents similar to (i) but with strongly fractionated REE patterns with steep heavy REE slopes; (iii) SiO2 > 73%, Al2O3 < 14%, Zr ??? 500 ppm and high contents of total REE having fractionated light REE and flat heavy REE patterns with large negative Eu anomalies. The interlayered amphibolites have major element abundances similar to those of basaltic komatiites, Mg-tholeiites and Fe-rich tholeiites. The former have gently sloping REE patterns, whereas the Mg-tholeiites have non-uniform REE patterns ranging from flat (??? 10 times chondrite) to strongly light REE-enriched. The Fe-rich amphibolites have flat REE patterns at 20-30 times chondrite. The Dwalile metamorphic suite, which is preserved in the keels of synforms within the BMS, includes peridotitic komatiites that have depleted light REE patterns similar to those of compositionally similar volcanics in the Onverwacht Group, Barberton, basaltic komatiites and tholeiites. The basaltic komatiites have REE patterns parallel to those of the BMS basaltic komatiites but with lower total REE contents. The Dwalile tholeiites have flat REE patterns. The basic and ultrabasic liquids were derived by partial melting of a mantle source which may have been heterogeneous or the heterogeneity may have resulted from sequential melting of the mantle source. The Fe-rich amphibolites were derived either from liquids generated at shallow levels or from liquids generated at depth which subsequently underwent extensive fractionation. ?? 1984.
Rhenium-osmium isotope and highly-siderophile-element abundance systematics of angrite meteorites
NASA Astrophysics Data System (ADS)
Riches, Amy J. V.; Day, James M. D.; Walker, Richard J.; Simonetti, Antonio; Liu, Yang; Neal, Clive R.; Taylor, Lawrence A.
2012-11-01
Coupled 187Os/188Os compositions and highly-siderophile-element (HSE: Os, Ir, Ru, Pt, Pd, and Re) abundance data are reported for eight angrite achondrite meteorites that include quenched- and slowly-cooled textural types. These data are combined with new major- and trace-element concentrations determined for bulk-rock powder fractions and constituent mineral phases, to assess angrite petrogenesis. Angrite meteorites span a wide-range of HSE abundances from <0.005 ppb Os (e.g., Northwest Africa [NWA] 1296; Angra dos Reis) to >100 ppb Os (NWA 4931). Chondritic to supra-chondritic 187Os/188Os (0.1201-0.2127) measured for Angra dos Reis and quenched-angrites correspond to inter- and intra-sample heterogeneities in Re/Os and HSE abundances. Quenched-angrites have chondritic-relative rare-earth-element (REE) abundances at 10-15×CI-chondrite, and their Os-isotope and HSE abundance variations represent mixtures of pristine uncontaminated crustal materials that experienced addition (<0.8%) of exogenous chondritic materials during or after crystallization. Slowly-cooled angrites (NWA 4590 and NWA 4801) have fractionated REE-patterns, chondritic to sub-chondritic 187Os/188Os (0.1056-0.1195), as well as low-Re/Os (0.03-0.13), Pd/Os (0.071-0.946), and relatively low-Pt/Os (0.792-2.640). Sub-chondritic 187Os/188Os compositions in NWA 4590 and NWA 4801 are unusual amongst planetary basalts, and their HSE and REE characteristics may be linked to melting of mantle sources that witnessed prior basaltic melt depletion. Angrite HSE-Yb systematics suggest that the HSE behaved moderately-incompatibly during angrite magma crystallization, implying the presence of metal in the crystallizing assemblage. The new HSE abundance and 187Os/188Os compositions indicate that the silicate mantle of the angrite parent body(ies) (APB) had HSE abundances in chondritic-relative proportions but at variable abundances at the time of angrite crystallization. The HSE systematics of angrites are consistent with protracted post-core formation accretion of materials with chondritic-relative abundances of HSE to the APB, and these accreted materials were rapidly, yet inefficiently, mixed into angrite magma source regions early in Solar System history.
Evaluation of rare earth elements in groundwater of Lagos and Ogun States, Southwest Nigeria.
Ayedun, H; Arowolo, T A; Gbadebo, A M; Idowu, O A
2017-06-01
Rare earth elements in our environment are becoming important because of their utilization in permanent magnets, lamp phosphors, superconductors, rechargeable batteries, catalyst, ceramics and other applications. This study was conducted to evaluate the level of rare earth elements (REE) and the variability of their anomalous behavior in groundwater samples collected from Lagos and Ogun States, Southwest, Nigeria. REE concentrations were determined in 170 groundwater samples using inductively coupled plasma-mass spectrometry, while the physicochemical parameters were determined using standard methods. Lagos State groundwater is enriched with REE [sum REEs range (mean ± SD)]; [0.365-488 (69.5 ± 117)] µg L -1 than Ogun State groundwater [sum REEs range (mean ± SD)]; [1.14-232 (22.6 ± 41.1)] µg L -1 . Boreholes are more enriched with REEs than wells. Significant (P < 0.05) positive correlation (R = Pearson) was recorded in Lagos State groundwater between sum REEs and Fe (R = 0.55). However, there were no significant correlations between sum REEs, pH (R = 0.073) and HCO 3 2- (R = 0.157) in Ogun State groundwater. Chondrite-normalized plot shows that Lagos groundwater exhibits positive Ce anomaly, while Ogun State groundwater does not. The source of REE in Lagos State may be from the ocean and leaching from wastes dumpsites, while the source in Ogun State groundwater may be from the rocks.
Calcite and dolomite in intrusive carbonatites. II. Trace-element variations
NASA Astrophysics Data System (ADS)
Chakhmouradian, Anton R.; Reguir, Ekaterina P.; Couëslan, Christopher; Yang, Panseok
2016-04-01
The composition of calcite and dolomite from several carbonatite complexes (including a large set of petrographically diverse samples from the Aley complex in Canada) was studied by electron-microprobe analysis and laser-ablation inductively-coupled-plasma mass-spectrometry to identify the extent of substitution of rare-earth and other trace elements in these minerals and the effects of different igneous and postmagmatic processes on their composition. Analysis of the newly acquired and published data shows that the contents of rare-earth elements (REE) and certain REE ratios in magmatic calcite and dolomite are controlled by crystal fractionation of fluorapatite, monazite and, possibly, other minerals. Enrichment in REE observed in some samples (up to ~2000 ppm in calcite) cannot be accounted for by coupled substitutions involving Na, P or As. At Aley, the REE abundances and chondrite-normalized (La/Yb)cn ratios in carbonates decrease with progressive fractionation. Sequestration of heavy REE from carbonatitic magma by calcic garnet may be responsible for a steeply sloping "exponential" pattern and lowered Ce/Ce* ratios of calcite from Magnet Cove (USA) and other localities. Alternatively, the low levels of Ce and Mn in these samples could result from preferential removal of these elements by Ce4+- and Mn3+-bearing minerals (such as cerianite and spinels) at increasing f(O2) in the magma. The distribution of large-ion lithophile elements (LILE = Sr, Ba and Pb) in rock-forming carbonates also shows trends indicative of crystal fractionation effects (e.g., concomitant depletion in Ba + Pb at Aley, or Sr + Ba at Kerimasi), although the phases responsible for these variations cannot be identified unambiguously at present. Overall, element ratios sensitive to the redox state of the magma and its complexing characteristics (Eu/Eu*, Ce/Ce* and Y/Ho) are least variable and in both primary calcite and dolomite, approach the average chondritic values. In consanguineous rocks, calcite invariably has higher REE and LILE levels than dolomite. Hydrothermal reworking of carbonatites does not produce a unique geochemical fingerprint, leading instead to a variety of evolutionary trends that range from light-REE and LILE enrichment (Turiy Mys, Russia) to heavy-REE enrichment and LILE depletion (Bear Lodge, USA). These differences clearly attest to variations in the chemistry of carbonatitic fluids and, consequently, their ability to mobilize specific trace elements from earlier-crystallized minerals. An important telltale indicator of hydrothermal reworking is deviation from the primary, chondrite-like REE ratios (in particular, Y/Ho and Eu/Eu*), accompanied by a variety of other compositional changes depending on the redox state of the fluid (e.g., depletion of carbonates in Mn owing to its oxidation and sequestration by secondary oxides). The effect of supergene processes was studied on a single sample from Bear Lodge, which shows extreme depletion in Mn and Ce (both due to oxidation), coupled with enrichment in Pb and U, possibly reflecting an increased availability of Pb2+ and (UO2)2+ species in the system. On the basis of these findings, several avenues for future research can be outlined: (1) structural mechanisms of REE uptake by carbonates; (2) partitioning of REE and LILE between cogenetic calcite and dolomite; (3) the effects of fluorapatite, phlogopite and pyrochlore fractionation on the LILE budget of magmatic carbonates; (4) the cause(s) of coupled Mn-Ce depletion in some primary calcite; and (5) relations between fluid chemistry and compositional changes in hydrothermal carbonates.
NASA Astrophysics Data System (ADS)
Inoue, Mutsuo; Nakamura, Noboru; Kimura, Makoto
2009-09-01
Lanthanide tetrad effect in bulk chondrules from two moderately altered CM chondrites, Murchison and Yamato-793321 (Y-793321), are reported for the first time. Twenty-three chondrules were petrographically characterized and analyzed for 10 rare earth elements (REE) and other trace and major elements (Ba, Sr, Rb, K, Ca, Mg and Fe) using the precise isotope dilution technique. The results indicate systematic depletion (several times) of alkali and alkaline earths compared to CV and CO chondrules. Most of the porphyritic olivine (8 PO) and olivine-pyroxene (4 POP), porphyritic and radial pyroxene (2 PP, 1 RP), and granular olivine (1 GO) chondrules show a light-REE (L-REE) depleted, heavy-REE (H-REE) smoothly fractionated pattern composed of four (upward convex) segments possessing a relatively large negative Eu anomaly (CI-normalized La/Sm, Lu/Er and Eu/Eu* ratios = 0.3-1: Eu*, normal value). On the other hand, all barred-olivine (5 BO) chondrules, a few PO and POP indicate almost a flat L-REE pattern. In addition, regardless of their textural types, nearly half of the chondrules have a variable degree of Ce and Yb anomalies, and/or L/H-REE discontinuity, which is similar to CV and CO chondrules. The observed L- and H-convex REE patterns accompanied with the negative Eu anomaly is the first known case for chondrules as well as meteoritic materials, but have been previously reported for geological samples such as sedimentary rocks, late stage igneous and metamorphic rocks, and are explained as the lanthanide tetrad effect, which plausibly results from fluid-rock interaction. We suggest that the marked REE fractionations occurred by the selective incorporation of L-, H-REEs and Eu into alteration products in the matrix during alteration processes on the CM parent body, but that the gas/solid REE fractionation characteristics established in the nebula have basically remained unchanged. We suggest that the tetrad effects observed here represent a new index of physico-chemical conditions of fluid-rock interactions prevalent on the CM parent body.
Rare earth and other elements in components of the Abee enstatite chondrite
NASA Technical Reports Server (NTRS)
Frazier, R. M.; Boynton, W. V.
1985-01-01
Radiochemical and instrumental neutron activation analyses of REEs and other elements have been conducted for Abee clast samples, a matrix sample, a dark inclusion, magnetic and nonmagnetic samples, and bulk samples. Correlations of the REEs and oldhamite abundance for both the clasts and dark inclusions indicate that the REEs chiefly occur in oldhamite. The similar REE patterns for clasts and dark inclusions, and the similar mineral composition of oldhamite in clast and dark inclusions, suggest that the oldhamite in both the clasts and dark inclusions is of a common origin.
Reassessing the Formation of CK7 Northwest Africa (NWA) 8186
NASA Technical Reports Server (NTRS)
Srinivasan, P.; McCubbin, F. M.; Lapen, T. J.; Righter, M.; Agee, C. B.
2017-01-01
The classification of meteorites is commonly determined using isotopes, modal mineralogy, and bulk compositions [1]. Bulk rare earth elements (REEs) in meteorites are additionally utilized to understand parent body processes. Numerous authors have shown that chondritic groups exhibit REE patterns that may be attributable to their parent bodies [e.g. 2-4], and variations in abundances and concentrations of REEs may reflect early nebular processes, thermal metamorphism, and aqueous alteration on the parent body [5-6].
NASA Astrophysics Data System (ADS)
Inguaggiato, Claudio; Censi, Paolo; Zuddas, Pierpaolo; Makario Londoño, John; Chacón, Zoraida; Alzate, Diego; Brusca, Lorenzo; D'Alessandro, Walter
2015-04-01
The geochemical behaviour of Rare Earth Element (REE), Zr and Hf have been investigated in the thermal waters of Nevado del Ruiz volcanic system. These fluids are characterised by a wide range of pH ranging between 1.0 and 8.8. The acidic waters are sulphate dominated with different Cl/SO4 ratios. The Nevado del Ruiz waters allowed to investigate the behaviour of investigated elements in a wide spectrum of pH and chemical composition of water. The important role of the pH and the ionic complexes have been evidenced in the distribution of REE, Zr and Hf in the aqueous phase. The pH rules the precipitation of authigenic oxyhydroxides of Fe, Al producing changes in REE, Zr, Hf amount and strong anomalies of Cerium and Europium. Y-Ho and Zr-Hf (twin pairs) have different behaviour in strong acidic waters with respect to the water with higher pH. Yttrium and Ho have the same behaviour of Zr and Hf in waters with pH near neutral-to-neutral, showing super-chondritic ratios. The twin pairs showed to be sensitive to the co-precipitation and/or adsorption onto the surface of authigenic particulate suggesting an enhanced scavenging of Ho and Hf respect to Y and Zr, leading to super-chondritic ratios. In acidic waters a different behaviour of twin pairs occurs with chondritic Y/Ho ratios (reflecting the Y/Ho ratio of average local rock) and sub-chondritic Zr/Hf ratios. For the first time, Zr and Hf have been investigated in natural acidic fluids to understand the behaviour of these elements in extreme acidic conditions and different major anions chemistry. Zr/Hf molar ratio changes from 4.75 to 49.29 in water with pH<3.6. In strong acidic waters, a different fractionation of Zr and Hf have been recognised as function of major anion contents (Cl and SO4), suggesting the formation of complexes leading to sub-chondritic Zr/Hf molar ratios.
NASA Technical Reports Server (NTRS)
Shervais, John W.; Vetter, Scott K.
1993-01-01
The discovery of REE-rich phosphates (dominantly whitlockite) in pristine, non-mare rocks of the western lunar nearside (Apollo 14, Apollo 12, and most recently, Apollo 17) has created a paradox for lunar petrologists. These phases are found in feldspar-rich cumulates of both the Mg-suite and the Alkali suite, which differ significantly in their mineral chemistries and major element compositions. Despite the differences in host rock compositions, whitlockites in both suites have similar compositions, with LREE concentrations around 21,000 to 37,000 x chondrite. Simple modeling of possible parent magma compositions using the experimental whitlockite/liquid partition coefficients of Dickinson and Hess show that these REE concentrations are too high to form from normal lunar magmas, even those characterized as 'urKREEP.'
Chemical evidence for differentiation, evaporation and recondensation from silicate clasts in Gujba
NASA Astrophysics Data System (ADS)
Oulton, Jonathan; Humayun, Munir; Fedkin, Alexei; Grossman, Lawrence
2016-03-01
The silicate and metal clasts in CB chondrites have been inferred to form as condensates from an impact-generated vapor plume between a metal-rich body and a silicate body. A detailed study of the condensation of impact-generated vapor plumes showed that the range of CB silicate clast compositions could not be successfully explained without invoking a chemically differentiated target. Here, we report the most comprehensive elemental study yet performed on CB silicates with 32 silicate clasts from nine slices of Gujba analyzed by laser ablation inductively coupled plasma mass spectrometry for 53 elements. Like in other studies of CBs, the silicate clasts are either barred olivine (BO) or cryptocrystalline (CC) in texture. In major elements, the Gujba silicate clasts ranged from chondritic to refractory enriched. Refractory element abundances ranged from 2 to 10 × CI, with notable anomalies in Ba, Ce, Eu, and U abundances. The two most refractory-enriched BO clasts exhibited negative Ce anomalies and were depleted in U relative to Th, characteristic of volatilization residues, while other BO clasts and the CC clasts exhibited positive Ce anomalies with excess U (1-3 × CI), and Ba (1-6 × CI) anomalies indicating re-condensation of ultra-refractory element depleted vapor. The Rare Earth Elements (REE) also exhibit light REE (LREE) enrichment or depletion in several clasts with a range of (La/Sm)CI of 0.9-1.8. This variation in the LREE is essentially impossible to accomplish by processes involving vapor-liquid or vapor-solid exchange of REE, and appears to have been inherited from a differentiated target. The most distinctive evidence for inherited chemical differentiation is observed in highly refractory element (Sc, Zr, Nb, Hf, Ta, Th) systematics. The Gujba clasts exhibit fractionations in Nb/Ta that correlate positively with Zr/Hf and span the range known from lunar and Martian basalts, and exceed the range in Zr/Hf variation known from eucrites. Variations of highly incompatible refractory elements (e.g., Th) against less incompatible elements (e.g., Zr, Sr, Sc) are not chondritic, but exhibit distinctly higher Th abundances requiring a differentiated crust to be admixed with depleted mantle in ratios that are biased to higher crust/mantle ratios than in a chondritic body. The possibility that these variations are due to admixture of refractory inclusion-debris into normal chondritic matter is raised but cannot be definitively tested because existing ;bulk; analyses of CAIs carry artifacts of unrepresentative sampling. The inferences drawn from the compositions of Gujba silicate clasts, here, complement what has been inferred from the compositions of metallic clasts, but provide surprisingly detailed insight into the structure of the target. Evidence that metal and silicate in CB chondrites both formed from impact-generated vapor plumes, taken together with recent work on metallic nodules in E chondrites, and on ordinary chondrites, indicates that chondrule formation occurs by this mechanism quite widely. However, the nature of the impact on the CB body is quite different than the popular conceptions of impact of partially or wholly molten chondritic bodies and the younger (5 Ma) age of CB chondrules is consistent with origin in a disk with more evolved targets and impactors gravitationally perturbed by nascent planets.
Geochemistry of loess-paleosol sediments of Kashmir Valley, India: Provenance and weathering
NASA Astrophysics Data System (ADS)
Ahmad, Ishtiaq; Chandra, Rakesh
2013-04-01
Middle to Late Pleistocene loess-paleosol sediments of Kashmir Valley, India, were analyzed for major, trace and REE elements in order to determine their chemical composition, provenance and intensity of palaeo-weathering of the source rocks. These sediments are generally enriched with Fe2O3, MgO, MnO, TiO2, Y, Ni, Cu, Zn, Th, U, Sc, V and Co while contents of SiO2, K2O, Na2O, P2O5, Sr, Nb and Hf are lower than the UCC. Chondrite normalized REE patterns are characterized by moderate enrichment of LREEs, relatively flat HREE pattern (GdCN/YbCN = 1.93-2.31) and lack of prominent negative Eu anomaly (Eu/Eu* = 0.73-1.01, average = 0.81). PAAS normalized REE are characterized by slightly higher LREE, depleted HREE and positive Eu anomaly. Various provenance discrimination diagrams reveal that the Kashmir Loess-Paleosol sediments are derived from the mixed source rocks suggesting large provenance with variable geological settings, which apparently have undergone weak to moderate recycling processes. Weathering indices such as CIA, CIW and PIA values (71.87, 83.83 and 80.57 respectively) and A-CN-K diagram imply weak to moderate weathering of the source material.
NASA Technical Reports Server (NTRS)
Draper, D. S.; Chabot, N. L.; Xirouchakis, D.; Wasserman, A. A.; Agee, C. B.
2001-01-01
One explanation for Al and REE depletions in SNC meteorites is early majorite fractionation in a deep martian magma ocean. We report initial results from an experimental investigation of partitioning between majoritic garnet and ordinary chondrite liquid. Additional information is contained in the original extended abstract.
NASA Technical Reports Server (NTRS)
Andersen, C. A.; Hinthorne, J. R.
1972-01-01
Results of ion microprobe analyses of Apollo 11, 12 and 14 material, showing that U, Th, Pb and REE are concentrated in accessory minerals such as apatite, whitlockite, zircon, baddeleyite, zirkelite, and tranquillityite. Th/U ratios are found to vary by over a factor of 40 in these minerals. K, Ba, Rb and Sr have been localized in a K rich, U and Th poor glass phase that is commonly associated with the U and Th bearing accessory minerals. Li is observed to be fairly evenly distributed between the various accessory phases. The phosphates have been found to have REE abundance patterns (normalized to the chondrite abundances) that are fairly flat, while the Zr bearing minerals have patterns that rise steeply, by factors of ten or more, from La to Gd. All the accessory minerals have large negative Eu anomalies. Radiometric age dates (Pb 207/Pb 206) of the individual U and Th bearing minerals compare favorably with the Pb 207/Pb 206 age of the bulk rocks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shearer, C.K.; Papike, J.J.; Simon, S.B.
1989-05-01
To study the effects of crystallization sequence and rate on trace element zoning characteristics of pyroxenes, the authors used combined electron microprobe-ion microprobe techniques on four nearly isochemical Apollo 12 and 15 pigeonite basalts with different cooling rates and crystallization histories. Major and minor element zoning characteristics are nearly identical to those reported in the literature. All the pyroxenes have similar chondrite-normalized REE patterns: negative Eu anomalies, positive slopes as defined by Yb/Ce, and slopes of REE patterns from Ce to Sm much steeper than from Gd to Yb. These trace element zoning characteristics in pyroxene and the partitioning ofmore » trace elements between pyroxene and the melt are intimately related to the interplay among the efficiency of the crystallization process, the kinetics at the crystal-melt interface, the kinetics of plagioclase nucleation and the characteristics of the crystal chemical substitutions within both the pyroxene and the associated crystallizing phases (i.e. plagioclase).« less
Trace element evaluation of a suite of rocks from Reunion Island, Indian Ocean
Zielinski, R.A.
1975-01-01
Reunion Island consists of an olivine-basalt shield capped by a series of flows and intrusives ranging from hawaiite through trachyte. Eleven rocks representing the total compositional sequence have been analyzed for U, Th and REE. Eight of the rocks (group 1) have positive-slope, parallel, chondrite-normalized REE fractionation patterns. Using a computer model, the major element compositions of group 1 whole rocks and observed phenocrysts were used to predict the crystallization histories of increasingly residual liquids, and allowed semi-quantitative verification of origin by fractional crystallization of the olivine-basalt parent magma. Results were combined with mineral-liquid distribution coefficient data to predict trace element abundances, and existing data on Cr, Ni, Sr and Ba were also successfully incorporated in the model. The remaining three rocks (group 2) have nonuniform positive-slope REE fractionation patterns not parallel to group 1 patterns. Rare earth fractionation in a syenite is explained by partial melting of a source rich in clinopyroxene and/or hornblende. The other two rocks of group 2 are explained as hybrids resulting from mixing of syenite and magmas of group 1. ?? 1975.
NASA Astrophysics Data System (ADS)
Ehya, Farhad; Mazraei, Shaghayegh Moalaye
2017-10-01
Barite mineralization occurs at Chenarvardeh deposit as layers and lenses in Upper Eocene volcanic and pyroclastic rocks. The host rocks are intensely saussuritized in most places. Barite is accompanied by calcite, Mn-oxides, galena and malachite as subordinate minerals. The amount of Sr in barites is low and varies between 0.11 and 0.30 wt%. The concentration of Rb, Zr, Y, Ta and Hf is also low (<5 ppm) in barite samples. The amount of total REEs (∑REE) is low in barites, ranging from 7.51 to 30.50 ppm. Chondrite-normalized REE patterns reveal LREE enrichment with respect to HREE, and positive Ce anomalies. Fluid inclusions are common in barite samples, being dominantly from liquid-rich two phase (L + V) type. Salinity values in fluid inclusions range from 9.41 to 18.69 wt% NaCl equivalent with most frequent salinities falling in the range of 10-15 wt% NaCl equivalent. Homogenization temperatures (Th) range between 160 and 220 °C, being the 180-200 °C range as the most common Th interval. A combination of factors, including geologic setting, host rock, mineral assemblages, REE geochemistry and fluid inclusion data are consistent with a submarine volcanic hydrothermal model for barite formation at the Chenarvardeh deposit. Mineral-forming fluids originated from solutions related to submarine hydrothermal activities deposited barite on seafloor as they encountered sulfate-bearing seawater.
Lunar initial Nd-143/Nd-144 - Differential evolution of the lunar crust and mantle
NASA Technical Reports Server (NTRS)
Lugmair, G. W.; Marti, K.
1978-01-01
The Sm-Nd evolution of Apollo 15 green glass is discussed. The ICE age (intercept with chondritic evolution) of 3.8 + or - 0.4 eons overlaps the range of reported (Ar-39)-(Ar-40) ages and implies a distinct source region for green glass, characterized by very low and unfractionated REE abundances. Evidence is presented that LINd (lunar initial Nd) is compatible with a 'chondritic'-type Nd isotopic evolution as observed in the Juvinas meteorite. This normalization is used to study the Sm-Nd system of various lunar rock types. The results obtained from a limited number of rocks clearly indicate differential Sm-Nd evolution for the lunar crust and mantle. High-Ti basalts returned by the Apollo 11 and 17 missions were derived from distinct source regions. The Nd-143 evolution in KREEP requires a source region which is clearly distinct from any mantle reservoir.
A survey of the selenochemistry of major, minor and trace elements.
NASA Technical Reports Server (NTRS)
Schmitt, R. A.; Laul, J. C.
1973-01-01
Average data for igneous and/or metaigneous rocks and soils from seven lunar sites are presented. There are compositional similarities between Apollo 11 and Luna 16 eastern maria, Ap 12 and 15 western maria, and between Ap 16 and L 20 highlands. Subtle differences do exist between the paired mare sites and the two highland sites and striking differences between the eastern and western maria. Chondritic normalized REE (rare earth element) patterns for igneous rocks and soils from all sites range from 7-350 generally with negative Eu anomalies. Anorthositic gabbroes to anorthosites, presumably highland material, exhibit a positive Eu anomaly. The REE patterns or Sr isotopic ratios suggest two lava flows each for the L 16 and Ap 14 sites, at least four lava flows for the Ap 11 and 12 site and about six for the Ap 15 site.
NASA Astrophysics Data System (ADS)
Hagedorn, K. B.; Cartwright, I.
2008-12-01
The distribution of rare earth elements (REE) and trace elements was measured by ICP-MS on fresh, slightly weathered and weathered granite and surface water samples from a network of 11 pristine rivers draining the Australian Victorian Alps during (i) high and (ii) low discharge conditions. River water REE concentrations are largely derived from atmospheric precipitation (rain, snow), as indicated by similar Chondrite normalized REE patterns (higher LREE over HREE; negative Ce anomalies, positive Eu anomalies) and similar total REE concentrations during both dry and wet seasons. Calculations based on the covariance between REE and Cl concentrations and oxygen and hydrogen isotopes indicate precipitation input coupled with subsequent evaporation may account for 30% o 100% of dissolved REE in stream waters. The dissolved contribution to the granitic substratum to stream water comes mainly from the transformation of plagioclase to smectite, kaolinite and gibbsite and minor apatite dissolution. However, since most REE of the regional granite are present in accessory minerals (titanite, zircon, etc.) they do not significantly contribute to the river REE pool. REE concentrations drop sharply downstream as a result of dilution and chemical attenuation. A trend of downstream enrichment of the heavier REE is due to selective partitioning of the lighter REE (as both free REE or REECO3 complexes) to hydrous oxides of suspended Al which, in turn, is controlled by a downstream increase of pH to values > 6.1 (for free REE) and > 7.3 (for REECO3 complexes). Although most circumneutral waters were supersaturated with REE phosphate compounds, precipitation of LnPO4 is not believed to have been a dominant process because the predicted phosphate fractionation pattern is inconsistent with the observed trends. Negative saturation indices of hydrous ferric oxides also militate against surface complexation onto goethite. Instead, REE attenuation most likely resulted from adsorption onto hydrous aluminium oxide. Seasonally, higher total REE concentrations during the dry season are due to longer residence time of water within rock fractures as well as high rainfall REE concentrations which, for the summer of 2007, might be related to organic carbon rich dust released after bushfires in the region. Lower pH values and low oxidation potentials at that time also contribute to raise REE concentrations through desorption.
Formation and composition of the moon. [carbonaceous meteorites
NASA Technical Reports Server (NTRS)
Anderson, D. L.
1974-01-01
Many of the properties of the moon are discussed including the enrichment in Ca, Al, Ti, U, Th, Ba, Sr and the REE and the depletion in Fe, Rb, K, Na and other volatiles which could be understood if the moon represents a high temperature condensate from the solar nebula. Thermodynamic calculations show that Ca, Al and Ti rich compounds condense first in a cooling nebula. The initial high temperature mineralogy is gehlenite, spinel, perovskite, Ca-Al-rich pyroxenes and anorthite. Inclusions in Type III carbonaceous chondrites such as the Allende meteorite are composed primarily of these minerals and, in addition, are highly enriched in refractories such as REE relative to carbonaceous chondrites. These inclusions can yield basalt and anorthosite in the proportions required to eliminate the europium anomaly, leaving a residual spinel-melilite interior.
NASA Astrophysics Data System (ADS)
Wang, M.-S.; Xiao, X.; Lipschutz, M. E.
1992-07-01
Numerous studies since 1987 demonstrate that, on average, Antarctic populations of specific meteorite groups differ from non-Antarctic falls. Some differences could conceivably reflect alteration during the meteorites' residence in Antarctica while others clearly are preterrestrial origin, predating fall on Earth. Concentrations of certain trace elements (Ag, Au, Bi, Cd, Co, Cs, Ga, In, Rb, Sb, Se, Te, Tl, Zn) determined by RNAA in 45 H4-6 chondrites first provided evidence for Antarctic/non-Antarctic meteorite population differences [1]. Most of these elements are thermally labile (easily lost during extended chondritic heating chondrites) so that their concentrations give important information on the thermal history of meteoritic material. Refractory elements cannot give such information. Factors possibly complicating establishment of compositional differences as preterrestrial--meteorite pairing, population reproducibility, analyst bias, and statistical modeling--are of demonstrated in consequence [1-4]. Indeed, compositional differences exist [3,4] between Antarctic meteorite populations (Victoria Land vs. Queen Maud Land) and among observed falls (Cluster 1 vs. other falls). Possibilities for meteorite compositional alteration during Antarctic weathering must be re-assessed as new data are obtained: here, we summarize the current status of this problem. 1. Highly weathered meteorites: Ten of our suite of trace elements have significantly lower mean concentrations (presumably because of leaching) in H5 chondrites of weathering types B/C and C, than in types A, A/B, and B [1]. Meteorites of types A to B-- whether exhibiting efflorescence or not--seem uncompromised [5]. 2. Antarctic meteorites of high weathering susceptibility: Carbonaceous chondrites and lunar meteorites are essentially unaltered by weathering. For example, data for LEW 90500 C(1?) chondrite reported here demonstrate that the 8 most volatile elements (Se, Cs, Te, Zn, Cd, Bi, Tl, In) have a mean Cl- normalized weight ratio of 0.585+-0.069. Other elements--even Rb, which should be easily transported in a phyllosilicate exposed to water--show no evidence for gain or loss in Antarctica. This is true also for 39 other Antarctic C2-6 chondrites [6]; 3 additional Cl-2 chondrites thermally metamorphosed in their parent bodies [7]; and lunar meteorites studied by us and others. Hydration effects are absent in these meteorites. 3. Eucrites exhibiting evidence for Ce transport: A pair of eucrite clast samples (EET 87503,23 interior and exterior), was previously studied by INAA yield REE data suggesting addition of LREE (except Ce) to the interior during Antarctic residence (Mittlefehldt, personal communication). The exterior/interior ratio for Ce, 1.1, is the same as the mean value for our RNAA trace element suite, 1.1+-0.5. Despite the large uncertainty of this ratio (reflecting the normally heterogeneous distribution of labile elements in eucrites--including falls [8]), results for EET 87503,23 are consistent with the interpretation that our suite of labile trace elements is unaffected by the process that affected REE other than Ce. Our elements are probably dispersed among many host sites, rather than being sited in a single host, like whitlockite. More RNAA measurements of additional eucrite pairs should be done to confirm this result. Further, a putative C3 clast exhibits no evidence for terrestrial alteration of RNAA elements, saponitic matrix, etc. even though REE have apparently been leached from basalts in its host eucrite, LEW 85300 [5]. After five years, numerous investigations confirm meteorite population differences consistent with the RNAA results. While Antarctic processes may have affected REE contents in some eucrites, at present no evidence exists for labile trace element transport into/out of interiors of meteorites of weathering types A to B. The absence of evidence is not evidence of absence, so continued vigilance remains necessary. Research supported by NASA grant NAG 9-48, aided by DOE grant DE-FG07-80ER10725J and NATO grant 0252/89. References: 1. Dennison J. E. and Lipschutz M. E. (1987) Geochim. Cosmochim. Acta 51, 741-754. 2. Lipschutz M. E. and Samuels S. M. (1991) Geochim. Cosmochim. Acta 55, 19-34. 3. Wolf S. F. and Lipschutz M. E. (1992) Lunar Planet. Sci. (abstract) XXIII, 1545-1546. 4. Wolf S. F. and Lipschutz M. E. (abstract), this conference. 5. Zolensky M. E., Hewins R. H., Mittlefehldt D. W., Lindstrom M. M., Xiao X., and Lipschutz M. E. (1992) Meteoritics, submitted. 6. Xiao X. and Lipschutz M. E. (1992) J. Geophys. Res. Planets, in press. 7. Paul R. L. and Lipschutz M. E. (1989) Z. Naturf. 44a, 978-987. 8. Paul R. L. and Lipschutz M. E. (1990) Geochim. Cosmochim. Acta 54, 3185-3195.
Rare earths and other trace elements in Apollo 14 samples.
NASA Technical Reports Server (NTRS)
Helmke, P. A.; Haskin, L. A.; Korotev, R. L.; Ziege, K. E.
1972-01-01
REE and other trace elements have been determined in igneous rocks 14053, 14072, and 14310, in breccias 14063 and 14313, and in fines 14163. All materials analyzed have typical depletions of Eu except for feldspar fragments from the breccias and igneous fragments from 14063. Igneous rocks 14072 and 14053 have REE concentrations very similar to Apollo 12 basalts; 14310 has the highest REE concentrations yet observed for a large fragment of lunar basalt. The effects of crystallization of a basaltic liquid as a closed system on the concentrations of Sm and Eu in feldspar are considered. Small anorthositic fragments may have originated by simple crystallization from very highly differentiated basalt (KREEP) or by closed-system crystallization in a less differentiated starting material. Application of independent models of igneous differentiation to Sm and Eu in massive anorthosite 15415 and to Sm and Eu in lunar basalts suggests a common starting material with a ratio of concentrations of Sm and Eu about the same as that in chondrites and with concentrations of those elements about 15 times enriched over chondrites.
Rare-earth element fractionation in uranium ore and its U(VI) alteration minerals
Balboni, Enrica; Spano, T; Cook, N; ...
2017-10-20
We developed a cation exchange chromatography method employing sulfonated polysterene cation resin (DOWEX AG50-X8) in order to separate rare-earth elements (REEs) from uranium-rich materials. The chemical separation scheme is designed to reduce matrix effects and consequently yield enhanced ionization efficiencies for concentration determinations of REEs without significant fractionation using solution mode-inductively coupled plasma mass spectrometry (ICP-MS) analysis. This method was then applied to determine REE abundances in four uraninite (ideally UO 2) samples and their associated U(VI) alteration minerals. In three of the samples analyzed, the concentration of REEs for primary uraninite are higher than those for their corresponding secondarymore » uranium alteration phases. The results for U(VI) alteration minerals of two samples indicate enrichment of the light REEs (LREEs) over the heavy REEs (HREEs). This differential mobilization is attributed to differences in the mineralogical composition of the U(VI) alteration. There is a lack of fractionation of the LREEs in the uraninite alteration rind that is composed of U(VI) minerals containing Ca 2+ as the interlayer cation (uranophane and bequerelite); contrarily, U(VI) alteration minerals containing K + and Pb 2+ as interlayer cations (fourmarierite, dumontite) indicate fractionation (enrichment) of the LREEs. Our results have implications for nuclear forensic analyses since a comparison is reported between the REE abundances for the CUP-2 (processed uranium ore) certified reference material and previously determined values for uranium ore concentrate (UOC) produced from the same U deposit (Blind River/Elliott Lake, Canada). UOCs represent the most common form of interdicted nuclear material and consequently is material frequently targeted for forensic analysis. The comparison reveals similar chondrite normalized REE signatures but variable absolute abundances. Based on the results reported here, the latter may be attributed to the differing REE abundances between primary ore and associated alteration phases, and/or is related to varying fabrication processes adopted during production of UOC.« less
Rare-earth element fractionation in uranium ore and its U(VI) alteration minerals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balboni, Enrica; Spano, T; Cook, N
We developed a cation exchange chromatography method employing sulfonated polysterene cation resin (DOWEX AG50-X8) in order to separate rare-earth elements (REEs) from uranium-rich materials. The chemical separation scheme is designed to reduce matrix effects and consequently yield enhanced ionization efficiencies for concentration determinations of REEs without significant fractionation using solution mode-inductively coupled plasma mass spectrometry (ICP-MS) analysis. This method was then applied to determine REE abundances in four uraninite (ideally UO 2) samples and their associated U(VI) alteration minerals. In three of the samples analyzed, the concentration of REEs for primary uraninite are higher than those for their corresponding secondarymore » uranium alteration phases. The results for U(VI) alteration minerals of two samples indicate enrichment of the light REEs (LREEs) over the heavy REEs (HREEs). This differential mobilization is attributed to differences in the mineralogical composition of the U(VI) alteration. There is a lack of fractionation of the LREEs in the uraninite alteration rind that is composed of U(VI) minerals containing Ca 2+ as the interlayer cation (uranophane and bequerelite); contrarily, U(VI) alteration minerals containing K + and Pb 2+ as interlayer cations (fourmarierite, dumontite) indicate fractionation (enrichment) of the LREEs. Our results have implications for nuclear forensic analyses since a comparison is reported between the REE abundances for the CUP-2 (processed uranium ore) certified reference material and previously determined values for uranium ore concentrate (UOC) produced from the same U deposit (Blind River/Elliott Lake, Canada). UOCs represent the most common form of interdicted nuclear material and consequently is material frequently targeted for forensic analysis. The comparison reveals similar chondrite normalized REE signatures but variable absolute abundances. Based on the results reported here, the latter may be attributed to the differing REE abundances between primary ore and associated alteration phases, and/or is related to varying fabrication processes adopted during production of UOC.« less
NASA Astrophysics Data System (ADS)
Wang, Shuhong; Zhang, Nan; Chen, Han; Li, Liang; Yan, Wen
2014-10-01
The grain size as well as some major and trace elements, including rare earth element (REE), for 273 surface sediment samples collected from the continental shelf of the northern South China Sea were analyzed in this study. The sediment types are mainly sandy silt and silt, making up 60% of the whole samples, and secondly are mud, sandy mud, muddy sand and silty sand, making up 28% of the whole samples, based on grain-size in which the Folk's classification was used. The total REE content (ΣREE) show a wide variation from 21 ppm to 244 ppm with an average value of 155 ppm, which similar to the average ΣREE of the China loess, but much different from that in deep-sea clay, showing a significant terrigenous succession. The REE contents in different sediment types vary greatly, mainly enriching in silt, sandy silt, mud and sandy mud. The REE distribution contours parallel to the coastal, presenting like strips and their contents gradually reduce with increasing distance from the coast. The high content of the western Pearl River Mouth, Shang/Xiachuan Islands and Hailing Bay might be regarded to the coastal current developed from the east to the west along to the Pearl River Mouth in the northern South China Sea. But the chondrite-normalized REE patterns in various sediment types have no difference, basically same as those of coastal rivers and upper crust. They all show relative enrichments in light rare earth element (LREE), noticeable negative Eu anomaly and no Ce anomaly, indicating that those sediments are terrigenous sediments and from the same source region. Further analysis suggest that the sedimentary environment in the study area is relatively stable and granite widely distributed in the South China mainland is the main source of REE, which are transported mainly by the Pearl River. The late diagenesis has little effect on the REE.
Whitney, P.R.; Olmsted, J.F.
1998-01-01
Wollastonite ores and garnet-pyroxene skarns in the Willsboro-Lewis district, New York, USA were formed in a complex hydrothermal system associated with the emplacement of a large anorthosite pluton. Contact-metamorphic marbles were replaced by wollastonite, garnet, and clinopyroxene during infiltration metasomatism involving large volumes of water of chiefly meteoric origin. Rare earth elements (REE) in these rocks show large departures from the protolith REE distribution, indicative of substantial REE mobility. Three types of chondrite-normalized REE distribution patterns are present. The most common, found in ores and skarns containing andradite-rich garnet, is convex-up in the light REE (LREE) with a maximum at Pr and a positive Eu anomaly. Europium anomalies and Pr/Yb ratios are correlated with X(Ad) in garnet. This pattern (type C) results from uptake of REE from hydrothermal fluids by growing crystals of calcsilicate minerals, principally andradite, with amounts of LREE controlled by the difference in ionic radius between Ca++ and REE3+ in garnet X sites. The Eu anomaly results either from prior interaction of the fluids with plagioclase-rich, Eu-positive anorthositic rocks in and near the ore zone, or by enrichment of divalent Eu on growth surfaces of garnet followed by entrapment, or both. Relative enrichment in heavy REE (type H) occurs in ores and skarn where calcsilicates, including grossularitic garnet, in contact-metamorphic marble have been concentrated by dissolution of calcite. In most cases a negative Eu anomaly is inherited from the marble protolith. Skarns containing titanite and apatite exhibit high total REE, relative light REE enrichment, and negative Eu anomalies (type L). These appear to be intrusive igneous rocks (ferrodiorites or anorthositic gabbros) that have been converted to skarn by Ca metasomatism. REE, sequestered in titanite, apatite, and garnet, preserve the approximate REE distribution pattern of the igneous protolith. Post-ore granulite facies metamorphism homogenized zoned mineral grains without causing complete intergranular reequilibration and does not appear to have significantly affected the whole-rock REE distributions. These results demonstrate that extensive REE metasomatism can occur in hydrothermal systems at shallow to intermediate depths and that REE geochemistry may be useful in discerning the origin of skarns and skarn-related ore deposits.
Trace Element Abundances in Refractory Inclusions from Antarctic Micrometeorites
NASA Astrophysics Data System (ADS)
Greshake, A.; Hoppe, P.; Bischoff, A.
1995-09-01
Refractory inclusions are charcteristic components in carbonaceous chondrites. Therefore, refractory inclusions found in micrometeorites can give important hints about the relationship between micrometeorites and carbonaceous chondrites. So far, only a few inclusions were found in micrometeorites [1-4]. In this study we report the first trace element analysis of perovskite and fassaite found in micrometeorites. We studied two Antarctic micrometeorites by ASEM, EMP, and SIMS. The first particle is 120 micrometers in size mainly consisting of a fine-grained matrix of dehydrated former phyllosilikates that enclose a 5 micrometers sized perovskite [5]. The perovskite is surrounded by a 1 micrometers thick rim of ilmenite and contains up to 1.3 wt% FeO as determined by EMP. The trace element abundances were determined by SIMS following the procedure described by [6]. The REE pattern of the perovskite is shown in Fig. 1. The pattern is closely related to the Group II pattern with its typical depletion of the more refractory REEs [7]. It is also very similar to the REE abundances of perovskite from Murchison (CM) [8] and CH-chondrites [9]. This may indicate a relationship between this micrometeorite and components in carbonaceous chondrites. The second micrometeorite is 100 micrometers in size consisting of a fine-grained (20 micrometers across) and a coarse-grained (80 micrometers across) area. Both areas contain fassaite with different chemical compositions. The particle was previously analyzed by Lindstrom and Kloeck [1] without knowing the mineralogy. We carried out SIMS analysis of each area of the micrometeorite separately. The TEE patterns of these two areas are similar and show in general a Group III pattern (20-30x CI) in which the more refractory REEs are not fractionated. The negative Eu anomaly is much more apparent in the coarse-grained area and no Yb anomaly is apparent in one of the areas. This is the first CAI of a micrometeorite showing a Group III REE pattern. References: [1] Lindstrom D. J. and Kloeck W. (1992) Meteoritics, 27, 250. [2] Kurat G. et al. (1994) Meteoritics, 29, 487-488. [3] Kurat G. et al. (1995) LPS XXV, 763-764. [4] Hoppe P. et al. (1995) LPS XXVI, 623-624. [5] Beckerling W. et al. (1992) Meteoritics, 27, 200-201. [6] Zinner E. and Crozaz G. (1986) Int. J. Mass. Spectr. Ion Processes, 69, 17-38. [7] Martin P. and Mason B. (1974) Nature, 249, 333-334. [8] Ireland T. et al. (1988) GCA, 52, 2841-2854. [9] Weber et al. (1995) GCA, 59, 803-823.
NASA Astrophysics Data System (ADS)
Jogo, Kaori; Ito, Motoo; Nakamura, Tomoki; Kobayashi, Sachio; Lee, Jong Ik
2018-03-01
We measured the abundances of Sr and rare earth elements (REEs) in the matrices of five CV3 carbonaceous chondrites: Meteorite Hills (MET) 00430, MET 01070, La Paz ice field (LAP) 02206, Asuka (A) 881317 and Roberts Massif (RBT) 04143. In the MET 00430 and MET 01074 matrices, the Sr/CI and light REE (LREE, La-Nd)/CI ratios positively correlate with the amounts of Ca-rich secondary minerals, which formed during aqueous alteration in the CV3 chondrite parent body. In contrast, in the LAP 02206 and RBT 04143 matrices, although the Sr/CI ratios correlate with the amounts of Ca-rich secondary minerals, the LREE/CI ratios vary independently from the amounts of any secondary minerals. This suggests that the LREE/CI ratios in these matrices were produced prior to the parent body alteration, probably in the solar nebula. The LREE/CI ratios of the LAP 02206 and RBT 04143 matrices reveal the mixing process of matrix minerals prior to the accretion of the CV3 chondrite parent body. The mixing degrees of matrix minerals might be different between these two matrices. Because solid materials would be mixed over time according to the radial diffusion model of a turbulent disk, the matrix minerals consisting of LAP 02206 and RBT 04143 matrices might be incorporated into their parent body with different timing.
NASA Astrophysics Data System (ADS)
Nyobe, Jules Mbanga; Sababa, Elisé; Bayiga, Elie Constantin; Ndjigui, Paul-Désiré
2018-03-01
This paper is focused on the morphological, mineralogical, and geochemical features of alluvial sediments from the Neoproterozoic Pan-African belt to explore rutile. The fine-grained sediments, which contain a large proportion of rutile, are made up of quartz, rutile, zircon, brookite, tourmaline, andalusite, and kyanite. The high SiO2 and TiO2 contents highlight the predominance of silica minerals in the alluvia from the humid tropical zone. La/Sc, La/Co, Th/Sc and Zr/Cr ratios reflect the contribution of felsic and mafic sources. The highest Ti contents, which occur at the outlet of the Lobo watershed, indicate the resistance of rutile. The REE distribution could be linked to the heavy mineral sorting. The low (La/Yb)N ratios and high Zr contents are attributed to the high proportion of zircon. Chondrite-normalized REE patterns indicate high felsic sources, which are the regional rocks. Ultimately, the Yaoundé Group constitutes a favorable potential target for further rutile exploration.
Excess europium content in Precambrian sedimentary rocks and continental evolution
NASA Technical Reports Server (NTRS)
Jakes, P.; Taylor, S. R.
1974-01-01
It is proposed that the europium excess in Precambrian sedimentary rocks, relative to those of younger age, is derived from volcanic rocks of ancient island arcs, which were the source materials for the sediments. Precambrian sedimentary rocks and present-day volcanic rocks of island arcs have similar REE patterns, total REE abundances, and excess Eu, relative to the North American shale composite. The present upper crustal REE pattern, as exemplified by that of sediments, is depleted in Eu, relative to chondrites. This depletion is considered to be a consequence of development of a granodioritic upper crust by partial melting in the lower crust, which selectively retains europium.
Petrology of Ortsog-Uul peridotite-gabbro massif in Western Mongolia
NASA Astrophysics Data System (ADS)
Shapovalova, M.; Tolstykh, N.; Shelepaev, R.; Cherdantseva, M.
2017-12-01
The Ortsog-Uul mafic-ultramafic massif of Western Mongolia is located in a tectonic block with overturned bedding. The massif hosts two intrusions: a rhythmically-layered peridotite-gabbro association (Intrusion 1) and massive Bt-bearing amphibole-olivine gabbro (Intrusion 2). Intrusions 1 and 2 have different petrology features. Early Intrusion 1 (278±2.5Ma) is characterized by lower concentrations of alkalis, titanium and phosphorus than late Intrusion 2 (272±2Ma). The chondrite-normalized REE and primitive mantle-normalized rare elements patterns of Ortsog-Uul intrusions have similar curves of elements distribution. However, Intrusion 2 is characterized higher contents of REE and rare elements. High concentrations of incompatible elements are indicative of strong fractionation process. It has been suggested that Intrusions 1 and 2 derived from compositionally different parental melts. Model calculations (COMAGMAT-3.57) show that parental melts of two intrusions were close to high-Mg picrobasaltic magmas. The concentration of MgO in melt is 16.21 (Intrusion 1) and 16.17 (Intrusion 2). Isotopic data of Ortsog-Uul magmatic rocks exhibit different values of εNd (positive and negative) for Intrusion 1 and 2, respectively.
Chemical composition of HAL, an isotopically-unusual Allende inclusion
NASA Astrophysics Data System (ADS)
Davis, A. M.; Tanaka, T.; Grossman, L.; Lee, T.; Wasserburg, G. J.
1982-09-01
Samples of hibonite, black rim, and portions of friable rim from an unusual Allende inclusion, named HAL, were analyzed by INAA and RNAA for 37 major, minor, and trace elements. An unusually low amount of Ce was found in HAL, although it otherwise was highly enriched in REE compared to C1 chondrites. HAL is also depleted in Sr, Ba, U, V, Ru, Os, and Ir relative to other refractory elements. It is concluded that the distribution of REE between hibonite and rims was established when hibonite and other refractory minerals were removed at slightly different temperatures from a hot, oxidizing gas in which they previously coexisted as separate grains. Possible locations for the chemical and mass dependent isotopic fractionation are considered to be in ejecta from the low temperature helium-burning zone of a supernova and in the locally oxidizing environment generated by evaporation of interstellar grains of near-chondritic chemical composition.
NASA Technical Reports Server (NTRS)
Larimer, John W.; Ganapathy, R.
1987-01-01
The trace element distribution in oldhamite (CaS) extracted from enstatite chondrites was determined by INAA. Prior to extraction, the petrologic setting of the grains was studied microscopically, and their minor element contents determined by microprobe analysis; samples that displayed a wide range of minor element contents were selected for detailed elementary analysis. Those samples of CaS suspected to be more primitive on the basis of their minor element and petrologic siting contain the entire inventory of the host meteorite's light REE (LREE) and Eu, plus 30-50 percent of the heavy-REE inventory. In less primitive samples, the LREE are less enriched although Eu remains highly concentrated. Several other elements, including lithophiles and chalcophiles, are most enriched in the most primitive CaS. It is suggested that oldhamite played a key role in the redistribution of these elements during the metamorphism and evolution of enstatite-rich material.
Chemical composition of HAL, an isotopically-unusual Allende inclusion
NASA Technical Reports Server (NTRS)
Davis, A. M.; Tanaka, T.; Grossman, L.; Lee, T.; Wasserburg, G. J.
1982-01-01
Samples of hibonite, black rim, and portions of friable rim from an unusual Allende inclusion, named HAL, were analyzed by INAA and RNAA for 37 major, minor, and trace elements. An unusually low amount of Ce was found in HAL, although it otherwise was highly enriched in REE compared to C1 chondrites. HAL is also depleted in Sr, Ba, U, V, Ru, Os, and Ir relative to other refractory elements. It is concluded that the distribution of REE between hibonite and rims was established when hibonite and other refractory minerals were removed at slightly different temperatures from a hot, oxidizing gas in which they previously coexisted as separate grains. Possible locations for the chemical and mass dependent isotopic fractionation are considered to be in ejecta from the low temperature helium-burning zone of a supernova and in the locally oxidizing environment generated by evaporation of interstellar grains of near-chondritic chemical composition.
Chemistry of the Apollo 11 highland component
NASA Technical Reports Server (NTRS)
Laul, J. C.; Papike, J. J.; Simon, S. B.; Shearer, C. K.
1983-01-01
Thirty-eight Apollo 11 lunar highland fragments from coarse fines 10085 have been subjected to petrologic and chemical study. Six major chemical groups are identified: (a) high-K KREEP; (b) anorthosite with a 10X chondrite positive Eu anomaly and anorthosite with 30X positive Eu anomaly; (c) ANT; (d) LKFM; (e) anorthositic gabbro with no Eu anomaly, with a positive Eu anomaly, and with a negative Eu anomaly; and (f) dominant Highland component, 2X-10X chondrite with a positive 10X-14X Eu anomaly. Newly recognized groups are presented based on the REE patterns: (a) ANT group with 5X La and a 22X positive Eu anomaly; (b) 10X flat with 14X positive Eu anomaly; and (c) 2-3X flat with a 10X positive Eu anomaly. The highland suite is very low in K and REE, and is overall quite similar to the Apollo 16 suite.
200 million years of komatiite evolution in the Barberton Greenstone Belt, South Africa
NASA Astrophysics Data System (ADS)
Christoph, Robin; Arndt, Nick; Byerly, Gary; Puchtel, Igor; Blichert-Toft, Janne; Wilson, Allan
2010-05-01
Komatiites with complex and contrasting chemical compositions erupted throughout the 200 m.y. history of the Barberton greenstone belt in South Africa. The oldest well-preserved examples, from the ca. 3.5 Ga Komati Formation, display a range of volcanic structures, from thin differentiated spinifex-textured flows to much thicker flows or sills composed mainly of massive olivine cumulate. Pyroxene spinifex layers that cap the latter units indicate crystallization from komatiitic basaltic liquids. Although some rare, unusually coarse, vesicular, completely serpentinized units may have contained a small fraction of water, most of the flows are essentially anhydrous. Two geochemical types are present in the Komati Fm; Al-depleted komatiites with moderately enriched LREE and depleted HREE, and Al-undepleted komatiites with near-chondritic REE ratios. Komatiites from the 3.2 Ga Mendon and Weltevreden Fm display two patterns -Al-undepleted with near-chondritic REE ratios and Al-enriched with extremely low REE concentrations and marked depletion of LREE. In many units, both geochemical types are present. The Al- and HREE-depletion of Komati Fm magmas indicates that residual garnet was retained in the mantle source and their high MgO contents require that melting was at great depth. Up to 30% batch melting at 300 km depth is indicated; the high percentage of batch melting is possible because melt is neutrally buoyant at these depths. The Al-undepleted to enrichedmagmas formed by up to 50% cumulative fractional melting that terminated at shallower depth. The. presence of both types inseveral units points to complex dynamics in the mantle plumes that yielded these magmas. Epsilon Nd in all Barbertonkomatiites ranges from 0 to +2; epsilon Hf from +2 to +7; gamma Os from 0 to +3.7. The combination of fractionated REE, positive epsilon Nd and Hf, and near-chondritic Os in certain komatiites is attributed to differentiation of the komatiite sourcevery early in Earth history followed by fractionation during komatiite formation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spitz, A.H.; Boynton, W.V.
Six ureilites (ALHA77257, ALHA81101, ALH82130, PCA82506, Kanna, and Novo Urei) were analyzed using neutron activation analysis for Ca, Sc, Cr, Mn, Fe, Co, Ni, Zn, Ga, REE, W, Re, Os, Ir, and Au. The authors examined bulk samples as well as acid-treated samples. In bulk samples the refractory siderophiles' concentrations range from approximately 0.1 to 1.0 times CI chondrites while the volatile siderophiles' concentrations range from approximately 0.1 to 1.0 times CI chondrites while the volatile siderophiles range from about 0.07 to 0.3 times CI chondrites. Rare earth elements (REEs) in ureilites are quite depleted and display light and heavymore » rare earth enrichments. The Antarctic meteorites display either much less pronounced v-shaped patterns or no enrichment in the light rare earths at all. In terms of the new trace-element results, ureilites do not fall into the coherent groups that other workers have defined by chemical or petrographic characteristics. Trace elements do provide additional constraints on the models for the petrogenesis of ureilites. In particular, the siderophile element abundances call for simplified models of chemical processing rather than the complex, multistage processing called for in silicate fractionation models. REE concentrations, on the other hand, imply multistage processing to produce the ureilites. None of the ureilite petrogenesis models extant account for the trace element data. These new data and the considerations of them with respect to the proposed ureilite petrogenesis models indicate that the direction of modeling should be toward contemplation of mixtures and how the components the authors observe in ureilites behave under such conditions.« less
NASA Astrophysics Data System (ADS)
Beermann, Oliver; Garbe-Schönberg, Dieter; Bach, Wolfgang; Holzheid, Astrid
2017-01-01
High metal and rare-earth element (REE) concentrations with unusual ('atypical') normalized REE patterns are documented in fluids from active hydrothermal vent fields on the Mid-Atlantic Ridge, 5°S and the East Scotia Ridge. Those fluids show relative enrichment of middle heavy REEs and almost no Eu anomalies in chondrite-normalized patterns. To understand the processes that produce such atypical REE patterns we ran a series of experiments, in which natural bottom seawater or aqueous solutions (NaCl, NaCl-MgCl2, or NaCl-CaCl2) were reacted with gabbro and gabbro mineral assemblages from 300 to 475 °C and 40 and 100 MPa. These P-T conditions are representative for water-rock interactions in hydrothermal root and discharge zones. Fluid flux variability and kinetics were addressed in the experiments by varying the water-to-rock mass ratio (w/r) from 0.5-10 and using different run durations from 3-720 h. Only seawater and synthetic MgCl2-bearing fluid mobilized significant amounts of REEs, Si, Ca, Fe, and Mn from gabbro, from clinopyroxene, and from plagioclase. At 425 °C and 40 MPa, fluids were initially acidic with pH (25 °C) of ∼2 increasing to values between ∼4 and 7 upon progressing reactions. Rare earth element and Fe contents peaked within 3-6 h after interaction with gabbroic mineral grains (125-500 μm) at w/r of 5 (REEs) and 2-5 (Fe) but decreased with continuing reaction without strong REE fractionation. Most of the REEs that were leached from primary minerals and dissolved in the fluids early became redeposited into solid reaction products after 720 h. Contents of dissolved SiO2 were pressure-dependent, being about twofold higher at 100 MPa than at 40 MPa (425 °C) and were below quartz saturation with gabbro and clinopyroxene as solid starting material and close to quartz saturation with plagioclase reactant. However, Si in fluids from the rock-dominated experiments at 100 MPa with gabbro (w/r 0.5-1) dropped to very low contents. A concomitant decrease in chlorinity suggests that these changes may be due to the breakdown of olivine and the formation of serpentine and Fe-hydroxy chlorides. Regardless of the starting solid reactants, fluid REE patterns were dominantly controlled by w/r. Atypical fluid REE patterns and high fluid REE contents were obtained at high w/r (⩾5). Whereas typical REE patterns known from many mid-ocean ridge vent fluids, showing relative enrichments of light REEs and a positive Eu anomaly, were obtained at low w/r of 0.5-1. Our results hence clearly show that REE contents and patterns of vent fluids are sensitive to variations in the w/r.
Rare earth element abundances in presolar SiC
NASA Astrophysics Data System (ADS)
Ireland, T. R.; Ávila, J. N.; Lugaro, M.; Cristallo, S.; Holden, P.; Lanc, P.; Nittler, L.; Alexander, C. M. O'D.; Gyngard, F.; Amari, S.
2018-01-01
Individual isotope abundances of Ba, lanthanides of the rare earth element (REE) group, and Hf have been determined in bulk samples of fine-grained silicon carbide (SiC) from the Murchison CM2 chondrite. The analytical protocol involved secondary ion mass spectrometry with combined high mass resolution and energy filtering to exclude REE oxide isobars and Si-C-O clusters from the peaks of interest. Relative sensitivity factors were determined through analysis of NIST SRM reference glasses (610 and 612) as well as a trace-element enriched SiC ceramic. When normalised to chondrite abundances, the presolar SiC REE pattern shows significant deficits at Eu and Yb, which are the most volatile of the REE. The pattern is very similar to that observed for Group III refractory inclusions. The SiC abundances were also normalised to s-process model predictions for the envelope compositions of low-mass (1.5-3 M⊙) AGB stars with close-to-solar metallicities (Z = 0.014 and 0.02). The overall trace element abundances (excluding Eu and Yb) appear consistent with the predicted s-process patterns. The depletions of Eu and Yb suggest that these elements remained in the gas phase during the condensation of SiC. The lack of depletion in some other moderately refractory elements (like Ba), and the presence of volatile elements (e.g. Xe) indicates that these elements were incorporated into SiC by other mechanisms, most likely ion implantation.
NASA Astrophysics Data System (ADS)
Shchukina, Elena; Alexei, Agashev; Nikolai, Pokhilenko
2015-04-01
150 garnet xenocrysts from V. Grib kimberlite pipe were analyzed for major and trace elements compositions. 70 % of garnet belong to lherzolite field; 14 % - megacrysts and pyroxenites; 11 % - eclogites; 4 % - harzburgite; 1 % (1- wehrlite defined by Sobolev (1973). Harzburgite garnets: sinusoidal REE patterns Smn/Ern > 5 (5.2 - 19.8). low Y (0.5 - 3.9 ppm), Zr (1.1 - 44.6 ppm), Ti (54 - 1322 ppm). Wehrlite garnetd: close to sinusoidal REE patterns, Smn/Ern - 1.8. Megacrysts and pyroxenites garnets: normal REE patterns Smn/Ern < 1 (0.2 - 0.6), high TiO2 (0.9 - 1.3 wt %). Lherzolite garnets 70 % show four groups of REE patterns similar to peridotite xenoliths (Shchukina et al., 2013, 2015). 1-st contains MREE at С1 level, Sm/Ern - 0.03, La/Ybn - 0.002. increasing La -Yb range, low Y, Zr, Ti indicating residual nature. 2-nd: MREE at 2 - 13 chondrite units, Smn/Ern (0.16 - 0.98), La/Ybn - 0.001 - 0.040 and flat pattern from MREE to HREE. 3-rd -MREE at 5 - 14 chondrite units, Sm/Ern > 1 (1.05 - 4.81) La/Ybn - 0.010-0.051 increasing an hump at MREE decreasing to HREE. 4-th: sinusoidal REE, Sm/Ern 4.2 - 27.2. and harzburgite Y, Zr, Ti . Average Cr2O3 content increases from 2-nd to the 3-rd group (3.3 to 5.7 wt%) and 4th (7.9 wt %). Average Y/Zr decreases from 2-nd (0.6) to 3rd (0.2) and 4th group (0.08). REE and Y, Zr, Ti indicate the metasomatic origin of garnets of 2, 3. 4 groups. Modeling of TREfor equilibrated melts and fractional crystallization 2nd group close to Turyino field basalts and 3-rd - to Izmozero field picrites of Arkhangelsk diamondiferous province (ADP). Basing on geochemical data of garnet xenocrysts and garnets and clinopyroxenes in peridotites (Shchukina et al., 2013, 2015) we suppose at least 3 stage of high-temperature metasomatic enrichment. 1st stage - is enrichment of residual garnets (found only in peridotite garnets) in LREE by the influence of carbonatite melt close to the Mela field carbonatites of ADP. REE patterns in clinopyroxenes from these peridotite samples and the geochemical modeling results show that clinopyroxenes are also in equilibrium with carbonatite melt. Formation of garnet with the sinusoidal REE pattern could also occurs during carbonatite stage of mantle metasomatism. The 2- nd stage - is formation of garnets of group 3 from the melt of composition close to Izhmozero field picrites. Garnets of group 3 are of lherzolite paragenesis on the content of CaO and Cr2O3, but their REE patterns are close to sinusoidal patterns. The final stage of mantle metasomatism is the formation of garnets of group 2 exposed to the melt of composition close to Turyino field basalts. Garnets of group 2 have low Cr2O3 that indicate the significant amounts of basaltic component in the resulting melt composition or direct crystallization from the melt in case of most low-chromium garnets and megacrysts garnets. Modeling results show that the formation of the garnets of group 2 in peridotites associated with crystallization of the clinopyroxenes. At this stage of mantle metasomatism garnets have typical major and trace element lherzolite composition.
NASA Astrophysics Data System (ADS)
Siegel, Karin; Williams-Jones, Anthony E.; van Hinsberg, Vincent J.
2017-09-01
Major and trace element compositions of amphibole in igneous environments commonly reflect evolving magma compositions. In this study, we use the amphibole-group minerals from the Strange Lake, REE-enriched peralkaline granitic pluton to gain insights into the evolution of the magma. This 1240 Ma old pluton consists of two main intrusive facies, an early hypersolvus granite, which occurs as separate northern and southern intrusions, and a more evolved transsolvus granite. In the hypersolvus granite the amphibole is a late interstitial phase, whereas in the transsolvus granite, it is present as phenocrysts. The amphibole compositions vary from calcic-sodic (ferro-ferri-katophorite) in the southern hypersolvus granite to sodic (arfvedsonite, ferro-ferri-leakeite) in the other, more evolved granitic units. High Na, Si, Li, and low Al and Ca concentrations in the amphibole phenocrysts of the transsolvus granite indicate formation from a more evolved magma compared to the hypersolvus granite, despite the fact that these crystals formed early. We interpret the increasing Fe3+/Fe2+ ratios in the amphibole of the hypersolvus granite to reflect crystal chemical effects (Na/Ca-ratio) and increasingly oxidizing conditions in the magma, whereas in the phenocrysts of the transsolvus granite, the increasing ratio was the product of increasing proportions of F- and OH- in the melt. The amphiboles of all the granite units have elevated Nb, Zr, Hf and REE concentrations compared to the bulk rock, suggesting that these elements are compatible in amphibole. By contrast the much lower Ti concentration was due to saturation of the magma in sodium-titanosilicates. The amphibole REE concentrations vary greatly among the granite units. Amphibole of the southern and northern hypersolvus granite contains 0.16 and 0.07 wt.% ∑ REE + Y, on average, respectively, and in the transsolvus granite, the average ∑ REE content is only 0.01 wt.%, despite the more evolved nature of its host transsolvus granite. We intrepret this compositional difference to be due to the fact that the latter represents phenocrysts, which crystallized early, whereas the hypersolvus arfvedsonite is a late interstitial phase. Chondrite-normalized REE profiles emphasise the wide range in LREE-, and the narrow range in HREE-concentrations of the amphiboles. The variations in the LREE-profiles reflect the variable crystallization of primary LREE-bearing phases, including monazite-(Ce), pyrochlore group minerals and gagarinite-(Ce), prior to or contemporaneous with the amphibole, as well as the exsolution of a LREE-rich fluoride melt. The LREE are incompatible in the amphibole structure (apparent D < 0.01) and are preferably accommodated by the octahedral C-site, whereas the HREE occupy the B-site. The chondrite-normalized HREE profiles are steep and display an increasing relative enrichment that culminates in compatible behavior for Yb and Lu (apparent D > 1). Owing to their small ionic radius and their compatibility with the amphibole structure, HREE concentrations were more controlled by partitioning (crystal chemical effects) than by the concentrations in the corresponding magma. Large proportions of the bulk HREE content (up to 70%) reside in the amphibole, and their later release through hydrothermal replacement helps to explain the extreme and unusual HREE enrichment of the Strange Lake pluton.
The Chicxulub impact at the K-Pg boundary - search for traces of the projectile
NASA Astrophysics Data System (ADS)
Deutsch, A.
2012-04-01
One of the most interesting problems in the context of the end-Cretaceous Chicxulub impact is the question after the whererabouts of the main mass of the projectile. The nature of this >10 km-sized Chicxulub projectile was constrained by an anomaly in the chromium isotope 54 in the K-Pg deposit at Stevens Klint, Denmark, to a carbonaceous chondrite of type CM2 [1]. About 1.5 % of the estimated mass of the projectile has been detected world-wide in the K-Pg boundary layer; mainly in the form of platinum group elements (PGE) as well as other siderophile elements (Ni, Co ... ). A contamination by or even a major contribution of other "projectile" elements to the K-Pg event bed was rarely proposed. The few examples in the literature (cf. compilation in [2, 3]) used rare earth elements (REE) distribution patterns that are slightly inconsistent with REE patterns typical for the upper continental crust (UCC). Ejecta consisting of UCC target rocks is expected to form the overwhelming mass of the ejecta. In most K-Pg layers, however, the ejecta is diluted or even totally masked by a component of more local origin and with features of high-energy deposition mechanisms. Numerical models [4] indicate a deposition of >500km3 projectile material, corresponding to >2 x 10exp9 tons of mainly silica, iron, and magnesium in the K-Pg event bed. Detecting the "meteoritic" origin of these major elements, however, in a matrix of siliceous detritus, is practically impossible. Recent LA-ICP-MS analyses show that siliceous impact spherules - hydrated glass or altered to chlorite - in the Chicxulub event bed at various locations (e.g., Shell Creek, La Lajilla, La Popa) have REE patterns that are flat and un-fractionated, corresponding quite well to a typical CI-pattern. The REE abundances are chondritic to sub-chondritic. Mixing calculations indicate that the maximum REE contribution of UCC material to the REE budget of these spherules is on the order of 2 %, but usually much less. These flat REE patterns cannot originate from any known alteration process; they truly reflect a "meteoritic" component in the spherules. Accepting this fact, a certain amount of the siliceous host material (i.e., the spherules) must consist also of projectile material. Depending on the sampling site, the spherules with the flat REE distribution patterns amount to between 10 and ~70 vol% of the Chicxulub event bed. The widespread occurrence of this projectile matter in the K-Pg event bed reconciles observations with impact models [4]. Ref. [1] Trinquier A. et al. (2006) EPSL 241, 780-788. [2] Smit J. (1999) Ann. Rev. Earth Planet. Sci. 27, 75-113. [3] Schulte P. et al. (2010) Science 327, 1214-1218. [4] Artemieva N. and Morgan J. (2009) Icarus 201, 768-780.
NASA Astrophysics Data System (ADS)
Censi, P.; Raso, M.; Yechieli, Y.; Ginat, H.; Saiano, F.; Zuddas, P.; Brusca, L.; D'Alessandro, W.; Inguaggiato, C.
2017-03-01
Along the Jordan Valley-Dead Sea Fault area several natural waters in springs, wells, and catchments occur. The chemical-physical characters of the studied waters allowed for the first time the investigation of the Zr and Hf geochemical behavior, apart from REE, extended to a wide range of Eh, temperature, salinity, and pH conditions. The results of this study indicate that the dissolved Zr and Hf distribution in natural waters is strongly influenced by redox conditions since these in turn drive the deposition of Fe-oxyhydroxides or pyrite. In oxidizing waters saturated or oversaturated in Fe-oxyhydroxides (Group 1), superchondritic Zr/Hf values are measured. On the contrary, in waters where Eh < 0 values occur (Group 2), chondritic Zr/Hf values are found. Superchondritic Zr/Hf values are produced by the preferential Hf scavenging onto Fe-oxyhydroxides that is inhibited under reducing conditions consistent with the water oversaturation relative to pyrite. Redox conditions also influence the amplitude of Ce and Eu anomalies. Oxidized Group-1 waters show negative Ce anomalies related to the oxidative Ce scavenging as CeO2 onto Fe-oxyhydroxide. Reduced Group-2 waters show positive Eu anomaly values consistent with the larger Eu2+ concentration relative to Eu3+ in these waters suggested by model calculations. The higher stability of Eu2+ with respect to its trivalent neighbors along the REE series can explain the above mentioned positive Eu anomaly values. The middle-REE enrichment observed in shale-normalized REE patterns of studied waters can be ascribed to carbonate and/or gypsum dissolution.
Primitive ultrafine matrix in ordinary chondrites
NASA Technical Reports Server (NTRS)
Rambaldi, E. R.; Fredriksson, B. J.; Fredriksson, K.
1981-01-01
Ultrafine matrix material has been concentrated by sieving and filtering disaggregated samples of six ordinary chondrites of different classes. This component(s), 'Holy Smoke' (HS), is enriched in both volatile, e.g. Na, K, Zn, Sb, and Pb, as well as refractory elements, e.g. W and REE; however, the element ratios vary greatly among the different chondrites. SEM studies show that HS contains fragile crystals, differing in composition, and apparently in gross disequilibrium not only among themselves but also with the major mineral phases and consequently thermodynamic equilibration did not occur. Thus HS must have originated from impacting bodies and/or was inherent in the 'primitive' regolith. Subsequent impact brecciation and reheating appears to have altered, to varying degrees, the original composition of this ultrafine matrix material. Recent 'cosmic dust' studies may indicate that HS still exists in the solar system. Survival of such delicate material must be considered in all theories for the origin of chondrites.
Actinide abundances in ordinary chondrites
NASA Technical Reports Server (NTRS)
Hagee, B.; Bernatowicz, T. J.; Podosek, F. A.; Johnson, M. L.; Burnett, D. S.
1990-01-01
Measurements of actinide and light REE (LREE) abundances and of phosphate abundances in equilibrated ordinary chondrites were obtained and were used to define the Pu abundance in the solar system and to determine the degree of variation of actinide and LREE abundances. The results were also used to compare directly the Pu/U ratio with the earlier obtained ratio determined indirectly, as (Pu/Nd)x(Nd/U), assuming that Pu behaves chemically as a LREE. The data, combined with high-accuracy isotope-dilution data from the literature, show that the degree of gram-scale variability of the Th, U, and LREE abundances for equilibrated ordinary chondrites is a factor of 2-3 for absolute abundances and up to 50 percent for relative abundances. The observed variations are interpreted as reflecting the differences in the compositions and/or proportions of solar nebula components accreted to ordinary chondrite parent bodies.
Sedimentary provenance of Maastrichtian oil shales, Central Eastern Desert, Egypt
NASA Astrophysics Data System (ADS)
Fathy, Douaa; Wagreich, Michael; Mohamed, Ramadan S.; Zaki, Rafat
2017-04-01
Maastrichtian oil shales are distributed within the Central Eastern Desert in Egypt. In this study elemental geochemical data have been applied to investigate the probable provenance of the sedimentary detrital material of the Maastrichtian oil shale beds within the Duwi and the Dakhla formations. The Maastrichtian oil shales are characterized by the enrichment in Ca, P, Mo, Ni, Zn, U, Cr and Sr versus post-Archean Australian shales (PAAS). The chondrite-normalized patterns of the Maastrichtian oil shale samples are showing LREE enrichment, HREE depletion, slightly negative Eu anomaly, no obvious Ce anomaly and typical shale-like PAAS-normalized patterns. The total REE well correlated with Si, Al, Fe, K and Ti, suggesting that the REE of the Maastrichtian oil shales are derived from terrigenous source. Chemical weathering indices such as Chemical Index of Alteration (CIA), Chemical Proxy of Alteration (CPA) and Plagioclase Index of Alteration (PIA) indicate moderate to strong chemical weathering. We suggest that the Maastrichtian oil shale is mainly derived from first cycle rocks especially intermediate rocks without any significant inputs from recycled or mature sources. The proposed data illustrated the impact of the parent material composition on evolution of oil shale chemistry. Furthermore, the paleo-tectonic setting of the detrital source rocks for the Maastrichtian oil shale is probably related to Proterozoic continental island arcs
NASA Astrophysics Data System (ADS)
Ozturk, Sercan; Gumus, Lokman; Abdelnasser, Amr; Yalçin, Cihan; Kumral, Mustafa; Hanilçi, Nurullah
2016-04-01
This study deals with the rare earth element (REE) geochemical behavior the alteration zonesassociated with the volcanic-hosted Cu-Femineralization at the northern part of Gökçedoǧan village, Çorum-Kargi region (N Turkey) which are Dedeninyurdu, Yergen and Fındıklıyar mineralization. The study areacomprises Bekirli Formation, Saraycık Formation, Beşpınar Formation, and Ilgaz Formation. Saraycık Formation consists ofUpper Cretaceous KargıOphiolites, pelagic limestone, siltstone, chert and spilitic volcanic rocks. Fe-Cu mineralization occurred in the spiliticvolcanic rocks of Saraycık Formation representing the host rockand is related with the silicification and sericitizationalteration zones. Dedeninyurdu and Yergen mineralization zone directed nearly N75-80oEis following structural a line but Fındıklıyar mineralization zone has nearly NW direction. The ore mineralogy in these zonesinclude pyrite, chalcopyrite, covellite, hematite with malachite, goethite and a limonite as a result of oxidation. The geochemical characteristics of REE of the least altered spiliticbasalt show flat light and heavy REE with slight positive Eu- and Sr-anomalies according to their chondrite-, N-type MORB, and primitive mantle-normalized REE patterns. While the REE geochemical features of the altered rocks collected from the different alteration zones show that there are negative Eu and Sr anomalies as a result of leaching during the alteration processes.There are positive and negative correlations between K2O index with LREE and HREE, respectively. This is due to the additions of K and La during the alteration processes referring to the pervasive sericitization alteration is the responsible for the Cu-Fe mineralization at the study area. Keywords: Cu-Fe mineralization, Spilitic volcanic rocks, alteration, Rare earth elements (REE) geochemistry.
Rare Mineralogy in Alkaline Ultramafic Rocks, Western Kentucky Fluorspar District
NASA Astrophysics Data System (ADS)
Anderson, W.
2017-12-01
The alkaline ultramafic intrusive dike complex in the Western Kentucky Fluorspar District contains unusual mineralogy that was derived from mantle magma sources. Lamprophyre and peridotite petrologic types occur in the district where altered fractionated peridotites are enriched in Rare Earth Elements (REE) and some lamprophyre facies are depleted in incompatible elements. Unusual minerals in dikes, determined by petrography and X-ray diffraction, include schorlomite and andradite titanium garnets, astrophyllite, spodumene, niobium rutile, wüstite, fluoro-tetraferriphlogopite, villiaumite, molybdenite, and fluocerite, a REE-bearing fluoride fluorescent mineral. Mixing of MVT sphalerite ore fluids accompanies a mid-stage igneous alteration and intrusion event consistent with paragenetic studies. The presence of lithium in the spodumene and fluoro-tetraferriphlogopite suggests a lithium phase in the mineral fluids, and the presence of enriched REE in dikes and fluorite mineralization suggest a metasomatic event. Several of these rare minerals have never been described in the fluorspar district, and their occurrence suggests deep mantle metasomatism. Several REE-bearing fluoride minerals occur in the dikes and in other worldwide occurrences, they are usually associated with nepheline syenite and carbonatite differentiates. There is an early and late stage fluoride mineralization, which accompanied dike intrusion and was also analyzed for REE content. One fluorite group is enriched in LREE and another in MREE, which suggests a bimodal or periodic fluorite emplacement. Whole-rock elemental analysis was chondrite normalized and indicates that some of the dikes are slightly enriched in light REE and show a classic fractionation enrichment. Variations in major-element content; high titanium, niobium, and zirconium values; and high La/Yb, Zr/Y, Zr/Hf, and Nb/Ta ratios suggest metasomatized lithospheric-asthenospheric mantle-sourced intrusions. The high La/Yb ratios in some dikes in the titanium garnet facies suggest a magma melt trend toward the carbonation phase of a fractionated peridotite parent magma.
NASA Astrophysics Data System (ADS)
Hiyagon, H.; Sugiura, N.; Kita, N. T.; Kimura, M.; Morishita, Y.; Takehana, Y.
2016-08-01
In order to clarify the origin of the eclogitic clasts found in the NWA801 (CR2) chondrite (Kimura et al., 2013), especially, that of the high pressure and temperature (P-T) condition (∼3 GPa and ∼1000 °C), we conducted ion microprobe analyses of oxygen isotopes and rare earth element (REE) abundances in the clasts. Oxygen isotopic compositions of the graphite-bearing lithology (GBL) and graphite-free lithology (GFL) show a slope ∼0.6 correlation slightly below the CR-CH-CB chondrites field in the O three-isotope-diagram, with a large variation for the former and almost homogeneous composition for the latter. The average REE abundances of the two lithologies show almost unfractionated patterns. Based on these newly obtained data, as well as mineralogical observations, bulk chemistry, and considerations about diffusion timescales for various elements, we discuss in detail the formation history of the clasts. Consistency of the geothermobarometers used by Kimura et al. (2013), suggesting equilibration of various elements among different mineral pairs, provides a strong constraint for the duration of the high P-T condition. We suggest that the high P-T condition lasted 102-103 years. This clearly precludes a shock high pressure (HP) model, and hence, strongly supports a static HP model. A static HP model requires a Moon-sized planetary body of ∼1500 km in radius. Furthermore, it implies two successive violent collisions, first at the formation of the large planetary body, when the clasts were placed its deep interior, and second, at the disruption of the large planetary body, when the clasts were expelled out of the parent body and later on transported to the accretion region of the CR chondrites. We also discuss possible origin of O isotopic variations in GBL, and presence/absence of graphite in GBL/GFL, respectively, in relation to smelting possibly occurred during the igneous process(es) which formed the two lithologies. Finally we present a possible formation scenario of the eclogitic clasts.
NASA Astrophysics Data System (ADS)
McGoldrick, Siobhan; Canil, Dante; Zagorevski, Alex
2018-03-01
The Permo-Triassic Nahlin ophiolite is the largest and best-preserved ophiolite in the Canadian Cordillera of British Columbia and Yukon, Canada. The ophiolite is well-exposed along its 150 km length with mantle segments divisible into the Hardluck and Menatatuline massifs. Both massifs comprise mostly depleted spinel harzburgite (< 2 wt% Al2O3 and 45 wt% MgO). Chondrite normalized REE abundances in clinopyroxene vary in (Gd/Yb)N from 0.2 to 1.1. Inversion modelling of clinopyroxene REE abundances requires 10-16% and 16-20% partial melting in the Hardluck and Menatatuline massifs, respectively. The two-pyroxene and Fe-Mg exchange temperatures in the mantle of the ophiolite also change systematically along strike with the degree of partial melt depletion. The temperatures recorded by REE and Ca-Mg exchange between coexisting pyroxenes require markedly higher peak temperatures and cooling rates for the Menatatuline massif (1250 °C, 0.1-0.01 °C/year) compared to the Hardluck massif (< 1100 °C, 10- 4 °C/year). The differences between these two contiguous massifs can be reconciled by their evolution as two separate segments along a ridge system having varying melt depletion, with contrasting cooling rates controlled by presence or absence of a crustal section above the mantle lithosphere, or by rapid exhumation along a detachment.
NASA Technical Reports Server (NTRS)
Drake, Michael J.; Boynton, William V.
1988-01-01
The effect of oxygen fugacity on the partitioning of REEs between hibonite and silicate melt is investigated in hibonite-growth experiments at 1470 C. The experimental procedures and apparatus are described, and the results are presented in extensive tables and graphs and characterized in detail. The absolute activity coefficients in hibonite are estimated as 330 for La, 1200 for Eu(3+), and 24,000 for Yb. It is inferred that ideal solution behavior cannot be assumed when calculating REE condensation temperatures for (Ca, Al)-rich inclusions in carbonaceous chondrites.
NASA Technical Reports Server (NTRS)
Lodders, K.; Palme, H.; Wlotzka, F.
1993-01-01
A detailed chemical study is conducted of the Pena Blanca Spring aubrite in order to clarify both the origin of the aubrite parent body (APB) and its relation to the enstatite chondrites. The distribution of REE among aubritic minerals cannot be the result of fractional distillation, which would occur if high degrees of partial melting had occurred on the APB. The REE distributions instead indicate a complete equilibrium of oldhamite and other phases, so that a brief nonequilibrium melting episode must have led to the segregation of metal and sulfides.
NASA Astrophysics Data System (ADS)
Wang, Zhongwei; Wang, Jian; Fu, Xiugen; Zhan, Wangzhong; Armstrong-Altrin, John S.; Yu, Fei; Feng, Xinglei; Song, Chunyan; Zeng, Shengqiang
2018-07-01
The Qiangtang Basin is the largest Mesozoic marine basin in the Tibetan Plateau. The Upper Triassic black mudstones are among the most significant hydrocarbon source rocks in this basin. Here, we present geochemical data for the Upper Triassic black mudstones to determine their paleoenvironment conditions, provenance, and tectonic setting. To achieve these, 30 black mudstones formed in various sedimentary environments were collected from the Zangxiahe, Zana, and Bagong formations. The results show that the total REE concentrations of mudstones from these formations range from 169 to 214 ppm, 204 to 220 ppm, and 141 to 194 ppm, respectively. All samples have chondrite-normalized REE patterns with enrichment of LREE, depletion of HREE and negative Eu and Ce anomalies. Specifically, mudstones from the Bagong Formation exhibit higher negative Eu anomalies and lower REE contents than those from the Zangxiahe and Zana formations. Mudstones from the Zangxiahe and Zana formations with low Sr/Ba and Sr/Cu ratios indicate the humid climate, whereas the high Sr/Ba and Sr/Cu ratios of rocks from the Bagong Formation suggest the arid climate. The low U/Th, (Cu + Mo)/Zn, V/Cr and Ni/Co ratios of rocks from the Zangxiahe, Zana, and Bagong formations are indicators of oxidized conditions. The bivariate diagrams (TiO2 vs. Al2O3, TiO2 vs. Zr, La/Th vs. Hf, and Co/Th vs. La/Sc) reveal that mudstones from the Zangxiahe and Zana formations were potentially derived from intermediate igneous rocks, whereas mudstones from the Bagong Formation were probably sourced from felsic igneous rocks. Their source rocks are mostly deposited in the collisional setting. REE of mudstones from the Zangxiahe, Zana, and Bagong formations were possibly originated from terrigenous detritus, with minor non-terrigenous contributions into the Zana samples. The REE contents of these mudstones are controlled mainly by terrigenous detrital minerals, rather than by the paleoclimate, paleoredox conditions, or organic matter. However, calcite minerals could dilute REE. Therefore, the REE contents of the Bagong Formation mudstones are significant lower than those of the Zangxiahe and Zana formations mudstones.
NASA Astrophysics Data System (ADS)
Dygert, N. J.; Kelemen, P. B.; Liang, Y.
2015-12-01
The Wadi Tayin massif in the southern Oman ophiolite has a more than 10 km thick mantle section and is believed to have formed in a mid-ocean ridge like environment with an intermediate to fast spreading rate. Previously, [1] used major element geothermometers to investigate spatial variations in temperatures recorded in mantle peridotites and observed that samples near the paleo-Moho have higher closure temperatures than samples at the base of the mantle section. Motivated by these observations, we measured major and trace elements in orthopyroxene and clinopyroxene in peridotites from depths of ~1-8km beneath the Moho to determine closure temperatures of REE in the samples using the REE-in-two-pyroxene thermometer [2]. Clinopyroxene are depleted in LREE and have REE concentrations that vary depending on distance from the Moho. Samples nearer the Moho have lower REE concentrations than those deeper in the section (e.g., chondrite normalized Yb ranges from ~1.5 at the Moho to 4 at 8km depth), consistent with near fractional melting along a mantle adiabat. Orthopyroxene are highly depleted in LREE but measurements of middle to heavy REE have good reproducibility. We find that REE-in-two-pyroxene temperatures decrease with increasing distance from the Moho, ranging from 1325±10°C near the Moho to 1063±24°C near the base of the mantle section. Using methods from [3], we calculate cooling rates of >1000°C/Myr near the Moho, dropping to rates of <10°C/Myr at the bottom of the section. The faster cooling rate is inconsistent with conductive cooling models. Fast cooling of the mantle lithosphere could be facilitated by infiltration of seawater to or beneath the petrologic Moho. This can explain why abyssal peridotites from ultra-slow spreading centers (which lack a crustal section) have cooling rates comparable to those of Oman peridotites [3]. [1] Hanghøj et al. (2010), JPet 51(1-2), 201-227. [2] Liang et al. (2013), GCA 102, 246-260. [3] Dygert & Liang (2015), EPSL 420, 151-161.
Trace Elements and Oxygen Isotope Zoning of the Sidewinder Skarn
NASA Astrophysics Data System (ADS)
Draper, C.; Gevedon, M. L.; Barnes, J.; Lackey, J. S.; Jiang, H.; Lee, C. T.
2016-12-01
Skarns of the Verde Antique Quarry and White Horse Mountain areas of the Sidewinder Range give insight into the paleohydrothermal systems operating in the California's Jurassic arc in the Southwestern Mojave Desert. Garnet from these skarns is iron rich: Xand= 55-100. Laser fluorination measurements show oxygen isotope (δ18O) compositions of garnet crystals and crystals domains have large ranges: -3.1‰ to +4.4‰ and -8.9‰ to +3.4‰, respectively. In general, the garnet cores have more negative δ18O values than rims, although oscillations are present. Negative values have been interpreted as influx of meteoric fluid and positive values as increased magmatic input. Here we report major and trace element concentrations for 17 core to rim Sidewinder garnet transects. REEs concentrations are low in all crystals, with total REE concentrations ranging from 0.710 ppm to 33.7 ppm, values that are lower than Cretaceous skarn garnets in the Sierra Nevada in the White Chief and Empire Mt skarns. Such low concentrations are likely due to the higher fraction of meteoric fluids during formation of the Sidewinder skarns. REE concentrations decrease from core to rim (REE core average=12.2ppm, REE rim average=7.21ppm). This is slightly more pronounced in the LREEs than in the HREEs (LaN/YbN core average= 10.9; rim average= 9.73, normalized to Chondrite). Xand tends to decrease core to rim in the Verde Antique skarn, whereas, Xand of the White Horse skarn does not correlate with distance from core. A large positive Eu anomaly (Eu/Eu* = 3-30) in garnet from both skarns suggests oxidizing fluid conditions. Oxygen isotope data from garnet in these same skarns show periods of time with increased proportion of magmatic derived fluids in the total fluid budget. However, there is no corresponding widespread increase in total REE concentrations. Other studies of skarns from the western Sierra Nevadan arc (White Chief and Empire Mountain) observe complete decoupling of d18O values and trace element compositions. Future modeling should consider modal abundance of fluid soluble minerals in cooling and altering plutons to probe the REE budget.
NASA Astrophysics Data System (ADS)
KIM, T.; KIM, Y.; Lee, I.; Lee, J.; Woo, J.
2015-12-01
The study areas, Lichen Hills and Outback Nunatak are located in the Northern Victoria Land which is close to Pacific Ocean side of Transantarctic Mountain (TAM), Antarctica. According to the study of Zeller and Dreschoff (1990), the radioactivity values of Lichen hills and Frontier Mt. area in the Victoria Land were very high. To identify the geochemical characteristics of granitic rocks in these areas, 13 samples of Lichen Hills rocks and 4 samples of Outback Nunatak rocks are analyzed. For mineralogical study, samples were observed in macroscale as well as microscale including microscope electron probe analysis. Rock samples of Lichen Hills, Outback Nunatak are mainly leucogranite and granitic pegmatite. These rock samples are composed of quartz, k-feldspar, plagioclase, muscovite, garnet, tourmaline like granite. In SEM-EDS analysis, the observed light colored minerals show relatively high Th, U, Dy, Ce, Nb concentration. This suggests that rock samples may contain minerals such as fergusonite, monazite, thorite, allanite, karnasurtite which are considered to be REE-bearing minerals. Samples of related rocks have been analyzed in terms of major, trace and rare earth element (REE) concentrations using X-ray fluorescence (XRF) spectrometer and Inductively Coupled Plasma Mass Spectrometer (ICP-MS). As concentration of SiO2 increase, Al2O3, TiO2, Fe2O3, MgO, P2O5 concentration decrease and Na2O, K2O, MnO concentration increase. Analyzed trace elements and REE are normalized using CI Chondrite, Primitive mantle. The normalized data show that LREE are enriched compared to HREE. The distinct negative anomalies of Eu, Sr are observed, indicating that rock-forming melts are fairly processed state of fractional crystallization. It means that Th, U, Nb, Ta are much enriched in the melts.
NASA Astrophysics Data System (ADS)
Watts, K. E.; Mercer, C. N.; Vazquez, J. A.
2015-12-01
Silicic volcanic and plutonic rocks of an eroded Mesoproterozoic caldera complex were intruded and replaced by iron ore, and cross-cut by REE-enriched breccia pipes (~12% total REO) to form the Pea Ridge iron-oxide-apatite-REE (IOA-REE) deposit. Igneous activity, iron ore formation, and REE mineralization overlapped in space and time, however the source of REEs and other metals (Fe, Cu, Au) integral to these economically important deposits remains unclear. Melt inclusions (MI) hosted in refractory zircon phenocrysts are used to constrain magmatic components and processes in the formation of the Pea Ridge deposit. Homogenized (1.4 kbar, 1000°C, 1 hr) MI in zircons from rhyolites ~600 ft (PR-91) and ~1200 ft (PR-12) laterally from the ore body were analyzed for major elements by EPMA and volatiles and trace elements (H2O, S, F, Cl, REEs, Rb, Sr, Y, Zr, Nb, U, Th) by SHRIMP-RG. Metals (including Cu, Au) will be measured in an upcoming SHRIMP-RG session. U-Pb ages, Ti and REE were determined by SHRIMP-RG for a subset of zircon spots adjacent to MI (1458 ± 18 Ma (PR-12); 1480 ± 45 Ma (PR-91)). MI glasses range from fresh and homogeneous dacite-rhyolite (65-75 wt% SiO2) to heterogeneous, patchy mixtures of K-spar and quartz (PR-12, 91), and more rarely mica, albite and/or anorthoclase (PR-91). MI are commonly attached to monazite and xenotime, particularly along re-entrants and zircon rims (PR-91). Fresh dacite-rhyolite glasses (PR-12) have moderate H2O (~2-2.5 wt%), Rb/Sr ratios (~8) and U (~5-7 ppm), and negative (chondrite-normalized) Eu anomalies (Eu ~0.4-0.7 ppm) (typical of rhyolites), whereas HREEs (Tb, Ho, Tm) are elevated (~2-3 ppm). Patchy K-spar and quartz inclusions (PR-12, 91) have flat LREE patterns, and positive anomalies in Tb, Ho, and Tm. One K-spar inclusion (PR-91) has a ~5-50 fold increase in HREEs (Tb, Dy, Ho, Er, Tm) and U (35 ppm) relative to other MI. U-Pb and REE analyses of its zircon host are not unusual (1484 ± 21 Ma); its irregular shape surrounded by a CL-bright zone (Ti-in-zircon = 713°C) is a commonly observed texture and suggests resorption. Silicic magmatism at Pea Ridge was complex, with zircons trapping both pristine melt and poly-phase mixtures that span a range of REE contents. Most MI have lower REE contents than would be expected for significant magmatic REE contribution to the Pea Ridge IOA-REE deposit.
NASA Astrophysics Data System (ADS)
Jacquet, Emmanuel; Marrocchi, Yves
2017-12-01
We report combined oxygen isotope and mineral-scale trace element analyses of amoeboid olivine aggregates (AOA) and chondrules in ungrouped carbonaceous chondrite, Northwest Africa 5958. The trace element geochemistry of olivine in AOA, for the first time measured by LA-ICP-MS, is consistent with a condensation origin, although the shallow slope of its rare earth element (REE) pattern is yet to be physically explained. Ferromagnesian silicates in type I chondrules resemble those in other carbonaceous chondrites both geochemically and isotopically, and we find a correlation between 16O enrichment and many incompatible elements in olivine. The variation in incompatible element concentrations may relate to varying amounts of olivine crystallization during a subisothermal stage of chondrule-forming events, the duration of which may be anticorrelated with the local solid/gas ratio if this was the determinant of oxygen isotopic ratios as proposed recently. While aqueous alteration has depleted many chondrule mesostases in REE, some chondrules show recognizable subdued group II-like patterns supporting the idea that the immediate precursors of chondrules were nebular condensates.
Al-26, Pu-244, Ti-50, REE, and trace element abundances in hibonite grains from CM and CV meteorites
NASA Technical Reports Server (NTRS)
Fahey, A. J.; Mckeegan, K. D.; Zinner, E.; Goswami, J. N.
1987-01-01
Hibonites from the CM meteorites Murchison, Murray, and Cold Bokkeveld, and hibonites and Ti-rich pyroxene from the CV chondrite Allende are studied. Electron microprobe measurements of major element concentrations and track and ion probe measurements of Mg and Ti isotopic ratios, rare earth elements (REEs), and trace element abundances are analyzed. Correlations between isotopic anomalies in Ti, Al-26, Pu-244, and Mg-26(asterisk) are examined. Ti isotopic anomalies are compared with REE and trace element abundance patterns. Reasons for the lack of Al-26 in the hibonites are investigated and discussed. It is observed that there is no correlation between the Ti isotopic compositions, and the presence of Mg-26(asterisk), Pu-244, and REE and trace element patterns in individual hibonite samples. The data reveal that hibonites are not interstellar dust grains but formed on a short time scale and in localized regions of the early solar system.
NASA Astrophysics Data System (ADS)
Hoshino, M.; Watanabe, Y.; Murakami, H.; Kon, Y.; Tsunematsu, M.
2012-04-01
The core samples of two drill holes, which penetrate sub-horizontal mineralized horizons at Nechalacho REE deposit in the Proterozoic Thor Lake syenite, Canada, were studied in order to clarify magmatic and hydrothermal processes that enriched HFSE (e.g. Zr, Nb, Y and REE). Zircon is the most common REE minerals in Nechalacho REE deposit. The zircon is divided into five types as follows: Type-1 zircon occurs as single grain in phlogopite and the chondrite-normalized REE pattern is characterized by a steeply-rising slope from the LREE to the HREE with a positive Ce-anomaly and negative Eu-anomaly. This chemical characteristic is similar to that of igneous zircon. Type-2 zircon consists of HREE-rich magmatic porous core and LREE-Nb-F-rich hydrothermal rim. This type zircon is mostly included in phlogopite and fluorite, and occasionally in microcline. Type-3 zircon is characterized by euhedral to anhedral crystal, occurring in a complex intergrowth with REE fluorocarbonates. Type-3 zircons have high contents of REE, Nb and fluorine. Type-4 zircon consists of porous-core and -rim zones, but their chemical compositions are similar to each other. This type zircon is a subhedral crystal rimmed by fergusonite. Type-5 zircon is characterized by smaller, porous and subhedral to anhedral crystals. The interstices between small zircons are filled by fergusonite. Type-4 and -5 zircons show low REE and Nb contents. Occurrences of these five types of zircon are different according to the depth and degree of the alteration by hydrothermal solutions rich in F- and CO3 of the two drill holes, which permit a model for evolution of the zircon crystallization in Nechalacho REE deposit as follows: (1) type-1 (single magmatic zircon) is formed in miaskitic syenite. (2) LREE-Nb-F-rich hydrothermal zircon formed around HREE-rich magmatic zircon (type-2 zircon); (3) type-3 zircon crystallized thorough F and CO3-rich hydrothermal alteration of type-2 zircon which formed the complex intergrowth with REE fluorocarbonates; (4) the CO3-rich hydrothermal fluid corroded type-3, forming Nb-REE-poor zircons (type-3). Niobium and REE was no longer stable in the zircon structure and crystallized as fergusonite around the REE-Nb-leached zircon (type-4); (5) type-5 zircons are formed from more CO3-rich hydrothermal alteration of type-3 zircon. Therefore, type-4 and -5 zircons are often included in ankerite. Type 3-5 zircons at Nechalacho REE deposit were formed by leaching and/or dissolution of type-2 zircon in the presence of F- and/or CO3-rich hydrothermal fluid. The above mineral association indicates that three hydrothermal stages were present and related to HFSE enrichment in the Nechalacho REE deposit: (1) F-rich hydrothermal stage caused the crystallization of REE-Nb-rich zircon (type-2 rim and type-3), with abundant formation of phlogophite and fluorite, (2) F-CO3-rich hydrothermal stage led to the replacement of a part of REE-Nb-F-rich zircon by REE fluorocarbonate and (3) hydrothermal stage rich in CO3 resulted in crystallization of REE-Nb-F-poor zircon and fergusonite, with ankerite. Increases of HFSE contents, REE-Nb-F-poor zircon (type-4 and -5) and fergusonite contents during progress of hydrothermal alteration show that REE and Nb in hydrothermal fluid in the Nechalacho REE deposit were finally concentrated into fergusonite by way of zircon.
Mineralogy and chemistry of Rumuruti: The first meteorite fall of the new R chondrite group
NASA Astrophysics Data System (ADS)
Schulze, H.; Bischoff, A.; Palme, H.; Spettel, B.; Dreibus, G.; Otto, J.
1994-03-01
The Rumuruti meteorite shower fell in Rumuruti, Kenya, on 1934 January 28 at 10:45 p.m. Rumuruti is an olivine-rich chondritic breccia with light-dark structure. Based on the coexistence of highly recrystallized fragments and unequilibrated components, Rumuruti is classified as a type 3-6 chondrite breccia. The most abundant phase of Rumuruti is olivine (mostly Fa(approximately 39) with about 70 vol%. Feldspar (approximately 14 vol%; mainly plagioclase), Ca-pyroxene (5 vol%), pyrrhotite (4.4 vol%), and pentlandite (3.6 vol%) are major constituents. All other phases have abundances below 1 vol%, including low-Ca pyroxene, chrome spinels, phosphates (chlorapatite and whitlockite), chalcopyrite, ilemenite, tridymite, Ni-rich and Ge-containing metals, kamacite, and various particles enriched in noble metals like Pt, Ir, and Au. The chemical composition of Rumuruti is chondritic. The depletion in refractory elements (Sc, REE, etc.) and the comparatively high Mn, Na, and K contents are characteristic of ordinary chondrites and distinguish Rumuruti from carbonaceous chondrites. However, S, Se, and Zn contents in Rumuruti are significantly above the level expected for ordinary chondrites. The oxygen isotope composition of Rumuruti is high in delta O-17 (5.52%) and delta O-18 (5.07%). With Rumuruti, nine meteorites samples exist that are chemically and mineralogically very similar. These meteorites are attributed to at least eight different fall events. It is proposed in this paper to call this group R chondrites (rumurutites) after the first and only fall among these meteorites. The meteorites have a close relationship to ordinary chondrites. However, they are more oxidized than any of the existing groups of ordinary chondrites. Small, but significant differences in chemical composition and in oxygen isotopes between R chondrites and ordinary chondrites exclude formation of R chondrites from ordinary chondrites by oxidation. This implies a separate, independent R chondrite parent body.
NASA Astrophysics Data System (ADS)
Peters, T. J.; Simon, J. I.; Jones, J. H.; Usui, T.; Economos, R. C.; Schmitt, A. K.; McKeegan, K. D.
2013-12-01
Trace element abundances of depleted shergottite magmas recorded by olivine-hosted melt inclusions (MI) and interstitial mesostasis glass were measured using the CAMECA ims-1270 ion microprobe. Two meteorites: Tissint, an olivine-phyric basaltic shergottite which fell over Morocco July 18th 2001; and the Antarctic meteorite Yamato 980459 (Y98), an olivine-phyric basaltic shergottite with abundant glassy mesostasis have been studied. Chondrite-normalized REE patterns for MI in Tissint and Y98 are characteristically LREE depleted and, within analytical uncertainty, parallel those of their respective whole rock composition; supporting each meteorite to represent a melt composition that has experienced closed-system crystallization. REE profiles for mesostasis glass in Y98 lie about an order of magnitude higher than those from the MI; with REE profiles for Tissint MI falling in between. Y98 MI have the highest average Sm/Nd and Y/Ce ratios, reflecting their LREE depletion and further supporting Y98 as one of our best samples to probe the depleted shergotitte mantle. In general, Zr/Nb ratios overlap between Y98 and Tissint MI, Ce/Nb ratios overlap between Y98 MI and mesostasis glass, and Sm/Nd ratios overlap between Y98 mesostasis glass and Tissint MI. These features support similar sources for both, but with subtle geochemical differences that may reflect different melting conditions or fractionation paths during ascent from the mantle. Interestingly, the REE patterns for all analyses in Y98 and possibly for those from Tissint as well display a flattening of the LREE that suggests an early crustal contribution to the shergottite mantle.
NASA Astrophysics Data System (ADS)
Luo, Qingyong; Zhong, Ningning; Wang, Yannian; Ma, Ling; Li, Min
2015-10-01
This is the first study presenting major and trace elemental data from the Mesoproterozoic Hongshuizhuang Formation shales in Yanshan basin, North China, in order to reconstruct its provenance and chemical weathering history. The shales are strongly depleted in Na2O and Sr and enriched in Y and transition metal elements relative to upper continental crust. Low Zr concentrations and various discriminant plots (e.g., Th/Sc-Zr/Sc and Al2O3-TiO2-Zr) indicate insignificant mineral sorting or recycling of these shales. The rocks show light rare earth element (REE) enrichment (La/YbCN = 3.99-6.92), flat heavy REE, and significantly negative Eu anomalies (Euan = 0.57-0.68) in chondrite-normalized REE patterns, similar to post-Archean Australian average shales. The fairly uniform REE patterns and trace element ratios indicate that the Hongshuizhuang Formation shales were derived from a felsic source area with granodiorite as the dominant contributor. Mixing calculations suggest a mixture of 30 % granite porphyry, 5 % basalt, and 65 % granodiorite as the possible source of the shales, also supporting that granodiorite was the predominant source. Intense chemical weathering of the source terrain is indicated by high values of the premetasomatized chemical index of alteration, plagioclase index of alteration, Rb/Sr, a strong positive correlation between TiO2 and Al2O3, depletion of CaO, Na2O, and Sr, and mineral compositions. Such strong chemical weathering suggests a warm and wet paleoclimate, perhaps due to high atmospheric CO2 and CH4 concentrations, and a near-equatorial location of the North China Craton in the Columbia supercontinent at 1.4 Ga.
