Science.gov

Sample records for choriomeningitis virus-induced immunopathology

  1. Prevention of Influenza Virus-Induced Immunopathology by TGF-β Produced during Allergic Asthma

    PubMed Central

    Furuya, Yoichi; Furuya, Andrea K. M.; Roberts, Sean; Sanfilippo, Alan M.; Salmon, Sharon L.; Metzger, Dennis W.

    2015-01-01

    Asthma is believed to be a risk factor for influenza infection, however little experimental evidence exists to directly demonstrate the impact of asthma on susceptibility to influenza infection. Using a mouse model, we now report that asthmatic mice are actually significantly more resistant to a lethal influenza virus challenge. Notably, the observed increased resistance was not attributable to enhanced viral clearance, but instead, was due to reduced lung inflammation. Asthmatic mice exhibited a significantly reduced cytokine storm, as well as reduced total protein levels and cytotoxicity in the airways, indicators of decreased tissue injury. Further, asthmatic mice had significantly increased levels of TGF-β1 and the heightened resistance of asthmatic mice was abrogated in the absence of TGF-β receptor II. We conclude that a transient increase in TGF-β expression following acute asthma can induce protection against influenza-induced immunopathology. PMID:26407325

  2. Virus-induced Transient Bone Marrow Aplasia: Major Role of Interferon-α/β during Acute Infection with the Noncytopathic Lymphocytic Choriomeningitis Virus

    PubMed Central

    Binder, Daniel; Fehr, Jörg; Hengartner, Hans; Zinkernagel, Rolf M.

    1997-01-01

    The hematologic consequences of infection with the noncytopathic lymphocytic choriomeningitis virus (LCMV) were studied in wild-type mice with inherent variations in their interferon (IFN)-α/β responder ability and in mutant mice lacking α/β (IFN-α/β R0/0) or γ IFN (IFN-γ R0/0) receptors. During the first week of infection, wild type mice demonstrated a transient pancytopenia. Within a given genetic background, the extent of the blood cell abnormalities did not correlate with the virulence of the LCMV isolate but variations were detected between different mouse strains; they were found to depend on their IFN-α/β responder phenotype. Whereas IFN-γ R0/0 mice were comparable to wild-type mice, IFN-α/β R0/0 mice exhibited unchanged peripheral blood values during acute LCMV infection. In parallel, the bone marrow (BM) cellularity, the pluripotential and committed progenitor compartments were up to 30-fold reduced in wild type and IFN-γ R0/0, but remained unchanged in IFN-α/β R0/0 mice. Viral titers in BM 3 d after LCMV infection were similar in these mice, but antigen localization was different. Viral antigen was predominantly confined to stromal BM in normal mice and IFN-γ R0/0 knockouts, whereas, in IFN-α/β R0/0 mice, LCMV was detected in >90% of megakaryocytes and 10–15% of myeloid precursors, but not in erythroblasts. Although IFN-α/β efficiently prevented viral replication in potentially susceptible hematopoietic cells, even in overwhelming LCMV infection, unlimited virus multiplication in platelet and myeloid precursors in IFN-α/β R0/0 mice did not interfere with the number of circulating blood cells. Natural killer (NK) cell expansion and activity in the BM was comparable on day 3 after infection in mutant and control mice. Adaptive immune responses did not play a major role because comparable kinetics of LCMV-induced pancytopenia and transient depletion of the pluripotential and committed progenitor compartments were observed in CD80

  3. 21 CFR 866.3360 - Lymphocytic choriomeningitis virus serological reagents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Lymphocytic choriomeningitis virus serological... § 866.3360 Lymphocytic choriomeningitis virus serological reagents. (a) Identification. Lymphocytic choriomeningitis virus serological reagents are devices that consist of antigens and antisera used in...

  4. Immunopathology of Brucella infection.

    PubMed

    Baldi, Pablo C; Giambartolomei, Guillermo H

    2013-04-01

    In spite of the protean nature of the disease, inflammation is a hallmark of brucellosis and affected tissues usually exhibit inflammatory infiltrates. As Brucella lacks exotoxins, exoproteases or cytolysins, pathological findings in brucellosis probably arise from inflammation-driven processes. The cellular and molecular bases of immunopathological phenomena probably involved in Brucella pathogenesis have been unraveled in the last few years. Brucella-infected osteoblasts, either alone or in synergy with infected macrophages, produce cytokines, chemokines and matrixmetalloproteinases (MMPs), and similar phenomena are mounted by fibroblast-like synoviocytes. The released cytokines promote the secretion of MMPs and induce osteoclastogenesis. Altogether, these phenomena may contribute to the bone loss and cartilage degradation usually observed in brucellar arthritis and osteomyelitis. Proinflammatory cytokines may be also involved in the pathogenesis of neurobrucellosis. B. abortus and its lipoproteins elicit an inflammatory response in the CNS of mice, leading to astrogliosis, a characteristic feature of neurobrucellosis. Heat-killed bacteria (HKBA) and the L-Omp19 lipoprotein elicit astrocyte apoptosis and proliferation (two features of astrogliosis), and apoptosis depends on TNF-α signaling. Brucella also infects and replicates in human endothelial cells, inducing the production of chemokines and IL-6, and an increased expression of adhesion molecules. The sustained inflammatory process derived from the longlasting infection of the endothelium may be important for the development of endocarditis. Therefore, while Brucella induces a low grade inflammation as compared to other pathogens, its prolonged intracellular persistence in infected tissues supports a long-lasting inflammatory response that mediates different pathways of tissue damage. In this context, approaches to avoid the invasion of host cells or limit the intracellular survival of the bacterium may be

  5. Infection of Dendritic Cells by Lymphocytic Choriomeningitis Virus

    PubMed Central

    Sevilla, N.; Kunz, S.; McGavern, D.

    2017-01-01

    Dendritic cells (DCs) comprise the major antigen-presenting cells (APCs) of the host, uniquely programmed to stimulate immunologically naïve T lymphocytes. Viruses that can target and disorder the function of these cells enjoy a selective advantage. The cellular receptor for lymphocytic choriomeningitis virus (LCMV), Lassa fever virus (LFV), and several other arenaviruses is α-dystroglycan (α-DG). Among cells of the immune system, CD11c+ and DEC-205+ DCs primarily and preferentially express α-DG. By selection, strains and variants of LCMV generated as quasi-species that bind α-DG with high affinity replicate in the majority of CD11c+ and DEC-205+ (>75%) DCs, causing a generalized immunosuppression, and establish a persistent infection. In contrast, viral strains and variants that bind with low affinity to α-DG display minimal replication in CD11c+ and DEC-205+ DCs (<10%), rarely replicate in the white pulp, and generate a robust anti-LCMV CTL response that clears the virus infection. Hence, receptor-virus interaction on DCs in vivo is an essential step in the initiation of virus-induced immunosuppression and viral persistence. Investigation into the mechanism of how virus-infected DCs cause immunosuppression reveals loss of MHC class II surface expression and costimulatory molecules on surface of such DCs. As a consequence DCs are unable to act as APCs, initiate immune responses, and have a defect in migration into the T cell area. These data indicate that LCMV infection influences DC maturation and migration, leading to decreased T cell stimulatory capacity of DCs, events essential for the initiation of immune responses. Because several other viruses known to cause immunosuppression (HIV, measles) interact with DCs, the observations noted here are likely a common selective mechanism by which viruses also are able to evade the host s immune system. PMID:12797446

  6. The Lymphocytic Choriomeningitis Virus Matrix Protein PPXY Late Domain Drives the Production of Defective Interfering Particles

    PubMed Central

    Ziegler, Christopher M.; Eisenhauer, Philip; Bruce, Emily A.; Weir, Marion E.; King, Benjamin R.; Klaus, Joseph P.; Krementsov, Dimitry N.; Shirley, David J.; Ballif, Bryan A.; Botten, Jason

    2016-01-01

    Arenaviruses cause severe diseases in humans but establish asymptomatic, lifelong infections in rodent reservoirs. Persistently-infected rodents harbor high levels of defective interfering (DI) particles, which are thought to be important for establishing persistence and mitigating virus-induced cytopathic effect. Little is known about what drives the production of DI particles. We show that neither the PPXY late domain encoded within the lymphocytic choriomeningitis virus (LCMV) matrix protein nor a functional endosomal sorting complex transport (ESCRT) pathway is absolutely required for the generation of standard infectious virus particles. In contrast, DI particle release critically requires the PPXY late domain and is ESCRT-dependent. Additionally, the terminal tyrosine in the PPXY motif is reversibly phosphorylated and our findings indicate that this posttranslational modification may regulate DI particle formation. Thus we have uncovered a new role for the PPXY late domain and a possible mechanism for its regulation. PMID:27010636

  7. Immunopathologic Studies in Relapsing Polychondritis

    PubMed Central

    Herman, Jerome H.; Dennis, Marie V.

    1973-01-01

    Serial studies have been performed on three patients with relapsing polychondritis in an attempt to define a potential immunopathologic role for degradation constituents of cartilage in the causation and/or perpetuation of the inflammation observed. Crude proteoglycan preparations derived by disruptive and differential centrifugation techniques from human costal cartilage, intact chondrocytes grown as monolayers, their homogenates and products of synthesis provided antigenic material for investigation. Circulating antibody to such antigens could not be detected by immunodiffusion, hemagglutination, immunofluorescence or complement mediated chondrocyte cytotoxicity as assessed by 51Cr release. Similarly, radiolabeled incorporation studies attempting to detect de novo synthesis of such antibody by circulating peripheral blood lymphocytes as assessed by radioimmunodiffusion, immune absorption to neuraminidase treated and untreated chondrocytes and immune coprecipitation were negative. Delayed hypersensitivity to cartilage constituents was studied by peripheral lymphocyte transformation employing [3H]thymidine incorporation and the release of macrophage aggregation factor. Positive results were obtained which correlated with periods of overt disease activity. Similar results were observed in patients with classical rheumatoid arthritis manifesting destructive articular changes. This study suggests that cartilage antigenic components may facilitate perpetuation of cartilage inflammation by cellular immune mechanisms. Images PMID:4265382

  8. Endogenous Il10 alleviates the systemic antiviral cellular immune response and T cell-mediated immunopathology in select organs of acutely LCMV-infected mice.

    PubMed

    Jakobshagen, Kristin; Ward, Beate; Baschuk, Nikola; Huss, Sebastian; Brunn, Anna; Malecki, Monika; Fiolka, Michael; Rappl, Gunther; Corogeanu, Diana; Karow, Ulrike; Schiller, Petra; Abken, Hinrich; Heukamp, Lukas C; Deckert, Martina; Krönke, Martin; Utermöhlen, Olaf

    2015-11-01

    The immunoregulatory cytokine IL-10 suppresses T-cell immunity. The complementary question, whether IL-10 is also involved in limiting the collateral damage of vigorous T cell responses, has not been addressed in detail. Here, we report that the particularly strong virus-specific immune response during acute primary infection with the lymphocytic choriomeningitis virus (LCMV) in mice is significantly further increased in Il10-deficient mice, particularly regarding frequencies and cytotoxic activity of CD8(+) T cells. This increase results in exacerbating immunopathology in select organs, ranging from transient local swelling to an increased risk for mortality. Remarkably, LCMV-induced, T cell-mediated hepatitis is not affected by endogenous Il10. The alleviating effect of Il10 on LCMV-induced immunopathology was found to be operative in delayed-type hypersensitivity footpad-swelling reaction and in debilitating meningitis in mice of both the C57BL/6 and BALB/c strains. These strains are prototypic counterpoles for genetically imprinted type 1-biased versus type 2-biased T cell-mediated immune responses against various infectious pathogens. However, during acute LCMV infection, neither systemic cytokine patterns nor the impact of Il10 on LCMV-induced immunopathology differed conspicuously between these two strains of mice. This study documents a physiological role of Il10 in the regulation of a balanced T-cell response limiting immunopathological damage.

  9. Lymphocytic Choriomeningitis Virus–associated Meningitis, Southern Spain

    PubMed Central

    Navarro-Marí, José-María; Sánchez-Seco, María-Paz; Gegúndez, María-Isabel; Palacios, Gustavo; Savji, Nazir; Lipkin, W. Ian; Fedele, Giovanni; de Ory-Manchón, Fernando

    2012-01-01

    Lymphocytic choriomeningitis virus (LCMV) was detected in 2 patients with acute meningitis in southern Spain within a 3-year period. Although the prevalence of LCMV infection was low (2 [1.3%] of 159 meningitis patients), it represents 2.9% of all pathogens detected. LCMV is a noteworthy agent of neurologic illness in immunocompetent persons. PMID:22515986

  10. Genes determining the course of virus persistence in the liver: lessons from murine infection with lymphocytic choriomeningitis virus.

    PubMed

    Lang, Philipp A; Recher, Mike; Häussinger, Dieter; Lang, Karl S

    2010-01-01

    More than 500 million people worldwide are persistently infected with either hepatitis B virus (HBV) or hepatitis C virus (HCV). Although both viruses are poorly cytopathic, persistent infection causes severe immunopathologic damage to liver tissue; histologically, such damage is characterized by fatty liver disease, liver fibrosis, and a higher likelihood of hepatocellular carcinoma. Virus-specific CD8+ T cells play a crucial role during infection with hepatitis viruses. On the one hand, rapid activation of CD8+ T cells can control the virus and therefore inhibit its persistence. On the other hand, once the virus persists in the liver, the chronic activation of virus-specific T cells leads to continued liver cell damage. This double-edged role of CD8+ T cells determines the final outcome of infection. In half of cases of human HCV infection, the virus persists; in the other half, the virus is controlled. Additional insights into the molecular mechanisms that determine the course of the disease may be gained from the study of appropriate murine models. This review discusses the similarities and differences between infection with lymphocytic choriomeningitis virus (LCMV) in mice and chronic infection with hepatitis virus in humans.

  11. Immunopathology of psoriasis and psoriatic arthritis

    PubMed Central

    Veale, D; Ritchlin, C; FitzGerald, O

    2005-01-01

    Psoriatic arthritis (PsA) is characterised by several unique clinical features that differentiate it from rheumatoid arthritis (RA). Attempts to identify immunopathological mechanisms, some shared with psoriasis, that underlie these differences from RA have been most challenging. Recent research studies, however, highlight novel findings in PsA at the molecular, cellular, and tissue levels that form the basis for a new understanding of this relatively common form of inflammatory arthritis. In particular, the availability of new, biological antitumour necrosis factor α therapies have allowed further insight into the immunopathology of psoriasis and PsA. This brief review focuses on immunohistological studies in psoriatic skin, PsA synovium, and bone to demonstrate how these data advance our knowledge of disease pathogenesis. PMID:15708930

  12. Gene-gun DNA vaccination aggravates respiratory syncytial virus-induced pneumonitis.

    PubMed

    Bartholdy, Christina; Olszewska, Wieslawa; Stryhn, Anette; Thomsen, Allan Randrup; Openshaw, Peter J M

    2004-10-01

    A CD8+ T-cell memory response to respiratory syncytial virus (RSV) was generated by using a DNA vaccine construct encoding the dominant Kd-restricted epitope from the viral transcription anti-terminator protein M2 (M2(82-90)), linked covalently to human beta2-microglobulin (beta2m). Cutaneous gene-gun immunization of BALB/c mice with this construct induced an antigen-specific CD8+ T-cell memory. After intranasal RSV challenge, accelerated CD8+ T-cell responses were observed in pulmonary lymph nodes and virus clearance from the lungs was enhanced. The construct induced weaker CD8+ T-cell responses than those elicited with recombinant vaccinia virus expressing the complete RSV M2 protein, but stronger than those induced by a similar DNA construct without the beta2m gene. DNA vaccination led to enhanced pulmonary disease after RSV challenge, with increased weight loss and cell recruitment to the lung. Depletion of CD8+ T cells reduced, but did not abolish, enhancement of disease. Mice vaccinated with a construct encoding a class I-restricted lymphocytic choriomeningitis virus epitope and beta2m suffered more severe weight loss after RSV infection than unvaccinated RSV-infected mice, although RSV-specific CD8+ T-cell responses were not induced. Thus, in addition to specific CD8+ T cell-mediated immunopathology, gene-gun DNA vaccination causes non-specific enhancement of RSV disease without affecting virus clearance.

  13. Pneumolysin expression by streptococcus pneumoniae protects colonized mice from influenza virus-induced disease.

    PubMed

    Wolf, Amaya I; Strauman, Maura C; Mozdzanowska, Krystyna; Williams, Katie L; Osborne, Lisa C; Shen, Hao; Liu, Qin; Garlick, David; Artis, David; Hensley, Scott E; Caton, Andrew J; Weiser, Jeffrey N; Erikson, Jan

    2014-08-01

    The response to influenza virus (IAV) infection and severity of disease is highly variable in humans. We hypothesized that one factor contributing to this variability is the presence of specific respiratory tract (RT) microbes. One such microbe is Streptococcus pneumoniae (Sp) that is carried asymptomatically in the RT of many humans. In a mouse co-infection model we found that in contrast to secondary bacterial infection that exacerbates disease, Sp colonization 10 days prior to IAV protects from virus-induced morbidity and lung pathology. Using mutant Sp strains, we identified a critical role for the bacterial virulence factor pneumolysin (PLY) in mediating this protection. Colonization with the PLY-sufficient Sp strain induces expression of the immune-suppressive enzyme arginase 1 in alveolar macrophages (aMø) and correlates with attenuated recruitment and function of pulmonary inflammatory cells. Our study demonstrates a novel role for PLY in Sp-mediated protection by maintaining aMø as "gatekeepers" against virus-induced immunopathology.

  14. Cell Entry of Lymphocytic Choriomeningitis Virus Is Restricted In Myotubes

    PubMed Central

    Iwasaki, Masaharu; Urata, Shuzo; Cho, Yoshitake; Ngo, Nhi; de la Torre, Juan C.

    2014-01-01

    In mice persistently infected since birth with the prototypic arenavirus lymphocytic choriomeningitis viurs, viral antigen and RNA are readily detected in most organs and cell types but remarkably absent in skeletal muscle. Here we report that mouse C2C12 myoblasts that are readily infected by LCMV, become highly refractory to LCMV infection upon their differentiation into myotubes. Myotube’s resistance to LCMV was not due to an intracellular restriction of virus replication but rather an impaired cell entry mediated by the LCMV surface glycoprotein. Our findings provide an explanation for the observation that in LCMV carrier mice myotubes, which are constantly exposed to blood-containing virus, remain free of viral antigen and RNA despite myotubes express high levels of the LCMV receptor alpha dystroglycan and do not pose an intracellular blockade to LCMV multiplication. PMID:24928036

  15. Solid Organ Transplant–associated Lymphocytic Choriomeningitis, United States, 2011

    PubMed Central

    Ströher, Ute; Farnon, Eileen; Campbell, Shelley; Cannon, Deborah; Paddock, Christopher D.; Drew, Clifton P.; Kuehnert, Matthew; Knust, Barbara; Gruenenfelder, Robert; Zaki, Sherif R.; Rollin, Pierre E.; Nichol, Stuart T.

    2012-01-01

    Three clusters of organ transplant–associated lymphocytic choriomeningitis virus (LCMV) transmissions have been identified in the United States; 9 of 10 recipients died. In February 2011, we identified a fourth cluster of organ transplant–associated LCMV infections. Diabetic ketoacidosis developed in the organ donor in December 2010; she died with generalized brain edema after a short hospitalization. Both kidneys, liver, and lung were transplanted to 4 recipients; in all 4, severe posttransplant illness developed; 2 recipients died. Through multiple diagnostic methods, we identified LCMV infection in all persons, including in at least 1 sample from the donor and 4 recipients by reverse transcription PCR, and sequences of a 396-bp fragment of the large segment of the virus from all 5 persons were identical. In this cluster, all recipients developed severe illness, but 2 survived. LCMV infection should be considered as a possible cause of severe posttransplant illness. PMID:22839997

  16. [Novel immunopathological approaches to pulmonary arterial hypertension].

    PubMed

    Perros, Frédéric; Montani, David; Dorfmüller, Peter; Huertas, Alice; Chaumais, Marie-Camille; Cohen-Kaminsky, Sylvia; Humbert, Marc

    2011-04-01

    Inflammation is important for the initiation and the maintenance of vascular remodeling in the most commun animal models of pulmonary hypertension (PH), and its therapeutical targeting blocks PH development in these models. In human, pulmonary vascular lesions of PH are also the source of an intense chemokine production, linked to inflammatory cell recruitment. However, arteritis is uncommon in PH patients. Of note, current PH treatments have immunomodulatory properties. In addition, some studies have shown a correlation between levels of circulating inflammatory mediators and patients' survival. The study of autoimmunity in the pathophysiology of pulmonary arterial hypertension is becoming an area of intense investigation. New immunopathological approaches to PH should allow the development of innovative treatments for this very severe condition.

  17. CD169+ macrophages regulate PD-L1 expression via type I interferon and thereby prevent severe immunopathology after LCMV infection

    PubMed Central

    Shaabani, Namir; Duhan, Vikas; Khairnar, Vishal; Gassa, Asmae; Ferrer-Tur, Rita; Häussinger, Dieter; Recher, Mike; Zelinskyy, Gennadiy; Liu, Jia; Dittmer, Ulf; Trilling, Mirko; Scheu, Stefanie; Hardt, Cornelia; Lang, Philipp A; Honke, Nadine; Lang, Karl S

    2016-01-01

    Upon infection with persistence-prone virus, type I interferon (IFN-I) mediates antiviral activity and also upregulates the expression of programmed death ligand 1 (PD-L1), and this upregulation can lead to CD8+ T-cell exhaustion. How these very diverse functions are regulated remains unknown. This study, using the lymphocytic choriomeningitis virus, showed that a subset of CD169+ macrophages in murine spleen and lymph nodes produced high amounts of IFN-I upon infection. Absence of CD169+ macrophages led to insufficient production of IFN-I, lower antiviral activity and persistence of virus. Lack of CD169+ macrophages also limited the IFN-I-dependent expression of PD-L1. Enhanced viral replication in the absence of PD-L1 led to persistence of virus and prevented CD8+ T-cell exhaustion. As a consequence, mice exhibited severe immunopathology and died quickly after infection. Therefore, CD169+ macrophages are important contributors to the IFN-I response and thereby influence antiviral activity, CD8+ T-cell exhaustion and immunopathology. PMID:27809306

  18. Virus-induced aggregates in infected cells.

    PubMed

    Moshe, Adi; Gorovits, Rena

    2012-10-17

    During infection, many viruses induce cellular remodeling, resulting in the formation of insoluble aggregates/inclusions, usually containing viral structural proteins. Identification of aggregates has become a useful diagnostic tool for certain viral infections. There is wide variety of viral aggregates, which differ by their location, size, content and putative function. The role of aggregation in the context of a specific virus is often poorly understood, especially in the case of plant viruses. The aggregates are utilized by viruses to house a large complex of proteins of both viral and host origin to promote virus replication, translation, intra- and intercellular transportation. Aggregated structures may protect viral functional complexes from the cellular degradation machinery. Alternatively, the activation of host defense mechanisms may involve sequestration of virus components in aggregates, followed by their neutralization as toxic for the host cell. The diversity of virus-induced aggregates in mammalian and plant cells is the subject of this review.

  19. Inhibition of diacylglycerol kinase alpha restores restimulation-induced cell death and reduces immunopathology in XLP-1

    PubMed Central

    Ruffo, Elisa; Malacarne, Valeria; Larsen, Sasha E.; Das, Rupali; Patrussi, Laura; Wülfing, Christoph; Biskup, Christoph; Kapnick, Senta M.; Verbist, Katherine; Tedrick, Paige; Schwartzberg, Pamela L.; Baldari, Cosima T.; Rubio, Ignacio; Nichols, Kim E.; Snow, Andrew L.; Baldanzi, Gianluca; Graziani, Andrea

    2016-01-01

    X-linked lymphoproliferative disease (XLP-1) is an often-fatal primary immunodeficiency associated with the exuberant expansion of activated CD8+ T cells following Epstein-Barr virus (EBV) infection. XLP-1 is caused by defects in SAP, an adaptor protein that modulates T cell receptor (TCR)-induced signaling. SAP-deficient T cells exhibit impaired TCR restimulation-induced cell death (RICD) and diminished TCR-induced inhibition of diacylglycerol kinase alpha (DGKα), leading to increased diacylglycerol metabolism and decreased signaling through Ras and PKCθ. Here, we show that down-regulation of DGKα activity in SAP-deficient T cells restores diacylglycerol signaling at the immune synapse and rescues RICD via induction of the pro-apoptotic proteins NUR77 and NOR1. Importantly, pharmacological inhibition of DGKα prevents the excessive CD8+ T cell expansion and IFNγ production that occur in Sap-deficient mice following Lymphocytic Choriomeningitis Virus infection without impairing lytic activity. Collectively, these data highlight DGKα as a viable therapeutic target to reverse the life-threatening EBV-associated immunopathology that occurs in XLP-1 patients. PMID:26764158

  20. Inhibition of diacylglycerol kinase α restores restimulation-induced cell death and reduces immunopathology in XLP-1.

    PubMed

    Ruffo, Elisa; Malacarne, Valeria; Larsen, Sasha E; Das, Rupali; Patrussi, Laura; Wülfing, Christoph; Biskup, Christoph; Kapnick, Senta M; Verbist, Katherine; Tedrick, Paige; Schwartzberg, Pamela L; Baldari, Cosima T; Rubio, Ignacio; Nichols, Kim E; Snow, Andrew L; Baldanzi, Gianluca; Graziani, Andrea

    2016-01-13

    X-linked lymphoproliferative disease (XLP-1) is an often-fatal primary immunodeficiency associated with the exuberant expansion of activated CD8(+) T cells after Epstein-Barr virus (EBV) infection. XLP-1 is caused by defects in signaling lymphocytic activation molecule (SLAM)-associated protein (SAP), an adaptor protein that modulates T cell receptor (TCR)-induced signaling. SAP-deficient T cells exhibit impaired TCR restimulation-induced cell death (RICD) and diminished TCR-induced inhibition of diacylglycerol kinase α (DGKα), leading to increased diacylglycerol metabolism and decreased signaling through Ras and PKCθ (protein kinase Cθ). We show that down-regulation of DGKα activity in SAP-deficient T cells restores diacylglycerol signaling at the immune synapse and rescues RICD via induction of the proapoptotic proteins NUR77 and NOR1. Pharmacological inhibition of DGKα prevents the excessive CD8(+) T cell expansion and interferon-γ production that occur in SAP-deficient mice after lymphocytic choriomeningitis virus infection without impairing lytic activity. Collectively, these data highlight DGKα as a viable therapeutic target to reverse the life-threatening EBV-associated immunopathology that occurs in XLP-1 patients.

  1. [Isolation of lymphocytic choriomeningitis virus from human individuals].

    PubMed

    Saavedra, M C; Ambrosio, A M; Riera, L; Levis, S; Sottosanti, J; Sabattini, M

    2001-01-01

    The activity of lymphocytic choriomeningitis virus (LCMv) in Argentina has been previously reported on the basis of serological evidence in rodents and humans and the isolation of only one strain of LCMv from a Mus domesticus captured in the province of Córdoba. The aim of this paper was to register patients with serological diagnosis of LCM, to isolate and to identify human strains of LCMv in Argentina. During the last 19 years, 15 cases were diagnosed as LCM by immunoflourescent indirect assay (IFI) and enzyme-linked immunosorbent assay (ELISA) but when neutralizing assay (NT) was incorporated, eight cases were classified as confirmed, three as probable and four as negative. The geographic distribution of the cases included three provinces: Córdoba, Buenos Aires and Santa Fe. Viral isolation was attempted in five patients classified as confirmed and only two resulted positive (P5226 and P8573). They were identified as LCMv by IFI and NT. The coexistence of LCMv with other arenaviruses, such as Junin and Oliveros viruses, in the same area, raises the probability of interactions between them, which could modify the virulence and/or pathogenicity for humans associated to genomic changes. Future studies of antigenic, genomic and virulence variability of different Argentine strains of LCMv, as well as the systematic search for human infection, will contribute to define the importance of this viral agent in our country and to implement control measures.

  2. A basic overview of multiple sclerosis immunopathology.

    PubMed

    Grigoriadis, N; van Pesch, V

    2015-10-01

    Multiple sclerosis (MS) is a multi-component disease characterized by inflammation, neurodegeneration and failure of central nervous system (CNS) repair mechanisms. Immune dysregulation appears to originate with dendritic cells (antigen-presenting cells) which have an activated phenotype in individuals with MS. Dendritic cells migrate across the blood-brain barrier and induce differentiation of memory T cells into pro-inflammatory T helper 1 (Th1) and Th17 lymphocytes. In turn, induction of macrophage and microglial activation produces other pro-inflammatory cytokines and oxygen and nitric oxide radicals responsible for the demyelination and axonal loss. Other known mediators of MS pathology include CD8+ T cells and memory B cells within the CNS. Some pathological hallmarks of MS are early axonal degeneration and progressive decline of brain volume in patients with clinically isolated syndromes who progress to clinically definite MS. Many new options to interfere with the course of MS have become available in recent years. To limit inflammatory demyelinating processes and delay disease progression, intervention to control inflammation must begin as early as possible. Each distinct type of immunotherapy (immunomodulation, immunosuppression and immune-selective intervention - blockade type, sequestering type or depleting type) corresponds to a specific underlying immunopathology of MS.

  3. Meningitis caused by lymphocytic choriomeningitis virus in a patient with leukemia.

    PubMed

    Al-Zein, Naser; Boyce, Thomas G; Correa, Armando G; Rodriguez, Vilmarie

    2008-10-01

    We report a case of 15-year-old girl with T-cell acute lymphoblastic leukemia who had fever, neutropenia, and severe headache while receiving maintenance chemotherapy. Cerebrospinal fluid testing revealed a lymphocytic pleocytosis and no evidence of relapsed leukemia. Meningitis caused by lymphocytic choriomeningitis virus was identified serologically. The patient's course was complicated by hydrocephalus requiring ventriculoperitoneal shunt placement and by an intracranial hemorrhage. Lymphocytic choriomeningitis virus is a rare cause of aseptic meningitis that should be considered in the symptomatic immunocompromised patient with an appropriate exposure history.

  4. Immunopathology of the noninfectious posterior and intermediate uveitides.

    PubMed

    Boyd, S R; Young, S; Lightman, S

    2001-01-01

    The posterior and intermediate uveitides share an underlying immune etiology; however, they can be clinically and immunopathologically distinguished. Although the initiating stimuli for posterior and intermediate uveities are not known, it is believed that an exogenous agent (such as a bacterium or a virus) or an endogenous molecule may induce disease. In either case, T-helper lymphocytes in conjunction with human leukocyte antigens are likely to be involved. This review examines the epidemiology, histology, immunopathology, and theories of pathogenesis of several posterior and intermediate uveitides, including sympathetic ophthalmia, Vogt-Koyanagi-Harada syndrome, Behçet's disease, sarcoidosis, intermediate uveitis, white dot syndromes, and birdshot retinochoroidopathy.

  5. Trace-forward investigation of mice in response to lymphocytic choriomeningitis virus outbreak.

    PubMed

    Edison, Laura; Knust, Barbara; Petersen, Bret; Gabel, Julie; Manning, Craig; Drenzek, Cherie; Ströher, Ute; Rollin, Pierre E; Thoroughman, Douglas; Nichol, Stuart T

    2014-02-01

    During follow-up of a 2012 US outbreak of lymphocytic choriomeningitis virus (LCMV), we conducted a trace-forward investigation. LCMV-infected feeder mice originating from a US rodent breeding facility had been distributed to >500 locations in 21 states. All mice from the facility were euthanized, and no additional persons tested positive for LCMV infection.

  6. Independent Lineage of Lymphocytic Choriomeningitis Virus in Wood Mice (Apodemus sylvaticus), Spain

    PubMed Central

    Ledesma, Juan; Fedele, Cesare Giovanni; Carro, Francisco; Lledó, Lourdes; Sánchez-Seco, María Paz; Tenorio, Antonio; Soriguer, Ramón Casimiro; Saz, José Vicente; Domínguez, Gerardo; Rosas, María Flora; Barandika, Jesús Félix

    2009-01-01

    To clarify the presence of lymphocytic choriomeningitis virus (LCMV) in Spain, we examined blood and tissue specimens from 866 small mammals. LCMV RNA was detected in 3 of 694 wood mice (Apodemus sylvaticus). Phylogenetic analyses suggest that the strains constitute a new evolutionary lineage. LCMV antibodies were detected in 4 of 10 rodent species tested. PMID:19861074

  7. Intestinal microbiota modulates gluten-induced immunopathology in humanized mice.

    PubMed

    Galipeau, Heather J; McCarville, Justin L; Huebener, Sina; Litwin, Owen; Meisel, Marlies; Jabri, Bana; Sanz, Yolanda; Murray, Joseph A; Jordana, Manel; Alaedini, Armin; Chirdo, Fernando G; Verdu, Elena F

    2015-11-01

    Celiac disease (CD) is an immune-mediated enteropathy triggered by gluten in genetically susceptible individuals. The recent increase in CD incidence suggests that additional environmental factors, such as intestinal microbiota alterations, are involved in its pathogenesis. However, there is no direct evidence of modulation of gluten-induced immunopathology by the microbiota. We investigated whether specific microbiota compositions influence immune responses to gluten in mice expressing the human DQ8 gene, which confers moderate CD genetic susceptibility. Germ-free mice, clean specific-pathogen-free (SPF) mice colonized with a microbiota devoid of opportunistic pathogens and Proteobacteria, and conventional SPF mice that harbor a complex microbiota that includes opportunistic pathogens were used. Clean SPF mice had attenuated responses to gluten compared to germ-free and conventional SPF mice. Germ-free mice developed increased intraepithelial lymphocytes, markers of intraepithelial lymphocyte cytotoxicity, gliadin-specific antibodies, and a proinflammatory gliadin-specific T-cell response. Antibiotic treatment, leading to Proteobacteria expansion, further enhanced gluten-induced immunopathology in conventional SPF mice. Protection against gluten-induced immunopathology in clean SPF mice was reversed after supplementation with a member of the Proteobacteria phylum, an enteroadherent Escherichia coli isolated from a CD patient. The intestinal microbiota can both positively and negatively modulate gluten-induced immunopathology in mice. In subjects with moderate genetic susceptibility, intestinal microbiota changes may be a factor that increases CD risk.

  8. Intestinal Microbiota Modulates Gluten-Induced Immunopathology in Humanized Mice

    PubMed Central

    Galipeau, Heather J.; McCarville, Justin L.; Huebener, Sina; Litwin, Owen; Meisel, Marlies; Jabri, Bana; Sanz, Yolanda; Murray, Joseph A.; Jordana, Manel; Alaedini, Armin; Chirdo, Fernando G.; Verdu, Elena F.

    2016-01-01

    Celiac disease (CD) is an immune-mediated enteropathy triggered by gluten in genetically susceptible individuals. The recent increase in CD incidence suggests that additional environmental factors, such as intestinal microbiota alterations, are involved in its pathogenesis. However, there is no direct evidence of modulation of gluten-induced immunopathology by the microbiota. We investigated whether specific microbiota compositions influence immune responses to gluten in mice expressing the human DQ8 gene, which confers moderate CD genetic susceptibility. Germ-free mice, clean specific-pathogen-free (SPF) mice colonized with a microbiota devoid of opportunistic pathogens and Proteobacteria, and conventional SPF mice that harbor a complex microbiota that includes opportunistic pathogens were used. Clean SPF mice had attenuated responses to gluten compared to germ-free and conventional SPF mice. Germ-free mice developed increased intraepithelial lymphocytes, markers of intraepithelial lymphocyte cytotoxicity, gliadin-specific antibodies, and a proinflammatory gliadin-specific T-cell response. Antibiotic treatment, leading to Proteobacteria expansion, further enhanced gluten-induced immunopathology in conventional SPF mice. Protection against gluten-induced immunopathology in clean SPF mice was reversed after supplementation with a member of the Proteobacteria phylum, an enteroadherent Escherichia coli isolated from a CD patient. The intestinal microbiota can both positively and negatively modulate gluten-induced immunopathology in mice. In subjects with moderate genetic susceptibility, intestinal microbiota changes may be a factor that increases CD risk. PMID:26456581

  9. Mechanistic perspective of the oxido-immunopathologic resolution property of kolaviron in mice influenza pneumonitis.

    PubMed

    Awogbindin, Ifeoluwa O; Olaleye, David O; Farombi, Ebenezer O

    2017-03-01

    Implicated in influenza-associated pathology are innate defence overzealousness and unabated secretion of oxidative tissue-sensitive antimicrobial agents. At different time points, mice were pre-treated with kolaviron (400 mg/kg), a natural antioxidant and anti-inflammatory agent, and subsequently challenged with 2 LD50 influenza A/H3N2/Perth/16/09 virus. After euthanasia at day 6, blood, lungs, liver and spleen were collected and processed for biochemical, immunohistochemical and flow cytometric assessment of redo-inflammatory imbalance, cytokine storm indices and T helper 1 host response. Previously kolaviron was reported to delay mortality onset, improve morbidity and attenuate myeloperoxidase activity and nitric oxide production with minimal impact on viral clearance. This study additionally confirmed nitric oxide, but not hydrogen peroxide, as the major culprit implicated in influenza virus-induced oxido-pathology. Systemic effect of the sustained inflammation and nitrosative stress was more prominent in the spleen and lung than in the liver of mice infected with A/H3N2/Perth/16/09. Influential to immunopathology was heightened pulmonary expression of IL-1β, RANTES, IL-10, MCP-1, NF-κB, iNOS and COX-2. However, kolaviron combated the influenza-established nitrative stress, reversed the elicited cytokine storm and restored the oxidized environment to a reductive milieu. Our data also suggest that kolaviron administration early in infection may foster CD4(+) response. These data indicate that kolaviron may confer disease-dwindling properties during acute influenza infection via a system-wide protective approach involving multiple targets especially at the early stage of the infection.

  10. Clinical and Pathomorphological Data on Hydro-Cephalus Caused by Prenatal Infection by the Lymphocytic Choriomeningitis Virus

    DTIC Science & Technology

    1991-01-01

    AD-A241 779 CLINICAL AND PATHOMORPHOLOGICAL DATA ON HYDRO- CEPHALUS CAUSED BY PRENATAL INFECTION BY THE LYMPHOCYTIC CHORIOMENINCITIS VIRUS M. M...PRENATAL INFECTION BY THE LYMPHOCYTIC CHORIOMENINGITIS VIRUS M. M. Sheynbergas, R. S. Pmashekas, R. L. Pikelite, Yu. P. Tulyavichene, Yu. M. Sverdlov, I. K...Chibirene, A. B. Raynite-Audinene* The first case of probable prenatal infection caused by /1004** the lymphocytic choriomeningitis virus was

  11. Virus-induced congenital malformations in cattle.

    PubMed

    Agerholm, Jørgen S; Hewicker-Trautwein, Marion; Peperkamp, Klaas; Windsor, Peter A

    2015-09-24

    Diagnosing the cause of bovine congenital malformations (BCMs) is challenging for bovine veterinary practitioners and laboratory diagnosticians as many known as well as a large number of not-yet reported syndromes exist. Foetal infection with certain viruses, including bovine virus diarrhea virus (BVDV), Schmallenberg virus (SBV), blue tongue virus (BTV), Akabane virus (AKAV), or Aino virus (AV), is associated with a range of congenital malformations. It is tempting for veterinary practitioners to diagnose such infections based only on the morphology of the defective offspring. However, diagnosing a virus as a cause of BCMs usually requires laboratory examination and even in such cases, interpretation of findings may be challenging due to lack of experience regarding genetic defects causing similar lesions, even in cases where virus or congenital antibodies are present. Intrauterine infection of the foetus during the susceptible periods of development, i.e. around gestation days 60-180, by BVDV, SBV, BTV, AKAV and AV may cause malformations in the central nervous system, especially in the brain. Brain lesions typically consist of hydranencephaly, porencephaly, hydrocephalus and cerebellar hypoplasia, which in case of SBV, AKAV and AV infections may be associated by malformation of the axial and appendicular skeleton, e.g. arthrogryposis multiplex congenita. Doming of the calvarium is present in some, but not all, cases. None of these lesions are pathognomonic so diagnosing a viral cause based on gross lesions is uncertain. Several genetic defects share morphology with virus induced congenital malformations, so expert advice should be sought when BCMs are encountered.

  12. Immunopathology of early and clinically silent lupus nephropathy.

    PubMed Central

    Cavallo, T.; Cameron, W. R.; Lapenas, D.

    1977-01-01

    Detailed immunopathologic studies of early or silent renal alterations in systemic lupus erythematosus have been sparse. The renal biopsies of 16 lupus patients with normal renal function, including 8 with hematuria and/or proteinuria of recent onset, and 8 without clinically detectable renal disease were investigated by light, immunofluorescence, and electron microscopy. Immunoglobulins, complement components, and electron-dense deposits were detected in glomeruli of all patients, regardless of morphologic appearance or lack of clinical evidence of renal involvement. Features of membranous glomerulonepritis were observed in 4 patients with substantial proteinuria. In the remaining 12 patients, including 3 with hematuria and 4 with slight proteinuria, either minimal glomerular alterations or features of mesangial proliferative glomerulonephritis were seen. Transformation of the original disease was demonstrated in 3 of 3 patients rebiopsied within 2 years. The significance of these findings is discussed in relation to a) the spectrum of clinical and immunopathologic alterations in lupus nephritis and b) transformation of the original disease. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:322502

  13. Identification of lymphocytic choriomeningitis mammarenavirus in house mouse (Mus musculus, Rodentia) in French Guiana.

    PubMed

    Lavergne, Anne; de Thoisy, Benoît; Tirera, Sourakhata; Donato, Damien; Bouchier, Christiane; Catzeflis, François; Lacoste, Vincent

    2016-01-01

    Thirty-seven house mice (Mus musculus, Rodentia) caught in different localities in French Guiana were screened to investigate the presence of lymphocytic choriomeningitis mammarenavirus (LCMV). Two animals trapped in an urban area were found positive, hosting a new strain of LCMV, that we tentatively named LCMV "Comou". The complete sequence was determined using a metagenomic approach. Phylogenetic analyses revealed that this strain is related to genetic lineage I composed of strains inducing severe disease in humans. These results emphasize the need for active surveillance in humans as well as in house mouse populations, which is a rather common rodent in French Guianese cities and settlements.

  14. Genetic reassortants of lymphocytic choriomeningitis virus: unexpected disease and mechanism of pathogenesis.

    PubMed Central

    Riviere, Y; Oldstone, M B

    1986-01-01

    Reassortant viruses of different strains of lymphocytic choriomeningitis viruses cause lethal disease after inoculation into neonatal BALB/c WEHI mice, but, in contrast, parental strains or reciprocal reassortants do not cause lethal disease. The disease is characterized by inhibition of growth and death. The pathogenic mechanism is the induction of interferon combined with higher virus titers and subsequent liver necrosis. The generation of lethal reassortants from nonlethal parent viruses likely has implications for understanding the outbreaks of unanticipated virulent disease within a viral family. Images PMID:2426464

  15. Mechanisms Involved in Virus-Induced Neural Cell Death

    DTIC Science & Technology

    2001-09-01

    We are using experimental infection with reoviruses as a model to study how viruses induce cell death (apoptosis) and cause dysregulation of the cell...and their ligand (TRAIL). Apoptosis involves both death-receptor (DR) and mitochondrial-associated cell death pathways, and leads to the early

  16. Virus-induced gene silencing (VIGS) in barley seedling leaves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Virus-induced gene silencing (VIGS) is one of the most potent reverse genetics technologies for gene functional characterization. This method exploits a dsRNA-mediated antiviral defense mechanism in plants. Using this method allows researchers to generate rapid phenotypic data in a relatively rapid ...

  17. The two faces of heterologous immunity: protection or immunopathology.

    PubMed

    Sharma, Shalini; Thomas, Paul G

    2014-03-01

    Immunity to previously encountered viruses can alter responses to unrelated pathogens. This phenomenon, which is known as heterologous immunity, has been well established in animal model systems. Heterologous immunity appears to be relatively common and may be beneficial by boosting protective responses. However, heterologous reactivity can also result in severe immunopathology. The key features that define heterologous immune modulation include alterations in the CD4(+) and CD8(+) T cell compartments and changes in viral dynamics and disease progression. In this review, we discuss recent advances and the current understanding of antiviral immunity in heterologous infections. The difficulties of studying these complex heterologous infections in humans are discussed, with special reference to the variations in HLA haplotypes and uncertainties about individuals' infection history. Despite these limitations, epidemiological analyses in humans and the data from mouse models of coinfection can be applied toward advancing the design of therapeutics and vaccination strategies.

  18. BK Polyomavirus and the Transplanted Kidney: Immunopathology and Therapeutic Approaches

    PubMed Central

    Lamarche, Caroline; Orio, Julie; Collette, Suzon; Senécal, Lynne; Hébert, Marie-Josée; Renoult, Édith; Tibbles, Lee Anne; Delisle, Jean-Sébastien

    2016-01-01

    Abstract BK polyomavirus is ubiquitous, with a seropositivity rate of over 75% in the adult population. Primary infection is thought to occur in the respiratory tract, but asymptomatic BK virus latency is established in the urothelium. In immunocompromised host, the virus can reactivate but rarely compromises kidney function except in renal grafts, where it causes a tubulointerstitial inflammatory response similar to acute rejection. Restoring host immunity against the virus is the cornerstone of treatment. This review covers the virus-intrinsic features, the posttransplant microenvironment as well as the host immune factors that underlie the pathophysiology of polyomavirus-associated nephropathy. Current and promising therapeutic approaches to treat or prevent this complication are discussed in relation to the complex immunopathology of this condition. PMID:27391196

  19. The immunopathology of canine vector-borne diseases

    PubMed Central

    2011-01-01

    The canine vector-borne infectious diseases (CVBDs) are an emerging problem in veterinary medicine and the zoonotic potential of many of these agents is a significant consideration for human health. The successful diagnosis, treatment and prevention of these infections is dependent upon firm understanding of the underlying immunopathology of the diseases in which there are unique tripartite interactions between the microorganism, the vector and the host immune system. Although significant advances have been made in the areas of molecular speciation and the epidemiology of these infections and their vectors, basic knowledge of the pathology and immunology of the diseases has lagged behind. This review summarizes recent studies of the pathology and host immune response in the major CVBDs (leishmaniosis, babesiosis, ehrlichiosis, hepatozoonosis, anaplasmosis, bartonellosis and borreliosis). The ultimate application of such immunological investigation is the development of effective vaccines. The current commercially available vaccines for canine leishmaniosis, babesiosis and borreliosis are reviewed. PMID:21489234

  20. Mechanisms of Virus-Induced Neural Cell Death

    DTIC Science & Technology

    2003-09-01

    We are using experimental infection with reoviruses to study how viruses induce cell death . (apoptosis), and the significance of apoptosis in the...pathogenesis of viral infection. We have developed one of the best-characterized experimental models for investigating and manipulating viral cell death pathways...We have shown that apoptosis is a major mechanism of reovirus-induced cell death in murine models of key human viral infections including

  1. Oxidative Lung Injury in Virus-Induced Wheezing

    DTIC Science & Technology

    2014-05-01

    activating Nrf2. Among them, hepatitis B and C viruses, human cytomegalovirus and the Kaposi’s sarcoma-associated herpes virus, which can all induce ROS...1055-1060, 1996. 48. Schaedler S, Krause J, Himmelsbach K, Carvajal-Yepes M, Lieder F, Klingel K et al. Hepatitis B virus induces expression of...designed to simultaneously probe for 12 viral targets in a single patient specimen (RSV/A, RSV/ B , Influenza A, Influenza A subtype H1, Influenza A subtype

  2. Influenza virus induces apoptosis via BAD-mediated mitochondrial dysregulation.

    PubMed

    Tran, Anh T; Cortens, John P; Du, Qiujiang; Wilkins, John A; Coombs, Kevin M

    2013-01-01

    Influenza virus infection results in host cell death and major tissue damage. Specific components of the apoptotic pathway, a signaling cascade that ultimately leads to cell death, are implicated in promoting influenza virus replication. BAD is a cell death regulator that constitutes a critical control point in the intrinsic apoptosis pathway, which occurs through the dysregulation of mitochondrial outer membrane permeabilization and the subsequent activation of downstream apoptogenic factors. Here we report a novel proviral role for the proapoptotic protein BAD in influenza virus replication. We show that influenza virus-induced cytopathology and cell death are considerably inhibited in BAD knockdown cells and that both virus replication and viral protein production are dramatically reduced, which suggests that virus-induced apoptosis is BAD dependent. Our data showed that influenza viruses induced phosphorylation of BAD at residues S112 and S136 in a temporal manner. Viral infection also induced BAD cleavage, late in the viral life cycle, to a truncated form that is reportedly a more potent inducer of apoptosis. We further demonstrate that knockdown of BAD resulted in reduced cytochrome c release and suppression of the intrinsic apoptotic pathway during influenza virus replication, as seen by an inhibition of caspases-3, caspase-7, and procyclic acidic repetitive protein (PARP) cleavage. Our data indicate that influenza viruses carefully modulate the activation of the apoptotic pathway that is dependent on the regulatory function of BAD and that failure of apoptosis activation resulted in unproductive viral replication.

  3. A comparison of biochemical and biological properties of standard and defective lymphocytic choriomeningitis virus

    PubMed Central

    Welsh, R. M.; Burner, P. A.; Holland, J. J.; Oldstone, M. B. A.; Thompson, H. A.; Villarreal, L. P.

    1975-01-01

    Lymphocytic choriomeningitis (LCM) virus infection of the mouse is the best-studied model of persistent viral infection. In cell culture, persistent LCM virus infections are associated with the production of large quantities of defective interfering (DI) LCM virus. These defective interfering particles cannot replicate by themselves yet can interfere with the replication of the standard virus and prevent the cytolytic effect caused by the standard virus. It is important to determine the mechanism of interference and to establish whether the DI virus plays a role in vivo. Biological and biochemical properties of the standard and DI virus particles and also virus enzymes are compared. Antigenic analyses reveal that cells releasing only DI virus particles have less cell surface expression of viral antigens than cells releasing the standard virus. In the animal model, the DI virus is shown to have a protective effect against the pathogenesis of the LCM virus disease both in the mouse and in the rat. PMID:60182

  4. A comparison of biochemical and biological properties of standard and defective lymphocytic choriomeningitis virus.

    PubMed

    Welsh, R M; Burner, P A; Holland, J J; Oldstone, M B; Thompson, H A; Villarreal, L P

    1975-01-01

    Lymphocytic choriomeningitis (LCM) virus infection of the mouse is the best-studied model of persistent viral infection. In cell culture, persistent LCM virus infections are associated with the production of large quantities of defective interfering (DI) LCM virus. These defective interfering particles cannot replicate by themselves yet can interfere with the replication of the standard virus and prevent the cytolytic effect caused by the standard virus. It is important to determine the mechanism of interference and to establish whether the DI virus plays a role in vivo. Biological and biochemical properties of the standard and DI virus particles and also virus enzymes are compared. Antigenic analyses reveal that cells releasing only DI virus particles have less cell surface expression of viral antigens than cells releasing the standard virus. In the animal model, the DI virus is shown to have a protective effect against the pathogenesis of the LCM virus disease both in the mouse and in the rat.

  5. Lymphocytic Choriomeningitis Virus in Employees and Mice at Multipremises Feeder-Rodent Operation, United States, 2012

    PubMed Central

    Ströher, Ute; Edison, Laura; Albariño, César G.; Lovejoy, Jodi; Armeanu, Emilian; House, Jennifer; Cory, Denise; Horton, Clayton; Fowler, Kathy L.; Austin, Jessica; Poe, John; Humbaugh, Kraig E.; Guerrero, Lisa; Campbell, Shelley; Gibbons, Aridth; Reed, Zachary; Cannon, Deborah; Manning, Craig; Petersen, Brett; Metcalf, Douglas; Marsh, Bret; Nichol, Stuart T.; Rollin, Pierre E.

    2014-01-01

    We investigated the extent of lymphocytic choriomeningitis virus (LCMV) infection in employees and rodents at 3 commercial breeding facilities. Of 97 employees tested, 31 (32%) had IgM and/or IgG to LCMV, and aseptic meningitis was diagnosed in 4 employees. Of 1,820 rodents tested in 1 facility, 382 (21%) mice (Mus musculus) had detectable IgG, and 13 (0.7%) were positive by reverse transcription PCR; LCMV was isolated from 8. Rats (Rattus norvegicus) were not found to be infected. S-segment RNA sequence was similar to strains previously isolated in North America. Contact by wild mice with colony mice was the likely source for LCMV, and shipments of infected mice among facilities spread the infection. The breeding colonies were depopulated to prevent further human infections. Future outbreaks can be prevented with monitoring and management, and employees should be made aware of LCMV risks and prevention. PMID:24447605

  6. Naturally occurring Parelaphostrongylus tenuis-associated choriomeningitis in a guinea pig with neurologic signs.

    PubMed

    Southard, T; Bender, H; Wade, S E; Grunenwald, C; Gerhold, R W

    2013-05-01

    An adult male guinea pig (Cavia porcellus) with a 1-month history of hind limb paresis, torticollis, and seizures was euthanized and submitted for necropsy. Gross examination was unremarkable, but histologic examination revealed multifocal eosinophilic and lymphoplasmacytic choriomeningitis and cross sections of nematode parasites within the leptomeninges of the midbrain and diencephalon. Morphologic features of the nematode were consistent with a metastrongyle, and the parasite was identified as Parelaphostrongylus tenuis by polymerase chain reaction testing and nucleotide sequencing. Further questioning of the owner revealed that the guinea pig was fed grass from a yard often grazed by white-tailed deer (Odocoileus virginianus). To the authors' knowledge, this is the first report of a naturally occurring P. tenuis infection in a guinea pig.

  7. Limiting immunopathology: Interaction between carotenoids and enzymatic antioxidant defences.

    PubMed

    Babin, A; Saciat, C; Teixeira, M; Troussard, J-P; Motreuil, S; Moreau, J; Moret, Y

    2015-04-01

    The release of reactive oxygen and nitrogen species (ROS and RNS) during the inflammatory response generates damages to host tissues, referred to as immunopathology, and is an important factor in ecological immunology. The integrated antioxidant system, comprising endogenous antioxidant enzymes (e.g. superoxide dismutase SOD, and catalase CAT) and dietary antioxidants (e.g. carotenoids), helps to cope with immune-mediated oxidative stress. Crustaceans store large amounts of dietary carotenoids for yet unclear reasons. While being immunostimulants and antioxidants, the interaction of these pigments with antioxidant enzymes remains unclear. Here, we tested the interaction between dietary supplementation with carotenoids and immune challenge on immune defences and the activity of the antioxidant enzymes SOD and CAT, in the amphipod crustacean Gammarus pulex. Dietary supplementation increased the concentrations of circulating carotenoids and haemocytes in the haemolymph, while the immune response induced the consumption of circulating carotenoids and a drop of haemocyte density. Interestingly, supplemented gammarids exhibited down-regulated SOD activity but high CAT activity compared to control ones. Our study reveals specific interactions of dietary carotenoids with endogenous antioxidant enzymes, and further underlines the potential importance of carotenoids in the evolution of immunity and/or of antioxidant mechanisms in crustaceans.

  8. Immunopathological Features of Canine Myocarditis Associated with Leishmania infantum Infection.

    PubMed

    Costagliola, Alessandro; Piegari, Giuseppe; Otrocka-Domagala, Iwona; Ciccarelli, Davide; Iovane, Valentina; Oliva, Gaetano; Russo, Valeria; Rinaldi, Laura; Papparella, Serenella; Paciello, Orlando

    2016-01-01

    Myocarditis associated with infectious diseases may occur in dogs, including those caused by the protozoa Neospora caninum, Trypanosoma cruzi, Babesia canis, and Hepatozoon canis. However, although cardiac disease due to Leishmania infection has also been documented, the immunopathological features of myocarditis have not been reported so far. The aim of this study was to examine the types of cellular infiltrates and expression of MHC classes I and II in myocardial samples obtained at necropsy from 15 dogs with an established intravitam diagnosis of visceral leishmaniasis. Pathological features of myocardium were characterized by hyaline degeneration of cardiomyocytes, necrosis, and infiltration of mononuclear inflammatory cells consisting of lymphocytes and macrophages, sometimes with perivascular pattern; fibrosis was also present in various degrees. Immunophenotyping of inflammatory cells was performed by immunohistochemistry on cryostat sections obtained from the heart of the infected dogs. The predominant leukocyte population was CD8+ with a fewer number of CD4+ cells. Many cardiomyocytes expressed MHC classes I and II on the sarcolemma. Leishmania amastigote forms were not detected within macrophages or any other cell of the examined samples. Our study provided evidence that myocarditis in canine visceral leishmaniasis might be related to immunological alterations associated with Leishmania infection.

  9. Immunopathological Features of Canine Myocarditis Associated with Leishmania infantum Infection

    PubMed Central

    Piegari, Giuseppe; Otrocka-Domagala, Iwona; Ciccarelli, Davide; Iovane, Valentina; Oliva, Gaetano; Russo, Valeria; Rinaldi, Laura; Papparella, Serenella; Paciello, Orlando

    2016-01-01

    Myocarditis associated with infectious diseases may occur in dogs, including those caused by the protozoa Neospora caninum, Trypanosoma cruzi, Babesia canis, and Hepatozoon canis. However, although cardiac disease due to Leishmania infection has also been documented, the immunopathological features of myocarditis have not been reported so far. The aim of this study was to examine the types of cellular infiltrates and expression of MHC classes I and II in myocardial samples obtained at necropsy from 15 dogs with an established intravitam diagnosis of visceral leishmaniasis. Pathological features of myocardium were characterized by hyaline degeneration of cardiomyocytes, necrosis, and infiltration of mononuclear inflammatory cells consisting of lymphocytes and macrophages, sometimes with perivascular pattern; fibrosis was also present in various degrees. Immunophenotyping of inflammatory cells was performed by immunohistochemistry on cryostat sections obtained from the heart of the infected dogs. The predominant leukocyte population was CD8+ with a fewer number of CD4+ cells. Many cardiomyocytes expressed MHC classes I and II on the sarcolemma. Leishmania amastigote forms were not detected within macrophages or any other cell of the examined samples. Our study provided evidence that myocarditis in canine visceral leishmaniasis might be related to immunological alterations associated with Leishmania infection. PMID:27413751

  10. Epidemiology of virus-induced asthma exacerbations: with special reference to the role of human rhinovirus

    PubMed Central

    Saraya, Takeshi; Kurai, Daisuke; Ishii, Haruyuki; Ito, Anri; Sasaki, Yoshiko; Niwa, Shoichi; Kiyota, Naoko; Tsukagoshi, Hiroyuki; Kozawa, Kunihisa; Goto, Hajime; Takizawa, Hajime

    2014-01-01

    Viral respiratory infections may be associated with the virus-induced asthma in adults as well as children. Particularly, human rhinovirus is strongly suggested a major candidate for the associations of the virus-induced asthma. Thus, in this review, we reviewed and focused on the epidemiology, pathophysiology, and treatment of virus-induced asthma with special reference on human rhinovirus. Furthermore, we added our preliminary data regarding the clinical and virological findings in the present review. PMID:24904541

  11. The Role of Myeloid Cell Activation and Arginine Metabolism in the Pathogenesis of Virus-Induced Diseases

    PubMed Central

    Burrack, Kristina S.; Morrison, Thomas E.

    2014-01-01

    When an antiviral immune response is generated, a balance must be reached between two opposing pathways: the production of proinflammatory and cytotoxic effectors that drive a robust antiviral immune response to control the infection and regulators that function to limit or blunt an excessive immune response to minimize immune-mediated pathology and repair tissue damage. Myeloid cells, including monocytes and macrophages, play an important role in this balance, particularly through the activities of the arginine-hydrolyzing enzymes nitric oxide synthase 2 (Nos2; iNOS) and arginase 1 (Arg1). Nitric oxide (NO) production by iNOS is an important proinflammatory mediator, whereas Arg1-expressing macrophages contribute to the resolution of inflammation and wound repair. In the context of viral infections, expression of these enzymes can result in a variety of outcomes for the host. NO has direct antiviral properties against some viruses, whereas during other virus infections NO can mediate immunopathology and/or inhibit the antiviral immune response to promote chronic infection. Arg1 activity not only has important wound healing functions but can also inhibit the antiviral immune response during some viral infections. Thus, depending on the specific virus and the tissue(s) involved, the activity of both of these arginine-hydrolyzing enzymes can either exacerbate or limit the severity of virus-induced disease. In this review, we will discuss a variety of viral infections, including HIV, SARS-CoV, LCMV, HCV, RSV, and others, where myeloid cells influence the control and clearance of the virus from the host, as well as the severity and resolution of tissue damage, via the activities of iNOS and/or Arg1. Clearly, monocyte/macrophage activation and arginine metabolism will continue to be important areas of investigation in the context of viral infections. PMID:25250029

  12. Immune Evasion, Immunopathology and the Regulation of the Immune System

    PubMed Central

    Sorci, Gabriele; Cornet, Stéphane; Faivre, Bruno

    2013-01-01

    Costs and benefits of the immune response have attracted considerable attention in the last years among evolutionary biologists. Given the cost of parasitism, natural selection should favor individuals with the most effective immune defenses. Nevertheless, there exists huge variation in the expression of immune effectors among individuals. To explain this apparent paradox, it has been suggested that an over-reactive immune system might be too costly, both in terms of metabolic resources and risks of immune-mediated diseases, setting a limit to the investment into immune defenses. Here, we argue that this view neglects one important aspect of the interaction: the role played by evolving pathogens. We suggest that taking into account the co-evolutionary interactions between the host immune system and the parasitic strategies to overcome the immune response might provide a better picture of the selective pressures that shape the evolution of immune functioning. Integrating parasitic strategies of host exploitation can also contribute to understand the seemingly contradictory results that infection can enhance, but also protect from, autoimmune diseases. In the last decades, the incidence of autoimmune disorders has dramatically increased in wealthy countries of the northern hemisphere with a concomitant decrease of most parasitic infections. Experimental work on model organisms has shown that this pattern may be due to the protective role of certain parasites (i.e., helminths) that rely on the immunosuppression of hosts for their persistence. Interestingly, although parasite-induced immunosuppression can protect against autoimmunity, it can obviously favor the spread of other infections. Therefore, we need to think about the evolution of the immune system using a multidimensional trade-off involving immunoprotection, immunopathology and the parasitic strategies to escape the immune response. PMID:25436882

  13. Immunopathological predictors of prognosis in IgA nephropathy.

    PubMed

    Tomino, Yasuhiko

    2013-01-01

    IgA nephropathy (IgAN) is characterized by the expansion of the glomerular mesangial matrix with mesangial cell proliferation and/or mononuclear cell infiltration. Glomeruli typically contain generalized diffuse granular mesangial deposits of IgA (mainly galactose-deficient polymeric IgA1), IgG and C3. Electron-dense deposits are observed in the glomerular mesangial area and glomerular basement membrane. Therefore, this disease is considered to be an immune complex-mediated glomerulonephritis. The detailed observations of electron-dense deposits are of value for the evaluation of the disease activity. The evidence- and lumped-system-based histological classification can identify the magnitude of the risk of disease progression and is useful for predicting long-term renal outcome in this disease. A study of IgAN patients showed that the number of angiotensin-II-positive cells was correlated with mast cells containing both tryptase and chymase and containing only tryptase in the interstitial lesions with the most severe pathological changes. Hypercomplementemia occurs in the progression of IgAN and is controlled by an increase of complement regulatory proteins. The measurement of urinary levels of membrane attack complex and factor H and extraglomerular C3 deposition could be useful indicators of renal injury in patients with IgAN. Development of glomerulosclerosis in IgAN patients is associated with podocytopenia and the alteration of the podocyte components, i.e. podocalyxin and dendrin. It appears that the number of urinary podocytes and levels of urinary podocalyxin are useful for predicting histological changes in IgAN patients. A positive correlation was observed between acute extracapillary changes and the number of dendrin-positive nuclei per glomerulus in patients with IgAN. It is concluded that there are many immunopathological predictors of prognosis, including genetic background, in this disease. Thus, the early diagnostic screening of prognosis

  14. An Ultrasensitive Mechanism Regulates Influenza Virus-Induced Inflammation.

    PubMed

    Shoemaker, Jason E; Fukuyama, Satoshi; Eisfeld, Amie J; Zhao, Dongming; Kawakami, Eiryo; Sakabe, Saori; Maemura, Tadashi; Gorai, Takeo; Katsura, Hiroaki; Muramoto, Yukiko; Watanabe, Shinji; Watanabe, Tokiko; Fuji, Ken; Matsuoka, Yukiko; Kitano, Hiroaki; Kawaoka, Yoshihiro

    2015-06-01

    Influenza viruses present major challenges to public health, evident by the 2009 influenza pandemic. Highly pathogenic influenza virus infections generally coincide with early, high levels of inflammatory cytokines that some studies have suggested may be regulated in a strain-dependent manner. However, a comprehensive characterization of the complex dynamics of the inflammatory response induced by virulent influenza strains is lacking. Here, we applied gene co-expression and nonlinear regression analysis to time-course, microarray data developed from influenza-infected mouse lung to create mathematical models of the host inflammatory response. We found that the dynamics of inflammation-associated gene expression are regulated by an ultrasensitive-like mechanism in which low levels of virus induce minimal gene expression but expression is strongly induced once a threshold virus titer is exceeded. Cytokine assays confirmed that the production of several key inflammatory cytokines, such as interleukin 6 and monocyte chemotactic protein 1, exhibit ultrasensitive behavior. A systematic exploration of the pathways regulating the inflammatory-associated gene response suggests that the molecular origins of this ultrasensitive response mechanism lie within the branch of the Toll-like receptor pathway that regulates STAT1 phosphorylation. This study provides the first evidence of an ultrasensitive mechanism regulating influenza virus-induced inflammation in whole lungs and provides insight into how different virus strains can induce distinct temporal inflammation response profiles. The approach developed here should facilitate the construction of gene regulatory models of other infectious diseases.

  15. Lymphocytic choriomeningitis virus (LCMV) infection of macaques: a model for Lassa fever.

    PubMed

    Zapata, Juan C; Pauza, C David; Djavani, Mahmoud M; Rodas, Juan D; Moshkoff, Dmitry; Bryant, Joseph; Ateh, Eugene; Garcia, Cybele; Lukashevich, Igor S; Salvato, Maria S

    2011-11-01

    Arenaviruses such as Lassa fever virus (LASV) and lymphocytic choriomeningitis virus (LCMV) are benign in their natural reservoir hosts, and can occasionally cause severe viral hemorrhagic fever (VHF) in non-human primates and in human beings. LCMV is considerably more benign for human beings than Lassa virus, however certain strains, like the LCMV-WE strain, can cause severe disease when the virus is delivered as a high-dose inoculum. Here we describe a rhesus macaque model for Lassa fever that employs a virulent strain of LCMV. Since LASV must be studied within Biosafety Level-4 (BSL-4) facilities, the LCMV-infected macaque model has the advantage that it can be used at BSL-3. LCMV-induced disease is rarely as severe as other VHF, but it is similar in cases where vascular leakage leads to lethal systemic failure. The LCMV-infected macaque has been valuable for describing the course of disease with differing viral strains, doses and routes of infection. By monitoring system-wide changes in physiology and gene expression in a controlled experimental setting, it is possible to identify events that are pathognomonic for developing VHF and potential treatment targets.