NASA Technical Reports Server (NTRS)
Peters, Timothy J.; Simon, Justin I.; Jones, John H.; Usui, Tomohiro; Economos, Rita C.; Schmitt, Axel K.; McKeegan, Kevin D.
2013-01-01
Trace element abundances of depleted shergottite magmas recorded by olivine-hosted melt inclusions (MI) and interstitial mesostasis glass were measured using the Cameca ims-1270 ion microprobe. Two meteorites: Tissint, an olivine-phyric basaltic shergottite which fell over Morocco July 18th 2001; and the Antarctic meteorite Yamato 980459 (Y98), an olivine-phyric basaltic shergottite with abundant glassy mesostasis have been studied. Chondrite-normalized REE patterns for MI in Tissint and Y98 are characteristically LREE depleted and, within analytical uncertainty, parallel those of their respective whole rock composition; supporting each meteorite to represent a melt composition that has experienced closed-system crystallization. REE profiles for mesostasis glass in Y98 lie about an order of magnitude higher than those from the MI; with REE profiles for Tissint MI falling in between. Y98 MI have the highest average Sm/Nd and Y/Ce ratios, reflecting their LREE depletion and further supporting Y98 as one of our best samples to probe the depleted shergotitte mantle. In general, Zr/Nb ratios overlap between Y98 and Tissint MI, Ce/Nb ratios overlap between Y98 MI and mesostasis glass, and Sm/Nd ratios overlap between Y98 mesostasis glass and Tissint MI. These features support similar sources for both, but with subtle geochemical differences that may reflect different melting conditions or fractionation paths during ascent from the mantle. Interestingly, the REE patterns for both Y98 bulk and MI analyses display a flattening of the LREE that suggests a crustal contribution to the Y98 parent melt. This observation has important implications for the origins of depleted and enriched shergottites.
Riondato, J; Vanhaecke, F; Moens, L; Dams, R
2001-07-01
In the framework of an international certification campaign, sector-field inductively coupled plasma mass spectrometry (sector-field ICP-MS) was used for the accurate determination of the rare earth elements in five candidate reference materials: aquatic plant, calcareous soil, mussel tissue, river sediment, and tuna muscle. All samples were taken into solution by use of microwave-assisted or mixed microwave-assisted / open beaker acid digestion. Subsequently, the samples were appropriately diluted and subjected to ICP-MS analysis. Except for Sc, all the elements involved were determined at low mass resolution (R = 300). For Sc, application of a higher resolution setting (R = 3,000) was required to separate the analyte signal from those of several molecular ions which gave rise to spectral overlap at low mass resolution. Some of the heavier REE can also suffer from spectral overlap attributed to the occurrence of oxide ions (MO+) of the lighter REE and Ba. This spectral overlap could be successfully overcome by mathematical correction. Matrix effects were overcome by use of two carefully selected internal standards, such that external calibration could be used. On each occasion, a geological reference material was analyzed as a quality-control sample and the reliability of all results obtained was additionally checked by means of chondrite normalization. For tuna muscle the content of all REE was below the limit of detection. For calcareous soil and river sediment, low to sub microg g(-1) values were observed, whereas the REE content of aquatic plant and mussel tissue was considerably lower (low to sub ng g(-1)). Overall, the results obtained were in excellent agreement with the average values, calculated on the basis of all "accepted" values, obtained in different laboratories using different techniques.
NASA Astrophysics Data System (ADS)
Buchwaldt, R.; Toulkeridis, T.
2013-05-01
The timing of pan-Pacific Gondwanide Orogeny in the proto-Andes, and its driving mechanisms are still highly debated and relies predominantly upon whole-rock Rb-Sr and K-Ar chronology and rudimentary mineralogy and geochemistry. In order to decipher these uncertainties we have studied the composition, age and provenance of granitoids along the strike of the Eastern Cordillera of Ecuador and related these deep-seated and surface tectonic processes attending the Late Cretaceous-Palaeogene history of the northern Andes. The plutonic rocks constitute a metaluminous to peraluminous (A/CNK ~ 0.8-1.2), calc-alkaline suite. A unimodal and wide compositional range of the intrusives (49-78 wt. % SiO2) is characteristic of this I-type orogenic suites. Mantle-normalized trace element patterns reveal typical subduction-related signature. Chondrite-normalized REE patterns do not show significant HREE fractionation suggesting the absence of high-pressure residual mineralogy in the source and formation in a "normal thickness", garnet-free crust. Slight Eu anomalies, lowering Sr contents, and concave-up REE patterns of samples dioritic in composition indicate a model involving fractionation of plagioclase, amphibole and pyroxene from a basaltic parent. The analyzed zircon crystals are colorless - transparent ranging in size from 50 to 250 μm. In CL images, 95% of the zircons exhibit oscillatory zonation, characteristic of a magmatic origin. This observation is consistent with the REE zircon composition showing a are characteristic steep positive slope from La to Lu with a significantly positive Ce-anomaly and slight negative Eu-anomaly. There is very little variation in Hf isotopic composition with most of the crust maintains near chondritic Zr/Hf ratios of around 35-40. Our results indicate the development of two tectonic episodes; with the first varying between 210-250 Ma and the second approximate 170-180 Ma. These results are consistent with similar events observed throughout the northern Andes from Peru to Columbia. The occurrence of numerous granite intrusions during Triassic times along the South American margin indicates that western South America underwent a widespread thermal anomaly between 250 and 210 Ma, which produced large amounts of granitoids. We argue that this occurrence is associated with the closure of the Panthalassan Gondwana sutur between 200 and 300 Ma and the correlated magmatism is related to the development of strike-slip tectonics subparallel to the proto-Andean margin. Contrasting to the older episode the younger magmatics appears to be the ultimate dispersal of Gondwana in the Cretaceous, which has been followed by the establishment of a continental arc that has intermittently characterized the modern Andean orogeny for the past 180 Ma.
Geochemistry of pillow lavas and sheeted dikes from Nain and Ashin ophiolites (Central Iran)
NASA Astrophysics Data System (ADS)
Saccani, Emilio; Pirnia Naeini, Tahmineh; Torabi, Ghodrat
2017-04-01
An extensive, worldwide database on the geochemistry of basalts from well-known tectonic settings is available. Knowing the chemistry of basalts on one hand, and the tectonic setting of their origin on the other hand, resulted in the development of tectonic discrimination diagrams. Recently developed discrimination diagrams allow us to determine the tectonic setting of volcanics with almost neglectable probability of misclassification (<1%). One major application of these diagrams lies in discriminating the tectonic setting of formation of ophiolites, particularly in poorly-known areas. A good example is the Inner ophiolite belt of Iran, located in Central Iran. The geodynamic significance of the inner ophiolites is still poorly known. From the Inner ophiolites, either no volcanic section is reported, or, the data are highly limited and poorly-reliable due the high degree of alteration of the studied samples. We have been able to overcome this problem by spotting relatively well-preserved outcrops of pillow lavas and sheeted dikes from two ophiolite mélanges of Central Iran, Nain and Ashin ophiolites. The two mélanges are located in the west of Central-East Iranian microplate. In total, 28 samples have been collected from the pillow lavas and sheeted dikes outcrops. The studied volcanic rocks consist mainly of basalts and minor ferrobasalts and basaltic andesites, all showing a clear subalkaline nature (e.g., Nb/Y = 0.03-0.21). Two samples from the Nain ophiolite are characterized by N-MORB normalized incompatible element patterns showing marked Th positive anomalies and Ta, Nb, Ti negative anomalies. Chondrite-normalized REE patterns show LREE/HREE (light REE/heavy REE) enrichment, with LaN/YbN=3.2-4.3. These rocks are chemically similar to the calc-alkaline basalts (CAB), as also highlighted by many discrimination diagrams. These rocks are interpreted to have generated in a cordilleran-type volcanic arc setting. All other samples from both the Nain and Ashin ophiolites display a wide range of chemical composition. However, the relatively less fractionated basalts are characterized by low TiO2 (0.60-1 wt%), P2O5 (0.03-0.08 wt%), Zr (23-75 ppm) and Y (9-27) contents. Cr (38-619 ppm) and Ni (22-220 ppm) contents show a wide range of variation. N-MORB normalized incompatible element patterns show rather flat trends and a general depletion (from 0.4 to 0.8 times N-MORB composition) coupled with a slight Th enrichment (1-3 times N-MORB). Chondrite-normalized REE patterns are generally flat and are characterized by either a slight depletion or a slight enrichment in LREE compared to HREE (LaN/YbN=0.7-1.2). These overall chemical features resemble those of island arc tholeiites from many ophiolitic complexes. The depletion in incompatible elements compared to N-MORB suggest that these rocks were derived from partial melting of a depleted mantle source. Th enrichment with respect to Nb (ThN/NbN = 2.6-12.4) suggests that mantle sources underwent enrichment in subduction-derived chemical components prior melting. Our data suggest that the Nain and Ashin ophiolites were formed in a subduction-related tectonic setting during the Late Cretaceous. The chemistry of the studied rocks is compatible with transition zone either from forearc to arc or from arc to backarc.
Lunar and Planetary Science XXXV: Meteorites
NASA Technical Reports Server (NTRS)
2004-01-01
The session "Meteorites" included the following reports:Description of a New Stony Meteorite Find from Bulloch County, Georgia; Meteorite Ablation Derived from Cosmic Ray Track Data Dhofar 732: A Mg-rich Orthopyroxenitic Achondrite Halogens, Carbon and Sulfur in the Tagish Lake Meteorite: Implications for Classification and Terrestrial Alteration; Electromagnetic Scrape of Meteorites and Probably Columbia Tiles; Pre-Atmospheric Sizes and Orbits of Several Chondrites; Research of Shock-Thermal History of the Enstatite Chondrites by Track, Thermoluminescence and Neutron-Activation (NAA) Methods; Radiation and Shock-thermal History of the Kaidun CR2 Chondrite Glass Inclusions; On the Problem of Search for Super-Heavy Element Traces in the Meteorites: Probability of Their Discovery by Three-Prong Tracks due to Nuclear Spontaneous Fission Trace Element Abundances in Separated Phases of Pesyanoe, Enstatite Achondrite; Evaluation of Cooling Rate Calculated by Diffusional Modification of Chemical Zoning: Different Initial Profiles for Diffusion Calculation; Mineralogical Features and REE Distribution in Ortho- and Clinopyroxenes of the HaH 317 Enstatite Chondrite Dhofar 311, 730 and 731: New Lunar Meteorites from Oman; The Deuterium Content of Individual Murchison Amino Acids; Clues to the Formation of PV1, an Enigmatic Carbon-rich Chondritic Clast from the Plainview H-Chondrite Regolith Breccia ;Numerical Simulations of the Production of Extinct Radionuclides and ProtoCAIs by Magnetic Flaring.
James, O.B.; Floss, C.; McGee, J.J.
2002-01-01
We present results of a secondary ion mass spectrometry study of the rare earth elements (REEs) in the minerals of two samples of lunar ferroan anorthosite, and the results are applicable to studies of REEs in all igneous rocks, no matter what their planet of origin. Our pyroxene analyses are used to determine solid-solid REE distribution coefficients (D = CREE in low-Ca pyroxene/CREE in augite) in orthopyroxene-augite pairs derived by inversion of pigeonite. Our data and predictions from crystal-chemical considerations indicate that as primary pigeonite inverts to orthopyroxene plus augite and subsolidus reequilibration proceeds, the solid-solid Ds for orthopyroxene-augite pairs progressively decrease for all REEs; the decrease is greatest for the LREEs. The REE pattern of solid-solid Ds for inversion-derived pyroxene pairs is close to a straight line for Sm-Lu and turns upward for REEs lighter than Sm; the shape of this pattern is predicted by the shapes of the REE patterns for the individual minerals. Equilibrium liquids calculated for one sample from the compositions of primary phases, using measured or experimentally determined solid-liquid Ds, have chondrite-normalized REE patterns that are very slightly enriched in LREEs. The plagioclase equilibrium liquid is overall less rich in REEs than pyroxene equilibrium liquids, and the discrepancy probably arises because the calculated plagioclase equilibrium liquid represents a liquid earlier in the fractionation sequence than the pyroxene equilibrium liquids. "Equilibrium" liquids calculated from the compositions of inversion-derived pyroxenes or orthopyroxene derived by reaction of olivine are LREE depleted (in some cases substantially) in comparison with equilibrium liquids calculated from the compositions of primary phases. These discrepancies arise because the inversion-derived and reaction-derived pyroxenes did not crystallize directly from liquid, and the use of solid-liquid Ds is inappropriate. The LREE depletion of the calculated liquids is a relic of formation of these phases from primary LREE-depleted minerals. Thus, if one attempts to calculate the compositions of equilibrium liquids from pyroxene compositions, it is important to establish that the pyroxenes are primary. In addition, our data suggest that experimental studies have underestimated solid-liquid Ds for REEs in pigeonite and that REE contents of liquids calculated using these Ds are overestimates. Our results have implications for Sm-Nd age studies. Our work shows that if pigeonite inversion and/or subsolidus reequilibration between augite and orthopyroxene occured significantly after crystallization, and if pyroxene separates isolated for Sm-Nd studies do not have the bulk composition of the primary pyroxenes, then the Sm-Nd isochron age and ??Nd will be in error. Copyright ?? 2002 Elsevier Science Ltd.
Back-arc with frontal-arc component origin of Triassic Karmutsen basalt, British Columbia, Canada
Barker, F.; Sutherland, Brown A.; Budahn, J.R.; Plafker, G.
1989-01-01
The largely basaltic, ???4.5-6.2-km-thick, Middle to Upper Triassic Karmutsen Formation is a prominent part of the Wrangellian sequence. Twelve analyses of major and minor elements of representative samples of pillowed and massive basalt flows and sills from Queen Charlotte and Vancouver Islands are ferrotholeiites that show a range of 10.2-3.8% MgO (as normalized, H2O- and CO2-free) and related increases in TiO2 (1.0-2.5%), Zr (43-147 ppm) and Nb (5-16 ppm). Other elemental abundances are not related simply to MgO: distinct groupings are evident in Al2O3, Na2O and Cr, but considerable scatter is present in FeO* (FeO + 0.9Fe2O3) and CaO. Some of the variation is attributed to alteration during low-rank metamorphism or by seawater - including variation of Ba, Rb, Sr and Cu, but high-field-strength elements (Sc, Ti, Y, Zr and Nb) as well as Cr, Ni, Cu and rare-earth elements (REE's) were relatively immobile. REE's show chondrite-normalized patterns ranging from light-REE depleted to moderately light-REE enriched. On eleven discriminant plots these analyses fall largely into or across fields of within-plate basalt (WIP), normal or enriched mid-ocean-ridge tholeiite (MORB) and island-arc tholeiite (IAT). Karmutsen basalts are chemically identical to the stratigraphically equivalent Nikolai Greenstone of southern Alaska and Yukon Territory. These data and the fact that the Karmutsen rests on Sicker Group island-arc rocks of Paleozoic age suggest to us that: 1. (1) the basal arc, after minor carbonate-shale deposition, underwent near-axial back-arc rifting (as, e.g., the Mariana arc rifted at different times); 2. (2) the Karmutsen basalts were erupted along this rift or basin as "arc-rift" tholeiitite; and 3. (3) after subsequent deposition of carbonates and other rocks, and Jurassic magmatism, a large fragment of this basalt-sediment-covered island arc was accreted to North America as Wrangellia. The major- and minor-elemental abundances of Karmutsen basalt is modeled by first mixing primitive arc magma with enriched basaltic liquid derived either from garnet peridotite or metasomatized mantle, followed by fractionation of olivine, pyroxenes, plagioclase and spinel. ?? 1989.
Rhenium-osmium systematics of calcium-aluminium-rich inclusions in carbonaceous chondrites
Becker, H.; Morgan, J.W.; Walker, R.J.; MacPherson, G.J.; Grossman, J.N.
2001-01-01
The Re-Os isotopic systematics of calcium-aluminium-rich inclusions (CAIs) in chondrites were investigated in order to shed light on the behavior of the Re-Os system in bulk chondrites, and to constrain the timing of chemical fractionation in primitive chondrites. CAIs with relatively unfractionated rare earth element (REE) patterns (groups I, III, V, VI) define a narrow range of 187Re/188Os (0.3764-0.4443) and 187Os/188Os (0.12599-0.12717), and high but variable Re and Os abundances (3209-41,820 ppb Os). In contrast, CAIs that show depletions in highly refractory elements and strongly fractionated REE patterns (group II) also show a much larger range in 187Re/188Os (0.409-0.535) and 187Os/188Os (0.12695-0.13770), and greater than an order of magnitude lower Re and Os abundances than other groups (e.g., 75.7-680.2 ppb Os). Sixteen bulk CAIs and CAI splits plot within analytical uncertainty of a 4558 Ga reference isochron, as is expected for materials of this antiquity. Eight samples, however, plot off the isochron. Several possible reasons for these deviations are discussed. Data for multiple splits of one CAI indicate that the nonisochronous behavior for at least this CAI is the result of Re-Os reequilibration at approximately 1.6 Ga. Thus, the most likely explanation for the deviations of most of the nonisochronous CAIs is late-stage open-system behavior of Re and Os in the asteroidal environment. The 187Os/188Os-Os systematics of CAIs are consistent with previous models that indicate group II CAIs are mixtures of components that lost the bulk of their highly refractory elements in a previous condensation event and a minor second component that provided refractory elements at chondritic relative proportions. The high Re/Os of group II CAIs relative to other CAIs and chondrite bulk rocks may have been caused by variable mobilization of Re and Os during medium- to low-temperature parent body alteration ??4.5 Ga ago. This model is favored over nebular models, which pose several difficulties. The narrow range of 187Os/188Os in group I, III, V, and VI bulk CAIs, and the agreement with 187Os/188Os of whole rock carbonaceous chondrites suggest that on a bulk inclusion scale, secondary alteration only modestly fractionated Re/Os in these CAIs. The average of 187Os/188Os for group I, III, V, and VI CAIs is indistinguishable from average CI chondrites, indicating a modern solar system value for 187Os/188Os of 0.12650, corresponding to a 187Re/188Os of 0.3964. Copyright ?? 2001 Elsevier Science Ltd.
Examination of Martian sedimentary rocks to understand possible paleo-ocean and its age
NASA Technical Reports Server (NTRS)
Tanaka, T.
1988-01-01
It is well known that the terrestrial marine sediments have large cerium anomaly on their chondrite-normalized REE pattern. Siliceous shale and calcaleous sediments have negative Ce-anomaly. Ferromanganese nodule have positive or negative Ce-anomaly. The Ce-anomaly is considered to be a result of tetravalent state of cerium rather than common trivalent. Ferromanganese nodule which formed under reducing condition has negative Ce-anomaly. Then, combined study of Ce-anomaly with Ce isotopes is expected to play an important role in geochemistry. La-138 decays to Ce-138 and Ba-138 with a total half life of about 1 x 10 to the 11th years. Cerium anomalies (positive or negative) are expected in Martian paleo-ocean and in sediments as observed in the terrestrial environment. A list of things to be examined is given.
NASA Astrophysics Data System (ADS)
Azzouni-Sekkal, Abla; Bonin, Bernard
1998-01-01
The post-Pan-African 'taourirt' suite of Hoggar (Algeria) is made up by themagmatic suite: G I monzogranite, G IIa monzogranite+syenogranite, G IIb subsolvus alkali feldspar granite (alaskite), GIII hypersolvus alkali feldspar syenite + granite. Silicates (zircon, thorite, allanite, chevkinite, titanite), oxides (magnetite, ilmenite, fergusonite) and phosphates (apatite, monazite), often abundant, constitute various accessory mineral associations. Crystal morphology, place in the sequence of crystallisation and mineral chemistry change as a function of parageneses. The constant titanite + magnetite + ilmenite assemblage in G I and G II rocks illustrates more oxidising conditions than in G III group, where hedenbergite + magnetite + ilmenite coexist. Two groups of accessory minerals are distinguished: (1) LREE rich (3×10 4 to 3×10 5 × chondrites) and Y rich (50 to 10 4 × chondrites), such as allanite, chevkinite and monazite, (2) LREE poor (100 to 10 4 × chondrites) and Y rich (1000 to 10 5 × chondrites), such as zircon, thorite, titanite and fergusonite. Shapes of chondrite-normalised patterns and evolutionary trends of REE, as well as of other HFSE, such as Nb, Zr, U and Th, in bulk rocks are dependent on relative abundances of the different accessory minerals.
Balboni, Enrica; Jones, Nina; Spano, Tyler; ...
2016-08-31
This study reports major, minor, and trace element data and Sr isotope ratios for 11 uranium ore (uraninite, UO 2+x) samples and one processed uranium ore concentrate (UOC) from various U.S. deposits. The uraninite investigated represent ores formed via different modes of mineralization (e.g., high- and low-temperature) and within various geological contexts, which include magmatic pegmatites, metamorphic rocks, sandstone-hosted, and roll front deposits. In situ trace element data obtained by laser ablation-ICP-MS and bulk sample Sr isotopic ratios for uraninite samples investigated here indicate distinct signatures that are highly dependent on the mode of mineralization and host rock geology. Relativemore » to their high-temperature counterparts, low-temperature uranium ores record high U/Th ratios (>1000), low total rare earth element (REE) abundances (<1 wt%), high contents (>300 ppm) of first row transition metals (Sc, Ti, V, Cr, Mn, Co, Ni), and radiogenic 87Sr/ 86Sr ratios (>0.7200). Comparison of chondrite normalized REE patterns between uraninite and corresponding processed UOC from the same locality indicates identical patterns at different absolute concentrations. Lastly, this result ultimately confirms the importance of establishing geochemical signatures of raw, uranium ore materials for attribution purposes in the forensic analysis of intercepted nuclear materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balboni, Enrica; Jones, Nina; Spano, Tyler
This study reports major, minor, and trace element data and Sr isotope ratios for 11 uranium ore (uraninite, UO 2+x) samples and one processed uranium ore concentrate (UOC) from various U.S. deposits. The uraninite investigated represent ores formed via different modes of mineralization (e.g., high- and low-temperature) and within various geological contexts, which include magmatic pegmatites, metamorphic rocks, sandstone-hosted, and roll front deposits. In situ trace element data obtained by laser ablation-ICP-MS and bulk sample Sr isotopic ratios for uraninite samples investigated here indicate distinct signatures that are highly dependent on the mode of mineralization and host rock geology. Relativemore » to their high-temperature counterparts, low-temperature uranium ores record high U/Th ratios (>1000), low total rare earth element (REE) abundances (<1 wt%), high contents (>300 ppm) of first row transition metals (Sc, Ti, V, Cr, Mn, Co, Ni), and radiogenic 87Sr/ 86Sr ratios (>0.7200). Comparison of chondrite normalized REE patterns between uraninite and corresponding processed UOC from the same locality indicates identical patterns at different absolute concentrations. Lastly, this result ultimately confirms the importance of establishing geochemical signatures of raw, uranium ore materials for attribution purposes in the forensic analysis of intercepted nuclear materials.« less
Rare Earth Element Measurements of Melilite and Fassaite in Allende Cai by Nanosims
NASA Technical Reports Server (NTRS)
Ito, M.; Messenger, Scott
2009-01-01
The rare earth elements (REEs) are concentrated in CAIs by approx. 20 times the chondritic average [e.g., 1]. The REEs in CAIs are important to understand processes of CAI formation including the role of volatilization, condensation, and fractional crystallization [1,2]. REE measurements are a well established application of ion microprobes [e.g., 3]. However the spatial resolution of REE measurements by ion microprobe (approx.20 m) is not adequate to resolve heterogeneous distributions of REEs among/within minerals. We have developed methods for measuring REE with the NanoSIMS 50L at smaller spatial scales. Here we present our initial measurements of REEs in melilite and fassaite in an Allende Type-A CAI with the JSC NanoSIMS 50L. We found that the key parameters for accurate REE abundance measurements differ between the NanoSIMS and conventional SIMS, in particular the oxide-to-element ratios, the relative sensitivity factors, the energy distributions, and requisite energy offset. Our REE abundance measurements of the 100 ppm REE diopside glass standards yielded good reproducibility and accuracy, 0.5-2.5 % and 5-25 %, respectively. We determined abundances and spatial distributions of REEs in core and rim within single crystals of fassaite, and adjacent melilite with 5-10 m spatial resolution. The REE abundances in fassaite core and rim are 20-100 times CI abundance but show a large negative Eu anomaly, exhibiting a well-defined Group III pattern. This is consistent with previous work [4]. On the other hand, adjacent melilite shows modified Group II pattern with no strong depletions of Eu and Yb, and no Tm positive anomaly. REE abundances (2-10 x CI) were lower than that of fassaite. These patterns suggest that fassaite crystallized first followed by a crystallization of melilite from the residual melt. In future work, we will carry out a correlated study of O and Mg isotopes and REEs of the CAI in order to better understand the nature and timescales of its formation process and subsequent metamorphic history.
High-Mg subduction-related Tertiary basalts in Sardinia, Italy
NASA Astrophysics Data System (ADS)
Morra, V.; Secchi, F. A. G.; Melluso, L.; Franciosi, L.
1997-03-01
The Oligo-Miocene volcanics (32-15 Ma), which occur in the Oligo-Miocene Sardinian Rift, were interpreted in the literature as an intracontinental volcanic arc built upon continental crust about 30 km thick. They are characterized by a close field association of dominantly andesites and acid ignimbrites, with subordinate basalts. In this paper we deal with the origin and evolution of recently discovered high-magnesia basalts aged ca. 18 Ma occurring in the Montresta area, northern Sardinia, relevant to the petrogenesis of the Cenozoic volcanics of Sardinia. The igneous rocks of the Montresta area form a tholeiitic, subduction-related suite. Major-element variation from the high-magnesia basalts (HMB) to high-alumina basalts (HAB) are consistent with crystal/liquid fractionation dominated by olivine and clinopyroxene. Proportions of plagioclase and titanomagnetite increase from HAB to andesites. Initial {87Sr }/{86Sr } ratios increase with differentiation from 0.70398 for the HMB to 0.70592 for the andesites. This suggests concomitant crustal contamination. The geochemical characteristics of the high-magnesia basalts are typical of subduction-related magmas, with negative Nb, Zr and Ti spikes in mantle-normalized diagrams. It is proposed that these high-magnesia basalts were produced by partial melting of a mantle source characterized by large-ion lithophile elements (LILE) enrichment related principally to dehydration of subducted oceanic crust. Chondrite-normalized rare earth elements (REE) patterns indicate that the lavas are somewhat enriched in light rare earth elements (LREE), with flat heavy rare earth elements (HREE) patterns. This evidence is consistent with a spinel-bearing mantle source. The sub-parallel chondrite-normalized patterns show enrichment with differentiation, with a greater increase of LREE than HREE. The occurrence of high-magnesia basalts at 18 Ma in Sardinia appears to be correlated with and favoured by pronounced extensional tectonics at that time.
Loferski, P.J.; Arculus, R.J.
1993-01-01
Multiphase inclusions, consisting of clinopyroxene+ilmenite+apatite, occur within cumulus plagioclase grains from anorthosites in the Stillwater Complex, Montana, and in other rocks from the Middle Banded series of the intrusion. The textures and constant modal mineralogy of the inclusions indicate that they were incorporated in the plagioclase as liquid droplets that later crystallized rather than as solid aggregates. Their unusual assemblage, including a distinctive manganiferous ilmenite and the presence of baddeleyite (ZrO2), indicates formation from an unusual liquid. A process involving silicater liquid immiscibility is proposed, whereby small globules of a liquid enriched in Mg, Fe, Ca, Ti, P, REE, Zr and Mn exsolved from the main liquid that gave rise to the anorthosites, became trapped in the plagioclase, and later crystallized to form the inclusions. The immiscibility could have occurred locally within compositional boundaries around crystallizing plagioclase grains or it could have occurred pervasively throughout the liquid. It is proposed that the two immiscible liquids were analogous, n terms of their melt structures, to immiscible liquid pairs reported in the literature both in experiments and in natural basalts. For the previously reported pairs, immiscibility is between a highly polymerized liquid, typically granitic in composition, and a depolymerized liquid, typically ferrobasaltic in composition. In the case of the anorthosites, the depolymerized liquid is represented by the inclusions, and the other liquid was a highly polymerized aluminosilicate melt with a high normative plagioclase content from which the bulk of the anorthosites crystallized. Crystallization of the anorthosites from this highly polymerized liquid accounts for various distinctive textural and chemical features of the anorthosites compared to other rocks in the Stillwater Complex. A lack of correlation between P contents and chondrite-normalized rare earth element (REE) ratios of plagioclase separates indicates that the amount of apatite in the inclusions is too low to affect the REE signature of the plagioclase separates. Nevertheless, workers should use caution when attempting REE modelling studies of cumulates having low REE contents, because apatite-bearing inclusions can potentially cause problems. ?? 1993 Springer-Verlag.
NASA Astrophysics Data System (ADS)
Tanaka, A.; Abe, G.; Yamaguchi, K. E.
2014-12-01
Recent studies have shown that submarine hydrothermal system supports diverse microbial life. Bio-essential metals supporting such microbial communities were released from basalts by high-temperature water-rock interaction in deeper part of the oceanic crust and carried by submarine fluid flow. Its total quantity in global hydrothermal settings has been estimated to be on the order of ~1019 g/yr, which is surprisingly on the same order of the total river flows (Urabe et al., 2011). Therefore, it is important to explore how submarine river system works, i.e., to understand mechanism and extent of elemental transport, which should lead to understanding of the roles of hydrothermal circulation in oceanic crust in controlling elemental budget in the global ocean and geochemical conditions to support deep hot biosphere. We performed REE analysis of marine sediments influenced by submarine hydrothermal activity in Mid-Okinawa Trough. The sediment samples used in this study are from IODP site at Iheya North region and JADE site at Izena region. The samples show alternation between volcanic and clastic sediments. Hydrothermal fluids of this area contain elevated concentrations of volatile components such as H2, CO2, CH4, NH4+, and H2S, supporting diverse chemoautotrophic microbial community (Nakagawa et al., 2005). The purpose of this study is to examine the effect of hydrothermal activity on the REE signature of the sediments. Chondrite-normalized REE patterns of the samples show relative enrichment of light over heavy REEs, weak positive Ce anomalies, and variable degrees of negative Eu anomalies. The REE patterns suggest the sediments source was mainly basalt, suggesting insignificant input of continental materials. Negative Eu anomalies found in the IODP site become more pronounced with increasing depth, suggesting progressive increase of hydrothermal alteration where Eu was reductively dissolved into fluids by decomposition of feldspars. Contrary, at the JADE site, magnitude of negative Eu anomalies was variable independent of the sediment depth. This suggests changes in the redox conditions, most likely due to occasional invasions of O2-bearing seawater into sediments. Different regimes of hydrothermal fluid flows govern the chemical environments of marine sediments in active hydrothermal areas.
NASA Astrophysics Data System (ADS)
Awadalla, Gamal S.
2010-07-01
Phosphorites in Egypt occur in the Eastern Desert, the Nile Valley and the Western Desert at Abu Tartur area and present in Duwi Formation as a part of the Middle Eastern to North African phosphogenic province of Late Cretaceous to Paleogene age (Campanian-Maastrichtian). The Maghrabi-Liffiya phosphorite sector is considered as the most important phosphorite deposits in the Abu Tartur area due to its large reserve thickness and high-grade of lower phosphorite bed beside high content of REE. Back scattered electron (BSE) images show framboidal pyrite filling the pores of the phosphatic grains, suggesting diagenetic reducing conditions during phosphorites formation. Electron Probe Micro Analyzer (EPMA) chemical mapping was conducted to examine the variation and distributions of selected elements (P, F, La, Fe, Yb, Si, Ce, W, Eu, S, Ca, Y and Er) within the shark teeth, coprolites and bone fragments. In the teeth W, S, Fe are concentrated along the axis of the teeth, the bone fragments show high concentration of W, Yb, Er and Eu, whereas coprolites are nearly homogenous in composition contains S, Er with some Si as micro-inclusions. Fluorapatite is considered as main phosphate mineral whereas pyrite occurs as pore-filling within the phosphatic grains and cement materials. Maghrabi-Liffiya samples show a wide range in the P 2O 5 content, between 19.8 wt.% and 29.8 wt.% with an average of 24.6 wt.% and shows low U content ranging from 15 ppm to 34 ppm with an average of 22 ppm. The total REE content in nine samples representing the Maghrabi-Liffiya ranges from 519 to 1139 ppm with an average of about 879 ppm. The calculation of LREE (La-Gd) show indeed a marked enrichment relative to the HREE (Tb-Lu) where LREE/HREE ratio attains 8.4 indicating a strong fractionation between the LREE and HREE. Chondrite-normalized REE patterns of the studied phosphorite samples show a negative Eu anomaly.
Sadiq Aliyu, Abubakar; Musa, Yahaya; Liman, M S; Abba, Habu T; Chaanda, Mohammed S; Ngene, Nnamani C; Garba, N N
2018-01-01
The Keffi area hosts abundant pegmatite bodies as a result of the surrounding granitic intrusions. Keffi is part of areas that are geologically classified as North Central Basement Complex. Data on the mineralogy and mineralogical zonation of the Keffi pegmatite are scanty. Hence the need to understand the geology and mineralogical zonation of Keffi pegmatites especially at different depth profiles is relevant as a study of the elemental composition of the pegmatite is essential for the estimation of its economic viability. Here, the relative standardization method of instrumental neutron activation analysis (INAA) has been used to investigate the vertical deviations of the elemental concentrations of rare earth elements (REEs) at different depth profile of Keffi pegmatite. This study adopted the following metrics in investigating the vertical variations of REEs concentrations. Namely, the total contents of rare earth elements (∑REE); ratio of light to heavy rare earth elements (LREE/HREE), which defines the enrichment or depletion of REEs; europium anomaly (Eu/Sm); La/Lu ratio relative to chondritic meteorites. The study showed no significant variations in the total content of rare elements between the vertical depth profiles (100-250m). However, higher total concentrations of REEs (~ 92.65ppm) were recorded at the upper depth of the pegmatite and the europium anomaly was consistently negative at all the depth profiles suggesting that the Keffi pegmatite is enriched with light REEs. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mitra, A.; Dey, S.
2017-12-01
Paleoarchean era is marked as an active period of continental crust genesis. A large part of the paleoarchean crust is made up of grey sodic granitoids collectively referred as Tonalite Trondjhemite Granodiorite (TTG). Generation and evolution of TTGs are still highly debated, though researchers agree on their generation through partial melting of hydrated basalt at garnet or amphibole stability field. Discrete remnants of paleoarchean TTGs are exposed in several parts of the Singhbhum craton, eastern India. Our study exhibits occurrence of two different types of TTGs based on REE pattern in a chondrite normalized REE diagram. Accordingly, TTGs have been grouped into two different types, namely (1) High HREE TTG [low SiO2; high HREE avg. (Gd/Er)n=2.23; less fractionated REE avg. (La/Yb)n=27.9 and relatively low Sr/Y avg. Sr/Y=53.59] and Low HREE TTG [high SiO2; depleted HREE avg. (Gd/Er)n=3.23; steeply fractionated REE avg. (La/Yb)n=46.11 and relatively high Sr/Y avg. Sr/Y= 95.49]. The two types of TTGs mainly differ in pressure sensitive signatures like Sr/Y and (La/Yb)n ratio. Considering the major element composition both the types are consistent with a low-K mafic source. This indicates, melting occurred at different crustal levels from a same/similar source. Moderate Al2O3, high Sr contents coupled with depleted HREE and Y are linked to the presence of garnet in either residual or fractionating phase. However, HREE variation is controlled by the amount of Garnet retained in the restite. Thus, in spite of melting of the source rock in garnet stability field, only the minor change in depth of melting and in turn different amount of retention of garnet in the source caused the difference in HREE pattern. Zircon saturation temperature (TZr) calculated on the basis of whole rock Zr concentration ranges from 735˚C to 760 ˚C (avg. 749˚C) for high HREE TTG and 750 ˚C to 802˚C (avg. 773˚C) for low HREE TTG. Absence of zircon xenocryst depicts zircon undersaturated melt, thus calculated TZr provides minimum estimate of the real magma temperature. High temperature magmas (Low HREE) formed at deeper level retained more garnet in source compare to low temperature magma (High HREE). Hence, temperature difference in TTG magmas is consistent with differences in REE pattern and grouping of TTGs, considering a normal geothermal gradient.
New Experimental Constraints on Crystallization Differentiation in a Deep Magma Ocean
NASA Astrophysics Data System (ADS)
Walter, M. J.; Ito, E.; Nakamura, E.; Tronnes, R.; Frost, D.
2001-12-01
Most of Earth's mass probably accreted as a consequence of numerous impacts between large bodies and proto-Earth, and a giant impact with a Mars-sized object is the most plausible explanation for a Moon forming event. 1 Physical models show that large impacts would have caused high-degrees of melting and a global magma ocean. 2 Crystallization differentiation in a deep magma ocean could impart stratification in the solidified mantle, forming large geochemical domains. To accurately model crystallization in a deep magma ocean the liquidus phase-relations of peridotite, as well as mineral/melt element partitioning, must be known at lower mantle conditions. Here, we report the results of liquidus experiments on fertile model peridotite compositions at 23 - 33 GPa. Experiments were performed in 6/8-type multi-anvil apparatus using carbide and sintered-diamond second-stage anvils with 4 and 2 mm truncations, respectively. Samples were encapsulated by either graphite or Re. High-temperatures were generated using LaCrO3 or Re furnaces, and temperatures were held from 2 to 50 minutes at 2300 - 2500 C. Run products were analyzed for major and trace elements using EPMA and SIMS. At 23 GPa the liquidus phase is majorite, followed closely down temperature by ferropericlase (Fp) and Mg-perovskite (Mg-Pv). At 24 GPa the liquidus phase has changed to Fp, followed closely by majorite and Mg-Pv. Ca-perovskite (Ca-Pv) is present only at much lower temperatures close to the solidus. At approximately 31 GPa Mg-Pv is the liquidus phase followed down-temperature by Fp then Ca-Pv. At ~ 33 GPa Ca-Pv crystallizes closer to the liquidus, within about 50 C, at a similar temperature to Fp. Thus, important phases crystallizing in a deep magma ocean are Mg-Pv, Ca-Pv and Fp. Crystallization models based on major element partitioning show that only very modest amounts of crystal separation of a Mg-Pv + Fp assemblage can be tolerated before Ca/Al, Al/Ti and Ca/Ti ratios become unrealistic for estimates of primitive upper mantle (PUM). 3 However, even small amounts of Ca-Pv in the crystal assemblage effectively buffer these ratios at values close to the starting composition (e.g. chondritic). Further, based on our new trace element partitioning data, models involving considerable Mg-Pv fractionation generally show poor matches with model PUM. For example, model PUM has sub-chondritic REE/Ti, whereas these ratios increase considerably during Mg-Pv crystallization. Notable exceptions are super-chondritic Zr/Ti, chondritic Sr/Ti, and sub-chondritic Zr/Nb and Sm/Yb ratios, all of which are well matched by considerable Mg-Pv crystallization. Although trace element D's for Ca-Pv are not yet measured quantitatively, the observed affinity of Ca-Pv for REE could conceivably account for the the sub-chondritic REE/Ti ratios in PUM. Ca-Pv also concentrates K, and could be an important source of heat from radioactive decay in the lower mantle. 1. Canup, R. and Agnor, C., Origin of the Earth and Moon, Righter and Canup, eds., U. Arizona Press, 113-144, 2000. 2. Melosh, H., Origin of the Earth, Newsom and Jones, eds., Oxford Press, 69-84, 1990. 3. McFarlane, E. et al., Geochimica et Cosmochimica Acta, 5161-5172, 1994.
Reading, David G; Croudace, Ian W; Warwick, Phillip E
2017-06-06
There is an increasing demand for rapid and effective analytical tools to support nuclear forensic investigations of seized or suspect materials. Some methods are simply adapted from other scientific disciplines and can effectively be used to rapidly prepare complex materials for subsequent analysis. A novel sample fusion method is developed, tested, and validated to produce homogeneous, flux-free glass beads of geochemical reference materials (GRMs), uranium ores, and uranium ore concentrates (UOC) prior to the analysis of 14 rare earth elements (REE) via laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The novelty of the procedure is the production of glass beads using 9 parts high purity synthetic enstatite (MgSiO 3 ) as the glass former with 1 part of sample (sample mass ∼1.5 mg). The beads are rapidly prepared (∼10 min overall time) by fusing the blended mixture on an iridium strip resistance heater in an argon-purged chamber. Many elements can be measured in the glass bead, but the rare earth group in particular is a valuable series in nuclear forensic studies and is well-determined using LA-ICP-MS. The REE data obtained from the GRMs, presented as chondrite normalized patterns, are in very good agreement with consensus patterns. The UOCs have comparable patterns to solution ICP-MS methods and published data. The attractions of the current development are its conservation of sample, speed of preparation, and suitability for microbeam analysis, all of which are favorable for nuclear forensics practitioners and geochemists requiring REE patterns from scarce or valuable samples.
NASA Astrophysics Data System (ADS)
Akgul, Bunyamin
2015-11-01
Keban fluorite mineralizations are closely related Coniacian-Campanian subvolcanics intruded into Permian-Triassic Keban metamorphites; this event caused pyrometasomatic, porphyry, and vein-type Pb-Zn-Ag, Cu, W, and Pb-Zn-Ag-Mo-F mineralizations. These rocks are syenitic and syenomonzonitic in composition and have high Al2O3, alkali (Na2O + K2O), FeO*/MgO, Zr, Nb, Ta, Ga, Rb, Y, and rare earth element (REE) contents. They are A-type, metaluminous, and all fall in the shoshonitic series field in K2O vs SiO2 and Th/Yb vs Ta/Yb diagrams. The trace element contents and discriminations indicate that the Keban syenitoids were derived from lithospheric mantle metasomatized by oceanic-crust/sediment fluids. The metal and halogen contents of the Keban mineralizations apparently originated from metasomatized mantle and were transported to the crust by syenitoid magmas. Clear resemblances in chondrite-normalized REE patterns, LREE-HREE partionation, and high LILE contents of the magmatics and fluorites indicate a close kinship between the syenitoids and fluorite mineralizations. The HFSE contents of the fluorites are lower than those of the magmatics, as HFSEs are not soluble in aqueous fluids. The fluorites are products of early-phase alkali magmatism (LREE > HREE). The high contents of Rb, Sr, and Ba of fluorites are inherited from the magma, which also has very high contents of these elements. In Sc-∑REE, (La/Yb)n-(Eu/Eu*)n and (Tb/La)n-(Tb/Ca)n diagrams, Keban fluorites fall into distinct areas from Akcakisla-Akdagmadeni and Celikhan-Adiyaman fluorites.
NASA Astrophysics Data System (ADS)
Dostal, Jaroslav; Hamilton, Tark S.; Shellnutt, J. Gregory
2017-11-01
The compositionally bimodal volcanic rocks of the Eocene-Miocene Masset Formation from Queen Charlotte basin, Haida Gwaii, British Columbia, Canada, underlie an area greater than 5000 km2 where their exposed sections are up to 1.6 km thick. The suite of mafic and felsic rocks (dacites and rhyolites) that erupted closely spaced in time, in both submarine and subaerial conditions, was associated with significant crustal extension and thin continental crust ( 19-24 km thick), with volcanism persisting for 35 Ma (from 46 to 11 Ma). Predominant mafic types (mafic:felsic 2:1) are moderately enriched mid-ocean-ridge-like basalts that were derived by a partial melting of a heterogeneous spinel peridotite source. Felsic rocks are plagioclase-phyric, two pyroxene-bearing, mainly peraluminous types which have Nd, Pb and Sr isotopic compositions overlapping those of basalts including high positive ƐNd(t) values (up to >+6). The chondrite-normalized REE patterns show light REE enrichment but flat heavy REE along with a variable negative Eu anomaly. Mineralogy, major and trace elements, Nd-Sr-Pb isotopic data and model calculations using MELTS are consistent with a derivation of felsic rocks from the basalts by fractional crystallization. The intercalation of basaltic and felsic rocks suggests the existence of separate, simultaneously active plumbing and feeder systems and relatively stable magma chamber(s) to generate large volumes of differentiated felsic magmas by fractional crystallization. The Masset rocks provide an example for the generation of felsic magmas of bimodal volcanic suites during rifting along a thinned continental margin. Appendix 1b Representative analyses of minerals of the Masset Formation felsic rocks
Burruss, R.C.; Ging, T.G.; Eppinger, R.G.; Samson, a.M.
1992-01-01
Fluorescence emission spectra of three samples of fluorite containing 226-867 ppm total rare earth elements (REE) were excited by visible and ultraviolet wavelength lines of an argon ion laser and recorded with a Raman microprobe spectrometer system. Narrow emission lines ( 0.9 for Eu2+ and 0.99 for Er3+. Detection limits for three micrometer spots are about 0.01 ppm Eu2+ and 0.07 ppm Er3+. These limits are less than chondrite abundance for Eu and Er, demonstrating the potential microprobe analytical applications of laser-excited fluorescence of REE in fluorite. However, application of this technique to common rock-forming minerals may be hampered by competition between fluorescence emission and radiationless energy transfer processes involving lattice phonons. ?? 1992.
Vesta is not an intact protoplanet
NASA Astrophysics Data System (ADS)
Consolmagno, G.; Turrini, D.; Golabek, G.; Svetsov, V.; Sirono, S.; Tsiganis, K.
2014-07-01
The Dawn mission was designed to explore ''remnant intact protoplanets from the earliest epoch of solar system formation'' [1]. However, models of Vesta composed of an iron core, olivine mantle, and HED crust in chondritic proportions cannot match the joint constraints from Dawn [1] of Vesta's density, core size, and the extremely limited presence of exposed olivine on its surface. Vesta has a mean density of 3456 kg/m3 and its surface composition is well matched by howardites. The Dawn gravity data suggest a nickel-iron core of radius 110 km and density 7500--7800 kg/m3. The Rheasilvia impact basin, formed within a pre-existing large basin, Veneneia, should have excavated material from a depth of 50 km to 80 km or more below Vesta's surface [2]. If the howardite crust were thinner than 50--80 km, a significant amount of olivine-rich material, derived from depth, would have been exposed within this basin; models suggest that olivine would also be distributed both on Vesta's surface and in space as meteorite-source Vestoids. Such olivine is rare on Vesta, among the Vestoids, or in our meteorite collection. Vesta's density is similar to an L chondrite, but the Na and K abundances in Vesta are strongly depleted compared to chondrites and the average metal content of an L chondrite, 8.4% by mass, would give a core radius less than 90 km. A 110 km radius metallic core, via the Dawn data, represents 15% of Vesta's mass. The Mg/Al ratio in cosmic abundances is about 10:1, but roughly 1:1 within the eucrites; thus if Vesta started with cosmic abundances, the eucrites can only represent 10% of the parent body total mass. Likewise the 10 x chondritic rare earth trace elements (REE) abundance seen in most eucrites demands that, regardless of formation mechanism, these basalts were crystallized from a melt representing 10% of the mass of the source region [3]. Thus the howardite crust of a chondritic HED parent body, mixing all the available eucritic and diogenitic material (in a 2:1 ratio), represents no more than 15% of its total mass. This leaves 70% of Vesta's mass as olivine. Assuming no porosity in this mantle, the radius and density of Vesta can be matched only with a howardite crust (average grain density [4] of 3270 kg/m3) that was 27 km thick with a porosity of nearly 45%, comparable to sand. If the mantle porosity is 8%, similar to Chassigny, the necessary crust porosity would be 30%, but its thickness would drop to 21 km. In both cases, this crust is too thin to accommodate the lack of olivine in Rheasilvia or its ejecta. Absent some unknown process to hide large amounts of olivine on the surface of Vesta and among the Vestoids, chondritic models do not fit the observational constraints. A larger, lower density core of olivine and metal mixed in equal proportions (by mass), of density 5000 kg/m3 and radius 145 km may also fit the Dawn gravity data [5]. The remaining volume of Vesta would be a 115 km thick howardite crust, thick enough to allow the metal/olivine core to remain unexposed. (In this case Vesta would be composed only of core and crust, but the core would be rich in olivine.) To match Vesta's density, this thick crust only needs an average porosity of 4%. Since 50% of Vesta's mass in this model would be eucrites, the REE abundances for the whole of Vesta would have to be five times chondritic values. Either Vesta accreted from a highly unusual cosmochemical setting, or 80% of its primordial olivine and iron were removed at some time after the REE trace elements were extracted from the bulk proto-Vesta into the eucritic melt. This proto-Vesta would have to have at least three times the mass of the current Vesta, with a radius of at least 375 km (still smaller than Ceres). Either Vesta formed with a very non-chondritic composition or it was subjected to a radical change in composition, presumably due to the intense collisional environment [6,7] where and when it formed. In any event, Vesta is not a remnant protoplanet but a chemically stripped and reaccreted body.
Issues in characterizing resting energy expenditure in obesity and after weight loss
Bosy-Westphal, Anja; Braun, Wiebke; Schautz, Britta; Müller, Manfred J.
2013-01-01
Limitations of current methods: Normalization of resting energy expenditure (REE) for body composition using the 2-compartment model fat mass (FM), and fat-free mass (FFM) has inherent limitations for the interpretation of REE and may lead to erroneous conclusions when comparing people with a wide range of adiposity as well as before and after substantial weight loss. Experimental objectives: We compared different methods of REE normalization: (1) for FFM and FM (2) by the inclusion of %FM as a measure of adiposity and (3) based on organ and tissue masses. Results were compared between healthy subjects with different degrees of adiposity as well as within subject before and after weight loss. Results: Normalizing REE from an “REE vs. FFM and FM equation” that (1) was derived in obese participants and applied to lean people or (2) was derived before weight loss and applied after weight loss leads to the erroneous conclusion of a lower metabolic rate (i) in lean persons and (ii) after weight loss. This is revealed by the normalization of REE for organ and tissue masses that was not significantly different between lean and obese or between baseline and after weight loss. There is evidence for an increasing specific metabolic rate of FFM with increasing %FM that could be explained by a higher contribution of liver, kidney and heart mass to FFM in obesity. Using “REE vs. FFM and FM equations” specific for different levels of adiposity (%FM) eliminated differences in REE before and after weight loss in women. Conclusion: The most established method for normalization of REE based on FFM and FM may lead to spurious conclusions about metabolic rate in obesity and the phenomenon of weight loss-associated adaptive thermogenesis. Using %FM-specific REE prediction from FFM and FM in kg may improve the normalization of REE when subjects with wide differences in %FM are investigated. PMID:23532370
Compositional variation in minerals of the chevkinite group
Macdonald, R.; Belkin, H.E.
2002-01-01
The composition of chevkinite and perrierite, the most common members of the chevkinite group, is closely expressed by the formula A4BC2D2Si4O22, where A = (La,Ce,Ca,Sr,Th), B = Fe2+, C = (Fe2+,Fe3+,Ti,Al,Zr,Nb) and D = Ti. The A site is dominated by a strong negative correlation between (Ca+Sr) and the REE. Chondrite-normalized REE patterns are very variable, e.g. in LREE/HREE and Eu/Eu*. The C site is dominated by Ti, Al and Fe2+, in very variable proportions. Most chevkinites and perrierites are close to stoichiometric, with cation sums between 12.9 and 13.5, compared to the theoretical 13. There is no single, generally applicable charge balancing substitution scheme in the group; however, the general relationship (Ca+Sr)A + TiC + REEA + M3C+2+ defines a linear array with r2 = 0.91. Chevkinite and perrierite are shown to be compositionally distinct on the basis of CaO, FeO* Al2O3 and Ce2O3 abundances. Chevkinite forms mainly in chemically evolved parageneses, such as syenites, rhyolites and fenites associated with carbonatite complexes. Perrierite is more commonly recorded from igneous rocks of mafic to intermediate composition. The compositional characteristics and possible structural formulae of other members of the chevkinite group are reviewed briefly.
NASA Astrophysics Data System (ADS)
Fan, Jian-Jun; Li, Cai; Liu, Jin-Heng; Wang, Ming; Liu, Yi-Ming; Xie, Chao-Ming
2017-12-01
In this paper, we present new major and trace element chemical data for the basalts and phonolites of the Nare ocean island fragment (NaOI), as well as zircon U-Pb age data and Hf isotope compositions for the NaOI phonolites in the middle segment of the Bangong-Nujiang Suture Zone, northern Tibet. Our aim is to assess the genesis of these rocks and to reconstruct the Middle Triassic evolution of the Bangong-Nujiang Tethyan Ocean (BNTO). The NaOI retains an ocean island-type double-layered structure comprising a basaltic basement and an oceanic sedimentary cover sequence (conglomerate and limestone, the latter accompanied by layers of erupted phonolite near the top of the sequence). The basalts in the NaOI are enriched in light rare earth elements and high field strength elements (Nb, Ta, Zr, Hf, and Ti), and they exhibit chondrite-normalized REE patterns and primitive mantle-normalized trace element patterns similar to those of ocean island basalts. Taking into consideration their high Dy/Yb, Sm/Yb, and La/Sm ratios, we conclude that the NaOI basalts were derived from the partial melting of garnet peridotite in the mantle. The NaOI phonolites have LREE-enriched chondrite-normalized REE patterns with negative Eu anomalies (Eu/Eu* = 0.41-0.43) and primitive mantle-normalized trace element patterns with enrichments in Nb, Ta, Zr, and Hf, and depletions in Ba, U, Sr, P, and Ti. Given the high contents of Nb (172-256 ppm), Ta (11.8-16.0 ppm), Zr (927-1117 ppm), and Hf (20.8-26.9 ppm), and the very low contents of MgO (0.11-0.25 wt%), the very low Mg# values (5-10), and the near-zero contents of Cr (1.27-7.59 ppm), Ni (0.43-7.19 ppm), and Co (0.11-0.38 ppm), and the small and homogeneously positive ɛ Hf(t) values (+ 4.9 to + 9.5), we infer that the NaOI phonolites were formed by the fractional crystallization of an OIB-derived mafic parent magma. The phonolites of the NaOI contain zircons that yielded U-Pb ages of 239 and 242 Ma, indicating that the NaOI formed during the Middle Triassic. These data, combined with data from modern ocean islands (e.g., Canary Islands, Cape Verde, Fernando de Noronha, Tristan da Cunha, and Gough in the Atlantic Ocean, and Society and Austral-Cook in the Pacific Ocean), lead us to infer that the BNTO was open for a long time before the Middle Triassic, and that the ocean had already developed into a mature ocean with a thick oceanic lithosphere by at least the Middle Triassic.
Actinide abundances in ordinary chondrites
Hagee, B.; Bernatowicz, T.J.; Podosek, F.A.; Johnson, M.L.; Burnett, D.S.; Tatsumoto, M.
1990-01-01
Measurements of 244Pu fission Xe, U, Th, and light REE (LREE) abundances, along with modal petrographic determinations of phosphate abundances, were carried out on equilibrated ordinary chondrites in order to define better the solar system Pu abundance and to determine the degree of variation of actinide and LREE abundances. Our data permit comparison of the directly measured Pu/ U ratio with that determined indirectly as (Pu/Nd) ?? (Nd/U) assuming that Pu behaves chemically as a LREE. Except for Guaren??a, and perhaps H chondrites in general, Pu concentrations are similar to that determined previously for St. Se??verin, although less precise because of higher trapped Xe contents. Trapped 130Xe 136Xe ratios appear to vary from meteorite to meteorite, but, relative to AVCC, all are similar in the sense of having less of the interstellar heavy Xe found in carbonaceous chondrite acid residues. The Pu/U and Pu/Nd ratios are consistent with previous data for St. Se??verin, but both tend to be slightly higher than those inferred from previous data on Angra dos Reis. Although significant variations exist, the distribution of our Th/U ratios, along with other precise isotope dilution data for ordinary chondrites, is rather symmetric about the CI chondrite value; however, actinide/(LREE) ratios are systematically lower than the CI value. Variations in actinide or LREE absolute and relative abundances are interpreted as reflecting differences in the proportions and/or compositions of more primitive components (chondrules and CAI materials?) incorporated into different regions of the ordinary chondrite parent bodies. The observed variations of Th/U, Nd/U, or Ce/U suggest that measurements of Pu/U on any single equilibrated ordinary chondrite specimen, such as St. Se??verin, should statistically be within ??20-30% of the average solar system value, although it is also clear that anomalous samples exist. ?? 1990.
NASA Astrophysics Data System (ADS)
Gangopadhyay, A.; Walker, R. J.; Sproule, R. A.; Lesher, C.
2003-12-01
We have examined the major and trace elements, and Os isotopic compositions of a suite of cumulate and spinifex textured komatiitic rocks from the Dundonald Beach area, part of the ˜2.7 Ga Abitibi greenstone Belt, Ontario, Canada. This suite of rocks forms a series from peridotitic komatiites (MgO ˜ 42 wt.% on a volatile-free basis) to komatiitic basalts (MgO ˜8 wt.%). Based on major element oxide ratios (e.g. Al2O3/TiO2 ˜21-26 and CaO/Al2O3 typically <= 1) and unfractionated HREE characteristics (e.g. (Gd/Yb)N ˜0.9-1.1), these rocks are similar to the spatially associated Al-undepleted komatiites from Alexo and Munro Townships. Also, these rocks are strongly LREE-depleted ((La/Sm)N = 0.41-0.67; (Ce/Yb)N = 0.41-0.70)) and have variable total REE (4-22 ppm). A strong negative correlation between Mg# and total REEs suggests that the REE patterns of these rocks are primary features of their mantle source. The Re-Os isotope results for whole-rock komatiites and chromite separates from a single flow yield a model 3 isochron age of 2606 +/- 55 Ma. This age is slightly younger ( ˜50 Ma) compared to the U-Pb zircon ages of the associated volcanics reported from the presumed extension of the same Kidd-Munro assemblage in Alexo and Munro Townships. The initial 187Os/188Os ratio (0.1090 +/- 0.0019) obtained from the regression is essentially chondritic (γ Os(T) = -0.2 +/- 1.7). The peridotitic komatiites have the highest Os concentrations and low 187Re/188Os ratios (up to ˜4.2 ppb and < 0.5, respectively) among the whole rocks, whereas the komatiitic basalts have relatively low Os concentrations ( ˜0.3 ppb) and high 187Re/188Os ratios ( ˜3.1-11.9). For these komatiites, Os was compatible with the mantle residue (DOsmantle-melt ˜7.6), whereas Re was moderately incompatible (DRe ˜0.6), typical of most komatiitic magmas. The absence of a strong correlation between Os and Ni concentrations in the whole-rocks suggests that the distribution of Os in these rocks is not primarily controlled by fractionation of olivine. The apparent DReol+chmt/liq. ( ˜0.7), on the other hand, suggests that Re was moderately incompatible in olivine and/or chromite during the differentiation of komatiitic magmas. A chondritic initial Os isotopic composition for the mantle source for these komatiites is consistent with that previously reported for the komatiites from Alexo and Munro Townships. Our Os isotopic results for Dundonald komatiites, combined with those reported for Alexo and Pyke Hill komatiites, therefore, suggest that a major portion of the ˜2.7 Ga mantle source for the komatiites in the Abitibi greenstone belt was dominated by Os with chondritic isotopic compositions. Also, the LREE-depleted, yet chondritic Os isotopic composition for the mantle source of these komatiites is indistinguishable from the projected chondritic composition of the contemporaneous depleted convective upper mantle.
Descartes Mountains and Cayley Plains - Composition and provenance
NASA Technical Reports Server (NTRS)
Drake, M. J.; Taylor, G. J.; Goles, G. G.
1974-01-01
Trace element compositions of petrographically characterized 2-4 mm lithic fragments from Apollo 16 soil samples are used to calculate initial REE concentrations in liquids in equilibrium with lunar anorthosites and to discuss the provenance of the Cayley Formation. Lithic fragments may be subdivided into four groups: (1) ANT rocks, (2) K- and SiO2-rich mesostasis-bearing rocks, (3) poikiloblastic rocks, and (4) (spinel) troctolites. Model liquids in equilibrium with essentially monominerallic anorthosites have initial REE concentrations 5-8 times those of chondrites. The REE contents of K- and SiO2-rich mesostasis-bearing rocks and poikiloblastic rocks are dominated by the mesostasis phases. ANT rocks appear to be more abundant in the Descartes Mountains, while poikiloblastic rocks appear to be more abundant in the Cayley Plains. Poikiloblastic rocks have intermediate to high LIL-element concentrations yet the low gamma-ray activity of Mare Orientale implies low LIL-element concentrations. Consequently, it is unlikely that the Cayley Formation is Orientale ejecta. A local origin as ejecta from smaller impacts is a more plausible model for the deposition of the Cayley Formation.
Formation and composition of the moon
NASA Technical Reports Server (NTRS)
Anderson, D. L.
1977-01-01
Many of the properties of the Moon, including the enrichment in Ca, Al, Ti, U, Th, Ba, Sr, and the REE and the depletion in Fe, Rb, K, Na, and other volatiles can be understood if the Moon represents a high-temperature condensate from the solar nebula. Thermodynamic calculations show that Ca-, Al-, and Ti-rich compounds condense first in a cooling nebula. The initial high temperature mineralogy is gehlenite, spinel, perovskite, Ca-Al-rich pyroxenes, and anorthite. Inclusions in carbonaceous chondrites such as the Allende meteorite are composed primarily of these minerals and, in addition, are highly enriched in refractories such as REE relative to carbonaceous chondrites. These inclusions can yield basalt and anorthosite in the proportions required to eliminate the europium anomaly, leaving a residual spinel-melilite interior. A deep interior high in Ca-Al does not imply an unacceptable mean density or moment of inertia for the Moon. The inferred high-U content of the lunar interior, both from the Allende analog and the high heat flow, indicates a high-temperature interior. The model is consistent with extensive early melting, with shallow melting at 3 AE, and with presently high deep internal temperatures. It is predicted that the outer 250 km is rich in plagioclase and FeO. The low iron content of the interior in this model raises the interior temperatures estimated from electrical conductivity by some 800 C.
Wei, Z G; Hong, F S; Yin, M; Li, H X; Hu, F; Zhao, G W; Wong, J W C
2004-10-01
An off-line normal-phase liquid chromatography-ICP-MS method has been used for separation and determination of the rare earth elements (REE) associated with chloroplast pigments of Dicranopteris dichotoma. The stability of REE-bound pigments was tested, and almost no destruction of REE-bound pigments occurred during the so-called normal-phase liquid chromatography. The accumulated free REE ions on the microcrystalline cellulose column were cleaned by elution with 5 mmol L(-1) 2-ethylhexyl hydrogen 2-ethylhexylphosphonate (P507), to avoid exchange of these free ions with metals from the pigments. When these precautions were taken, the method was applied to the study of REE-bound pigments in D. dichotoma. ICP-MS results showed REE were present in chlorophylls and lutein, although REE concentrations in carotene and pheophytin were both below procedural blank levels. By careful analysis of the eluate fractions containing chlorophyll a it was found that REE-bound chlorophyll a in D. dichotoma was slightly enriched in the fractions with relatively short retention time. Results indicated that the retention time of REE-bound chlorophyll a might be slightly less than that of magnesium chlorophyll a, and REE-bound chlorophylls might be of relatively low polarity in comparison with magnesium bound chlorophylls. This phenomenon could be explained by the special double-decker sandwich-structure of REE-bound chlorophylls, as was reported by us and other authors. On the basis of these results we preferred to consider that REE can replace magnesium in chlorophyll a of D. dichotoma, and that the role of REE-bound chlorophylls in photosynthesis cannot be neglected. These data might be useful for understanding of both the properties of REE-bound pigments and the effect of REE on plant photosynthesis.
Genesis of post-collisional calc-alkaline and alkaline granitoids in Qiman Tagh, East Kunlun, China
NASA Astrophysics Data System (ADS)
Yu, Miao; Feng, Chengyou; Zhao, Yiming; Li, Daxin
2015-12-01
The post-collisional magmatism of Qiman Tagh is characterized by the intrusion of voluminous intermediate to felsic granitoids, including syenogranite, monzogranite, granodiorite, tonalite and diorite. The granitoids can be divided into two magmatic suites: Calc-alkaline (CA) and alkaline (Alk), which were emplaced from ~ 236 Ma to ~ 204 Ma. The CA suite contains metaluminous granodiorites and monzogranites. Typical Qiman Tagh CA granodiorites show moderately fractionated REE patterns ((La/Yb)N = 4.35-25.11) with significant negative Eu anomalies (Eu/Eu* = 0.54-1.34), and the primitive mantle-normalized spidergrams show strong depletion of Nb and Sr. The Qiman Tagh CA monzogranites show similar fractionated REE patterns ((La/Yb)N = 2.70-13.5) with less prominent negative Eu anomalies, and the chondrite-normalized spidergrams show strongly depleted Ba, Nb and Sr. The Alk suite, including syenogranite, is highly potassic (K2O/Na2O = 1.09-3.56) and peraluminous (A/CNK = 0.91-1.06). Compared to typical Qiman Tagh CA granodiorites, the Qiman Tagh Alk granitoids can be distinguished by their higher Rb, Nb, Ga/Al, FeO*/MgO, Y/Sr and Rb/Sr, as well as their lower Mg#, MgO, CaO, Al2O3, Sr, Co, V, Eu/Eu*, Ba/Nb, La/Nb, Ba/La and Ce/Nb. The Qiman Tagh CA rocks were most likely to be derived from the partial melting of garnet-amphibolite-facies rocks in the lower crust, leaving behind anhydrous granulite-facies rocks with plagioclase and garnet in the residue. The Alk rocks may have formed by the continued partial melting of granulite-facies rocks at elevated temperatures (> 830 °C).
NASA Astrophysics Data System (ADS)
Mondal, M. E. A.; Wani, H.; Mondal, Bulbul
2012-09-01
The Ganga basin in the Himalayan foreland is a part of the world's largest area of modern alluvial sedimentation. Flood plain sediments of the Hindon River of the Gangetic plain have been analyzed for sediment texture, major and trace elements including rare earth elements (REEs). The results have been used to characterize the source rock composition and to understand the intensity of chemical weathering, tectonics and their interplay in the Hindon flood plain. The sediments of the Hindon flood plain dominantly consist of sand sized particles with little silt and clay. The geochemistry of the Hindon sediments has been compared to the Siwalik mudstone of the Siwalik Group (Siwaliks). The Siwalik sedimentary rocks like sandstones, mudstones and conglomerates are the known source rocks for the Hindon flood plain sediments. Mudstone geochemistry has been considered best to represent the source rock characteristics. The UCC (Upper Continental Crust) normalized major and trace elements of the Hindon flood plain sediments are very similar to the Siwalik mudstone except for Th and Cr. Furthermore, the average chondrite normalized REE pattern of the Hindon flood plain sediments is similar to the Siwalik mudstone. Textural immaturity, K/Rb ratios and the average CIA (Chemical Index of Alteration) and PIA (Plagioclase Index of Alteration) values of the Hindon flood plain sediments indicate that the sediments have not been affected by chemical weathering. Our study suggests that the active tectonics of the Himalayas and monsoon climate enhances only physical erosion of the source rocks (Siwaliks) rather than the chemical alteration. These factors help the Hindon sediments to retain their parental and tectonic signature even after recycling.
NASA Astrophysics Data System (ADS)
Budakoglu, Murat; Abdelnasser, Amr; Karaman, Muhittin; Kumral, Mustafa
2015-11-01
The sediments in Lake Acıgöl, located in SW Anatolia, Turkey, were formed under tectono-sedimentary events. REE geochemical investigations of the Lake Acıgöl sediments, from surface and shallow core sediments at different depths (0-10 cm, 10-20 cm and 20-30 cm) are presented to clarify the characteristics of REE and the nature of source rocks in the lake sediments' and to deduce their paleoenvironmental proxies. The chondrite-normalized REE patterns of these sediments are shown as light enrichment in LREE and flat HREE with a negative Eu anomaly that is close to the continental collision basin (CCB) in its profile; this is not comparable with PAAS and UCC. Inorganic detrital materials control the REE characteristics of the Lake Acıgöl sediments and these sediments were accumulated in oxic and dysoxic depositional conditions and/or at passive margins derived from oceanic island arc rocks. They were affected by low chemical weathering, either at the original source or during transport, before deposition under arid or subtropical humid climatic conditions. In addition, we used GIS techniques (such as Inverse Distance Weighted (IDW) and Geographically Weighted Regression (GWR)) to investigate the spatial interpolation and spatial correlation of the REEs from the lake surface sediments in Lake Acıgöl and its surrounding lithological units. GIS techniques showed that the lithological units (e.g., Hayrettin Formation) north of Lake Acıgöl have high REE contents; however, Eu/Eu∗ values were higher in some lake surface sediments than in lithological units, and that refers to a negative Eu-anomaly. Therefore, Lake Acıgöl sediments are derived from the weathered products, mainly from local, highly basic bedrock around the lake from the Archean crust. The chronology of Lake Acıgöl sediment was conducted using the Constant Rate of Supply (CRS) model. Using the CRS methods for the calculation of sedimentation rate, we obtained a 0.012 g/cm2/year value which is an average value for the first 20 cm depth of this lake. The core activity profiles of 210Pb and 137Cs were measured to estimate the age of the sediments; we observed activities of 8.08 ± 5.5 Bq/kg for 210Pb and 0.86 ± 0.6 Bq/kg for 137Cs.
NASA Astrophysics Data System (ADS)
Ali, Arshad; Nasir, Sobhi J.; Jabeen, Iffat; Al Rawas, Ahmed; Banerjee, Neil R.; Osinski, Gordon R.
2017-09-01
Dhofar 1671 is a relatively new meteorite that previous studies suggest belongs to the Rumuruti chondrite class. Major and REE compositions are generally in agreement with average values of the R chondrites (RCs). Moderately volatile elements such as Se and Zn abundances are lower than the R chondrite values that are similar to those in ordinary chondrites (OCs). Porphyritic olivine pyroxene (POP), radial pyroxene (RP), and barred olivine (BO) chondrules are embedded in a proportionately equal volume of matrix, one of the characteristic features of RCs. Microprobe analyses demonstrate compositional zoning in chondrule and matrix olivines showing Fa-poor interior and Fa-rich outer zones. Precise oxygen isotope data for chondrules and matrix obtained by laser-assisted fluorination show a genetic isotopic relationship between OCs and RCs. On the basis of our data, we propose a strong affinity between these groups and suggest that OC chondrule precursors could have interacted with a 17O-rich matrix to form RC chondrules (i.e., ∆17O shifts from 1‰ to 3‰). These interactions could have occurred at the same time as "exotic" clasts in brecciated samples formed such as NWA 10214 (LL3-6), Parnallee (LL3), PCA91241 (R3.8-6), and Dhofar 1671 (R3.6). We also infer that the source of the oxidation and 17O enrichment is the matrix, which may have been enriched in 17O-rich water. The abundance of matrix in RCs relative to OCs, ensured that these rocks would be apparently more oxidized and appreciably 17O-enriched. In situ analysis of Dhofar 1671 is recommended to further strengthen the link between OCs and RCs.
REE geochemistry of 3.2 Ga BIF from the Mapepe Formation, Barberton Greenstone Belt, South Africa
NASA Astrophysics Data System (ADS)
Yahagi, T. R.; Yamaguchi, K. E.; Haraguchi, S.; Sano, R.; Teraji, S.; Kiyokawa, S.; Ikehara, M.; Ito, T.
2012-12-01
Banded iron formations (BIFs) are chemical sediments interbedded with Fe- and Si-rich layers, characteristically present in the early history of the Earth. A popular hypothesis for the formation of BIFs postulates that dissolved oxygen produced by photosynthesizers such as cyanobacteria oxidized dissolved ferrous Fe supplied by submarine hydrothermal activities. During precipitation of Fe-oxide minerals, phosphorus and rare earth elements (REEs) were most likely adsorbed on their surface. Therefore, chemical compositions of REEs that adsorbed onto Fe-oxide have useful information on the seawater chemistry at the time of deposition. Especially, information on the redox state of seawater and the extent of the contribution of hydrothermal activity during BIF deposition are expected to have been recorded. Occurrence of BIF has been traditionally tied to the chemical evolution of the atmosphere. Rise of atmospheric oxygen, or as known as GOE (Great Oxidation Event: e.g., Holland, 1994), has been widely believed to have occurred at around 2.4 Ga ago. Contrary, however, some studies have suggested that such oxygenation could have occurred much earlier (e.g., Hoashi et al., 2009). In this study, we used 3.2 Ga old BIF from the Mapepe Formation at the bottom of the Fig Tree Group of the Swaziland Supergroup in the northeastern part of the Barberton Greenstone Belt, South Africa. We aimed to constrain the marine environment, and by inference atmospheric environment, at the time of BIF deposition from REE geochemistry. Major elements and REE compositions of 37 samples were measured using XRF and ICP-MS, respectively. Samples with less than 1.0 wt% Al2O3 are considered to be "pure" BIFs with minimal amount of continental contamination, and are expected to have inherited marine REE signatures. Abundance of REE normalized by C1 chondrite for the analyzed samples commonly exhibits positive Eu anomaly and LREE
NASA Astrophysics Data System (ADS)
Bischoff, Addi; Dyl, Kathryn A.; Horstmann, Marian; Ziegler, Karen; Wimmer, Karl; Young, Edward D.
2013-04-01
The Villalbeto de la Peña meteorite that fell in 2004 in Spain was originally classified as a moderately shocked L6 ordinary chondrite. The recognition of fragments within the Villalbeto de la Peña meteorite clearly bears consequences for the previous classification of the rock. The oxygen isotope data clearly show that an exotic eye-catching, black, and plagioclase-(maskelynite)-rich clast is not of L chondrite heritage. Villalbeto de la Peña is, consequently, reclassified as a polymict chondritic breccia. The oxygen isotope data of the clast are more closely related to data for the winonaite Tierra Blanca and the anomalous silicate-bearing iron meteorite LEW 86211 than to the ordinary chondrite groups. The REE-pattern of the bulk inclusion indicates genetic similarities to those of differentiated rocks and their minerals (e.g., lunar anorthosites, eucritic, and winonaitic plagioclases) and points to an igneous origin. The An-content of the plagioclase within the inclusion is increasing from the fragment/host meteorite boundary (approximately An10) toward the interior of the clast (approximately An52). This is accompanied by a successive compositionally controlled transformation of plagioclase into maskelynite by shock. As found for plagioclase, compositions of individual spinels enclosed in plagioclase (maskelynite) also vary from the border toward the interior of the inclusion. In addition, huge variations in oxygen isotope composition were found correlating with distance into the object. The chemical and isotopical profiles observed in the fragment indicate postaccretionary metamorphism under the presence of a volatile phase.
Partial melting of amphibolite to trondhjemite at Nunatak Fiord, St. Elias Mountains, Alaska
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barker, F.; McLellan, E.L.; Plafker, G.
1985-01-01
At Nunatak Fiord, 55km NE of Yakutat, Alaska, a uniform layer of Cretaceous basalt ca. 3km thick was metamorphosed ca. 67 million years ago to amphibolite and locally partially melted to pegmatitic trondhjemite. Segregations of plagioclase-quartz+/-biotite rock, leucosomes in amphibolite matrix, range from stringers 5-10mm thick to blunt pods as thick as 6m. They tend to be parallel to foliation of the amphibolite, but crosscutting is common. The assemblage aluminous hornblende-plagioclase-epidote-sphene-quartz gave a hydrous melt that crystallized to plagioclase-quartz+/-biotite pegmatitic trondhjemite. 5-10% of the rock melted. Eu at 2x chondrites is positively anomalous. REE partitioning in melt/residum was controlled largelymore » by hornblende and sphene. Though the mineralogical variability precludes quantitative modeling, partial melting of garnet-free amphibolite to heavy-REE-depleted trondhjemitic melt is a viable process.« less
NASA Astrophysics Data System (ADS)
Periasamy, V.; Venkateshwarlu, M.
2017-06-01
Sandstones of Jhuran Formation from Jara dome, western Kachchh, Gujarat, India were studied for major, trace and rare earth element (REE) geochemistry to deduce their paleo-weathering, tectonic setting, source rock characteristics and provenance. Petrographic analysis shows that sandstones are having quartz grains with minor amount of K-feldspar and lithic fragments in the modal ratio of Q 89:F 7:L 4. On the basis of geochemical results, sandstones are classified into arkose, sub-litharenite, wacke and quartz arenite. The corrected CIA values indicate that the weathering at source region was moderate to intense. The distribution of major and REE elements in the samples normalized to upper continental crust (UCC) and chondrite values indicate similar pattern of UCC. The tectonic discrimination diagram based on the elemental concentrations and elemental ratios of Fe2O3 + MgO vs. TiO2, SiO2 vs. log(K2O/Na2O), Sc/Cr vs. La/Y, Th-Sc-Zr/10, La-Th-Sc plots Jhuran Formation samples in continental rift and collision settings. The plots of Ni against TiO2, La/Sc vs. Th/Co and V-Ni-Th ∗10 reveals that the sediments of Jhuran Formation were derived from felsic rock sources. Additionally, the diagram of (Gd/Yb) N against Eu/Eu ∗ suggest the post-Archean provenance as source possibly Nagar Parkar complex for the studied samples.
Trace element distributions in primitive achondrites
NASA Technical Reports Server (NTRS)
Davis, Andrew M.; Prinz, Martin; Weisberg, Michael K.
1993-01-01
The primitive achondrites have approximately chondritic bulk chemical composition but achondritic textures. Clayton et al. show that nine of these meteorites, the acapulcoites and the lodranites, have similar oxygen isotopic compositions. The acapulcoites appear to be highly metamorphosed, but undifferentiated meteorites of chondritic composition; whereas, the lodranites appear to have lost a feldspathic partial melt. In order to learn more about metamorphic processes and partial melt removal, we have measured the trace element compositions of constituent phases of a number of primitive achondrites by ion microprobe. We have analyzed two acapulcoites, Acapulco and ALH81261 (paired with ALH77081), and three londranites, Lodran, LEW88280, and MAC88177. In addition, we analyzed LEW88663, which has the bulk composition, mineral chemistry, and oxygen isotopic composition of L-chondrites, but is metal-free and has an achondrite texture; and Divnoe, a plagioclase-poor, olivine-rich primitive achondrite with an oxygen isotopic composition similar to that of the group IAB iron meteorites. These meteorites show a variety of REE patterns in their constituent phases, and there are consistent differences between acapulcoites and lodranites that are consistent with removal of a LREE- and Eu-enriched melt that is apparently responsible for the low plagioclase content of lodranites.
NASA Astrophysics Data System (ADS)
Adamczyk, Zdzisław; Białecka, Barbara; Moszko, Joanna Całusz; Komorek, Joanna; Lewandowska, Małgorzata
2015-03-01
The subject of the research concerned the coal samples from 360/1, 361 and 362/1 seams of the Orzesze beds in the "Pniówek" coal mine. The obtained samples were characterized by low ash content - 2.22- 6.27% of the mass. The chemical composition of the ash indicates the presence of aluminosilicate minerals in the analyzed coal samples - most likely clay minerals, the presence of which has been confirmed in microscopic tests of the petrographic composition of channel samples of coal. The content of rare earth elements (REE sum) in the ash of the tested coal seams ranged from 364 to 1429 ppm. Variation of the REE content has been observed within a single seam. The fraction of REE indicates a relation with a mineral substance. No relation of the REE fraction and the presence of red beds has been found based on the tested samples. The content of REE found in ash, normalized to chondrites, is characterized by LREE enrichment in relation to HREE. The Eu anomaly is most likely related to tuff and tonstein levels occurring in Orzesze beds, which accompany the coal seams in the Upper Silesian Coal Basin (i.a., south of the studied area). The research has indicated that LREE in the tested samples are more related to the mineral substance, while HREE have a stronger affinity with organic substances.
NASA Astrophysics Data System (ADS)
Fan, J.; Kerrich, R.
1997-11-01
A compositionally diverse suite of komatiites, komatiitic basalts, and basalts coexist in the Tisdale volcanic assemblage of the late-Archean (˜2.7 Ga) Abitibi greenstone belt. The komatiites are characterized by a spectrum of REE patterns, from low total REE contents (9 ppm) and pronounced convex-up patterns to greater total REE (18 ppm) and approximately flat-distributions. Thorium and niobium are codepleted with LREE. Komatiites with the most convex-up patterns have low Al 2O 3 (4.7 wt%) contents and Al 2O 3/TiO 2(12) ratios; they are interpreted to be the Al-depleted variety of komatiite derived from a depleted mantle source. Those komatiites and komatiitic basalts with flatter REE patterns are characterized by greater Al 2O 3 (7.0 wt%) and near chondritic Al 2O 3/TiO 2 (20) ratios; they are interpreted to be Al-undepleted komatiites generated from trace element undepleted mantle. For the komatiites and komatiitic basalts collectively, Gd/Ybn ratios are negatively correlated with La/Smn, but positively with MgO and Ni. The spectrum of patterns is interpreted as mixing between Al, HREE, Y-depleted, and Sc-depleted komatiites and Al-undepleted komatiites in a heterogeneous mantle plume. Auminum-depleted komatiites are characterized by negative Zr and Hf anomalies, consistent with majorite garnet-liquid D's for HFSE and REEs, signifying melt segregation at depths of >400 km. Tisdale Al-undepleted komatiites and komatiitic basalts have small negative to zero Zr(Hf)/MREE fractionation, signifying melt segregation in or above the garnet stability field. Collectively, the komatiites have correlations of Zr/Zr∗ and Hf/Hf ∗ with Gd/Ybn, and hence the Zr(Hf)/MREE fractionations are unlikely to have stemmed from alteration or crustal contamination. Two types of basalts are present. Type I basalts are Mg-tholeiites with near flat REE and primitive mantle normalized patterns, compositionally similar to abundant Mg-tholeiites associated with both Al-undepleted and Al-depleted komatiites in the Abitibi belt. They have absolute concentrations and ratios of most moderately and highly compatible elements comparable to N- MORB (Zr ˜79 vs. 74, Y ˜30 vs. 28, and Zr/Y = 2.4-2.9 vs. 2.6 ), but are relatively less depleted in highly incompatible elements and lack positive Nb or P anomalies. Type II basalts are relatively aluminous (Al 2O 3 ˜ 16 wt%), with high Al 2O 3/TiO 2 (24-28) ratios. They are characterized by low Th, Nb, and LREE contents at eight to ten times chondrite, with slightly convex-up LREE patterns ( La/Smn = 0.86-0.99 ), but strongly fractionated and enriched HREEs, Y, and Sc, where Gd/Ybn = 0.50-0.55 and consistently positive Zr(Hf)/MREEs anomalies. These basalts are tentatively interpreted as low-Ti tholeiites formed in a convergent margin setting with second stage melting, induced by fluids and melts enriched in incompatible elements and Zr(Hf) relative to MREEs, of a mantle source depleted during first stage melting. They are analogous to the Phanerozoic low-Ti tholeiite - boninite association. Accordingly the Tisdale volcanic sequence records a plume-convergent margin interaction. New analyses of Al-undepleted komatiites from the classical locality at Pyke Hill in Munro Township confirm the presence of small positive anomalies of P, Zr, and Hf, with Zr/Hf ratios generally < 36. These signatures are similar in spinifex and cumulate zones signifying that they are unlikely to have resulted from alteration. The data were generated by INAA and ICP-MS using both HFHNO 3 dissolution and Na 2O 2 sinter. The lack of LREE enrichment with negative Nb, Ta, P, and Ti anomalies in any of the Tisdale or Munro komatiites confirms an intraoceanic setting for the volcanic stage of the Western Abitibi greenstone belt.
Origin of middle rare earth element enrichments in acid waters of a Canadian high Arctic lake.
NASA Astrophysics Data System (ADS)
Johannesson, Kevin H.; Zhou, Xiaoping
1999-01-01
-Middle rare earth element (MREE) enriched rock-normalized rare earth element (REE) patterns of a dilute acidic lake (Colour Lake) in the Canadian High Arctic, were investigated by quantifying whole-rock REE concentrations of rock samples collected from the catchment basin, as well as determining the acid leachable REE fraction of these rocks. An aliquot of each rock sample was leached with 1 N HNO 3 to examine the readily leachable REE fraction of each rock, and an additional aliquot was leached with a 0.04 M NH 2OH · HCl in 25% (v/v) CH 3COOH solution, designed specifically to reduce Fe-Mn oxides/oxyhydroxides. Rare earth elements associated with the leachates that reacted with clastic sedimentary rock samples containing petrographically identifiable Fe-Mn oxide/oxyhydroxide cements and/or minerals/amorphous phases, exhibited whole-rock-normalized REE patterns similar to the lake waters, whereas whole-rock-normalized leachates from mafic igneous rocks and other clastic sedimentary rocks from the catchment basin differed substantially from the lake waters. The whole-rock, leachates, and lake water REE data support acid leaching or dissolution of MREE enriched Fe-Mn oxides/oxyhydroxides contained and identified within some of the catchment basin sedimentary rocks as the likely source of the unique lake water REE patterns. Solution complexation modelling of the REEs in the inflow streams and lake waters indicate that free metal ions (e.g., Ln 3+, where Ln = any REE) and sulfate complexes (LnSO 4+) are the dominant forms of dissolved REEs. Consequently, solution complexation reactions involving the REEs during weathering, transport to the lake, or within the lake, cannot be invoked to explain the MREE enrichments observed in the lake waters.
Center, S A; Warner, K L; Randolph, J F; Wakshlag, J J; Sunvold, G D
2011-01-01
Resting energy expenditure (REE) approximates ≥60% of daily energy expenditure (DEE). Accurate REE determination could facilitate sequential comparisons among patients and diseases if normalized against lean body mass (LBM). (1) Validate open-flow indirect calorimetry (IC) system and multifrequency bioelectrical impedance analysis (MF-BIA) to determine REE and LBM, respectively, in healthy nonsedated cats of varied body conditions; (2) normalize REE against LBM. Fifty-seven adult neutered domestic short-haired cats with stable BW. Continuous (45-min) IC-measurements determined least observed metabolism REE. Cage gas flow regulated with mass flow controllers was verified using nitrogen dilution; span gases calibrated gas measurements. Respiratory quotient accuracy was verified using alcohol combustion. IC-REE was compared to DEE, determined using doubly labeled water. MF-BIA LBM was validated against criterion references (deuterium, sodium bromide). Intra- and interassay variation was determined for IC and MF-BIA. Mean IC-REE (175 ± 38.7 kcal; 1.5-14% intra- and interassay CV%) represented 61 ± 14.3% of DEE. Best MF-BIA measurements were collected in sternal recumbency and with electrodes in neck-tail configuration. MF-BIA LBM was not significantly different from criterion references and generated LBM interassay CV% of 6.6-10.1%. Over- and underconditioned cats had significantly (P ≤ .05) lower and higher IC-REE (kcal/kg) respectively, compared with normal-conditioned cats. However, differences resolved with REE/LBM (approximating 53 ± 10.3 kcal/LBM [kg]). IC and MF-BIA validated herein reasonably estimate REE and LBM in cats. REE/LBM(kg) may permit comparison of energy utilization in sequential studies or among different cats. Copyright © 2011 by the American College of Veterinary Internal Medicine.
NASA Technical Reports Server (NTRS)
Pun, A.; Papike, J. J.
1994-01-01
We are evaluating the trace-element concentrations in the pyroxenes of Pasamonte. Pasamonte is a characteristic member of the main group eucrites, and has recently been redescribed as a polymict eucrite. Our Pasamonte sample contained eucritic clasts with textures ranging from subophitic to moderately coarse-grained. This study concentrates on pyroxenes from an unequilibrated, coarse-grained eucrite clast. Major-, minor-, and trace-element analyses were measured for zoned pyroxenes in the eucritic clast of Pasamonte. The major- and minor-element zoning traverses were measured using the JEOL 733 electron probe with an Oxford-Link imaging/analysis system. Complemenatry trace elements were then measured for the core and rim of each of the grains by SIMS. The trace elements analyzed consisted of eight REE, Sr, Y, and Zr. These analyses were performed on a Cameca 4f ion probe. The results of the CI chondrite normalized (average CI trace-element analyses for several grains and the major- and minor-element zoning patterns from a single pyroxene grain are given. The Eu abundance in the cores of the pyroxenes represents the detection limit and therefore the (-Eu) anomaly is a minimum. Major- and minor-element patterns are typical for igneous zoning. Pyroxene cores are Mg enriched, whereas the rims are enriched in Fe and Ca. Also, Ti and Mn are found to increase, while Cr and Al generally decrease in core-to-rim traverses. The cores of the pyroxenes are more depleted in the Rare Earth Elements (REE) than the rims. Using the minor- and trace-element concentrations of bulk Pasamonte and the minor- and trace-element concentrations from the cores of the pyroxenes in Pasamonte measured in this study, we calculated partition coefficients between pyroxene and melt. This calculation assumes that bulk Pasamonte is representative of a melt composition.
Edahbi, Mohamed; Plante, Benoît; Benzaazoua, Mostafa; Pelletier, Mia
2018-04-01
Several rare earth element (REE) mine projects around the world are currently at the feasibility stage. Unfortunately, few studies have evaluated the contamination potential of REE and their effects on the environment. In this project, the waste rocks from the carbonatites within the Montviel proterozoic alkaline intrusion (near Lebel-sur-Quévillon, Quebec, Canada) are assessed in this research. The mineralization is mainly constituted by light REE (LREE) fluorocarbonates (qaqarssukite-Ce, kukharenkoite-Ce), LREE carbonates (burbankite, Sr-Ba-Ca-REE, barytocalcite, strontianite, Ba-REE-carbonates), and phosphates (apatite, monazite). The gangue minerals are biotites, chlorite, albite, ankerite, siderite, and calcite. The SEM-EDS analyses show that (i) the majority of REE are associated with the fine fraction (< 106 μm), (ii) REE are mainly associated with carbonates, (iii) all analyzed minerals preferably contain LREE (La, Ce, Pr, Nd, Sm, Eu), (iv) the sum of LREE in each analyzed mineral varies between ~ 3 and 10 wt%, (v) the heavy REE (HREE) identified are Gd and Yb at < 0.4 wt%, and (vi) three groups of carbonate minerals were observed containing variable concentrations of Ca, Na, and F. Furthermore, the mineralogical composition of REE-bearing minerals, REE mobility, and REE speciation was investigated. The leachability and geochemical behavior of these REE-bearing mine wastes were tested using normalized kinetic testing (humidity cells). Leachate results displayed higher LREE concentrations, with decreasing shale-normalized patterns. Thermodynamical equilibrium calculations suggest that the precipitation of secondary REE minerals may control the REE mobility.
The Dos and Don'ts of how to Build a Planet, Using the Moon as an Example
NASA Technical Reports Server (NTRS)
Jones, J. H.
2006-01-01
The bulk chemical compositions of planets may yield important clues concerning planetary origins. Failing that, bulk compositions are still important, in that they constrain calculation of planetary mineralogies and also constrain the petrogenesis of basaltic magmas. In the case of the Earth, there is little or no debate about the composition of the Earth's upper mantle. This is because our sample collections contain peridotitic xenoliths of that mantle. The most fertile of these are believed to have been little modified from their primary compositions. Using these samples and chondritic meteorites as a starting point, small perturbations on the compositions of existing samples allow useful reconstruction of the bulk silicate Earth (BSE). Elsewhere, I have argued that the next simplest case is the Eucrite Parent Body (EPB). Reconstructions based on Sc partitioning indicate that the EPB can be well approximated by a mixture of 20% eucrite and 80% equilibrium olivine. This leads to a parent body that is similar to CO (or devolatilized CM) chondrites. Partial melting experiments on CM chondrites confirm this model, because the residual solids in these experiments are dominated by olivine with minor pigonite [3]. The most difficult bodies to reconstruct are those that have undergone the most differentiation. Both the Moon and Mars may have passed through a magma ocean stage. In any event, lunar and martian basalts, unlike eucrites, were not derived from undifferentiated source regions. Reconstructions are primarily based on compositional trends within the basalts themselves with some critical assumptions: (i) Refractory lithophile elements (Ca, Al, REE, actinides) are presumed to be in chondritic relative abundances; and (ii) some major element ratio is believed to exist in a chondritic ratio (e.g., Mg/Si, Mg/Al). The most commonly used parameter is Mg/Si.
NASA Technical Reports Server (NTRS)
Nyquist, L. E.; Shih, C.-Y.; Wiesmann, H.; Bansal, B. M.
1993-01-01
Small anomalies in the isotopic abundance of Nd-142 have been measured for two A17 high-Ti basalts, ilmenite basalt 12056, olivine-pigeonite basalt 12039, feldspathic basalt 12038, and two KREEP basalts. These anomalies correlate with Sm-147/Nd-144 for the basalt source regions as calculated from initial Nd-143/Nd-144 ratios in the basalts, and are interpreted to be from decay of Sm-146 (t sub 1/2 = 103 Ma) in distinct lunar mantle reservoirs. A three-stage model for evolution of Nd-143/Nd-144 and Nd-142/Nd-144 yields reservoir Sm-147/Nd-144 ratios which, with the Nd-142/Nd-144 ratios in the basalts, form a 'mantle isochron' giving a lunar mantle formation interval of 94+2230 Ma (2c(rho)). Calculated reservoir Sm/Nd ratios are in the range expected from some earlier models of basalt petrogenesis. The isochron value of Nd-142/Nd-144 at Sm-147/Nd-144 sub CHUR = 0.1967 is within error limits of the average Nd-142/Nd-144 measured for an L6 chondrite, an H5 chondrite, and the Orgueil carbonaceous chondrite. Evolution of Nd-143 and Nd-142 for high-Ti basalt 70135 was modeled precisely, starting from chondritic relative REE and Nd-isotopic abundances and using the initial (Sm-146/Sm-144) sub 0 ratio inferred from a previous study of angrite LEW86010 as the initial solar system value of this parameter. We infer that the initial Sm/Nd ratio in precursor lunar materials was very nearly chondritic (within approximately 8 percent) prior to lunar differentiation.
NASA Astrophysics Data System (ADS)
Ndjigui, Paul-Désiré; Onana, Vincent Laurent; Sababa, Elisé; Bayiga, Elie Constantin
2018-07-01
The Lokoundje alluvial clay deposits are located at the left floodplain of the Lokoundje River, towards the estuary in the Kribi region. The mineralogical and geochemical features of the Lokoundje River fine-grained sediments have been reported using XRD, XRF, ICP-MS, and IR instruments in order to understand their provenance and depositional history. The Lokoundje watershed covers a surface area of about 5381 km2. The basement of this watershed is made up of gneisses, amphibolites, migmatites, charnockites, and pyroxenites from the Nyong and Ntem units, in the NW border of the Congo craton. The alluvial materials are about 100 cm thick and cover a total area of 1.4 km2. They are mainly plastic clays with silty-clayey texture and four colors (yellow, red yellow, white, and light grey). The mineral assemblage is composed of kaolinite, quartz, illite, gibbsite, goethite, rutile, and interstratified illite-vermiculite. The infra-red data associated with those of XRD portray the disordering of kaolinite. These materials are mostly constituted by SiO2 (44.33-69.19 wt%, av. = 51.17 wt% with n = 18) and Al2O3 (20.69-30.26 wt%, av. = 26.07 wt%) with very low Fe2O3 contents (1-7.71 wt%, av. = 3.35 wt%). The SiO2/Al2O3 ratio range between 1.46 and 4.1 (av. = 2.06). The alkali contents (Na2O + K2O) are below 5 wt%. ICV, CIA, PIA, and SiO2/Al2O3 portray high degree of chemical weathering in the source area as well as the maturity of sediments. The trace element behavior is quite different probably due to the mixed source rocks; Ba, Sr, Zn have high contents while several elements such as Th and U show low contents. The REE contents are also variable; their concentrations vary between 92 and 1065 ppm (av. = 307 ppm). The mineral assemblage associated with the geochemical data reveal that REE are mainly housed in clay minerals. The behavior of REE is also marked by the abundance of LREE (LREE/HREE = 19.69-34.62). The REE chondrite-normalized spectra confirm the LREE-abundance and exhibit negative Eu anomalies. The PAAS-normalized patterns reveal slight positive Eu anomalies and negative Ce anomalies. The (La/Yb)N values (3.30-8.43, av. = 5.71) display low degree of REE-fractionation in the Lokoundje watershed. The morphological, mineralogical, and geochemical features reveal that the fine-grained sediments derive from the intense weathering of mixed source. The disordering of kaolinite confirms that sediments were sorted during a long transportation before their deposition under oxic conditions (U/Th < 1.25; V/Cr < 2) in the floodplains near the Atlantic coast.
Mineralogical controls on mobility of rare earth elements in acid mine drainage environments.
Soyol-Erdene, T O; Valente, T; Grande, J A; de la Torre, M L
2018-08-01
Rare earth elements (REE) were analyzed in river waters, acid mine waters, and extracts of secondary precipitates collected in the Iberian Pyrite Belt. The obtained concentrations of the REE in river water and mine waters (acid mine drainage - AMD) were in the range of 0.57 μg/L (Lu) and 2579 μg/L (Ce), which is higher than previously reported in surface waters from the Iberian Pyrite Belt, but are comparable with previous findings from AMD worldwide. Total REE concentrations in river waters were ranged between 297 μg/L (Cobica River) and 7032 μg/L (Trimpancho River) with an average of 2468 μg/L. NASC (North American Shale Composite) normalized REE patterns for river and acid mine waters show clear convex curvatures in middle-REE (MREE) with respect to light- and heavy-REE. During the dissolution experiments of AMD-precipitates, heavy-REE and middle-REE generate the most enriched patterns in the solution. A small number of precipitates did not display MREE enrichment (an index Gd n /Lu n < 1.0) in NASC normalized pattern and produced relatively lower REE concentrations in extracts. Additionally, very few samples, which mainly contained aluminum sulfates, e.g., pickeringite and alunogen, displayed light-REE enrichment relative to heavy-REE (HREE). In general, the highest retention of REE occurs in samples enriched in magnesium (epsomite or hexahydrite) and aluminum sulfates, mainly pickeringite. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Serov, Pavel; Ekimova, Nadezhda; Bayanova, Tamara
2014-05-01
The main method of dating the ore process was the Re-Os method of sulfides (Luck, Allegre, 1983; Walker et. al., 1991). However, studies of Re-Os systematics of sulfide minerals do not always give the correct ages and showing the disturbances of the Re-Os systematics. At the same time, Sm-Nd age of sulfides in good agreement with the U-Pb dating on zircon and baddeleyite and suggests that the Sm-Nd system of sulfides is more resistant to secondary alteration processes. Our studies have shown that along with rock-forming, ore minerals (sulfides) can be used to determine the ore genesis time of industrially important geological sites, since exactly with the sulfides the industry Pt-Pd mineralization is closely connected. The Sm-Nd investigations steadily employ new minerals-geochronometers. Of these, sulfides of PGE-bearing layered intrusions are quite important in terms of dating the process of ore origin. Studying the REE distribution in the sulfides of MOR hydrothermal sources has shown possible REE presence in the sulfide lattice (Rimskaya-Korsakova et. al., 2003). These are difficult to carry out because the concentrations of Sm and Nd isotopes in sulfides are much lower than chondrites (Rimskaya-Korsakova et. al., 2003). For the first time in Russia with sulfide and rock-forming minerals and WR in Sm-Nd method have been dated impregnated and brecciform ores of the following objects: Pilguyarvi Cu-Ni deposits, Pechenga (1965±87 Ma); impregnated (2433±83 Ma) and redeposited (1903±24 Ma) ores of Ahmavaara intrusion (Finland); ore gabbronorites of Penikat PGE-bearing layered intrusion (2426±38 Ma (Ekimova et.al., 2011); Pt-Pd gabbro-pegmatite ores (2476± 41 Ma, which agrees with the U-Pb zircon age - 2470±9 Ma (Bayanova, 2004) and gabbronorites (2483±86 Ma) of PGE Kievei deposit and Fedorova Tundra metagabbroids (2494±54 Ma); Monchetundra gabbronorites - 2489±49 Ma. In (Kong et. al., 2000) sulfides from two metamorphosed chondrites studied by instrumental neutron activation analysis (INAA) and ion probe. As shown, the level of REE in the sulfide phase determined by the ion probe is quite similar to that obtained by INAA. Although the concentrations of REE in the enstatite and the Fe, Si, Cr-rich inclusions are comparable to those in sulfide, estimates based on mass balance calculations show that the silicate inclusions would not noticeably contribute to the REE budget in sulfides (Kong et. al., 2000). These studies were supported by the RFBR 13-05-00493, OFI-M 13-05-12055, State Earth Division Program #4 and IGCP-599.
The Colony meteorite and variations in CO3 chondrite properties
NASA Technical Reports Server (NTRS)
Rubin, A. E.; James, J. A.; Keck, B. D.; Weeks, K. S.; Sears, D. W. G.
1985-01-01
The Colony meteorite is one of the least equilibrated CO3 chondrites, yet differs from normal CO chondrites in that, while Al, Sc, V, Cr, Ir, Fe, Au, and Ga abundances are consistent with a CO chondrite classification, certain lithophile, siderophile, and chalcophile contents are depleted by factors of 10-40 percent. Colony is badly weathered, and its Fe, Ni abundance of about 19 wt pct is similar to that of the Kainsaz CO3 unweathered fall but higher than all other CO3 chondrites.
Geisler, Corinna; Braun, Wiebke; Pourhassan, Maryam; Schweitzer, Lisa; Glüer, Claus-Christian; Bosy-Westphal, Anja; Müller, Manfred J.
2016-01-01
Age-related changes in organ and tissue masses may add to changes in the relationship between resting energy expenditure (REE) and fat free mass (FFM) in normal and overweight healthy Caucasians. Secondary analysis using cross-sectional data of 714 healthy normal and overweight Caucasian subjects (age 18–83 years) with comprehensive information on FFM, organ and tissue masses (as assessed by magnetic resonance imaging (MRI)), body density (as assessed by Air Displacement Plethysmography (ADP)) and hydration (as assessed by deuterium dilution (D2O)) and REE (as assessed by indirect calorimetry). High metabolic rate organs (HMR) summarized brain, heart, liver and kidney masses. Ratios of HMR organs and muscle mass (MM) in relation to FFM were considered. REE was calculated (REEc) using organ and tissue masses times their specific metabolic rates. REE, FFM, specific metabolic rates, the REE-FFM relationship, HOMA, CRP, and thyroid hormone levels change with age. The age-related decrease in FFM explained 59.7% of decreases in REE. Mean residuals of the REE-FFM association were positive in young adults but became negative in older subjects. When compared to young adults, proportions of MM to FFM decreased with age, whereas contributions of liver and heart did not differ between age groups. HOMA, TSH and inflammation (plasma CRP-levels) explained 4.2%, 2.0% and 1.4% of the variance in the REE-FFM residuals, but age and plasma T3-levels had no effects. HMR to FFM and MM to FFM ratios together added 11.8% on to the variance of REE-FFM residuals. Differences between REE and REEc increased with age, suggesting age-related changes in specific metabolic rates of organs and tissues. This bias was partly explained by plasmaT3-levels. Age-related changes in REE are explained by (i) decreases in fat free mass; (ii) a decrease in the contributions of organ and muscle masses to FFM; and (iii) decreases in specific organ and tissue metabolic rates. Age-dependent changes in the REE-FFMassociation are explained by composition of FFM, inflammation and thyroid hormones. PMID:27258302
Geisler, Corinna; Braun, Wiebke; Pourhassan, Maryam; Schweitzer, Lisa; Glüer, Claus-Christian; Bosy-Westphal, Anja; Müller, Manfred J
2016-06-01
Age-related changes in organ and tissue masses may add to changes in the relationship between resting energy expenditure (REE) and fat free mass (FFM) in normal and overweight healthy Caucasians. Secondary analysis using cross-sectional data of 714 healthy normal and overweight Caucasian subjects (age 18-83 years) with comprehensive information on FFM, organ and tissue masses (as assessed by magnetic resonance imaging (MRI)), body density (as assessed by Air Displacement Plethysmography (ADP)) and hydration (as assessed by deuterium dilution (D₂O)) and REE (as assessed by indirect calorimetry). High metabolic rate organs (HMR) summarized brain, heart, liver and kidney masses. Ratios of HMR organs and muscle mass (MM) in relation to FFM were considered. REE was calculated (REEc) using organ and tissue masses times their specific metabolic rates. REE, FFM, specific metabolic rates, the REE-FFM relationship, HOMA, CRP, and thyroid hormone levels change with age. The age-related decrease in FFM explained 59.7% of decreases in REE. Mean residuals of the REE-FFM association were positive in young adults but became negative in older subjects. When compared to young adults, proportions of MM to FFM decreased with age, whereas contributions of liver and heart did not differ between age groups. HOMA, TSH and inflammation (plasma CRP-levels) explained 4.2%, 2.0% and 1.4% of the variance in the REE-FFM residuals, but age and plasma T3-levels had no effects. HMR to FFM and MM to FFM ratios together added 11.8% on to the variance of REE-FFM residuals. Differences between REE and REEc increased with age, suggesting age-related changes in specific metabolic rates of organs and tissues. This bias was partly explained by plasmaT3-levels. Age-related changes in REE are explained by (i) decreases in fat free mass; (ii) a decrease in the contributions of organ and muscle masses to FFM; and (iii) decreases in specific organ and tissue metabolic rates. Age-dependent changes in the REE-FFMassociation are explained by composition of FFM, inflammation and thyroid hormones.
Yeh, Hsueh-Wen; Hein, James R.; Ye, Jie; Fan, Delian
1999-01-01
The Lijiaying Mn deposit, located about 250 km southwest of Xian, is a high-quality ore characterized by low P and Fe contents and a mean Mn content of about 23%. The ore deposit occurs in shallow-water marine sedimentary rocks of probable Middle Proterozoic age. Carbonate minerals in the ore deposit include kutnahorite, calcite, Mn calcite, and Mg calcite. Carbon (−0.4 to −4.0‰) and oxygen (−3.7 to −12.9‰) isotopes show that, with a few exceptions, those carbonate minerals are not pristine low-temperature marine precipitates. All samples are depleted in rare earth elements (REEs) relative to shale and have negative Eu and positive Ce anomalies on chondrite-normalized plots. The Fe/Mn ratios of representative ore samples range from about 0.034 to <0.008 and P/Mn from 0.0023 to <0.001. Based on mineralogical data, the low ends of those ranges of ratios are probably close to ratios for the pure Mn minerals. Manganese contents have a strong positive correlation with Ce anomaly values and a moderate correlation with total REE contents. Compositional data indicate that kutnahorite is a metamorphic mineral and that most calcites formed as low-temperature marine carbonates that were subsequently metamorphosed. The braunite ore precursor mineral was probably a Mn oxyhydroxide, similar to those that formed on the deep ocean-floor during the Cenozoic. Because the Lijiaying precursor mineral formed in a shallow-water marine environment, the atmospheric oxygen content during the Middle Proterozoic may have been lower than it has been during the Cenozoic.
Tang, Yu-Kun; Chen, Guo-Neng; Zhang, Ke; Huang, Hai-Hua
2013-05-01
The results on Xilingang pluton, mainly consisting of red beds, granites containing numerous debris of red beds and granites, obtained by X-ray fluorescence spectroscopy, plasma mass spectrometry and Raman spectroscopy show: (1) Xilingang pluton from red beds, granites containing numerous debris of red beds to granites has obvious characteristics of decreasing silicon and alkali content, and rising ignition loss, dark mineral content and oxidation index; (2) Chondrite-normalized REE distribution curves and primitive mantle-normalized spider diagram for trace elements of redbed, granites containing numerous debris of red beds and granites have a good consistency, the distribution characteristics of elements are similar to Nanling transformation-type granite; (3) The value of Raman spectrogram characteristic peak of quartz crystal in Xilingang granite decreased from the center of quartz crystal, and FWHM is steady. According to the above, the authors believe that Xilingang granite formed was related to in-situ melting of red beds and underlying strata and magma consolidation. Volatile components were discharged continuously, and oxidation index decreased gradually in the melting process. In the process of diagenesis, the top of pluton tend to be an ongoing silicon and alkali increase, while TFeO and MgO continue to migrate to bottom, and crystallization environment is a relatively closed and steady system.
NASA Astrophysics Data System (ADS)
Ngon Ngon, Gilbert François; Etame, Jacques; Ntamak-Nida, Marie Joseph; Mbesse, Cécile Olive; Mbai, Joël Simon; Bayiga, Élie Constantin; Gerard, Martine
2016-02-01
Major and trace element composition of iron duricrusts including clayey material samples and biostratigraphy of the Missole I outcrop from the Paleocene-Eocene N'Kapa Formation in the Douala sub-basin of Cameroon were used to infer the palaeoenvironment and relative age of the iron duricrusts. Iron duricrusts and clayey materials are essentially kaolinitic and smectitic and are generally siliceous and ferruginous (iron duricrusts) or siliceous and aluminous (clayey materials). These materials have high Chemical Indices of Alteration (CIA = 86.6-99.33%). The negative Eu anomalies with high (La/Yb)N shown by iron duricrusts and clayey sediments are essentially derived from silicic or felsic parent rocks when fractionated chondrite-normalized REE patterns also indicate felsic or silicic parent rocks. The Missole I iron duricrusts have a post-Thanetian age according to the relative age of claystones (Thanetian) and were formed after the deposition of sedimentary materials in an anoxic low-depth marine environment with eutrophication of surface water, and may have been exhumed and oxidized under arid climate.
Chondrites and the Protoplanetary Disk, Part 3
NASA Technical Reports Server (NTRS)
2004-01-01
Contents include the following: Ca-, Al-Rich Inclusions and Ameoboid Olivine Aggregates: What We Know and Don t Know About Their Origin. Aluminium-26 and Oxygen Isotopic Distributions of Ca-Al-rich Inclusions from Acfer 214 CH Chondrite. The Trapping Efficiency of Helium in Fullerene and Its Implicatiion to the Planetary Science. Constraints on the Origin of Chondritic Components from Oxygen Isotopic Compositions. Role of Planetary Impacts in Thermal Processing of Chondrite Materials. Formation of the Melilite Mantle of the Type B1 CAIs: Flash Heating or Transport? The Iodine-Xenon System in Outer and Inner Portions of Chondrules from the Unnamed Antarctic LL3 Chondrite. Nucleosynthesis of Short-lived Radioactivities in Massive Stars. The Two-Fluid Analysis of the Kelvin-Helmholtz Instability in the Dust Layer of a Protoplanetary Disk: A Possible Path to the Planetesimal Formation Through the Gravitational Instability. Shock-Wave Heating Model for Chonodrule Formation: Heating Rate and Cooling Rate Constraints. Glycine Amide Hydrolysis with Water and OH Radical: A Comparative DFT Study. Micron-sized Sample Preparation for AFM and SEM. AFM, FE-SEM and Optical Imaging of a Shocked L/LL Chondrite: Implications for Martensite Formation and Wave Propagation. Infrared Spectroscopy of Chondrites and Their Components: A Link Between Meteoritics and Astronomy? Mid-Infrared Spectroscopy of CAI and Their Mineral Components. The Origin of Iron Isotope Fractionation in Chondrules, CAIs and Matrix from Allende (CV3) and Chainpur (LL3) Chondrites. Protoplanetary Disk Evolution: Early Results from Spitzer. Kinetics of Evaporation-Condensation in a Melt-Solid System and Its Role on the Chemical Composition and Evolution of Chondrules. Oxygen Isotope Exchange Recorded Within Anorthite Single Crystal in Vigarano CAI: Evidence for Remelting by High Temperature Process in the Solar Nebula. Chondrule Forming Shock Waves in Solar Nebula by X-Ray Flares. Organic Globules with Anormalous Nitrogen Isotopic Compositions in the Tagish Lake Meteorite: Products of Primitive Organic Reactions. Yet Another Chondrule Formation Scenario. CAIs are Not Supernova Condensates. Microcrystals and Amorphous Material in Comets and Primitive Meteorites: Keys to Understanding Processes in the Early Solar System. A Nearby Supernova Injected Short-lived Radionuclides into Our Protoplanetary Disk. REE+Y Systematics in CC and UOC Chondrules. Meteoritic Constraints on Temperatures, Pressures, Cooling Rates, Chemical Compositions, and Modes of Condensation in the Solar Nebula. The I-Xe Record of Long Equilibration in Chondrules from the Unnamed Antarctic Meteorite L3/LL3. Early Stellar Evolution.
Hosterman, John W.; Flanagan, F.J.; Bragg, Anne; Doughten, M.W.; Filby, R.H.; Grimm, Catherine; Mee, J.S.; Potts, P.J.; Rogers, N.W.
1987-01-01
The concentrations of 3 oxides and 29 elements in 7 National Bureau of Standards (NBS) and 3 Instituto de Pesquisas Techno16gicas (IPT) reference clay samples were etermined by instrumental neutron activation analysis. The analytical work was designed to test the homogeneity of constituents in three new NBS reference clays, NBS-97b, NBS-98b, and NBS-679. The analyses of variance of 276 sets of data for these three standards show that the constituents are distributed homogeneously among bottles of samples for 94 percent of the sets of data. Three of the reference samples (NBS-97, NBS-97a, and NBS-97b) are flint clays; four of the samples (NBS-98, NBS-98a, NBS-98b, and IPT-32) are plastic clays, and three of the samples (NBS-679, IPT-28, and IPT-42) are miscellaneous clays (both sedimentary and residual). Seven clays are predominantly kaolinite; the other three clays contain illite and kaolinite in the approximate ratio 3:2. Seven clays contain quartz as the major nonclay mineral. The mineralogy of the flint and plastic clays from Missouri (NBS-97a and NBS-98a) differs markedly from that of the flint and plastic clays from Pennsylvania (NBS-97, NBS-97b, NBS-98, and NBS-98b). The flint clay NBS-97 has higher average chromium, hafnium, lithium, and zirconium contents than its replacement, reference sample NBS-97b. The differences between the plastic clay NBS-98 and its replacement, NBS-98b, are not as pronounced. The trace element contents of the flint and plastic clays from Missouri, NBS-97a and NBS-98a, differ significantly from those of the clays from Pennsylvania, especially the average rare earth element (REE) contents. The trace element contents of clay sample IPT-32 differ from those of the other plastic clays. IPT-28 and IPT-42 have some average trace element contents that differ not only between these two samples but also from all the other clays. IPT-28 has the highest summation of the average REE contents of the 10 samples. The uranium content of NBS-98a, 46 parts per million, is very much higher than that of the other clays. Plots of average REE contents of the flint and plastic clays, normalized to chondritic abundances, show that the clays from Missouri differ from the same types of clay from Pennsylvania. The plot of REE contents for the miscellaneous clays shows that the normalized means for the elements lanthanum through samarium for IPT-28 are much greater than those for the other miscellaneous clays. The means for the elements europium through lutetium are similar for all three miscellaneous clays.
NASA Astrophysics Data System (ADS)
Noël, J.; Godard, M.; Martinez, I.; Oliot, E.; Williams, M. J.; Rodriguez, O.; Chaduteau, C.; Gouze, P.
2017-12-01
Carbon trapping in ophiolitic peridotites contributes to the global carbon cycle between solid Earth and its outer envelopes (through subduction and/or modern alteration). To investigate this process, we performed petro-structural (microtomography, EBSD, EPMA) and geochemical studies (LA-ICP-MS, carbon and oxygen isotopes on bulk and minerals using SHRIMP) of harzburgites cored in the Oman Ophiolite. Studied harzburgites are highly serpentinized (> 90 %) and crosscut by 3 generations of carbonates (> 20 Vol%) with compositions from calcite to dolomite (Mg/Ca = 0-0.85). Type 1 carbonates are fine penetrative veinlets and mesh core after olivine. They have low REE (e.g., Yb = 0.08-0.23 x CI-chondrite) and negative Ce anomalies. They have δ13CPDB = -15.2 to 1.10‰ and δ18OSMOW = 17.5 to 33.7‰, suggesting precipitation temperatures up to 110°C. Type 2 carbonates are pluri-mm veins bounded by cm-thick serpentinized vein selvages, oriented dominantly parallel to mantle foliation. Dynamic recrystallization is observed, indicating polygenetic formation: well crystallized calcite with REE abundances similar to Type 1 carbonates are locally replaced by small dolomite and calcite grains with higher REE (e.g., Yb = 0.35-1.0 x CI-chondrite) and positive Gd anomaly. Type 2 carbonates have δ13CPDB = -12.6 to -4.1‰ and δ18OSMOW = 25.0 to 32.7‰, suggesting precipitation temperatures from 10 to 60°C. Type 3 carbonates are late pluri-mm to cm veins reactivating Type 2 veins. They consist of small grains of dolomite and calcite with REE abundances similar to recrystallized Type 2 carbonates. Type 3 carbonates have δ13CPDB = -8.3 to -5.8‰ and δ18OSMOW = 28.8 to 32.7‰, suggesting precipitation temperatures <35°C. δ13C data indicate an evolution of fluid composition precipitating carbonates from seawater- and sediment-derived fluids to meteoric water. Carbonate formation starts during oceanic lithospheric cooling and occurs as a penetrative process at the expense of olivine (Type 1, at T > 100°C). Formation of carbonate veins (Type 2) indicates localization of fluid flux, while serpentinization remains the dominant alteration process. Low T carbonate veins (Type 3) remain the main flow path through ophiolitic peridotites. Our study suggests that their orientation is controlled by the later stages of oceanic mantle deformation.
Li, Xuexian; Wu, Pan
2017-09-01
Acid mine drainage (AMD) represents a major source of water pollution in the small watershed of Xingren coalfield in southwestern Guizhou Province. A detailed geochemical study was performed to investigate the origin, distribution, and migration of REEs by determining the concentrations of REEs and major solutes in AMD samples, concentrations of REEs in coal, bedrocks, and sediment samples, and modeling REEs aqueous species. The results highlighted that all water samples collected in the mining area are identified as low pH, high concentrations of Fe, Al, SO 4 2- and distinctive As and REEs. The spatial distributions of REEs showed a peak in where it is nearby the location of discharging of AMD, and then decrease significantly with distance away from the mining areas. Lots of labile REEs have an origin of coal and bedrocks, whereas the acid produced by the oxidation of pyrite is a prerequisite to cause the dissolution of coal and bedrocks, and then promoting REEs release in AMD. The North American Shale Composite (NASC)-normalized REE patterns of coal and bedrocks are enriched in light REEs (LREEs) and middle REEs (MREEs) relative to heavy REEs (HREEs). Contrary to these solid samples, AMD samples showed slightly enrichment of MREEs compared with LREEs and HREEs. This behavior implied that REEs probably fractionate during acid leaching, dissolution of bedrocks, and subsequent transport, so that the MREEs is primarily enriched in AMD samples. Calculation of REEs inorganic species for AMD demonstrated that sulfate complexes (Ln(SO 4 ) + and Ln(SO 4 ) 2 - ) predominate in these species, accounting for most of proportions for the total REEs species. The high concentrations of dissolved SO 4 2- and low pH play a decisive role in controlling the presence of REEs in AMD, as these conditions are necessary for formation of stable REEs-sulfate complexes in current study. The migration and transportation of REEs in AMD are more likely constrained by adsorption and co-precipitation of Fe-Al hydroxides/hydroxysulfate. In addition, the MREEs is preferentially captured by poorly crystalline Fe-Al hydroxides/hydroxysulfate, which favors that sediments also preserve NASC-normalized patterns with MREEs enrichment in the stream.
Investigating Rare Earth Element Systematics in the Marcellus Shale
NASA Astrophysics Data System (ADS)
Yang, J.; Torres, M. E.; Kim, J. H.; Verba, C.
2014-12-01
The lanthanide series of elements (the 14 rare earth elements, REEs) have similar chemical properties and respond to different chemical and physical processes in the natural environment by developing unique patterns in their concentration distribution when normalized to an average shale REE content. The interpretation of the REE content in a gas-bearing black shale deposited in a marine environment must therefore take into account the paleoredox conditions of deposition as well as any diagenetic remobilization and authigenic mineral formation. We analyzed 15 samples from a core of the Marcellus Shale (Whipkey ST1, Greene Co., PA) for REEs, TOC, gas-producing potential, trace metal content, and carbon isotopes of organic matter in order to determine the REE systematics of a black shale currently undergoing shale gas development. We also conducted a series of sequential leaching experiments targeting the phosphatic fractions in order to evaluate the dominant host phase of REEs in a black shale. Knowledge of the REE system in the Marcellus black shale will allow us to evaluate potential REE release and behavior during hydraulic fracturing operations. Total REE content of the Whipkey ST1 core ranged from 65-185 μg/g and we observed three distinct REE shale-normalized patterns: middle-REE enrichment (MREE/MREE* ~2) with heavy-REE enrichment (HREE/LREE ~1.8-2), flat patterns, and a linear enrichment towards the heavy-REE (HREE/LREE ~1.5-2.5). The MREE enrichment occurred in the high carbonate samples of the Stafford Member overlying the Marcellus Formation. The HREE enrichment occurred in the Union Springs Member of the Marcellus Formation, corresponding to a high TOC peak (TOC ~4.6-6.2 wt%) and moderate carbonate levels (CaCO3 ~4-53 wt%). Results from the sequential leaching experiments suggest that the dominant host of the REEs is the organic fraction of the black shale and that the detrital and authigenic fractions have characteristic MREE enrichments. We present our conclusions on the impact of depositional setting and diagenetic remobilization and authigenic mineral formation on the REE system in the Marcellus Shale.
NASA Astrophysics Data System (ADS)
Chakrabarti, R.; Goderis, S.; Banerjee, A.; Gupta, R. D.; Claeys, P.; Vanhaecke, F. F.
2016-12-01
The 1.88 km diameter Lonar impact Crater, with age estimates ranging from 52 -570 ka, is located in the Buldana district of Maharashtra, India. It is an almost circular depression hosted entirely in the 65Ma old basalt flows of the Deccan Traps and is the best-known terrestrial analogue for impact craters in the Inner Solar System. Isotopic studies indicate that the basalts around Lonar correlate with the Poladpur suite, one of the mid-section volcano-stratigraphic units of the Deccan traps. Recently collected samples of the host basalt and impact melts, were analyzed for major and trace element concentrations using ICPMS, as well as for Nd and Sr isotope ratios using TIMS. Relatively more radiogenic Sr and less radiogenic Nd isotopic composition of the melt rocks compared to earlier measurements of similar rocks from Lonar are consistent with melting of the Precambrian basement beneath the Deccan basalt. Spherules ranging in size from 100 mm to 1 mm, were hand-picked under a binocular microscope from unconsolidated soil samples, collected from the south-eastern rim of the crater. Thirty-five spherule samples, screened for surface alteration using SEM were analyzed for major and trace element concentrations including PGEs using LA-ICPMS. The spherules were further classified into two groups using the Chemical Index of Alteration(CIA). Iridium and Cr concentrations of the spherules are consistent with mixing of a chondritic impactor (with 2-8% contribution) with the target rock(s). On a Nb (fluid immobile) -normalized binary plot of Th versus Cr, the composition of the spherules can be explained by mixing between the host basalt and a chondritic impactor with a definite, but minor contribution of the basement beneath Lonar, the composition of which is approximated using the average composition of the upper continental crust (UCC). Variability in the light-REE fractionation of the spherules (La/Sm(N)) can also be explained by a similar three component mixing. Overall, our geochemical data for both the melt rocks and spherules suggest mixing between the chondritic impactor, the Deccan host basalt and the basement rocks at Lonar.
Distribution of some highly volatile elements in chondrules
NASA Astrophysics Data System (ADS)
Kim, J. S.; Marti, K.
1994-07-01
As chondrule apparently were melted before accretion into chondritic parent bodies, we carried out a N and Xe isotopic study to obtain information on the partitioning of some of the most volatile as well as incompatible elements: noble gases, N, I, REE, and Pu. In separated silicates in Forest Vale, consisting of mostly broken chondrules, we observed rather large Xe concentrations, and since noble gases in chondrites are associated with C-rich phases, we decided to study the core portion of a suite of chondrules after removing the chondrule rim portion and adhering matrix. We selected sets of rounded chondrules from four meteorites: Allende (CV3), Dhajala (H3.8), Forest Vale (H4), and Bjurbole (L4). We compare measured N and Xe concentrations and isotopic abundances in cores of chondrules to those obtained from unetched chondrules. We discuss results obtained from melting steps, because N and Xe in the silicate lattice are mostly released at T greater than 1000 C. All cores of chondrules contain less than 1% of the Xe in the respective bulk samples. Moreover, they released much less trapped Xe in the melting step than did untreated bulk chondrites. However, the radiogenic Xer-129 and fissiogenic Xef is not or is only slightly depleted, and spallogenic Xe is a major component, particularly in Forest Vale. We can not deduce the signature of trapped Xe in the chondrules. The release systematics are completely different from those observed in primitive achondrites, which contain noble gas in the 'dusty' silicate inclusions. Allende chondrules differ from those of ordinary chondrite in the N release pattern. This represents possibly a signature of the local environment during chondrule formation, since N may exist in chondrule minerals in chemically bound forms. In contrast, all three sets of ordinary chondrite chondrules released less than 0.6 ppm N in the melting step, and these signatures reveal substantial components of cosmic-ray-produced N.
NASA Astrophysics Data System (ADS)
Peters, T. J.; Simon, J. I.; Jones, J. H.; Usui, T.; Moriwaki, R.; Economos, R. C.; Schmitt, A. K.; McKeegan, K. D.
2015-05-01
The apparent lack of plate tectonics on all terrestrial planets other than Earth has been used to support the notion that for most planets, once a primitive crust forms, the crust and mantle evolve geochemically-independent through time. This view has had a particularly large impact on models for the evolution of Mars and its silicate interior. Recent data indicating a greater potential that there may have been exchange between the martian crust and mantle has led to a search for additional geochemical evidence to support the alternative hypothesis, that some mechanism of crustal recycling may have operated early in the history of Mars. In order to study the most juvenile melts available to investigate martian mantle source(s) and melting processes, the trace element compositions of olivine-hosted melt inclusions for two incompatible-element-depleted olivine-phyric shergottites, Yamato 980459 (Y98) and Tissint, and the interstitial glass of Y98, have been measured by Secondary Ionization Mass Spectrometry (SIMS). Chondrite-normalized Rare Earth Element (REE) patterns for both Y98 and Tissint melt inclusions, and the Y98 interstitial glass, are characteristically light-REE depleted and parallel those of their host rock. For Y98, a clear flattening and upward inflection of La and Ce, relative to predictions based on middle and heavier REE, provides evidence for involvement of an enriched component early in their magmatic history; either inherited from a metasomatized mantle or crustal source, early on and prior to extensive host crystallization. Comparing these melt inclusion and interstitial glass analyses to existing melt inclusion and whole-rock data sets for the shergottite meteorite suite, defines mixing relationships between depleted and enriched end members, analogous to mixing relationships between whole rock Sr and Nd isotopic measurements. When considered in light of their petrologic context, the origin of these trace element enriched and isotopically evolved signatures represents either (1) crustal assimilation during the final few km of melt ascent towards the martian surface, or (2) assimilation soon after melt segregation, through melt-rock interaction with a portion of the martian crust recycled back into the mantle.
NASA Astrophysics Data System (ADS)
Sahoo, Prafulla Kumar; Guimarães, José Tasso Felix; Souza-Filho, Pedro Walfir Martins; da Silva, Marcio Sousa; Nascimento, Wilson, Júnior; Powell, Mike A.; Reis, Luiza Santos; Pessenda, Luiz Carlos Ruiz; Rodrigues, Tarcísio Magevski; da Silva, Delmo Fonseca; Costa, Vladimir Eliodoro
2017-12-01
Lake Três Irmãs (LTI), the largest upland lake in the Brazilian Amazonia, located in Serra dos Carajás, was characterized using multi-elemental and isotope geochemistry (δ13C and δ15N) to understand the significance of organic and inorganic sources, weathering and sedimentary processes on the distribution of elements in lake bottom (surficial) sediments. Carbon and nitrogen isotopes from sedimentary organic matter suggest C3 terrestrial plants (forests > canga vegetation), macrophytes and freshwater DOC as the main sources. Sediments are depleted in most of the major oxides (except Fe2O3 and P2O5) when compared to upper continental crust (UCC) and their spatial distribution is highly influenced by catchment lithology. Principal Component Analysis revealed that most of the trace elements (Ba, Sr, Rb, Sc, Th, U, Zr, Hf, Nb, Y, V, Cr, Ga, Co, Ni) and REEs are closely correlated with Al and Ti (PC1; Group-1), so their redistribution is less influenced by post-depositional process. This is due to their relative immobility and being hosted by Al-bearing minerals during laterization. High Chemical Index of Alteration (CIA), Mafic Index of Alteration (MIA) and Index of Laterization (IOL) values indicate intense chemical weathering at source areas, but the weathering transformation was better quantified by IOL. A-CN-K plot along with elemental ratios (Al/K, Ti/K, Ti/Zr, La/Al, Cr/Th, Co/Th, La/Sm, La/Gd, Zr/Y, and Eu/Eu*) as well as chondrite-normalized REE patterns show that the detritic sediments are mainly sourced from ferruginous laterites and soils in the catchment, which may have characteristics similar to mafic rocks.
NASA Astrophysics Data System (ADS)
Lotout, Caroline; Pitra, Pavel; Poujol, Marc; Anczkiewicz, Robert; Van Den Driessche, Jean
2018-05-01
Accurate dating of eclogite-facies metamorphism is of paramount importance in order to understand the tectonic evolution of an orogen. An eclogite sample from the Najac Massif (French Massif Central, Variscan belt) displays a zircon-bearing garnet-omphacite-amphibole-rutile-quartz peak assemblage. Pseudosection modeling suggests peak pressure conditions of 15-20 kbar, 560-630 °C. Eclogite-facies garnet displays Lu-enriched cores and Sm-rich rims and yields a Lu-Hf age of 382.8 ± 1.0 Ma and a Sm-Nd age of 376.7 ± 3.3 Ma. The ages are interpreted as marking the beginning of the prograde garnet growth during the initial stages of the eclogite-facies metamorphism, and the high-pressure (and temperature) peak reached by the rock, respectively. Zircon grains display chondrite-normalized REE spectra with variably negative, positive or no Eu anomalies and are characterized by either enriched or flat HREE patterns. However, they yield a well constrained in situ LA-ICP-MS U-Pb age of 385.5 ± 2.3 Ma, despite this REE pattern variability. Zr zonation in garnet, Y content in zircon and the diversity of zircon HREE spectra may suggest that zircon crystallized prior to and during incipient garnet growth on the prograde P-T path, recording the initial stages of the eclogite-facies conditions. Consequently, the zircon age of 385.5 ± 2.3 Ma, comparable within error with the Lu-Hf age obtained on garnet, is interpreted as dating the beginning of the eclogite-facies metamorphism. Accordingly, the duration of the prograde part of the eclogite-facies event is estimated at 6.1 ± 4.3 Myr. Subsequent exhumation is constrained by an apatite U-Pb age at 369 ± 13 Ma.
Lunar anorthosite 60025, the petrogenesis of lunar anorthosites, and the composition of the moon
NASA Technical Reports Server (NTRS)
Ryder, G.
1982-01-01
The mineral chemistry of the lunar anorthosite 60025 is investigated, and a model for the differentiation of the moon is proposed based on these findings. Among other results, it is concluded that 60025 is a mixture of pieces from a related sequence of anorthosites, and that this sequence was generated by near-perfect accumulate growth during strong fractional crystallization. The parent liquid of the most primitive anorthosite was saturated with olivine, plagioclase, pigeonite, and chromite, and evolved to one saturated with plagioclase, pigeonite, high-Ca clinopyroxene, and ilmenite. The steep slope of anorthosites on an Mg (mafics) vs. Ab (plagioclase) diagram is a result of the very low alkali content of the magma and of the original magma ocean. The bulk moon had low Al2O3, a sub-chondritic Ca/Al ratio, and REE abundances and patterns which were probably close to chondritic. In addition, mare basalt sources were found to be too magnesian and some contain too much high Ca clinopyroxene to be directly or simply complementary to a floated anorthosite crust.
[Rare earth elements contents and distribution characteristics in nasopharyngeal carcinoma tissue].
Zhang, Xiangmin; Lan, Xiaolin; Zhang, Lingzhen; Xiao, Fufu; Zhong, Zhaoming; Ye, Guilin; Li, Zong; Li, Shaojin
2016-03-01
To investigate the rare earth elements(REEs) contents and distribution characteristics in nasopharyngeal carcinoma( NPC) tissue in Gannan region. Thirty patients of NPC in Gannan region were included in this study. The REEs contents were measured by tandem mass spectrometer inductively coupled plasma(ICP-MS/MS) in 30 patients, and the REEs contents and distribution were analyzed. The average standard deviation value of REEs in lung cancer and normal lung tissues was the minimum mostly. Light REEs content was higher than the medium REEs, and medium REEs content was higher than the heavy REEs content. REEs contents changes in nasopharyngeal carcinoma were variable obviously, the absolute value of Nd, Ce, Pr, Gd and other light rare earth elements were variable widely. The degree of changes on Yb, Tb, Ho and other heavy rare earth elements were variable widely, and there was presence of Eu, Ce negative anomaly(δEu=0. 385 5, δCe= 0. 523 4). The distribution characteristic of REEs contents in NPC patients is consistent with the parity distribution. With increasing atomic sequence, the content is decline wavy. Their distribution patterns were a lack of heavy REEs and enrichment of light REEs, and there was Eu , Ce negative anomaly.
Gibbs, Jenna C; Williams, Nancy I; Scheid, Jennifer L; Toombs, Rebecca J; De Souza, Mary Jane
2011-08-01
A high drive-for-thinness (DT) score obtained from the Eating Disorder Inventory-2 is associated with surrogate markers of energy deficiency in exercising women. The purposes of this study were to confirm the association between DT and energy deficiency in a larger population of exercising women that was previously published and to compare the distribution of menstrual status in exercising women when categorized as high vs. normal DT. A high DT was defined as a score ≥7, corresponding to the 75th percentile for college-age women. Exercising women age 22.9 ± 4.3 yr with a BMI of 21.2 ± 2.2 kg/m2 were retrospectively grouped as high DT (n = 27) or normal DT (n = 90) to compare psychometric, energetic, and reproductive characteristics. Chi-square analyses were performed to compare the distribution of menstrual disturbances between groups. Measures of resting energy expenditure (REE) (4,949 ± 494 kJ/day vs. 5,406 ± 560 kJ/day, p < .001) and adjusted REE (123 ± 16 kJ/LBM vs. 130 ± 9 kJ/LBM, p = .027) were suppressed in exercising women with high DT vs. normal DT, respectively. Ratio of measured REE to predicted REE (pREE) in the high-DT group was 0.85 ± 0.10, meeting the authors' operational definition for an energy deficiency (REE:pREE <0.90). A greater prevalence of severe menstrual disturbances such as amenorrhea and oligomenorrhea was observed in the high-DT group (χ2 = 9.3, p = .003) than in the normal-DT group. The current study confirms the association between a high DT score and energy deficiency in exercising women and demonstrates a greater prevalence of severe menstrual disturbances in exercising women with high DT.
NASA Technical Reports Server (NTRS)
Consolmagno, G. J.; Drake, M. J.
1977-01-01
Quantitative modeling of the evolution of rare earth element (REE) abundances in the eucrites, which are plagioclase-pigeonite basalt achondrites, indicates that the main group of eucrites (e.g., Juvinas) might have been produced by approximately 10% equilibrium partial melting of a single type of source region with initial REE abundances which were chondritic relative and absolute. Since the age of the eucrites is about equal to that of the solar system, extensive chemical differentiation of the eucrite parent body prior to the formation of eucrites seems unlikely. If homogeneous accretion is assumed, the bulk composition of the eucrite parent body can be estimated; two estimates are provided, representing different hypotheses as to the ratio of metal to olivine in the parent body. Since a large number of differentiated olivine meteorites, which would represent material from the interior of the parent body, have not been detected, the eucrite parent body is thought to be intact. It is suggested that the asteroid 4 Vesta is the eucrite parent body.
NASA Astrophysics Data System (ADS)
Davis, Andrew M.; Zhang, Junjun; Greber, Nicolas D.; Hu, Jingya; Tissot, François L. H.; Dauphas, Nicolas
2018-01-01
Titanium isotopic compositions (mass-dependent fractionation and isotopic anomalies) were measured in 46 calcium-, aluminum-rich inclusions (CAIs) from the Allende CV chondrite. After internal normalization to 49Ti/47Ti, we found that ε50Ti values are somewhat variable among CAIs, and that ε46Ti is highly correlated with ε50Ti, with a best-fit slope of 0.162 ± 0.030 (95% confidence interval). The linear correlation between ε46Ti and ε50Ti extends the same correlation seen among bulk solar objects (slope 0.184 ± 0.007). This observation provides constraints on dynamic mixing of the solar disk and has implications for the nucleosynthetic origin of titanium isotopes, specifically on the possible contributions from various types of supernovae to the solar system. Titanium isotopic mass fractionation, expressed as δ‧49Ti, was measured by both sample-standard bracketing and double-spiking. Most CAIs are isotopically unfractionated, within a 95% confidence interval of normal, but a few are significantly fractionated and the range δ‧49Ti is from ∼-4 to ∼+4. Rare earth element patterns were measured in 37 of the CAIs. All CAIs with significant titanium mass fractionation effects have group II and related REE patterns, implying kinetically controlled volatility fractionation during the formation of these CAIs.
Delgado, Joaquín; Pérez-López, Rafael; Galván, Laura; Nieto, José Miguel; Boski, Tomasz
2012-09-01
Rare earth elements (REE) were analyzed in surface sediments from the Guadiana Estuary (SW Iberian Pyrite Belt). NASC (North American Shale Composite) normalized REE patterns show clearly convex curvatures in middle-REE (MREE) with respect to light- and heavy-REE, indicating acid-mixing processes between fluvial waters affected by acid mine drainage (AMD) and seawater. However, REE distributions in the mouth (closer to the coastal area) show slightly LREE-enriched and flat patterns, indicating saline-mixing processes typical of the coastal zone. NASC-normalized ratios (La/Gd and La/Yb) do not discriminate between both mixing processes in the estuary. Instead, a new parameter (E(MREE)) has been applied to measure the curvature in the MREE segment. The values of E(MREE)>0 are indicative of acid signatures and their spatial distribution reveal the existence of two decantation zones from flocculation processes related to drought periods and flood events. Studying REE fractionation through the E(MREE) may serve as a good proxy for AMD-pollution in estuarine environments in relation to the traditional methods. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jung, Hoi-Soo; Lim, Dhongil; Choi, Jin-Yong; Yoo, Hae-Soo; Rho, Kyung-Chan; Lee, Hyun-Bok
2012-10-01
Rare earth elements (REEs) of bulk sediments and heavy mineral samples of core sediments from the South Sea shelf, Korea, were analyzed to determine the constraints on REE concentrations and distribution patterns as well as to investigate their potential applicability for discriminating sediment provenance. Bulk sediment REEs showed large variation in concentrations and distribution patterns primarily due to grain size and carbonate dilution effects, as well as due to an abundance of heavy minerals. In the fine sandy sediments (cores EZ02-15 and 19), in particular, heavy minerals (primarily monazite and titanite/sphene) largely influenced REE compositions. Upper continental crust-normalized REE patterns of these sand-dominated sediments are characterized by enriched light REEs (LREEs), because of inclusion of heavy minerals with very high concentrations in LREEs. Notably, such a strong LREE enrichment is also observed in Korean river sediments. So, a great care must be taken when using the REE concentrations and distribution patterns of sandy and coarse silty shelf sediments as a proxy for discriminating sediment provenance. In the fine-grained muddy sediments with low heavy mineral abundance, in contrast, REE fractionation ratios and their UCC-normalized patterns seem to be reliable proxies for assessing sediment provenance. The resultant sediment origin suggested a long lateral transportation of some fine-grained Chinese river sediments (probably the Changjiang River) to the South Sea of Korea across the shelf of the northern East China Sea.
U-Th-Pb and Sm-Nd Isotopic Systematics of the Goalpara Ureilite
NASA Astrophysics Data System (ADS)
Torigoye, N.; Misawa, K.; Tatsumoto, M.
1993-07-01
One of the interesting features of ureilites is the light REE-enriched component that is dissolved by HNO3 leaching [1,2]. In this work, we performed acid-leaching of several mineral fractions from Goalpara ureilite for U-Th-Pb and Sm-Nd analyses. Olivine and pyroxene grains were hand-picked from 150-300- micrometer-sized fraction. Because they still contained carbon and metal sulfide they were further crushed to <63 micrometers and metal was removed with a hand magnet. These separates and whole-rock powders were washed by ethanol, and leached in 0.01N HBr, 1N HNO3, and in some cases, 7N HNO3. Concentrations of U, Th, and Pb in residues are 0.05-0.3 ppb, 0.1-0.7 ppb, and 5-100 ppb, respectively, corresponding to <=0.01X CI chondrites. Lead isotopic compositions of the residues are less radiogenic and close to Canon Diablo troilite (CDT) Pb [3] (Fig. 1). The U-Pb and Th-Pb ages of all the fractions are older than 4.5 Ga, indicating terrestrial Pb contamination (MT). Because of low concentration of U, Th, and Pb, a small amount of Pb can have a significant effect on the U-Pb and Th-Pb model ages. 238U/204Pb (mu) value of the least contaminated residue is 3, which is higher than mu (0.14-0.5) value of carbonaceous chondrites [3,4]. The higher mu value may be due to either volatile depletion by nebula fractionation or to depletion of Pb during segregation of sulfide that occurred prior to the formation of ureilite as an ultramafic cumulate. The Sm and Nd abundances in the residues are also extremely low; 0.4-2 ppb and 1-2.5 ppb, respectively, corresponding to 0.002-0.01X CI chondritic abundances. All the residues show high 147Sm/144Nd ratios (0.23 ~ 0.44), and the fraction with the highest Sm/Nd plots on the 4.55 Ga chondritic isochron (Fig. 2). The 1N HNO3 leachates do not contain light-REE-enriched components, except for the samples containing black metal-carbon phases, which also contain a large amount of terrestrial Pb in the residual fractions. Therefore, interstitial carbon-metal phases may have adsorbed terrestrial contamination of the incompatible elements, which are significantly depleted in the ureilites. References: [1] Boynton W. V. et al. (1976) GCA ,40, 1439-1447. [2] Goodrich C. A. et al. (1991) GCA, 55, 829-848. [3] M. Tatsumoto et al. (1973) Science, 180, 1278-1283. [4] Tatsumoto M. et al. (1976) GCA, 40, 617-634.
Peterson, K A; Yoshigi, M; Hazel, M W; Delker, D A; Lin, E; Krishnamurthy, C; Consiglio, N; Robson, J; Yandell, M; Clayton, F
2018-06-04
Although current American guidelines distinguish proton pump inhibitor-responsive oesophageal eosinophilia (PPI-REE) from eosinophilic oesophagitis (EoE), these entities are broadly similar. While two microarray studies showed that they have similar transcriptomes, more extensive RNA sequencing studies have not been done previously. To determine whether RNA sequencing identifies genetic markers distinguishing PPI-REE from EoE. We retrospectively examined 13 PPI-REE and 14 EoE biopsies, matched for tissue eosinophil content, and 14 normal controls. Patients and controls were not PPI-treated at the time of biopsy. We did RNA sequencing on formalin-fixed, paraffin-embedded tissue, with differential expression confirmation by quantitative polymerase chain reaction (PCR). We validated the use of formalin-fixed, paraffin-embedded vs RNAlater-preserved tissue, and compared our formalin-fixed, paraffin-embedded EoE results to a prior EoE study. By RNA sequencing, no genes were differentially expressed between the EoE and PPI-REE groups at the false discovery rate (FDR) ≤0.01 level. Compared to normal controls, 1996 genes were differentially expressed in the PPI-REE group and 1306 genes in the EoE group. By less stringent criteria, only MAPK8IP2 was differentially expressed between PPI-REE and EoE (FDR = 0.029, 2.2-fold less in EoE than in PPI-REE), with similar results by PCR. KCNJ2, which was differentially expressed in a prior study, was similar in the EoE and PPI-REE groups by both RNA sequencing and real-time PCR. Eosinophilic oesophagitis and PPI-REE have comparable transcriptomes, confirming that they are part of the same disease continuum. © 2018 John Wiley & Sons Ltd.
Geochemistry of some rare earth elements in groundwater, Vierlingsbeek, The Netherlands.
Janssen, René P T; Verweij, Wilko
2003-03-01
Groundwater samples were taken from seven bore holes at depths ranging from 2 to 41m nearby drinking water pumping station Vierlingsbeek, The Netherlands and analysed for Y, La, Ce, Pr, Nd, Sm and Eu. Shale-normalized patterns were generally flat and showed that the observed rare earth elements (REE) were probably of natural origin. In the shallow groundwaters the REEs were light REE (LREE) enriched, probably caused by binding of LREEs to colloids. To improve understanding of the behaviour of the REE, two approaches were used: calculations of the speciation and a statistical approach. For the speciation calculations, complexation and precipitation reactions including inorganic and dissolved organic carbon (DOC) compounds, were taken into account. The REE speciation showed REE(3+), REE(SO(4))(+), REE(CO(3))(+) and REE(DOC) being the major species. Dissolution of pure REE precipitates and REE-enriched solid phases did not account for the observed REEs in groundwater. Regulation of REE concentrations by adsorption-desorption processes to Fe(III)(OH)(3) and Al(OH)(3) minerals, which were calculated to be present in nearly all groundwaters, is a probable explanation. The statistical approach (multiple linear regression) showed that pH is by far the most significant groundwater characteristic which contributes to the variation in REE concentrations. Also DOC, SO(4), Fe and Al contributed significantly, although to a much lesser extent, to the variation in REE concentrations. This is in line with the calculated REE-species in solution and REE-adsorption to iron and aluminium (hydr)oxides. Regression equations including only pH, were derived to predict REE concentrations in groundwater. External validation showed that these regression equations were reasonably successful to predict REE concentrations of groundwater of another drinking water pumping station in quite different region of The Netherlands.
Rare earth element distribution in some hydrothermal minerals: evidence for crystallographic control
Morgan, J.W.; Wandless, G.A.
1980-01-01
Rare earth element (REE) abundances were measured by neutron activation analysis in anhydrite (CaSO4), barite (BaSO4), siderite (FeCO3) and galena (PbS). A simple crystal-chemical model qualitatively describes the relative affinities for REE substitution in anhydrite, barite, and siderite. When normalized to 'crustal' abundances (as an approximation to the hydrothermal fluid REE pattern), log REE abundance is a surprisingly linear function of (ionic radius of major cation-ionic radius of REE)2 for the three hydrothermal minerals, individually and collectively. An important exception, however, is Eu, which is anomalously enriched in barite and depleted in siderite relative to REE of neighboring atomic number and trivalent ionic radius. In principle, REE analyses of suitable pairs of co-existing hydrothermal minerals, combined with appropriate experimental data, could yield both the REE content and the temperature of the parental hydrothermal fluid. The REE have only very weak chalcophilic tendencies, and this is reflected by the very low abundances in galena-La, 0.6 ppb; Sm, 0.06 ppb; the remainder are below detection limits. ?? 1980.
Piper, D.Z.; Wandless, G.A.
1992-01-01
The extraction of the rare earth elements (REE) from deep-ocean pelagic sediment, using hydroxylamine hydrochloride-acetic acid, leads to the separation of approximately 70% of the bulk REE content into the soluble fraction and 30% into the insoluble fraction. The REE pattern of the soluble fraction, i.e., the content of REE normalized to average shale on an element-by-element basis and plotted against atomic number, resembles the pattern for seawater, whereas the pattern, as well as the absolute concentrations, in the insoluble fraction resembles the North American shale composite. These results preclude significant readsorption of the REE by the insoluble phases during the leaching procedure.
NASA Astrophysics Data System (ADS)
Serov, Pavel; Bayanova, Tamara; Steshenko, Ekaterina; Ekimova, Nadezhda
2015-04-01
The main method of dating the ore process was the Re-Os method of sulfides (Luck, Allegre, 1983; Walker et. al., 1991). However, studies of Re-Os systematics of sulfide minerals do not always give the correct ages and showing the disturbances of the Re-Os systematics. At the same time, Sm-Nd age of sulfides in good agreement with the U-Pb dating on zircon and baddeleyite and suggests that the Sm-Nd system of sulfides is more resistant to secondary alteration processes. Our studies have shown that along with rock-forming, ore minerals (sulfides) can be used to determine the ore genesis time of industrially important geological sites, since exactly with the sulfides the industry Pt-Pd mineralization is closely connected. In to Sm-Nd measurements steadily introduce new minerals-geochronometers (i.e. titanite, burbancite, eudialite etc.). Of these, sulfides of PGE-bearing layered intrusions are quite important in terms of dating the process of ore origin. Studying the REE distribution in the sulfides of MOR hydrothermal sources has shown possible REE presence in the sulfide lattice (Rimskaya-Korsakova et. al., 2003). These are difficult to carry out because the concentrations of Sm and Nd isotopes in sulfides are much lower than those in chondrites (Rimskaya-Korsakova et. al., 2003). In (Kong et. al., 2000) sulfides from two metamorphosed chondrites were studied by instrumental neutron activation analysis (INAA) and ion probe. As shown, the level of REE in the sulfide phase determined by the ion probe is quite similar to that obtained by INAA. Although the concentrations of REE in the enstatite and the Fe, Si, Cr-rich inclusions are comparable to those in sulfide, estimates based on mass balance calculations show that the silicate inclusions would not noticeably contribute to the REE budget in sulfides (Kong et. al., 2000). For the first time in Russian geochemistry laboratories using sulfide and rock-forming minerals and WR in Sm-Nd method have been dated impregnated and brecciform ores of the following objects - Pilguyarvi Cu-Ni deposits, Pechenga (1965±87 Ma); impregnated (2433±83 Ma) and redeposited (1903±24 Ma) ores of Ahmavaara intrusion (Finland); Kolvitsa massif metagabbro (1990±92 Ma, which reflect the age of Sm-Nd system closure in sulfide minerals); olivine orthopyroxenites of Sopcha 'Ore bed' (2442±59 Ma); ore gabbronorites of Penikat PGE-bearing layered intrusion (2426±38 Ma (Ekimova et.al., 2011); Pt-Pd gabbro-pegmatite ores (2476± 41 Ma, which agrees well with the U-Pb zircon age - 2470±9 Ma (Bayanova, 2004) and gabbronorites (2483±86 Ma) of PGE Kievey deposit and Fedorova Tundra metagabbroids (2494±54 Ma); Monchetundra gabbronorites - 2489±49 Ma. All investigations are devoted to memory of academician RAS, professor F. Mitrofanov (Russia), he was a leader of scientific school for geology, geochemistry and metallogenesis of ore deposits. The studies were supported by the RFBR 13-05-00493, OFI-M 13-05-12055, Department of Earth Sciences RAS (programs 2 and 4), IGCP-599.
Bomer, Ilanit; Saure, Carola; Caminiti, Carolina; Ramos, Javier Gonzales; Zuccaro, Graciela; Brea, Mercedes; Bravo, Mónica; Maza, Carmen
2015-11-01
Craniopharyngioma is a histologically benign brain malformation with a fundamental role in satiety modulation, causing obesity in up to 52% of patients. To evaluate cardiovascular risk factors, body composition, resting energy expenditure (REE), and energy intake in craniopharyngioma patients and to compare the data with those from children with multifactorial obesity. All obese children and adolescents who underwent craniopharyngioma resection and a control group of children with multifactorial obesity in follow-up between May 2012 and April 2013. Anthropometric measurements, bioelectrical impedance, indirect calorimetry, energy intake, homeostatic model assessment insulin resistance (HOMA-IR), and dyslipidemia were evaluated. Twenty-three patients with craniopharyngioma and 43 controls were included. Children with craniopharyngioma-related obesity had a lower fat-free mass percentage (62.4 vs. 67.5; p=0.01) and a higher fat mass percentage (37.5 vs. 32.5; p=0.01) compared to those with multifactorial obesity. A positive association was found between %REE and %fat-free mass in subjects with multifactorial obesity (68±1% in normal REE vs. 62.6±1% in low REE; p=0.04), but not in craniopharyngioma patients (62±2.7 in normal REE vs. 61.2±1.8% in low REE; p=0.8). No differences were found in metabolic involvement or energy intake. REE was lower in craniopharyngioma patients compared to children with multifactorial obesity regardless of the amount of fat-free mass, suggesting that other factors may be responsible for the lower REE.
Piper, David Z.; Bau, Michael
2013-01-01
The concentrations of the rare earth elements (REE) in surface waters and sediments, when normalized on an element-by-element basis to one of several rock standards and plotted versus atomic number, yield curves that reveal their partitioning between different sediment fractions and the sources of those fractions, for example, between terrestrial-derived lithogenous debris and seawater-derived biogenous detritus and hydrogenous metal oxides. The REE of ancient sediments support their partitioning into these same fractions and further contribute to the identification of the redox geochemistry of the sea water in which the sediments accumulated. The normalized curves of the REE that have been examined in several South American wine varietals can be interpreted to reflect the lithology of the bedrock on which the vines may have been grown, suggesting limited fractionation during soil development.
NASA Technical Reports Server (NTRS)
Huber, Heinz; Rubin, Alan E.; Kallemeyn, Gregory W.; Wasson, John T.
2006-01-01
CK chondrites constitute the most oxidized anhydrous carbonaceous chondrite group; most of the Fe occurs in magnetite and in FeO-rich mafic silicates. The two observed CK falls (Karoonda and Kobe), along with thirteen relatively unweathered CK finds, have unfractionated siderophile-element abundance patterns. In contrast, a sizable fraction of CK finds (9 of 24 investigated) shows fractionated siderophile abundance patterns including low abundances of Ni, Co, Se and Au; the most extreme depletions are in Ni (0.24 of normal CK) and Au (0.14 of normal CK). This depletion pattern has not been found in other chondrite groups. Out of the 74 CK chondrites listed in the Meteoritical Bulletin Database (2006; excluded considerably paired specimens; see http://tin.er.usgs.gov/meteor/ metbull.php) we analyzed 24 and subclassified the CK chondrites in terms of their chemical composition and sulfide mineralogy: sL (siderophiles low; six samples) for large depletions in Ni, Co, Se and Au (>50% of sulfides lost); sM (siderophiles medium; two CKs) for moderately low Ni and Co abundances (sulfides are highly altered or partly lost); sH (siderophiles high; one specimen) for enrichments in Ni, Co, Se and Au; 'normal' for unfractionated samples (13 samples). The sole sH sample may have obtained additional sulfide from impact redistribution in the parent asteroid. We infer that these elements became incorporated into sulfides after asteroidal aqueous processes oxidized nebular metal; thermal metamorphism probably also played a role in their mineral siting. The siderophile losses in the SL and sM samples are mainly the result of oxidation of pentlandite, pyrite and violarite by terrestrial alteration followed by leaching of the resulting phases. Some Antarctic CK chondrites have lost most of their sulfides but retained Ni, Co, Se and Au, presumably as insoluble weathering products.
NASA Technical Reports Server (NTRS)
Rubin, A. E.; Scott, E. R. D.; Keil, K.
1982-01-01
Electron microprobe, scanning electron microscope, and petrographic analyses of the microchondritic clast of the Piancaldoli LL3 chondrite are reported and compared with other type three chondrites. The clast, like other type three chondrites, has a fine-grained Fe-rich opaque silicate matrix, sharply defined chondrules, abundant low-Ca clinopyroxene and minor troilite and Si and Cr-bearing metallic Fe, Ni. However, the very high model matrix abundance, unique characteristics of the chondrules, and absence of microscopically observable olivine indicate that the clast is a new type of type three chondrite. It is concluded that the microchondrules were formed by the same process that formed normal-sized chondrules in type three chondrites: melting of preexisting dustballs. It is suggested that dust grains were mineralogically sorted in the nebula before aggregating into dustballs.
Effects of a Tripeptide Iron on Iron-Deficiency Anemia in Rats.
Xiao, Chen; Lei, Xingen; Wang, Qingyu; Du, Zhongyao; Jiang, Lu; Chen, Silu; Zhang, Mingjie; Zhang, Hao; Ren, Fazheng
2016-02-01
This study aims to investigate the effects of a tripeptide iron (REE-Fe) on iron-deficiency anemia rats. Sprague-Dawley rats were randomly divided into seven groups: a normal control group, an iron-deficiency control group, and iron-deficiency groups treated with ferrous sulfate (FeSO4), ferrous glycinate (Fe-Gly), or REE-Fe at low-, medium-, or high-dose groups. The rats in the iron-deficiency groups were fed on an iron-deficient diet to establish iron-deficiency anemia (IDA) model. After the model established, different iron supplements were given to the rats once a day by intragastric administration for 21 days. The results showed that REE-Fe had effective restorative action returning body weight, organ coefficients, and hematological parameters in IDA rats to normal level. In addition, comparing with FeSO4 or Fe-Gly, high-dose REE-Fe was more effective on improving the levels of renal coefficient, total iron-binding capacity, and transferrin. Furthermore, the liver hepcidin messenger RNA (mRNA) expression in the high-dose group was significantly higher (p < 0.05) than that in the FeSO4 or Fe-Gly group and showed no significant difference (p > 0.05) with the normal control group. The findings suggest that REE-Fe is an effective source of iron supplement for IDA rats and might be exploited as a new iron fortifier.
The Shaw meteorite - History of a chondrite consisting of impact-melted and metamorphic lithologies
NASA Technical Reports Server (NTRS)
Taylor, G. J.; Keil, K.; Berkley, J. L.; Lange, D. E.; Fodor, R. V.
1979-01-01
Three intermingled lithologies are identified in the Shaw L-group chondrite: a light-colored lithology with a poikilitic texture, consisting of olivine and augite crystals surrounded by larger orthopyroxene grains; a dark-colored lithology containing remnant chondrules and exhibiting a microgranular texture; and a gray lithology which appears to be intermediate between the other two. Contrary to published opinions, the Shaw meteorite contains normal L-group chondrite abundances of metal and troilite, though these phases are irregularly distributed. The lithological analyses suggest that 4.52 Byr ago an impact took place on the L-group chondrite parent object of Shaw.
Sulfide in the core and the composition of the silicate Earth
NASA Astrophysics Data System (ADS)
Burton, K. W.
2015-12-01
The chemical composition of the Earth is traditionally explained in terms of evolution from a solar-like composition, similar to that found in primitive 'chondritic' meteorites. It now appears, however, that the silicate Earth is not 'chondritic', but depleted in incompatible elements, including refractory lithophile and heat-producing elements. Either Earth lost material during planet-building due to collisional erosion or else internal differentiation processes produced a hidden reservoir deep in the early Earth. Sulfide in the core may provide a reservoir capable of balancing the composition of the silicate Earth. Recent experimental work suggests that the core contains a significant proportion of sulfide, added during the final stages of accretion and new data suggests that at high pressures sulfide can incorporate a substantial amount of refractory lithophile and heat-producing elements [1]. Pioneering work using the short-lived 146Sm-142Nd system strongly suggests that Earth's silicate mantle is non-chondritic [e.g. 2]. The drawback of such radiogenic isotope systems is that it is not possible to distinguish the fractionation of Sm/Nd that occurs during silicate melting from that occurring during the segregation of a sulfide-melt to form the core. Neodymium stable isotopes have the potential to provide just such a tracer of sulfide segregation, because there is a significant contrast in bonding environment between sulfide and silicate, where heavy isotopes should be preferentially incorporated into high force-constant bonds involving REE3+ (i.e. the silicate mantle). Preliminary data indicate that mantle rocks do indeed possess heavier 146Nd/144Nd values than chondritic meteorites, consistent with the removal of light Nd into sulfide in the core, driving the residual mantle to heavy values. Overall, our isotope and elemental data indicate that the rare earths and other incompatible elements are substantially incorporated into sulfide. While Nd Stable isotope data for chondritic meteorites and mantle rocks, are consistent with the segregation of sulfide to the core. [1] Wohlers &Wood, Nature 520, 337 (2015) [2] Boyet & Carlson, Science 309, 576 (2005)
REE speciation in low-temperature acidic waters and the competitive effects of aluminum
Gimeno, Serrano M.J.; Auque, Sanz L.F.; Nordstrom, D. Kirk
2000-01-01
The effect of simultaneous competitive speciation of dissolved rare earth elements (REEs) in acidic waters (pH 3.3 to 5.2) has been evaluated by applying the PHREEQE code to the speciation of water analyses from Spain, Brazil, USA, and Canada. The main ions that might affect REE are Al3+, F-, SO42-, and PO43-. Fluoride, normally a significant complexer of REEs, is strongly associated with Al3+ in acid waters and consequently has little influence on REEs. The inclusion of aluminum concentrations in speciation calculations for acidic waters is essential for reliable speciation of REEs. Phosphate concentrations are too low (10-4 to 10-7 m) to affect REE speciation. Consequently, SO42- is the only important complexing ligand for REEs under these conditions. According to Millero [Millero, F.J., 1992. Stability constants for the formation of rare earth inorganic complexes as a function of ionic strength. Geochim. Cosmochim. Acta, 56, 3123-3132], the lanthanide sulfate stability constants are nearly constant with increasing atomic number so that no REE fractionation would be anticipated from aqueous complexation in acidic waters. Hence, REE enrichments or depletions must arise from mass transfer reactions. (C) 2000 Elsevier Science B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhao, Lei; Zhou, Xiwen; Zhai, Mingguo; Liu, Bo; Cui, Xiahong
2018-06-01
The recognition of the Indosinian Orogeny in the South China block has been controversial and difficult because of strong weathering and thick cover. High temperature (HT) and high pressure (HP) metamorphic rocks related to this orogeny were considered to be absent from this orogenic belt until the recent discovery of eclogite and granulite facies meta-igneous rocks, occurring as lenses within the meta-sedimentary rocks of the Badu Complex. However, metamorphic state of these meta-sedimentary rocks is still not clear. Besides, there have been no geochronological data of HT pelitic granulites previously reported from the Badu Complex. This paper presents petrographic characteristics and zircon geochronological results on the newly discovered kyanite garnet gneiss, pyroxene garnet gneiss and the HT pelitic granulites (sillimanite garnet gneiss). Mineral assemblages are garnet + sillimanite + ternary feldspar + plagioclase + quartz + biotite for the HT pelitic granulite, kyanite + ternary feldspar + garnet + sillimanite + plagioclase + quartz + biotite for the kyanite garnet gneiss, and garnet + biotite + pyroxene + plagioclase + ternary feldspar + quartz for the pyroxene garnet gneiss, respectively. Decompressional coronas around garnet grains can be observed in all these pelitic rocks. Typical granulite facies mineral assemblages and reaction textures suggest that these rocks experienced HP granulite facies metamorphism and overprinted decompression along a clockwise P-T loop. Results from integrated U-Pb dating and REE analysis indicate the growth of metamorphic zircons from depleted heavy REE sources (100-50 chondrite) compared with detrital zircons derived from granitic sources (typically > 1000 chondrite). Metamorphic zircons in HP granulite exhibit no or subdued negative Eu anomalies, which perhaps indicate zircon overgrowth under eclogite facies conditions. The zircon overgrowth ages range from 250 to 235 Ma, suggesting that HP granulite (eclogite) to granulite facies metamorphism of these supracrustal rocks occurred in the Early-Middle Triassic. Based on the presence of HP granulite facies pelitic rocks, it is inferred that significant underthrusting was involved during the Indosinian Orogeny which introduced these supracrustal rocks to lower crustal levels.
Wang, Lingqing; Liang, Tao
2016-06-01
The Bayan Obo Mine, the largest rare earth element (REE) deposit ever found in the world, has been mined for nearly 60 years for iron and rare earth elements. To assess the influences of mining activities on geochemical behavior of REEs in soils, 27 surface soil samples and three soil profile samples were collected from different directions in the vicinity of the mine area. The total concentrations of REEs in surface soils varied from 149.75 to 18,891.81 mg kg(-1) with an average value of 1906.12 mg kg(-1), which was apparently higher than the average values in China (181 mg kg(-1)). The order of the average concentrations of individual REEs in surface soils was similar to that in Bayan Obo ores, which confirmed that the concentration and distribution of REEs in the soils was influenced by the mining activities. The concentrations of single REE in the soil profiles showed a similar trend with depth with an increase at 0-25 cm section, then decreased and remained relatively stable in the deep part. The normalized curves inclined to the right side, showing the conspicuous fractionation between the light and heavy REEs, which supported by the North American Shale Composite (NASC) and Post-Archean Australian Shale (PAAS) normalized concentration ratios calculated for selected elements (La N /Yb N , La N /Sm N , Gd N /Yb N ). Slight positive Ce anomaly and negative Eu anomaly were also observed.
Iron and manganese oxide mineralization in the Pacific
Hein, J.R.; Koschinsky, A.; Halbach, P.; Manheim, F.T.; Bau, M.; Kang, J.-K.; Lubick, N.
1997-01-01
Iron, manganese, and iron-manganese deposits occur in nearly all geomorphologic and tectonic environments in the ocean basins and form by one or more of four processes: (1) hydrogenetic precipitation from cold ambient seawater, (2) precipitation from hydrothermal fluids, (3) precipitation from sediment pore waters that have been modified from bottom water compositions by diagenetic reactions in the sediment column and (4) replacement of rocks and sediment. Iron and manganese deposits occur in five forms: nodules, crusts, cements, mounds and sediment-hosted stratabound layers. Seafloor oxides show a wide range of compositions from nearly pure iron to nearly pure manganese end members. Fe/Mn ratios vary from about 24 000 (up to 58% elemental Fe) for hydrothermal seamount ironstones to about 0.001 (up to 52% Mn) for hydrothermal stratabound manganese oxides from active volcanic arcs. Hydrogenetic Fe-Mn crusts that occur on most seamounts in the ocean basins have a mean Fe/Mn ratio of 0.7 for open-ocean seamount crusts and 1.2 for continental margin seamount crusts. Fe-Mn nodules of potential economic interest from the Clarion-Clipperton Zone have a mean Fe/Mn ratio of 0.3, whereas the mean ratio for nodules from elsewhere in the Pacific is about 0.7. Crusts are enriched in Co, Ni and Pt and nodules in Cu and Ni, and both have significant concentrations of Pb, Zn, Ba, Mo, V and other elements. In contrast, hydrothermal deposits commonly contain only minor trace metal contents, although there are many exceptions, for example, with Ni contents up to 0.66%, Cr to 1.2%, and Zn to 1.4%. Chondrite-normalized REE patterns generally show a positive Ce anomaly and abundant ΣREEs for hydrogenetic and mixed hydrogenetic-diagenetic deposits, whereas the Ce anomaly is negative for hydrothermal deposits and ΣREE contents are low. However, the Ce anomaly in crusts may vary from strongly positive in East Pacific crusts to slightly negative in West Pacific crusts, which may reflect the redox conditions of seawater. The concentration of elements in hydrogenetic Fe-Mn crusts depends on a wide variety of water column and crust surface characteristics, whereas concentration of elements in hydrothermal oxide deposits depends of the intensity of leaching, rock types leached, and precipitation of sulphides at depth in the hydrothermal system.
Geochemistry of rare earth elements in Permian coals from the Huaibei Coalfield, China
Zheng, Lingyun; Liu, Gaisheng; Chou, C.-L.; Qi, C.; Zhang, Y.
2007-01-01
The rare earth elements (REEs) in coals are important because of: (a) REE patterns can be an indicator of the nature of source rocks of the mineral matter as well as sedimentary environments; (b) REEs abundance in coal may have industrial-significance. In this study, a total of thirty-four samples of Permian coal, partings, roof, and floor were collected from the Huaibei Coalfield, Anhui Province, China. Abundances of rare earth elements (REEs) and other elements in the samples were determined by inductively coupled-plasma mass spectrometry (ICP-MS) and inductively coupled-plasma atomic emission spectrometry (ICP-AES). The results show that the REEs are enriched in coals in the Huaibei Coalfield as compared with Chinese and U.S. coals and the world coal average. Coals in the Lower Shihezi Formation (No. 7, 5, and 4 Coals) and Upper Shihezi Formation (No. 3) have higher REE abundances than the coals in Shanxi Formation (No. 10). Magmatic intrusion resulted in high enrichment of REEs concentrations in No. 5 and 7 Coals. The REE abundances are positively correlated with the ash content. The mineral matter in these coals is mainly made up of clay minerals and carbonates. The REEs are positively correlated with lithophile elements including Si, Al, Ti, Fe, and Na, which are mainly distributed in clay minerals, indicating that REEs are contained mainly in clay minerals. The REE abundances in coals normalized by the ash are higher than that in partings. REEs abundances of coals cannot be accounted for by the REE content in the mineral matter, and some REEs associated with organic matter in coals. ?? 2007 Elsevier Ltd. All rights reserved.
A RELICT Spinel Grain in an Allende Ferromagnesian Chondrule
NASA Astrophysics Data System (ADS)
Misawa, K.; Fujita, T.; Kitamura, M.; Nakamura, N.; Yurimoto, H.
1993-07-01
It is suggested that one of the refractory lithophile precursors in CV-CO chondrules was a hightemperature condensate from the nebular gas and was related to Ca,Al-rich inclusions (CAIs) [1-3]. However, little is known about refractory siderophile precursors in chondrules [4]. Allende barred olivine chondrule R-11 consists mainly of olivine (Fa(sub)7- 18), pyroxene (En(sub)93Fs(sub)1Wo(sub)6, En(sub)66Fs(sub)1Wo(sub)33), plagioclase (An(sub)80), Fe-poor spinel, and alkali-rich glass. The CI- chondrite normalized REE pattern of the chondrule, excluding a spinel grain, are fractionated, HREEdepleted (4.6-7.8 x CI) with a large positive Yb anomaly. The REE abundances are hump-shaped functions of elemental volatility, moderately refractory REE-enriched, suggesting that the refractory lithophile precursor component of R-11 could be a condensate from the nebular gas and related to Group 11 CAIs [1,2]. An interior portion of spinel is almost Fe-free, but in an outer zone (2040 micrometers in width) FeO contents increase rapidly. TiO(sub)2, Cr(sub)2O(sub)3, and V(sub)2O(sub)3 contents in core spinel are less than 0.5%, which is different from the V-rich nature of spinel in fluffy Type A CAIs [5]. The Fe-Mg zoning of spinel may have been generated by diffusional emplacement of Mg and Fe during chondrule-forming events. The spinel contains silicate inclusions and tiny metallic grains. The largest silicate inclusion is composed of Al,Ti-rich pyroxene and Ak 40 melilite. One of the submicrometersized grains was analyzed by SEM-EDS and found to be composed of refractory Pt-group metals with minor amounts of Fe and Ni. This is the first occurrence of refractory Pt-group metal nuggets in a ferromagnesian chondrule from the Allende meteorite. Tungsten, Os, Ir, Mo, and Ru are enriched 2-6 x 10^5 relative to CIs, and abundances of Pt and Rh decrease 2-10 x 10^4 with increasing volatility. In addition, abundances of Fe and Ni in the nugget are equal to or less than that CI chondrites. A depletion of Mo relative to other refractory metals may have resulted from high- temperature oxidation [6]. Chondrule R-11 exhibits both similarities (spinel and plagioclase chemistry; Group II REE pattern) and differences (fassaite chemistry; existence of refractory Pt-group metal nuggets and melilite) with respect to POIs [3] carrying isotopically fractionated Mg. Refractory Pt-group metal nuggets in CAIs are considered to have been produced during high-temperature events (at least 1300 degrees C) before total condensation of Fe in the early solar nebula [8-10]. In analogy with the formation history with CAIs, we suggest that one of the refractory siderophile precursor components of Allende chondrules is a high-temperature condensate from the nebular gas and is associated with refractory oxide and silicates. References: [1] Misawa K. and Nakamura N. (1988) GCA, 52, 1669. [2] Misawa K. and Nakamura N. (1988) Nature, 334, 47. [3] Sheng Y. J. et al. (1991) GCA, 55, 581. [4] Grossman J. N. et al. (1988) In Meteorites and the Early Solar System (J. F. Kerridge and M. S. Matthews, eds.), 619, Univ. of Arizona. [5] MacPherson G. J. and Grossman L. (1984) GCA, 48, 29. [6] Fegley B. Jr. and Palme H. (1985) EPSL, 72, 311. [7] Wark D. A. and Lovering J. F. (1976) LS VII, 912. [8] Palme H. and Wlotzka F. (1976) EPSL, 33, 45. [9] El Goresy A. et al. (1978) Proc. LPSC 9th, 1279. [10] Blander M. and Fuchs L. H. (1980) Proc. LPSC 11th, 929.
Geochemistry and structure of the Hawley Formation: Northwestern Massachusetts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, J.; Jacobi, R.
1993-03-01
The Hawley Formation in northwestern Massachusetts is composed of mafic and felsic, (trondhjemitic) igneous units and black sulfidic schists and quartzites. The dominant lithology is a thinly foliated hbd-plag.-chi-qtz.-Fe carbonate schist with or without hornblende fasicules. Locally, this schist has alternating folia of chl/hbd and plag. and probably has a volcaniclastic protolith. Distinct pillows and tuffs are observed locally. In general, these schists have flat REE patterns at 10X chondrite and plot as IABs on discrimination diagrams. In the eastern part of the Hawley, some amphibolites show concave upward REE patterns, plot in the IAT or boninite field on discriminationmore » diagrams, and appear to have boninitic affinities. The felsic lithologies are trondhjemitic and are intrusive into the IAT/boninite amphibolites. The intrusive nature is based on the presence of mafic xenoliths and intruded rafts of country rock in the trondhjemite as well as the occurrence of thin tabular trondhjemite bodies in sharp contact with the surrounding amphibolite. The trondhjemite varies from coarse-grained weakly foliated qtz-plag.-biotite gneiss with probable relict igneous zoned plagioclases to finer-grained well foliated qtz-plag.-garnet-hbd gneiss. REE patterns for the trondhjemites are weakly U-shaped with moderate to pronounced negative Eu anomalies. The trondhjemites, surrounding amphibolites, and black sulfidic schists and quartzites of the eastern part of the Hawley are intruded by massive, granular, medium grained, plagioclase phenocryst amphibolites with chilled margins. These intrusive sills predate or are coeval with the dominant foliation in the Hawley. Both sills and country rock contain a contact-parallel foliation as well as a later foliation at a low angle to the earlier foliation. The sill amphibolites are high TiO2 high Zr varieties that plot as MORBs to WPBs on discrimination diagrams and exhibit slightly LREE enriched MORB-like to T-MORB REE patterns.« less
Do patients with amyotrophic lateral sclerosis (ALS) have increased energy needs?
Vaisman, Nachum; Lusaus, Michal; Nefussy, Beatrice; Niv, Eva; Comaneshter, Doron; Hallack, Ron; Drory, Vivian E
2009-04-15
Nutritional status is a prognostic factor for survival in amyotrophic lateral sclerosis (ALS) patients. We investigated the contribution of some of the components contributing to resting energy expenditure (REE) in order to determine whether potentially higher energy needs should be considered for these patients. Thirty three ALS patients and 33 age- and gender-matched healthy controls participated. REE was measured by an open-circuit indirect calorimeter, body composition by dual energy X-ray absorptiometry, and estimated caloric intake by 7-day food records. Patients had lower body mass indices and lower lean body mass (LBM) than healthy controls. REE values (as a percentage of predicted) was similar but increased when normalized by LBM (P<0.001). LBM and REE decreased while REE/LBM increased in ten patients who were reassessed 6 months later. A model for predicting measured REE was constructed based on the different components, with 86% prediction of its variability. ALS is associated with increased REE. Various factors, such as poor caloric intake and mechanical ventilation, may mask this tendency. All the above parameters need to be considered during nutritional intervention to prevent additional muscle loss.
NASA Astrophysics Data System (ADS)
Wang, Shujie; Li, Huaiming; Zhai, Shikui; Yu, Zenghui; Cai, Zongwei
2017-12-01
In this study, geochemical compositions of elements in sulfide samples collected from the Deyin-1 hydrothermal field near the 15°S southern Mid-Atlantic Ridge (SMAR) were analyzed by the X-ray fluorescence spectrometry (XRF) and inductively coupled plasma mass spectrometry (ICP-MS) to examine the enrichment regulations of ore-forming elements and hydrothermal mineralization. These sulfide precipitates can be classified macroscopically into three types: Fe-rich sulfide, Fe-Cu-rich sulfide and Fe-Zn-rich sulfide, and are characterized by the enrichment of base metal elements along with a sequence of Fe>Zn>Cu. Compared with sulfides from other hydrothermal fields on MAR, Zn concentrations of sulfides in the research area are significantly high, while Cu concentrations are relatively low. For all major, trace or rare-earth elements (REE), their concentrations and related characteristic parameters exhibit significant variations (up to one or two orders of magnitude), which indicates the sulfides from different hydrothermal vents or even a same station were formed at different stages of hydrothermal mineralization, and suggests the variations of chemical compositions of the hydrothermal fluid with respect to time. The hydrothermal temperatures of sulfides precipitation decreased gradually from station TVG10 (st.TVG10) to st.TVG12, and to st.TVG11, indicating that the precipitation of hydrothermal sulfides is subjected to conditions changed from high temperature to low temperature, and that the hydrothermal activity of study area was at the late stage of a general trend of evolution from strong to weak. The abnormally low concentrations of REE in sulfides and their similar chondrite-normalized REE patterns show that REEs in all sulfides were derived from a same source, but underwent different processes of migration or enrichment, or sulfides were formed at different stages of hydrothermal mineralization. The sulfides collected from the active hydrothermal vent were mainly attributed to precipitating directly from the hydrothermal fluid, while those collected from the extinct hydrothermal chimney might have already been altered by the seawater. Generally, ore-forming elements in the sulfides can be divided into three groups: Fe-based element group, Cu-based element group and Zn-based element group. The first group includes Fe, Mn, Cr, Mo, Sn, Rb and bio-enriching elements, such as P and Si, reflecting the similar characteristics to Fe in the study area. And the second group contains Cu, W, Co, Se, Te and Bi, suggesting the similar behavior with Cu. Moreover, the third group includes Zn, Hf, Hg, Cd, Ta, Ga, Pb, As, Ag, Ni and Sb, which indicates the geochemical characteristics of most dispersed trace elements controlled by Zn-bearing minerals to some extent.
Evidence for a Light-Rare-Earth-Element-Depleted Source for Some Ferroan Anorthosites
NASA Astrophysics Data System (ADS)
Borg, L. E.; Norman, M.; Nyquist, L. E.; Bogard, D.; Snyder, G.; Taylor, L.
1998-01-01
In the lunar magma ocean model, ferroan anorthosites (FANs) are expected to be derived from a relatively undifferentiated source with chondritic REE abundances and yield the oldest radiometric ages of any lunar rocks. Samarium-neodymium-isotopic analyses of 60025 and 67016 yielded ages of 4.44 +/- 0.02 Ga and 4.53 +/- 0.12 Ga and initial EpsilonNd(sup 143) values in excess of -0.5. These ages are within error of ages determined on some Mg-suite rocks by researchers. Thus, the existing data are not completely consistent with the standard magma ocean model. We have completed isotopic analysis on the pristine FAN 62236 in order to place further constraints on lunar crust-forming processes.
Evidence for a Light-Rare-Earth-Element-Depleted Source for Some Ferroan Anorthosites
NASA Technical Reports Server (NTRS)
Borg, L. E.; Norman, M.; Nyquist, L. E.; Bogard, D.; Snyder, G.; Taylor, L.
1998-01-01
In the lunar magma ocean model, ferroan anorthosites (FANs) are expected to be derived from a relatively undifferentiated source with chondritic REE abundances and yield the oldest radiometric ages of any lunar rocks. Samarium-neodymium-isotopic analyses of 60025 and 67016 yielded ages of 4.44 +/- 0.02 Ga and 4.53 +/- 0.12 Ga and initial Epsilon(sub Nd)(sup 143) values in excess of -0.5. These ages are within error of ages determined on some Mg-suite rocks by researchers. Thus, the existing data are not completely consistent with the standard magma ocean model. We have completed isotopic analysis on the pristine FAN 62236 in order to place further constraints on lunar crust-forming processes.
NASA Technical Reports Server (NTRS)
Gounelle, M.; Engrand, C.; Chaussidon, M.; Zolensky, M. E.; Maurette, M.
2005-01-01
Micrometeorites with sizes below 1 mm are collected in a diversity of environments such as deep-sea sediments and polar caps. Chemical, mineralogical and isotopic studies indicate that micrometeorites are closely related to primitive carbonaceous chondrites that amount to only approximately 2% of meteorite falls. While thousands of micrometeorites have been studied in detail, no micrometeorite has been found so far with an unambiguous achondritic composition and texture. One melted cosmic spherule has a low Fe/Mn ratio similar to that of eucrites, the most common basaltic meteorite group. Here we report on the texture, mineralogy, Rare Earth Elements (REEs) abundance and oxygen isotopic composition of the unmelted Antarctic micrometeorite 99-21-40 that has an unambiguous basaltic origin.
The Effects of Thermal Metamorphism on the Amino Acid Content of the CI-Like Chondrite Y-86029
NASA Technical Reports Server (NTRS)
Burton, A. S.; Grunsfeld, S.; Glavin, D. P.; Dworkin, J. P.
2014-01-01
Carbonaceous chondrites con-tain a diverse suite of amino acids that varies in abundance and structural diversity depending on the degree of aqueous alteration and thermal histo-ry that the parent body experienced [1 - 3]. We recently determined the amino acid contents of several fragments of the Sutter's Mill CM2 chon-drite [4]. In contrast with most other CM2 chon-drites, the Sutter's Mill meteorites showed minimal evidence for the presence of indigenous amino acids. A notable difference between the Sutter's Mill meteorites and other CM2 chondrites are that the Sutter's Mill stones were heated to tempera-tures of 150 - 400 C [4], whereas most other CM2 chondrites do not show evidence for thermal met-amorphism [5]. Because empirical studies have shown that amino acids rapidly degrade in aqueous solutions above 150 C and the presence of miner-als accelerates this degradation [6], a plausible explanation for the lack of amino acids observed in the Sutter's Mill meteorites is that they were destroyed during metamorphic alteration. Fewer CI chondrites have been analyzed for amino acids because only a small number of these meteorites have been recovered. Nevertheless, indigenous amino acids have been reported in the CI chondrites Ivuna and Orgueil [7]. Here we report on the amino acid analysis of the CI-like chondrite, Yamato 86029 (Y-86029; sample size of 110 mg). Just as the Sutter's Mill meteorites were thermally metamporphosed CM2 chondrites, Y-86029 has experienced thermal metamorphism at higher temperatures than Orgueil and Ivuna (normal CI chondrites) experienced, possibly up to 600 C [8].
Accumulation of rare earth elements in human bone within the lifespan.
Zaichick, Sofia; Zaichick, Vladimir; Karandashev, Vasilii; Nosenko, Sergey
2011-02-01
For the first time, the contents of rare earth elements (REEs) in a rib bone of a healthy human were determined. The mean value of the contents of Ce, Dy, Er, Gd, La, Nd, Pr, Sm, Tb, and Yb (10 elements out of 17 total REEs), as well as the upper limit of means for Ho, Lu, Tm, and Y (4 elements) were measured in the rib bone tissue of 38 females and 42 males (15 to 55 years old) using inductively coupled plasma mass spectrometry (ICP-MS). We found age-related accumulation of REEs in the bone tissue of healthy individuals who lived in a non-industrial region. It was calculated that during a lifespan the content of REEs in a skeleton of non-industrial region residents may increase by one to two orders of magnitude. Using our results as indicative normal values and published data we estimated relative Gd accumulation in the bone tissue of patients according to magnetic resonance imaging with contrast agent and La accumulation in the bone tissue of patients receiving hemodialysis after treatment with lanthanum carbonate as a phosphate binder. It was shown that after such procedures contents of Gd and La in the bone tissue of patients are two to three orders of magnitude higher than normal levels. In our opinion, REEs incorporation may affect bone quality and health similar to other potentially toxic trace metals. The impact of elevated REEs content on bone physiology, biochemistry and morphology requires further investigation.
Zhang, Yong; Gao, Xuelu; Arthur Chen, Chen-Tung
2014-07-01
Surface sediments from intertidal Bohai Bay were assessed using a four-step sequential extraction procedure to determine their concentrations of rare earth elements (REEs) and the chemical forms in which those elements were present. The normalized ratios La/Gd and La/Yb showed that LREE contents were not significantly higher than the middle REEs or HREE contents. A negative Ce anomaly and positive Eu were observed in sand and silty sand sediments, whereas no significant Ce or Eu anomaly was found in clayey silt sediments. Residual fraction of REEs accounted for the majority of their total concentrations. Middle REEs were more easily leached than other REEs, especially in clayey silt sediment. REEs contents in the surface sediment from the intertidal Bohai Sea were consistent with data from the upper continental crust and China shallow sea sediments, indicating that they were generally unaffected by heavily anthropogenic effects from adjacent areas. Copyright © 2014 Elsevier Inc. All rights reserved.
Interactions between gastro-oesophageal reflux disease and eosinophilic oesophagitis.
Molina-Infante, Javier; van Rhijn, Bram D
2015-10-01
Gastro-oesophageal reflux disease (GORD) is the most common oesophageal disorder, whereas eosinophilic oesophagitis (EoE) is an emerging disease unresponsive to PPI therapy. Updated guidelines in 2011 described proton pump inhibitor-responsive esophageal eosinophilia (PPI-REE), a novel phenotype in EoE patients who were responsive to PPIs. This article aims to update the complex interplay between GORD, EoE and PPIs. Oesophageal mucosal integrity is diffusely impaired in EoE and PPI-REE patients. PPI-REE might occur with either normal or pathological pH monitoring. The genetic hallmark of EoE is overlapped in PPI-REE, but not in GORD. PPIs can partially restore epithelial integrity and reverse allergic inflammation gene expression in PPI-REE. Acid hypersensitivity in EoE patients may explain symptomatic but not histological response on PPIs. Unsolved issues with PPI-REE are whether oesophageal barrier impairment is the cause or the effect of oesophageal eosinophilia and whether PPIs primarily targets barrier integrity or oesophageal inflammation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Provenance and paleogeography of the Devonian Durazno Group, southern Parana Basin in Uruguay
NASA Astrophysics Data System (ADS)
Uriz, N. J.; Cingolani, C. A.; Basei, M. A. S.; Blanco, G.; Abre, P.; Portillo, N. S.; Siccardi, A.
2016-03-01
A succession of Devonian cover rocks occurs in outcrop and in the subsurface of central-northern Uruguay where they were deposited in an intracratonic basin. This Durazno Group comprises three distinct stratigraphic units, namely the Cerrezuelo, Cordobés and La Paloma formations. The Durazno Group does not exceed 300 m of average thickness and preserves a transgressive-regressive cycle within a shallow-marine siliciclastic shelf platform, and is characterized by an assemblage of invertebrate fossils of Malvinokaffric affinity especially within the Lower Devonian Cordobés shales. The sedimentary provenance of the Durazno Group was determined using petrography, geochemistry, and morphological studies of detrital zircons as well as their U-Pb ages. Sandstone petrography of Cerrezuelo and La Paloma sequences shows that they have a dominantly quartz-feldspathic composition with a minor contribution of other minerals. Whole-rock geochemical data indicate that alteration was strong in each of the three formations studied; chondritic-normalized REE patterns essentially parallel to PAAS, the presence of a negative Eu-anomaly, and Th/Sc and La/Hf ratios point to an average source composition similar to UCC or slightly more felsic. Within the Cerrezuelo Formation, recycling of older volcano-metasedimentary sources is interpreted from Zr/Sc ratios and high Hf, Zr, and REE concentrations. U-Pb detrital zircon age populations of the Cerrezuelo and La Paloma formations indicate that the principal source terranes are of Neoproterozoic age, but include also minor populations derived from Mesoproterozoic and Archean-Paleoproterozoic rocks. A provenance from the Cuchilla Dionisio-Dom Feliciano, Nico Pérez and Piedra Alta terranes of Uruguay and southern Brazil is likely. This study establishes an intracratonic extensional tectonic setting during Durazno time. Considering provenance age sources, regional paleocurrent distributions and the established orogenic history recorded in SW Gondwana, we suggest that the basin fill was derived from paleohighs located in what is currently SE Uruguay.
NASA Astrophysics Data System (ADS)
Çelik, Ömer Faruk; Marzoli, Andrea; Marschik, Robert; Chiaradia, Massimo; Mathur, Ryan
2018-02-01
Chromite, ultramafic and mafic rocks from Eldivan, Yapraklı, Ayli Dağ, Küre, Elekdağ and Kızılırmak in northern Turkey have been studied to determine their mineral and whole-rock geochemical, and Re-Os isotope geochemical characteristics. Most of the studied peridotites display depleted but commonly V-shaped chondrite-normalized rare-earth element (REE) patterns while some peridotites as well as pyroxenites from all areas exhibit light REE depleted patterns. Olivine (forsterite 82 to 92 mol%) and spinel (chromium number 13 to 63) in the studied peridotites exhibit a wide range of compositions. Compositions of spinels suggest that peridotites from Eldivan, Ayli Dağ and Küre experienced relatively large degrees of partial melting ( 15 and 19 wt%), whereas those of the Kızılırmak area most likely reflect lower melting degrees ( 4-6 wt%). Whole-rock and mineral chemical data indicate that the ultramafic rocks are similar to abyssal and supra-subduction zone peridotites. The ultramafic rocks of the investigated areas exhibit a wide range of 187Re/188Os (0.12 to 6.6) and measured 187Os/188Os (0.122-1.14), while the basaltic rocks from Küre, Eldivan and Kızılırmak areas have high 187Re/188Os (128-562) and measured 187Os/188Os (0.724-1.943). On the other hand, chromite from Eldivan, Elekdağ and Kızılırmak show high Os contents (21.81-44.04 ppb) and low 187Re/188Os (0.015-0.818) and 187Os/188Os (0.122-0.133). Re-Os model ages (TChur) for all analyzed samples yielded scattered ages ranging from Jurassic to Proterozoic. Overall, geochemical data are interpreted to reflect different degrees of partial melting, melt - rock interactions and metasomatic effects that produced a heterogeneous mantle in a supra-subduction setting.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fleet, M.E.; Pan, Yuanming
The partitioning of rare earth elements (REEs) between fluorapatite (FAp) and H{sub 2}O- bearing phosphate-fluoride melts has been studied at about 700 and 800{degrees}C and 0.10-0.15 GPa. REE uptake patterns, i.e., plots of D(REE:FAp/melt), are convex upwards and peak near Nd for single-REE substituted FAp at minor (0.03-0.25 wt% REE{sub 2}O{sub 3}) abundances, and binary (LREE + HREE)-substituted FAp, and hexa-REE-substituted FAp at minor to major (0.25-7.8 wt% REE{sub 2}O{sub 3}) abundances. Partition coefficients for minor abundances of REE and depolymerized phosphate melts are about 5, 8, and 1 for La, Nd, and Lu, respectively and broadly comparable to thosemore » for early fluorapatite in the fractionation of melts of basaltic composition. The Ca2 site exerts marked control on the selectivity of apatite for REE because it preferentially incorporates LREE and its effective size varies with substitution of the A-site volatile anion component (F, Cl, OH). Using simple crystal-chemical arguments, melt(or fluid)-normalized REE patterns are predicted to peak near Nd for fluorapatite and be more LREE-enriched for chlorapatite. These predictions are consistent with data from natural rocks and laboratory experiments. The wide variation in D(REE:apatite/melt) in nature (from <1 for whitlockite-bearing lunar rocks to about 100 for evolved alkalic rocks) is attributed largely to the influence of the volatile components. 49 refs., 8 figs., 3 tabs.« less
Borrego, J; López-González, N; Carro, B; Lozano-Soria, O
2004-12-01
Sc, Y, Th, Cu and rare earth elements (REE) concentrations have been analyzed in 14 samples of surface sediments and in two gravity cores by means of ICP-MS. Mean concentrations of Sc, Y and Th in surface sediments are 6.23, 4.76 and 16.30 ppm, respectively, lower than those present in the Upper Continental Crust (UCC). Cu concentration in these sediments is very high, 1466 ppm, and is caused by inputs from the Odiel and Tinto rivers, affected by acid mine drainage. SigmaREE mean concentration is 106.8 ppm, lower than that observed in other rivers and estuaries. In the cores, Sc, Y and Th concentrations show a significant increase in the intermediate levels, between 10 and 40 cm depth. The same pattern exists with Cu, where concentrations of 4440 ppm can be reached. Vertical evolution patterns for Sc, Y, Cu and heavy REE (HREE) are similar, and contrary to those shown by Th, light REE (LREE) and middle REE (MREE). Plots of North American Shale Composite (NASC)-normalized REE data of surface sediments show a slight depletion in REE concentrations. Most samples present with middle REE enrichment relative to light REE and heavy REE. Conversely, samples of the intermediate levels of the cores show significant enrichment of REE relative to NASC and high values in the (La/Gd)NASC and (La/Yb)NASC ratios. These anomalies in the fractionation patterns caused by enrichments in LREE and MREE concentrations is related to the presence of high concentrations of Th. They were generated by effluents from fertilizer factories between 1968 and 1998 which used phosphorite as source material.
High contents of rare earth elements (REEs) in stream waters of a Cu-Pb-Zn mining area.
Protano, G; Riccobono, F
2002-01-01
Stream waters draining an old mining area present very high rare earth element (REE) contents, reaching 928 microg/l as the maximum total value (sigmaREE). The middle rare earth elements (MREEs) are usually enriched with respect to both the light (LREEs) and heavy (HREEs) elements of this group, producing a characteristic "roof-shaped" pattern of the shale Post-Archean Australian Shales-normalized concentrations. At the Fenice Capanne Mine (FCM), the most important base metal mine of the study area, the REE source coincides with the mine tailings, mostly the oldest ones composed of iron-rich materials. The geochemical history of the REEs released into Noni stream from wastes in the FCM area is strictly determined by the pH, which controls the REE speciation and in-stream processes. The formation of Al-rich and mainly Fe-rich flocs effectively scavenges the REEs, which are readily and drastically removed from the solution when the pH approaches neutrality. Leaching experiments performed on flocs and waste materials demonstrate that Fe-oxides/oxyhydroxides play a key role in the release of lanthanide elements into stream waters. The origin of the "roof-shaped" REE distribution pattern as well as the peculiar geochemical behavior of some lanthanide elements in the aqueous system are discussed.
NASA Astrophysics Data System (ADS)
Cavosie, Aaron J.; Valley, John W.; Wilde, Simon A.; E. I. M. F.
2006-11-01
The origins of >3900 Ma detrital zircons from Western Australia are controversial, in part due to their complexity and long geologic histories. Conflicting interpretations for the genesis of these zircons propose magmatic, hydrothermal, or metamorphic origins. To test the hypothesis that these zircons preserve magmatic compositions, trace elements [rare earth elements (REE), Y, P, Th, U] were analyzed by ion microprobe from a suite of >3900 Ma zircons from Jack Hills, Western Australia, and include some of the oldest detrital zircons known (4400-4300 Ma). The same ˜20 μm domains previously characterized for U/Pb age, oxygen isotope composition (δ 18O), and cathodoluminescence (CL) zoning were specifically targeted for analysis. The zircons are classified into two types based on the light-REE (LREE) composition of the domain analyzed. Zircons with Type 1 domains form the largest group (37 of 42), consisting of grains that preserve evolved REE compositions typical of igneous zircon from crustal rocks. Grains with Type 1 domains display a wide range of CL zoning patterns, yield nearly concordant U/Pb ages from 4400 to 3900 Ma, and preserve a narrow range of δ 18O values from 4.7‰ to 7.3‰ that overlap or are slightly elevated relative to mantle oxygen isotope composition. Type 1 domains are interpreted to preserve magmatic compositions. Type 2 domains occur in six zircons that contain spots with enriched light-REE (LREE) compositions, here defined as having chondrite normalized values of La N > 1 and Pr N > 10. A subset of analyses in Type 2 domains appear to result from incorporation of sub-surface mineral inclusions in the analysis volume, as evidenced by positively correlated secondary ion beam intensities for LREE, P, and Y, which are anti-correlated to Si, although not all Type 2 analyses show these features. The LREE enrichment also occurs in areas with discordant U/Pb ages and/or high Th/U ratios, and is apparently associated with past or present radiation damage. The enrichment is not attributed to hydrothermal alteration, however, as oxygen isotope ratios in Type 2 domains overlap with magmatic values of Type 1 domains, and do not appear re-set as might be expected from dissolution or ion-exchange processes operating at variable temperatures. Thus, REE compositions in Type 2 domains where mineral inclusions are not suspected are best interpreted to result from localized enrichment of LREE in areas with past or present radiation damage, and with a very low fluid/rock ratio. Correlated in situ analyses allow magmatic compositions in these complex zircons to be distinguished from the effects of secondary processes. These results are additional evidence for preservation of magmatic compositions in Jack Hills zircons, and demonstrate the benefits of detailed imaging in studies of complicated detrital zircons of unknown origin. The data reported here support previous interpretations that the majority of >3900 Ma zircons from the Jack Hills have an origin in evolved granitic melts, and are evidence for the existence of continental crust very early in Earth's history.
NASA Technical Reports Server (NTRS)
Rubin, Alan E.; Trigo-Rodriguez, Josep M.; Kunihiro, Takuya; Kallemeyn, Gregory W.; Wasson, John T.
2006-01-01
Chondritic clast PV1 from the Plainview H-chondrite regolith breccia is a subrounded, 5-mm diameter unequilibrated chondritic fragment that contains 13 wt% C occurring mainly within irregularly shaped 30-400-micron-size opaque patches. The clast formed from H3 chondrite material as indicated by the mean apparent chondrule diameter (310 micron vs. approximately 300 micron in H3 chondrites), the mean Mg-normalized refractory lithophile abundance ratio (1.00 +/- 0.09 XH), the previously determined 0-isotopic composition (Delta O-17 = 0.66% vs. 0.68 +/- 0.04%0 in H3 chondrites and 0.73 +/- 0.09% in H4-6 chondrites), the heterogeneous olivine compositions in grain cores (with a minimum range of Fal-19), and the presence of glass in some chondrules. Although the clast lacks the fine-grained, ferroan silicate matrix material present in type 3 ordinary chondrites, PV1 contains objects that appear to be recrystallized clumps of matrix material. Similarly, the apparent dearth of radial pyroxene and cryptocrystalline chondrules in PV1 is accounted for by the presence of some recrystallized fragments of these chondrule textural types. All of the chondrules in PV1 are interfused indicating that temperatures must have briefly reached approximately 1100C (the approximate solidus temperature of H-chondrite silicate). The most likely source of this heating was by an impact. Some metal was lost during impact heating as indicated by the moderately low abundance of metallic Fe-Ni in PV1 (approximately 14 wt%) compared to that in mean H chondrites (approximately 18 wt%). The carbon enrichment of the clast may have resulted from a second impact event, one involving a cometary projectile, possibly a Jupiter-family comet. As the clast cooled, it experienced hydrothermal alteration at low water/rock ratios as evidenced by the thick rims of ferroan olivine around low-FeO olivine cores. The C-rich chondritic clast was later incorporated into the H-chondrite parent-body regolith and extensively fractured and faulted.
Rare earth elements mobility processes in an AMD-affected estuary: Huelva Estuary (SW Spain).
Lecomte, K L; Sarmiento, A M; Borrego, J; Nieto, J M
2017-08-15
Huelva Estuary is a transition zone where REE-rich acidic waters interact with saline-alkaline seawater. This mixing process influences the geochemical and mineralogical characteristics of particulate and dissolved fractions. The Tinto River has >11,000μgL -1 dissolved REE (pH=1.66), whereas seawater only reaches 8.75·10 -2 μgL -1 dissolved REE (pH=7.87). REE-normalized patterns in "pH<6 solutions" are parallel and show similarities, diminishing their concentration as pH increases. Sequential extraction performed on the generated precipitates of mixed solutions indicates that most REE are associated to the residual phase. In a second order, REE are associated with soluble salts at pH3 and 3.5 whereas in sediments generated at pH4 and 5, they are distributed in salts (1° extraction), poorly crystallized Fe-bearing minerals (schwertmannite, 3° extraction) and well crystallized Fe-bearing minerals (goethite - hematite, 4° extraction). Finally, precipitated REE are highest at pH6 newly formed minerals with a release to solution in higher pH. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mn-Cr isotopic systematics of Chainpur chondrules and bulk ordinary chondrites
NASA Technical Reports Server (NTRS)
Nyquist, L.; Lindstrom, D.; Wiesmann, H.; Bansal, B.; Shih, C.-Y.; Mittlefehldt, D.; Martinez, R.; Wentworth, S.
1994-01-01
We report on ongoing study of the Mn-Cr systematics of individual Chainpur (LL3.4) chondrules and compare the results to those for bulk ordinary chondrites. Twenty-eight chondrules were surveyed for abundances of Mn, Cr, Na, Fe, Sc, Hf, Ir, and Zn by INAA. Twelve were chosen for SEM/EDX and high-precision Cr-isotopic studies on the basis of LL-chondrite-normalized Mn(LL), Sc(LL), (Mn/Fe)(LL), and (Sc/Fe)(LL) as well as their Mn/Cr ratios. Classification into textural types follows from SEM/EDX examination of interior surfaces.
Nature of the impactor at the K/T boundary: clues from Os, W and Cr isotopes.
NASA Astrophysics Data System (ADS)
Quitté, G.; Robin, E.; Capmas, F.; Levasseur, S.; Rocchia, R.; Birck, J. L.; Allègre, C. J.
2003-04-01
We measured the isotope composition of Os, W and Cr in K/T boundary sediments of three marine sites (Stevns Klint, Caravaca and Bidart) to determine the nature of the bolid that impacted the Earth 65 Myrs ago. We also analysed Ni-rich cosmic spinels, because they are thought to keep the signature of the impactor. The low REE content in spinels precludes indeed the hypothesis of a mixing with more than 10% of terrestrial material. The Os and W enrichment at the K/T boundary could be explained by a scavenging of chalcophile elements at the time of sulfide precipitation. The 187Os/186Os ratio of the K/T sediments is higher than the ratio of any kind of meteorites. On top of a possible mixing with surrounding sediments, we suggest that the boundary contained more Re in the past (lost since that time by alteration and oxidation) and that the Os isotope ratio is in fact disturbed. On each of the three sites, the boundary itself does not present any tungsten isotopic anomaly. The most likely interpretation is that the extraterrestrial material is diluted enough into the sediments so that the isotopic signature has been erased. Spinels show a small deficit of (0.34±0.9) ɛ in 182W. The large error bar precludes any clear conclusion whether or not a meteoritic signature is really present. If the spinels really carry an extraterrestrial signature as expected, their W composition is in favour of an ordinary chondrite. All K/T samples (sediments and spinels) are apparently depleted in 53Cr by about 0.5 ɛ (after renormalization of 54Cr to the terrestrial value) whereas ordinary chondrites display an excess of about 0.5 ɛ. Among meteorites, only carbonaceous chondrites present a negative value for the 53Cr/52Cr ratio relative to the terrestrial value. As more than 90% of the Cr present in spinels is of extraterrestrial origin, the Cr isotopes unambiguously show that the K/T impactor was a carbonaceous chondrite. These isotopic results also confirm the extraterrestrial origin of spinels. The W isotope composition of the spinels does not fully agree with the conclusion of a carbonaceous chondrite, but a refined measurement is required to discuss this discrepancy in more details.
NASA Astrophysics Data System (ADS)
González-Álvarez, Ignacio; Kerrich, Robert
2011-04-01
The Belt-Purcell Supergroup comprises dolomite-rich stratigraphic units in a dominantly siliciclastic succession, where sedimentation spans 1400-1470 Ma. Dolomitic units are variable mixtures of co-sedimented argillite and primary carbonate post-depositionally converted to secondary dolomite. Based on rare earth element (REE) relationships three distinct REE patterns are identified in the dolomite-rich units: Type 1 (T1d; d = dolomitic sample) with REE patterns parallel to post-Archean Upper Continental Crust (PA-UCC), albeit at lower absolute abundances due to dilution by carbonate content; Type 2 (T2d) with Heavy REE (HREE) enrichment but Light REE (LREE) depletion relative to T1d; and Type 3 (T3d) with enrichment in LREE and HREE relative to T1d, but erratic Middle REE (MREE) patterns. There is a progressive increase of ΣREE from T1d through T2d to T3d, whereas for ΣLREE/ΣHREE T2d < T1d < T3d. T1d-T2d and T3d represent three different "snapshots" of a continuous process. In terms of timing, dolomitization of calcite primary sediment in all samples likely took place broadly during burial diagenesis, as inferred for most Proterozoic dolomites. T1d is easily explained by provenance: however, T2d and T3d cannot be related to provenance, weathering or sedimentary sorting processes to explain higher concentrations of HREE referenced to PA-UCC and consequently developed in the sediment from a T1d precursor. The same three REE signatures have been described in previous studies in counterpart siliciclastic counterparts throughout the Belt-Purcell Supergroup at three different locations. Mobility of normally stable REE is accompanied by mobility of normally isochemical high field strength elements (HFSE) in T2d and T3d to give REE/REE, HFSE/HFSE, REE/HFSE and Y/HREE fractionations. No specific REE-HFSE signatures are apparent in the carbonate-rich units as compared to their non-dolomitic siliciclastic counterparts. This unusual mobility of REE and HFSE reflected in T2d and T3d is attributed to alkaline oxidizing post-depositional brines. Salinity was derived from seawater-sediment reactions, dissolution of evaporite minerals, and the smectite-illite transformation, whereas alkaline oxidizing conditions were promoted by groundwater interaction with mafic units in the basin, CO 2 introduced into the system during episodic rifting with mantle degassing, and interaction of syn-sedimentary mafic intrusions with carbonate units at early stages of BPS deposition. Intermittent brine activity, inducing T2d and T3d patterns, spanned >1 Ga as recorded by secondary monazite grains with age distributions that correspond to large scale tectono-thermal events in Laurentia. Post-depositional processes and redistribution of carbonate can have an impact on transitional stratigraphic contacts between dolomitic and siliciclastic units which may have been incorrectly described as primary due to sedimentary environment changes.
NASA Astrophysics Data System (ADS)
McCoy-West, A.
2017-12-01
Radiogenic neodymium isotopes have been widely used in studies of planetary accretion to constrain the timescales of early planetary differention [1]. Whereas stable isotope varitaions potentially provide information on the the processes that occur during planet formation. Experimental work suggests that the Earth's core contains a significant proportion of sulfide [2], and recent experimental work shows that under reducing conditions sulfide can incorporate substantial quantities of refractory lithophile elements [including Nd; 3]. If planetary embroyos also contain sulfide-rich cores, Nd stable isotopes have the potential to trace this sulfide segregation event in highly reduced environments, because there is a significant contrast in bonding environment between sulfide and silicate, where heavy isotopes should be preferentially incorporated into high force-constant bonds involving REE3+ (i.e. the silicate mantle). Here we present 146Nd/144Nd data, obtained using a double spike TIMS technique, for a range of planetary bodies formed at variable oxidation states including samples from the Moon, Mars, the asteriod 4Vesta and the Angrite and Aubrite parent bodies. Analyses of chondritic meteorites and terrestrial igneous rocks indicate that the Earth has a Nd stable isotope composition that is indistinguishable from that of chondrites [4]. Eucrites and martian meteorites also have compositons within error of the chondritic average. Significantly more variabilty is observed in the low concentration lunar samples and diogienite meteorites with Δ146Nd = 0.16‰. Preliminary results suggest that the Nd stable isotope composition of oxidised planetary bodies are homogeneous and modifications are the result of subordinate magmatic processes. [1] Boyet & Carlson, Science 309, 576 (2005) [2] Labidi et al. Nature 501, 208 (2013); [3] Wohlers &Wood, Nature 520, 337 (2015); [4] McCoy-West et al. Goldschmidt Ab. 429 (2017).
NASA Technical Reports Server (NTRS)
Mishra, Ritesh Kumar; Marhas, Kuljeet Kaur; Simon, Justin I.; Ross, Daniel Kent
2015-01-01
Ordinary chondrites (OCs) represent the most abundant extraterrestrial materials and also record the widest range of alteration of primary, pristine minerals of early Solar system material available for study. Relatively few investigations, however, address: (1) the role of fluid alteration, and (2) the relationship between thermal metamorphism and metasomatism in OCs, issues that have been extensively studied in many other meteorite groups e.g., CV, CO, CR, and enstatite chondrites. Detailed elemental abundances profiles across individual chondrules, and mineralogical studies of Lewis Hills (LEW) 86018 (L3.1), an unequilibrated ordinary chondrite (UOC) of low petrographic type of 3.1 returned from Antarctica, provide evidence of extensive alteration of primary minerals. Some chondrules have Na(-), K(-), rich rims surrounded by nepheline, albite, and sodalite-like Na(-), Cl(-), Al-rich secondary minerals in the near vicinity within the matrices. Although, limited evidences of low temperature (approximately 250 C) fluid-assisted alteration of primary minerals to phyllosilicates, ferroanolivine, magnetite, and scapolite have been reported in the lowest grades (less than 3.2) Semarkona (LL3.00) and Bishunpur (LL3.10), alkali-rich secondary mineralization has previously only been seen in higher grade greater than 3.4 UOCs. This preliminary result suggests highly localized metamorphism in UOCs and widens the range of alteration in UOCs and complicates classification of petrographic type and extent of thermal metamorphism or metasomatism. The work in progress will document the micro-textures, geochemistry (Ba, Ca, REE), and isotopic composition (oxygen, Al(-)- 26 Mg-26) of mineral phases in chondrules and adjoining objects to help us understand the formation scenario and delineate possible modes of metamorphism in UOCs.
NASA Astrophysics Data System (ADS)
Denniston, Rhawn F.; Shearer, Charles K.; Layne, Graham D.; Vaniman, David T.
1997-05-01
Fracture-lining calcite samples from Yucca Mountain, Nevada, obtained as part of the extensive vertical sampling in studies of this site as a potential high-level waste repository, have been characterized according to microbeam-scale (25-30 μm) trace and minor element chemistry, and cathodoluminescent zonation patterns. As bulk chemical analyses are limited in spatial resolution and are subject to contamination by intergrown phases, a technique for analysis by secondary ion mass spectrometry (SIMS) of minor (Mn, Fe, Sr) and trace (REE) elements in calcite was developed and applied to eighteen calcite samples from four boreholes and one trench. SIMS analyses of REE in calcite and dolomite have been shown to be quantitative to abundances < 1 × chondrite. Although the low secondary ion yields associated with carbonates forced higher counting times than is necessary in most silicates, Mn, Fe, Sr, and REE analyses were obtained with sub-ppm detection limits and 2-15% analytical precision. Bulk chemical signatures noted by Vaniman (1994) allowed correlation of minor and trace element signatures in Yucca Mountain calcite with location of calcite precipitation (saturated vs. unsaturated zone). For example, upper unsaturated zone calcite exhibits pronounced negative Ce and Eu anomalies not observed in calcite collected below in the deep unsaturated zone. These chemical distinctions served as fingerprints which were applied to growth zones in order to examine temporal changes in calcite crystallization histories; analyses of such fine-scale zonal variations are unattainable using bulk analytical techniques. In addition, LREE (particularly Ce) scavenging of calcite-precipitating solutions by manganese oxide phases is discussed as the mechanism for Ce-depletion in unsaturated zone calcite.