  16. O Mannosylation of alpha-dystroglycan is essential for lymphocytic choriomeningitis virus receptor function.

    PubMed

    Imperiali, Mauro; Thoma, Claudio; Pavoni, Ernesto; Brancaccio, Andrea; Callewaert, Nico; Oxenius, Annette

    2005-11-01

    Alpha-dystroglycan (alpha-DG) was identified as a common receptor for lymphocytic choriomeningitis virus (LCMV) and several other arenaviruses including the human pathogenic Lassa fever virus. Initial work postulated that interactions between arenavirus glycoproteins and alpha-DG are based on protein-protein interactions. We found, however, that susceptibility toward LCMV infection differed in various cell lines despite them expressing comparable levels of DG, suggesting that posttranslational modifications of alpha-DG would be involved in viral receptor function. Here, we demonstrate that glycosylation of alpha-DG, and in particular, O mannosylation, which is a rare type of O-linked glycosylation in mammals, is essential for LCMV receptor function. Cells that are defective in components of the O-mannosylation pathway showed strikingly reduced LCMV infectibility. As defective O mannosylation is associated with severe clinical symptoms in mammals such as congenital muscular dystrophies, it is likely that LCMV and potentially other arenaviruses may have selected this conserved and crucial posttranslational modification as the primary target structure for cell entry and infection.

  17. In vitro selection of lymphocytic choriomeningitis virus escape mutants by cytotoxic T lymphocytes.

    PubMed Central

    Aebischer, T; Moskophidis, D; Rohrer, U H; Zinkernagel, R M; Hengartner, H

    1991-01-01

    Cytotoxic T lymphocyte (CTL)-mediated cytolysis is induced via the interaction of the specific T-cell antigen receptor and the peptidic viral antigen associated with the major histocompatibility complex class I antigen. Here we demonstrate in vitro that lymphocytic choriomeningitis virus (LCMV) can escape the cytotoxic activity of LCMV-specific cloned CTLs by single amino acid changes within the recognized T-cell epitope defined by residues 275-289 of the LCMV glycoprotein [LCMV-GP-(275-289)]. LCMV-infected fibroblasts at a multiplicity of infection of 10(-3) exposed to virus-specific CTL at an effector-to-target cell ratio of 4:1 4 hr after infection was optimal for virus mutant selection. The selections were carried out with three LCMV-GP-(275-289)-specific CTL clones expressing T-cell antigen receptors containing the identical variable gene segments V alpha 4 and V beta 10 but different junctional regions; selection was also possible with LCMV-GP-(275-289)-specific cytotoxic polyclonal T cells. The most common escape mutation was an amino acid change of asparagine (AAT) to aspartic acid (GAT) at position 280; an additional mutation was glycine (GGT) to aspartic acid (GAT) at position 282. The results presented show that relevant point mutations within the T-cell epitope of LCMV-GP-(275-289) occur frequently and that they are selectable in vitro by CTLs. Images PMID:1722316

  18. Inhibition of Cellular Entry of Lymphocytic Choriomeningitis Virus by Amphipathic DNA Polymers

    PubMed Central

    Lee, Andrew M.; Rojek, Jillian M.; Gundersen, Anette; Ströher, Ute; Juteau, Jean-Marc; Vaillant, Andrew; Kunz, Stefan

    2008-01-01

    The prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) represents a powerful experimental model for the study of the basic virology and pathogenesis of arenaviruses. In the present study, we used the LCMV model to evaluate the anti-viral potential of phosphorothioate oligonucleotides against arenaviruses. Our findings indicate that amphipathic DNA polymers (APs) are potent inhibitors of infection with a series of LCMV isolates with IC50 in the low nanomolar range. APs target the surface glycoprotein (GP) of LCMV and block viral entry and cell-cell propagation of the virus, without affecting later steps in replication or release of progeny virus from infected cells. The anti-viral action of APs is sequence-independent but is critically dependent on their size and hydrophobicity. Mechanistically, we provide evidence that APs disrupt the interaction between LCMVGP and its cellular receptor, α-dystroglycan. Exposure of LCMV to APs does not affect the stability of the GP virion spike and has no effect on the conformation of a neutralizing antibody epitope, suggesting rather subtle changes in the conformation and/or conformational dynamics of the viral GP. PMID:18022208

  19. Lymphocytic choriomeningitis virus (LCMV) infection of macaques: a model for Lassa fever

    PubMed Central

    Zapata, Juan C.; Pauza, C. David; Djavani, Mahmoud M.; Rodas, Juan D.; Moshkoff, Dmitry; Bryant, Joseph; Ateh, Eugene; Garcia, Cybele; Lukashevich, Igor S.; Salvato, Maria S.

    2011-01-01

    Arenaviruses such as Lassa fever virus (LASV) and lymphocytic choriomeningitis virus (LCMV) are benign in their natural reservoir hosts, and can occasionally cause severe viral hemorrhagic fever (VHF) in non-human primates and in human beings. LCMV is considerably more benign for human beings than Lassa virus, however certain strains, like the LCMV-WE strain, can cause severe disease when the virus is delivered as a high-dose inoculum. Here we describe a rhesus macaque model for Lassa fever that employs a virulent strain of LCMV. Since LASV must be studied within Biosafety Level-4 (BSL-4) facilities, the LCMV-infected macaque model has the advantage that it can be used at BSL-3. LCMV-induced disease is rarely as severe as other VHF, but it is similar in cases where vascular leakage leads to lethal systemic failure. The LCMV-infected macaque has been valuable for describing the course of disease with differing viral strains, doses and routes of infection. By monitoring system-wide changes in physiology and gene expression in a controlled experimental setting, it is possible to identify events that are pathognomonic for developing VHF and potential treatment targets. PMID:21820469

  20. Cell entry of Lassa virus induces tyrosine phosphorylation of dystroglycan.

    PubMed

    Moraz, Marie-Laurence; Pythoud, Christelle; Turk, Rolf; Rothenberger, Sylvia; Pasquato, Antonella; Campbell, Kevin P; Kunz, Stefan

    2013-05-01

    The extracellular matrix (ECM) receptor dystroglycan (DG) serves as a cellular receptor for the highly pathogenic arenavirus Lassa virus (LASV) that causes a haemorrhagic fever with high mortality in human. In the host cell, DG provides a molecular link between the ECM and the actin cytoskeleton via the adapter proteins utrophin or dystrophin. Here we investigated post-translational modifications of DG in the context of LASV cell entry. Using the tyrosine kinase inhibitor genistein, we found that tyrosine kinases are required for efficient internalization of virus particles, but not virus-receptor binding. Engagement of cellular DG by LASV envelope glycoprotein (LASV GP) in human epithelial cells induced tyrosine phosphorylation of the cytoplasmic domain of DG. LASV GP binding to DG further resulted in dissociation of the adapter protein utrophin from virus-bound DG. This virus-induced dissociation of utrophin was affected by genistein treatment, suggesting a role of receptor tyrosine phosphorylation in the process.

  1. Virus -induced plankton dynamic and sea spray oragnics

    NASA Astrophysics Data System (ADS)

    Facchini, Maria Cristina; O'Dowd, Colin; Danovaro, Roberto

    2015-04-01

    The processes that link phytoplankton biomass and productivity to the organic matter enrichment in sea spray aerosol are far from being understood and modelling predictions remain highly uncertain at the moment. While some studies have asserted that the enrichment of OM in sea spray aerosol is independent on marine productivity, others, on the contrary, have shown significant correlation with phytoplankton biomass and productivity (Chl-a retrieved by satellites). Here we show that viral infection of prokaryotes and phytoplankton, by inducing the release of large quantities of surfaceactive organic matter (cell debris, exudates and other colloidal gel-forming material), in part due to cell lysis and plankton defence reactions, and in part from rapid virus multiplication, triggers the organic matter (OM) enrichment in the sea-spray particles during blooms. We show that virus-induced bloom dynamics may explain the contrasting results present in literature on the link between primary productivity and OM sea spray enrichment.

  2. Cell entry of Lassa virus induces tyrosine phosphorylation of dystroglycan

    PubMed Central

    Moraz, Marie-Laurence; Pythoud, Christelle; Turk, Rolf; Rothenberger, Sylvia; Pasquato, Antonella; Campbell, Kevin P.; Kunz, Stefan

    2013-01-01

    The extracellular matrix (ECM) receptor dystroglycan (DG) serves as a cellular receptor for the highly pathogenic arenavirus Lassa virus (LASV) that causes a hemorrhagic fever with high mortality in man. In the host cell, DG provides a molecular link between the ECM and the actin cytoskeleton via the adapter proteins utrophin or dystrophin. Here we investigated post-translational modifications of DG in the context of LASV cell entry. Using the tyrosine kinase inhibitor genistein, we found that tyrosine kinases are required for efficient internalization of virus particles, but not virus-receptor binding. Engagement of cellular DG by LASV envelope glycoprotein (LASV GP) in human epithelial cells induced tyrosine phosphorylation of the cytoplasmic domain of DG. LASV GP binding to DG further resulted in dissociation of the adapter protein utrophin from virus-bound DG. This virus-induced dissociation of utrophin was affected by genistein treatment, suggesting a role of receptor tyrosine phosphorylation in the process. PMID:23279385

  3. An MHC class Ib-restricted CD8+ T cell response to lymphocytic choriomeningitis virus.

    PubMed

    Chen, Lili; Jay, David C; Fairbanks, Jared D; He, Xiao; Jensen, Peter E

    2011-12-15

    Conventional MHC class Ia-restricted CD8(+) T cells play a dominant role in the host response to virus infections, but recent studies indicate that T cells with specificity for nonclassical MHC class Ib molecules may also participate in host defense. To investigate the potential role of class Ib molecules in anti-viral immune responses, K(b-/-)D(b-/-)CIITA(-/-) mice lacking expression of MHC class Ia and class II molecules were infected with lymphocytic choriomeningitis virus (LCMV). These animals have a large class Ib-selected CD8(+) T cell population and they were observed to mediate partial (but incomplete) virus clearance during acute LCMV infection as compared with K(b-/-)D(b-/-)β(2)-microglobulin(-/-) mice that lack expression of both MHC class Ia and class Ib molecules. Infection was associated with expansion of splenic CD8(+) T cells and induction of granzyme B and IFN-γ effector molecules in CD8(+) T cells. Partial virus clearance was dependent on CD8(+) cells. In vitro T cell restimulation assays demonstrated induction of a population of β(2)-microglobulin-dependent, MHC class Ib-restricted CD8(+) T cells with specificity for viral Ags and yet to be defined nonclassical MHC molecules. MHC class Ib-restricted CD8(+) T cell responses were also observed after infection of K(b-/-)D(b-/-)mice despite the low number of CD8(+) T cells in these animals. Long-term infection studies demonstrated chronic infection and gradual depletion of CD8(+) T cells in K(b-/-)D(b-/-)CIITA(-/-) mice, demonstrating that class Ia molecules are required for viral clearance. These findings demonstrate that class Ib-restricted CD8(+) T cells have the potential to participate in the host immune response to LCMV.

  4. The role of proinflammatory cytokines in wasting disease during lymphocytic choriomeningitis virus infection.

    PubMed

    Kamperschroer, Cris; Quinn, Daniel G

    2002-07-01

    Infection with pathogens often leads to loss of body weight, but the cause of weight loss during infection is poorly understood. We used the infection of mice with lymphocytic choriomeningitis virus (LCMV) as a model to study how pathogens induce weight loss. If LCMV is introduced into the CNS of CTL-deficient mice, the immune response against the virus leads to a severe weight loss called wasting disease. We planned to determine what components of this antiviral immune response mediate wasting disease. By adoptive transfer, we show that CD4 T cells activated by LCMV infection are sufficient to cause wasting disease. We examined the role of cytokines in LCMV-induced wasting disease using mice lacking specific cytokines or cytokine receptors. Results of adoptive transfer experiments suggest that TNF-alpha is not involved in LCMV-induced wasting disease and show that IFN-gamma contributes to the disease. Consistent with a role for IFN-gamma in wasting, we find that IFN-gamma is necessary for LCMV-specific CD4 T cell responses in the CNS, most likely because it is required to induce MHC class II expression. Our data also indicate that IL-1 is required for LCMV-induced wasting and that IL-6 contributes to the wasting disease. Additionally, our results identify alpha-melanocyte-stimulating hormone as a potential mediator of the disease. Overall, this work defines the critical role of virus-primed CD4 T cells and of proinflammatory cytokines in the pathogenesis of wasting disease induced by LCMV infection.

  5. Prevalence of lymphocytic choriomeningitis virus infection in a human population of Argentina.

    PubMed

    Ambrosio, A M; Feuillade, M R; Gamboa, G S; Maiztegui, J I

    1994-03-01

    The activity of lymphocytic choriomeningitis virus (LCMV) in the endemic area of Argentine hemorrhagic fever has been previously reported and represents the first evidence of the coexistence of two arenaviruses pathogenic for humans, Junin and LCMV, in the same geographic area. Data are presented on the prevalence of LCMV human infection in a 10,000-km2 area located in Santa Fe Province, Argentina. Study subjects were males, 15-65 years old, living and/or working in the rural area of 41 localities. One serum sample was obtained from each 7,227 volunteers from a total population of 21,340 individuals with the described features. Antibodies to LCMV were assessed by means of an indirect immunofluorescence assay. These antibodies were found in 172 serum samples, with titers ranging from 1:8 to 1:128 (geometric mean titer = 15.03), and a mean percentage of infection of 2.38%. A significantly different distribution of positive individuals was found between the eastern (1.54%) and western (3.07%) borders of the region studied (P < 0.0003). The higher percentage of infection on the western side was due to the existence of two clusters of counties with a mean percentage of 6.06% that was significantly different from the 1.67% obtained in the rest of the study area (P < 0.0003). These results provide new information on the LCMV activity in Argentina, and update the evidence on the coexistence of two arenaviruses in the same region of Argentina. This circumstance increases the probability of generation of viral reassortants with changes that could determine the need for new therapeutic and/or preventive strategies for arenaviral diseases.

  6. TPL-2 Regulates Macrophage Lipid Metabolism and M2 Differentiation to Control TH2-Mediated Immunopathology

    PubMed Central

    Entwistle, Lewis J.; Khoury, Hania; Papoutsopoulou, Stamatia; Mahmood, Radma; Mansour, Nuha R.; Ching-Cheng Huang, Stanley; Pearce, Edward J.; Pedro S. de Carvalho, Luiz; Ley, Steven C.

    2016-01-01

    Persistent TH2 cytokine responses following chronic helminth infections can often lead to the development of tissue pathology and fibrotic scarring. Despite a good understanding of the cellular mechanisms involved in fibrogenesis, there are very few therapeutic options available, highlighting a significant medical need and gap in our understanding of the molecular mechanisms of TH2-mediated immunopathology. In this study, we found that the Map3 kinase, TPL-2 (Map3k8; Cot) regulated TH2-mediated intestinal, hepatic and pulmonary immunopathology following Schistosoma mansoni infection or S. mansoni egg injection. Elevated inflammation, TH2 cell responses and exacerbated fibrosis in Map3k8–/–mice was observed in mice with myeloid cell-specific (LysM) deletion of Map3k8, but not CD4 cell-specific deletion of Map3k8, indicating that TPL-2 regulated myeloid cell function to limit TH2-mediated immunopathology. Transcriptional and metabolic assays of Map3k8–/–M2 macrophages identified that TPL-2 was required for lipolysis, M2 macrophage activation and the expression of a variety of genes involved in immuno-regulatory and pro-fibrotic pathways. Taken together this study identified that TPL-2 regulated TH2-mediated inflammation by supporting lipolysis and M2 macrophage activation, preventing TH2 cell expansion and downstream immunopathology and fibrosis. PMID:27487182

  7. Immunopathology and Cytokine Responses in Commercial Broiler Chickens with Gangrenous Dermatitis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gangrene dermatitis (GD) is an emerging disease of increasing economic importance in poultry that results from infection by Clostridium septicum and C. perfringens (CP) type A. Lack of a reproducible disease model has been a major obstacle in understanding the immunopathology of GD. To gain better u...

  8. Evidence of Lymphocytic Choriomeningitis Virus (LCMV) in Domestic Mice in Gabon: Risk of Emergence of LCMV Encephalitis in Central Africa

    PubMed Central

    N′Dilimabaka, Nadine; Berthet, Nicolas; Rougeron, Virginie; Mangombi, Joa Braïthe; Durand, Patrick; Maganga, Gael D.; Bouchier, Christiane; Schneider, Bradley S.; Fair, Joseph; Renaud, François

    2014-01-01

    Lymphocytic choriomeningitis virus (LCMV) can cause acute fatal disease on all continents but was never detected in Africa. We report the first detection of LCMV RNA in a common European house mouse (Mus musculus domesticus) in Africa. Phylogenetic analyses show a close relationship with North American strains. These findings suggest that there is a risk of the appearance of LCMV acute encephalitis cases. This is a perfect example of virus dissemination by its natural host that may have dramatic public health consequences. PMID:25378495

  9. Virus-induced gene silencing in Rauwolfia species.

    PubMed

    Corbin, Cyrielle; Lafontaine, Florent; Sepúlveda, Liuda Johana; Carqueijeiro, Ines; Courtois, Martine; Lanoue, Arnaud; Dugé de Bernonville, Thomas; Besseau, Sébastien; Glévarec, Gaëlle; Papon, Nicolas; Atehortúa, Lucia; Giglioli-Guivarc'h, Nathalie; Clastre, Marc; St-Pierre, Benoit; Oudin, Audrey; Courdavault, Vincent

    2017-01-24

    Elucidation of the monoterpene indole alkaloid biosynthesis has recently progressed in Apocynaceae through the concomitant development of transcriptomic analyses and reverse genetic approaches performed by virus-induced gene silencing (VIGS). While most of these tools have been primarily adapted for the Madagascar periwinkle (Catharanthus roseus), the VIGS procedure has scarcely been used on other Apocynaceae species. For instance, Rauwolfia sp. constitutes a unique source of specific and valuable monoterpene indole alkaloids such as the hypertensive reserpine but are also well recognized models for studying alkaloid metabolism, and as such would benefit from an efficient VIGS procedure. By taking advantage of a recent modification in the inoculation method of the Tobacco rattle virus vectors via particle bombardment, we demonstrated that the biolistic-mediated VIGS approach can be readily used to silence genes in both Rauwolfia tetraphylla and Rauwolfia serpentina. After establishing the bombardment conditions minimizing injuries to the transformed plantlets, gene downregulation efficiency was evaluated at approximately a 70% expression decrease in both species by silencing the phytoene desaturase encoding gene. Such a gene silencing approach will thus constitute a critical tool to identify and characterize genes involved in alkaloid biosynthesis in both of these prominent Rauwolfia species.

  10. Occurrence of virus-induced COPD exacerbations during four seasons.

    PubMed

    Djamin, Remco S; Uzun, Sevim; Snelders, Eveline; Kluytmans, Jan J W; Hoogsteden, Henk C; Aerts, Joachim G J V; Van Der Eerden, Menno M

    2015-02-01

    In this study, we investigated the occurrence of viral infections in acute exacerbations of chronic obstructive pulmonary disease (COPD) during four seasons. Viral infections were detected by the use of real-time reverse transcriptase polymerase chain reaction on pharyngeal swabs. During a 12-month period pharyngeal swabs were obtained in 136 exacerbations of 63 patients. In 35 exacerbations (25.7%) a viral infection was detected. Most viral infections occurred in the winter (n = 14, 40.0%), followed by summer (n = 9, 25.7%), autumn (n = 6, 17.1%), and spring (n = 6, 17.1%). Rhinovirus was the most frequently isolated virus (n = 19, 51.4%), followed by respiratory syncytial virus (n = 6, 16.2%), human metapneumovirus (n = 5, 13.5%), influenza A (n = 4, 10.8%), parainfluenza 4 (n = 2, 5.4%), and parainfluenza 3 (n = 1, 2.7%). This study showed that virus-induced COPD exacerbations occur in all four seasons with a peak in the winter months. However, the distribution of rhinovirus infections showed a different pattern, with most infections occurring in July.

  11. Zika Virus-Induced Microcephaly and Its Possible Molecular Mechanism.

    PubMed

    Faizan, Md Imam; Abdullah, Mohd; Ali, Sher; Naqvi, Irshad H; Ahmed, Anwar; Parveen, Shama

    2016-01-01

    Zika virus is an arthropod-borne re-emerging pathogen associated with the global pandemic of 2015-2016. The devastating effect of Zika viral infection is reflected by its neurological manifestations such as microcephaly in newborns. This scenario evoked our interest to uncover the neurotropic localization, multiplication of the virus, and the mechanism of microcephaly. The present report provides an overview of a possible molecular mechanism of Zika virus-induced microcephaly based on recent publications. Transplacental transmission of Zika viral infection from mother to foetus during the first trimester of pregnancy results in propagation of the virus in human neural progenitor cells (hNPCs), where entry is facilitated by the receptor (AXL protein) leading to the alteration of signalling and immune pathways in host cells. Further modification of the viral-induced TLR3-mediated immune network in the infected hNPCs affects viral replication. Downregulation of neurogenesis and upregulation of apoptosis in hNPCs leads to cell cycle arrest and death of the developing neurons. In addition, it is likely that the environmental, physiological, immunological, and genetic factors that determine in utero transmission of Zika virus are also involved in neurotropism. Despite the global concern regarding the Zika-mediated epidemic, the precise molecular mechanism of neuropathogenesis remains elusive.

  12. Virus-induced exacerbations in asthma and COPD

    PubMed Central

    Kurai, Daisuke; Saraya, Takeshi; Ishii, Haruyuki; Takizawa, Hajime

    2013-01-01

    Chronic obstructive pulmonary disease (COPD) is characterized by chronic airway inflammation and/or airflow limitation due to pulmonary emphysema. Chronic bronchitis, pulmonary emphysema, and bronchial asthma may all be associated with airflow limitation; therefore, exacerbation of asthma may be associated with the pathophysiology of COPD. Furthermore, recent studies have suggested that the exacerbation of asthma, namely virus-induced asthma, may be associated with a wide variety of respiratory viruses. COPD and asthma have different underlying pathophysiological processes and thus require individual therapies. Exacerbation of both COPD and asthma, which are basically defined and diagnosed by clinical symptoms, is associated with a rapid decline in lung function and increased mortality. Similar pathogens, including human rhinovirus, respiratory syncytial virus, influenza virus, parainfluenza virus, and coronavirus, are also frequently detected during exacerbation of asthma and/or COPD. Immune response to respiratory viral infections, which may be related to the severity of exacerbation in each disease, varies in patients with both COPD and asthma. In this regard, it is crucial to recognize and understand both the similarities and differences of clinical features in patients with COPD and/or asthma associated with respiratory viral infections, especially in the exacerbative stage. In relation to definition, epidemiology, and pathophysiology, this review aims to summarize current knowledge concerning exacerbation of both COPD and asthma by focusing on the clinical significance of associated respiratory virus infections. PMID:24098299

  13. Efficient Virus-Induced Gene Silencing in Solanum rostratum

    PubMed Central

    Meng, Lan-Huan; Wang, Rui-Heng; Zhu, Ben-Zhong; Zhu, Hong-Liang; Luo, Yun-Bo; Fu, Da-Qi

    2016-01-01

    Solanum rostratum is a “super weed” that grows fast, is widespread, and produces the toxin solanine, which is harmful to both humans and other animals. To our knowledge, no study has focused on its molecular biology owing to the lack of available transgenic methods and sequence information for S. rostratum. Virus-induced gene silencing (VIGS) is a powerful tool for the study of gene function in plants; therefore, in the present study, we aimed to establish tobacco rattle virus (TRV)-derived VIGS in S. rostratum. The genes for phytoene desaturase (PDS) and Chlorophyll H subunit (ChlH) of magnesium protoporphyrin chelatase were cloned from S. rostratum and used as reporters of gene silencing. It was shown that high-efficiency VIGS can be achieved in the leaves, flowers, and fruit of S. rostratum. Moreover, based on our comparison of three different types of infection methods, true leaf infection was found to be more efficient than cotyledon and sprout infiltration in long-term VIGS in multiple plant organs. In conclusion, the VIGS technology and tomato genomic sequences can be used in the future to study gene function in S. rostratum. PMID:27258320

  14. Virus-induced gene silencing in eggplant (Solanum melongena).

    PubMed

    Liu, Haiping; Fu, Daqi; Zhu, Benzhong; Yan, Huaxue; Shen, Xiaoying; Zuo, Jinhua; Zhu, Yi; Luo, Yunbo

    2012-06-01

    Eggplant (Solanum melongena) is an economically important vegetable requiring investigation into its various genomic functions. The current limitation in the investigation of genomic function in eggplant is the lack of effective tools available for conducting functional assays. Virus-induced gene silencing (VIGS) has played a critical role in the functional genetic analyses. In this paper, TRV-mediated VIGS was successfully elicited in eggplant. We first cloned the CDS sequence of PDS (PHYTOENE DESATURASE) in eggplant and then silenced the PDS gene. Photo-bleaching was shown on the newly-developed leaves four weeks after agroinoculation, indicating that VIGS can be used to silence genes in eggplant. To further illustrate the reliability of VIGS in eggplant, we selected Chl H, Su and CLA1 as reporters to elicit VIGS using the high-pressure spray method. Suppression of Chl H and Su led to yellow leaves, while the depletion of CLA1 resulted in albino. In conclusion, four genes, PDS, Chl H, Su (Sulfur), CLA1, were down-regulated significantly by VIGS, indicating that the VIGS system can be successfully applied in eggplant and is a reliable tool for the study of gene function.

  15. [Neutralization test for lymphocytic choriomeningitis virus for distinguishing between two arenavirus infections in Argentina].

    PubMed

    Ambrosio, A M; Riera, L; Saavedra, M C; Sottosanti, J J

    2001-01-01

    The active coexistence of two pathogenic arenaviruses, Junin (JUNV) and lymphocytic choriomeningitis (LCMV), in the same region of Argentina, has been known since the early 70's, and records of clinical and subclinical human infections by one and/or the other agent have been continuously produced for the last 25 years. Anti-LCMV antibody is currently searched only by indirect immunofluorescence, a test that shows cross reactions among a number of arenaviruses yielding, in the cases of LCMV and JUNV consecutive infections, a concomitant seroconversion for both viruses, as an inconclusive diagnostic result. In contrast, neutralization (NT) tests reveal arenavirus antibodies directed to unique epitopes on these virus envelopes, thus allowing to disclose the sequence in the cases of consecutive infections. In this paper, the characteristics of neutralization (NT) test for LCMV in cell cultures are described, as well as its performance in the field diagnosis of LCMV human infections. The native LCMV strain Cba An 13065 was inoculated on L-929 cell (ATCC CCL 1), and procedures were followed to perform a constant virus-variable serum NT test. Final points of sera titrations were expressed as the maximal serum dilution that yielded 75% of pfu inhibition. This NT test was assayed on paired serum samples of 36 patients with confirmed Argentine hemorrhagic fever (AHF) (a disease caused by JUNV), who had had a known previous contact with LCMV through IFI. The use of this one test led to confusing diagnosis of the disease due to concomitant seroconversion for JUNV and LCMV. By using NT test, it was shown that: some of them were possibly not infected by LCMV, and that 30/36 cases (83.3%) had a pre-existing level of LCMV antibody, with titers in the range of 5 to 640, remaining unchanged 60 days after the clinical AHF. This shows that NT antibodies to LCMV are not influenced by the outcome of the immune response to JUNV, thus confirming the efficiency of NT test as identificator

  16. Macrophages in Immunopathology of Atherosclerosis: A Target for Diagnostics and Therapy

    PubMed Central

    Orekhov, Alexander N; Sobenin, Igor A; Gavrilin, Mikhail A; Gratchev, Alexei; Kotyashova, Svetlana Y; Nikiforov, Nikita G; Kzhyshkowska, Julia

    2015-01-01

    Immunopathology plays important roles in the development of different life-threatening diseases, such as atherosclerosis and its consequences (acute myocardial infarction and stroke), cancer, chronic inflammatory diseases. Effective modulation of the immune system may significantly increase the efficacy of prevention and therapy efforts. Currently there are no marketed drugs capable of normalizing immune system function in an intrinsic and comprehensive way. Here, we describe a test system designed for complex analysis of monocyte activity in individuals to diagnose immunopathology and monitor treatment efficacy. This cell-based test system may also be useful for screening compounds with an immune-correcting effects. Both diagnostic and screening systems are based on primary culture of human monocytes and/or monocyte-derived macrophages. This is the first step in creating a method for assessment of macrophage activity, which is required for further development of immune-correcting drugs. The existing preliminary data provide the basis for realization of this idea. PMID:25312739

  17. New insights into the immunopathology and control of dengue virus infection.

    PubMed

    Screaton, Gavin; Mongkolsapaya, Juthathip; Yacoub, Sophie; Roberts, Catherine

    2015-12-01

    Dengue virus poses a major threat to global public health: two-thirds of the world's population is now at risk from infection by this mosquito-borne virus. Dengue virus causes a range of diseases with a small proportion of infected patients developing severe plasma leakage that leads to dengue shock syndrome, organ impairment and bleeding. Infection with one of the four viral serotypes results in the development of homotypic immunity to that serotype. However, subsequent infection with a different serotype is associated with an increased risk of developing severe disease, which has led to the suggestion that severe disease is triggered by immunopathology. This Review outlines recent advances in the understanding of immunopathology, vaccine development and human monoclonal antibodies produced against dengue virus.

  18. Fluorescence spectroscopic detection of virus-induced atherosclerosis

    NASA Astrophysics Data System (ADS)

    Yan, Wei-dong; Perk, Masis; Nation, Patric N.; Power, Robert F.; Liu, Liying; Jiang, Xiuyan; Lucas, Alexandra

    1994-07-01

    Laser-induced fluorescence (LF) has been developed as a diagnostic tool for the detection of atherosclerosis. We have examined the use of LF for the identification of accelerated atherosclerotic plaque growth induced by Marek's Disease Virus (MDV) infection in White Leghorn rooster chicks (R) as well as plaque regression after treatment. Twenty-eight newborn R were infected with 12,000 cfu of MDV. Twelve parallel control R had saline injection. LF spectra were recorded from the arteries in vitro with a CeramOptec laser angioplasty catheter during 308 nm XeCl excimer laser excitation. Significant differences were detected at 440 to 475, 525, 550, 600, and 650 nm in MDV-R (p<0.05). In a subsequent study, 60 R were infected with 5,000 cfu of MDV, and were then treated with either Pravastatin (PRV) or placebo at 3 months post infection. These PRV-R were followed for 6 months to detect changes in atherosclerotic plaque development. PRV reduced intimal proliferation produced by MDV infection on histological examination (PRV-R 128.0+/- 44.0 micrometers , placebo-R 412.2+/- 91.5 micrometers , pequals0.007). MDV infected, PRV treated R were examined for LF changes that correlated with decreased atherosclerosis. There was an associated significant increase in LF intensity in PRV-R at 405 to 425 nm (p<0.001). In conclusion, LF can detect intimal proliferation in virus- induced atherosclerosis and atherosclerotic plaque regression after PRV therapy.

  19. Differential chemokine expression following respiratory virus infection reflects Th1- or Th2-biased immunopathology.

    PubMed

    Culley, Fiona J; Pennycook, Alasdair M J; Tregoning, John S; Hussell, Tracy; Openshaw, Peter J M

    2006-05-01

    Respiratory syncytial virus (RSV) is a major viral pathogen of infants that also reinfects adults. During RSV infection, inflammatory host cell recruitment to the lung plays a central role in determining disease outcome. Chemokines mediate cell recruitment to sites of inflammation and are influenced by, and influence, the production of cytokines. We therefore compared chemokine production in a mouse model of immunopathogenic RSV infection in which either Th1 or Th2 immunopathology is induced by prior sensitization to individual RSV proteins. Chemokine expression profiles were profoundly affected by the nature of the pulmonary immunopathology: "Th2" immunopathology in BALB/c mice was associated with increased and prolonged expression of CCL2 (MCP-1), CXCL10 (IP-10), and CCL11 (eotaxin) starting within 24 h of challenge. C57BL/6 mice with "Th2" pathology (enabled by a deficiency of CD8+ cells) also showed increased CCL2 production. No differences in chemokine receptor expression were detected. Chemokine blockers may therefore be of use for children with bronchiolitis.

  20. Hemorrhagic Fever Occurs After Intravenous, But Not After Intragastric, Inoculation of Rhesus Macaques With Lymphocytic Choriomeningitis Virus

    PubMed Central

    Lukashevich, Igor S.; Djavani, Mahmoud; Rodas, Juan D.; Zapata, Juan C.; Usborne, Amy; Emerson, Carol; Mitchen, Jacque; Jahrling, Peter B.; Salvato, Maria S.

    2008-01-01

    Arenaviruses can cause hemorrhagic fever and death in primates and guinea pigs, but these viruses are not highly pathogenic for most rodent carriers. In the United States, arenaviruses precipitated outbreaks of hepatitis in captive monkeys, and they present an emerging health threat in the tropical areas of Africa and South America. We describe infection of rhesus macaques with the prototype arenavirus, lymphocytic choriome-ningitis virus (LCMV), using the WE strain that has been known to cause both encephalopathy and multifocal hemorrhage. Five macaques were inoculated: two by the intravenous (i.v.) and three by the intragastric (i.g.) route. Whereas the two i.v.-inoculated monkeys developed signs and lesions consistent with fatal hemorrhagic fever, the i.g.-inoculated monkeys had an attenuated infection with no disease. Pathological signs of the primate i.v. infection differ significantly from guinea pig arenavirus infections and make this a superior model for human viral hemorrhagic disease. PMID:11992578

  1. Enhancing versus Suppressive Effects of Stress on Immune Function: Implications for Immunoprotection versus Immunopathology

    PubMed Central

    2008-01-01

    It is widely believed that stress suppresses immune function and increases susceptibility to infections and cancer. Paradoxically, stress is also known to exacerbate allergic, autoimmune, and inflammatory diseases. These observations suggest that stress may have bidirectional effects on immune function, being immunosuppressive in some instances and immunoenhancing in others. It has recently been shown that in contrast to chronic stress that suppresses or dysregulates immune function, acute stress can be immunoenhancing. Acute stress enhances dendritic cell, neutrophil, macrophage, and lymphocyte trafficking, maturation, and function and has been shown to augment innate and adaptive immune responses. Acute stress experienced prior to novel antigen exposure enhances innate immunity and memory T-cell formation and results in a significant and long-lasting immunoenhancement. Acute stress experienced during antigen reexposure enhances secondary/adaptive immune responses. Therefore, depending on the conditions of immune activation and the immunizing antigen, acute stress may enhance the acquisition and expression of immunoprotection or immunopathology. In contrast, chronic stress dysregulates innate and adaptive immune responses by changing the type 1-type 2 cytokine balance and suppresses immunity by decreasing leukocyte numbers, trafficking, and function. Chronic stress also increases susceptibility to skin cancer by suppressing type 1 cytokines and protective T cells while increasing suppressor T-cell function. We have suggested that the adaptive purpose of a physiologic stress response may be to promote survival, with stress hormones and neurotransmitters serving as beacons that prepare the immune system for potential challenges (eg, wounding or infection) perceived by the brain (eg, detection of an attacker). However, this system may exacerbate immunopathology if the enhanced immune response is directed against innocuous or self-antigens or dysregulated following

  2. LCMV: Propagation, quantitation, and storage

    PubMed Central

    Seedhom, Mina O.

    2011-01-01

    Lymphocytic choriomeningitis virus (LCMV) is an enveloped ambisense RNA virus and the prototypic virus of the arenavirus group. It can cause viral meningitis and other ailments in humans, but it's natural host is the mouse. The LCMV/mouse model has been useful for examining mechanisms of viral persistence and basic concepts of virus-induced immunity and immunopathology. Here we discuss strain differences and biosafety containment issues for LCMV. Recommendations are made for techniques to propagate LCMV to high titers, to quantify it by plaque assay and PCR techniques, and to preserve its infectivity by appropriate storage. PMID:18770534

  3. Differential Inhibition of Macrophage Activation by Lymphocytic Choriomeningitis Virus and Pichinde Virus Is Mediated by the Z Protein N-Terminal Domain

    PubMed Central

    Xing, Junji; Chai, Zheng; Ly, Hinh

    2015-01-01

    Several arenavirus pathogens, such as Lassa and Junin viruses, inhibit macrophage activation, the molecular mechanism of which is unclear. We show that lymphocytic choriomeningitis virus (LCMV) can also inhibit macrophage activation, in contrast to Pichinde and Tacaribe viruses, which are not known to naturally cause human diseases. Using a recombinant Pichinde virus system, we show that the LCMV Z N-terminal domain (NTD) mediates the inhibition of macrophage activation and immune functions. PMID:26423945

  4. IDENTITY OF "INHIBITOR" AND ANTIBODY IN EXTRACTS OF VIRUS-INDUCED RABBIT PAPILLOMAS

    PubMed Central

    Friedewald, William F.

    1940-01-01

    The "inhibitor" demonstrable in extracts of the virus-induced rabbit papillomas is identical with the antiviral antibody found in the blood of hosts bearing the growths. The conditions in these latter are frequently favorable to its extravasation in considerable amount into them. Its significance and its influence upon the recovery of virus from the papillomas are discussed. PMID:19871016

  5. Virus induced gene silencing of Arabidopsis gene homologues in wheat identify genes conferring improved drought tolerance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In a non-model staple crop like wheat, functional validation of potential drought stress responsive genes identified in Arabidopsis could provide gene targets for wheat breeding. Virus induced gene silencing (VIGS) of genes of interest can overcome the inherent problems of polyploidy and limited tra...

  6. TRV Based Virus Induced Gene Silencing in Gladiolus (Gladiolus grandiflorus L.), A Monocotyledonous Ornamental Plant

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Virus-induced gene silencing (VIGS) has not yet successfully been used as a tool for gene functional analysis in non-grass monocotyledonous geophytes. We therefore tested VIGS in gladiolus (Gladiolus grandiflora L) using a Tobacco Rattle Virus (TRV) vector containing a fragment of the gladiolus gene...

  7. Virus-induced gene silencing in cultivated cotton (Gossypium spp.) using Tobacco rattle virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The study described here has optimized the conditions for virus induced gene silencing (VIGS) in three cultivated cotton species (Gossypium hirsutum, G. arboreum and G. herbaceum) using a Tobacco rattle virus (TRV) vector. The system was used to silence the homolog of the Arabidopsis thaliana chloro...

  8. Monocyte Activation in Immunopathology: Cellular Test for Development of Diagnostics and Therapy

    PubMed Central

    Ivanova, Ekaterina A.; Orekhov, Alexander N.

    2016-01-01

    Several highly prevalent human diseases are associated with immunopathology. Alterations in the immune system are found in such life-threatening disorders as cancer and atherosclerosis. Monocyte activation followed by macrophage polarization is an important step in normal immune response to pathogens and other relevant stimuli. Depending on the nature of the activation signal, macrophages can acquire pro- or anti-inflammatory phenotypes that are characterized by the expression of distinct patterns of secreted cytokines and surface antigens. This process is disturbed in immunopathologies resulting in abnormal monocyte activation and/or bias of macrophage polarization towards one or the other phenotype. Such alterations could be used as important diagnostic markers and also as possible targets for the development of immunomodulating therapy. Recently developed cellular tests are designed to analyze the phenotype and activity of living cells circulating in patient's bloodstream. Monocyte/macrophage activation test is a successful example of cellular test relevant for atherosclerosis and oncopathology. This test demonstrated changes in macrophage activation in subclinical atherosclerosis and breast cancer and could also be used for screening a panel of natural agents with immunomodulatory activity. Further development of cellular tests will allow broadening the scope of their clinical implication. Such tests may become useful tools for drug research and therapy optimization. PMID:26885534

  9. IL-23-mediated mononuclear phagocyte crosstalk protects mice from Citrobacter rodentium-induced colon immunopathology.

    PubMed

    Aychek, Tegest; Mildner, Alexander; Yona, Simon; Kim, Ki-Wook; Lampl, Nardy; Reich-Zeliger, Shlomit; Boon, Louis; Yogev, Nir; Waisman, Ari; Cua, Daniel J; Jung, Steffen

    2015-03-12

    Gut homeostasis and mucosal immune defense rely on the differential contributions of dendritic cells (DC) and macrophages. Here we show that colonic CX3CR1(+) mononuclear phagocytes are critical inducers of the innate response to Citrobacter rodentium infection. Specifically, the absence of IL-23 expression in macrophages or CD11b(+) DC results in the impairment of IL-22 production and in acute lethality. Highlighting immunopathology as a death cause, infected animals are rescued by the neutralization of IL-12 or IFNγ. Moreover, mice are also protected when the CD103(+) CD11b(-) DC compartment is rendered deficient for IL-12 production. We show that IL-12 production by colonic CD103(+) CD11b(-) DC is repressed by IL-23. Collectively, in addition to its role in inducing IL-22 production, macrophage-derived or CD103(-) CD11b(+) DC-derived IL-23 is required to negatively control the otherwise deleterious production of IL-12 by CD103(+) CD11b(-) DC. Impairment of this critical mononuclear phagocyte crosstalk results in the generation of IFNγ-producing former TH17 cells and fatal immunopathology.

  10. Probiotics, Prebiotics and Immunomodulation of Gut Mucosal Defences: Homeostasis and Immunopathology

    PubMed Central

    Hardy, Holly; Harris, Jennifer; Lyon, Eleanor; Beal, Jane; Foey, Andrew D.

    2013-01-01

    Probiotics are beneficial microbes that confer a realistic health benefit on the host, which in combination with prebiotics, (indigestible dietary fibre/carbohydrate), also confer a health benefit on the host via products resulting from anaerobic fermentation. There is a growing body of evidence documenting the immune-modulatory ability of probiotic bacteria, it is therefore reasonable to suggest that this is potentiated via a combination of prebiotics and probiotics as a symbiotic mix. The need for probiotic formulations has been appreciated for the health benefits in “topping up your good bacteria” or indeed in an attempt to normalise the dysbiotic microbiota associated with immunopathology. This review will focus on the immunomodulatory role of probiotics and prebiotics on the cells, molecules and immune responses in the gut mucosae, from epithelial barrier to priming of adaptive responses by antigen presenting cells: immune fate decision—tolerance or activation? Modulation of normal homeostatic mechanisms, coupled with findings from probiotic and prebiotic delivery in pathological studies, will highlight the role for these xenobiotics in dysbiosis associated with immunopathology in the context of inflammatory bowel disease, colorectal cancer and hypersensitivity. PMID:23760057

  11. Host Transcriptional Profiles and Immunopathologic Response following Mycobacterium avium subsp. paratuberculosis Infection in Mice.

    PubMed

    Shin, Min-Kyoung; Park, Hongtae; Shin, Seung Won; Jung, Myunghwan; Lee, Su-Hyung; Kim, Dae-Yong; Yoo, Han Sang

    2015-01-01

    Paratuberculosis or Johne's disease is a chronic granulomatous enteropathy in ruminants caused by Mycobacterium avium subsp. paratuberculosis (MAP) infection. In the present study, we examined the host response to MAP infection in spleens of mice in order to investigate the host immunopathology accompanying host-pathogen interaction. Transcriptional profiles of the MAP-infected mice at 3 and 6 weeks p.i. showed severe histopathological changes, whereas those at 12 weeks p.i. displayed reduced lesion severity in the spleen and liver. MAP-infected mice at 3 and 6 weeks p.i. showed up-regulation of interferon-related genes, scavenger receptor, and complement components, suggesting an initial innate immune reaction, such as macrophage activation, bactericidal activity, and macrophage invasion of MAP. Concurrently, MAP-infected mice at 3 and 6 weeks p.i. were also suggested to express M2 macrophage phenotype with up-regulation of Mrc1, and Marco and down-regulation of MHC class II, Ccr7, and Irf5, and canonical pathways related to the T cell response including ICOS-ICOSL signaling in T helper cells, calcium-induced T lymphocyte apoptosis, and CD28 signaling in T helper cell. These results provide information which furthers the understanding of the immunopathologic response to MAP infection in mice, thereby providing insights valuable for research into the pathogenesis for MAP infection.

  12. A role for extracellular amastigotes in the immunopathology of Chagas disease.

    PubMed

    Scharfstein, J; Morrot, A

    1999-01-01

    In spite of the growing knowledge obtained about immune control of Trypanosoma cruzi infection, the mechanisms responsible for the variable clinico-pathological expression of Chagas disease remain unknown. In a twist from previous concepts, recent studies indicated that tissue parasitism is a pre-requisite for the development of chronic myocarditis. This fundamental concept, together with the realization that T. cruzi organisms consist of genetically heterogeneous clones, offers a new framework for studies of molecular pathogenesis. In the present article, we will discuss in general terms the possible implications of genetic variability of T. cruzi antigens and proteases to immunopathology. Peptide epitopes from a highly polymorphic subfamily of trans-sialidase (TS) antigens were recently identified as targets of killer T cell (CTL) responses, both in mice and humans. While some class I MHC restricted CTL recognize epitopes derived from amastigote-specific TS-related antigens (TSRA), others are targeted to peptide epitopes originating from trypomastigote-specific TSRA. A mechanistic hypothesis is proposed to explain how the functional activity and specificity of class I MHC restricted killer T cells may control the extent to which tissue are exposed to prematurely released amastigotes. Chronic immunopathology may be exacerbated due the progressive accumulation of amastigote-derived antigens and pro-inflammatory molecules (eg. GPI-mucins and kinin-releasing proteases) in dead macrophage bodies.

  13. Host Transcriptional Profiles and Immunopathologic Response following Mycobacterium avium subsp. paratuberculosis Infection in Mice

    PubMed Central

    Shin, Min-Kyoung; Park, Hongtae; Shin, Seung Won; Jung, Myunghwan; Lee, Su-Hyung; Kim, Dae-Yong; Yoo, Han Sang

    2015-01-01

    Paratuberculosis or Johne’s disease is a chronic granulomatous enteropathy in ruminants caused by Mycobacterium avium subsp. paratuberculosis (MAP) infection. In the present study, we examined the host response to MAP infection in spleens of mice in order to investigate the host immunopathology accompanying host-pathogen interaction. Transcriptional profiles of the MAP-infected mice at 3 and 6 weeks p.i. showed severe histopathological changes, whereas those at 12 weeks p.i. displayed reduced lesion severity in the spleen and liver. MAP-infected mice at 3 and 6 weeks p.i. showed up-regulation of interferon-related genes, scavenger receptor, and complement components, suggesting an initial innate immune reaction, such as macrophage activation, bactericidal activity, and macrophage invasion of MAP. Concurrently, MAP-infected mice at 3 and 6 weeks p.i. were also suggested to express M2 macrophage phenotype with up-regulation of Mrc1, and Marco and down-regulation of MHC class II, Ccr7, and Irf5, and canonical pathways related to the T cell response including ICOS-ICOSL signaling in T helper cells, calcium-induced T lymphocyte apoptosis, and CD28 signaling in T helper cell. These results provide information which furthers the understanding of the immunopathologic response to MAP infection in mice, thereby providing insights valuable for research into the pathogenesis for MAP infection. PMID:26439498

  14. Distinct surveillance pathway for immunopathology during acute infection via autophagy and SR-BI

    PubMed Central

    Pfeiler, Susanne; Khandagale, Avinash B.; Magenau, Astrid; Nichols, Maryana; Heijnen, Harry F. G.; Rinninger, Franz; Ziegler, Tilman; Seveau, Stephanie; Schubert, Sören; Zahler, Stefan; Verschoor, Admar; Latz, Eicke; Massberg, Steffen; Gaus, Katharina; Engelmann, Bernd

    2016-01-01

    The mechanisms protecting from immunopathology during acute bacterial infections are incompletely known. We found that in response to apoptotic immune cells and live or dead Listeria monocytogenes scavenger receptor BI (SR-BI), an anti-atherogenic lipid exchange mediator, activated internalization mechanisms with characteristics of macropinocytosis and, assisted by Golgi fragmentation, initiated autophagic responses. This was supported by scavenger receptor-induced local increases in membrane cholesterol concentrations which generated lipid domains particularly in cell extensions and the Golgi. SR-BI was a key driver of beclin-1-dependent autophagy during acute bacterial infection of the liver and spleen. Autophagy regulated tissue infiltration of neutrophils, suppressed accumulation of Ly6C+ (inflammatory) macrophages, and prevented hepatocyte necrosis in the core of infectious foci. Perifocal levels of Ly6C+ macrophages and Ly6C− macrophages were unaffected, indicating predominant regulation of the focus core. SR-BI-triggered autophagy promoted co-elimination of apoptotic immune cells and dead bacteria but barely influenced bacterial sequestration and survival or inflammasome activation, thus exclusively counteracting damage inflicted by immune responses. Hence, SR-BI- and autophagy promote a surveillance pathway that partially responds to products of antimicrobial defenses and selectively prevents immunity-induced damage during acute infection. Our findings suggest that control of infection-associated immunopathology can be based on a unified defense operation. PMID:27694929

  15. The IL-17A/IL-17RA axis in pulmonary defence and immunopathology.

    PubMed

    Lorè, Nicola Ivan; Bragonzi, Alessandra; Cigana, Cristina

    2016-08-01

    The interleukin (IL)-17A/IL-17 receptor A (IL-17RA) axis is emerging as a key player in host defence. Several studies have demonstrated that IL-17A-mediated responses play a critical role in both acute and chronic inflammation induced by infectious agents, environmental stimuli and genetic diseases in the airways. In this regard, it is becoming evident that IL-17A/IL-17RA signalling may have a protective and beneficial impact on health, but that it can also result in detrimental outcomes. On one hand, the IL-17A/IL-17RA axis can contribute to the elimination of noxious stimuli and to the resolution of acute inflammatory processes; on the other hand, it can exacerbate immunopathological responses, contributing to the development and progression of chronic respiratory illnesses. In addition, cellular and molecular signatures underlying IL-17A/IL-17RA signalling have been increasingly identified, although further studies are needed to clarify such complex responses. Here, we discuss the latest discoveries on the role of the IL-17A/IL-17RA axis in driving host pulmonary defence and immunopathology.

  16. Probiotics, prebiotics and immunomodulation of gut mucosal defences: homeostasis and immunopathology.

    PubMed

    Hardy, Holly; Harris, Jennifer; Lyon, Eleanor; Beal, Jane; Foey, Andrew D

    2013-05-29

    Probiotics are beneficial microbes that confer a realistic health benefit on the host, which in combination with prebiotics, (indigestible dietary fibre/carbohydrate), also confer a health benefit on the host via products resulting from anaerobic fermentation. There is a growing body of evidence documenting the immune-modulatory ability of probiotic bacteria, it is therefore reasonable to suggest that this is potentiated via a combination of prebiotics and probiotics as a symbiotic mix. The need for probiotic formulations has been appreciated for the health benefits in "topping up your good bacteria" or indeed in an attempt to normalise the dysbiotic microbiota associated with immunopathology. This review will focus on the immunomodulatory role of probiotics and prebiotics on the cells, molecules and immune responses in the gut mucosae, from epithelial barrier to priming of adaptive responses by antigen presenting cells: immune fate decision-tolerance or activation? Modulation of normal homeostatic mechanisms, coupled with findings from probiotic and prebiotic delivery in pathological studies, will highlight the role for these xenobiotics in dysbiosis associated with immunopathology in the context of inflammatory bowel disease, colorectal cancer and hypersensitivity.

  17. Development of replication-defective lymphocytic choriomeningitis virus vectors for the induction of potent CD8+ T cell immunity

    PubMed Central

    Flatz, Lukas; Hegazy, Ahmed N; Bergthaler, Andreas; Verschoor, Admar; Claus, Christina; Fernandez, Marylise; Gattinoni, Luca; Johnson, Susan; Kreppel, Florian; Kochanek, Stefan; van den Broek, Maries; Radbruch, Andreas; Lévy, Frédéric; Lambert, Paul-Henri; Siegrist, Claire-Anne; Restifo, Nicholas P; Löhning, Max; Ochsenbein, Adrian F; Nabel, Gary J; Pinschewer, Daniel D

    2011-01-01

    Lymphocytic choriomeningitis virus (LCMV) exhibits natural tropism for dendritic cells and represents the prototypic infection that elicits protective CD8+ T cell (cytotoxic T lymphocyte (CTL)) immunity. Here we have harnessed the immunobiology of this arenavirus for vaccine delivery. By using producer cells constitutively synthesizing the viral glycoprotein (GP), it was possible to replace the gene encoding LCMV GP with vaccine antigens to create replication-defective vaccine vectors. These rLCMV vaccines elicited CTL responses that were equivalent to or greater than those elicited by recombinant adenovirus 5 or recombinant vaccinia virus in their magnitude and cytokine profiles, and they exhibited more effective protection in several models. In contrast to recombinant adenovirus 5, rLCMV failed to elicit vector-specific antibody immunity, which facilitated re-administration of the same vector for booster vaccination. In addition, rLCMV elicited T helper type 1 CD4+ T cell responses and protective neutralizing antibodies to vaccine antigens. These features, together with low seroprevalence in humans, suggest that rLCMV may show utility as a vaccine platform against infectious diseases and cancer. PMID:20139992

  18. Impaired responsiveness to gamma interferon of macrophages infected with lymphocytic choriomeningitis virus clone 13: susceptibility to histoplasmosis.

    PubMed Central

    Villarete, L; de Fries, R; Kolhekar, S; Howard, D; Ahmed, R; Wu-Hsieh, B

    1995-01-01

    Lymphocytic choriomeningitis virus clone 13 (LCMV clone 13), a variant isolated from the spleens of neonatally infected mice, causes persistent infections in mice infected as adults. Such persistently infected mice succumb to a normally sublethal dose of Histoplasma capsulatum, and their macrophages contain overwhelming numbers of yeast cells of the fungus. Both LCMV clone 13 and H. capsulatum yeast cells target and replicate in macrophages of the host. We sought to study the effects of LCMV clone 13 on the ability of macrophages to control growth of H. capsulatum in vitro. We show that the growth of H. capsulatum within macrophages was not directly affected by the presence of LCMV clone 13. However, macrophages containing LCMV clone 13 did not respond fully to gamma interferon (IFN-gamma) stimulation. Such unresponsiveness resulted in proliferation of the fungus within macrophages cultured in the presence of IFN-gamma. The addition of anti-IFN-alpha/beta antibodies to LCMV clone 13-infected macrophage cultures restored macrophage responsiveness to IFN-gamma. These results indicate that production of IFN-alpha/beta by LCMV clone 13-infected macrophages antagonizes their responsiveness to IFN-gamma. Such antagonism may be one of the mechanisms by means of which certain viruses cause immune suppression and susceptibility to opportunistic infections. PMID:7890411

  19. Circulating natural killer and gammadelta T cells decrease soon after infection of rhesus macaques with lymphocytic choriomeningitis virus.

    PubMed

    Rodas, Juan D; Cairo, Cristiana; Djavani, Mahmoud; Zapata, Juan Carlos; Ruckwardt, Tracy; Bryant, Joseph; Pauza, C David; Lukashevich, Igor S; Salvato, Maria S

    2009-07-01

    Rhesus macaques infected with the WE strain of lymphocytic choriomeningitis virus (LCMV-WE) serve as a model for human infection with Lassa fever virus. To identify the earliest events of acute infection, rhesus macaques were monitored immediately after lethal infection for changes in peripheral blood mononuclear cells (PBMCs). Changes in CD3, CD4, CD8 and CD20 subsets did not vary outside the normal fluctuations of these blood cell populations; however, natural killer (NK) and gammadelta T cells increased slightly on day 1 and then decreased significantly after two days. The NK subsets responsible for the decrease were primarily CD3-CD8+ or CD3-CD16+ and not the NKT (primarily CD3+CD56+) subset. Macaques infected with a non-virulent arenavirus, LCMV-Armstrong, showed a similar drop in circulating NK and gammadelta T cells, indicating that this is not a pathogenic event. V(3)9 T cells, representing the majority of circulating gammadelta T cells in rhesus macaques, displayed significant apoptosis when incubated with LCMV in cell culture; however, the low amount of cell death for virus-co-cultured NK cells was insufficient to account for the observed disappearance of this subset. Our observations in primates are similar to those seen in LCMV-infected mice, where decreased circulating NK cells were attributed to margination and cell death. Thus, the disappearance of these cells during acute hemorrhagic fever in rhesus macaques may be a cytokine-induced lymphopenia common to many virus infections.

  20. Blockade of PD-1 Signaling Enhances Th2 Cell Responses and Aggravates Liver Immunopathology in Mice with Schistosomiasis japonica

    PubMed Central

    Zhou, Sha; Jin, Xin; Li, Yalin; Li, Wei; Chen, Xiaojun; Xu, Lei; Zhu, Jifeng; Xu, Zhipeng; Zhang, Yang; Liu, Feng; Su, Chuan

    2016-01-01

    Background More than 220 million people worldwide are chronically infected with schistosomes, causing severe disease or even death. The major pathological damage occurring in schistosomiasis is attributable to the granulomatous inflammatory response and liver fibrosis induced by schistosome eggs. The inflammatory response is tightly controlled and parallels immunosuppressive regulation, constantly maintaining immune homeostasis and limiting excessive immunopathologic damage in important host organs. It is well known that the activation of programmed death 1 (PD-1) signaling causes a significant suppression of T cell function. However, the roles of PD-1 signaling in modulating CD4+ T cell responses and immunopathology during schistosome infection, have yet to be defined. Methodology/Principal Findings Here, we show that PD-1 is upregulated in CD4+ T cells in Schistosoma japonicum (S. japonicum)-infected patients. We also show the upregulation of PD-1 expression in CD4+ T cells in the spleens, mesenteric lymph nodes, and livers of mice with S. japonicum infection. Finally, we found that the blockade of PD-1 signaling enhanced CD4+ T helper 2 (Th2) cell responses and led to more severe liver immunopathology in mice with S. japonicum infection, without a reduction of egg production or deposition in the host liver. Conclusions/Significance Overall, our study suggests that PD-1 signaling is specifically induced to control Th2-associated inflammatory responses during schistosome infection and is beneficial to the development of PD-1-based control of liver immunopathology. PMID:27792733

  1. Neurogenic inflammation and the peripheral nervous system in host defense and immunopathology.

    PubMed

    Chiu, Isaac M; von Hehn, Christian A; Woolf, Clifford J

    2012-07-26

    The peripheral nervous and immune systems are traditionally thought of as serving separate functions. The line between them is, however, becoming increasingly blurred by new insights into neurogenic inflammation. Nociceptor neurons possess many of the same molecular recognition pathways for danger as immune cells, and, in response to danger, the peripheral nervous system directly communicates with the immune system, forming an integrated protective mechanism. The dense innervation network of sensory and autonomic fibers in peripheral tissues and high speed of neural transduction allows rapid local and systemic neurogenic modulation of immunity. Peripheral neurons also seem to contribute to immune dysfunction in autoimmune and allergic diseases. Therefore, understanding the coordinated interaction of peripheral neurons with immune cells may advance therapeutic approaches to increase host defense and suppress immunopathology.

  2. Nox enzymes and oxidative stress in the immunopathology of the gastrointestinal tract.

    PubMed

    Rokutan, Kazuhito; Kawahara, Tsukasa; Kuwano, Yuki; Tominaga, Kumiko; Nishida, Keisei; Teshima-Kondo, Shigetada

    2008-07-01

    Chronic inflammation caused by Helicobacter pylori infection or inflammatory bowel disease (IBD) is closely linked to cancer development. Innate immune abnormalities and enhanced production of reactive oxygen species through a phagocyte NADPH oxidase (Nox2) are key issues in understanding the pathogenesis of inflammation-dependent carcinogenesis. Besides Nox2, functionally distinct homologues (Nox1, Nox3, Nox4, Nox5, Duox1, and Duox2) have been identified. Nox1 and Duox2 are highly expressed in the gastrointestinal tract. Although the functional roles of Nox/Duox in the gastrointestinal tract are still unclear, we will review their potential roles in the gastrointestinal immunopathology, particularly in H. pylori-induced inflammation, IBD, and malignancy.

  3. Subgingival microbial communities in Leukocyte Adhesion Deficiency and their relationship with local immunopathology.

    PubMed

    Moutsopoulos, Niki M; Chalmers, Natalia I; Barb, Jennifer J; Abusleme, Loreto; Greenwell-Wild, Teresa; Dutzan, Nicolas; Paster, Bruce J; Munson, Peter J; Fine, Daniel H; Uzel, Gulbu; Holland, Steven M

    2015-03-01

    Leukocyte Adhesion Deficiency I (LAD-I) is a primary immunodeficiency caused by single gene mutations in the CD18 subunit of β2 integrins which result in defective transmigration of neutrophils into the tissues. Affected patients suffer from recurrent life threatening infections and severe oral disease (periodontitis). Microbial communities in the local environment (subgingival plaque) are thought to be the triggers for inflammatory periodontitis, yet little is known regarding the microbial communities associated with LAD-I periodontitis. Here we present the first comprehensive characterization of the subgingival communities in LAD-I, using a 16S rRNA gene-based microarray, and investigate the relationship of this tooth adherent microbiome to the local immunopathology of periodontitis. We show that the LAD subgingival microbiome is distinct from that of health and Localized Aggressive Periodontitits. Select periodontitis-associated species in the LAD microbiome included Parvimonas micra, Porphyromonas endodontalis, Eubacterium brachy and Treponema species. Pseudomonas aeruginosa, a bacterium not typically found in subgingival plaque is detected in LAD-I. We suggest that microbial products from LAD-associated communities may have a role in stimulating the local inflammatory response. We demonstrate that bacterial LPS translocates into the lesions of LAD-periodontitis potentially triggering immunopathology. We also show in in vitro assays with human macrophages and in vivo in animal models that microbial products from LAD-associated subgingival plaque trigger IL-23-related immune responses, which have been shown to dominate in patient lesions. In conclusion, our current study characterizes the subgingival microbial communities in LAD-periodontitis and supports their role as triggers of disease pathogenesis.

  4. Subgingival Microbial Communities in Leukocyte Adhesion Deficiency and Their Relationship with Local Immunopathology

    PubMed Central

    Moutsopoulos, Niki M.; Abusleme, Loreto; Greenwell-Wild, Teresa; Dutzan, Nicolas; Paster, Bruce J.; Munson, Peter J.; Fine, Daniel H.; Uzel, Gulbu; Holland, Steven M.

    2015-01-01

    Leukocyte Adhesion Deficiency I (LAD-I) is a primary immunodeficiency caused by single gene mutations in the CD18 subunit of β2 integrins which result in defective transmigration of neutrophils into the tissues. Affected patients suffer from recurrent life threatening infections and severe oral disease (periodontitis). Microbial communities in the local environment (subgingival plaque) are thought to be the triggers for inflammatory periodontitis, yet little is known regarding the microbial communities associated with LAD-I periodontitis. Here we present the first comprehensive characterization of the subgingival communities in LAD-I, using a 16S rRNA gene-based microarray, and investigate the relationship of this tooth adherent microbiome to the local immunopathology of periodontitis. We show that the LAD subgingival microbiome is distinct from that of health and Localized Aggressive Periodontitits. Select periodontitis-associated species in the LAD microbiome included Parvimonas micra, Porphyromonas endodontalis, Eubacterium brachy and Treponema species. Pseudomonas aeruginosa, a bacterium not typically found in subgingival plaque is detected in LAD-I. We suggest that microbial products from LAD-associated communities may have a role in stimulating the local inflammatory response. We demonstrate that bacterial LPS translocates into the lesions of LAD-periodontitis potentially triggering immunopathology. We also show in in vitro assays with human macrophages and in vivo in animal models that microbial products from LAD-associated subgingival plaque trigger IL-23-related immune responses, which have been shown to dominate in patient lesions. In conclusion, our current study characterizes the subgingival microbial communities in LAD-periodontitis and supports their role as triggers of disease pathogenesis. PMID:25741691

  5. Heparin prevents Zika virus induced-cytopathic effects in human neural progenitor cells.

    PubMed

    Ghezzi, Silvia; Cooper, Lynsay; Rubio, Alicia; Pagani, Isabel; Capobianchi, Maria Rosaria; Ippolito, Giuseppe; Pelletier, Julien; Meneghetti, Maria Cecilia Z; Lima, Marcelo A; Skidmore, Mark A; Broccoli, Vania; Yates, Edwin A; Vicenzi, Elisa

    2017-04-01

    The recent Zika virus (ZIKV) outbreak, which mainly affected Brazil and neighbouring states, demonstrated the paucity of information concerning the epidemiology of several flaviruses, but also highlighted the lack of available agents with which to treat such emerging diseases. Here, we show that heparin, a widely used anticoagulant, while exerting a modest inhibitory effect on Zika Virus replication, fully prevents virus-induced cell death of human neural progenitor cells (NPCs).

  6. Comparative analysis of radiation- and virus-induced leukemias in BALB/c mice

    SciTech Connect

    Newcomb, E.W.; Binari, R.; Fleissner, E.

    1985-01-15

    Endogenous murine leukemia virus (MuLV) proviral copies were analyzed in thymomas induced in normal BALB/c (Fv-1b) and in Fv-1n congenic mice by X-irradiation. Both strains of mice developed leukemia with similar kinetics, indicating that N-tropism of endogenous MuLV was not a rate-limiting factor in development of disease. Southern blot analysis, using a probe specific for ecotropic virus and for ecotropic-specific sequences retained in pathogenic, env-recombinant viruses, showed that the majority of radiation leukemias lacked newly acquired, clonally integrated, proviruses. This was in contrast to virus-induced leukemias, which routinely exhibited several new proviral integration sites. When an internal proviral DNA restriction fragment was monitored, some radiation leukemias showed evidence of nonclonal infection, accounting for more frequent isolation of infectious virus from such leukemias. Differences in expression of T-cell surface antigens were found in X-ray-induced and virus-induced leukemias. All radiation leukemias were TL positive, whereas virus-induced leukemias were primarily negative for TL. Some differences were also found in Lyt-1 and Lyt-2 expression. The data as a whole suggest that, in the majority of cases, radiation leukemogenesis is not initiated by a viral route--that is, the sort of viral mechanism for which exogenous infection by known pathogenic MuLV is the paradigm.

  7. A high-throughput virus-induced gene-silencing vector for screening transcription factors in virus-induced plant defense response in orchid.

    PubMed

    Lu, Hsiang-Chia; Hsieh, Ming-Hsien; Chen, Cheng-En; Chen, Hong-Hwa; Wang, Hsiang-Iu; Yeh, Hsin-Hung

    2012-06-01

    The large number of species and worldwide spread of species of Orchidaceae indicates their successful adaptation to environmental stresses. Thus, orchids provide rich resources to study how plants have evolved to cope with stresses. This report describes our improvement of our previously reported orchid virus-induced gene silencing vector, pCymMV-pro60, with a modified Gateway cloning system which requires only one recombination and can be inoculated by agroinfiltration. We cloned 1,700 DNA fragments, including 187 predicted transcription factors derived from an established expression sequence tag library of orchid, into pCymMV-Gateway. Phalaenopsis aphrodite was inoculated with these vectors that contained DNA fragments of the 187 predicted transcription factors. The viral vector initially triggered the expression of the salicylic acid (SA)-related plant defense responses and later induced silencing of the endogenous target transcription factor genes. By monitoring the expression of the SA-related plant defense marker PhaPR1 (homolog of PR1), we identified a gene, PhaTF15, involved in the expression of PhaPR1. Knockdown of PhaTF15 by virus-induced gene silencing and by transient delivery of double-stranded RNA (dsRNA) reduced expression of the orchid homolog of the conserved positive defense regulator NPR1, PhaNPR1. Cymbidium mosaic virus also accumulated to high levels with knockdown of PhaTF15 by transient delivery of dsRNA. We demonstrated efficient cloning and screening strategies for high-throughput analysis of orchid and identify a gene, PhaTF15, involved in regulation of SA-related plant defense.