Gougeon, R; Lamarche, M; Yale, J-F; Venuta, T
2002-12-01
Predictive equations have been reported to overestimate resting energy expenditure (REE) for obese persons. The presence of hyperglycemia results in elevated REE in obese persons with type 2 diabetes, and its effect on the validity of these equations is unknown. We tested whether (1) indicators of diabetes control were independent associates of REE in type 2 diabetes and (2) their inclusion would improve predictive equations. A cross-sectional study of 65 (25 men, 40 women) obese type 2 diabetic subjects. Variables measured were: REE by ventilated-hood indirect calorimetry, body composition by bioimpedance analysis, body circumferences, fasting plasma glucose (FPG) and hemoglobin A(1c). Data were analyzed using stepwise multiple linear regression. REE, corrected for weight, fat-free mass, age and gender, was significantly greater with FPG>10 mmol/l (P=0.017) and correlated with FPG (P=0.013) and hemoglobin A(1c) as percentage upper limit of normal (P=0.02). Weight was the main determinant of REE. Together with hip circumference and FPG, it explained 81% of the variation. FPG improved the predictability of the equation by >3%. With poor glycemic control, it can represent an increase in REE of up to 8%. Our data indicate that in a population of obese subjects with type 2 diabetes mellitus, REE is better predicted when fasting plasma glucose is included as a variable.
NASA Astrophysics Data System (ADS)
Day, Warren C.
1990-08-01
The Rainy Lake area in northern Minnesota and southwestern, Ontario is a Late Archean (2.7 Ga) granite-greenstone belt within the Wabigoon subprovince of the Canadian Shield. In Minnesota the rocks include mafic and felsic volcanic rocks, volcaniclastic, chemical sedimentary rocks, and graywacke that are intrucded by coeval gabbro, tonalite, and granodiorite. New data presented here focus on the geochemistry and petrology of the Minnesota part of the Rainy Lake area. Igneous rocks in the area are bimodal. The mafic rocks are made up of three distinct suites: (1) low-TiO2 tholeiite and gabbro that have slightly evolved Mg-numbers (63 49) and relatively flat rare-earth element (REE) patterns that range from 20 8 x chondrites (Ce/YbN=0.8 1.5); (2) high-TiO2 tholeiite with evolved Mg-numbers (46 29) and high total REE abundances that range from 70 40 x chondrites (Ce/YbN=1.8 3.3), and (3) calc-alkaline basaltic andesite and geochemically similar monzodiorite and lamprophyre with primitive Mg-numbers (79 63), enriched light rare-earth elements (LREE) and depleted heavy rare-earth elements (HREE). These three suites are not related by partial melting of a similar source or by fractional crystallization of a common parental magma; they resulted from melting of heterogeneous Archean mantle. The felsic rocks are made up of two distinct suites: (1)low-Al2O3 tholeiitic rhyolite, and (2) high-Al2O3 calc-alkaline dacite and rhyolite and consanguineous tonalite. The tholeiitic felsic rocks are high in Y, Zr, Nb, and total REE that are unfractionated and have pronounced negative Eu anomalies. The calcalkaline felsic rocks are depleted in Y, Zr, and Nb, and the REE that are highly fractionated with high LREE and depleted HREE, and display moderate negative Eu anomalies. Both suites of felsic rocks were generated by partial melting of crustal material. The most reasonable modern analog for the paleotectonic setting is an immature island arc. The bimodal volcanic rocks are intercalated with sedimentary rocks and have been intruded by pre- and syntectonic granitoid rocks. However, the geochemistry of the mafic rocks does not correlate fully with that of mafic rocks in modern are evvironments. The low-TiO2 tholeiite is similar to both N-type mid-ocean-ridge basalt (MORB) and low-K tholeiite from immature marginal basins. The calc-alkaline basaltic andesite is like that of low-K calc-alkaline mafic volcanic rocks from oceanic volcanic arcs; however, the high-TiO2 tholeiite is most similar to modern E-type MORB, which occurs in oceanic rifts. The conundrum may be explained by: (1) rifting of a pre-existing immature arc system to produce the bimodal volcanic rocks and high-TiO2 tholeiite; (2) variable enrichment of a previously depleted Archean mantle, to produce both the low- and high-TiO2 tholeiite and the calc-alkaline basaltic andesite, and/or (3) enrichment of the parental rocks of the high-TiO2 tholeiite by crustal contamination.
Day, W.C.
1990-01-01
The Rainy Lake area in northern Minnesota and southwestern, Ontario is a Late Archean (2.7 Ga) granite-greenstone belt within the Wabigoon subprovince of the Canadian Shield. In Minnesota the rocks include mafic and felsic volcanic rocks, volcaniclastic, chemical sedimentary rocks, and graywacke that are intrucded by coeval gabbro, tonalite, and granodiorite. New data presented here focus on the geochemistry and petrology of the Minnesota part of the Rainy Lake area. Igneous rocks in the area are bimodal. The mafic rocks are made up of three distinct suites: (1) low-TiO2 tholeiite and gabbro that have slightly evolved Mg-numbers (63-49) and relatively flat rare-earth element (REE) patterns that range from 20-8 x chondrites (Ce/YbN=0.8-1.5); (2) high-TiO2 tholeiite with evolved Mg-numbers (46-29) and high total REE abundances that range from 70-40 x chondrites (Ce/YbN=1.8-3.3), and (3) calc-alkaline basaltic andesite and geochemically similar monzodiorite and lamprophyre with primitive Mg-numbers (79-63), enriched light rare-earth elements (LREE) and depleted heavy rare-earth elements (HREE). These three suites are not related by partial melting of a similar source or by fractional crystallization of a common parental magma; they resulted from melting of heterogeneous Archean mantle. The felsic rocks are made up of two distinct suites: (1)low-Al2O3 tholeiitic rhyolite, and (2) high-Al2O3 calc-alkaline dacite and rhyolite and consanguineous tonalite. The tholeiitic felsic rocks are high in Y, Zr, Nb, and total REE that are unfractionated and have pronounced negative Eu anomalies. The calcalkaline felsic rocks are depleted in Y, Zr, and Nb, and the REE that are highly fractionated with high LREE and depleted HREE, and display moderate negative Eu anomalies. Both suites of felsic rocks were generated by partial melting of crustal material. The most reasonable modern analog for the paleotectonic setting is an immature island arc. The bimodal volcanic rocks are intercalated with sedimentary rocks and have been intruded by pre- and syntectonic granitoid rocks. However, the geochemistry of the mafic rocks does not correlate fully with that of mafic rocks in modern are evvironments. The low-TiO2 tholeiite is similar to both N-type mid-ocean-ridge basalt (MORB) and low-K tholeiite from immature marginal basins. The calc-alkaline basaltic andesite is like that of low-K calc-alkaline mafic volcanic rocks from oceanic volcanic arcs; however, the high-TiO2 tholeiite is most similar to modern E-type MORB, which occurs in oceanic rifts. The conundrum may be explained by: (1) rifting of a pre-existing immature arc system to produce the bimodal volcanic rocks and high-TiO2 tholeiite; (2) variable enrichment of a previously depleted Archean mantle, to produce both the low- and high-TiO2 tholeiite and the calc-alkaline basaltic andesite, and/or (3) enrichment of the parental rocks of the high-TiO2 tholeiite by crustal contamination. ?? 1990 Springer-Verlag.
NASA Technical Reports Server (NTRS)
Fulton, C. R.; Rhodes, J. M.
1984-01-01
Thirty-eight ordinary chondrites (17 H, 20 L, and 1 LL) have been analyzed for major and selected trace elements. These data indicate that the lithophile elements Mg, Ca, Al, Cr, and V normalized to Si are in higher abundance in the H than in the L chondrites. The siderophile elements Ni, Co, and Fe show very good correlation within, as well as between, the two major ordinary chondrite groups. Twenty-four of the analyses are of Antarctic finds, while ten are samples of falls. Comparing the Antarctic data with the fall data reveals no evidence that any of the elements studied here have been mobilized by terrestrial weathering processes. Within the H and L chondrite groups there is little chemical variation, indicating that the source of these samples is remarkably homogeneous. Equilibrium condensate fractionation from a nebula of CI composition can result in the observed ordinary chondrite compositions. The fractionation of metal at about 1440 K (and 0.001 atm) into high and low iron groups, followed by a gas-solid fractionation at about 1380 K with the H group losing more solids than the L, will produce the observed H and L compositions and intragroup trends.
LEW 88180, LEW 87119, and ALH 85119: New EH6, EL7, and EL4 Enstatite Chondrites
NASA Astrophysics Data System (ADS)
Zhang, Y.; Benoit, P. H.; Sears, D. W. G.
1993-07-01
The EH and EL chondrites formed in a uniquely reducing environment, containing low-Fe pyroxene, abundant metal, and a number of unusual sulphides and other minerals [1]. An important aspect of their history is that while the EL chondrites consist predominantly of metamorphosed meteorites, the EH consist primarily of little-metamorphosed meteorites (e.g., [2]), and yet EL chondrites have lower equilibrium temperatures than EH chondrite [3,4]. To help understand this observation and its implication for the history of the classes, we have been searching for new enstatite chondrites, looking especially for meteorites of previously unknown chemical-petrologic class. Using our normal INAA methods [5] and sample splits of 100-200 mg, the bulk composition of nine Antarctic enstatite chondrites and one fall were determined. The data were used to assign the meteorites to chemical classes, the Ni/Ir vs. Al/V plot (Fig. 1) being especially useful since it uses the refractory element difference between EH and EL chondrites and is insensitive to metal-silicate heterogeneity. The well-analyzed Qingzhen was included to check our method. ALH84170, ALH84206, and EET87746, which Mason described as E3, E4, and E4 were all found to be EH chondrites [6]. Our data for the three paired EL3 chondrites were discussed earlier (MAC88136, 88180, and 88184) [7,8]. LEW88180, LEW87119, and ALH85119, which Mason described as type E6, E6, and E4 respectively [6], are EH, EL, and EL; thus LEW88180 and ALH85119 appear to be the first EH6 and EL4 chondrites. The compositions of kamacite, phosphide, and niningerite-alabandite (Fig. 2) for ALH84170, ALH84206, EET87746, LEW88180, and ALH85119 are consistent with Mason's petrologic type assignments [6]. The mineral composition of LEW88180 (2.7% Si and 9.4% Ni in the kamacite, 7.8% Ni in the phosphide, and 60% FeS in the niningerite) confirms our classification of this meteorite as EH6. ALH85119 contains kamacite with 0.5% Si and 7% Ni, phosphide with 46% Ni and alabandite with 22% FeS, confirming its classification as the first EL4 chondrite. The LEW87119 meteorite has kamacite with 1.5% Si and 9.1% Ni, troilite with 2.9% Cr and 0.64% Ti, and alabandite with the highest FeS (49%) recorded for EL chondrites. Since the meteorite does not appear to be shocked or impact melted (it has medium-grained texture with the slightest indication of chondrules and normal metal and sulfide distribution) and the phase chemistry clearly indicates a higher equilibration temperature than the EL6 chondrites, for the time being we propose to call LEW87119 an EL7 chondrite. With the discovery in the last decade or so of a number of low-petrologic-type EH chondrites and the present discovery of EH6 and EL7 chondrites, the EH class and the EL class now appear to be comparable in their range of mineral compositions and thereby equilibration temperatures. The highest equilibration temperature for the EL chondrites is now ~700 degrees C, which is close to that of EH6 chondrite (Fig. 2). Equilibration temperatures for the EL6 chondrites are similar to those of EH4 chondrites. It may be that EH and EL classes have more similar thermal histories than previously supposed and that it is purely the textures of the two classes that are widely different and in need of further research. References: [1] Keil K. (1968) JGR, 73, 6945-6976. [2] Sears D. W. G. and Weeks K. S. (1984) Nature, 308, 257-259. [3] Skinner B. J. and Luce F. D. (1971) Amer. Min., 56, 1269-1296. [4] Zhang Y. et al. (1992) Meteoritics, 27, 310-311. [5] Weeks K. S.and Sears D. W. G. (1985) GCA, 49, 1525-1536. [6] Mason in Antarctic Meteorite Newsletter (1986, 1987, 1989, and 1990) 9(3), 10(2), 12(1,3), and 13(2,3). [7] Lin Y. T. et al. (1991) LPSC XXII, 811-812. [8] Chang Y. et al. (1992) LPSC XXIII, 217-218.
NASA Astrophysics Data System (ADS)
Tang, Jianwu; Johannesson, Karen H.
2010-12-01
The ability of organic matter as well as carbonate ions to extract rare earth elements (REEs) from sandy sediments of a Coastal Plain aquifer was investigated for unpurified organic matter from different sources (i.e., Mississippi River natural organic matter, Aldrich humic acid, Nordic aquatic fulvic acid, Suwannee River fulvic acid, and Suwannee River natural organic matter) and for extraction solutions containing weak (i.e., CH 3COO -) or strong (i.e., CO32-) ligands. The experimental results indicate that, in the absence of strong REE complexing ligands in solution, the amount of REEs released from the sand is small and the fractionation pattern of the released REEs appears to be controlled by the surface stability constants for REE sorption with Fe(III) oxides/oxyhydroxides. In the presence of strong solution complexing ligands, however, the amount and the fractionation pattern of the released REEs reflect the strength and variation of the stability constants of the dominant aqueous REE species across the REE series. The varying amount of REEs extracted by the different organic matter employed in the experiments indicates that organic matter from different sources has different complexing capacity for REEs. However, the fractionation pattern of REEs extracted by the various organic matter used in our experiments is remarkable consistent, being independent of the source and the concentration of organic matter used, as well as solution pH. Because natural aquifer sand and unpurified organic matter were used in our experiments, our experimental conditions are more broadly similar to natural systems than many previous laboratory experiments of REE-humic complexation that employed purified humic substances. Our results suggest that the REE loading effect on REE-humic complexation is negligible in natural waters as more abundant metal cations (e.g., Fe, Al) out-compete REEs for strong binding sites on organic matter. More specifically, our results indicate that REE complexation with organic matter in natural waters is dominated by REE binding to weak sites on dissolved organic matter, which subsequently leads to a middle REE (MREE: Sm-Ho)-enriched fractionation pattern. The experiments also indicate that carbonate ions may effectively compete with fulvic acid in binding with dissolved REEs, but cannot out compete humic acids for REEs. Therefore, in natural waters where low molecular weight (LMW) dissolved organic carbon (DOC) is the predominant form of DOC (e.g., lower Mississippi River water), REEs occur as "truly" dissolved species by complexing with carbonate ions as well as FA, resulting in heavy REE (HREE: Er-Lu)-enriched shale-normalized fractionation patterns. Whereas, in natural terrestrial waters where REE speciation is dominated by organic complexes with high molecular weight DOC (e.g., "colloidal" HA), only MREE-enriched fractionation patterns will be observed because the more abundant, weak sites preferentially complex MREEs relative to HREEs and light REEs (LREEs: La-Nd).
2012-01-01
Background Most resting energy expenditure (REE) predictive equations for adults were derived from research conducted in western populations; whether they can also be used in Chinese young people is still unclear. Therefore, we conducted this study to determine the best REE predictive equation in Chinese normal weight young adults. Methods Forty-three (21 male, 22 female) healthy college students between the age of 18 and 25 years were recruited. REE was measured by the indirect calorimetry (IC) method. Harris-Benedict, World Health Organization (WHO), Owen, Mifflin and Liu’s equations were used to predictREE (REEe). REEe that was within 10% of measured REE (REEm) was defined as accurate. Student’s t test, Wilcoxon Signed Ranks Test, McNemar Test and the Bland-Altman method were used for data analysis. Results REEm was significantly lower (P < 0.05 or P < 0.01) than REEe from equations, except for Liu’s, Liu’s-s, Owen, Owen-s and Mifflin in men and Liu’s and Owen in women. REEe calculated by ideal body weight was significantly higher than REEe calculated by current body weight ( P < 0.01), the only exception being Harris-Benedict equation in men. Bland-Altman analysis showed that the Owen equation with current body weight generated the least bias. The biases of REEe from Owen with ideal body weight and Mifflin with both current and ideal weights were also lower. Conclusions Liu’s, Owen, and Mifflin equations are appropriate for the prediction of REE in young Chinese adults. However, the use of ideal body weight did not increase the accuracy of REEe. PMID:22937737
Geochemistry of Central Snake River Plain Basalts From Camas Prairie to Glenns Ferry, Southern Idaho
NASA Astrophysics Data System (ADS)
Vetter, S. K.; Johnston, S. A.; Shervais, J.; Hanan, B.
2006-12-01
The Snake River Plain (SRP) of southern Idaho represents the track of a hot-spot (mantle plume) which links voluminous flood basalts of the Miocene Columbia River province to Quaternary volcanic centers at Island Park and Yellowstone. However, much of the volcanism associated with this province either lies off the main volcanic trend or differs in age from the postulated plume passage. The Camas Prairie and the Mount Bennett Hills lie north of the Snake River-Yellowstone plume track, near the intersection of the eastern and western Snake River Plain trends. Young basalt flows cap highlands overlooking the Snake River near King Hill, but farther north in the Mount Bennett Hills and Camas Prairie these young lava flows are juxtaposed against older basalts along a series of WNW trending normal faults. These older basalt flows rest directly on rhyolite of the Mount Bennett Hills, making them the oldest basalts known in outcrop in this area. The older basalts in the Mount Bennett Hills include at least six major flows with a total thickness of 110 m. Although they have been strongly dissected by erosion, they still cover an outcrop area of 300 km2 . Eighty samples were collected as part of our petrologic survey of basaltic volcanism in the central Snake River Plain. These samples were studied petrographically and analyzed for their major elements, trace elements, and REE. The basalts consist of plagioclase and olivine microphenocrysts set in a groundmass of olivine, plagioclase, clinopyroxene, oxides and interstitial glass. The majority of samples have Mg# ranging from 50- 59. However there are samples that are more evolved as indicated by Mg# ranging from less than 50 to 29. The high Mg# samples have the following chemical ranges: TiO2 0.87 - 2.6 wt.%; FeO 9.95 - 13.7 wt.%; Nb 8 to 23 ppm; Zr 111 to 243 ppm; Ni 81 to 151 ppm; La 10.9 to 26.9 ppm. The more evolved samples have TiO2 1.4 3.93 wt.%; FeO 9.7 16.8 wt%; Nb 11 to 40 ppm; Zr 110 to 500 ppm; Ni 4 to 85 ppm; La 67 to 97 ppm. All magmas exhibit the typical SRP LREE enrichment. The high Mg# samples have La = 35 to 85x chondrite and Lu = 14 to 25x chondrite. The evolved samples have La = 200 to 300x chondrite and Lu = 30 to 40x chondrite. The high Mg# basalts resemble older off-axis basalts of the Boise River Group [Vetter and Shervais, 1992, JGR]. Rayleigh fractionation modeling of incompatible elements shows >80% olivine and plagioclase fractionation is needed to create the evolved magmas from the high Mg# basalts. Presents of these older basalts north of the main SRP trend maybe associated with the tilt of the plume as imaged by seismic tomography.
NASA Astrophysics Data System (ADS)
Hezel, Dominik C.; Wilden, Johanna S.; Becker, Daniel; Steinbach, Sonja; Wombacher, Frank; Harak, Markus
2018-05-01
Chondrules are a major constituent of primitive meteorites. The formation of chondrules is one of the most elusive problems in cosmochemistry. We use Fe isotope compositions of chondrules and bulk chondrites to constrain the conditions of chondrule formation. Iron isotope compositions of bulk chondrules are so far only known from few studies on CV and some ordinary chondrites. We studied 37 chondrules from the CM chondrite Murchison. This is particularly challenging, as CM chondrites contain the smallest chondrules of all chondrite groups, except for CH chondrites. Bulk chondrules have δ56Fe between -0.62 and +0.24‰ relative to the IRMM-014 standard. Bulk Murchison has as all chondrites a δ56Fe of 0.00‰ within error. The δ56Fe distribution of the Murchison chondrule population is continuous and close to normal. The width of the δ56Fe distribution is narrower than that of the Allende chondrule population. Opaque modal abundances in Murchison chondrules is in about 67% of the chondrules close to 0 vol.%, and in 33% typically up to 6.5 vol.%. Chondrule Al/Mg and Fe/Mg ratios are sub-chondritic, while bulk Murchison has chondritic ratios. We suggest that the variable bulk chondrule Fe isotope compositions were established during evaporation and recondensation prior to accretion in the Murchison parent body. This range in isotope composition was likely reduced during aqueous alteration on the parent body. Murchison has a chondritic Fe isotope composition and a number of chondritic element ratios. Chondrules, however, have variable Fe isotope compositions and chondrules and matrix have complementary Al/Mg and Fe/Mg ratios. In combination, this supports the idea that chondrules and matrix formed from a single reservoir and were then accreted in the parent body. The formation in a single region also explains the compositional distribution of the chondrule population in Murchison.
Oshima, Satomi; Miyauchi, Sakiho; Asaka, Meiko; Kawano, Hiroshi; Taguchi, Motoko; Torii, Suguru; Higuchi, Mitsuru
2013-01-01
We have previously shown that resting energy expenditure (REE) adjusted by fat-free mass (FFM) in male college athletes remains consistent regardless of FFM. The FFM comprises internal organs with high metabolic activity, such as liver and brain, which account for 60 to 80% of REE in adults. The purpose of the present study is to examine the contribution of internal organs to the REE of the FFM fraction among male power athletes. The study included 37 American male college football players. REE was measured by indirect calorimetry and body composition was measured by dual energy X-ray absorptiometry (DXA). Mass of brain, liver, and kidneys was measured by MRI and mass of heart was estimated by echocardiography. Normal levels of thyroid hormone (triiodothyronine: T3) were confirmed in all subjects prior to the analysis. Multiple regression analysis was used to assess the influence of FFM, fat mass (FM), T3, and mass of organs on variance of REE. Average body weight and FFM were 81.2±11.3 kg and 67.7±7.4 kg, respectively. The relative contributions of liver, kidneys, and heart to REE were consistent regardless of FFM, while the REE of brain was negatively correlated with FFM (r=-0.672, p<0.001). Only FFM and T3 were found to be independent factors influencing REE. These results suggest that a steady contribution of internal organs other than the brain is the major reason for the consistency of the REE/FFM ratio in male power athletes.
NASA Astrophysics Data System (ADS)
Gaither, T.; Reid, M. R.; Vazquez, J. A.
2009-12-01
The ~74 ka eruption of the Youngest Toba Tuff (YTT) in Sumatra, Indonesia, was one of the largest single volcanic eruptions in geologic history, on par with other voluminous silicic eruptions such as the Huckleberry Ridge Tuff of Yellowstone and the Bishop Tuff of Long Valley, California. We are exploring how zircon and other accessory mineral phases record compositional and thermal changes that occurred in the YTT magma, and the important clues these crystal scale records hold for magma chamber dynamics and processes that lead up to supervolcano eruptions. In this study, we report trace element (REE, U, Th, Ti, and Hf) characteristics, Ti-in-zircon crystallization temperatures, and apparent REE partition coefficients obtained for YTT zircon rims. Twenty-nine zircons from pumices with a compositional range of 70-76 wt% SiO2 were analyzed on the UCLA Cameca ims 1270 ion microprobe. The grains were mounted so that only the outermost ~1.5 microns of the crystals were analyzed. Median Zr/Hf ratios of 34 to 38 characterize zircons from the pumices; the high silica rhyolite grains have lower Zr/Hf. Chondrite-normalized REE patterns are strongly LREE-depleted. Positive Ce anomalies are large (Ce/Ce* ranges up to 88) and Eu/Eu* varies by a factor of four (0.05 to 0.21). Eu/Eu*, Nd/Yb, and Th/U decrease with decreasing Zr/Hf, showing that the variation in zircon rim compositions may be related by co-precipitation of feldspar and allanite along with zircon. Titanium contents also decrease with decreasing Zr/Hf, suggesting that the chemical differences could be related to temperature changes. REE partition coefficients calculated from zircon rim compositions and pumice glass compositions give a good fit to a lattice strain model. They are also quite similar to the partition coefficients of Sano et al. (2002) which have been shown to be successful at reproducing melt compositions in other settings. Temperatures of crystallization calculated using the Ti-in-zircon geothermometer (Watson et al., 1996), assuming a melt aTiO2 of 0.5, yield very low median values (even without a possible pressure correction of -40 to -80°C), ranging from 640-667°C. Virtually all of the zircon rims record temperatures lower than eruption temperatures of 700-780°C estimated for the YTT by Chesner (1998) using FeTi oxide equilibria. It is possible that the low zircon temperatures reflect uncertainties in the Ti-in-zircon geothermometer but they are nonetheless permissive of re-entrainment of zircon from a near-solidus mush close to the time of eruption. The analytically significant chemical variations within the individual zircon populations, especially those of Zr/Hf, Eu/Eu*, and Nd/Yb, suggest that crystals from distinct compositional domains were brought together during a final merging/coalescence of magma that catalyzed the eruption.
Petrogenesis and magmatic evolution of ∼130 Ma A-type granites in Southeast China
NASA Astrophysics Data System (ADS)
Sun, Fajun; Xu, Xisheng; Zou, Haibo; Xia, Yan
2015-02-01
A number of Late Mesozoic (∼130 Ma) A-type granitic plutons have been identified in Southeast China. Here we investigate the petrogenesis of one of these granitic plutons in Southeast China, the Sanqingshan-Damaoshan (SD) granites in northeastern Jiangxi Province, using zircon U-Pb geochronology, Hf isotopic analyses, and major and trace element analyses. The SD granites are metaluminous to weakly peraluminous and show typical A-type affinity, which is characterized by high SiO2, Na2O + K2O, rare earth element (REE), high field strength element (HFSE) contents, Ga/Al and Fe# [FeOt/(FeOt + MgO)] values. Zircon grains from the SD granites and some other ∼130 Ma A-type granites commonly contain oscillatory zoning ;cores; surrounded by unzoned to weakly zoned ;rims;. Detailed studies of zircons from the SD granites show that ;rims; are enriched in LREE, Th and U compared with ;cores;. Chondrite-normalized REE patterns of the ;cores; increase steeply from La to Lu and show pronounced Ce and Eu anomalies, while REE patterns of the ;rims; display higher REE abundances with flatter LREE patterns and moderate Ce anomalies. Nevertheless, Lu-Hf isotopic analyses and Ti-in zircon thermometer show similar characteristics between ;rims; and ;cores;, indicating that the ;rims; may crystallize under the effect of internal magmatic hydrothermal fluids. U-rich ;rims; are more susceptible to Pb loss caused by self-irradiation, which may lead to significant younger U-Pb ages. As a result, U-Pb ages of zircon ;cores; (∼130 Ma) represent crystallization ages of the SD granites. εHf(t) values of zircon grains from the SD granites are between -6.4 and -0.4 with Mesoproterozoic model ages (T2DM) ranging from 1.22 to 1.59 Ga, suggesting that the granites may be formed by partial melting of Proterozoic basement. Compared with other adjacent ∼130 Ma A-type granitic plutons in SE China, the SD granites have similar geochemical characteristics and Hf isotopic compositions to those of Xiangshan, Daqiaowu, Yangmeiwan, and Tongshan granites, but different from the Baijuhuajian granite. εHf(t) values of the Baijuhuajian granites are higher than other granites, indicating significant participation of juvenile materials. These ∼130 Ma A-type granites indicate a back-arc extension setting due to the roll-back of paleo-Pacific plate, where the crust and lithospheric mantle became progressively thinned. The upwelling of asthenosphere triggered the partial melting of crustal rocks and generated the Sanqingshan-Damaoshan, Tongshan, Daqiaowu and Yangmeiwan granitic plutons. With ongoing back-arc extension and increased subduction angle during the roll-back of subducted paleo-Pacific slab, the back-arc extension gradually intensified, resulting in significant additions of mantle juvenile materials to the crustal magma and the formation of the Baijuhuajian granite.
NASA Astrophysics Data System (ADS)
Feng, Caixia; Bi, Xianwu; Liu, Shen; Hu, Ruizhong
2014-05-01
The Baiyangping Cu-Ag polymetallic ore district is located in the northern part of the Lanping-Simao foreland fold belt, which lies between the Jinshajiang-Ailaoshan and Lancangjiang faults in western Yunnan Province, China. The source of ore-forming fluids and materials within the eastern ore zone were investigated using fluid inclusion, rare earth element (REE), and isotopic (C, O, and S) analyses undertaken on sulfides, gangue minerals, wall rocks, and ores formed during the hydrothermal stage of mineralization. These analyses indicate: (1) The presence of five types of fluid inclusion, which contain various combinations of liquid (l) and vapor (v) phases at room temperature: (a) H2O (l), (b) H2O (l) + H2O (v), (c) H2O (v), (d) CmHn (v), and (e) H2O (l) + CO2 (l), sometimes with CO2 (v). These inclusions have salinities of 1.4-19.9 wt.% NaCl equivalents, with two modes at approximately 5-10 and 16-21 wt.% NaCl equivalent, and homogenization temperatures between 101 °C and 295 °C. Five components were identified in fluid inclusions using Raman microspectrometry: H2O, dolomite, calcite, CH4, and N2. (2) Calcite, dolomitized limestone, and dolomite contain total REE concentrations of 3.10-38.93 ppm, whereas wall rocks and ores contain REE concentrations of 1.21-196 ppm. Dolomitized limestone, dolomite, wall rock, and ore samples have similar chondrite-normalized REE patterns, with ores in the Huachangshan, Xiaquwu, and Dongzhiyan ore blocks having large negative δCe and δEu anomalies, which may be indicative of a change in redox conditions during fluid ascent, migration, and/or cooling. (3) δ34S values for sphalerite, galena, pyrite, and tetrahedrite sulfide samples range from -7.3‰ to 2.1‰, a wide range that indicates multiple sulfur sources. The basin contains numerous sources of S, and deriving S from a mixture of these sources could have yielded these near-zero values, either by mixing of S from different sources, or by changes in the geological conditions of seawater sulfate reduction to sulfur. (4) The C-O isotopic analyses yield δ13C values from ca. zero to -10‰, and a wider range of δ18O values from ca. +6 to +24‰, suggestive of mixing between mantle-derived magma and marine carbonate sources during the evolution of ore-forming fluids, although potential contributions from organic carbon and basinal brine sources should also be considered. These data indicate that ore-forming fluids were derived from a mixture of organism, basinal brine, and mantle-derived magma sources, and as such, the eastern ore zone of the Baiyangping polymetallic ore deposit should be classified as a “Lanping-type” ore deposit.
NASA Astrophysics Data System (ADS)
Doroshkevich, Anna G.; Prokopyev, Ilya R.; Izokh, Andrey E.; Klemd, Reiner; Ponomarchuk, Anton V.; Nikolaeva, Irina V.; Vladykin, Nikolay V.
2018-04-01
The Paleoproterozoic Seligdar magnesiocarbonatite intrusion of the Aldan-Stanovoy shield in Russia underwent extensive postmagmatic hydrothermal alteration and metamorphic events. This study comprises new isotopic (Sr, Nd, C and O) data, whole-rock major and trace element compositions and trace element characteristics of the major minerals to gain a better understanding of the source and the formation process of the carbonatites. The Seligdar carbonatites have high concentrations of P2O5 (up to 18 wt%) and low concentrations of Na, K, Sr and Ba. The chondrite-normalized REE patterns of these carbonatites display significant enrichments of LREE relative to HREE with an average La/Ybcn ratio of 95. Hydrothermal and metamorphic overprints changed the trace element characteristics of the carbonatites and their minerals. These alteration processes were responsible for Sr loss and the shifting of the Sr isotopic compositions towards more radiogenic values. The altered carbonatites are further characterized by distinct 18O- and 13C-enrichments compared to the primary igneous carbonatites. The alteration most likely resulted from both the percolation of crustal-derived hydrothermal fluids and subsequent metamorphic processes accompanied by interaction with limestone-derived CO2. The narrow range of negative εNd(T) values indicates that the Seligdar carbonatites are dominated by a homogenous enriched mantle source component that was separated from the depleted mantle during the Archean.
NASA Astrophysics Data System (ADS)
Johannesson, K. H.; Chevis, D.; Burdige, D. J.; Cable, J. E.; Martin, J. B.; Roy, M.
2008-12-01
Johannesson and Burdige [2007, EPSL 253, 129] suggested that submarine groundwater discharge (SGD) represents a substantial, unrecognized source of Nd to the oceans. Based on a globally averaged terrestrial SGD flux equal to 6 percent of the global river discharge and mean groundwater Nd concentrations obtained from the literature, we estimated a global SGD Nd flux that was within a factor of 2 of the previously proposed missing global Nd flux. To test our hypothesis that SGD is an important source of Nd to the oceans, rare earth element (REE) concentrations were measured in SGD samples collected beneath a coastal lagoon on the Florida Atlantic coast (Indian River Lagoon). Shale (PAAS)-normalized REE patterns for all SGD samples exhibit substantial enrichments in the heavy REEs (HREE) compared to the light REEs (LREE) as shown by their PAAS-normalized Yb/Nd ratios, which range from 5 to 73 (mean = 16). SGD from piezometers located 10 m and 22.5 m from shore exhibit PAAS-normalized REE plots that are most similar to the patterns of the overlying lagoon (surface) water. For example, mean PAAS-normalized Yb/Nd ratios for groundwaters sampled from the 10 m and 22.5 m piezometers are 6.7 and 8.3, which compare well with the PAAS- normalized Yb/Nd ratio of water column samples (8.7). In contrast, the mean PAAS-normalized Yb/Nd ratio of terrestrial-derived groundwater from the piezometer at the shoreline is 41. Neodymium concentrations of the SGD samples range from 230 to 2400 pmol/kg (mean = 507 pmol/kg), and thus are substantially higher than reported for open ocean seawater (typical Nd = 20 pmol/kg). Based on SGD fluxes previously determined with seepage meters, porewater Cl concentrations, and Rn-222 deficiencies of porewaters [Martin et al., 2007, Water Resour. Res. 43, W0544, doi: 10.1029/2006WR005266], we estimate daily inputs of Nd to the Indian River Lagoon of 50 to 2100 umoles for the terrestrial-derived component of SGD, and 171 mmoles for the marine component of SGD (81 to 3400 times greater). Residence times of Nd in the portion of the lagoon studied are estimated to range from 6 to more than 250 years based on the terrestrial-derived SGD flux of Nd, compared to 26 days using the marine-derived SGD flux of Nd. The substantially shorter residence time determined using the marine-derived SGD component compares well with the estimated flushing time for this portion of the estuary (~3 weeks). The similarity between SGD and lagoon water Nd concentrations and PAAS-normalized REE patterns, in conjunction with the larger, marine-derived SGD flux of Nd, strongly suggests that recirculation of lagoon water and subsequent SGD exerts the principal control on Nd concentrations in the lagoon. The elevated Nd concentration for deep groundwater (186 cmbsf) located 22.5 m from shore also agrees well with another study that reported recirculated, marine SGD as a source of REEs to coastal waters [Duncan and Shaw, 2003, Aquatic Geochem. 9, 233]. Thus, our observations demonstrate the importance of recirculated, marine SGD to these lagoon surface waters, and further support our hypothesis that SGD contributes substantial fluxes of Nd to the coastal oceans.
LEW 88516: A Meteorite Compositionally Close to the "Martian Mantle"
NASA Astrophysics Data System (ADS)
Dreibus, G.; Jochum, K. H.; Palme, H.; Spettel, B.; Wlotzka, F.; Wanke, H.
1992-07-01
Several samples from a total of 250 mg of the recently discovered Antarctic shergottite LEW 88516 were analysed for major and trace elements by neutron activation techniques, SSMS, and a carbon-sulfur analyser. Results are presented in Table 1, together with data on ALHA 77005 (Wanke et al., 1976). This and earlier results (Boynton et al., 1992; Lindstrom et al.,1992) show the close compositional similarity of Lew 88516 to ALHA 77005. A major difference between the two shergottites is the much lower iodine content of the ALHA 77005 meteorite. The absence of similar variations in Br and Cl confirms earlier suggestions of an Antarctic source for the I excess. In a Mg/Si vs. Al/Si diagram (Fig. 1) the LEW 88516 meteorite plots at the intersection of a Shergotty parent (SPB) body fractionation trend and a line connecting enstatite chondrites and CM chondrites. The position of LEW 88516 and also of ALHA 77005 in the vicinity of ordinary chondrites is indicative of their relatively primitive composition. Lithophile trace elements show some enhancement of Sc and V over heavy REE and depletion of light REE, suggesting either a residual character for the two meteorites or assimilation of a cumulate phase during their formation. Comparatively high Ni and Co also reflect the more mafic character of the two meteorites. The present analysis and the earlier data on ALHA 77005 unambiguously demonstrate the presence of Ir in an abundance range typical for the terrestrial upper mantle. A similar Ir level was found in Chassigny, but the more fractionated Shergotty has 100 times lower Ir contents. The presence of Ir in the martian mantle samples may be the result of sulfide-silicate equilibration. The sulfides in Lew 88516 are small pyrrhotite grains (5-30 micron, 52 atom% S) and occur often together with ilmenite, at grain boundaries of the major silicate minerals. Sulfides contain an average of 1.8% Ni. However, the major fraction of Ni must reside in oxides and/or silicates as the bulk Ni/S-ratio is 0.25 as compared to 0.05 in sulfides. References: Boynton W.V., Hill D.H. and Kring D.A. (1992) Lunar Planet. Sci. (abstract) 23, 147. Lindstrom M.M., Mittlefehldt D.W., Treiman A.H., Wentworth S.J., Gooding J.L., Morris R.V., Keller L.P. and McKay G.A. (1992) Lunar Planet. Sci. (abstract) 23, 783. Wanke H., Dreibus G., Jagoutz E., Palme H., Spettel B. and Weckwerth G. (1986) Lunar Planet. Sci. (abstract) 17, 919. Table 1, which in the hard copy appears here, shows the chemical composition of Shergottite LEW 55816 and comparison with ALHA 77005.
Diel behavior of rare earth elements in a mountain stream with acidic to neutral pH
Gammons, C.H.; Wood, S.A.; Nimick, D.A.
2005-01-01
Diel (24-h) changes in concentrations of rare earth elements (REE) were investigated in Fisher Creek, a mountain stream in Montana that receives acid mine drainage in its headwaters. Three simultaneous 24-h samplings were conducted at an upstream station (pH = 3.3), an intermediate station (pH = 5.5), and a downstream station (pH = 6.8). The REE were found to behave conservatively at the two upstream stations. At the downstream station, REE partitioned into suspended particles to a degree that varied with the time of day, and concentrations of dissolved REE were 2.9- to 9.4-fold (190% to 830%) higher in the early morning vs. the late afternoon. The decrease in dissolved REE concentrations during the day coincided with a corresponding increase in the concentration of REE in suspended particles, such that diel changes in the total REE concentrations were relatively minor (27% to 55% increase at night). Across the lanthanide series, the heavy REE partitioned into the suspended solid phase to a greater extent than the light REE. Filtered samples from the downstream station showed a decrease in shale-normalized REE concentration across the lanthanide series, with positive anomalies at La and Gd, and a negative Eu anomaly. As the temperature of the creek increased in the afternoon, the slope of the REE profile steepened and the magnitude of the anomalies increased. The above observations are explained by cyclic adsorption of REE onto suspended particles of hydrous ferric and aluminum oxides (HFO, HAO). Conditional partition coefficients for each REE between the suspended solids and the aqueous phase reached a maximum at 1700 hours and a minimum at 0700 hours. This pattern is attributed to diel variations in stream temperature, possibly reinforced by kinetic factors (i.e., slower rates of reaction at night than during the day). Estimates of the enthalpy of adsorption of each REE onto suspended particles based on the field results averaged +82 kJ/mol and are similar in magnitude to estimates in the literature for adsorption of divalent metal cations onto clays and hydrous metal oxides. The results of this study have important implications to the use of REE as hydrogeochemical tracers in streams. Copyright ?? 2005 Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Auer, Gerald; Reuter, Markus; Hauzenberger, Christoph A.; Piller, Werner E.
2017-04-01
Rare earth elements (REEs) are commonly used proxies to reconstruct water chemistry and oxygen saturation during the formation of authigenic and biogenic phosphates in marine environments. In the modern ocean REEs exhibit a distinct pattern with enrichment of heavy REEs and strong depletion in cerium (Ce). The wide range of REE enrichment patterns found in ancient marine phosphates lead to the proposition that water chemistry has been very different in the Earth's past. However, both early and late diagenesis are known to affect REE signatures in phosphates altering primary marine signals. Herein we present a dataset of REE signatures in 38 grain specific LA-ICP-MS measurements of isolated phosphate and carbonate grains in three discrete rock samples. The phosphates mainly consist of authigenic phosphates and phosphatized microfossils that formed in a microbially mediated micro-milieu. In addition, isolated biogenic and reworked phosphatic grains are also present. The phosphates are emplaced in bioclastic grain- to packstones deposited on a carbonate ramp setting in the central Mediterranean Sea during the middle Miocene Monterey event. The results reveal markedly different REE patterns (normalized to the Post Archean Australian Shale standard) in terms of total enrichment and pattern shape. Analyses of REE diagenesis proxies show that diagenetic alteration affected the samples only to a minor degree. Grain shape and REE patterns together indicate that authigenic, biogenic and reworked phosphates have distinct REE patterns irrespective of the sample. Our study shows that while REE patterns in phosphates do reflect water chemistry during authigenesis, they are often already heavily altered during reworking, a process, which can occur in geologically negligible timespans. REE patterns are therefore more likely to reflect complex enrichment processes after their formation. Similarities in the REE patterns of reworked and biogenic phosphate further suggest that the frequently observed hat-shaped pattern in biogenic phosphates can result from increased middle REE (Neodymium to Holmium) scavenging during taphonomic processes prior to final deposition. Cluster analysis coupled with sedimentological and previously published geochemical data (bulk carbon isotope and X-ray fluorescence spectrometry) allowed the characterization of REE patterns of phosphates in terms of their formation conditions and depositional history, such as the distinction of phosphates formed in situ from reworked and transported phosphate grains.
de Luis, D A; Aller, R; Izaola, O; Romero, E
2006-01-01
The aim of our study was to evaluate the accuracy of the equations to estimate REE in obese patents and develop a new equation in our obese population. A population of 200 obesity outpatients was analyzed in a prospective way. The following variables were specifically recorded: age, weight, body mass index (BMI), waist circumference, and waist-to-hip ratio. Basal glucose, insulin, and TSH (thyroid-stimulating hormone) were measured. An indirect calorimetry and a tetrapolar electrical bioimpedance were performed. REE measured by indirect calorimetry was compared with REE obtained by prediction equations to obese or nonobese patients. The mean age was 44.8 +/- 16.81 years and the mean BMI 34.4 +/- 5.3. Indirect calorimetry showed that, as compared to women, men had higher resting energy expenditure (REE) (1,998.1 +/- 432 vs. 1,663.9 +/- 349 kcal/day; p < 0.05) and oxygen consumption (284.6 +/- 67.7 vs. 238.6 +/- 54.3 ml/min; p < 0.05). Correlation analysis among REE obtained by indirect calorimetry and REE predicted by prediction equations showed the next data; Berstein's equation (r = 0.65; p < 0.05), Harris Benedict's equation (r = 0.58; p < 0.05), Owen's equation (r = 0.56; p < 0.05), Ireton's equation (r = 0.58; p < 0.05) and WHO's equation (r = 0.57; p < 0.05). Both the Berstein's and the Ireton's equations overpredicted REE and showed nonsignificant mean differences form measured REE. The Owen's, WHO's, and Harris Benedict's equations underpredicted REE. Our male prediction equation was REE = 58.6 + (6.1 x weight (kg)) + (1,023.7 x height (m)) - (9.5 x age). The female model was REE = 1,272.5 + (9.8 x weight (kg)) - (61.6 x height (m)) - (8.2 x age). Our prediction equations showed a nonsignificant difference with REE measured (-3.7 kcal/day) with a significant correlation coefficient (r = 0.67; p < 0.05). Previously developed prediction equations overestimated and underestimated REE measured. WHO equation developed in normal weight individuals provided the closest values. The two new equations (male and female equations) developed in our study had a good accuracy. Copyright 2006 S. Karger AG, Basel.
Trace Element Inputs to the Upper West Pacific from Nd Isotopes and Rare Earth Elements
NASA Astrophysics Data System (ADS)
Behrens, M. K.; Pahnke, K.; Schnetger, B.; Brumsack, H. J.
2015-12-01
Neodymium isotopes (143Nd/144Nd, expressed as ɛNd) and rare earth element (REE) concentrations in the ocean trace water mass transport and margin-seawater exchange processes. The distinct ɛNd and REE signatures of the lithogenic components of margin sediments of the West Pacific allow characterization of trace element inputs to the Pacific Ocean. We present dissolved ɛNdand REE concentrations from twelve vertical profiles of a transect from South Korea to Fiji. Near South Korea, surface waters are marked by unradiogenic ɛNd (as low as -7.3), high REE concentrations (e.g., Nd = 15.3 pmol/kg) and low salinity. Towards the open ocean, these parameters gradually change towards typical Pacific open ocean values (ɛNd = -3.3, [Nd] = 5.55 pmol/kg). Subsurface waters show REE depletions, followed by the typical REE increase with increasing water depth. These distributions indicate trace element input near South Korea and enhanced subsurface scavenging, as indicated by strong heavy REE to light REE fractionation. In the tropical West Pacific (10°N-15°S), high surface and subsurface water ɛNd values (+0.7) and positive Eu anomalies trace the influence of volcanic islands. Yet, absolute REE concentrations are extremely low at these depths (e.g., Nd = 2.77 pmol/kg). Using shale-normalized Nd/Er and Ho/Dy ratios, that show a much stronger surface to subsurface decrease in coastal waters compared to the open ocean, we suggest enhanced scavenging in this area. Eastward flowing intermediate waters (NPIW, AAIW) have ɛNd values up to +1.9 (NPIW) and +3.7 (AAIW) higher than those entering the tropical West Pacific from north and south, respectively. Modified ɛNd at intermediate depths and no change in REE patterns suggest that boundary exchange along volcanic island margins modifies the seawater ɛNd without changing the REE budget.
Consortium study of the unusual H chondrite regolith breccia, Noblesville
NASA Technical Reports Server (NTRS)
Lipschutz, Michael E.; Wolf, Stephen F.; Vogt, Stephan; Michlovich, Edward; Lindstrom, Marilyn M.; Zolensky, Michael E.; Mittlefehldt, David W.; Satterwhite, Cecilia; Schultz, Ludolf; Loeken, Thomas
1993-01-01
The Noblesville meteorite is a genomict, regolith breccia (H6 clasts in H4 matrix). Moessbauer analysis confirms that Noblesville is unusually fresh, not surprising in view of its recovery immediately after its fall. It resembles 'normal' H4-6 chondrites in its chemical composition and induced thermoluminescence (TL) levels. Thus, at least in its contents of volatile trace elements, Noblesville differs from other H chondrite, class A regolith breccias. Noblesville's small pre-atmospheric mass and fall near solar maximum and/or its peculiar orbit (with perihelion less than 0.8 AU as shown by natural TL intensity) may partly explain its levels of cosmogenic radionuclides. Its cosmic ray exposure age of about 44 Ma is long, is equalled or exceeded by less than 3 percent of all H chondrites, and also differs from the 33 +/- 3 Ma mean exposure age peak of other H chondrite regolith breccias. While Noblesville is now among the chondritic regolithic breccias richest in solar gases, elemental ratios indicate some loss, especially of He, perhaps by impacts in the regolith that heated individual grains. While general shock-loading levels in Noblesville did not exceed 4 GPa, individual clasts record shock levels of 5-10 GPa, doubtless acquired prior to lithification of the whole-rock meteoroid.
Dołęgowska, Sabina; Gałuszka, Agnieszka; Migaszewski, Zdzisław M
2017-12-01
The main source of rare earth elements (REE) in mosses is atmospheric deposition of particles. Sample treatment operations including shaking, rinsing or washing, which are made in a standard way on moss samples prior to chemical analysis, may lead to removing particles adsorbed onto their tissues. This in turn causes differences in REE concentrations in treated and untreated samples. For the present study, 27 combined moss samples were collected within three wooded areas and prepared for REE determinations by ICP-MS using both manual cleaning by shaking and triple rinsing with deionized water. Higher concentrations of REE were found in manually cleaned samples. The comparison of REE signatures and shale-normalized REE concentration patterns showed that the treatment procedure did not lead to fractionation of REE. All the samples were enriched in medium rare earth elements, and the δMREE factor remained practically unchanged after rinsing. Positive anomalies of Nd, Sm, Eu, Gd, Er and Yb were observed in both, manually cleaned and rinsed samples. For all the elements examined, analytical uncertainty was below 3.0% whereas sample preparation uncertainty computed with ANOVA, RANOVA, modified RANOVA and range statistics methods varied from 3.5 to 29.7%. In most cases the lowest s rprep values were obtained with the modified RANOVA method. Copyright © 2017 Elsevier Ltd. All rights reserved.
Anthropogenic rare earth elements and their spatial distributions in the Han River, South Korea.
Song, Hyeongseok; Shin, Woo-Jin; Ryu, Jong-Sik; Shin, Hyung Seon; Chung, Heesun; Lee, Kwang-Sik
2017-04-01
Rare earth elements (REE) consist of lanthanides (from La to Lu), together with yttrium and scandium, in which anthropogenic REE, such as gadolinium (Gd), lanthanum (La), and samarium (Sm), has emerged as micro-contaminants in natural waters in highly developed countries. Here, we collected water samples in the Han River (HR) and its tributaries flowing through Seoul Capital Area, the world's second largest metropolitan area in order to examine how and to what extent anthropogenic REE anomalies may occur. Water samples show higher light REE concentrations than heavy REE concentrations, while wastewater treatment plant (WWTP) samples display much higher heavy REE concentrations due to high Gd concentration. The PAAS-normalized REE patterns indicate that WWTP samples display the pronounced positive Gd anomalies, in which anthropogenic Gd from magnetic resonance imaging (MRI) diagnostic system occurs as a form of Gd complexation with either Cl - or SO 4 2- . Due to the WWTP, both the HR and tributaries show also positive Gd anomalies and the anthropogenic Gd concentrations increase as a function of the distance from the Paldang dam. This result indicates a positive correlation between populaton, number of MRI instruments, and positive Gd anomaly. Similarly, positive La and Sm anomalies exist in the HR, indicating that the HR is also affected by their point sources. Based on the discharge rate and anthropogenic REE concentrations, their fluxes are estimated to be 952 ± 319 kg/yr, suggesting that this amount of fluxes could disturb REE distribution in the Yellow Sea, and pose harmful effects on aquatic ecosystems. Copyright © 2016 Elsevier Ltd. All rights reserved.
Grosnaja ABCs: Magnesium isotope compositions
NASA Technical Reports Server (NTRS)
Goswami, J. N.; Srinivasan, G.; Ulyanov, A. A.
1993-01-01
Three CAI's from the Grosnaja CV3 chondrite were analyzed for their magnesium isotopic compositions by the ion microprobe. The selected CAI's represent three distinct types: GR4(compact Type A), GR7(Type B) and GR2(Type C). Petrographic studies indicate that all three Grosnaja inclusions were subjected to secondary alterations. The Type A CAI GR4 is primarily composed of melilite with spinel and pyroxene occurring as minor phases. The rim of the inclusion does not exhibit distinct layered structure and secondary alteration products (garnet, Fe-rich olivine and Na-rich plagioclase) are present in some localized areas near the rim region. The average major element compositions of different mineral phases in GR4 are given. Preliminary REE data suggest a depletion of HREE relative to LREE by about a factor of 3 without any clear indication of interelement fractionation. The CAI GR7 has textural and minerological characteristics similar to Type B inclusions. The REE data show a pattern that is similar to Group 6 with enrichment in Eu and Yb. In addition, a depletion of HREE compared to LREE is also evident in this object. Melilite composition shows a broad range of akermanite content (Ak(sub 15-55)). Detailed petrographic study is in progress. GR2 is a anorthite-rich Type C inclusion with large plagioclase laths intergrown with Ti-rich pyroxene. The average plagioclase composition is close to pure anorthite (An99).
The chemistry of rare earth elements in the solar nebula
NASA Technical Reports Server (NTRS)
Larimer, J. W.; Bartholomay, H. A.; Fegley, B.
1984-01-01
The high concentration of rare earth elements (REE) in primitive CaS suggests that the REE along with the other normally lithophile elements form stable sulfides under the unusual conditions which existed during the formation of enstatite chrondites. In order to acquire a more quantitative framework in which to interpret these data, the behavior of the REE in systems with solar, or slightly fractionated solar, composition is being studied. These new data introduce modest changes in the behavior of some of the REE when compared to previous studies. For example, the largest differences are in the stabilities of the gaseous monoxides of Ce, Eu, Tb, Ho, and Tm, all of which now appear to be less stable than previously thought, and YbO(g) which is somewhat more stable. Much more significant are the changes in REE distribution in the gas phase in fractionated systems, especially those made more reducing by changing the C/O ratio from the solar value of 0.6 to about 1.0. In almost all cases, the exceptions being Eu, Tm and Yb whose elemental gaseous species dominate, the monosulfides become more abundant. Moreover, the solid oxides of Eu, Tm and Yb become less stable under more reducing conditions which, in effect, should reduce the condensation temperature of all REE in more reduced systems.
NASA Astrophysics Data System (ADS)
Franchi, Fulvio; Turetta, Clara; Cavalazzi, Barbara; Corami, Fabiana; Barbieri, Roberto
2016-08-01
Trace and rare earth elements (REEs) have proven their utility as tools for assessing the genesis and early diagenesis of widespread geological bodies such as carbonate mounds, whose genetic processes are not yet fully understood. Carbonates from the Middle Devonian conical mud mounds of the Maïder Basin (eastern Anti-Atlas, Morocco) have been analysed for their REE and trace element distribution. Collectively, the carbonates from the Maïder Basin mud mounds appear to display coherent REE patterns. Three different geochemical patterns, possibly related with three different diagenetic events, include: i) dyke fills with a normal marine REE pattern probably precipitated in equilibrium with seawater, ii) mound micrite with a particular enrichment of overall REE contents and variable Ce anomaly probably related to variation of pH, increase of alkalinity or dissolution/remineralization of organic matter during early diagenesis, and iii) haematite-rich vein fills precipitated from venting fluids of probable hydrothermal origin. Our results reinforce the hypothesis that these mounds were probably affected by an early diagenesis induced by microbial activity and triggered by abundance of dispersed organic matter, whilst venting may have affected the mounds during a later diagenetic phase.
NASA Astrophysics Data System (ADS)
Delgado, Joaquin; Perez-Lopez, Rafael; Nieto, Jose Miguel; Ayora, Carles
2010-05-01
The São Domingos mine is one of the most emblematic mining districts in the lower part of the Guadiana River Basin (SW of Iberian Peninsula). It is located in Portugal (about 5 km from the Spanish border), in the northern sector of the Iberian Pyrite Belt (IPB), one of the largest metallogenetic provinces of massive sulphides in the world. Although mining activity has ceased at present, the large-scale exploitation of this deposit between the second half of the XIX century and the first half of the XX century, has favoured the production of enormous waste dumps, where oxidation of pyrite and associated sulphides is resulting in the production of acid mine drainage (AMD). Mining wastes, minesoils, and acid mine drainage have been analyzed for their major ions and rare earth elements (REE) with the aim of understanding the REE mobility during sulphide weathering so that lanthanoid series can be used both as a proxy for the extent of water-rock interaction and as a tool for identifying impacts of AMD on natural ecosystems. Chemical speciation of REE in extracts from minesoils indicates that REE sulphate complexes (mainly LnSO4+) are the primary aqueous form (60-90%), and free ionic species (Ln3+, 10-40%) are the next most abundant form of soil water-soluble fraction and controls the REE speciation model. The REE from this fraction have NASC-normalized patterns with middle-REE (MREE) enriched signature compared to the light-REE (LREE) and heavy-REE (HREE), showing convex MREE-signatures and convexity index values of +1.29 +/- 1.13. These results are consistent with the typical REE fractionation patterns reported for AMD. Poorly crystalline iron oxyhydroxysulphates act as a source of labile MREE by dissolution and/or desorption processes and could explain the MREE-enriched signatures in solution.
Trace elements in Gem-Quality Diamonds - Origin and evolution of diamond-forming fluid inclusions
NASA Astrophysics Data System (ADS)
Pearson, Graham; Krebs, Mandy; Stachel, Thomas; Woodland, Sarah; Chinn, Ingrid; Kong, Julie
2017-04-01
In the same way that melt inclusions in phenocrysts have expanded our idea of melt formation and evolution in basalts, studying fluids trapped in diamonds is providing important new constraints on the nature of diamond-forming fluids. Fibrous and cloudy diamonds trap a high but variable density of fluid inclusions and so have been extensively studied using major and trace element compositions. In contrast, constraining the nature of the diamond-forming fluid for high purity gem-quality diamonds has been restricted by the rarity of available high quality trace element data. This is due to the extremely low concentrations of impurities that gem diamonds contain - often in the ppt range. The recent discovery of fluids in gem diamonds showing similar major element chemistry to fluid-rich diamonds suggest that many diamonds may share a common spectrum of parental fluids. Here we test this idea further. Recent advances in analytical techniques, in particular the development of the "off-line" laser ablation pre-concentration approach, have allowed fully quantitative trace element data to be recovered from "fluid-poor", high quality gem diamonds. We present trace element data for gem diamonds from a variety of locations from Canada, S. Africa and Russia, containing either silicate or sulphide inclusions to examine possible paragenetic or genetic differences between fluids. REE abundance in the "gem" diamonds vary from 0.1 to 0.0001 x chondrite. To a first order, we observe the same spectrum of trace element compositions in the gem diamonds as that seen in fluid-rich "fibrous" diamonds, supporting a common origin for the fluids. REE patterns range from extremely flat (Ce/Yb)n 2.5 to 5 (commonly in sulphide-bearing diamonds) to >70, the latter having significantly greater inter-element HFSE/LILE fractionation. In general, the fluids from the sulphide-bearing diamonds are less REE-enriched than the silicate-bearing diamonds, but the ranges overlap significantly. The very large range in REE fractionation mimics very closely that produced in high pressure (5-6 GPa) experimental melts of CO2-H2O fluxed peridotite. Hence, the elemental characteristics of the fluids could be reconciled by the diamonds growing from such melts over a range of T and hence F, with the sulphide-bearing diamonds generally being produced by larger fraction (higher T) melts that have reacted less with their wall rocks. It is also possible that the less REE enriched fluids are consistent with derivation from more reduced CH4-bearing fluids that have lower solute capacity than oxidised fluids. This option is being evaluated.
Behaviour of Rare Earth Elements during the Earth's core formation
NASA Astrophysics Data System (ADS)
Faure, Pierre; Bouhifd, Mohamed Ali; Boyet, Maud; Hammouda, Tahar; Manthilake, Geeth
2017-04-01
Rare Earth Elements (REE) are classified in the refractory group, which means that they have a high temperature condensation and their volatility-controlled fractionation is limited to high-temperature processes. Anomalies have been measured for Eu, Yb and Sm, which are the REE with the lowest condensation temperatures in CAIs and chondrules (e.g. [1]). REE are particularly abundant in the sulfides of enstatite chondrites, 100 to 1000 times the CI value [e.g. 2,3], proving that these elements are not strictly lithophile under extremely reducing conditions. However by investigating experimentally the impact of Earth's core formation on the behavior of Sm and Nd, we have shown the absence of fractionation between Sm and Nd during the segregation of the metallic phase [4]. Recently, Wohlers and Wood [5] proposed that Nd and Sm could be fractionated in presence of a S-rich alloy phase. However, their results were obtained at pressure and temperature conditions below the plausible conditions of the Earth's core formation. Clearly, large pressure range needs to be covered before well-constrained model can be expected. Furthermore, our preliminary metal-silicate partitioning results show that Ce and Eu have higher metal/silicate partition coefficients than their neighboring elements, and that the presence of sulphur enhances the relative difference between partition coefficients. In this presentation, we will present and discuss new metal-silicate partition coefficients of all REE at a deep magma ocean at pressures ranging from those of the uppermost upper mantle ( 5 GPa) to a maximum pressure expected in the range of 20 GPa, temperatures ranging from 2500 to about 3000 K, and oxygen fugacities within IW-1 to IW-5 (1 to 5 orders of magnitude lower than the iron-wüstite buffer). We will discuss the effect of S, as well as the effect of H2O on the behaviour of REE during the Earth's core formation: recent models suggest that contrary to currently accepted beliefs, the presence of water during the formation of metallic core of terrestrial planets is very plausible [e.g. 6-8]. References [1] Pack et al. (2004) Science 303, 997-1000. [2] Crozaz and Lundberg (1995) Geochim. Cosmochim. Acta 59, 3817-3831. [3] Gannoun et al. (2011) Geochim. Cosmochim. Acta 75, 3269-3289. [4] Bouhifd et al. (2015) Earth Planet. Sci. Lett. 413, 158-166. [5] Wohlers and Wood (2015) Nature 520, 337-340. [6] Marty (2012) Earth Planet. Sci. Lett. 313-314, 56-66. [7] Morbidelli et al. (2000) Meteor. Planet. Sci. 1320, 1309-1320. [8] Sarafian et al. (2014 Science 346, 623-626.
NASA Astrophysics Data System (ADS)
Auer, Gerald; Reuter, Markus; Hauzenberger, Christoph A.; Piller, Werner E.
2016-04-01
Rare earth elements (REE) are a commonly used proxy to reconstruct water chemistry and oxygen saturation during the formation history of authigenic and biogenic phosphates in marine environments. In the modern ocean REE exhibit a distinct pattern with enrichment of heavy REE and strong depletion in Cerium. Studies of ancient phosphates and carbonates, however, showed that this 'modern' pattern is only rarely present in the geological past. Consequently, the wide range of REE enrichment patterns found in ancient marine phosphates lead to the proposition that water chemistry had to have been radically different in the earth's past. A wealth of studies has already shown that both early and late diagenesis can strongly affect REE signatures in phosphates and severely alter primary marine signals. However, no previous research was conducted on how alteration processes occurring prior to final deposition affect marine phosphates. Herein we present a dataset of multiple LA-ICP-MS measurements of REE signatures in isolated phosphate and carbonate grains deposited in a carbonate ramp setting in the central Mediterranean Sea during the middle Miocene "Monterey event". The phosphates are represented by authigenic, biogenic and detrital grains emplaced in bioclastic grain- to packstones dominated by bryozoan and echinoderm fragments, as well as abundant benthic and planktic foraminifers. The results of 39 grain specific LA-ICP-MS measurements in three discrete rock samples reveals four markedly different REE patterns (normalized to the Post Archean Australian Shale standard) in terms of total enrichment and pattern shape. Analyses of REE diagenesis proxies show that diagenetic alteration affected the samples only to a minor degree. Considering grain shape and REE patterns together indicate that authigenic, detrital and biogenic phosphates have distinct REE patterns irrespective of the sample. Our results show that the observed REE patterns in phosphates only broadly reflect water chemistry under certain well constrained circumstances of primary authigenesis. Are these conditions not met, REE patterns are more likely to reflect complex enrichment processes that likely already started to occur during reworking over geologically relatively short time frames. Similarities in the REE patterns of clearly detrital and biogenic phosphate further suggest that the often observed 'hat-shaped' pattern in biogenic phosphates can easily result from increased middle REE (Neodymium to Holmium) scavenging during taphonomic processes prior to final deposition. Finally, cluster analysis coupled with sedimentological considerations proved a valuable tool for the characterization of REE patterns of phosphates in terms of their formation conditions and depositional history, such as the distinction of phosphates formed in situ from reworked and transported phosphate grains.
NASA Astrophysics Data System (ADS)
Stewart, B. W.; Capo, R. C.; Hedin, B. C.; Wallrich, I. L. R.; Hedin, R. S.
2016-12-01
Abandoned coal mine discharges are a serious threat to ground and surface waters due to their high metal content and often high acidity. However, these discharges represent a potential source of rare earth elements (REE), many of which are considered to be critical resources. Trace element data from 18 coal mine drainage (CMD) sites within the Appalachian Basin suggest CMD is enriched in total REE by 1-4 orders of magnitude relative to concentrations expected in unaffected surface or ground waters. When normalized to the North American Shale Composite (NASC), the discharges generally show a pattern of enrichment in the middle REE, including several identified as critical resources (Nd, Eu, Dy, Tb). In contrast, shale, sandstone and coal samples from Appalachian Basin coal-bearing units have concentrations and patterns similar to NASC, indicating that the REE in CMD are fractionated during interaction with rock in the mine pool. The highest total REE contents (up to 2800 mg/L) are found in low-pH discharges (acid mine drainage, or AMD). A precipitous drop in REE concentration in CMD with pH ≥6.6 suggests adsorption or precipitation of REE in the mine pool at circumneutral pH. Precipitated solids from 21 CMD active and passive treatment sites in the Appalachian Basin, including Fe oxy-hydroxides, Ca-Mg lime slurries, and Si- and Al-rich precipitates, are enriched in total REE content relative to the average CMD discharges by about four orders of magnitude. Similar REE trends in the discharges and precipitates, including MREE enrichment, suggest minimal fractionation of REE during precipitation; direct comparisons over multiple seasonal cycles are needed to confirm this. Although the data are limited, Al-rich precipitates generally have high REE concentrations, while those in iron oxy-hydroxides tend to be lower. Based on the area of mined coal in the Appalachian Basin, estimated infiltration rates, and the mean REE flux from discharges analyzed in this study and that of Cravotta and Brady (2015, Appl. Geochem. 62, 108-130), we estimate that coal mine drainage outflows in this region generate approximately 450 metric tons of dissolved REE per year, a portion of which could be targeted for resource recovery during CMD treatment.
NASA Astrophysics Data System (ADS)
Li, Yan Hei Martin; Zhao, Wen Winston; Zhou, Mei-Fu
2017-10-01
Regolith-hosted rare earth element (REE) deposits, also called ion-adsorption or weathered crust elution-deposited REE deposits are distributed over Jiangxi, Guangdong, Fujian, Hunan, Guangxi and Yunnan provinces in South China. In general, these deposits can be categorized into the HREE-dominated type, for example the famous Zudong deposit in southern Jiangxi province and the LREE-dominated type, such as the Heling and Dingnan deposits in southern Jiangxi province. Most of these deposits form from weathering of biotite and muscovite granites, syenites, monzogranites, granodiorites, granite porphyries, and rhyolitic tuffs. The parent rocks are generally peraluminous, siliceous, alkaline and contain a variety of REE-bearing minerals. Mostly, REE patterns of regolith are inherited from the parent rocks, and therefore, characteristics of the parent rocks impose a significant control on the ore formation. Data compilation shows that autometasomatism during the latest stage of granite crystallization is likely essential in forming the HREE-enriched granites, whereas LREE-enriched granites could form through magmatic differentiation. These deposits are normally two- to three-fold, but could be up to ten-fold enrichment in REE compared to the parent granites, where the maximum enrichment usually occurs from the lower B to the upper C horizon. Ce shows different behavior with the other REEs. Strongly positive Ce anomalies commonly occur at the upper part of weathering profiles, likely due to oxidation of Ce3+ to Ce4+ and removal of Ce from soil solutions through precipitation of cerianite. Vertical pH and redox gradients in weathering crusts facilitate dissolution of REE-bearing minerals at shallow level and fixation of REE at depth through either adsorption on clay minerals or precipitation of secondary minerals. At the same time, mass removal of major elements plays an important role in concentrating REE in regolith. Combination of mass removal and eluviation-illuviation dynamics is the main mechanism for REE accumulation in weathering crusts. Favorable exogenetic factors facilitate the accumulation of REE in regolith and preservation of the ore bodies. These include quasi-equilibrium between denudation and exhumation at regional scales, local geomorphology dominated by low-lying gentle slopes, adequate rainfall, and favorable groundwater conditions. Continuous operation of such a dynamic weathering system is essential in the formation of regolith-hosted REE deposits.
NASA Astrophysics Data System (ADS)
Miller, C. F.; Colombini, L. L.; Wooden, J. L.; Mazdab, F. K.; Gualda, G. A.; Claiborne, L. E.; Ayers, J. C.
2009-05-01
Sphene is commonly the most abundant accessory mineral in metaluminous to weakly peraluminous igneous rocks. Its relatively large crystals preserve a wide array of zoning patterns and inclusions - notably, abundant other accessories and melt inclusions - and it is a major host for REE, U, Th, and HFSE. Thus it is a valuable repository of information about the history of the magmas from which it forms. Recent development of a Zr-in- sphene thermometer (Hayden et al CMP 155:529 2008) and of sensitive and precise in situ trace element analysis by SHRIMP-RG (Mazdab et al GSA abst 39:6:406 2007) permit more powerful exploitation of this repository. We have initiated a study of sphene in Miocene intrusive and extrusive rocks of the Colorado River extensional corridor for which extensive field, geochemical, and geochronological data provide context. Sphene is present as a late interstitial phase in some gabbros and diorites and common in quartz monzonites and granites. Among extrusive rocks, it occurs as phenocrysts in rhyolite lavas and tuffs that are products of small to giant eruptions (Peach Spring Tuff, >600 km3). Glasses that host sphene in the rhyolites are highly evolved (>76 wt% SiO2). Applying the Zr-in-sphene thermometer (TZr), SHRIMP-RG analyses indicate crystallization T between 730 and 810 C in both plutonic and volcanic rocks. This range is narrower than T estimates for zircon growth (Ti thermometry) for the same suite, which extend to somewhat lower and considerably higher values; zircons also tend to record more events and, evidently, longer histories. Ranges of REE patterns are variable and to some extent sample-specific, but all reveal common characteristics: (1) extremely high concentrations, especially for middle REE (maximum Sm in interiors 10-40x103 x chondrite); (2) deep negative Eu anomalies (Eu/Eu* ca. 0.1-0.2); (3) TZr and REE dropping toward rims - especially pronounced for MREE. Estimated Kds for REE from sphene rims and rhyolite glass or phenocryst- poor whole rocks are very high, especially for middle REE: LREE Kds ca. 50-100, MREE ~500-600 (Eu ca. 300- 400), HREE ca. 100. Late REE fractionation trends that are evident in both plutonic and volcanic sequences are clearly controlled for the most part by sphene: aplites, some leucogranites, and high-Si rhyolite whole rocks and glasses reveal extreme MREE depletion and suppressed development of Eu anomalies, a trend that is also expressed in core-to-rim REE depletion patterns in sphene crystals. Results suggest that sphene saturation in these magmas occurred in melts that were already evolved but that it had a dramatic effect on final stages of fractionation. The sphene 'fingerprint' is similar to that proposed by Glazner et al. (Geology 36:183 2008) for Sierra Nevada aplites and as they suggest it marks a late-stage process, but in contrast to their inference we demonstrate that it is evident in volcanic as well as comagmatic plutonic rocks. A better understanding of the controls of sphene saturation will lead to refined interpretation of its presence (or absence), onset of growth, and geochemical fingerprint with respect to magmatic-tectonic environments (cf. Bachmann & Bergantz JPet 49:2277 2008). We intend to address these issues further with saturation experiments and tomographic and geochemical studies of sphene and its inclusions and associated phases.
Rare earth elements and neodymium isotopes in sedimentary organic matter
NASA Astrophysics Data System (ADS)
Freslon, Nicolas; Bayon, Germain; Toucanne, Samuel; Bermell, Sylvain; Bollinger, Claire; Chéron, Sandrine; Etoubleau, Joel; Germain, Yoan; Khripounoff, Alexis; Ponzevera, Emmanuel; Rouget, Marie-Laure
2014-09-01
We report rare earth element (REE) and neodymium (Nd) isotope data for the organic fraction of sediments collected from various depositional environments, i.e. rivers (n = 25), estuaries (n = 18), open-ocean settings (n = 15), and cold seeps (n = 12). Sedimentary organic matter (SOM) was extracted using a mixed hydrogen peroxide/nitric acid solution (20%-H2O2-0.02 M-HNO3), after removal of carbonate and oxy-hydroxide phases with dilute hydrochloric acid (0.25 M-HCl). A series of experimental tests indicate that extraction of sedimentary organic compounds using H2O2 may be complicated occasionally by partial dissolution of sulphide minerals and residual carbonates. However, this contamination is expected to be minor for REE because measured concentrations in H2O2 leachates are about two-orders of magnitude higher than in the above mentioned phases. The mean REE concentrations determined in the H2O2 leachates for samples from rivers, estuaries, coastal seas and open-ocean settings yield relatively similar levels, with ΣREE = 109 ± 86 ppm (mean ± s; n = 58). The organic fractions leached from cold seep sediments display even higher concentration levels (285 ± 150 ppm; mean ± s; n = 12). The H2O2 leachates for most sediments exhibit remarkably similar shale-normalized REE patterns, all characterized by a mid-REE enrichment compared to the other REE. This suggests that the distribution of REE in leached sedimentary organic phases is controlled primarily by biogeochemical processes, rather than by the composition of the source from which they derive (e.g. pore, river or sea-water). The Nd isotopic compositions for organic phases leached from river sediments are very similar to those for the corresponding detrital fractions. In contrast, the SOM extracted from marine sediments display εNd values that typically range between the εNd signatures for terrestrial organic matter (inferred from the analysis of the sedimentary detrital fractions) and marine organic matter (inferred from the analysis of local surface seawater). A notable exception is the case of organic matter (OM) fractions leached from cold seep sediment samples, which sometimes exhibit εNd values markedly different from both terrigenous and surface seawater signatures. This suggests that a significant fraction of organic compounds in these sediments may be derived from chemosynthetic processes, recycling pore water REE characterized by a distinct isotopic composition. Overall, our results confirm that organic matter probably plays an important role in the oceanic REE budget, through direct scavenging and remineralization within the water column. Both the high REE abundances and the shape of shale-normalized patterns for leached SOM also suggest that OM degradation in sub-surface marine sediments during early diagenesis could control, to a large extent, the distribution of REE in pore waters. Benthic fluxes of organic-bound REE could hence substantially contribute to the exchange processes between particulates and seawater that take place at ocean margins. Neodymium isotopes could provide useful information for tracing the origin (terrestrial versus marine) and geographical provenance of organic matter, with potential applications in paleoceanography. In particular, future studies should further investigate the potential of Nd isotopes in organic compounds preserved in sedimentary records for reconstructing past variations of surface ocean circulation.
Galusha, Aubrey L; Kruger, Pamela C; Howard, Lyn J; Parsons, Patrick J
2018-05-01
Patients receiving long-term parenteral nutrition (PN) are exposed to potentially toxic elements, which may accumulate in bone. Bone samples collected from seven PN patients (average = 14 years) and eighteen hip/knee samples were analyzed for Al as part of a previous investigation. Yttrium was serendipitously detected in the PN bone samples, leading to the present investigation of rare earth elements (REEs). A method for quantitating fifteen REEs in digested bone was developed based on tandem ICP-MS (ICP-MS/MS) to resolve spectral interferences. The method was validated against nine biological reference materials (RMs) for which assigned values were available for most REEs. Values found in two NIST bone SRMs (1400 Bone Ash and 1486 Bone Meal) compared favorably to those reported elsewhere. Method detection limits ranged from 0.9 ng g -1 (Tm) to 5.8 ng g -1 (Y). Median REE values in the PN patient group were at least fifteen times higher than the "control" group, and exceeded all previously reported data for eleven REEs in human bones. REE content in PN bones normalized to the Earth's upper crust revealed anomalies for Gd in two patients, likely from exposure to Gd-containing contrast agents used in MRI studies. A retrospective review of the medical record for one patient revealed an almost certain case of nephrogenic systemic fibrosis, associated with Gd exposure. Analysis of two current PN formulations showed traces of REEs with relative abundances similar to those found in the PN bones, providing convincing evidence that PN solutions were the primary source of REEs in this population. Copyright © 2018 Elsevier GmbH. All rights reserved.
Kaiyala, Karl J
2014-01-01
Mathematical models for the dependence of energy expenditure (EE) on body mass and composition are essential tools in metabolic phenotyping. EE scales over broad ranges of body mass as a non-linear allometric function. When considered within restricted ranges of body mass, however, allometric EE curves exhibit 'local linearity.' Indeed, modern EE analysis makes extensive use of linear models. Such models typically involve one or two body mass compartments (e.g., fat free mass and fat mass). Importantly, linear EE models typically involve a non-zero (usually positive) y-intercept term of uncertain origin, a recurring theme in discussions of EE analysis and a source of confounding in traditional ratio-based EE normalization. Emerging linear model approaches quantify whole-body resting EE (REE) in terms of individual organ masses (e.g., liver, kidneys, heart, brain). Proponents of individual organ REE modeling hypothesize that multi-organ linear models may eliminate non-zero y-intercepts. This could have advantages in adjusting REE for body mass and composition. Studies reveal that individual organ REE is an allometric function of total body mass. I exploit first-order Taylor linearization of individual organ REEs to model the manner in which individual organs contribute to whole-body REE and to the non-zero y-intercept in linear REE models. The model predicts that REE analysis at the individual organ-tissue level will not eliminate intercept terms. I demonstrate that the parameters of a linear EE equation can be transformed into the parameters of the underlying 'latent' allometric equation. This permits estimates of the allometric scaling of EE in a diverse variety of physiological states that are not represented in the allometric EE literature but are well represented by published linear EE analyses.
Mineralogy, petrography, geochemistry, and classification of the Košice meteorite
NASA Astrophysics Data System (ADS)
OzdíN, Daniel; PlavčAn, Jozef; HoråáčKová, Michaela; Uher, Pavel; PorubčAn, VladimíR.; Veis, Pavel; Rakovský, Jozef; Tóth, Juraj; KonečNý, Patrik; Svoreå, JáN.
2015-05-01
The Košice meteorite was observed to fall on 28 February 2010 at 23:25 UT near the city of Košice in eastern Slovakia and its mineralogy, petrology, and geochemistry are described. The characteristic features of the meteorite fragments are fan-like, mosaic, lamellar, and granular chondrules, which were up to 1.2 mm in diameter. The fusion crust has a black-gray color with a thickness up to 0.6 mm. The matrix of the meteorite is formed mainly by forsterite (Fo80.6); diopside; enstatite (Fs16.7); albite; troilite; Fe-Ni metals such as iron and taenite; and some augite, chlorapatite, merrillite, chromite, and tetrataenite. Plagioclase-like glass was also identified. Relative uniform chemical composition of basic silicates, partially brecciated textures, as well as skeletal taenite crystals into troilite veinlets suggest monomict breccia formed at conditions of rapid cooling. The Košice meteorite is classified as ordinary chondrite of the H5 type which has been slightly weathered, and only short veinlets of Fe hydroxides are present. The textural relationships indicate an S3 degree of shock metamorphism and W0 weathering grade. Some fragments of the meteorite Košice are formed by monomict breccia of the petrological type H5. On the basis of REE content, we suggest the Košice chondrite is probably from the same parent body as H5 chondrite Morávka from Czech Republic. Electron-microprobe analysis (EMPA) with focused and defocused electron beam, whole-rock analysis (WRA), inductively coupled plasma mass and optical emission spectroscopy (ICP MS, ICP OES), and calibration-free laser induced breakdown spectroscopy (CF-LIBS) were used to characterize the Košice fragments. The results provide further evidence that whole-rock analysis gives the most accurate analyses, but this method is completely destructive. Two other proposed methods are partially destructive (EMPA) or nondestructive (CF-LIBS), but only major and minor elements can be evaluated due to the significantly lower sample consumption.
Temperature and Oxygenation of the Shallow Tethys During the End-Triassic Extinction Event.
NASA Astrophysics Data System (ADS)
Petryshyn, V.; Lalonde, S.; Greene, S. E.; Sansjofre, P.; Ibarra, Y.; Corsetti, F. A.; Bottjer, D. J.; Tripati, A.
2016-12-01
The end-Triassic mass extinction is one of the most severe biotic crises in Earth's history. It has been hypothesized that the extinction was triggered by the rapid emplacement of the Central Atlantic Magmatic Province (CAMP), a large igneous province related to the initial rifting Pangaea 200 million years ago. A massive amount of CO2 and other volatiles were released into the atmosphere due to CAMP volcanism, causing global climate changes and mass extinction. In the uppermost Triassic strata of the Lilstock Formation, southwest United Kingdom, the extinction horizon is well-preserved and marked by a notable deposit of stromatolitic carbonate known as the Cotham Marble (CM). The CM was deposited in the shallow Tethys sea between the paleocontinents of Laurasia and Gondwana, though the specific paleoenvironment (e.g. open ocean vs. restricted basin/lagoon) is debated. The CM alternates between two facies: a fine continuous laminated (L) facies, and dendritic (D) structures that are passively infilled. Clumped isotope paleothermometry of the microbialites reveals a distinct difference between L and D microfacies, with L portions forming at 30.1 ±4.5°C, and D portions forming at 15.2 ±2.1°C, which may suggest restriction during the growth of L facies. High-precision trace element data from weak leaching of carbonate reveal rare earth element (REE) spectra broadly similar to modern seawater, with positive La anomalies, supra-chondritic Y/Ho ratios, and mild light-to-heavy REE enrichment. Y/Ho ratios are similar between the two microfacies, suggesting that changes in basinal restriction may not have actually been an important factor. Unlike modern oxic seawater, the CM displays true positive Ce anomalies that are pronounced in L microfacies and weak-to-absent in D microfacies. The REE data point to variable ambient redox conditions characterized by water column anoxia during growth of D facies and perhaps even stratification during the growth of the L facies.
NASA Astrophysics Data System (ADS)
Montanini, A.; Tribuzio, R.; Thirlwall, M.
2012-10-01
This study aims to define the origin of garnet clinopyroxenite layers from the mantle sequences of the External Ligurian ophiolites. These mantle sequences retain a subcontinental origin and were exposed at a Jurassic ocean-continent transition. The garnet clinopyroxenites are mafic rocks with Mg# values of 66-71. Their chondrite-normalised REE patterns are characterised by severe LREE depletion (CeN/SmN=0.1-0.2) and nearly flat (Type-A pyroxenites) to moderately enriched HREE (Type-B pyroxenites). In addition, Type-A pyroxenites display a small positive Eu anomaly. The whole-rock REE variations are paralleled by the garnet REE compositions. We attribute the major and trace element characteristics of the garnet clinopyroxenites to recycling of gabbroic protoliths that underwent partial melting under eclogite facies conditions. The garnet clinopyroxenites may represent variably evolved garnet+clinopyroxene cumulates formed by eclogite-derived melts. In an alternative hypothesis, Type-A and -B pyroxenites are residual rocks after eclogite melting and cumulates derived from the eclogite melts, respectively. The high pressure fractionation event that gave rise to the garnet clinopyroxenites is considered of Triassic age on the basis of Sm-Nd and Lu-Hf isotope correlations. The Nd-Hf isotopic compositions of the garnet clinopyroxenites in the Triassic (ɛNd=+4.7 to +7.6, ɛHf=+4.4 to +12.8) lie below the mantle array, in agreement with recycled ancient MOR-type material. The oxygen isotopic composition of garnet and clinopyroxene from the garnet clinopyroxenites (δ18O=+4.9‰ to +5.2‰) may be reconciled with subduction-related recycling of the lowermost oceanic crust, or delamination and foundering of underplated gabbros from the continental lithosphere. The potential involvement of the garnet clinopyroxenites in the melting processes that gave rise to the MOR-type oceanic crust in the Jurassic would account for the moderate Nd isotope variability and the garnet geochemical signature of the ophiolitic basalts.
NASA Astrophysics Data System (ADS)
Ferdous, J.; Brandon, A. D.; Peslier, A. H.; Pirotte, Z.
2017-08-01
The origin of the incompatible trace element (ITE) characteristics of enriched shergottites has been critical for examining two contradicting scenarios to explain how these Martian meteorites form. The first scenario is that it reflects ITE enrichment in an early-formed mantle reservoir whereas the second scenario attributes it to assimilation of ancient Martian crust (∼4-4.5 Ga) by ITE-depleted magmas. Strongly differentiated shergottite magmas may yield added constraints for determining which scenario can best explain this signature in enriched shergottites. The meteorite Northwest Africa (NWA) 856 is a basaltic shergottite that, unlike many enriched shergottites, lacks olivine and has undergone extensive differentiation from more primitive parent magma. In similarity to other basaltic shergottites, NWA 856 is comprised primarily of compositionally zoned clinopyroxenes (45% pigeonite and 23% augite), maskelynite (23%) and accessory minerals such as ulvöspinel, merrillite, Cl-apatite, ilmenite, pyrrhotite, baddeleyite and silica polymorph. The CI-chondrite normalized rare earth element (REE) abundance patterns for its maskelynite, phosphates, and its whole rock are flat with corresponding light-REE depletions in clinopyroxenes. The 87Rb-87Sr and 147Sm-143Nd internal isochron ages are 162 ± 14 (all errors are ±2σ) Ma and 162.7 ± 5.5 Ma, respectively, with an initial εNdI = -6.6 ± 0.2. The Rb-Sr isotope systematics are affected by terrestrial alteration resulting in larger scatter and a less precise internal isochron age. The whole rock composition is used in MELTS simulations to model equilibrium and fractional crystallization sequences to compare with the crystallization sequence from textural observations and to the mineral compositions. These models constrain the depth of initial crystallization to a pressure range of 0.4-0.5 GPa (equivalent to 34-42 km) in anhydrous conditions at the Fayalite-Magnetite-Quartz buffer, and consistently reproduce the observed mineralogy throughout the sequence with progressive crystallization. The Ti/Al ratios in the clinopyroxenes are consistent with initial crystallization occurring at these depths followed by polybaric crystallization as the parent magma ascended to the surface. The REE abundances in the clinopyroxenes and maskelynite are consistent with progressive crystallization in a closed system. The new results for NWA 856 are combined with other shergottite data and are compared to mixing and assimilation and fractional crystallization (AFC) models using depleted shergottite magmas and ancient Martian crust as end-members. The models indicate that the range of REE abundances and ratios, when taken in isolation, can be successfully explained for all shergottites by crustal contamination. However, no successful crustal contamination model can explain the restricted εNdI of -6.8 ± 0.2 over the wide range of Mg# (0.65-0.25), and corresponding trace element variations from enriched shergottites to depleted shergottites. The findings indicate that the origin of the long-term ITE-enriched signature in enriched shergottites and the geochemical variability seen in shergottites is not a result of crustal contamination but instead reflects ancient mantle heterogeneity.
de Campos, Francisco Ferreira; Enzweiler, Jacinta
2016-05-01
The concentrations of rare earth elements (REE), measured in water samples from Atibaia River and its tributary Anhumas Creek, Brazil, present excess of dissolved gadolinium. Such anthropogenic anomalies of Gd in water, already described in other parts of the world, result from the use of stable and soluble Gd chelates as contrast agents in magnetic resonance imaging. Atibaia River constitutes the main water supply of Campinas Metropolitan area, and its basin receives wastewater effluents. The REE concentrations in water samples were determined in 0.22-μm pore size filtered samples, without and after preconcentration by solid-phase extraction with bis-(2-ethyl-hexyl)-phosphate. This preconcentration method was unable to retain the anthropogenic Gd quantitatively. The probable reason is that the Gd chelates dissociate slowly in acidic media to produce the free ion that is retained by the phosphate ester. Strong correlations between Gd and constituents or parameters associated with effluents confirmed the source of most Gd in water samples as anthropogenic. The shale-normalized REE patterns of Atibaia River and Anhumas Creek water samples showed light and heavy REE enrichment trends, respectively. Also, positive Ce anomalies in many Atibaia River samples, as well as the strong correlations of the REE (except Gd) with terrigenous elements, imply that inorganic colloidal particles contributed to the REE measured values.
Rare earth elements in the sedimentary cycle - A pilot study of the first leg
NASA Technical Reports Server (NTRS)
Basu, A.; Blanchard, D. P.; Brannon, J. C.
1982-01-01
The effects of source rock composition and climate on the natural abundances of rare elements (REE) in the first leg of the sedimentary cycle are evaluated using a study with Holocene fluvia sands. The medium grained sand fraction of samples collected from first order streams exclusively draining granitic plutons in Montana (semi-arid), Georgia (humid), and South Carolina (humid) are analyzed. It is found that the REE distribution patterns (but not the total absolute abundances) of the daughter sands are very similar, despite compositional differences between parent plutons. Averages of the three areas are determined to have a La/Lu ratio of about 103, showing a depletion of heavy REE with respect to an average granite (La/Lu = 79) or the composition of North American Shales (La/Lu = 55). However, the Eu/Sm ratio in sands from these areas is about 0.22, which is very close to this ratio in North American Shales (0.21), although the overall REE distribution of these sands is not similar to that of the North American Shales in any way. It is concluded that the major rock type, but neither its minor subdivisions nor the climate, controls the REE distribution patterns in first cycle daughter sands, although the total and the parent rock-normalized abundances of REE in sands from humid areas are much lower than those in sands from arid areas.
Molina-Infante, Javier; Katzka, David A; Dellon, Evan S
2015-01-01
Eosinophilic esophagitis (EoE) is an emerging chronic esophageal disease, first described in 1993, with a steadily increasing incidence and prevalence in western countries. Over the 80's and early 90's, dense esophageal eosinophilia was mostly associated gastroesophageal reflux disease (GERD). For the next 15 years, EoE and GERD were rigidly considered separate entities: Esophageal eosinophilia with pathological acid exposure on pH monitoring or response to proton pump inhibitor (PPI) therapy was GERD, whereas normal pH monitoring or absence of response to PPIs was EoE. Updated guidelines in 2011 described a novel phenotype, proton pump inhibitor-responsive esophageal eosinophilia (PPI-REE), referring to patients who appear to have EoE clinically, but who achieve complete remission after PPI therapy. Currently, PPI-REE must be formally excluded before diagnosing EoE, since 30-40% of patients with suspected EoE are eventually diagnosed with PPI-REE.Interestingly, PPI-REE and EoE remain undistinguishable based on clinical, endoscopic, and histological findings, pH monitoring, and measurement of tissue markers and cytokines related to eosinophilic inflammation.This review article aims to revisit the relatively novel concept of PPI-REE from a historical perspective, given the strong belief that only GERD, as an acid peptic disorder, could respond to the acid suppressing ability of PPI therapy, is becoming outdated. Evolving evidence suggests that PPI-REE is genetically and phenotypically undistinguishable from EoE and PPI therapy alone can almost completely reverse allergic inflammation. As such, PPI-REE might constitute a subphenotype of EoE and PPI therapy may be the first therapeutic step and diet/ steroids may represent step up therapy. Possibly, the term PPI-REE will be soon replaced by PPI-responsive EoE. The mechanism as to why some patients respond to PPI therapy (PPI-REE) while others do not (EoE), remains to be elucidated.
Sulfide in the core and the Nd isotopic composition of the silicate Earth
NASA Astrophysics Data System (ADS)
McCoy-West, A.; Millet, M. A.; Nowell, G. M.; Wohlers, A.; Wood, B. J.; Burton, K. W.
2016-12-01
The chemical composition of the Earth is traditionally explained in terms of evolution from a solar-like composition, similar to that found in primitive chondritic meteorites. It now appears, however, that the silicate Earth is not chondritic, but depleted in incompatible elements and a resovable 20 ppm excess is observed in 142Nd relative to chondirtes [1, 2]. This anomaly requires a process that occurred within 30 Myr of solar system formation and has been variably ascribed to: a complementary enriched reservoir in the deep Earth [1]; loss to space through collisional erosion [3]; or the inhertence of nucleosynthetic anomalies [4]. Sulfide in the core may provide a reservoir capable of balancing the composition of the silicate Earth. Recent experimental work suggests that the core contains a significant proportion of sulfide, added during the final stages of accretion and new data suggests that at high pressures sulfide can incorporate a substantial amount of refractory lithophile and heat-producing elements [5]. The drawback of the short-lived 146Sm-142Nd radiogenic isotope system is that it is not possible to distinguish between fractionations of Sm/Nd that occurs during silicate melting or segregation of a sulfide-melt. Neodymium stable isotopes have the potential to provide just such a tracer of sulfide segregation, because there is a significant contrast in bonding environment between sulfide and silicate, where heavy isotopes should be preferentially incorporated into high force-constant bonds involving REE3+ (i.e. the silicate mantle). Preliminary data indicate that mantle rocks do indeed possess heavier 146Nd/144Nd values than chondritic meteorites by 0.3 ‰, consistent with the removal of light Nd into sulfide in the core, driving the residual mantle to heavier values. Overall, our isotope and elemental data indicate that the rare earths and other incompatible elements are substantially incorporated into sulfide. While Nd stable isotope data for chondritic meteorites and mantle rocks, are consistent with the segregation of sulfide to the core. [1] Boyet & Carlson, Science 309, 576 (2005) [2] Carlson et al. Science 316, 1175 (2007) [3] Campbell& O'Neill Nature 483, 553 (2012) [4] Burkhardt Goldschmidt Ab. 429 (2015) [5] Wohlers &Wood, Nature 520, 337 (2015)
NASA Astrophysics Data System (ADS)
Nagarajan, Ramasamy; Roy, Priyadarsi D.; Kessler, Franz L.; Jong, John; Dayong, Vivian; Jonathan, M. P.
2017-08-01
An integrated study using bulk chemical composition, mineralogy and mineral chemistry of sedimentary rocks from the Tukau Formation of Borneo Island (Sarawak, Malaysia) is presented in order to understand the depositional and tectonic settings during the Neogene. Sedimentary rocks are chemically classified as shale, wacke, arkose, litharenite and quartz arenite and consist of quartz, illite, feldspar, rutile and anatase, zircon, tourmaline, chromite and monazite. All of them are highly matured and were derived from a moderate to intensively weathered source. Bulk and mineral chemistries suggest that these rocks were recycled from sedimentary to metasedimentary source regions with some input from granitoids and mafic-ultramafic rocks. The chondrite normalized REE signature indicates the presence of felsic rocks in the source region. Zircon geochronology shows that the samples were of Cretaceous and Triassic age. Comparable ages of zircon from the Tukau Formation sedimentary rocks, granitoids of the Schwaner Mountains (southern Borneo) and Tin Belt of the Malaysia Peninsular suggest that the principal provenance for the Rajang Group were further uplifted and eroded during the Neogene. Additionally, presence of chromian spinels and their chemistry indicate a minor influence of mafic and ultramafic rocks present in the Rajang Group. From a tectonic standpoint, the Tukau Formation sedimentary rocks were deposited in a passive margin with passive collisional and rift settings. Our key geochemical observation on tectonic setting is comparable to the regional geological setting of northwestern Borneo as described in the literature.
NASA Astrophysics Data System (ADS)
Pandey, Shivani; Parcha, Suraj K.
2017-03-01
The geochemical study of siliciclastic rocks from the Lower Cambrian of Parahio Valley has been studied to describe the provenance, chemical weathering and tectonic setting. The K2O/Al2O3 ratio and positive correlation of Co ( r=0.85), Ni ( r=0.86), Zn ( r=0.82), Rb ( r=0.98) with K2O reflects that the presence of clay minerals control the abundances of these elements and suggests a warm and humid climate for this region. The chondrite normalized REE pattern of the samples is equivalent to upper continental crust, which reflects enriched LREE and flat HREE with negative Eu anomaly. The tectonic setting discriminant diagram log[K2O/Na2O] vs. SiO2; [SiO2/Al2O3] vs. log[K2O/Na2O]; [SiO2/20] - [K2O+Na2O] - [TiO2+Fe2O3+MgO] indicates transitional tectonic setting from an active continental margin to a passive margin. The discriminant function plot indicates quartzose sedimentary provenance, and to some extent, the felsic igneous provenance, derived from weathered granite, gneissic terrain and/or from pre-existing sedimentary terrain. The CIA value indicates low to moderate degree of chemical weathering and the average ICV values suggests immature sediments deposited in tectonically active settings. The A-CN-K diagram indicates that these sediments were generated from source rocks of the upper continental crust.
NASA Astrophysics Data System (ADS)
He, Huiying; Wang, Yuejun; Zhang, Yanhua; Qian, Xin; Zhang, Yuzhi
2018-03-01
Hainan of Southeast Asia has been regarded as a key area for understanding the Late Paleozoic tectonic regime and amalgamation process of the Indochina with South China Blocks that are not well constrained. This paper presents a set of new geochronological, elemental, and Sr-Nd isotopic data for the Paleozoic Bangxi and Chenxing metabasites in Central Hainan. The geochronological data show that the representative samples yield the 40Ar/39Ar plateau age of 328.1 ± 2.6 Ma and zircon U-Pb age of 330.7 ± 4.4 Ma, respectively. They are SiO2- and TiO2-poor, Al2O3-rich mafic rocks. The Chenxing samples are characterized by left-sloping chondrite-normalized REE and N-MORB-like multi-elemental patterns. The Bangxi samples have the E-MORB-like geochemical affinity. All samples show high ɛ Nd(t) values ranging from +5.61 to +9.85. Such signatures suggest their origination of a MORB-like source with the input of subduction-derived components. Our investigation has verified the presence of the Carboniferous metabasites with both MORB- and arc- like geochemical affinities at the Bangxi-Chenxing area in Central Hainan. In combination with the available data from the Jinshajiang, Ailaoshan, and Song Ma suture zones, it is proposed for the development of a Carboniferous back-arc basin along the Ailaoshan-Song Ma and Central Hainan suture zones in response to the subduction of the Paleotethyan main Ocean.
Rare earth element behavior during groundwater – seawater mixing along the Kona Coast of Hawaii
Johannesson, Karen H.; Palmore, C. Dianne; Fackrell, Joseph; Prouty, Nancy G.; Swarzenski, Peter W.; Chevis, Darren A.; Telfeyan, Katherine; White, Christopher D.; Burdige, David J.
2017-01-01
Groundwater and seawater samples were collected from nearshore wells and offshore along the Kona Coast of the Big Island of Hawaii to investigate rare earth element (REE) behavior in local subterranean estuaries. Previous investigations showed that submarine groundwater discharge (SGD) is the predominant flux of terrestrial waters to the coastal ocean along the arid Kona Coast of Hawaii. Groundwater and seawater samples were filtered through 0.45 μm and 0.02 μm pore-size filters to evaluate the importance of colloidal and soluble (i.e., truly dissolved ionic species and/or low molecular weight [LMW] colloids) fractions of the REEs in the local subterranean estuaries. Mixing experiments using groundwater collected immediately down gradient from a wastewater treatment facility (WWTF) proximal to the Kaloko-Hanokohau National Historic Park, and more “pristine” groundwater from a well constructed in a lava tube at Kiholo Bay, were mixed with local seawater to study the effect of solution composition (i.e., pH, salinity) on the concentrations and fractionation behavior of the REEs as groundwater mixes with seawater in Kona Coast subterranean estuaries. The mixed waters were also filtered through 0.45 or 0.02 μm filters to ascertain the behavior of colloidal and soluble fractions of the REEs across the salinity gradient in each mixing experiment. Concentrations of the REEs were statistically identical (two-tailed Student t-test, 95% confidence) between the sequentially filtered sample aliquots, indicating that the REEs occur as dissolved ionic species and/or LMW colloids in Kona Coast groundwaters. The mixing experiments revealed that the REEs are released to solution from suspended particles or colloids when Kona Coast groundwater waters mix with local seawater. The order of release that accompanies increasing pH and salinity follows light REE (LREE) > middle REE (MREE) > heavy REE (HREE). Release of REEs in the mixing experiments is driven by decreases in the free metal ion activity in solution and the concomitant increase in the amount of each REE that occurs in solution as dicarbonato complexes [i.e., Ln(CO3)2-] as pH increases across the salinity gradient. Input-normalized REE patterns of Kona Coast groundwater and coastal seawater are nearly identical and relatively flat compared to North Pacific seawater, indicating that SGD is the chief source of these trace elements to the ocean along the Kona Coast. Additionally, REE concentrations of the coastal seawater are between 10 and 50 times higher than previously reported open-ocean seawater values from the North Pacific, further demonstrating the importance of SGD fluxes of REEs to these coastal waters. Taken together, these observations indicate that large-scale removal of REEs, which characterizes the behavior of REEs in the low salinity reaches of many surface estuaries, is not a feature of the subterranean estuary along the Kona Coast. A large positive gadolinium (Gd) anomaly characterizes groundwater from the vicinity of the WWTF. The positive Gd anomaly can be traced to the coastal ocean, providing further evidence of the impact of SGD on the coastal waters. Estimates of the SGD fluxes of the REEs to the coastal ocean along the Kona Coast (i.e., 1.3 – 2.6 mmol Nd day-1) are similar to recent estimates of SGD fluxes of REEs along Florida’s east coast and to Rhode Island Sound, all of which points to the importance of SGD as significant flux of REEs to the coastal ocean.
Rare earth element behavior during groundwater–seawater mixing along the Kona Coast of Hawaii
Johannesson, Karen H.; Palmore, C. Dianne; Fackrell, Joseph; ...
2016-11-14
Groundwater and seawater samples were collected from nearshore wells and offshore along the Kona Coast of the Big Island of Hawaii to investigate rare earth element (REE) behavior in local subterranean estuaries. Previously we saw that submarine groundwater discharge (SGD) is the predominant flux of terrestrial waters to the coastal ocean along the arid Kona Coast of Hawaii. Groundwater and seawater samples were filtered through 0.45 μm and 0.02 μm pore-size filters to evaluate the importance of colloidal and soluble (i.e., truly dissolved ionic species and/or low molecular weight [LMW] colloids) fractions of the REEs in the local subterranean estuaries.more » Mixing experiments using groundwater collected immediately down gradient from a wastewater treatment facility (WWTF) proximal to the Kaloko-Hanokohau National Historic Park, and more “pristine” groundwater from a well constructed in a lava tube at Kiholo Bay, were conducted with local seawater to study the effect of solution composition (i.e., pH, salinity) on the concentrations and fractionation behavior of the REEs as groundwater mixes with seawater in Kona Coast subterranean estuaries. The mixed waters were also filtered through 0.45 or 0.02 μm filters to ascertain the behavior of colloidal and soluble fractions of the REEs across the salinity gradient in each mixing experiment. Concentrations of the REEs were statistically identical (two-tailed Student t-test, 95% confidence) between the sequentially filtered sample aliquots, indicating that the REEs occur as dissolved ionic species and/or LMW colloids in Kona Coast groundwaters. The mixing experiments revealed that the REEs are released to solution from suspended particles or colloids when Kona Coast groundwater waters mix with local seawater. The order of release that accompanies increasing pH and salinity follows light REE (LREE) > middle REE (MREE) > heavy REE (HREE). Release of REEs in the mixing experiments is driven by decreases in the free metal ion activity in solution and the concomitant increase in the amount of each REE that occurs in solution as dicarbonato complexes [i.e., Ln(CO 3) 2 -] as pH increases across the salinity gradient. Input-normalized REE patterns of Kona Coast groundwater and coastal seawater are nearly identical and relatively flat compared to North Pacific seawater, indicating that SGD is the chief source of these trace elements to the ocean along the Kona Coast. Additionally, REE concentrations of the coastal seawater are between 10 and 50 times higher than previously reported open-ocean seawater values from the North Pacific, further demonstrating the importance of SGD fluxes of REEs to these coastal waters. Altogether, these observations indicate that large-scale removal of REEs, which characterizes the behavior of REEs in the low salinity reaches of many surface estuaries, is not a feature of the subterranean estuary along the Kona Coast. A large positive gadolinium (Gd) anomaly characterizes groundwater from the vicinity of the WWTF. The positive Gd anomaly can be traced to the coastal ocean, providing further evidence of the impact of SGD on the coastal waters. Estimates of the SGD fluxes of the REEs to the coastal ocean along the Kona Coast (i.e., 1.3–2.6 mmol Nd day -1) are similar to recent estimates of SGD fluxes of REEs along Florida’s east coast and to Rhode Island Sound, all of which points to the importance of SGD as significant flux of REEs to the coastal ocean.« less
Rare earth element behavior during groundwater–seawater mixing along the Kona Coast of Hawaii
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johannesson, Karen H.; Palmore, C. Dianne; Fackrell, Joseph
Groundwater and seawater samples were collected from nearshore wells and offshore along the Kona Coast of the Big Island of Hawaii to investigate rare earth element (REE) behavior in local subterranean estuaries. Previously we saw that submarine groundwater discharge (SGD) is the predominant flux of terrestrial waters to the coastal ocean along the arid Kona Coast of Hawaii. Groundwater and seawater samples were filtered through 0.45 μm and 0.02 μm pore-size filters to evaluate the importance of colloidal and soluble (i.e., truly dissolved ionic species and/or low molecular weight [LMW] colloids) fractions of the REEs in the local subterranean estuaries.more » Mixing experiments using groundwater collected immediately down gradient from a wastewater treatment facility (WWTF) proximal to the Kaloko-Hanokohau National Historic Park, and more “pristine” groundwater from a well constructed in a lava tube at Kiholo Bay, were conducted with local seawater to study the effect of solution composition (i.e., pH, salinity) on the concentrations and fractionation behavior of the REEs as groundwater mixes with seawater in Kona Coast subterranean estuaries. The mixed waters were also filtered through 0.45 or 0.02 μm filters to ascertain the behavior of colloidal and soluble fractions of the REEs across the salinity gradient in each mixing experiment. Concentrations of the REEs were statistically identical (two-tailed Student t-test, 95% confidence) between the sequentially filtered sample aliquots, indicating that the REEs occur as dissolved ionic species and/or LMW colloids in Kona Coast groundwaters. The mixing experiments revealed that the REEs are released to solution from suspended particles or colloids when Kona Coast groundwater waters mix with local seawater. The order of release that accompanies increasing pH and salinity follows light REE (LREE) > middle REE (MREE) > heavy REE (HREE). Release of REEs in the mixing experiments is driven by decreases in the free metal ion activity in solution and the concomitant increase in the amount of each REE that occurs in solution as dicarbonato complexes [i.e., Ln(CO 3) 2 -] as pH increases across the salinity gradient. Input-normalized REE patterns of Kona Coast groundwater and coastal seawater are nearly identical and relatively flat compared to North Pacific seawater, indicating that SGD is the chief source of these trace elements to the ocean along the Kona Coast. Additionally, REE concentrations of the coastal seawater are between 10 and 50 times higher than previously reported open-ocean seawater values from the North Pacific, further demonstrating the importance of SGD fluxes of REEs to these coastal waters. Altogether, these observations indicate that large-scale removal of REEs, which characterizes the behavior of REEs in the low salinity reaches of many surface estuaries, is not a feature of the subterranean estuary along the Kona Coast. A large positive gadolinium (Gd) anomaly characterizes groundwater from the vicinity of the WWTF. The positive Gd anomaly can be traced to the coastal ocean, providing further evidence of the impact of SGD on the coastal waters. Estimates of the SGD fluxes of the REEs to the coastal ocean along the Kona Coast (i.e., 1.3–2.6 mmol Nd day -1) are similar to recent estimates of SGD fluxes of REEs along Florida’s east coast and to Rhode Island Sound, all of which points to the importance of SGD as significant flux of REEs to the coastal ocean.« less
182W and HSE constraints from 2.7 Ga komatiites on the heterogeneous nature of the Archean mantle
NASA Astrophysics Data System (ADS)
Puchtel, Igor S.; Blichert-Toft, Janne; Touboul, Mathieu; Walker, Richard J.