  8. Comorbidity of Narcolepsy Type 1 With Autoimmune Diseases and Other Immunopathological Disorders: A Case-Control Study

    PubMed Central

    Martinez-Orozco, Francisco Javier; Vicario, Jose Luis; De Andres, Clara; Fernandez-Arquero, Miguel; Peraita-Adrados, Rosa

    2016-01-01

    Background Several evidences suggest that autoimmune diseases (ADs) tend to co-occur in an individual and within the same family. Narcolepsy type 1 (NT1) is a chronic sleep disorder caused by a selective loss of hypocretin-producing neurons due to a mechanism of neural destruction that indicates an autoimmune pathogenesis, although no evidence is available. We report on the comorbidity of ADs and other immunopathological diseases (including allergy diseases) in narcolepsy. Methods We studied 158 Caucasian NT1 patients (60.7% male; mean age 49.4 ± 19.7 years), in whom the diagnosis was confirmed by polysomnography followed by a multiple sleep latency test, or by hypocretin-1 levels measurements. Results Thirty out of 158 patients (18.99%; 53.3% female; 29 sporadic and one familial cases) had one or more immunopathological diseases associated. A control group of 151 subjects were matched by gender and age with the narcolepsy patients. Results demonstrated that there was a higher frequency of ADs in our series of narcolepsy patients compared to the sample of general population (odds ratio: 3.17; 95% confidence interval: 1.01 - 10.07; P = 0.040). A temporal relationship with the age at onset of the diseases was found. Conclusions Cataplexy was significantly more severe in NT1 patients with immunopathological diseases, and immunopathological diseases are a risk factor for severe forms of cataplexy in our series (odds ratio: 23.6; 95% confidence interval: 5.5 - 100.1). PMID:27298657

  9. 99th Dahlem Conference on Infection, Inflammation and Chronic Inflammatory Disorders: Symbionts and immunopathology in chronic diseases: insights from evolution

    PubMed Central

    Ewald, P W

    2010-01-01

    Immunological aetiologies of disease are not generally well understood, but have been attributed to intrinsic immunological imbalances, infectious triggers or persistent infections. Evolutionary considerations lead to the formulation of three feasible categories of immunopathology for common diseases. One category of hypotheses presumes that the immune system is exposed to environmental conditions to which the individual is not well adapted. One hypothesis within this category, often referred to as the hygiene hypothesis, proposes that new more hygienic environmental conditions have generated compositions of symbionts that differ from those to which humans have been adapted. A second category of hypotheses proposes that infectious agents act as triggers of immunopathology by shifting the immune system into a self-destructive state. A third category proposes that infectious agents keep the immune in a self-destructive state by causing persistent infections. To evaluate disease causation rigorously and to determine the appropriate interventions, these three categories of causation need to considered for every disease that involves immunopathology. Assessment of the progress in understanding oncogenesis and other chronic diseases emphasizes the value of such integrated assessments. PMID:20415848

  10. The role of macrophage IL-10/innate IFN interplay during virus-induced asthma

    PubMed Central

    Zdrenghea, Mihnea T; Makrinioti, Heidi; Muresan, Adriana; Johnston, Sebastian L; Stanciu, Luminita A

    2015-01-01

    Activation through different signaling pathways results in two functionally different types of macrophages, the pro-inflammatory (M1) and the anti-inflammatory (M2). The polarization of macrophages toward the pro-inflammatory M1 phenotype is considered to be critical for efficient antiviral immune responses in the lung. Among the various cell types that are present in the asthmatic airways, macrophages have emerged as significant participants in disease pathogenesis, because of their activation during both the inflammatory and resolution phases, with an impact on disease progression. Polarized M1 and M2 macrophages are able to reversibly undergo functional redifferentiation into anti-inflammatory or pro-inflammatory macrophages, respectively, and therefore, macrophages mediate both processes. Recent studies have indicated a predominance of M2 macrophages in asthmatic airways. During a virus infection, it is likely that M2 macrophages would secrete higher amounts of the suppressor cytokine IL-10, and less innate IFNs. However, the interactions between IL-10 and innate IFNs during virus-induced exacerbations of asthma have not been well studied. The possible role of IL-10 as a therapy in allergic asthma has already been suggested, but the divergent roles of this suppressor molecule in the antiviral immune response raise concerns. This review attempts to shed light on macrophage IL-10–IFNs interactions and discusses the role of IL-10 in virus-induced asthma exacerbations. Whereas IL-10 is important in terminating pro-inflammatory and antiviral immune responses, the presence of this immune regulatory cytokine at the beginning of virus infection could impair the response to viruses and play a role in virus-induced asthma exacerbations. PMID:25430775

  11. EGFR activation suppresses respiratory virus-induced IRF1-dependent CXCL10 production.

    PubMed

    Kalinowski, April; Ueki, Iris; Min-Oo, Gundula; Ballon-Landa, Eric; Knoff, David; Galen, Benjamin; Lanier, Lewis L; Nadel, Jay A; Koff, Jonathan L

    2014-07-15

    Airway epithelial cells are the primary cell type involved in respiratory viral infection. Upon infection, airway epithelium plays a critical role in host defense against viral infection by contributing to innate and adaptive immune responses. Influenza A virus, rhinovirus, and respiratory syncytial virus (RSV) represent a broad range of human viral pathogens that cause viral pneumonia and induce exacerbations of asthma and chronic obstructive pulmonary disease. These respiratory viruses induce airway epithelial production of IL-8, which involves epidermal growth factor receptor (EGFR) activation. EGFR activation involves an integrated signaling pathway that includes NADPH oxidase activation of metalloproteinase, and EGFR proligand release that activates EGFR. Because respiratory viruses have been shown to activate EGFR via this signaling pathway in airway epithelium, we investigated the effect of virus-induced EGFR activation on airway epithelial antiviral responses. CXCL10, a chemokine produced by airway epithelial cells in response to respiratory viral infection, contributes to the recruitment of lymphocytes to target and kill virus-infected cells. While respiratory viruses activate EGFR, the interaction between CXCL10 and EGFR signaling pathways is unclear, and the potential for EGFR signaling to suppress CXCL10 has not been explored. Here, we report that respiratory virus-induced EGFR activation suppresses CXCL10 production. We found that influenza virus-, rhinovirus-, and RSV-induced EGFR activation suppressed IFN regulatory factor (IRF) 1-dependent CXCL10 production. In addition, inhibition of EGFR during viral infection augmented IRF1 and CXCL10. These findings describe a novel mechanism that viruses use to suppress endogenous antiviral defenses, and provide potential targets for future therapies.

  12. EGFR activation suppresses respiratory virus-induced IRF1-dependent CXCL10 production

    PubMed Central

    Kalinowski, April; Ueki, Iris; Min-Oo, Gundula; Ballon-Landa, Eric; Knoff, David; Galen, Benjamin; Lanier, Lewis L.; Nadel, Jay A.

    2014-01-01

    Airway epithelial cells are the primary cell type involved in respiratory viral infection. Upon infection, airway epithelium plays a critical role in host defense against viral infection by contributing to innate and adaptive immune responses. Influenza A virus, rhinovirus, and respiratory syncytial virus (RSV) represent a broad range of human viral pathogens that cause viral pneumonia and induce exacerbations of asthma and chronic obstructive pulmonary disease. These respiratory viruses induce airway epithelial production of IL-8, which involves epidermal growth factor receptor (EGFR) activation. EGFR activation involves an integrated signaling pathway that includes NADPH oxidase activation of metalloproteinase, and EGFR proligand release that activates EGFR. Because respiratory viruses have been shown to activate EGFR via this signaling pathway in airway epithelium, we investigated the effect of virus-induced EGFR activation on airway epithelial antiviral responses. CXCL10, a chemokine produced by airway epithelial cells in response to respiratory viral infection, contributes to the recruitment of lymphocytes to target and kill virus-infected cells. While respiratory viruses activate EGFR, the interaction between CXCL10 and EGFR signaling pathways is unclear, and the potential for EGFR signaling to suppress CXCL10 has not been explored. Here, we report that respiratory virus-induced EGFR activation suppresses CXCL10 production. We found that influenza virus-, rhinovirus-, and RSV-induced EGFR activation suppressed IFN regulatory factor (IRF) 1-dependent CXCL10 production. In addition, inhibition of EGFR during viral infection augmented IRF1 and CXCL10. These findings describe a novel mechanism that viruses use to suppress endogenous antiviral defenses, and provide potential targets for future therapies. PMID:24838750

  13. Virus-triggered acquired immunodeficiency by cytotoxic T-cell-dependent destruction of antigen-presenting cells and lymph follicle structure.

    PubMed Central

    Odermatt, B; Eppler, M; Leist, T P; Hengartner, H; Zinkernagel, R M

    1991-01-01

    Virus-induced acquired immune suppression in mice infected with lymphocytic choriomeningitis virus is shown here to be caused by the CD8+-T-cell-dependent elimination of macrophages/antigen-presenting cells. Surprisingly, this is associated with severe destruction of the follicular organization of lymphoid organs, indicating a crucial role for dendritic cells and marginal zone macrophages in maintaining follicular structure. Once established, this immunopathology cannot be readily reversed by the elimination of CD8+ effector cells. Such a T-cell-mediated pathogenesis may play a pivotal role in acquired virus-induced immunosuppression and may represent one strategy by which virus escapes immune surveillance and establishes persistent infections in initially immunocompetent hosts. Images PMID:1910175

  14. TNF superfamily cytokines in the promotion of Th9 differentiation and immunopathology.

    PubMed

    Meylan, Françoise; Siegel, Richard M

    2017-01-01

    The tumor necrosis factor (TNF) receptors and their corresponding cytokine ligands have been implicated in many aspects of the biology of immune functions. TNF receptors have key roles during various stages of T cell homeostasis. Many of them can co-stimulate lymphocyte proliferation and cytokine production. Additionally, several TNF cytokines can regulate T cell differentiation, including promoting Th1, Th2, Th17, and more recently the newly described Th9 subset. Four TNF family cytokines have been identified as regulators for IL-9 production by T cells. OX40L, TL1A, and GITRL can promote Th9 formation but can also divert iTreg into Th9, while 4-1BBL seems to inhibit IL-9 production from iTreg and has not been studied for its ability to promote Th9 generation. Regulation of IL-9 production by TNF family cytokines has repercussions in vivo, including enhancement of anti-tumor immunity and immunopathology in allergic lung and ocular inflammation. Regulating T cell production of IL-9 through blockade or agonism of TNF family cytokine receptors may be a therapeutic strategy for autoimmune and allergic diseases and in tumor.

  15. Mucosal Herpes Immunity and Immunopathology to Ocular and Genital Herpes Simplex Virus Infections

    PubMed Central

    Chentoufi, Aziz Alami; BenMohamed, Lbachir

    2012-01-01

    Herpes simplex viruses type 1 and type 2 (HSV-1 and HSV-2) are amongst the most common human infectious viral pathogens capable of causing serious clinical diseases at every stage of life, from fatal disseminated disease in newborns to cold sores genital ulcerations and blinding eye disease. Primary mucocutaneous infection with HSV-1 & HSV-2 is followed by a lifelong viral latency in the sensory ganglia. In the majority of cases, herpes infections are clinically asymptomatic. However, in symptomatic individuals, the latent HSV can spontaneously and frequently reactivate, reinfecting the muco-cutaneous surfaces and causing painful recurrent diseases. The innate and adaptive mucosal immunities to herpes infections and disease remain to be fully characterized. The understanding of innate and adaptive immune mechanisms operating at muco-cutaneous surfaces is fundamental to the design of next-generation herpes vaccines. In this paper, the phenotypic and functional properties of innate and adaptive mucosal immune cells, their role in antiherpes immunity, and immunopathology are reviewed. The progress and limitations in developing a safe and efficient mucosal herpes vaccine are discussed. PMID:23320014

  16. Immunopathology of experimental Chagas' disease: binding of T cells to Trypanosoma cruzi-infected heart tissue.

    PubMed Central

    Mortatti, R C; Maia, L C; de Oliveira, A V; Munk, M E

    1990-01-01

    The immunopathology of Chagas' disease was studied in the experimental model of chronic infection in C57BL/10JT or mice. Sublethal infection with Trypanosoma cruzi, Y strain, induced specific antibodies and a delayed hypersensitivity response to parasite antigens. Mice developed chronic chagasic myocarditis but not skeletal muscle myositis. Binding of T cells to infected heart tissue was investigated during short-term cocultivation of lymphocytes with heart cryostat sections. T cells from infected mice and from normal controls bound equally to myocardium and liver sections from both infected and normal mice. A search in depth was attempted with cells heavily tagged with 99mTc. Labeled T cells from chagasic mice bound to both normal and infected myocardium slices. 99mTc-labeled T cells from controls gave the same binding values. Glass-adherent spleen cells behaved identically to T cells. Prior treatment of the tissue with serum from chronically infected mice did not increase the number of binding cells. Peritoneal macrophages tagged with 99mTc-sulfur colloid also bound to infected myocardium slices. The binding of macrophages was not changed by pretreatment of infected tissue with anti-T, cruzi antibodies. In short, this work did not detect any population of T cells or macrophages which could bind specifically to infected heart tissue to initiate an autoreactive process. Images PMID:2228230

  17. Spontaneous murine lupus-like syndromes. Clinical and immunopathological manifestations in several strains.

    PubMed

    Andrews, B S; Eisenberg, R A; Theofilopoulos, A N; Izui, S; Wilson, C B; McConahey, P J; Murphy, E D; Roths, J B; Dixon, F J

    1978-11-01

    MRL/1 and BXSB male mice have a systemic lupus erythematosus (SLE)-like disease similar to but more acute than that occurring in NZB X W mice. The common elements of lymphoid hyperplasia, B-cell hyperactivity, autoantibodies, circulating immune complex (IC), complement consumption, IC glomerulonephritis with gp70 deposition, and thymic atrophy were found in all three kinds of SLE mice. On the basis of these common elements, SLE seen in these mice can be considered a single disease in the same sense that human SLE is one disease. The differences in the SLE expressed in the different mice are no greater than those found in an unselected series of humans with SLE. However, the significant quantitative and qualitative variations in abnormal immunologic expression suggest that different constellations of factors, genetic and/or pathophysiologic, may operate in the three murine strains and that each constellation is capable of leading, via its particular abnormal immunologic consequences, to the activation of common immunopathologic effector mechanisms that cause quite similar SLE-like syndromes. From an experimental point of view, the availability of several inbred murine strains of commonplace histocompatibility types that express an SLE-like syndrome makes possible innumerable manipulations which should help to elucidate the nature and cause(s) of this disorder.

  18. Improved impression cytology techniques for the immunopathological diagnosis of superficial viral infections

    PubMed Central

    Thiel, M; Bossart, W; Bernauer, W

    1997-01-01

    BACKGROUND—For epidemiological and therapeutic reasons early diagnosis of superficial viral infections is crucial. Conventional microbiological techniques are expensive, time consuming, and not sufficiently sensitive. In this study impression cytology techniques were evaluated to analyse their diagnostic potential in viral infections of the ocular surface.
METHOD—A Biopore membrane device instead of the original impression cytology technique was used to allow better quality and handling of the specimens. The impressions were processed, using monoclonal antibodies and immunoperoxidase or immunofluorescence techniques to assess the presence of herpes simplex virus, varicella zoster virus, or adenovirus antigens. Ocular surface specimens from healthy individuals (n=10) and from patients with suspected viral surface disease (n=19) were studied. Infected and non-infected cell cultures served as controls.
RESULTS—This modified technique of impression cytology allowed the collection of large conjunctival and corneal epithelial cell layers with excellent morphology. Immunocytological staining of these samples provided diagnostic results for all three viruses in patients with viral surface disease.
CONCLUSIONS—The use of Biopore membrane devices for the collection of ocular surface epithelia offers new diagnostic possibilities for external eye diseases. Immunopathological methods that are applied directly on these membrane devices can provide virological results within 1-4 hours. This contributes considerably to the clinical management of patients with infectious diseases of the ocular surface.

 PMID:9505824

  19. Immunopathology and cytokine responses in commercial broiler chickens with gangrenous dermatitis.

    PubMed

    Li, Guangxing; Lillehoj, Hyun S; Lee, Kyung Woo; Lee, Sung Hyen; Park, Myeong Seon; Jang, Seung I; Bauchan, Gary R; Gay, Cyril G; Ritter, G Donald; Bautista, Daniel A; Siragusa, Gregory R

    2010-08-01

    Gangrenous dermatitis (GD) is an emerging disease of increasing economic importance in poultry resulting from infection by Clostridium septicum and Clostridium perfringens type A. Lack of a reproducible disease model has been a major obstacle in understanding the immunopathology of GD. To gain better understanding of host-pathogen interactions in GD infection, we evaluated various immune parameters in two groups of birds from a recent commercial outbreak of GD, the first showing typical disease signs and pathological lesions (GD-like birds) and the second lacking clinical signs (GD-free birds). Our results revealed that GD-like birds showed: reduced T-cell and B-cell mitogen-stimulated lymphoproliferation; higher levels of serum nitric oxide and alpha-1-acid glycoprotein; greater numbers of K55(+), K1(+), CD8(+), and MHC class II(+) intradermal lymphocytes, and increased K55(+), K1(+), CD8(+), TCR1(+), TCR2(+), Bu1(+), and MHC class II(+) intestinal intraepithelial lymphocytes; and increased levels of mRNAs encoding proinflammatory cytokines and chemokines in skin compared with GD-free chickens. These results provide the first evidence of altered systemic and local (skin and intestine) immune responses in GD pathogenesis in chickens.

  20. Chemokine receptor Ccr1 drives neutrophil-mediated kidney immunopathology and mortality in invasive candidiasis.

    PubMed

    Lionakis, Michail S; Fischer, Brett G; Lim, Jean K; Swamydas, Muthulekha; Wan, Wuzhou; Richard Lee, Chyi-Chia; Cohen, Jeffrey I; Scheinberg, Phillip; Gao, Ji-Liang; Murphy, Philip M

    2012-01-01

    Invasive candidiasis is the 4(th) leading cause of nosocomial bloodstream infection in the US with mortality that exceeds 40% despite administration of antifungal therapy; neutropenia is a major risk factor for poor outcome after invasive candidiasis. In a fatal mouse model of invasive candidiasis that mimics human bloodstream-derived invasive candidiasis, the most highly infected organ is the kidney and neutrophils are the major cellular mediators of host defense; however, factors regulating neutrophil recruitment have not been previously defined. Here we show that mice lacking chemokine receptor Ccr1, which is widely expressed on leukocytes, had selectively impaired accumulation of neutrophils in the kidney limited to the late phase of the time course of the model; surprisingly, this was associated with improved renal function and survival without affecting tissue fungal burden. Consistent with this, neutrophils from wild-type mice in blood and kidney switched from Ccr1(lo) to Ccr1(high) at late time-points post-infection, when Ccr1 ligands were produced at high levels in the kidney and were chemotactic for kidney neutrophils ex vivo. Further, when a 1∶1 mixture of Ccr1(+/+) and Ccr1(-/-) donor neutrophils was adoptively transferred intravenously into Candida-infected Ccr1(+/+) recipient mice, neutrophil trafficking into the kidney was significantly skewed toward Ccr1(+/+) cells. Thus, neutrophil Ccr1 amplifies late renal immunopathology and increases mortality in invasive candidiasis by mediating excessive recruitment of neutrophils from the blood to the target organ.

  1. A novel mouse model of Schistosoma haematobium egg-induced immunopathology.

    PubMed

    Fu, Chi-Ling; Odegaard, Justin I; Herbert, De'Broski R; Hsieh, Michael H

    2012-01-01

    Schistosoma haematobium is the etiologic agent for urogenital schistosomiasis, a major source of morbidity and mortality for more than 112 million people worldwide. Infection with S. haematobium results in a variety of immunopathologic sequelae caused by parasite oviposition within the urinary tract, which drives inflammation, hematuria, fibrosis, bladder dysfunction, and increased susceptibility to urothelial carcinoma. While humans readily develop urogenital schistosomiasis, the lack of an experimentally-tractable model has greatly impaired our understanding of the mechanisms that underlie this important disease. We have developed an improved mouse model of S. haematobium urinary tract infection that recapitulates several aspects of human urogenital schistosomiasis. Following microinjection of purified S. haematobium eggs into the bladder wall, mice consistently develop macrophage-rich granulomata that persist for at least 3 months and pass eggs in their urine. Importantly, egg-injected mice also develop urinary tract fibrosis, bladder dysfunction, and various urothelial changes morphologically reminiscent of human urogenital schistosomiasis. As expected, S. haematobium egg-induced immune responses in the immediate microenvironment, draining lymph nodes, and systemic circulation are associated with a Type 2-dominant inflammatory response, characterized by high levels of interleukin-4, eosinophils, and IgE. Taken together, our novel mouse model may help facilitate a better understanding of the unique pathophysiological mechanisms of epithelial dysfunction, tissue fibrosis, and oncogenesis associated with urogenital schistosomiasis.

  2. Immunity, immunopathology, and human vaccine development against sexually transmitted Chlamydia trachomatis

    PubMed Central

    Rey-Ladino, Jose; Ross, Allen GP; Cripps, Allan W

    2014-01-01

    This review examines the immunity, immunopathology, and contemporary problems of vaccine development against sexually transmitted Chlamydia trachomatis. Despite improved surveillance and treatment initiatives, the incidence of C. trachomatis infection has increased dramatically over the past 30 years in both the developed and developing world. Studies in animal models have shown that protective immunity to C. trachomatis is largely mediated by Th1 T cells producing IFN-γ which is needed to prevent dissemination of infection. Similar protection appears to develop in humans but in contrast to mice, immunity in humans may take years to develop. Animal studies and evidence from human infection indicate that immunity to C. trachomatis is accompanied by significant pathology in the upper genital tract. Although no credible evidence is currently available to indicate that autoimmunity plays a role, nevertheless, this underscores the necessity to design vaccines strictly based on chlamydial-specific antigens and to avoid those displaying even minimal sequence homologies with host molecules. Current advances in C. trachomatis vaccine development as well as alternatives for designing new vaccines for this disease are discussed. A novel approach for chlamydia vaccine development, based on targeting endogenous dendritic cells, is described. PMID:25483666

  3. THE EFFECT OF CHEMICAL CARCINOGENS ON VIRUS-INDUCED RABBIT PAPILLOMAS

    PubMed Central

    Rous, Peyton; Friedewald, William F.

    1944-01-01

    The application of methylcholanthrene and tar to virus-induced papillomas of the domestic rabbit caused them to become carcinomatous with great rapidity, and the malignant changes were frequently multiple. In bringing on the cancers the chemical agents acted in their specific capacity as carcinogens, not as ordinary stimulants of cell proliferation. The cancers derived from the virus-infected cells and were of the same types as arise from these elements spontaneously after a much longer time. The evidence would seem to indicate that the chemical carcinogens acted by way of the virus. PMID:19871385

  4. Unique role for ATG5 in neutrophil-mediated immunopathology during M. tuberculosis infection.

    PubMed

    Kimmey, Jacqueline M; Huynh, Jeremy P; Weiss, Leslie A; Park, Sunmin; Kambal, Amal; Debnath, Jayanta; Virgin, Herbert W; Stallings, Christina L

    2015-12-24

    Mycobacterium tuberculosis, a major global health threat, replicates in macrophages in part by inhibiting phagosome-lysosome fusion, until interferon-γ (IFNγ) activates the macrophage to traffic M. tuberculosis to the lysosome. How IFNγ elicits this effect is unknown, but many studies suggest a role for macroautophagy (herein termed autophagy), a process by which cytoplasmic contents are targeted for lysosomal degradation. The involvement of autophagy has been defined based on studies in cultured cells where M. tuberculosis co-localizes with autophagy factors ATG5, ATG12, ATG16L1, p62, NDP52, BECN1 and LC3 (refs 2-6), stimulation of autophagy increases bacterial killing, and inhibition of autophagy increases bacterial survival. Notably, these studies reveal modest (~1.5-3-fold change) effects on M. tuberculosis replication. By contrast, mice lacking ATG5 in monocyte-derived cells and neutrophils (polymorponuclear cells, PMNs) succumb to M. tuberculosis within 30 days, an extremely severe phenotype similar to mice lacking IFNγ signalling. Importantly, ATG5 is the only autophagy factor that has been studied during M. tuberculosis infection in vivo and autophagy-independent functions of ATG5 have been described. For this reason, we used a genetic approach to elucidate the role for multiple autophagy-related genes and the requirement for autophagy in resistance to M. tuberculosis infection in vivo. Here we show that, contrary to expectation, autophagic capacity does not correlate with the outcome of M. tuberculosis infection. Instead, ATG5 plays a unique role in protection against M. tuberculosis by preventing PMN-mediated immunopathology. Furthermore, while Atg5 is dispensable in alveolar macrophages during M. tuberculosis infection, loss of Atg5 in PMNs can sensitize mice to M. tuberculosis. These findings shift our understanding of the role of ATG5 during M. tuberculosis infection, reveal new outcomes of ATG5 activity, and shed light on early events in innate

  5. Virulence, immunopathology and transmissibility of selected strains of Mycobacterium tuberculosis in a murine model

    PubMed Central

    Marquina-Castillo, Brenda; García-García, Lourdes; Ponce-de-León, Alfredo; Jimenez-Corona, Maria-Eugenia; Bobadilla-del Valle, Miriam; Cano-Arellano, Bulmaro; Canizales-Quintero, Sergio; Martinez-Gamboa, Areli; Kato-Maeda, Midori; Robertson, Brian; Young, Douglas; Small, Peter; Schoolnik, Gary; Sifuentes-Osornio, Jose; Hernandez-Pando, Rogelio

    2009-01-01

    After encounter with Mycobacterium tuberculosis, a series of non-uniform immune responses are triggered that define the course of the infection. Eight M. tuberculosis strains were selected from a prospective population-based study of pulmonary tuberculosis patients (1995–2003) based on relevant clinical/epidemiological patterns and tested in a well-characterized BALB/c mouse model of progressive pulmonary tuberculosis. In addition, a new mouse model of transmissibility consisting of prolonged cohousing (up to 60 days) of infected and naïve animals was tested. Four phenotypes were defined based on strain virulence (mouse survival, lung bacillary load and tissue damage), immunology response (cytokine expression determined by real-time polymerase chain reaction) and transmissibility (lung bacillary loads and cutaneous delayed-type hypersensitivity in naïve animals).We identified four clearly defined strain phenotypes: (1) hypervirulent strain with non-protective immune response and highly transmissible; (2) virulent strain, associated with high expression of proinflammatory cytokines (tumour necrosis factor and interferon) and very low anti-inflammatory cytokine expression (interleukins 4 and 10), which induced accelerated death by immunopathology; (3) strain inducing efficient protective immunity with lower virulence, and (4) strain demonstrating strong and early macrophage activation (innate immunity) with delayed participation of acquired immunity (interferon expression). We were able to correlate virulent and transmissible phenotypes in the mouse model and markers of community transmission such as tuberculin reactivity among contacts, rapid progression to disease and cluster status. However, we were not able to find correlation with the other two phenotypes. Our new transmission model supported the hypothesis that among these strains increased virulence was linked to increased transmission. PMID:19191912

  6. Cytology, immunopathology and flow cytometry in the diagnosis of pleural and peritoneal effusions.

    PubMed

    Croonen, A M; van der Valk, P; Herman, C J; Lindeman, J

    1988-06-01

    There were 106 pleural and peritoneal effusions studied in order to investigate the contribution of immunocytochemistry and flow cytometry to routine cytologic diagnosis. A panel of antibodies (to cytokeratin, vimentin, human milk fat globule, epithelial membrane antigen and carcinoembryonic antigen) was applied to aceton-fixed slides, using immunoperoxydase and immunofluorescence methods. Flow cytometry was performed using a double labeling method, i.e., propidium iodide for DNA staining and keratin for labeling of epithelial cells. In this way DNA aneuploidy was more evident in the histograms when the fluid contained many reactive nonepithelial cells (lymphocytes). A designation of marker profiles was made for the three most frequently occurring diagnoses, i.e., reactive mesothelial proliferation (I), adenocarcinoma (II), and malignant mesothelioma (III). For the differentiation between adenocarcinoma and malignant mesothelioma, carcinoembryonic antigen was the most useful marker as 75% of the adenocarcinomas was carcinoembryonic antigen-positive and the malignant mesotheliomas were consistently negative. Furthermore, evident DNA-aneuploidy strongly supported the diagnosis of adenocarcinoma, as most malignant mesotheliomas were DNA-euploid, even though occasional DNA-aneuploidy was found in malignant mesotheliomas when different effusions from the same patient were examined. For the differentiation between reactive mesothelial cells and malignant mesothelioma human milk fat globule and/or epithelial membrane antigen, in this study proved to be most reliable, their presence strongly indicating malignancy. It is stressed that the method used (fixation, antibodies, washing procedures) can influence these findings. In 16 patients (17%) performing immunopathology and/or flow cytometry meant an important contribution to diagnosis.

  7. Virus-induced gene silencing and transient gene expression in soybean using Bean pod mottle virus infectious clones

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Virus-induced gene silencing (VIGS) is a powerful and rapid approach for determining the functions of plant genes. The basis of VIGS is that a viral genome is engineered so that it can carry fragments of plant genes, typically in the 200-300 base pair size range. The recombinant viruses are used to ...

  8. Virus-induced gene silencing of RPC5-like subunit of RNA polymerase III caused pleiotropic effects in Nicotiana benthamiana

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In eukaryotic cells, RNA polymerase III is highly conserved, contains 17 subunits and transcribes housekeeping genes such as ribosomal 50S rRNA, tRNA and other small RNAs. Functional roles of the RPC5 are poorly characterized in the literature. In this work, we report that virus-induced gene silenci...

  9. Sequence of protein synthesis in cells infected by human cytomegalovirus: early and late virus-induced polypeptides.

    PubMed Central

    Stinski, M F

    1978-01-01

    At least 10 distinct early virus-induced polypeptides were synthesized within 0 to 6 h after infection of permissive cells with cytomegalovirus. These virus-induced polypeptides were synthesized before and independently of viral DNA replication. A majority of these early virus-induced polypeptides were also synthesized in nonpermissive cells, which do not permit viral DNA replication. The virus-induced polypeptides synthesized before viral DNA replication were hypothesized to be nonstructural proteins coded for by the cytomegalovirus genome. Their synthesis was found to be a sequential process, since three proteins preceded the synthesis of the others. Synthesis of all early cytomegalovirus-induced proteins was a transient process; the proteins reached their highest molar ratios before the onset of viral DNA replication. Late viral proteins were synthesized at the time of the onset of viral DNA replication, which was approximately 15 h after infection. Their synthesis was continuous and increased in molar ratios with the accumulation of newly synthesized viral DNA in the cells. The presence of the amino acid analog canavanine or azetadine during the early stage of infection suppressed viral DNA replication. The amount of viral DNA synthesis was directly correlated to the relative amount of late viral protein synthesis. Because synthesis of late viral proteins depended upon viral DNA replication, the proteins were not detected in permissive cells treated with an inhibitor of viral DNA synthesis or in nonpermissive cells that are restrictive for cytomegalovirus DNA replication. Images PMID:209215

  10. Transcriptome analyses and virus induced gene silencing identify genes in the Rpp4-mediated Asian soybean rust resistance pathway

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rpp4 (Resistance to Phakopsora pachyrhizi 4) confers resistance to P. pachyrhizi, the causal agent of Asian soybean rust (ASR). By combining expression profiling and virus induced gene silencing (VIGS), we are developing a genetic framework for Rpp4-mediated resistance. We measured gene expression i...

  11. The methyltransferase Setdb2 mediates virus-induced susceptibility to bacterial superinfection

    PubMed Central

    Schliehe, Christopher; Swaminanthan, Savitha; Bosnjak, Berislav; Bauer, Lisa; Kandasamy, Richard K.; Griesshammer, Isabel M.; Kosack, Lindsay; Schmitz, Frank; Litvak, Vladimir; Sissons, James; Lercher, Alexander; Bhattacharya, Anannya; Khamina, Kseniya; Trivett, Anna L.; Tessarollo, Lino; Mesteri, Ildiko; Hladik, Anastasiya; Merkler, Doron; Kubicek, Stefan; Knapp, Sylvia; Epstein, Michelle M.; Bergthaler, Andreas

    2014-01-01

    Immune responses are tightly regulated to ensure efficient pathogen clearance while avoiding tissue damage. Here we report that SET domain bifurcated 2 (Setdb2) was the only protein lysine methyltransferase induced during influenza virus infection. Setdb2 expression depended on type-I interferon signaling and it repressed the expression of the neutrophil attractant Cxcl1 and other NF-κB target genes. This coincided with Setdb2 occupancy at the Cxcl1 promoter, which in the absence of Setdb2 displayed reduced H3K9 tri-methylation. Setdb2 hypomorphic gene-trap mice exhibited increased neutrophil infiltration in sterile lung inflammation and were less sensitive to bacterial superinfection upon influenza virus infection. This suggests that a Setdb2-mediated regulatory crosstalk between the type-I interferon and NF-κB pathways represents an important mechanism for virus-induced susceptibility to bacterial superinfection. PMID:25419628

  12. Novel Strategy To Protect against Influenza Virus-Induced Pneumococcal Disease without Interfering with Commensal Colonization

    PubMed Central

    Greene, Christopher J.; Marks, Laura R.; Hu, John C.; Reddinger, Ryan; Mandell, Lorrie; Roche-Hakansson, Hazeline; King-Lyons, Natalie D.

    2016-01-01

    Streptococcus pneumoniae commonly inhabits the nasopharynx as a member of the commensal biofilm. Infection with respiratory viruses, such as influenza A virus, induces commensal S. pneumoniae to disseminate beyond the nasopharynx and to elicit severe infections of the middle ears, lungs, and blood that are associated with high rates of morbidity and mortality. Current preventive strategies, including the polysaccharide conjugate vaccines, aim to eliminate asymptomatic carriage with vaccine-type pneumococci. However, this has resulted in serotype replacement with, so far, less fit pneumococcal strains, which has changed the nasopharyngeal flora, opening the niche for entry of other virulent pathogens (e.g., Streptococcus pyogenes, Staphylococcus aureus, and potentially Haemophilus influenzae). The long-term effects of these changes are unknown. Here, we present an attractive, alternative preventive approach where we subvert virus-induced pneumococcal disease without interfering with commensal colonization, thus specifically targeting disease-causing organisms. In that regard, pneumococcal surface protein A (PspA), a major surface protein of pneumococci, is a promising vaccine target. Intradermal (i.d.) immunization of mice with recombinant PspA in combination with LT-IIb(T13I), a novel i.d. adjuvant of the type II heat-labile enterotoxin family, elicited strong systemic PspA-specific IgG responses without inducing mucosal anti-PspA IgA responses. This response protected mice from otitis media, pneumonia, and septicemia and averted the cytokine storm associated with septic infection but had no effect on asymptomatic colonization. Our results firmly demonstrated that this immunization strategy against virally induced pneumococcal disease can be conferred without disturbing the desirable preexisting commensal colonization of the nasopharynx. PMID:27001538

  13. Pleiotropic Effects of Levofloxacin, Fluoroquinolone Antibiotics, against Influenza Virus-Induced Lung Injury.

    PubMed

    Enoki, Yuki; Ishima, Yu; Tanaka, Ryota; Sato, Keizo; Kimachi, Kazuhiko; Shirai, Tatsuya; Watanabe, Hiroshi; Chuang, Victor T G; Fujiwara, Yukio; Takeya, Motohiro; Otagiri, Masaki; Maruyama, Toru

    2015-01-01

    Reactive oxygen species (ROS) and nitric oxide (NO) are major pathogenic molecules produced during viral lung infections, including influenza. While fluoroquinolones are widely used as antimicrobial agents for treating a variety of bacterial infections, including secondary infections associated with the influenza virus, it has been reported that they also function as anti-oxidants against ROS and as a NO regulator. Therefore, we hypothesized that levofloxacin (LVFX), one of the most frequently used fluoroquinolone derivatives, may attenuate pulmonary injuries associated with influenza virus infections by inhibiting the production of ROS species such as hydroxyl radicals and neutrophil-derived NO that is produced during an influenza viral infection. The therapeutic impact of LVFX was examined in a PR8 (H1N1) influenza virus-induced lung injury mouse model. ESR spin-trapping experiments indicated that LVFX showed scavenging activity against neutrophil-derived hydroxyl radicals. LVFX markedly improved the survival rate of mice that were infected with the influenza virus in a dose-dependent manner. In addition, the LVFX treatment resulted in a dose-dependent decrease in the level of 8-hydroxy-2'-deoxyguanosine (a marker of oxidative stress) and nitrotyrosine (a nitrative marker) in the lungs of virus-infected mice, and the nitrite/nitrate ratio (NO metabolites) and IFN-γ in BALF. These results indicate that LVFX may be of substantial benefit in the treatment of various acute inflammatory disorders such as influenza virus-induced pneumonia, by inhibiting inflammatory cell responses and suppressing the overproduction of NO in the lungs.

  14. Does developmental exposure to perflurooctanoic acid (PFOA) induce immunopathologies commonly observed in neurodevelopmental disorders?

    PubMed

    Hu, Qing; Franklin, Jason N; Bryan, Ian; Morris, Erin; Wood, Andrew; DeWitt, Jamie C

    2012-12-01

    Immune comorbidities often are reported in subsets of patients with neurodevelopmental disorders, including autism spectrum disorders and attention-deficit hyperactivity disorder. A common immunopathology is an increase in serum autoantibodies against myelin basic protein (MBP) relative to control patients. Increases in autoantibodies suggest possible deficits in self-tolerance that may contribute to the formation of brain-specific autoantibodies and subsequent effects on the central nervous system (CNS). Oppositely, the formation of neuronal autoantibodies may be a reaction to neuronal injury or damage. Perfluorooctanoic acid (PFOA) is an environmental pollutant that induces multisystem toxicity in rodent models, including immunotoxicity and neurotoxicity. We hypothesized that developmental exposure to PFOA may induce immunotoxicity similar to that observed in subsets of patients with neurodevelopmental disorders. To test this hypothesis, we evaluated subsets of T cells from spleens, serum markers of autoreactivity, and levels of MBP and T cell infiltration in the cerebella of adult offspring exposed to 0.02, 0.2, or 2mg/kg of PFOA given to dams from gestation through lactation. Litter weights of offspring from dams exposed to 2mg/kg of PFOA were reduced by 32.6%, on average, from postnatal day one (PND1) through weaning (PND21). The percentage of splenic CD4+CD25+Foxp3+ T cells in male and female offspring from dams exposed to 2mg/kg of PFOA was reduced by 22% relative to the control percentage. Ex vivo co-cultures of splenic CD4+CD25+ T cells and CD4+CD25- T cells from dosed male offspring produced less IL-10 relative to control cells. Anti-ssDNA, a serum marker of autoreactivity, was decreased by 26%, on average, in female offspring from dams exposed to 0.02 and 2mg/kg PFOA. No other endpoints were statistically different by dose. These data suggest that developmental PFOA exposure may impact T cell responses and may be a possible route to downstream effects on

  15. Cowpox virus induces interleukin-10 both in vitro and in vivo

    PubMed Central

    Spesock, April H.; Barefoot, Brice E.; Ray, Caroline A.; Kenan, Daniel J.; Gunn, Michael D.; Ramsburg, Elizabeth A.; Pickup, David J.

    2011-01-01

    Cowpox virus infection induces interleukin-10 (IL-10) production from mouse bone marrow-derived dendritic cells (BMDCs) or cells of the mouse macrophage line (RAW264.7) at about 1800 pg/ml, whereas infections with vaccinia virus (strains WR or MVA) induced much less IL-10. Similarly, in vivo, IL-10 levels in bronchoalveolar lavage fluids of mice infected with cowpox virus were significantly higher than those after vaccinia virus infection. However, after intranasal cowpox virus infection, although dendritic and T-cell accumulations in the lungs of IL-10 deficient mice were greater than those in wild-type mice, weight-loss and viral burdens were not significantly different. IL-10 deficient mice were more susceptible than wild-type mice to reinfection with cowpox virus even though titers of neutralizing antibodies and virus-specific CD8 T cells were similar between IL-10 deficient and wild-type mice. Greater bronchopneumonia in IL-10 deficient mice than wild-type mice suggests that IL-10 contributes to the suppression of immunopathology in the lungs. PMID:21658738

  16. A novel PRD I and TG binding activity involved in virus-induced transcription of IFN-A genes.

    PubMed Central

    Génin, P; Bragança, J; Darracq, N; Doly, J; Civas, A

    1995-01-01

    Comparative analysis of the inducible elements of the mouse interferon A4 and A11 gene promoters (IE-A4 and IE-A11) by transient transfection experiments, DNase 1 footprinting and electrophoretic mobility shift assays resulted in identification of a virus-induced binding activity suggested to be involved in NDV-induced activation of transcription of these genes. The virus-induced factor, termed VIF, is activated early by contact of virions with cells. It specifically recognizes the PRD I-like domain shared by both inducible elements, as well as the TG-like domain of IE-A4. This factor, distinct from the IRF-1, IRF-2 and the alpha F1 binding proteins and presenting a different affinity pattern from that of the TG protein, is proposed as a candidate for IFN-type I gene regulation. Images PMID:8559665

  17. The development of Akabane virus-induced congenital abnormalities in cattle.

    PubMed

    Kirkland, P D; Barry, R D; Harper, P A; Zelski, R Z

    1988-06-11

    A prospective study of the incidence and severity of congenital deformities of calves, attributable to maternal infection by Akabane virus, was carried out on a population of 174 susceptible animals that were between one and nine months pregnant at the time of infection. The study was carried out in the Hunter Valley of New South Wales during 1983, after an epidemic of Akabane virus infection in late February to early March 1983. The incidence of virus-induced abnormalities in calves and fetuses was 17.8 per cent (31/174). The highest incidence of abnormalities occurred during the third and sixth months of gestation (27 to 29 per cent). The earliest abnormality was observed after infection at 76 days of gestation, and the last after infection at 249 days. The development of the pathological entities of hydranencephaly/porencephaly and arthrogryposis were found to be quite distinct. Cases of hydranencephaly and porencephaly developed after infection between 76 and 104 days of gestation whereas arthrogryposis developed after infection between 103 and 174 days of infection. It was concluded that the type of congenital deformity produced by maternal infection with Akabane virus was dependent on the stage of fetal development at the time of infection. The data suggest that the infection was transplacental and that fetuses of less than two months of age were protected from infection.

  18. Host genome integration and giant virus-induced reactivation of the virophage mavirus.

    PubMed

    Fischer, Matthias G; Hackl, Thomas

    2016-12-07

    Endogenous viral elements are increasingly found in eukaryotic genomes, yet little is known about their origins, dynamics, or function. Here we provide a compelling example of a DNA virus that readily integrates into a eukaryotic genome where it acts as an inducible antiviral defence system. We found that the virophage mavirus, a parasite of the giant Cafeteria roenbergensis virus (CroV), integrates at multiple sites within the nuclear genome of the marine protozoan Cafeteria roenbergensis. The endogenous mavirus is structurally and genetically similar to eukaryotic DNA transposons and endogenous viruses of the Maverick/Polinton family. Provirophage genes are not constitutively expressed, but are specifically activated by superinfection with CroV, which induces the production of infectious mavirus particles. Virophages can inhibit the replication of mimivirus-like giant viruses and an anti-viral protective effect of provirophages on their hosts has been hypothesized. We find that provirophage-carrying cells are not directly protected from CroV; however, lysis of these cells releases infectious mavirus particles that are then able to suppress CroV replication and enhance host survival during subsequent rounds of infection. The microbial host-parasite interaction described here involves an altruistic aspect and suggests that giant-virus-induced activation of provirophages might be ecologically relevant in natural protist populations.

  19. Development of a virus induced gene silencing vector from a legumes infecting tobamovirus.

    PubMed

    Várallyay, Eva; Lichner, Zsuzsanna; Sáfrány, Judit; Havelda, Z; Salamon, P; Bisztray, Gy; Burgyán, J

    2010-12-01

    Medicago truncatula, the model plant of legumes, is well characterized, but there is only a little knowledge about it as a viral host. Viral vectors can be used for expressing foreign genes or for virus-induced gene silencing (VIGS), what is a fast and powerful tool to determine gene functions in plants. Viral vectors effective on Nicotiana benthamiana have been constructed from a number of viruses, however, only few of them were effective in other plants. A Tobamovirus, Sunnhemp mosaic virus (SHMV) systemically infects Medicago truncatula without causing severe symptoms. To set up a viral vector for Medicago truncatula, we prepared an infectious cDNA clone of SHMV. We constructed two VIGS vectors differing in the promoter element to drive foreign gene expression. The vectors were effective both in the expression and in the silencing of a transgene Green Fluorescent Protein (GFP) and in silencing of an endogenous gene Phytoene desaturase (PDS) on N. benthamiana. Still only one of the vectors was able to successfully silence the endogenous Chlorata 42 gene in M. truncatula.

  20. Delineation of autoantibody repertoire through differential proteogenomics in hepatitis C virus-induced cryoglobulinemia

    PubMed Central

    Ogishi, Masato; Yotsuyanagi, Hiroshi; Moriya, Kyoji; Koike, Kazuhiko

    2016-01-01

    Antibodies cross-reactive to pathogens and autoantigens are considered pivotal in both infection control and accompanying autoimmunity. However, the pathogenic roles of autoantibodies largely remain elusive without a priori knowledge of disease-specific autoantigens. Here, through a novel quantitative proteogenomics approach, we demonstrated a successful identification of immunoglobulin variable heavy chain (VH) sequences highly enriched in pathological immune complex from clinical specimens obtained from a patient with hepatitis C virus-induced cryoglobulinemia (HCV-CG). Reconstructed single-domain antibodies were reactive to both HCV antigens and potentially liver-derived human proteins. Moreover, over the course of antiviral therapy, a substantial “de-evolution” of a distinct sub-repertoire was discovered, to which proteomically identified cryoprecipitation-prone autoantibodies belonged. This sub-repertoire was characterized by IGHJ6*03-derived, long, hydrophobic complementarity determining region (CDR-H3). This study provides a proof-of-concept of de novo mining of autoantibodies and corresponding autoantigen candidates in a disease-specific context in human, thus facilitating future reverse-translational research for the discovery of novel biomarkers and the development of antigen-specific immunotherapy against various autoantibody-related disorders. PMID:27403724

  1. Virus-Induced Gene Silencing in Cultivated Cotton (Gossypium spp.) Using Tobacco Rattle Virus.

    PubMed

    Mustafa, Roma; Shafiq, Muhammad; Mansoor, Shahid; Briddon, Rob W; Scheffler, Brian E; Scheffler, Jodi; Amin, Imran

    2016-01-01

    The study described here has optimized the conditions for virus-induced gene silencing (VIGS) in three cultivated cotton species (Gossypium hirsutum, G. arboreum, and G. herbaceum) using a Tobacco rattle virus (TRV) vector. The system was used to silence the homolog of the Arabidopsis thaliana chloroplastos alterados 1 (AtCLA1) gene, involved in chloroplast development, in G. herbaceum, G. arboreum, and six commercial G. hirsutum cultivars. All plants inoculated with the TRV vector to silence CLA1 developed a typical albino phenotype indicative of silencing this gene. Although silencing in G. herbaceum and G. arboreum was complete, silencing efficiency differed for each G. hirsutum cultivar. Reverse transcriptase polymerase chain reaction (PCR) and real-time quantitative PCR showed a reduction in mRNA levels of the CLA1 homolog in all three species, with the highest efficiency (lowest CLA1 mRNA levels) in G. arboreum followed by G. herbaceum and G. hirsutum. The results indicate that TRV is a useful vector for VIGS in Gossypium species. However, selection of host cultivar is important. With the genome sequences of several cotton species recently becoming publicly available, this system has the potential to provide a very powerful tool for the rapid, large-scale reverse-genetic analysis of genes in Gossypium spp.

  2. Four plant Dicers mediate viral small RNA biogenesis and DNA virus induced silencing

    PubMed Central

    Blevins, Todd; Rajeswaran, Rajendran; Shivaprasad, Padubidri V.; Beknazariants, Daria; Si-Ammour, Azeddine; Park, Hyun-Sook; Vazquez, Franck; Robertson, Dominique; Meins, Frederick; Hohn, Thomas; Pooggin, Mikhail M.

    2006-01-01

    Like other eukaryotes, plants use DICER-LIKE (DCL) proteins as the central enzymes of RNA silencing, which regulates gene expression and mediates defense against viruses. But why do plants like Arabidopsis express four DCLs, a diversity unmatched by other kingdoms? Here we show that two nuclear DNA viruses (geminivirus CaLCuV and pararetrovirus CaMV) and a cytoplasmic RNA tobamovirus ORMV are differentially targeted by subsets of DCLs. DNA virus-derived small interfering RNAs (siRNAs) of specific size classes (21, 22 and 24 nt) are produced by all four DCLs, including DCL1, known to process microRNA precursors. Specifically, DCL1 generates 21 nt siRNAs from the CaMV leader region. In contrast, RNA virus infection is mainly affected by DCL4. While the four DCLs are partially redundant for CaLCuV-induced mRNA degradation, DCL4 in conjunction with RDR6 and HEN1 specifically facilitates extensive virus-induced silencing in new growth. Additionally, we show that CaMV infection impairs processing of endogenous RDR6-derived double-stranded RNA, while ORMV prevents HEN1-mediated methylation of small RNA duplexes, suggesting two novel viral strategies of silencing suppression. Our work highlights the complexity of virus interaction with host silencing pathways and suggests that DCL multiplicity helps mediate plant responses to diverse viral infections. PMID:17090584

  3. Functional analyses of cellulose synthase genes in flax (Linum usitatissimum) by virus-induced gene silencing.

    PubMed

    Chantreau, Maxime; Chabbert, Brigitte; Billiard, Sylvain; Hawkins, Simon; Neutelings, Godfrey

    2015-12-01

    Flax (Linum usitatissimum) bast fibres are located in the stem cortex where they play an important role in mechanical support. They contain high amounts of cellulose and so are used for linen textiles and in the composite industry. In this study, we screened the annotated flax genome and identified 14 distinct cellulose synthase (CESA) genes using orthologous sequences previously identified. Transcriptomics of 'primary cell wall' and 'secondary cell wall' flax CESA genes showed that some were preferentially expressed in different organs and stem tissues providing clues as to their biological role(s) in planta. The development for the first time in flax of a virus-induced gene silencing (VIGS) approach was used to functionally evaluate the biological role of different CESA genes in stem tissues. Quantification of transcript accumulation showed that in many cases, silencing not only affected targeted CESA clades, but also had an impact on other CESA genes. Whatever the targeted clade, inactivation by VIGS affected plant growth. In contrast, only clade 1- and clade 6-targeted plants showed modifications in outer-stem tissue organization and secondary cell wall formation. In these plants, bast fibre number and structure were severely impacted, suggesting that the targeted genes may play an important role in the establishment of the fibre cell wall. Our results provide new fundamental information about cellulose biosynthesis in flax that should facilitate future plant improvement/engineering.

  4. Foxtail Mosaic Virus-Induced Gene Silencing in Monocot Plants1[OPEN

    PubMed Central

    Liu, Na; Xie, Ke; Jia, Qi; Zhao, Jinping; Chen, Tianyuan; Li, Huangai; Wei, Xiang; Diao, Xianmin; Hong, Yiguo

    2016-01-01

    Virus-induced gene silencing (VIGS) is a powerful technique to study gene function in plants. However, very few VIGS vectors are available for monocot plants. Here we report that Foxtail mosaic virus (FoMV) can be engineered as an effective VIGS system to induce efficient silencing of endogenous genes in monocot plants including barley (Hordeum vulgare L.), wheat (Triticum aestivum) and foxtail millet (Setaria italica). This is evidenced by FoMV-based silencing of phytoene desaturase (PDS) and magnesium chelatase in barley, of PDS and Cloroplastos alterados1 in foxtail millet and wheat, and of an additional gene IspH in foxtail millet. Silencing of these genes resulted in photobleached or chlorosis phenotypes in barley, wheat, and foxtail millet. Furthermore, our FoMV-based gene silencing is the first VIGS system reported for foxtail millet, an important C4 model plant. It may provide an efficient toolbox for high-throughput functional genomics in economically important monocot crops. PMID:27225900

  5. Compromised virus-induced gene silencing in RDR6-deficient plants.

    PubMed

    Vaistij, Fabián E; Jones, Louise

    2009-03-01

    RNA silencing in plants serves as a potent antiviral defense mechanism through the action of small interfering RNAs (siRNAs), which direct RNA degradation. siRNAs can be derived directly from the viral genome or via the action of host-encoded RNA-dependent RNA polymerases (RDRs). Plant genomes encode multiple RDRs, and it has been demonstrated that plants defective for RDR6 hyperaccumulate several classes of virus. In this study, we compared the effectiveness of virus-induced gene silencing (VIGS) and RNA-directed DNA methylation (RdDM) in wild-type and RDR6-deficient Nicotiana benthamiana plants. For the potexvirus Potato virus X (PVX) and the potyvirus Plum pox virus (PPV), the efficiency of both VIGS and RdDM were compromised in RDR6-defective plants despite accumulating high levels of viral siRNAs similar to infection of wild-type plants. The reduced efficiency of VIGS and RdDM was unrelated to the size class of siRNA produced and, at least for PVX, was not dependent on the presence of the virus-encoded silencing suppressor protein, 25K. We suggest that primary siRNAs produced from PVX and PPV in the absence of RDR6 may not be good effectors of silencing and that RDR6 is required to produce secondary siRNAs that drive a more effective antiviral response.

  6. Development of Virus-Induced Gene Expression and Silencing Vector Derived from Grapevine Algerian Latent Virus

    PubMed Central

    Park, Sang-Ho; Choi, Hoseong; Kim, Semin; Cho, Won Kyong; Kim, Kook-Hyung

    2016-01-01

    Grapevine Algerian latent virus (GALV) is a member of the genus Tombusvirus in the Tombusviridae and infects not only woody perennial grapevine plant but also herbaceous Nicotiana benthamiana plant. In this study, we developed GALV-based gene expression and virus-induced gene silencing (VIGS) vectors in N. benthamiana. The GALV coat protein deletion vector, pGMG, was applied to express the reporter gene, green fluorescence protein (GFP), but the expression of GFP was not detected due to the necrotic cell death on the infiltrated leaves. The p19 silencing suppressor of GALV was engineered to inactivate its expression and GFP was successfully expressed with unrelated silencing suppressor, HC-Pro, from soybean mosaic virus. The pGMG vector was used to knock down magnesium chelatase (ChlH) gene in N. benthamaina and the silencing phenotype was clearly observed on systemic leaves. Altogether, the GALV-derived vector is expected to be an attractive tool for useful gene expression and VIGS vectors in grapevine as well as N. benthamiana. PMID:27493613

  7. Autophagy Genes Enhance Murine Gammaherpesvirus 68 Reactivation From Latency by Preventing Virus-induced Systemic Inflammation

    PubMed Central

    Park, Sunmin; Buck, Michael D.; Desai, Chandni; Zhang, Xin; Loginicheva, Ekaterina; Martinez, Jennifer; Freeman, Michael L.; Saitoh, Tatsuya; Akira, Shizuo; Guan, Jun-Lin; He, You-Wen; Blackman, Marcia A.; Handley, Scott A.; Levine, Beth; Green, Douglas R.; Reese, Tiffany A.; Artyomov, Maxim N.; Virgin, Herbert W.

    2016-01-01

    SUMMARY Host genes that regulate systemic inflammation upon chronic viral infection are incompletely understood. Murine γ-herpesvirus 68 (MHV68) infection is characterized by latency in macrophages, and reactivation is inhibited by Interferon-γ (IFN-γ). Using a Lysozyme-M-cre (LysMcre) expression system, we show that deletion of autophagy-related (Atg) genes Fip200, beclin 1, Atg14, Atg16L1, Atg7, Atg3, and Atg5, in the myeloid compartment, inhibited MHV68 reactivation in macrophages. Atg5-deficiency did not alter reactivation from B cells, and effects on reactivation from macrophages were not explained by alterations in productive viral replication or the establishment of latency. Rather, chronic MHV68 infection triggered increased systemic inflammation, increased T cell production of IFN-γ and an IFN-γ-induced transcriptional signature in macrophages from Atg gene-deficient mice. The Atg5-related reactivation defect was partially reversed by neutralization of IFN-γ. Thus Atg genes in myeloid cells dampen virus-induced systemic inflammation, creating an environment that fosters efficient MHV68 reactivation from latency. PMID:26764599

  8. Disruption of Rpp1-mediated soybean rust immunity by virus-induced gene silencing.

    PubMed

    Cooper, Bret; Campbell, Kimberly B; McMahon, Michael B; Luster, Douglas G

    2013-01-01

    Phakopsora pachyrhizi, a fungus that causes rust disease on soybean, has potential to impart significant yield loss and disrupt food security and animal feed production. Rpp1 is a soybean gene that confers immunity to soybean rust, and it is important to understand how it regulates the soybean defense system and to use this knowledge to protect commercial crops. It was previously discovered that some soybean proteins resembling transcription factors accumulate in the nucleus of Rpp1 soybeans. To determine if they contribute to immunity, Bean pod mottle virus was used to attenuate or silence the expression of their genes. Rpp1 plants subjected to virus-induced gene silencing exhibited reduced amounts of RNA for 5 of the tested genes, and the plants developed rust-like symptoms after subsequent inoculation with fungal spores. Symptoms were associated with the accumulation of rust fungal RNA and protein. Silenced plants also had reduced amounts of RNA for the soybean Myb84 transcription factor and soybean isoflavone O-methyltransferase, both of which are important to phenylpropanoid biosynthesis and lignin formation, crucial components of rust resistance. These results help resolve some of the genes that contribute to Rpp1-mediated immunity and improve upon the knowledge of the soybean defense system. It is possible that these genes could be manipulated to enhance rust resistance in otherwise susceptible soybean cultivars.

  9. Recombinant infectious hematopoietic necrosis viruses induce protection for rainbow trout Oncorhynchus mykiss.

    PubMed

    Romero, Alejandro; Figueras, Antonio; Thoulouze, Maria-Isabel; Bremont, Michael; Novoa, Beatriz

    2008-07-07

    Infectious hematopoietic necrosis virus (IHNV) and viral hemorrhagic septicaemia virus (VHSV) are rhabdoviruses that infect salmonids, producing serious economic losses. Two recombinant IHN viruses were generated by reverse genetics. For one (rIHNV GFP) the IHNV NV gene was replaced with the green fluorescent protein (GFP) gene. In the other (rIHNV-Gvhsv GFP) the G gene was also exchanged for that of VHSV. No mortalities, external signs or histological lesions were observed in experimental infections conducted with the recombinant viruses. Neither the rIHNV GFP nor rIHNV-Gvhsv GFP was detected by RT-PCR in any of the examined tissues from experimentally infected fish. In order to assess their potential as vaccines against the wild type viruses, rainbow trout were vaccinated with the recombinant viruses by intraperitoneal injection and challenged 30 d later with virulent IHNV or VHSV. The GFP viruses provided protection against both wild type viruses. None of the recombinant viruses induced antibody production, and the expression of interferon (IFNalpha4) and interferon induced genes such as Mx protein and ISG-15 was not different to that of controls. The rIHNV-Gvhsv GFP did not inhibit cellular apoptosis as it was observed in an IHNV inoculated fish cell line. These studies suggest that the recombinant rIHNV-Gvhsv GFP is a promising candidate as a live recombinant vaccine and also provides a good model to further study viral pathogenicity and the molecular basis of protection against these viral infections.

  10. Common Viral Integration Sites Identified in Avian Leukosis Virus-Induced B-Cell Lymphomas

    PubMed Central

    Justice, James F.; Morgan, Robin W.

    2015-01-01

    ABSTRACT Avian leukosis virus (ALV) induces B-cell lymphoma and other neoplasms in chickens by integrating within or near cancer genes and perturbing their expression. Four genes—MYC, MYB, Mir-155, and TERT—have previously been identified as common integration sites in these virus-induced lymphomas and are thought to play a causal role in tumorigenesis. In this study, we employ high-throughput sequencing to identify additional genes driving tumorigenesis in ALV-induced B-cell lymphomas. In addition to the four genes implicated previously, we identify other genes as common integration sites, including TNFRSF1A, MEF2C, CTDSPL, TAB2, RUNX1, MLL5, CXorf57, and BACH2. We also analyze the genome-wide ALV integration landscape in vivo and find increased frequency of ALV integration near transcriptional start sites and within transcripts. Previous work has shown ALV prefers a weak consensus sequence for integration in cultured human cells. We confirm this consensus sequence for ALV integration in vivo in the chicken genome. PMID:26670384

  11. A CRISPR-Based Screen Identifies Genes Essential for West-Nile-Virus-Induced Cell Death.

    PubMed

    Ma, Hongming; Dang, Ying; Wu, Yonggan; Jia, Gengxiang; Anaya, Edgar; Zhang, Junli; Abraham, Sojan; Choi, Jang-Gi; Shi, Guojun; Qi, Ling; Manjunath, N; Wu, Haoquan

    2015-07-28

    West Nile virus (WNV) causes an acute neurological infection attended by massive neuronal cell death. However, the mechanism(s) behind the virus-induced cell death is poorly understood. Using a library containing 77,406 sgRNAs targeting 20,121 genes, we performed a genome-wide screen followed by a second screen with a sub-library. Among the genes identified, seven genes, EMC2, EMC3, SEL1L, DERL2, UBE2G2, UBE2J1, and HRD1, stood out as having the strongest phenotype, whose knockout conferred strong protection against WNV-induced cell death with two different WNV strains and in three cell lines. Interestingly, knockout of these genes did not block WNV replication. Thus, these appear to be essential genes that link WNV replication to downstream cell death pathway(s). In addition, the fact that all of these genes belong to the ER-associated protein degradation (ERAD) pathway suggests that this might be the primary driver of WNV-induced cell death.

  12. Incidence of Alpha-Herpes virus induced ocular disease in Suriname.

    PubMed

    Adhin, Malti R; Grunberg, Meritha G; Labadie-Bracho, Mergiory; Pawiroredjo, Jerrel

    2012-12-01

    Herpes simplex virus (HSV) infection of the corneal stroma is the most prominent cause of scar formation impairing visual acuity and HSV keratitis is the leading cause of corneal opacity throughout the world. Suriname lacked test systems for microbial causes of ocular disease, therefore a polymerase chain reaction-based Herpes virus assay was introduced, enabling prompt recognition, and timely treatment, preventing progressive eye damage. The incidence and epidemiology of Herpes simplex virus type 1 (HSV-1), type 2 (HSV-2), and varicella zoster virus (VZV) in ocular disease in Suriname was assessed. In a cross-sectional prospective study, ocular swabs were collected from 91 patients with a presumptive α-Herpes virus ocular infection attending the Academic Hospital between November 2008 and August 2010 and were tested by a PCR-based α-Herpes virus assay. Alpha-Herpes virus ophthalmic infections were caused predominantly by HSV-1 with a prevalence of 31%. The prevalences of VZV, HSV-2, and a mixed HSV-1/HSV-2 infection were 4%, 3%, and 2%, respectively. The first reported annual incidence of herpetic induced ocular disease in Suriname was estimated at 11.4 per 100,000 person-years (95% CI, 4.8-18.1). No clear age, ethnic or gender dependent difference in incidence was observed. The information obtained on α-Herpes virus positive ocular infections and the distribution of subtypes provided the first insight in the South American situation of α-Herpes virus induced ocular disease.

  13. Identification of Amino Acid Residues Critical for the Anti-Interferon Activity of the Nucleoprotein of the Prototypic Arenavirus Lymphocytic Choriomeningitis Virus ▿

    PubMed Central

    Martínez-Sobrido, Luis; Emonet, Sébastien; Giannakas, Panagiotis; Cubitt, Beatrice; García-Sastre, Adolfo; de la Torre, Juan C.

    2009-01-01

    Lymphocytic choriomeningitis virus (LCVM) nucleoprotein (NP) counteracts the host type I interferon (IFN) response by inhibiting activation of the IFN regulatory factor 3 (IRF3). In this study, we have mapped the regions and specific amino acid residues within NP involved in its anti-IFN activity. We identified a region spanning residues 382 to 386 as playing a critical role in the IFN-counteracting activity of NP. Alanine substitutions at several positions within this region resulted in NP mutants that lacked the IFN-counteracting activity but retained their functions in virus RNA synthesis and assembly of infectious particles. We used reverse genetics to rescue a recombinant LCMV strain carrying mutation D382A in its NP [rLCMV/NP*(D382A)]. Compared to wild-type (WT) LCMV, rLCMV/NP*(D382A) exhibited a higher level of attenuation in IFN-competent than IFN-deficient cells. In addition, A549 cells infected with rLCMV/NP*(D382A), but not with WT LCMV, produced IFN and failed to rescue replication of the IFN-sensitive Newcastle disease virus. PMID:19710144

  14. Inhibition of immunologic injury of cultured cells infected with lymphocytic choriomeningitis virus: role of defective interfering virus in regulating viral antigenic expression

    PubMed Central

    Welsh, RM; Oldstone, MBA

    1977-01-01

    The expression of viral antigens on the surfaces of lymphocytic choriomeningitis virus (LCMV)-infected L-929 cells peaked 2-4 days postinfection and thereafter precipitously declined. Little or no viral antigen was expressed on the plasma membrane surfaces of persistently infected cells, but LCMV antigens were clearly present in the cytoplasms of most of those cells. Cells early after acute infection (days 2-4) were lysed by both virus-specific antibody and complement (C) and immune T lymphocytes. To the contrary, antibody and C did not kill persistently infected cells, but T lymphocytes did kill such cells although at a lower efficiency than acutely infected cells. The expression of viral antigens on the surfaces of infected cells was regulated by the virus- cell interaction in the absence of immune reagents and was closely associated with defective interfering (DI) LCMV interference. DI LCMV, per se, blocked the synthesis and cell surface expression of LCMV antigens, and DI LCMV generation immediately preceded a precipitous reduction in cell surface antigenicity during the acute infection. Persistently infected cells produced DI LCMV but no detectable S LCMV. Peritoneal cells isolated from mice persistently infected with LCMV resembled cultured persistently infected cells in their reduced expression of cell surface antigens and their resistance to LCMV superinfection. It is proposed that DI virus-mediated interference with viral protein synthesis may allow cells to escape immune surveillance during persistent infections. PMID:301173

  15. Cross-protection against lymphocytic choriomeningitis virus mediated by a CD4+ T-cell clone specific for an envelope glycoprotein epitope of Lassa virus.

    PubMed Central

    La Posta, V J; Auperin, D D; Kamin-Lewis, R; Cole, G A

    1993-01-01

    Recombinant vaccinia virus expressing the Lassa virus (LV) envelope glycoprotein precursor, V-LSGPC, was used to study the basis of LV-induced cross-protective immunity against the closely related arenavirus lymphocytic choriomeningitis virus (LCMV). C3H/HeJ mice primed with V-LSGPC developed neither circulating antibodies nor CD8+ cytotoxic T cells specific for LCMV, yet they resisted a normally lethal LCMV challenge. Spleen cells from such mice gave a proliferative response to LCMV in vitro that was inhibitable by anti-CD4 antibody. Synthetic peptides corresponding to predicted T-cell sites common to the envelope glycoprotein precursor (GP-C) of LV and that of LCMV were used to map the specificity of the proliferative response to an epitope located between amino acids 403 and 417 of LV GP-C. Several CD4+ T-cell clones specific for the 403-417 peptide were isolated and found to produce gamma interferon in response to both the peptide and LCMV. One of these clones, C9, was selected for further study. C9 lysed I-AK-bearing target cells, and when adoptively transferred to C3H/HeJ mice, it was capable of mediating both a peptide-specific delayed hypersensitivity reaction and resistance to lethal LCMV challenge. These collective findings demonstrate, for the first time, that CD4+ T cells can play a major role in arenavirus-specific cross-protective immunity. PMID:7684468

  16. Latitudinal variation in virus-induced mortality of phytoplankton across the North Atlantic Ocean.

    PubMed

    Mojica, Kristina D A; Huisman, Jef; Wilhelm, Steven W; Brussaard, Corina P D

    2016-02-01

    Viral lysis of phytoplankton constrains marine primary production, food web dynamics and biogeochemical cycles in the ocean. Yet, little is known about the biogeographical distribution of viral lysis rates across the global ocean. To address this, we investigated phytoplankton group-specific viral lysis rates along a latitudinal gradient within the North Atlantic Ocean. The data show large-scale distribution patterns of different virus groups across the North Atlantic that are associated with the biogeographical distributions of their potential microbial hosts. Average virus-mediated lysis rates of the picocyanobacteria Prochlorococcus and Synechococcus were lower than those of the picoeukaryotic and nanoeukaryotic phytoplankton (that is, 0.14 per day compared with 0.19 and 0.23 per day, respectively). Total phytoplankton mortality (virus plus grazer-mediated) was comparable to the gross growth rate, demonstrating high turnover rates of phytoplankton populations. Virus-induced mortality was an important loss process at low and mid latitudes, whereas phytoplankton mortality was dominated by microzooplankton grazing at higher latitudes (>56°N). This shift from a viral-lysis-dominated to a grazing-dominated phytoplankton community was associated with a decrease in temperature and salinity, and the decrease in viral lysis rates was also associated with increased vertical mixing at higher latitudes. Ocean-climate models predict that surface warming will lead to an expansion of the stratified and oligotrophic regions of the world's oceans. Our findings suggest that these future shifts in the regional climate of the ocean surface layer are likely to increase the contribution of viral lysis to phytoplankton mortality in the higher-latitude waters of the North Atlantic, which may potentially reduce transfer of matter and energy up the food chain and thus affect the capacity of the northern North Atlantic to act as a long-term sink for CO2.

  17. Optimizing virus-induced gene silencing efficiency with Cymbidium mosaic virus in Phalaenopsis flower.

    PubMed

    Hsieh, Ming-Hsien; Lu, Hsiang-Chia; Pan, Zhao-Jun; Yeh, Hsin-Hung; Wang, Shyh-Shyan; Chen, Wen-Huei; Chen, Hong-Hwa

    2013-03-01

    Virus-induced gene silencing (VIGS) is a good way to study floral gene functions of orchids, especially those with a long life cycle. To explore the applicability and improve viral silencing efficiency for application of Cymbidium mosaic virus (CymMV)-induced gene silencing, we examined several variables, including the optimal length of the DNA fragment, the effect of developmental maturation status of inflorescence, and suitable inoculation sites. A CymMV-based VIGS system can be used with orchids to silence genes including PeUFGT3, PeMADS5 and PeMADS6 and induce prominent phenotypes with silencing efficiency up to 95.8% reduction. The DNA fragment size used for silencing can be as small as 78-85 bp and still reach 61.5-95.8% reduction. The effect of cDNA location as a target in VIGS varies among genes because of non-target gene influence when using the 5' terminus of the coding region of both PeMADS5 and PeMADS6. Use of VIGS to knock down a B-class MADS-box gene (PeMADS6) in orchids with different maturation status of inflorescence allowed for observing discernable knockdown phenotypes in flowers. Furthermore, silencing effects with Agro-infiltration did not differ with both leaf and inflorescence injections, but injection in the leaf saved time and produced less damage to plants. We propose an optimized approach for VIGS using CymMV as a silencing vector for floral functional genomics in Phalaenopsis orchid with Agro-infiltration: (1) DNA fragment length about 80 bp, (2) a more mature status of inflorescence and (3) leaf injection.

  18. Canine distemper virus induces apoptosis in cervical tumor derived cell lines.

    PubMed

    Del Puerto, Helen L; Martins, Almir S; Milsted, Amy; Souza-Fagundes, Elaine M; Braz, Gissandra F; Hissa, Barbara; Andrade, Luciana O; Alves, Fabiana; Rajão, Daniela S; Leite, Rômulo C; Vasconcelos, Anilton C

    2011-06-30

    Apoptosis can be induced or inhibited by viral proteins, it can form part of the host defense against virus infection, or it can be a mechanism for viral spread to neighboring cells. Canine distemper virus (CDV) induces apoptotic cells in lymphoid tissues and in the cerebellum of dogs naturally infected. CDV also produces a cytopathologic effect, leading to apoptosis in Vero cells in tissue culture. We tested canine distemper virus, a member of the Paramyxoviridae family, for the ability to trigger apoptosis in HeLa cells, derived from cervical cancer cells resistant to apoptosis. To study the effect of CDV infection in HeLa cells, we examined apoptotic markers 24 h post infection (pi), by flow cytometry assay for DNA fragmentation, real-time PCR assay for caspase-3 and caspase-8 mRNA expression, and by caspase-3 and -8 immunocytochemistry. Flow cytometry showed that DNA fragmentation was induced in HeLa cells infected by CDV, and immunocytochemistry revealed a significant increase in the levels of the cleaved active form of caspase-3 protein, but did not show any difference in expression of caspase-8, indicating an intrinsic apoptotic pathway. Confirming this observation, expression of caspase-3 mRNA was higher in CDV infected HeLa cells than control cells; however, there was no statistically significant change in caspase-8 mRNA expression profile. Our data suggest that canine distemper virus induced apoptosis in HeLa cells, triggering apoptosis by the intrinsic pathway, with no participation of the initiator caspase -8 from the extrinsic pathway. In conclusion, the cellular stress caused by CDV infection of HeLa cells, leading to apoptosis, can be used as a tool in future research for cervical cancer treatment and control.

  19. Systematic knockdown of morphine pathway enzymes in opium poppy using virus-induced gene silencing.

    PubMed

    Wijekoon, Champa P; Facchini, Peter J

    2012-03-01

    Opium poppy (Papaver somniferum) remains the sole commercial source for several pharmaceutical alkaloids including the narcotic analgesics codeine and morphine, and the semi-synthetic drugs oxycodone, buprenorphine and naltrexone. Although most of the biosynthetic genes have been identified, the post-transcriptional regulation of the morphinan alkaloid pathway has not been determined. We have used virus-induced gene silencing (VIGS) as a functional genomics tool to investigate the regulation of morphine biosynthesis via a systematic reduction in enzyme levels responsible for the final six steps in the pathway. Specific gene silencing was confirmed at the transcript level by real-time quantitative PCR (polymerase chain reaction), and at the protein level by immunoblot analysis using antibodies raised against salutaridine synthase (SalSyn), salutaridine reductase (SalR), salutaridine 7-O-acetyltransferase (SalAT), thebaine 6-O-demethylase (T6ODM), codeinone reductase (COR), and codeine O-demethylase (CODM). In some cases, silencing a specific biosynthetic gene resulted in a predictable accumulation of the substrate for the corresponding enzyme. Reduced SalSyn, SalR, T6ODM and CODM protein levels correlated with lower morphine levels and a substantial increase in the accumulation of reticuline, salutaridine, thebaine and codeine, respectively. In contrast, the silencing of genes encoding SalAT and COR resulted in the accumulation of salutaridine and reticuline, respectively, which are not the corresponding enzymatic substrates. The silencing of alkaloid biosynthetic genes using VIGS confirms the physiological function of enzymes previously characterized in vitro, provides insight into the biochemical regulation of morphine biosynthesis, and demonstrates the immense potential for metabolic engineering in opium poppy.

  20. Efficient virus-induced gene silencing in plants using a modified geminivirus DNA1 component.

    PubMed

    Huang, Changjun; Xie, Yan; Zhou, Xueping

    2009-04-01

    Virus-induced gene silencing (VIGS) is currently recognized as a powerful reverse genetics tool for application in functional genomics. DNA1, a satellite-like and single-stranded DNA molecule associated with begomoviruses (Family Geminiviridae), has been shown to replicate autonomously but requires the helper virus for its dissemination. We developed a VIGS vector based on the DNA1 component of tobacco curly shoot virus (TbCSV), a monopartite begomovirus, by inserting a multiple cloning site between the replication-associated protein open reading frame and the A-rich region for subsequent insertion of DNA fragments of genes targeted for silencing. When a host gene (sulphur, Su) or transgene (green fluorescent protein, GFP) was inserted into the modified DNA1 vector and co-agroinoculated with TbCSV, efficient silencing of the cognate gene was observed in Nicotiana benthamiana plants. More interestingly, we demonstrated that this modified DNA1 could effectively suppress GFP in transgenic N. benthamiana or endogenous Su in tobacco plants when co-agroinoculated with tomato yellow leaf curl China virus (TYLCCNV), another monopartite begomovirus that does not induce any viral symptoms. A gene-silencing system in Nicotiana spp., Solanum lycopersicum and Petunia hybrida plants was then established using TYLCCNV and the modified DNA1 vector. The system can be used to silence genes involved in meristem and flower development. The modified DNA1 vector was used to silence the AtTOM homologous genes (NbTOM1 and NbTOM3) in N. benthamiana. Silencing of NbTOM1 or NbTOM3 can reduce tobamovirus multiplication to a lower level, and silencing of both genes simultaneously can completely inhibit tobamovirus multiplication. Previous studies have reported that DNA1 is associated with both monopartite and bipartite begomoviruses, as well as curtoviruses. This vector system can therefore be applied for the study, analysis and discovery of gene function in a variety of important crop plants.

  1. Virus-induced alterations in insulin release in hamster islets of Langerhans.

    PubMed

    Rayfield, E J; Seto, Y; Walsh, S; McEvoy, R C

    1981-11-01

    After the inoculation of Golden Syrian hamsters with the TC-83 vaccine strain of Venezuelan encephalitis (VE) virus, a sustained diminution in glucose-stimulated insulin release and glucose intolerance of shorter duration develops. To understand better the mechanism of this defect in insulin release, we examined insulin secretion in response to several test agents in isolated perifused islets from control and 24-d post-VE virus-infected hamsters. 50 islets were used in all perifusion experiments, and data were expressed as total insulin released as well as peak response for each test agent during a 30-min perifusion period from control and VE-infected islets. After perifusion with 20 mM glucose, a 45% diminution of insulin release was noted in VE-infected islets in comparison with control islets, which in turn was similar to in vivo findings. However, following 1-mM tolbutamide stimulation, insulin release was similar in control and VE-infected islets. In separate studies, 1 mM tolbutamide, 10 mM theophilline, 1 mM dibutyryl cyclic (c)AMP, and 1 mM 8-bromo-cAMP resulted in statistically similar insulin-release curves in control and VE-infected islets. Additional experiments assessing [5-3H]glucose use in control and infected islets after 20 min of perifusion with 20 mM glucose revealed virtually identical values (239 +/- 30-control; and 222 +/- 27-VE-infected islets). Morphological and morphometric evaluation of VE-infected islets (21 d following virus inoculation) showed no changes in islet volume density, beta cell density, and beta cell granulation. Thus, VE virus induces a defect in glucose-stimulated insulin release from hamster beta cells that can be corrected by cAMP analogues and does not alter islet glucose use.

  2. Latitudinal variation in virus-induced mortality of phytoplankton across the North Atlantic Ocean

    PubMed Central

    Mojica, Kristina D A; Huisman, Jef; Wilhelm, Steven W; Brussaard, Corina P D

    2016-01-01

    Viral lysis of phytoplankton constrains marine primary production, food web dynamics and biogeochemical cycles in the ocean. Yet, little is known about the biogeographical distribution of viral lysis rates across the global ocean. To address this, we investigated phytoplankton group-specific viral lysis rates along a latitudinal gradient within the North Atlantic Ocean. The data show large-scale distribution patterns of different virus groups across the North Atlantic that are associated with the biogeographical distributions of their potential microbial hosts. Average virus-mediated lysis rates of the picocyanobacteria Prochlorococcus and Synechococcus were lower than those of the picoeukaryotic and nanoeukaryotic phytoplankton (that is, 0.14 per day compared with 0.19 and 0.23 per day, respectively). Total phytoplankton mortality (virus plus grazer-mediated) was comparable to the gross growth rate, demonstrating high turnover rates of phytoplankton populations. Virus-induced mortality was an important loss process at low and mid latitudes, whereas phytoplankton mortality was dominated by microzooplankton grazing at higher latitudes (>56°N). This shift from a viral-lysis-dominated to a grazing-dominated phytoplankton community was associated with a decrease in temperature and salinity, and the decrease in viral lysis rates was also associated with increased vertical mixing at higher latitudes. Ocean-climate models predict that surface warming will lead to an expansion of the stratified and oligotrophic regions of the world's oceans. Our findings suggest that these future shifts in the regional climate of the ocean surface layer are likely to increase the contribution of viral lysis to phytoplankton mortality in the higher-latitude waters of the North Atlantic, which may potentially reduce transfer of matter and energy up the food chain and thus affect the capacity of the northern North Atlantic to act as a long-term sink for CO2. PMID:26262815

  3. Functional genomic analysis of cotton genes with agrobacterium-mediated virus-induced gene silencing.

    PubMed

    Gao, Xiquan; Shan, Libo

    2013-01-01

    Cotton (Gossypium spp.) is one of the most agronomically important crops worldwide for its unique textile fiber production and serving as food and feed stock. Molecular breeding and genetic engineering of useful genes into cotton have emerged as advanced approaches to improve cotton yield, fiber quality, and resistance to various stresses. However, the understanding of gene functions and regulations in cotton is largely hindered by the limited molecular and biochemical tools. Here, we describe the method of an Agrobacterium infiltration-based virus-induced gene silencing (VIGS) assay to transiently silence endogenous genes in cotton at 2-week-old seedling stage. The genes of interest could be readily silenced with a consistently high efficiency. To monitor gene silencing efficiency, we have cloned cotton GrCla1 from G. raimondii, a homolog gene of Arabidopsis Cloroplastos alterados 1 (AtCla1) involved in chloroplast development, and inserted into a tobacco rattle virus (TRV) binary vector pYL156. Silencing of GrCla1 results in albino phenotype on the newly emerging leaves, serving as a visual marker for silencing efficiency. To further explore the possibility of using VIGS assay to reveal the essential genes mediating disease resistance to Verticillium dahliae, a fungal pathogen causing severe Verticillium wilt in cotton, we developed a seedling infection assay to inoculate cotton seedlings when the genes of interest are silenced by VIGS. The method we describe here could be further explored for functional genomic analysis of cotton genes involved in development and various biotic and abiotic stresses.

  4. Chronic lymphocytic choriomeningitis virus infection actively down-regulates CD4+ T cell responses directed against a broad range of epitopes.

    PubMed

    Mothé, Bianca R; Stewart, Barbara S; Oseroff, Carla; Bui, Huynh-Hoa; Stogiera, Stephanie; Garcia, Zacarias; Dow, Courtney; Rodriguez-Carreno, Maria Pilar; Kotturi, Maya; Pasquetto, Valerie; Botten, Jason; Crotty, Shane; Janssen, Edith; Buchmeier, Michael J; Sette, Alessandro

    2007-07-15

    Activation of CD4(+) T cells helps establish and sustain CD8(+) T cell responses and is required for the effective clearance of acute infection. CD4-deficient mice are unable to control persistent infection and CD4(+) T cells are usually defective in chronic and persistent infections. We investigated the question of how persistent infection impacted pre-existing lymphocytic choriomeningitis virus (LCMV)-specific CD4(+) T cell responses. We identified class II-restricted epitopes from the entire set of open reading frames from LCMV Armstrong in BALB/c mice (H-2(d)) acutely infected with LCMV Armstrong. Of nine epitopes identified, six were restricted by I-A(d), one by I-E(d) and two were dually restricted by both I-A(d) and I-E(d) molecules. Additional experiments revealed that CD4(+) T cell responses specific for these epitopes were not generated following infection with the immunosuppressive clone 13 strain of LCMV. Most importantly, in peptide-immunized mice, established CD4(+) T cell responses to these LCMV CD4 epitopes as well as nonviral, OVA-specific responses were actively suppressed following infection with LCMV clone 13 and were undetectable within 12 days after infection, suggesting an active inhibition of established helper responses. To address this dysfunction, we performed transfer experiments using both the Smarta and OT-II systems. OT-II cells were not detected after clone 13 infection, indicating physical deletion, while Smarta cells proliferated but were unable to produce IFN-gamma, suggesting impairment of the production of this cytokine. Thus, multiple mechanisms may be involved in the impairment of helper responses in the setting of early persistent infection.

  5. Highly efficient virus-induced gene silencing in apple and soybean by apple latent spherical virus vector and biolistic inoculation.

    PubMed

    Yamagishi, Noriko; Yoshikawa, Nobuyuki

    2013-01-01

    Virus-induced gene silencing (VIGS) is an effective tool for the analysis of the gene function in plants within a short time. However, in woody fruit tree like apple, some of Solanum crops, and soybean, it is generally difficult to inoculate virus vector by conventional inoculation methods. Here, we show efficient VIGS in apple and soybean by Apple latent spherical virus (ALSV) vector and biolistic inoculation. The plants inoculated with ALSV vectors by particle bombardment showed uniform silenced phenotypes of target genes within 2-3 weeks post inoculation.

  6. High rates of virus-induced gene silencing by tobacco rattle virus in Populus.

    PubMed

    Shen, Zedan; Sun, Jian; Yao, Jun; Wang, Shaojie; Ding, Mingquan; Zhang, Huilong; Qian, Zeyong; Zhao, Nan; Sa, Gang; Zhao, Rui; Shen, Xin; Polle, Andrea; Chen, Shaoliang

    2015-09-01

    Virus-induced gene silencing (VIGS) has been shown to be an effective tool for investigating gene functions in herbaceous plant species, but has rarely been tested in trees. The establishment of a fast and reliable transformation system is especially important for woody plants, many of which are recalcitrant to transformation. In this study, we established a tobacco rattle virus (TRV)-based VIGS system for two Populus species, Populus euphratica and P. × canescens. Here, TRV constructs carrying a 266 bp or a 558 bp fragment of the phytoene desaturase (PDS) gene were Agrobacterium-infiltrated into leaves of the two poplar species. Agrobacterium-mediated delivery of the shorter insert, TRV2-PePDS266, into the host poplars resulted in expected photobleaching in both tree species, but not the longer insert, PePDS558. The efficiency of VIGS was temperature-dependent, increasing by raising the temperature from 18 to 28 °C. The optimized TRV-VIGS system at 28 °C resulted in a high silencing frequency and efficiency up to 65-73 and 83-94%, respectively, in the two tested poplars. Moreover, syringe inoculation of Agrobacterium in 100 mM acetosyringone induced a more efficient silencing in the two poplar species, compared with other agroinfiltration methods, e.g., direct injection, misting and agrodrench. There were plant species-related differences in the response to VIGS because the photobleaching symptoms were more severe in P. × canescens than in P. euphratica. Furthermore, VIGS-treated P. euphratica exhibited a higher recovery rate (50%) after several weeks of the virus infection, compared with TRV-infected P. × canescens plants (20%). Expression stability of reference genes was screened to assess the relative abundance of PePDS mRNA in VIGS-treated P. euphratica and P. × canescens. PeACT7 was stably expressed in P. euphratica and UBQ-L was selected as the most suitable reference gene for P. × canescens using three different

  7. Toll Like Receptor 3 modulates immunopathology during a Schistosoma mansoni egg-driven Th2 response in the lung

    PubMed Central

    Joshi, Amrita D.; Schaller, Matthew; Lukacs, Nicholas W.; Kunkel, Steven L.; Hogaboam, Cory M.

    2010-01-01

    We examined the role of Toll Like Receptor 3 (TLR3) in Th2-driven pulmonary granulomatous disease, using wildtype (TLR3+/+) and TLR3 gene deficient (TLR3−/−) mice in a well-established model of S. mansoni egg induced pulmonary granuloma. The intravenous bolus injection of S. mansoni eggs into S. mansoni-sensitized TLR3+/+ mice was associated with an increase in TLR3 transcript expression in alveolar macrophages and ex vivo spleen and lung cultures at day 8 after egg injection. Lungs from TLR3−/− mice showed an increase in granuloma size, greater collagen deposition around the granuloma, and increased Th2 cytokine and chemokine levels compared with similarly sensitized and challenged TLR3+/+ mice. Macrophages from TLR3−/− mice exhibited a M2 phenotype characterized by increased arginase and CCL2 expression. Significantly greater numbers of CD4+CD25+ T cells were present in the lungs of TLR3−/− mice compared with TLR3+/+ mice at day 8 after egg embolization. Cells derived from granulomatous lung and lung draining lymph nodes of TLR3−/− mice released significantly higher levels of IL-17 levels relative to TLR3+/+ cells. Thus, our data suggest that TLR3 has a major regulatory role during a Th2-driven granulomatous response as its absence enhanced immunopathology. PMID:19009529

  8. Evaluation of immunopathologic effects of aqueous extract of Echinacea purpurea in mice after experimental challenge with Pasteurella multocida serotype A

    PubMed Central

    Rezaie, A; Gharibi, D; Ghorbanpoor, M; Anbari, S; Pourmahdi Broojeni, M

    2014-01-01

    In order to assess the immunopathological effects of aqueous Echinacea purpurea extract (EPE) on mice experimentally challenged with Pasteurella multocida serotype A, forty female BALB/c mice were randomly divided into four groups. The groups included a control group (received sterile distilled water 2 times/week for 2 weeks, intraperitoneally and then 100 µl sterile saline intranasally), a PMA group (received sterile distilled water as the control group and after 2 weeks, 5.6 × 103 CFU/ml of P. multocida serotype A, intranasally), an EPE+PMA group (received E. purpurea extract intraperitoneally 2 times/week for 2 weeks and then challenged as the PMA group) and an EPE group (received E. purpurea extract as EPE+PMA group and then 100 µl sterile saline intranasally). After 24 and 48 h post challenge, half of the animals in each group were sacrificed and analyzed for bacterial counts in their lungs and livers, TNFα serum levels and histapathological changes. The results showed significant differences in lung bacterial counts between PMA and EPE+PMA groups. TNFα serum level was significantly higher in the PMA group. Histopathological examination revealed infiltration of neutrophils in alveolar septa and hyperemia in the PMA group. In addition, the criteria of bronchopneumonia were partially recovered in the EPE+PMA compared to the PMA group. According to the results, it seems that E. purpurea extract has an immunomodulatory effect and can be used to prevent or control of pneumonia caused by Pasteurella. PMID:27175135

  9. Chronic graft-versus-host disease in the rat radiation chimera. III. Immunology and immunopathology in rapidly induced models

    SciTech Connect

    Beschorner, W.E.; Tutschka, P.J.; Santos, G.W.

    1983-03-01

    Although chronic graft-versus-host disease (GVHD) frequently develops in the long-term rat radiation chimera, we present three additional models in which a histologically similar disease is rapidly induced. These include adoptive transfer of spleen and bone marrow from rats with spontaneous chronic GVHD into lethally irradiated rats of the primary host strain; sublethal irradiation of stable chimeras followed by a booster transplant; and transfer of spleen cells of chimeras recovering from acute GVHD into second-party (primary recipient strain) or third-party hosts. Some immunopathologic and immune abnormalities associated with spontaneous chronic GVHD were not observed in one or more of the induced models. Thus, IgM deposition in the skin, antinuclear antibodies, and vasculitis appear to be paraphenomena. On the other hand, lymphoid hypocellularity of the thymic medulla, immaturity of splenic follicles, and nonspecific suppressor cells were consistently present in the long term chimeras, and in all models. These abnormalities therefore may be pathogenetically important, or closely related to the development of chronic GVHD.

  10. Contribution of the Purinergic Receptor P2X7 to Development of Lung Immunopathology during Influenza Virus Infection

    PubMed Central

    Ermler, Megan E.; Schotsaert, Michael; Gonzalez, Ma G.; Gillespie, Virginia; Lim, Jean K.; García-Sastre, Adolfo

    2017-01-01

    ABSTRACT An exacerbated immune response is one of the main causes of influenza-induced lung damage during infection. The molecular mechanisms regulating the fate of the initial immune response to infection, either as a protective response or as detrimental immunopathology, are not well understood. The purinergic receptor P2X7 is an ionotropic nucleotide-gated ion channel receptor expressed on immune cells that has been implicated in induction and maintenance of excessive inflammation. Here, we analyze the role of this receptor in a mouse model of influenza virus infection using a receptor knockout (KO) mouse strain. Our results demonstrate that the absence of the P2X7 receptor results in a better outcome to influenza virus infection characterized by reduced weight loss and increased survival upon experimental influenza challenge compared to wild-type mice. This effect was not virus strain specific. Overall lung pathology and apoptosis were reduced in virus-infected KO mice. Production of proinflammatory cytokines and chemokines such as interleukin-10 (IL-10), gamma interferon (IFN-γ), and CC chemokine ligand 2 (CCL2) was also reduced in the lungs of the infected KO mice. Infiltration of neutrophils and depletion of CD11b+ macrophages, characteristic of severe influenza virus infection in mice, were lower in the KO animals. Together, these results demonstrate that activation of the P2X7 receptor is involved in the exacerbated immune response observed during influenza virus infection. PMID:28351919

  11. A Numerically Subdominant CD8 T Cell Response to Matrix Protein of Respiratory Syncytial Virus Controls Infection with Limited Immunopathology

    PubMed Central

    Liu, Jie; Haddad, Elias K.; Marceau, Joshua; Morabito, Kaitlyn M.; Rao, Srinivas S.; Filali-Mouhim, Ali; Sekaly, Rafick-Pierre; Graham, Barney S.

    2016-01-01

    CD8 T cells are involved in pathogen clearance and infection-induced pathology in respiratory syncytial virus (RSV) infection. Studying bulk responses masks the contribution of individual CD8 T cell subsets to protective immunity and immunopathology. In particular, the roles of subdominant responses that are potentially beneficial to the host are rarely appreciated when the focus is on magnitude instead of quality of response. Here, by evaluating CD8 T cell responses in CB6F1 hybrid mice, in which multiple epitopes are recognized, we found that a numerically subdominant CD8 T cell response against DbM187 epitope of the virus matrix protein expressed high avidity TCR and enhanced signaling pathways associated with CD8 T cell effector functions. Each DbM187 T effector cell lysed more infected targets on a per cell basis than the numerically dominant KdM282 T cells, and controlled virus replication more efficiently with less pulmonary inflammation and illness than the previously well-characterized KdM282 T cell response. Our data suggest that the clinical outcome of viral infections is determined by the integrated functional properties of a variety of responding CD8 T cells, and that the highest magnitude response may not necessarily be the best in terms of benefit to the host. Understanding how to induce highly efficient and functional T cells would inform strategies for designing vaccines intended to provide T cell-mediated immunity. PMID:26943673

  12. Comparison of rapid immunodiagnosis assay kit with molecular and immunopathological approaches for diagnosis of rabies in cattle

    PubMed Central

    Ahmad, Ajaz; Singh, C. K.

    2016-01-01

    Aim: Presently, diagnosis of rabies is primarily based on, conventional fluorescent antibody technique (FAT), immunopathological and molecular techniques. Recently, rapid immunodiagnostic assay (RIDA) - A monoclonal antibody-based technique has been introduced for rapid diagnosis of rabies. The present investigation is envisaged to study the efficacy of RIDA kit for the diagnosis of rabies in cattle. Materials and Methods: About 11 brain samples from cattle, clinically suspected for rabies, were screened by the FAT, Heminested reverse transcriptase polymerase chain reaction (HnRT-PCR), Immunohistochemistry (IHC), and RIDA. Results: The sensitivity for detection of rabies from brain tissue by RIDA was 85.7% as compared to 100% by IHC as well as HnRT-PCR. The accuracy of detection of rabies by RIDA was 91.6% as compared to 100% that of IHC and HnRT-PCR, whereas specificity of RIDA was 100% like that of the IHC and HnRT-PCR. Conclusion: Despite a comparatively low-sensitivity and accuracy of RIDA, latter can still be useful in screening a large number of field samples promptly. However, it is recommended that negative results with RIDA in cattle need to be authenticated by suitable alternative diagnostic approaches. PMID:27051193

  13. A conserved virus-induced cytoplasmic TRAMP-like complex recruits the exosome to target viral RNA for degradation

    PubMed Central

    Molleston, Jerome M.; Sabin, Leah R.; Moy, Ryan H.; Menghani, Sanjay V.; Rausch, Keiko; Gordesky-Gold, Beth; Hopkins, Kaycie C.; Zhou, Rui; Jensen, Torben Heick; Wilusz, Jeremy E.; Cherry, Sara

    2016-01-01

    RNA degradation is tightly regulated to selectively target aberrant RNAs, including viral RNA, but this regulation is incompletely understood. Through RNAi screening in Drosophila cells, we identified the 3′-to-5′ RNA exosome and two components of the exosome cofactor TRAMP (Trf4/5–Air1/2–Mtr4 polyadenylation) complex, dMtr4 and dZcchc7, as antiviral against a panel of RNA viruses. We extended our studies to human orthologs and found that the exosome as well as TRAMP components hMTR4 and hZCCHC7 are antiviral. While hMTR4 and hZCCHC7 are normally nuclear, infection by cytoplasmic RNA viruses induces their export, forming a cytoplasmic complex that specifically recognizes and induces degradation of viral mRNAs. Furthermore, the 3′ untranslated region (UTR) of bunyaviral mRNA is sufficient to confer virus-induced exosomal degradation. Altogether, our results reveal that signals from viral infection repurpose TRAMP components to a cytoplasmic surveillance role where they selectively engage viral RNAs for degradation to restrict a broad range of viruses. PMID:27474443

  14. Impact of bacterial colonization on the severity, and accompanying airway inflammation, of virus-induced wheezing in children.

    PubMed

    Yu, D; Wei, L; Zhengxiu, L; Jian, L; Lijia, W; Wei, L; Xiqiang, Y; Xiaodong, Z; Zhou, F; Enmei, L

    2010-09-01

    It is reported that bacterial colonization of the airway in neonates affects the likelihood and severity of subsequent wheezing in childhood. This study aimed to explore the impact of bacterial colonization on the severity of virus-induced wheezing, and accompanying airway inflammation. Nasopharyngeal aspirates (NPAs) from 68 hospitalized children with bronchiolitis and 85 children with recurrent wheezing were obtained. Eleven common respiratory viruses were sought by PCR and/or direct fluorescence assay. Bacteria were isolated from NPAs by routine culture methods. Cell numbers and concentrations of cytokines/chemokines in the NPAs were measured, and nucleated cells were characterized. The frequency of bacterial colonization in children with recurrent wheezing was significantly higher than in children with an initial attack of bronchiolitis. Bacterial colonization accompanying virus infection had no effect on clinical manifestations, duration of hospitalization, concentrations of cytokines/chemokines (except interleukin-10 (IL-10)) or cellularity in the children with bronchiolitis; however, among the children with recurrent wheezing, those who had coexistent non-invasive bacterial colonization and virus infection presented more frequent cyanosis, longer duration of hospitalization, a higher concentration of IL-10 and a higher percentage of neutrophils in NPAs than those with virus infection but without bacterial colonization. Bacterial colonization was common in children with virus-induced wheezing, particularly in the situation of recurrent wheezing. To some extent, bacterial colonization accompanying virus infection may contribute to the severity of the wheezing because of its impact on airway inflammation.

  15. Stimulation of local solid tumour development of the nonproducer Marek's disease tumour transplant JMV by virus-induced immunosuppression.

    PubMed

    Bulow, V V; Weiland, F

    1980-01-01

    Chickens could be protected against lethal lymphoblastic leukaemia due to the nonproducer JMV Marek's disease (MD) tumour transplant by infection with the herpesvirus of turkeys (HVT) or various strains of MD virus. However, solid JMV tumours developed in MD virus-infected birds at the site of intramuscular or subcutaneous transplantation, but tumours never developed at the site of MD virus inoculation. The incidence and extent of local tumour growth, the development of metastases and the inhibition of tumour regression were related to the pathogenicity of the MD virus strains used for pre-treatment of the chickens. Infection of chickens with reticulo-endotheliosis virus (REV-C) or with chick syncytial virus (CSV), which are nonprotective against MD virus or JMV transplants, stimulated local tumour development of the attenuated JMV-A variant of the JMV transplant. Chickens which did not reject local tumours died of visceral JMV tumour metastases. A direct helper mechanism of viral infection on the oncogenicity of transplants was excluded. The results suggested that virus-induced immunosuppression stimulated the development of local JMV tumours which never occurred in normal chickens. Immunity to the JMV transplant, including resistance to lethal leukaemia and successful regression of local tumours, did not coincide with immunity to MD virus-induced visceral lymphomas or nerve lesions. Vaccinal induced tumour immunity evidently was defective. The significance of these results is discussed with reference to immunological functions of MD tumour-specific antigens.

  16. Disruption of plant carotenoid biosynthesis through virus-induced gene silencing affects oviposition behaviour of the butterfly Pieris rapae.

    PubMed

    Zheng, Si-Jun; Snoeren, Tjeerd A L; Hogewoning, Sander W; van Loon, Joop J A; Dicke, Marcel

    2010-05-01

    Optical plant characteristics are important cues to plant-feeding insects. In this article, we demonstrate for the first time that silencing the phytoene desaturase (PDS) gene, encoding a key enzyme in plant carotenoid biosynthesis, affects insect oviposition site selection behaviour. Virus-induced gene silencing employing tobacco rattle virus was used to knock down endogenous PDS expression in three plant species (Arabidopsis thaliana, Brassica nigra and Nicotiana benthamiana) by its heterologous gene sequence from Brassica oleracea. We investigated the consequences of the silencing of PDS on oviposition behaviour by Pieris rapae butterflies on Arabidopsis and Brassica plants; first landing of the butterflies on Arabidopsis plants (to eliminate an effect of contact cues); first landing on Arabidopsis plants enclosed in containers (to eliminate an effect of volatiles); and caterpillar growth on Arabidopsis plants. Our results show unambiguously that P. rapae has an innate ability to visually discriminate between green and variegated green-whitish plants. Caterpillar growth was significantly lower on PDS-silenced than on empty vector control plants. This study presents the first analysis of PDS function in the interaction with an herbivorous insect. We conclude that virus-induced gene silencing is a powerful tool for investigating insect-plant interactions in model and nonmodel plants.

  17. Thymic Germinal Centers and Corticosteroids in Myasthenia Gravis: an Immunopathological Study in 1035 Cases and a Critical Review.

    PubMed

    Truffault, Frédérique; de Montpreville, Vincent; Eymard, Bruno; Sharshar, Tarek; Le Panse, Rozen; Berrih-Aknin, Sonia

    2017-02-01

    The most common form of Myasthenia gravis (MG) is due to anti-acetylcholine receptor (AChR) antibodies and is frequently associated with thymic pathology. In this review, we discuss the immunopathological characteristics and molecular mechanisms of thymic follicular hyperplasia, the effects of corticosteroids on this thymic pathology, and the role of thymic epithelial cells (TEC), a key player in the inflammatory thymic mechanisms. This review is based not only on the literature data but also on thymic transcriptome results and analyses of pathological and immunological correlations in a vast cohort of 1035 MG patients without thymoma. We show that among patients presenting a thymic hyperplasia with germinal centers (GC), 80 % are females, indicating that thymic follicular hyperplasia is mainly a disease of women. The presence of anti-AChR antibodies is correlated with the degree of follicular hyperplasia, suggesting that the thymus is a source of anti-AChR antibodies. The degree of hyperplasia is not dependent upon the time from the onset, implying that either the antigen is chronically expressed and/or that the mechanisms of the resolution of the GC are not efficiently controlled. Glucocorticoids, a conventional therapy in MG, induce a significant reduction in the GC number, together with changes in the expression of chemokines and angiogenesis. These changes are likely related to the acetylation molecular process, overrepresented in corticosteroid-treated patients, and essential for gene regulation. Altogether, based on the pathological and molecular thymic abnormalities found in MG patients, this review provides some explanations for the benefit of thymectomy in early-onset MG patients.

  18. A Highly Efficacious Herpes Simplex Virus 1 Vaccine Blocks Viral Pathogenesis and Prevents Corneal Immunopathology via Humoral Immunity

    PubMed Central

    Royer, Derek J.; Gurung, Hem R.; Jinkins, Jeremy K.; Geltz, Joshua J.; Wu, Jennifer L.; Halford, William P.

    2016-01-01

    ABSTRACT Correlates of immunologic protection requisite for an efficacious herpes simplex virus 1 (HSV-1) vaccine remain unclear with respect to viral pathogenesis and clinical disease. In the present study, mice were vaccinated with a novel avirulent, live attenuated virus (0ΔNLS) or an adjuvanted glycoprotein D subunit (gD-2) similar to that used in several human clinical trials. Mice vaccinated with 0ΔNLS showed superior protection against early viral replication, neuroinvasion, latency, and mortality compared to that of gD-2-vaccinated or naive mice following ocular challenge with a neurovirulent clinical isolate of HSV-1. Moreover, 0ΔNLS-vaccinated mice exhibited protection against ocular immunopathology and maintained corneal mechanosensory function. Vaccinated mice also showed suppressed T cell activation in the draining lymph nodes following challenge. Vaccine efficacy correlated with serum neutralizing antibody titers. Humoral immunity was identified as the correlate of protection against corneal neovascularization, HSV-1 shedding, and latency through passive immunization. Overall, 0ΔNLS affords remarkable protection against HSV-1-associated ocular sequelae by impeding viral replication, dissemination, and establishment of latency. IMPORTANCE HSV-1 manifests in a variety of clinical presentations ranging from a rather benign “cold sore” to more severe forms of infection, including necrotizing stromal keratitis and herpes simplex encephalitis. The present study was undertaken to evaluate a novel vaccine to ocular HSV-1 infection not only for resistance to viral replication and spread but also for maintenance of the visual axis. The results underscore the necessity to reconsider strategies that utilize attenuated live virus as opposed to subunit vaccines against ocular HSV-1 infection. PMID:27030264

  19. Effect of recombinant human macrophage colony-stimulating factor 1 on immunopathology of experimental brucellosis in mice.

    PubMed Central

    Doyle, A G; Halliday, W J; Barnett, C J; Dunn, T L; Hume, D A

    1992-01-01

    Brucella abortus injected into CBA mice replicated primarily in the spleen and liver, reaching a peak bacterial count in both organs about 7 days postinfection. The organism was eliminated from the liver but declined to a chronic phase in the spleen. The infection caused hepatosplenomegaly. An influx of macrophages into the two organs was monitored by quantitative Northern (RNA blot) analysis of the macrophage-specific marker lysozyme mRNA. Lysozyme mRNA was detectable in spleen and increased three- to fourfold during infection. In liver, lysozyme mRNA was initially undetectable, but at about the peak of infection it reached a level comparable to that in the spleen. Macrophage colony-stimulating factor 1 (CSF-1) has been reported to be elevated in the circulation of animals infected with B. abortus and is known to stimulate monocytopoiesis. To investigate the role of CSF-1 in pathogenesis, we studied the effect of further increasing the CSF-1 concentration by administration of recombinant human CSF-1. Since the infection is characterized by several distinct phases, recombinant human CSF-1 was administered at defined times relative to these phases. Pronounced effects were observed only when CSF-1 administration was begun during the developing acute phase. The consequences were decreased bacterial numbers in the spleen but an increase in the liver, reduced antibody generation, and increased hepatosplenomegaly. A feature of many chronic intracellular infections is immunosuppression. B. abortus caused a substantial diminution of responsiveness of spleen cells to T-cell mitogens, particularly concanavalin A. This action was mimicked by CSF-1 treatment of the animals prior to spleen cell isolation. The results suggest that CSF-1 plays a role in macrophage recruitment in brucellosis and that recruited macrophages contribute to the immunopathology and immunosuppression. PMID:1548070

  20. Coinfection with the intestinal nematode Heligmosomoides polygyrus markedly reduces hepatic egg-induced immunopathology and proinflammatory cytokines in mouse models of severe schistosomiasis.

    PubMed

    Bazzone, Lindsey E; Smith, Patrick M; Rutitzky, Laura I; Shainheit, Mara G; Urban, Joseph F; Setiawan, Tommy; Blum, Arthur M; Weinstock, Joel V; Stadecker, Miguel J

    2008-11-01

    Infection with the trematode helminth Schistosoma mansoni results in a parasite egg-induced, CD4 T-cell-mediated, hepatointestinal granulomatous and fibrosing inflammation that varies greatly in severity, with a higher frequency of milder forms typically occurring in regions where the disease is endemic. One possible explanation for this is that in these regions the degree of inflammation is lessened by widespread concurrent infection with gastrointestinal nematodes. We tested this hypothesis by establishing a murine coinfection model in which mice were infected with the intestinal nematode parasite Heligmosomoides polygyrus prior to infection with S. mansoni. In CBA mice that naturally display a severe form of schistosomiasis, preinfection with H. polygyrus resulted in a marked reduction in schistosome egg-induced hepatic immunopathology, which was associated with significant decreases in the levels of interleukin-17 (IL-17), gamma interferon, tumor necrosis factor alpha, IL-23, IL-6, and IL-1beta and with increases in the levels of IL-4, IL-5, IL-10, and transforming growth factor beta in mesenteric lymph node cells, purified CD4 T cells, and isolated liver granuloma cells. There also were increases in liver Ym1 and forkhead box P3 transcription factor expression. In another model of high-pathology schistosomiasis induced in C57BL/6 mice by immunization with schistosome egg antigens in complete Freund's adjuvant, coinfection with the nematodes also resulted in a marked inhibition of hepatic immunopathology accompanied by similar shifts in cytokine production. These findings demonstrate that intestinal nematodes prevent Th1- and Th17-cell-mediated inflammation by promoting a strong Th2-polarized environment associated with increases in the levels of alternatively activated macrophages and T regulatory cells, which result in significant amelioration of schistosome-induced immunopathology.

  1. Immune response to acute virus infection in the Syrian hamster. II. Studies on the identity of virus-induced cytotoxic effector cells

    SciTech Connect

    Nelles, M.J.; Duncan, W.R.; Streilein, J.W.

    1981-01-01

    The identity of the effector cell(s) mediating vaccinia virus-induced cytotoxic activity in Syrian hamsters undergoing acute virus infection has been investigated. Two different approaches have been utilized in this regard. Although T cells do not mediate vaccinia virus-induced cytotoxic activity directly, functional T cells were required for the in vivo development of a significant portion of vaccinia virus-induced cytotoxic activity. In addition, incorporation of aggregated gamma-globulins as well as anti-immunoglobulin reagents into the in vitro 51 Cr release assay inhibited a significant proportion of the cytotoxic activity mediated by spleen cells obtained from acutely infected hamsters possessing an intact thymus. Both approaches have yielded information consistent with the idea that a sizable portion of vaccinia virus-induced cytotoxic activity in the Syrian hamster is effected by K cells mediating antibody-dependent cell-mediated cytotoxicity (ADCC). The significance of this observation is discussed with regard to hamster viral immunity in general.

  2. Characterization of Clonality of Epstein-Barr Virus-Induced Human B Lymphoproliferative Disease in Mice with Severe Combined Immunodeficiency

    PubMed Central

    Nakamine, Hirokazu; Masih, Aneal S.; Okano, Motohiko; Taguchi, Yuichi; Pirruccello, Samuel J.; Davis, Jack R.; Mahloch, Mark L.; Beisel, Kirk W.; Kleveland, Kimberly; Sanger, Warren G.; Purtilo, David T.

    1993-01-01

    To improve the diagnostic accuracy and understanding of the pathogenesis of lymphoproliferative diseases (LPDs) occurring in immunosuppressed transplant recipients (post-transplantation LPD), clonality of Epstein-Barr virus-induced human LPDs in mice with severe combined immunodeficiency was examined by analyzing: 1) human immunoglobulin genes and their products, 2) the clonality of Epstein-Barr virus DNA, and 3) genetic alteration of c-myc or bcl-2 genes. A spectrum of clonality was found in the LPDs comparable with that reported for post-transplantation LPDs, although rearrangements of c-myc or bcl-2 genes were not detected. It is confirmed that this system is useful in terms of clonality for understanding the early phases in the pathogenesis of post-transplantation LPD or LPD in immune deficient patients. ImagesFigure 1Figure 2Figure 3Figure 4Figure 5 PMID:8380952

  3. [Observation of cells tolerant of tobacco mosaic virus in virus-induced local lesions in Datura stramonium L. leaves].

    PubMed

    Reunov, A V; Lega, S N; Nagorskaia, V P; Lapshina, L A

    2011-01-01

    Ultrastructural examination of tobacco mosaic virus-induced local lesions developing in leaves of Datura stramonium plants demonstrated that, in the central area of the lesions, the cell response to viral invasion was not uniform. Most cells exhibited an acute hypersensitive reaction and underwent rapid and complete necrosis. However, some cells, despite considerable virus accumulation and immediate contact with completely collapsed cells, maintained a certain degree of structural integrity. Analysis performed showed that the proportion of collapsed and uncollapsed cells in the lesion centre 3 to 5 days after infection did not change essentially. These data suggest that the absence of hypersensitive response in some cells in the lesion centre is not due to an early stage of infection but is likely caused by cell tolerance of the virus.

  4. Institutional Animal Care and Use Committee Considerations Regarding the Use of Virus-Induced Carcinogenesis and Oncolytic Viral Models.

    PubMed

    Lewis, Stephanie D; Hickman-Davis, Judy M; Bergdall, Valerie K

    2016-01-01

    The use of virus-induced carcinogenesis and oncologic experimental animal models is essential in understanding the mechanisms of cancer development to advance prevention, diagnosis, and treatment methods. The Institutional Animal Care and Use Committee (IACUC) is responsible for both the complex philosophical and practical considerations associated with animal models of cancer. Animal models of cancer carry their own unique issues that require special consideration from the IACUC. Many of the considerations to be discussed apply to cancer models in general; specific issues related to viral carcinogenesis or oncolytic viruses will be specifically discussed as they arise. Responsible animal use integrates good science, humane care, and regulatory compliance. To meet those standards, the IACUC, in conjunction with the research investigator and attending veterinarian, must address a wide range of issues, including animal model selection, cancer model selection, humane end point considerations, experimental considerations, postapproval monitoring, reporting requirements, and animal management and personnel safety considerations.

  5. Influenza virus-induced encephalopathy in mice: interferon production and natural killer cell activity during acute infection.

    PubMed Central

    Wabuke-Bunoti, M A; Bennink, J R; Plotkin, S A

    1986-01-01

    Mice injected intracerebrally with infectious influenza virus (60 hemagglutinin units) developed lethargy, seizures, comas, and died 2 to 5 days postinfection. As early as 6 h after infection, the cerebrospinal fluid (CSF) in these animals was infiltrated with polymorphonuclear cells, mononuclear leukocytes, and large granular lymphocytes. Potent natural killer (NK) cell activity was observed for both CSF and spleen cell populations over the same period. This NK cell activity correlated with interferon (IFN) levels in the CSF and serum. Treatment of lethally infected mice with either anti-IFN alpha-IFN beta or anti-ganglio-n-tetraoglyceramide antiserum ameliorated the disease, reduced mortality, and effected changes in the relative proportions of inflammatory cell populations infiltrating the CSF. The possible significance of IFN and NK cell activity in the development of this influenza virus-induced encephalopathy is discussed. PMID:2431159

  6. Virus induced gene silencing (VIGS) for functional analysis of wheat genes involved in Zymoseptoria tritici susceptibility and resistance

    PubMed Central

    Lee, Wing-Sham; Rudd, Jason J.; Kanyuka, Kostya

    2015-01-01

    Virus-induced gene silencing (VIGS) has emerged as a powerful reverse genetic technology in plants supplementary to stable transgenic RNAi and, in certain species, as a viable alternative approach for gene functional analysis. The RNA virus Barley stripe mosaic virus (BSMV) was developed as a VIGS vector in the early 2000s and since then it has been used to study the function of wheat genes. Several variants of BSMV vectors are available, with some requiring in vitro transcription of infectious viral RNA, while others rely on in planta production of viral RNA from DNA-based vectors delivered to plant cells either by particle bombardment or Agrobacterium tumefaciens. We adapted the latest generation of binary BSMV VIGS vectors for the identification and study of wheat genes of interest involved in interactions with Zymoseptoria tritici and here present detailed and the most up-to-date protocols. PMID:26092793

  7. Virus-induced diabetes mellitus. VI. Genetically determined host differences in the replicating of encephalomyocarditis virus in pancreatic beta cells

    PubMed Central

    1976-01-01

    Beta cells were isolated from strains of mice that were susceptible and resistant to encephalomyocarditis (EMC) viral-induced diabetes mellitus. Beta cells from susceptible mice that were infected in vivo with EMC virus showed higher viral titers, more severe degranulation, and lower concentrations of immunoreactive insulin than beta cells from resistant mice. Immunofluorescence and infectious center assays revealed that pancreas from susceptible mice contained at least 10 times more infected cells than pancreas from resistant mice. Beta cell cultures prepared from susceptible mice and infected in vitro also showed higher viral titers and more severe cytopathologic changes than beta cell cultures from resistant mice. In contrast to beta cell cultures, virus replicated equally well in primary embryo and kidney cell cultures from susceptible and resistant strains of mice. It is concluded that the development of EMC virus-induced diabetes is related to genetically determined host differences in the capacity of the virus to infect beta cells. PMID:177713

  8. Induction and maintenance of DNA methylation in plant promoter sequences by apple latent spherical virus-induced transcriptional gene silencing

    PubMed Central

    Kon, Tatsuya; Yoshikawa, Nobuyuki

    2014-01-01

    Apple latent spherical virus (ALSV) is an efficient virus-induced gene silencing vector in functional genomics analyses of a broad range of plant species. Here, an Agrobacterium-mediated inoculation (agroinoculation) system was developed for the ALSV vector, and virus-induced transcriptional gene silencing (VITGS) is described in plants infected with the ALSV vector. The cDNAs of ALSV RNA1 and RNA2 were inserted between the cauliflower mosaic virus 35S promoter and the NOS-T sequences in a binary vector pCAMBIA1300 to produce pCALSR1 and pCALSR2-XSB or pCALSR2-XSB/MN. When these vector constructs were agroinoculated into Nicotiana benthamiana plants with a construct expressing a viral silencing suppressor, the infection efficiency of the vectors was 100%. A recombinant ALSV vector carrying part of the 35S promoter sequence induced transcriptional gene silencing of the green fluorescent protein gene in a line of N. benthamiana plants, resulting in the disappearance of green fluorescence of infected plants. Bisulfite sequencing showed that cytosine residues at CG and CHG sites of the 35S promoter sequence were highly methylated in the silenced generation zero plants infected with the ALSV carrying the promoter sequence as well as in progeny. The ALSV-mediated VITGS state was inherited by progeny for multiple generations. In addition, induction of VITGS of an endogenous gene (chalcone synthase-A) was demonstrated in petunia plants infected with an ALSV vector carrying the native promoter sequence. These results suggest that ALSV-based vectors can be applied to study DNA methylation in plant genomes, and provide a useful tool for plant breeding via epigenetic modification. PMID:25426109

  9. Newcastle disease virus induces stable formation of bona fide stress granules to facilitate viral replication through manipulating host protein translation.

    PubMed

    Sun, Yingjie; Dong, Luna; Yu, Shengqing; Wang, Xiaoxu; Zheng, Hang; Zhang, Pin; Meng, Chunchun; Zhan, Yuan; Tan, Lei; Song, Cuiping; Qiu, Xusheng; Wang, Guijun; Liao, Ying; Ding, Chan

    2017-04-01

    Mammalian cells respond to various environmental stressors to form stress granules (SGs) by arresting cytoplasmic mRNA, protein translation element, and RNA binding proteins. Virus-induced SGs function in different ways, depending on the species of virus; however, the mechanism of SG regulation of virus replication is not well understood. In this study, Newcastle disease virus (NDV) triggered stable formation of bona fide SGs on HeLa cells through activating the protein kinase R (PKR)/eIF2α pathway. NDV-induced SGs contained classic SG markers T-cell internal antigen (TIA)-1, Ras GTPase-activating protein-binding protein (G3BP)-1, eukaryotic initiation factors, and small ribosomal subunit, which could be disassembled in the presence of cycloheximide. Treatment with nocodazole, a microtubule disruption drug, led to the formation of relatively small and circular granules, indicating that NDV infection induces canonical SGs. Furthermore, the role of SGs on NDV replication was investigated by knockdown of TIA-1 and TIA-1-related (TIAR) protein, the 2 critical components involved in SG formation from the HeLa cells, followed by NDV infection. Results showed that depletion of TIA-1 or TIAR inhibited viral protein synthesis, reduced extracellular virus yields, but increased global protein translation. FISH revealed that NDV-induced SGs contained predominantly cellular mRNA rather than viral mRNA. Deletion of TIA-1 or TIAR reduced NP mRNA levels in polysomes. These results demonstrate that NDV triggers stable formation of bona fide SGs, which benefit viral protein translation and virus replication by arresting cellular mRNA.-Sun, Y., Dong, L., Yu, S., Wang, X., Zheng, H., Zhang, P., Meng, C., Zhan, Y., Tan, L., Song, C., Qiu, X., Wang, G., Liao, Y., Ding, C. Newcastle disease virus induces stable formation of bona fide stress granules to facilitate viral replication through manipulating host protein translation.

  10. Contribution of virus-induced lysis and protozoan grazing to benthic bacterial mortality estimated simultaneously in microcosms.

    PubMed

    Fischer, Ulrike R; Wieltschnig, Claudia; Kirschner, Alexander K T; Velimirov, Branko

    2006-08-01

    In contrast to the water column, the fate of bacterial production in freshwater sediments is still a matter of debate. Thus, the importance of virus-induced lysis and protozoan grazing of bacteria was investigated for the first time simultaneously in a silty sediment layer of a mesotrophic oxbow lake. Microcosms were installed in the laboratory in order to study the dynamics of these processes over 15 days. All microbial and physicochemical parameters showed acceptable resemblance to field data observed during a concomitant in situ study, and similar conclusions can be drawn with respect to the quantitative impact of viruses and protozoa on the bacterial compartment. Viral decay rates ranged from undetectable to 0.078 h(-1) (average, 0.033 h(-1)), and the control of bacterial production from below the detection limit to 36% (average, 12%). The contribution of virus-induced lysis of bacteria to the dissolved organic matter pool as well as to benthic bacterial nutrition was low. Ingestion rates of protozoan grazers ranged from undetectable to 24.7 bacteria per heterotrophic nanoflagellate (HNF) per hour (average, 4.8 bacteria HNF(-1) h(-1)) and from undetectable to 73.3 bacteria per ciliate per hour (average, 11.2 bacteria ciliate(-1) h(-1)). Heterotrophic nanoflagellate and ciliates together cropped up to 5% (average, 1%) of bacterial production. The viral impact on bacteria prevailed over protozoan grazing by a factor of 2.5-19.9 (average, 9.5). In sum, these factors together removed up to 36% (average, 12%) of bacterial production. The high number of correlations between viral and protozoan parameters is discussed in view of a possible relationship between virus removal and the presence of protozoan grazers.

  11. Dietary abscisic acid ameliorates influenza-virus-associated disease and pulmonary immunopathology through a PPARγ-dependent mechanism.

    PubMed

    Hontecillas, Raquel; Roberts, Paul C; Carbo, Adria; Vives, Cristina; Horne, William T; Genis, Sandra; Velayudhan, Binu; Bassaganya-Riera, Josep

    2013-06-01

    The anti-inflammatory phytohormone abscisic acid (ABA) modulates immune and inflammatory responses in mouse models of colitis and obesity. ABA has been identified as a ligand of lanthionine synthetase C-like 2, a novel therapeutic target upstream of the peroxisome proliferator-activated receptor γ (PPARγ) pathway. The goal of this study was to investigate the immune modulatory mechanisms underlying the anti-inflammatory efficacy of ABA against influenza-associated pulmonary inflammation. Wild-type (WT) and conditional knockout mice with defective PPARγ expression in lung epithelial and hematopoietic cells (cKO) treated orally with or without ABA (100 mg/kg diet) were challenged with influenza A/Udorn (H3N2) to assess ABA's impact in disease, lung lesions and gene expression. Dietary ABA ameliorated disease activity and lung inflammatory pathology, accelerated recovery and increased survival in WT mice. ABA suppressed leukocyte infiltration and monocyte chemotactic protein 1 mRNA expression in WT mice through PPARγ since this effect was abrogated in cKO mice. ABA ameliorated disease when administered therapeutically on the same day of the infection to WT but not mice lacking PPARγ in myeloid cells. We also show that ABA's greater impact is between days 7 and 10 postchallenge when it regulates the expression of genes involved in resolution, like 5-lipoxygenase and other members of the 5-lipoxygenase pathway. Furthermore, ABA significantly increased the expression of the immunoregulatory cytokine interleukin-10 in WT mice. Our results show that ABA, given preventively or therapeutically, ameliorates influenza-virus-induced pathology by activating PPARγ in pulmonary immune cells, suppressing initial proinflammatory responses and promoting resolution.

  12. Immunopathology of angioimmunoblastic lymphadenopathy.

    PubMed Central

    Jones, D. B.; Castleden, M.; Smith, J. L.; Mepham, B. L.; Wright, D. H.

    1978-01-01

    Eight patients with angioimmunoblastic lymphadenopathy have been studied by a variety of immunological and pathological techniques. They exhibited a spectrum of immunological reactivities that, in this small series, could be roughly correlated with survival. Those patients with relative B-cell predominance as shown by cell marker studies, histologically showed large numbers of plasma cells, and this pattern was associated in 3 of our patients with a survival of 3 years or more. T-cell predominance or both B- and T-cell depletion was associated histologically with large numbers of blast cells and eosinophils, but with few plasma cells. These patients responded poorly to therapy and had short survival times. One patient with B-cell predominance subsequently died of a histiocytic lymphoma. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 PMID:678427

  13. Mechanisms for virus-induced liver disease: tumor necrosis factor-mediated pathology independent of natural killer and T cells during murine cytomegalovirus infection.

    PubMed Central

    Orange, J S; Salazar-Mather, T P; Opal, S M; Biron, C A

    1997-01-01

    The contribution of endogenous NK cells and cytokines to virus-induced liver pathology was evaluated during murine cytomegalovirus infections of mice. In immunocompetent C57BL/6 mice, the virus induced a self-limited liver disease characterized by hepatitis, with focal inflammation, and large grossly visible subcapsular necrotic foci. The inflammatory foci were most numerous and contained the greatest number of cells 3 days after infection; they colocalized with areas of viral antigen expression. The largest number of necrotic foci was found 2 days after infection. Overall hepatic damage, assessed as increased expression of liver enzymes in serum, accompanied the development of inflammatory and necrotic foci. Experiments with neutralizing antibodies demonstrated that although virus-induced tumor necrosis factor (TNF) can have antiviral effects, it also mediated significant liver pathology. TNF was required for development of hepatic necrotic foci and increased levels of liver enzymes in serum but not for increased numbers of inflammatory foci. The necrotic foci and liver enzyme indications of pathology occurred independently of NK and T cells, because mice rendered NK-cell deficient by treatment with antibodies, T- and B-cell-deficient Rag-/- mice, and NK- and T-cell-deficient E26 mice all manifested both parameters of disease. Development of necrotic foci and maximally increased levels of liver enzymes in serum also were TNF dependent in NK-cell-deficient mice. Moreover, in the immunodeficient E26 mice, virus-induced liver disease was progressive, with eventual death of the host, and neutralization of TNF significantly increased longevity. These results establish conditions separating hepatitis from significant liver damage and demonstrate a cytokine-mediated component to viral pathogenesis. PMID:9371583

  14. Virus-induced gene silencing in transgenic plants: transgene silencing and reactivation associate with two patterns of transgene body methylation.

    PubMed

    Zhao, Mingmin; San León, David; Delgadillo, Ma Otilia; García, Juan Antonio; Simón-Mateo, Carmen

    2014-08-01

    We used bisulfite sequencing to study the methylation of a viral transgene whose expression was silenced upon plum pox virus infection of the transgenic plant and its subsequent recovery as a consequence of so-called virus-induced gene silencing (VIGS). VIGS was associated with a general increase in the accumulation of small RNAs corresponding to the coding region of the viral transgene. After VIGS, the transgene promoter was not methylated and the coding region showed uneven methylation, with the 5' end being mostly unmethylated in the recovered tissue or mainly methylated at CG sites in regenerated silenced plants. The methylation increased towards the 3' end, which showed dense methylation in all three contexts (CG, CHG and CHH). This methylation pattern and the corresponding silenced status were maintained after plant regeneration from recovered silenced tissue and did not spread into the promoter region, but were not inherited in the sexual offspring. Instead, a new pattern of methylation was observed in the progeny plants consisting of disappearance of the CHH methylation, similar CHG methylation at the 3' end, and an overall increase in CG methylation in the 5' end. The latter epigenetic state was inherited over several generations and did not correlate with transgene silencing and hence virus resistance. These results suggest that the widespread CG methylation pattern found in body gene bodies located in euchromatic regions of plant genomes may reflect an older silencing event, and most likely these genes are no longer silenced.

  15. Virus-induced gene silencing unravels multiple transcription factors involved in floral growth and development in Phalaenopsis orchids.

    PubMed

    Hsieh, Ming-Hsien; Pan, Zhao-Jun; Lai, Pei-Han; Lu, Hsiang-Chia; Yeh, Hsin-Hung; Hsu, Chia-Chi; Wu, Wan-Lin; Chung, Mei-Chu; Wang, Shyh-Shyan; Chen, Wen-Huei; Chen, Hong-Hwa

    2013-09-01

    Orchidaceae, one of the largest angiosperm families, has significant commercial value. Isolation of genes involved in orchid floral development and morphogenesis, scent production, and colouration will advance knowledge of orchid flower formation and facilitate breeding new varieties to increase the commercial value. With high-throughput virus-induced gene silencing (VIGS), this study identified five transcription factors involved in various aspects of flower morphogenesis in the orchid Phalaenopsis equestris. These genes are PeMADS1, PeMADS7, PeHB, PebHLH, and PeZIP. Silencing PeMADS1 and PebHLH resulted in reduced flower size together with a pelaloid column containing petal-like epidermal cells and alterations of epidermal cell arrangement in lip lateral lobes, respectively. Silencing PeMADS7, PeHB, and PeZIP alone resulted in abortion of the first three fully developed flower buds of an inflorescence, which indicates the roles of the genes in late flower development. Furthermore, double silencing PeMADS1 and PeMADS6, C- and B-class MADS-box genes, respectively, produced a combinatorial phenotype with two genes cloned in separate vectors. Both PeMADS1 and PeMADS6 are required to ensure the normal development of the lip and column as well as the cuticle formation on the floral epidermal cell surface. Thus, VIGS allows for unravelling the interaction between two classes of MADS transcription factors for dictating orchid floral morphogenesis.

  16. Virus-induced gene silencing unravels multiple transcription factors involved in floral growth and development in Phalaenopsis orchids

    PubMed Central

    Hsieh, Ming-Hsien; Pan, Zhao-Jun; Lai, Pei-Han; Lu, Hsiang-Chia; Yeh, Hsin-Hung; Hsu, Chia-Chi; Wu, Wan-Lin; Chung, Mei-Chu; Wang, Shyh-Shyan; Chen, Wen-Huei; Chen, Hong-Hwa

    2013-01-01

    Orchidaceae, one of the largest angiosperm families, has significant commercial value. Isolation of genes involved in orchid floral development and morphogenesis, scent production, and colouration will advance knowledge of orchid flower formation and facilitate breeding new varieties to increase the commercial value. With high-throughput virus-induced gene silencing (VIGS), this study identified five transcription factors involved in various aspects of flower morphogenesis in the orchid Phalaenopsis equestris. These genes are PeMADS1, PeMADS7, PeHB, PebHLH, and PeZIP. Silencing PeMADS1 and PebHLH resulted in reduced flower size together with a pelaloid column containing petal-like epidermal cells and alterations of epidermal cell arrangement in lip lateral lobes, respectively. Silencing PeMADS7, PeHB, and PeZIP alone resulted in abortion of the first three fully developed flower buds of an inflorescence, which indicates the roles of the genes in late flower development. Furthermore, double silencing PeMADS1 and PeMADS6, C- and B-class MADS-box genes, respectively, produced a combinatorial phenotype with two genes cloned in separate vectors. Both PeMADS1 and PeMADS6 are required to ensure the normal development of the lip and column as well as the cuticle formation on the floral epidermal cell surface. Thus, VIGS allows for unravelling the interaction between two classes of MADS transcription factors for dictating orchid floral morphogenesis. PMID:23956416

  17. Decreased Diversity of the Oral Microbiota of Patients with Hepatitis B Virus-Induced Chronic Liver Disease: A Pilot Project.

    PubMed

    Ling, Zongxin; Liu, Xia; Cheng, Yiwen; Jiang, Xiawei; Jiang, Haiyin; Wang, Yuezhu; Li, Lanjuan

    2015-11-26

    Increasing evidence suggests that altered gut microbiota is implicated in the pathogenesis of hepatitis B virus-induced chronic liver disease (HBV-CLD). However, the structure and composition of the oral microbiota of patients with HBV-CLD remains unclear. High-throughput pyrosequencing showed that decreased oral bacterial diversity was found in patients with HBV-CLD. The Firmicutes/Bacteroidetes ratio was increased significantly, which indicated that dysbiosis of the oral microbiota participated in the process of HBV-CLD development. However, the changing patterns of the oral microbiota in patients with HBV-induced liver cirrhosis (LC) were almost similar to patients with chronic hepatitis B (CHB). HBV infection resulted in an increase in potential H2S- and CH3SH-producing phylotypes such as Fusobacterium, Filifactor, Eubacterium, Parvimonas and Treponema, which might contribute to the increased oral malodor. These key oral-derived phylotypes might invade into the gut as opportunistic pathogens and contribute to altering the composition of the gut microbiota. This study provided important clues that dysbiosis of the oral microbiota might be involved in the development of HBV-CLD. Greater understanding of the relationships between the dysbiosis of oral microbiota and the development of HBV-CLD might facilitate the development of non-invasive differential diagnostic procedures and targeted treatments of HBV-CLD patients harbouring specific oral phylotypes.