2018-05-01
While the isotopically heterogeneous nature of the terrestrial mantle has long been established, the origin, scale, and longevity of the heterogeneities for different elements and isotopic systems are still debated. Here, we report Nd, Hf, W, and Os isotopic and highly siderophile element (HSE) abundance data for the Boston Creek komatiitic basalt lava flow (BCF) in the 2.7 Ga Abitibi greenstone belt, Canada. This lava flow is characterized by strong depletions in Al and heavy rare earth elements (REE), enrichments in light REE, and initial ε143Nd = +2.5 ± 0.2 and intial ε176Hf = +4.2 ± 0.9 indicative of derivation from a deep mantle source with time-integrated suprachondritic Sm/Nd and Lu/Hf ratios. The data plot on the terrestrial Nd-Hf array suggesting minimal involvement of early magma ocean processes in the fractionation of lithophile trace elements in the mantle source. This conclusion is supported by a mean μ142Nd = -3.8 ± 2.8 that is unresolvable from terrestrial standards. By contrast, the BCF exhibits a positive 182W anomaly (μ182W = +11.7 ± 4.5), yet is characterized by chondritic initial γ187Os = +0.1 ± 0.3 and low inferred source HSE abundances (35 ± 5% of those estimated for the present-day Bulk Silicate Earth, BSE). Collectively, these characteristics are unique among Archean komatiite systems studied so far. The deficit in the HSE, coupled with the chondritic Os isotopic composition, but a positive 182W anomaly, are best explained by derivation of the parental BCF magma from a mantle domain characterized by a predominance of HSE-deficient, differentiated late accreted material. According to the model presented here, the mantle domain that gave rise to the BCF received only ∼35% of the present-day HSE complement in the BSE before becoming isolated from the rest of the convecting mantle until the time of komatiite emplacement at 2.72 Ga. These new data provide strong evidence for a highly heterogeneous Archean mantle in terms of absolute HSE abundances and W isotopic composition, and also indicate slow mixing, on a timescale of at least 1.8 billion years. Additionally, the data are consistent with a stagnant-lid plate tectonic regime in the Hadean and Archean, prior to the onset of modern-style plate tectonics.
NASA Astrophysics Data System (ADS)
Pourret, Olivier; Lange, Bastien; Jitaru, Petru; Mahy, Grégory; Faucon, Michel-Pierre
2014-05-01
The geochemical behavior of rare earth elements (REE) is generally assessed for the characterization of the geological systems where these elements represent the best proxies of processes involving the occurrence of an interface between different media. REE behavior is investigated according to their concentrations normalized with respect to the upper continental crust. In this study, the geochemical fingerprint of REE in plant shoot biomass of an unique metallicolous flora (i.e., Crepidorhopalon tenuis and Anisopappus chinensis) was investigated. The plants originate from extremely copper and cobalt rich soils, deriving from Cu and Co outcrops in Katanga, Democratic Republic of Congo. Some of the species investigated in this study are able to accumulate high amounts of Cu and Co in shoot hence being considered as Cu and Co hyperaccumulators. Therefore, assessing the behavior of REE may lead to a better understanding of the mechanisms of metal accumulation by this flora. The data obtained in this study indicate that REE uptake by plants is not primarily controlled by their concentration and speciation in the soil as previously shown in the literature (Brioschi et al. 2013). Indeed, the REE patterns in shoots are relatively flat whereas soils patterns are Middle REE enriched. In addition, it is worth noting that Eu enrichments occur in aerial parts of the plants. These positive Eu anomalies suggest that Eu3 + can form stable organic complexes replacing Ca2 + in several biological processes as in xylem fluids associated with the general nutrient flux. Therefore, is is possible that the Eu mobility in these fluids is enhanced by its reductive speciation as Eu2 +. Eventually, the geochemical behavior of REE illustrates that metals accumulation in aerial parts of C. tenuis and A. chinensis is mainly driven by dissolved complexation. Brioschi, L., Steinmann, M., Lucot, E., Pierret, M., Stille, P., Prunier, J., Badot, P., 2013. Transfer of rare earth elements (REE) from natural soil to plant systems: implications for the environmental availability of anthropogenic REE. Plant and Soil, 366, 143-163.
NASA Astrophysics Data System (ADS)
Zhu, Xuxu; Gao, Aiguo; Lin, Jianjie; Jian, Xing; Yang, Yufeng; Zhang, Yanpo; Hou, Yuting; Gong, Songbai
2017-09-01
With the aim of elucidating the spatial and seasonal behaviors of rare earth elements (REEs), we investigated the dissolved REE concentrations of surface water collected during four seasons from middle, lower reaches and estuary of the Minjiang River, southeastern China. The results display that the REE abundances in Minjiang River, ranging from 3.3-785.9 ng/L, were higher than those of many of the major global rivers. The total REE concentrations (ΣREE) were seasonally variable, averaging in 5 937.30, 863.79, 825.65 and 1 065.75 ng/L during second highest flow (SHF), normal flow (NF), low flow (LF) and high flow (HF) season, respectively. The R (L/M) and R (H/M) ratios reveal the spatial and temporal variations of REE patterns, and particularly vary apparently in the maximum turbidity zone and estuary. REE patterns of dissolved loads are characterized by progressing weaker LREEs-enrichment and stronger HREEs-enrichment downstream from middle reaches to estuary during all four seasons. Comparing with NF and LF seasons, in which REE patterns are relatively flat, samples of SHF season have more LREE-enriched and HREE-depleted patterns that close to parent rocks, while samples of HF season are more LREEs-depleted and HREE-enriched. REE fractionations from the middle to lower reaches are stronger in the SHF and HF seasons than those in NF and LF seasons. Generally, spatial and seasonal variations in REE abundance and pattern are presumably due to several factors, such as chemical weathering, mixture with rainfall and groundwater, estuarine mixing, runoff, biological production and mountain river characters, such as strong hydrodynamic forces and steep slopes. The highest Gd/Gd* always occurs at north ports during all four seasons, where most of the large hospitals are located. This suggests Gd anomalies are depended on the density of modern medical facilities. Y/Ho ratios fluctuate and positively correlate to salinity in estuary, probably because of the geochemical behavior differences between Y and Ho.
NASA Astrophysics Data System (ADS)
Gonzalez-Alvarez, I.; Kusiak, M. A.
2004-05-01
Chemical dates (CHIME) on 105 spots and REE patterns of monazites were obtained from coarse sandstones and siltstones in the Mesoproterozoic siliciclastic Appekunny and Grinnell formations, lower Belt Supergroup, Montana, by EMPA. At least three post-depositional events induced by basinal fluids can be recognized: (a) red coloration accompanied by a major K-addition; (b) a green overprint of red siltstones; and (c) dolomitization. Fluid advection in the unmineralized lower Belt is pervasive and may have been alkaline and oxidizing. These three events progressively modified the primary geochemical characteristics of the siliciclastic rocks. Calculated ages show similar ranges in the fine and coarse-grained facies. For siltstones there are two age clusters: (1) at 1,801 ± 21 to 1,968 ± 26 Ma, as well as (2) at 854 ± 7 to 962 ± 13 Ma. Coarse sandstones show similar age clusters (3) at 1,831 ± 14 to 1,982 ± 12 Ma, and (4) at 803 ± 6 to 944 ± 9 Ma. A wide range of dates plots between the clusters for both facies. Clusters (1) and (3) are interpreted as the result of detrital monazites from a source area ~1.8 to 1.9 Ga old. Mineralogical variations and trace element systematic reveal basinal brines, which mobilized MREE and HREE, locally generating secondary monazites, influencing large domains of the lower Belt. The lower Belt Supergroup is estimated to have been deposited between 1.47 Ga and 1.45 Ga; consequently, the second age cluster for sandstones and siltstones is viewed as constraining the timeframe of a major basinal fluid event at ~0.80 to 0.96 Ga. That event is clearly distinct from the hydrothermal system associated with the Sullivan sedex base metal deposit at the base of the Belt. Ages between the clusters are interpreted either as secondary, formed during additional basinal fluid events or as reset of detrital monazites. Accordingly, the Belt basin was intermittently an open system to fluids from ~1.47 to ~0.80 Ga. Chondrite-normalized REE patterns for both facies display three unusual features: (A) on a linear scale for both facies for clusters (1) and (3) monazites reveal a straight line from La to Sm. For clusters (2) and (4) the profiles between La and Sm are concave or convex; concave profiles are produced mainly because of the Ce values. All reset monazites have convex or concave La-Sm profiles; (B) LREE/HREE and La/Y ratios average values for both facies in clusters (1) and (3) exhibit distinctively lower values than in clusters (2) and (4); (C) on log scale, charts show an unusually heterogeneous MREE and HREE profile for all monazites.
Trace element abundances of high-MgO glasses from Kilauea, Mauna Loa and Haleakala volcanoes, Hawaii
Wagner, T.P.; Clague, D.A.; Hauri, E.H.; Grove, T.L.
1998-01-01
We performed an ion-microprobe study of eleven high-MgO (6.7-14.8 wt%) tholeiite glasses from the Hawaiian volcanoes Kilauea, Mauna Loa and Haleakala. We determined the rare earth (RE), high field strength, and other selected trace element abundances of these glasses, and used the data to establish their relationship to typical Hawaiian shield tholeiite and to infer characteristics of their source. The glasses have trace element abundance characteristics generally similar to those of typical shield tholeiites, e.g. L(light)REE/H(heavy)REE(C1) > 1. The Kilauea and Mauna Loa glasses, however, display trace and major element characteristics that cross geochemical discriminants observed between Kilauea and Mauna Loa shield lavas. The glasses contain a blend of these discriminating chemical characteristics, and are not exactly like the typical shield lavas from either volcano. The production of these hybrid magmas likely requires a complexly zoned source, rather than two unique sources. When corrected for olivine fractionation, the glass data show correlations between CaO concentration and incompatible trace element abundances, indicating that CaO may behave incompatibly during melting of the tholeiite source. Furthermore, the tholeiite source must contain residual garnet and clinopyroxene to account for the variation in trace element abundances of the Kilauea glasses. Inversion modeling indicates that the Kilauea source is flat relative to C1 chondrites, and has a higher bulk distribution coefficient for the HREE than the LREE.
Aegirine as a late-stage phase in an alkaline pluton associated with carbonate assimilation
NASA Astrophysics Data System (ADS)
Barnes, C. G.; Prestvik, T.; Hiller, J.
2006-12-01
The Hortavaer Complex in north-central Norway is a well-documented example of formation of an alkaline magmatic suite due to assimilation of carbonate and calc-silicate rocks (Vogt 1916; Gustavson & Prestvik, 1979; Barnes et al., 2003, 2005). The alkaline nature developed primarily as the result of increased stability and fractionation of Ca-pyroxene at the expense of olivine, resulting in enrichment of Na and K compared to Si. Calcic pyroxene is a common mineral in rocks that range from gabbro through diorite and monzonite to syenite, with a compositional range from augite to hedenbergite. In addition to calcic pyroxene, glassy, pale green aegirine occurs in veins near skarn-like assemblages in a zone where dioritic sheets were emplaced into syenite. Other vein minerals are biotite, albite, K-feldspar, calcite, and ilmenite. The aegirine is almost pure NaFeSi2O6 (Ae = 91.1%, Jd = 7.4%, Q = 1.5%; where Ae is the aegirine component, Jd the jadeite component, and Q the "quadrilateral" pyroxene component). Laser-ablation ICP-MS analysis shows that the aegirine crystals are typically lower in trace element concentrations than the calcic cpx. For example, Sr is < 2 ppm in the aegirine but > 20 ppm in cpx from evolved syenites and > 85 ppm in cpx from dioritic samples. Chondrite-normalized rare earth element (REE) patterns show a prominent cup shape and light REE abundances range from ~0.1X > 10X chondrites. Aegirine occurs in many locations in Norway (Neumann 1985), where it is generally related to alkaline rocks. Compared to the Hortavaer locality, aegirine from the type area in the Permian Oslo Region has 77% of the NaFeSi2O6 (Ae) component, whereas acmite has 89% Ae. Larsen and Raade (1997) presented c. 30 XRF and EMP analyses of pyroxenes from syenite pegmatites of the southern part of Oslo Region. There is a wide range in composition, and some have up to 95% of the Ae component. Most of the Na-rich pyroxenes (Ae > 90) are low in the Jd component (1.6 to 4.7%), and Q varies in the 4 to 6% range. Thus, compared to pyroxenes similarly high in Ae (> 90%) from the Oslo Region, the Hortavaer aegirine has more of the Jd component and less of the "quadrilateral" component. This feature is striking because host rocks to the Hortavaer aegirine are exceptionally rich in CaO. We suggest that aegirine from Hortavaer is distinct from aegirine from the Oslo region for at least two reasons. First, the Oslo occurrences are associated with rift-related magmatic rocks in which alkalinity resulted by fractionation of an alkaline parent. In contrast, alkalinity in the Hortavær complex developed due to in situ assimilation of carbonate rocks by a sub-alkaline parent. Assimilation resulted in a fluid-rich environment that provided Na, it enhanced the stability of titanite and suppressed magnetite stability. This sequestered Ti and made ferric iron available for aegirine growth. The higher Al may have resulted from differentiation of Hortavaer magmas in a deep-seated magmatic arc.
Rare earth element scavenging in seawater
NASA Astrophysics Data System (ADS)
Byrne, Robert H.; Kim, Ki-Hyun
1990-10-01
Examinations of rare earth element (REE) adsorption in seawater, using a variety of surface-types, indicated that, for most surfaces, light rare earth elements (LREEs) are preferentially adsorbed compared to the heavy rare earths (HREEs). Exceptions to this behavior were observed only for silica phases (glass surfaces, acid-cleaned diatomaceous earth, and synthetic SiO 2). The affinity of the rare earths for surfaces can be strongly affected by thin organic coatings. Glass surfaces which acquired an organic coating through immersion in Tampa Bay exhibited adsorptive behavior typical of organic-rich, rather than glass, surfaces. Models of rare earth distributions between seawater and carboxylate-rich surfaces indicate that scavenging processes which involve such surfaces should exhibit a strong dependence on pH and carbonate complexation. Scavenging models involving carboxylate surfaces produce relative REE abundance patterns in good general agreement with observed shale-normalized REE abundances in seawater. Scavenging by carboxylate-rich surfaces should produce HREE enrichments in seawater relative to the LREEs and may produce enrichments of lanthanum relative to its immediate trivalent neighbors. Due to the origin of distribution coefficients as a difference between REE solution complexation (which increases strongly with atomic number) and surface complexation (which apparently also increases with atomic number) the relative solution abundance patterns of the REEs produced by scavenging reactions can be quite complex.
Kaiyala, Karl J.
2014-01-01
Mathematical models for the dependence of energy expenditure (EE) on body mass and composition are essential tools in metabolic phenotyping. EE scales over broad ranges of body mass as a non-linear allometric function. When considered within restricted ranges of body mass, however, allometric EE curves exhibit ‘local linearity.’ Indeed, modern EE analysis makes extensive use of linear models. Such models typically involve one or two body mass compartments (e.g., fat free mass and fat mass). Importantly, linear EE models typically involve a non-zero (usually positive) y-intercept term of uncertain origin, a recurring theme in discussions of EE analysis and a source of confounding in traditional ratio-based EE normalization. Emerging linear model approaches quantify whole-body resting EE (REE) in terms of individual organ masses (e.g., liver, kidneys, heart, brain). Proponents of individual organ REE modeling hypothesize that multi-organ linear models may eliminate non-zero y-intercepts. This could have advantages in adjusting REE for body mass and composition. Studies reveal that individual organ REE is an allometric function of total body mass. I exploit first-order Taylor linearization of individual organ REEs to model the manner in which individual organs contribute to whole-body REE and to the non-zero y-intercept in linear REE models. The model predicts that REE analysis at the individual organ-tissue level will not eliminate intercept terms. I demonstrate that the parameters of a linear EE equation can be transformed into the parameters of the underlying ‘latent’ allometric equation. This permits estimates of the allometric scaling of EE in a diverse variety of physiological states that are not represented in the allometric EE literature but are well represented by published linear EE analyses. PMID:25068692
RARE EARTH ELEMENTS IN FLY ASHES AS POTENTIAL INDICATORS OF ANTHROPOGENIC SOIL CONTAMINATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mattigod, Shas V.
2003-08-01
Studies of rare earth element (REE) content of disposed fly ashes and their potential mobility were neglected for decades because these elements were believed to be environmentally benign. A number of recent studies have now shown that REE may pose a long-term risk to the biosphere. Therefore, there is a critical need to study the REE concentrations in fly ash and their potential mobilization and dispersal upon disposal in the environment. We analyzed the REE content of bulk, size fractionated, and density separated fractions of three fly ash samples derived from combustion of sub bituminous coals from the western Unitedmore » States and found that the concentrations of these elements in bulk ashes were within the range typical of fly ashes derived from coals from the North American continent. The concentrations of light rare earth elements (LREE) such as La, Ce, and Nd, however, tended towards the higher end of the concentration range whereas, the concentrations of middle rare earth elements (MREE) (Sm and Eu) and heavy rare earth elements (HREE) (Lu) were closer to the lower end of the observed range for North American fly ashes. The concentrations of REE did not show any significant enrichment with decreasing particle size, this is typical of nonvolatile lithophilic element behavior during the combustion process. The lithophilic nature of REE was also confirmed by their concentrations in heavy density fractions of these fly ashes being on average about two times more enriched than the concentrations in the light density fractions. Shale normalized average of REE concentrations of fly ashes and coals revealed significant positive anomalies for Eu and Dy. Because of these distinctive positive anomalies of Eu and Dy, we believe that fly ash contamination of soils can be fingerprinted and distinguished from other sources of anthropogenic REE inputs in to the environment.« less
Ayuso, Robert A.; Haeussler, Peter J.; Bradley, Dwight C.; Farris, David W.; Foley, Nora K.; Wandless, Gregory A.
2009-01-01
The Paleocene Kodiak batholith, part of the Sanak–Baranof belt of Tertiary near-trench intrusive rocks, forms an elongate body (~ 150 km long) that transects Kodiak Island from SW to NE. The batholith consists of three zones (Southern, Central, and Northern) of kyanite-, muscovite-, and garnet-bearing biotite tonalite and granodiorite and less abundant granite that intruded an accretionary prism (Kodiak Formation, and Ghost Rocks Formation). Small and likely coeval bodies (Northern, Western, and Eastern satellite groups) of quartz gabbro, diorite, tonalite, granodiorite, and leucogranite flank the batholith. The batholith is calc-alkalic, has an aluminum saturation index of > 1.1, FeOt/(FeOt + MgO) ~ 0.65 (at SiO2 = 65 wt.%), and increases in SiO2 (~ 61 wt.%–73 wt.%) and decreases in TiO2 (~ 0.9 wt.%–0.3 wt.%) from SW to NE. As a group, the granitic rocks have light REE-enriched chondrite-normalized patterns with small or no negative Eu anomalies, primitive mantle-normalized negative anomalies for Nb and Ti, and positive anomalies for Pb. Small to large negative anomalies for Th are also distinctive. The quartz gabbros and diorites are generally characterized by generally flat to light REE chondrite-normalized patterns (no Eu anomalies), and mantle-normalized negative anomalies for Nb, Ti, and P. Pb isotopic compositions (206Pb/204Pb = 18.850–18.960; 207Pb/204Pb = 15.575–15.694; 208Pb/204Pb = 38.350–39.039) are intermediate between depleted mantle and average continental crust. The Southern zone and a portion of the Central zone are characterized by negative εNd values of − 3.7 to − 0.3 and TDM ages ranging from ~ 838 Ma to 1011 Ma. Other granitic rocks from the Central and Northern zones have higher εNd values of − 0.4 to + 4.7 and younger TDM ages of ~ 450 to 797 Ma. Granitic and mafic plutons from the Eastern satellites show a wide range of εNdvalues of − 2.7 to + 6.4, and TDM ages from 204 Ma to 2124 Ma. 87Sr/86Sr values of the Southern and Central zones overlap and tend to be slightly more radiogenic (87Sr/86Sr > 0.70426) than the Northern zone (87Sr/86Sr < 0.70472). 206Pb/204Pb values increase slightly from the Southern and Central zones toward the Northern zone. There is no clear correlation of the major or trace elements with εNd, Pb or Sr isotopic values. Kodiak Formation and the Ghost Rocks Formation overlap the isotopic compositions (e.g., 206Pb/204Pb = 18.978 to 19.165, 87Sr/86Sr of 0.705715 to 0.707118, and εNd of − 6.7 to − 1.5 at 59 Ma) and TDM values (959 to 1489 Ma) of the batholith. Production of large volumes of granitic rocks in the Sanak–Baranof belt, and particularly on Kodiak Island, reflects a sequence of processes that includes underplating of mantle-derived mafic (possibly from the mantle wedge) and intermediate rocks under the accretionary flysch, interlayering of mantle-derived and flyschoid rocks, and partial melting of the mixed lithologic assemblages. Limited degrees of fractional crystallization or assimilation and fractional crystallization influenced compositions of the granitic rocks. The contribution of mantle-derived rocks that resided in the accretionary prism for only a short period of time prior to partial melting likely exceeds 40% (up to 80%). The balance (60 to 20%) is from a recently recycled crustal component represented by the Kodiak Formation. This type of progressive intracrustal melting from mixed sources controlled the geochemical character of the batholith and is most consistent with the hypothesis that the granitic rocks are associated with a slab-window produced by collision of a spreading oceanic center and a subduction zone and migration beneath the accretionary prism.
NASA Astrophysics Data System (ADS)
Leybourne, Matthew I.; Johannesson, Karen H.
2008-12-01
We have collected ˜500 stream waters and associated bed-load sediments over an ˜400 km 2 region of Eastern Canada and analyzed these samples for Fe, Mn, and the rare earth elements (REE + Y). In addition to analyzing the stream sediments by total digestion (multi-acid dissolution with metaborate fusion), we also leached the sediments with 0.25 M hydroxylamine hydrochloride (in 0.05 M HCl), to determine the REE + Y associated with amorphous Fe- and Mn-oxyhydroxide phases. We are thus able to partition the REE into "dissolved" (<0.45 μm), labile (hydroxylamine) and detrital sediment fractions to investigate REE fractionation, and in particular, with respect to the development of Ce and Eu anomalies in oxygenated surface environments. Surface waters are typically LREE depleted ([La/Sm] NASC ranges from 0.16 to 5.84, average = 0.604, n = 410; where the REE are normalized to the North America Shale Composite), have strongly negative Ce anomalies ([Ce/Ce ∗] NASC ranges from 0.02 to 1.25, average = 0.277, n = 354), and commonly have positive Eu anomalies ([Eu/Eu ∗] NASC ranges from 0.295 to 1.77, average = 0.764, n = 84). In contrast, the total sediment have flatter REE + Y patterns relative to NASC ([La/Sm] NASC ranges from 0.352 to 1.12, average = 0.778, n = 451) and are slightly middle REE enriched ([Gd/Yb] NASC ranges from 0.55 to 3.75, average = 1.42). Most total sediments have negative Ce and Eu anomalies ([Ce/Ce ∗] NASC ranges from 0.097 to 2.12, average = 0.799 and [Eu/Eu ∗] NASC ranges from 0.39 to 1.43, average = 0.802). The partial extraction sediments are commonly less LREE depleted than the total sediments ([La/Sm] NASC ranges from 0.24 to 3.31, average = 0.901, n = 4537), more MREE enriched ([Gd/Yb] NASC ranges from 0.765 to 6.28, average = 1.97) and Ce and Eu anomalies (negative and positive) are more pronounced. The partial extraction recovered, on average ˜20% of the Fe in the total sediment, ˜80% of the Mn, and 21-29% of the REEs (Ce = 19% and Y = 32%). Comparison between REEs in water, partial extraction and total sediment analyses indicates that REEs + Y in the stream sediments have two primary sources, the host lithologies (i.e., mechanical dispersion) and hydromorphically transported (the labile fraction). Furthermore, Eu appears to be more mobile than the other REE, whereas Ce is preferentially removed from solution and accumulates in the stream sediments in a less labile form than the other REEs + Y. Despite poor statistical correlations between the REEs + Y and Mn in either the total sediment or partial extractions, based on apparent distribution coefficients and the pH of the stream waters, we suggest that either sediment organic matter and/or possibly δ-MnO 2/FeOOH are likely the predominant sinks for Ce, and to a lesser extent the other REE, in the stream sediments.
The assessment of REE patterns and 143Nd/ 144Nd ratios in fish remains
NASA Astrophysics Data System (ADS)
Grandjean, Patricia; Cappetta, Henri; Michard, Annie; Albarède, Francis
1987-07-01
The REE content and isotopic composition of Sr and Nd have been determined in fish teeth ranging in age from the Trias to the present and from various localities mostly around the Atlantic. These measurements have been carried out on Selachian and Teleost remains from the same locality in Togo and show no appreciable difference, which suggests, with the help of a mass balance calculation of the Ce anomaly, that diagenetic effects are not responsible for the REE enrichment of biogenic phosphates. One group of fossil teeth has about 3 times the REE abundances of shale and a shale-normalized pattern with a minimum at Sm: it is thought to reflect deposition in the open-sea environment. A second group has REE concentration about 10 times higher than the first group with either a regular light REE enrichment or, more frequently, a maximum in the middle REE, both being probably indicative of deposition in estuarine or near-shore conditions. The shape of the REE spectra and the size of the Ce anomaly can be used semi-quantitatively to determine the depth of deposition. The results presented here on Late Cretaceous/Eocene fish teeth samples from Morocco reflect an increasing influx of deep waters with a lowLa/Yb ratio and strong negative Ce anomaly, which agrees well with the evolution of sediment chemistry and microfauna associations. In contrast, ɛ Nd is typical of the water mass in which the fish debris decayed. Examples of nearly isolated basins identified with Nd isotopes include the South Atlantic prior to the Lutetian (ɛ Nd ≈ -13.5), the Miocene Persian Gulf (ɛ Nd = -3.1), and Bolivia during the Late Cretaceous (ɛ Nd = -12.8). Togo and Guinea-Bissau results suggest that, in the South Atlantic, the meridional oceanic circulation had not started before 45 Ma ago. Combination of REE andɛ Nd data suggests that the assignment of Jurassic-Cretaceous samples measured so far to open-sea water masses is still ambiguous.
NASA Technical Reports Server (NTRS)
Moroz, L. V.; Schmidt, M.; Schade, U.; Hiroi, T.; Ivanova, M. A.
2005-01-01
The meteorites Dho 225 and Dho 735 were recently found in Oman. Studies of their mineralogical and chemical composition suggest that these unusual meteorites are thermally metamorphosed CM2 chondrites [1,2,3]. Similar to Antarctic metamorphosed carbonaceous chondrites, the Dho 225 and Dho 735 are enriched in heavy oxygen compared to normal CMs [1,2]. However, IR studies indicating dehydration of matrix phyllosilicates are needed to confirm that the two new meteorites from Oman are thermally metamorphosed [4]. Synchrotron-based IR microspectroscopy is a new promising technique which allows the acquisition of IR spectra from extremely small samples. Here we demonstrate that this non-destructive technique is a useful tool to study hydration states of carbonaceous chondrites in situ. In addition, we acquired reflectance spectra of bulk powders of the Dho 225 and Dho 735 in the range of 0.3-50 microns.
Phase equilibrium constraints on angrite petrogenesis
NASA Astrophysics Data System (ADS)
Longhi, John
1999-02-01
Parameterizations of liquidus boundaries and solid solution in the CMAS + Fe system (Shi, 1992) have been employed to depict the liquidus equilibria relevant to the petrogenesis of angrites. Angrites are basaltic achondrites characterized by highly aluminous augite (fassaite), intermediate Mg-Fe olivine, and late-stage CaFe-olivine (kirschsteinite). Two important features of the equilibria on the olivine liquidus surface relevant to angrite petrogenesis are: 1) the presence of a thermal divide on the ol + aug + plag + liq boundary curve, which separates the compositions of source materials that produce low-silica angritic melts that crystallize highly aluminous augite from those that produce higher silica melts with tholeiitic to eucritic crystallization patterns; and 2) the change in the pseudo-invariant point on the low-silica side of the thermal divide from a plagioclase-peritectic involving spinel ( ol + aug + plag + sp + liq) at high to intermediate Mg' (Mg/[Mg + Fe]) to two pseudo-eutectics involving kirschsteinite ( ol + aug + plag + kir + liq and ol + kir + plag + sp + liq) at low Mg'. The fassaitic (aluminous augite) pyroxene composition in Angra Dos Reis (ADOR), the presence of minor green spinel, and the absence of primary kirschsteinite (Prinz et al., 1977) indicate that crystallization of the ADOR parental liquid was governed by the intermediate-Mg' set of equilibria such that, following crystallization of ol + aug + plag, the plagioclase reacted completely at the plagioclase-peritectic with the interstitial liquid, which subsequently crystallized beyond the plagioclase-peritectic onto the ol + aug + sp liquidus boundary curve. The ADOR bulk composition is consistent with trapping ˜10% of the parental liquid in a cumulate with cotectic proportions of fassaite and olivine. Lewis Cliff (LEW)86010 crystallized from a liquid with Mg' similar to that of ADOR, but on the ol + plag cotectic closer to the thermal divide such that the first pyroxene to crystallize had much lower Al content than that of ADOR. In the late stages of crystallization the 86010 residual liquid (and that of LEW87051) encountered the low Mg' set of equilibria involving kirschsteinite. These relationships require either a higher degree of melting for the 86010 parent magma or source region different than ADOR's. These relationships are also consistent with compositionally dependent REE partition coefficients between fassaite and the ADOR liquid being as much as 1.5-2 times higher than those for the 86010 liquid at the onset of pyroxene crystallization. The combination of a trapped liquid component, higher partition coefficients, and smaller degrees of melting help to explain the observation that ADOR, an apparent cumulate, has REE concentrations twice as high as those in 86010 (Mittlefehdlt and Lindstrom, 1990), an apparent chilled liquid. The absence of a strong negative Eu-anomaly in the ADOR parent liquid, however, requires relatively high degrees of partial melting to eliminate plagioclase in the source region (resorption of plagioclase at the peritectic eliminates the Eu-anomaly that develops during crystallization), so ultimately different source regions are required. Progressive iron loss from devolatilized primitive chondrites (Allende, Murchison) produces source regions capable of producing a wide range of melt compositions with angritic to eucritic crystallization behavior. The compositions of carbonaceous and ordinary chondrite provide a similar range of potential source region compositions. However, primitive chondrite(±Fe) source regions that produce angrite-like melts have Mg' that is too low, whereas chondrite(±Fe) sources that have Mg' sufficiently high to yield the Mg' in angrite minerals have too much silica (or orthopyroxene) component to yield angrite-like liquids. No single group of meteorites ± Fe simultaneously satisfies the constraints of Mg' and silica component. However, mixtures of Fe-depleted chondrite plus a low-silica component similar to Ca-Al-rich inclusions (CAIs) can satisfy the constraints. The absence in angrites of 48Ca and 50Ti anomalies, typical of CAIs (Lugmair and Galer, 1992), suggests that the low-silica component was not simply an enrichment of CAIs, but was the result of direct accretion of high-temperature condensate (Grossman, 1972) into sizable, thermally shielded planetesimals. Thus angrites cryptically record mixing of planetesimal-sized heterogeneities in the early solar system.
NASA Astrophysics Data System (ADS)
Li, Chuan-Shun; Shi, Xue-Fa; Kao, Shuh-Ji; Liu, Yan-Guang; Lyu, Hua-Hua; Zou, Jian-Jun; Liu, Sheng-Fa; Qiao, Shu-Qing
2013-06-01
Thirty-eight sediment samples from 15 primary rivers on Taiwan were retrieved to characterize the rare earth element (REE) signature of fluvial fine sediment sources. Compared to the three large rivers on the Chinese mainland, distinct differences were observed in the REE contents, upper continental crust normalized patterns and fractionation factors of the sediment samples. The average REE concentrations of the Taiwanese river sediments are higher than those of the Changjiang and Huanghe, but lower than the Zhujiang. Light rare earth elements (LREEs) are enriched relative to heavy rare earth elements (HREEs) with ratios from 7.48 to 13.03. We found that the variations in (La/Lu)UCC-(Gd/Lu)UCC and (La/Yb)UCC-(Gd/Yb)UCC are good proxies for tracing the source sediments of Taiwanese and Chinese rivers due to their distinguishable values. Our analyses indicate that the REE compositions of Taiwanese river sediments were primarily determined by the properties of the bedrock, and the intensity of chemical weathering in the drainage areas. The relatively high relief and heavy rainfall also have caused the REEs in the fluvial sediments from Taiwan to be transported to the estuaries down rivers from the mountains, and in turn delivered nearly coincidently to the adjacent seas by currents and waves. Our studies suggest that the REE patterns of the river sediments from Taiwan are distinguishable from those from the other sources of sediments transported into the adjacent seas, and therefore are useful proxies for tracing the provenances and dispersal patterns of sediments, as well as paleoenvironmental changes in the marginal seas.
NASA Astrophysics Data System (ADS)
Bacon, C. R.; Du Bray, E. A.; John, D. A.; Mazdab, F. K.; Wooden, J. L.
2008-12-01
The 7x12 km Tatoosh pluton south of Mount Rainier consists of 4 petrographic/compositional phases, here termed Nisqually, Reflection, Pyramid, and Stevens, that intrude Tertiary volcanic and sedimentary wall and roof rocks; contacts between the 4 intrusive units are rarely exposed. We used the USGS-Stanford SHRIMP- RG to analyze, in a continuous session, zircons from each of 6 quartz monzodiorite (qmd), quartz monzonite (qm), or granodiorite (grd) samples for 206Pb/238U ages and, concurrently, U, Th, Hf, and REE concentrations. A round-robin procedure yielded statistically robust geochronological results. Ages that we reported previously (FM07) were compromised by instrument instability and by calibration differences between analytical sessions. Between 11 and 31 new analyses of zircons from each sample were evaluated using the TuffZirc and Umix Ages routines of Isoplot 3.41 (Ludwig, 2003). TuffZirc solidification ages for the intrusions are: Nisqually grd (Paradise Valley; 65.4% SiO2) 17.29 +0.37/-0.24 Ma, Nisqually grd (Christine Falls; 66.4%) 17.70 +0.30/-0.16 Ma, Reflection qm (Pinnacle Peak trail; 66.6%) 18.38 +0.45/-0.28 Ma, Pyramid qmd (58.5%) 18.58 +0.20/-0.15 Ma, Stevens grd (Stevens Canyon; 67.8%) 19.15 +0.15/-0.12 Ma, and Stevens grd (south of Louise Lake; 69.3%) 19.20 +0.31/-0.26 Ma (U-Th initial-disequilibrium corrected, ±2σ). Precision of the U-Pb data limits rigorous identification of antecrysts to those with ages ~1 Myr > solidification ages. Antecryst ages that produce subsidiary modes in relative probability diagrams for the two Stevens samples give weighted mean values of 20.18 ±0.26 Ma and 20.07 ±0.18 Ma. Wide ranges in trace element concentrations and ratios indicate that many analyzed zircons grew in highly fractionated residual liquids in high-crystallinity environments. Concentrations of Th and U in Tatoosh zircons vary by two orders of magnitude, cores tend to have higher Th, U, and Th/U than rims, and overgrowths that fill reentrants have high U contents and low Th/U ratios. Chondrite-normalized REE patterns have familiar convex-up shapes with positive Ce and negative Eu anomalies: LaN = 0.03-6 (10 values >6 may reflect inclusions), YbN = 380-33,900, Ce/Ce* = 0.7-505, and Eu/Eu* = 0.06-1.25. Slopes of REE patterns increase subtly in the order Reflection < Pyramid ≤ Nisqually < Stevens. Fractionation of plagioclase + pyroxene and(or) amphibole + Fe-Ti oxide + apatite + zircon should produce relative-LREE- enriched successive liquids. Observed marginally steeper REE patterns (greater positive slopes) for rims, lower REE concentrations, and lower Th/U ratios may reflect co-precipitation of allanite ± thorite. Two parallel arrays in Eu/Eu* versus Hf, in which Eu/Eu* decreases as Hf increases, are consistent with growth of higher-Hf, lower-Eu/Eu* zircon from more evolved melts; separate arrays imply Nisqually and Pyramid + Reflection intrusions. Zircon Eu/Eu* and Hf in the Stevens granodiorite define one high-Eu/Eu* field and another similar to that for Pyramid and Reflection samples that imply more than one parental magma. The zircon ages indicate solidification in three episodes: Stevens ~19.2 Ma, Pyramid + Reflection ~18.5 Ma, and Nisqually ~17.5 Ma. An ~20.1 Ma stage is represented by antecrysts in Stevens samples. The source(s) of the pluton were active for at least ~2.7 Myr and major crystallization episodes were separated by intervals of 0.7-1.0 Myr.
Origin Of Pyroxenites From San Jorge And Santa Isabel (Solomon Islands).
NASA Astrophysics Data System (ADS)
Berly, T.
2001-12-01
The Solomon Islands are a NW to SE-trending double chain of islands, the older basement of which was formed by SW-directed subduction of the Pacific Plate beneath the Indo-Australian Plate, between the Eocene and Early Miocene. At 10 Ma, the Ontong Java Plateau (OJP) collided with the Solomon arc, and in response to this collision, a polarity reversal of subduction occurred; NE-directed subduction beneath the Solomon arc began. Consequent to this collision, thin fault slices of peridotites, pyroxenites, gabbros, and basalts, some of which are demonstrably obducted OJP, are now exposed in SE Santa Isabel and neighbouring San Jorge. The pyroxenites are associated with harzburgites, dunites and sometimes incorporated into serpentine massifs (NW San Jorge). These fresh, coarse-grained rocks contain variable proportions of orthopyroxene (70
NASA Astrophysics Data System (ADS)
Buechel, G.; Merten, D.; Geletneky, J. W.; Kothe, E.
2003-04-01
Between 1947 and 1990 about 113.000 t of uranium were excavated at the former uranium mining site of Ronneburg (Eastern Thuringia, Germany). The legacy consists of more than 200 million m^3 of metasedimentary rocks rich in organic matter, sulfides and heavy metals originally deposited in mining heaps at the surface. The metasedimentary rocks formed under anoxic conditions about a 400 Mio. years ago are now exposed to oxic conditions. The oxidation of markasite and pyrite results in the formation of H_2SO_4. The formation of acid mine drainage (AMD) leads to high concentrations of uranium, rare earth elements (REE) and other heavy metals in surface water, seepage water and groundwater. This mobilization is due to alteration enhanced by high microbial activity and low pH. The tolerance mechanisms towards heavy metal pollution of soil substrate and surface/groundwater has allowed the selection of microbes which have, e.g. specific transporter genes and which are associated to plants in symbiotic interactions like mycorrhiza. In order to follow the processes linking alteration of metasedimentary rocks to biological systems the use of tracers is needed. One group of such tracers occuring in high concentrations in the water phase at the Ronneburg mining site are the REE (La-Lu) which are featured by very similar chemical behaviour. They show smooth but continuous variations of their chemical behaviour as a function of atomic number. For seepage water of the waste rock dump Nordhalde - sampled over a period of two years - the shale normalized REE patterns show enrichment of heavy REE and only minor variations, although the concentration differs. At sampling points in the surface water and in groundwater rather similar REE patterns were observed. Thus, REE can be used as tracers to identify diffuse inflow of REE-rich acid mine drainage of the dumps into the creek and the sediments. The absolute concentrations of REE in the creek and in ground water are up to 1000 times less than in seepage water due to mixing and (co)precipitation of REE. Lu/La and Sm/La relations show a significant decrease with increasing distance from the dump caused by preferential (co)precipitation of heavy REE with amorphous Fe-hydroxides along the Gessenbach. Thus, REE patterns can not only be used as tracers but also to study processes. In contrast to the patterns of the seepage, the REE patterns of the Silurian rocks as determined by LA-ICP-MS feature rather flat patterns with enrichment of middle REE (Sm - Dy). Results from batch experiments show preferentially leaching of heavy REE for all investigated source rocks. The highest absolute concentrations of REE appear in the eluates of the Silurian 'Ockerkalk'. Since the REE pattern closely reflects the pattern found in the seepage water it is assumed to be the most important source for the occurence of the REE pattern observed in seepage water. Studies of microbial heavy metal retention were performed by direct incubation of seepage water using well characterized fungal and bacterial strains. Using the bacterium Escherichia coli for incubation of seepage water sorption of heavy metals to biomass was observed. Use of the fungus Schizophyllum commune for incubation, however, has a much more pronounced effect including significant fractionation of REE pointing to the possibility of a specific active uptake mechanism. Bioextraction with bacteria and fungal mycelia might be an alternative to plant growth and phytoextraction and might be preferable for AMD water treatment since no soil substrate is necessary. Future research must be directed towards genes for active transport, intra- or extracellular storage proteins and their application. Biotechnological use of such genes in, e.g., strains of E. coli, might yield highly useful bioremediation strains that can help to reduce the ecological effects of pollution resulting from former mining activities.
NASA Astrophysics Data System (ADS)
Thompson, Robert L.; Bank, Tracy; Montross, Scott; Roth, Elliot; Howard, Bret; Verba, Circe; Granite, Evan
2018-05-01
Reference standard NIST SRM 1633b and FA 345, a fly ash sample from an eastern U.S. coal power plant, were analyzed to determine and quantify the mineralogical association of rare earth elements (REE). These analyses were completed using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and a scanning electron microscope, equipped with an energy-dispersive X-ray spectrometer (SEM-EDS). Internal standardization was avoided by quantifying elemental concentrations by normalizing to 100% oxides. Mineral grains containing elevated REE concentrations were found in diverse chemical environments, but were most commonly found in regions where Al and Si were predominant. Dividing the spot analyses into time segments yielded plots that showed the REE content changing over time as individual mineral grains were being ablated. SEM-EDS images of FA 345 confirmed the trends that were found in the LA-ICP-MS results. Small grains of apatite, monazite, or zircon were frequently observed as free mineral grains or embedded in amorphous aluminosilicate glass and were not associated with ferrous particles. This finding is consistent with previous reports that magnetic enrichment may be an effective way of concentrating non-magnetic REE phases. Furthermore, aggressive mechanical and chemical-based separation schemes will be required to separate and recover REE from aluminosilicate glass.
NASA Astrophysics Data System (ADS)
Nozaki, Yoshiyuki; Lerche, Dorte; Alibo, Dia Sotto; Tsutsumi, Makoto
2000-12-01
New data on the dissolved (<0.04 μm) rare earth elements (REEs) and In in the Japanese Ara, Tama, and Tone river-estuaries and Tokyo Bay are presented. Unique shale-normalized REE patterns with a distinct positive Gd anomalies and a strong heavy-REE enrichment were seen throughout the data. The dissolved Gd anomaly is caused by local anthropogenic input mainly due to recent use of Gado-pentetic acid as a medical agent for magnetic resonance imaging (MRI) in hospitals. The heavy-REE enrichment may be attributed to fractionation during weathering and transport in the upstream of the rivers, and only partially to removal of light- and middle-REE enriched river colloids by the use of a new ultrafiltration technique. Dissolved In concentrations in the Japanese rivers are extraordinarily high as compared to those in the pristine Chao Phraya river of Thailand reported elsewhere (Nozaki et al., in press). Like Gd, the high dissolved In in the study area can also be ascribed to recent use of In-containing organic compound, In(DTPA) 2- in medical diagnosis. Thus, in the highly populated and industrialized area, dissolved heavy metal concentrations in rivers and estuaries may be significantly perturbed by human activities and the fate of those anthropogenic soluble substances in the marine environment needs to be investigated further.
Silica-rich orthopyroxenite in the Bovedy chondrite
NASA Technical Reports Server (NTRS)
Ruzicka, Alex; Kring, David A.; Hill, Dolores H.; Boynton, William V.; Clayton, Robert N.; Mayeda, Toshiko K.
1995-01-01
A large (greater than 4.5 x 7 x 4 mm), igneous-textured clast in the Bovedy (L3) chondrite is notable for its high bulk SiO2 content (is approximately equal to 57.5 wt%). The clast consists of normally zoned orthopyroxene (83.8 vol%), tridymite (6.2%), an intergrowth of feldspar (5.8%) and sodic glass (3.1%), pigeonite (1.0%), and small amounts of chromite (0.2%), augite, and Fe,Ni-metal; it is best described as a silica-rich orthopyroxenite. The oxygen-isotopic composition of the clast is similar, but not identical, to Bovedy and other ordinary chondrites. The clast has a superchondritic Si/Mg ratio, but has Mg/(Mg + Fe) and Fe/Mn ratios that are similar to ordinary chondrite silicate. The closest chemical analogues to the clast are radial-pyroxene chondrules, diogenites, pyroxene-silica objects in ordinary chondrites, and silicates in the IIE iron meteorite Weekeroo Station. The clast crystallized from a siliceous melt that cooled fast enough to prevent complete attainment of equilibrium but slow enough to allow nearly complete crystallization. The texture, form, size and composition of the clast suggestion that it is an igneous differentiate from an asteroid or planetesimal that formed in the vicinity of ordinary chondrites. The melt probably cooled in the near-surface region of the parent object. It appears that in the source region of the clast, metallic and silicate partial melt were largely-to-completely lost during a relatively low degree of melting, and that during a higher degree of melting, olivine and low-Ca pyroxene separated from the remaining liquid, which ultimately solidified to form the clast. While these fractionation steps could not have all occurred at the same temperature, they could have been accomplished in a single melting episode, possibly as a result of heating by radionuclides or by electromagnetic induction. Fractionated magmas can also account for other Si-rich objects in chondrites.
NASA Astrophysics Data System (ADS)
Dygert, N. J.; Liang, Y.
2017-12-01
Lunar basalts maintain an important record of the composition of the lunar interior. Much of our understanding of the Moon's early evolution comes from studying their petrogenesis. Recent experimental work has advanced our knowledge of major and trace element fractionation during lunar magma ocean (LMO) crystallization [e.g., 1-3], which produced heterogeneous basalt sources in the Moon's mantle. With the new experimental constraints, we can evaluate isotopic and trace element signatures in lunar basalts in unprecedented detail, refining inferences about the Moon's dynamic history. Two petrogenetic models are invoked to explain the compositions of the basalts. The assimilation model argues they formed as primitive melts of early LMO cumulates that assimilated late LMO cumulates as they migrated upward. The cumulate overturn model argues that dense LMO cumulates sank into the lunar interior, producing hybridized sources that melted to form the basalts. Here we compare predicted Ce/Yb and Hf and Nd isotopes of partial melts of LMO cumulates with measured compositions of lunar basalts to evaluate whether they could have formed by end-member petrogenetic models. LMO crystallization models suggest all LMO cumulates have chondrite normalized Ce/Yb <1. Residual liquid from the magma ocean has Ce/Yb 1.5. Many primitive lunar basalts have Ce/Yb>1.5; these could not have formed by assimilation of any LMO cumulate or residual liquid (or KREEP basalt, which has isotopically negative ɛNd and ɛHf). In contrast, basalt REE patterns and isotopes can easily be modeled assuming partial melting of hybridized mantle sources, indicating overturn may be required. A chemical requirement for overturn independently confirms that late LMO cumulates are sufficiently low in viscosity to sink into the lunar interior, as suggested by recent rock deformation experiments [4]. Overturned, low viscosity late LMO cumulates would be relatively stable around the core [5]. High Ce/Yb basalts require that overturned cumulates were mixed back into the overlying mantle by convection within a few hundred Myr. [1] Dygert et al. (2014), GCA 132, 170-186. [2] Sun et al. (2017), GCA 206, 273-295. [3] Lin et al. (2017), EPSL 471, 104-116. [4] Dygert et al. (2016), GRL 43, 10.1002/2015GL066546. [5] Zhang et al. (2017), GRL 44, 10.1002/2017GL073702.
Petrology of the Western Highland Province: Ancient crust formation at the Apollo 14 site
NASA Astrophysics Data System (ADS)
Shervais, John W.; McGee, James J.
1999-03-01
Plutonic rocks found at the Apollo 14 site comprise four lithologic suites: the magnesian suite, the alkali suite, evolved lithologies, and the ferroan anorthosite suite (FAN). Rocks of the magnesian suite include troctolite, anorthosite, norite, dunite, and harzburgite; they are characterized by plagioclase ~An95 and mafic minerals with mg#s 82-92. Alkali suite rocks and evolved rocks generally have plagioclase ~An90 to ~An40, and mafic minerals with mg#s 82-40. Lithologies include anorthosite, norite, quartz monzodiorite, granite, and felsite. Ferroan anorthosites have plagioclase ~An96 and mafic minerals with mg#s 45-70. Whole rock geochemical data show that most magnesian suite samples and all alkali anorthosites are cumulates with little or no trapped liquid component. Norites may contain significant trapped liquid component, and some alkali norites may represent cumulate-enriched, near-liquid compositions, similar to KREEP basalt 15386. Evolved lithologies include evolved partial cumulates related to alkali suite fractionation (quartz monzodiorite), immiscible melts derived from these evolved magmas (granites), and impact melts of preexisting granite (felsite). Plots of whole rock mg# versus whole rock Ca/(Ca+Na+K) show a distinct gap between rocks of the magnesian suite and rocks of the alkali suite, suggesting either distinct parent magmas or distinct physical processes of formation. Chondrite-normalized rare earth element (REE) patterns show that rocks of both the magnesian suite and alkali suite have similar ranges, despite the large difference in major element chemistry. Current models for the origin of the magnesian suite call for a komatiitic parent magma derived from early magma ocean cumulates; these melts must assimilate plagiophile elements to form troctolites at low pressures and must assimilate a highly enriched KREEP component so that the resulting mixture has REE concentrations similar to high-K KREEP. There are as yet no plausible scenarios that can explain these unusual requirements. We propose that partial melting of a primitive lunar interior and buffering of these melts by ultramagnesian early magma ocean cumulates provides a more reasonable pathway to form magnesian troctolites. Alkali anorthosites and norites formed by crystallization of a parent magma with major element compositions similar to KREEP basalt 15386. If the parent magma of the alkali suite and evolved rocks is related to the magnesian suite, then that magma must have evolved through combined assimilation-fractional crystallization processes to form the alkali suite cumulates.
NASA Astrophysics Data System (ADS)
Liu, Chaohui; Zhao, Guochun; Liu, Fulai; Cai, Jia
2018-04-01
The Wuhe complex is located at the southeastern margin of the North China Craton. The complex consists of metamorphosed Paleoproterozoic potassic granitoids and supracrustal rocks, of which the latter include the Fengyang and Wuhe groups. Meta-mafic rocks from the lower Wuhe Group have igneous zircon U-Pb ages of 2126 ± 37 Ma with εHf(t) values of -6.22 to +8.38, and xenocrystic zircons of 2.39-2.36 Ga, 2.55-2.54 Ga and 2.77-2.69 Ga. Geochemically, the meta-mafic rocks can be classified into two groups. Group 1 island arc tholeiites display flat to slightly right declined REE patterns and moderately negative Nb, Ta, Zr, and Ti anomalies. Group 2 mature arc calcalkaline basalts display strongly fractionated chondrite-normalized REE patterns and evidently negative Nb, Ta and Ti anomalies. These meta-mafic rocks formed by partial melting of sub-arc depleted mantle wedge which had been modified by slab-derived melts at an active continental margin. Depositional age of the group can be constrained in the period of 2.16-2.10 Ga based on ages of the youngest detrital zircons and latter intrusions. U-Pb ages of detrital zircons yield major age peaks of 2.69 Ga and 2.52 Ga, with minor peaks at 2.88 Ga, 2.78 Ga, 2.35 Ga and 2.17 Ga, most of which are derived from the late Mesoarchean to early Paleoproterozoic granitoids in the Wuhe complex and the Jiaodong Terrane. Metamorphic zircons in the marbles coexisting with garnet amphibolites or granulites occur as either single grains or overgrowth (or recrystallization) rims surrounding magmatic zircon cores and yield ages of 1882 ± 19 Ma to 1844 ± 15 Ma. The comparable ca. 2.1 Ga potassic granites with A-type granite affinity, the ca. 2.1 Ga meta-mafic rocks with arc-like geochemical features, the 2.1-1.9 Ga meta-sedimentary units and the 1.9-1.8 Ga subduction- and collision-related granulite-facies metamorphism suggest that the Wuhe complex and the Jiao-Liao-Ji Belt share the same late Paleoproterozoic tectonic evolution process and the former is the southwestern extension of the latter.
NASA Astrophysics Data System (ADS)
Fathy, Douaa; Wagreich, Michael; Zaki, Rafat; Mohamed, Ramadan S. A.
2016-04-01
Early Maastrichtian oil shales are hosted in the Duwi Formation of the Central Eastern Desert, Egypt. The examined member represents up to 20% of the total Duwi Formation. This interval is mainly composed of siliciclastic facies, phosphorites facies and carbonate facies. Oil shales microfacies is mainly composed of smectite, kaolinite, calcite, fluorapatite, quartz and pyrite. They are enriched in a number of major elements and trace metals in particular Ca, P, V, Ni, Cr, Sr, Zn, Mo, Nb, U and Y compared to the post-Archaean Australian shale (PAAS). Chondrite-normalized REEs patterns of oil shales for the studied area display light rare earth elements enrichment relatively to heavy rare earth elements with negative Ce/Ce* and Eu/Eu* anomalies. The most remarkable indicators for redox conditions are enrichments of V, Mo, Ni, Cr, U content and depletion of Mn content. Besides, V/V+Ni, V/Ni, U/Th, Ni/Co, authigentic uranium ratios with presence of framboidal shape of pyrite and its size are reflecting the deposition of these shales under marine anoxic to euxinic environmental conditions. Additionally, the ratio of Strontium (Sr) to Barium (Ba) Sr/Ba reflected highly saline water during deposition. Elemental ratios critical to paleoclimate and paleoweathering (Rb /Sr, Al2O3/TiO2), CIA values, binary diagram between (Al2O3+K2O+Na2O) and SiO2 and types of clay minerals dominated reflect warm to humid climate conditions prevailing during the accumulation of these organic-rich petroleum source rocks.
Geochemistry of volcanogenic clayey marine sediments from the Hazar-Maden Basin (Eastern Turkey)
NASA Astrophysics Data System (ADS)
Akkoca, Dicle Bal; Kürüm, Sevcan; Huff, Warren D.
2013-12-01
The Hazar-Madeıı Basin sediments were deposited along the southern branch of the Neotethys Ocean margin during Late Maastrichtian-Middle Eocene times. X-ray powder diffraction (XRD), ICP-AES, ICP-MS and scanning electron microscopy (SEM) were performed on samples of the Upper Maastrichtian-Middle Eocene Hazar Group and the Middle Eocene Maden Complex from the Hazar-Maden Basin to investigate the main effects of depositional envi- ronmental parameters in three sections belonging to deeper marine (slope), proximal arc volcanic (Mastarhill and Yukaribag sections) and shallow platform marine (Sebken section) settings. Marine sediments contain clay minerals (smectite, smectite/chlorite, chlorite, illite, interstratified illite/smectite, illite/chlorite, palygorskite), clinoptilolite, quartz, feldspar, calcite, dolomite, opal-CT and hematite. The clays are dominated by iron-rich smectites. La, Zr and Th concentrations are high in the shallow marginal Sebken section where the terrestrial detrital contribution is significant, while Sc and Co are more dominant in the deeper marine (slope) Yukaribag section, which is represented by basic-type volcanism and a higher contribution of hydrothermal phases. In a chondrite-normalized REE diagram, the negative Eu anomaly in samples from Sebken, the section which was deposited in a shallow marine environment, is less significant than that of the other two sections indicating the presence of a high terrestrial contribution in that part of the basin. A decrease in LREE v/HREEiV and Lajv/Ybv, LaiV/Sin v ratios from Sebken to Mastarhill and the Yukaribag sections indi- cates deepening of the basin and an increasing contribution of volcanism in that direction.
Genesis of Augite-Bearing Ureilites: Evidence From LA-ICP-MS Analyses of Pyroxenes and Olivine
NASA Technical Reports Server (NTRS)
Herrin, J. S.; Lee, C-T. A.; Mittlefehldt, D. W.
2008-01-01
Ureilites are ultramafic achondrites composed primarily of coarse-grained low-Ca pyroxene and olivine with interstitial carbonaceous material, but a number of them contain augite [1]. Ureilites are considered to be restites after partial melting of a chondritic precursor, although at least some augite-bearing ureilites may be partially cumulate [1, 2]. In this scenario, the augite is a cumulus phase derived from a melt that infiltrated a restite composed of typical ureilite material (olivine+low-Ca pyroxene) [2]. To test this hypothesis, we examined the major and trace element compositions of silicate minerals in select augite-bearing ureilites with differing mg#. Polished thick sections of the augite-bearing ureilites ALH 84136 , EET 87511, EET 96293, LEW 88201, and META78008 and augite-free typical ureilite EET 90019 were examined by EPMA for major and minor elements and laser ablation ICP-MS (LA-ICP-MS) for trace elements, REE in particular. Although EET 87511 is reported to contain augite, the polished section that we obtained did not.
NASA Astrophysics Data System (ADS)
Nittler, Larry R.; Alexander, Conel M. O'D.; Davidson, Jemma; Riebe, My E. I.; Stroud, Rhonda M.; Wang, Jianhua
2018-04-01
NanoSIMS C-, N-, and O-isotopic mapping of matrix in CO3.0 chondrite Dominion Range (DOM) 08006 revealed it to have in its matrix the highest abundance of presolar O-rich grains (257 +76/-96 ppm, 2σ) of any meteorite. It also has a matrix abundance of presolar SiC of 35 (+25/-17, 2σ) ppm, similar to that seen across primitive chondrite classes. This provides additional support to bulk isotopic and petrologic evidence that DOM 08006 is the most primitive known CO meteorite. Transmission electron microscopy of five presolar silicate grains revealed one to have a composite mineralogy similar to larger amoeboid olivine aggregates and consistent with equilibrium condensation, two non-stoichiometric amorphous grains, and two olivine grains, though one is identified as such solely based on its composition. We also found insoluble organic matter (IOM) to be present primarily as sub-micron inclusions with ranges of C- and N-isotopic anomalies similar to those seen in primitive CR chondrites and interplanetary dust particles. In contrast to other primitive extraterrestrial materials, H isotopic imaging showed normal and homogeneous D/H. Most likely, DOM 08006 and other CO chondrites accreted a similar complement of primitive and isotopically anomalous organic matter to that found in other chondrite classes and IDPs, but the very limited amount of thermal metamorphism experienced by DOM 08006 has caused loss of D-rich organic moieties, while not substantially affecting either the molecular carriers of C and N anomalies or most inorganic phases in the meteorite. One C-rich grain that was highly depleted in 13C and 15N was identified; we propose it originated in the Sun's parental molecular cloud.
NASA Astrophysics Data System (ADS)
Liu, Huichuan; Wang, Yuejun; Zi, Jian-Wei
2017-06-01
Layered ultramafic-mafic intrusions are usually formed in an arc/back-arc or intra-plate tectonic environment, or genetically related to a mantle plume. In this paper, we report on an ultramafic-mafic intrusion, the Dalongkai intrusion in the Ailaoshan tectonic zone (SW China), whose occurrence is closely associated with arc/back-arc magmatic rocks. The Dalongkai intrusion is composed of plagioclase-lherzolite, hornblende-peridotite, lherzolite and wehrlite at the bottom, cumulate plagioclase-pyroxenite at the middle part, changing to fine-grained gabbro towards the upper part of the intrusion, forming layering structure. Zircons from the plagioclase-pyroxenites and gabbros yielded U-Pb ages of 272.1 ± 1.7 Ma and 266.4 ± 5.8 Ma, respectively. The plagioclase-pyroxenites show cumulate textures, and are characterized by high MgO (25.0-28.0 wt.%; mg# = 80.6-82.3), Cr (1606-2089 ppm) and Ni (893-1203 ppm) contents, interpreted as early cumulate phases. By contrast, the gabbros have relatively lower mg# values (56.3-62.7), and Cr (157-218 ppm) and Ni (73-114 ppm) concentrations, and may represent frozen liquids. The plagioclase-pyroxenites and gabbros share similar chondrite-normalized REE patterns and primitive mantle-normalized trace element profiles which are analogous to those of typical back-arc basin basalts. The εNd(t) values for both rock types range from +2.20 to +4.22. These geochemical and isotopic signatures suggest that the Dalongkai ultramafic-mafic rocks originated from a MORB-like mantle source metasomatized by subduction-related, sediment-derived fluids. Our data, together with other geological evidence, indicate that the emplacement of the Dalongkai ultramafic-mafic intrusion most likely occurred in a back-arc extensional setting associated with subduction of the Ailaoshan Paleotethyan branch ocean during the Middle Permian, thus ruling out the previously speculated linkage to the Emeishan mantle plume, or to an intra-continental rift.
Geochemical fractions of rare earth elements in soil around a mine tailing in Baotou, China
Wang, Lingqing; Liang, Tao
2015-01-01
Rare earth mine tailing dumps are environmental hazards because tailing easily leaches and erodes by water and wind. To assess the influence of mine tailing on the geochemical behavior of rare earth elements (REEs) in soil, sixty-seven surface soil samples and three soil profile samples were collected from different locations near China’s largest rare earth mine tailing. The total concentration of REEs in surface soils ranged from 156 to 5.65 × 104 mg·kg−1 with an average value of 4.67 × 103 mg·kg−1, which was significantly higher than the average value in China (181 mg·kg−1). We found obvious fractionation of both light and heavy REEs, which was supported by the North American Shale Composite (NASC) and the Post-Archean Average Australian Shale (PAAS) normalized concentration ratios calculated for selected elements (LaN/YbN, LaN/SmN and GdN/YbN). A slightly positive Ce anomaly and a negative Eu anomaly were also found. For all 14 REEs in soils, enrichment was intensified by the mine tailing sources and influenced by the prevailing wind. PMID:26198417
Geochemical fractions of rare earth elements in soil around a mine tailing in Baotou, China.
Wang, Lingqing; Liang, Tao
2015-07-22
Rare earth mine tailing dumps are environmental hazards because tailing easily leaches and erodes by water and wind. To assess the influence of mine tailing on the geochemical behavior of rare earth elements (REEs) in soil, sixty-seven surface soil samples and three soil profile samples were collected from different locations near China's largest rare earth mine tailing. The total concentration of REEs in surface soils ranged from 156 to 5.65 × 10(4) mg·kg(-1) with an average value of 4.67 × 10(3) mg·kg(-1), which was significantly higher than the average value in China (181 mg·kg(-1)). We found obvious fractionation of both light and heavy REEs, which was supported by the North American Shale Composite (NASC) and the Post-Archean Average Australian Shale (PAAS) normalized concentration ratios calculated for selected elements (La(N)/Yb(N), La(N)/Sm(N) and Gd(N)/Yb(N)). A slightly positive Ce anomaly and a negative Eu anomaly were also found. For all 14 REEs in soils, enrichment was intensified by the mine tailing sources and influenced by the prevailing wind.
Constraints on the Composition and Evolution of the Lunar Crust from Meteorite NWA 3163
NASA Technical Reports Server (NTRS)
McLeod, C. L.; Brandon, A. D.; Fernandes, V. A.; Peslier, A. H.; Lapen, T. J.; Irving, A. J.
2013-01-01
The lunar meteorite NWA 3163 (paired with NWA 4881, 4483) is a ferroan, feldspathic granulitic breccia characterized by pigeonite, augite, olivine, maskelynite and accessory Tichromite, ilmenite and troilite. Bulk rock geochemical signatures indicate the lack of a KREEP- derived component (Eu/Eu* = 3.47), consistent with previously studied lunar granulites and anorthosites. Bulk rock chondrite-normalized signatures are however distinct from the anorthosites and granulites sampled by Apollo missions and are relatively REE-depleted. In-situ analyses of maskelynite reveal little variation in anorthite content (average An% is 96.9 +/- 1.6, 2 sigma). Olivine is relatively ferroan and exhibits very little variation in forsterite content with mean Fo% of 57.7 +/- 2.0 (2 sigma). The majority of pyroxene is low-Ca pigeonite (En57Fs33Wo10). Augite (En46Fs21Wo33) is less common, comprising approximately 10% of analyzed pyroxene. Two pyroxene thermometry on co-existing orthopyroxene and augite yield an equilibrium temperature of 1070C which is in reasonable agreement with temperatures of 1096C estimated from pigeonite compositions. Rb-Sr isotopic systematics of separated fractions yield an average measured Sr-87/Sr-87 of 0.699282+/-0.000007 (2 sigma). Sr model ages are calculated using a modern day Sr-87/Sr-86 Basaltic Achondrite Best Initial (BABI) value of 0.70475, from an initial BABI value Sr-87/Sr-86 of 0.69891 and a corresponding Rb-87/Sr-97 of 0.08716. The Sr model Thermomechanical analysis (TMA) age, which represents the time of separation of a melt from a source reservoir having chondritic evolution, is 4.56+/-0.1 Ga. A Sr model T(sub RD) age, which is a Rb depletion age and assumes no contribution from Rb in the sample in the calculation, yields 4.34+/-0.1 Ga (i.e. a minimum age). The Ar-Ar dating of paired meteorite NWA 4881 reveals an age of c. 2 Ga, likely representing the last thermal event this meteorite experienced. An older Ar-40/Ar-39 age of c. 3.5 Ga may record the thermal event which produced the granulitic texture. Additional chronological constraints will be provided by Sm-Nd systematics. Ferroan Anorthosites like NWA 3163 have been interpreted to represent direct lunar magma ocean (LMO) crystallization products. If this is the case, trace element concentrations in NWA 3163 primary mineral phases should be in equilibrium with residual LMO liquids present during crystallization of those phases. Results from petrogenetic modeling suggest that the NWA 3163 protolith did not form from crystallization of an initially LREE depleted LMO but rather require an initially chondritic LMO with early garnet crystallization. Furthermore, a two-stage crystallization model where plagioclase crystalized prior to pyroxene (93% vs. 99.5% of LMO crystallization) is implied.
Wang, Bronwen; Gough, Larry P.; Wanty, Richard B.; Lee, Gregory K.; Vohden, James; O’Neill, J. Michael; Kerin, L. Jack
2013-01-01
Stream water was collected at 30 sites within the Tangle Lakes area of the Delta mineral belt in Alaska. Sampling focused on streams near the ultramafic rocks of the Fish Lake intrusive complex south of Eureka Creek and the Tangle Complex area east of Fourteen Mile Lake, as well as on those within the deformed metasedimentary, metavolcanic, and intrusive rocks of the Specimen Creek drainage and drainages east of Eureka Glacier. Major, minor, and trace elements were analyzed in aqueous samples for this reconnaissance aqueous geochemistry effort. The lithologic differences within the study area are reflected in the major-ion chemistry of the water. The dominant major cation in streams draining mafic and ultramafic rocks is Mg2+; abundant Mg and low Ca in these streams reflect the abundance of Mg-rich minerals in these intrusions. Nickel and Cu are detected in 84 percent and 87 percent of the filtered samples, respectively. Nickel and Cu concentrations ranged from Ni <0.4 to 10.1 micrograms per liter (mg/L), with a median of 4.2 mg/L, and Cu <0.5 to 27 mg/L, with a median of 1.2 mg/L. Trace-element concentrations in water are generally low relative to U.S. Environmental Protection Agency freshwater aquatic-life criteria; however, Cu concentrations exceed the hardness-based criteria for both chronic and acute exposure at some sites. The entire rare earth element (REE) suite is found in samples from the Specimen Creek sites MH5, MH4, and MH6 and, with the exception of Tb and Tm, at site MH14. These samples were all collected within drainages containing or downstream from Tertiary gabbro, diabase, and metagabbro (Trgb) exposures. Chondrite and source rock fractionation profiles for the aqueous samples were light rare earth element depleted, with negative Ce and Eu anomalies, indicating fractionation of the REE during weathering. Fractionation patterns indicate that the REE are primarily in the dissolved, as opposed to colloidal, phase.
NASA Astrophysics Data System (ADS)
El Goresy, A.; Lin, Y.; Miyahara, M.; Gannoun, A.; Boyet, M.; Ohtani, E.; Gillet, P.; Trieloff, M.; Simionovici, A.; Feng, L.; Lemelle, L.
2017-05-01
Mineral inventories of enstatite chondrites; (EH and EL) are strictly dictated by combined parameters mainly very low dual oxygen (fO2) and sulfur (fS2) fugacities. They are best preserved in the Almahata Sitta MS-17, MS-177 fragments, and the ALHA 77295 and MAC 88136 Antarctic meteorites. These conditions induce a stark change of the geochemical behavior of nominally lithophile elements to chalcophile or even siderophile and changes in the elemental partitioning thus leading to formation of unusual mineral assemblages with high abundance of exotic sulfide species and enrichment in the metallic alloys, for example, silicides and phosphides. Origin and mode of formation of these exotic chondrites, and their parental source regions could be best scrutinized by multitask research experiments of the most primitive members covering mineralogical, petrological, cosmochemical, and indispensably short-lived isotopic chronology. The magnitude of temperature and pressure prevailed during their formation in their source regions could eventually be reasonably estimated: pre- and postaccretionary could eventually be deduced. The dual low fugacities are regulated by the carbon to oxygen ratios estimated to be >0.83 and <1.03. These parameters not only induce unusual geochemical behavior of the elements inverting many nominally lithophile elements to chalcophile or even siderophile or anthracophile. Structure and mineral inventories in EL3 and EH3 chondrites are fundamentally different. Yet EH3 and EL3 members store crucial information relevant to eventual source regions and importantly possible variation in C/O ratio in the course of their evolution. EL3 and EH3 chondrites contain trichotomous lithologies (1) chondrules and their fragments, (2) polygonal enstatite-dominated objects, and (3) multiphase metal-rich nodules. Mineralogical and cosmochemical inventories of lithologies in the same EL3 indicate not only similarities (REE inventory and anomalies in oldhamite) but also distinct differences (sinoite-enstatite-graphite relationship). Oldhamite in chondrules and polygonal fragments in EL3 depict negative Eu anomaly attesting a common cosmochemical source. Metal-dominated nodules in both EL3 and EH3 are conglomerates of metal clasts and sulfide fragments in EH3 and concentrically zoned C-bearing metal micropebbles (≥25 μm ≤50 μm) in EL3 thus manifesting a frozen in unique primordial accretionary metal texture and composition. Sinoite-enstatite-diopside-graphite textures reveal a nucleation and growth strongly suggestive of fluctuating C/O ratio during their nucleation and growth in the source regions. Mineral inventories, sulfide phase relations, sinoite-enstatite-graphite intergrowth, carbon and nitrogen isotopic compositions of graphite, spatial nitrogen abundance in graphite in metal nodules, and last but not least 129I/129Xe and 53Mn/53Cr systematics negate any previously suggested melting episode, pre-accretionary or dynamic, in parental asteroids.
Rare earth elements in pore waters from Cabo Friós western boundary upwelling system
NASA Astrophysics Data System (ADS)
Smoak, J. M.; Silva-Filho, E. V.; Rousseau, T.; Albuquerque, A. L.; Caldeira, P. P.; Moreira, M.
2015-12-01
Rare earth elements (REE) are a group of reactive trace elements in aqueous media, they have a coherent chemical behavior with however a subtle and gradual shift in physicochemical properties allowing their use as tracers of sources and processes. Uncertainties on their oceanic inputs and outputs still remains [Arsouze et al., 2009; Siddall et al., 2008; Tachikawa et al., 2003]. The water-sediment interface were early on identified as a relevant REE source due to the high distribution coefficient between sediments and pore waters [Elderfield and Sholkovitz, 1987] and substantially higher concentration then the water column [Abbott et al., 2015; Haley et al., 2004; Sholkovitz et al., 1989; Soyol-Erdene and Huh, 2013]. Here we present a cross shelf transect of 4 short pore waters REE profiles on a 680 km2 mud bank located in the region of Cabo Frio, Brazil. This study reveals similar trends at the four sites: a REE production zone reflected by a maximum in concentration at the top of the sediment evolving with depth toward a REE consumption zone reflected by a minimum in REE concentrations. PAAS normalized patterns shows 1) a progressive depletion in LREE with depth with HREE/LREE ratios comprised between 1.1 and 1.6 in the 2 first centimeters evolving gradually to ratios comprised between 2.8 and 4.7 above 7 cm 2) A sharp gradient in negative Ce anomaly with Ce/Ce* values reaching 0.3. With maximum Nd concentrations comprised between 780 and 1200 pmol.kg and considering that seawater Nd concentrations of Brazilian shelf bottom waters are comprised between 24 and 50 pmol.Kg-1 we apply the Fick´s First Law of diffusion and estimate that 340 +/- 90 nmol. m-2 Y-1 of Nd is released in the Cabo frio´s mudbank. This flux is in the same order of magnitude of recent estimates by [Abbott et al., 2015] in the slope of Oregon´s margin. Unraveling processes responsible for the REE production zone will help to refine the global REE fluxes estimates.
The effect of tissue structure and soil chemistry on trace element uptake in fossils
NASA Astrophysics Data System (ADS)
Hinz, Emily A.; Kohn, Matthew J.
2010-06-01
Trace element profiles for common divalent cations (Sr, Zn, Ba), rare-earth elements (REE), Y, U, and Th were measured in fossil bones and teeth from the c. 25 ka Merrell locality, Montana, USA, by using laser-ablation ICP-MS. Multiple traverses in teeth were transformed into 2-D trace element maps for visualizing structural influences on trace element uptake. Trace element compositions of different soils from the fossil site were also analyzed by solution ICP-MS, employing progressive leaches that included distilled H 2O, 0.1 M acetic acid, and microwave digestion in concentrated HCl-HNO 3. In teeth, trace element uptake in enamel is 2-4 orders of magnitude slower than in dentine, forming an effective trace element barrier. Uptake in dentine parallel to the dentine-enamel interface is enhanced by at least 2 orders of magnitude compared to transverse, causing trace element "plumes" down the tooth core. In bone, U, Ba and Sr are nearly homogeneous, implying diffusivities ˜5 orders of magnitude faster than in enamel and virtually complete equilibration with host soils. In contrast all REE show strong depletions inward, with stepwise linear segments in log-normal or inverse complementary error function plots; these data require a multi-medium diffusion model, with about 2 orders of magnitude difference in slowest vs. fastest diffusivities. Differences in REE diffusivities in bone (slow) vs. dentine (fast) reflect different partition coefficients ( Kd's). Although acid leaches and bulk digestion of soils yield comparable fossil-soil Kd's among different elements, natural solutions are expected to be neutral to slightly basic. Distilled H 2O leachates instead reveal radically different Kd's in bone for REE than for U-Sr-Ba, suggest orders of magnitude lower effective diffusivities for REE, and readily explain steep vs. flat profiles for REE vs. U-Sr-Ba, respectively. Differences among REE Kd's and diffusivities may explain inward changes in Ce anomalies. Acid washes and bulk soil compositions yield misleading Kd's for many trace elements, especially the REE, and H 2O-leaches are preferred. Patterns of trace element distributions indicate diagenetic alteration at all scales, including enamel, and challenge the use of trace elements in paleodietary studies.
NASA Astrophysics Data System (ADS)
Yara, Irfan; Schulz, Bernhard; Tichomirowa, Marion; Mohammad, Yousif; Matschullat, Jörg
2014-05-01
Geochemistry and metamorphic evolution of a Ti-metagabbro in the Asnawa Group of the Shalair terrain (Sanandaj-Sirjan Zone), Kurdistan region, Iraq. We present geochemical data, mineral chemistry, petrography, and theP-T conditions of a Ti-metagabbro from the Asnawa Group in the Shalair Terrain (Sanandaj-Sirjan Zone).Geochemical data indicate that this Ti-metagabbro has tholeiitic characteristics with low-K contents. Factor analyses of the elements indicate fractionation of common mineral phases such as clinopyroxene, hornblende, plagioclase, Ti-bearing phases (rutile, ilmenite, titanite), and apatite. The normal mid-oceanic ridge basalt (N-MORB)-normalized incompatible trace element diagram shows close similarity with typical N-MORB pattern. Tectonomagmatic discrimination diagrams suggest a dominating MORB environment. The rock/chondrite-normalized REE diagram of the amphibolites also shows their N-MORB-type signature, with relative enrichment in LREE. The rock derived from mixed primitive and depleted mantel. The formation and preservation of the various metamorphic mineral assemblages and their mineral chemical characteristicsare strongly affected by the original magmatic whole-rock composition. This can be demonstrated by different microdomains, which contain different amphiboles and plagioclases. The metamorphic history can be subdivided into the stages M1-M2-M3. The first stage of metamorphism was recorded by crystallisation of actinolite replacing clinopyroxene and igneous amphibole (M1 stage, 410< T < 490°C; 1.8 < P <2.2 kbar). Increase of temperature resulted in the formation of hornblende pseudomorphism and hornblende and sphene coronae growing on previous amphibole or clinopyroxene and ilmenite, respectively (M2 stage, 540 < T <580°C; 4.5 < P < 5.5 kbar). The third stage (M3 stage, 730 < T °C < 780°C; 6.5 < P < 7.5 kbar) led to the formation of a ferro-tschermakite corona, around the M2 amphibole, and rutile that developed on the sphene and ilmenite of M2, This as a result of continental collisional process, in Eocene between Arabian and Iranian plates.
NASA Astrophysics Data System (ADS)
Pérez-López, Rafael; Nieto, José M.; de la Rosa, Jesús D.; Bolívar, Juan P.
2015-10-01
This study provides geochemical data with the aim of identifying and tracing the weathering of phosphogypsum wastes stack-piled directly on salt-marshes of the Tinto River (Estuary of Huelva, SW Spain). With that purpose, different types of highly-polluted acid solutions were collected in the stack. Connection between these solutions and the estuarine environment was studied by geochemical tracers, such as rare earth elements (REE) and their North American Shale Composite (NASC)-normalized patterns and Cl/Br ratios. Phosphogypsum-related wastewaters include process water stored on the surface, pore-water contained in the phosphogypsum profile and edge outflow water emerging from inside the stack. Edge outflow waters are produced by waterlogging at the contact between phosphogypsum and the nearly impermeable marsh surface and discharge directly into the estuary. Process water shows geochemical characteristics typical of phosphate fertilizers, i.e. REE patterns with an evident enrichment of heavy-REE (HREE) with respect to middle-REE (MREE) and light-REE (LREE). By contrast, REE patterns of deeper pore-water and edge outflows are identical to those of Tinto River estuary waters, with a clear enrichment of MREE relative to LREE and HREE denoting influence of acid mine drainage. Cl/Br ratios of these solutions are very close to that of seawater, which also supports its estuarine origin. These findings clearly show that process water is not chemically connected with edge outflows through pore-waters, as was previously believed. Phosphogypsum weathering likely occurs by an upward flow of seawater from the marsh because of overpressure and permeability differences. Several recommendations are put forward in this study to route restoration actions, such as developing treatment systems to improve the quality of the edge outflow waters before discharging to the receiving environment.
NASA Astrophysics Data System (ADS)
Kang, Jeongwon; Woo, Han Jun; Jang, Seok; Jeong, Kap-Sik; Jung, Hoi-Soo; Hwang, Ha Gi; Lee, Jun-Ho; Cho, Jin Hyung
2016-09-01
Rare earth elements (REEs: La-Lu) in surface sediments collected from the mouth and middle tidal flats of Gomso Bay, South Korea, in August 2011 and May 2012 were analyzed to investigate the fine-grained sediment provenance. The upper continental crust (UCC)-normalized light REEs (LREEs: La to Nd) were more enriched than the middle REEs (MREEs: Sm to Dy) and heavy REEs (HREEs: Ho to Lu), resulting in large (La/Yb)UCC (1.9 ± 0.4) to (Gd/Yb)UCC (1.4 ± 0.2) ratios. The monthly (La/Yb)UCC values differed between the mouth and middle tidal flats due to deposition of fine-grained sediments that originated from distant rivers (the Geum and Yeongsan) and the Jujin Stream, located on the southern shore of the inner bay. We observed relative reductions in the (La/Yb)UCC value and REE content in the sediments from the mouth of the bay compared with those from Jujin Stream sediments. Confined to the middle tidal flat around the KH Line of Jujin Stream, the sediments, most enriched in LREEs but depleted in Eu, were distributed in August as strong Jujin Stream runs. Here, we suggest that an increase in LREE/HREE and decrease in MREE/LREE ratios can be used as a proxy to identify the Jujin Stream provenance in mixed riverine sediments and to trace Jujin Stream sediments within the Gomso Bay tidal flat, especially in the summer rainy season.
NASA Astrophysics Data System (ADS)
Kang, Jeongwon; Jeong, Kap-Sik; Cho, Jin Hyung; Lee, Jun Ho; Jang, Seok; Kim, Seong Ryul
2014-03-01
We sampled two box-core sediments from the slope of the eastern South Korea Plateau (SKP) in the East Sea (Sea of Japan) at water depths of 1400 and 1700 m. Two chemical fractions of extractable (hydroxylamine/acetic acid) and residual rare earth elements (REEs) together with Al, Ca, Fe, Mg, Mn, P, S, As, Mo, and U were analyzed to assess the post-depositional redistribution of REEs. Extractable Fe and Mn are noticeably abundant in the oxic topmost sediment layer (<3 cm). However, some trace elements (e.g., S, As, Mo, U) are more abundant at depth, where redox conditions are different. Analysis of upper continental crust (UCC)-normalized (La/Gd)UCC, (La/Yb)UCC, and (Ce/Ce*)UCC revealed that the extractable REE is characterized by middle REE (MREE) enrichment and a positive cerium (Ce) anomaly, different from the case of the residual fraction which shows slight enrichment in light REEs (LREEs) with no Ce anomaly. The extractable MREEs seem to have been incorporated into high-Mg calcite during reductive dissolution of Fe oxyhydroxides. In the top sediment layer, the positive Ce anomaly is attributed to Ce oxide, which can be mobilized in deeper oxygen-poor environments and redistributed in the sediment column. In addition, differential concentrations of Ce and other LREEs in pore water appear to result in variable (Ce/Ce*)UCC ratios in the extractable fraction at depth.
NASA Technical Reports Server (NTRS)
Rubin, Alan E.; Kallemeyn, Gregory W.; Wasson, John T.
2002-01-01
Northwest Africa 468 (NWA 468) is a new ungrouped, silicate-rich member of the IAB complex of nonmagmatic iron meteorites. The silicates contain relatively coarse (approximately 300 micron-size) grains of low-Ca clinopyroxene with polysynthetic twinning and inclined extinction. Low-Ca clinopyroxene is indicative of quenching from high temperatures (either from protoenstatite in a few seconds or high-temperature clinoenstatite in a few hours). It seems likely that NWA 468 formed by impact melting followed by rapid cooling to less than or equal to 660 C. After the loss of a metal-sulfide melt from the silicates, sulfide was reintroduced, either from impact-mobilized FeS or as an S2 vapor that combined with metallic Fe to produce FeS. The O-isotopic composition (delta O-17 = -1.39 %) indicates that the precursor material of NWA 468 was a metal-rich (e.g., CR) carbonaceous chondrite. Lodranites are similar in bulk chemical and O-isotopic composition to the silicates in NWA 468; the MAC 88177 lodranite (which also contains low-Ca clinopyroxene) is close in bulk chemical composition. Both NWA 468 and MAC 88177 have relatively low abundances of REE (rare earth elements) and plagiophile elements. Siderophiles in the metal-rich areas of NWA 468 are similar to those in the MAC 88177 whole rock; both samples contain low Ir and relatively high Fe, Cu and Se. Most unweathered lodranites contain approximately 20 - 38 wt. % metallic Fe-Ni. These rocks may have formed in an analogous manner to NWA 468 (i.e., by impact melting of metal-rich carbonaceous-chondrite precursors) but with less separation of metal-rich melts from silicates.
Chromium isotopic homogeneity between the Moon, the Earth, and enstatite chondrites
NASA Astrophysics Data System (ADS)
Mougel, Bérengère; Moynier, Frédéric; Göpel, Christa
2018-01-01
Among the elements exhibiting non-mass dependent isotopic variations in meteorites, chromium (Cr) has been central in arguing for an isotopic homogeneity between the Earth and the Moon, thus questioning physical models of Moon formation. However, the Cr isotopic composition of the Moon relies on two samples only, which define an average value that is slightly different from the terrestrial standard. Here, by determining the Cr isotopic composition of 17 lunar, 9 terrestrial and 5 enstatite chondrite samples, we re-assess the isotopic similarity between these different planetary bodies, and provide the first robust estimate for the Moon. In average, terrestrial and enstatite samples show similar ε54Cr. On the other hand, lunar samples show variables excesses of 53Cr and 54Cr compared to terrestrial and enstatite chondrites samples with correlated ε53Cr and ε54Cr (per 10,000 deviation of the 53Cr/52Cr and 54Cr/52Cr ratios normalized to the 50Cr/52Cr ratio from the NIST SRM 3112a Cr standard). Unlike previous suggestions, we show for the first time that cosmic irradiation can affect significantly the Cr isotopic composition of lunar materials. Moreover, we also suggest that rather than spallation reactions, neutron capture effects are the dominant process controlling the Cr isotope composition of lunar igneous rocks. This is supported by the correlation between ε53Cr and ε54Cr, and 150Sm/152Sm ratios. After correction of these effects, the average ε54Cr of the Moon is indistinguishable from the terrestrial and enstatite chondrite materials reinforcing the idea of an Earth-Moon-enstatite chondrite system homogeneity. This is compatible with the most recent scenarios of Moon formation suggesting an efficient physical homogenization after a high-energy impact on a fast spinning Earth, and/or with an impactor originating from the same reservoir in the inner proto-planetary disk as the Earth and enstatite chondrites and having similar composition.
NASA Astrophysics Data System (ADS)
Yang, J.; Torres, M. E.; Haley, B. A.; McKay, J. L.; Algeo, T. J.; Hakala, A.; Joseph, C.; Edenborn, H. M.
2013-12-01
Black shales commonly targeted for shale gas development were deposited under low oxygen concentrations, and typically contain high As levels. The depositional environment governs its solid-phase association in the sediment, which in turn will influence degree of remobilization during hydraulic fracturing. Organic carbon (OC), trace element (TE) and REE distributions have been used as tracers for assessing deep water redox conditions at the time of deposition in the Midcontinent Sea of North America (Algeo and Heckel, 2008), during large-scale oceanic anoxic events (e.g., Bunte, 2009) and in modern OC-rich sediments underlying coastal upwelling areas (e.g., Brumsack, 2006). We will present REE and As data from a collection of six different locations in the continental US (Kansas, Iowa, Oklahoma, Kentucky, North Dakota and Pennsylvania), ranging in age from Devonian to Upper Pennsylvanian, and from a Cretaceous black shale drilled on the Demerara Rise during ODP Leg 207. We interpret our data in light of the depositional framework previously developed for these locations based on OC and TE patterns, to document the mechanisms leading to REE and As accumulation, and explore their potential use as environmental proxies and their diagenetic remobilization during burial, as part of our future goal to develop a predictive evaluation of arsenic release from shales and transport with flowback waters. Total REE abundance (ΣREE) ranged from 35 to 420 ppm in an organic rich sample from Stark shale, KS. PAAS-normalized REE concentrations ranged from 0.5 to 7, with the highest enrichments observed in the MREE (Sm to Ho). Neither the ΣREE nor the MREE enrichments correlated with OC concentrations or postulated depositional redox conditions, suggesting a principal association with aluminosilicates and selective REE fractionation during diagenesis. In the anoxic reducing environments in which black shales were deposited, sulfide minerals such as FeS2 trap aqueous arsenic in the crystal lattice, but As is also known to bind to the charged surfaces of clay minerals. Our arsenic concentration data show that the highest abundances (up to 70 ppm) are found in sediments with the highest total sulfur concentration (to 2.6 ppm), but there was no clear correlation with organic carbon or aluminosilicate content. We compare our results with preliminary data from a series of flowback waters sampled from ten producing wells in Pennsylvania and from high-pressure high-temperature experimental leaching of Marcellus shale samples.
NASA Astrophysics Data System (ADS)
Frisby, C. P.; Bizimis, M.; Foustoukos, D.
2013-12-01
Peridotite hosted hydrothermal vent systems are a direct link between the hydrosphere and the Earth's mantle. They promote elemental mass exchange between these two regimes, driven by hydrothermal alteration of peridotite by seawater. Most experimental, theoretical and field studies of peridotite alteration have focused on high temperature (>1800C) conditions where serpentinization is readily observed, but less is known for low-temperature alteration that likely resembles near seafloor processes. Furthermore, while major element exchange during serpentinization has been studied extensively, the behavior of trace elements remains unclear, especially at low temperatures (<1000C). Here we report data from time-series experiments designed to constrain the reaction of Sr, Ba and REE between synthetic seawater and olivine as a function of both temperature (15-900C) and mineral grain size (geometric surface area). Our experimental data shows a clear decoupling of REE from Sr-Ba under all experimental conditions. While Sr and Ba remain quantitatively in solution, the REE are being removed from the solution at rates that increase with increasing temperature and GSA (i.e. decreasing particle size). We also observe the HREE are removed from solution faster than the LREE. The REE removal can be described as a two-stage process, with a fast initial rate followed by a slower rate as the reaction approaches equilibrium. For instance at 900C and GSA of 57.57cm2/g (average grain diameter of 258.7μm), 50% of Nd is removed in 8 hours but only 80% at 120 hours. We quantify the initial reaction rate constant of each element as a function of temperature and grain size, in order to understand the mechanisms of REE removal. The experimentally determined surface-normalized reaction rate constants (0.29-1.84 s-1m-2), constrain the temperature dependence and activation energy for the scavenging of REE driven by olivine hydrolysis. For example, LREE reaction rates have a higher temperature dependency than the HREE, i.e. higher activation energy for Nd than Yb. This activation energy does not correlate well with ionic radius, but correlates well with the third ionization potential of REE. This indicates a 3+ charge speciation for the REE upon removal to the olivine substrate. Recent experimental data had shown the formation of secondary phases (i.e. Fe(III)-(hydr)oxides, Fe bearing-talc and Fe(II)-brucite) with olivine, facilitated by the presence of spinel [1], that may contribute to the REE scavenging observed here. Our experiments however are pure olivine (>99.9%) and spinel-free. We also observed limited dissolution (<0.001%) of olivine at up to 21 days of reaction, and no evidence for the formation of Fe-oxyhydroxides, using ICPMS, XRD, Mossbauer and SEM methods. It therefore seems unlikely that Fe(III)-(hydr)oxides are responsible for the REE fractionations. This new information will enhance our limited understanding of the cycling of REE in seawater hydrothermal circulation and abyssal peridotite alteration. 1. Mayhew et al (2013) Nat Geo. 6, 478-484
NASA Astrophysics Data System (ADS)
Negrel, P. J.; Petelet-Giraud, E.; Millot, R.; Malcuit, E.
2011-12-01
The study of rare earth elements (REEs) in natural waters initially involved an examination of their occurrence and behavior in seawater and coastal waters such as estuaries. Since the 1990s, REE geochemistry has been applied to continental waters such as rivers and lakes and groundwaters. Rare earth elements) are of great interest because of their unique characteristics and have been used in the study of many geological processes like weathering and water-rock interaction processes, provenance of sediments, etc... With the evolution of analytical techniques like new generation ICP-MS, much attention had been paid towards the water geochemistry of REEs. However, there is a need of more investigations devoted to REEs in large groundwater systems, especially on the understanding of the distribution of REEs and their evolution in such systems. In this frame, large sedimentary aquifer systems often constitute strategic water resources for drinking water supply, agriculture irrigation and industry, but can also represent an energetic resource for geothermal power. Large water abstractions can induce complete modification of the natural functioning of such aquifer systems. These large aquifer systems thus require water management at the basin scale in order to preserve both water quantity and quality. The large Eocene Sand aquifer system of the Aquitaine sedimentary basin was studied through various hydrological, chemical and isotopic tools. This system extends over 116,000 km2 in the South west part of the French territory. The aquifer being artesian in the west of the district and confined with piezometric levels around 250-m depth in the east. The 'Eocene Sands', composed of sandy Tertiary sediments alternating with carbonate deposits, is a multi-layer system with high permeability and a thickness of several tens of metres to a hundred metres. The Eocene Sand aquifer system comprises at least five aquifers: Paleocene, Eocene infra-molassic sands (IMS), early Eocene, middle Eocene, and late Eocene. One important feature, in these confined systems isolated from anthropogenic influence, is the range in salinities by a factor of 10, from 250 mg/L up to 2.5 g/L. The ΣREE, in the range 2-54 ng/L, with a dependence on salinity when expressed in % HCO3 or SO4, reflect the carbonate or evaporite source of REEs. The UCC normalized-REE patterns show a large variability as exemplified by the REE flat patterns-low SREE associated with salinity controlled by HCO3. In the present work, the REEs are investigated in terms of saturation indices, speciation modelling, REE patterns in order to recognize the aquifer type hosting groundwater and decipher the origin of the salinity of the groundwater as some part of the aquifer display in the groundwater concentration of chemical element exceeding the drinking water standard (SO4, F...). Such high concentrations of naturally-occurring substances (e.g. unaffected by human activities) can have negative impacts on groundwater thresholds and deciphering their origin by means of geochemical tools like REE is a remaining challenge.
NASA Astrophysics Data System (ADS)
Somasekhar, V.; Ramanaiah, S.; Sarma, D. Srinivasa
2018-06-01
Petrological and geochemical studies have been carried out on Pulivendla and Gandikota Quartzite from Chitravati Group of Cuddapah Supergroup to decipher the provenance and depositional environment. Both the units are texturally mature with sub-rounded to well-rounded and moderately to well-sorted grains. Majority of the framework grains are quartz, in the form of monocrystalline quartz, followed by feldspars (K-feldspar and plagioclase), mica, rock fragments, heavy minerals, with minor proportion of the matrix and cement. Based on major element geochemical classification diagram, Pulivendla Quartzite is considered as quartz-arenite and arkose to sub-arkose, whereas Gandikota Quartzite falls in the field of lith-arenite and arkose to sub-arkose. Weathering indices like CIA, PIA, CIW, ICV, Th/U ratio and A-CN-K ternary diagram suggest moderate to intense chemical weathering of the source rocks of these quartzites. Whole rock geochemistry of quartzites indicate that they are primarily from the first-cycle sediments, along with some minor recycled components. Also their sources were mostly intermediate-felsic igneous rocks of Archean age. The tectonic discrimination plots, Th-Sc-Zr/10 of both these formations reflect active to passive continental margin setting. Chondrite-normalized rare earth element (REE) patterns, and various trace element ratios like Cr/Th, Th/Co, La/Sc and Th/Cr indicate dominantly felsic source with minor contribution from mafic source. Th/Sc ratios of Pulivendla and Gandikota Quartzite are in close proximity with average values of 2.83, 3.45 respectively, which is higher than AUCC (Th/Sc=0.97), demonstrating that the contributions from more alkali source rocks than those that contributed to AUCC.
New findings for the equilibrated enstatite chondrite Grein 002
NASA Astrophysics Data System (ADS)
Patzer, Andrea; Schlüter, Jochen; Schultz, Ludolf; Tarkian, M.; Hill, Dolores H.; Boynton, William V.
2004-09-01
We report new petrographic and chemical data for the equilibrated EL chondrite Grein 002, including the occurrence of osbornite, metallic copper, abundant taenite, and abundant diopside. As inferred from low Si concentrations in kamacite, the presence of ferroan alabandite, textural deformation, chemical equilibration of mafic silicates, and a subsolar noble gas component, we concur with Grein 002's previous classification as an EL4-5 chondrite. Furthermore, the existence of pockets consisting of relatively coarse, euhedral enstatite crystals protruding large patches of Fe-Ni alloys suggests to us that this EL4-5 chondrite has been locally melted. We suspect impact induced shock to have triggered the formation of the melt pockets. Mineralogical evidence indicates that the localized melting of metal and adjacent enstatite must have happened relatively late in the meteorite's history. The deformation of chondrules, equilibration of mafic silicates, and generation of normal zoning in Fe, Zn-sulfides took place during thermal alteration before the melting event. Following parent body metamorphism, daubreelite was exsolved from troilite in response to a period of slow cooling at subsolidus temperatures. Exsolution of schreibersite from the coarse metal patches probably occurred during a similar period of slow cooling subsequent to the event that induced the formation of the melt pockets. Overall shock features other than localized melting correspond to stage S2 and were likely established by the final impact that excavated the Grein 002 meteoroid.
Black ordinary chondrites - An analysis of abundance and fall frequency
NASA Technical Reports Server (NTRS)
Britt, Daniel T.; Pieters, Carle M.
1991-01-01
Black ordinary chondrite meteorites sample the spectral effects of shock on ordinary chondrite material in the space environment. Since shock is an important regolith process these meteorites provide insight into the spectral properties of the regoliths on ordinary chondrite parent bodies. To determine how common black chondrites are in the meteorite collection and, by analogy, the frequency of shock-alteration in ordinary chondrites, several of the world's major meteorite collections were examined to identify black chondrites. Over 80 percent of all cataloged ordinary chondrites were examined and, using an optical definition, 61 black chondrites were identified. Black chondrites account for approximately 13.7 percent of ordinary chondrite falls. If the optically altered gas-rich ordinary chondrites are included the proportion of falls that exhibit some form of altered spectral properties increases to 16.7 percent. This suggests that optical alteration of asteroidal material in the space environment is a relatively common process.
The classification and complex thermal history of the enstatite chondrites
NASA Technical Reports Server (NTRS)
Zhang, Yanhong; Benoit, Paul H.; Sears, Derek W. G.
1995-01-01
We have carried out instrumental neutron activation analysis of 11 enstatite chondrites and electron microprobe analyses of 17 enstatite chondrites, most of which were previously little described. We report here the third known EH5 chondrite (LEW 88180) and an unusual EL6 chondrite (LEW 87119), new data on four EL3 chondrites (ALH 85119, EET 90299, PCA 91020, and MAC 88136, which is paired with MAC 88180 and MAC 88184), the second EL5 chondrite (TIL 91714), and an unusual metal-rich and sulfide-poor EL3 chondrite (LEW 87223). The often discussed differences in mineral composition displayed by the EH and EL chondrites are not as marked after the inclusion of the new samples in the database, and the two classes apparently experienced a similar range of equilibrium temperatures. However, texturally the EL chondrites appear to have experienced much higher levels of metamorphic alteration than EH chondrites of similar equilibration temperatures. Most of the petrologic type criteria are not applicable to enstatite chondrites and, unlike the ordinary chondrites, texture and mineralogy reflect different aspects of the meteorite history. We therefore propose that the existing petrologic type scheme not be used for enstatite chondrites. We suggest that while 'textural type' reflects peak metamorphic temperatures, the 'mineralogical type' reflects equilibration during postmetamorphic (probably regolith) processes. Unlike the ordinary chondrites and EH chondrites, EL chondrites experienced an extensive low-temperature metamorphic episode. There are now a large number of enstatite meteorite breccias and impact melts, and apparently surface processes were important in determining the present nature of the enstatite chondrites.
Lunar and Planetary Science XXXVI, Part 1
NASA Technical Reports Server (NTRS)
2005-01-01
Contents include the following: Observations with Near Infrared Spectrometer for Hayabusa Mission in the Cruising Phase. First Results of Quadrantid Meteor Spectrum. Compositional Investigation of Binary Near-Earth Asteroid 66063 (1998 RO1): A Potentially Undifferentiated Assemblage. Impact-induced Hydrothermal Activity on Early Mars. HRTEM and EFTEM Studies of Phyllosilicate-Organic Matter Associations in Matrix and Dark Inclusions in the EET92042 CR2 Carbonaceous Chondrite. Volumetric Analysis of Martian Rampart Craters. High Pressure Melting of H-Chondrite: A Match for the Martian Basalt Source Mantle. MERView: A New Computer Program for Easy Display of MER-acquired M ssbauer Data. Distribution, Exchange, and Topographic Control of Subsurface Ice on Mars. Shock-induced Damage Beneath Normal and Oblique Impact Craters. Amphitrites Patera Studied from the Mars Express HRSC Data. Oxygen Isotope Microanalysis of Enveloping Compound Chondrules in CV3 and LL3 Chondrites. Gamma-Ray Irradiation in the Early Solar System and the Conundrum of the Lu-176 Decay Constant. Magnesium Isotope Mapping of Silica-rich Grains Having. Extreme Oxygen Isotope Anomalies Extreme Oxygen Isotopic Anomalies from Irradiation in the Early Solar System, Re-Examining the Role of Chondrules in Producing the Elemental Fractionations in Chondrites. Meteorite Data on the Solar Modulation of Galactic Cosmic Rays and an Inference on the Solar Activity Influence on Climate of the Earth. Volatiles Enrichments and Composition of Jupiter. Thinking Like a Wildcatter Prospecting for Methane in Arabia Terra, Mars. Size Distribution of Genesis Solar Wind Array Collector Fragments. Initial Subdivision of Genesis Early Science Polished Aluminum Collector. Presolar Graphite and Its Noble Gases. Young Pb-Isotopic Ages of Chondrules in CB Carbonaceous Chondrites. Fe Isotopic Composition of Martian Meteorites. Petrology and Geochemistry of Nakhlite MIL 03346: A New Martian Meteorite from Antarctica.
NASA Astrophysics Data System (ADS)
Boyet, M.; Bouvier, A.; Frossard, P.; Hammouda, T.; Garçon, M.; Gannoun, A.
2018-04-01
The 146Sm-142Nd extinct decay scheme (146Sm half-life of 103 My) is a powerful tool to trace early Earth silicate differentiation. Differences in 142Nd abundance measured between different chondrite meteorite groups and the modern Earth challenges the interpretation of the 142Nd isotopic variations found in terrestrial samples because the origin of the Earth and the nature of its building blocks is still an ongoing debate. As bulk meteorites, the enstatite chondrites (EC) have isotope signatures that are the closest to the Earth value with an average small deficit of ∼10 ppm in 142Nd relative to modern terrestrial samples. Here we review all the Nd isotope data measured on EC so far, and present the first measurements on an observed meteorite fall Almahata Sitta containing pristine fragments of an unmetamorphosed enstatite chondrite belonging to the EL3 subgroup. Once 142Nd/144Nd ratios are normalized to a common chondritic evolution, samples from the EC group (both EL and EH) have a deficit in 142Nd but the dispersion is important (μ142 Nd = - 10 ± 12 (2SD) ppm). This scatter reflects their unique mineralogy associated to their formation in reduced conditions (low fO2 or high C/O). Rare-earth elements are mainly carried by the sulfide phase oldhamite (CaS) that is more easily altered than silicates by weathering since most of the EC meteorites are desert finds. The EL6 have fractionated rare-earth element patterns with depletion in the most incompatible elements. Deviations in Nd mass independent stable isotope ratios in enstatite chondrites relative to terrestrial standard are not resolved with the level of analytical precision achieved by modern mass spectrometry techniques. Here we show that enstatite chondrites from the EL3 and EL6 subgroups may come from different parent bodies. Samples from the EL3 subgroup have Nd (μ142 Nd = - 0.8 ± 7.0, 2SD) and Ru isotope ratios undistinguishable from that of the Bulk Silicate Earth. EL3 samples have never been analyzed for Mo isotopes. Because these enstatite chondrites are relatively small in size and number, they are usually not available for destructive isotopic measurements. Average values based on the measurement of EL6 samples should not be considered as representative of the whole EL group because of melting and thermal metamorphism events affecting the Sm/Nd ratios and prolonged open-system history. The EL3 chondrites are the best candidates as the Earth's building blocks. These new results remove the need to change the composition of refractory incompatible elements early in Earth's history.
Complex igneous processes and the formation of the primitive lunar crustal rocks
NASA Technical Reports Server (NTRS)
Longhi, J.; Boudreau, A. E.
1979-01-01
Crystallization of a magma ocean with initial chondritic Ca/Al and REE ratios such as proposed by Taylor and Bence (TB, 1975), is capable of producing the suite of primitive crustal rocks if the magma ocean underwent locally extensive assimilation and mixing in its upper layers as preliminary steps in formation of an anorthositic crust. Lunar anorthosites were the earliest permanent crustal rocks to form the result of multiple cycles of suspension and assimilation of plagioclase in liquids fractionating olivine and pyroxene. There may be two series of Mg-rich cumulate rocks: one which developed as a result of the equilibration of anorthositic crust with the magma ocean; the other which formed in the later stages of the magma ocean during an epoch of magma mixing and ilmenite crystallization. This second series may be related to KREEP genesis. It is noted that crystallization of the magma ocean had two components: a low pressure component which produced a highly fractionated and heterogeneous crust growing downward and a high pressure component which filled in the ocean from the bottom up, mostly with olivine and low-Ca pyroxene.
Composition of the earth's upper mantle-I. Siderophile trace elements in ultramafic nodules
Morgan, J.W.; Wandless, G.A.; Petrie, R.K.; Irving, A.J.
1981-01-01
Seven siderophile elements (Au, Ge, Ir, Ni, Pd, Os, Re) were determined by radiochemical neutron activation analysis in 19 ultramafic rocks, which are spinel lherzollites-xenoliths from North and Central America, Hawaii and Australia, and garnet Iherzolitexenoliths from Lesotho. Abundances of the platinum metals are very uniform in spinel lherzolites averaging 3.4 ?? 1.2 ppb Os, 3.7 ?? 1.1 ppb Ir, and 4.6 ?? 2.0 ppb Pd. Sheared garnet lherzolite PHN 1611 has similar abundances of these elements, but in 4 granulated garnet lherzolites, abundances are more variable. In all samples, the Pt metals retain cosmic ( Cl-chondrite) ratios. Abundances of Au and Re vary more than those of Pt metals, but the Au/Re ratio remains close to the cosmic value. The fact that higher values of Au and Re approach cosmic proportions with respect to the Pt metals, suggests that Au and Re have been depleted in some ultramafic rocks from an initially chondrite-like pattern equivalent to about 0.01 of Cl chondrite abundances. The relative enrichment of Au and Re in crustal rocks is apparently the result of crust-mantle fractionation and does not require a special circumstance of core-mantle partitioning. Abundances of moderately volatile elements Ni, Co and Ge are very uniform in all rocks, and are much higher than those of the highly siderophile elements Au, Ir, Pd, Os and Re. When normalized to Cl chondrites, abundances of Ni and Co are nearly identical, averaging 0.20 ?? 0.02 and 0.22 ?? 0.02, respectively; but Ge is only 0.027 ?? 0.004. The low abundance of Ge relative to Ni and Co is apparently a reflection of the general depletion of volatile elements in the Earth. The moderately siderophile elements cannot be derived from the same source as the highly siderophile elements because of the marked difference in Cl chondrite-normalized abundances and patterns. We suggest that most of the Ni, Co and Ge were enriched in the silicate by the partial oxidation of pre-existing volatile-poor Fe-Ni, whereas the corresponding highly siderophile elements remained sequestered by the surviving metal. The highly siderophile elements may have been introduced by a population of ~103 large (~1022 g) planetisimals, similar to those forming the lunar mare basins. ?? 1981.
Photometric and polarimetric properties of the Bruderheim chondritic meteorite
NASA Technical Reports Server (NTRS)
Egan, W. G.; Veverka, J.; Noland, M.; Hilgeman, T.
1973-01-01
Photometric and polarimetric laboratory measurements were made as a function of phase angle in the U(0.36 microns), G(0.54 microns) and R(0.67 microns) bands for 0, 30 and 60 deg incident illumination on four particle size ranges of Bruderheim, an L6 olivine-hypersthene chondritic meteorite. The four particle size ranges were: 0.25-4.76 mm coated with less than 74 microns powder, 74-250 microns, and less than 37 microns. In addition, normal reflectance measurements were made in the spectral range from 0.31 to 1.1 microns. Comparison with astronomical data reveals that none of the asteroids in the main belt for which adequate observations exist can be matched with Bruderheim, which is representative of the most common meteoritic material encountered by the Earth. However, it appears from the polarization and photometry data that the surface of the Apollo asteroid Icarus is consistent with an ordinary chondrite composition. This suggests the possibility that this material, although common in Earth-crossing orbits, is rare as a surface constituent in the main asteroid belt.
Mn-53-Cr-53 Systematics of R-Chondrite NWA 753
NASA Technical Reports Server (NTRS)
Jogo, K.; Shih, C-Y.; Reese, Y. D.; Nyquist, L. E.
2006-01-01
Chondrules and chondrites are interpreted as objects formed in the early solar system, and it is important to study them in order to elucidate its evolution. Here, we report the study of the Mn-Cr systematics of the R-Chondrite NWA753 and compare the results to other chondrite data. The goal was to determine Cr isotopic and age variations among chondrite groups with different O-isotope signatures. The Mn-53-Cr-53 method as applied to individual chondrules [1] or bulk chondrites [2] is based on the assumption that 53Mn was initially homogeneously distributed in that portion the solar nebula where the chondrules and/or chondrites formed. However, different groups of chondrites formed from regions of different O-isotope compositions. So, different types of chondrites also may have had different initial Mn-53 abundances and/or Cr isotopic compositions. Thus, it is important to determine the Cr isotopic systematics among chondrites from various chondrite groups. We are studying CO-chondrite ALH83108 and Tagish Lake in addition to R-Chondrite NWA753. These meteorites have very distinct O-isotope compositions (Figure 1).
NASA Astrophysics Data System (ADS)
Schmidt, Alexander; Weyer, Stefan; John, Timm; Brey, Gerhard P.
2009-01-01
The depleted mantle and the continental crust are generally thought to balance the budget of refractory and lithophile elements of the Bulk Silicate Earth (BSE), resulting in complementary trace element patterns. However, the two high field strength elements (HFSE) niobium and tantalum appear to contradict this mass balance. All reservoirs of the silicate Earth exhibit subchondritic Nb/Ta ratios, possibly as a result of Nb depletion. In this study a series of nineteen orogenic MORB-type eclogites from different localities was analyzed to determine their HFSE concentrations and to contribute to the question of whether subducted oceanic crust could form a hidden reservoir to account for the mass imbalance of Nb/Ta between BSE and the chondritic reservoir. Concentrations of HFSE were analyzed with isotope dilution (ID) techniques. Additionally, LA-ICPMS analyses of clinopyroxene, garnet and rutile have been performed. Rutile is by far the major host for Nb and Ta in all analyzed eclogites. However, many rutiles revealed zoning in Nb/Ta ratios, with cores being higher than rims. Accordingly, in situ analyses of rutiles have to be evaluated carefully and rutile cores do not necessarily reflect a bulk rock Nb and Ta composition, although over 90% of these elements reside in rutile. The HFSE concentration data in bulk rocks show that the orogenic eclogites have subchondritic Nb/Ta ratios and near chondritic Zr/Hf ratios. The investigated eclogites show neither enrichment of Nb compared to similarly incompatible elements (e.g. La), nor fractionation of Nb/Ta ratios relative to MOR-basalts, the likely precursor of these rocks. This indicates that during the conversion of the oceanic crust to eclogites in most cases, (1) HFSE and REE have similar mobility on average, possibly because both element groups remain in the down going slab, and (2) no significant fractionation of Nb/Ta occurs in subducted oceanic crust. With an average Nb/Ta ratio of 14.2 ± 1.4 (2s.e.), the investigated eclogites cannot balance the differences between BSE and chondrite. Additionally, as their average Nb/Ta is indistinguishable from the Nb/Ta of MORB, they are also an unlikely candidate to balance the potentially small differences in Nb/Ta between the continental crust and the mantle.
NASA Astrophysics Data System (ADS)
Davis, A. S.; Clague, D. A.; Paduan, J. B.; Cousens, B. L.; Huard, J.
2007-12-01
The numerous NE-SW trending volcanic seamounts at the continental margin offshore central to Southern California owe their existence to the complex tectonics that resulted when small spreading ridge segments intersected and partly subducted beneath the continental margin during the Miocene plate reorganization. A limited number of dredged samples had indicated multiple episodes of coeval, alkalic volcanism at geographically widely separated sites (Davis et al., 2002, GSA Bull. 114, 316-333). 450 new samples were collected from 8 seamounts from 37. 5°N to 32.3°N with MBARI's ROV Tiburon. Ar-Ar ages for 50 of these samples extend the ages of volcanism from 18 Ma to 2.8 Ma. The dominant whole rock compositions are differentiated alkalic basalt, hawaiite, and mugearite, but include minor benmoreite, trachyte, and rare tholeiitic basalt. This entire range of compositions is also present in glassy margins or in volcaniclastic breccias, except for the trachyte, which had no glassy margins. Trace element abundances and ratios (e.g. REE, Zr, Nb, Ta, Th, Ba, etc.) are typical for ocean island basalt, whether the seamount is located on the Pacific plate (e.g. Pioneer, Gumdrop, Guide, Davidson, San Juan, San Marcos) or on the continental slope (Rodriguez) or within the Southern Continental Borderland (Northeast Bank). Nine samples, predominantly from Rodriguez Seamount, show a calc-alkaline trend with lower Nb, Ta, and higher Th. These samples may be erratics (Paduan et al., 2007, Marine Geology, in press). Sr, Nd, and Pb isotopic compositions plot within the Pacific N-MORB field for the northern seamounts (Pioneer, Gumdrop, Guide) but suggest progressively more radiogenic sources southward. There is considerable scatter at each site, especially with regard to 87Sr/86Sr, despite severe acid-leaching of the samples. Isotopic and trace element compositions indicate sources that are heterogeneous at a small scale. Chondrite-normalized Ce/Yb suggest smaller degree of melting and more alkalic compositions with decreasing age, although there is again considerable scatter. Chondrite-normalized La/Sm versus Zr/Nb form a continuum from the seamount lavas to depleted N-MORB and E-MORB suggesting a common origin by decompression melting of a mantle source with randomly distributed enriched heterogeneities, which are incorporated to a greater degree with decreasing degree of melting. Based on symmetric magnetic anomalies, only Davidson Seamount has been identified as straddling a fossil spreading center (Lonsdale, 1991, AAPG Mem. 47, 87-125). However, the other seamounts along the continental margin with the same NE-SW orientation and similar geochemical characteristics probably originated in a similar setting, erupting lavas along zones of weakness in the ocean floor fabric related to past seafloor spreading. Small volumes of magma can apparently rise long after spreading ceases if there is enough enriched source component to facilitate melting combined with zones of weakness in the underlying ocean crust fabric and/or extensional tectonics.
NASA Astrophysics Data System (ADS)
Torró, Lisard; Proenza, Joaquín A.; Marchesi, Claudio; Garcia-Casco, Antonio; Lewis, John F.
2017-05-01
Metamorphosed basalts, basaltic andesites, andesites and plagiorhyolites of the Early Cretaceous, probably pre-Albian, Maimón Formation, located in the Cordillera Central of the Dominican Republic, are some of the earliest products of the Greater Antilles arc magmatism. In this article, new whole-rock element and Nd-Pb radiogenic isotope data are used to give new insights into the petrogenesis of the Maimón meta-volcanic rocks and constrain the early evolution of the Greater Antilles paleo-arc system. Three different groups of mafic volcanic rocks are recognized on the basis of their immobile element contents. Group 1 comprises basalts with compositions similar to low-Ti island arc tholeiites (IAT), which are depleted in light rare earth elements (LREE) and resemble the forearc basalts (FAB) and transitional FAB-boninitic basalts of the Izu-Bonin-Mariana forearc. Group 2 rocks have boninite-like compositions relatively rich in Cr and poor in TiO2. Group 3 comprises low-Ti island arc tholeiitic basalts with near-flat chondrite-normalized REE patterns. Plagiorhyolites and rare andesites present near-flat to subtly LREE-depleted chondrite normalized patterns typical of tholeiitic affinity. Nd and Pb isotopic ratios of plagiorhyolites, which are similar to those of Groups 1 and 3 basalts, support that these felsic lavas formed by anatexis of the arc lower crust. Geochemical modelling points that the parental basic magmas of the Maimón meta-volcanic rocks formed by hydrous melting of a heterogeneous spinel-facies mantle source, similar to depleted MORB mantle (DMM) or depleted DMM (D-DMM), fluxed by fluids from subducted oceanic crust and Atlantic Cretaceous pelagic sediments. Variations of subduction-sensitive element concentrations and ratios from Group 1 to the younger rocks of Groups 2 and 3 generally match the geochemical progression from FAB-like to boninite and IAT lavas described in subduction-initiation ophiolites. Group 1 basalts likely formed at magmatic stages transitional between FAB and first-island arc magmatism, whereas Group 2 boninitic lavas resulted from focused flux melting and higher degrees of melt extraction in a more mature stage of subduction. Group 3 basalts probably represent magmatism taking place immediately before the establishment of a steady-state subduction regime. The relatively high extents of flux melting and slab input recorded in the Maimón lavas support a scenario of hot subduction beneath the nascent Greater Antilles paleo-arc. Paleotectonic reconstructions and the markedly depleted, though heterogeneous character of the mantle source, indicate the rise of shallow asthenosphere which had sourced mid-ocean ridge basalts (MORB) and/or back-arc basin basalts (BABB) in the proto-Caribbean domain prior to the inception of SW-dipping subduction. Relative to the neighbouring Aptian-Albian Los Ranchos Formation, we suggest that Maimón volcanic rocks extruded more proximal to the vertical projection of the subducting proto-Caribbean spreading ridge.
The obesity of patients with Laron Syndrome is not associated with excessive nutritional intake.
Ginsberg, Shira; Laron, Zvi; Bed, Mira Arbiv; Vaisman, Nachum
2009-03-01
To study the metabolic parameters which may affect the excessive weight of treated and untreated patients with Laron Syndrome. Body composition, daily caloric intake and resting energy expenditure (REE), when possible, were measured for each patient. Caloric intake was calculated based on 7-day food records, REE was measured by indirect calorimetry and body composition was determined by dual energy X-ray absorptiometry (DEXA). Nine untreated adult subjects with Laron Syndrome (6 female subjects, 3 male subjects) aged 28-53 years and 4 girls with Laron Syndrome treated by insulin-like growth factor-I (IGF-I) 120-150 μg/kg/d were included in the study. Patients with Laron Syndrome have an abnormally high body fat (BF) mass (54 ± 10% of body weight) and a relatively low lean body mass (LBM) compared to a healthy normal population. Energy intake varied but in most of the patients was not significantly higher than the measured REE. The REE corrected for LBM was higher than expected, based on our norms for healthy adults. The mean distribution of energy sources in the food was 47% carbohydrates, 17% protein and 36% fat. The severe obesity of patients with Laron Syndrome is not due to hyperphagia or hypometabolism. © 2009 Asian Oceanian Association for the Study of Obesity . Published by Elsevier Ltd. All rights reserved.
Hu, Zhonghan; Margulis, Claudio J
2006-01-24
In this work, we investigate the slow dynamics of 1-butyl-3-methylimidazolium hexafluorophosphate, a very popular room-temperature ionic solvent. Our study predicts the existence of heterogeneity in the liquid and shows that this heterogeneity is the underlying microscopic cause for the recently reported "red-edge effect" (REE) observed in the study of fluorescence of the organic probe 2-amino-7-nitrofluorene. This theoretical work explains in microscopic terms the relation between REE and dynamic heterogeneity in a room-temperature ionic liquid (IL). The REE is typical of micellar or colloidal systems, which are characterized by microscopic environments that are structurally very different. In contrast, in the case of this room-temperature IL, the REE occurs because of the long period during which molecules are trapped in quasistatic local solvent cages. This trapping time, which is longer than the lifetime of the excited-state probe, together with the inability of the surroundings to adiabatically relax, induces a set of site-specific spectroscopic responses. Subensembles of fluorescent molecules associated with particular local environments absorb and emit at different frequencies. We describe in detail the absorption wavelength-dependent emission spectra of 2-amino-7-nitrofluorene and show that this dependence on lambda(ex) is characteristic of the IL and, as is to be expected, is absent in the case of a normal solvent such as methanol.
Yuan, Ming; Liu, Chang; Liu, Wen-Shen; Guo, Mei-Na; Morel, Jean Louis; Huot, Hermine; Yu, Hong-Jie; Tang, Ye-Tao; Qiu, Rong-Liang
2018-04-16
The widespread use of rare earth elements (REEs) has resulted in problems for soil and human health. Phytolacca americana L. is a herbaceous plant widely distributed in Dingnan county of Jiangxi province, China, which is a REE mining region (ion absorption rare earth mine) and the soil has high levels of REEs. An investigation of REE content of P. americana growing naturally in Dingnan county was conducted. REE concentrations in the roots, stems, and leaves of P. americana and in their rhizospheric soils were determined. Results showed that plant REEs concentrations varied among the sampling sites and can reach 1040 mg/kg in the leaves. Plant REEs concentrations decreased in the order of leaf > root > stem and all tissues were characterized by a light REE enrichment and a heavy REE depletion. However, P. americana exhibited preferential accumulation of light REEs during the absorption process (from soil to root) and preferential accumulation of heavy REEs during the translocation process (from stem to leaf). The ability of P. americana to accumulate high REEs in the shoot makes it a potential candidate for understanding the absorption mechanisms of REEs and for the phytoremediation of REEs contaminated soil.
New constraints on the formation of shergottite Elephant Moraine 79001 lithology A
NASA Astrophysics Data System (ADS)
Liu, Yang; Balta, J. Brian; Goodrich, Cyrena A.; McSween, Harry Y.; Taylor, Lawrence A.
2013-05-01
Previous studies of Elephant Moraine (EET) 79001 disagreed upon the nature of the magnesian olivine and orthopyroxene grains, and generally considered the formation of EET 79001 at low pressure conditions. New observations on mineral associations, and trace-element abundances of olivine-hosted melt inclusions, in lithology A (EET-A) of EET 79001 lead to new constraints on the formation of this meteorite. The abundances and chondrite-normalized REE pattern of the average melt inclusions in olivine of Mg# 75-61 are similar to those of the bulk-rock composition of lithology A, suggesting that the Mg# <77 olivines are phenocrysts. We also report the widespread occurrence of round orthopyroxene (En78.9-77.9Wo2.2-2.5) inclusions in disequilibrium contact with their olivine hosts (Mg# 73-68). Compositions of these inclusions are similar to xenocrystic cores (Mg# ⩾77; Wo ⩽4) in pyroxene megacrysts. These observations indicate that orthopyroxene xenocrysts were being resorbed while Mg# 77-73 olivine was crystallizing. Combined, these observations suggest that only small portions of the megacrysts are xenocrystic, namely orthopyroxene of Mg# ⩾77 and Wo ⩽4, and possibly also olivine of Mg# ⩾77. The volume percentages of the xenocrystic materials in the rock are small (⩽1 vol.% for each mineral). Compositions of the xenocrystic minerals are similar to cores of megacrysts in olivine-phyric shergottite Yamato (Y) 980459 and Northwest Africa (NWA) 5789. Considering the small fraction of xenocrysts and the similarity between REE abundances of the early-trapped melt and those in bulk EET-A, we re-evaluated the possibility that the bulk-rock composition of EET-A is close to that of its parent melt. Results of pMELTS modeling indicate that polybaric crystallization of the EET-A bulk composition (corrected by removal of xenocryst material) can reproduce the crystallization sequence of EET-A, in contrast to the conclusions of previous workers. We estimate that the EET-A parent magma began crystallizing at ∼0.7 GPa (∼60 km depth), followed a near-isobaric path at 0.5-0.7 GPa during crystallization of most olivine and pyroxene megacrysts, and then crystallized at shallower depth during the formation of megacryst rims and groundmass. Combined with recent reports of high-pressure crystallization for three other olivine-phyric samples, our results strongly support the interpretation that these relatively primitive samples may have begun to crystallize at much greater depths than previously inferred, at the base of martian crust.
Zierenberg, R.A.; Schiffman, P.; Barfod, G.H.; Lesher, C.E.; Marks, N.E.; Lowenstern, Jacob B.; Mortensen, A.K.; Pope, E.C.; Bird, D.K.; Reed, M.H.; Friðleifsson, G.O.; Elders, W.A.
2013-01-01
The Iceland Deep Drilling Project Well 1 was designed as a 4- to 5-km-deep exploration well with the goal of intercepting supercritical hydrothermal fluids in the Krafla geothermal field, Iceland. The well unexpectedly drilled into a high-silica (76.5 % SiO2) rhyolite melt at approximately 2.1 km. Some of the melt vesiculated while extruding into the drill hole, but most of the recovered cuttings are quenched sparsely phyric, vesicle-poor glass. The phenocryst assemblage is comprised of titanomagnetite, plagioclase, augite, and pigeonite. Compositional zoning in plagioclase and exsolution lamellae in augite and pigeonite record changing crystallization conditions as the melt migrated to its present depth of emplacement. The in situ temperature of the melt is estimated to be between 850 and 920 °C based on two-pyroxene geothermometry and modeling of the crystallization sequence. Volatile content of the glass indicated partial degassing at an in situ pressure that is above hydrostatic (~16 MPa) and below lithostatic (~55 MPa). The major element and minor element composition of the melt are consistent with an origin by partial melting of hydrothermally altered basaltic crust at depth, similar to rhyolite erupted within the Krafla Caldera. Chondrite-normalized REE concentrations show strong light REE enrichment and relative flat patterns with negative Eu anomaly. Strontium isotope values (0.70328) are consistent with mantle-derived melt, but oxygen and hydrogen isotope values are depleted (3.1 and −118 ‰, respectively) relative to mantle values. The hydrogen isotope values overlap those of hydrothermal epidote from rocks altered by the meteoric-water-recharged Krafla geothermal system. The rhyolite melt was emplaced into and has reacted with a felsic intrusive suite that has nearly identical composition. The felsite is composed of quartz, alkali feldspar, plagioclase, titanomagnetite, and augite. Emplacement of the rhyolite magma has resulted in partial melting of the felsite, accompanied locally by partial assimilation. The interstitial melt in the felsite has similar normalized SiO2 content as the rhyolite melt but is distinguished by higher K2O and lower CaO and plots near the minimum melt composition in the granite system. Augite in the partially melted felsite has re-equilibrated to more calcic metamorphic compositions. Rare quenched glass fragments containing glomeroporphyritic crystals derived from the felsite show textural evidence for resorption of alkali feldspar and quartz. The glass in these fragments is enriched in SiO2 relative to the rhyolite melt or the interstitial felsite melt, consistent with the textural evidence for quartz dissolution. The quenching of these melts by drilling fluids at in situ conditions preserves details of the melt–wall rock interaction that would not be readily observed in rocks that had completely crystallized. However, these processes may be recognizable by a combination of textural analysis and in situ analytical techniques that document compositional heterogeneity due to partial melting and local assimilation.
Slack, J.F.; Stevens, B.P.J.
1994-01-01
Whole-rock analyses of samples of pelite, psammite, and psammopelite from the Early Proterozoic Broken Hill Group (Willyama Supergroup) in the Broken Hill Block, New South Wales, Australia, reveal distinctive geochemical signatures. Major-element data show high Al2O3 and K2O, low MgO and Na2O, and relatively high Fe2O3T MgO ratios, compared to average Early Proterozoic clastic metasediments. High field strength elements (HFSE) are especially abundant, including Nb (most 15-27 ppm), Ta (most 1.0-2.2 ppm), Th (17-36 ppm), Hf (4-15 ppm), and Zr (most 170-400 ppm); Y (33-74 ppm) is also high. Concentrations of ferromagnesian elements are generally low (Sc = < 20 ppm, Ni = ??? 62 ppm, Co = <26 ppm; Cr = most < 100 ppm). Data for rare earth elements (REEs) show high abundances of light REEs (LaCN = 116-250 ?? chondrite; LaCN = 437 in one sample), high LaCN YbCN ratios (5.6-13.9), and large negative Eu anomalies ( Eu Eu* = 0.32-0.57). The geochemical data indicate derivation of the metasedimentary rocks of the Broken Hill Group by the erosion mainly of felsic igneous (or meta-igneous) rocks. High concentrations of HFSE, Y, and REEs in the metasediments suggest a provenance dominanted by anorogenic granites and(or) rhyolites, including those with A-type chemistry. Likely sources of the metasediments were the rhyolitic to rhyodacitic protoliths of local quartz + feldspar ?? biotite ?? garnet gneisses (e.g., Potosi-type gneiss) that occur within the lower part of the Willyama Supergroup, or chemically similar basement rocks in the region; alternative sources may have included Early Proterozoic anorogenic granites and(or) rhyolites in the Mount Isa and(or) Pine Creek Blocks of northern Australia, or in the Gawler craton of South Australia. Metallogenic considerations suggest that the metasediments of the Broken Hill Block formed enriched source rocks during the generation of pegmatite-hosted deposits and concentrations of La, Ce, Nb, Ta, Th, and Sn in the region. Li, Be, B, W, and U in pegmatite minerals of the district may have been acquired during granulite-facies metamorphism of the local metasediments. ?? 1994.
Hydrochemical study of an arsenic-contaminated plain in Guandu, north Taiwan
NASA Astrophysics Data System (ADS)
Hsiao, Yu-Hsiang
2015-04-01
Arsenic pollution in Guandu Plain, north Taiwan is a critical issue due to highly developed anthropogenic activities. It was considered that arsenic was carried in by surface water system. Two major rivers, Huanggang Creek and South Huang Greek, flow through Guandu Plain. Both creeks originate from Tatung Volcano Group, which is extensively active in post-volcanic activities. In this study, the hydrochemistry along the two major rivers was studied for tracing the source of arsenic pollution in Guandu Plain. The pH values in the upstream water are in the range from 6 to 8 but dramatically decrease down to 2-4.5 in the downstream area. It can be concluded that the creeks are recharged with very low pH geothermal water. In addition, arsenic shows a different spatial distribution. In Huanggang Creek, arsenic concentration is much higher, about 200 ppb to 500 ppb, in the downstream than in the upstream while arsenic concentration is extremely low, below 1 ppb, in the downstream of South Huang Greek. The geochemical results show that rare earth elements (REEs) are depleted in the upstream both in Huanggang creek and South Huang creek, and the NASC-normalized ratios of heavy to light REE (Lu/La) in the upstream are very close to 1. This demonstrates that the upstream water is geochemically dominated by the interaction between water and sedimentary rock. In the downstream, the NASC-normalized REE pattern shows a quit different type which is depleted in light REEs (much higher Lu/La ratio). It is well known that igneous rock is depleted in light REEs; therefore, arsenic is possibly volcanic origin. In this study, PHREEQC, a thermodynamic modeling program, was also utilized to calculate the saturation index (SI) of hydrous ferric oxide (HFO), which can effectively scavenge arsenic in water. The results demonstrate that SI of HFO is mainly controlled by pH in this study. When pH is greater than 3.5, HFO start to precipitate and remove arsenic from water. Therefore, it is believed that the arsenic pollution in Guandu Plain could result from HFO co-precipitation due to the increase of pH when Huanggang creek and South Huang creek flow through the land.
Petrology and Geochemistry of LEW 88663 and PAT 91501: High Petrologic L Chondrites
NASA Astrophysics Data System (ADS)
Mittlefehldt, D. W.; Lindstrom, M. M.; Field, S. W.
1993-07-01
Primitive achondrites (e.g., Acapulco, Lodran) are believed to be highly metamorphosed chondritic materials, perhaps up to the point of anatexis in some types. Low petrologic grade equivalents of these achondrites are unknown, so the petrologic transition from chondritic to achondritic material cannot be documented. However, there are rare L chondrites of petrologic grade 7 that may have experienced igneous processes, and study of these may yield information relevant to the formation of primitive achondrites, and perhaps basaltic achondrites, from chondritic precursors. We have begun the study of the L7 chondrites LEW 88663 and PAT 91501 as part of our broader study of primitive achondrites. Here, we present our preliminary petrologic and geochemical data on these meteorites. Petrology and Mineral Compositions: LEW 88663 is a granular achondrite composed of equant, subhedral to anhedral olivine grains poikilitically enclosed in networks of orthopyroxene and plagioclase. Small grains of clinopyroxene are spatially associated with orthopyroxene. Troilite occurs as large anhedral and small rounded grains. The smaller troilite grains are associated with the orthopyroxene-plagioclase networks. PAT 91501 is a vesicular stone containing centimeter-sized troilite +/- metal nodules. Its texture consists of anhedral to euhedral olivine grains, anhedral orthopyroxene grains (some with euhedral clinopyroxene overgrowths), anhedral to euhedral clinopyroxene, and interstitial plagioclase and SiO2-Al2O3-K2O- rich glass. In some areas, olivine is poikilitically enclosed in orthopyroxene. Fine-grained troilite, metal, and euhedral chromite occur interstitial to the silicates. Average mineral compositions for LEW 88663 are olivine Fo(sub)75.8, orthopyroxene Wo(sub)3.4En(sub)76.2Fs(sub)20.4, clinopyroxene Wo(sub)42.6En(sub)47.8Fs(sub)9.6, plagioclase Ab(sub)75.0An(sub)21.6Or(sub)3.4. Mineral compositions for PAT 91501 are olivine Fo(sub)73.8, orthopyroxene Wo(sub)4.5En(sub)74.8Fs(sub)20.7, clinopyroxene Wo(sub)34.3En(sub)52.4Fs(sub)13.3, plagioclase Ab(sub)81.6An(sub)14.0Or(sub)44. Geochemistry: We have completed INM analysis of LEW 88663 only; analyses of PAT 91501 are in progress. The weighted mean lithophile element (refractory, moderately volatile, and volatile) content of LEW 88663 normalized to average L chondrites [1] is 0.97. The weighted mean siderophile element (excluding Fe) content is only 0.57x L. This supports the suggestion that LEW 88663 lost metal relative to average L chondrites, although not as complete as implied earlier [1]. The mean lithophile-element abundance is that of L chondrites, but the lithophile-element pattern is fractionated. Highly incompatible elements are enriched in LEW 88663 relative to L chondrites (e.g., La 2.6x, Sm 1.9x L chondrites), while the more compatible elements are near L chondrite levels or depleted (e.g., Lu 1.1x, Sc 0.94x, Cr 0.87x L chondrites). Discussion: LEW 88663 and PAT 91501 are texturally similar to the Shaw L7 chondrite [3] and to poikilitic textured clasts in LL chondrites [4]. Several textural and mineralogical characteristics of PAT 91501 indicate that this stone is in part igneous. Large rounded troilite +/- metal nodules imply that melting occurred in the metal-troilite system. Interstitial material consists of euhedral, zoned chromites, euhedral clinopyroxene overgrowths on orthopyroxene, and plagioclase + glass. Olivine often shows euhedral faces in contact with the interstitial regions. These textures indicate that the interstitial regions were molten. The average pyroxene compositions in PAT 91501 indicate equilibration at 1200 degrees C [5], above the ordinary chondrite solidus [6]. Although PAT 91501 is in part igneous in origin, we have yet to determine whether it represents an extension of parent body heating from that of metamorphosed L chondrites, or whether it represents impact melting on the parent body. We will evaluate shock features, cooling rates, and the bulk composition of PAT 91501 in order to investigate this further. Orthopyroxenes in LEW 88663 have a lower Wo content, and clinopyroxenes have a higher Wo content, than those in PAT 91501, and have equilibrated to lower temperatures, perhaps ~1000 degrees C [5]. References: [1] Wasson and Kallemeyn (1988) Phil. Trans. R. Soc. Lond., A325, 535. [2] Davis et al. (1993) LPS XXIV, 375. [3] Taylor et al. (1979) GCA, 43, 323. [4] Fodor and Keil (1975) Meteoritics, 10, 325. [5] Lindsley (1983) Am. Mineral., 68, 477. [6] Jurewicz et al. (1993) LPS XXIV, 739.
NASA Astrophysics Data System (ADS)
Babaei, Amir Haji; Ganji, Alireza
2018-03-01
The Ahmadabad hematite/barite deposit is located to the northeast of the city of Semnan, Iran. Geostructurally, this deposit lies between the Alborz and the Central Iran zones in the Semnan Subzone. Hematite-barite mineralisation occurs in the form of a vein along a local fault within Eocene volcanic host rocks. The Ahmadabad deposit has a simple mineralogy, of which hematite and barite are the main constituents, followed by pyrite and Fe-oxyhydroxides such as limonite and goethite. Based on textural relationships between the above-mentioned principal minerals, it could be deduced that there are three hydrothermal mineralisation stages in which pyrite, hematite and barite with primary open space filling textures formed under different hydrothermal conditions. Subsequently, in the supergene stage, goethite and limonite minerals with secondary replacement textures formed under oxidation surficial conditions. Microthermometric studies on barite samples show that homogenisation temperatures (TH) for primary fluid inclusions range from 142 to 256°C with a temperature peak between 200 and 220°C. Salinities vary from 3.62 to 16.70 NaCl wt% with two different peaks, including one of 6 to 8 NaCl wt% and another of 12 to 14 NaCl wt%. This indicates that two different hydrothermal waters, including basinal and sea waters, could have been involved in barite mineralisation. The geochemistry of the major and trace elements in the samples studied indicate a hydrothermal origin for hematite and barite mineralisation. Moreover, the Fe/Mn ratio (>10) and plots of hematite samples of Ahmadabad ores on Al-Fe-Mn, Fe-Mn-(Ni+Co+ Cu)×10, Fe-Mn-SiX2 and MnO/TiO2 - Fe2O3/TiO2 diagrams indicate that hematite mineralisation in the Ahmadabad deposit occurred under hydrothermal conditions. Furthermore, Ba and Sr enrichment, along with Pb, Zn, Hg, Cu and Sb depletion, in the barite samples of Ahmadabad ores are indicative of a low temperature hydrothermal origin for the deposit. A comparison of the ratios of LaN/YbN, CeN/YbN, TbN/LaN, SmN/NdN and parameters of Ce/Ce* and La/La* anomalies of the hematite, barite, host volcanic rocks and quartz latite samples to each other elucidate two important points: 1) the barite could have originated from volcanic host rocks, 2) the hematite could have originated from a quartz latite lithological unit. The chondrite normalised REE patterns of samples of hematite barite, volcanic host rocks and quartz latite imply that two different hydrothermal fluids could be proposed for hematite and barite mineralisation. The comparison between chondrite normalised REE patterns of Ahmadabad barite with oceanic origin barite and low temperature hydrothermal barite shows close similarities to the low temperature hydrothermal barite deposits.
2008-10-01
training grades, and class rank (Carretta, in press; Carretta & Ree, 2003; Olea & Ree, 1994), and several non-aviation officer jobs (Arth, 1986...series of papers, Ree and colleagues ( Olea & Ree, 1994; Ree, Carretta, & Teachout, 1996; Ree, & Earles, 1991; Ree, Earles, & Teachout, 1994) showed...Report No. 4. Washington, DC: U.S. Government Printing Office. Olea , M. M., Ree, M. J. (1994). Predicting pilot and navigator criteria: Not much
Pyroxene structures, cathodoluminescence and the thermal history of the enstatite chondrites
NASA Technical Reports Server (NTRS)
Zhang, Yanhong; Huang, Shaoxiong; Schneider, Diann; Benoit, Paul H.; Sears, Derek W. G.; DeHart, John M.; Lofgren, Gary E.
1996-01-01
In order to explore the thermal history of enstatite chondrites, we examined the cathodoluminescence (CL) and thermoluminescence (TL) properties of 15 EH chondrites and 21 EL chondrites, including all available petrographic types, both textural types 3-6 and mineralogical types alpha-delta. The CL properties of EL3(alpha) and EH3(alpha) chondrites are similar. Enstatite grains high in Mn and other transition metals display red CL, while enstatite with low concentrations of these elements show blue CL. A few enstatite grains with greater than 5 wt% FeO display no CL. In contrast, the luminescent properties of the metamorphosed EH chondrites are very different from those of metamorphosed EL chondrites. While the enstatites in metamorphosed EH chondrites display predominantly blue CL, the enstatites in metamorphosed EL chondrites display a distinctive magenta CL with blue and red peaks of approximately equal intensity in their spectra. The TL sensitivities of the enstatite chondrites correlate with the intensity of the blue CL and, unlike other meteorite classes, are not simply related to metamorphism. The different luminescent properties of metamorphosed EH and EL chondrites cannot readily be attributed to compositional differences. But x-ray diffraction data suggests that the enstatite in EH5(gamma),(delta) chondrites is predominantly disordered orthopyroxene, while enstatite in EL6(beta) chondrites is predominantly ordered orthopyroxene. The difference in thermal history of metamorphosed EL and EH chondrites is so marked that the use of single 'petrographic' types is misleading, and separate textural and mineralogical types are preferable. Our data confirm earlier suggestions that metamorphosed EH chondrites underwent relatively rapid cooling, and the metamorphosed EL chondrites cooled more slowly and experienced prolonged heating in the orthopyroxene field.
Gender- and Age-Specific REE and REE/FFM Distributions in Healthy Chinese Adults
Cheng, Yu; Yang, Xue; Na, Li-Xin; Li, Ying; Sun, Chang-Hao
2016-01-01
Basic data on the resting energy expenditure (REE) of healthy populations are currently rare, especially for developing countries. The aims of the present study were to describe gender- and age-specific REE distributions and to evaluate the relationships among glycolipid metabolism, eating behaviors, and REE in healthy Chinese adults. This cross-sectional survey included 540 subjects (343 women and 197 men, 20–79 years old). REE was measured by indirect calorimetry and expressed as kcal/day/kg total body weight. The data were presented as the means and percentiles for REE and the REE to fat-free mass (FFM) ratio; differences were described by gender and age. Partial correlation analysis was used to analyze the correlations between REE, tertiles of REE/FFM, and glycolipid metabolism and eating behaviors. In this study, we confirmed a decline in REE with age in women (p = 0.000) and men (p = 0.000), and we found that men have a higher REE (p = 0.000) and lower REE/FFM (p = 0.021) than women. Furthermore, we observed no associations among glycolipid metabolism, eating behaviors, and REE in healthy Chinese adults. In conclusion, the results presented here may be useful to clinicians and nutritionists for comparing healthy and ill subjects and identifying changes in REE that are related to aging, malnutrition, and chronic diseases. PMID:27598192
Gender- and Age-Specific REE and REE/FFM Distributions in Healthy Chinese Adults.
Cheng, Yu; Yang, Xue; Na, Li-Xin; Li, Ying; Sun, Chang-Hao
2016-09-01
Basic data on the resting energy expenditure (REE) of healthy populations are currently rare, especially for developing countries. The aims of the present study were to describe gender- and age-specific REE distributions and to evaluate the relationships among glycolipid metabolism, eating behaviors, and REE in healthy Chinese adults. This cross-sectional survey included 540 subjects (343 women and 197 men, 20-79 years old). REE was measured by indirect calorimetry and expressed as kcal/day/kg total body weight. The data were presented as the means and percentiles for REE and the REE to fat-free mass (FFM) ratio; differences were described by gender and age. Partial correlation analysis was used to analyze the correlations between REE, tertiles of REE/FFM, and glycolipid metabolism and eating behaviors. In this study, we confirmed a decline in REE with age in women (p = 0.000) and men (p = 0.000), and we found that men have a higher REE (p = 0.000) and lower REE/FFM (p = 0.021) than women. Furthermore, we observed no associations among glycolipid metabolism, eating behaviors, and REE in healthy Chinese adults. In conclusion, the results presented here may be useful to clinicians and nutritionists for comparing healthy and ill subjects and identifying changes in REE that are related to aging, malnutrition, and chronic diseases.
Rare earth elements in sedimentary phosphate deposits: Solution to the global REE crisis?
Emsbo, Poul; McLaughlin, Patrick I.; Breit, George N.; du Bray, Edward A.; Koenig, Alan E.
2015-01-01
The critical role of rare earth elements (REEs), particularly heavy REEs (HREEs), in high-tech industries has created a surge in demand that is quickly outstripping known global supply and has triggered a worldwide scramble to discover new sources. The chemical analysis of 23 sedimentary phosphate deposits (phosphorites) in the United States demonstrates that they are significantly enriched in REEs. Leaching experiments using dilute H2SO4 and HCl, extracted nearly 100% of their total REE content and show that the extraction of REEs from phosphorites is not subject to the many technological and environmental challenges that vex the exploitation of many identified REE deposits. Our data suggest that phosphate rock currently mined in the United States has the potential to produce a significant proportion of the world's REE demand as a byproduct. Importantly, the size and concentration of HREEs in some unmined phosphorites dwarf the world's richest REE deposits. Secular variation in phosphate REE contents identifies geologic time periods favorable for the formation of currently unrecognized high-REE phosphates. The extraordinary endowment, combined with the ease of REE extraction, indicates that such phosphorites might be considered as a primary source of REEs with the potential to resolve the global REE (particularly for HREE) supply shortage.
Young Pb-Isotopic Ages of Chondrules in CB Carbonaceous Chondrites
NASA Technical Reports Server (NTRS)
Amelin, Yuri; Krot, Alexander N.
2005-01-01
CB (Bencubbin-type) carbonaceous chondrites differ in many ways from more familiar CV and CO carbonaceous chondrites and from ordinary chondrites. CB chondrites are very rich in Fe-Ni metal (50-70 vol%) and contain magnesian silicates mainly as angular to sub-rounded clasts (or chondrules) with barred olivine (BO) or cryptocrystalline (CC) textures. Both metal and silicates appear to have formed by condensation. The sizes of silicate clasts vary greatly between the two subgroups of CB chondrites: large (up to one cm) in CB(sub a) chondrites, and typically to much much less than 1 mm in CB(sub b) chondrites. The compositional and mineralogical differences between these subgroups and between the CB(sub s) and other types of chondrites suggest different environment and possibly different timing of chondrule formation. In order to constrain the timing of chondrule forming processes in CB(sub s) and understand genetic relationship between their subgroups, we have determined Pb-isotopic ages of silicate material from the CB(sub a) chondrite Gujba and CB(sub b) chondrite Hammadah al Hamra 237 (HH237 hereafter).
Health effects and toxicity mechanisms of rare earth elements-Knowledge gaps and research prospects.
Pagano, Giovanni; Guida, Marco; Tommasi, Franca; Oral, Rahime
2015-05-01
In the recent decades, rare earth elements (REE) have undergone a steady spread in several industrial and medical applications, and in agriculture. Relatively scarce information has been acquired to date on REE-associated biological effects, from studies of bioaccumulation and of bioassays on animal, plant and models; a few case reports have focused on human health effects following occupational REE exposures, in the present lack of epidemiological studies of occupationally exposed groups. The literature is mostly confined to reports on few REE, namely cerium and lanthanum, whereas substantial information gaps persist on the health effects of other REE. An established action mechanism in REE-associated health effects relates to modulating oxidative stress, analogous to the recognized redox mechanisms observed for other transition elements. Adverse outcomes of REE exposures include a number of endpoints, such as growth inhibition, cytogenetic effects, and organ-specific toxicity. An apparent controversy regarding REE-associated health effects relates to opposed data pointing to either favorable or adverse effects of REE exposures. Several studies have demonstrated that REE, like a number of other xenobiotics, follow hormetic concentration-related trends, implying stimulatory or protective effects at low levels, then adverse effects at higher concentrations. Another major role for REE-associated effects should be focused on pH-dependent REE speciation and hence toxicity. Few reports have demonstrated that environmental acidification enhances REE toxicity; these data may assume particular relevance in REE-polluted acidic soils and in REE mining areas characterized by concomitant REE and acid pollution. The likely environmental threats arising from REE exposures deserve a new line of research efforts. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Jin, L.; Ma, L.; Dere, A. L. D.; White, T.; Brantley, S. L.
2014-12-01
Rare earth elements (REE) have been identified as strategic natural resources and their demand in the United States is increasing rapidly. REE are relatively abundant in the Earth's crust, but REE deposits with minable concentrations are uncommon. One recent study has pointed to the deep-sea REE-rich muds in the Pacific Ocean as a new potential resource, related to adsorption and concentration of REE from seawater by hydrothermal iron-oxyhydroxides and phillipsite (Kato et al., 2010). Finding new REE deposits will be facilitated by understanding global REE cycles: during the transformation of bedrock into soils, REEs are leached into natural waters and transported to oceans. At present, the mechanisms and factors controlling release, transport, and deposition of REE - the sources and sinks - at Earth's surface remain unclear. Here, we systematically studied soil profiles and bedrock in seven watersheds developed on shale bedrock along a climate transect in the eastern USA, Puerto Rico and Wales to constrain the mobility and fractionation of REE during chemical weathering processes. In addition, one site on black shale (Marcellus) bedrock was included to compare behaviors of REEs in organic-rich vs. organic-poor shale end members under the same environmental conditions. Our investigation focused on: 1) the concentration of REEs in gray and black shales and the release rates of REE during shale weathering, 2) the biogeochemical and hydrological conditions (such as redox, dissolved organic carbon, and pH) that dictate the mobility and fractionation of REEs in surface and subsurface environments, and 3) the retention of dissolved REEs on soils, especially onto secondary Fe/Al oxyhydroxides and phosphate mineral phases. This systematic study sheds light on the geochemical behaviors and environmental pathways of REEs during shale weathering along a climosequence.
Takahashi, Yoshio; Tada, Akisa; Shimizu, Hiroshi
2004-09-01
REE (rare earth element) distribution coefficients (Kd) between the aqueous phase and montmorillonite surface were obtained to investigate the relation between the REE distribution patterns and the species of REE sorbed on the solid-water interface. It was shown that the features in the REE patterns, such as the slope of the REE patterns, the tetrad effect, and the Y/Ho ratio, were closely related to the REE species at the montmorillonite-water interface. In a binary system (REE-montmorillonite) below pH 5, three features (a larger Kd value for a lighter REE, the absence of the tetrad effect, and the Y/Ho ratio being unchanged from its initial value) suggest that hydrated REE are directly sorbed as an outer-sphere complex at the montmorillonite-water interface. Above pH 5.5, the features in the REE patterns, the larger Kd value for heavier REE, the M-type tetrad effect, and the reduced Y/Ho ratio, showed the formation of an inner-sphere complex of REE with -OH group at the montmorillonite surface. In addition, the REE patterns in the presence of humic acid at pH 5.9 were also studied, where the REE patterns became flat, suggesting that the humate complex is dominant as both dissolved and sorbed species of REE in the ternary system. All of these results were consistent with the spectroscopic data (laser-induced fluorescence spectroscopy) showing the local structure of Eu(III) conducted in the same experimental system. The present results suggest that the features in the REE distribution patterns include information on the REE species at the solid-water interface.
NASA Astrophysics Data System (ADS)
Marsac, R.; Davranche, M.; Gruau, G.; Dia, A.
2009-04-01
In natural organic-rich waters, rare earth elements (REE) speciation is mainly controlled by organic colloids such as humic acid (HA). Different series of REE-HA complexation experiments performed at several metal loading (REE/C) displayed two pattern shapes (i) at high metal loading, a middle-REE (MREE) downward concavity, and (ii) at low metal loading, a regular increase from La to Lu (e.g. Sonke and Salters, 2006; Pourret et al., 2007). Both REE patterns might be related to REE binding with different surface sites on HA. To understand REE-HA binding, REE-HA complexation experiments at various metals loading were carried out using ultrafiltration combined with ICP-MS measurements, for the 14 REE simultaneously. The patterns of the apparent coefficients of REE partition between HA and the inorganic solution (log Kd) evolved regularly according to the metal loading. The REE patterns presented a MREE downward concavity at low loading and a regular increase from La to Lu at high loading. The dataset was modelled with Model VI by adjusting two specific parameters, log KMA, the apparent complexation constant of HA low affinity sites and DLK2, the parameter increasing high affinity sites binding strength. Experiments and modelling provided evidence that HA high affinity sites controlled the REE binding with HA at low metal loading. The REE-HA complex could be as multidentate complexes with carboxylic or phenolic sites or potentially with sites constituted of N, P or S as donor atoms. Moreover, these high affinity sites could be different for light and heavy REE, because heavy REE have higher affinity for these sites, in low density, and could saturate them. These new Model VI parameter sets allowed the prediction of the REE-HA pattern shape evolution on a large range of pH and metal loading. According to the metal loading, the evolution of the calculated REE patterns was similar to the various REE pattern observed in natural acidic organic-rich waters (pH<7 and DOC>10 mg L-1). As a consequence, the metal loading could be the key parameter controlling the REE pattern in organic-rich waters.
Pagano, Giovanni; Guida, Marco; Siciliano, Antonietta; Oral, Rahime; Koçbaş, Fatma; Palumbo, Anna; Castellano, Immacolata; Migliaccio, Oriana; Thomas, Philippe J; Trifuoggi, Marco
2016-05-01
Broad-ranging adverse effects are known for rare earth elements (REE), yet only a few studies tested the toxicity of several REE, prompting studies focusing on multi-parameter REE toxicity. Trichloride salts of Y, La, Ce, Nd, Sm, Eu and Gd were tested in Paracentrotus lividus sea urchin embryos and sperm for: (1) developmental defects in either REE-exposed larvae or in the offspring of REE-exposed sperm; (2) fertilization success; (3) mitotic anomalies in REE-exposed embryos and in the offspring of REE-exposed sperm, and (4) reactive oxygen species (ROS) formation, and malondialdehyde (MDA) and nitric oxide (NO) levels. REEs affected P. lividus larvae with concentration-related increase in developmental defects, 10(-6) to 10(-4)M, ranking as: Gd(III)>Y(III)>La(III)>Nd(III)≅Eu(III)>Ce(III)≅Sm(III). Nominal concentrations of REE salts were confirmed by inductively coupled plasma mass spectrometry (ICP-MS). Significant increases in MDA levels, ROS formation, and NO levels were found in REE-exposed embryos. Sperm exposure to REEs (10(-5) to 10(-4)M) resulted in concentration-related decrease in fertilization success along with increase in offspring damage. Decreased mitotic activity and increased aberration rates were detected in REE-exposed embryos and in the offspring of REE-exposed sperm. REE-associated toxicity affecting embryogenesis, fertilization, cytogenetic and redox endpoints showed different activities of tested REEs. Damage to early life stages, along with redox and cytogenetic anomalies should be the focus of future REE toxicity studies. Copyright © 2016 Elsevier Inc. All rights reserved.
Hydrothermal transport and deposition of the rare earth elements by fluorine-bearing aqueous liquids
NASA Astrophysics Data System (ADS)
Migdisov, Art A.; Williams-Jones, A. E.
2014-12-01
New technologies, particularly those designed to address environmental concerns, have created a great demand for the rare earth elements (REE), and focused considerable attention on the processes by which they are concentrated to economically exploitable levels in the Earth's crust. There is widespread agreement that hydrothermal fluids played an important role in the formation of the world's largest economic REE deposit, i.e. Bayan Obo, China. Until recently, many researchers have assumed that hydrothermal transport of the REE in fluorine-bearing ore-forming systems occurs mainly due to the formation of REE-fluoride complexes. Consequently, hydrothermal models for REE concentration have commonly involved depositional mechanisms based on saturation of the fluid with REE minerals due to destabilization of REE-fluoride complexes. Here, we demonstrate that these complexes are insignificant in REE transport, and that the above models are therefore flawed. The strong association of H+ and F- as HF° and low solubility of REE-F solids greatly limit transport of the REE as fluoride complexes. However, this limitation does not apply to REE-chloride complexes. Because of this, the high concentration of Cl- in the ore fluids, and the relatively high stability of REE-chloride complexes, the latter can transport appreciable concentrations of REE at low pH. The limitation also does not apply to sulphate complexes and in some fluids, the concentration of sulphate may be sufficient to transport significant concentrations of REE as sulphate complexes, particularly at weakly acidic pH. This article proposes new models for hydrothermal REE deposition based on the transport of the REE as chloride and sulphate complexes.
Continental shelves as potential resource of rare earth elements.
Pourret, Olivier; Tuduri, Johann
2017-07-19
The results of this study allow the reassessment of the rare earth elements (REE) external cycle. Indeed, the river input to the oceans has relatively flat REE patterns without cerium (Ce) anomalies, whereas oceanic REE patterns exhibit strong negative Ce anomalies and heavy REE enrichment. Indeed, the processes at the origin of seawater REE patterns are commonly thought to occur within the ocean masses themselves. However, the results from the present study illustrate that seawater-like REE patterns already occur in the truly dissolved pool of river input. This leads us to favor a partial or complete removal of the colloidal REE pool during estuarine mixing by coagulation, as previously shown for dissolved humic acids and iron. In this latter case, REE fractionation occurs because colloidal and truly dissolved pools have different REE patterns. Thus, the REE patterns of seawater could be the combination of both intra-oceanic and riverine processes. In this study, we show that the Atlantic continental shelves could be considered potential REE traps, suggesting further that shelf sediments could potentially become a resource for REE, similar to metalliferous deep sea sediments.
The rare earth element compositions of the Changjiang (Yangtze) and Huanghe (Yellow) river sediments
NASA Astrophysics Data System (ADS)
Yang, Shou Ye; Jung, Hoi Soo; Choi, Man Sik; Li, Cong Xian
2002-07-01
Thirty-four samples from the Changjiang and Huanghe were analyzed to characterize their rare earth element (REE) compositions. Although REE concentrations in the Changjiang sediments are higher than those of the Huanghe sediments, the former are less variable. Bulk samples and acid-leachable fractions have convex REE patterns and middle REE enrichments relative to upper continental crust, whereas flat patterns are present in the residual fractions. Source rock composition is the primary control on REE composition, and weathering processes play a minor role. Grain size exerts some influence on REE composition, as demonstrated by the higher REE contents of clay minerals in sediments from both rivers. Heavy minerals contribute about 10-20% of the total REE in the sediments. Apatite is rare in the river sediments, and contributes less than 2% of the REE content, but other heavy minerals such as sphene, allanite and zircon are important reservoirs of residual REE fractions. The Fe-Mn oxides phase accounts for about 14% of bulk REE content in the Changjiang sediments, which could be one of the more important factors controlling REE fractionation in the leachable fraction.
Kim, Daejin; Powell, Lawrence E; Delmau, Lætitia H; Peterson, Eric S; Herchenroeder, Jim; Bhave, Ramesh R
2015-08-18
The rare earth elements (REEs) such as neodymium, praseodymium, and dysprosium were successfully recovered from commercial NdFeB magnets and industrial scrap magnets via membrane assisted solvent extraction (MSX). A hollow fiber membrane system was evaluated to extract REEs in a single step with the feed and strip solutions circulating continuously through the MSX system. The effects of several experimental variables on REE extraction such as flow rate, concentration of REEs in the feed solution, membrane configuration, and composition of acids were investigated with the MSX system. A multimembrane module configuration with REEs dissolved in aqueous nitric acid solutions showed high selectivity for REE extraction with no coextraction of non-REEs, whereas the use of aqueous hydrochloric acid solution resulted in coextraction of non-REEs due to the formation of chloroanions of non-REEs. The REE oxides were recovered from the strip solution through precipitation, drying, and annealing steps. The resulting REE oxides were characterized with XRD, SEM-EDX, and ICP-OES, demonstrating that the membrane assisted solvent extraction is capable of selectively recovering pure REEs from the industrial scrap magnets.
NASA Astrophysics Data System (ADS)
Zhang, Feifei; Wang, Yuejun; Cawood, Peter A.; Dong, Yunpeng
2018-01-01
The Qinling-Dabie orogenic belt was formed by the collision of the North and South China Cratons during the Early Mesozoic and subsequently developed into an intracontinental tectonic process during late Mesozoic. Field investigations identified the presence of late Mesozoic basalts in the Duofutun and Hongqiang areas in the western Qinling orogenic belt. The petrogenesis of these basalts provides an important constraint on the late Mesozoic geodynamics of the orogen. The representative basaltic samples yield the 40Ar/39Ar plateau age of about 112 Ma. These samples belong to the alkaline series and have SiO2 ranging from 44.98 wt.% to 48.19 wt.%, Na2O + K2O from 3.44 wt% to 5.44 wt%, and MgO from 7.25 wt.% to 12.19 wt.%. They demonstrate the right-sloping chondrite-normalized REE patterns with negligible Eu anomalies (1.00-1.10) and PM-normalized patterns enriched in light rare earth element, large ion lithophile element and high field strength element, similar to those of OIB rocks. These samples additionally show an OIB-like Sr-Nd isotopic signature with εNd(t) values ranging from +6.13 to +10.15 and initial 87Sr/86Sr ratios from 0.7028 to 0.7039, respectively. These samples are geochemically subdivided into two groups. Group 1 is characterized by low Al2O3 and high TiO2 and P2O5 contents, as well as high La/Yb ratios (>20), being the product of the high-pressure garnet fractionation from the OIB-derived magma. Group 2 shows higher Al2O3 but lower P2O5 contents and La/Yb ratios (<20) than Group 1, originating from asthenospheric mantle with input of delaminated lithospheric component. In combination with available data, it is proposed for the petrogenetic model of the Early Cretaceous thickened lithospheric delamination in response to the asthenospheric upwelling along the western Qinling orogenic belt.
NASA Astrophysics Data System (ADS)
Lechmann, Anna; Burg, Jean-Pierre; Ulmer, Peter; Guillong, Marcel; Faridi, Mohammad
2018-04-01
Middle Miocene to Quaternary volcanic rocks cover large areas of the Azerbaijan Province in NW Iran. This study reports two separate age clusters out of 23 new LA-ICP-MS U-Pb zircon ages: (1) Middle Miocene (16.2-10.6 Ma) and (2) Latest Miocene-Late Pleistocene (5.5-0.4 Ma). Major and trace element bulk rock geochemistry and initial Sr, Nd, Pb radiogenic isotope data on the dated rocks provide new constraints on the Mid-Miocene to Quaternary volcanism in this region. The analyses are distributed over a large compositional range from low-K to high-K calc-alkaline andesites and dacites/rhyolites to more alkaline trachybasalts and dacites with shoshonitic affinities. Chondrite-normalized REE patterns are steep with significant enrichment in LREE and low abundances of HREE indicating a garnet control. Plots of primitive mantle-normalized trace elements show negative Ti and Nb-Ta anomalies indicative of an arc signature. The wide compositional range and the ubiquitous presence of an arc signature reveal that the source mantle is heterogeneous and metasomatically altered. Sr, Nd and Pb radiogenic isotope data further point towards an enriched mantle source and/or crustal contamination. Crustal contamination is best recognized by inherited zircon cores, which yield Late Neoproterozoic to Early Cambrian ages typical for the Iranian basement. The occurrence of adakite-like compositions with elevated magnesium numbers, Cr and Ni concentrations argue against a fractionation-driven process but point to a subcrustal origin. Overall, the analyzed lavas show no spatial and temporal relation to a potential subduction zone, confirming the dated volcanics to be post-collisional and not related to singular processes such as slab retreat or delamination of a continuous lower crustal sliver. We propose three hypotheses to explain the reported disparity in distribution, age and composition and favour small-scale sublithospheric convection or incorporation of crustal material into the metasomatized mantle. The discovery of the late Miocene time gap is in line with previously advocated exhumation pulses and coincides with a major tectonic reorganization in the Arabian-Eurasian realm at this time.
Lunar and Planetary Science XXXV: Concerning Chondrites
NASA Technical Reports Server (NTRS)
2004-01-01
The Lunar and Planetary Science XXXV session entitled "Concerning Chondrites" includes the following topics: 1) Petrology and Raman Spectroscopy of Shocked Phases in the Gujba CB Chondrite and the Shock History of the CB Parent Body; 2) The Relationship Between CK and CV Chondrites: A Single Parent Body Source? 3) Samples of Asteroid Surface Ponded Deposits in Chondritic Meteorites; 4) Composition and Origin of SiO2-rich Objects in Carbonaceous and Ordinary Chondrites; 5) Re-Os Systematics and HSE distribution in Tieschitz (H3.6); Two Isochrons for One Meteorite; 6) Loss of Chromium from Olivine During the Metamorphism of Chondrites; 7) Very Short Delivery Times of Meteorites After the L-Chondrite Parent Body Break-Up 480 Myr Ago; and 8) The Complex Exposure History of a Very Large L/LL5 Chondrite Shower: Queen Alexandra Range 90201.
Lunar and Planetary Science XXXV: Organics and Alteration in Carbonaceous Chondrites: Goop and Crud
NASA Technical Reports Server (NTRS)
2004-01-01
The session "Organics and Alteration in Carbonaceous Chondrites: Goop and Crud" included the following reports:Organics on Fe-Silicate Grains: Potential Mimicry of Meteoritic Processes?; Molecular and Compound-Specific Isotopic Study of Monocarboxylic Acids in Murchison and Antarctic Meteorites; Nanoglobules, Macromolecular Materials, and Carbon Sulfides in Carbonaceous Chondrites; Evidence for Terrestrial Organic Contamination of the Tagish Lake Meteorite; Nitrogen Isotopic Imaging of Tagish Lake Carbon Globules; Microscale Distribution of Hydrogen Isotopes in Two Carbonaceous Chondrites; The Nature and Origin of Aromatic Organic Matter in the Tagish Lake Meteorite; Terrestrial Alteration of CM Chondritic Carbonate; Serpentine Nanotubes in CM Chondrites; Experimental Study of Serpentinization Reactions; Chondrule Glass Alteration in Type IIA Chondrules in the CR2 Chondrites EET 87770 and EET 92105: Insights into Elemental Exchange Between Chondrules and Matrices; Aqueous Alteration of Carbonaceous Chondrites: New Insights from Comparative Studies of Two Unbrecciated CM2 Chondrites, Y 791198 and ALH 81002 ;and A Unique Style of Alteration of Iron-Nickel Metal in WIS91600, an Unusual C2 Carbonaceous Chondrite.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pagano, Giovanni, E-mail: gbpagano@tin.it; Guida, Marco; Siciliano, Antonietta
Background: Broad-ranging adverse effects are known for rare earth elements (REE), yet only a few studies tested the toxicity of several REE, prompting studies focusing on multi-parameter REE toxicity. Methods: Trichloride salts of Y, La, Ce, Nd, Sm, Eu and Gd were tested in Paracentrotus lividus sea urchin embryos and sperm for: (1) developmental defects in either REE-exposed larvae or in the offspring of REE-exposed sperm; (2) fertilization success; (3) mitotic anomalies in REE-exposed embryos and in the offspring of REE-exposed sperm, and (4) reactive oxygen species (ROS) formation, and malondialdehyde (MDA) and nitric oxide (NO) levels. Results: REEs affectedmore » P. lividus larvae with concentration-related increase in developmental defects, 10{sup −6} to 10{sup −4} M, ranking as: Gd(III)>Y(III)>La(III)>Nd(III)≅Eu(III)>Ce(III)≅Sm(III). Nominal concentrations of REE salts were confirmed by inductively coupled plasma mass spectrometry (ICP-MS). Significant increases in MDA levels, ROS formation, and NO levels were found in REE-exposed embryos. Sperm exposure to REEs (10{sup −5} to 10{sup −4} M) resulted in concentration-related decrease in fertilization success along with increase in offspring damage. Decreased mitotic activity and increased aberration rates were detected in REE-exposed embryos and in the offspring of REE-exposed sperm. Conclusion: REE-associated toxicity affecting embryogenesis, fertilization, cytogenetic and redox endpoints showed different activities of tested REEs. Damage to early life stages, along with redox and cytogenetic anomalies should be the focus of future REE toxicity studies. - Highlights: • Seven rare earth elements exerted different effects on sea urchin early life stages. • Embryo-, spermio- and mitotoxicity, and oxidative/ nitrosative stress were found. • Nominal vs. analytical REE concentrations were checked. • Comparative toxicities were evaluated for the different REE.« less
Rare earth elements in human and animal health: State of art and research priorities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pagano, Giovanni, E-mail: gbpagano@tin.it; Aliberti, Francesco; Guida, Marco
Background: A number of applications have been developed using rare earth elements (REE), implying several human exposures and raising unsolved questions as to REE-associated health effects. Methods: A MedLine survey was retrieved from early reports (1980s) up to June 2015, focused on human and animal exposures to REE. Literature from animal models was selected focusing on REE-associated health effects. Results: Some REE occupational exposures, in jobs such as glass polishers, photoengravers and movie projectionists showed a few case reports on health effects affecting the respiratory system. No case-control or cohort studies of occupational REE exposures were retrieved. Environmental exposures havemore » been biomonitored in populations residing in REE mining areas, showing REE accumulation. The case for a iatrogenic REE exposure was raised by the use of gadolinium-based contrast agents for nuclear magnetic resonance. Animal toxicity studies have shown REE toxicity, affecting a number of endpoints in liver, lungs and blood. On the other hand, the use of REE as feed additives in livestock is referred as a safe and promising device in zootechnical activities, possibly suggesting a hormetic effect both known for REE and for other xenobiotics. Thus, investigations on long-term exposures and observations are warranted. Conclusion: The state of art provides a limited definition of the health effects in occupationally or environmentally REE-exposed human populations. Research priorities should be addressed to case-control or cohort studies of REE-exposed humans and to life-long animal experiments. - Highlights: • An extensive number of activities have been developed utilizing rare earth elements (REE). • The literature of REE-associated health effects in humans, and on animal studies is reviewed. • The main literature gaps are discussed, in epidemiological and in animal studies. • Prospects studies are suggested, aimed at evaluating long-term effects of REE exposures. • The relevance of REE-related hormesis, speciation and acidic pollution are discussed.« less
Recovery and separation of rare earth elements using columns loaded with DNA-filter hybrid.
Takahashi, Yoshio; Kondo, Kazuhiro; Miyaji, Asami; Umeo, Miyuki; Honma, Tetsuo; Asaoka, Satoshi
2012-01-01
Given that the supply of several rare earth elements (REEs) is sometimes limited, recycling REEs used in various advanced materials, such as Nd magnets, is important for realizing efficient use of REE resources. In the present work, the feasibility of using DNA for REE recovery and separation was examined, along with the identification of the binding site of REEs in DNA. In particular, a DNA-cellulose filter paper hybrid was prepared so that DNA-based materials can be used for the separation of REEs using columns loaded with DNA. N,N'-Disuccinimidyl was used as a cross-linker reagent for the fixation of DNA onto a fibrous cellulose filter. The results showed that (i) the DNA-filter hybrid has a sufficiently high affinity to adsorb REEs; (ii) the adsorption capacity was 0.182 mg/g for Nd; and (iii) the affinity of REEs for DNA was stronger for REEs with larger atomic numbers. The difference of the affinity among REEs in the third result was compared with the adsorption patterns of REEs discussed in the literature. The comparison suggests that phosphate in the DNA-filter paper hybrid was responsible for REE adsorption onto the hybrid. The results were supported by the Nd, Dy, and Lu L(III)-edge EXAFS; the REE-P shell was identified for the second neighboring atom, showing the importance of the phosphate site as REE binding sites. The difference in the affinity among REEs suggest that group separation of REEs (such as La, Ce, (Pr and Nd), (Ho, Dy, and Er), (Tb and Gd), (Sm, Eu), Tm, Yb, and Lu) is possible, although complete isolation of each REE from a solution containing all REEs may be difficult. For practical applications, Nd and Fe(III) were successfully separated from a synthetic solution of Nd magnet waste using columns loaded with the DNA-filter hybrid.
Osmium Isotope Evidence for an S-Process Carrier in Primitive Chondrites
NASA Technical Reports Server (NTRS)
Brandon, A. D.; Puchtel, I. S.; Humayun, M.; Zolensky, M.
2005-01-01
The degree of isotopic mixing in the solar nebula and the nature of pre-solar components that have contributed to our solar system remain subjects of vigorous debate. Isotopic anomalies have been identified in Ca-Al inclusions in chondrites [1-4]. This indicates that refractory pre-solar components were not completely homogenized or processed away at the high temperatures experienced by CAIs. Pre-solar grains (SiC, C, etc.) are prevalent in primitive chondrites, and preserve isotopic heterogeneity resulting from the nucleosynthetic processes occurring in the stars from which these grains formed [2,4]. Several recent studies employing precise techniques for measuring Ru, Mo and Zr isotopes in bulk meteorites, have come up with varying conclusions on the degree of effectiveness of nebular mixing on the scale of bulk meteorite material. Some of these studies have reported isotopic anomalies in Mo and Ru [3,5-7], while others have not observed anomalies in Mo, Ru, or Zr [8-10]. Debate over the quality of the data, the normalization techniques employed, the absence or presence of isobaric interferences during the measurements on different types of instruments (e.g. TIMS versus ICP-MS), and other factors, has ensued [11,12].
NASA Technical Reports Server (NTRS)
Nagasawa, H.; Schreiber, H. D.; Morris, R. V.
1980-01-01
Experimental determinations of the mineral/liquid partition coefficients of REE (La, Sm, Eu, Gd, Tb, Yb and Lu), Sc and Sr are reported for the minerals perovskite, spinel and melilite in synthetic systems. Perovskite concentrates light REE with respect to the residual liquid but shows no preference for heavy REE. Spinel greatly discriminates against the incorporation of REE, especially light REE, into its crystal structure. The partition of REE into melilite from a silicate liquid is quite dependent upon both the bulk melt and melilite solid-solution (gehlenite and akermanite components) compositions. As such, melilite can be enriched in REE or will reject REE with corresponding strong negative or strong positive Eu anomalies, respectively.
Petrogenesis of Pliocene Alkaline Volcanic Rocks from Southeastern Styrian Basin, Austria
NASA Astrophysics Data System (ADS)
Ali, Sh.; Ntaflos, Th.
2009-04-01
Petrogenesis of Pliocene Alkaline Volcanic Rocks from Southeastern Styrian Basin, Austria Sh. Ali and Th. Ntaflos Dept. of Lithospheric Research, University of Vienna, Austria Neogene volcanism in the Alpine Pannonian Transition Zone occurred in a complex geodynamic setting. It can be subdivided into a syn-extentional phase that comprises Middle Miocene dominantly potassic, intermediate to acidic volcanism and a post-extensional phase, which is characterized by eruption of alkaline basaltic magmas during the Pliocene to Quartenary in the Styrian Basin. These alkaline basaltic magmas occur as small eruptive centers dominating the geomorphology of the southeastern part of the Styrian Basin. The eruptive centers along the SE Styrian Basin from North to South are: Oberpullendorf, Pauliberg, Steinberg, Strandenerkogel, Waltrafelsen and Klöch. The suite collected volcanic rocks comprise alkali basalts, basanites and nephelinites. Pauliberg: consists of alkali basalts that exhibit a narrow range of SiO2 (44.66-47.70 wt %) and wide range of MgO (8.52-13.19-wt %), are enriched in TiO2 (3.74-4.18 wt %). They are enriched in incompatible trace elements such as Zr (317-483 ppm), Nb (72.4-138 ppm) and Y (30.7-42 ppm). They have Nb/La ratio of 1.89 (average) and Cen/Ybn=15.22-23.11. Oberpullendorf: it also consists of alkali basalts with higher SiO2 (50.39 wt %) and lower TiO2 (2.80 wt %) if compared with the Pauliberg suite. Incompatible trace elements are lower than in Pauliberg; Zr =217 ppm, Nb=49.8 ppm, Y=23.6 ppm and Nb/La=1.93. The Oberpullendorf alkalibasalts are relative to Pauliberg lavas more depleted in LREE (Cen/Ybn=12.78). Steinberg: it consists of basanites with SiO2=44.49-46.85 wt %, MgO=6.30-9.13-wt %, and TiO2 =2.09-2.26 wt %. They are enriched in incompatible trace elements such as Zr (250-333 ppm), Nb (94-130 ppm), Y (24.7-31.9 ppm) and Nb/La=1.59 (average). The Cen/Ybn ratio varies between 18.17 and 22.83 indicating relative steep REE chondrite normalized patterns. Strandenerkogel: it consists of nephelinites with narrow compositional ranges; SiO2 =40.99-42.44 wt %, MgO=6.63-6.92 wt % and TiO2=2.03-2.07 wt %. They are enriched in incompatible trace elements such as Zr (362-382 ppm), Nb (139-153 ppm) and Y (39.5-40.7 ppm). They have Nb/La ratio of 1.20 and are strongly enriched in LREE (Cen/Ybn=25.04-28.11). Waltrafelsen: there are like in Strandenerkogel and have SiO2=42.42 wt %, MgO=6.55 wt %, and TiO2=2.01 wt %. The incompatible trace elements such as Zr (362 ppm), Nb (145 ppm) and Y (38.3 ppm) are similar to that of Stranerkogel. They have Nb/La ratio of 1.27 and are strongly enriched in LREE (Cen/Ybn=24.92). Klöch: it consists of basanites with similar to Steinberg composition (SiO2=45.34-46.60 wt %, MgO=8.98-10.11 wt %, and TiO2= 2.28-2.37 wt %. Incompatible trace elements such as Zr (252-273 ppm), Nb (94.2-101 ppm) and Y (24.4-27.2 ppm) are high. They have Nb/La ratio of 1.71 (average). Their REE abundances compared to Steinberg are slightly lower (Cen/Ybn=18.19-20.17). The Nb/La ratio of all the studied rock varieties is greater than one indicates an OIB-like asthenospheric mantle source for the basaltic magma. All the studied rock varieties except alkali basalts of Pauliberg have Tbn/Ybn ratios which are comparable to those of the alkali basalts of Hawaii ((Tbn/Ybn range from 1.89 to 2.45); the Hawaiian basalts are considered to have been derived from a garnet-lherzolite mantle source (Frey et al. 1991; McKenzie & O'Nions, 1991). The chondrite normalized HREE abundances indicate the presence of garnet as a residual phase in the melt source region as can be inferred from the Dy/Yb ratio (average 2.93) which is greater than that of chondritic Dy/Yb ratio (1.57) All the studied rock varieties display alkaline affinity and negative K-anomaly. The negative K-anomaly suggests either a source character, (e.g. frozen HIMU-like veins or pockets in the depleted lherzolite)? or it is consistent with the presence of a K-bearing hydrous phase in the residual mantle. References FREY, F. A., GARCIA, M. O., WISE, W. S., KENNEDY, A., GURRIET, P. & ALBAREDE, F. 1991. The evolution of Mauna Kea volcano, Hawaii: Petrogenesis of tholeiitic and alkali basalts. Journal of Geophysical Research 96, 14347-75. MCKENZIE, D. P. & O'NIONS, R. K. 1991. Partial melting distributions from inversion of rare earth element concentrations. Journal of Petrology 32, 1021-91.
Geology and market-dependent significance of rare earth element resources
NASA Astrophysics Data System (ADS)
Simandl, G. J.
2014-12-01
China started to produce rare earth elements (REEs) in the 1980s, and since the mid-1990s, it has become the dominant producer. Rare earth element export quotas first introduced by the Chinese government in the early 2000s were severely reduced in 2010 and 2011. This led to strong government-created disparity between prices within China and the rest of the world. Industrialized countries identified several REEs as strategic metals. Because of rapid price increases of REE outside of China, we have witnessed a world-scale REE exploration rush. The REE resources are concentrated in carbonatite-related deposits, peralkaline igneous rocks, pegmatites, monazite ± apatite veins, ion adsorption clays, placers, and some deep ocean sediments. REE could also be derived as a by-product of phosphate fertilizer production, U processing, mining of Ti-Zr-bearing placers, and exploitation of Olympic Dam subtype iron oxide copper gold (IOCG) deposits. Currently, REEs are produced mostly from carbonatite-related deposits, but ion adsorption clay deposits are an important source of heavy REE (HREE). Small quantities of REE are derived from placer deposits and one peralkaline intrusion-related deposit. The ideal REE development targets would be located in a politically stable jurisdiction with a pro-mining disposition such as Canada and Australia. REE grade, HREE/light REE (LREE) ratio of the mineralization, tonnage, mineralogy, and permissive metallurgy are some of the key technical factors that could be used to screen potential development projects. As REEs are considered strategic metals from economic, national security, and environmental points of view, technical and economic parameters alone are unlikely to be used in REE project development decision-making. Recycling of REE is in its infancy and unless legislated, in the short term, it is not expected to contribute significantly to the supply of REE.
The rare-earth elements: Vital to modern technologies and lifestyles
Van Gosen, Bradley S.; Verplanck, Philip L.; Long, Keith R.; Gambogi, Joseph; Seal, Robert R.
2014-01-01
Until recently, the rare-earth elements (REEs) were familiar to a relatively small number of people, such as chemists, geologists, specialized materials scientists, and engineers. In the 21st century, the REEs have gained visibility through many media outlets because of (1) the public has recognized the critical, specialized properties that REEs contribute to modern technology, as well as (2) China's dominance in production and supply of the REEs and (3) international dependence on China for the majority of the world's REE supply.Since the late 1990s, China has provided 85–95 percent of the world’s REEs. In 2010, China announced their intention to reduce REE exports. During this timeframe, REE use increased substantially. REEs are used as components in high technology devices, including smart phones, digital cameras, computer hard disks, fluorescent and light-emitting-diode (LED) lights, flat screen televisions, computer monitors, and electronic displays. Large quantities of some REEs are used in clean energy and defense technologies. Because of the many important uses of REEs, nations dependent on new technologies, such as Japan, the United States, and members of the European Union, reacted with great concern to China’s intent to reduce its REE exports. Consequently, exploration activities intent on discovering economic deposits of REEs and bringing them into production have increased.
Deng, Yinan; Ren, Jiangbo; Guo, Qingjun; Cao, Jun; Wang, Haifeng; Liu, Chenhui
2017-11-28
Deep-sea sediments contain high concentrations of rare earth element (REE) which have been regarded as a huge potential resource. Understanding the marine REE cycle is important to reveal the mechanism of REE enrichment. In order to determine the geochemistry characteristics and migration processes of REE, seawater, porewater and sediment samples were systematically collected from the western Pacific for REE analysis. The results show a relatively flat REE pattern and the HREE (Heavy REE) enrichment in surface and deep seawater respectively. The HREE enrichment distribution patterns, low concentrations of Mn and Fe and negative Ce anomaly occur in the porewater, and high Mn/Al ratios and low U concentrations were observed in sediment, indicating oxic condition. LREE (Light REE) and MREE (Middle REE) enrichment in upper layer and depletion of MREE in deeper layer were shown in porewater profile. This study suggests that porewater flux in the western Pacific basin is a minor source of REEs to seawater, and abundant REEs are enriched in sediments, which is mainly caused by the extensive oxic condition, low sedimentation rate and strong adsorption capacity of sediments. Hence, the removal of REEs of porewater may result in widespread REE-rich sediments in the western Pacific basin.
Bacterial Cell Surface Adsorption of Rare Earth Elements
NASA Astrophysics Data System (ADS)
Jiao, Y.; Park, D.; Reed, D.; Fujita, Y.; Yung, M.; Anderko, A.; Eslamimanesh, A.
2015-12-01
Rare earth elements (REE) play a critical role in many emerging clean energy technologies, including high-power magnets, wind turbines, solar panels, hybrid/electric vehicle batteries and lamp phosphors. In order to sustain demand for such technologies given current domestic REE shortages, there is a need to develop new approaches for ore processing/refining and recycling of REE-containing materials. To this end, we have developed a microbially-mediated bioadsorption strategy with application towards enrichment of REE from complex mixtures. Specifically, the bacterium Caulobacter crescentus was genetically engineered to display lanthanide binding tags (LBTs), short peptides that possess high affinity and specificity for rare earth elements, on its cell surface S-layer protein. Under optimal conditions, LBT-displayed cells adsorbed greater than 5-fold more REE than control cells lacking LBTs. Competition binding experiments with a selection of REEs demonstrated that our engineered cells could facilitate separation of light- from heavy- REE. Importantly, binding of REE onto our engineered strains was much more favorable compared to non-REE metals. Finally, REE bound to the cell surface could be stripped off using citrate, providing an effective and non-toxic REE recovery method. Together, this data highlights the potential of our approach for selective REE enrichment from REE containing mixtures.
NASA Technical Reports Server (NTRS)
Jolliff, Bradley L.; Haskin, Larry A.; Colson, Russell O.; Wadhwa, Meenakshi
1993-01-01
Compositions, including REEs determined by ion microprobe, of apatite and whitlockite in lunar rock assemblages rich in incompatible trace elements, are presented. Concentrations of REEs in lunar whitlockites are high, ranging from about 1.2 to 2.1 REEs (lanthanides + Y) per 56 oxygens. This slightly exceeds the level of two REE atoms per 56 oxygens at which the dominant substitution theoretically becomes saturated. This saturation effect leads to whitlockite REE(3+) D values at typical lunar whitlockite REE concentrations which are 30-40 percent lower than the D values at low concentrations. The halogen-to-phosphorous ratio in lunar melts is a key factor determining the REE distribution with crystalline assemblages. As long as P and REE concentrations of melts are in KREEP-like proportions, one or both of the phosphates will saturate in melts at similar REE concentrations.
Sulfidization Contemporaneous with Oxidation and Metamorphism in CK6 Chondrites
NASA Technical Reports Server (NTRS)
McCoy, T. J.; Corrigan, C. M.; Davidson, J.; Schrader, D. L.; Righter, K.
2018-01-01
As the most oxidized chondrites and a group of carbonaceous chondrites spanning the range of petrologic types, CK chondrites occupy an extreme in our understanding of the origin and evolution of chondritic parent bodies. With the proposed linkage of CV and CK chondrites and the suggestion that differentiation of a postulated CV-CK asteroid could have differentiated to form a core and established a magnetic dynamo, CK chondrites are receiving considerable attention. Most of this attention has focused on the similarities between CK3 and CV3 chondrites and the origin of each. We have previously argued that melting of an oxidized core could produce a magnetite-sulfide core, rather than the more conventional metal-sulfide core. In this work, we focus on CK6 chondrites to understand the origin of the most highly metamorphosed members of the group as representative of the material that might differentiate to form such an oxidized core.
2010-01-01
medical flight screening and the aeromedical waiver process ( Olea & Ree, 1994; Ree & Carretta, 1996; Ree, Carretta, & Teachout, 1995). Currently, the...Student pilots with high scores on ability tests are more likely to complete training ( Olea & Ree, 1994; Ree & Carretta, 1996; Ree, Carretta, & Teachout...Matrix differential calculus with applications in statistics and econometrics. New York, NY: John Wiley. Olea , M., & Ree, M.J. (1994
Not all Rare Earths are the Same to Microbes
NASA Astrophysics Data System (ADS)
Fujita, Y.; Reed, D. W.; St Jeor, J.; Das, G.; Anderko, A.
2017-12-01
Rare earth elements (REE) are important for modern technologies including smart phones and energy efficient lighting, electric and hybrid vehicles, and advanced wind turbines. Greater demand and usage of REE leads to increased potential for ecosystem impacts, as human activities generate higher concentrations of these metals through mining, industrial processing and waste generation than are normally present in natural environments. Biological modules in wastewater treatment plants are among the ecosystems likely to be impacted by higher REE loads because these poorly soluble metals often accumulate in sludges. We have been examining the effects of adding REE to laboratory cultures of Sporacetigenium mesophilum, a fermenting bacterium originally isolated from an anaerobic sludge digester. We observed that the addition of 60 µM ( 9 ppm) europium stimulated growth and hydrogen production by S. mesophilum. The addition of the equivalent amount of samarium, separately, appeared to be even more beneficial to S. mesophilum. However, when we measured soluble metal concentrations in the cultures, we found strikingly different results. After 24 hours, essentially all of the added Eu remained in the aqueous phase, but 60-65% of the added Sm was no longer soluble. To better understand the relationship between the solubility of REE and their impact on microbiological processes, a thermodynamic model was established for Eu and Sm species in simulated aqueous environments. The model was calibrated to reproduce the solubility of both crystalline and amorphous rare earth hydroxides, which control the availability of rare earths in solution. The primary factors influencing solubility are the solution pH, crystallinity of the hydroxide mineral and redox conditions. In the case of Eu, transition between trivalent and divalent cations occurs at moderate potentials and, therefore, it is possible that divalent cations contribute to the solubilization of Eu. In the case of Sm, divalent cations are not likely to occur under typical anaerobic conditions, thus stabilizing the hydroxide of trivalent Sm. The difference in the observed partitioning of Eu and Sm suggests that multiple modes of REE interaction with S. mesophilum may be operative.
Mapping trace element distribution in fossil teeth and bone with LA-ICP-MS
NASA Astrophysics Data System (ADS)
Hinz, E. A.; Kohn, M. J.
2009-12-01
Trace element profiles were measured in fossil bones and teeth from the late Pleistocene (c. 25 ka) Merrell locality, Montana, USA, by using laser-ablation ICP-MS. Laser-ablation ICP-MS can collect element counts along predefined tracks on a sample’s surface using a constant ablation speed allowing for rapid spatial sampling of element distribution. Key elements analyzed included common divalent cations (e.g. Sr, Zn, Ba), a suite of REE (La, Ce, Nd, Sm, Eu, Yb), and U, in addition to Ca for composition normalization and standardization. In teeth, characteristic diffusion penetration distances for all trace elements are at least a factor of 4 greater in traverses parallel to the dentine-enamel interface (parallel to the growth axis of the tooth) than perpendicular to the interface. Multiple parallel traverses in sections parallel and perpendicular to the tooth growth axis were transformed into trace element maps, and illustrate greater uptake of all trace elements along the central axis of dentine compared to areas closer to enamel, or within the enamel itself. Traverses in bone extending from the external surface, through the thickness of cortical bone and several mm into trabecular bone show major differences in trace element uptake compared to teeth: U and Sr are homogeneous, whereas all REE show a kinked profile with high concentrations on outer surfaces that decrease by several orders of magnitude within a few mm inward. The Eu anomaly increases uniformly from the outer edge of bone inward, whereas the Ce anomaly decreases slightly. These observations point to major structural anisotropies in trace element transport and uptake during fossilization, yet transport and uptake of U and REE are not resolvably different. In contrast, transport and uptake of U in bone must proceed orders of magnitude faster than REE as U is homogeneous whereas REE exhibit strong gradients. The kinked REE profiles in bone unequivocally indicate differential transport rates, consistent with a double-medium diffusion model in which microdomains with slow diffusivities are bounded by fast-diffusing pathways.
Geochemistry of ferromanganese nodule-sediment pairs from Central Indian Ocean Basin
NASA Astrophysics Data System (ADS)
Pattan, J. N.; Parthiban, G.
2011-01-01
Fourteen ferromanganese nodule-sediment pairs from different sedimentary environments such as siliceous ooze (11), calcareous ooze (two) and red clay (one) from Central Indian Ocean Basin (CIOB) were analysed for major, trace and rare earth elements (REE) to understand the possible elemental relationship between them. Nodules from siliceous and calcareous ooze are diagenetic to early diagenetic whereas, nodule from red clay is of hydrogenetic origin. Si, Al and Ba are enriched in the sediments compared to associated nodules; K and Na are almost in the similar range in nodule-sediment pairs and Mn, Fe, Ti, Mg, P, Ni, Cu, Mo, Zn, Co, Pb, Sr, V, Y, Li and REEs are all enriched in nodules compared to associated sediments (siliceous and calcareous). Major portion of Si, Al and K in both nodules and sediments appear to be of terrigenous nature. The elements which are highly enriched in the nodules compared to associated sediments from both siliceous and calcareous ooze are Mo - (307, 273), Ni - (71, 125), Mn - (64, 87), Cu - (43, 80), Co - (23, 75), Pb - (15, 24), Zn - (9, 11) and V - (8, 19) respectively. These high enrichment ratios of elements could be due to effective diagenetic supply of metals from the underlying sediment to the nodule. Enrichment ratios of transition metals and REEs in the nodule to sediment are higher in CIOB compared to Pacific and Atlantic Ocean. Nodule from red clay, exhibit very small enrichment ratio of four with Mn and Ce while, Al, Fe, Ti, Ca, Na, K, Mg, P, Zn, Co, V, Y and REE are all enriched in red clay compared to associated nodule. This is probably due to presence of abundant smectite, fish teeth, micronodules and phillipsite in the red clay. The strong positive correlation ( r ⩾ 0.8) of Mn with Ni, Cu, Zn and Mo and a convex pattern of shale-normalized REE pattern with positive Ce-anomaly of siliceous ooze could be due to presence of abundant manganese micronodules. None of the major trace and REE exhibits any type of inter-elemental relationship between nodule and sediment pairs. Therefore, it may not be appropriate to correlate elemental behaviour between these pairs.
Kim, Daejin; Powell, Lawrence E.; Delmau, Lætitia H.; ...
2015-06-24
In this paper, the rare earth elements (REEs) such as neodymium, praseodymium, and dysprosium were successfully recovered from commercial NdFeB magnets and industrial scrap magnets via membrane assisted solvent extraction (MSX). A hollow fiber membrane system was evaluated to extract REEs in a single step with the feed and strip solutions circulating continuously through the MSX system. The effects of several experimental variables on REE extraction such as flow rate, concentration of REEs in the feed solution, membrane configuration, and composition of acids were investigated with the MSX system. A multimembrane module configuration with REEs dissolved in aqueous nitric acidmore » solutions showed high selectivity for REE extraction with no coextraction of non-REEs, whereas the use of aqueous hydrochloric acid solution resulted in coextraction of non-REEs due to the formation of chloroanions of non-REEs. The REE oxides were recovered from the strip solution through precipitation, drying, and annealing steps. Finally, the resulting REE oxides were characterized with XRD, SEM-EDX, and ICP-OES, demonstrating that the membrane assisted solvent extraction is capable of selectively recovering pure REEs from the industrial scrap magnets.« less
REE in the Great Whale River estuary, northwest Quebec
NASA Technical Reports Server (NTRS)
Goldstein, Steven J.; Jacobsen, Stein B.
1988-01-01
A report on REE concentrations within the estuary of the Great Whale River in northwest Quebec and in Hudson Bay is given, showing concentrations which are less than those predicted by conservative mixing of seawater and river water, indicating removal of REE from solution. REE removal is rapid, occurring primarily at salinities less than 2 percent and ranges from about 70 percent for light REE to no more than 40 percent for heavy REE. At low salinity, Fe removal is essentially complete. The shape of Fe and REE vs. salinity profiles is not consistent with a simple model of destabilization and coagulation of Fe and REE-bearing colloidal material. A linear relationship between the activity of free ion REE(3+) and pH is consistent with a simple ion-exchange model for REE removal. Surface and subsurface samples of Hudson Bay seawater show high REE and La/Yb concentrations relative to average seawater, with the subsurface sample having a Nd concentration of 100 pmol/kg and an epsilon(Nd) of -29.3; characteristics consistent with river inputs of Hudson Bay. This indicates that rivers draining the Canadian Shield are a major source of nonradiogenic Nd and REE to the Atlantic Ocean.
NASA Technical Reports Server (NTRS)
Benoit, Paul H.; Sears, Derek W. G.
1999-01-01
The natural TL (Thermoluminescence) survey of Antarctic meteorites was started in 1987 at the request of the Antarctic Meteorite Working Group in order to provide an initial description of radiation and thermal histories. It was intended to be a complement to the mineralogical and petrographic surveys performed at the Johnson Space Center and the Smithsonian Institution. All ANSMET (Antarctic Search for Meteorites) samples recovered since then, besides those that were heated throughout by atmospheric passage, have been measured. To date this amounts to about 1200 samples. As the data for each ice field reaches a significant level, we have been conducting a thorough examination of the data for that field with a view to identifying pairing, providing an estimate of terrestrial age and residence time on the ice surface, looking for differences in natural TL between ice fields, looking for variations in natural TL level with location on the ice, looking for meteorites with natural TL levels outside the normal range. Pairing is a necessary first step in ensuring the most productive use of the collection, while geographical variations could perhaps provide clues to concentration mechanisms. Samples with natural TL values outside the normal range are usually inferred to have had either small perihelia or recent changes in orbital elements. In addition, induced TL data have enabled us to look for evidence for secular variation in the nature of the flux of meteorites to Earth, and look for petrologically unusual meteorites, such as particularly primitive ordinary chondrites, heavily shocked meteorites, or otherwise anomalous meteorites. To date we have published studies of the TL properties of 167 ordinary chondrites from Allan Hills, 107 from Elephant Moraine and 302 from Lewis Cliff and we have discussed the TL properties of fifteen H chondrites collected at the Allan Hills by Euromet after a storm during the 1988 season. We now have additional databases for a reasonable number of ordinary chondrites from Grosvenor Mountains (39 meteorites), MacAlpine Hills (70 meteorites), Pecora Escarpment (60 meteorites), and Queen Alexandra Range (173 meteorites) and we have data for a further 101 samples from Elephant Moraine. The results are summarized. We also have fairly minimal databases (10-15 meteorites) for Dominion Range, Graves Nunataks, Reckling Peak and Wisconsin Range that will not be discussed here.
NASA Technical Reports Server (NTRS)
Benoit, Paul H.; Sears, Derek W. G.
2000-01-01
The natural TL survey of Antarctic meteorites was started in 1987 at the request of the Antarctic Meteorite Working Group in order to provide an initial description of radiation and thermal histories. It was intended to be a complement to the mineralogical and petrographic surveys performed at the Johnson Space Center and the Smithsonian Institution. All ANSMET samples recovered since then, besides those that were heated throughout by atmospheric passage, have been measured. To date this amounts to about 1200 samples. As the data for each ice field reaches a significant level, we have been conducting a thorough examination of the data for that field with a view to (1) identifying pairing, (2) providing an estimate of terrestrial age and residence time on the ice surface, (3) looking for differences in natural TL between ice fields, (4) looking for variations in natural TL level with location on the ice, (5) looking for meteorites with natural TL levels outside the normal range. Pairing is a necessary first step in ensuring the @ost productive use of the collection, while geographical variations could perhaps provide clues to concentration mechanisms. Samples with natural TL values outside the normal range are usually inferred to have had either small perihelia or recent changes in orbital elements. In addition, induced TL data have enabled us to (5) look for evidence for secular variation in the nature of the flux of meteorites to Earth, and (6) look for petrologically unusual meteorites, such as particularly primitive ordinary chondrites, heavily shocked meteorites, or otherwise anomalous meteorites. To date we have published studies of the TL properties of 167 ordinary chondrites from Allan Hills, 107 from Elephant Moraine and 302 from Lewis Cliff and we have discussed the TL properties of fifteen H chondrites collected at the Allan Hills by Euromet after a storm during the 1988 season. We now have additional databases for a reasonable number of ordinary chondrites from Grosvenor Mountains (39 meteorites), MacAlpine Hills (70 meteorites), Pecora Escarpment (60 meteorites), and Queen Alexandra Range (173 meteorites) and we have data for a further 101 samples from Elephant Moraine. The results are summarized in Table 1. We also have fairly minimal databases (10-15 meteorites) for Dominion Range, Graves Nunataks, Reckling Peak and Wisconsin Range that will not be discussed here.
Recovery and Separation of Rare Earth Elements Using Salmon Milt
Takahashi, Yoshio; Kondo, Kazuhiro; Miyaji, Asami; Watanabe, Yusuke; Fan, Qiaohui; Honma, Tetsuo; Tanaka, Kazuya
2014-01-01
Recycling rare earth elements (REEs) used in advanced materials such as Nd magnets is important for the efficient use of REE resources when the supply of several REEs is limited. In this work, the feasibility of using salmon milt for REE recovery and separation was examined, along with the identification of the binding site of REEs in salmon milt. Results showed that (i) salmon milt has a sufficiently high affinity to adsorb REEs and (ii) the adsorption capacity of the milt is 1.04 mEq/g, which is comparable with that of commercial cation exchange resin. Heavier REEs have higher affinity for milt. A comparison of stability constants and adsorption patterns of REEs discussed in the literature suggests that the phosphate is responsible for the adsorption of REE in milt. The results were supported by dysprosium (Dy) and lutetium (Lu) LIII-edge extended x-ray absorption fine structure (EXAFS) spectroscopy. The REE-P shell was identified for the second neighboring atom, which shows the importance of the phosphate site as REE binding sites. The comparison of REE adsorption pattern and EXAFS results between the milt system and other adsorbent systems (cellulose phosphate, Ln-resin, bacteria, and DNA-filter hybrid) revealed that the coordination number of phosphate is correlated with the slope of the REE pattern. The separation column loaded with milt was tested to separate REE for the practical use of salmon milt for the recovery and separation of REE. However, water did not flow through the column possibly because of the hydrophobicity of the milt. Thus, sequential adsorption–desorption approach using a batch-type method was applied for the separation of REE. As an example of the practical applications of REE separation, Nd and Fe(III) were successfully separated from a synthetic solution of Nd magnet waste by a batch-type method using salmon milt. PMID:25490035
Joseph, Mini; Gupta, Riddhi Das; Prema, L; Inbakumari, Mercy; Thomas, Nihal
2017-01-01
The accuracy of existing predictive equations to determine the resting energy expenditure (REE) of professional weightlifters remains scarcely studied. Our study aimed at assessing the REE of male Asian Indian weightlifters with indirect calorimetry and to compare the measured REE (mREE) with published equations. A new equation using potential anthropometric variables to predict REE was also evaluated. REE was measured on 30 male professional weightlifters aged between 17 and 28 years using indirect calorimetry and compared with the eight formulas predicted by Harris-Benedicts, Mifflin-St. Jeor, FAO/WHO/UNU, ICMR, Cunninghams, Owen, Katch-McArdle, and Nelson. Pearson correlation coefficient, intraclass correlation coefficient, and multiple linear regression analysis were carried out to study the agreement between the different methods, association with anthropometric variables, and to formulate a new prediction equation for this population. Pearson correlation coefficients between mREE and the anthropometric variables showed positive significance with suprailiac skinfold thickness, lean body mass (LBM), waist circumference, hip circumference, bone mineral mass, and body mass. All eight predictive equations underestimated the REE of the weightlifters when compared with the mREE. The highest mean difference was 636 kcal/day (Owen, 1986) and the lowest difference was 375 kcal/day (Cunninghams, 1980). Multiple linear regression done stepwise showed that LBM was the only significant determinant of REE in this group of sportspersons. A new equation using LBM as the independent variable for calculating REE was computed. REE for weightlifters = -164.065 + 0.039 (LBM) (confidence interval -1122.984, 794.854]. This new equation reduced the mean difference with mREE by 2.36 + 369.15 kcal/day (standard error = 67.40). The significant finding of this study was that all the prediction equations underestimated the REE. The LBM was the sole determinant of REE in this population. In the absence of indirect calorimetry, the REE equation developed by us using LBM is a better predictor for calculating REE of professional male weightlifters of this region.
NASA Astrophysics Data System (ADS)
Zill, Juliane; Wiche, Oliver
2015-04-01
The effect of phosphate nutrition is important due to the future usage of fertilizer treatment in phytomining experiments e.g. in accumulation of the economically important rare earth elements (REE). It is expected that the trivalent charge of REE will result in complexation with phosphate and REEs could be immobilized and not further bioavailable for plants which would cause losses of REE concentration in biomass. To investigate this influence on lanthanum, neodymium, gadolinium and erbium two plant species Brassica alba (white mustard) and Panicum miliaceum (common millet) were cultured in a greenhouse study. The plants were cultivated onto two different substrates and were poured with modified REE and phosphate solutions within an eight-week period. The concentrations of REE in soil, soil solution and plant samples were determined by inductively coupled plasma-mass spectrometry (ICP-MS). The results show an increase of concentration of REE with increasing levels of element solution applied for both species. REE accumulations are elevated in roots and decrease in the order of roots> leaves> stem> fruit/blossom. Brassica accumulated more REE in root whereas Panicum showed higher REE concentrations in leaves. Exposure to increased phosphate addition did not significantly change the concentrations of REE in both plant species yet the REE concentrations in leaves slightly decreased with increasing phosphate addition. For root and stem no precise trend could be determined. It is most likely that REEs precipitate with phosphate on root surfaces and in the roots. The bioavailability of REE to plants is affected by complexation processes of REEs with phosphate in the rhizosphere. The results indicate that phosphate application plays an important role on REE uptake by roots and accumulation in different parts of a plant and it might have an influence on translocation of REE within the plant.
Rare earth elements in human and animal health: State of art and research priorities.
Pagano, Giovanni; Aliberti, Francesco; Guida, Marco; Oral, Rahime; Siciliano, Antonietta; Trifuoggi, Marco; Tommasi, Franca
2015-10-01
A number of applications have been developed using rare earth elements (REE), implying several human exposures and raising unsolved questions as to REE-associated health effects. A MedLine survey was retrieved from early reports (1980s) up to June 2015, focused on human and animal exposures to REE. Literature from animal models was selected focusing on REE-associated health effects. Some REE occupational exposures, in jobs such as glass polishers, photoengravers and movie projectionists showed a few case reports on health effects affecting the respiratory system. No case-control or cohort studies of occupational REE exposures were retrieved. Environmental exposures have been biomonitored in populations residing in REE mining areas, showing REE accumulation. The case for a iatrogenic REE exposure was raised by the use of gadolinium-based contrast agents for nuclear magnetic resonance. Animal toxicity studies have shown REE toxicity, affecting a number of endpoints in liver, lungs and blood. On the other hand, the use of REE as feed additives in livestock is referred as a safe and promising device in zootechnical activities, possibly suggesting a hormetic effect both known for REE and for other xenobiotics. Thus, investigations on long-term exposures and observations are warranted. The state of art provides a limited definition of the health effects in occupationally or environmentally REE-exposed human populations. Research priorities should be addressed to case-control or cohort studies of REE-exposed humans and to life-long animal experiments. Copyright © 2015 Elsevier Inc. All rights reserved.
Highly siderophile elements in chondrites
Horan, M.F.; Walker, R.J.; Morgan, J.W.; Grossman, J.N.; Rubin, A.E.
2003-01-01
The abundances of the highly siderophile elements (HSE), Re, Os, Ir, Ru, Pt and Pd, were determined by isotope dilution mass spectrometry for bulk samples of 13 carbonaceous chondrites, 13 ordinary chondrites and 9 enstatite chondrites. These data are coupled with corresponding 187Re-187Os isotopic data reported by Walker et al. [Geochim. Cosmochim. Acta, 2002] in order to constrain the nature and timing of chemical fractionation relating to these elements in the early solar system. The suite of chondrites examined displays considerable variations in absolute abundances of the HSE, and in the ratios of certain HSE. Absolute abundances of the HSE vary by nearly a factor of 80 among the chondrite groups, although most vary within a factor of only 2. Variations in concentration largely reflect heterogeneities in the sample aliquants. Different aliquants of the same chondrite may contain variable proportions of metal and/or refractory inclusions that are HSE-rich, and sulfides that are HSE-poor. The relatively low concentrations of the HSE in CI1 chondrites likely reflect dilution by the presence of volatile components. Carbonaceous chondrites have Re/Os ratios that are, on average, approximately 8% lower than ratios for ordinary and enstatite chondrites. This is also reflected in 187Os/188Os ratios that are approximately 3% lower for carbonaceous chondrites than for ordinary and enstatite chondrites. Given the similarly refractory natures of Re and Os, this fractionation may have occurred within a narrow range of high temperatures, during condensation of these elements from the solar nebula. Superimposed on this major fractionation are more modest movements of Re or Os that occurred within the last 0-2 Ga, as indicated by minor open-system behavior of the Re-Os isotope systematics of some chondrites. The relative abundances of other HSE can also be used to discriminate among the major classes of chondrites. For example, in comparison to the enstatite chondrites, carbonaceous and ordinary chondrites have distinctly lower ratios of Pd to the more refractory HSE (Re, Os, Ir, Ru and Pt). Differences are particularly well resolved for the EH chondrites that have Pd/Ir ratios that average more than 40% higher than for carbonaceous and ordinary chondrite classes. This fractionation probably occurred at lower temperatures, and may be associated with fractionation processes that also affected the major refractory lithophile elements. Combined, 187Os/188Os ratios and HSE ratios reflect unique early solar system processing of HSE for each major chondrite class. ?? 2002 Elsevier Science B.V. All rights reserved.
2008-09-01
performance criteria including passing/failing training, training grades, class rank (Carretta & Ree, 2003; Olea & Ree, 1994), and several non...are consistent with prior validations of the AFOQT versus academic performance criteria in pilot (Carretta & Ree, 1995; Olea & Ree, 1994; Ree...Carretta, & Teachout, 1995)) and navigator ( Olea & Ree, 1994) training. Subsequent analyses took three different approaches to examine the
Relict chondrules in primitive achondrites: Remnants from their precursor parent bodies
NASA Astrophysics Data System (ADS)
Schrader, Devin L.; McCoy, Timothy J.; Gardner-Vandy, Kathryn
2017-05-01
We studied the petrography, analyzed the chemical compositions, constrained the closure temperatures (via geothermometry), and determined the oxidation states of relict chondrules in Campo del Cielo (IAB iron meteorite), Graves Nunataks (GRA) 98028 (acapulcoite), and Netschaëvo (IIE iron meteorite) to constrain their formation conditions and investigate links to known meteorite groups. Despite having been thermally metamorphosed, mineral phases within relict chondrules retain information about their precursor compositions. The sizes and textures of relict chondrules, and silicate and chromite compositions indicate that Campo del Cielo, GRA 98028, and Netschaëvo had distinct parent bodies that were similar to, but different from, known chondrite groups. To determine the utility of relict chondrule sizes in thermally metamorphosed meteorites, we determined the chondrule size distributions in the LL chondrites Semarkona (LL3.00), Soko-Banja (LL4), Siena (LL5), and Saint-Séverin (LL6), and the H chondrites Clovis (No. 1) (H3.6), Kesen (H4), Arbol Solo (H5), and Estacado (H6). As expected, mean chondrule diameters increase with degree of thermal metamorphism. We find that Campo del Cielo and GRA 98028 were reduced during thermal metamorphism, consistent with previous studies, indicating that their precursors were initially more FeO-rich than their current compositions. In contrast to previous studies, we find no evidence for reduction of silicates in Netschaëvo. Normal zoning of olivine in Netschaëvo is consistent with crystallization and suggests its silicates are near their primary FeO-contents. The presence of elongated chromite grains along olivine grain boundaries in Netschaëvo indicates formation during thermal metamorphism under oxidizing conditions. Due to the absence of reduction and the composition of chromite being distinct from that of metamorphosed H chondrites, we conclude that Netschaëvo, and by extension the IIE iron meteorites, are not from the H chondrite parent body.