  18. Virus-induced gene silencing of WRKY53 and an inducible phenylalanine ammonia-lyase in wheat reduces aphid resistance.

    PubMed

    Van Eck, Leon; Schultz, Thia; Leach, Jan E; Scofield, Steven R; Peairs, Frank B; Botha, Anna-Maria; Lapitan, Nora L V

    2010-12-01

    Although several wheat genes differentially expressed during the Russian wheat aphid resistance response have recently been identified, their requirement for and specific role in resistance remain unclear. Progress in wheat-aphid interaction research is hampered by inadequate collections of mutant germplasm and difficulty in transforming hexaploid wheat. Virus-induced gene silencing (VIGS) technology is emerging as a viable reverse genetics approach in cereal crops. However, the potential of VIGS for determining aphid defence gene function in wheat has not been evaluated. We report on the use of recombinant barley stripe mosaic virus (BSMV) to target and silence a WRKY53 transcription factor and an inducible phenylalanine ammonia-lyase (PAL) gene, both predicted to contribute to aphid defence in a genetically resistant wheat line. After inoculating resistant wheat with the VIGS constructs, transcript abundance was reduced to levels similar to that observed in susceptible wheat. Notably, the level of PAL expression was also suppressed by the WKRY53 construct, suggesting that these genes operate in the same defence response network. Both knockdowns exhibited a susceptible phenotype upon aphid infestation, and aphids feeding on silenced plants exhibited a significant increase in fitness compared to aphids feeding on control plants. Altered plant phenotype and changes in aphid behaviour after silencing imply that WKRY53 and PAL play key roles in generating a successful resistance response. This study is the first report on the successful use of VIGS to investigate genes involved in wheat-insect interactions.

  19. Virus-induced gene silencing of P23k in barley leaf reveals morphological changes involved in secondary wall formation.

    PubMed

    Oikawa, Ai; Rahman, Abidur; Yamashita, Tetsuro; Taira, Hideharu; Kidou, Shin-Ichiro

    2007-01-01

    P23k is a monocot-unique protein that is highly expressed in the scutellum of germinating barley seed. Previous expression analyses suggested that P23k is involved in sugar translocation and/or sugar metabolism. However, the role of P23k in barley physiology remains unclear. Here, to elucidate its physiological function, BSMV-based virus-induced gene silencing (VIGS) of P23k in barley leaves was performed. Expression and localization analyses of P23k mRNA in barley leaves showed up-regulation of P23k transcript with increased photosynthetic activity and the localization of these transcripts to the vascular bundles and sclerenchyma, where secondary wall formation is most active. VIGS of the P23k gene led to abnormal leaf development, asymmetric orientation of main veins, and cracked leaf edges caused by mechanical weakness. In addition, histochemical analyses indicated that the distribution of P23k in leaves coincides with the distribution of cell wall polysaccharides. Considering these results together, it is proposed that P23k is involved in the synthesis of cell wall polysaccharides and contributes to secondary wall formation in barley leaves.

  20. A High Throughput Barley Stripe Mosaic Virus Vector for Virus Induced Gene Silencing in Monocots and Dicots

    PubMed Central

    Yan, Lijie; Jackson, Andrew O.; Liu, Zhiyong; Han, Chenggui; Yu, Jialin; Li, Dawei

    2011-01-01

    Barley stripe mosaic virus (BSMV) is a single-stranded RNA virus with three genome components designated alpha, beta, and gamma. BSMV vectors have previously been shown to be efficient virus induced gene silencing (VIGS) vehicles in barley and wheat and have provided important information about host genes functioning during pathogenesis as well as various aspects of genes functioning in development. To permit more effective use of BSMV VIGS for functional genomics experiments, we have developed an Agrobacterium delivery system for BSMV and have coupled this with a ligation independent cloning (LIC) strategy to mediate efficient cloning of host genes. Infiltrated Nicotiana benthamiana leaves provided excellent sources of virus for secondary BSMV infections and VIGS in cereals. The Agro/LIC BSMV VIGS vectors were able to function in high efficiency down regulation of phytoene desaturase (PDS), magnesium chelatase subunit H (ChlH), and plastid transketolase (TK) gene silencing in N. benthamiana and in the monocots, wheat, barley, and the model grass, Brachypodium distachyon. Suppression of an Arabidopsis orthologue cloned from wheat (TaPMR5) also interfered with wheat powdery mildew (Blumeria graminis f. sp. tritici) infections in a manner similar to that of the A. thaliana PMR5 loss-of-function allele. These results imply that the PMR5 gene has maintained similar functions across monocot and dicot families. Our BSMV VIGS system provides substantial advantages in expense, cloning efficiency, ease of manipulation and ability to apply VIGS for high throughput genomics studies. PMID:22031834

  1. Involvement of the PI3K and ERK signaling pathways in largemouth bass virus-induced apoptosis and viral replication.

    PubMed

    Huang, Xiaohong; Wang, Wei; Huang, Youhua; Xu, Liwen; Qin, Qiwei

    2014-12-01

    Increased reports demonstrated that largemouth Bass, Micropterus salmoides in natural and artificial environments were always suffered from an emerging iridovirus disease, largemouth Bass virus (LMBV). However, the underlying mechanism of LMBV pathogenesis remained largely unknown. Here, we investigated the cell signaling events involved in virus induced cell death and viral replication in vitro. We found that LMBV infection in epithelioma papulosum cyprini (EPC) cells induced typical apoptosis, evidenced by the appearance of apoptotic bodies, cytochrome c release, mitochondrial membrane permeabilization (MMP) destruction and reactive oxygen species (ROS) generation. Two initiators of apoptosis, caspase-8 and caspase-9, and the executioner of apoptosis, caspase-3, were all significantly activated with the infection time, suggested that not only mitochondrion-mediated, but also death receptor-mediated apoptosis were involved in LMBV infection. Reporter gene assay showed that the promoter activity of transcription factors including p53, NF-κB, AP-1 and cAMP response element-binding protein (CREB) were decreased during LMBV infection. After treatment with different signaling pathway inhibitors, virus production were significantly suppressed by the inhibition of phosphatidylinositol 3-kinase (PI3K) pathway and extracellular-signal-regulated kinases (ERK) signaling pathway. Furthermore, LMBV infection induced apoptosis was enhanced by PI3K inhibitor LY294002, but decreased by addition of ERK inhibitor UO126. Therefore, we speculated that apoptosis was sophisticatedly regulated by a series of cell signaling events for efficient virus propagation. Taken together, our results provided new insights into the molecular mechanism of ranavirus infection.

  2. Development and application of an efficient virus-induced gene silencing system in Nicotiana tabacum using geminivirus alphasatellite*

    PubMed Central

    Huang, Chang-jun; Zhang, Tong; Li, Fang-fang; Zhang, Xin-yue; Zhou, Xue-ping

    2011-01-01

    Virus-induced gene silencing (VIGS) is a recently developed technique for characterizing the function of plant genes by gene transcript suppression and is increasingly used to generate transient loss-of-function assays. Here we report that the 2mDNA1, a geminivirus satellite vector, can induce efficient gene silencing in Nicotiana tabacum with Tobacco curly shoot virus. We have successfully silenced the β-glucuronidase (GUS) gene in GUS transgenic N. tabacum plants and the sulphur desaturase (Su) gene in five different N. tabacum cultivars. These pronounced and severe silencing phenotypes are persistent and ubiquitous. Once initiated in seedlings, the silencing phenotype lasted for the entire life span of the plants and silencing could be induced in a variety of tissues and organs including leaf, shoot, stem, root, and flower, and achieved at any growth stage. This system works well between 18–32 °C. We also silenced the NtEDS1 gene and demonstrated that NtEDS1 is essential for N gene mediated resistance against Tobacco mosaic virus in N. tabacum. The above results indicate that this system has great potential as a versatile VIGS system for routine functional analysis of genes in N. tabacum. PMID:21265040

  3. Decreased Diversity of the Oral Microbiota of Patients with Hepatitis B Virus-Induced Chronic Liver Disease: A Pilot Project

    PubMed Central

    Ling, Zongxin; Liu, Xia; Cheng, Yiwen; Jiang, Xiawei; Jiang, Haiyin; Wang, Yuezhu; Li, Lanjuan

    2015-01-01

    Increasing evidence suggests that altered gut microbiota is implicated in the pathogenesis of hepatitis B virus-induced chronic liver disease (HBV-CLD). However, the structure and composition of the oral microbiota of patients with HBV-CLD remains unclear. High-throughput pyrosequencing showed that decreased oral bacterial diversity was found in patients with HBV-CLD. The Firmicutes/Bacteroidetes ratio was increased significantly, which indicated that dysbiosis of the oral microbiota participated in the process of HBV-CLD development. However, the changing patterns of the oral microbiota in patients with HBV-induced liver cirrhosis (LC) were almost similar to patients with chronic hepatitis B (CHB). HBV infection resulted in an increase in potential H2S- and CH3SH-producing phylotypes such as Fusobacterium, Filifactor, Eubacterium, Parvimonas and Treponema, which might contribute to the increased oral malodor. These key oral-derived phylotypes might invade into the gut as opportunistic pathogens and contribute to altering the composition of the gut microbiota. This study provided important clues that dysbiosis of the oral microbiota might be involved in the development of HBV-CLD. Greater understanding of the relationships between the dysbiosis of oral microbiota and the development of HBV-CLD might facilitate the development of non-invasive differential diagnostic procedures and targeted treatments of HBV-CLD patients harbouring specific oral phylotypes. PMID:26606973

  4. Virus-Induced Tubules: A Vehicle for Spread of Virions into Ovary Oocyte Cells of an Insect Vector

    PubMed Central

    Liao, Zhenfeng; Mao, Qianzhuo; Li, Jiajia; Lu, Chengcong; Wu, Wei; Chen, Hongyan; Chen, Qian; Jia, Dongsheng; Wei, Taiyun

    2017-01-01

    Many arthropod-borne viruses are persistently propagated and transovarially transmitted by female insect vectors through eggs, but the mechanism remains poorly understood. Insect oocytes are surrounded by a layer of follicular cells, which are connected to the oocyte through actin-based microvilli. Here, we demonstrate that a plant reovirus, rice gall dwarf virus (RGDV), exploits virus-containing tubules composed of viral non-structural protein Pns11 to pass through actin-based junctions between follicular cells or through actin-based microvilli from follicular cells into oocyte of its leafhopper vector Recilia dorsalis, thus overcoming transovarial transmission barriers. We further determine that the association of Pns11 tubules with actin-based cellular junctions or microvilli of the ovary is mediated by a specific interaction between Pns11 and actin. Interestingly, RGDV can replicate and assemble progeny virions in the oocyte cytoplasm. The destruction of the tubule assembly by RNA interference with synthesized double-stranded RNA targeting the Pns11 gene strongly inhibits transovarial transmission of RGDV by its vectors. For the first time, we show that a virus can exploit virus-induced tubule as a vehicle to overcome the transovarial transmission barrier by insect vectors. PMID:28382031

  5. Virus-Induced Tubules: A Vehicle for Spread of Virions into Ovary Oocyte Cells of an Insect Vector.

    PubMed

    Liao, Zhenfeng; Mao, Qianzhuo; Li, Jiajia; Lu, Chengcong; Wu, Wei; Chen, Hongyan; Chen, Qian; Jia, Dongsheng; Wei, Taiyun

    2017-01-01

    Many arthropod-borne viruses are persistently propagated and transovarially transmitted by female insect vectors through eggs, but the mechanism remains poorly understood. Insect oocytes are surrounded by a layer of follicular cells, which are connected to the oocyte through actin-based microvilli. Here, we demonstrate that a plant reovirus, rice gall dwarf virus (RGDV), exploits virus-containing tubules composed of viral non-structural protein Pns11 to pass through actin-based junctions between follicular cells or through actin-based microvilli from follicular cells into oocyte of its leafhopper vector Recilia dorsalis, thus overcoming transovarial transmission barriers. We further determine that the association of Pns11 tubules with actin-based cellular junctions or microvilli of the ovary is mediated by a specific interaction between Pns11 and actin. Interestingly, RGDV can replicate and assemble progeny virions in the oocyte cytoplasm. The destruction of the tubule assembly by RNA interference with synthesized double-stranded RNA targeting the Pns11 gene strongly inhibits transovarial transmission of RGDV by its vectors. For the first time, we show that a virus can exploit virus-induced tubule as a vehicle to overcome the transovarial transmission barrier by insect vectors.

  6. Disruption of interleukin-27 signaling results in impaired gamma interferon production but does not significantly affect immunopathology in murine schistosome infection.

    PubMed

    Shainheit, Mara G; Saraceno, Rosita; Bazzone, Lindsey E; Rutitzky, Laura I; Stadecker, Miguel J

    2007-06-01

    In schistosomiasis mansoni, parasite eggs cause hepatointestinal granulomatous inflammation and fibrosis mediated by CD4 T cells specific for egg antigens. The severity of disease varies extensively in humans and among mouse strains. Marked disease exacerbation induced in typically low-pathology C57BL/6 mice by immunization with schistosome egg antigens (SEA) in complete Freund's adjuvant (SEA/CFA) correlates with elevated production of the proinflammatory cytokines gamma interferon (IFN-gamma) and interleukin-17 (IL-17), which are regulated by IL-12 and IL-23, respectively. Here we examined the effect on the schistosome infection of a third member of the IL-12 family of heterodimeric cytokines, IL-27, using SEA/CFA-immunized and unimmunized mice deficient in the IL-27 receptor chain WSX-1 (WSX-1(-/-)). SEA-stimulated bulk mesenteric lymph node cells or CD4 T cells from 7-week-infected WSX-1(-/-) mice produced significantly less IFN-gamma than did those from C57BL/6 mice, even though there was no difference between these mice in exacerbated hepatic egg-induced granulomatous inflammation or in the levels of IL-17 induced by immunization with SEA/CFA. A fraction of the cells in the granulomas stained positive for IL-27, but there were no significant differences between WSX-1(-/-) and BL/6 mice, nor were there differences in the number of CD4 T cells and eosinophils. A 24-week chronic infection resulted in markedly reduced levels of proinflammatory cytokines, including IFN-gamma, in WSX-1(-/-) mice, but again the magnitude of immunopathology was not significantly different between the two groups. These findings indicate that despite the impaired IFN-gamma production, IL-27 signaling has no significant effect on either the magnitude of egg-induced immunopathology or on its closest in vitro correlate, IL-17.

  7. Virus-induced gene silencing (VIGS) in Cysticapnos vesicaria, a zygomorphic-flowered Papaveraceae (Ranunculales, basal eudicots)

    PubMed Central

    Hidalgo, Oriane; Bartholmes, Conny; Gleissberg, Stefan

    2012-01-01

    Background and Aims Studies of evolutionary diversification in the basal eudicot family Papaveraceae, such as the transition from actinomorphy to zygomorphy, are hampered by the lack of comparative functional studies. So far, gene silencing methods are only available in the actinomorphic species Eschscholzia californica and Papaver somniferum. This study addresses the amenability of Cysticapnos vesicaria, a derived fumitory with zygomorphic flowers, to virus-induced gene silencing (VIGS), and describes vegetative and reproductive traits in this species. Methods VIGS-mediated downregulation of the C. vesicaria PHYTOENE DESATURASE gene (CvPDS) and of the FLORICAULA gene CvFLO was carried out using Agrobacterium tumefaciens transfer of Tobacco rattle virus (TRV)-based vectors. Wild-type and vector-treated plants were characterized using reverse transcription–PCR (RT–PCR), in situ hybridization, and macroscopic and scanning electron microscopic imaging. Key Results Cysticapnos vesicaria germinates rapidly, can be grown at high density, has a short life cycle and is self-compatible. Inoculation of C. vesicaria with a CvPDS-VIGS vector resulted in strong photobleaching of green parts and reduction of endogenous CvPDS transcript levels. Gene silencing persisted during inflorescence development until fruit set. Inoculation of plants with CvFLO-VIGS affected floral phyllotaxis, symmetry and floral organ identities. Conclusions The high penetrance, severity and stability of pTRV-mediated silencing, including the induction of meristem-related phenotypes, make C. vesicaria a very promising new focus species for evolutionary–developmental (evo–devo) studies in the Papaveraceae. This now enables comparative studies of flower symmetry, inflorescence determinacy and other traits that diversified in the Papaveraceae. PMID:22307568

  8. JC virus induces altered patterns of cellular gene expression: Interferon-inducible genes as major transcriptional targets

    SciTech Connect

    Verma, Saguna; Ziegler, Katja; Ananthula, Praveen; Co, Juliene K.G.; Frisque, Richard J.; Yanagihara, Richard; Nerurkar, Vivek R. . E-mail: nerurkar@pbrc.hawaii.edu

    2006-02-20

    Human polyomavirus JC (JCV) infects 80% of the population worldwide. Primary infection, typically occurring during childhood, is asymptomatic in immunocompetent individuals and results in lifelong latency and persistent infection. However, among the severely immunocompromised, JCV may cause a fatal demyelinating disease, progressive multifocal leukoencephalopathy (PML). Virus-host interactions influencing persistence and pathogenicity are not well understood, although significant regulation of JCV activity is thought to occur at the level of transcription. Regulation of the JCV early and late promoters during the lytic cycle is a complex event that requires participation of both viral and cellular factors. We have used cDNA microarray technology to analyze global alterations in gene expression in JCV-permissive primary human fetal glial cells (PHFG). Expression of more than 400 cellular genes was altered, including many that influence cell proliferation, cell communication and interferon (IFN)-mediated host defense responses. Genes in the latter category included signal transducer and activator of transcription 1 (STAT1), interferon stimulating gene 56 (ISG56), myxovirus resistance 1 (MxA), 2'5'-oligoadenylate synthetase (OAS), and cig5. The expression of these genes was further confirmed in JCV-infected PHFG cells and the human glioblastoma cell line U87MG to ensure the specificity of JCV in inducing this strong antiviral response. Results obtained by real-time RT-PCR and Western blot analyses supported the microarray data and provide temporal information related to virus-induced changes in the IFN response pathway. Our data indicate that the induction of an antiviral response may be one of the cellular factors regulating/controlling JCV replication in immunocompetent hosts and therefore constraining the development of PML.

  9. Anti-apoptotic Bcl-XL but not Mcl-1 contributes to protection against virus-induced apoptosis.

    PubMed

    Ohmer, Michaela; Weber, Arnim; Sutter, Gerd; Ehrhardt, Katrin; Zimmermann, Albert; Häcker, Georg

    2016-08-18

    Infection of mammalian cells with viruses often induces apoptosis. How the recognition of viruses leads to apoptosis of the infected cell and which host cell factors regulate this cell death is incompletely understood. In this study, we focussed on two major anti-apoptotic proteins of the host cell, whose abundance and activity are important for cell survival, the Bcl-2-like proteins Mcl-1 and Bcl-XL. During infection of epithelial cells and fibroblasts with modified vaccinia virus Ankara (MVA), Mcl-1 protein levels dropped but the MVA Bcl-2-like protein F1L could replace Mcl-1 functionally; a similar activity was found in vaccinia virus (VACV)-infected cells. During infection with murine cytomegalovirus (MCMV), Mcl-1-levels were not reduced but a viral Mcl-1-like activity was also generated. Infection of mouse macrophages with any of these viruses, on the other hand, induced apoptosis. Virus-induced macrophage apoptosis was unaltered in the absence of Mcl-1. However, apoptosis was substantially increased in infected Bcl-XL-deficient macrophages or macrophages treated with the Bcl-2/Bcl-XL-inhibitor ABT-737. Genetic loss of Bcl-XL or treatment of macrophages with ABT-737 reduced the generation of infectious VACV. These data show that Mcl-1 is dispensable for the regulation of apoptosis during infection with different large DNA viruses, either because the viruses replace its function (in fibroblasts and epithelial cells) or because the pro-apoptotic activity generated by the infection appears not to be blocked by it (in macrophages). Bcl-XL, on the other hand, can be important to maintain survival of virus-infected cells, and its activity can determine outcome of the infection.

  10. Anti-apoptotic Bcl-XL but not Mcl-1 contributes to protection against virus-induced apoptosis

    PubMed Central

    Ohmer, Michaela; Weber, Arnim; Sutter, Gerd; Ehrhardt, Katrin; Zimmermann, Albert; Häcker, Georg

    2016-01-01

    Infection of mammalian cells with viruses often induces apoptosis. How the recognition of viruses leads to apoptosis of the infected cell and which host cell factors regulate this cell death is incompletely understood. In this study, we focussed on two major anti-apoptotic proteins of the host cell, whose abundance and activity are important for cell survival, the Bcl-2-like proteins Mcl-1 and Bcl-XL. During infection of epithelial cells and fibroblasts with modified vaccinia virus Ankara (MVA), Mcl-1 protein levels dropped but the MVA Bcl-2-like protein F1L could replace Mcl-1 functionally; a similar activity was found in vaccinia virus (VACV)-infected cells. During infection with murine cytomegalovirus (MCMV), Mcl-1-levels were not reduced but a viral Mcl-1-like activity was also generated. Infection of mouse macrophages with any of these viruses, on the other hand, induced apoptosis. Virus-induced macrophage apoptosis was unaltered in the absence of Mcl-1. However, apoptosis was substantially increased in infected Bcl-XL-deficient macrophages or macrophages treated with the Bcl-2/Bcl-XL-inhibitor ABT-737. Genetic loss of Bcl-XL or treatment of macrophages with ABT-737 reduced the generation of infectious VACV. These data show that Mcl-1 is dispensable for the regulation of apoptosis during infection with different large DNA viruses, either because the viruses replace its function (in fibroblasts and epithelial cells) or because the pro-apoptotic activity generated by the infection appears not to be blocked by it (in macrophages). Bcl-XL, on the other hand, can be important to maintain survival of virus-infected cells, and its activity can determine outcome of the infection. PMID:27537523

  11. Rationale for developing new virus vectors to analyze gene function in grasses through virus-induced gene silencing.

    PubMed

    Ramanna, Hema; Ding, Xin Shun; Nelson, Richard S

    2013-01-01

    The exploding availability of genome and EST-based sequences from grasses requires a technology that allows rapid functional analysis of the multitude of genes that these resources provide. There are several techniques available to determine a gene's function. For gene knockdown studies, silencing through RNAi is a powerful tool. Gene silencing can be accomplished through stable transformation or transient expression of a fragment of a target gene sequence. Stable transformation in rice, maize, and a few other species, although routine, remains a relatively low-throughput process. Transformation in other grass species is difficult and labor-intensive. Therefore, transient gene silencing methods including Agrobacterium-mediated and virus-induced gene silencing (VIGS) have great potential for researchers studying gene function in grasses. VIGS in grasses already has been used to determine the function of genes during pathogen challenge and plant development. It also can be used in moderate-throughput reverse genetics screens to determine gene function. However, the number of viruses modified to serve as silencing vectors in grasses is limited, and the silencing phenotype induced by these vectors is not optimal: the phenotype being transient and with moderate penetration throughout the tissue. Here, we review the most recent information available for VIGS in grasses and summarize the strengths and weaknesses in current virus-grass host systems. We describe ways to improve current virus vectors and the potential of other grass-infecting viruses for VIGS studies. This work is necessary because VIGS for the foreseeable future remains a higher throughput and more rapid system to evaluate gene function than stable transformation.

  12. Chikungunya virus induces IPS-1-dependent innate immune activation and protein kinase R-independent translational shutoff.

    PubMed

    White, Laura K; Sali, Tina; Alvarado, David; Gatti, Evelina; Pierre, Philippe; Streblow, Daniel; Defilippis, Victor R

    2011-01-01

    Chikungunya virus (CHIKV) is an arthritogenic mosquito-transmitted alphavirus that is undergoing reemergence in areas around the Indian Ocean. Despite the current and potential danger posed by this virus, we know surprisingly little about the induction and evasion of CHIKV-associated antiviral immune responses. With this in mind we investigated innate immune reactions to CHIKV in human fibroblasts, a demonstrable in vivo target of virus replication and spread. We show that CHIKV infection leads to activation of the transcription factor interferon regulatory factor 3 (IRF3) and subsequent transcription of IRF3-dependent antiviral genes, including beta interferon (IFN-β). IRF3 activation occurs by way of a virus-induced innate immune signaling pathway that includes the adaptor molecule interferon promoter stimulator 1 (IPS-1). Despite strong transcriptional upregulation of these genes, however, translation of the corresponding proteins is not observed. We further demonstrate that translation of cellular (but not viral) genes is blocked during infection and that although CHIKV is found to trigger inactivation of the translational molecule eukaryotic initiation factor subunit 2α by way of the double-stranded RNA sensor protein kinase R, this response is not required for the block to protein synthesis. Furthermore, overall diminution of cellular RNA synthesis is also observed in the presence of CHIKV and transcription of IRF3-dependent antiviral genes appears specifically blocked late in infection. We hypothesize that the observed absence of IFN-β and antiviral proteins during infection results from an evasion mechanism exhibited by CHIKV that is dependent on widespread shutoff of cellular protein synthesis and a targeted block to late synthesis of antiviral mRNA transcripts.

  13. Virus-induced gene silencing of Arabidopsis thaliana gene homologues in wheat identifies genes conferring improved drought tolerance

    PubMed Central

    Lapitan, Nora

    2013-01-01

    In a non-model staple crop like wheat (Triticum aestivumI L.), functional validation of potential drought stress responsive genes identified in Arabidopsis could provide gene targets for breeding. Virus-induced gene silencing (VIGS) of genes of interest can overcome the inherent problems of polyploidy and limited transformation potential that hamper functional validation studies in wheat. In this study, three potential candidate genes shown to be involved in abiotic stress response pathways in Arabidopsis thaliana were selected for VIGS experiments in wheat. These include Era1 (enhanced response to abscisic acid), Cyp707a (ABA 8’-hydroxylase), and Sal1 (inositol polyphosphate 1-phosphatase). Gene homologues for these three genes were identified in wheat and cloned in the viral vector barley stripe mosaic virus (BSMV) in the antisense direction, followed by rub inoculation of BSMV viral RNA transcripts onto wheat plants. Quantitative real-time PCR showed that VIGS-treated wheat plants had significant reductions in target gene transcripts. When VIGS-treated plants generated for Era1 and Sal1 were subjected to limiting water conditions, they showed increased relative water content, improved water use efficiency, reduced gas exchange, and better vigour compared to water-stressed control plants inoculated with RNA from the empty viral vector (BSMV0). In comparison, the Cyp707a-silenced plants showed no improvement over BSMV0-inoculated plants under limited water condition. These results indicate that Era1 and Sal1 play important roles in conferring drought tolerance in wheat. Other traits affected by Era1 silencing were also studied. Delayed seed germination in Era1-silenced plants suggests this gene may be a useful target for developing resistance to pre-harvest sprouting. PMID:23364940

  14. A visual reporter system for virus-induced gene silencing in tomato fruit based on anthocyanin accumulation.

    PubMed

    Orzaez, Diego; Medina, Aurora; Torre, Sara; Fernández-Moreno, Josefina Patricia; Rambla, José Luis; Fernández-Del-Carmen, Asun; Butelli, Eugenio; Martin, Cathie; Granell, Antonio

    2009-07-01

    Virus-induced gene silencing (VIGS) is a powerful tool for reverse genetics in tomato (Solanum lycopersicum). However, the irregular distribution of the effects of VIGS hampers the identification and quantification of nonvisual phenotypes. To overcome this limitation, a visually traceable VIGS system was developed for fruit, comprising two elements: (1) a transgenic tomato line (Del/Ros1) expressing Antirrhinum majus Delila and Rosea1 transcription factors under the control of the fruit-specific E8 promoter, showing a purple-fruited, anthocyanin-rich phenotype; and (2) a modified tobacco rattle virus VIGS vector incorporating partial Rosea1 and Delila sequences, which was shown to restore the red-fruited phenotype upon agroinjection in Del/Ros1 plants. Dissection of silenced areas for subsequent chemometric analysis successfully identified the relevant metabolites underlying gene function for three tomato genes, phytoene desaturase, TomloxC, and SlODO1, used for proof of concept. The C-6 aldehydes derived from lipid 13-hydroperoxidation were found to be the volatile compounds most severely affected by TomloxC silencing, whereas geranial and 6-methyl-5-hepten-2-one were identified as the volatiles most severely reduced by phytoene desaturase silencing in ripening fruit. In a third example, silencing of SlODO1, a tomato homolog of the ODORANT1 gene encoding a myb transcription factor, which regulates benzenoid metabolism in petunia (Petunia hybrida) flowers, resulted in a sharp accumulation of benzaldehyde in tomato fruit. Together, these results indicate that fruit VIGS, enhanced by anthocyanin monitoring, can be a powerful tool for reverse genetics in the study of the metabolic networks operating during fruit ripening.

  15. Virus-Induced Chaperone-Enriched (VICE) domains function as nuclear protein quality control centers during HSV-1 infection.

    PubMed

    Livingston, Christine M; Ifrim, Marius F; Cowan, Ann E; Weller, Sandra K

    2009-10-01

    Virus-Induced Chaperone-Enriched (VICE) domains form adjacent to nuclear viral replication compartments (RC) during the early stages of HSV-1 infection. Between 2 and 3 hours post infection at a MOI of 10, host protein quality control machinery such as molecular chaperones (e.g. Hsc70), the 20S proteasome and ubiquitin are reorganized from a diffuse nuclear distribution pattern to sequestration in VICE domains. The observation that VICE domains contain putative misfolded proteins suggests that they may be similar to nuclear inclusion bodies that form under conditions in which the protein quality control machinery is overwhelmed by the presence of misfolded proteins. The detection of Hsc70 in VICE domains, but not in nuclear inclusion bodies, indicates that Hsc70 is specifically reorganized by HSV-1 infection. We hypothesize that HSV-1 infection induces the formation of nuclear protein quality control centers to remodel or degrade aberrant nuclear proteins that would otherwise interfere with productive infection. Detection of proteolytic activity in VICE domains suggests that substrates may be degraded by the 20S proteasome in VICE domains. FRAP analysis reveals that GFP-Hsc70 is dynamically associated with VICE domains, suggesting a role for Hsc70 in scanning the infected nucleus for misfolded proteins. During 42 degrees C heat shock, Hsc70 is redistributed from VICE domains into RC perhaps to remodel viral replication and regulatory proteins that have become insoluble in these compartments. The experiments presented in this paper suggest that VICE domains are nuclear protein quality control centers that are modified by HSV-1 to promote productive infection.

  16. The SNARE Protein Syp71 Is Essential for Turnip Mosaic Virus Infection by Mediating Fusion of Virus-Induced Vesicles with Chloroplasts

    PubMed Central

    Hou, Xilin; Sanfaçon, Hélène; Wang, Aiming

    2013-01-01

    All positive-strand RNA viruses induce the biogenesis of cytoplasmic membrane-bound virus factories for viral genome multiplication. We have previously demonstrated that upon plant potyvirus infection, the potyviral 6K2 integral membrane protein induces the formation of ER-derived replication vesicles that subsequently target chloroplasts for robust genome replication. Here, we report that following the trafficking of the Turnip mosaic potyvirus (TuMV) 6K2 vesicles to chloroplasts, 6K2 vesicles accumulate at the chloroplasts to form chloroplast-bound elongated tubular structures followed by chloroplast aggregation. A functional actomyosin motility system is required for this process. As vesicle trafficking and fusion in planta are facilitated by a superfamily of proteins known as SNAREs (soluble N-ethylmaleimide-sensitive-factor attachment protein receptors), we screened ER-localized SNARES or SNARE-like proteins for their possible involvement in TuMV infection. We identified Syp71 and Vap27-1 that colocalize with the chloroplast-bound 6K2 complex. Knockdown of their expression using a Tobacco rattle virus (TRV)-based virus-induced gene silencing vector showed that Syp71 but not Vap27-1 is essential for TuMV infection. In Syp71-downregulated plant cells, the formation of 6K2-induced chloroplast-bound elongated tubular structures and chloroplast aggregates is inhibited and virus accumulation is significantly reduced, but the trafficking of the 6K2 vesicles from the ER to chloroplast is not affected. Taken together, these data suggest that Syp71 is a host factor essential for successful virus infection by mediating the fusion of the virus-induced vesicles with chloroplasts during TuMV infection. PMID:23696741

  17. Increased tumor necrosis factor-alpha (TNF-alpha) gene expression in parainfluenza type 1 (Sendai) virus-induced bronchiolar fibrosis.

    PubMed Central

    Uhl, E. W.; Moldawer, L. L.; Busse, W. W.; Jack, T. J.; Castleman, W. L.

    1998-01-01

    Increased airway resistance and airway hyperresponsiveness induced in rats by infection with parainfluenza type I (Sendai) virus is associated with bronchiolar fibrosis. To determine whether increased tumor necrosis factor (TNF)-alpha gene expression is an important regulatory event in virus-induced bronchiolar fibrosis, pulmonary TNF-alpha mRNA and protein expression was assessed in rat strains that are susceptible (Brown Norway; BN) and resistant (Fischer 344; F344) to virus-induced bronchiolar fibrosis. Virus-inoculated BN rats had increased TNF-alpha pulmonary mRNA levels (P < 0.05) and increased numbers of bronchiolar macrophages and fibroblasts expressing TNF-alpha protein compared with virus-inoculated F344 rats (P < 0.05). Virus inoculation also induced elevated TNF-alpha mRNA and protein levels (P < 0.05) in cultured rat alveolar macrophages (NR8383 cells). A 55-kd soluble TNF receptor-immunoglobulin G fusion protein (sTNFR-IgG) was used to inhibit TNF-alpha bioactivity in virus-inoculated BN rats. Treated rats had fewer proliferating bronchiolar fibroblasts, as detected by bromodeoxyuridine incorporation, compared with virus-inoculated control rats (P < 0.05). There was also increased mortality in p55sTNFR-IgG-treated virus-inoculated rats associated with increased viral replication and decreased numbers of macrophages and lymphocytes in bronchoalveolar lavage fluid (P < 0.05). The results of this study indicate that 1) Sendai virus can directly up-regulate TNF-alpha mRNA and protein expression in macrophages, 2) TNF-alpha is an important mediator of virus-induced bronchiolar fibrosis, and 3) TNF-alpha has a critical role in the termination of Sendai viral replication in the lung. Images Figure 2 PMID:9466578

  18. Role of Ca++ in virus-induced membrane fusion. Ca++ accumulation and ultrastructural changes induced by Sendai virus in chicken erythrocytes

    PubMed Central

    1978-01-01

    Some of the ultrastructural (freeze-etching technique), morphological, and biochemical effects of Sendai virus interaction with chicken erythrocytes have been studied under fusogenic (in the presence of CaCl2) and nonfusogenic (in the presence of ethyleneglycol-bis-N,N'- tetraacetic acid, [EGTA]) conditions. The following phenomena occur, irrespective of the presence of CaCl2 or EGTA: (a) binding of iodinated virus particles to chicken erythrocytes at 4 degrees C and their partial release from the cells at 37 degrees C; (b) gradual incorporation of the viral envelope and viral M-protein into plasma membrane, as visualized in the protoplasmic and exoplasmic fracture (P and E, respectively) faces of the membrane; and (c) virus-dependent transient clustering of intramembrane particles at 4 degrees C, which is reversible after transferring the cells back to 37 degrees C. The following virus-induced phenomena occur only in the presence of CaCl2: (a) rounding of cells followed by their fusion; (b) transient decrease in the density of intramembrane particles; and (c) the virus induces uptake of 45CaCl2 by chicken erythrocytes. The uptake is specific as it is inhibited by LaCl3, and no accumulation of [14C]glucose-1-phosphate ([14C]G-1-P) could be observed under the 45 CaCl2 uptake conditions. The data show that fusion of virus with plasma membrane is a Ca++- independent process and, as such, it should be distinguished from the virus-induced membrane-membrane and cell fusion processes. The latter is absolutely dependent on the rise of intracellular Ca++, as reflected by the fact that Ca++-induced rounding of chicken erythrocytes always precedes fusion (Volsky, D. and A. Loyter. 1977.Biochim. Biophys. Acta 471:253--259). PMID:211140

  19. Genetic determinants of feline leukemia virus-induced lymphoid tumors: patterns of proviral insertion and gene rearrangement.

    PubMed

    Tsatsanis, C; Fulton, R; Nishigaki, K; Tsujimoto, H; Levy, L; Terry, A; Spandidos, D; Onions, D; Neil, J C

    1994-12-01

    The genetic basis of feline leukemia virus (FeLV)-induced lymphoma was investigated in a series of 63 lymphoid tumors and tumor cell lines of presumptive T-cell origin. These were examined for virus-induced rearrangements of the c-myc, flvi-2 (bmi-1), fit-1, and pim-1 loci, for T-cell receptor (TCR) gene rearrangements, and for the presence of env recombinant FeLV (FeLV-B). The myc locus was most frequently affected in naturally occurring lymphomas (32%; n = 38) either by transduction (21%) or by proviral insertion (11%). Proviral insertions were also common at flvi-2 (24%). The two other loci were occupied in a smaller number of the naturally occurring tumors (fit-1, 8%; pim-1, 5%). Examination of the entire set of tumors showed that significant numbers were affected at two (19%) or three (5%) of the loci. Occupation of the fit-1 locus was observed most frequently in tumors induced by FeLV-myc strains, while flvi-2 insertions occurred with similar frequency in the presence or absence of obvious c-myc activation. These results suggest a hierarchy of mutational events in the genesis of feline T-cell lymphomas by FeLV and implicate insertion at fit-1 as a late progression step. The strongest links observed were with T-cell development, as monitored by rearrangement status of the TCR beta-chain gene, which was positively associated with activation of myc (P < 0.001), and with proviral insertion at flvi-2 (P = 0.02). This analysis also revealed a genetically distinct subset of thymic lymphomas with unrearranged TCR beta-chain genes in which the known target loci were involved very infrequently. The presence of env recombinant FeLV (FeLV-B) showed a negative correlation with proviral insertion at fit-1, possibly due to the rapid onset of these tumors. These results shed further light on the multistep process of FeLV leukemogenesis and the relationships between lymphoid cell maturation and susceptibility to FeLV transformation.

  20. Involvement of fish signal transducer and activator of transcription 3 (STAT3) in SGIV replication and virus induced paraptosis.

    PubMed

    Huang, Xiaohong; Huang, Youhua; Yang, Ying; Wei, Shina; Qin, Qiwei

    2014-12-01

    Signal transducer and activator of transcription 3 (STAT3) is an important transcription factor which plays crucial roles in immune regulation, inflammation, cell proliferation, transformation, and other physiological processes of the organism. In this study, a novel STAT3 gene from orange spotted grouper (Ec-STAT3) was cloned and characterized. Bioinformatic analysis revealed that full-length of Ec-STAT3 was 3105-bp long and contained a 280-bp 5'UTR, a 470-bp 3'UTR, and a 2355-bp open reading frame (ORF) that encoded a 784-amino acid peptide. The deduced protein of Ec-STAT3 showed 98% identity to that of turbot (Scophthalmus maximus). Amino acid alignment showed that Ec-STAT3 contained four conserved domains, including a protein interaction domain, a coiled coil domain, a DNA binding domain, and an SH2 domain. Quantitative real-time PCR analysis showed that the highest expression level was detected in the liver, followed by skin and spleen. After injection with Singapore grouper iridovirus (SGIV), the transcript of Ec-STAT3 in spleen was increased significantly. To further explore the function of Ec-STAT3, we investigated the roles of Ec-STAT3 in SGIV infection in vitro. Immune fluorescence analysis indicated that SGIV infection altered the distribution of phosphorylated Ec-STAT3 in nucleus, and a small part of phosphorylated Ec-STAT3 was associated with virus assembly sites, suggesting that Ec-STAT3 might be important for SGIV infection. Using STAT3 specific inhibitor, S3I-201, we found that inhibition of Ec-STAT3 activation decreased the SGIV replication significantly. Moreover, inhibition of Ec-STAT3 activation obviously altered SGIV infection induced cell cycle arrest and the expression of pro-survival genes, including Bcl-2, Bcl-xL and Bax inhibitor. Together, our results firstly demonstrated the critical roles of fish STAT3 in DNA virus replication and virus induced paraptosis, but also provided new insights into the mechanism of iridovirus pathogenesis.

  1. Antibodies to CD9, a tetraspan transmembrane protein, inhibit canine distemper virus-induced cell-cell fusion but not virus-cell fusion.

    PubMed

    Schmid, E; Zurbriggen, A; Gassen, U; Rima, B; ter Meulen, V; Schneider-Schaulies, J

    2000-08-01

    Canine distemper virus (CDV) causes a life-threatening disease in several carnivores including domestic dogs. Recently, we identified a molecule, CD9, a member of the tetraspan transmembrane protein family, which facilitates, and antibodies to which inhibit, the infection of tissue culture cells with CDV (strain Onderstepoort). Here we describe that an anti-CD9 monoclonal antibody (MAb K41) did not interfere with binding of CDV to cells and uptake of virus. In addition, in single-step growth experiments, MAb K41 did not induce differences in the levels of viral mRNA and proteins. However, the virus release of syncytium-forming strains of CDV, the virus-induced cell-cell fusion in lytically infected cultures, and the cell-cell fusion of uninfected with persistently CDV-infected HeLa cells were strongly inhibited by MAb K41. These data indicate that anti-CD9 antibodies selectively block virus-induced cell-cell fusion, whereas virus-cell fusion is not affected.

  2. Simultaneous Occurrence of Varicella Zoster Virus-Induced Pancreatitis and Hepatitis in a Renal Transplant Recipient: A Case Report and Review of Literature

    PubMed Central

    Chhabra, Puneet; Ranjan, Priyadarshi; Bhasin, Deepak K

    2017-01-01

    Introduction: Gastrointestinal complications are common after renal transplantation, including oral lesions, esophagitis, gastritis, diarrhea, and colon carcinoma. The differential diagnosis is difficult in this scenario because multiple factors such as drugs, infections, and preexisting gastrointestinal disease come into play. Case Presentation: We report a case of varicella zoster virus-induced pancreatitis and hepatitis in a renal transplant recipient. The patient underwent renal transplantation 3 years earlier and now presented with severe pain in the epigastrium radiating to his back and had raised serum lipase levels and skin lesions characteristic of varicella. Liver enzyme levels were also elevated. He was started on a regimen of acyclovir. His pain improved in 24 hours, and liver enzyme levels returned to normal in 48 hours. Discussion: There is a paucity of literature on the simultaneous occurrence of varicella zoster virus-induced hepatitis and pancreatitis in both immunocompetent and immunocompromised patients. Our case highlights the gastrointestinal complications of varicella infection in immunocompromised patients that may precede the characteristic dermatologic manifestations, and the fact that rarely both hepatitis and pancreatitis may be seen. PMID:28333601

  3. T cell-mediated hepatitis in mice infected with lymphocytic choriomeningitis virus. Liver cell destruction by H-2 class I-restricted virus-specific cytotoxic T cells as a physiological correlate of the /sup 51/Cr-release assay

    SciTech Connect

    Zinkernagel, R.M.; Haenseler, E.; Leist, T.; Cerny, A.; Hengartner, H.; Althage, A.

    1986-10-01

    A model for immunologically T cell-mediated hepatitis was established in mice infected with lymphocytic choriomeningitis virus (LCMV). The severity of hepatitis was monitored histologically and by determination of changes in serum levels of the enzymes alanine aminotransferase (ALT), aspartate aminotransferase (AST), glutamate dehydrogenase (GLDH), and alkaline phosphatase (AP). Kinetics of histological disease manifestations, increases of liver enzyme levels in the serum, and cytotoxic T cell activities in livers and spleens all correlated and were dependent upon several parameters: LCMV-isolate; LCMV-WE caused extensive hepatitis, LCMV-Armstrong virtually none. Virus dose. Route of infection; i.v. or i.p. infection caused hepatitis, whereas infection into the footpad did not. The general genetic background of the murine host; of the strains tested, Swiss mice and A-strain mice were more susceptible than C57BL or CBA mice; BALB/c and DBA/2 mice were least susceptible. The degree of immunocompetence of the murine host; T cell deficient nu/nu mice never developed hepatitis, whereas nu/+ or +/+ mice always did. B cell-depleted anti-IgM-treated mice developed immune-mediated hepatitis comparably or even more extensively than control mice. Local cytotoxic T cell activity; mononuclear cells isolated from livers during the period of overt hepatitis were two to five times more active than equal numbers of spleen cells. Adoptive transfer of nylon wool-nonadherent anti-Thy-1.2 and anti-Lyt-2 plus C-sensitive, anti-L3T4 plus C-resistant lymphocytes into irradiated mice preinfected with LCMV-WE caused a rapid time- and dose-dependent linear increase of serum enzyme levels. This increase was caused by adoptive transfer of lymphocytes if immune cell donors and recipient mice shared class I, but not when they shared class II histocompatibility antigens.

  4. Molecular basis of viral persistence: a single amino acid change in the glycoprotein of lymphocytic choriomeningitis virus is associated with suppression of the antiviral cytotoxic T-lymphocyte response and establishment of persistence.

    PubMed Central

    Salvato, M; Borrow, P; Shimomaye, E; Oldstone, M B

    1991-01-01

    Isolates of lymphocytic choriomeningitis virus (LCMV) that elicit a cytotoxic T-lymphocyte response (CTL+) have been compared with isolates that suppress the CTL response (CTL-) in an effort to map this phenotype. A single amino acid change in the glycoprotein of the LCMV Armstrong (ARM) strain is consistently associated with the CTL- trait and the ability of the virus to persist (P+). The CTL+ P- parental strain spontaneously gives rise to CTL- P+ variants within lymphoid tissues of mice persistently infected from birth. To map the structural basis of the phenotype, the complete RNA sequence of LCMV ARM 53b (CTL+) was compared with that of its variant ARM clone 13 (CTL-). Differences in 5 of 10,600 nucleotides were found. Three changes are noted in the large L RNA segment, and two are noted in the small S RNA segment. Only two of the changes distinguishing CTL+ from CTL- isolates affect amino acid coding: lysine to glutamine at amino acid 1079 of the polymerase protein, and phenylalanine to leucine at amino acid 260 of the envelope glycoprotein (GP). We also analyzed two additional CTL- variants and four spontaneous CTL+ revertants. All three CTL- variants differ from the original CTL+ parental strain at GP amino acid 260, indicating that this amino acid change is consistently associated with the CTL- phenotype. By contrast the other four mutations in LCMV are not associated with the CTL- phenotype. Sequence analysis of the coding regions of four CTL+ revertants of ARM clone 13 did not reveal back mutations at the GP 260 locus. This finding indicates that the GP 260 mutation is necessary but not sufficient for a CTL- P+ phenotype and that the reversion to CTL+ P- is likely either due to secondary mutations in other regions of the viral genome or to quasispecies within the revertant population that make significant contributions to the phenotype. Images PMID:1840619

  5. The C-Terminal Region of Lymphocytic Choriomeningitis Virus Nucleoprotein Contains Distinct and Segregable Functional Domains Involved in NP-Z Interaction and Counteraction of the Type I Interferon Response▿

    PubMed Central

    Ortiz-Riaño, Emilio; Cheng, Benson Yee Hin; de la Torre, Juan Carlos; Martínez-Sobrido, Luis

    2011-01-01

    Several arenaviruses cause hemorrhagic fever (HF) disease in humans that is associated with high morbidity and significant mortality. Arenavirus nucleoprotein (NP), the most abundant viral protein in infected cells and virions, encapsidates the viral genome RNA, and this NP-RNA complex, together with the viral L polymerase, forms the viral ribonucleoprotein (vRNP) that directs viral RNA replication and gene transcription. Formation of infectious arenavirus progeny requires packaging of vRNPs into budding particles, a process in which arenavirus matrix-like protein (Z) plays a central role. In the present study, we have characterized the NP-Z interaction for the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV). The LCMV NP domain that interacted with Z overlapped with a previously documented C-terminal domain that counteracts the host type I interferon (IFN) response. However, we found that single amino acid mutations that affect the anti-IFN function of LCMV NP did not disrupt the NP-Z interaction, suggesting that within the C-terminal region of NP different amino acid residues critically contribute to these two distinct and segregable NP functions. A similar NP-Z interaction was confirmed for the HF arenavirus Lassa virus (LASV). Notably, LCMV NP interacted similarly with both LCMV Z and LASV Z, while LASV NP interacted only with LASV Z. Our results also suggest the presence of a conserved protein domain within NP but with specific amino acid residues playing key roles in determining the specificity of NP-Z interaction that may influence the viability of reassortant arenaviruses. In addition, this NP-Z interaction represents a potential target for the development of antiviral drugs to combat human-pathogenic arenaviruses. PMID:21976642

  6. Helicobacter pylori Induced Gastric Immunopathology Is Associated with Distinct Microbiota Changes in the Large Intestines of Long-Term Infected Mongolian Gerbils

    PubMed Central

    Heimesaat, Markus M.; Fischer, André; Plickert, Rita; Wiedemann, Tobias; Loddenkemper, Christoph; Göbel, Ulf B.

    2014-01-01

    Background Gastrointestinal (GI) inflammation in mice and men are frequently accompanied by distinct changes of the GI microbiota composition at sites of inflammation. Helicobacter (H.) pylori infection results in gastric immunopathology accompanied by colonization of stomachs with bacterial species, which are usually restricted to the lower intestine. Potential microbiota shifts distal to the inflammatory process following long-term H. pylori infection, however, have not been studied so far. Methodology/Principal Findings For the first time, we investigated microbiota changes along the entire GI tract of Mongolian gerbils after 14 months of infection with H. pylori B8 wildtype (WT) or its isogenic ΔcagY mutant (MUT) strain which is defective in the type IV secretion system and thus unable to modulate specific host pathways. Comprehensive cultural analyses revealed that severe gastric diseases such as atrophic pangastritis and precancerous transformations were accompanied by elevated luminal loads of E. coli and enterococci in the caecum and together with Bacteroides/Prevotella spp. in the colon of H. pylori WT, but not MUT infected gerbils as compared to naïve animals. Strikingly, molecular analyses revealed that Akkermansia, an uncultivable species involved in mucus degradation, was exclusively abundant in large intestines of H. pylori WT, but not MUT infected nor naïve gerbils. Conclusion/Significance Taken together, long-term infection of Mongolian gerbils with a H. pylori WT strain displaying an intact type IV secretion system leads to distinct shifts of the microbiota composition in the distal uninflamed, but not proximal inflamed GI tract. Hence, H. pylori induced immunopathogenesis of the stomach, including hypochlorhydria and hypergastrinemia, might trigger large intestinal microbiota changes whereas the exact underlying mechanisms need to be further unraveled. PMID:24941045

  7. Chronic graft-versus-host disease in the rat radiation chimera: I. clinical features, hematology, histology, and immunopathology in long-term chimeras

    SciTech Connect

    Beschorner, W.E.; Tutschka, P.J.; Santos, G.W.

    1982-04-01

    The clinical features, pathology, and immunopathology of chronic graft-versus-host disease (GVHD) developing in the long-term rat radiation chimera are described. At 6 to 12 months post-transplant, the previously stable ACI/LEW chimeras developed patchy to diffuse severe hair loss and thickened skin folds, and had microscopic features resembling scleroderma, Sjogren's syndrome, and chronic hepatitis. Skin histology showed dermal inflammation and acanthosis with atrophy of the appendages, with progression to dermal sclerosis. The liver revealed chronic hepatitis with bile duct injury and proliferation and periportal piecemeal necrosis. The tongue had considerable submucosal inflammation, muscular necrosis, and atrophy and arteritis. The serous salivary glands, lacrimal glands, and bronchi had lymphocytic inflammation and injury to duct, acinar, and mucosal columnar epithelium. The thymus had lymphocyte depletion of the medulla with prominent epithelium. The spleen and lymph nodes had poorly developed germinal centers but increased numbers of plasma cells. IgM was observed along the basement membrane and around the basal cells of the skin and tongue and along the basement membrane of the bile ducts. IgM was present also in the arteries of the tongue. Immunoglobulins eluted from the skin, cross-reacted with the bile duct epithelium and usually with both ACI and Lewis skin. Increased titers of speckled antinuclear antibodies were present in the serum of rats with chronic (GVHD). Chronic GVHD in the long-term rat radiation chimera is very similar to human chronic GVHD and is a potentially excellent model for autoimmune disorders including scleroderma, Sjorgren's syndrome, and chronic hepatitis.

  8. Apple latent spherical virus vectors for reliable and effective virus-induced gene silencing among a broad range of plants including tobacco, tomato, Arabidopsis thaliana, cucurbits, and legumes

    SciTech Connect

    Igarashi, Aki; Yamagata, Kousuke; Sugai, Tomokazu; Takahashi, Yukari; Sugawara, Emiko; Tamura, Akihiro; Yaegashi, Hajime; Yamagishi, Noriko; Takahashi, Tsubasa; Isogai, Masamichi; Takahashi, Hideki; Yoshikawa, Nobuyuki

    2009-04-10

    Apple latent spherical virus (ALSV) vectors were evaluated for virus-induced gene silencing (VIGS) of endogenous genes among a broad range of plant species. ALSV vectors carrying partial sequences of a subunit of magnesium chelatase (SU) and phytoene desaturase (PDS) genes induced highly uniform knockout phenotypes typical of SU and PDS inhibition on model plants such as tobacco and Arabidopsis thaliana, and economically important crops such as tomato, legume, and cucurbit species. The silencing phenotypes persisted throughout plant growth in these plants. In addition, ALSV vectors could be successfully used to silence a meristem gene, proliferating cell nuclear antigen and disease resistant N gene in tobacco and RCY1 gene in A. thaliana. As ALSV infects most host plants symptomlessly and effectively induces stable VIGS for long periods, the ALSV vector is a valuable tool to determine the functions of interested genes among a broad range of plant species.

  9. Prevention of type 2 herpes simplex virus induced cervical carcinoma in mice by prior immunization with a vaccine prepared from type 1 herpes simplex virus.

    PubMed

    Chen, M H; Dong, C Y; Liu, Z H; Skinner, G R; Hartley, C E

    1983-12-01

    Repeated intra-vaginal inoculation of mice with inactivated type 2 herpes simplex virus induced cervical carcinoma in approximately 50% of mice. Prior immunization with subunit vaccine Ac NFU1(S-) BHK reduced the frequency of cervical carcinoma to 19%. Inoculation of mice with a control preparation of uninfected cell extract never induced preinvasive or invasive cervical cancer. There was evidence of an antibody response in every vaccinated and/or innoculated animal. Mice developing cervical cancer had a significantly higher antibody titre to type 2 herpes virus than mice not developing cancer. These results are in general accord with sero-epidemiological studies of preinvasive and invasive cervical carcinoma in human subjects and suggests that this experimental model may be appropriate for further investigation of prevention of human cervical cancer by vaccination.

  10. Virus-Induced Gene Silencing Identifies an Important Role of the TaRSR1 Transcription Factor in Starch Synthesis in Bread Wheat

    PubMed Central

    Liu, Guoyu; Wu, Yufang; Xu, Mengjun; Gao, Tian; Wang, Pengfei; Wang, Lina; Guo, Tiancai; Kang, Guozhang

    2016-01-01

    The function of a wheat starch regulator 1 (TaRSR1) in regulating the synthesis of grain storage starch was determined using the barley stripe mosaic virus—virus induced gene-silencing (BSMV-VIGS) method in field experiments. Chlorotic stripes appeared on the wheat spikes infected with barley stripe mosaic virus-virus induced gene-silencing- wheat starch regulator 1 (BSMV-VIGS-TaRSR1) at 15 days after anthesis, at which time the transcription levels of the TaRSR1 gene significantly decreased. Quantitative real-time PCR was also used to measure the transcription levels of 26 starch synthesis-related enzyme genes in the grains of BSMV-VIGS-TaRSR1-silenced wheat plants at 20, 27, and 31 days after anthesis. The results showed that the transcription levels of some starch synthesis-related enzyme genes were markedly induced at different sampling time points: TaSSI, TaSSIV, TaBEIII, TaISA1, TaISA3, TaPHOL, and TaDPE1 genes were induced at each of the three sampling time points and TaAGPS1-b, TaAGPL1, TaAGPL2, TaSSIIb, TaSSIIc, TaSSIIIb, TaBEI, TaBEIIa, TaBEIIb, TaISA2, TaPHOH, and TaDPE2 genes were induced at one sampling time point. Moreover, both the grain starch contents, one thousand kernel weights, grain length and width of BSMV-VIGS-TaRSR1-infected wheat plants significantly increased. These results suggest that TaRSR1 acts as a negative regulator and plays an important role in starch synthesis in wheat grains by temporally regulating the expression of specific starch synthesis-related enzyme genes. PMID:27669224

  11. Multiple granulomatous lung lesions in a patient with Epstein-Barr-virus-induced mononucleosis and new-onset systemic lupus erythematosus: a case report

    PubMed Central

    2012-01-01

    Introduction Granulomatous lesions are commonly encountered abnormalities in pulmonary pathology, and often pose a diagnostic challenge. We report an unusual case of granulomatous lung disease with uncommon characteristics, which developed following Epstein-Barr-virus-induced mononucleosis and new-onset systemic lupus erythematosus. We aim to highlight a diagnostic approach for the condition and to raise awareness of the possibility of it being related to the immunological reaction caused by Epstein-Barr virus infection. Case presentation A 36-year-old Japanese man, who had been diagnosed with Epstein-Barr-virus-induced infectious mononucleosis, new-onset systemic lupus erythematosus, and secondary Sjögren’s syndrome three weeks previously, presented to our facility with fever and diffuse pulmonary infiltrates. A computed tomography scan of the chest revealed multiple small nodules in both lungs. Fiberoptic bronchoscopy with bronchoalveolar lavage revealed lymphocytosis with predominance of T lymphocytes. A histological examination of a lung biopsy taken during video-assisted thoracic surgery showed randomly distributed tiny granulomatous lesions with infiltration of eosinophils. The differential diagnoses included hypersensitivity pneumonitis, sarcoidosis, and pulmonary involvement of Crohn’s disease, systemic lupus erythematosus, and Sjögren’s syndrome, but the clinical and pathological findings were not consistent with any of these. Our patient’s condition did not improve; therefore, prednisolone therapy was started because of the possibility of specific immunological reactions associated with Epstein-Barr virus infection. After steroid treatment, our patient showed radiological and clinical improvement. Conclusions To the best of our knowledge, this is the first case of a patient developing randomly distributed multiple granulomatous lung lesions with eosinophilic infiltrates after Epstein-Barr virus infection and systemic lupus erythematosus. On the

  12. Virus-Induced Gene Silencing Identifies an Important Role of the TaRSR1 Transcription Factor in Starch Synthesis in Bread Wheat.

    PubMed

    Liu, Guoyu; Wu, Yufang; Xu, Mengjun; Gao, Tian; Wang, Pengfei; Wang, Lina; Guo, Tiancai; Kang, Guozhang

    2016-09-23

    The function of a wheat starch regulator 1 (TaRSR1) in regulating the synthesis of grain storage starch was determined using the barley stripe mosaic virus-virus induced gene-silencing (BSMV-VIGS) method in field experiments. Chlorotic stripes appeared on the wheat spikes infected with barley stripe mosaic virus-virus induced gene-silencing- wheat starch regulator 1 (BSMV-VIGS-TaRSR1) at 15 days after anthesis, at which time the transcription levels of the TaRSR1 gene significantly decreased. Quantitative real-time PCR was also used to measure the transcription levels of 26 starch synthesis-related enzyme genes in the grains of BSMV-VIGS-TaRSR1-silenced wheat plants at 20, 27, and 31 days after anthesis. The results showed that the transcription levels of some starch synthesis-related enzyme genes were markedly induced at different sampling time points: TaSSI, TaSSIV, TaBEIII, TaISA1, TaISA3, TaPHOL, and TaDPE1 genes were induced at each of the three sampling time points and TaAGPS1-b, TaAGPL1, TaAGPL2, TaSSIIb, TaSSIIc, TaSSIIIb, TaBEI, TaBEIIa, TaBEIIb, TaISA2, TaPHOH, and TaDPE2 genes were induced at one sampling time point. Moreover, both the grain starch contents, one thousand kernel weights, grain length and width of BSMV-VIGS-TaRSR1-infected wheat plants significantly increased. These results suggest that TaRSR1 acts as a negative regulator and plays an important role in starch synthesis in wheat grains by temporally regulating the expression of specific starch synthesis-related enzyme genes.

  13. A Human Lin− CD123+ CD127low Population Endowed with ILC Features and Migratory Capabilities Contributes to Immunopathological Hallmarks of Psoriasis

    PubMed Central

    Mora-Velandia, Luz María; Castro-Escamilla, Octavio; Méndez, Andrés González; Aguilar-Flores, Cristina; Velázquez-Avila, Martha; Tussié-Luna, María Isabel; Téllez-Sosa, Juan; Maldonado-García, César; Jurado-Santacruz, Fermín; Ferat-Osorio, Eduardo; Martínez-Barnetche, Jesus; Pelayo, Rosana; Bonifaz, Laura C.

    2017-01-01

    -homing receptors (cutaneous lymphocyte antigen and CXCR4) and transmigrates through endothelial cells in response to SDF-1. An equivalent Lin− CD123low population was identified in control skin, which shows a broader phenotypic diversity and cytokine production, including IL-22 and IL-17. Remarkably, the CD123low population in the lesion and non-lesion skin of psoriasis patients expresses IL-17 and IL-22. Our findings suggest the identification of an alternative Lin− CD123+ CD127low population with ILC features endowed with migratory capabilities that might contribute to immunopathological hallmarks of psoriasis. PMID:28303135

  14. A Human Lin(-) CD123(+) CD127(low) Population Endowed with ILC Features and Migratory Capabilities Contributes to Immunopathological Hallmarks of Psoriasis.

    PubMed

    Mora-Velandia, Luz María; Castro-Escamilla, Octavio; Méndez, Andrés González; Aguilar-Flores, Cristina; Velázquez-Avila, Martha; Tussié-Luna, María Isabel; Téllez-Sosa, Juan; Maldonado-García, César; Jurado-Santacruz, Fermín; Ferat-Osorio, Eduardo; Martínez-Barnetche, Jesus; Pelayo, Rosana; Bonifaz, Laura C

    2017-01-01

    expresses skin-homing receptors (cutaneous lymphocyte antigen and CXCR4) and transmigrates through endothelial cells in response to SDF-1. An equivalent Lin(-) CD123(low) population was identified in control skin, which shows a broader phenotypic diversity and cytokine production, including IL-22 and IL-17. Remarkably, the CD123(low) population in the lesion and non-lesion skin of psoriasis patients expresses IL-17 and IL-22. Our findings suggest the identification of an alternative Lin(-) CD123(+) CD127(low) population with ILC features endowed with migratory capabilities that might contribute to immunopathological hallmarks of psoriasis.

  15. Immunopathology in Taenia solium neurocysticercosis.

    PubMed

    Fleury, A; Cardenas, G; Adalid-Peralta, L; Fragoso, G; Sciutto, E

    2016-03-01

    Neurocysticercosis is a clinically and radiologically heterogeneous disease, ranging from asymptomatic infection to a severe, potentially fatal clinical picture. The intensity and extension of the parasite-elicited inflammatory reaction is a key factor for such variability. The main features of the inflammatory process found in the brain and in the peripheral blood of neurocysticercosis patients will be discussed in this review, and the factors involved in its modulation will be herein presented.

  16. Immunopathology of experimental cutaneous leishmaniasis.

    PubMed Central

    Andrade, Z. A.; Reed, S. G.; Roters, S. B.; Sadigursky, M.

    1984-01-01

    Relatively susceptible BALB/c and relatively resistant A/J mice were infected subcutaneously in the right hind footpad with promastigotes of Leishmania mexicana amazonensis. A large localized lesion developed within 2 months after infection in the BALB/c mice, while A/J mice exhibited a small discrete fibrotic nodule. Sequential immunologic and histologic examination demonstrated that BALB/c mice developed a nodular foam-cell type of lesion and progressive depression of a delayed-type hypersensitivity (DTH) response to leishmania antigen, while the A/J mice had a mixed cellular fibrosing and encapsulating reaction and developed and maintained positive DTH responses to leishmania antigen. Anti-leishmania antibody responses were positive at similar levels in both strains. The lesions in BALB/c mice were found in bone marrow, tendon, skin appendages, and regional lymph nodes, with a tendency toward cutaneous metastases. Lesions in A/J mice remained localized. Fibrosis, focal fibrinoid necrosis, and lymphocytic and macrophagic infiltration were the outstanding features. Light and transmission electron microscopic studies indicated that no outstanding destruction of leishmanias seemed to occur within macrophages of either mouse strain. In the more resistant A/J mice, however, parasitized macrophages were frequently necrotic, and degenerating leishmanias were often seen free in the interstitial tissue. These observations help the interpretation of the histologic features, as well as the pathogenesis, of cutaneous and mucocutaneous leishmaniasis in man. Images Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 PMID:6691411

  17. Virus-Induced Gene Silencing Using Tobacco Rattle Virus as a Tool to Study the Interaction between Nicotiana attenuata and Rhizophagus irregularis

    PubMed Central

    Groten, Karin; Pahari, Nabin T.; Xu, Shuqing; Miloradovic van Doorn, Maja; Baldwin, Ian T.

    2015-01-01

    Most land plants live in a symbiotic association with arbuscular mycorrhizal fungi (AMF) that belong to the phylum Glomeromycota. Although a number of plant genes involved in the plant-AMF interactions have been identified by analyzing mutants, the ability to rapidly manipulate gene expression to study the potential functions of new candidate genes remains unrealized. We analyzed changes in gene expression of wild tobacco roots (Nicotiana attenuata) after infection with mycorrhizal fungi (Rhizophagus irregularis) by serial analysis of gene expression (SuperSAGE) combined with next generation sequencing, and established a virus-induced gene-silencing protocol to study the function of candidate genes in the interaction. From 92,434 SuperSAGE Tag sequences, 32,808 (35%) matched with our in-house Nicotiana attenuata transcriptome database and 3,698 (4%) matched to Rhizophagus genes. In total, 11,194 Tags showed a significant change in expression (p<0.05, >2-fold change) after infection. When comparing the functions of highly up-regulated annotated Tags in this study with those of two previous large-scale gene expression studies, 18 gene functions were found to be up-regulated in all three studies mainly playing roles related to phytohormone metabolism, catabolism and defense. To validate the function of identified candidate genes, we used the technique of virus-induced gene silencing (VIGS) to silence the expression of three putative N. attenuata genes: germin-like protein, indole-3-acetic acid-amido synthetase GH3.9 and, as a proof-of-principle, calcium and calmodulin-dependent protein kinase (CCaMK). The silencing of the three plant genes in roots was successful, but only CCaMK silencing had a significant effect on the interaction with R. irregularis. Interestingly, when a highly activated inoculum was used for plant inoculation, the effect of CCaMK silencing on fungal colonization was masked, probably due to trans-complementation. This study demonstrates that large

  18. Aqueous extract of the edible Gracilaria tenuistipitata inhibits hepatitis C viral replication via cyclooxygenase-2 suppression and reduces virus-induced inflammation.

    PubMed

    Chen, Kuan-Jen; Tseng, Chin-Kai; Chang, Fang-Rong; Yang, Jin-Iong; Yeh, Chi-Chen; Chen, Wei-Chun; Wu, Shou-Fang; Chang, Hsueh-Wei; Lee, Jin-Ching

    2013-01-01

    Hepatitis C virus (HCV) is an important human pathogen leading to hepatocellular carcinoma. Using an in vitro cell-based HCV replicon and JFH-1 infection system, we demonstrated that an aqueous extract of the seaweed Gracilaria tenuistipitata (AEGT) concentration-dependently inhibited HCV replication at nontoxic concentrations. AEGT synergistically enhanced interferon-α (IFN-α) anti-HCV activity in a combination treatment. We found that AEGT also significantly suppressed virus-induced cyclooxygenase-2 (COX-2) expression at promoter transactivation and protein levels. Notably, addition of exogenous COX-2 expression in AEGT-treated HCV replicon cells gradually abolished AEGT anti-HCV activity, suggesting that COX-2 down-regulation was responsible for AEGT antiviral effects. Furthermore, we highlighted the inhibitory effect of AEGT in HCV-induced pro-inflammatory gene expression such as the expression of tumour necrosis factor-α, interleukin-1β, inducible nitrite oxide synthase and COX-2 in a concentration-dependent manner to evaluate the potential therapeutic supplement in the management of patients with chronic HCV infections.

  19. Inflammatory and oncogenic roles of a tumor stem cell marker doublecortin-like kinase (DCLK1) in virus-induced chronic liver diseases

    PubMed Central

    Ali, Naushad; Chandrakesan, Parthasarathy; Nguyen, Charles B.; Husain, Sanam; Gillaspy, Allison F.; Huycke, Mark; Berry, William L.; May, Randal; Qu, Dongfeng; Weygant, Nathaniel; Sureban, Sripathi M.; Bronze, Michael S.; Dhanasekaran, Danny N.; Houchen, Courtney W.

    2015-01-01

    Hepatocellular carcinoma (HCC) is the third most common cause of cancer-related mortality worldwide. We previously showed that a tumor/cancer stem cell (CSC) marker, doublecortin-like kinase (DCLK1) positively regulates hepatitis C virus (HCV) replication, and promotes tumor growth in colon and pancreas. Here, we employed transcriptome analysis, RNA interference, tumor xenografts, patient's liver tissues and hepatospheroids to investigate DCLK1-regulated inflammation and tumorigenesis in the liver. Our studies unveiled novel DCLK1-controlled feed-forward signaling cascades involving calprotectin subunit S100A9 and NFκB activation as a driver of inflammation. Validation of transcriptome data suggests that DCLK1 co-expression with HCV induces BRM/SMARCA2 of SW1/SNF1 chromatin remodeling complexes. Frequently observed lymphoid aggregates including hepatic epithelial and stromal cells of internodular septa extensively express DCLK1 and S100A9. The DCLK1 overexpression also correlates with increased levels of S100A9, c-Myc, and BRM levels in HCV/HBV-positive patients with cirrhosis and HCC. DCLK1 silencing inhibits S100A9 expression and hepatoma cell migration. Normal human hepatocytes (NHH)-derived spheroids exhibit CSC properties. These results provide new insights into the molecular mechanism of the hepatitis B/C-virus induced liver inflammation and tumorigenesis via DCLK1-controlled networks. Thus, DCLK1 appears to be a novel therapeutic target for the treatment of inflammatory diseases and HCC. PMID:25948779

  20. Virus-Induced Necrosis Is a Consequence of Direct Protein-Protein Interaction between a Viral RNA-Silencing Suppressor and a Host Catalase[C][W

    PubMed Central

    Inaba, Jun-ichi; Kim, Bo Min; Shimura, Hanako; Masuta, Chikara

    2011-01-01

    Many plant host factors are known to interact with viral proteins during pathogenesis, but how a plant virus induces a specific disease symptom still needs further research. A lily strain of Cucumber mosaic virus (CMV-HL) can induce discrete necrotic spots on infected Arabidopsis (Arabidopsis thaliana) plants; other CMV strains can induce similar spots, but they are not as distinct as those induced by CMV-HL. The CMV 2b protein (2b), a known RNA-silencing suppressor, is involved in viral movement and symptom induction. Using in situ proximity ligation assay immunostaining and the protoplast assays, we report here that CMV 2b interacts directly with Catalase3 (CAT3) in infected tissues, a key enzyme in the breakdown of toxic hydrogen peroxide. Interestingly, CAT3, normally localized in the cytoplasm (glyoxysome), was recruited to the nucleus by an interaction between 2b and CAT3. Although overexpression of CAT3 in transgenic plants decreased the accumulation of CMV and delayed viral symptom development to some extent, 2b seems to neutralize the cellular catalase contributing to the host defense response, thus favoring viral infection. Our results thus provide evidence that, in addition to altering the type of symptom by disturbing microRNA pathways, 2b can directly bind to a host factor that is important in scavenging cellular hydrogen peroxide and thus interfere specifically with that host factor, leading to the induction of a specific necrosis. PMID:21622812

  1. Virus-induced gene silencing is an effective tool for assaying gene function in the basal eudicot species Papaver somniferum (opium poppy).

    PubMed

    Hileman, Lena C; Drea, Sinéad; Martino, Gemma; Litt, Amy; Irish, Vivian F

    2005-10-01

    Virus-induced gene silencing (VIGS) is an attractive method for assaying gene function in species that are resistant to conventional genetic approaches. However, VIGS has been shown to be effective in only a few, closely related plant species. Tobacco rattle virus (TRV), a bipartite RNA virus, has a wide host range and so in principle could serve as an efficient vector for VIGS in a diverse array of plant species. Here we show that a vector based on TRV sequences is effective at silencing the endogenous phytoene desaturase (PapsPDS) gene in Papaver somniferum (opium poppy). We show that this vector does not compromise the growth or reproduction of poppy and the plants did not display viral symptoms. The silencing of PapsPDS resulted in a significant reduction in PapsPDS mRNA and a concomitant photobleached phenotype. The ability to rapidly assay gene function in P. somniferum will be valuable in manipulation of the opiate pathway in this pharmaceutically important species. We suggest that our vacuum infiltration method used to deliver TRV-based vectors into poppy is a promising approach for expanding VIGS to diverse angiosperm species in which traditional delivery methods fail to induce VIGS. Furthermore, these studies demonstrate the utility of TRV-VIGS for probing gene function in a basal eudicot species that is phylogenetically distant from model plant species.

  2. Inflammatory and oncogenic roles of a tumor stem cell marker doublecortin-like kinase (DCLK1) in virus-induced chronic liver diseases.

    PubMed

    Ali, Naushad; Chandrakesan, Parthasarathy; Nguyen, Charles B; Husain, Sanam; Gillaspy, Allison F; Huycke, Mark; Berry, William L; May, Randal; Qu, Dongfeng; Weygant, Nathaniel; Sureban, Sripathi M; Bronze, Michael S; Dhanasekaran, Danny N; Houchen, Courtney W

    2015-08-21

    Hepatocellular carcinoma (HCC) is the third most common cause of cancer-related mortality worldwide. We previously showed that a tumor/cancer stem cell (CSC) marker, doublecortin-like kinase (DCLK1) positively regulates hepatitis C virus (HCV) replication, and promotes tumor growth in colon and pancreas. Here, we employed transcriptome analysis, RNA interference, tumor xenografts, patient's liver tissues and hepatospheroids to investigate DCLK1-regulated inflammation and tumorigenesis in the liver. Our studies unveiled novel DCLK1-controlled feed-forward signaling cascades involving calprotectin subunit S100A9 and NFκB activation as a driver of inflammation. Validation of transcriptome data suggests that DCLK1 co-expression with HCV induces BRM/SMARCA2 of SW1/SNF1 chromatin remodeling complexes. Frequently observed lymphoid aggregates including hepatic epithelial and stromal cells of internodular septa extensively express DCLK1 and S100A9. The DCLK1 overexpression also correlates with increased levels of S100A9, c-Myc, and BRM levels in HCV/HBV-positive patients with cirrhosis and HCC. DCLK1 silencing inhibits S100A9 expression and hepatoma cell migration. Normal human hepatocytes (NHH)-derived spheroids exhibit CSC properties. These results provide new insights into the molecular mechanism of the hepatitis B/C-virus induced liver inflammation and tumorigenesis via DCLK1-controlled networks. Thus, DCLK1 appears to be a novel therapeutic target for the treatment of inflammatory diseases and HCC.

  3. pol-miR-731, a teleost miRNA upregulated by megalocytivirus, negatively regulates virus-induced type I interferon response, apoptosis, and cell cycle arrest

    PubMed Central

    Zhang, Bao-cun; Zhou, Ze-jun; Sun, Li

    2016-01-01

    Megalocytivirus is a DNA virus that is highly infectious in a wide variety of marine and freshwater fish, including Japanese flounder (Paralichthys olivaceus), a flatfish that is farmed worldwide. However, the infection mechanism of megalocytivirus remains largely unknown. In this study, we investigated the function of a flounder microRNA, pol-miR-731, in virus-host interaction. We found that pol-miR-731 was induced in expression by megalocytivirus and promoted viral replication at the early infection stage. In vivo and in vitro studies revealed that pol-miR-731 (i) specifically suppresses the expression of interferon regulatory factor 7 (IRF7) and cellular tumor antigen p53 in a manner that depended on the integrity of the pol-miR-731 complementary sequences in the 3′ untranslated regions of IRF7 and p53, (ii) disrupts megalocytivirus-induced Type I interferon response through IRF7, (iii) inhibits megalocytivirus-induced splenocyte apoptosis and cell cycle arrest through p53. Furthermore, overexpression of IRF7 and p53 abolished both the inhibitory effects of pol-miR-731 on these biological processes and its stimulatory effect on viral replication. These results disclosed a novel evasion mechanism of megalocytivirus mediated by a host miRNA. This study also provides the first evidence that a virus-induced host miRNA can facilitate viral infection by simultaneously suppressing several antiviral pathways. PMID:27311682

  4. Virus-induced gene silencing of the RPC5-like subunit of RNA polymerase III caused pleiotropic effects in Nicotiana benthamiana

    PubMed Central

    Nemchinov, Lev G.; Boutanaev, Alexander M.; Postnikova, Olga A.

    2016-01-01

    In eukaryotic cells, RNA polymerase III is highly conserved and transcribes housekeeping genes such as ribosomal 5S rRNA, tRNA and other small RNAs. The RPC5-like subunit is one of the 17 subunits forming RNAPIII and its exact functional roles in the transcription are poorly understood. In this work, we report that virus-induced gene silencing of transcripts encoding a putative RPC5-like subunit of the RNA Polymerase III in a model species Nicotiana benthamiana had pleiotropic effects, including but not limited to severe dwarfing appearance, chlorosis, nearly complete reduction of internodes and abnormal leaf shape. Using transcriptomic analysis, we identified genes and pathways affected by RPC5 silencing and thus presumably related to the cellular roles of the subunit as well as to the downstream cascade of reactions in response to partial loss of RNA Polymerase III function. Our results suggest that silencing of the RPC5L in N. benthamiana disrupted not only functions commonly associated with the core RNA Polymerase III transcripts, but also more diverse cellular processes, including responses to stress. We believe this is the first demonstration that activity of the RPC5 subunit is critical for proper functionality of RNA Polymerase III and normal plant development. PMID:27282827

  5. Development of an Efficient Virus Induced Gene Silencing Strategy in the Non-Model Wild Ginger-Zingiber zerumbet and Investigation of Associated Proteome Changes

    PubMed Central

    Mahadevan, Chidambareswaren; Jaleel, Abdul; Deb, Lokesh; Thomas, George; Sakuntala, Manjula

    2015-01-01

    Zingiber zerumbet (Zingiberaceae) is a wild, tropical medicinal herb that shows a high degree of resistance to diseases affecting cultivated ginger. Barley stripe mosaic virus (BSMV) silencing vectors containing an endogenous phytoene desaturase (PDS) gene fragment were agroinfiltrated into young leaves of Z. zerumbet under controlled growth conditions to effect virus-induced gene silencing (VIGS). Infiltrated leaves as well as newly emerged leaves and tillers showed visual signs of PDS silencing after 30 days. Replication and systemic movement of the viral vectors in silenced plants were confirmed by RT-PCR. Real-time quantitative PCR analysis verified significant down-regulation of PDS transcripts in the silenced tissues. Label-free proteomic analysis was conducted in leaves with established PDS transcript down regulation and buffer-infiltrated (mock) leaves. A total of 474 proteins were obtained, which were up-regulated, down-regulated or modulated de novo during VIGS. Most of these proteins were localized to the chloroplast, as revealed by UniprotKB analysis, and among the up-regulated proteins there were abiotic stress responsive, photosynthetic, metabolic and membrane proteins. Moreover, the demonstration of viral proteins together with host proteins proved successful viral infection. We report for the first time the establishment of a high-throughput gene functional analysis platform using BSMV-mediated VIGS in Z. zerumbet, as well as proteomic changes associated with VIGS. PMID:25918840

  6. Virus-induced silencing of Comt, pAmt and Kas genes results in a reduction of capsaicinoid accumulation in chili pepper fruits.

    PubMed

    del Rosario Abraham-Juárez, Ma; del Carmen Rocha-Granados, Ma; López, Mercedes G; Rivera-Bustamante, Rafael Francisco; Ochoa-Alejo, Neftalí

    2008-02-01

    Capsaicinoids are responsible for the pungent taste of chili pepper fruits of Capsicum species. Capsaicinoids are biosynthesized through both the phenylpropanoid and the branched-fatty acids pathways. Fragments of Comt (encoding a caffeic acid O-methyltransferase), pAmt (a putative aminotransferase), and Kas (a beta-keto-acyl-[acyl-carrier-protein] synthase) genes, that are differentially expressed in placenta tissue of pungent chili pepper, were individually inserted into a Pepper huasteco yellow veins virus (PHYVV)-derived vector to determine, by virus-induced gene silencing, irrespective of whether these genes are involved in the biosynthesis of capsaicinoids. Reduction of the respective mRNA levels as well as the presence of related siRNAs confirmed the silencing of these three genes. Morphological alterations were evident in plants inoculated with PHYVV::Comt and PHYVV::Kas constructs; however, plants inoculated with PHYVV::pAmt showed no evident alterations. On the other hand, fruit setting was normal in all cases. Biochemical analysis of placenta tissues showed that, indeed, independent silencing of all three genes led to a dramatic reduction in capsaicinoid content in the fruits demonstrating the participation of these genes in capsaicinoid biosynthesis. Using this approach it was possible to generate non-pungent chili peppers at high efficiency.

  7. Characterization of the Rana grylio virus 3{beta}-hydroxysteroid dehydrogenase and its novel role in suppressing virus-induced cytopathic effect

    SciTech Connect

    Sun Wei; Huang Youhua; Zhao Zhe; Gui Jianfang; Zhang Qiya . E-mail: zhangqy@ihb.ac.cn

    2006-12-08

    The 3{beta}-hydroxysteroid dehydrogenase (3{beta}-HSD) isoenzymes play a key role in cellular steroid hormone synthesis. Here, a 3{beta}-HSD gene homolog was cloned from Rana grylio virus (RGV), a member of family Iridoviridae. RGV 3{beta}-HSD gene has 1068 bp, encoding a 355 aa predicted protein. Transcription analyses showed that RGV 3{beta}-HSD gene was transcribed immediate-early during infection from an initiation site 19 nucleotides upstream of the translation start site. Confocal microscopy revealed that the 3{beta}-HSD-EGFP fusion protein was exclusively colocalized with the mitochondria marker (pDsRed2-Mito) in EPC cells. Upon morphological observation and MTT assay, it was revealed that overexpression of RGV 3{beta}-HSD in EPC cells could apparently suppress RGV-induced cytopathic effect (CPE). The present studies indicate that the RGV immediate-early 3{beta}-HSD gene encodes a mitochondria-localized protein, which has a novel role in suppressing virus-induced CPE. All these suggest that RGV 3{beta}-HSD might be a protein involved in host-virus interaction.

  8. β-Catenin Upregulates the Constitutive and Virus-Induced Transcriptional Capacity of the Interferon Beta Promoter through T-Cell Factor Binding Sites.

    PubMed

    Marcato, Vasco; Luron, Lionel; Laqueuvre, Lucie M; Simon, Dominique; Mansuroglu, Zeyni; Flamand, Marie; Panthier, Jean-Jacques; Souès, Sylvie; Massaad, Charbel; Bonnefoy, Eliette

    2016-01-01

    Rapid upregulation of interferon beta (IFN-β) expression following virus infection is essential to set up an efficient innate antiviral response. Biological roles related to the antiviral and immune response have also been associated with the constitutive production of IFN-β in naive cells. However, the mechanisms capable of modulating constitutive IFN-β expression in the absence of infection remain largely unknown. In this work, we demonstrate that inhibition of the kinase glycogen synthase kinase 3 (GSK-3) leads to the upregulation of the constitutive level of IFN-β expression in noninfected cells, provided that GSK-3 inhibition is correlated with the binding of β-catenin to the IFN-β promoter. Under these conditions, IFN-β expression occurred through the T-cell factor (TCF) binding sites present on the IFN-β promoter independently of interferon regulatory factor 3 (IRF3). Enhancement of the constitutive level of IFN-β per se was able to confer an efficient antiviral state to naive cells and acted in synergy with virus infection to stimulate virus-induced IFN-β expression. Further emphasizing the role of β-catenin in the innate antiviral response, we show here that highly pathogenic Rift Valley fever virus (RVFV) targets the Wnt/β-catenin pathway and the formation of active TCF/β-catenin complexes at the transcriptional and protein level in RVFV-infected cells and mice.

  9. Aqueous Extract of the Edible Gracilaria tenuistipitata Inhibits Hepatitis C Viral Replication via Cyclooxygenase-2 Suppression and Reduces Virus-Induced Inflammation

    PubMed Central

    Chang, Fang-Rong; Yang, Jin-Iong; Yeh, Chi-Chen; Chen, Wei-Chun; Wu, Shou-Fang; Chang, Hsueh-Wei; Lee, Jin-Ching

    2013-01-01

    Hepatitis C virus (HCV) is an important human pathogen leading to hepatocellular carcinoma. Using an in vitro cell-based HCV replicon and JFH-1 infection system, we demonstrated that an aqueous extract of the seaweed Gracilaria tenuistipitata (AEGT) concentration-dependently inhibited HCV replication at nontoxic concentrations. AEGT synergistically enhanced interferon-α (IFN-α) anti-HCV activity in a combination treatment. We found that AEGT also significantly suppressed virus-induced cyclooxygenase-2 (COX-2) expression at promoter transactivation and protein levels. Notably, addition of exogenous COX-2 expression in AEGT-treated HCV replicon cells gradually abolished AEGT anti-HCV activity, suggesting that COX-2 down-regulation was responsible for AEGT antiviral effects. Furthermore, we highlighted the inhibitory effect of AEGT in HCV-induced pro-inflammatory gene expression such as the expression of tumour necrosis factor-α, interleukin-1β, inducible nitrite oxide synthase and COX-2 in a concentration-dependent manner to evaluate the potential therapeutic supplement in the management of patients with chronic HCV infections. PMID:23469054

  10. Out-of-sequence signal 3 as a mechanism for virus-induced immune suppression of CD8 T cell responses.

    PubMed

    Urban, Stina L; Welsh, Raymond M

    2014-09-01

    Virus infections are known to induce a transient state of immune suppression often associated with an inhibition of T cell proliferation in response to mitogen or cognate-antigen stimulation. Recently, virus-induced immune suppression has been linked to responses to type 1 interferon (IFN), a signal 3 cytokine that normally can augment the proliferation and differentiation of T cells exposed to antigen (signal 1) and co-stimulation (signal 2). However, pre-exposure of CD8 T cells to IFN-inducers such as viruses or poly(I∶C) prior to antigen signaling is inhibitory, indicating that the timing of IFN exposure is of essence. We show here that CD8 T cells pretreated with poly(I∶C) down-regulated the IFN receptor, up-regulated suppressor of cytokine signaling 1 (SOCS1), and were refractory to IFNβ-induced signal transducers and activators of transcription (STAT) phosphorylation. When exposed to a viral infection, these CD8 T cells behaved more like 2-signal than 3-signal T cells, showing defects in short lived effector cell differentiation, reduced effector function, delayed cell division, and reduced levels of survival proteins. This suggests that IFN-pretreated CD8 T cells are unable to receive the positive effects that type 1 IFN provides as a signal 3 cytokine when delivered later in the signaling process. This desensitization mechanism may partially explain why vaccines function poorly in virus-infected individuals.

  11. Optimization of automated segmentation of monkeypox virus-induced lung lesions from normal lung CT images using hard C-means algorithm

    NASA Astrophysics Data System (ADS)

    Castro, Marcelo A.; Thomasson, David; Avila, Nilo A.; Hufton, Jennifer; Senseney, Justin; Johnson, Reed F.; Dyall, Julie

    2013-03-01

    Monkeypox virus is an emerging zoonotic pathogen that results in up to 10% mortality in humans. Knowledge of clinical manifestations and temporal progression of monkeypox disease is limited to data collected from rare outbreaks in remote regions of Central and West Africa. Clinical observations show that monkeypox infection resembles variola infection. Given the limited capability to study monkeypox disease in humans, characterization of the disease in animal models is required. A previous work focused on the identification of inflammatory patterns using PET/CT image modality in two non-human primates previously inoculated with the virus. In this work we extended techniques used in computer-aided detection of lung tumors to identify inflammatory lesions from monkeypox virus infection and their progression using CT images. Accurate estimation of partial volumes of lung lesions via segmentation is difficult because of poor discrimination between blood vessels, diseased regions, and outer structures. We used hard C-means algorithm in conjunction with landmark based registration to estimate the extent of monkeypox virus induced disease before inoculation and after disease progression. Automated estimation is in close agreement with manual segmentation.

  12. Impact of caspase-1/11, -3, -7, or IL-1β/IL-18 deficiency on rabies virus-induced macrophage cell death and onset of disease

    PubMed Central

    Kip, E; Nazé, F; Suin, V; Vanden Berghe, T; Francart, A; Lamoral, S; Vandenabeele, P; Beyaert, R; Van Gucht, S; Kalai, M

    2017-01-01

    Rabies virus is a highly neurovirulent RNA virus, which causes about 59000 deaths in humans each year. Previously, we described macrophage cytotoxicity upon infection with rabies virus. Here we examined the type of cell death and the role of specific caspases in cell death and disease development upon infection with two laboratory strains of rabies virus: Challenge Virus Standard strain-11 (CVS-11) is highly neurotropic and lethal for mice, while the attenuated Evelyn–Rotnycki–Abelseth (ERA) strain has a broader cell tropism, is non-lethal and has been used as an oral vaccine for animals. Infection of Mf4/4 macrophages with both strains led to caspase-1 activation and IL-1β and IL-18 production, as well as activation of caspases-3, -7, -8, and -9. Moreover, absence of caspase-3, but not of caspase-1 and -11 or -7, partially inhibited virus-induced cell death of bone marrow-derived macrophages. Intranasal inoculation with CVS-11 of mice deficient for either caspase-1 and -11 or -7 or both IL-1β and IL-18 led to general brain infection and lethal disease similar to wild-type mice. Deficiency of caspase-3, on the other hand, significantly delayed the onset of disease, but did not prevent final lethal outcome. Interestingly, deficiency of caspase-1/11, the key executioner of pyroptosis, aggravated disease severity caused by ERA virus, whereas wild-type mice or mice deficient for either caspase-3, -7, or both IL-1β and IL-18 presented the typical mild symptoms associated with ERA virus. In conclusion, rabies virus infection of macrophages induces caspase-1- and caspase-3-dependent cell death. In vivo caspase-1/11 and caspase-3 differently affect disease development in response to infection with the attenuated ERA strain or the virulent CVS-11 strain, respectively. Inflammatory caspases seem to control attenuated rabies virus infection, while caspase-3 aggravates virulent rabies virus infection. PMID:28280602

  13. Molecular cloning and functional characterization of the lycopene ε-cyclase gene via virus-induced gene silencing and its expression pattern in Nicotiana tabacum.

    PubMed

    Shi, Yanmei; Wang, Ran; Luo, Zhaopeng; Jin, Lifeng; Liu, Pingping; Chen, Qiansi; Li, Zefeng; Li, Feng; Wei, Chunyang; Wu, Mingzhu; Wei, Pan; Xie, He; Qu, Lingbo; Lin, Fucheng; Yang, Jun

    2014-08-22

    Lycopene ε-cyclase (ε-LCY) is a key enzyme that catalyzes the synthesis of α-branch carotenoids through the cyclization of lycopene. Two cDNA molecules encoding ε-LCY (designated Ntε-LCY1 and Ntε-LCY2) were cloned from Nicotiana tabacum. Ntε-LCY1 and Ntε-LCY2 are encoded by two distinct genes with different evolutionary origins, one originating from the tobacco progenitor, Nicotiana sylvestris, and the other originating from Nicotiana tomentosiformis. The two coding regions are 97% identical at the nucleotide level and 95% identical at the amino acid level. Transcripts of Ntε-LCY were detectable in both vegetative and reproductive organs, with a relatively higher level of expression in leaves than in other tissues. Subcellular localization experiments using an Ntε-LCY1-GFP fusion protein demonstrated that mature Ntε-LCY1 protein is localized within the chloroplast in Bright Yellow 2 suspension cells. Under low-temperature and low-irradiation stress, Ntε-LCY transcript levels substantially increased relative to control plants. Tobacco rattle virus (TRV)-mediated silencing of ε-LCY in Nicotiana benthamiana resulted in an increase of β-branch carotenoids and a reduction in the levels of α-branch carotenoids. Meanwhile, transcripts of related genes in the carotenoid biosynthetic pathway observably increased, with the exception of β-OHase in the TRV-ε-lcy line. Suppression of ε-LCY expression was also found to alleviate photoinhibition of Potosystem II in virus-induced gene silencing (VIGS) plants under low-temperature and low-irradiation stress. Our results provide insight into the regulatory role of ε-LCY in plant carotenoid biosynthesis and suggest a role for ε-LCY in positively modulating low temperature stress responses.

  14. Impact of caspase-1/11, -3, -7, or IL-1β/IL-18 deficiency on rabies virus-induced macrophage cell death and onset of disease.

    PubMed

    Kip, E; Nazé, F; Suin, V; Vanden Berghe, T; Francart, A; Lamoral, S; Vandenabeele, P; Beyaert, R; Van Gucht, S; Kalai, M

    2017-01-01

    Rabies virus is a highly neurovirulent RNA virus, which causes about 59000 deaths in humans each year. Previously, we described macrophage cytotoxicity upon infection with rabies virus. Here we examined the type of cell death and the role of specific caspases in cell death and disease development upon infection with two laboratory strains of rabies virus: Challenge Virus Standard strain-11 (CVS-11) is highly neurotropic and lethal for mice, while the attenuated Evelyn-Rotnycki-Abelseth (ERA) strain has a broader cell tropism, is non-lethal and has been used as an oral vaccine for animals. Infection of Mf4/4 macrophages with both strains led to caspase-1 activation and IL-1β and IL-18 production, as well as activation of caspases-3, -7, -8, and -9. Moreover, absence of caspase-3, but not of caspase-1 and -11 or -7, partially inhibited virus-induced cell death of bone marrow-derived macrophages. Intranasal inoculation with CVS-11 of mice deficient for either caspase-1 and -11 or -7 or both IL-1β and IL-18 led to general brain infection and lethal disease similar to wild-type mice. Deficiency of caspase-3, on the other hand, significantly delayed the onset of disease, but did not prevent final lethal outcome. Interestingly, deficiency of caspase-1/11, the key executioner of pyroptosis, aggravated disease severity caused by ERA virus, whereas wild-type mice or mice deficient for either caspase-3, -7, or both IL-1β and IL-18 presented the typical mild symptoms associated with ERA virus. In conclusion, rabies virus infection of macrophages induces caspase-1- and caspase-3-dependent cell death. In vivo caspase-1/11 and caspase-3 differently affect disease development in response to infection with the attenuated ERA strain or the virulent CVS-11 strain, respectively. Inflammatory caspases seem to control attenuated rabies virus infection, while caspase-3 aggravates virulent rabies virus infection.

  15. Identification of Novel Pepper Genes Involved in Bax- or INF1-Mediated Cell Death Responses by High-Throughput Virus-Induced Gene Silencing

    PubMed Central

    Lee, Jeong Hee; Kim, Young Cheol; Choi, Doil; Park, Jeong Mee

    2013-01-01

    Hot pepper is one of the economically important crops in Asia. A large number of gene sequences, including expressed sequence tag (EST) and genomic sequences are publicly available. However, it is still a daunting task to determine gene function due to difficulties in genetic modification of a pepper plants. Here, we show the application of the virus-induced gene silencing (VIGS) repression for the study of 459 pepper ESTs selected as non-host pathogen-induced cell death responsive genes from pepper microarray experiments in Nicotiana benthamiana. Developmental abnormalities in N. benthamiana plants are observed in the 32 (7%) pepper ESTs-silenced plants. Aberrant morphological phenotypes largely comprised of three groups: stunted, abnormal leaf, and dead. In addition, by employing the combination of VIGS and Agrobacterium-mediated transient assays, we identified novel pepper ESTs that involved in Bax or INF1-mediated cell death responses. Silencing of seven pepper ESTs homologs suppressed Bax or INF1-induced cell death, five of which suppressed both cell death responses in N. benthamiana. The genes represented by these five ESTs encode putative proteins with functions in endoplasmic reticulum (ER) stress and lipid signaling. The genes represented by the other two pepper ESTs showing only Bax-mediated cell death inhibition encode a CCCH-type zinc finger protein containing an ankyrin-repeat domain and a probable calcium-binding protein, CML30-like. Taken together, we effectively isolated novel pepper clones that are involved in hypersensitive response (HR)-like cell death using VIGS, and identified silenced clones that have different responses to Bax and INF1 exposure, indicating separate signaling pathways for Bax- and INF1-mediated cell death. PMID:24256816

  16. Identification of novel pepper genes involved in Bax- or INF1-mediated cell death responses by high-throughput virus-induced gene silencing.

    PubMed

    Lee, Jeong Hee; Kim, Young Cheol; Choi, Doil; Park, Jeong Mee

    2013-11-19

    Hot pepper is one of the economically important crops in Asia. A large number of gene sequences, including expressed sequence tag (EST) and genomic sequences are publicly available. However, it is still a daunting task to determine gene function due to difficulties in genetic modification of a pepper plants. Here, we show the application of the virus-induced gene silencing (VIGS) repression for the study of 459 pepper ESTs selected as non-host pathogen-induced cell death responsive genes from pepper microarray experiments in Nicotiana benthamiana. Developmental abnormalities in N. benthamiana plants are observed in the 32 (7%) pepper ESTs-silenced plants. Aberrant morphological phenotypes largely comprised of three groups: stunted, abnormal leaf, and dead. In addition, by employing the combination of VIGS and Agrobacterium-mediated transient assays, we identified novel pepper ESTs that involved in Bax or INF1-mediated cell death responses. Silencing of seven pepper ESTs homologs suppressed Bax or INF1-induced cell death, five of which suppressed both cell death responses in N. benthamiana. The genes represented by these five ESTs encode putative proteins with functions in endoplasmic reticulum (ER) stress and lipid signaling. The genes represented by the other two pepper ESTs showing only Bax-mediated cell death inhibition encode a CCCH-type zinc finger protein containing an ankyrin-repeat domain and a probable calcium-binding protein, CML30-like. Taken together, we effectively isolated novel pepper clones that are involved in hypersensitive response (HR)-like cell death using VIGS, and identified silenced clones that have different responses to Bax and INF1 exposure, indicating separate signaling pathways for Bax- and INF1-mediated cell death.

  17. Antibody response is required for protection from Theiler's virus-induced encephalitis in C57BL/6 mice in the absence of CD8{sup +} T cells

    SciTech Connect

    Kang, B.-S.; Palma, Joann P.; Lyman, Michael A.; Dal Canto, Mauro; Kim, Byung S. . E-mail: bskim@northwestern.edu

    2005-09-15

    Intracerebral infection of susceptible mice with Theiler's murine encephalomyelitis virus (TMEV) induces immune-mediated demyelinating disease and this system serves as a relevant infectious model for human multiple sclerosis. It was previously shown that {beta}{sub 2}M-deficient C57BL/6 mice lacking functional CD8{sup +} T cells display increased viral persistence and enhanced susceptibility to TMEV-induced demyelination, and yet the majority of mice are free of clinical signs. To understand the mechanisms involved in this general resistance of C57BL/6 mice in the absence of CTL responses, mice ({mu}MT) deficient in the B-cell compartment lacking membrane IgM molecules were treated with anti-CD8 antibody and then infected with TMEV. Although little difference in the proliferative responses of peripheral T cells to UV-inactivated TMEV and the resistance to demyelinating disease was observed between virus-infected {mu}MT and control B6 mice, the levels of CD4{sup +} T cells were higher in the CNS of {mu}MT mice. However, after treatment with anti-CD8 antibody, 100% of the mice displayed clinical gray matter disease and prolonged viral persistence in {mu}MT mice, while only 10% of B6 mice showed clinical symptoms and very low viral persistence. Transfusion of sera from TMEV-infected B6 mice into anti-CD8 antibody-treated {mu}MT mice partially restored resistance to virus-induced encephalitis. These results indicate that the early anti-viral antibody response is also important in the protection from TMEV-induced encephalitis particularly in the absence of CD8{sup +} T cells.

  18. Virus-induced gene silencing of PEAM4 affects floral morphology by altering the expression pattern of PsSOC1a and PsPVP in pea.

    PubMed

    Chen, Zhe-Hao; Jia, Fei-Fei; Hu, Jiang-Qin; Pang, Ji-Liang; Xu, Lei; Wang, Li-Lin

    2014-01-15

    pea-MADS4 (PEAM4) regulates floral morphology in Pisum sativum L., however, its molecular mechanisms still remain unclear. Virus-induced gene silencing (VIGS) is a recently developed reverse genetic approach that facilities an easier and more rapid study of gene functions. In this study, the PEAM4 gene was effectively silenced by VIGS using a pea early browning virus (PEBV) in wild type pea JI992. The infected plants showed abnormal phenotypes, as the floral organs, especially the sepals and petals changed in both size and shape, which made the corolla less closed. The petals changed in morphology and internal symmetry with, the stamens reduced and carpel dehisced. Larger sepals and longer tendrils with small cauline leaves appeared, with some sepals turning into bracts, and secondary inflorescences with fused floral organs were formed, indicating a flower-to-inflorescence change. The infected plants also displayed a delayed and prolonged flowering time. The PEAM4-VIGS plants with altered floral morphology were similar to the pim (proliferating inflorescence meristem) mutant and also mimicked the phenotypes of ap1 mutants in Arabidopsis. The expression pattern of the homologous genes PsSOC1a and PsSVP, which were involved in flowering time and florescence morphological control downstream of PEAM4, were analyzed by real-time RT-PCR and mRNA in situ hybridization. PsSOC1a and PsSVP were ectopically expressed and enhanced in the floral meristems from PEAM4-silenced plants. Our data suggests that PEAM4 may have a similar molecular mechanism as AtAP1, which inhibits the expression of PsSOC1a and PsSVP in the floral meristem from the early stages of flower development. As such, in this way PEAM4 plays a crucial role in maintaining floral organ identity and flower development in pea.

  19. Highly pathogenic avian influenza H5N1 virus induces cytokine dysregulation with suppressed maturation of chicken monocyte-derived dendritic cells.

    PubMed

    Kalaiyarasu, Semmannan; Kumar, Manoj; Senthil Kumar, Dhanapal; Bhatia, Sandeep; Dash, Sandeep Kumar; Bhat, Sushant; Khetan, Rohit K; Nagarajan, Shanmugasundaram

    2016-10-01

    One of the major causes of death in highly pathogenic avian influenza virus (HPAIV) infection in chickens is acute induction of pro-inflammatory cytokines (cytokine storm), which leads to severe pathology and acute mortality. DCs and respiratory tract macrophages are the major antigen presenting cells that are exposed to mucosal pathogens. We hypothesized that chicken DCs are a major target for induction of cytokine dysregulation by H5N1 HPAIV. It was found that infection of chicken peripheral blood monocyte-derived dendritic cells (chMoDCs) with H5N1 HPAIV produces high titers of progeny virus with more rounding and cytotoxicity than with H9N2 LPAIV. Expression of maturation markers (CD40, CD80 and CD83) was weaker in both H5N1 and H9N2 groups than in a LPS control group. INF-α, -β and -γ were significantly upregulated in the H5N1 group. Pro-inflammatory cytokines (IL-1β, TNF-α and IL-18) were highly upregulated in early mid (IL-1), and late (IL-6) phases of H5N1 virus infection. IL-8 (CXCLi2) mRNA expression was significantly stronger in the H5N1 group from 6 hr of infection. TLR3, 7, 15 and 21 were upregulated 24 hr after infection by H5N1 virus compared with H9N2 virus, with maximum expression of TLR 3 mRNA. Similarly, greater H5N1 virus-induced apoptotic cell death and cytotoxicity, as measured by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling and lactate dehydrogenase assays, respectively, were found. Thus, both H5N1 and H9N2 viruses evade the host immune system by inducing impairment of chMoDCs maturation and enhancing cytokine dysregulation in H5N1 HPAIV-infected cells.

  20. Virus-induced gene silencing of Withania somnifera squalene synthase negatively regulates sterol and defence-related genes resulting in reduced withanolides and biotic stress tolerance.

    PubMed

    Singh, Anup Kumar; Dwivedi, Varun; Rai, Avanish; Pal, Shaifali; Reddy, Sajjalavarahalli Gangireddy Eswara; Rao, Dodaghatta Krishnarao Venkata; Shasany, Ajit Kumar; Nagegowda, Dinesh A

    2015-12-01

    Withania somnifera (L.) Dunal is an important Indian medicinal plant that produces withanolides, which are triterpenoid steroidal lactones having diverse biological activities. To enable fast and efficient functional characterization of genes in this slow-growing and difficult-to-transform plant, a virus-induced gene silencing (VIGS) was established by silencing phytoene desaturase (PDS) and squalene synthase (SQS). VIGS of the gene encoding SQS, which provides precursors for triterpenoids, resulted in significant reduction of squalene and withanolides, demonstrating its application in studying withanolides biosynthesis in W. somnifera leaves. A comprehensive analysis of gene expression and sterol pathway intermediates in WsSQS-vigs plants revealed transcriptional modulation with positive feedback regulation of mevalonate pathway genes, and negative feed-forward regulation of downstream sterol pathway genes including DWF1 (delta-24-sterol reductase) and CYP710A1 (C-22-sterol desaturase), resulting in significant reduction of sitosterol, campesterol and stigmasterol. However, there was little effect of SQS silencing on cholesterol, indicating the contribution of sitosterol, campesterol and stigmasterol, but not of cholesterol, towards withanolides formation. Branch-point oxidosqualene synthases in WsSQS-vigs plants exhibited differential regulation with reduced CAS (cycloartenol synthase) and cycloartenol, and induced BAS (β-amyrin synthase) and β-amyrin. Moreover, SQS silencing also led to the down-regulation of brassinosteroid-6-oxidase-2 (BR6OX2), pathogenesis-related (PR) and nonexpressor of PR (NPR) genes, resulting in reduced tolerance to bacterial and fungal infection as well as to insect feeding. Taken together, SQS silencing negatively regulated sterol and defence-related genes leading to reduced phytosterols, withanolides and biotic stress tolerance, thus implicating the application of VIGS for functional analysis of genes related to withanolides

  1. Antibody response is required for protection from Theiler's virus-induced encephalitis in C57BL/6 mice in the absence of CD8+ T cells.

    PubMed

    Kang, Bong-Su; Palma, Joann P; Lyman, Michael A; Dal Canto, Mauro; Kim, Byung S

    2005-09-15

    Intracerebral infection of susceptible mice with Theiler's murine encephalomyelitis virus (TMEV) induces immune-mediated demyelinating disease and this system serves as a relevant infectious model for human multiple sclerosis. It was previously shown that beta2M-deficient C57BL/6 mice lacking functional CD8+ T cells display increased viral persistence and enhanced susceptibility to TMEV-induced demyelination, and yet the majority of mice are free of clinical signs. To understand the mechanisms involved in this general resistance of C57BL/6 mice in the absence of CTL responses, mice (muMT) deficient in the B-cell compartment lacking membrane IgM molecules were treated with anti-CD8 antibody and then infected with TMEV. Although little difference in the proliferative responses of peripheral T cells to UV-inactivated TMEV and the resistance to demyelinating disease was observed between virus-infected muMT and control B6 mice, the levels of CD4(+) T cells were higher in the CNS of muMT mice. However, after treatment with anti-CD8 antibody, 100% of the mice displayed clinical gray matter disease and prolonged viral persistence in muMT mice, while only 10% of B6 mice showed clinical symptoms and very low viral persistence. Transfusion of sera from TMEV-infected B6 mice into anti-CD8 antibody-treated muMT mice partially restored resistance to virus-induced encephalitis. These results indicate that the early anti-viral antibody response is also important in the protection from TMEV-induced encephalitis particularly in the absence of CD8+ T cells.

  2. The immune response in the CNS in Theiler's virus induced demyelinating disease switches from an early adaptive response to a chronic innate-like response.

    PubMed

    Gilli, Francesca; Li, Libin; Pachner, Andrew R

    2016-02-01

    Theiler's murine encephalomyelitis virus-induced demyelinating disease (TMEV-IDD) is an important model of the progressive disability caused by irreversible CNS tissue injury, and provides an example of how a CNS pathogen can cause inflammation, demyelination, and neuronal damage. We were interested in which molecules, especially inflammatory mediators, might be upregulated in the CNS throughout TMEV-IDD. We quantitated by a real-time RT-PCR multi-gene system the expression of a pathway-focused panel of genes at 30 and 165 days post infection, characterizing both the early inflammatory and the late neurodegenerative stages of TMEV-IDD. Also, we measured 32 cytokines/chemokines by multiplex Luminex analysis in CSF specimens from early and late TMEV-IDD as well as sham-treated mice. Results indicate that, in the later stage of TMEV-IDD, activation of the innate immune response is most prominent: TLRs, type I IFN response genes, and innate immunity-associated cytokines were highly expressed in late TMEV-IDD compared to sham (p ≤ 0.0001) and early TMEV-IDD (p < 0.05). Conversely, several molecular mediators of adaptive immune response were highly expressed in early TMEV-IDD (all p ≤ 0.001). Protein detection in the CSF was broadly concordant with mRNA abundance of the corresponding gene measured by real-time RT-PCR in the spinal cord, since several cytokines/chemokines were increased in the CSF of TMEV-IDD mice. Results show a clear shift from adaptive to innate immunity from early to late TMEV-IDD, indicating that adaptive and innate immune pathways are likely involved in the development and progression of the disease to different extents. CSF provides an optimal source of biomarkers of CNS neuroinflammation.

  3. Prevention of influenza virus induced bacterial superinfection by standardized Echinacea purpurea, via regulation of surface receptor expression in human bronchial epithelial cells.

    PubMed

    Vimalanathan, Selvarani; Schoop, Roland; Suter, Andy; Hudson, James

    2017-03-07

    risk of respiratory complications by preventing virus-induced bacterial adhesion and through the inhibition of inflammation super-stimulation (cytokine storms).

  4. Optimization of a Virus-Induced Gene Silencing System with Soybean yellow common mosaic virus for Gene Function Studies in Soybeans.

    PubMed

    Kim, Kil Hyun; Lim, Seungmo; Kang, Yang Jae; Yoon, Min Young; Nam, Moon; Jun, Tae Hwan; Seo, Min-Jung; Baek, Seong-Bum; Lee, Jeom-Ho; Moon, Jung-Kyung; Lee, Suk-Ha; Lee, Su-Heon; Lim, Hyoun-Sub; Moon, Jae Sun; Park, Chang-Hwan

    2016-04-01

    Virus-induced gene silencing (VIGS) is an effective tool for the study of soybean gene function. Successful VIGS depends on the interaction between virus spread and plant growth, which can be influenced by environmental conditions. Recently, we developed a new VIGS system derived from the Soybean yellow common mosaic virus (SYCMV). Here, we investigated several environmental and developmental factors to improve the efficiency of a SYCMV-based VIGS system to optimize the functional analysis of the soybean. Following SYCMV: Glycine max-phytoene desaturase (GmPDS) infiltration, we investigated the effect of photoperiod, inoculation time, concentration of Agrobacterium inoculm, and growth temperature on VIGS efficiency. In addition, the relative expression of GmPDS between non-silenced and silenced plants was measured by qRT-PCR. We found that gene silencing efficiency was highest at a photoperiod of 16/8 h (light/dark) at a growth temperature of approximately 27°C following syringe infiltration to unrolled unifoliolate leaves in cotyledon stage with a final SYCMV:GmPDS optimal density (OD)600 of 2.0. Using this optimized protocol, we achieved high efficiency of GmPDS-silencing in various soybean germplasms including cultivated and wild soybeans. We also confirmed that VIGS occurred in the entire plant, including the root, stem, leaves, and flowers, and could transmit GmPDS to other soybean germplasms via mechanical inoculation. This optimized protocol using a SYCMV-based VIGS system in the soybean should provide a fast and effective method to elucidate gene functions and for use in large-scale screening experiments.

  5. The putative pocket protein binding site of Autographa californica nucleopolyhedrovirus BV/ODV-C42 is required for virus-induced nuclear actin polymerization.

    PubMed

    Li, Kun; Wang, Yun; Bai, Huimin; Wang, Qian; Song, Jianhua; Zhou, Yuan; Wu, Chunchen; Chen, Xinwen

    2010-08-01

    Nuclear filamentous actin (F-actin) is essential for nucleocapsid morphogenesis of lepidopteran nucleopolyhedroviruses. Previously, we had demonstrated that Autographa californica multiple nucleopolyhedrovirus (AcMNPV) BV/ODV-C42 (C42) is involved in nuclear actin polymerization by recruiting P78/83, an AcMNPV orf9-encoded N-WASP homology protein that is capable of activating an actin-related-protein 2/3 (Arp2/3) complex to initiate actin polymerization, to the nucleus. To further investigate the role of C42 in virus-induced actin polymerization, the recombinant bacmid vAc(p78/83nls-gfp), with a c42 knockout, p78/83 tagged with a nuclear localization signal coding sequence, and egfp as a reporter gene under the control of the Pp10 promoter, was constructed and transfected to Sf9 cells. In the nuclei of vAc(p78/83nls-gfp)-transfected cells, polymerized F-actin filaments were absent, whereas other actin polymerization elements (i.e., P78/83, G-actin, and Arp2/3 complex) were present. This in vivo evidence indicated that C42 actively participates in the nuclear actin polymerization process as a key element, besides its role in recruiting P78/83 to the nucleus. In order to collect in vitro evidence for the participation of C42 in actin polymerization, an anti-C42 antibody was used to neutralize the viral nucleocapsid, which is capable of initiating actin polymerization in vitro. Both the kinetics of pyrene-actin polymerization and F-actin-specific staining by phalloidin indicated that anti-C42 can significantly attenuate the efficiency of F-actin formation compared to that with control antibodies. Furthermore, we have identified the putative pocket protein binding sequence (PPBS) on C42 that is essential for C42 to exert its function in nuclear actin polymerization.

  6. An immunoreceptor tyrosine activation motif in the mouse mammary tumor virus envelope protein plays a role in virus-induced mammary tumors.

    PubMed

    Ross, Susan R; Schmidt, John W; Katz, Elad; Cappelli, Laura; Hultine, Stacy; Gimotty, Phyllis; Monroe, John G

    2006-09-01

    Mouse mammary tumor virus (MMTV) induces breast cancer with almost 100% efficiency in susceptible strains through insertional activation of protooncogenes, such as members of the wnt and fibroblast growth factor (fgf) families. We previously showed that expression of the MMTV envelope protein (Env) in normal immortalized mammary epithelial cells grown in three-dimensional cultures caused their morphological transformation, and that this phenotype depended on an immunoreceptor tyrosine-based activation motif (ITAM) present in Env and signaling through the Syk tyrosine kinase (E. Katz, M. H. Lareef, J. C. Rassa, S. M. Grande, L. B. King, J. Russo, S. R. Ross, and J. G. Monroe, J. Exp. Med. 201:431-439, 2005). Here, we examined the role of the Env protein in virus-induced mammary tumorigenesis in vivo. Similar to the effect seen in vitro, Env expression in the mammary glands of transgenic mice bearing either full-length wild-type provirus or only Env transgenes showed increased lobuloalveolar budding. Introduction of the ITAM mutation into the env of an infectious, replication-competent MMTV or into MMTV/murine leukemia virus pseudotypes had no effect on incorporation of Env into virus particles or on in vitro infectivity. Moreover, replication-competent MMTV bearing the ITAM mutation in Env infected lymphoid and mammary tissue at the same level as wild-type MMTV and was transmitted through milk. However, mammary tumor induction was greatly attenuated, and the pattern of oncogene activation was altered. Taken together, these studies indicate that the MMTV Env protein participates in mammary epithelial cell transformation in vivo and that this requires a functional ITAM in the envelope protein.

  7. Molecular Cloning and Functional Characterization of the Lycopene ε-Cyclase Gene via Virus-Induced Gene Silencing and Its Expression Pattern in Nicotiana tabacum

    PubMed Central

    Shi, Yanmei; Wang, Ran; Luo, Zhaopeng; Jin, Lifeng; Liu, Pingping; Chen, Qiansi; Li, Zefeng; Li, Feng; Wei, Chunyang; Wu, Mingzhu; Wei, Pan; Xie, He; Qu, Lingbo; Lin, Fucheng; Yang, Jun

    2014-01-01

    Lycopene ε-cyclase (ε-LCY) is a key enzyme that catalyzes the synthesis of α-branch carotenoids through the cyclization of lycopene. Two cDNA molecules encoding ε-LCY (designated Ntε-LCY1 and Ntε-LCY2) were cloned from Nicotiana tabacum. Ntε-LCY1 and Ntε-LCY2 are encoded by two distinct genes with different evolutionary origins, one originating from the tobacco progenitor, Nicotiana sylvestris, and the other originating from Nicotiana tomentosiformis. The two coding regions are 97% identical at the nucleotide level and 95% identical at the amino acid level. Transcripts of Ntε-LCY were detectable in both vegetative and reproductive organs, with a relatively higher level of expression in leaves than in other tissues. Subcellular localization experiments using an Ntε-LCY1-GFP fusion protein demonstrated that mature Ntε-LCY1 protein is localized within the chloroplast in Bright Yellow 2 suspension cells. Under low-temperature and low-irradiation stress, Ntε-LCY transcript levels substantially increased relative to control plants. Tobacco rattle virus (TRV)-mediated silencing of ε-LCY in Nicotiana benthamiana resulted in an increase of β-branch carotenoids and a reduction in the levels of α-branch carotenoids. Meanwhile, transcripts of related genes in the carotenoid biosynthetic pathway observably increased, with the exception of β-OHase in the TRV-ε-lcy line. Suppression of ε-LCY expression was also found to alleviate photoinhibition of Potosystem II in virus-induced gene silencing (VIGS) plants under low-temperature and low-irradiation stress. Our results provide insight into the regulatory role of ε-LCY in plant carotenoid biosynthesis and suggest a role for ε-LCY in positively modulating low temperature stress responses. PMID:25153631

  8. Kaempferol ameliorates H9N2 swine influenza virus-induced acute lung injury by inactivation of TLR4/MyD88-mediated NF-κB and MAPK signaling pathways.

    PubMed

    Zhang, Ruihua; Ai, Xia; Duan, Yongjie; Xue, Man; He, Wenxiao; Wang, Cunlian; Xu, Tong; Xu, Mingju; Liu, Baojian; Li, Chunhong; Wang, Zhijun; Zhang, Ruihong; Wang, Guohua; Tian, Shufei; Liu, Huifeng

    2017-03-02

    Kaempferol, a very common type of dietary flavonoids, has been found to exert antioxidative and anti-inflammatory properties. The purpose of our investigation was designed to reveal the effect of kaempferol on H9N2 influenza virus-induced inflammation in vivo and in vitro. In vivo, BALB/C mice were infected intranasally with H9N2 influenza virus with or without kaempferol treatment to induce acute lung injury (ALI) model. In vitro, MH-S cells were infected with H9N2 influenza virus with or without kaempferol treatment. In vivo, kaempferol treatment attenuated pulmonary edema, the W/D mass ratio, pulmonary capillary permeability, myeloperoxidase (MPO) activity, and the numbers of inflammatory cells. Kaempferol reduced ROS and Malondialdehyde (MDA) production, and increased the superoxide dismutase (SOD) activity. Kaempferol also reduced overproduction of TNF-α, IL-1β and IL-6. In addition, kaempferol decreased the H9N2 viral titre. In vitro, ROS, MDA, TNF-α, IL-1β and IL-6 was also reduced by kaempferol. Moreover, our data showed that kaempferol significantly inhibited the upregulation of toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), phosphorylation level of IκBα and nuclear factor-κB (NF-κB) p65, NF-κB p65 DNA binding activity, and phosphorylation level of MAPKs, both in vivo and in vitro. These results suggest that kaempferol exhibits a protective effect on H9N2 virus-induced inflammation via suppression of TLR4/MyD88-mediated NF-κB and MAPKs pathways, and kaempferol may be considered as an effective drug for the potential treatment of influenza virus-induced ALI.

  9. Tomato Infection by Whitefly-Transmitted Circulative and Non-Circulative Viruses Induce Contrasting Changes in Plant Volatiles and Vector Behaviour

    PubMed Central

    Fereres, Alberto; Peñaflor, Maria Fernanda G. V.; Favaro, Carla F.; Azevedo, Kamila E. X.; Landi, Carolina H.; Maluta, Nathalie K. P.; Bento, José Mauricio S.; Lopes, Joao R.S.

    2016-01-01

    , this type of virus-induced manipulation of vector behaviour was not observed for the semi persistent crinivirus, ToCV, which is not specifically transmitted by B. tabaci and has a much less intimate virus-vector relationship. PMID:27529271

  10. Studies on the induction of histocompatibility gene mutations in germ cells of mice by chemical mutagens and/or virus-inducing compounds.

    PubMed

    Harnasch, D; Stumpf, R

    1984-05-01

    This work continues earlier studies concerning the use of histocompatibility mutations in mammalian germ cells as a mutagenicity test system (H test). The rate of spontaneous H mutations was re-examined using a new basis for the classification of H mutants. This procedure led to very high frequencies of suspected spontaneous H mutants: among C57Bl/6 mice, 6% and among C3H mice, 9%. F2 hybrids of a cross between these strains revealed 1% suspected H mutants. Using the same procedure, the sensitivity of the H test was examined with the mutagens ethylnitrosourea, benzo[a]pyrene, 2-acetylaminofluorene (2-AAF), with the solvent dimethyl sulfoxide (DMSO) and with the antibacterial nitrofurantoin. It was possible to demonstrate the mutagenic potential of all mutagens tested as well as their specific action on the different stages of male germ cell development. We succeeded in demonstrating the mutagenicity of 2-AAF for the first time in germ cells of a mammal. In contrast to the negative result with benzopyrene (BP) in the specific locus test, BP induced H mutants even at the very low dose of 2 mg/kg. DMSO was found to induce H mutations in spermatogonia. This extraordinary result is possibly due to the virus-inducing properties of this compound. Nitrofurantoin which is often used in treating bacterial infections of the urinary tract in humans showed a very stage-specific action on maturing spermatids. The value of the H test for mutagenicity testing is discussed with respect to its sensitivity and economy. The very high spontaneous frequency of suspected H mutants and the ease of inducing increased mutant frequencies by mutagens and by DMSO suggest the possibility that the majority of the histoincompatibilities found in the H test are due to induced antigenic gene products of endogenous viruses. This, however, does not interfere with the applicability of the H test for mutagenicity testing, but rather seems to augment its sensitivity to alkylating mutagens as well as

  11. Seasonal and pandemic influenza H1N1 viruses induce differential expression of SOCS-1 and RIG-I genes and cytokine/chemokine production in macrophages

    PubMed Central

    Ramírez-Martínez, Gustavo; Cruz-Lagunas, Alfredo; Jiménez-Alvarez, Luis; Espinosa, Enrique; Ortíz-Quintero, Blanca; Santos-Mendoza, Teresa; Herrera, María Teresa; Canché-Pool, Elsy; Mendoza, Criselda; Bañales, José L.; García-Moreno, Sara A.; Morán, Juan; Cabello, Carlos; Orozco, Lorena; Aguilar-Delfín, Irma; Hidalgo-Miranda, Alfredo; Romero, Sandra; Suratt, Benjamin T.; Selman, Moisés; Zúñiga, Joaquín

    2014-01-01

    Background Infection with pandemic (pdm) A/H1N1 virus induces high levels of pro-inflammatory mediators in blood and lungs of experimental animals and humans. Methods To compare the involvement of seasonal A/PR/8/34 and pdm A/H1N1 virus strains in the regulation of inflammatory responses, we analyzed the changes in the whole-genome expression induced by these strains in macrophages and A549 epithelial cells. We also focused on the functional implications (cytokine production) of the differential induction of suppressors of cytokine signaling (SOCS)-1, SOCS-3, retinoid-inducible gene (RIG)-I and interferon receptor 1 (IFNAR1) genes by these viral strains in early stages of the infection. Results We identified 130 genes differentially expressed by pdm A/H1N1 and A/PR/8/34 infections in macrophages. mRNA levels of SOCS-1 and RIG-I were up-regulated in macrophages infected with the A/PR/8/34 but not with pdm A/H1N1 virus. mRNA levels of SOCS-3 and IFNAR1 induced by A/PR/8/34 and pdm A/H1N1 strains in macrophages, as well as in A549 cells were similar. We found higher levels of IL-6, TNF-α, IL-10, CCL3, CCL5, CCL4 and CXCL8 (p<0.05) in supernatants from cultures of macrophages infected with the pdm A/H1N1 virus compared to those infected with the A/PR/8/34 strain, coincident with the lack of SOCS-1 and RIG-I expression. In contrast, levels of INF-α were higher in cultures of macrophages 48 h after infection with the A/PR/8/34 strain than with the pdm A/H1N1 virus. Conclusions These findings suggest that factors inherent to the pdm A/H1N1 viral strain may increase the production of inflammatory mediators by inhibiting SOCS-1 and modifying the expression of antiviral immunity-related genes, including RIG-I, in human macrophages. PMID:23434273

  12. Transcriptome Profiling of the Virus-Induced Innate Immune Response in Pteropus vampyrus and Its Attenuation by Nipah Virus Interferon Antagonist Functions

    PubMed Central

    Glennon, Nicole B.; Jabado, Omar; Lo, Michael K.

    2015-01-01

    ABSTRACT Bats are important reservoirs for several viruses, many of which cause lethal infections in humans but have reduced pathogenicity in bats. As the innate immune response is critical for controlling viruses, the nature of this response in bats and how it may differ from that in other mammals are of great interest. Using next-generation transcriptome sequencing (mRNA-seq), we profiled the transcriptional response of Pteropus vampyrus bat kidney (PVK) cells to Newcastle disease virus (NDV), an avian paramyxovirus known to elicit a strong innate immune response in mammalian cells. The Pteropus genus is a known reservoir of Nipah virus (NiV) and Hendra virus (HeV). Analysis of the 200 to 300 regulated genes showed that genes for interferon (IFN) and antiviral pathways are highly upregulated in NDV-infected PVK cells, including genes for beta IFN, RIG-I, MDA5, ISG15, and IRF1. NDV-infected cells also upregulated several genes not previously characterized to be antiviral, such as RND1, SERTAD1, CHAC1, and MORC3. In fact, we show that MORC3 is induced by both IFN and NDV infection in PVK cells but is not induced by either stimulus in human A549 cells. In contrast to NDV infection, HeV and NiV infection of PVK cells failed to induce these innate immune response genes. Likewise, an attenuated response was observed in PVK cells infected with recombinant NDVs expressing the NiV IFN antagonist proteins V and W. This study provides the first global profile of a robust virus-induced innate immune response in bats and indicates that henipavirus IFN antagonist mechanisms are likely active in bat cells. IMPORTANCE Bats are the reservoir host for many highly pathogenic human viruses, including henipaviruses, lyssaviruses, severe acute respiratory syndrome coronavirus, and filoviruses, and many other viruses have also been isolated from bats. Viral infections are reportedly asymptomatic or heavily attenuated in bat populations. Despite their ecological importance to viral

  13. Zika Virus Induced Cellular Remodeling.

    PubMed

    Rossignol, Evan D; Peters, Kristen N; Connor, John H; Bullitt, Esther

    2017-03-20

    Zika virus (ZIKV) has been associated with morbidities such as Guillain-Barré, infant microcephaly, and ocular disease. The spread of this positive-sense, single-stranded RNA virus and its growing public health threat underscore gaps in our understanding of basic ZIKV virology. To advance knowledge of the virus replication cycle within mammalian cells, we use serial section three-dimensional electron tomography to demonstrate the widespread remodeling of intracellular membranes upon infection with ZIKV. We report extensive structural rearrangements of the endoplasmic reticulum and reveal stages of the ZIKV viral replication cycle. Structures associated with RNA genome replication and virus assembly are observed integrated within the endoplasmic reticulum, and we show viruses in transit through the Golgi apparatus for viral maturation, and subsequent cellular egress. This study characterizes in detail the three-dimensional ultrastructural organization of the ZIKV replication cycle stages. Our results show close adherence of the ZIKV replication cycle to the existing flavivirus replication paradigm.

  14. Mutagenesis of Dengue Virus Protein NS2A Revealed a Novel Domain Responsible for Virus-Induced Cytopathic Effect and Interactions Between NS2A and NS2B Transmembrane Segments.

    PubMed

    Wu, Ren-Huang; Tsai, Ming-Han; Tsai, Kuen-Nan; Tian, Jia Ni; Wu, Jian-Sung; Wu, Su-Ying; Chern, Jyh-Haur; Chen, Chun-Hong; Yueh, Andrew

    2017-04-05

    The NS2A protein of Dengue virus (DENV) has eight predicted transmembrane segments (pTMS1-8) and participates in RNA replication, virion assembly, and host antiviral response. However, the roles of specific amino acid residues within the pTMS regions of NS2A during the viral life cycle are not clear. Here, we explored the function of DENV NS2A by introducing a series of alanine substitutions into the N-terminal half (pTMS1-4) of the protein in the context of a DENV infectious clone or subgenomic replicon. Six NS2A mutants (NM5, 7, 9, and 17-19) around pTMS1-2 displayed a novel phenotype showing a >1000-fold reduction in virus yield, an absence of plaque formation despite wild-type-like replicon activity, and infectious virus-like particle yields. The HEK293 cells infected with those six NS2A mutant viruses failed to cause a virus-induced cytopathic effect (CPE) by MitoCapture staining, cell proliferation, and lactate dehydrogenase release assays. Sequencing analyses of pseudorevertant viruses derived from lethal mutant viruses revealed two consensus reversion mutations, leucine-to-phenylalanine at codon 181 (L181F) within the pTMS7 of NS2A and isoleucine-to-threonine at codon 114 (I114T) within NS2B. The introduction of NS2A-L181F mutation into the lethal (NM15, 16, 25, and 33) and CPE-defective (NM7, 9, and 19) mutants substantially rescued virus infectivity and virus-induced CPE, respectively, whereas NS2B-L114T mutation rescued NM16, 25, and 33 mutants. In conclusion, the results revealed the essential roles of the N-terminal half of NS2A in RNA replication and virus-induced CPE. Intramolecular interactions between pTMSs of NS2A and intermolecular interactions between NS2A and NS2B protein were also implicated.Importance: The characterization of the N-terminal (current study) and C-terminal half of DENV NS2A is the most comprehensive mutagenesis study to date to investigate the function of NS2A during the flaviviral life cycle. A novel region responsible for

  15. Immunity and Immunopathology in the Tuberculous Granuloma.

    PubMed

    Pagán, Antonio J; Ramakrishnan, Lalita

    2014-11-06

    Granulomas, organized aggregates of immune cells, are a defining feature of tuberculosis (TB). Granuloma formation is implicated in the pathogenesis of a variety of inflammatory disorders. However, the tuberculous granuloma has been assigned the role of a host protective structure which "walls-off" mycobacteria. Work conducted over the past decade has provided a more nuanced view of its role in pathogenesis. On the one hand, pathogenic mycobacteria accelerate and exploit granuloma formation for their expansion and dissemination by manipulating host immune responses to turn leukocyte recruitment and cell death pathways in their favor. On the other hand, granuloma macrophages can preserve granuloma integrity by exerting a microbicidal immune response, thus preventing an even more rampant expansion of infection in the extracellular milieu. Even this host-beneficial immune response required to maintain the bacteria intracellular must be tempered, as an overly vigorous immune response can also cause granuloma breakdown, thereby directly supporting bacterial growth extracellularly. This review will discuss how mycobacteria manipulate inflammatory responses to drive granuloma formation and will consider the roles of the granuloma in pathogenesis and protective immunity, drawing from clinical studies of TB in humans and from animal models--rodents, zebrafish, and nonhuman primates. A deeper understanding of TB pathogenesis and immunity in the granuloma could suggest therapeutic approaches to abrogate the host-detrimental aspects of granuloma formation to convert it into the host-beneficial structure that it has been thought to be for nearly a century.

  16. Immune Restoration Diseases Reflect Diverse Immunopathological Mechanisms

    PubMed Central

    Price, Patricia; Murdoch, David M.; Agarwal, Upasna; Lewin, Sharon R.; Elliott, Julian H.; French, Martyn A.