Establishment of redox conditions during planetary collisions as an origin of chondrites
NASA Technical Reports Server (NTRS)
Tsuchiyama, A.; Kitamura, M.
1994-01-01
Collisions between a 'cometlike' body (mixtures of chondritic materials and ice) and a slightly differentiated body were proposed for shock origin of ordinary chondrites. In this model, chondrules were formed with shock melting, and matrices were formed both by fracturing of materials and by recondensation of evaporated materials. This model can explain different redox conditions of chondrite formations by ice evaporation. Although this model was originally proposed for ordinary chondrites, we assume here that the model can be extended to chondrite formation in general. In this paper, redox conditions during chondrite formation by collisions will be discussed in the light of phase diagrams for solid-vapor equilibria.
Rare earth elements in human hair from a mining area of China.
Wei, Binggan; Li, Yonghua; Li, Hairong; Yu, Jiangping; Ye, Bixiong; Liang, Tao
2013-10-01
Rare earth minerals have been mined for more than 50 years in Inner Mongolia of China. In the mining area rare earth elements (REE) may be significantly accumulated in humans. Therefore, the aim of this paper is to characterize the REE concentrations in hair of local residents. REE concentrations in hair of 118 subjects were determined. The results showed that the mean concentrations of the determined REE in the hair of both females and males were usually higher from mining area than from control area. The mean concentrations of all the fifteen REE were much higher in hair of males than in hair of females from mining area. This suggested that males might be more sensitive to REE than females. In addition, the mean contents of the REE in hair of miners, particularly light REE (La, Ce, Pr and Nd), were usually much higher than the values in hair of non-miners from both mining area and control area, indicating that the miners were exposed to higher concentrations of REE in occupational environment. Among age groups, the relationships between REE concentrations and age groups showed that more and more concentrations of light REE accumulated in body of both females and males with age until 60 years, while heavy REE concentrations decreased with age in males who were exposed to low concentrations of heavy REE. Copyright © 2013 Elsevier Inc. All rights reserved.
Effects of rare earth elements and REE-binding proteins on physiological responses in plants.
Liu, Dongwu; Wang, Xue; Chen, Zhiwei
2012-02-01
Rare earth elements (REEs), which include 17 elements in the periodic table, share chemical properties related to a similar external electronic configuration. REEs enriched fertilizers have been used in China since the 1980s. REEs could enter the cell and cell organelles, influence plant growth, and mainly be bound with the biological macromolecules. REE-binding proteins have been found in some plants. In addition, the chlorophyll activities and photosynthetic rate can be regulated by REEs. REEs could promote the protective function of cell membrane and enhance the plant resistance capability to stress produced by environmental factors, and affect the plant physiological mechanism by regulating the Ca²⁺ level in the plant cells. The focus of present review is to describe how REEs and REE-binding proteins participate in the physiological responses in plants.
Steric hindrance and the enhanced stability of light rare-earth elements in hydrothermal fluids
Mayanovic, Robert A.; Anderson, Alan J.; Bassett, William A.; Chou, I.-Ming
2009-01-01
A series of X-ray absorption spectroscopy (XAS) experiments were made to determine the structure and stability of aqueous REE (La, Nd, Gd, and Yb) chloride complexes to 500 ??C and 520 MPa. The REE3+ ions exhibit inner-sphere chloroaqua complexation with a steady increase of chloride coordination with increasing temperature in the 150 to 500 ??C range. Furthermore, the degree of chloride coordination of REE3+ inner-sphere chloroaqua complexes decreases significantly from light to heavy REE. These results indicate that steric hindrance drives the reduction of chloride coordination of REE3+ inner-sphere chloroaqua complexes from light to heavy REE. This results in greater stability and preferential transport of light REE3+ over heavy REE3+ ions in saline hydrothermal fluids. Accordingly, the preferential mobility of light REE directly influences the relative abundance of REE in rocks and minerals and thus needs to be considered in geochemical modeling of petrogenetic and ore-forming processes affected by chloride-bearing hydrothermal fluids.
Rare earth patterns in shergottite phosphates and residues
NASA Technical Reports Server (NTRS)
Laul, J. C.
1987-01-01
Leaching experiments with 1M HCl on ALHA 77005 powder show that rare earth elements (REE) are concentrated in accessory phosphate phases (whitlockite, apatite) that govern the REE patterns of bulk shergottites. The REE patterns of whitlockite are typically light REE-depleted with a negative Eu anomaly and show a hump at the heavy REE side, while the REE pattern of apatite (in Shergotty) is light REE-enriched. Parent magmas are calculated from the modal compositions of residues of ALHA 77005, Shergotty, and EETA 79001. The parent magmas lack a Eu anomaly, indicating that plagioclase was a late-stage crystallizing phase and that it probably crystallized before the phosphates. The parent magmas of ALHA 77005 and Shergotty have similar REE patterns, with a subchondritic Nd/Sm ratio. However, the Sm/Nd isotopoics require a light REE-depleted source for ALHA 77005 (if the crystallization age is less than 600 Myr) and a light REE-enriched source for Shergotty. Distant Nd and Sr isotopic signatures may suggest different source regions for shergottites.
Oxygen isotopic relationships between the LEW85332 carbonaceous chondrite and CR chondrites
NASA Technical Reports Server (NTRS)
Prinz, M.; Weisberg, M. K.; Clayton, R. N.; Mayeda, T. K.
1993-01-01
LEW85332, originally described as a unique C3 chondrite, was shown to be a C2 chondrite with important linkages to the CR clan. An important petrologic aspect of LEW85332 is that it contains anhydrous chondrules and hydrated matrix, and new oxygen isotopic data on chondrules, matrix and whole rock are consistent with the petrology. Chondrules fall on the equilibrated chondrite line (ECL), with a slope near 1, which goes through ordinary chondrite chondrules. This contrasts with the CR chondrule line which has a lower slope due to hydrated components. LEW85332 chondrules define a new carbonaceous chondrite chondrule line, parallel to the anhydrous CV chondrule line (CCC), consistent with the well-established concept of two oxygen isotopic reservoirs. Matrix and whole rock fall on the CR line. The whole rock composition indicates that the chondrite is dominated by chondrules, and that most of them contain light oxygen similar to that of anhydrous olivine and pyroxene separates in the Renazzo and Al Rais CR chondrites.
MacMillan, Gwyneth Anne; Chételat, John; Heath, Joel P; Mickpegak, Raymond; Amyot, Marc
2017-10-18
Few ecotoxicological studies exist for rare earth elements (REEs), particularly field-based studies on their bioaccumulation and food web dynamics. REE mining has led to significant environmental impacts in several countries (China, Brazil, U.S.), yet little is known about the fate and transport of these contaminants of emerging concern. Northern ecosystems are potentially vulnerable to REE enrichment from prospective mining projects at high latitudes. To understand how REEs behave in remote northern food webs, we measured REE concentrations and carbon and nitrogen stable isotope ratios (∂ 15 N, ∂ 13 C) in biota from marine, freshwater, and terrestrial ecosystems of the eastern Canadian Arctic (N = 339). Wildlife harvesting and tissue sampling was partly conducted by local hunters through a community-based monitoring project. Results show that REEs generally follow a coherent bioaccumulation pattern for sample tissues, with some anomalies for redox-sensitive elements (Ce, Eu). Highest REE concentrations were found at low trophic levels, especially in vegetation and aquatic invertebrates. Terrestrial herbivores, ringed seal, and fish had low total REE levels in muscle tissue (∑REE for 15 elements <0.1 nmol g -1 ), yet accumulation was an order of magnitude higher in liver tissues. Age- and length-dependent REE accumulation also suggest that REE uptake is faster than elimination for some species. Overall, REE bioaccumulation patterns appear to be species- and tissue-specific, with limited potential for biomagnification. This study provides novel data on the behaviour of REEs in ecosystems and will be useful for environmental impact assessment of REE enrichment in northern regions.
NASA Astrophysics Data System (ADS)
Li, Y.; Zhao, L.; Chen, Z.; Chen, J.; Chen, Y.
2013-12-01
Rare-earth elements (REEs) can provide information regarding the influence of weathering fluxes and hydrothermal inputs on seawater chemistry as well as processes that fractionate REEs between solid and aqueous phases. Of these, cerium (Ce) distributions may provide information about variations in dissolved oxygen in seawater, and thus assess the redox conditions. The short residence times of REEs in seawater (~300-1,000 yr) can result in unique REE signatures in local watermasses. REE patterns preserved in biogenic apatite such as conodonts are ideal proxies for revealing original seawater chemistry. Here, we measured the REE content of in-situ, single albid crowns using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) in combination with an ArF (λ=193 nm) excimer laser (Lambda Physiks GeoLas 2005) and quadrupole ICP-MS (Agilent 7500a). LA-ICP-MS is ideally suited for analyzing conodonts due to its ability to measure compositional variation within single conodont elements. It has the capability to determine, with high spatial resolution, continuous compositional depth profiles through the concentric layered structure of component histologies. To evaluate paleoceanographic conditions immediately after the Permian-Triassic (P-Tr) mass extinction in various depositional settings, we sampled a nearly contemporaneous strata unit, the P-Tr boundary bed, just above the extinction horizon from six sections in South China. They represent various depositional settings from shelf basin (Chaohu and Daxiakou sections), lower part of ramp (Meishan section), normal shallow platform (Yangou section), and platform microbialite (Chongyang and Xiushui sections). The sampled unit is constrained by conodonts Hindeodus changxingensis, H. parvus, and H. staeschei Zones in Meishan. REE results obtained from conodont albid crowns show that the seawater in lower ramp and shelf basin settings contains much higher REE concentrations than that in shallow platform. Ce/Ce* ratios in shelf basin and lower ramp are similar to one another, ranging from 0.7-1.0. The same ratios, however, are much lower in shallow platform and microbialite settings, ranging from 0.17-0.22 and 0.2-0.45, respectively. Eu/Eu+ ratios also show similar patterns: 0.7-1.0 in shelf basin and lower ramp and 0.3-0.7 in shallow platform. If the Ce/Ce* was truly influenced by environmental redox conditions, then Ce/Ce* values of 0.7-1.0 in shelf basin and lower ramp settings are indicative of a suboxic to anoxic depositional system, while the same proxy of 0.17-0.45 in shallow platform and microbialite points to a well-oxygenated setting immediately after the P-Tr mass extinction.
Migaszewski, Zdzisław M; Gałuszka, Agnieszka; Dołęgowska, Sabina
2016-12-01
A detailed hydrogeochemical study was performed in the Wiśniówka mining area (south-central Poland). This covered three acid pit bodies, historic tailings acid ponds, acid pools, and additionally two neighboring rivers. All these acid mine drainage (AMD) waters are characterized by the pH in the range of 1.7 (pools) to 3.5 (tailings ponds). The most interesting is the Podwiśniówka acid pit lake that shows a very low pH (2.2-2.5) and very high concentrations of SO 4 2- (2720-5460 mg/L), Fe (545-1140 mg/L), Al (86.2 mg/L), As (9603-24,883 μg/L), Co (1317-3458 μg/L), Cr (753-2047 μg/L), Cu (6307-18,879 μg/L), Ni (1168-3127 μg/L), and rare earth element (REE) (589-1341 μg/L). In addition, seeps that drain the Podwiśniówka mine tailings and partly aggregate piles form strong acid pools in the mining area. Along with these pools, in which As and REE contents reach 369,726 and 6288 μg/L, respectively, these waters are among the most distinctive As- and REE-rich AMD surface waters across the world. It is noteworthy that the Podwiśniówka acid pit lake and Wiśniówka Duża acid pit sump exhibit different element signatures and REE concentration patterns normalized to North American Composite Shale (NASC): the Podwiśniówka acid pit lake always shows a characteristic roof-shaped medium REE (MREE) profile with distinct enrichments in Gd, Eu, and Tb whereas the other one displays a step-shaped heavy REE (HREE) profile with positive Tb and Gd anomalies. The REE undergo fractionation during weathering and the subsequent leaching of dissolved and suspended fractions from rocks to acid water bodies where these and other elements are further fractionated by geochemical processes. This study shows that the individual REE have greater affinities for Mn, HREE for Fe and SO 4 2- , and only La and Ce for Al. This specific water geochemistry has enabled us to (i) pinpoint the location of AMD "hot spots" originated from quartzite mining and processing operations conducted by current and previous mining companies, (ii) predict the directions and effects of future strip mining for quartzites in the Wiśniówka Duża and Podwiśniówka open pits, and (iii) evaluate the potential impact of mining and processing effluents on the quality of rivers.
NASA Technical Reports Server (NTRS)
Miller, K. E.; Lauretta, D. S.; Connolly, H. C., Jr.; Berger, E. L.; Domanik, K.
2016-01-01
Equilibrated Rumuruti (R) chondrites record an oxygen fugacity between 0 and 3.5 log units below the fayalite-magnetite-quartz buffer, and a sulfur fugacity (fS2) 2 log units above the iron-troilite buffer. They are more than an order of magnitude more oxidized than the ordinary chondrites [1], and orders of magnitude more sulfidized than solar values. Although the R chondrites have the highest (delta)O-17 value of any meteorites, analyses of unequilibrated R chondrites indicate chondrule formation in an oxygen isotope reservoir similar to that of the ordinary chondrite chondrules. We present the relationship of the R chondrite parent body to pre-accretionary volatiles O and S based on our analyses of unequilibrated R chondrite material in two thin sections from the meteorite Mount Prestrud (PRE) 95404.
Van Gosen, Bradley S.; Verplanck, Philip L.; Seal, Robert R.; Long, Keith R.; Gambogi, Joseph; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.
2017-12-19
The rare-earth elements (REEs) are 15 elements that range in atomic number from 57 (lanthanum) to 71 (lutetium); they are commonly referred to as the “lanthanides.” Yttrium (atomic number 39) is also commonly regarded as an REE because it shares chemical and physical similarities and has affinities with the lanthanides. Although REEs are not rare in terms of average crustal abundance, the concentrated deposits of REEs are limited in number.Because of their unusual physical and chemical properties, the REEs have diverse defense, energy, industrial, and military technology applications. The glass industry is the leading consumer of REE raw materials, which are used for glass polishing and as additives that provide color and special optical properties to the glass. Lanthanum-based catalysts are used in petroleum refining, and cerium-based catalysts are used in automotive catalytic converters. The use of REEs in magnets is a rapidly increasing application. Neodymium-iron-boron magnets, which are the strongest known type of magnets, are used when space and weight are restrictions. Nickel-metal hydride batteries use anodes made of a lanthanum-based alloys.China, which has led the world production of REEs for decades, accounted for more than 90 percent of global production and supply, on average, during the past decade. Citing a need to retain its limited REE resources to meet domestic requirements as well as concerns about the environmental effects of mining, China began placing restrictions on the supply of REEs in 2010 through the imposition of quotas, licenses, and taxes. As a result, the global rare-earth industry has increased its stockpiling of REEs; explored for deposits outside of China; and promoted new efforts to conserve, recycle, and substitute for REEs. New mine production began at Mount Weld in Western Australia, and numerous other exploration and development projects noted in this chapter are ongoing throughout the world.The REE-bearing minerals are diverse and often complex in composition. At least 245 individual REE-bearing minerals are recognized; they are mainly carbonates, fluorocarbonates, and hydroxylcarbonates (n = 42); oxides (n = 59); silicates (n = 85); and phosphates (n = 26).Many of the world’s significant REE deposits occur in carbonatites, which are carbonate igneous rocks. The REEs also have a strong genetic association with alkaline magmatism. The systematic geologic and chemical processes that explain these observations are not well understood. Economic or potentially economic REE deposits have been found in (a) carbonatites, (b) peralkaline igneous systems, (c) magmatic magnetite-hematite bodies, (d) iron oxide-copper-gold (IOCG) deposits, (e) xenotime-monazite accumulations in mafic gneiss, (f) ion-absorption clay deposits, and (g) monazite-xenotime-bearing placer deposits. Carbonatites have been the world’s main source for the light REEs since the 1960s. Ion-adsorption clay deposits in southern China are the world’s primary source of the heavy REEs. Monazite-bearing placer deposits were important sources of REEs before the mid-1960s and may be again in the future. In recent years, REEs have been produced from large carbonatite bodies mined at the Mountain Pass deposit in California and, in China, at the Bayan Obo deposit in Nei Mongol Autonomous Region, the Maoniuping deposit in Sichuan Province, the Daluxiang deposit in Sichuan Province, and the Weishan deposit in Anhui Province. Alkaline igneous complexes have recently been targeted for exploration because of their enrichments in the heavy REEs.Information relevant to the environmental aspects of REE mining is limited. Little is known about the aquatic toxicity of REEs. The United States lacks drinking water standards for REEs. The concentrations of REEs in environmental media are influenced by their low abundances in crustal rocks and their limited solubility in most groundwaters and surface waters. The scarcity of sulfide minerals, including pyrite, minimizes or eliminates concerns about acid-mine drainage for carbonatite-hosted deposits and alkaline-intrusion-related REE deposits. For now, insights into environmental responses of REE mine wastes must rely on predictive models.
Workshop on Parent-Body and Nebular Modification of Chondritic Materials
NASA Technical Reports Server (NTRS)
Zolensky, M. E. (Editor); Krot, A. N. (Editor); Scott, E. R. D. (Editor)
1997-01-01
Topics considered include: thermal Metamorphosed Antarctic CM and CI Carbonaceous Chondrites in Japanese Collections, and Transformation Processes of Phyllosilicates; use of Oxygen Isotopes to Constrain the Nebular and Asteroidal Modification of Chondritic Materials; effect of Revised Nebular Water Distribution on Enstatite Chondrite Formation; interstellar Hydroxyls in Meteoritic Chondrules: Implications for the Origin of Water in the Inner Solar System; theoretical Models and Experimental Studies of Gas-Grain Chemistry in the Solar Nebula; chemical Alteration of Chondrules on Parent Bodies; thermal Quenching of Silicate Grains in Protostellar Sources; an Experimental Study of Magnetite Formation in the Solar Nebula; the Kaidun Meteorite: Evidence for Pre- and Postaccretionary Aqueous Alteration; a Transmission Electron Microscope Study of the Matrix Mineralogy of the Leoville CV3 (Reduced-Group) Carbonaceous Chondrite: Nebular and Parent-Body Features; rubidium-Strontium Isotopic Systematic of Chondrules from the Antarctic CV Chondrites Yamato 86751 and Yamato 86009: Additional Evidence for Late Parent-Body Modification; oxygen-Fugacity Indicators in Carbonaceous Chondrites: Parent-Body Alteration or High-Temperature Nebular Oxidation; thermodynamic Modeling of Aqueous Alteration in CV Chondrites; asteroidal Modification of C and O Chondrites: Myths and Models; oxygen Fugacity in the Solar Nebular; and the History of Metal and Sulfides in Chondrites.
REE Incorporation into Calcite Individual Crystals as One Time Spike Addition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gabitov, Rinat; Sadekov, Aleksey; Migdisov, Artas
Experiments on the incorporation of trace elements into calcite were performed, and rare earth elements (REE) were used to mark the growth zones of individual crystals. Experiments were conducted at different pH (7.7 to 8.8) and temperatures (2 °C to 24.6 °C) in NH 4Cl + CaCl 2 solutions, where REE were rapidly consumed by growing calcite. LA-ICP-MS line-scans yielded the distribution of (REE/Ca) calcite within individual crystals in a manner consistent with the addition of REE into fluid. A sharp decrease of (REE/Ca) calcite toward the crystal edge suggests the fast depletion of (REE/Ca) fluid due to strong REEmore » consumption by growing calcite. An attempt was made to estimate the lower limit of the partition coefficients between calcite and fluid using selected REE/Ca data within individual calcite crystals and the amount of REE added into fluid.« less
REE Incorporation into Calcite Individual Crystals as One Time Spike Addition
Gabitov, Rinat; Sadekov, Aleksey; Migdisov, Artas
2017-10-26
Experiments on the incorporation of trace elements into calcite were performed, and rare earth elements (REE) were used to mark the growth zones of individual crystals. Experiments were conducted at different pH (7.7 to 8.8) and temperatures (2 °C to 24.6 °C) in NH 4Cl + CaCl 2 solutions, where REE were rapidly consumed by growing calcite. LA-ICP-MS line-scans yielded the distribution of (REE/Ca) calcite within individual crystals in a manner consistent with the addition of REE into fluid. A sharp decrease of (REE/Ca) calcite toward the crystal edge suggests the fast depletion of (REE/Ca) fluid due to strong REEmore » consumption by growing calcite. An attempt was made to estimate the lower limit of the partition coefficients between calcite and fluid using selected REE/Ca data within individual calcite crystals and the amount of REE added into fluid.« less
Kim, Daejin; Powell, Lawrence; Delmau, Lætitia H.; ...
2016-04-04
We present that the rare earth elements (REEs) play a vital role in the development of green energy and high-tech industries. In order to meet the fast-growing demand and to ensure sufficient supply of the REEs, it is essential to develop an efficient REE recovery process from post-consumer REE-containing products. In this research effort, we have developed a supported liquid membrane system utilizing polymeric hollow fiber modules to extract REEs from neodymium-based magnets with neutral extractants such as tetraoctyl digylcol amide (TODGA). The effect of process variables such as REE concentration, molar concentration of acid, and membrane area on REEmore » recovery was investigated. We have demonstrated the selective extraction and recovery of REEs such as Nd, Pr, and Dy without co-extraction of non-REEs from permanent NdFeB magnets through the supported liquid membrane system. The extracted REEs were then recovered by precipitation followed by the annealing step to obtain crystalline REE powders in nearly pure form. Finally, the recovered REE oxides were characterized by X-ray diffraction, scanning electron microscope coupled with energy-dispersive X-ray spectroscopy, and inductively coupled plasma–optical emission spectroscopy.« less
Kimura, M.; Grossman, J.N.; Weisberg, M.K.
2008-01-01
We report the results of our petrological and mineralogical study of Fe-Ni metal in type 3 ordinary and CO chondrites, and the ungrouped carbonaceous chondrite Acfer 094. Fe-Ni metal in ordinary and CO chondrites occurs in chondrule interiors, on chondrule surfaces, and as isolated grains in the matrix. Isolated Ni-rich metal in chondrites of petrologic type lower than type 3.10 is enriched in Co relative to the kamacite in chondrules. However, Ni-rich metal in type 3.15-3.9 chondrites always contains less Co than does kamacite. Fe-Ni metal grains in chondrules in Semarkona typically show plessitic intergrowths consisting of submicrometer kamacite and Ni-rich regions. Metal in other type 3 chondrites is composed of fine- to coarse-grained aggregates of kamacite and Ni-rich metal, resulting from metamorphism in the parent body. We found that the number density of Ni-rich grains in metal (number of Ni-rich grains per unit area of metal) in chondrules systematically decreases with increasing petrologic type. Thus, Fe-Ni metal is a highly sensitive recorder of metamorphism in ordinary and carbonaceous chondrites, and can be used to distinguish petrologic type and identify the least thermally metamorphosed chondrites. Among the known ordinary and CO chondrites, Semarkona is the most primitive. The range of metamorphic temperatures were similar for type 3 ordinary and CO chondrites, despite them having different parent bodies. Most Fe-Ni metal in Acfer 094 is martensite, and it preserves primary features. The degree of metamorphism is lower in Acfer 094, a true type 3.00 chondrite, than in Semarkona, which should be reclassified as type 3.01. ?? The Meteoritical Society, 2008.
NASA Astrophysics Data System (ADS)
Beck, Pierre; Maturilli, A.; Garenne, A.; Vernazza, P.; Helbert, J.; Quirico, E.; Schmitt, B.
2018-10-01
In order to determine the controls on the reflectance spectra of hydrated carbonaceous chondrites, reflectance spectra were measured for a series of samples with well-determined mineralogy, water-content, and thermal history. This includes 5 CR chondrites, 11 CM chondrites, and 7 thermally metamorphosed CM chondrites. These samples were characterized over the 0.35-150 μm range by reflectance spectroscopy in order to cover the full spectral range accessible from ground based observation, and that will be determined in the near-future by the Hayabusa-2 and Osiris-REx missions. While spectra show absorption features shortward of 35 μm, no strong absorption bands were identified in this suite of samples longward of 35 μm. This work shows that the 0.7-μm band observed in hydrated carbonaceous chondrites is correlated with the total water content as well as with the band depth at 2.7 μm, confirming the suggestion that they are related to Mg-rich, Fe-bearing phyllosilicates. A feature at 2.3 μm, diagnostic of such phyllosilicates was found for all samples with a detectable 0.7-μm band, also indicative of Mg-rich phyllosilicates. A strong variability is found in the shape of the 3-μm band among CM chondrites, and between CM, CR and thermally metamorphosed CM chondrites. Heavily altered CM chondrites show a single strong band around 2.72 μm while more thermally metamorphosed CM samples show an absorption band at higher wavelength. The CR chondrite GRO 95577 has a 3-μm feature very similar to those of extensively altered CM chondrites while other CR chondrite rather shows goethite-like signatures (possibly due to terrestrial weathering of metals). Thermally metamorphosed CM chondrites all have 3-μm features, which are not purely due to terrestrial adsorbed water. The band shape ranges from heavily altered CM-like to goethite-like. The overall reflectance was found to be significantly higher for CR chondrites than for CM chondrites. This is also true for the hydrated CR chondrite GRO 95577 whose reflectance spectrum is almost identical to spectra obtained for CM chondrites except that it is brighter by about 40% in the visible. Another possibility to distinguish hydrated CM from hydrated CR chondrites is to use the combination of band depths at 0.7 and 2.3 μm. When comparing the spectra obtained with Cg and Cgh spectral end member, it is found that the band depth determined for hydrated chondrites (0.7 and 2.3 μm) are always higher than calculated for these spectral endmembers. If one considers only asteroids with unambiguous hydration detection, band depth at 0.7 μm is of similar value to those measured for hydrated carbonaceous chondrites.
REE mobility during the alteration of Carbonatite and their economic potential.
NASA Astrophysics Data System (ADS)
Marien, Christian; Dijkstra, Arjan; Wilkins, Colin
2016-04-01
The supply risk of Rare Earth Elements is an unpredictable economic factor for the future application and development of modern technology for the EU. Therefore a better understanding of REE mobilisation during hydrothermal alteration of Carbonatites is essential for a safer supply of REE in general. The hydrothermal alteration of Carbonatite within the Fen Complex (Norway) forms a fine grained red hematized rock type, called Rødbergite, which is partially enriched in REE. The variation of REE within the Rødbergite is poorly understood and problematic for any future REE exploitation from Rødbergite. A genetic model of the formation of Rødbergite will provide more information about the economic potential of Rødbergite. The gradual transformation of carbonatite to Rødbergite is not easily observable due to sparse outcrop in the Fen Complex. A fresh road cut near the Bjørndallen farm (Fen Complex) provides a unique insight to the progressive hydrothermal alteration from carbonatite to Rødbergite and is therefore crucial for a genetic model of the formation of Rødbergite. 14 Samples were taken along the profile. The mineralogical, geochemical and textural characterization of the samples using the SEM as well as major-, trace- and isotopic elemental data revealed the breakdown of the primary minerals due to the infiltration of an oxidizing fluid along grain boundaries. The primary REE-minerals in unaltered Carbonatite are REE fluorocarbonates. With the increasing alteration to Rødbergite REE fluorocarbonates are progressively replaced by hematite. In contrast, monazite - a REE-phosphate - is the dominant REE mineral species in the Rødbergite. A transitional Rødbergite sample shows apatite aggregates with a strong preferential concentration of monazite along the rim of the apatite aggregates. This observation provides strong evidence for the solution of REE in the primary rock (carbonatite) by fluids and later precipitation of REE along phosphate bearing minerals (e.g. apatite) in order to form monazite. The latest results of the mineralogical investigation on the structural control of the REE mineralization, different generations of REE minerals and the potential concentration of REE in distinct zones in the profile, will also be presented. Future work will contribute to a better understanding of the REE mineralization process and therefore help to identify economically promising areas for a potential REE exploitation within the Fen Complex.
Energy Expenditure in Critically Ill Elderly Patients: Indirect Calorimetry vs Predictive Equations.
Segadilha, Nara L A L; Rocha, Eduardo E M; Tanaka, Lilian M S; Gomes, Karla L P; Espinoza, Rodolfo E A; Peres, Wilza A F
2017-07-01
Predictive equations (PEs) are used for estimating resting energy expenditure (REE) when the measurements obtained from indirect calorimetry (IC) are not available. This study evaluated the degree of agreement and the accuracy between the REE measured by IC (REE-IC) and REE estimated by PE (REE-PE) in mechanically ventilated elderly patients admitted to the intensive care unit (ICU). REE-IC of 97 critically ill elderly patients was compared with REE-PE by 6 PEs: Harris and Benedict (HB) multiplied by the correction factor of 1.2; European Society for Clinical Nutrition and Metabolism (ESPEN) using the minimum (ESPENmi), average (ESPENme), and maximum (ESPENma) values; Mifflin-St Jeor; Ireton-Jones (IJ); Fredrix; and Lührmann. Degree of agreement between REE-PE and REE-IC was analyzed by the interclass correlation coefficient and the Bland-Altman test. The accuracy was calculated by the percentage of male and/or female patients whose REE-PE values differ by up to ±10% in relation to REE-IC. For both sexes, there was no difference for average REE-IC in kcal/kg when the values obtained with REE-PE by corrected HB and ESPENme were compared. A high level of agreement was demonstrated by corrected HB for both sexes, with greater accuracy for women. The best accuracy in the male group was obtained with the IJ equation but with a low level of agreement. The effectiveness of PEs is limited for estimating REE of critically ill elderly patients. Nonetheless, HB multiplied by a correction factor of 1.2 can be used until a specific PE for this group of patients is developed.
Resting energy expenditure in the risk assessment of anticancer treatments.
Jouinot, Anne; Vazeille, Clara; Durand, Jean Philippe; Huillard, Olivier; Boudou-Rouquette, Pascaline; Coriat, Romain; Chapron, Jeanne; Neveux, Nathalie; De Bandt, Jean Pascal; Alexandre, Jerome; Cynober, Luc; Goldwasser, Francois
2018-04-01
Alterations of nutritional and performance status (PS) are associated with higher risk of chemotherapy toxicity. Increased resting energy expenditure (REE) is frequent in cancer patients and may contribute to cachexia. We investigated whether abnormal energetic metabolism could predict early acute limiting toxicities (ELT) of anticancer treatments. In this observational monocentric study, REE was measured by indirect calorimetry before treatment initiation. Based on the ratio of measured REE to REE predicted by the Harris-Benedict formula, patients were classified as hypometabolic (<90%), normometabolic (90-110%) or hypermetabolic (>110%). Body mass index, weight loss, PS, albumin, transthyretin, C-reactive protein (CRP) and muscle mass (CT-scan) were studied. Were defined as ELT any unplanned hospitalization or any adverse event leading to dose reduction or discontinuation during the first cycle of treatment. We enrolled 277 patients: 76% had metastatic disease; 89% received chemotherapy and 11% targeted therapy; 29% were normometabolic, 51% hypermetabolic and 20% hypometabolic. Fifty-nine patients (21%) experienced an ELT. Toxicity was associated with abnormal metabolism (vs normal: OR = 2.37 [1.13-4.94], p = 0.023), PS (2-3 vs 0-1: OR = 2.04 [1.12-3.74], p = 0.023), albumin (<35 vs ≥35 g/l: OR = 2.39 [1.03-5.54], p = 0.048), and inflammation (CRP ≥10 vs <10 mg/l: OR = 2.43 [1.35-4.38], p = 0.004). To predict toxicity, the most sensitive parameter was the REE (83%) followed by PINI (63%), GPS (59%), CRP (55%), PS (41%), NRI (37%), and albumin (16%). In multivariate analysis, elevated CRP was an independent predictor of toxicity (p = 0.047). Abnormal basal energy metabolism identifies patients at higher risk of treatment-related acute complications. Copyright © 2017 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Towards the challenging REE exploration in Indonesia
NASA Astrophysics Data System (ADS)
Setiawan, Iwan
2018-02-01
Rare earth elements (REE) are the seventeen elements, including fifteen from 57La to 71Lu, in addition to 21Sc and 39Y. In rock-forming minerals, rare earth elements typically occur in compounds as trivalent cations in carbonates, oxides, phosphates, and silicates. The REE occur in a wide range of rock types: igneous, sedimentary and metamorphic rocks. REE are one of the critical metals in the world. Their occurrences are important to supply the world needs on high technology materials. Indonesia has a lot of potential sources of REE that are mainly from residual tin mining processes in Bangka islands, which are associated with radioactive minerals e.g. monazite and xenotime. However, the REE from monazite and xenotime are difficult to extract and contain high radioactivity. Granitoids are widely distributed in Sumatra, Sulawesi, Kalimantan and Papua. They also have a very thick weathering crusts. Important REE-bearing minerals are allanite and titanite. Their low susceptibilities during weathering result an economically potential REE concentration. I-/A- type granitoids and their weathered crusts are important REE sources in Indonesia. Unfortunately, their distribution and genesis have not been deeply studied. Future REE explorations challenge are mainly of the granitoids their weathered crusts. Geochemical and mineralogical characterization of type of granitoids and their weathered crusts, the hydrothermally altered rocks, and clear REE regulation will help discover REE deposits in Indonesia.
Selective Disparity of Ordinary Chondritic Precursors in Micrometeorite Flux
NASA Astrophysics Data System (ADS)
Rudraswami, N. G.; Fernandes, D.; Naik, A. K.; Shyam Prasad, M.; Carrillo-Sánchez, J. D.; Plane, J. M. C.; Feng, W.; Taylor, S.
2018-01-01
All known extraterrestrial dust (micrometeoroids) entering the Earth’s atmosphere is anticipated to have a significant contribution from ordinary chondritic precursors, as seen in meteorites, but this is an apparent contradiction that needs to be addressed. Ordinary chondrites represent a minor contribution to the overall meteor influx compared to carbonaceous chondrites, which are largely dominated by CI and/or CM chondrites. However, the near-Earth asteroid population presents a scenario with sufficient scope for generation of dust-sized debris from ordinary chondritic sources. The bulk chemical composition of 3255 micrometeorites (MMs) collected from Antarctica and deep-sea sediments has shown Mg/Si largely dominated by carbonaceous chondrites, and less than 10% having ordinary chondritic precursors. The chemical ablation model is combined with different initial chondritic compositions (CI, CV, L, LL, H), and the results clearly indicate that high-density (≥2.8 g cm‑3) precursors, such as CV and ordinary chondrites in the size range 100–700 μm and zenith angle 0°–70°, ablate at much faster rates and lose their identity even before reaching the Earth’s surface and hence are under-represented in our collections. Moreover, their ability to survive as MMs remains grim for high-velocity micrometeoroids (>16 km s‑1). The elemental ratio for CV and ordinary chondrites are also similar to each other irrespective of the difference in the initial chemical composition. In conclusion, MMs belonging to ordinary chondritic precursors’ concentrations may not be insignificant in thermosphere, as they are found on Earth’s surface.
NASA Technical Reports Server (NTRS)
Righter, K.; Neff, K. E.
2007-01-01
Recent chondritic meteorite finds in Antarctica have included CB, CH, CK and R chondrites, the latter two of which are among the most oxidized materials found in meteorite collections. In this study we present petrographic and mineralogic data for a suite of CK and R chondrites, and compare to previous studies of CK and R, as well as some CV chondrites. In particular we focus on the opaque minerals magnetite, chromite, sulfides, and metal as well as unusual silicates hornblende, biotite, and plagioclase. Several mineral thermometers and oxy-barometers are utilized to calculate temperatures and oxygen fugacities for these unusual meteorites compared to other more common chondrite groups. R and CK chondrites show lower equilibrium temperatures than ordinary chondrites, even though they are at similar petrologic grades (e.g., thermal type 6). Oxygen fugacity calculated for CV and R chondrites ranges from values near the iron-wustite (IW) oxygen buffer to near the fayalite-magnetite-quartz (FMQ) buffer. In comparison, the fO2 recorded by ilmenite-magnetite pairs from CK chondrites are much higher, from FMQ+3.1 to FMQ+5.2. The latter values are the highest recorded for materials in meteorites, and place some constraints on the formation conditions of these magnetite-bearing chondrites. Differences between mineralogic and O isotopic compositions of CK and R chondrites suggest two different oxidation mechanisms, which may be due to high and low water: rock ratios during metamorphism, or to different fluid compositions, or both.
Chemical characteristics and origin of H chondrite regolith breccias
NASA Technical Reports Server (NTRS)
Lipschutz, M. E.; Biswas, S.; Mcsween, H. Y., Jr.
1983-01-01
Petrologic data and contents of Ag, Bi, Cd, Co, Cs, Ga, In, Rb, Se, Te, Tl and Zn-trace elements spanning the volatility/mobility range-in light and dark portions of H chondrite regolith breccias and L chondrite fragmental breccias are reported. The chemical/petrologic characteristics of H chondrite regolith breccias differ from those of nonbrecciated chondrites or fragmental breccias. Petrologic characteristics and at least some trace element contents of H chondrite regolith breccias reflect primary processes; contents of the most volatile/mobile elements may reflect either primary or secondary processing, possibly within layered H chondrite parent object(s). Chemical/petrologic differences existed in different regions of the parent(s). Regoligh formation and gardening and meteoroid compaction were not so severe as to alter compositions markedly.
Fate and Trophic Transfer of Rare Earth Elements in Temperate Lake Food Webs.
Amyot, Marc; Clayden, Meredith G; MacMillan, Gwyneth A; Perron, Tania; Arscott-Gauvin, Alexandre
2017-06-06
Many mining projects targeting rare earth elements (REE) are in development in North America, but the background concentrations and trophic transfer of these elements in natural environments have not been well characterized. We sampled abiotic and food web components in 14 Canadian temperate lakes unaffected by mines to assess the natural ecosystem fate of REE. Individual REE and total REE concentrations (sum of individual element concentrations, ΣREE) were strongly related with each other throughout different components of lake food webs. Dissolved organic carbon and dissolved oxygen in the water column, as well as ΣREE in sediments, were identified as potential drivers of aqueous ΣREE. Log 10 of median bioaccumulation factors ranged from 1.3, 3.7, 4.0, and 4.4 L/kg (wet weight) for fish muscle, zooplankton, predatory invertebrates, and nonpredatory invertebrates, respectively. [ΣREE] in fish, benthic macroinvertebrates, and zooplankton declined as a function of their trophic position, as determined by functional feeding groups and isotopic signatures of nitrogen (δ 15 N), indicating that REE were subject to trophic dilution. Low concentrations of REE in freshwater fish muscle compared to their potential invertebrate prey suggest that fish fillet consumption is unlikely to be a significant source of REE to humans in areas unperturbed by mining activities. However, other fish predators (e.g., piscivorous birds and mammals) may accumulate REE from whole fish as they are more concentrated than muscle. Overall, this study provides key information on the baseline concentrations and trophic patterns for REE in freshwater temperate lakes in Quebec, Canada.
Utilizing rare earth elements as tracers in high TDS reservoir brines in CCS applications
McLing, Travis; Smith, William; Smith, Robert
2014-12-31
In this paper we report the result of research associated with the testing of a procedures necessary for utilizing natural occurring trace elements, specifically the Rare Earth Elements (REE) as geochemical tracers in Carbon Capture and Storage (CCS) applications. Trace elements, particularly REE may be well suited to serve as in situ tracers for monitoring geochemical conditions and the migration of CO₂-charged waters within CCS storage systems. We have been conducting studies to determine the efficacy of using REE as a tracer and characterization tool in the laboratory, at a CCS analogue site in Soda Springs, Idaho, and at amore » proposed CCS reservoir at the Rock Springs Uplift, Wyoming. Results from field and laboratory studies have been encouraging and show that REE may be an effective tracer in CCS systems and overlying aquifers. In recent years, a series of studies using REE as a natural groundwater tracer have been conducted successfully at various locations around the globe. Additionally, REE and other trace elements have been successfully used as in situ tracers to describe the evolution of deep sedimentary Basins. Our goal has been to establish naturally occurring REE as a useful monitoring measuring and verification (MMV) tool in CCS research because formation brine chemistry will be particularly sensitive to changes in local equilibrium caused by the addition of large volumes of CO₂. Because brine within CCS target formations will have been in chemical equilibrium with the host rocks for millions of years, the addition of large volumes of CO₂ will cause reactions in the formation that will drive changes to the brine chemistry due to the pH change caused by the formation of carbonic acid. This CO₂ driven change in formation fluid chemistry will have a major impact on water rock reaction equilibrium in the formation, which will impart a change in the REE fingerprint of the brine that can measured and be used to monitor in situ reservoir conditions. Our research has shown that the REE signature imparted to the formation fluid by the introduction of CO₂ to the formation, can be measured and tracked as part of an MMV program. Additionally, this REE fingerprint may serve as an ideal tracer for fluid migration, both within the CCS target formation, and should formation fluids migrate into overlying aquifers. However application of REE and other trace elements to CCS system is complicated by the high salt content of the brines contained within the target formations. In the United States by regulation, in order for a geologic reservoir to be considered suitable for carbon storage, it must contain formation brine with total dissolved solids (TDS) > 10,000 ppm, and in most cases formation brines have TDS well in excess of that threshold. The high salinity of these brines creates analytical problems for elemental analysis, including element interference with trace metals in Inductively Coupled Plasma Mass Spectroscopy (ICP-MS) (i.e. element mass overlap due to oxide or plasma phenomenon). Additionally, instruments like the ICP-MS that are sensitive enough to measure trace elements down to the parts per trillion level are quickly oversaturated when water TDS exceeds much more than 1,000 ppm. Normally this problem is dealt with through dilution of the sample, bringing the water chemistry into the instruments working range. However, dilution is not an option when analyzing these formation brines for trace metals, because trace elements, specifically the REE, which occur in aqueous solutions at the parts per trillion levels. Any dilution of the sample would make REE detection impossible. Therefore, the ability to use trace metals as in situ natural tracers in high TDS brines environments requires the development of methods for pre-concentrating trace elements, while reducing the salinity and associated elemental interference such that the brines can be routinely analyzed by standard ICP-MS methods. As part of the Big Sky Carbon Sequestration Project the INL-CAES has developed a rapid, easy to use process that pre-concentrates trace metals, including REE, up to 100x while eliminating interfering ions (e.g. Ba, Cl). The process is straightforward, inexpensive, and requires little infrastructure, using only a single chromatography column with inexpensive, reusable, commercially available resins and wash chemicals. The procedure has been tested with synthetic brines (215,000 ppm or less TDS) and field water samples (up to 5,000 ppm TDS). Testing has produced data of high quality with REE capture efficiency exceeding 95%, while reducing interfering elements by > 99%.« less
Reduced and unstratified crust in CV chondrite parent body.
Ganino, Clément; Libourel, Guy
2017-08-15
Early Solar System planetesimal thermal models predict the heating of the chondritic protolith and the preservation of a chondritic crust on differentiated parent bodies. Petrological and geochemical analyses of chondrites have suggested that secondary alteration phases formed at low temperatures (<300 °C) by fluid-rock interaction where reduced and oxidized Vigarano type Carbonaceous (CV) chondrites witness different physicochemical conditions. From a thermodynamical survey of Ca-Fe-rich secondary phases in CV3 chondrites including silica activity (aSiO 2 ), here we show that the classical distinction between reduced and oxidized chondrites is no longer valid and that their Ca-Fe-rich secondary phases formed in similar reduced conditions near the iron-magnetite redox buffer at low aSiO 2 (log(aSiO 2 ) <-1) and moderate temperature (210-610 °C). The various lithologies in CV3 chondrites are inferred to be fragments of an asteroid percolated heterogeneously via porous flow of hydrothermal fluid. Putative 'onion shell' structures are not anymore a requirement for the CV parent body crust.Meteorites may unlock the history of the early solar system. Here, the authors find, through Ca-Fe-rich secondary phases, that the distinction between reduced and oxidized CV chondrites is invalid; therefore, CV3 chondrites are asteroid fragments that percolated heterogeneously via porous flow of hydrothermal fluid.
NASA Technical Reports Server (NTRS)
Rietmeijer, Frans J. M.
1995-01-01
Some fraction of Zn, Cu, Se, Ga and Ge in chondritic interplanetary dust particles (IDPs) collected in the lower stratosphere between 1981 May and 1984 June has a volcanic origin. I present a method to evaluate the extent of this unavoidable type of stratospheric contamination for individual particles. The mass-normalized abundances for Cu and Ge as a function of mass-normalized stratospheric residence time show their time-integrated stratospheric aerosol abundances. The Zn, Se and Ga abundances show a subdivision into two groups that span approximately two-year periods following the eruptions of the Mount St. Helens (1980 May) and El Chichon (1982 April) volcanoes. Elemental abundances in particles collected at the end of each two-year period indicate low, but not necessarily ambient, volcanic stratospheric abundances. Using this time-integrated baseline, I calculate the straospheric contaminant fractions in nine IDPs and show that Zn, SE and Ga abundances in chondritic IDPs derive in part from stratospheric aerosol contaminants. Post-entry elemental abundances (i.e., the amount that survived atmospheric entry heating of the IDP) show enrichments relative to the CI abundances but in a smaller number of particles than previously suggested.
High REE and Y concentrations in Co-Cu-Au ores of the Blackbird district, Idaho
Slack, J.F.
2006-01-01
Analysis of 11 samples of strata-bound Co-Cu-Au ore from the Blackbird district in Idaho shows previously unknown high concentrations of rare earth elements (REE) and Y, averaging 0.53 wt percent ???REE + Y oxides. Scanning electron microscopy indicates REE and Y residence in monazite, xenotime, and allanite that form complex intergrowths with cobaltite, suggesting coeval Co and REE + Y mineralization during the Mesoproterozoic. Occurrence of high REE and Y concentrations in the Blackbird ores, together with previously documented saline-rich fluid inclusions and Cl-rich biotite, suggest that these are not volcanogenic massive sulfide or sedimentary exhalative deposits but instead are iron oxide-copper-gold (IOCG) deposits. Other strata-bound Co deposits of Proterozoic age in the North American Cordillera and elsewhere in the world may have potential for REE and Y resources. IOCG deposits with abundant light REE should also be evaluated for possible unrecognized heavy REE and Y mineralization. ?? 2006 by Economic Geology.
Origin of heavy rare earth mineralization in South China
Xu, Cheng; Kynický, Jindřich; Smith, Martin P.; Kopriva, Antonin; Brtnický, Martin; Urubek, Tomas; Yang, Yueheng; Zhao, Zheng; He, Chen; Song, Wenlei
2017-01-01
Heavy rare earth elements (HREE) are dominantly mined from the weathering crusts of granites in South China. Although weathering processes occur globally, no economic HREE resources of this type have yet been found outside China. Here, we report the occurrence of unidentified REE minerals in the granites from South Chinese deposits. They contain high levels of both HREE and light REE, but are strongly depleted in Ce, implying high oxidation state. These REE minerals show higher initial Nd isotope than primary REE-rich minerals (ɛNd(t)=0.9±0.8 versus −11.5±0.5). The mineralized weathering crusts inherited REE signature of the granites, but show more Ce depletion and more overall concentration of the REE. We propose, therefore, that highly oxidized, REE-rich fluids, derived from external, isotopically depleted sources, metasomatized the granites, which resulted in Ce depletion as Ce4+ and enrichment of the remaining REE, especially the HREE, contributing to formation of a globally important REE resource. PMID:28220784
NASA Technical Reports Server (NTRS)
Weisberg, M. K.; Kimura, M.
2004-01-01
The CB chondrites are metal-rich chondritic meteorites having characteristics that sharply distinguish them from other chondrites [1], including (1) high metal abundances (60-80 vol.% metal), (2) most chondrules have cryptocrystalline or barred textures, (3) moderately volatile lithophile elements are highly depleted and (4) nitrogen is enriched in the heavy isotope. Similarities in mineral composition, as well as oxygen and nitrogen isotopic compositions of the CB to CR and CH chondrites are consistent with derivation of these chondrite groups from a common nebular reservoir, hence their grouping in the CR clan [1, 2, 3, 4]. CB chondrites have been divided into CBa (Gujba, Bencubbin, Weatherford) and CBb (Hammadah al Hamra 237 and QUE 94411) subgroups based on petrologic characteristics.
NASA Technical Reports Server (NTRS)
Gibler, Robert; Peslier, Anne H.; Schaffer, Lillian Aurora; Brandon, Alan D.
2014-01-01
Kilbourne Hole (NM, USA) and Dish Hill (CA, USA) mantle xenoliths sample continental mantle in two different tectonic settings. Kilbourne Hole (KH) is located in the Rio Grande rift. Dish Hill (DH) is located in the southern Mojave province, an area potentially affected by subduction of the Farallon plate beneath North America. FTIR analyses were obtained on well characterized pyroxenite, dunite and wehrlite xenoliths, thought to represent crystallized melts at mantle depths. PUM normalized REE patterns of the KH bulk-rocks are slightly LREE enriched and consistent with those of liquids generated by < 5% melting of a spinel peridotite source. Clinopyroxenes contain from 272 to 313 ppm weight H2O similar to the lower limit of KH peridotite clinopyroxenes (250-530 ppm H2O). This is unexpected as crystallized melts like pyroxenites should concentrate water more than residual mantle-like peridotites, given that H is incompatible. PUM normalized bulk REE of the DH pyroxenites are characterized by flat to LREE depleted REE profiles consistent with > 6% melting of a spinel peridotite source. Pyroxenite pyroxenes have no detectable water but one DH wehrlite, which bulk-rock is LREE enriched, has 4 ppm H2O in orthopyroxene and <1ppm in clinopyroxene. The DH pyroxenites may thus come from a dry mantle source, potentially unaffected by the subduction of the Farallon plate. These water-poor melts either originated from shallow oceanic lithosphere overlaying the Farallon slab or from continental mantle formed > 2 Ga. The Farallon subduction appears to have enriched in water the southwestern United States lithospheric mantle further east than DH, beneath the Colorado plateau.
NASA Technical Reports Server (NTRS)
Morse, A. D.; Newton, J.; Pillinger, C. T.
1993-01-01
Meteorites of the Ornans type 3 carbonaceous chondrites exhibit a range in degree of equilibration, attributed to differing amounts of thermal metamorphism. These differences have been used to split the CO3 chondrites into petrologic sub-types from 3.0, least equilibrated, to 3.7, being most equilibrated. This is similar to the system of assigning the type 3 ordinary chondrites into petrologic sub-types 3.0 to 3.9 based upon thermoluminescence (TL) and other properties; however, the actual range of thermal metamorphism experienced by CO3 chondrites is much less than that of the type 3 ordinary chondrites. The least equilibrated ordinary chondrites show evidence of aqueous alteration and have high D/H ratios possibly due to a deuterium-rich organic carrier. The aim of this study was to determine whether the CO3 chondrites, which have experienced similar secondary conditions to the type 3 ordinary chondrites, also contain a similar deuterium-rich carrier. To date a total of 5 CO3 meteorites, out of a set of 11 for which carbon and nitrogen isotopic data are available, have been analyzed. Ornans has not been analyzed yet, because it does not appear to fit in with the metamorphic sequence exhibited by the other CO3 chondrites; it also has an extremely high delta-D value of +2150 percent, unusual for such a comparatively equilibrated meteorite (type 3.4). Initial results indicate that the more equilibrated CO3's tend to have lower delta-D values, analogous to the higher petrologic type ordinary chondrites. However this is complicated by the effects of terrestrial weathering and the small data-set.
NASA Astrophysics Data System (ADS)
Kocsis, L.; Gheerbrant, E.; Mouflih, M.; Cappetta, H.; Ulianov, A.
2012-12-01
Shallow marine phosphorites are widespread along the western coast of Morocco. These sediments were deposited in three, first order transgressive-regressive cycles during the late Cretaceous-early Eocene. The layers are exceptionally rich in marine vertebrate fossils and three periods - Maastrichtian, Danian-Thanetian and Ypresian - can be distinguished by the especially abundant selachian fauna. A comprehensive geochemical study is carried out on these biogenic apatite fossils, and here we present trace element data analyzed on enameloid and dentin of shark teeth, coprolites, and bones coming from the Ouled Abdoun and Ganntour Basins. A clear separation is apparent between enameloid and the other archives in terms of the former has lower Cu, Ba, rare earth elements (REE) and U, and higher Zn and Sr concentrations. The REE and U in phosphatic fossils originate almost entirely from early diagenetic pore fluid and thus they can be used as a fingerprint of burial conditions. The above observed differences in the trace element concentrations relate to the originally different structure of these fossils, which means the better crystallized and denser enameloid interacted less with the burial fluid than the other remains. All the fossils revealed very similar shale normalized REE patterns, with negative Ce-anomaly and heavy REE enrichment, which mimics the REE distribution of typical modern seawater. This would indicate that the early diagenetic pore fluid was dominated by seawater, when these fossils gained their REE composition. However, the patterns show small differences with lower La/Sm, and higher La/Yb and Sm/Yb ratios in the coprolites, dentine and bones, which would appear as slight flattening of the patterns on the heavy REE end. This signifies again that these latter archives are more susceptible to interaction with the pore fluid. In contrast, the Ce-anomaly does not vary among the different remains and the values are very similar in a given layer. However, more interestingly a gradual shift towards lower Ce/Ce* values from older to younger beds is evident. Three major causes could be responsible for this temporal Ce-anomaly shift. First is enhanced REE uptake with time and gradually less oxygenated early diagenetic environment in the deeper and older beds. This would predict higher total REE content in the older fossils, which is not observable in our record. Second is varying water depth in the basins that may relate to alternation in redox conditions in the burial environment. Clearly, sea-level fluctuation had an impact on the sedimentation in these shallow marine basins. However, Ce-anomaly appears to change before major sedimentary gaps. Third and our preferred interpretation is the negative Ce-anomaly shift indicates the presence of more oxygenated seawater in the basins. This region was controlled by upwelling currents from the Atlantic Ocean, hence the observed changes are presumed to be in this source. This would point to development of more oxygenated deepwater in the North Atlantic by the end of the Paleocene, which may link to the extended opening of the North Atlantic and its connection to the South Atlantic.
Scarcity of rare earth elements.
de Boer, M A; Lammertsma, K
2013-11-01
Rare earth elements (REEs) are important for green and a large variety of high-tech technologies and are, therefore, in high demand. As a result, supply with REEs is likely to be disrupted (the degree of depends on the REE) in the near future. The 17 REEs are divided into heavy and light REEs. Other critical elements besides REEs, identified by the European Commission, are also becoming less easily available. Although there is no deficiency in the earth's crust of rare earth oxides, the economic accessibility is limited. The increased demand for REEs, the decreasing export from China, and geopolitical concerns on availability contributed to the (re)opening of mines in Australia and the USA and other mines are slow to follow. As a result, short supply of particularly terbium, dysprosium, praseodymium, and neodymium is expected to be problematic for at least the short term, also because they cannot be substituted. Recycling REEs from electronic waste would be a solution, but so far there are hardly any established REE recycling methods. Decreasing the dependency on REEs, for example, by identifying possible replacements or increasing their efficient use, represents another possibility. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The behavior of rare earth elements in naturally and anthropogenically acidified waters
Wood, Scott A.; Gammons, Christopher H.; Parker, Stephen R.
2006-01-01
In this paper, the behavior of rare earth elements (REE) in a watershed impacted by acid-mine drainage (Fisher Creek, Montana) is compared to that in a volcanically acidified watershed (Rio Agrio and Lake Caviahue, Argentina). The REE behave conservatively in acidic waters with pH values less than approximately 5.5. However, above pH 5.5, REE concentrations are controlled by adsorption onto or co-precipitation with a variety of Fe or Al oxyhydroxides. The heavy REE partition to a greater extent into the solid phase than the light REE as pH rises above 6. Concentrations of REE exhibit diel (24-h) cycling in waters that were initially acidic, but have become neutralized downstream. In Fisher Creek, at the most downstream sampling station investigated (pH 6.8), concentrations of dissolved REE were 190–840% higher in the early morning versus the late afternoon. This cycling can be related to temperature-dependent, cyclic adsorption–desorption of REE onto hydrous ferric or aluminum oxide or both. Similar but gentler diel cycling of the REE was found at Rio Agrio. The existence of such cycling has important ramifications for the study of REE in natural waters.
Characteristics and genesis of Rare Earth Element (REE) in western Indonesia
NASA Astrophysics Data System (ADS)
Handoko, A. D.; Sanjaya, E.
2018-02-01
Rare Earth Element (REE) has unique properties that have been used in many hightech applications. The demand of REE increased recently in the world due to its special properties. Although REE concentration in the crust is higher than gold, economically viable deposits are still rare. Reduction of REE exports by China cause increased prices of REE. Due to this condition, exploration of potential REE mines emerged. Indonesia also participates in this phenomenon, and explore the possibility of REE mines in its area. This review will discuss the characteristics and genesis of REE and its occurrence in western Indonesia; focused in Sumatera, Tin Island, and Kalimantan. The review is done based on literature research from several resources about characteristics of rare earth element in general and in the given area. The research shows that the potential REE mines can be found in several different locations in Indonesia, such as Tin Island, Sumatera, and Kalimantan. Most of them are composed of monazite, zircon, and xenotime as rare earth minerals. Monazite iss known for its elevated number of radioactive elements, so study about radioactive content and more environment friendly ore processing becomes compulsory.
NASA Astrophysics Data System (ADS)
Scott, Edward R. D.; Krot, Tatiana V.; Goldstein, Joseph I.; Wakita, Shigeru
2014-07-01
We have studied cloudy taenite, metallographic cooling rates, and shock effects in 30 H3-6 chondrites to elucidate the thermal and early impact history of the H chondrite parent body. We focused on H chondrites with old Ar-Ar ages (>4.4 Gyr) and unshocked and mildly shocked H chondrites, as strongly shocked chondrites with such old ages are very rare. Cooling rates for most H chondrites at 500 °C are 10-50 °C/Myr and do not decrease systematically with increasing petrologic type as predicted by the onion-shell model in which types 3-5 are arranged in concentric layers around a type 6 core. Some type 4 chondrites cooled slower than some type 6 chondrites and type 3 chondrites did not cool faster than other types, contrary to the onion-shell model. Cloudy taenite particle sizes, which range from 40 to 120 nm, are inversely correlated with metallographic cooling rates and show that the latter were not compromised by shock heating. The three H4 chondrites that were used to develop the onion-shell model, Ste. Marguerite, Beaver Creek, and Forest Vale, cooled through 500 °C at ⩾5000 °C/Myr. Our thermal modeling shows that these rates are 50× higher than could be achieved in a body that was heated by 26Al and cooled without disturbance by impact. Published Ar-Ar ages do not decrease systematically with increasing petrologic type but do correlate inversely with cloudy taenite particle size suggesting that impact mixing decreased during metamorphism. Metal and silicate compositions in regolith breccias show that impacts mixed material after metamorphism without causing significant heating. Impacts during metamorphism created Portales Valley and two other H6 chondrites with large metallic veins, excavated the fast-cooled H4 chondrites around 3-4 Myr after accretion, and mixed petrologic types. Metallographic data do not require catastrophic disruption by impact during cooling.
NASA Astrophysics Data System (ADS)
Glikson, Andrew; Allen, Charlotte
2004-04-01
A stratigraphically consistent <20-cm-thick unit of microkrystite spherule and microtektite-bearing impact fallout ejecta overlying volcanic tuff of the 4th Shale Macroband (DGS4) of the Dales Gorge Member (2.47-2.50 Ga), Brockman Iron Formation, Hamersley Group, Western Australia, displays anomalous platinum group element (PGE) and other trace metal patterns. The unit has high Ir (13 ppb) and Pt (35 ppb), and low Pd (2.7 ppb) and Au (1.55-1.88 ppb). The low Pd/Ir ratios and low Cr/V suggest depletion in volatile PGE and metals relative to refractory PGE and V, contrasted to the ubiquitous high Pd/Ir of most terrestrial rocks. Marked depletion in the volatile Rare Earth Element (REE) abundances in stilpnomelane spherule cores is consistent with this model. The loss of volatile PGE, analogous to relations in 3.24 Ga impact fallout units of the Barberton greenstone belt (S3 and S4), suggests fractionation related to atmospheric spherule condensation. The microkrystite spherule unit locally incorporate fragments and up to meter-scale boulders of banded chert and stromatolite carbonate, suggesting tsunami transport postdating spherule deposition. DGS4 microkrystite spherules are dominated by stilpnomelane mantled by K-feldspar shells, which consist of inward-radiating fibrous feldspar aggregates suggestive of devitrification. The K and REE enrichment of spherule margins are contrasted to flat REE patterns of the stilpnomelane cores, suggesting adsorption of lithophile elements during settling of the spherules through the hydrosphere. K-feldspar shells contain submicron-scale Ni metal, oxide, sulfide and arsenide grains and euhedral needles of feldspar-exsolved ilmenite. Associated magnetite may have high nickel (<1.25% NiO). The generally mafic composition of the spherules and high Ni/Cr and Ni/Co are consistent with a target mafic-ultramafic crust, consistent with the lack of shock-metamorphosed quartz. Mixing calculations suggest a contribution of 2.5-3% projectile component to the impact-generated volatile cloud. Conservative mass balance estimates derived from the Ir and Pt flux, assuming global extent of a 10-cm-thick spherule unit and chondritic projectile composition, suggest an asteroid diameter on the scale of ˜30 km. Similar estimates are obtained from spherule sizes, which in DGS4 reach a mean diameter of ˜2.0 mm in aerodynamically elongate spherules. The evidence implies formation of an impact basin on the scale of 400 km in simatic/oceanic regions of the early Proterozoic crust.
Opaque Assemblages in CK and CV Carbonaceous Chondrites
NASA Technical Reports Server (NTRS)
Neff, K. E.; Righter, K.
2006-01-01
CK carbonaceous chondrites are the only group of carbonaceous chondrites that exhibit thermal metamorphism. As a result, CKs display features of metamorphism such as silicate darkening, recrystallization and shock veins. Calcium Aluminum Inclusions and Fe-Ni metal are rare. CV carbonaceous chondrites are unequilibrated and have two subgroups; oxidized and reduced. The CV and CK carbonaceous chondrite groups have been compared to each other often because of petrographic similarities, such as overlapping oxygen isotopic ratios. Scientists have suggested the two groups of carbonaceous chondrites formed from the same parent body and CKs are equilibrated CV chondrites [1, 2]. The oxidized CV group has been most closely related to CKs. This study examines the petrology and mineralogy of CKs and CVs focusing on opaque minerals found in the meteorites. Using the oxide, metal and sulfide assemblages, constraints can be placed on the temperature and oxygen fugacity at which the meteorites equilibrated. The temperature and oxygen fugacity of the CK and CV chondrites can be compared in order to help define their formation history.
Trace Element Study of H Chondrites: Evidence for Meteoroid Streams.
NASA Astrophysics Data System (ADS)
Wolf, Stephen Frederic
1993-01-01
Multivariate statistical analyses, both linear discriminant analysis and logistic regression, of the volatile trace elemental concentrations in H4-6 chondrites reveal compositionally distinguishable subpopulations. Observed difference in volatile trace element composition between Antarctic and non-Antarctic H4-6 chondrites (Lipschutz and Samuels, 1991) can be explained by a compositionaily distinct subpopulation found in Victoria Land, Antarctica. This population of H4-6 chondrites is compositionally distinct from non-Antarctic H4-6 chondrites and from Antarctic H4 -6 chondrites from Queen Maud Land. Comparisons of Queen Maud Land H4-6 chondrites with non-Antarctic H4-6 chondrites do not give reason to believe that these two populations are distinguishable from each other on the basis of the ten volatile trace element concentrations measured. ANOVA indicates that these differences are not the result of trivial causes such as weathering and analytical bias. Thermoluminescence properties of these populations parallels the results of volatile trace element comparisons. Given the differences in terrestrial age between Victoria Land, Queen Maud Land, and modern H4-6 chondrite falls, these results are consistent with a variation in H4-6 chondrite flux on a 300 ky timescale. This conclusion requires the existence of co-orbital meteoroid streams. Statistical analyses of the volatile trace elemental concentrations in non-Antarctic modern falls of H4-6 chondrites also demonstrate that a group of 13 H4-6 chondrites, Cluster 1, selected exclusively for their distinct fall parameters (Dodd, 1992) is compositionally distinguishable from a control group of 45 non-Antarctic modern H4-6 chondrites on the basis of the ten volatile trace element concentrations measured. Model-independent randomization-simulations based on both linear discriminant analysis and logistic regression verify these results. While ANOVA identifies two possible causes for this difference, analytical bias and group classification, a test validation experiment verifies that group classification is the more significant cause of compositional difference between Cluster 1 and non-Cluster 1 modern H4-6 chondrite falls. Thermoluminescence properties of these populations parallels the results of volatile trace element comparisons. This suggests that these meteorites are fragments of a co-orbital meteorite stream derived from a single parent body.
NASA Astrophysics Data System (ADS)
Fukai, Ryota; Yokoyama, Tetsuya
2017-09-01
We present high-precision Nd isotope compositions for ordinary and carbonaceous chondrites determined using thermal ionization mass spectrometry with dynamic and multistatic methods. The ordinary chondrites had uniform and non-terrestrial μ142 Nd , μ148 Nd , and μ150 Nd values, with data that plot along the mixing line between s-process and terrestrial components in μ150 Nd versus μ148 Nd and μ142 Nd versus μ148,150Nd diagrams. In contrast, the carbonaceous chondrites were characterized by larger anomalies in their μ142 Nd , μ148 Nd , and μ150 Nd values compared to ordinary chondrites. Importantly, the data for carbonaceous chondrites plot along the s-process and terrestrial mixing line in a μ150 Nd versus μ148 Nd diagram, whereas they have systematically lower μ142 Nd values than the s-process and terrestrial mixing line in μ142 Nd versus μ148,150Nd diagrams. This shift likely results from the incorporation of calcium- and aluminum-rich inclusions (CAIs), indicating that the Nd isotopic variability in the ordinary chondrites and CAI-free carbonaceous chondrites was caused solely by the heterogeneous distribution of s-process nuclides. The isotopic variation most likely results from nebular thermal processing that caused selective destruction of s-process-depleted (or r-process-enriched) dust grains in the inner Solar System where the parent bodies of ordinary chondrites formed, whereas such grains were preserved in the region of carbonaceous chondrite parent body formation. The Nd isotope dichotomy between ordinary and bulk aliquots of carbonaceous chondrites can be related to the presence of Jupiter, which may have separated two isotopically distinct reservoirs that were present in the solar nebula. After correcting for s-process anomalies and CAI contributions to the Nd isotopes observed in the chondrites, we obtained a μ142 Nd value (- 2.4 ± 4.8 ppm) that was indistinguishable from the terrestrial value. Our results corroborate the interpretation that a missing reservoir (e.g., a hidden enriched reservoir, erosional loss of crust) is not required to explain the observed differences in 142Nd/144Nd ratios between chondrites and terrestrial materials.
Resting Energy Expenditure in Adults with Becker’s Muscular Dystrophy
Jacques, Matthew F.; Orme, Paul; Smith, Jonathon; Morse, Christopher I.
2017-01-01
Purpose The purpose of this study was: 1) To compare Resting energy expenditure (REE) in adult males with Becker’s Muscular Dystrophy (BeMD, n = 21, 39 ±12 years) and healthy controls (CTRL, n = 12, 37 ±12 years) 2) Determine whether other physiological parameters correlate with REE in BeMD, and 3) Compare current prediction methods of REE with measured REE. Methods REE was calculated via indirect calorimetry using continuous, expired gas analysis following an overnight fast. Fat free mass (FFM) and fat mass were measured by bioelectrical impedance. B-mode ultrasound measured Tibialis Anterior (TA) and Gastrocnemius Medialis (GM) anatomical cross sectional area (ACSA). The Bone Specific Physical Activity Questionnaire measured physical activity. Results No difference in REE was found between CTRL and BeMD groups (1913 ±203 & 1786 ±324 Kcal respectively). Other physiological comparisons showed increased fat mass (+54%), decreased TA ACSA (-42%), increased GM ACSA (+25%) as well as reduced respiratory function (FVC -28%; FEV1−27%) in BeMD adults compared to controls. REE estimated from prediction equations (Schofield’s) in Muscular Dystrophy were different from measured REE (P<0.05, bias = -728kcal), while the Mifflin equation was no different from measured REE (r2 = 0.58, Bias = -8kcal). Within the present BeMD, REE predicted from FFM (REE = FFM x 34.57–270; r2 = 0.85) and body mass (REE = BM x 15.65 + 421.5; r2 = 0.66), were not different from measured REE (bias equals 0 and 0.2kcals, respectively) Conclusions Despite no differences in REE between CTRL and BeMD adults, increased fat masses highlights the requirement for explicit nutritional guidelines, as well as maintenance of physical activity levels, where possible. Prediction equations are frequently used in clinical settings, however these have been shown to be less accurate in BeMD; therefore, the equations proposed here should be used where possible. PMID:28060911
Gwenzi, Willis; Mangori, Lynda; Danha, Concilia; Chaukura, Nhamo; Dunjana, Nothando; Sanganyado, Edmond
2018-04-26
Recent studies show that high-technology rare earth elements (REEs) of anthropogenic origin occur in the environment including in aquatic systems, suggesting REEs are contaminants of emerging concern. However, compared to organic contaminants, there is a lack of comprehensive reviews on the anthropogenic sources, environmental behaviour, and public and ecological health risks of REEs. The current review aims to: (1) identify anthropogenic sources, transfer mechanisms, and environmental behaviour of REEs; (2) highlight the human and ecological health risks of REEs and propose mitigation measures; and (3) identify knowledge gaps and future research directions. Out of the 17 REEs, La, Gd, Ce and Eu are the most studied. The main sources of anthropogenic REE include; medical facilities, petroleum refining, mining and technology industries, fertilizers, livestock feeds, and electronic wastes and recycling plants. REEs are mobilized and transported in the environment by hydrological and wind-driven processes. Ecotoxicological effects include reduced plant growth, function and nutritional quality, genotoxicity and neurotoxicity in animals, trophic bioaccumulation, chronic and acute toxicities in soil organisms. Human exposure to REEs occurs via ingestion of contaminated water and food, inhalation, and direct intake during medical administration. REEs have been detected in human hair, nails, and biofluids. In humans, REEs cause nephrogenic systemic fibrosis and severe damage to nephrological systems associated with Gd-based contrast agents, dysfunctional neurological disorder, fibrotic tissue injury, oxidative stress, pneumoconiosis, cytotoxicity, anti-testicular effects, and male sterility. Barring REEs in medical devices, epidemiological evidence directly linking REEs in the environment to human health conditions remains weak. To minimize health risks, a conceptual framework and possible mitigation measures are highlighted. Future research is needed to better understand sources, environmental behaviour, ecotoxicology, and human epidemiology. Moreover, research on REEs in developing regions, including Africa, is needed given prevailing conditions predisposing humans to health risks (e.g., untreated drinking water). Copyright © 2018 Elsevier B.V. All rights reserved.
Bern, Carleton R.; Yesavage, Tiffany; Foley, Nora K.
2017-01-01
Ion-adsorbed rare earth element (REE) deposits supply the majority of world heavy REE production and substantial light REE production, but relatively little is known of their occurrence outside Southeast Asia. We examined the distribution and forms of REEs on a North American pluton located in the highly weathered and slowly eroding South Carolina Piedmont. The Hercynian Liberty Hill pluton experiences a modern climate that includes ~ 1500 mm annual rainfall and a mean annual temperature of 17 °C. The pluton is medium- to coarse-grained biotite-amphibole granite with minor biotite granite facies. REE-bearing phases are diverse and include monazite, zircon, titanite, allanite, apatite and bastnäsite. Weathered profiles were sampled up to 7 m-deep across the ~ 400 km2 pluton. In one profile, ion-adsorbed REEs plus yttrium (REE + Y) ranged up to 581 mg/kg and accounted for up to 77% of total REE + Y in saprolite. In other profiles, ion-adsorbed REE + Y ranged 12–194 mg/kg and only accounted for 3–37% of totals. The profile most enriched in ion-adsorbed REEs was located along the mapped boundary of two granite facies and contained trioctahedral smectite in the saprolite, evidence suggestive of hydrothermal alteration of biotite at that location. Post-emplacement deuteric alteration can generate easily weathered REE phases, particularly fluorocarbonates. In the case of Liberty Hill, hydrothermal alteration may have converted less soluble to more soluble REE minerals. Additionally, regolith P content was inversely correlated with the fraction ion-adsorbed REEs, and weathering related secondary REE-phosphates were found in some regolith profiles. Both patterns illustrate how low P content aids in the accumulation of ion-adsorbed REEs. The localized occurrence at Liberty Hill sheds light on conditions and processes that generate ion-adsorbed REEs.
NASA Technical Reports Server (NTRS)
Haq, Munir; Hasan, Fouad A.; Sears, Derek W. G.
1988-01-01
The thermoluminescence (TL) properties were measured in 121 equilibrated H and L ordinary chondrites of which 33 H and 32 L were from Antarctica. It was found that the distribution of TL sensitivities for non-Antarctic L chondrites differs from that of non-Antarctic H chondrites, reflecting the well-known differences in shock history between L and H classes, the greater proportion of the former having suffered postmetamorphic shock. The data also show differences in TL sensitivity between Antarctic and non-Antarctic H chondrites, suggesting nontrivial differences in thermal history of these chondrites.
Lateritic, supergene rare earth element (REE) deposits
Cocker, Mark D.
2014-01-01
Intensive lateritic weathering of bedrock under tropical or sub-tropical climatic conditions can form a variety of secondary, supergene-type deposits. These secondary deposits may range in composition from aluminous bauxites to iron and niobium, and include rare earth elements (REE). Over 250 lateritic deposits of REE are currently known and many have been important sources of REE. In southeastern China, lateritic REE deposits, known as ion-adsorption type deposits, have been the world’s largest source of heavy REE (HREE). The lateritized upper parts of carbonatite intrusions are being investigated for REE in South America, Africa, Asia and Australia, with the Mt. Weld deposit in Australia being brought into production in late 2012. Lateritic REE deposits may be derived from a wide range of primary host rocks, but all have similar laterite and enrichment profiles, and are probably formed under similar climatic conditions. The weathering profile commonly consists of a depleted zone, an enriched zone, and a partially weathered zone which overlie the protolith. Lateritic weathering may commonly extend to depths of 30 to 60 m. REE are mobilized from the breakdown of primary REE-bearing minerals and redeposited in the enriched zone deeper in the weathering horizon as secondary minerals, as colloids, or adsorbed on other secondary minerals. Enrichment of REE may range from 3 to 10 times that of the source lithology; in some instances, enrichment may range up to 100 times.
Achamrah, Najate; Jésus, Pierre; Grigioni, Sébastien; Rimbert, Agnès; Petit, André; Déchelotte, Pierre; Folope, Vanessa; Coëffier, Moïse
2018-01-01
Predictive equations have been specifically developed for obese patients to estimate resting energy expenditure (REE). Body composition (BC) assessment is needed for some of these equations. We assessed the impact of BC methods on the accuracy of specific predictive equations developed in obese patients. REE was measured (mREE) by indirect calorimetry and BC assessed by bioelectrical impedance analysis (BIA) and dual-energy X-ray absorptiometry (DXA). mREE, percentages of prediction accuracy (±10% of mREE) were compared. Predictive equations were studied in 2588 obese patients. Mean mREE was 1788 ± 6.3 kcal/24 h. Only the Müller (BIA) and Harris & Benedict (HB) equations provided REE with no difference from mREE. The Huang, Müller, Horie-Waitzberg, and HB formulas provided a higher accurate prediction (>60% of cases). The use of BIA provided better predictions of REE than DXA for the Huang and Müller equations. Inversely, the Horie-Waitzberg and Lazzer formulas provided a higher accuracy using DXA. Accuracy decreased when applied to patients with BMI ≥ 40, except for the Horie-Waitzberg and Lazzer (DXA) formulas. Müller equations based on BIA provided a marked improvement of REE prediction accuracy than equations not based on BC. The interest of BC to improve REE predictive equations accuracy in obese patients should be confirmed. PMID:29320432
Submarine groundwater discharge is an important source of REEs to the coastal ocean
NASA Astrophysics Data System (ADS)
Johannesson, K. H.; Chevis, D. A.; Palmore, C. D.; Telfeyan, K.; Burdige, D.; Cable, J. E.; Hemming, S. R.; Rasbury, T.; Moran, S. B.; Prouty, N.; Swarzenski, P. W.
2014-12-01
Rare earth element (REE) concentrations of submarine groundwater discharge (SGD) were measured in three subterranean estuaries (i.e., Indian River Lagoon, Florida; Pettaquamscutt estuary, Rhode Island; Kona Coast, Hawaii). Using site-specific SGD estimates previously obtained by a variety of techniques (e.g., seepage meters, Ra, and Rn), we estimated SGD-derived fluxes of REEs to the coastal ocean using simple, one-dimensional modeling techniques. Our results indicate that the SGD fluxes of REEs are either of the same magnitude as riverine REE fluxes (Indian River Lagoon; Pettaquamscutt estuary), or far exceed surface runoff sources of REEs to the coastal ocean (Kona Coast). At each site important biogeochemical reactions occurring in the subterranean estuary, such as redox reactions, sediment bioirrigation, mineral dissolution and re-precipitation, and salt-induced mobilization from "nano-colloids", appear to facilitate release of REEs into solution, which are then advected to the coastal ocean via SGD. Neodymium isotope analysis of SGD and aquifer sediment are consistent with sediment diagenesis and redox transformations of Fe(III) oxides/oxyhydroxides, as well as preferential weathering of REE-bearing minerals like apatite, as being important sources of REEs to coastal seawater. Our investigations demonstrate that geochemical reactions occurring in the studied subterranean estuaries represent a net source of light and middle REEs to coastal seawater, whereas the heavy REEs appear to be sequestered in the subterranean estuary sediment.
Fractionations of rare earth elements in plants and their conceptive model.
Ding, ShiMing; Liang, Tao; Yan, JunCai; Zhang, ZiLi; Huang, ZeChun; Xie, YaNing
2007-02-01
Fractionations of rare earth elements (REEs) and their mechanisms in soybean were studied through application of exogenous mixed REEs under hydroponic conditions. Significant enrichment of middle REEs (MREEs) and heavy REEs (HREEs) was observed in plant roots and leaves respectively, with slight fractionation between light REEs (LREEs) and HREEs in stems. Moreover, the tetrad effect was observed in these organs. Investigations into REE speciation in roots and in the xylem sap using X-ray absorption spectroscopy (XAS) and nanometer-sized TiO2 adsorption techniques, associated with other controlled experiments, demonstrated that REE fractionations should be dominated by fixation mechanism in roots caused by cell wall absorption and phosphate precipitation, and by the combined effects of fixation mechanism and transport mechanism in aboveground parts caused by solution complexation by intrinsic organic ligands. A conceptive model was established for REE fractionations in plants based on the above studies.
NASA Astrophysics Data System (ADS)
Baker, Joel; Waight, Tod; Ulfbeck, David
2002-10-01
A method has been developed for the rapid chemical separation and highly reproducible analysis of the rare earth elements (REE) by isotope dilution analysis by means of a multiple collector inductively coupled plasma mass spectrometer (MC-ICP-MS). This technique is superior in terms of the analytical reproducibility or rapidity of analysis compared with quadrupole ICP-MS or with thermal ionization mass spectrometric isotope dilution techniques. Samples are digested by standard hydrofluoric-nitric acid-based techniques and spiked with two mixed spikes. The bulk REE are separated from the sample on a cation exchange column, collecting the middle-heavy and light REE as two groups, which provides a middle-heavy REE cut with sufficient separation of the light from the heavier REE to render oxide interferences trivial, and a Ba-free light REE cut. The heavy (Er-Lu), middle (Eu-Gd), and light REE (La-Eu) concentrations are determined by three short (1 to 2 min) analyses with a CETAC Aridus desolvating nebulizer introduction system. Replicate digestions of international rock standards demonstrate that concentrations can be reproduced to <1%, which reflects weighing errors during digestion and aliquotting as inter-REE ratios reproduce to ≤0.2% (2 SD). Eu and Ce anomalies reproduce to <0.15%. In addition to determining the concentrations of polyisotopic REE by isotope dilution analysis, the concentration of monoisotopic Pr can be measured during the light REE isotope dilution run, by reference to Pr/Ce and Pr/Nd ratios measured in a REE standard solution. Pr concentrations determined in this way reproduce to <1%, and Pr/REE ratios reproduce to <0.4%. Ce anomalies calculated with La and Pr also reproduce to <0.15% (2 SD). The precise Ce (and Eu) anomaly measurements should allow greater use of these features in studying the recycling of materials with these anomalies into the mantle, or redox-induced effects on the REE during recycling and dehydration of oceanic lithosphere, partial melting, metamorphism, alteration, or sedimentation processes. Moreover, this technique consumes very small amounts (subnanograms) of the REE and will allow precise REE determinations to be made on much smaller samples than hitherto possible.
NASA Astrophysics Data System (ADS)
Castillo, P.; Townley, B.; Aburto, F.
2017-12-01
Within the scope of a Corfo-Innova Project (I+D Wines of Chile-University of Chile) we have recognized remarkable REE patterns in soils of two vineyards located in traditional vinicultural areas: Casablanca and Santa Cruz. Both vineyards have granitic parent rock, with similar petrographic features and REE patterns. We studied REE distribution on twelve cultivated soil profiles at each vineyard, where a full mineralogical, geochemical and pedogenic sampling and characterization was performed. To establish the effect of management no cultivated soil profiles were included from each vineyard location. REE in soil samples were measured by ICP-MS using two digestion methods: lithium metaborate/tetraborate fusion to obtain REE contents in total soil and MMI® partial extraction technique for REE contents on bioavailable phases.Soils display similar signatures of REEs respect to the rock source at both vineyards, but showing relative enrichments in soils of Casablanca and depletion in soils of Santa Cruz. Bioavailable phase data indicates a relative depletion of LREEs compared to HREEs and different anomalies for Ce (positive vs negative) in different areas of the same vineyard. Similar patterns of soils and parent rock suggest that REEs are adequate tracers of lithological source. Enrichments and/or depletions of REE patterns in soils respect to the rock source and Ce anomalies, evidence differential pedogenetic processes occurring at each sampled site. Results of bioavailable phase are coherent with the immobilization and fractionation of LREEs by stable minerals within soils as clays and Fe oxides. Mineralogical results in soil thin sections of Casablanca evidence the occurrence of Ti phases as sphene, ilmenite and rutile, which probably control the relative REE enrichment, since these minerals are considered more stable under pedogenic conditions.Finally, cultivated soils show a depleted but analogous pattern of REE regarding to no cultivated soil, indicating the REEs loss due to agricultural land use. Our preliminary hypothesis is the existence of organometallic complexes that retain REEs in natural soils, which are degraded with vinicultural management. However other factors as differential weathering rates of minerals, clays mineralogy and fractionation of REE by plants must be considered.
NASA Technical Reports Server (NTRS)
Komatsu, M.; Fagan, T. J.; Yamaguchi, A.; Mikouchi, T.; Zolensky, M. E.; Yasutake, M.
2016-01-01
Amoeboid olivine aggregates (AOAs) are important refractory components of carbonaceous chondrites and have been interpreted to represent solar nebular condensates that experienced high-temperature annealing, but largely escaped melting. In addition, because AOAs in primitive chondrites are composed of fine-grained minerals (forsterite, anorthite, spinel) that are easily modified during post crystallization alteration, the mineralogy of AOAs can be used as a sensitive indicator of metamorphic or alteration processes. AOAs in CR chondrites are particularly important because they show little evidence for secondary alteration. In addition, some CR AOAs contain Mn-enriched forsterite (aka low-iron, Mn-enriched or LIME olivine), which is an indicator of nebular formation conditions. Here we report preliminary results of the mineralogy and petrology of AOAs in Antarctic CR chondrites, and compare them to those in other carbonaceous chondrites.
Chen, J.R.; Chao, E.C.T.; Back, J.M.; Minkin, J.A.; Rivers, M.L.; Sutton, S.R.; Cygan, G.L.; Grossman, J.N.; Reed, M.J.
1993-01-01
The concentrations of rare earth elements (REEs) in specific mineral grains from the Bayan Obo ore deposit and synthetic high-silica glass samples have been measured by synchrotron X-ray fluorescence (SXRF) analysis using excitation of the REE K lines between 33 and 63 keV. Because SXRF, a nondestructive analytical technique, has much lower minimum detection limits (MDLs) for REEs, it is an important device that extends the in situ analytical capability of electron probe microanalysis (EPMA). The distribution of trace amounts of REEs in common rock-forming minerals, as well as in REE minerals and minerals having minor quantities of REEs, can be analyzed with SXRF. Synchrotron radiation from a bending magnet and a wiggler source at the National Synchrotron Light Source, Brookhaven National Laboratory, was used to excite the REEs. MDLs of 6 ppm (La) to 26 ppm (Lu) for 3600 s in 60-??m-thick standard samples were obtained with a 25-??m diameter wiggler beam. The MDLs for the light REEs were a factor of 10-20 lower than the MDLs obtained with a bending magnet beam. The SXRF REE concentrations in mineral grains greater than 25 ??m compared favorably with measurements using EPMA. Because EPMA offered REE MDLs as low as several hundred ppm, the comparison was limited to the abundant light REEs (La, Ce, Pr, Nd). For trace values of medium and heavy REEs, the SXRF concentrations were in good agreement with measurements using instrumental neutron activation analysis (INAA), a bulk analysis technique. ?? 1993.
INAA of CAIs from the Maralinga CK4 chondrite: Effects of parent body thermal metamorphism
NASA Technical Reports Server (NTRS)
Lindstrom, D. J.; Keller, L. P.; Martinez, R. R.
1993-01-01
Maralinga is an anomalous CK4 carbonaceous chondrite which contains numerous Ca-, Al-rich inclusions (CAI's) unlike the other members of the CK group. These CAI's are characterized by abundant green hercynitic spinel intergrown with plagioclase and high-Ca clinopyroxene, and a total lack of melilite. Instrumental Neutron Activation Analysis (INAA) was used to further characterize the meteorite, with special focus on the CAI's. High sensitivity INAA was done on eight sample disks about 100-150 microns in diameter obtained from a normal 30 micron thin section with a diamond microcoring device. The CAI's are enriched by 60-70X bulk meteorite values in Zn, suggesting that the substantial exchange of Fe for Mg that made the spinel in the CAI's hercynitic also allowed efficient scavenging of Zn from the rest of the meteorite during parent body thermal metamorphism. Less mobile elements appear to have maintained their initial heterogeneity.
A new method for the determination of Gadolinium in ppq levels
NASA Astrophysics Data System (ADS)
Brünjes, Robert; Bichler, Andrea; Hofmann, Thilo
2015-04-01
The use of Gadolinium (Gd) complexes as a contrast agent in Magnetic Resonance Imaging (MRI) results in an enhanced Gd input in the aquatic environment. Gd-complexes are excreted by humans unmetabolized within 12h after application. Passing the sewage systems with almost no degradation taking place, they successively reach surface waters, which make Gd a capable tracer for surface water/groundwater (SW/GW) interactions. The natural background concentration of Gd and other rare earth elements (REE) occur at ultratrace levels [low ng/L]. Crust-normalized REE patterns show positive Gd-anomalies in surface water, groundwater, and recently also in tap water. The difference between the total concentration and its natural background concentration estimated by the REE pattern is the anthropogenic Gd. Not only densely populated areas are affected by the presence of anthropogenic Gd. Studies have shown that even in rural areas without MRI facilities, anthropogenic Gd can be detected, since people are sent home after treatment. However, low input concentrations and mixing with natural waters lead to a decrease of Gd concentration below the current limit of quantification (LOQ) [1-5ng/L]. Often anthropogenic Gd cannot be calculated, although it is present, because natural background concentration cannot be determined with current methods, in particular in areas with low waste water load (e.g. headwater catchments). A new method using an on-line preconcentration system "SeaFAST" (Elemental Scientific Inc., USA), in combination with a desolvation system "Apex Q" (Elemental Scientific Inc., USA) and a QQQ-ICP-MS instrument (Agilent Technologies, Japan) does lower the LOQ for REE by a factor of 10 to 20. The SeaFAST-system uses a resin with ethylenediaminetriacetic acid and iminodiacetic acid functional groups to preconcentrate specifically REE as they are exclusively trivalent while anions, alkali and alkaline earth cations are washed out. The Apex Q interface is also supposed to significantly lower oxide interferences. We also evaluate a pretreatment in order to degrade the complexes and reach high recoveries of anthropogenic Gd. Our method will provide a determination of REE in ppq-levels, that significantly improves the differentiation between naturally and anthropogenic Gd. This will allow the detection of less than 1% waste water in SW and GW and finally increase the areas where studies of anthropogenic Gd could be conducted. A first application of our method was conducted during a field study in November 2014.
NASA Astrophysics Data System (ADS)
Petrosino, Paola; Sadeghi, Martiya; Andersson, Madelen; Albanese, Stefano; Dinelli, Enrico; Valera, Paolo; Ladenberger, Anna; Morris, George; Uhlbäck, Jo; Lima, Annamaria; De Vivo, Benedetto
2014-05-01
Scientific interest on Rare Earth Elements (REEs)-bearing media is increasing as a consequence of the rapidly growing demand of these important chemical resources, which are currently used in a large number of technical applications. In this study, Italian and Swedish REE data from the FOREGS database on topsoil and subsoils samples have been compared to the distribution of REEs in the GEMAS samples of agricultural soil (Ap), pertaining to regularly ploughed land to a depth of 20 cm. Principal Component Analysis (PCA) was carried out to identify patterns within both data sets. Investigation of the spatial distribution of REEs in FOREGS topsoil-subsoil and GEMAS Ap media for both countries revealed the prominent role of the geogenic component in the general REE geochemical pattern of the three solid media. Despite a similar REE content in the underlying parent material or bedrocks (alkaline igneous rocks, both intrusive and effusive in Italy, alkaline granites and pegmatites in Sweden), several distinct differences emerged between the two countries driven by climate, topography, age of the rock units and sediments, presence of mineralisations, type of soils and presence of glacial deposits. GEMAS agricultural soils form both countries show higher REEs contents than the corresponding subsoils and topsoils, which could be ascribed to the analytical method specifically set for REEs and the last generation ICP-MS instrument used by SGS Lab to analyze REEs in Ap soils. The REE content in Italian topsoil and subsoil is similar and there is a good agreement between the topsoils and Ap soils, which were collected from similar depth. Swedish subsoil is on the contrary more enriched in REEs with respect to topsoil, and Ap soils even display REE contents higher than subsoils. This anomalous REE concentrations in agricultural soil may originate from the fact that most of the arable land in Sweden has been located on glacial and postglacial deposits, rich in clay which has tendency to accumulate secondary REEs. We concluded that the fingerprints of anthropic activity due to agricultural activities does not influence the geogenic signal. Both in Italy and Sweden, in fact, REE trends in GEMAS agricultural soils are well comparable with those obtained for FOREGS soils sampled from unoccupied and undisturbed regions.
Bioadsorption of Rare Earth Elements through Cell Surface Display of Lanthanide Binding Tags.
Park, Dan M; Reed, David W; Yung, Mimi C; Eslamimanesh, Ali; Lencka, Malgorzata M; Anderko, Andrzej; Fujita, Yoshiko; Riman, Richard E; Navrotsky, Alexandra; Jiao, Yongqin
2016-03-01
With the increasing demand for rare earth elements (REEs) in many emerging clean energy technologies, there is an urgent need for the development of new approaches for efficient REE extraction and recovery. As a step toward this goal, we genetically engineered the aerobic bacterium Caulobacter crescentus for REE adsorption through high-density cell surface display of lanthanide binding tags (LBTs) on its S-layer. The LBT-displayed strains exhibited enhanced adsorption of REEs compared to cells lacking LBT, high specificity for REEs, and an adsorption preference for REEs with small atomic radii. Adsorbed Tb(3+) could be effectively recovered using citrate, consistent with thermodynamic speciation calculations that predicted strong complexation of Tb(3+) by citrate. No reduction in Tb(3+) adsorption capacity was observed following citrate elution, enabling consecutive adsorption/desorption cycles. The LBT-displayed strain was effective for extracting REEs from the acid leachate of core samples collected at a prospective rare earth mine. Our collective results demonstrate a rapid, efficient, and reversible process for REE adsorption with potential industrial application for REE enrichment and separation.
Mobility of rare earth element in hydrothermal process and weathering product: a review
NASA Astrophysics Data System (ADS)
Lintjewas, L.; Setiawan, I.
2018-02-01
The Rare Earth Element (REE), consists of La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Lu, Ho, Er, Tm, Yb, are important elements to be used as raw materials of advanced technology such as semiconductors, magnets, and lasers. The research of REE in Indonesia has not been done. Several researches were conducted on granitic rocks and weathering product such as Bangka, Sibolga, West Kalimantan, West Sulawesi and Papua. REE can be formed by hydrothermal processes such as Bayan Obo, South China. The REE study on active hydrothermal system (geothermal) in this case also has the potential to produce mineral deposits. The purpose of this review paper is to know the mobility of REE on hydrothermal process and weathering products. Mobility of REE in the hydrothermal process can change the distribution patterns and REE content such as Ce, Eu, La, Lu, Nd, Sm, and Y. Another process besides the hydrothermal is weathering process. REE mobility is influenced by weathering products, where the REE will experience residual and secondary enrichment processes in heavier minerals.
Bioadsorption of rare earth elements through cell surface display of lanthanide binding tags
Park, Dan M.; Reed, David W.; Yung, Mimi C.; ...
2016-02-02
In this study, with the increasing demand for rare earth elements (REEs) in many emerging clean energy technologies, there is an urgent need for the development of new approaches for efficient REE extraction and recovery. As a step toward this goal, we genetically engineered the aerobic bacterium Caulobacter crescentus for REE adsorption through high-density cell surface display of lanthanide binding tags (LBTs) on its S-layer. The LBT-displayed strains exhibited enhanced adsorption of REEs compared to cells lacking LBT, high specificity for REEs, and an adsorption preference for REEs with small atomic radii. Adsorbed Tb 3+ could be effectively recovered usingmore » citrate, consistent with thermodynamic speciation calculations that predicted strong complexation of Tb 3+ by citrate. No reduction in Tb 3+ adsorption capacity was observed following citrate elution, enabling consecutive adsorption/desorption cycles. The LBT-displayed strain was effective for extracting REEs from the acid leachate of core samples collected at a prospective rare earth mine. Our collective results demonstrate a rapid, efficient, and reversible process for REE adsorption with potential industrial application for REE enrichment and separation.« less
NASA Astrophysics Data System (ADS)
Žigaitė, Živilė; Fadel, Alexandre; Pérez-Huerta, Alberto; Jeffries, Teresa
2015-04-01
Rare earth (REE) and trace element compositions of fossil vertebrate dental microremains have been studied in Silurian and Devonian vertebrate dental scales and spines in-situ, using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Samples were selected from the well-known Silurian bone beds of Vesiku and Ohesaare in Saaremaa island of Estonia, and a number of Lower Devonian localities from Spitsbergen (Svalbard), Andrée Land group. Biomineral preservation was assessed using spot semi-quantitative elemental chemistry (SEM-EDS) and electron back-scatter difractometry (EBSD) for cristallinity imaging. The obtained PAAS shale-normalised REE concentrations were evaluated using basic geochemical calculations and quantifications. The REE patterns from the Lower Devonian vertebrate apatite from Andrée Land, Spitsbergen (Wood Bay and Grey Hœk formations) did not show any recognisable taxon-specific behavior, but had rather well expressed differences of REE compositions related to biomineral structure and sedimentary settings, suggesting REE instead to reflect burial environments and sedimentological history. The Eu anomaly recorded in two of the studied localities but not in the other indicate different taphonomic conditions and palaeoenvironment, while La/Sm, La/Yb ratios sugeest considerable influence of terrestrial freshwater during the early diagenesis. The La/Yb and La/Sm plots also agree with the average REE concentrations, reflecting domination of the adsoption over substitution as principal REE uptake mechanism in the fossils which had significantly lower overall REE concentrations, and vice versa. Vesiku (Homerian, Wenlock) microremains yielded very uniform REE patterns with slightly lower overall REE concentrations in enameloid than in dentine, with strong enrichment in middle REE and depletion in heavy REE. Negative Europium (Eu) anomaly was pronounced in all the profiles, but Cerium (Ce) anomalies were not detected suggesting possible suboxic to anoxic conditions of the bottom and pore waters during the formation of Vesiku bone bed. In Ohesaare (Pridoli), the REE compositions were nearly identical across all the morphotypes and histologies of acanthodian microremains showing flat REE patterns with slight depletion in HREE. There were no visible enrichment in MREE, indicating relatively good preservation of original bioapatite and likely absence of any pronounced fractionated REE incorporation during later stages of diagenesis. The shale normalised (La/Yb)SN and (La/Sm)SN REE ratio compilations showed addsorption as dominating REE uptake mechanism across all the studied microfossils. The absence of well-defined Ce anomaly suggest oxic palaeoseawater conditions, which agrees with existing interpretations of Ohesaare sequence as high-energy shoal and regressive open ocean sedimentary environment.
Direct dating and characterization of the Pope's Hill REE Deposit, Labrador
NASA Astrophysics Data System (ADS)
Chafe, A. N.; Hanchar, J. M.; Fisher, C.; Piccoli, P. M.; Crowley, J. L.; Dimmell, P. M.
2012-12-01
The Pope's Hill rare earth element (REE) trend (PHT) is located approximately 100 km southwest of Happy Valley-Goose Bay, along the Trans Labrador Highway, in central Labrador. Whole-rock geochemical analyses of the main REE-bearing unit indicate total rare earth element contents ranging from 1 to 22 weight percent (wt%) REE3+. The REE-enriched unit is hosted within a hydrothermally altered syenite, trending northeast and traceable for approximately 2.8km. Samples of ore, host rock, and country rock, were collected from throughout the trend in order to: 1) quantify which phases concentrate the REE and their abundances and distribution in the ore; and 2) use in situ LA-ICPMS and ID-TIMS U-Pb geochronology and in situ Sm-Nd isotopes using LA-MC-ICPMS in monazite from the ore and host rock to constrain the timing of mineralization and determine the source of the REE. These data will help develop predictive models for this type of mineral deposit elsewhere. The PHT is defined as the host syenite and REE-enriched segregations; two contrasting lithologies. The rare earth element minerals (REE) occur in millimeter- to centimeter-scale pods that are locally discontinuous. The REE are hosted in a variety of silicate, phosphate, carbonate, and niobate phases; with a majority hosted in allanite(-Ce), titanite(-Ce), monazite(-Ce), britholite(-Ce); and a minor percentage in REE-carbonates and fergusonite(-Nd). Both apatite and titanite occur in two different compositional forms that range in chemistry from end-member stoichiometric apatite and titanite to highly REE-enriched - apatite-britholite and titanite(-Ce), where chemical substitutions, such as Si4+ + REE3+ substitute for Ca2+ + P5+ in apatite and REE3+ + Fe3+ substitute for Ca2+ + Ti4+ in titanite in order to incorporate up to ~40 wt% REE2O3 in both minerals. The U-Pb geochronology indicate that allanite, titanite(-Ce), monazite and fergusonite crystallized from ~1060 to ~940 Ma, a period spanning ~120 Ma. Sm-Nd tracer isotope data from the same minerals indicate that the syenite and ore have initial Nd within a single ɛNd unit. This combined with their field relationship to the foliation and the microtextures observed in thin section suggests that the REE minerals experienced syndeformational growth from a hydrothermal fluid, acting on both host and ore, where REEs in aqueous hard ligand complexes became saturated in silicate, phosphate, carbonate, and niobate minerals through the changing T, P and chemical conditions brought on by deformation.
Rare earth element deposits in China
Xie, Yu-Ling; Hou, Zeng-qian; Goldfarb, Richard J.; Guo, Xiang; Wang, Lei
2016-01-01
China is the world’s leading rare earth element (REE) producer and hosts a variety of deposit types. Carbonatite- related REE deposits, the most significant deposit type, include two giant deposits presently being mined in China, Bayan Obo and Maoniuping, the first and third largest deposits of this type in the world, respectively. The carbonatite-related deposits host the majority of China’s REE resource and are the primary supplier of the world’s light REE. The REE-bearing clay deposits, or ion adsorption-type deposits, are second in importance and are the main source in China for heavy REE resources. Other REE resources include those within monazite or xenotime placers, beach placers, alkaline granites, pegmatites, and hydrothermal veins, as well as some additional deposit types in which REE are recovered as by-products. Carbonatite-related REE deposits in China occur along craton margins, both in rifts (e.g., Bayan Obo) and in reactivated transpressional margins (e.g., Maoniuping). They comprise those along the northern, eastern, and southern margins of the North China block, and along the western margin of the Yangtze block. Major structural features along the craton margins provide first-order controls for REE-related Proterozoic to Cenozoic carbonatite alkaline complexes; these are emplaced in continental margin rifts or strike-slip faults. The ion adsorption-type REE deposits, mainly situated in the South China block, are genetically linked to the weathering of granite and, less commonly, volcanic rocks and lamprophyres. Indosinian (early Mesozoic) and Yanshanian (late Mesozoic) granites are the most important parent rocks for these REE deposits, although Caledonian (early Paleozoic) granites are also of local importance. The primary REE enrichment is hosted in various mineral phases in the igneous rocks and, during the weathering process, the REE are released and adsorbed by clay minerals in the weathering profile. Currently, these REE-rich clays are primarily mined from open-pit operations in southern China. The complex geologic evolution of China’s Precambrian blocks, particularly the long-term subduction of ocean crust below the North and South China blocks, enabled recycling of REE-rich pelagic sediments into mantle lithosphere. This resulted in the REE-enriched nature of the mantle below the Precambrian cratons, which were reactivated and thus essentially decratonized during various tectonic episodes throughout the Proterozoic and Phanerozoic. Deep fault zones within and along the edges of the blocks, including continental rifts and strike-slip faults, provided pathways for upwelling of mantle material.
NASA Astrophysics Data System (ADS)
Petelet-Giraud, E.; Negrel, P. J.; Millot, R.; Guerrot, C.; Brenot, A.; Malcuit, E.
2010-12-01
Large sedimentary aquifer systems often constitute strategic water resources for drinking water supply, agriculture irrigation and industry, but can also represent an energetic resource for geothermal power. Large water abstractions can induce complete modification of the natural functioning of such aquifer systems, e.g. with seepage between aquifer layers that can lead to water quality degradation. These large aquifer systems thus require rational water management at the sedimentary basin scale in order to preserve both water quantity and quality. In addition to hydrogeological modelling mainly dealing with water quantity, chemical and isotopic methods were applied to evidence the spatial variability of water characteristics and to turn this into better understanding of hydrosystems functioning. The large Eocene Sand aquifer system of the Adour-Garonne sedimentary basin was studied through various hydrological, chemical and isotopic tools. This system extends over 116,000 km2 (one-fifth of the French territory, located in the South west part). The aquifer being artesian in the west of the district and confined with piezometric levels around 250-m depth in the east. The ‘Eocene Sands’, composed of sandy Tertiary sediments alternating with carbonate deposits, is a multi-layer system with high permeability and a thickness of several tens of metres to a hundred metres..The Eocene Sand aquifer system comprises at least five aquifers: Paleocene, Eocene infra-molassic sands (IMS), early Eocene, middle Eocene, and late Eocene. According to δ18O and δ2H values and estimated 14C ages, both present-day recharge (mainly located in the north of the area) and old recharge (16-35 ky) can be evidenced. High spatial variability was evidenced within a same aquifer layer, with temporal variability over one hydrological cycle limited to a few points located in the recharge areas. These results and especially the very old waters recharged under colder climate combined with the continuous decrease of water levels in the IMS aquifer for instance constitute major indicators to be taken into account for water management at the aquifer system scale. Major elements variability was interpreted in terms of water-rock interactions in these confined systems isolated from anthropogenic influence, with the main role played by evaporites on the water salinity (up to 2.5 g.L-1). Rare Earth Elements (REE) were also analysed in some groundwater samples, resulting in a large variability of UCC normalized-REE patterns, ΣREE ranging from 1.9 to 50.6 µg.L-1, with no dependence on TDS. For instance, interaction with carbonates delivers REE flat patterns and highest ΣREE. The REE patterns and control by key parameters are investigated in order to test REE as a potential supplementary geochemical tracer to recognize the aquifer type hosting groundwater.