    2009-01-01

    Summary: Up to one in four patients infected with human immunodeficiency virus type 1 and given antiretroviral therapy (ART) experiences inflammatory or cellular proliferative disease associated with a preexisting opportunistic infection, which may be subclinical. These immune restoration diseases (IRD) appear to result from the restoration of immunocompetence. IRD associated with intracellular pathogens are characterized by cellular immune responses and/or granulomatous inflammation. Mycobacterial and cryptococcal IRD are attributed to a pathological overproduction of Th1 cytokines. Clinicopathological characteristics of IRD associated with viral infections suggest different pathogenic mechanisms. For example, IRD associated with varicella-zoster virus or JC polyomavirus infection correlate with a CD8 T-cell response in the central nervous system. Exacerbations or de novo presentations of hepatitis associated with hepatitis C virus (HCV) infection following ART may also reflect restoration of pathogen-specific immune responses as titers of HCV-reactive antibodies rise in parallel with liver enzymes and plasma markers of T-cell activation. Correlations between immunological parameters assessed in longitudinal sample sets and clinical presentations are required to illuminate the diverse immunological scenarios described collectively as IRD. Here we present salient clinical features and review progress toward understanding their pathogeneses. PMID:19822893

  17. Immunopathological features of rat Staphylococcus aureus arthritis.

    PubMed Central

    Bremell, T; Lange, S; Holmdahl, R; Rydén, C; Hansson, G K; Tarkowski, A

    1994-01-01

    Staphylococcus aureus is the most common bacterial species found in nongonococcal bacterial arthritis in humans. We present the first description, to our knowledge, of an outbreak of spontaneous staphylococcal arthritis in a rat colony. In a group of 10 rats, 9 displayed arthritis. Clinically, the most obvious findings were arthritis of one or both hindpaws and malaise. Bacteriophage typing showed the common phage type 85 in isolates recovered from the joints, blood, and bedding of rats and from the nose and cheeks of one person from the staff of the animal facility. The S. aureus strain proved to produce staphylococcal enterotoxin A and exhibited strong binding to collagen types I and II and bone sialoprotein, which are potentially important virulence factors. When the recovered S. aureus strain was injected intravenously into healthy rats, severe septic arthritis was induced in almost all of the animals. The arthritic lesions were characterized by infiltration of phagocytic cells and T lymphocytes into the synovium. Many of the synovial cells strongly expressed major histocompatibility complex class II molecules. Increased levels of interleukin 6 in serum as well as a prominent polyclonal B-cell activation were noted throughout the disease course. Pretreatment of S. aureus-injected rats in vivo with an antibody to the alpha beta T-cell receptor significantly decreased the severity of the arthritis. Our results indicate that alpha beta + T lymphocytes contribute to an erosive and persistent course of S. aureus arthritis. Images PMID:8188356

  18. The immunopathology of ANCA-associated vasculitis.

    PubMed

    McKinney, Eoin F; Willcocks, Lisa C; Broecker, Verena; Smith, Kenneth G C

    2014-07-01

    The small-vessel vasculitides are a group of disorders characterised by variable patterns of small blood vessel inflammation producing a markedly heterogeneous clinical phenotype. While any vessel in any organ may be involved, distinct but often overlapping sets of clinical features have allowed the description of three subtypes associated with the presence of circulating anti-neutrophil cytoplasmic antibodies (ANCA), namely granulomatosis with polyangiitis (GPA, formerly known as Wegener's Granulomatosis), microscopic polyangiitis (MPA) and eosinophilic granulomatosis with polyangiitis (eGPA, formerly known as Churg-Strauss syndrome). Together, these conditions are called the ANCA-associated vasculitidies (AAV). Both formal nomenclature and classification criteria for the syndromes have changed repeatedly since their description over 100 years ago and may conceivably do so again following recent reports showing distinct genetic associations of patients with detectable ANCA of distinct specificities. ANCA are not only useful in classifying the syndromes but substantial evidence implicates them in driving disease pathogenesis although the mechanism by which they develop and tolerance is broken remains controversial. Advances in our understanding of the pathogenesis of the syndromes have been accompanied by some progress in treatment, although much remains to be done to improve the chronic morbidity associated with the immunosuppression required for disease control.

  19. Immunopathologic effects of silicone breast implants.

    PubMed Central

    Teuber, S S; Yoshida, S H; Gershwin, M E

    1995-01-01

    Silicone-gel breast implants have been associated with a myriad of autoimmune and connective tissue disorders by anecdotal reports and small observational series. To date, no prospective epidemiologic studies have been done to substantiate these observations, but an increasing body of literature is being developed and older studies are being recognized that point to immunotoxic or inflammatory effects of these breast implant components. The development of disease due to implants would depend on the interaction of genetic host factors so that only a few patients would potentially be at risk. Based on the example of other chemically mediated disorders, such as scleroderma in association with silica exposure, latency periods of more than 30 years before disease develops may be possible. Herein we review studies on silicone and immunity. PMID:7785255

  20. Primary Sjogren syndrome: clinical and immunopathologic features.

    PubMed

    Fox, R I; Howell, F V; Bone, R C; Michelson, P

    1984-11-01

    Primary Sjogren syndrome is an autoimmune condition in which dry eyes (keratoconjunctivitis sicca) and dry mouth (xerostomia) result from lymphocytic infiltration of lacrimal and salivary glands. Clinical and laboratory features of 60 primary Sjogren syndrome patients seen at our clinic during the past three years are presented. These patients illustrate the wide spectrum of extraglandular features that may occur as a result of lymphoid infiltration of lung, kidney, skin, stomach, liver, and muscle. They further emphasize the difficulty in classifying a patient as primary or secondary Sjogren syndrome (ie, sicca symptoms associated with systemic lupus erythematosus, rheumatoid arthritis, or scleroderma), particularly early in the disease course. As an initial step in understanding the pathogenesis, the lymphocytes that infiltrate the salivary glands and lymph nodes were characterized by using monoclonal antibodies that recognize distinct lymphocyte subsets and by using in vitro functional assays. These studies have demonstrated that affected tissues have infiltrates of T cells with helper/inducer activity and with a high frequency of "activation antigens." The immunohistologic techniques are useful in differentiating "benign" and "pseudolymphoma" lesions (both due predominantly to T cells) from non-Hodgkin lymphoma (usually due to B-cell infiltrates). Although there is no "cure" for primary Sjogren syndrome patient's symptoms may be significantly improved by measures aimed at prevention of ocular and dental complications and by the recognition of extraglandular features that may be amenable to specific treatment.

  1. Immunopathology of primary hypophysitis: implications for pathogenesis.

    PubMed

    Gutenberg, A; Buslei, R; Fahlbusch, R; Buchfelder, M; Brück, W

    2005-03-01

    The etiology of primary hypophysitis is still not fully elucidated. Histologically, primary hypophysitis includes three different main subtypes: lymphocytic (LYH), granulomatous (GRH), and xanthomatous (XH) hypophysitis. Clinical and laboratory findings suggest an autoimmune basis in primary hypophysitis. Controversy still exists about the composition of the inflammatory infiltrate and the relevant immunopathogenic effector mechanisms. Therefore, 21 cases of primary hypophysitis of different subtypes were analyzed with respect to the expression of lymphocyte and macrophage antigens as well as MHC class I and II molecules of the inflammatory infiltrate and the resident pituitary acinar cells. Lymphocyte infiltration in LYH (n = 15), but also in GRH (n = 4) and XH (n = 2), mainly consisted of T cells, while B cells were rare. Independent from the histopathologic subtype, T cell subsets showed equal ratios of CD4+ to CD8+ T cells. Highest numbers of activated CD8+ T cells were observed in LYH presenting during pregnancy, surrounding or even infiltrating preserved pituitary acinar cells. Moreover, an increased rate of activated CD8+ T cells correlated with a shorter duration of clinical symptoms. In LYH, aberrant expression of MHC class II antigens as well as overexpression of MHC class I molecules on pituitary cells were observed. Independent of the histologic subtype, macrophages mostly expressed markers of chronic activation and showed MHC class II positivity. LYH, GRH, and XH, although heterogeneous in their histologic appearance and in age distribution, exhibit a similar if not identical immunohistologic profile. It is highly likely that direct T cell-mediated cytotoxicity through CD8+ T cells, with the initial help of CD4+ T cells, is pivotal in the pathogenesis of primary hypophysitis, implicating a target autoantigen expressed by pituitary cells.

  2. Immune restoration diseases reflect diverse immunopathological mechanisms.

    PubMed

    Price, Patricia; Murdoch, David M; Agarwal, Upasna; Lewin, Sharon R; Elliott, Julian H; French, Martyn A

    2009-10-01

    Up to one in four patients infected with human immunodeficiency virus type 1 and given antiretroviral therapy (ART) experiences inflammatory or cellular proliferative disease associated with a preexisting opportunistic infection, which may be subclinical. These immune restoration diseases (IRD) appear to result from the restoration of immunocompetence. IRD associated with intracellular pathogens are characterized by cellular immune responses and/or granulomatous inflammation. Mycobacterial and cryptococcal IRD are attributed to a pathological overproduction of Th1 cytokines. Clinicopathological characteristics of IRD associated with viral infections suggest different pathogenic mechanisms. For example, IRD associated with varicella-zoster virus or JC polyomavirus infection correlate with a CD8 T-cell response in the central nervous system. Exacerbations or de novo presentations of hepatitis associated with hepatitis C virus (HCV) infection following ART may also reflect restoration of pathogen-specific immune responses as titers of HCV-reactive antibodies rise in parallel with liver enzymes and plasma markers of T-cell activation. Correlations between immunological parameters assessed in longitudinal sample sets and clinical presentations are required to illuminate the diverse immunological scenarios described collectively as IRD. Here we present salient clinical features and review progress toward understanding their pathogeneses.

  3. Interference with jasmonic acid-regulated gene expression is a general property of viral suppressors of RNA silencing but only partly explains virus-induced changes in plant–aphid interactions

    PubMed Central

    Westwood, Jack H.; Lewsey, Mathew G.; Murphy, Alex M.; Tungadi, Trisna; Bates, Anne; Gilligan, Christopher A.

    2014-01-01

    The cucumber mosaic virus (CMV) 2b viral suppressor of RNA silencing (VSR) inhibits host responses to jasmonic acid (JA), a chemical signal regulating resistance to insects. Previous experiments with a CMV subgroup IA strain and its 2b gene deletion mutant suggested that VSRs might neutralize aphid (Myzus persicae) resistance by inhibiting JA-regulated gene expression. To further investigate this, we examined JA-regulated gene expression and aphid performance in Nicotiana benthamiana infected with Potato virus X, Potato virus Y, Tobacco mosaic virus and a subgroup II CMV strain, as well as in transgenic plants expressing corresponding VSRs (p25, HC-Pro, 126 kDa and 2b). All the viruses or their VSRs inhibited JA-induced gene expression. However, this did not always correlate with enhanced aphid performance. Thus, VSRs are not the sole viral determinants of virus-induced changes in host–aphid interactions and interference with JA-regulated gene expression cannot completely explain enhanced aphid performance on virus-infected plants. PMID:24362960

  4. Down-regulation of osmotin (PR5) gene by virus-induced gene silencing (VIGS) leads to susceptibility of resistant Piper colubrinum Link. to the oomycete pathogen Phytophthora capsici Leonian.

    PubMed

    Anu, K; Jessymol, K K; Chidambareswaren, M; Gayathri, G S; Manjula, S

    2015-06-01

    Piper colubrinum Link., a distant relative of Piper nigrum L., is immune to the oomycete pathogen Phytophthora capsici Leonian that causes 'quick wilt' in cultivated black pepper (P. nigrum). The osmotin, PR5 gene homologue, earlier identified from P. colubrinum, showed significant overexpression in response to pathogen and defense signalling molecules. The present study focuses on the functional validation of P. colubrinum osmotin (PcOSM) by virus induced gene silencing (VIGS) using Tobacco Rattle Virus (TRV)-based vector. P. colubrinum plants maintained under controlled growth conditions in a growth chamber were infiltrated with Agrobacterium carrying TRV empty vector (control) and TRV vector carrying PcOSM. Three weeks post infiltration, viral movement was confirmed in newly emerged leaves of infiltrated plants by RT-PCR using TRV RNA1 and TRV RNA2 primers. Semi-quantitative RT-PCR confirmed significant down-regulation of PcOSM gene in TRV-PcOSM infiltrated plant compared with the control plants. The control and silenced plants were challenged with Phytophthora capsici which demonstrated that knock-down of PcOSM in P. colubrinum leads to increased fungal mycelial growth in silenced plants compared to control plants, which was accompanied by decreased accumulation of H2O2 as indicated by 3,3'-diaminobenzidine (DAB) staining. Thus, in this study, we demonstrated that Piper colubrinum osmotin gene is required for resisting P. capsici infection and has possible role in hypersensitive cell death response and oxidative burst signaling during infection.

  5. Vacuum and Co-cultivation Agroinfiltration of (Germinated) Seeds Results in Tobacco Rattle Virus (TRV) Mediated Whole-Plant Virus-Induced Gene Silencing (VIGS) in Wheat and Maize

    PubMed Central

    Zhang, Ju; Yu, Deshui; Zhang, Yi; Liu, Kun; Xu, Kedong; Zhang, Fuli; Wang, Jian; Tan, Guangxuan; Nie, Xianhui; Ji, Qiaohua; Zhao, Lu; Li, Chengwei

    2017-01-01

    Tobacco rattle virus (TRV)-mediated virus-induced gene silencing (VIGS) has been frequently used in dicots. Here we show that it can also be used in monocots, by presenting a system involving use of a novel infiltration solution (containing acetosyringone, cysteine, and Tween 20) that enables whole-plant level VIGS of (germinated) seeds in wheat and maize. Using the established system, phytoene desaturase (PDS) genes were successfully silenced, resulting in typical photo-bleaching symptoms in the leaves of treated wheat and maize. In addition, three wheat homoeoalleles of MLO, a key gene repressing defense responses to powdery mildew in wheat, were simultaneously silenced in susceptible wheat with this system, resulting in it becoming resistant to powdery mildew. The system has the advantages generally associated with TRV-mediated VIGS systems (e.g., high-efficiency, mild virus infection symptoms, and effectiveness in different organs). However, it also has the following further advantages: (germinated) seed-stage agroinfiltration; greater rapidity and convenience; whole-plant level gene silencing; adequately stable transformation; and suitability for studying functions of genes involved in seed germination and early plant development stages. PMID:28382049

  6. A ligation-independent cloning tobacco rattle virus vector for high-throughput virus-induced gene silencing identifies roles for NbMADS4-1 and -2 in floral development.

    PubMed

    Dong, Yiyu; Burch-Smith, Tessa M; Liu, Yule; Mamillapalli, Padmavathi; Dinesh-Kumar, Savithramma P

    2007-12-01

    Virus-induced gene silencing (VIGS) is a widely used, powerful technique for reverse genetics. VIGS vectors derived from the Tobacco rattle virus (TRV) are among the most popular for VIGS. We have developed a TRV RNA2 vector that allows the insertion of gene silencing fragments by ligation-independent cloning (LIC). This new vector has several advantages over previous vectors, particularly for applications involving the analysis of large numbers of sequences, since TRV-LIC vectors containing the desired insert are obtained with 100% efficiency. Importantly, this vector allows the high-throughput cloning of silencing fragments without the use of costly enzymes required for recombination, as is the case with GATEWAY-based vectors. We generated a collection of silencing vectors based on 400 tomato (Solanum lycopersicum) expressed sequence tags in this TRV-LIC background. We have used this vector to identify roles for SlMADS1 and its Nicotiana benthamiana homologs, NbMADS4-1 and -2 in flowering. We find that NbMADS4-1 and -2 act nonredundantly in floral development and silencing of either gene results in loss of organ identity. This TRV-LIC vector should be a valuable resource to the plant community.

  7. 21 CFR 866.3360 - Lymphocytic choriomeningitis virus serological reagents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents... cerebral meningitis (inflammation of membranes that envelop the brain) and occasionally a mild...

  8. 21 CFR 866.3360 - Lymphocytic choriomeningitis virus serological reagents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents... cerebral meningitis (inflammation of membranes that envelop the brain) and occasionally a mild...

  9. 21 CFR 866.3360 - Lymphocytic choriomeningitis virus serological reagents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents... cerebral meningitis (inflammation of membranes that envelop the brain) and occasionally a mild...

  10. 21 CFR 866.3360 - Lymphocytic choriomeningitis virus serological reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents... cerebral meningitis (inflammation of membranes that envelop the brain) and occasionally a mild...

  11. 9 CFR 113.42 - Detection of lymphocytic choriomeningitis contamination.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... of at least 10 mice obtained from a source free of LCM shall be injected in the footpad of a hindfoot with 0.02 ml of the material being tested and observed each day for 21 days. (b) If any of the...

  12. 9 CFR 113.42 - Detection of lymphocytic choriomeningitis contamination.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... of at least 10 mice obtained from a source free of LCM shall be injected in the footpad of a hindfoot with 0.02 ml of the material being tested and observed each day for 21 days. (b) If any of the...

  13. 9 CFR 113.42 - Detection of lymphocytic choriomeningitis contamination.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... of at least 10 mice obtained from a source free of LCM shall be injected in the footpad of a hindfoot with 0.02 ml of the material being tested and observed each day for 21 days. (b) If any of the...

  14. 9 CFR 113.42 - Detection of lymphocytic choriomeningitis contamination.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... of at least 10 mice obtained from a source free of LCM shall be injected in the footpad of a hindfoot with 0.02 ml of the material being tested and observed each day for 21 days. (b) If any of the...

  15. 9 CFR 113.42 - Detection of lymphocytic choriomeningitis contamination.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... of at least 10 mice obtained from a source free of LCM shall be injected in the footpad of a hindfoot with 0.02 ml of the material being tested and observed each day for 21 days. (b) If any of the...

  16. [Behavior of Argentine lymphocytic choriomeningitis virus strains in rodents].

    PubMed

    Saavedra, María del Cármen; Ambrosio, Ana M; Riera, Laura; Sabattini, Marta S

    2007-01-01

    The activity of LCM virus was first reported in Argentina at the beginning of the seventies and only five strains have been isolated from rodents Mus domesticus and two from humans. The objective of this paper was to find differential biological characteristics of Argentine strains of LCM virus comparing them in relation to the historical strains WE and Armstrong. Regarding the results obtained in tissue culture, when L 929 cells were used, plaque forming units (PFU) were obtained with human and mouse strains, whilst on Vero cells only human strains developed PFU. Differentials characteristics of historical and Argentine strain's plates were not found, neither differences related to the strain's origin. Neither historical nor Argentine strains were lethal to new-born mice giving a persistent infection, that was demonstrated when we inoculated new-born mouse by intracranial route with different strains of LCM virus and virus was isolated from brains harvested at different days post inoculation. The only exception was Cba An 13065 strain that exhibited virulence in new-born mice, only with 0.026 PFU was obtained 1 DL50. All the strains resulted lethal to adult mice. The mouse strains were more virulent than human strains, being Cba An 13065 the most virulent. These results demonstrate a different behavior in tissue culture between human and mouse strains and allow the identification of virulence markers by intracranial inoculation into new-born or adult mice.

  17. Hepatitis C Virus-Induced Upregulation of MicroRNA miR-146a-5p in Hepatocytes Promotes Viral Infection and Deregulates Metabolic Pathways Associated with Liver Disease Pathogenesis

    PubMed Central

    Bandiera, Simonetta; Pernot, Sophie; El Saghire, Hussein; Durand, Sarah C.; Thumann, Christine; Crouchet, Emilie; Ye, Tao; Fofana, Isabel; Oudot, Marine A.; Barths, Jochen; Schuster, Catherine; Pessaux, Patrick

    2016-01-01

    induces liver cancer remains poorly understood. There is accumulating evidence that a viral cure does not eliminate the risk for HCC development. Thus, there is an unmet medical need to develop novel approaches to predict and prevent virus-induced HCC. miRNA expression is known to be deregulated in liver disease and cancer. Furthermore, miRNAs are essential for HCV replication, and HCV infection alters miRNA expression. However, how miRNAs contribute to HCV-driven pathogenesis remains elusive. Here we show that HCV induces miRNAs that may contribute to liver injury and carcinogenesis. The miR-146a-5p level was consistently increased in different cell-based models of HCV infection and in HCV patient-derived liver tissue. Furthermore, miR-146a-5p increased HCV infection. Collectively, our data are relevant to understanding viral pathogenesis and may open perspectives for novel biomarkers and prevention of virus-induced liver disease and HCC. PMID:27147737

  18. Avian reovirus-induced syncytium formation is independent of infectious progeny virus production and enhances the rate, but is not essential, for virus-induced cytopathology and virus egress.

    PubMed

    Duncan, R; Chen, Z; Walsh, S; Wu, S

    1996-10-15

    The nonenveloped avian reoviruses represent a distinct antigenic subgroup of orthoreoviruses. Unlike their mammalian counterparts, the avian reoviruses exhibit the unusual property of inducing rapid and extensive syncytium formation in cell cultures, a cytopathic effect more commonly associated with enveloped virus replication. While the syncytium-inducing capability of avian reovirus has been known for quite some time, the relationship between cell fusion and the virus replication cycle has not been determined. The conservation of the syncytial phenotype among all field isolates of avian reovirus suggests that avian reovirus-induced syncytium formation either reflects an essential step in the virus replication cycle involving intracellular membrane interactions or that cell fusion contributes to enhanced virus replication in infected animals. In order to distinguish between these possibilities, we have examined several aspects of virus replication in the presence of inhibitors of syncytium formation. Inhibitors of intracellular vesicle transport and O-linked glycosylation eliminated or markedly reduced syncytium formation with little effect on the rate or extent of virus macromolecular synthesis and infectious progeny virus production. Moreover, syncytium formation was not required for virus-induced cytopathology or virus egress but did significantly enhance the rate of both of these processes. The data indicate that, unlike the syncytium-inducing enveloped viruses, the membrane interactions and protein trafficking required for avian reovirus-induced syncytium formation do not reflect the sequelae of an essential step in the virus replication cycle. These results suggest that the conservation of the avian reovirus syncytial phenotype may reflect a fortuitous aspect of virus replication which confers advantages associated with the rapid spread of the virus within an infected host.

  19. Deletion of fucose residues in plant N-glycans by repression of the GDP-mannose 4,6-dehydratase gene using virus-induced gene silencing and RNA interference.

    PubMed

    Matsuo, Kouki; Matsumura, Takeshi

    2011-02-01

    Production of pharmaceutical glycoproteins in plants has many advantages in terms of safety and reduced costs. However, plant-produced glycoproteins have N-glycans with plant-specific sugar residues (core β-1,2-xylose and α-1,3-fucose) and a Lewis a (Le(a) ) epitope, i.e., Galβ(1-3)[Fucα(1-4)]GlcNAc. Because these sugar residues and glycan structures seemed to be immunogenic, several attempts have been made to delete them by repressing their respective glycosyltransferase genes. However, until date, such deletions have not been successful in completely eliminating the fucose residues. In this study, we simultaneously reduced the plant-specific core α-1,3-fucose and α-1,4-fucose residues in the Le(a) epitopes by repressing the Guanosine 5'-diphosphate (GDP)-D-mannose 4,6-dehydratase (GMD) gene, which is associated with GDP-L-fucose biosynthesis, in Nicotiana benthamiana plants. Repression of GMD was achieved using virus-induced gene silencing (VIGS) and RNA interference (RNAi). The proportion of fucose-free N-glycans found in total soluble protein from GMD gene-repressed plants increased by 80% and 95% following VIGS and RNAi, respectively, compared to wild-type plants. A small amount of putative galactose substitution in N-glycans from the NbGMD gene-repressed plants was observed, similar to what has been previously reported GMD-knockout Arabidopsis mutant. On the other hand, the recombinant mouse granulocyte-macrophage colony-stimulating factor (GM-CSF) with fucose-deleted N-glycans was successfully produced in NbGMD-RNAi transgenic N. benthamiana plants. Thus, repression of the GMD gene is thus very useful for deleting immunogenic total fucose residues and facilitating the production of pharmaceutical glycoproteins in plants.

  20. Virus-Induced Gene Silencing-Based Functional Analyses Revealed the Involvement of Several Putative Trehalose-6-Phosphate Synthase/Phosphatase Genes in Disease Resistance against Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000 in Tomato.

    PubMed

    Zhang, Huijuan; Hong, Yongbo; Huang, Lei; Liu, Shixia; Tian, Limei; Dai, Yi; Cao, Zhongye; Huang, Lihong; Li, Dayong; Song, Fengming

    2016-01-01

    Trehalose and its metabolism have been demonstrated to play important roles in control of plant growth, development, and stress responses. However, direct genetic evidence supporting the functions of trehalose and its metabolism in defense response against pathogens is lacking. In the present study, genome-wide characterization of putative trehalose-related genes identified 11 SlTPSs for trehalose-6-phosphate synthase, 8 SlTPPs for trehalose-6-phosphate phosphatase and one SlTRE1 for trehalase in tomato genome. Nine SlTPSs, 4 SlTPPs, and SlTRE1 were selected for functional analyses to explore their involvement in tomato disease resistance. Some selected SlTPSs, SlTPPs, and SlTRE1 responded with distinct expression induction patterns to Botrytis cinerea and Pseudomonas syringae pv. tomato (Pst) DC3000 as well as to defense signaling hormones (e.g., salicylic acid, jasmonic acid, and a precursor of ethylene). Virus-induced gene silencing-mediated silencing of SlTPS3, SlTPS4, or SlTPS7 led to deregulation of ROS accumulation and attenuated the expression of defense-related genes upon pathogen infection and thus deteriorated the resistance against B. cinerea or Pst DC3000. By contrast, silencing of SlTPS5 or SlTPP2 led to an increased expression of the defense-related genes upon pathogen infection and conferred an increased resistance against Pst DC3000. Silencing of SlTPS3, SlTPS4, SlTPS5, SlTPS7, or SlTPP2 affected trehalose level in tomato plants with or without infection of B. cinerea or Pst DC3000. These results demonstrate that SlTPS3, SlTPS4, SlTPS5, SlTPS7, and SlTPP2 play roles in resistance against B. cinerea and Pst DC3000, implying the importance of trehalose and tis metabolism in regulation of defense response against pathogens in tomato.

  1. Virus-Induced Gene Silencing-Based Functional Analyses Revealed the Involvement of Several Putative Trehalose-6-Phosphate Synthase/Phosphatase Genes in Disease Resistance against Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000 in Tomato

    PubMed Central

    Zhang, Huijuan; Hong, Yongbo; Huang, Lei; Liu, Shixia; Tian, Limei; Dai, Yi; Cao, Zhongye; Huang, Lihong; Li, Dayong; Song, Fengming

    2016-01-01

    Trehalose and its metabolism have been demonstrated to play important roles in control of plant growth, development, and stress responses. However, direct genetic evidence supporting the functions of trehalose and its metabolism in defense response against pathogens is lacking. In the present study, genome-wide characterization of putative trehalose-related genes identified 11 SlTPSs for trehalose-6-phosphate synthase, 8 SlTPPs for trehalose-6-phosphate phosphatase and one SlTRE1 for trehalase in tomato genome. Nine SlTPSs, 4 SlTPPs, and SlTRE1 were selected for functional analyses to explore their involvement in tomato disease resistance. Some selected SlTPSs, SlTPPs, and SlTRE1 responded with distinct expression induction patterns to Botrytis cinerea and Pseudomonas syringae pv. tomato (Pst) DC3000 as well as to defense signaling hormones (e.g., salicylic acid, jasmonic acid, and a precursor of ethylene). Virus-induced gene silencing-mediated silencing of SlTPS3, SlTPS4, or SlTPS7 led to deregulation of ROS accumulation and attenuated the expression of defense-related genes upon pathogen infection and thus deteriorated the resistance against B. cinerea or Pst DC3000. By contrast, silencing of SlTPS5 or SlTPP2 led to an increased expression of the defense-related genes upon pathogen infection and conferred an increased resistance against Pst DC3000. Silencing of SlTPS3, SlTPS4, SlTPS5, SlTPS7, or SlTPP2 affected trehalose level in tomato plants with or without infection of B. cinerea or Pst DC3000. These results demonstrate that SlTPS3, SlTPS4, SlTPS5, SlTPS7, and SlTPP2 play roles in resistance against B. cinerea and Pst DC3000, implying the importance of trehalose and tis metabolism in regulation of defense response against pathogens in tomato. PMID:27540389

  2. Virus induced gene silencing in Lolium temulentum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lolium temulentum L. is valuable as a model species for studying abiotic stress in closely related forage and turf grasses, many of which are polyploid outcrossing species. As with most monocot species, Agrobacterium-mediated transformation of L. temulentum is still challenging, time consuming and n...

  3. Chikungunya virus induced sudden sensorineural hearing loss.

    PubMed

    Bhavana, Kranti; Tyagi, Isha; Kapila, Rajeev Kumar

    2008-02-01

    The aim of this study is to demonstrate the association of Chikungunya virus and sudden sensorineural hearing loss. In the case report described we had a case which developed sudden unilateral sensorineural hearing loss following chikungunya fever. A 15-year-old female presented to us with the complains of unilateral sudden onset of hearing loss following an episode of fever, arthralgia and rashes 1 month ago. At the time of these symptoms there were many cases of chikungunya fever in the city, three being in her locality. Clinically Chikungunya fever was suspected and a positive serological test further confirmed our diagnosis. The hearing loss could thus be attributed to Chikungunya virus. Viruses have always been implicated in causing sudden sensorineural hearing loss but Chikungunya virus as a cause has not been documented earlier making this case report a unique one.

  4. Human immunodeficiency virus induced oral candidiasis

    PubMed Central

    Warrier, S. Aravind; Sathasivasubramanian, S.

    2015-01-01

    Human immunodeficiency virus (HIV) infection is a worldwide health problem, which affects in both developing and developed countries. The oral lesions caused due to this disease can drastically change the life of the patient, in terms of quality. We can also know the progression of the disease and also the important immune status of the patient. Lots of information on HIV is known in the developed countries and very less reports are available in the developing countries. The morbidity of HIV disease is due to its association with opportunistic fungal infection and the most common among them is oral candidiasis. Here, we present a case report on an apparently healthy male patient of 39 years, who had oral candidiasis and was one of the indicators for HIV infection. PMID:26538978

  5. Pattern Recognition Receptors in Innate Immunity, Host Defense, and Immunopathology

    ERIC Educational Resources Information Center

    Suresh, Rahul; Mosser, David M.

    2013-01-01

    Infection by pathogenic microbes initiates a set of complex interactions between the pathogen and the host mediated by pattern recognition receptors. Innate immune responses play direct roles in host defense during the early stages of infection, and they also exert a profound influence on the generation of the adaptive immune responses that ensue.…

  6. Immunopathology of immune reconstitution inflammatory syndrome in Whipple's disease.

    PubMed

    Moos, Verena; Feurle, Gerhard E; Schinnerling, Katina; Geelhaar, Anika; Friebel, Julian; Allers, Kristina; Moter, Annette; Kikhney, Judith; Loddenkemper, Christoph; Kühl, Anja A; Erben, Ulrike; Fenollar, Florence; Raoult, Didier; Schneider, Thomas

    2013-03-01

    During antimicrobial treatment of classic Whipple's disease (CWD), the chronic systemic infection with Tropheryma whipplei, immune reconstitution inflammatory syndrome (IRIS), is a serious complication. The aim of our study was to characterize the immunological processes underlying IRIS in CWD. Following the definition of IRIS, we describe histological features of IRIS and immunological parameters of 24 CWD IRIS patients, 189 CWD patients without IRIS, and 89 healthy individuals. T cell reconstitution, Th1 reactivity, and the phenotype of T cells were described in the peripheral blood, and infiltration of CD4(+) T cells and regulatory T cells in the duodenal mucosa was determined. During IRIS, tissues were heavily infiltrated by CD3(+), predominantly CD45RO(+)CD4(+) T cells. In the periphery, initial reduction of CD4(+) cell counts and their reconstitution on treatment was more pronounced in CWD patients with IRIS than in those without IRIS. The ratio of activated and regulatory CD4(+) T cells, nonspecific Th1 reactivity, and the proportion of naive among CD4(+) T cells was high, whereas serum IL-10 was low during IRIS. T. whipplei-specific Th1 reactivity remained suppressed before and after emergence of IRIS. The findings that IRIS in CWD mainly are mediated by nonspecific activation of CD4(+) T cells and that it is not sufficiently counterbalanced by regulatory T cells indicate that flare-up of pathogen-specific immunoreactivity is not instrumental in the pathogenesis of IRIS in CWD.

  7. Plasma cells in immunopathology: concepts and therapeutic strategies.

    PubMed

    Tiburzy, Benjamin; Kulkarni, Upasana; Hauser, Anja Erika; Abram, Melanie; Manz, Rudolf Armin

    2014-05-01

    Plasma cells are terminally differentiated B cells that secrete antibodies, important for immune protection, but also contribute to any allergic and autoimmune disease. There is increasing evidence that plasma cell populations exhibit a considerable degree of heterogeneity with respect to their immunophenotype, migration behavior, lifetime, and susceptibility to immunosuppressive drugs. Pathogenic long-lived plasma cells are refractory to existing therapies. In contrast, short-lived plasma cells can be depleted by steroids and cytostatic drugs. Therefore, long-lived plasma cells are responsible for therapy-resistant autoantibodies and resemble a challenge for the therapy of antibody-mediated autoimmune diseases. Both lifetime and therapy resistance of plasma cells are supported by factors produced within their microenviromental niches. Current results suggest that plasma cell differentiation and survival factors such as IL-6 also signal via mammalian miRNAs within the plasma cell to modulate downstream transcription factors. Recent evidence also suggests that plasma cells and/or their immediate precursors (plasmablasts) can produce important cytokines and act as antigen-presenting cells, exhibiting so far underestimated roles in immune regulation and bone homeostasis. Here, we provide an overview on plasma cell biology and discuss exciting, experimental, and potential therapeutic approaches to eliminate pathogenic plasma cells.

  8. Renal tubular acidosis: an immunopathological study on four patients

    PubMed Central

    Pasternack, A.; Linder, E.

    1970-01-01

    Renal biopsies and sera of four patients with distal renal tubular acidosis were examined. The findings consisted of immunoglobulin containing mononuclear cellular infiltrates around the distal tubules, bound immunoglobulin and complement in tubules. The sera of the patients contained antibodies reacting with various tissue antigens, among them renal tubular antigens. The results suggest that autoimmunity was involved in the pathogenesis of the renal tubular acidosis in these patients. ImagesFig. 1Fig. 2 PMID:5202740

  9. Thymic immunopathology and progression of SIVsm infection in cynomolgus monkeys.

    PubMed

    Li, S L; Kaaya, E E; Ordónez, C; Ekman, M; Feichtinger, H; Putkonen, P; Böttiger, D; Biberfeld, G; Biberfeld, P

    1995-05-01

    Thymuses from 22 cynomolgus monkeys infected with simian immunodeficiency virus (SIVsm) developed characteristic cortical and medullary changes including formation of B-cell follicles (8/21) and accumulation of virus immune complexes. Advanced thymic histopathology was correlated with more pronounced immunodeficiency. SIVsm provirus was detected by polymerase chain reaction (PCR) in most (16/18) thymuses and spliced viral env mRNA in 3 (3/7) thymuses with advanced histopathologic changes indicative of thymic SIVsm replication. By combined in situ hybridization (ISH) and immunohistochemistry, viral RNA was localized mainly to the follicular dendritic network, macrophages, multinucleated giant cells, and lymphocytes of the medullary regions. Latent infection by an Epstein-Barr-related herpesvirus (HVMF1) was also found by PCR and by ISH in medullary regions of three (3 of 8) thymuses with B-cell follicles, suggestive of an inductive role for B-cell proliferation in these thymuses. In a control group of HIV-2-infected nonimmunosuppressed monkeys, no comparable thymic changes were observed. Our results indicate that SIV, and probably by analogy HIV, can have direct and diverse pathogenic effects on the thymus that are important in the development of simian (human) AIDS.

  10. Tracking the immunopathological response to Pseudomonas aeruginosa during respiratory infections

    PubMed Central

    Cigana, Cristina; Lorè, Nicola Ivan; Riva, Camilla; De Fino, Ida; Spagnuolo, Lorenza; Sipione, Barbara; Rossi, Giacomo; Nonis, Alessandro; Cabrini, Giulio; Bragonzi, Alessandra

    2016-01-01

    Repeated cycles of infections, caused mainly by Pseudomonas aeruginosa, combined with a robust host immune response and tissue injury, determine the course and outcome of cystic fibrosis (CF) lung disease. As the disease progresses, P. aeruginosa adapts to the host modifying dramatically its phenotype; however, it remains unclear whether and how bacterial adaptive variants and their persistence influence the pathogenesis and disease development. Using in vitro and murine models of infection, we showed that P. aeruginosa CF-adaptive variants shaped the innate immune response favoring their persistence. Next, we refined a murine model of chronic pneumonia extending P. aeruginosa infection up to three months. In this model, including CFTR-deficient mice, we unveil that the P. aeruginosa persistence lead to CF hallmarks of airway remodelling and fibrosis, including epithelial hyperplasia and structure degeneration, goblet cell metaplasia, collagen deposition, elastin degradation and several additional markers of tissue damage. This murine model of P. aeruginosa chronic infection, reproducing CF lung pathology, will be instrumental to identify novel molecular targets and test newly tailored molecules inhibiting chronic inflammation and tissue damage processes in pre-clinical studies. PMID:26883959

  11. Epidemiological and immunopathological studies on Porcine parvovirus infection in Punjab

    PubMed Central

    Kaur, Amninder; Mahajan, V.; Leishangthem, G. D.; Singh, N. D.; Bhat, Payal; Banga, H. S.; Filia, G.

    2016-01-01

    Aim: The aim of this study was to get the first-hand knowledge about the seroprevalence of Porcine parvovirus (PPV) in Punjab and a diagnosis of PPV from abortion cases of swine using gross, histopathological, and immunohistopathological techniques to observe the tissue tropism of the virus strain. Materials and Methods: Tissue samples from the reproductive tract of pig (n=32), placental tissue (n=10), and aborted fetuses (n=18) were collected from Postmortem Hall of the Department of Veterinary Pathology, GADVASU, field outbreaks and from butcher houses in and around Ludhiana. These samples were processed for histopathological and immunohistochemical (IHC) studies. For seroprevalence study, 90 serum samples of different sex and age were collected from 15 swine farms of Punjab and were subjected to indirect enzyme linked immunosorbent assay using commercial kit. Results: Overall, seroprevalence of PPV was found to be 41.1%. Sex and age related difference in the prevalence was noted. In abortion cases grossly congested and emphysematous lungs, congested internal organs with fluid in abdominal cavity and congestion in brain, changes were noted in fetuses, while diffuse hemorrhages and edema was observed in placental tissue. Histopathologically, the most frequent fetal lesions in aborted fetuses were noted in lungs, liver, and brain. IHC staining revealed PPV antigens in sections of heart, liver, lung, spleen, brain, lymph node of fetuses, placenta, and uterus of sow. Gross, histopathological, and IHC examination of the samples confirmed 5 fetus, 2 placenta and 3 female reproductive samples positive for parvovirus infection. Conclusions: Seroprevalence results may serve as a support either in prevention or control of the disease. IHC is the sensitive technique for diagnosis of PPV associated with the reproductive tract of swine and was found to supplement the gross and histopathological alterations, respectively, associated with the disease. PMID:27651669

  12. IL-15: a central regulator of celiac disease immunopathology

    PubMed Central

    Abadie, Valérie; Jabri, Bana

    2014-01-01

    Summary Interleukin-15 (IL-15) exerts many biological functions essential for the maintenance and function of multiple cell types. Although its expression is tightly regulated, IL-15 upregulation has been reported in many organ-specific autoimmune disorders. In celiac disease, an intestinal inflammatory disorder driven by gluten exposure, the upregulation of IL-15 expression in the intestinal mucosa has become a hallmark of the disease. Interestingly, because it is overexpressed both in the gut epithelium and in the lamina propria, IL-15 acts on distinct cell types and impacts distinct immune components and pathways to disrupt intestinal immune homeostasis. In this article, we review our current knowledge of the multifaceted roles of IL-15 with regards to the main immunological processes involved in the pathogenesis of celiac disease. PMID:24942692

  13. New Insight into Immunity and Immunopathology of Rickettsial Diseases

    PubMed Central

    Mansueto, Pasquale; Vitale, Giustina; Cascio, Antonio; Seidita, Aurelio; Pepe, Ilenia; Carroccio, Antonio; di Rosa, Salvatore; Rini, Giovam Battista; Cillari, Enrico; Walker, David H.

    2012-01-01

    Human rickettsial diseases comprise a variety of clinical entities caused by microorganisms belonging to the genera Rickettsia, Orientia, Ehrlichia, and Anaplasma. These microorganisms are characterized by a strictly intracellular location which has, for long, impaired their detailed study. In this paper, the critical steps taken by these microorganisms to play their pathogenic roles are discussed in detail on the basis of recent advances in our understanding of molecular Rickettsia-host interactions, preferential target cells, virulence mechanisms, three-dimensional structures of bacteria effector proteins, upstream signalling pathways and signal transduction systems, and modulation of gene expression. The roles of innate and adaptive immune responses are discussed, and potential new targets for therapies to block host-pathogen interactions and pathogen virulence mechanisms are considered. PMID:21912565

  14. The immunopathology of liver granulomas in primary biliary cirrhosis.

    PubMed

    You, Zhengrui; Wang, Qixia; Bian, Zhaolian; Liu, Yuan; Han, Xiaofeng; Peng, Yanshen; Shen, Lei; Chen, Xiaoyu; Qiu, Dekai; Selmi, Carlo; Gershwin, M Eric; Ma, Xiong

    2012-09-01

    Liver granulomas and elevated serum IgM are commonly observed in patients with primary biliary cirrhosis (PBC) but their pathogenetic significance remains largely unknown. To address this issue we performed an extensive immunostaining and colocalization study of markers associated with dendritic cells and IgM in a large cohort of tissue samples from PBC and control livers as well as from non-hepatic granulomatous diseases. First, the classical dendritic cell CD11c marker is highly expressed and more sensitive than classical hematoxylin-eosin staining in detecting granulomas associated with PBC and other conditions. Second, PBC cases with CD11c-positive granulomas have significantly higher serum IgM levels and earlier disease stages. Third, granulomas from PBC and other diseases demonstrate markers of dendritic cell immaturity, i.e. CD11b, reduced MHC II, IL-23, CCR7 and CD83 expression, and elevated C1q expression. Lastly, B cells and IgM-positive plasma cells are largely represented around PBC granulomas along with macrophages. In conclusion, our comprehensive immunohistochemical study suggests that dendritic cells are key to the pathogenesis of granulomas, regardless of their origin. More specifically, PBC liver granulomas may result from the interaction between immature dendritic cells and IgM.

  15. Pathogenesis and immunopathology of systemic and nervous canine distemper.

    PubMed

    Beineke, A; Puff, C; Seehusen, F; Baumgärtner, W

    2009-01-15

    Canine distemper is a worldwide occurring infectious disease of dogs, caused by a morbillivirus, closely related to measles and rinderpest virus. The natural host range comprises predominantly carnivores. Canine distemper virus (CDV), an enveloped, negative-sense RNA virus, infects different cell types, including epithelial, mesenchymal, neuroendocrine and hematopoietic cells of various organs and tissues. CDV infection of dogs is characterized by a systemic and/or nervous clinical course and viral persistence in selected organs including the central nervous system (CNS) and lymphoid tissue. Main manifestations include respiratory and gastrointestinal signs, immunosuppression and demyelinating leukoencephalomyelitis (DL). Impaired immune function, associated with depletion of lymphoid organs, consists of a viremia-associated loss of lymphocytes, especially of CD4+ T cells, due to lymphoid cell apoptosis in the early phase. After clearance of the virus from the peripheral blood an assumed diminished antigen presentation and altered lymphocyte maturation cause an ongoing immunosuppression despite repopulation of lymphoid organs. The early phase of DL is a sequel of a direct virus-mediated damage and infiltrating CD8+ cytotoxic T cells associated with an up-regulation of pro-inflammatory cytokines such as interleukin (IL)-6, IL-8, tumor necrosis factor (TNF)-alpha and IL-12 and a lacking response of immunomodulatory cytokines such as IL-10 and transforming growth factor (TGF)-beta. A CD4+-mediated delayed type hypersensitivity and cytotoxic CD8+ T cells contribute to myelin loss in the chronic phase. Additionally, up-regulation of interferon-gamma and IL-1 may occur in advanced lesions. Moreover, an altered balance between matrix metalloproteinases and their inhibitors seems to play a pivotal role for the pathogenesis of DL. Summarized, DL represents a biphasic disease process consisting of an initial direct virus-mediated process and immune-mediated plaque progression. Immunosuppression is due to early virus-mediated lymphocytolysis followed by still poorly understood mechanisms affecting antigen presentation and lymphocyte maturation.

  16. Immunopathology of recurrent uveitis in spontaneously diseased horses.

    PubMed

    Deeg, C A; Ehrenhofer, M; Thurau, S R; Reese, S; Wildner, G; Kaspers, B

    2002-08-01

    Equine recurrent uveitis (ERU) is the most serious eye disease in horses worldwide. Despite the fact that ERU is generally considered to be immune mediated, a detailed description of the histopathology of the posterior part of ERU eyes is lacking. Here, we examined sections of paraffin-embedded eyes using histological and immunhistological methods. Twenty seven eyes of 20 horses with ERU and 30 eyes of 15 healthy control horses were included in this study. We could consistently demonstrate an involvement of the retina and the choroid in all examined eyes of horses with spontaneous ERU. In eyes with minimal histopathological changes, the infiltrates consisted almost exclusively of T-cells. Histopathological changes start with the destruction of the photoreceptor outer segments, which often leads to focal retinal detachment. In more severely affected eyes, there is additional disintegration of the ganglion cell layer and the inner nuclear layer. In almost all examined eyes, lymphoid follicle formation could be demonstrated. Typical localizations of these follicles were the iris stroma and the choroid underneath the transition zone of the retina without photoreceptor cells to the region containing photoreceptor cells. These follicles consist of a T-cell rich periphery with a small center of CD3-negative lymphocytes. In cases with extreme histopathological changes, the retinal architecture is widely disintegrated with massive infiltration of the retina, the choroid, and the ciliary body by several types of inflammatory cells. Necrotic remnants of the retina are end-stage findings and there is only a minor inflammatory infiltration left. This study provides clear evidence that the retina is involved in all stages of ERU. Inflammation is mainly driven by T-cells as T-cells were demonstrated in mild stages of the disease and are also the predominating cell type in all other stages of ERU.

  17. Immunopathological effects of malaria pigment or hemozoin and other crystals.

    PubMed

    Tyberghein, Ariane; Deroost, Katrien; Schwarzer, Evelin; Arese, Paolo; Van den Steen, Philippe E

    2014-01-01

    Blood-stage malaria parasites produce insoluble hemozoin (Hz) crystals that are released in the blood circulation upon schizont rupture. In general, endogenous crystal formation or inhalation of crystalline materials is often associated with pathology. As the immune system responds differently to crystalline particles than to soluble molecules, in this review, the properties, immunological recognition, and pathogenic responses of Hz are discussed, and compared with two other major pathogenic crystals, monosodium urate (MSU) and asbestos. Because of the size and shape of MSU crystals and asbestos fibers, phagolysosomal formation is inefficient and often results in leakage of lysosomal content in the cell cytoplasm and/or in the extracellular environment with subsequent cell damage and cell death. Phagolysosomal formation after Hz ingestion is normal, but Hz remains stored inside these cells for months or even longer without any detectable degradation. Nonetheless, the different types of crystals are recognized by similar immune receptors, involving Toll-like receptors, the inflammasome, antibodies, and/or complement factors, and through similar signaling cascades, they activate both proinflammatory and anti-inflammatory immune responses that contribute to inflammation-associated pathology.

  18. Control of immunopathology during Plasmodium infection by hepcidin.

    PubMed

    Marguti, Ivo

    2012-02-01

    Malaria is a major health problem affecting millions of people annually especially in underdeveloped countries. Mutations causing alterations in hemoglobin production or structure are known to afford protection against the development of severe forms of malaria. Not surprinsingly, these hemoglobin disorders are present at high frequency in areas where malaria is endemic, indicating a survival advantage for individuals carrying them. Despite many years of research, the exact mechanisms underlying the protection afforded by hemoglobinopathies against severe forms of malaria have not yet found a definitive answer. One feature of hemoglobinopathies, observed both in humans and mice, is the fact that individuals carrying these disorders express low levels of the hormone hepcidin that plays a major role in iron homeostasis. Hepcidin acts by binding to the iron exporter ferroportin and inducing its degradation. When hepcidin levels are low, ferroportin expression in cells is sustained leading to export of intracellular iron. Importantly, low intracellular iron content may affect activation of innate immune cells leading to diminished production of pro-inflammatory cytokines. Notably, several lines of evidence support the notion that development of severe forms of malaria is dependent on immune-mediated damage, caused by unfettered immune responses. Herein the hypothesis that hemoglobinopathies afford protection against severe forms of malaria by limiting exacerbated immune activation, via a mechanism that involves low hepcidin expression, is discussed.

  19. IL-27 Limits Type 2 Immunopathology Following Parainfluenza Virus Infection

    PubMed Central

    Wagage, Sagie; Sun, Yan; Christian, David A.; Harms Pritchard, Gretchen; Fang, Qun; Buza, Elizabeth L.; Jain, Deepika; Elloso, M. Merle; López, Carolina B.; Hunter, Christopher A.

    2017-01-01

    Respiratory paramyxoviruses are important causes of morbidity and mortality, particularly of infants and the elderly. In humans, a T helper (Th)2-biased immune response to these infections is associated with increased disease severity; however, little is known about the endogenous regulators of these responses that may be manipulated to ameliorate pathology. IL-27, a cytokine that regulates Th2 responses, is produced in the lungs during parainfluenza infection, but its role in disease pathogenesis is unknown. To determine whether IL-27 limits the development of pathogenic Th2 responses during paramyxovirus infection, IL-27-deficient or control mice were infected with the murine parainfluenza virus Sendai virus (SeV). Infected IL-27-deficient mice experienced increased weight loss, more severe lung lesions, and decreased survival compared to controls. IL-27 deficiency led to increased pulmonary eosinophils, alternatively activated macrophages (AAMs), and the emergence of Th2 responses. In control mice, IL-27 induced a population of IFN-γ+/IL-10+ CD4+ T cells that was replaced by IFN-γ+/IL-17+ and IFN-γ+/IL-13+ CD4+ T cells in IL-27-deficient mice. CD4+ T cell depletion in IL-27-deficient mice attenuated weight loss and decreased AAMs. Elimination of STAT6 signaling in IL-27-deficient mice reduced Th2 responses and decreased disease severity. These data indicate that endogenous IL-27 limits pathology during parainfluenza virus infection by regulating the quality of CD4+ T cell responses and therefore may have therapeutic potential in paramyxovirus infections. PMID:28129374

  20. Uncovering the mysteries of hantavirus infections.

    PubMed

    Vaheri, Antti; Strandin, Tomas; Hepojoki, Jussi; Sironen, Tarja; Henttonen, Heikki; Mäkelä, Satu; Mustonen, Jukka

    2013-08-01

    Hantaviruses are negative-sense single-stranded RNA viruses that infect many species of rodents, shrews, moles and bats. Infection in these reservoir hosts is almost asymptomatic, but some rodent-borne hantaviruses also infect humans, causing either haemorrhagic fever with renal syndrome (HFRS) or hantavirus cardiopulmonary syndrome (HCPS). In this Review, we discuss the basic molecular properties and cell biology of hantaviruses and offer an overview of virus-induced pathology, in particular vascular leakage and immunopathology.

  1. Lethal Mutagenesis of Hepatitis C Virus Induced by Favipiravir.

    PubMed

    de Ávila, Ana I; Gallego, Isabel; Soria, Maria Eugenia; Gregori, Josep; Quer, Josep; Esteban, Juan Ignacio; Rice, Charles M; Domingo, Esteban; Perales, Celia

    2016-01-01

    Lethal mutagenesis is an antiviral approach that consists in extinguishing a virus by an excess of mutations acquired during replication in the presence of a mutagen. Here we show that favipiravir (T-705) is a potent mutagenic agent for hepatitis C virus (HCV) during its replication in human hepatoma cells. T-705 leads to an excess of G → A and C → U transitions in the mutant spectrum of preextinction HCV populations. Infectivity decreased significantly in the presence of concentrations of T-705 which are 2- to 8-fold lower than its cytotoxic concentration 50 (CC50). Passaging the virus five times in the presence of 400 μM T-705 resulted in virus extinction. Since T-705 has undergone advanced clinical trials for approval for human use, the results open a new approach based on lethal mutagenesis to treat hepatitis C virus infections. If proven effective for HCV in vivo, this new anti-HCV agent may be useful in patient groups that fail current therapeutic regimens.

  2. Lethal Mutagenesis of Hepatitis C Virus Induced by Favipiravir

    PubMed Central

    de Ávila, Ana I.; Gallego, Isabel; Soria, Maria Eugenia; Gregori, Josep; Quer, Josep; Esteban, Juan Ignacio; Rice, Charles M.; Domingo, Esteban; Perales, Celia

    2016-01-01

    Lethal mutagenesis is an antiviral approach that consists in extinguishing a virus by an excess of mutations acquired during replication in the presence of a mutagen. Here we show that favipiravir (T-705) is a potent mutagenic agent for hepatitis C virus (HCV) during its replication in human hepatoma cells. T-705 leads to an excess of G → A and C → U transitions in the mutant spectrum of preextinction HCV populations. Infectivity decreased significantly in the presence of concentrations of T-705 which are 2- to 8-fold lower than its cytotoxic concentration 50 (CC50). Passaging the virus five times in the presence of 400 μM T-705 resulted in virus extinction. Since T-705 has undergone advanced clinical trials for approval for human use, the results open a new approach based on lethal mutagenesis to treat hepatitis C virus infections. If proven effective for HCV in vivo, this new anti-HCV agent may be useful in patient groups that fail current therapeutic regimens. PMID:27755573

  3. Oxidative Lung Injury in Virus-Induced Wheezing

    DTIC Science & Technology

    2012-05-01

    acid , 0.5 µg/mL triiodothyronine, 50 mg/mL gentamicin and 50 mg/mL bovine serum albumin (BSA) for SAEC medium. When SAE were used for RSV...cytokines by human respiratory syncytial virus requires activation of NF-kB and is inhibited by sodium salicylate and aspirin. Virology 232: 369-378...8217, prepared from a small number of cells. Nucleic Acids Res 17: 6419, 1989. 32. Schwarz KB. Oxidative stress during viral infection: A review. Free Rad

  4. RAGE deficiency predisposes mice to virus-induced paucigranulocytic asthma

    PubMed Central

    Arikkatt, Jaisy; Ullah, Md Ashik; Short, Kirsty Renfree; Zhang, Vivan; Gan, Wan Jun; Loh, Zhixuan; Werder, Rhiannon B; Simpson, Jennifer; Sly, Peter D; Mazzone, Stuart B; Spann, Kirsten M; Ferreira, Manuel AR; Upham, John W; Sukkar, Maria B; Phipps, Simon

    2017-01-01

    Asthma is a chronic inflammatory disease. Although many patients with asthma develop type-2 dominated eosinophilic inflammation, a number of individuals develop paucigranulocytic asthma, which occurs in the absence of eosinophilia or neutrophilia. The aetiology of paucigranulocytic asthma is unknown. However, both respiratory syncytial virus (RSV) infection and mutations in the receptor for advanced glycation endproducts (RAGE) are risk factors for asthma development. Here, we show that RAGE deficiency impairs anti-viral immunity during an early-life infection with pneumonia virus of mice (PVM; a murine analogue of RSV). The elevated viral load was associated with the release of high mobility group box-1 (HMGB1) which triggered airway smooth muscle remodelling in early-life. Re-infection with PVM in later-life induced many of the cardinal features of asthma in the absence of eosinophilic or neutrophilic inflammation. Anti-HMGB1 mitigated both early-life viral disease and asthma-like features, highlighting HMGB1 as a possible novel therapeutic target. DOI: http://dx.doi.org/10.7554/eLife.21199.001 PMID:28099113

  5. Herpes simplex virus-induced cardiomyopathy successfully treated with acyclovir.

    PubMed

    Kuchynka, Petr; Palecek, Tomas; Hrbackova, Hana; Vitkova, Ivana; Simek, Stanislav; Nemecek, Eduard; Aster, Viktor; Louch, William E; Aschermann, Michael; Linhart, Ales

    2010-10-01

    Inflammatory dilated cardiomyopathy (DCMi) represents an acquired form of dilated cardiomyopathy. Viral infection is the most common cause of DCMi. In contrast with other cardiotropic viruses, herpes simplex virus (HSV) is a very rare finding in endomyocardial biopsies of patients with dilated cardiomyopathy. We report a case of HSV-induced cardiomyopathy successfully treated with acyclovir.

  6. Porcine Epidemic Diarrhea Virus Induces Autophagy to Benefit Its Replication.

    PubMed

    Guo, Xiaozhen; Zhang, Mengjia; Zhang, Xiaoqian; Tan, Xin; Guo, Hengke; Zeng, Wei; Yan, Guokai; Memon, Atta Muhammad; Li, Zhonghua; Zhu, Yinxing; Zhang, Bingzhou; Ku, Xugang; Wu, Meizhou; Fan, Shengxian; He, Qigai

    2017-03-19

    The new porcine epidemic diarrhea (PED) has caused devastating economic losses to the swine industry worldwide. Despite extensive research on the relationship between autophagy and virus infection, the concrete role of autophagy in porcine epidemic diarrhea virus (PEDV) infection has not been reported. In this study, autophagy was demonstrated to be triggered by the effective replication of PEDV through transmission electron microscopy, confocal microscopy, and Western blot analysis. Moreover, autophagy was confirmed to benefit PEDV replication by using autophagy regulators and RNA interference. Furthermore, autophagy might be associated with the expression of inflammatory cytokines and have a positive feedback loop with the NF-κB signaling pathway during PEDV infection. This work is the first attempt to explore the complex interplay between autophagy and PEDV infection. Our findings might accelerate our understanding of the pathogenesis of PEDV infection and provide new insights into the development of effective therapeutic strategies.

  7. Mechanisms of Virus-Induced Neural Cell Death

    DTIC Science & Technology

    2005-03-01

    lamin expression in Caenorhabditis elegans or Drosoph- ganization, which result in profound distortion of nuclear mor- ila mutants results in spatial...of Health (to K.L.T.), Fire, and Y. Gruenbaum. 2000. Essential roles for Caenorhabditis elegans lamin gene in nuclear organization, cell cycle...herpes simplex virus DNA polymerase mutation that specifically attenuates neurovirulence in mice. Virology. 1998 Dec 20;252(2):364-72. PMID: 9878615

  8. Zika Virus Induced Mortality and Microcephaly in Chicken Embryos.

    PubMed

    Goodfellow, Forrest T; Tesla, Blanka; Simchick, Gregory; Zhao, Qun; Hodge, Thomas; Brindley, Melinda A; Stice, Steven L

    2016-11-15

    The explosive spread of the Zika virus (ZIKV) through South and Central America has been linked to an increase in congenital birth defects, specifically microcephaly. Representative rodent models for investigating infections include direct central nervous system (CNS) injections late in pregnancy and transplacental transmission in immunodeficient mice. Microcephaly in humans may be the result of infection occurring early in pregnancy, therefore recapitulating that the human course of ZIKV infection should include normal embryo exposed to ZIKV during the first trimester. In ovo development of the chicken embryo closely mirrors human fetal neurodevelopment and, as a comparative model, could provide key insights into both temporal and pathophysiological effects of ZIKV. Chick embryos were directly infected early and throughout incubation with ZIKV isolated from a Mexican mosquito in January 2016. High doses of virus caused embryonic lethality. In a subset of lower dosed embryos, replicating ZIKV was present in various organs, including the CNS, throughout development. Surviving ZIKV-infected embryos presented a microcephaly-like phenotype. Chick embryos were longitudinally monitored by magnetic resonance imaging that documented CNS structural malformations, including enlarged ventricles (30% increase) and stunted cortical growth (decreased telencephalon by 18%, brain stem by 32%, and total brain volume by 18%), on both embryonic day 15 (E15) and E20 of development. ZIKV-induced microcephaly was observed with inoculations of as few as 2-20 viral particles. The chick embryo model presented ZIKV embryonic lethal effects and progressive CNS damage similar to microcephaly.

  9. Evidence that Cache Valley virus induces congenital malformations in sheep.

    PubMed

    Chung, S I; Livingston, C W; Edwards, J F; Crandell, R W; Shope, R E; Shelton, M J; Collisson, E W

    1990-02-01

    An outbreak of congenital abnormalities occurred in sheep at San Angelo, Texas, between December 1986 and February 1987. Of 360 lambs born, 19.2% had arthrogryposis or other musculo-skeletal problems and hydranencephaly (AGH), and the total neonatal loss was 25.6%. In 1987, all ewes that were tested with AGH lambs had antibody to Cache Valley virus (CVV), whereas 62% of the ewes with normal lambs had CVV-specific antibody. Pre-colostral serum samples from AGH lambs had neutralizing antibody to CVV. An increase in prevalence of CVV-specific antibody, from 5% during the spring of 1986 to 63.4% during the winter of 1987, occurred during a time that included the gestation of these affected lambs, as well as a period of increased rainfall. The isolation of a CVV-related strain from a sentinel sheep in October 1987 confirmed the continued presence of this virus in the pasture where this outbreak occurred and provided a recent field strain for future studies.

  10. Oxidative Lung Injury in Virus-Induced Wheezing

    DTIC Science & Technology

    2013-05-01

    Introduction Respiratory syncytial virus (RSV) is an envelopednegative-sense single - stranded ribonucleic acid (RNA) virus of the Paramyxoviridae family...genetic polymorphism (mostly single -nucleotide polymor- phism [SNP]) for single chemokine and chemokine receptor genes, including IL-8, IL-8 receptor...Janssen R, Bont L, and Venter M. Con- firmation of an association between single nucleotide polymorphisms in the VDR gene with respiratory syncytial

  11. Virus-induced papillomas of the alimentary tract of cattle.

    PubMed

    Jarrett, W F; Murphy, J; O'Neil, B W; Laird, H M

    1978-09-15

    An abattoir survey was carried out to determine the incidence and aetiology of squamous papillomas of the alimentary tract of cattle in Scotland and North England as they were suspected of being involved in the genesis of alimentary carcinoma in certain localized geographical areas. A total of 7,746 cattle of a wide age range was examined. Various subsets of this number were subjected to analyses of certain specific factors. The calculated overall incidence was 19% and the detailed site incidence and tumour multiplicity are given. The sites at which papillomas were found were identical with those at which carcinoma had been noted in animals from a high-cancer area. The number of sites affected by papilloma and the tumour multiplicity were much lower in the general population than in the high-cancer area. Inclusion bodies, identified by electronmicroscopy as virus, were found in tumour cell nuclei and a typical papilloma virus was purified from the tumours. The structure of the tumours is described and the possible plurality of bovine papilloma-viruses is discussed in the light of recent findings in the human viruses. The general interest of a naturally occurring and geographically localized oncogenic system, in which an environmental carcinogen and a virus might be involved, is extended.

  12. Aquatic viruses induce host cell death pathways and its application.

    PubMed

    Reshi, Latif; Wu, Jen-Leih; Wang, Hao-Ven; Hong, Jiann-Ruey

    2016-01-04

    Virus infections of mammalian and animal cells consist of a series of events. As intracellular parasites, viruses rely on the use of host cellular machinery. Through the use of cell culture and molecular approaches over the past decade, our knowledge of the biology of aquatic viruses has grown exponentially. The increase in aquaculture operations worldwide has provided new approaches for the transmission of aquatic viruses that include RNA and DNA viruses. Therefore, the struggle between the virus and the host for control of the cell's death machinery is crucial for survival. Viruses are obligatory intracellular parasites and, as such, must modulate apoptotic pathways to control the lifespan of their host to complete their replication cycle. This paper updates the discussion on the detailed mechanisms of action that various aquatic viruses use to induce cell death pathways in the host, such as Bad-mediated, mitochondria-mediated, ROS-mediated and Fas-mediated cell death circuits. Understanding how viruses exploit the apoptotic pathways of their hosts may provide great opportunities for the development of future potential therapeutic strategies and pathogenic insights into different aquatic viral diseases.

  13. Mechanisms of Virus-Induced Neural Cell Death

    DTIC Science & Technology

    2002-09-01

    these genes have been associated with reo- Svirus RNA synthesis and reovirus induction of and sensitivity 4 .to beta interferon in cardiac myocyte...in mice correlates with viral RNA synthesis rather than generation of 289. infectious virus in cardiac myocytes. J. Virol. 70:6709-6715. 29. Lee, J. K...IFN (see Refs 19,20), PKR does not thereby augmenting viral protein synthesis 25,26 . appear to play a role in reovirus-induced apoptosis or NF-EB

  14. Merkel Cell Carcinoma: A Virus-Induced Human Cancer

    PubMed Central

    Chang, Yuan; Moore, Patrick S.

    2013-01-01

    Merkel cell polyomavirus (MCV) is the first polyomavirus directly linked to human cancer, and its recent discovery helps to explain many of the enigmatic features of Merkel cell carcinoma (MCC). MCV is clonally integrated into MCC tumor cells, which then require continued MCV oncoprotein expression to survive. The integrated viral genomes have a tumor-specific pattern of tumor antigen gene mutation that incapacitates viral DNA replication. This human cancer virus provides a new model in which a common, mostly harmless member of the human viral flora can initiate cancer if it acquires a precise set of mutations in a host with specific susceptibility factors, such as age and immune suppression. Identification of this tumor virus has led to new opportunities for early diagnosis and targeted treatment of MCC. PMID:21942528

  15. Oxidative Lung Injury in Virus-Induced Wheezing

    DTIC Science & Technology

    2015-07-01

    Microbiology and Immunology , The University of Texas Medical Branch at Galveston, Galveston, Texas Rationale : Respiratory syncytial virus (RSV) is a major...1Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas; 2Department of Microbiology and Immunology , University of Texas...glycoprotein G inhibits innate immune responses, PLoS Pathog 4 (2008) e1000077. [18] T.P. Welliver, R.P. Garofalo, Y. Hosakote, K.H. Hintz, L. Avendano, K

  16. Porcine Epidemic Diarrhea Virus Induces Autophagy to Benefit Its Replication

    PubMed Central

    Guo, Xiaozhen; Zhang, Mengjia; Zhang, Xiaoqian; Tan, Xin; Guo, Hengke; Zeng, Wei; Yan, Guokai; Memon, Atta Muhammad; Li, Zhonghua; Zhu, Yinxing; Zhang, Bingzhou; Ku, Xugang; Wu, Meizhou; Fan, Shengxian; He, Qigai

    2017-01-01

    The new porcine epidemic diarrhea (PED) has caused devastating economic losses to the swine industry worldwide. Despite extensive research on the relationship between autophagy and virus infection, the concrete role of autophagy in porcine epidemic diarrhea virus (PEDV) infection has not been reported. In this study, autophagy was demonstrated to be triggered by the effective replication of PEDV through transmission electron microscopy, confocal microscopy, and Western blot analysis. Moreover, autophagy was confirmed to benefit PEDV replication by using autophagy regulators and RNA interference. Furthermore, autophagy might be associated with the expression of inflammatory cytokines and have a positive feedback loop with the NF-κB signaling pathway during PEDV infection. This work is the first attempt to explore the complex interplay between autophagy and PEDV infection. Our findings might accelerate our understanding of the pathogenesis of PEDV infection and provide new insights into the development of effective therapeutic strategies. PMID:28335505

  17. Using brain organoids to understand Zika virus-induced microcephaly.

    PubMed

    Qian, Xuyu; Nguyen, Ha Nam; Jacob, Fadi; Song, Hongjun; Ming, Guo-Li

    2017-03-15

    Technologies to differentiate human pluripotent stem cells into three-dimensional organized structures that resemble in vivo organs are pushing the frontiers of human disease modeling and drug development. In response to the global health emergency posed by the Zika virus (ZIKV) outbreak, brain organoids engineered to mimic the developing human fetal brain have been employed to model ZIKV-induced microcephaly. Here, we discuss the advantages of brain organoids over other model systems to study development and highlight recent advances in understanding ZIKV pathophysiology and its underlying pathogenesis mechanisms. We further discuss perspectives on overcoming limitations of current organoid systems for their future use in ZIKV research.