NASA Astrophysics Data System (ADS)
Pati, J. K.; Reimold, W. U.; Greshake, A.; Schmitt, R. T.; Koeberl, C.; Pati, P.; Prakash, K.
2015-05-01
Pseudotachylitic breccia (PTB) occurs in a drill core from the crater floor of the 11 km diameter, Proterozoic Dhala impact structure, India. PTBs were intersected in late Archean granitoids between 348.15 m and 502.55 m depth in the MCB-10 drill core from the center of the Dhala structure. The breccias comprise both cataclastic-matrix as well as melt breccias. The presence of microlites and vesicles in the groundmass and a widely observed flow fabric in the PTB support the presence of melt in the groundmass of some samples. Clasts in PTB are derived from the Archean granitoid basement. PTB matrix, the matrix of impact melt breccia also occurring between 256.50 m and 502.55 m depth, and the target granitoids vary in terms of silica, total alkali, magnesium and iron oxide contents. Chondrite-normalized REE patterns of PTB and target granitoids are similar, but the elemental abundances in the PTB are lower. The restricted size of PTB as veins and pods of up to 2.5 cm width, their occurrence at varied depths over a core length of 150 m, the clast population, and the chemical relationships between PTB and their host rocks all suggest the derivation of these breccias locally from the fractured basement granitoids involving in-situ melting. We favor that this took place due to rapid decompression during the collapse and modification stage of impact cratering, with, locally, additional energy input from frictional heating. Locally, amphibolite and dioritic mylonite occur in the host granitoids and their admixture could have contributed to the comparatively more mafic composition of PTB. Alteration of these crater floor rocks could have involved preferential reduction of silica and alkali element abundances, possibly due to impact-induced hydrothermal activity at crater floor level. This process, too, could have resulted in more mafic compositions.
Metagabbro associated with the shear zone on Prins Karls Forland (Svalbard, Arctic)
NASA Astrophysics Data System (ADS)
Maraszewska, Maria; Manecki, Maciej; Czerny, Jerzy; Schneider, David; Myhre, Per Inge; Faehnrich, Karol; Barnes, Christopher
2016-04-01
Prins Karls Forland (PKF) is a N-S elongated island situated west of Spitsbergen in the Svalbard archipelago, High Arctic. The northern part of the island is dominated by siliciclastic metasediments regionally metamorphosed to greenshist facies assemblages during one distinct stage of tectonism. Amphibolite facies garnet-mica schists, mica schists, quartzites and carbonate-silicate rocks exhibiting evidence of at least two distinct, strong deformation episodes (including mylonitization) locally outcrop on the east coast of PKF, termed the Pinkie Unit. A ~1 km wide shear zone containing ductile to brittle structures and distinct outcrops of greenstones (metagabbros and greenschists), associated with magnetite ore, separates these two contrasting tectonic units. Ten samples of greenstones were collected on the slopes of Lauratzonfjellet and Boureefjellet for petrologic and geochemical analyses. Despite intense localized shearing, the metagabbros are undeformed and preserve coarse crystalline, magmatic texture, which is locally poikilitic. The primary magmatic assemblage consists of brown hornblende, plagioclase, biotite and opaque minerals, with accessory apatite and titanite. No relicts of pyroxenes are preserved. Formation of secondary uralite, sericite and chlorite is observed. Metamorphic assemblage consists of actinolite pseudomorhs after hornblende, epidote, and second generation biotite. Blue amphibole is observed in one sample from Boureefjellet; greenschists from Boureefjellet also contain fibrous blue amphibole, as well as garnets, actinolite, epidote and biotite. Some rocks sampled on Boureefjellet are more strongly deformed and exhibit probably two stages of metamorphism: amphibolite facies metamorphism resulting in blue amphibole-garnet assemblage followed by greenschist facies metamorphism resulting in actinolite-epidote-biotite paragenesis. Parallel and overlapping patterns on chondrite-normalized REE diagrams and spider diagrams indicate that these metagabbros are comagmatic. Enrichment in incompatible lighter elements and position of projections on discrimination diagrams suggest ocean island basalt (OIB) character of primary magmas. The age of these rocks is unknown and is an objective of ongoing investigation. This work is partially funded by AGH research grant no 11.11.140.319.
NASA Astrophysics Data System (ADS)
Jiang, Shao-Yong; Chen, Yong-Quan; Ling, Hong-Fei; Yang, Jing-Hong; Feng, Hong-Zhen; Ni, Pei
2006-08-01
The Lower Cambrian black shale sequence of the Niutitang Formation in the Yangtze Platform, South China, hosts an extreme metal-enriched sulfide ore bed that shows >10,000 times enrichment in Mo, Ni, Se, Re, Os, As, Hg, and Sb and >1,000 times enrichment in Ag, Au, Pt, and Pd, when compared to average upper continental crust. We report in this paper trace- and rare-earth-element concentrations and Pb-Pb isotope dating for the Ni-Mo-PGE-Au sulfide ores and their host black shales. Both the sulfide ores and their host black shales show similar trace-element distribution patterns with pronounced depletion in Th, Nb, Hf, Zr, and Ti, and extreme enrichment in U, Ni, Mo, and V compared to average upper crust. The high-field-strength elements, such as Zr, Hf, Nb, Ta, Sc, Th, rare-earth elements, Rb, and Ga, show significant inter-element correlations and may have been derived mainly from terrigenous sources. The redox sensitive elements, such as V, Ni, Mo, U, and Mn; base metals, such as Cu, Zn, and Pb; and Sr and Ba may have been derived from mixing of seawater and venting hydrothermal sources. The chondrite-normalized REE patterns, positive Eu and Y anomalies, and high Y/Ho ratios for the Ni-Mo-PGE-Au sulfide ores are also suggestive for their submarine hydrothermal-exhalative origin. A stepwise acid-leaching Pb-Pb isotope analytical technique has been employed for the Niutitang black shales and the Ni-Mo-PGE-Au sulfide ores, and two Pb-Pb isochron ages have been obtained for the black shales (531±24 Ma) and for the Ni-Mo-PGE-Au sulfide ores (521±54 Ma), respectively, which are identical and overlap within uncertainty, and are in good agreement with previously obtained ages for presumed age-equivalent strata.
NASA Astrophysics Data System (ADS)
Pacle, Nichole Anthony D.; Dimalanta, Carla B.; Ramos, Noelynna T.; Payot, Betchaida D.; Faustino-Eslava, Decibel V.; Queaño, Karlo L.; Yumul, Graciano P.
2017-07-01
The Cenozoic sedimentary sequences of southern Samar Island in eastern Philippines were examined to understand the unroofing history of an ancient arc terrane. Petrographic and geochemical data revealed varying degrees of inputs from the ophiolite basement and differences in modal compositions. The sedimentary units are mostly made up of lithic fragments. The Late Oligocene to Early Miocene Daram Formation contains more chert and volcanic fragments whereas the late Middle Miocene to Early Pliocene Catbalogan Formation is dominantly composed of ultramafic components. These variances are correspondingly reflected in the geochemical signatures of these two sedimentary formations. The Catbalogan Formation clastic rocks have higher volatile-free MgO and Fe2O3 values (average: 8.4% for both oxides) compared to the Daram Formation samples (average: 5.1 and 6.3%, respectively). Geochemical variations are also reflected in the Co, Cr and Ni values: the Catbalogan Formation samples reflect higher concentrations (Co: 15-57 ppm; Cr: 231-1094 ppm; Ni: 84-484 ppm) compared to the Daram Formation samples (Co: 24-32 ppm; Cr: 234-418 ppm; Ni: 212-323 ppm). These observations suggest that the Daram Formation eroded and transported more of the crustal portions of the ophiolite, while the younger Catbalogan Formation represents a later exhumation and subsequent erosion of the ultramafic section. An oceanic island arc (OIA) setting is proposed for the two formations based on several tectonic discrimination diagrams (e.g., Th-La-Sc, La vs. Th). The OIA signature is further supported by their smooth chondrite-normalized rare earth element (REE) patterns with no obvious Eu anomaly as well as LREE enrichment which are typical of sediments deposited in OIA setting. Based on the dominantly ophiolitic provenance of the Daram and Catbalogan formations, the post-emplacement history of the nearby Samar Ophiolite is constrained during the Late Oligocene to Early Pliocene period.
Parent-Body Modification of Chondritic Meteorites
NASA Technical Reports Server (NTRS)
Rubin, Alan
2003-01-01
This proposal focused on the parent-body modification of chondritic materials and substantial progress was made in the last year. A summary of the work accomplished during this period is discussed. The topics include: 1) Chromite-Plagioclase Assemblages in Ordinary Chondrites; 2) The Gujba Bencubbin-like meteorite fall; 3) NWA428: A rock that Experienced Impact-induced Annealing; 4) Spade: An Annealed H-chondrite Impact-melt Breccia; and 5) Post-shock Annealing in Ordinary Chondrites. A list of the papers submitted or published during the period is also presented.
Rare earths in the Leadville Limestone and its marble derivates
Jarvis, J.C.; Wildeman, T.R.; Banks, N.G.
1975-01-01
Samples of unaltered and metamorphosed Leadville Limestone (Mississippian, Colorado) were analyzed by neutron activation for ten rare-earth elements (REE). The total abundance of the REE in the least-altered limestone is 4-12 ppm, and their distribution patterns are believed to be dominated by the carbonate minerals. The abundances of the REE in the marbles and their sedimentary precursors are comparable, but the distribution patterns are not. Eu is enriched over the other REE in the marbles, and stratigraphically upward in the formation (samples located progressively further from the heat source), the light REE become less enriched relative to the heavy REE. The Eu anomaly is attributed to its ability, unique among the REE, to change from the 3+ to 2+ oxidation state. Whether this results in preferential mobilization of the other REE or whether this reflects the composition of the pore fluid during metamorphism is unknown. Stratigraphically selective depletion of the heavy REE may be attributed to more competition for the REE between fluid and carbonate minerals in the lower strata relative to the upper strata. This competition could have been caused by changes in the temperature of the pore fluid or to the greater resistance to solution of the dolomite in the lower parts of the formation than the calcite in the upper parts. ?? 1975.
NASA Astrophysics Data System (ADS)
Ma, L.; Jin, L.; Dere, A. L.; White, T.; Mathur, R.; Brantley, S. L.
2012-12-01
Shale weathering is an important process in global elemental cycles. Accompanied by the transformation of bedrock into regolith, many elements including rare earth elements (REE) are mobilized primarily by chemical weathering in the Critical Zone. Then, REE are subsequently transported from the vadose zone to streams, with eventual deposition in the oceans. REE have been identified as crucial and strategic natural resources; and discovery of new REE deposits will be facilitated by understanding global REE cycles. At present, the mechanisms and environmental factors controlling release, transport, and deposition of REE - the sources and sinks - at Earth's surface remain unclear. Here, we present a systematic study of soils, stream sediments, stream waters, soil water and bedrock in six small watersheds that are developed on shale bedrock in the eastern USA to constrain the mobility and fractionation of REE during early stages of chemical weathering. The selected watersheds are part of the shale transect established by the Susquehanna Shale Hills Observatory (SSHO) and are well suited to investigate weathering on shales of different compositions or within different climate regimes but on the same shale unit. Our REE study from SSHO, a small gray shale watershed in central Pennsylvania, shows that up to 65% of the REE (relative to parent bedrock) is depleted in the acidic and organic-rich soils due to chemical leaching. Both weathering soil profiles and natural waters show a preferential removal of middle REE (MREE: Sm to Dy) relative to light REE (La to Nd) and heavy REE (Ho to Lu) during shale weathering, due to preferential release of MREE from a phosphate phase (rhabdophane). Strong positive Ce anomalies observed in the regolith and stream sediments point to the fractionation and preferential precipitation of Ce as compared to other REE, in the generally oxidizing conditions of the surface environments. One watershed developed on the Marcellus black shale in Pennsylvania allows comparison of behaviors of REE in the organic-rich vs. organic-poor end members under the same climate conditions. Our study shows that black shale bedrock has much higher REE contents compared to the Rose Hill gray shale. The presence of reactive phases such as organic matter, carbonates and sulfides in black shale and their alteration greatly enhance the release of REE and other metals to surface environments. This observation suggests that weathering of black shale is thus of particular importance in the global REE cycles, in addition to other heavy metals that impact the health of terrestrial and aquatic ecosystems. Finally, our ongoing investigation of four more gray shale watersheds in Virginia, Tennessee, Alabama, and Puerto Rico will allow for a comparison of shale weathering along a climosequence. Such a systematic study will evaluate the control of air temperature and precipitation on REE release from gray shale weathering in eastern USA.
Correlation of nasopharyngeal carcinoma with rare earth elements and the Epstein-Barr virus.
Zhang, Xiangmin; Zeng, Xiangfu; Liu, Lianbin; Lan, Xiaolin; Huang, Jing; Zeng, Hongxue; Li, Rong; Luo, Keqing; Wu, Wei; Zhou, Maohua; Li, Shaojin
2018-04-01
The concentration and distribution of rare earth elements (REE) in nasopharyngeal carcinoma (NPC) were measured to investigate connections with tumor size, lymph node metastasis, clinical stages, and Epstein-Barr virus (EBV) infection. There were 30 patients with NPC who met the criteria for inclusion in the present study. The EBV copy number, as well as the concentration and distribution of REE, was analyzed. EBV was detected using reverse transcription-polymerase chain reaction, with the concentrations of REE in NPC tissues measured using inductively coupled plasma-tandem mass spectrometry. The mean values were used when comparing concentrations of REE in NPC tissues as the standard deviation of this parameter was the lowest. Light REE had the highest concentrations, followed by medium, and then heavy REE. The concentrations of REE decreased with increasing tumor size and with the presence of lymph node metastasis. The concentrations of REE gradually increased between stage II and IVa, but markedly decreased thereafter. The elements that exhibited the greatest decreases were terbium, holmium and ytterbium. Furthermore, the concentrations of REE in NPC were not associated with sex (r=0.301, P=0.106) or age (r=-0.011, P=0.955), and were negatively associated with EBV (r=-0.744, P<0.001). By contrast, the EBV copy number increased alongside advancements in clinical stage. Changes in the concentrations of REE in NPC were more prominent for medium and heavy elements. Additionally, alterations in the concentrations of heavy REE may affect the occurrence and development of NPC.
On the chemical composition of L-chondrites
NASA Technical Reports Server (NTRS)
Neal, C. W.; Dodd, R. T.; Jarosewich, E.; Lipschutz, M. E.
1980-01-01
Radiochemical neutron activation analysis of Ag, As, Au, Bi, Co, Cs, Ga, In, Rb, Sb, Te, Tl, and Zn and major element data in 14 L4-6 and 3 LL5 chondrites indicates that the L group is unusually variable and may represent at least 2 subgroups differing in formation history. Chemical trends in the S/Fe rich subgroup support textural evidence indicating late loss of a shock formed Fe-Ni-S melt; the S/Fe poor subgroup seemingly reflects nebular fractionation only. Highly mobile In and Zn apparently reflect shock induced loss from L chondrites. However, contrasting chemical trends in several L chondrite sample sets indicate that these meteorites constitute a more irregular sampling of, or more heterogeneous parent material than do carbonaceous or enstatite chondrites. Data for 15 chondrites suggest higher formation temperatures and/or degrees of shock than for LL5 chondrites.
Antarctic Meteorite Newsletter, Volume 29, Number 1
NASA Technical Reports Server (NTRS)
Satterwhite, Cecilia (Editor); Righter, Kevin (Editor)
2006-01-01
This newsletter contains classifications for 597 new meteorites from the 2003 and 2004 ANtarctic Search for METeorites (ANSMET) seasons. They include samples from the Cumulus Hills, Dominion Range, Grosvenor Mountains, LaPaz Icefield, MacAlpine Hills, and the Miller Range. Macroscopic and petrographic descriptions are given for 25 of the new meteorites: 1 acapulcoite/Iodranite, 1 howardite, 1 diogenite, 2 eucrites, 1 enstatite chondrite, four L3 and two H3 chondrites, 2 CM, 3 CK and 1 CV chondrites, three R chondrites, and four impact melt breccias (with affinities for H and L). Likely the most interesting sample announced in this newsletter is LAP04840, with affinity to R chondrites. This meteorite contains approximately 15% horneblende, and has mineral compositional ranges and oxygen isotopic values similar to those of R chondrites. The presence of an apparently hydrous phase in this petrologic grade 6 chondrite is very unusual, and should be of great interest to many meteoriticists.
Chemical studies of H chondrites. I - Mobile trace elements and gas retention ages
NASA Technical Reports Server (NTRS)
Lingner, David W.; Huston, Ted J.; Hutson, Melinda; Lipschutz, Michael E.
1987-01-01
Trends for 16 trace elements (Ag, As, Au, Bi, Cd, Co, Cs, Ga, In, K, Rb, Sb, Se, Te, Tl, and Zn), chosen to span a broad geochemical and thermal response range, in 44 H4-6 chondrites, differ widely from those in L4-6 chondrites. In particular, H chondrites classified as heavily shocked petrologically do not necessarily exhibit Ar-40 loss and vice versa. The clear-cut causal relationship between siderophile and mobile element loss with increasing late shock seen in L chondrites is not generally evident in the H group. H chondrite parent material experienced an early high temperature genetic episode that mobilized a substantial proportion of these trace elements so that later thermal episodes resulted in more subtle, collateral fractionations. Mildly shocked L chondrites escaped this early high temperature event, indicating that the two most numerous meteorite groups differ fundamentally in genetic history.
Mineralogical, Spectral, and Compositional Changes During Heating of Hydrous Carbonaceous Chondrites
NASA Technical Reports Server (NTRS)
Nakamura, T.; Matsuoka, M.; Yamashita, S.; Sato, Y.; Mogi, K.; Enokido, Y.; Nakata, A.; Okumura, S.; Furukawa, Y.; Zolensky, M.
2017-01-01
Hydrous carbonaceous chondrites experienced hydration and subsequent dehydration by heating, which resulted in a variety of mineralogical and spectral features [e. g., 1-6]. The degree of heating is classified according to heating stage (HS) II to IV based on mineralogy of phyllosilicates [2], because they change, with elevating temperature, to poorly crystal-line phases and subsequently to aggregates of small secondary anhydrous silicates of mainly olivine. Heating of hydrous carbonaceous chondrites also causes spectral changes and volatile loss [3-6]. Experimental heating of Murchison CM chondrite showed flattening of whole visible-near infrared spectra, especially weakening of the 3µm band strength [1, 4, 7]. In order to understand mineralogical, spectral, and compositional changes during heating of hydrous carbonaceous chondrites, we have carried out systematic investigation of mineralogy, reflectance spectra, and volatile composition of hydrated and dehydrated carbonaceous chondrites as well as experimentally-heated hydrous carbonaceous chondrites. In addition, we investigated reflectance spectra of tochilinite that is a major phase of CM chondrites and has a low dehydration temperature (250degC).
On the Relationship between Cosmic Ray Exposure Ages and Petrography of CM Chondrites
NASA Technical Reports Server (NTRS)
Takenouchi, A.; Zolensky, M. E.; Nishiizumi, K.; Caffee, M.; Velbel, M. A.; Ross, K.; Zolensky, A.; Lee, L.; Imae, N.; Yamaguchi, A.;
2014-01-01
Carbonaceous (C) chondrites are potentially the most primitive among chondrites because they mostly escaped thermal metamorphism that affected the other chondrite groups. C chondrites are chemically distinguished from other chondrites by their high Mg/Si ratios and refractory elements, and have experienced various degrees of aqueous alteration. They are subdivided into eight subgroups (CI, CM, CO, CV, CK, CR, CB and CH) based on major element and oxygen isotopic ratios. Their elemental ratios vary over a wide range, in contrast to those of ordinary and enstatite chondrites which are relatively uniform. It is critical to know how many separate bodies are represented by the C chondrites. In this study we defined 4 distinct cosmic-ray exposure (CRE) age groups of CMs and systematically characterized the petrography in each of the 4 CRE age groups to determine whether the groups have significant petrographic differences with such differences probably reflecting different parent body (asteroid) geological processing, or multiple original bodies. We have reported the results of a preliminary grouping at the NIPR Symp. in 2013 [3], however, we revised the grouping and here report our new results.
Tong, Shi-Lu; Zhu, Wang-Zhao; Gao, Zhao-Hua; Meng, Yu-Xiu; Peng, Rui-Ling; Lu, Guo-Cheng
2004-01-01
In order to demonstrate the validity of using scalp hair rare earth elements (REEs) content as a biomarker of human REEs exposure, data were collected on REEs exposure levels from children aged 11-15 years old and living in an ion-adsorptive type light REEs (LREEs) mining and surrounding areas in southern China. Sixty scalp hair samples were analyzed by ICP-MS for 16 REEs (La Lu, Y and Sc). Sixteen REEs contents in the samples from the mining area (e.g., range: La: 0.14-6.93 microg/g; Nd: 0.09-5.27 microg/g; Gd: 12.2-645.6ng/g; Lu: 0.2-13.3 ng/g; Y: 0.03-1.27 microg/g; Sc: 0.05-0.30 microg/g) were significantly higher than those from the reference area (range: La: 0.04-0.40 microg/g; Nd: 0.04-0.32 microg/g; Gd: 8.3-64.6 ng/g; Lu: 0.4-3.3ng/g; Y: 0.03-0.29 microg/g; Sc: 0.11-0.36 microg/g) and even much higher than those published in the literature. The distribution pattern of REEs in scalp hair from the mining area was very similar to that of REEs in the mine and the atmosphere shrouding that area. In conclusion, the scalp hair REEs contents may indicate not only quantitatively but also qualitatively (distribution pattern) the absorption of REEs from environmental exposure into human body. The children living in this mining area should be regarded as a high-risk group with REEs (especially LREEs) exposure, and their health status should be examined from a REEs health risk assessment perspective.
Thermal evolution of a partially differentiated H chondrite parent body
NASA Astrophysics Data System (ADS)
Abrahams, J. N. H.; Bryson, J. F. J.; Weiss, B. P.; Nimmo, F.
2016-12-01
It has traditionally been assumed that planetesimals either melted entirely or remained completely undifferentiated as they accreted. The unmelted textures and cooling histories of chondrites have been used to argue that these meteorites originated from bodies that never differentiated. However, paleomagnetic measurements indicate that some chondrites (e.g., the H chondrite Portales Valley and several CV chondrites) were magnetized by a core dynamo magnetic field, implying that their parent bodies were partially differentiated. It has been unclear, however, whether planetesimal histories consistent with dynamo production can also be consistent with the diversity of chondrite cooling rates and ages. To address this, we modeled the thermal evolution of the H chondrite parent body, considering a variety of accretion histories and parent body radii. We considered partial differentiation using two-stage accretion involving the initial formation and differentiation of a small body, followed by the later addition of low thermal conductivity chondritic material that remains mostly unmelted. We were able to reproduce the measured thermal evolution of multiple H chondrites for a range of parent body parameters, including initial radii from 70-150 km, chondritic layer thicknesses from 50 km to over 100 km, and second stage accretion times of 2.5-3 Myr after solar system formation. Our predicted rates of core cooling and crystallization are consistent with dynamo generation by compositional convection beginning 60-200 Myr after solar system formation and lasting for at least tens of millions of years. This is consistent with magnetic studies of Portales Valley [Bryson et al., this meeting]. In summary, we find that thermal models of partial differentiation are consistent the radiometric ages, magnetization, and cooling rates of a diversity H chondrites.
Calcium and titanium isotopes in refractory inclusions from CM, CO, and CR chondrites
NASA Astrophysics Data System (ADS)
Kööp, Levke; Davis, Andrew M.; Krot, Alexander N.; Nagashima, Kazuhide; Simon, Steven B.
2018-05-01
Previous studies have shown that CV and CM chondrites incorporated Ca, Al-rich inclusions (CAIs) with different isotopic characteristics, which may represent different snapshots in the isotopic evolution of the early Solar System. To better understand how the isotopic characteristics of CAIs vary between different chondrite groups, we have studied calcium and titanium isotopes in CAIs from CM, CO, and CR chondrites. We show that all three chondrite groups contain CAIs with large anomalies in 48Ca and/or 50Ti (10s of ‰ or 100s of ε-units) as well as CAIs with no anomalies resolved beyond measurement uncertainties. Isotopically, the anomalous CO and CR chondrite CAIs resemble the platy hibonite crystals (PLACs) from CM chondrites, but they are more mineralogically complex. The new data are consistent with the well-established mutual exclusivity relationship between incorporation of 26Al and the presence of large anomalies in 48Ca and 50Ti. The two highly anomalous CO chondrite CAIs have correlated anomalies in 46Ti and 50Ti, while most other highly anomalous CAIs do not. This result could indicate that the reservoir with coupled 46Ti and 50Ti that was sampled by bulk meteorites and CV chondrite CAIs already existed before arrival and/or homogeneous distribution of 26Al in the protoplanetary disk. Among the studied CM chondrite CAIs are ten spinel-hibonite inclusions (SHIBs) with known oxygen isotopic compositions. Our results show that these objects sampled a reservoir that was well-mixed in oxygen, calcium, and titanium isotopes. We further show that SHIBs tend to be slightly enriched in the heavy calcium isotopes, suggesting that their formation history was different from CV chondrite CAIs.
NASA Astrophysics Data System (ADS)
Burton, Aaron S.; Elsila, Jamie E.; Hein, Jason E.; Glavin, Daniel P.; Dworkin, Jason P.
2013-03-01
Carbonaceous chondrites contain numerous indigenous organic compounds and could have been an important source of prebiotic compounds required for the origin of life on Earth or elsewhere. Extraterrestrial amino acids have been reported in five of the eight groups of carbonaceous chondrites and are most abundant in CI, CM, and CR chondrites but are also present in the more thermally altered CV and CO chondrites. We report the abundance, distribution, and enantiomeric and isotopic compositions of simple primary amino acids in six metal-rich CH and CB carbonaceous chondrites that have not previously been investigated for amino acids: Allan Hills (ALH) 85085 (CH3), Pecora Escarpment (PCA) 91467 (CH3), Patuxent Range (PAT) 91546 (CH3), MacAlpine Hills (MAC) 02675 (CBb), Miller Range (MIL) 05082 (CB), and Miller Range (MIL) 07411 (CB). Amino acid abundances and carbon isotopic values were obtained by using both liquid chromatography time-of-flight mass spectrometry and fluorescence, and gas chromatography isotope ratio mass spectrometry. The δ13C/12C ratios of multiple amino acids fall outside of the terrestrial range and support their extraterrestrial origin. Extracts of CH chondrites were found to be particularly rich in amino acids (13-16 parts per million, ppm) while CB chondrite extracts had much lower abundances (0.2-2 ppm). The amino acid distributions of the CH and CB chondrites were distinct from the distributions observed in type 2 and 3 CM and CR chondrites and contained elevated levels of β-, γ-, and δ-amino acids compared to the corresponding α-amino acids, providing evidence that multiple amino acid formation mechanisms were important in CH and CB chondrites.
Mineralogies and source regions of near-Earth asteroids
NASA Astrophysics Data System (ADS)
Dunn, Tasha L.; Burbine, Thomas H.; Bottke, William F.; Clark, John P.
2013-01-01
Near-Earth Asteroids (NEAs) offer insight into a size range of objects that are not easily observed in the main asteroid belt. Previous studies on the diversity of the NEA population have relied primarily on modeling and statistical analysis to determine asteroid compositions. Olivine and pyroxene, the dominant minerals in most asteroids, have characteristic absorption features in the visible and near-infrared (VISNIR) wavelengths that can be used to determine their compositions and abundances. However, formulas previously used for deriving compositions do not work very well for ordinary chondrite assemblages. Because two-thirds of NEAs have ordinary chondrite-like spectral parameters, it is essential to determine accurate mineralogies. Here we determine the band area ratios and Band I centers of 72 NEAs with visible and near-infrared spectra and use new calibrations to derive the mineralogies 47 of these NEAs with ordinary chondrite-like spectral parameters. Our results indicate that the majority of NEAs have LL-chondrite mineralogies. This is consistent with results from previous studies but continues to be in conflict with the population of recovered ordinary chondrites, of which H chondrites are the most abundant. To look for potential correlations between asteroid size, composition, and source region, we use a dynamical model to determine the most probable source region of each NEA. Model results indicate that NEAs with LL chondrite mineralogies appear to be preferentially derived from the ν6 secular resonance. This supports the hypothesis that the Flora family, which lies near the ν6 resonance, is the source of the LL chondrites. With the exception of basaltic achondrites, NEAs with non-chondrite spectral parameters are slightly less likely to be derived from the ν6 resonance than NEAs with chondrite-like mineralogies. The population of NEAs with H, L, and LL chondrite mineralogies does not appear to be influenced by size, which would suggest that ordinary chondrites are not preferentially sourced from meter-sized objects due to Yarkovsky effect.
Walker, R.J.; Horan, M.F.; Morgan, J.W.; Becker, H.; Grossman, J.N.; Rubin, A.E.
2002-01-01
A suite of 47 carbonaceous, enstatite, and ordinary chondrites are examined for Re-Os isotopic systematics. There are significant differences in the 187Re/188Os and 187Os/188Os ratios of carbonaceous chondrites compared with ordinary and enstatite chondrites. The average 187Re/188Os for carbonaceous chondrites is 0.392 ?? 0.015 (excluding the CK chondrite, Karoonda), compared with 0.422 ?? 0.025 and 0.421 ?? 0.013 for ordinary and enstatite chondrites (1?? standard deviations). These ratios, recast into elemental Re/Os ratios, are as follows: 0.0814 ?? 0.0031, 0.0876 ?? 0.0052 and 0.0874 ?? 0.0027 respectively. Correspondingly, the 187Os/188Os ratios of carbonaceous chondrites average 0.1262 ?? 0.0006 (excluding Karoonda), and ordinary and enstatite chondrites average 0.1283 ?? 0.0017 and 0.1281 ?? 0.0004, respectively (1?? standard deviations). The new results indicate that the Re/Os ratios of meteorites within each group are, in general, quite uniform. The minimal overlap between the isotopic compositions of ordinary and enstatite chondrites vs. carbonaceous chondrites indicates long-term differences in Re/Os for these materials, most likely reflecting chemical fractionation early in solar system history. A majority of the chondrites do not plot within analytical uncertainties of a 4.56-Ga reference isochron. Most of the deviations from the isochron are consistent with minor, relatively recent redistribution of Re and/or Os on a scale of millimeters to centimeters. Some instances of the redistribution may be attributed to terrestrial weathering; others are most likely the result of aqueous alteration or shock events on the parent body within the past 2 Ga. The 187Os/188Os ratio of Earth's primitive upper mantle has been estimated to be 0.1296 ?? 8. If this composition was set via addition of a late veneer of planetesimals after core formation, the composition suggests the veneer was dominated by materials that had Re/Os ratios most similar to ordinary and enstatite chondrites. ?? 2002 Elsevier Science Ltd.
NASA Technical Reports Server (NTRS)
Guimon, R. Kyle; Symes, Steven J. K.; Sears, Derek W. G.
1995-01-01
The induced thermoluminescence (TL) properties of 16 CV and CV-related chondrites, four CK chondrites and Renazzo (CR2) have been measured in order to investigate their metamorphic history. The petrographic, mineralogical and bulk compositional differences among the CV chondrites indicate that the TL sensitivity of the approximately 130 C TL peak is reflecting the abundance of ordered feldspar, especially in chondrule mesostasis, which in turn reflects parent-body metamorphism. The TL properties of 18 samples of homogenized Allende powder heated at a variety of times and temperatures, and cathodoluminescence mosaics of Axtell and Coolidge, showed results consistent with this conclusion. Five refractory inclusions from Allende, and separates from those inclusions, were also examined and yielded trends reflecting variations in mineralogy indicative of high peak temperatures (either metamorphic or igneous) and fairly rapid cooling. The CK chondrites are unique among metamorphosed chondrites in showing no detectable induced TL, which is consistent with literature data that suggests very unusual feldspar in these meteorites. Using TL sensitivity and several mineral systems and allowing for the differences in the oxidized and reduced subgroups, the CV and CV-related meteorites can be divided into petrologic types analogous to those of the ordinary and CO type 3 chondrites. Axtell, Kaba, Leoville, Bali, Arch and ALHA81003 are type 3.0-3.1, while ALH84018, Efremovka, Grosnaja, Allende and Vigarano are type 3.2-3.3 and Coolidge and Loongana 001 are type 3.8. Mokoia is probably a breccia with regions ranging in petrologic type from 3.0 to 3.2. Renazzo often plots at the end of the reduced and oxidized CV chondrite trends, even when those trends diverge, suggesting that in many respects it resembles the unmetamorphosed precursors of the CV chondrites. The low-petrographic types and low-TL peak temperatures of all samples, including the CV3.8 chondrites, indicates metamorphism in the stability field of low feldspar (i.e., less than 800 C) and a metamorphic history similar to that of the CO chondrites but unlike that of the ordinary chondrites.
Trends in the Rare Earth Element Content of U.S.-Based Coal Combustion Fly Ashes.
Taggart, Ross K; Hower, James C; Dwyer, Gary S; Hsu-Kim, Heileen
2016-06-07
Rare earth elements (REEs) are critical and strategic materials in the defense, energy, electronics, and automotive industries. The reclamation of REEs from coal combustion fly ash has been proposed as a way to supplement REE mining. However, the typical REE contents in coal fly ash, particularly in the United States, have not been comprehensively documented or compared among the major types of coal feedstocks that determine fly ash composition. The objective of this study was to characterize a broad selection of U.S. fly ashes of varied geological origin in order to rank their potential for REE recovery. The total and nitric acid-extractable REE content for more than 100 ash samples were correlated with characteristics such as the major element content and coal basin to elucidate trends in REE enrichment. Average total REE content (defined as the sum of the lanthanides, yttrium, and scandium) for ashes derived from Appalachian sources was 591 mg kg(-1) and significantly greater than in ashes from Illinois and Powder River basin coals (403 and 337 mg kg(-1), respectively). The fraction of critical REEs (Nd, Eu, Tb, Dy, Y, and Er) in the fly ashes was 34-38% of the total and considerably higher than in conventional ores (typically less than 15%). Powder River Basin ashes had the highest extractable REE content, with 70% of the total REE recovered by heated nitric acid digestion. This is likely due to the higher calcium content of Powder River Basin ashes, which enhances their solubility in nitric acid. Sc, Nd, and Dy were the major contributors to the total REE value in fly ash, based on their contents and recent market prices. Overall, this study shows that coal fly ash production could provide a substantial domestic supply of REEs, but the feasibility of recovery depends on the development of extraction technologies that could be tailored to the major mineral content and origins of the feed coal for the ash.
Effect of low doses of dietary rare earth elements on growth performance of broilers.
He, M L; Wehr, U; Rambeck, W A
2010-02-01
The present study was designed to investigate effect of dietary rare earth elements (REE), including both organic and inorganic compounds, on growth performance of broilers. In experiment 1, a total of 180 male Ross broiler chicks were allocated to 72 pens with different assignment: four chicks per pen or individually. The following three treatment diets were applied: control, REE-chlorides at a dose of 40 mg/kg and REE-citrate at a dose of 70 mg/kg. Each treatment group had 24 pens containing both assignments (12 pens each). In experiment 2, a total of 72 male 3-day-old Ross broiler chicks were separated to four groups: control, REE-chlorides at a dose of 70 mg/kg and REE-citrate at doses of 70 mg/kg and 100 mg/kg. In experiment 1, dietary REE-citrate improved body weight gain during the overall period by 5.0% (p < 0.05) while the increase with REE-chloride was not significant. In experiment 2, growth effects (p < 0.05) were only found in the period from day 21 to slaughter with all REE forms, and feed conversion ratio was improved by 3.4% (p < 0.05) with REE-citrate. No significant effects of REE were found on chill weight, percentages of breast meat, thigh weight, drumstick weight and wing weight. Concentrations of La and Ce in the liver and muscles were very low, accounting for 0.11-0.76 and 0.02-0.30 mg/kg respectively. There was weak tendency for a dose-response relationship especially in the groups supplemented with REE-chlorides. The main blood serum biochemical parameters were not significantly affected by REE in the diets. The results suggest that dietary supplementation of low doses of REE-citrates might improve growth performance of broilers without affecting carcass composition and health of the broilers.
Rare Earth Element Partitioning in Lunar Minerals: An Experimental Study
NASA Technical Reports Server (NTRS)
McIntosh, E. C.; Rapp, J. F.; Draper, D. S.
2016-01-01
The partitioning behavior of rare earth elements (REE) between minerals and melts is widely used to interpret the petrogenesis and geologic context of terrestrial and extra-terrestrial samples. REE are important tools for modelling the evolution of the lunar interior. The ubiquitous negative Eu anomaly in lunar basalts is one of the main lines of evidence to support the lunar magma ocean (LMO) hypothesis, by which the plagioclase-rich lunar highlands were formed as a flotation crust during differentiation of a global-scale magma ocean. The separation of plagioclase from the mafic cumulates is thought to be the source of the Eu depletion, as Eu is very compatible in plagioclase. Lunar basalts and volcanic glasses are commonly depleted in light REEs (LREE), and more enriched in heavy REEs (HREE). However, there is very little experimental data available on REE partitioning between lunar minerals and melts. In order to interpret the source of these distinctive REE patterns, and to model lunar petrogenetic processes, REE partition coefficients (D) between lunar minerals and melts are needed at conditions relevant to lunar processes. New data on D(sub REE) for plagioclase, and pyroxenes are now available, but there is limited available data for olivine/melt D(sub REE), particularly at pressures higher than 1 bar, and in Fe-rich and reduced compositions - all conditions relevant to the lunar mantle. Based on terrestrial data, REE are highly incompatible in olivine (i.e. D much less than 1), however olivine is the predominant mineral in the lunar interior, so it is important to understand whether it is capable of storing even small amounts of REE, and how the REEs might be fractionatied, in order to understand the trace element budget of the lunar interior. This abstract presents results from high-pressure and temperature experiments investigating REE partitioning between olivine and melt in a composition relevant to lunar magmatism.
Kim, Ji-Hoon; Torres, Marta E.; Haley, Brian A.; Kastner, Miriam; Pohlman, John W.; Riedel, Michael; Lee, Young-Joo
2012-01-01
Analytical challenges in obtaining high quality measurements of rare earth elements (REEs) from small pore fluid volumes have limited the application of REEs as deep fluid geochemical tracers. Using a recently developed analytical technique, we analyzed REEs from pore fluids collected from Sites U1325 and U1329, drilled on the northern Cascadia margin during the Integrated Ocean Drilling Program (IODP) Expedition 311, to investigate the REE behavior during diagenesis and their utility as tracers of deep fluid migration. These sites were selected because they represent contrasting settings on an accretionary margin: a ponded basin at the toe of the margin, and the landward Tofino Basin near the shelf's edge. REE concentrations of pore fluid in the methanogenic zone at Sites U1325 and U1329 correlate positively with concentrations of dissolved organic carbon (DOC) and alkalinity. Fractionations across the REE series are driven by preferential complexation of the heavy REEs. Simultaneous enrichment of diagenetic indicators (DOC and alkalinity) and of REEs (in particular the heavy elements Ho to Lu), suggests that the heavy REEs are released during particulate organic carbon (POC) degradation and are subsequently chelated by DOC. REE concentrations are greater at Site U1325, a site where shorter residence times of POC in sulfate-bearing redox zones may enhance REE burial efficiency within sulfidic and methanogenic sediment zones where REE release ensues. Cross-plots of La concentrations versus Cl, Li and Sr delineate a distinct field for the deep fluids (z > 75 mbsf) at Site U1329, and indicate the presence of a fluid not observed at the other sites drilled on the Cascadia margin. Changes in REE patterns, the presence of a positive Eu anomaly, and other available geochemical data for this site suggest a complex hydrology and possible interaction with the igneous Crescent Terrane, located east of the drilled transect.
Migdisov, Artaches; Williams-Jones, A. E.; Brugger, J.; ...
2016-06-11
For many years, our understanding of the behavior of the REE in hydrothermal systems was based on semi-empirical estimates involving extrapolation of thermodynamic data obtained at 25 °C. Since then, a substantial body of experimental data has accumulated on the stability of aqueous complexes of the REE. These data have shown that some of the predictions of Haas et al. (1995) are accurate, but others may be in error by several orders of magnitude. However, application of the data in modeling hydrothermal transport and deposition of the REE has been severely hampered by the lack of data on the thermodynamicmore » properties of even the most common REE minerals. The discrepancies between the predictions and experimental determinations of the thermodynamic properties of aqueous REE species, together with the paucity of data on the stability of REE minerals, raise serious questions about the reliability of some models that have been proposed for the hydrothermal mobility of these critical metals. In this contribution, we review a body of high-temperature experimental data collected over the past 15 years on the stability of REE aqueous species and minerals. Using this new thermodynamic dataset, we re-evaluate the mechanisms responsible for hydrothermal transport and deposition of the REE. We also discuss the mechanisms that can result in REE fractionation during their hydrothermal transport and deposition. Here, our calculations suggest that in hydrothermal solutions, the main REE transporting ligands are chloride and sulfate, whereas fluoride, carbonate, and phosphate likely play an important role as depositional ligands. In addition to crystallographic fractionation, which is based on the differing affinity of mineral structures for the REE, our models suggest that the REE can be fractionated hydrothermally due to the differences in the stability of the LREE and HREE as aqueous chloride complexes.« less
Examination of rare earth element concentration patterns in freshwater fish tissues.
Mayfield, David B; Fairbrother, Anne
2015-02-01
Rare earth elements (REEs or lanthanides) were measured in ten freshwater fish species from a reservoir in Washington State (United States). The REE distribution patterns were examined within fillet and whole body tissues for three size classes. Total concentrations (ΣREE) ranged from 0.014 to 3.0 mg kg(-1) (dry weight) and averaged 0.243 mg kg(-1) (dry weight). Tissue concentration patterns indicated that REEs accumulated to a greater extent in organs, viscera, and bone compared to muscle (fillet) tissues. Benthic feeding species (exposed to sediments) exhibited greater concentrations of REEs than pelagic omnivorous or piscivorous fish species. Decreasing REE concentrations were found with increasing age, total length or weight for largescale and longnose suckers, smallmouth bass, and walleye. Concentration patterns in this system were consistent with natural conditions without anthropogenic sources of REEs. These data provide additional reference information with regard to the fate and transport of REEs in freshwater fish tissues in a large aquatic system. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Ruby Thuy; Diaz, Luis A.; Imholte, D. Devin
Since the 2011 price spike of rare earth elements (REEs), research on permanent magnet recycling has blossomed globally to reduce future REE criticality. Hard disk drives (HDDs) have emerged as one feasible feedstock for recovering valuable REEs such as praseodymium, neodymium, and dysprosium. However, current processes for recycling e-waste only focus on certain metals due to feedstock and metal price uncertainties. In addition, some believe that recycling REEs is unprofitable. To shed some light on the economic viability of REE recycling from HDDs, this paper combines techno-economic information of a hydrometallurgical process with end-of-life HDD availability in a simulation model.more » Results showed that adding REEs to HDD recycling was profitable given current prices. As a result, recovered REEs could meet up to 5.1% rest of world (excluding China) magnet demand. Aluminum, gold, copper scrap and REEs were the primary main revenue streams from HDD recycling.« less
Nguyen, Ruby Thuy; Diaz, Luis A.; Imholte, D. Devin; ...
2017-06-05
Since the 2011 price spike of rare earth elements (REEs), research on permanent magnet recycling has blossomed globally to reduce future REE criticality. Hard disk drives (HDDs) have emerged as one feasible feedstock for recovering valuable REEs such as praseodymium, neodymium, and dysprosium. However, current processes for recycling e-waste only focus on certain metals due to feedstock and metal price uncertainties. In addition, some believe that recycling REEs is unprofitable. To shed some light on the economic viability of REE recycling from HDDs, this paper combines techno-economic information of a hydrometallurgical process with end-of-life HDD availability in a simulation model.more » Results showed that adding REEs to HDD recycling was profitable given current prices. As a result, recovered REEs could meet up to 5.1% rest of world (excluding China) magnet demand. Aluminum, gold, copper scrap and REEs were the primary main revenue streams from HDD recycling.« less
A first report of rare earth elements in northwestern Mediterranean seaweeds.
Squadrone, Stefania; Brizio, Paola; Battuello, Marco; Nurra, Nicola; Sartor, Rocco Mussat; Benedetto, Alessandro; Pessani, Daniela; Abete, Maria Cesarina
2017-09-15
The concentrations of rare earth elements (REE) were determined by ICP-MS in dominant seaweed species, collected from three locations of the northwestern Mediterranean Sea. This is the first study to define levels and patterns of REE in macro algae from these coastal areas. Rare elements are becoming emerging inorganic contaminants in marine ecosystems, due to their worldwide increasing applications in industry, technology, medicine and agriculture. Significant inter-site and interspecies differences were registered, with higher levels of REE in brown and green macro algae than in red seaweeds. Levels of light REE were also observed to be greater compared to heavy REE in all samples. One of the investigated locations (Bergeggi, SV) had higher REE and ΣREE concentrations, probably due to its proximity to an important commercial and touristic harbor, while the other two sites were less affected by anthropogenic contaminations, and showed comparable REE patterns and lower concentrations. Rare earth elements in seaweeds. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Archer, Gregory J.
Highly siderophile element (HSE) abundances and 187Re- 187Os isotopic systematics for H chondrites and ungrouped achondrites, as well as 182Hf-182W isotopic systematics of H and CR chondrites are reported. Achondrite fractions with higher HSE abundances show little disturbance of 187Re-187Os isotopic systematics. By contrast, isotopic systematics for lower abundance fractions are consistent with minor Re mobilization. For magnetically separated H chondrite fractions, the magnitudes of disturbance for the 187Re-187Os isotopic system follow the trend coarse-metal isotopic system follow the trend coarse-metal
Rare earth elements as a fingerprint of soil components solubilization
NASA Astrophysics Data System (ADS)
Davranche, M.; Grybos, M.; Gruau, G.; Pédrot, M.; Dia, A.
2009-04-01
The retention of rare earth element (REE) in the soil profile are mainly controlled by three factors, (i) the stability of the primary REE-carrying minerals, (ii) the presence of secondary phases as clays and Fe- and Mn-oxyhydroxides and (ii) the concentration of colloidal organic matter (OM). Considering that each soil phases (mineral or organic) displays (ii) various surface properties, such as specific area, surface sites density and nature and (ii) their own REE distribution inherited from the rock weathering, their mobilization through various chemical reactions (dissolution, colloidal release….) may involve the development of various shaped REE patterns in the soil solutions. REE fractionation from the different soil phases may therefore be used to identify the response of the soil system to a particular chemical process such as reductive and/or acidic dissolution. To test this purpose, an organic-rich wetland soil sample was incubated under anaerobic condition at both pH 5 and uncontrolled pH. The REE patterns developed in the soil solution were then compared to the REE patterns obtained through either aerobic at pH 3 and 7 incubations or a chemical reduction experiment (using hydroxylamine). REE patterns in anaerobic and aerobic at pH 7 experiments exhibited the same middle rare earth element (MREE) downward concavity significant of the complexation of REE with soil OM. By contrast, under acidic condition, the REE pattern exhibited a positive Eu anomaly due to the dissolution of soil feldspar. Finally, REE pattern obtained from the chemical reducing experiment showed an intermediary flat shape corresponding to a mixing between the soil organic and mineral phases dissolution. The comparison of the various REE pattern shapes allowed to conclude that (i) biological reduction of wetland soil involved amorphous Fe(III) colloids linked to OM and, (ii) that the REE mobility was controlled by the dynamic of OM in wetland soil. They also evidence the potential of REE to be use as a tracer of the soil phases involved in the various chemical processes running in soil solutions.
Quantification of diagenesis in Cenozoic sharks: Elemental and mineralogical changes
NASA Astrophysics Data System (ADS)
Labs-Hochstein, Joann; MacFadden, Bruce J.
2006-10-01
Diagenesis of bone during fossilization is pervasive, however, the extent of this process varies with depositional environment. This study quantifies diagenesis of shark vertebral centra through analysis of a suite of physical and chemical characters including crystallinty index (CI), carbonate content, and elemental concentrations. Although shark skeletons are initially cartilaginous, the soft cartilage of the vertebral centra is replaced with carbonate hydroxyapatite during growth. Nine vertebral centra are analyzed from lamnoid (Lamnoidea) sharks ranging in age from the cretaceous to recent using Fourier transform infrared spectroscopy (FT-IR) and inductively coupled plasma mass spectrometry (ICPMS). The variables CI, carbonate content, rare earth element (REE) concentrations, Ca/P, Ba/Ca, Sr/Ba, (La/Yb) N, (La/Y) N, (La/Yb) N vs. (La/Sm) N, La/Yb, and Ce anomalies elucidate the diagenetic and depositional environments of the seven fossil vertebral centra. The two extant centra demonstrate the initial, unaltered end-member conditions for these variables. Two fossil vertebral centra ( Carcharodon megalodon and Isurus hastalis) demonstrate a strong terrestrial influence during diagenesis (distinctive flattening of shale-normalized REE patterns) that masked the seawater signal. Three centra ( Carcharodon auriculatus, Carcharodon angustidens, and Creotxyrhina mantelli) have indications of some terrestrial influx evident by some flattening of the REE patterns relative to seawater. The terrestrial influence in these five shark centra ( C. megalodon, I. hastalis, C. auriculatus, C. angustidens and C. mantelli) are interpreted to represent a primarily nearshore habitat for these species. In contrast, the two Otodus obliquus centra have REE patterns that represent the original seawater signal and have no indications of terrigenous input. These results indicate that fossil shark vertebral centra have the potential to understand diagenesis and reconstruct paleooceanographic environments.
NASA Astrophysics Data System (ADS)
Armstrong-Altrin, John S.; Machain-Castillo, María Luisa; Rosales-Hoz, Leticia; Carranza-Edwards, Arturo; Sanchez-Cabeza, Joan-Albert; Ruíz-Fernández, Ana Carolina
2015-03-01
The aim of this work is to constrain the provenance and depositional history of continental slope sediments in the Southwestern Gulf of Mexico (~1089-1785 m water depth). To achieve this, 10 piston sediment cores (~5-5.5 m long) were studied for mineralogy, major, trace and rare earth element geochemistry. Samples were analyzed at three core sections, i.e. upper (0-1 cm), middle (30-31 cm) and lower (~300-391 cm). The textural study reveals that the core sediments are characterized by silt and clay fractions. Radiocarbon dating of sediments for the cores at different levels indicated a maximum of ~28,000 year BP. Sediments were classified as shale. The chemical index of alteration (CIA) values for the upper, middle, and lower sections revealed moderate weathering in the source region. The index of chemical maturity (ICV) and SiO2/Al2O3 ratio indicated low compositional maturity for the core sediments. A statistically significant correlation observed between total rare earth elements (∑REE) versus Al2O3 and Zr indicated that REE are mainly housed in detrital minerals. The North American Shale Composite (NASC) normalized REE patterns, trace element concentrations such as Cr, Ni and V, and the comparison of REE concentrations in sediments and source rocks indicated that the study area received sediments from rocks intermediate between felsic and mafic composition. The enrichment factor (EF) results indicated that the Cd and Zn contents of the upper section sediments were influenced by an anthropogenic source. The trace element ratios and authigenic U content of the core sediments indicated the existence of an oxic depositional environment.
Yang, Jon; Verba, Circe; Torres, Marta; ...
2018-02-01
Rare earth elements (REEs) are economically important to modern society and the rapid growth of technologies dependent on REEs has placed considerable economic pressure on their sourcing. This study addresses whether REEs could be released as a byproduct of natural gas extraction from a series of experiments that were designed to simulate hydraulic fracturing of black shale under various pressure (25 and 27.5 MPa) and temperature (50, 90, 130 °C) conditions. The dissolved REEs in the reacted fluids displayed no propensity for the REEs to be released from black shale under high pressure and temperature conditions, a result that ismore » consistent across the different types of fluids investigated. Overall, there was a net loss of REEs from the fluid. These changes in dissolved REEs were greatest at the moment the fluids first contacted the shale and before the high temperature and high pressure conditions were imposed, although the magnitude of these changes (10 -4 μg/g) were small compared to the magnitude of the total REE content present in the solid shale samples (10 2 μg/g). These results highlight the variability and complexity of hydraulic fracturing systems and indicate that REE may not serve as robust tracers for fracturing fluid-shale reactions. Additionally, the results suggest that significant quantities of REEs may not be byproducts of hydraulically fractured shales.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Jon; Verba, Circe; Torres, Marta
Rare earth elements (REEs) are economically important to modern society and the rapid growth of technologies dependent on REEs has placed considerable economic pressure on their sourcing. This study addresses whether REEs could be released as a byproduct of natural gas extraction from a series of experiments that were designed to simulate hydraulic fracturing of black shale under various pressure (25 and 27.5 MPa) and temperature (50, 90, 130 °C) conditions. The dissolved REEs in the reacted fluids displayed no propensity for the REEs to be released from black shale under high pressure and temperature conditions, a result that ismore » consistent across the different types of fluids investigated. Overall, there was a net loss of REEs from the fluid. These changes in dissolved REEs were greatest at the moment the fluids first contacted the shale and before the high temperature and high pressure conditions were imposed, although the magnitude of these changes (10 -4 μg/g) were small compared to the magnitude of the total REE content present in the solid shale samples (10 2 μg/g). These results highlight the variability and complexity of hydraulic fracturing systems and indicate that REE may not serve as robust tracers for fracturing fluid-shale reactions. Additionally, the results suggest that significant quantities of REEs may not be byproducts of hydraulically fractured shales.« less
Rare earth element geochemistry of oceanic ferromanganese nodules and associated sediments
NASA Astrophysics Data System (ADS)
Elderfield, H.; Hawkesworth, C. J.; Greaves, M. J.; Calvert, S. E.
1981-04-01
Analyses have been made of REE contents of a well-characterized suite of deep-sea (> 4000 m.) principally todorokite-bearing ferromanganese nodules and associated sediments from the Pacific Ocean. REE in nodules and their sediments are closely related: nodules with the largest positive Ce anomalies are found on sediments with the smallest negative Ce anomalies; in contrast, nodules with the highest contents of other rare earths (3 + REE) are found on sediments with the lowest 3 + REE contents and vice versa. 143Nd /144Nd ratios in the nodules (˜0.51244) point to an original seawater source but an identical ratio for sediments in combination with the REE patterns suggests that diagenetic reactions may transfer elements into the nodules. Analysis of biogenic phases shows that the direct contribution of plankton and carbonate and siliceous skeletal materials to REE contents of nodules and sediments is negligible. Inter-element relationships and leaching tests suggest that REE contents are controlled by a P-rich phase with a REE pattern similar to that for biogenous apatite and an Fe-rich phase with a pattern the mirror image of that for sea water. It is proposed that 3 + REE concentrations are controlled by the surface chemistry of these phases during diagenetic reactions which vary with sediment accumulation rate. Processes which favour the enrichment of transition metals in equatorial Pacific nodules favour the depletion of 3 + REE in nodules and enrichment of 3 + REE in associated sediments. In contrast, Ce appears to be added both to nodules and sediments directly from seawater and is not involved in diagenetic reactions.
Rare earth elements and hypertension risk among housewives: A pilot study in Shanxi Province, China.
Wang, Bin; Yan, Lailai; Huo, Wenhua; Lu, Qun; Cheng, Zixi; Zhang, Jingxu; Li, Zhiwen
2017-01-01
Studies have shown that residents living near rare earth mining areas have high concentrations of rare earth elements (REEs) in their hair. However, the adverse effects of REEs on human health have rarely been the focus of epidemiological studies. The goal of this study was to evaluate the relationship between REEs in hair and the risk of hypertension in housewives. We recruited 398 housewives in Shanxi Province, China, consisting of 163 women with hypertension (cases) and 235 healthy women without hypertension (controls). We analyzed 15 REEs (lanthanum (La), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), lutetium (Lu), Yttrium (Y), cerium (Ce), praseodymium (Pr), and neodymium (Nd)) and calcium (Ca) accumulated in housewives hair over a period of two years. The results revealed that, with the exception of Eu, concentrations of the REEs in hair were higher in the cases than in the controls. The univariate odds ratios (ORs) of the 14 REEs were >1, and four of the REEs (Dy, Tm, Yb, and Y) also had adjusted ORs > 1. The increasing dose-response trends of the four REEs further indicated the potential for increased hypertension risk. Moreover, the REEs were negatively correlated with Ca content in hair. These results might suggest an antagonistic effect of REEs on Ca in the human body. It was concluded that high intake of REEs might increase the risk of hypertension among housewives. Copyright © 2016 Elsevier Ltd. All rights reserved.
Correlation of nasopharyngeal carcinoma with rare earth elements and the Epstein-Barr virus
Zhang, Xiangmin; Zeng, Xiangfu; Liu, Lianbin; Lan, Xiaolin; Huang, Jing; Zeng, Hongxue; Li, Rong; Luo, Keqing; Wu, Wei; Zhou, Maohua; Li, Shaojin
2018-01-01
The concentration and distribution of rare earth elements (REE) in nasopharyngeal carcinoma (NPC) were measured to investigate connections with tumor size, lymph node metastasis, clinical stages, and Epstein-Barr virus (EBV) infection. There were 30 patients with NPC who met the criteria for inclusion in the present study. The EBV copy number, as well as the concentration and distribution of REE, was analyzed. EBV was detected using reverse transcription-polymerase chain reaction, with the concentrations of REE in NPC tissues measured using inductively coupled plasma-tandem mass spectrometry. The mean values were used when comparing concentrations of REE in NPC tissues as the standard deviation of this parameter was the lowest. Light REE had the highest concentrations, followed by medium, and then heavy REE. The concentrations of REE decreased with increasing tumor size and with the presence of lymph node metastasis. The concentrations of REE gradually increased between stage II and IVa, but markedly decreased thereafter. The elements that exhibited the greatest decreases were terbium, holmium and ytterbium. Furthermore, the concentrations of REE in NPC were not associated with sex (r=0.301, P=0.106) or age (r=−0.011, P=0.955), and were negatively associated with EBV (r=−0.744, P<0.001). By contrast, the EBV copy number increased alongside advancements in clinical stage. Changes in the concentrations of REE in NPC were more prominent for medium and heavy elements. Additionally, alterations in the concentrations of heavy REE may affect the occurrence and development of NPC. PMID:29541176
How accurate are resting energy expenditure prediction equations in obese trauma and burn patients?
Stucky, Chee-Chee H; Moncure, Michael; Hise, Mary; Gossage, Clint M; Northrop, David
2008-01-01
While the prevalence of obesity continues to increase in our society, outdated resting energy expenditure (REE) prediction equations may overpredict energy requirements in obese patients. Accurate feeding is essential since overfeeding has been demonstrated to adversely affect outcomes. The first objective was to compare REE calculated by prediction equations to the measured REE in obese trauma and burn patients. Our hypothesis was that an equation using fat-free mass would give a more accurate prediction. The second objective was to consider the effect of a commonly used injury factor on the predicted REE. A retrospective chart review was performed on 28 patients. REE was measured using indirect calorimetry and compared with the Harris-Benedict and Cunningham equations, and an equation using type II diabetes as a factor. Statistical analyses used were paired t test, +/-95% confidence interval, and the Bland-Altman method. Measured average REE in trauma and burn patients was 21.37 +/- 5.26 and 21.81 +/- 3.35 kcal/kg/d, respectively. Harris-Benedict underpredicted REE in trauma and burn patients to the least extent, while the Cunningham equation underpredicted REE in both populations to the greatest extent. Using an injury factor of 1.2, Cunningham continued to underestimate REE in both populations, while the Harris-Benedict and Diabetic equations overpredicted REE in both populations. The measured average REE is significantly less than current guidelines. This finding suggests that a hypocaloric regimen is worth considering for ICU patients. Also, if an injury factor of 1.2 is incorporated in certain equations, patients may be given too many calories.
Hypermetabolism is a deleterious prognostic factor in patients with amyotrophic lateral sclerosis.
Jésus, P; Fayemendy, P; Nicol, M; Lautrette, G; Sourisseau, H; Preux, P-M; Desport, J-C; Marin, B; Couratier, P
2018-01-01
The aim of this study was to investigate patients with amyotrophic lateral sclerosis in order to determine their nutritional, neurological and respiratory parameters, and survival according to metabolic level. Nutritional assessment included resting energy expenditure (REE) measured by indirect calorimetry [hypermetabolism if REE variation (ΔREE) > 10%] and fat mass (FM) using impedancemetry. Neurological assessment included the Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised score. Survival analysis used the Kaplan-Meier method and multivariate Cox model. A total of 315 patients were analysed. Median age at diagnosis was 65.9 years and 55.2% of patients were hypermetabolic. With regard to the metabolic level (ΔREE: < 10%, 10-20% and >20%), patients with ΔREE > 20% initially had a lower FM(29.7% vs. 32.1% in those with ΔREE ≤10%; P = 0.0054). During follow-up, the median slope of Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised tended to worsen more in patients with ΔREE > 20% (-1.4 vs. -1.0 points/month in those with ΔREE ≤10%; P = 0.07). Overall median survival since diagnosis was 18.4 months. ΔREE > 20% tended to increase the risk of dying compared with ΔREE ≤10% (hazard ratio, 1.33; P = 0.055). In multivariate analysis, an increased REE:FM ratio was independently associated with death (hazard ratio, 1.005; P = 0.001). Hypermetabolism is present in more than half of patients with amyotrophic lateral sclerosis. It modifies the body composition at diagnosis, and patients with hypermetabolism >20% have a worse prognosis than those without hypermetabolism. © 2017 EAN.
NASA Astrophysics Data System (ADS)
Bourdin, C.; Genty, D.; Douville, E.
2009-04-01
An ICPMS quantitative analysis of Ca, Mg, Ba, Sr, U, Mn, Y and 14 Rare Earth Elements (REE) has been performed on a speleothem from the Chauvet cave (south-east of France). The Chau-stm-6 stalagmite that grew from 33 ky to 11.5 ky before present had been previously dated by U-Th series method and the published d13C and d18O profile is used as a paleoclimatic benchmark. Chau-stm-6 recorded that major element Ca ratios (Mg, Ba, Sr), U and REY (REE + Y) responded to early deglaciation (15 ky). Their concentrations show relative variations of 40% to 75%. Ba and Sr profiles are significantly correlated (r = 0.85) and show a two-step increase during early deglaciation. Mg and U are weakly correlated and display a decreasing trend from 15 ky to 11.5 ky. REY concentrations decrease during early deglaciation (15 ky to 14.5 ky). The clear onset of Younger Dryas as recorded by both d13C and d18O profiles is not well marked by any of these trace elements though the averaged Sr concentration is slightly lower in the more recent part of the profile. Sr and Ba increase is best explained by the tenfold rise of the growth rate rather than changes in water residence time in the karst which would also increase Mg. The incongruent dissolution of dolomite upstream is invalidated by the absence of reported dolomite in the Chauvet karst system. No correlation was found between REY and Mn (an element strongly bound with colloidal and particular phases in water), suggesting that REY were mainly dissolved (and likely to be complexed) in groundwater. Due to the poorly developed soil above the cave, REY are thought to come mainly from the dissolution of the limestone bedrock. Bedrock samples display a rather flat pattern, only slightly depleted in LREE (light REE) and with a weak cerium (Ce) anomaly (0.6 to 1). In comparison Chau-stm-6 patterns show a marked depletion in LREE and a more pronounced Ce anomaly (0.3 to 0.75). This shale-normalized pattern is construed as coming from REY fractionation during mobilization or transport of the elements in seepage water rather than from the mixing of several REY sources. Preferential removal of LREE may come from their stronger affinity with particles and from a weaker carbonate complexation. The different climatic and environmental conditions don't seem to have affected REY fractionation - LREE/HREE (light REE on heavy REE) remained quite constant, although the ratio peaks or fall sharply at the climatic transitions. This could be the result of brief periods of intense leaching of colloids or particles. A weak anticorrelation was found between the Y/REE ratio and Ce anomaly. Moreover glacial conditions correspond to a high Y/REE-low Ce pattern whereas milder climate correspond to the opposite situation. The probable higher concentration of particles during the warmer period could explain both the better transport of REE relative to Y that has a slower particle-reactivity and larger scavenging of all REE that smoothes Ce anomaly. pH and Eh could also control the selective removal of Ce. Again no significant difference between Bolling-Allerod and Younger Dryas samples could be observed on REY patterns. This study is one of the first steps towards the use of REY as paleohydrologic and paleoclimatic proxies in continental environments.
NASA Technical Reports Server (NTRS)
Rubin, Alan E.; Kunihiro, Tak; Wasson, John T.
2006-01-01
With one exception, the low-FeO relict olivine grains within high-FeO porphyritic chondrules in the type 3.0 Acfer 094 carbonaceous chondrite have DELTA O-17 ( = delta O-17 - 0.52 X delta O-18) values that are substantially more negative than those of the high-FeO olivine host materials. These results are similar to observations made earlier on chondrules in C03.0 chondrites and are consistent with two independent models: (1) Nebular solids evolved from low-FeO, low-DELTA O-17 compositions towards high-FeO, more positive DELTA O-17 compositions; and (2) the range of compositions resulted from the mixing of two independently formed components. The two models predict different trajectories on a DELTA O-17 vs. log Fe/Mg (olivine) diagram, but our sample set has too few values at intermediate Fe/Mg ratios to yield a definitive answer. Published data showing that Acfer 094 has higher volatile contents than CO chondrites suggest a closer link to CM chondrites. This is consistent with the high modal matrix abundance in Acfer 094 (49 vol.%). Acfer 094 may be an unaltered CM chondrite or an exceptionally matrix-rich CO chondrite. Chondrules in Acfer 094 and in CO and CM carbonaceous chondrites appear to sample the same population. Textural differences between Acfer 094 and CM chondrites are largely attributable to the high degree of hydrothermal alteration that the CM chondrites experienced in an asteroidal setting.
NASA Astrophysics Data System (ADS)
Dunn, Tasha L.; Gross, Juliane
2017-11-01
The single parent body model for the CV and CK chondrites (Greenwood et al.) was challenged by Dunn et al., who argued that magnetite compositions could not be reconciled by a single metamorphic sequence (i.e., CV3 → CK3 → CK4-6). Cr isotopic compositions, which are distinguishable between the CV and CK chondrites, also support two different parent bodies (Yin et al.). Despite this, there are many petrographic and mineralogical similarities between the unequilibrated (petrologic type 3) CK chondrites and the CV chondrites (also type 3), which may result in misclassification of samples. Hart and Northwest Africa 6047 (NWA 6047) are an excellent example of this. In this study, we revisit the classification of Hart and NWA 6047 using magnetite compositions, petrography, and compositions of olivine, the most ubiquitous mineral in both CV and CK chondrites. Not only do our results suggest that NWA 6047 and Hart were misclassified, but our assessment of CV and CK3 chondrites has also led to the development of criteria that can be used to distinguish between CV and CK3 chondrites. These criteria include: abundances of Cr2O3, TiO2, NiO, and Al2O3 in magnetite; Fa content and NiO abundance of matrix olivine; FeO content of chondrules; and the chondrule:matrix ratio. Classification as a CV chondrite is also supported by the presence of igneous chondrule rims, calcium-aluminum-rich inclusions, and an elongated petrofabric. However, none of these petrographic characteristics can be used conclusively to distinguish between CV and CK3 chondrites.
Mineralogy and composition of matrix and chondrule rims in carbonaceous chondrites
NASA Technical Reports Server (NTRS)
Zolensky, Michael; Barrett, Ruth; Browning, Lauren
1993-01-01
The degree of compositional variation of fine-grained minerals displayed by the members within any carbonaceous chondrite group (i.e., CI, CM, CV, CR) is a direct reflection of the range of aqueous alteration assemblages present. Matrix and fine-grained chondrule rims within any particular carbonaceous chondrite are mineralogically nearly identical to one another, but not necessarily similar in bulk elemental composition, even though they have subsequently experienced postaccretional secondary processing (aqueous alteration) under identical conditions. We propose that CO chondrites experienced parent body conditions of low f(O2), low water/rock ratios, and temperatures below 50 C. CR chondrites experienced higher water/rock ratios, potentially higher temperatures (not above 150 C), and a wide range of f(O2). The alteration mineralogy of CV chondrites indicates water/rock ratios at the high end (at least) of the range for CR chondrites, Essebi, and MAC 87300. CM chondrites experienced temperatures below 50 C, low f(O2) and low water/rock ratios, except EET 83334, which probably experienced relatively higher f(O2), and B-7904 and Y-86720, which experienced postalteration temperatures in the range 500-700 C. Most CI chondrites experienced temperatures between 50 and 150 C, relatively high water/rock ratios, and variable f(O2). Y-82162 witnessed postalteration heating, possibly as high as 400 C.
Moriwaki, Hiroshi; Yamamoto, Hiroki
2013-01-01
In recent years, rare earth elements (REEs) have been widely used in various modern technological devices and the global demand for REE has been increasing. The increased demand for REEs has led to environmental exposure or water pollution from rare earth metal mines and various commercial products. Therefore, the development of a safe technology for the separation and adsorption of REEs is very important from the perspective of green chemistry and environmental pollution. In this review, the application and mechanisms of microorganisms for the removal and extraction of REEs from aqueous solutions are described. In addition, the advantages in using microorganisms for REE adsorption and future studies on this topic are discussed.
Petrology and In Situ Trace Element Chemistry of a Suite of R Chondrites
NASA Technical Reports Server (NTRS)
Mittlefehldt, D. W.; Peng, Z. X.; Torrano, Z. A.
2015-01-01
Rumuruti (R) chondrites are characterized by low chondrule/matrix modal ratios, high oxidation state, small mean chondrule size, abundant sulfides and low metal contents, and are of petrologic types 3 to 6 [1, 2]. LAP 04840 (R5, [3]) and MIL 11207 (R6), contain the high-T hydrous phases amphibole and mica [3, 4]; not all equilibrated R chondrites contain these [2]. R chondrites thus can provide evidence on whether there are compositional effects caused by high-T, high-fluid metamorphism of nebular materials. We are investigating a suite of R chondrites of diverse petrologic grades to further understand the nature of the metamorphic processes that engendered them [5]. We report on our petrological studies, plus preliminary in situ analyses of trace elements in amphibole-bearing R chondrites.
NASA Technical Reports Server (NTRS)
Hiroi, T.; Sasaki, S.; Noble, S. K.; Pieters, C. M.
2011-01-01
As the most abundance meteorites in our collections, ordinary chondrites potentially have very important implications on the origin and formation of our Solar System. In order to map the distribution of ordinary chondrite-like asteroids through remote sensing, the space weathering effects of ordinary chondrite parent bodies must be addressed through experiments and modeling. Of particular importance is the impact on distinguishing different types (H/L/LL) of ordinary chondrites. In addition, samples of asteroid Itokawa returned by the Hayabusa spacecraft may re veal the mechanism of space weathering on an LLchondrite parent body. Results of space weathering simulations on ordinary chondrites and implications for Itokawa samples are presented here.
NASA Technical Reports Server (NTRS)
Mishra, R. K.; Simon, J. I.; Ross, D. K.; Marhas, K. K.
2016-01-01
Calcium, Aluminum-rich inclusions (CAIs) are the first forming solids of the Solar system. Their observed abundance, mean size, and mineralogy vary quite significantly between different groups of chondrites. These differences may reflect the dynamics and distinct cosmochemical conditions present in the region(s) of the protoplanetary disk from which each type likely accreted. Only about 11 such objects have been found in L and LL type while another 57 have been found in H type ordinary chondrites, compared to thousands in carbonaceous chondrites. At issue is whether the rare CAIs contained in ordinary chondrites truly reflect a distinct population from the inclusions commonly found in other chondrite types. Semarkona (LL3.00) (fall, 691 g) is the most pristine chondrite available in our meteorite collection. Here we report petrography and mineralogy of 3 CAIs from Semarkona
Rare earth and trace element geochemistry of a fragment of Jurassic seafloor, Point Sal, California
NASA Technical Reports Server (NTRS)
Menzies, M.; Blanchard, D.; Brannon, J.; Korotev, R.
1977-01-01
Rocks from an ophiolite suite once on the seafloor were analyzed for rare earth elements (REE), Sc, Co, Na2O, Cr, Zn and FeO. Strontium isotope exchange noted in some of the lavas is attributed to basalt-seawater interaction; the Ce abundance in smectite- and zeolite-bearing lavas may also be due to prolonged exposure to seawater. The higher grades of metamorphic rock, however, show no variation from the usual flat or slightly light REE depleted profiles. Plutonic igneous rock, all light REE depleted, have total REE abundances varying by a factor of 100 between the dunites and diorites. In order of decreasing REE abundance are hornblende, clinopyroxene, plagioclase, orthopyroxene and olivine. Calculations of REE contents of liquids in equilibrium with early cumulative clinopyroxenes suggest that the parent to the stratiform sequence was more depleted in light REE than the parent to the lava pile.
Sustainability of rare earth elements chain: from production to food - a review.
Turra, Christian
2018-02-01
Rare earth elements (REE) are a group of chemical elements that include lanthanoids (lanthanum to lutetium), scandium and yttrium. In the last decades, the REE demand in the industry and other areas has increased significantly. In general, REE have shown low concentrations in soils, plants, water and atmosphere, but they may accumulate in such environments due to anthropogenic inputs. In areas where there is REE contamination, the slow accumulation of these elements in the environment could become problematic. Many studies have shown environmental areas contaminated with REE and their toxic effects. Thus, it is important to review, in order to improve the current understanding of these elements in the environment, showing the effects of REE exposure in mining, soil, water, plants and food. Besides, there are few suppliers and a limited quantity of these elements in the world. This paper suggests options to improve the sustainability management of REE chain.
NASA Astrophysics Data System (ADS)
González-Garcia, Diego; Petrelli, Maurizio; Behrens, Harald; Vetere, Francesco; Fischer, Lennart A.; Morgavi, Daniele; Perugini, Diego
2018-07-01
The diffusive exchange of 30 trace elements (Cs, Rb, Ba, Sr, Co, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Ta, V, Cr, Pb, Th, U, Zr, Hf, Sn and Nb) during the interaction of natural mafic and silicic alkaline melts was experimentally studied at conditions relevant to shallow magmatic systems. In detail, a set of 12 diffusion couple experiments have been performed between natural shoshonitic and rhyolitic melts from the Vulcano Island (Aeolian archipelago, Italy) at a temperature of 1200 °C, pressures from 50 to 500 MPa, and water contents ranging from nominally dry to ca. 2 wt.%. Concentration-distance profiles, measured by Laser Ablation ICP-MS, highlight different behaviours, and trace elements were divided into two groups: (1) elements with normal diffusion profiles (13 elements, mainly low field strength and transition elements), and (2) elements showing uphill diffusion (17 elements including Y, Zr, Nb, Pb and rare earth elements, except Eu). For the elements showing normal diffusion profiles, chemical diffusion coefficients were estimated using a concentration-dependent evaluation method, and values are given at four intermediate compositions (SiO2 equal to 58, 62, 66 and 70 wt.%, respectively). A general coupling of diffusion coefficients to silica diffusivity is observed, and variations in systematics are observed between mafic and silicic compositions. Results show that water plays a decisive role on diffusive rates in the studied conditions, producing an enhancement between 0.4 and 0.7 log units per 1 wt.% of added H2O. Particularly notable is the behaviour of the trivalent-only REEs (La to Nd and Gd to Lu), with strong uphill diffusion minima, diminishing from light to heavy REEs. Modelling of REE profiles by a modified effective binary diffusion model indicates that activity gradients induced by the SiO2 concentration contrast are responsible for their development, inducing a transient partitioning of REEs towards the shoshonitic melt. These results indicate that diffusive fractionation of trace elements is possible during magma mixing events, especially in the more silicic melts, and that the presence of water in such events can lead to enhanced chemical diffusive mixing efficiency, affecting also the estimation of mixing to eruption timescales.
NASA Astrophysics Data System (ADS)
Nguyen, Ruby Thuy; Diaz, Luis A.; Imholte, D. Devin; Lister, Tedd E.
2017-09-01
Since the 2011 price spike of rare earth elements (REEs), research on permanent magnet recycling has blossomed globally in an attempt to reduce future REE criticality. Hard disk drives (HDDs) have emerged as one feasible feedstock for recovering valuable REEs such as praseodymium, neodymium, and dysprosium. Nevertheless, current processes for recycling electronic waste only focus on certain metals as a result of feedstock and metal price uncertainties. In addition, there is a perception that recycling REEs is unprofitable. To shed some light on the economic viability of REE recycling from U.S. HDDs, this article combines techno-economic information of an electro-hydrometallurgical process with end-of-life HDD availability in a simulation model. The results showed that adding REE recovery to an HDD base and precious metal recovery process was profitable given current prices. Recovered REEs from U.S. HDDs could meet up to 5.2% rest-of-world (excluding China) neodymium magnet demand. Feedstock, aluminum, and gold prices are key factors to recycling profitability. REEs contributed 13% to the co-recycling profit.
NASA Technical Reports Server (NTRS)
Huss, G. R.; Keil, K.; Taylor, G. J.
1981-01-01
The matrices of 16 unequilibrated chondrites were examined by optical microscopy, an electron microprobe, and a scanning electron microscope. The fine-grained, opaque, silicate matrix of type 3 unequilibrated chondrites was compositionally, mineralogically, and texturally different from the chondrules and their fragments; it may be the low temperature condensate proposed by Larimer and Anders (1967, 1970). Each meteorite has been metamorphosed by a combination of processes including thermal metamorphism and the passage of shock waves; the appearance of each chondrite results from the temperature and pressure conditions which formed it, and subsequent metamorphic alterations.
Ding, ShiMing; Liang, Tao; Zhang, ChaoSheng; Yan, JunCai; Zhang, ZiLi
2006-12-01
Previous studies have revealed the fractionation processes of rare earth elements (REEs) in hydroponic plants, with a heavy REE (HREE, the elements from Gd to Lu) enrichment in leaves. In this study, effects on the HREE enrichment in soybean leaves with additions of carboxylic acids (acetate, malate, citrate, NTA, EDTA and DTPA) and two soil humic acids (HAs) were investigated. REE speciation in carboxylic acid and HA solutions was simulated using Visual MINTEQ and Model V, respectively. The results showed that the effects caused by carboxylic acids were strongly dependent on the differences between their binding strengths for light REEs (LREEs, the elements from La to Eu) and those for HREEs. A good correlation existed between these effects and the changes of free REE ions in solutions. This relationship was also observed for the HA treatments, provided that the intrinsic equilibrium constants of REEs for cation-proton exchange with HA (i.e., pK(MHA)) in Model V were estimated using a free-energy relationship with the stability constants for REE complexation with lactic acid. It is suggested that this set of pK(MHA) values is more suitable for use in Model V for the simulation of REE complexation with HA.
Crystal-chemistry and partitioning of REE in whitlockite
NASA Technical Reports Server (NTRS)
Colson, R. O.; Jolliff, B. L.
1993-01-01
Partitioning of Rare Earth Elements (REE) in whitlockite is complicated by the fact that two or more charge-balancing substitutions are involved and by the fact that concentrations of REE in natural whitlockites are sufficiently high such that simple partition coefficients are not expected to be constant even if mixing in the system is completely ideal. The present study combines preexisting REE partitioning data in whitlockites with new experiments in the same compositional system and at the same temperature (approximately 1030 C) to place additional constraints on the complex variations of REE partition coefficients and to test theoretical models for how REE partitioning should vary with REE concentration and other compositional variables. With this data set, and by combining crystallographic and thermochemical constraints with a SAS simultaneous-equation best-fitting routine, it is possible to infer answers to the following questions: what is the speciation on the individual sites Ca(B), Mg, and Ca(IIA) (where the ideal structural formula is Ca(B)18 Mg2Ca(IIA)2P14O56); how are REE's charge-balanced in the crystal; and is mixing of REE in whitlockite ideal or non-ideal. This understanding is necessary in order to extrapolate derived partition coefficients to other compositional systems and provides a broadened understanding of the crystal chemistry of whitlockite.
Distribution and source of rare earth elements in PM2.5 in Xiamen, China.
Wang, Shanshan; Yu, Ruilian; Hu, Gongren; Hu, Qichao; Zheng, Quan
2017-12-01
Particulate matter with diameter ≤2.5 µm (PM 2.5 ) is a serious atmospheric pollutant. Composition and source analyses are essential for controlling PM 2.5 . Rare earth elements (REEs) have received little attention as a component of PM 2.5 . In the present study, PM 2.5 samples were collected in urban and suburban areas in Xiamen and analyzed for REEs. The concentration range of total REEs (∑REE) is 12.07 to 98.45 mg/kg, with a mean of 38.53 mg/kg, in urban PM 2.5 and 16.44 to 160.62 mg/kg, with a mean of 42.94 mg/kg, in suburban PM 2.5 . Light REE concentrations are higher in suburban PM 2.5 , whereas heavy REE concentrations are higher in urban PM 2.5 , implying distinct sources of REEs in urban and suburban PM 2.5 . The scatter plots of δEu-∑REE and La-Ce-Sm suggest that REEs in urban PM 2.5 originate from gasoline- and diesel-vehicle exhaust, whereas those in suburban PM 2.5 are mainly influenced by gasoline-vehicle exhaust. Environ Toxicol Chem 2017;36:3217-3222. © 2017 SETAC. © 2017 SETAC.
Cunha, Cleyton Saialy Medeiros; da Silva, Ygor Jacques Agra Bezerra; Escobar, Maria Eugenia Ortiz; do Nascimento, Clístenes Williams Araújo
2018-02-22
The Itataia uranium-phosphate deposit is the largest uranium reserve in Brazil. Rare earth elements (REEs) are commonly associated with phosphate deposits; however, there are no studies on the concentrations of REEs in soils of the Itataia deposit region. Thus, the objective of the research was to evaluate the concentration and spatial variability of REEs in topsoils of Itataia phosphate deposit region. In addition, the influence of soil properties on the geochemistry of REEs was investigated. Results showed that relatively high mean concentrations (mg kg -1 ) of heavy REEs (Gd 6.01; Tb 1.25; Ho 1.15; Er 4.05; Tm 0.64; Yb 4.61; Lu 0.65) were found in surface soils samples. Soil properties showed weak influence on the geochemical behavior of REEs in soils, except for the clay content. On the other hand, parent material characteristics, such as P and U, had strong influence on REEs concentrations. Spatial distribution patterns of REEs in soils are clearly associated with P and U contents. Therefore, geochemical surveys aiming at the delineation of ore-bearing zones in the region can benefit from our data. The results of this work reinforce the perspective for co-mining of P, U and REEs in this important P-U reserve.
Hou, Zengqian; Liu, Yan; Tian, Shihong; Yang, Zhiming; Xie, Yuling
2015-01-01
Carbonatite-associated rare-earth-element (REE) deposits are the most significant source of the world’s REEs; however, their genesis remains unclear. Here, we present new Sr-Nd-Pb and C-O isotopic data for Cenozoic carbonatite-hosted giant REE deposits in southwest China. These REE deposits are located along the western margin of the Yangtze Craton that experienced Proterozoic lithospheric accretion, and controlled by Cenozoic strike-slip faults related to Indo-Asian continental collision. The Cenozoic carbonatites were emplaced as stocks or dykes with associated syenites, and tend to be extremely enriched in Ba, Sr, and REEs and have high 87Sr/86Sr ratios (>0.7055). These carbonatites were likely formed by melting of the sub-continental lithospheric mantle (SCLM), which had been previously metasomatized by high-flux REE- and CO2-rich fluids derived from subducted marine sediments. The fertility of these carbonatites depends on the release of REEs from recycled marine sediments and on the intensity of metasomatic REE refertilization of the SCLM. We suggest that cratonic edges, particularly along ancient convergent margins, possess the optimal configuration for generating giant REE deposits; therefore, areas of metamorphic basement bounded or cut by translithospheric faults along cratonic edges have a high potential for such deposits. PMID:26035414
Tellurium stable isotope fractionation in chondritic meteorites and some terrestrial samples
NASA Astrophysics Data System (ADS)
Fehr, Manuela A.; Hammond, Samantha J.; Parkinson, Ian J.
2018-02-01
New methodologies employing a 125Te-128Te double-spike were developed and applied to obtain high precision mass-dependent tellurium stable isotope data for chondritic meteorites and some terrestrial samples by multiple-collector inductively coupled plasma mass spectrometry. Analyses of standard solutions produce Te stable isotope data with a long-term reproducibility (2SD) of 0.064‰ for δ130/125Te. Carbonaceous and enstatite chondrites display a range in δ130/125Te of 0.9‰ (0.2‰ amu-1) in their Te stable isotope signature, whereas ordinary chondrites present larger Te stable isotope fractionation, in particular for unequilibrated ordinary chondrites, with an overall variation of 6.3‰ for δ130/125Te (1.3‰ amu-1). Tellurium stable isotope variations in ordinary chondrites display no correlation with Te contents or metamorphic grade. The large Te stable isotope fractionation in ordinary chondrites is likely caused by evaporation and condensation processes during metamorphism in the meteorite parent bodies, as has been suggested for other moderately and highly volatile elements displaying similar isotope fractionation. Alternatively, they might represent a nebular signature or could have been produced during chondrule formation. Enstatite chondrites display slightly more negative δ130/125Te compared to carbonaceous chondrites and equilibrated ordinary chondrites. Small differences in the Te stable isotope composition are also present within carbonaceous chondrites and increase in the order CV-CO-CM-CI. These Te isotope variations within carbonaceous chondrites may be due to mixing of components that have distinct Te isotope signatures reflecting Te stable isotope fractionation in the early solar system or on the parent bodies and potentially small so-far unresolvable nucleosynthetic isotope anomalies of up to 0.27‰. The Te stable isotope data of carbonaceous and enstatite chondrites displays a general correlation with the oxidation state and hence might provide a record of the nebular formation environment. The Te stable isotope fractionation of the carbonaceous chondrites CI and CM (and CO potentially) overlap within uncertainty with data for terrestrial Te standard solutions, sediments and ore samples. Assuming the silicate Earth displays similar Te isotope fractionation as the studied terrestrial samples, the data indicate that the late veneer might have been delivered by material similar to CI or CM (or possibly) CO carbonaceous chondrites in terms of Te isotope composition. Nine terrestrial samples display resolvable Te stable isotope fractionation of 0.85 and 0.60‰ for δ130/125Te for sediment and USGS geochemical exploration reference samples, respectively. Tellurium isotopes therefore have the potential to become a new geochemical sedimentary proxy, as well as a proxy for ore-exploration.
NASA Astrophysics Data System (ADS)
Scott, M.; Verba, C.; Falcon, A.; Poston, J.; McKoy, M.
2017-12-01
Because of their multiple uses in clean energy technologies, rare earth elements (REE) are critical for national economic and energy security. With no current domestic source, supply remains a major concern for domestic security. Underclay - specifically the layer of stratum beneath a coal bed - is a potentially rich source of REE. This study focuses on the characterization and ion exchange recovery of REE from underclay samples from the Lower Freeport, Middle Kittanning, and Pittsburgh coal seams in West Virginia. Multimodal techniques provided quantitative assessments of REE-bearing mineral phases in select underclays and the influence of organic acid rock treatment on the recovery of REE from both exchangeable and crystalline mineral phases present. All samples are from extensively weathered horizons that contain abundant kaolinite and illite. Total REE concentrations range from 250-450 ppm and all samples have a HREE/LEEE ratio >20%. Rare earth element bearing minerals identified in the clay are monazite, xenotime, florencite, and crandallite. Our selective recovery approach is designed to isolate and recover REE through partial dissolution of the clay matrix and ion exchange rather than dissolution/recovery of phosphate or aluminosilicate bound REE. These results provide a better understanding of coal seam underclay, the affinity of REEs for specific ligands and colloids, and how the rock and ligands respond to different chemical treatments. These processes are important to the development and commercialization of efficient and cost effective methods to extract REE from domestic geologic deposits and recover into salable forms.
Stardust (Comet) Samples and the Meteorite Record
NASA Astrophysics Data System (ADS)
Weisberg, M.; Connolly, H.; Zolensky, M.; Bland, P.; Bradley, J.; Braerley, A.; Bridges, J.; Brownlee, D.; Butterworth, A.; Dai, Z.; Ebel, D.; Genge, M.; Gounelle, M.; Graham, G.; Grossman, J.; Grossman, L.; Harvey, R.; Ishii, H.; Kearsley, A.; Keller, L.; Krot, A.; Langenhorst, F.; Lanzirotti, A.; Leroux, H.; Matrajt, G.; Messenger, K.; Mikouchi, T.; Nakamura, T.; Ohsumi, K.; Okudaira, K.; Perronnet, M.; Simon, S.; Stephan, T.; Stroud, R.; Taheri, M.; Tomeoka, K.; Toppani, A.; Tsou, P.; Tsuchiyama, A.; Velbel, M.; Weber, I.; Westphal, A.; Yano, H.; Zega, T.
2006-12-01
Perhaps the most intriguing aspect of the material collected by Stardust from `comet Wild 2 is the preponderance of high temperature and reduced crystalline phases, which are characteristic of chondrites thought to derive from the main Asteroid Belt (2-4 AU) [1]. Here we compare the mineralogy of Stardust samples to that of chondrite groups. Results: Investigation by the Preliminary Examination Team (PET) of particles from Wild 2 shows a mineral assemblage typical of chondrites, with olivine, pyroxene, FeNi-metal and sulfide as common components. Olivine and low-Ca pyroxene have a range of mg# (Fa0.5-41 and Fs0-48, respectively), which indicates that the material is unequilibrated, similar to types 2 and 3 chondrites. Some forsterite with <1 wt% FeO has up to 6.4 wt% MnO and 1.4 wt% Cr2O3. Other silicates observed are Ti-bearing aluminus diopside and rare melilite, typical of some calcium, aluminum-rich inclusions (CAIs) in carbonaceous (C) chondrites. Additionally, FeNi- metal and sulfides including pentlandite [(FeNi)9S8)] and Fe-Ni-Cu and Fe-Zn sulfide, phases observed in C and enstatite (E) chondrites, are present in some particles. V-bearing osbornite (TiN), a phase also observed in some C and E chondrites, occurs associated with unidentified Zr-rich phase(s). Discussion: The observations by the PET are based on work done in a short period of time on a limited number of particles less than several microns in size, and, hence, conclusions based on these data are tentative. Many C chondrite groups have the wide range of ferromagnesian silicate compositions found in the Stardust samples. However, the range of olivine and pyroxene compositions, occurrence of Mn-, Cr-rich olivine, metal and pentlandite are features most consistent with CR and CH chondrites, though a CM-like lithology cannot be ruled out. Mn-, Cr- rich forsterite is found in the matrix and in amoeboid olivine aggregates in CR chondrites [2, 3]; Osbornite-bearing CAIs have been identified in the ALH 85085 CH chondrite [4] and the Isheyevo CH/CB chondrite [5]. Thus, the Stardust samples analyzed thus far have mineral assemblages close to those of CR and CH chondrites, members of the CR chondrite clan. References: [1] Scott and Krot (2005) Chondrules and the Protoplanetary Disk, 15-54. [2] Weisberg et al. (1993) GCA 57, 1567-1586. [3] Weisberg et al. (2004) MAPS 39, 1741-1753. [4] Weisberg et al. (1988) EPSL 91, 19-32. [5] Krot et al. (2006) MAPS #1506.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Budde, Gerrit; Kruijer, Thomas S.; Kleine, Thorsten
The CR chondrites are distinct from most other chondrites in having younger chondrule 26Al- 26Mg ages, but the significance of these ages and whether they reflect true formation times or a heterogeneous distribution of 26Al are not well understood. To better determine the timescales of CR chondrule formation and CR chondrite parent body accretion, we obtained Hf-W isotopic data for metal, silicate, and chondrule separates from four CR chondrites. We also obtained Mo isotopic data for the same samples, to assess potential genetic links among the components of CR chondrites, and between these components and bulk chondrites. The isotopic datamore » demonstrate that metal and silicate in CR chondrites exhibit distinct nucleosynthetic W and Mo isotope anomalies, caused by the heterogeneous distribution of a single presolar s-process carrier. These isotope signatures are akin to the complementary anomalies found previously for chondrules and matrix in CV chondrites and indicate that the major components of CR chondrites are genetically linked and formed from a common reservoir of solar nebula dust. The obtained Hf-W age of 3.6±0.6 million years (Ma) after the formation of Ca-Al-rich inclusions (CAIs) most likely dates metal-silicate separation during chondrule formation and is consistent with Al-Mg and Pb-Pb ages for CR chondrules, indicating that CR chondrules formed ~1–2 Ma later than chondrules from most other chondrite groups. Moreover, chemical, isotopic, and chronological data imply close temporal link between chondrule formation and chondrite accretion, making the CR chondrite parent body one of the youngest meteorite parent bodies. Such a late accretion at ~3.6 Ma after CAIs is consistent with isotopic composition of CR chondrites (e.g., 15N/ 14N) that is indicative of a formation at a larger heliocentric distance, probably beyond the orbit of Jupiter. As such, the accretion age of the CR parent body provides the earliest possible time at which Jupiter could have migrated inwards, leading to scattering of carbonaceous meteorite parent bodies into the inner solar system. Finally, the concordant Hf-W and Al- Mg ages for CR chondrules, combined with Hf-W and Al-Mg data for bulk CAIs, angrites, and CV chondrules, provide strong evidence for a disk-wide, homogeneous distribution of 26Al in the early solar system.« less
Budde, Gerrit; Kruijer, Thomas S.; Kleine, Thorsten
2017-10-24
The CR chondrites are distinct from most other chondrites in having younger chondrule 26Al- 26Mg ages, but the significance of these ages and whether they reflect true formation times or a heterogeneous distribution of 26Al are not well understood. To better determine the timescales of CR chondrule formation and CR chondrite parent body accretion, we obtained Hf-W isotopic data for metal, silicate, and chondrule separates from four CR chondrites. We also obtained Mo isotopic data for the same samples, to assess potential genetic links among the components of CR chondrites, and between these components and bulk chondrites. The isotopic datamore » demonstrate that metal and silicate in CR chondrites exhibit distinct nucleosynthetic W and Mo isotope anomalies, caused by the heterogeneous distribution of a single presolar s-process carrier. These isotope signatures are akin to the complementary anomalies found previously for chondrules and matrix in CV chondrites and indicate that the major components of CR chondrites are genetically linked and formed from a common reservoir of solar nebula dust. The obtained Hf-W age of 3.6±0.6 million years (Ma) after the formation of Ca-Al-rich inclusions (CAIs) most likely dates metal-silicate separation during chondrule formation and is consistent with Al-Mg and Pb-Pb ages for CR chondrules, indicating that CR chondrules formed ~1–2 Ma later than chondrules from most other chondrite groups. Moreover, chemical, isotopic, and chronological data imply close temporal link between chondrule formation and chondrite accretion, making the CR chondrite parent body one of the youngest meteorite parent bodies. Such a late accretion at ~3.6 Ma after CAIs is consistent with isotopic composition of CR chondrites (e.g., 15N/ 14N) that is indicative of a formation at a larger heliocentric distance, probably beyond the orbit of Jupiter. As such, the accretion age of the CR parent body provides the earliest possible time at which Jupiter could have migrated inwards, leading to scattering of carbonaceous meteorite parent bodies into the inner solar system. Finally, the concordant Hf-W and Al- Mg ages for CR chondrules, combined with Hf-W and Al-Mg data for bulk CAIs, angrites, and CV chondrules, provide strong evidence for a disk-wide, homogeneous distribution of 26Al in the early solar system.« less
NASA Astrophysics Data System (ADS)
Hu, R.
2015-12-01
Neodymium isotopes of ferromanganese oxide coatings precipitated on planktonic foraminifera have been intensively used as a proxy for water mass reconstruction in the deep Atlantic and Indian Ocean, but their suitability is not well constrained in the Pacific and may be affected by enhanced inputs and scavenging relative to advection. In this study, Nd isotopes and Rare Earth Element (REE) concentrations of planktonic foraminifera from ~60 sites widely distributed throughout the Pacific are presented. We found that the REE pattern associated with planktonic foraminifera in our study and Fe-Mn oxides/coatings in the global ocean have a common heavy REE depleted pattern when normalized to their ambient seawater due to preferential removal of light REEs onto particles relative to heavy REEs during scavenging. The core-top ɛNd results agree with the proximal seawater compositions, indicating that planktonic foraminiferal coatings can give a reliable record of past changes in bottom water Nd isotopes in the Pacific. A good correlation between foraminifera Nd isotopes and seawater phosphate suggests that Nd with a predominantly radiogenic isotopic composition was probably added gradually along continental boundaries so that the Nd isotopic composition change paralleled the accumulation of nutrients in the deep Pacific. By confirming Nd isotopes as a reliable water mass tracer in the Pacific Ocean, this proxy is then applied to reconstruct how the water mass circulation changes during the Last Glacial Maximum (LGM). Most of the cores in deep North Pacific show essentially invariant Nd isotopic compositions during the LGM compared with core-top values, suggesting that Nd isotope of Pacific end-member did not change during glacial times. However, the LGM Southwest Pacific cores have more radiogenic ɛNd than core-tops corroborating the previous findings of reduced inflow of North Atlantic Deep Water. The Eastern Equatorial Pacific cores above ~2 km showed consistently lower LGM ɛNd values, which might suggest a reduced influence of more radiogenic North Pacific Deep Water return flow. Taken together, our results indicate a slower Pacific overturning circulation during the glacial times, and the inflow and return flow of the Pacific meridional overturning were closely linked in the glacial-interglacial cycles.
Tang, Hailong; Shuai, Weitao; Wang, Xiaojing; Liu, Yangsheng
2017-08-01
Rare earth elements (REEs) contamination to the surrounding soil has increased the concerns of health risk to the local residents. Soil washing was first attempted in our study to remediate REEs-contaminated cropland soil using nitric acid, citric acid, and ethylene diamine tetraacetic acid (EDTA) for soil decontamination and possible recovery of REEs. The extraction time, washing agent concentration, and pH value of the washing solution were optimized. The sequential extraction analysis proposed by Tessier was adopted to study the speciation changes of the REEs before and after soil washing. The extract containing citric acid was dried to obtain solid for the X-ray fluorescence (XRF) analysis. The results revealed that the optimal extraction time was 72 h, and the REEs extraction efficiency increased as the agent concentration increased from 0.01 to 0.1 mol/L. EDTA was efficient to extract REEs over a wide range of pH values, while citric acid was around pH 6.0. Under optimized conditions, the average extraction efficiencies of the major REEs in the contaminated soil were 70.96%, 64.38%, and 62.12% by EDTA, nitric acid, and citric acid, respectively. The sequential extraction analyses revealed that most soil-bounded REEs were mobilized or extracted except for those in the residual fraction. Under a comprehensive consideration of the extraction efficiency and the environmental impact, citric acid was recommended as the most suitable agent for extraction of the REEs from the contaminated cropland soils. The XRF analysis revealed that Mn, Al, Si, Pb, Fe, and REEs were the major elements in the extract indicating a possibile recovery of the REEs.
ten Haaf, Twan; Weijs, Peter J M
2014-01-01
Resting energy expenditure (REE) is expected to be higher in athletes because of their relatively high fat free mass (FFM). Therefore, REE predictive equation for recreational athletes may be required. The aim of this study was to validate existing REE predictive equations and to develop a new recreational athlete specific equation. 90 (53 M, 37 F) adult athletes, exercising on average 9.1 ± 5.0 hours a week and 5.0 ± 1.8 times a week, were included. REE was measured using indirect calorimetry (Vmax Encore n29), FFM and FM were measured using air displacement plethysmography. Multiple linear regression analysis was used to develop a new FFM-based and weight-based REE predictive equation. The percentage accurate predictions (within 10% of measured REE), percentage bias, root mean square error and limits of agreement were calculated. Results: The Cunningham equation and the new weight-based equation REE(kJ / d) = 49.940* weight(kg) + 2459.053* height(m) - 34.014* age(y) + 799.257* sex(M = 1,F = 0) + 122.502 and the new FFM-based equation REE(kJ / d) = 95.272*FFM(kg) + 2026.161 performed equally well. De Lorenzo's equation predicted REE less accurate, but better than the other generally used REE predictive equations. Harris-Benedict, WHO, Schofield, Mifflin and Owen all showed less than 50% accuracy. For a population of (Dutch) recreational athletes, the REE can accurately be predicted with the existing Cunningham equation. Since body composition measurement is not always possible, and other generally used equations fail, the new weight-based equation is advised for use in sports nutrition.
Rb-Sr systematics and REE abundances in Shalka and several other diogenites
NASA Astrophysics Data System (ADS)
Takahashi, K.; Yabuki, S.; Kagi, H.; Masuda, A.
1994-07-01
The diogenites have been regarded as igneous products in the early solar system and they have been considered to have genetically close relationship with eucrites. Depsite their simple mineralogical compositions and narrow range for major-element compositions, diogenites have been known to show wide Rare Earth Elements (REE) variations in absolute concentration and in mutual abundance ratios. Furthermore, some diogenites have peculiar Rb-Sr isotope systematics (ages younger than 4.5 b.y.). The Shalka meteorite belongs to the diogenites, and a unique REE abundance pattern has been reported. We performed Rb-Sr isotopic analyses and measured REE abundances in the Shalka diogenite with several other diogenites to discuss their genesis. Roughly speaking, REE patterns in diogenites are characterized by the negative Eu anomaly and the depletion of light REE. For Shalka, some heterogeneity in REE abundance patterns have been observed. While one sample chip shows the REE pattern with a large negative Eu anomaly and depleted light REE, particularly characterized by the concave curvature for the La-Nd span, other samples show the pattern nearly flat or the pattern enriched in light REE. These variations could not be explained easily by the simple mixing process of LREE-depleted components and LREE-enriched melt, but they imply some metamorphism process. The Rb-Sr isotopic data for Shalka are shown with the data for other several diogenites. These observations indicate that Shalka would undergo a significant extent of metamorphism followed by redistribution of REE and the disturbance of the Rb-Sr systematics. We are going to do further studies on Shalka to discuss the metamorphic process and compare it with other diogenites.
NASA Astrophysics Data System (ADS)
Gleason, James D.; Marikos, Mark A.; Barton, Mark D.; Johnson, David A.
2000-03-01
Rare earth element (REE)-enriched, igneous-related hydrothermal Fe-oxide hosted (Fe-P-REE) systems from four areas in North America have been analyzed for their neodymium isotopic composition to constrain REE sources and mobility in these systems. The Nd isotopic results evidence a common pattern of REE concentration from igneous sources despite large differences in age (Proterozoic to Tertiary), tectonic setting (subduction vs. intraplate), and magmatic style (mafic vs. felsic). In the Middle Proterozoic St. Francois Mountains terrane of southeastern Missouri, ɛ Nd for Fe-P-REE (apatite, monazite, xenotime) deposits ranges from +3.5 to +5.1, similar to associated felsic to intermediate igneous rocks of the same age (ɛ Nd = +2.6 to +6.2). At the mid-Jurassic Humboldt mafic complex in western Nevada, ɛ Nd for Fe-P-REE (apatite) mineralization varies between +1.1 and +2.4, similar to associated mafic igneous rocks (-1.0 to +3.5). In the nearby Cortez Mountains in central Nevada, mid-Jurassic felsic volcanic and plutonic rocks (ɛ Nd = -2.0 to -4.4) are associated with Fe-P-REE (apatite-monazite) mineralization having similar ɛ Nd (-1.7 to -2.4). At Cerro de Mercado, Durango, Mexico, all assemblages analyzed in this Tertiary rhyolite-hosted Fe oxide deposit have identical isotopic compositions with ɛ Nd = -2.5. These data are consistent with coeval igneous host rocks being the primary source of REE in all four regions, and are inconsistent with a significant contribution of REE from other sources. Interpretations of the origin of these hydrothermal systems and their concomitant REE mobility must account for nonspecialized igneous sources and varied tectonic settings.
Hogendoorn, Carmen; Roszczenko-Jasińska, Paula; Martinez-Gomez, N. Cecilia; de Graaff, Johann; Grassl, Patrick; Pol, Arjan; Op den Camp, Huub J. M.
2018-01-01
ABSTRACT Recently, methanotrophic and methylotrophic bacteria were found to utilize rare earth elements (REEs). To monitor the REE content in culture media of these bacteria, we have developed a rapid screening method using the Arsenazo III (AS III) dye for spectrophotometric REE detection in the low μM (0.1 to 10 μM) range. We designed this assay to follow LaIII and EuIII depletion from the culture medium by the acidophilic verrucomicrobial methanotroph Methylacidiphilum fumariolicum strain SolV. The assay can also be modified to screen the uptake of other REEs, such as PrIII, or to monitor the depletion of LaIII from growth media in neutrophilic methylotrophs such as Methylobacterium extorquens strain AM1. The AS III assay presents a convenient and fast detection method for REE levels in culture media and is a sensitive alternative to inductively coupled plasma mass spectrometry (ICP-MS) or atomic absorption spectroscopy (AAS). IMPORTANCE REE-dependent bacterial metabolism is a quickly emerging field, and while the importance of REEs for both methanotrophic and methylotrophic bacteria is now firmly established, many important questions, such as how these insoluble elements are taken up into cells, are still unanswered. Here, an Arsenazo III dye-based assay has been developed for fast, specific, and sensitive determination of REE content in different culture media. This assay presents a useful tool for optimizing cultivation protocols, as well as for routine REE monitoring during bacterial growth without the need for specialized analytical instrumentation. Furthermore, this assay has the potential to promote the discovery of other REE-dependent microorganisms and can help to elucidate the mechanisms for acquisition of REEs by methanotrophic and methylotrophic bacteria. PMID:29453257