  18. Measles virus induces persistent infection by autoregulation of viral replication

    PubMed Central

    Doi, Tomomitsu; Kwon, Hyun-Jeong; Honda, Tomoyuki; Sato, Hiroki; Yoneda, Misako; Kai, Chieko

    2016-01-01

    Natural infection with measles virus (MV) establishes lifelong immunity. Persistent infection with MV is likely involved in this phenomenon, as non-replicating protein antigens never induce such long-term immunity. Although MV establishes stable persistent infection in vitro and possibly in vivo, the mechanism by which this occurs is largely unknown. Here, we demonstrate that MV changes the infection mode from lytic to non-lytic and evades the innate immune response to establish persistent infection without viral genome mutation. We found that, in the persistent phase, the viral RNA level declined with the termination of interferon production and cell death. Our analysis of viral protein dynamics shows that during the establishment of persistent infection, the nucleoprotein level was sustained while the phosphoprotein and large protein levels declined. The ectopic expression of nucleoprotein suppressed viral replication, indicating that viral replication is self-regulated by nucleoprotein accumulation during persistent infection. The persistently infected cells were able to produce interferon in response to poly I:C stimulation, suggesting that MV does not interfere with host interferon responses in persistent infection. Our results may provide mechanistic insight into the persistent infection of this cytopathic RNA virus that induces lifelong immunity. PMID:27883010

  19. Marek's disease virus induced transient paralysis--a closer look

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Marek’s Disease (MD) is a lymphoproliferative disease of domestic chickens caused by a highly cell-associated alpha herpesvirus, Marek’s disease virus (MDV). Clinical signs of MD include depression, crippling, weight loss, and transient paralysis (TP). TP is a disease of the central nervous system...

  20. Molecular mechanisms of hepatitis C virus-induced hepatocellular carcinoma.

    PubMed

    Vescovo, T; Refolo, G; Vitagliano, G; Fimia, G M; Piacentini, M

    2016-10-01

    Hepatitis C virus (HCV) is a major leading cause of hepatocellular carcinoma (HCC). HCV-induced hepatocarcinogenesis is a multistep process resulting from a combination of pathway alterations that are either caused directly by viral factors or immune mediated as a consequence of a chronic state of inflammation. Host genetic variation is now emerging as an additional element that contribute to increase the risk of developing HCC. The advent of direct-acting antiviral agents foresees a rapid decline of HCC rate in HCV patients. However, a full understanding of the HCV-mediated tumourigenic process is required to elucidate if pro-oncogenic signatures may persist after virus clearance, and to identify novel tools for HCC prevention and therapy. In this review, we summarize the current knowledge of the molecular mechanisms responsible for HCV-induced hepatocarcinogenesis.

  1. Eilat Virus Induces Both Homologous and Heterologous Interference

    PubMed Central

    Nasar, Farooq; Erasmus, Jesse; Haddow, Andrew D.; Tesh, Robert B.; Weaver, Scott C.

    2015-01-01

    Most alphaviruses are mosquito-borne and exhibit a broad host range, infecting many different vertebrates including birds, rodents, equids, and humans. Occasionally, alphaviruses can spill over into the human population and cause disease characterized by debilitating arthralgia or fatal encephalitis. Recently, a unique alphavirus, Eilat virus (EILV), was described that readily infects mosquito but not vertebrate cell lines. Here, we investigated the ability of EILV to induce superinfection exclusion. Prior infection of C7/10 (Aedes albopictus) cells with EILV induced homologous and heterologous interference, reducing the virus titers of heterologous superinfecting viruses (SINV, VEEV, EEEV, WEEV, and CHIKV) by ~10-10,000 fold and delaying replication kinetics by 12-48 hrs. Similar to in vitro infection, prior in vivo EILV infection of Aedes aegypti mosquitoes delayed dissemination of chikungunya virus for 3 days. This is the first evidence of heterologous interference induced by a mosquito-specific alphavirus in vitro and in vivo. PMID:26068885

  2. Oxidative Lung Injury in Virus-Induced Wheezing

    DTIC Science & Technology

    2011-05-01

    tract infections in children, for which no specific treat- ment or vaccine is currently available. We have previously shown that RSV induces reactive...benzamidine, 5 mg/ml leupeptin, 25% glycerol ), incubated on ice for 20 minutes, and centrifuged (6,000 3 g, 48C, 2 min). A lysis-lavage method...6 M urea, 2% SDS, 50 mM Tris-HCl [pH 8.8], 20% glycerol ) containing 10 ml of 0.5 M TCEP [Tris(2-carboxyethyl) phosphine] for 15 minutes at 228C with

  3. Herpes simplex virus induces the replication of foreign DNA

    SciTech Connect

    Danovich, R.M.; Frenkel, N.

    1988-08-01

    Plasmids containing the simian virus 40 (SV40) DNA replication origin and the large T gene are replicated in Vero monkey cells but not in rabbit skin cells. Efficient replication of the plasmids was observed in rabbit cells infected with herpes simplex virus type 1 (HSV-1) and HSV-2. The HSV-induced replication required the large T antigen and the SV40 replication origin. However, it produced concatemeric molecules resembling replicative intermediates of HSV DNA and was sensitive to phosphonoacetate at concentrations known to inhibit the HSV DNA polymerase. Therefore, it involved the HSV DNA polymerase itself or a viral gene product(s) which was expressed following the replication of HSV DNA. Analyses of test plasmids lacking SV40 or HSV DNA sequences showed that, under some conditions. HSV also induced low-level replication of test plasmids containing no known eucaryotic replication origins. Together, these results show that HSV induces a DNA replicative activity which amplifies foreign DNA. The relevance of these findings to the putative transforming potential of HSV is discussed.

  4. Active immunization by a dengue virus-induced cytokine.

    PubMed Central

    Chaturvedi, U C; Mukerjee, R; Dhawan, R

    1994-01-01

    Dengue type 2 virus (DV)-induced cytotoxic factor (CF) is capable of reproducing various pathological lesions in mice that are seen in human dengue. The present study was undertaken to investigate the protective effect of active immunization of mice with CF. Mice were immunized with 5 microgram of CF and prevention of CF-induced increase in capillary permeability and damage to the blood-brain barrier were studied at weekly intervals, up to 48 weeks, by challenging with 3 microgram of CF. Maximum protection against increase in capillary permeability and damage to the blood-brain barrier was observed in week 4 after immunization. A breakthrough in the protection occurred with higher doses of CF in a dose-dependent manner. Challenge with a lethal intracerebral (i.c.) dose of DV showed significantly prolonged mean survival time and delayed onset of symptoms of sickness in the immunized mice compared with the normal mice, but the titre of the virus in the brain was similar in the two groups. On i.p. challenge with the virus the protection against damage to the blood-brain barrier was 86 +/- 7% at week 4 and 17 +/- 4% at week 26 after immunization. Sera obtained from the immunized mice showed the presence of CF-specific antibodies by ELISA, Western blot, and by neutralization of the cytotoxic activity of CF in vitro. The present study describes successful prevention of a cytokine-induced pathology by specific active immunization. PMID:8187327

  5. Modeling the Lymphocytic Choriomeningitis Virus: Insights into understanding its epidemiology in the wild

    NASA Astrophysics Data System (ADS)

    Contreras, Christy; McKay, John; Blattman, Joseph; Holechek, Susan

    2015-03-01

    The lymphocytic choriomenigitis virus (LCMV) is a rodent-spread virus commonly recognized as causing neurological disease that exhibits asymptomatic pathology. The virus is a pathogen normally carried among rodents that can be transmitted to humans by direct or indirect contact with the virus in excretions and secretions from rodents and can cause aseptic meningitis and other conditions in humans. We consider an epidemiological system within rodent populations modeled by a system of ordinary differential equations that captures the dynamics of the diseases transmission and present our findings. The asymptotic nature of the pathogen plays a large role in its spread within a given population, which has motivated us to expand upon an existing SIRC model (Holechek et al in preparation) that accounts for susceptible-, infected-, recovered-, and carrier-mice on the basis of their gender. We are interested in observing and determining the conditions under which the carrier population will reach a disease free equilibrium, and we focus our investigation on the sensitivity of our model to gender, pregnancy related infection, and reproduction rate conditions.

  6. Arenaviruses. Genes, proteins, and expression

    SciTech Connect

    Oldstone, M.B.A.

    1987-01-01

    This book provides a discussion of current knowledge on Arenaviruses. These viruses are the cause of major health problems, such as Lassa fever and Junin virus disease, and have been the Rosetta stone on which many of the major concepts in viral pathogenesis and immunobiology have been built. For example, study of lymphocytic choriomeningitis naturally and experimentally induced infection in the normal mouse host presented the scientific community with the first and definitive work on the following topics: virus induced immune response disease, immunologic tolerance, virus induced immune complex disease, presence and generation of cytotoxic T cells in vitro and in vivo, H-2 restriction and dual recognition phenomena, and viral disease induced by altering physiologic or differential functions of a cell without causing alterations of house keeping or vital functions, i.e. pathology in the absence of cell or tissue lysis.

  7. Immunosuppression-Induced Susceptibility of Inbred Hamsters (Mesocricetus auratus) to Lethal-Disease by Lymphocytic Choriomeningitis Virus Infection

    DTIC Science & Technology

    1987-01-01

    and in human , , Lassa fever virus infections [20]. The role of antibody in recovery from infections with viruses such as LCMV. Lassa . and Pichinde...is not clear. Certainly the appearance of antibodies measured by IFAT in the LCMV-infected hamster or in Lassa .-. - fever virus infections [17. 19...Lvmphocvtit choriomeninEzitis virus and other arenaviruses . Springer. Berlin Heidelber New York. pp 113-120 9. Gee SR. Chan MA. (lark DA. Rawls WE (1981

  8. Serum PAI-1 and PAI-1 4G/5G Polymorphism in Hepatitis C Virus-Induced Cirrhosis and Hepatitis C Virus-Induced Hepatocellular Carcinoma Patients.

    PubMed

    El Edel, Rawhia H; Essa, Enas Said; Essa, Abdallah S; Hegazy, Sara A; El Rowedy, Dalia I

    2016-11-01

    Association between variable agent-induced hepatocellular carcinoma (HCC) and both PAI-1 4G/5G polymorphism and plasminogen activator inhibitor (PAI-1) levels compared to healthy controls have been reported in earlier studies. We aimed to assess serum PAI-1 and PAI-1 4G/5G polymorphism in hepatitis C virus (HCV)-induced HCC, HCV-induced liver cirrhosis, and viral infection-free apparently healthy control subjects. Forty nine HCC, 52 cirrhosis, and 105 controls were genotyped for PAI-1 4G/5G using an allele-specific polymerase chain reaction analysis. In addition, for 31 HCC, 24 cirrhosis, and 28 controls, serum PAI-1 level was measured by enzyme-linked immunosorbent assay (ELISA). There was no significant difference in PAI-1 4G/5G genotype distribution between cirrhosis and controls (p = 0.33, p = 0.15, and p = 0.38 for the codominant, dominant, and recessive models, respectively) or between HCC and cirrhosis (p = 0.5, p = 0.24, and p = 0.69 for the codominant, dominant, and recessive models, respectively). Serum PAI-1 was significantly higher in cirrhosis than controls and significantly lower in HCC than cirrhosis (p < 0.001 for both). Serum PAI-1 did not differ significantly among the three PAI-1 4G/5G genotypes in controls, cirrhosis, and HCC (p = 0.29, p = 0.28, and p = 0.73 respectively). We documented higher serum PAI-1 in HCV-induced HCC than viral infection-free controls, but interestingly, lower than HCV-induced liver cirrhosis patients. This was not genotype related. Further studies will be needed to clearly elucidate the underlying mechanism.

  9. Type I and III Interferon in the Gut: Tight Balance between Host Protection and Immunopathology

    PubMed Central

    Pott, Johanna; Stockinger, Silvia

    2017-01-01

    The intestinal mucosa forms an active interface to the outside word, facilitating nutrient and water uptake and at the same time acts as a barrier toward the highly colonized intestinal lumen. A tight balance of the mucosal immune system is essential to tolerate harmless antigens derived from food or commensals and to effectively defend against potentially dangerous pathogens. Interferons (IFN) provide a first line of host defense when cells detect an invading organism. Whereas type I IFN were discovered almost 60 years ago, type III IFN were only identified in the early 2000s. It was initially thought that type I IFN and type III IFN performed largely redundant functions. However, it is becoming increasingly clear that type III IFN exert distinct and non-redundant functions compared to type I IFN, especially in mucosal tissues. Here, we review recent progress made in unraveling the role of type I/III IFN in intestinal mucosal tissue in the steady state, in response to mucosal pathogens and during inflammation. PMID:28352268

  10. SPECIAL ISSUE VETERINARY IMMUNOLOGY IMMUNOPATHOLOGY: PROCEEDINGS 8TH INTERNATIONAL VETERINARY IMMUNOLOGY SYMPOSIUM

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This is the Special Issue of Vet. Immunol. Immunopathol. that summarizes the 8th International Veterinary Immunology Symposium (8 th IVIS) held August 15th-19th, 2007, in Ouro Preto, Brazil. The 8 th IVIS highlighted the importance of veterinary immunology for animal health, vaccinology, reproducti...

  11. Coronary atherosclerosis in transplanted mouse hearts. I. Time course and immunogenetic and immunopathological considerations.

    PubMed Central

    Russell, P. S.; Chase, C. M.; Winn, H. J.; Colvin, R. B.

    1994-01-01

    An experimental system is described in which coronary arteries of mouse hearts transplanted heterotopically develop obstructive lesions by 4 weeks. Transient immunosuppression permits graft survival. Donor/recipient antigenic differences may be either class I or class II major histocompatibility antigens (H-2) or non-H-2 antigens. An infiltrate including CD4+ and CD8+ T lymphocytes and macrophages concentrates early in the intima and adventitia of larger coronary arteries, with little in the myocardium. Subsequently, the intima expands with cells of donor origin and the infiltrate invades the media. Endothelial and intimal cells express ICAM-1, leukocytes LFA-1: Endothelium expresses class I, but not class II, antigens. As class II disparity alone suffices, the endothelium can apparently be an indirect target of immune injury. We propose that graft atherosclerosis is T cell initiated and elicited by heterogeneous antigens in the endothelium or media. It is separable from rejection of the myocardium. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 PMID:7906094

  12. Immunopathological assessments of human Blastocystis spp. in experimentally infected immunocompetent and immunosuppresed mice.

    PubMed

    Abdel-Hafeez, Ekhlas H; Ahmad, Azza K; Abdelgelil, Noha H; Abdellatif, Manal Z M; Kamal, Amany M; Hassanin, Kamel M A; Abdel-Razik, Abdel-Razik H; Abdel-Raheem, Ehab M

    2016-05-01

    Blastocystis spp., one of the most common parasites colonizing the human intestine, is an extracellular, luminal protozoan with controversial pathogenesis. The host's immune response against Blastocystis spp. infection has also not been defined yet. Therefore, this research aimed to assess the potential pathogenicity of this parasite and its ability to modulate the immune response in experimental infected immunocompetent and immunosuppresed mice. These results demonstrated that the infected immunosuppressed mice were more affected than infected immunocompetent mice. Histopathological examination of the small intestine in the infected immunosuppressed mice showed that Blastocystis spp. infiltrated all the layers. Moreover, the epithelia showed exfoliation and inflammatory cell infiltration in submucosa compared to that of the infected immunocompetent mice. As well, examination of the large intestine of the infected immunosuppressed group showed severe goblet cell hyperplasia. Blastocystis spp. infiltrated all the large intestine layers compared to that of the infected immunocompetent group. Furthermore, there was a significant upregulation of the expression of proinflammatory cytokines: interleukin 12 (IL-12) and tumor necrosis factor alpha (TNF-α) in the infected immunosuppressed mice compared to that of the infected immunocompetent ones (p ≤ 0.004 and p ≤ 0.002, respectively). However, the expression of anti-inflammatory cytokines (IL-4 and IL-10) was significantly downregulated in the infected immunosuppressed group compared to that of the infected immunocompetent group one at 10 days postinfection (p ≤ 0.002 and p ≤ 0.001, respectively). The results of this study revealed that Blastocystis spp. affected the production of pro- and anti-inflammatory cytokines in both groups of mice compared to healthy normal (naive) group. Additionally, these data showed that there was a significant upregulation (p ≤ 0.005) of the locally synthesized antibody: secretary IgA (sIgA) in the gut of the infected immunocompetent mice when compared to that of the infected immunosuppressed ones.

  13. IL-10 regulates viral lung immunopathology during acute respiratory syncytial virus infection in mice.

    PubMed

    Loebbermann, Jens; Schnoeller, Corinna; Thornton, Hannah; Durant, Lydia; Sweeney, Nathan P; Schuijs, Martijn; O'Garra, Anne; Johansson, Cecilia; Openshaw, Peter J

    2012-01-01

    Interleukin (IL-) 10 is a pleiotropic cytokine with broad immunosuppressive functions, particularly at mucosal sites such as the intestine and lung. Here we demonstrate that infection of BALB/c mice with respiratory syncytial virus (RSV) induced IL-10 production by CD4(+) and CD8(+) T cells in the airways at later time points (e.g. day 8); a proportion of these cells also co-produced IFN-γ. Furthermore, RSV infection of IL-10(-/-) mice resulted in more severe disease with enhanced weight loss, delayed recovery and greater cell infiltration of the respiratory tract without affecting viral load. In addition, IL-10(-/-) mice had a pronounced airway neutrophilia and heightened levels of pro-inflammatory cytokines and chemokines in the bronchoalveolar lavage fluid. Notably, the proportion of lung T cells producing IFN-γ was enhanced, suggesting that IL-10 may act in an autocrine manner to dampen effector T cell responses. Similar findings were made in mice treated with anti-IL-10R antibody and infected with RSV. Therefore, IL-10 inhibits disease and inflammation in mice infected with RSV, especially during recovery from infection.

  14. Placental immunopathology and pregnancy failure in the FIV-infected cat.

    PubMed

    Weaver, C C; Burgess, S C; Nelson, P D; Wilkinson, M; Ryan, P L; Nail, C A; Kelly-Quagliana, K A; May, M L; Reeves, R K; Boyle, C R; Coats, K S

    2005-01-01

    Placental HIV infections frequently result in infected babies or miscarriage. Aberrant placental cytokine expression during HIV infections may facilitate transplacental viral transmission or pregnancy perturbation. The feline immunodeficiency virus (FIV)-infected cat is a model for HIV infections due to similarities in biology and clinical disease. The purpose of this study was to evaluate placental immunomodulator expression and reproductive outcome using the FIV-infected cat model. Kittens were cesarean delivered from FIV-B-2542-infected and control queens near term; placental and fetal tissues were collected. Real-time RT-PCR was used to measure expression of representative placental Th1 cytokines, interleukin-1beta (IL-1beta) and interferon-gamma (IFN-gamma), a Th2 cytokine, IL-10, and chemokine receptor CXCR4. On average, control queens delivered 3.8 kittens/litter; 1 of 31 kittens (3.2%) was non-viable. FIV-infected queens produced 2.7 kittens/litter; 15 of 25 concepti (60%) were non-viable. FIV was detected in 14 of 15 placentas (93%) and 21 of 22 fetuses (95%) using PCR. Placental immunomodulator expression did not differ significantly when placentas from infected cats were compared to those of control cats. However, elevated expression of Th1 cytokines and increased Th1/Th2 ratios (IL-1beta/IL-10) occurred in placentas from resorptions. Therefore, increased placental Th1 cytokine expression was associated with pregnancy failure in the FIV-infected cat.

  15. Immuno-pathologic effects of oral administration of chlorpyrifos in broiler chicks.

    PubMed

    Shahzad, Asim; Khan, Ahrar; Khan, M Zargham; Mahmood, Fazal; Gul, S T; Saleemi, M Kashif

    2015-01-01

    This study sought to assess if chlorpyrifos (CPF) induced immunotoxic effects in orally-treated day-old broiler chicks. Groups of chicks received per os CPF diluted in xylene at 5, 10, and 20 mg/kg body weight (CPF-5, CPF-10, and CPF-20) orally daily for 15 days. Xylene and control groups received xylene alone (1 ml/kg BW) and physiological saline, respectively. At various times during/after the exposure regimens, different immune end-points were analyzed in the birds. Humoral immunity was examined by assessing antibody responses to sheep red blood cells. Cell-mediated immunity was measured via lymphoproliferative responses to avian tuberculin. Leukocyte phagocytic ability was measured using a carbon clearance assay. Results showed that CPF administered to broiler chicks caused a dose-dependent decrease in humoral immunity, cell-mediated immunity, and phagocytic activity. Dose- and time-related pathological changes were observed in bursa of Fabricius, spleen, and thymus in treated birds. These changes were mild, moderate, and severe, respectively, in the 5, 10, and 20 mg/kg CPF groups. The Bursa of Fabricius in treated birds showed increased inter-follicular connective tissue proliferation, severe moderate cytoplasmic vacuolation, edema, and degenerative changes such as pyknosis and fragmentation of nuclei that depleted the follicles of lymphoid cells. In the spleen, disorganization of follicular patterns, severe congestion, cytoplasmic vacuolation, degenerative changes, and hyperplasia of reticular cells were noted. The thymus in treated birds exhibited congestion, hyper-cellularity, and a presence of immature monocytes in the medullary region, as well as myoid cell necrosis. Taken together, these studies clearly demonstrated that chlorpyrifos could induce immunotoxicities in broiler birds.

  16. Clinical and immunopathological corneal phenotype in homozygotes for the BIGH3 R124H mutation.

    PubMed

    Diaper, C J M; Schorderet, D F; Chaubert, P; Munier, F L

    2005-01-01

    A family was previously reported as suffering from severe granular dystrophy. The phenotypic picture suggested a mix of homozygous and heterozygous family members. Genetic analysis confirms the homozygousity in the patients most severely affected, but shows the disease state to be one of Avellino corneal dystrophy. The previous case reports are extended immunohistological staining using polyclonal antibodies raised against keratofepithelin. This genotype/phenotype correlation study is consistent with incomplete dominance.

  17. The translational value of non-human primates in preclinical research on infection and immunopathology.

    PubMed

    't Hart, Bert A; Bogers, Willy M; Haanstra, Krista G; Verreck, Frank A; Kocken, Clemens H

    2015-07-15

    The immune system plays a central role in the defense against environmental threats - such as infection with viruses, parasites or bacteria - but can also be a cause of disease, such as in the case of allergic or autoimmune disorders. In the past decades the impressive development of biotechnology has provided scientists with biological tools for the development of highly selective treatments for the different types of disorders. However, despite some clear successes the translation of scientific discoveries into effective treatments has remained challenging. The often-disappointing predictive validity of the preclinical animal models that are used in the selection of the most promising vaccine or drug candidates is the Achilles heel in the therapy development process. This publication summarizes the relevance and usage of non-human primates as pre-clinical model in infectious and autoimmune diseases, in particular for biologicals, which due to their high species-specificity are inactive in lower species.

  18. Antigen presenting cells in situ: their identification and involvement in immunopathology.

    PubMed Central

    Poulter, L W

    1983-01-01

    Macrophages and other dendritic non-lymphoid cells have been shown to be functionally capable of presenting antigen to induce lymphocyte responses. These cells can now be studied in situ and distinguished, one from another, within normal tissues and sites of cellular infiltration. Analysis of the microenvironment within which these cells are found can be made with immunohistological methods using monoclonal antibodies (McAbs) and cytochemical techniques. In some cases McAbs are specific for particular types of antigen presenting cell. Using such reagents, evidence is accumulating that these cells may be intimately involved in the pathogenesis of immunoregulatory disorders. What is now required is a more definitive correlation between functional capacity and cell phenotype established with cells isolated from blood, and from normal and pathological tissues. If this is possible the immunopathologist may be able, not only to analyse complex microenvironments but also directly determine the interactions and mechanisms at play within the diseased tissues. PMID:6352095

  19. Immunopathology of experimental autoallergic sialadenitis in C3H/He mice.

    PubMed Central

    Hayashi, Y; Hirokawa, K

    1989-01-01

    We have shown that autoallergic sialadenitis develops in C3H/He (H-2k) mice thymectomized 3 days after birth and then immunized at 4 or 6 weeks of age with a homogenate of the submandibular salivary gland emulsified in Freund's complete adjuvant. Significant inflammatory changes did not develop in other inbred strains, such as BALB/c (H-2d), and C57BL/6 (H-2b) mice, examined by the same experimental protocol, or in the control groups, i.e. animals thymectomized at day 3 but not immunized, and animals not thymectomized but immunized. The cellular infiltrates observed in C3H/He mice with sialadenitis consisted of small and medium-sized lymophocytes stained with anti-Thy-1.2 antibody (the major proportion positive with anti-L3T4 and the lesser, with anti-Lyt 2). Anti-salivary duct antibodies were detected frequently in the sera of the C3H/He mice with sialadenitis. Images Fig. 1 PMID:2784749

  20. PD-L2 negatively regulates Th1-mediated immunopathology during Fasciola hepatica infection

    PubMed Central

    Stempin, Cinthia C.; Motrán, Claudia C.; Aoki, María P.; Falcón, Cristian R.

    2016-01-01

    Macrophage plasticity is critical for controlling inflammation including those produced by helminth infections, where alternatively activated macrophages (AAM) are accumulated in tissues. AAM expressing the co-inhibitory molecule programmed death ligand 2 (PD-L2), which is capable of binding programmed death 1 (PD-1) expressed on activated T cells, have been demonstrated in different parasitic infections. However, the role of PD-L2 during F. hepatica infection has not yet been explored. We observed that F. hepatica infection or a F. hepatica total extract (TE) injection increased the expression of PD-L2 on peritoneal macrophages. In addition, the absence of PD-L2 expression correlated with an increase in susceptibility to F. hepatica infection, as evidenced by the shorter survival and increased liver damage observed in PD-L2 deficient (KO) mice. We assessed the contribution of the PD-L2 pathway to Th2 polarization during this infection, and found that the absence of PD-L2 caused a diminished Th2 type cytokine production by TE stimulated splenocytes from PD-L2 KO infected compared with WT mice. Besides, splenocytes and intrahepatic leukocytes from infected PD-L2 KO mice showed higher levels of IFN-γ than those from WT mice. Arginase expression and activity and IL-10 production were reduced in macrophages from PD-L2 KO mice compared to those from WT mice, revealing a strong correlation between PD-L2 expression and AAM polarization. Taken together, our data indicate that PD-L2 expression in macrophages is critical for AAM induction and the maintenance of an optimal balance between the Th1- and Th2-type immune responses to assure host survival during F. hepatica infection. PMID:27783986

  1. Dual roles of endogenous and exogenous galectin-1 in the control of testicular immunopathology

    PubMed Central

    Pérez, Cecilia V.; Gómez, Leticia G.; Gualdoni, Gisela S.; Lustig, Livia; Rabinovich, Gabriel A.; Guazzone, Vanesa A.

    2015-01-01

    Galectin-1 (Gal-1), a proto-type member of galectin family, is highly expressed in immune privileged sites, including the testis. However, in spite of considerable progress the relevance of endogenous and exogenous Gal-1 in testis pathophysiology have not yet been explored. Here we evaluated the in vivo roles of Gal-1 in experimental autoimmune orchitis (EAO), a well-established model of autoimmune testicular inflammation associated with subfertility and infertility. A significant reduction in the incidence and severity of EAO was observed in mice genetically deficient in Gal-1 (Lgals1−/−) versus wild-type (WT) mice. Testicular histopathology revealed the presence of multifocal testicular damage in WT mice characterized by an interstitial mononuclear cell infiltrate and different degrees of germ cell sloughing of seminiferous tubules. TUNEL assay and assessment of active caspase-3 expression, revealed the prevalence of apoptotic spermatocytes mainly localized in the adluminal compartment of seminiferous tubules in EAO mice. A significant increased number of TUNEL-positive germ cells was detected in EAO testis from WT compared with Lgals1−/− mice. In contrast, exogenous administration of recombinant Gal-1 to WT mice undergoing EAO attenuated the severity of the disease. Our results unveil a dual role of endogenous versus exogenous Gal-1 in the control of autoimmune testis inflammation. PMID:26223819

  2. Immunopathologic effects of scorpion venom on hepato-renal tissues: Involvement of lipid derived inflammatory mediators.

    PubMed

    Lamraoui, Amal; Adi-Bessalem, Sonia; Laraba-Djebari, Fatima

    2015-10-01

    Scorpion venoms are known to cause different inflammatory disorders through complex mechanisms in various tissues. In the study here, the involvement of phospholipase A2 (PLA2) and cyclo-oxygenase (COX)-derived metabolites in hepatic and renal inflammation responses were examined. Mice were envenomed with Androctonus australis hector scorpion venom in the absence or presence of inhibitors that can interfere with lipid inflammatory mediator synthesis, i.e., dexamethasone (PLA2 inhibitor), indomethacin (non-selective COX-1/COX-2 inhibitor), or celecoxib (selective COX-2 inhibitor). The inflammatory response was assessed by evaluating vascular permeability changes, inflammatory cell infiltration, oxidative/nitrosative stress marker levels, and by histologic and functional analyses of the liver and kidney. Results revealed that the venom alone induced an inflammatory response in this tissues marked by increased microvascular permeability and inflammatory cell infiltration, increases in levels of nitric oxide and lipid peroxidation, and decreases in antioxidant defense. Moreover, significant alterations in the histological architecture of these organs were associated with increased serum levels of some metabolic enzymes, as well as urea and uric acid. Pre-treatment of mice with dexamethasone led to significant decreases of the inflammatory disorders in the hepatic parenchyma; celecoxib pre-treatment seemed to be more effective against renal inflammation. Indomethacin pre-treatment only slightly reduced the inflammatory disorders in the tissues. These results suggest that the induced inflammation response in liver was mediated mainly by PLA2 activation, while the renal inflammatory process was mediated by prostaglandin formation by COX-2. These findings provide additional insight toward the understanding of activated pathways and related mechanisms involved in scorpion envenoming syndrome.

  3. Virus diseases of the salmonidae in the western United States. III. Immunopathological aspects

    USGS Publications Warehouse

    Klontz, George W.; Yasutake, William T.; Parisot, T.J.

    1965-01-01

    The immune response among fish, from a phylogenetic standpoint, presents a progressive pattern of increasing development. The cyclostomes have been shown to have only feeble immunologic responsiveness. One of their number, the hagfish, appeared to be totally lacking in the ability to actively acquire antibodies.Among the elasmobranchs, the sharks have received the most study immunologically. This group demonstrated a variable response to antigenic stimulationOf the teleosts, the salmonids and the cyprinids have been the more frequent recipients of experimentally introduced antigens. These fishes, as well as other species of teleosts, are quite active and quite consistent in their response to various antigens.

  4. Pulmonary eosinophils and their role in immunopathologic responses to formalin-inactivated pneumonia virus of mice

    PubMed Central

    Percopo, Caroline M.; Qiu, Zhijun; Phipps, Simon; Foster, Paul S.; Domachowske, Joseph B.; Rosenberg, Helene F.

    2009-01-01

    Enhanced disease is the term used to describe the aberrant Th2 skewed responses to naturally-acquired human respiratory syncytial virus (hRSV) infection observed in individuals vaccinated with formalin-inactivated viral antigens. Here we explore this paradigm with pneumonia virus of mice (PVM), a pathogen that faithfully reproduces features of severe hRSV infection in a rodent host. We demonstrate that PVM infection in mice vaccinated with formalin-inactivated antigens from PVM-infected cells (PVM Ags) yields Th2-skewed hypersensitivity, analogous to that observed in response to hRSV. Specifically, we detect elevated levels of IL-4, IL-5, IL-13, and eosinophils in bronchoalveolar lavage (BAL) fluid of PVM-infected mice that were vaccinated with PVM Ags, but not among mice vaccinated with formalin-inactivated antigens from uninfected cells (Ctrl Ags). Interestingly, infection in PVM Ag-vaccinated mice was associated with a ~10-fold reduction in lung virus titer and protection against weight loss when compared to infected mice vaccinated with Ctrl Ags, despite the absence of serum neutralizing antibodies. Given recent findings documenting a role for eosinophils in promoting clearance of hRSV in vivo, we explored the role of eosinophils in altering the pathogenesis of disease with eosinophil-deficient mice. We found that eosinophil deficiency had no impact on virus titer in PVM Ags-vaccinated mice, nor on weight loss or levels of CCL11 (eotaxin-1), interferon-γ, interleukin (IL)-5, or IL-13 in BAL fluid. However, levels of both IL-4 and CCL3 (macrophage inflammatory protein-1α) in BAL fluid were markedly diminished in PVM Ag-vaccinated, PVM-infected eosinophil-deficient mice when compared to wild type controls (246 words). PMID:19542471

  5. Dual roles of endogenous and exogenous galectin-1 in the control of testicular immunopathology.

    PubMed

    Pérez, Cecilia V; Gómez, Leticia G; Gualdoni, Gisela S; Lustig, Livia; Rabinovich, Gabriel A; Guazzone, Vanesa A

    2015-07-30

    Galectin-1 (Gal-1), a proto-type member of galectin family, is highly expressed in immune privileged sites, including the testis. However, in spite of considerable progress the relevance of endogenous and exogenous Gal-1 in testis pathophysiology have not yet been explored. Here we evaluated the in vivo roles of Gal-1 in experimental autoimmune orchitis (EAO), a well-established model of autoimmune testicular inflammation associated with subfertility and infertility. A significant reduction in the incidence and severity of EAO was observed in mice genetically deficient in Gal-1 (Lgals1(-/-)) versus wild-type (WT) mice. Testicular histopathology revealed the presence of multifocal testicular damage in WT mice characterized by an interstitial mononuclear cell infiltrate and different degrees of germ cell sloughing of seminiferous tubules. TUNEL assay and assessment of active caspase-3 expression, revealed the prevalence of apoptotic spermatocytes mainly localized in the adluminal compartment of seminiferous tubules in EAO mice. A significant increased number of TUNEL-positive germ cells was detected in EAO testis from WT compared with Lgals1(-/-) mice. In contrast, exogenous administration of recombinant Gal-1 to WT mice undergoing EAO attenuated the severity of the disease. Our results unveil a dual role of endogenous versus exogenous Gal-1 in the control of autoimmune testis inflammation.

  6. The host immune response in respiratory virus infection: balancing virus clearance and immunopathology.

    PubMed

    Newton, Amy H; Cardani, Amber; Braciale, Thomas J

    2016-07-01

    The respiratory tract is constantly exposed to the external environment, and therefore, must be equipped to respond to and eliminate pathogens. Viral clearance and resolution of infection requires a complex, multi-faceted response initiated by resident respiratory tract cells and innate immune cells and ultimately resolved by adaptive immune cells. Although an effective immune response to eliminate viral pathogens is essential, a prolonged or exaggerated response can damage the respiratory tract. Immune-mediated pulmonary damage is manifested clinically in a variety of ways depending on location and extent of injury. Thus, the antiviral immune response represents a balancing act between the elimination of virus and immune-mediated pulmonary injury. In this review, we highlight major components of the host response to acute viral infection and their role in contributing to mitigating respiratory damage. We also briefly describe common clinical manifestations of respiratory viral infection and morphological correlates. The continuing threat posed by pandemic influenza as well as the emergence of novel respiratory viruses also capable of producing severe acute lung injury such as SARS-CoV, MERS-CoV, and enterovirus D68, highlights the need for an understanding of the immune mechanisms that contribute to virus elimination and immune-mediated injury.

  7. Serology of Lupus Erythematosus: Correlation between Immunopathological Features and Clinical Aspects

    PubMed Central

    Cozzani, Emanuele; Drosera, Massimo; Parodi, Aurora

    2014-01-01

    Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by the aberrant production of a broad and heterogenous group of autoantibodies. Even though the presence of autoantibodies in SLE has been known, for more than 60 years, still nowadays a great effort is being made to understand the pathogenetic, diagnostic, and prognostic meaning of such autoantibodies. Antibodies to ds-DNA are useful for the diagnosis of SLE, to monitor the disease activity, and correlate with renal and central nervous involvements. Anti-Sm antibodies are highly specific for SLE. Anti-nucleosome antibodies are an excellent marker for SLE and good predictors of flares in quiescent lupus. Anti-histone antibodies characterize drug-induced lupus, while anti-SSA/Ro and anti-SSB/La antibodies are associated with neonatal lupus erythematosus and photosensitivity. Anti-ribosomal P antibodies play a role in neuropsychiatric lupus, but their association with clinical manifestations is still unclear. Anti-phospholipid antibodies are associated with the anti-phospholipid syndrome, cerebral vascular disease, and neuropsychiatric lupus. Anti-C1q antibodies amplify glomerular injury, and the elevation of their titers may predict renal flares. Anti-RNP antibodies are a marker of Sharp's syndrome but can be found in SLE as well. Anti-PCNA antibodies are present in 5–10% of SLE patients especially those with arthritis and hypocomplementemia. PMID:24649358

  8. Viral targeting of fibroblastic reticular cells contributes to immunosuppression and persistence during chronic infection.

    PubMed

    Mueller, Scott N; Matloubian, Mehrdad; Clemens, Daniel M; Sharpe, Arlene H; Freeman, Gordon J; Gangappa, Shivaprakash; Larsen, Christian P; Ahmed, Rafi

    2007-09-25

    Many chronic viral infections are marked by pathogen persistence and a generalized immunosuppression. The exact mechanisms by which this occurs are still unknown. Using a mouse model of persistent lymphocytic choriomeningitis virus (LCMV) infection, we demonstrate viral targeting of fibroblastic reticular cells (FRC) in the lymphoid organs. The FRC stromal networks are critical for proper lymphoid architecture and function. High numbers of FRC were infected by LCMV clone 13, which causes a chronic infection, whereas few were infected by the acute strain, LCMV Armstrong. The function of the FRC conduit network was altered after clone 13 infection by the action of CD8(+) T cells. Importantly, expression of the inhibitory programmed death ligand 1, which was up-regulated on FRC after infection, reduced early CD8(+) T cell-mediated immunopathology and prevented destruction of the FRC architecture in the spleen. Together, this reveals an important tropism during a persistent viral infection. These data also suggest that the inhibitory PD-1 pathway, which likely evolved to prevent excessive immunopathology, may contribute to viral persistence in FRC during chronic infection.

  9. Endomembrane Ca2+ -ATPases play significant role in virus-induced adaptation to oxidative stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In our recently published paper (Plant Cell Environ 34: 406-417) we have reported a phenomenon of Potato Virus X (PVX) - induced cross tolerance to oxidative stress in Nicotiana benthamiana plants and showed a critical role of plasma membrane Ca2+/H+ exchangers in this process. The current study fol...

  10. A VIRUS-INDUCED MAMMALIAN GROWTH WITH THE CHARACTERS OF A TUMOR (THE SHOPE RABBIT PAPILLOMA)

    PubMed Central

    Rous, Peyton; Beard, J. W.

    1934-01-01

    Rabbit papillomas developing on the skin as the result of virus inoculation can be readily transferred to the inner organs of favorable hosts by implanting bits of the living tissue. The growths thus produced proliferate actively as a rule and frequently cause death. Often they are markedly invasive and destructive; and they tend to recur after excision. Bacterial infection may greatly enhance their malignancy. Accidental dissemination may occur during operation, and distribution to the peritoneal surface has been repeatedly noted. There may be no cellular reaction whatever about the invading epithelium of interior growths, but usually some new formation of connective tissue takes place, its amount varying inversely with the rate of epithelial proliferation. An immediate reason exists for the inflammatory changes and scarring found beneath long-established skin papillomas, in the trauma and secondary infection to which the projecting, necrotizing masses have been subjected. In animals dying of progressively enlarging interior growths the skin papilloma may long have been stationary in size. The growths appearing after the transfer of papillomatous tissue to the inner organs are due to the survival and multiplication of transplanted cells. However, the virus can be readily recovered from them, in the case of wild rabbits. No distinctive changes in the blood of the host have been found. The virus itself is highly specific for the epithelium of the skin, failing to act not only upon that of the other organs thus far tested but even upon embryonic skin. The papilloma frequently penetrates into the blood and lymph vessels, especially at the edge of implantation growths. The intravascular injection of fragments of it sometimes results in pulmonary nodules of characteristic morphology. These are due to survival and proliferation of the injected cells. Secondary nodules have been encountered at autopsy in a lymph gland and in the lungs, but under conditions more suggestive of operative dissemination of the growth than of true metastasis. Implantation growths of the papilloma in favorable hosts have the morphology of epidermoid tumors of greater or less malignancy. They behave as these do and elicit similar changes in the surrounding tissue. The attributes and potentialities of the papilloma will be further considered in Papers II and III. PMID:19870333

  11. Varicella-zoster virus induces the formation of dynamic nuclear capsid aggregates

    SciTech Connect

    Lebrun, Marielle; Thelen, Nicolas; Thiry, Marc; Riva, Laura; Ote, Isabelle; Condé, Claude; Vandevenne, Patricia; Di Valentin, Emmanuel; Bontems, Sébastien; Sadzot-Delvaux, Catherine

    2014-04-15

    The first step of herpesviruses virion assembly occurs in the nucleus. However, the exact site where nucleocapsids are assembled, where the genome and the inner tegument are acquired, remains controversial. We created a recombinant VZV expressing ORF23 (homologous to HSV-1 VP26) fused to the eGFP and dually fluorescent viruses with a tegument protein additionally fused to a red tag (ORF9, ORF21 and ORF22 corresponding to HSV-1 UL49, UL37 and UL36). We identified nuclear dense structures containing the major capsid protein, the scaffold protein and maturing protease, as well as ORF21 and ORF22. Correlative microscopy demonstrated that the structures correspond to capsid aggregates and time-lapse video imaging showed that they appear prior to the accumulation of cytoplasmic capsids, presumably undergoing the secondary egress, and are highly dynamic. Our observations suggest that these structures might represent a nuclear area important for capsid assembly and/or maturation before the budding at the inner nuclear membrane. - Highlights: • We created a recombinant VZV expressing the small capsid protein fused to the eGFP. • We identified nuclear dense structures containing capsid and procapsid proteins. • Correlative microscopy showed that the structures correspond to capsid aggregates. • Procapsids and partial capsids are found within the aggregates of WT and eGFP-23 VZV. • FRAP and FLIP experiments demonstrated that they are dynamic structures.

  12. Marek's Disease Virus-Induced Immunosuppression: Array Analysis of Chicken Immune Response Gene Expression Profiling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Marek’s disease (MD) is a lymphoproliferative disease of chickens induced by a highly cell-associated oncogenic alpha-herpesvirus, Marek’s disease virus (MDV). MDV replicates in chicken lymphocytes and establishes a latency infection within CD4+ T cells. Host-virus interaction, immune responses to...

  13. Marek's disease virus-induced immunosuppression: array analysis of chicken immune response gene expression profiling.

    PubMed

    Heidari, Mohammad; Sarson, Aimie J; Huebner, Marianne; Sharif, Shayan; Kireev, Dmitry; Zhou, Huaijun

    2010-06-01

    Marek's disease (MD) is a lymphoproliferative disease of chickens induced by a highly cell-associated oncogenic alpha-herpesvirus, Marek's disease virus (MDV). MDV replicates in chicken lymphocytes and establishes a latency infection within CD4(+) T cells. Host-virus interaction, immune responses to infection, and transcriptional profiling of chicken gene expression in MD are poorly understood. In this study we conducted a global host gene expression analysis in the splenocytes of MDV-infected chickens using oligonucleotide-based Affymetrix GeneChip Chicken Genome Arrays. These arrays contain probes for more than 32,000 chicken transcripts and most of the known MDV genes and open reading frames. Two-week-old MD-susceptible chickens were inoculated with an oncogenic strain of MDV, and spleen samples were collected 5 and 15 days post-infection (dpi) for RNA isolation and microarray analysis. Array results displayed a significant differential pattern of immune response transcriptome between the two phases of MDV infection. The expression levels of more than 22 immune-response and related genes were downregulated, while the expression levels of at least 58 genes were increased at 5 dpi (cytolytic infection), compared to age-matched control birds. In comparison, out of 73 immune-response and related genes, 67 genes were downregulated, with only 6 genes having higher expression levels at 15 dpi (latency infection). Cytokines, chemokines, MHC molecules and related receptors, and adhesion molecules were among the many MDV-induced downregulated genes that are critical for an effective antiviral immune response. In addition, several apoptosis-associated genes were decreased in expression during latent infection, suggesting an MDV-induced blocking of initiation or progression of programmed cell death processes. These chicken arrays are valuable tools in understanding the molecular mechanisms behind viral pathogenesis and chicken gene expression patterns, and associated biological pathways in response to MDV infection.

  14. Sirtuin 1 Regulates Dendritic Cell Activation and Autophagy during Respiratory Syncytial Virus-Induced Immune Responses.

    PubMed

    Owczarczyk, Anna B; Schaller, Matthew A; Reed, Michelle; Rasky, Andrew J; Lombard, David B; Lukacs, Nicholas W

    2015-08-15

    Respiratory syncytial virus (RSV) is the major cause of lower respiratory tract infection in children worldwide. Sirtuin 1 (SIRT1), an NAD(+)-dependent deacetylase, has been associated with the induction of autophagy and the regulation of inflammatory mediators. We found that Sirt1 was upregulated in mouse lung after RSV infection. Infected animals that received EX-527, a selective SIRT1 inhibitor, displayed exacerbated lung pathology, with increased mucus production, elevated viral load, and enhanced Th2 cytokine production. Gene expression analysis of isolated cell populations revealed that Sirt1 was most highly upregulated in RSV-treated dendritic cells (DCs). Upon RSV infection, EX-527-treated DCs, Sirt1 small interfering RNA-treated DCs, or DCs from conditional knockout (Sirt1(f/f)-CD11c-Cre(+)) mice showed downregulated inflammatory cytokine gene expression and attenuated autophagy. Finally, RSV infection of Sirt1(f/f)-CD11c-Cre(+) mice resulted in altered lung and lymph node cytokine responses, leading to exacerbated pathology. These data indicate that SIRT1 promotes DC activation associated with autophagy-mediated processes during RSV infection, thereby directing efficient antiviral immune responses.

  15. Antibodies against nonstructural protein 1 protect mice from dengue virus-induced mast cell activation.

    PubMed

    Chu, Ya-Ting; Wan, Shu-Wen; Chang, Yu-Chang; Lee, Chien-Kuo; Wu-Hsieh, Betty A; Anderson, Robert; Lin, Yee-Shin

    2017-02-27

    Dengue virus (DENV) infection causes dengue fever, dengue hemorrhagic fever (DHF), and dengue shock syndrome (DSS). DHF/DSS patients have been reported to have increased levels of urinary histamine, chymase, and tryptase, which are major granule-associated mediators from mast cells. Previous studies also showed that DENV-infected human mast cells induce production of proinflammatory cytokines and chemokines, suggesting a role played by mast cells in vascular perturbation as well as leukocyte recruitment. In this study, we show that DENV but not UV-inactivated DENV enhanced degranulation of mast cells and production of chemokines (MCP-1, RANTES, and IP-10) in a mouse model. We have previously shown that antibodies (Abs) against a modified DENV nonstructural protein 1 (NS1), designated DJ NS1, provide protection in mice against DENV challenge. In the present study, we investigate the effects of DJ NS1 Abs on mast cell-associated activities. We showed that administration of anti-DJ NS1 Abs into mice resulted in a reduction of mast cell degranulation and macrophage infiltration at local skin DENV infection sites. The production of DENV-induced chemokines (MCP-1, RANTES, and IP-10) and the percentages of tryptase-positive activated mast cells were also reduced by treatment with anti-DJ NS1 Abs. These results indicate that Abs against NS1 protein provide multiple therapeutic benefits, some of which involve modulating DENV-induced mast cell activation.Laboratory Investigation advance online publication, 27 February 2017; doi:10.1038/labinvest.2017.10.

  16. Pathogenesis of the delayed phase of Rauscher virus-induced thrombocytopenia

    SciTech Connect

    Grau, G.E.; Morrow, D.; Izui, S.; Lambert, P.H.

    1986-01-01

    BALB/c (H-2/sup d/) mice injected with Rauscher murine leukemia virus (RMuLV) developed two phases of thrombocytopenia: an acute phase, probably due to direct virus-platelet interactions, and a delayed phase, starting 2 to 3 wk after virus injection, which was associated with the infection of megakaryocytes by RMuLV and with the expression of RMuLV gp70 and p30 antigens on platelet membranes. This study was concerned with the pathogenesis of this second phase of thrombocytopenia. During this period, the number of marrow megakaryocytes was increased. A peripheral platelet destruction was further indicated by reduced platelet life span. It was shown that radiolabeled platelets, either normal or infected, were submitted to a more rapid clearance in infected recipients than in normal recipients. This might be due to the splenomegaly observed in infected recipients. However, the immediate clearance of gp70/sup +/ platelets was more accelerated in infected recipients with high titers of serum anti-gp70 antibodies than in infected recipients without detectable serum anti-gp70 antibodies. These results suggest that specific clearance of gp70/sup +/ platelets in the presence of significant amounts of serum antiviral antibodies and nonspecific hypersplenism play a role in the development of delayed thrombocytopenia in RMuLV-infected mice.

  17. Depletion of Alveolar Macrophages Ameliorates Virus-Induced Disease following a Pulmonary Coronavirus Infection

    PubMed Central

    Hartwig, Stacey M.; Holman, Kaitlyn M.; Varga, Steven M.

    2014-01-01

    Coronaviruses cause respiratory disease in humans that can range from mild to severe. However, the pathogenesis of pulmonary coronavirus infections is poorly understood. Mouse hepatitis virus type 1 (MHV-1) is a group 2 coronavirus capable of causing severe morbidity and mortality in highly susceptible C3H/HeJ mice. We have previously shown that both CD4 and CD8 T cells play a critical role in mediating MHV-1-induced disease. Here we evaluated the role of alveolar macrophages (AM) in modulating the adaptive immune response and subsequent disease. Depletion of AM using clodronate liposomes administered prior to MHV-1 infection was associated with a significant amelioration of MHV-1-induced morbidity and mortality. AM depletion resulted in a decreased number of virus-specific CD4 T cells in the lung airways. In addition, a significant increase in the frequency and total number of Tregs in the lung tissue and lung airways was observed following MHV-1 infection in mice depleted of AM. Our results indicate that AM play a critical role in modulating MHV-1-induced morbidity and mortality. PMID:24608125

  18. Recent insights into pulmonary repair following virus-induced inflammation of the respiratory tract

    PubMed Central

    Gorski, Stacey A.; Hufford, Matthew M.; Braciale, Thomas J.

    2012-01-01

    A hallmark of infection by respiratory viruses is productive infection of and the subsequent destruction of the airway epithelium. These viruses can also target other stromal cell types as well as in certain instances, CD45+ hematopoietic cells either resident in the lungs or part of the inflammatory response to infection. The mechanisms by which the virus produces injury to these cell types include direct infection with cytopathic effects as a consequence of replication. Host mediated damage is also a culprit in pulmonary injury as both innate and adaptive immune cells produce soluble and cell-associated pro-inflammatory mediators. Recently, it has become increasingly clear that in addition to control of excess inflammation and virus elimination, the resolution of infection requires an active repair process, which is necessary to regain normal respiratory function and restore the lungs to homeostasis. The repair response must re-establish the epithelial barrier and regenerate the microarchitecture of the lung. Emerging areas of research have highlighted the importance of innate immune cells, particularly the newly described innate lymphoid cells, as well as alternatively activated macrophages and pulmonary stem cells in the repair process. The mechanisms by which respiratory viruses may impede or alter the repair response will be important areas of research for identifying therapeutic targets aimed at limiting virus and host mediated injury and expediting recovery. PMID:22608464

  19. The equine arteritis virus induces apoptosis via caspase-8 and mitochondria-dependent caspase-9 activation.

    PubMed

    St-Louis, Marie-Claude; Archambault, Denis

    2007-10-10

    We have previously showed that equine arteritis virus (EAV), an arterivirus, induces apoptosis in vitro. To determine the caspase activation pathways involved in EAV-induced apoptosis, target cells were treated with peptide inhibitors of apoptosis Z-VAD-FMK (pan-caspase inhibitor), Z-IETD-FMK (caspase-8-specific inhibitor) or Z-LEHD-FMK (caspase-9-specific inhibitor) 4 h prior to infection with the EAV T1329 Canadian isolate. Significant inhibition of apoptosis was obtained with all peptide inhibitors used. Furthermore, apoptosis was inhibited in cells expressing the R1 subunit of herpes simplex virus type 2 ribonucleotide reductase (HSV2-R1) or hsp70, two proteins which are known to inhibit apoptosis associated with caspase-8 activation and cytochrome c release-dependent caspase-9 activation, respectively. Given the activation of Bid and the translocation of cytochrome c within the cytoplasm, the overall results indicate that EAV induces apoptosis initiated by caspase-8 activation and subsequent mitochondria-dependent caspase-9 activation.

  20. Follicular dendritic cell disruption as a novel mechanism of virus-induced immunosuppression

    PubMed Central

    Melzi, Eleonora; Caporale, Marco; Rocchi, Mara; Martín, Verónica; Gamino, Virginia; di Provvido, Andrea; Marruchella, Giuseppe; Entrican, Gary; Sevilla, Noemí; Palmarini, Massimo

    2016-01-01

    Arboviruses cause acute diseases that increasingly affect global health. We used bluetongue virus (BTV) and its natural sheep host to reveal a previously uncharacterized mechanism used by an arbovirus to manipulate host immunity. Our study shows that BTV, similarly to other antigens delivered through the skin, is transported rapidly via the lymph to the peripheral lymph nodes. Here, BTV infects and disrupts follicular dendritic cells, hindering B-cell division in germinal centers, which results in a delayed production of high affinity and virus neutralizing antibodies. Moreover, the humoral immune response to a second antigen is also hampered in BTV-infected animals. Thus, an arbovirus can evade the host antiviral response by inducing an acute immunosuppression. Although transient, this immunosuppression occurs at the critical early stages of infection when a delayed host humoral immune response likely affects virus systemic dissemination and the clinical outcome of disease. PMID:27671646

  1. Apparent feline leukemia virus-induced chronic lymphocytic leukemia and response to treatment.

    PubMed

    Kyle, Kristy N; Wright, Zachary

    2010-04-01

    Chylothorax secondary to chronic lymphocytic leukemia (CLL) was diagnosed in a feline leukemia virus (FeLV)-positive 8-year-old castrated male domestic shorthair feline. The leukemia resolved following therapy with chlorambucil, prednisone, cyclophosphamide, doxorubicin, and lomustine. To our knowledge, this is the first reported case of CLL in an FeLV-positive cat. Although a causative relationship cannot be proven, patients diagnosed with either disease may benefit from diagnostics to rule out the presence of the other concurrent condition.

  2. Molecular pathogenesis of feline leukemia virus-induced malignancies: insertional mutagenesis.

    PubMed

    Fujino, Yasuhito; Ohno, Koichi; Tsujimoto, Hajime

    2008-05-15

    Feline leukemia virus (FeLV), which is subclassified into three subgroups of A, B and C, is a pathogenic retrovirus in cats. FeLV-A is minimally pathogenic, FeLV-C can cause pure red cell aplasia, and FeLV-B is associated with a variety of pathogenic properties such as lymphoma, leukemia and anemia. FeLV-induced neoplasms are caused, at least in part, by somatically acquired insertional mutagenesis in which the integrated provirus may activate a proto-oncogene or disrupt a tumor suppressor gene. The common integration sites for FeLV have been identified in six loci with feline lymphomas: c-myc, flvi-1, flvi-2 (contains bmi-1), fit-1, pim-1 and flit-1. Oncogenic association of the loci includes that c-myc is known as a proto-oncogene, bmi-1 and pim-1 have been recognized as myc-collaborators, fit-1 appears to be closely linked to myb, and flit-1 insertion is shown to be associated with over-expression of a cellular gene, e.g. ACVRL1. Thus, identification of common integration sites for FeLV is a tenable model to clarify oncogenesis. Recent advances in molecular biology and cytogenetics have developed to rapidly detect numbers of retroviral integration sites by genome-wide large-scale analyses. Especially, polymerase chain reaction (PCR)-based strategies and chromosome analyses with fluorescence in situ hybridization (FISH) will be applicable for studies on FeLV.

  3. The fusogenic state of Mayaro virus induced by low pH and by hydrostatic pressure.

    PubMed

    Freitas, Monica; Da Poian, Andrea T; Barth, Ortrud M; Rebello, Moacyr A; Silva, Jerson L; Gaspar, Luciane P

    2006-01-01

    Mayaro virus is an enveloped virus that belongs to the Alphavirus genus. To gain insight into the mechanism involved in Mayaro virus membrane fusion, we used hydrostatic pressure and low pH to isolate a fusion-active state of Mayaro glycoproteins. In response to pressure, E1 glycoprotein undergoes structural changes resulting in the formation of a stable conformation. This state was characterized and correlated to that induced by low pH as measured by intrinsic fluorescence, 4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonic acid, dipotassium salt fluorescence, fluorescence resonance energy transfer, electron microscopy, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In parallel, we used a neutralization assay to show that Mayaro virus in the fusogenic state retained most of the original immunogenic properties and could elicit high titers of neutralizing antibodies.

  4. Canine distemper virus induces apoptosis through caspase-3 and -8 activation in vero cells.

    PubMed

    Kajita, M; Katayama, H; Murata, T; Kai, C; Hori, M; Ozaki, H

    2006-08-01

    We investigated the signal-transduction pathway of canine distemper virus-Onderstepoort (CDV-Ond) vaccine strain-mediated apoptosis in Vero cells. Canine distemper virus-Onderstepoort at a multiplicity of infection (MOI) of 0.1 induced DNA fragmentation 48 h after infection. Immunofluorescence staining revealed that 57% +/- 4% of the CDV-N-protein-positive cells were terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL)-positive, and all TUNEL-positive cells were CDV-N-protein-positive, indicating that CDV-Ond induced apoptosis only in the infected cells. We also found that CDV-Ond infection induced activation of caspase-3 and caspase-8. In the semi-quantitative reverse transcription-polymerase chain reaction assay for apoptosis-related genes, the expression of mRNA of the death receptor, Fas, was also increased in CDV-Ond-infected cells. In contrast, the expressions of Bcl-2 and Bax, regulators for intrinsic apoptotic signaling through the mitochondria, did not change. These results suggest that CDV-Ond induced apoptosis by activating caspase-3, possibly through caspase-8 signaling rather than through p53/Bax-mediated, mitochondrial signaling in the infected cells.

  5. NITROTYROSINE INHIBITS RESPIRATORY SYNCTIAL VIRUS-INDUCED RANTES PRODUCTION IN HUMAN BRONCHIAL EPITHELIAL CELLS

    EPA Science Inventory

    3-Nitrotyrosine (NO2Tyr) produced during inflammation can substitute the C-terminus tyrosine of a-tubulin post-translationally altering microtubular functions. Since propagation of respiratory syncytial virus (RSV) infection may require an intact microtubular activity, we tested ...

  6. Primary virus-induced lymphomas evade T cell immunity by failure to express viral antigens

    PubMed Central

    1989-01-01

    T lymphoma induction by the mink cell focus-inducing murine leukemia virus MCF 1233 in C57BL/10 and C57BL/6 mice is influenced by a strongly Th-dependent, H-2I-A-restricted antiviral immune response (25). We compared the MHC class I as well as viral env and gag antigenic cell surface profiles of frequent T lymphomas of H-2I-A nonresponder-type mice to that of rare T lymphomas of H-2I-A responder-type mice. Membrane immunofluorescence studies, with a panel of anti-env mAbs (reactive with the highly conserved gp70f epitope, the p15Ec epitope, and the gp70-p15E complex), a polyclonal anti-p30 serum, and anti-H-2 class I mAbs, showed that all 17 nonresponder tumors tested expressed high levels of both env and gag viral proteins, and 15 of these 17 nonresponder tumors expressed high levels of H-2 class I K and D antigens. In contrast, 10 of 11 responder lymphomas lacked env and/or gag determinants. The only responder lymphoma with both strong env and gag expression failed to express H-2K and -D antigens. Preferential loss of env or gag expression did not correlate with H-2 class I allelic specificities. Both responder and nonresponder T lymphoma DNA contained multiple, predominantly MCF-like, newly acquired proviral integrations. Differences in viral antigen cell surface expression were confirmed at cytoplasmic and RNA levels. The amounts of 8.2- and 3.2-kb viral RNA were greatly reduced in two responder lymphomas when compared with four nonresponder lymphomas. In both responder lymphomas, aberrantly sized viral RNA species were found. Upon in vivo passage of these responder lymphomas in either immunocompetent or T cell-deficient nu/nu mice, it was found that various molecular mechanisms may underlie the lack of viral antigen expression at the cell surface of these lymphomas. One lymphoma re-expressed viral antigens when transplanted with nu/nu mice, whereas the other remained stably gag negative. The combined findings indicate that an H-2I-A-regulated antiviral immune response not only strongly reduces T lymphoma incidence, but also forces T lymphomas that still arise to poorly express viral antigens, thus explaining their escape from immunosurveillance. PMID:2538550

  7. Demyelination precedes oligodendrocyte loss in canine distemper virus-induced encephalitis.

    PubMed

    Schobesberger, M; Zurbriggen, A; Doherr, M G; Weissenböck, H; Vandevelde, M; Lassmann, H; Griot, C

    2002-01-01

    Canine distemper virus (CDV), a negative-stranded RNA morbillivirus, causes a persistent infection within the central nervous system resulting in a progressive, multifocal demyelinating disease. Demyelination is thought to be caused by a selective alteration of the myelin-producing oligodendrocytes. Metabolic impairment and morphological changes of the oligodendrocytes after CDV infection have previously been observed in vitro as well as in vivo. Until now it has been suggested that the oligodendrocytes completely disappear from CDV-induced demyelinating lesions. However, ultrastructural analysis in brain tissue sections and immunohistochemical examination of oligodendrocytes in dog brain cell cultures contradicted these observations. In this study oligodendrocytes from different categories of CDV-induced lesions were examined by in situ hybridization for proteolipid protein mRNA and--as a new tool employed on canine brain tissue sections--by immunohistochemistry using a monoclonal antibody against 2',3'-cyclic nucleotide 3'-phosphodiesterase, a myelin-specific enzyme. A down-regulation in the myelin gene transcription was detected already before demyelination occurred. However, a decrease in the number of oligodendrocytes was not observed until demyelination became evident. Although there was further depletion of oligodendrocytes in plaques with progressive demyelination, we demonstrated for the first time that these cells were still present in a significant amount even in chronic, completely demyelinated distemper lesions.

  8. NSm protein of Rift Valley fever virus suppresses virus-induced apoptosis.

    PubMed

    Won, Sungyong; Ikegami, Tetsuro; Peters, C J; Makino, Shinji

    2007-12-01

    Rift Valley fever virus (RVFV) is a member of the genus Phlebovirus within the family Bunyaviridae. It can cause severe epidemics among ruminants and fever, myalgia, a hemorrhagic syndrome, and/or encephalitis in humans. The RVFV M segment encodes the NSm and 78-kDa proteins and two major envelope proteins, Gn and Gc. The biological functions of the NSm and 78-kDa proteins are unknown; both proteins are dispensable for viral replication in cell cultures. To determine the biological functions of the NSm and 78-kDa proteins, we generated the mutant virus arMP-12-del21/384, carrying a large deletion in the pre-Gn region of the M segment. Neither NSm nor the 78-kDa protein was synthesized in arMP-12-del21/384-infected cells. Although arMP-12-del21/384 and its parental virus, arMP-12, showed similar growth kinetics and viral RNA and protein accumulation in infected cells, arMP-12-del21/384-infected cells induced extensive cell death and produced larger plaques than did arMP-12-infected cells. arMP-12-del21/384 replication triggered apoptosis, including the cleavage of caspase-3, the cleavage of its downstream substrate, poly(ADP-ribose) polymerase, and activation of the initiator caspases, caspase-8 and -9, earlier in infection than arMP-12. NSm expression in arMP-12-del21/384-infected cells suppressed the severity of caspase-3 activation. Further, NSm protein expression inhibited the staurosporine-induced activation of caspase-8 and -9, demonstrating that other viral proteins were dispensable for NSm's function in inhibiting apoptosis. RVFV NSm protein is the first identified Phlebovirus protein that has an antiapoptotic function.

  9. Grape Seed Extract Attenuates Hepatitis C Virus Replication and Virus-Induced Inflammation

    PubMed Central

    Chen, Wei-Chun; Tseng, Chin-Kai; Chen, Bing-Hung; Lin, Chun-Kuang; Lee, Jin-Ching

    2016-01-01

    Hepatitis C virus (HCV) infection is a causative factor leading to hepatocellular carcinoma due to chronic inflammation and cirrhosis. The aim of the study was first to explore the effects of grape seed extract (GSE) in HCV replication, and then to study mechanisms. The results indicated that a GSE treatment showed significant anti-HCV activity and suppressed HCV-elevated cyclooxygenase-2 (COX-2) expression. In contrast, exogenous COX-2 expression gradually attenuated antiviral effects of GSE, suggesting that GSE inhibited HCV replication by suppressing an aberrant COX-2 expression caused by HCV, which was correlated with the inactivation of IKK-regulated NF-κB and MAPK/ERK/JNK signaling pathways. In addition, GSE also attenuated HCV-induced inflammatory cytokine gene expression. Notably, a combined administration of GSE with interferon or other FDA-approved antiviral drugs revealed a synergistic anti-HCV effect. Collectively, these findings demonstrate the possibility of developing GSE as a dietary supplement to treat patients with a chronic HCV infection. PMID:28066241

  10. Inhibition of respiratory syncytial virus replication and virus-induced p38 kinase activity by berberine.

    PubMed

    Shin, Han-Bo; Choi, Myung-Soo; Yi, Chae-Min; Lee, Jun; Kim, Nam-Jung; Inn, Kyung-Soo

    2015-07-01

    Respiratory syncytial virus (RSV) causes severe lower respiratory tract infection and poses a major public health threat worldwide. No effective vaccines or therapeutics are currently available; berberine, an isoquinoline alkaloid from various medicinal plants, has been shown to exert antiviral and several other biological effects. Recent studies have shown that p38 mitogen-activated protein kinase (MAPK) activity is implicated in infection by and replication of viruses such as RSV and the influenza virus. Because berberine has previously been implicated in modulating the activity of p38 MAPK, its effects on RSV infection and RSV-mediated p38 MAPK activation were examined. Replication of RSV in epithelial cells was significantly reduced by treatment with berberine. Berberine treatment caused decrease in viral protein and mRNA syntheses. Similar to previously reported findings, RSV infection caused phosphorylation of p38 MAPK at a very early time point of infection, and phosphorylation was dramatically reduced by berberine treatment. In addition, production of interleukin-6 mRNA upon RSV infection was significantly suppressed by treatment with berberine, suggesting the anti-inflammatory role of berberine during RSV infection. Taken together, we showed that berberine, a natural compound already proven to be safe for human consumption, suppresses the replication of RSV. In addition, the current study suggests that inhibition of RSV-mediated early p38 MAPK activation, which has been implicated as an early step in viral infection, as a potential molecular mechanism.

  11. Immunization with vaccinia virus induces polyfunctional and phenotypically distinctive CD8+ T cell responses

    PubMed Central

    Precopio, Melissa L.; Betts, Michael R.; Parrino, Janie; Price, David A.; Gostick, Emma; Ambrozak, David R.; Asher, Tedi E.; Douek, Daniel C.; Harari, Alexandre; Pantaleo, Giuseppe; Bailer, Robert; Graham, Barney S.; Roederer, Mario; Koup, Richard A.

    2007-01-01

    Vaccinia virus immunization provides lifelong protection against smallpox, but the mechanisms of this exquisite protection are unknown. We used polychromatic flow cytometry to characterize the functional and phenotypic profile of CD8+ T cells induced by vaccinia virus immunization in a comparative vaccine trial of modified vaccinia virus Ankara (MVA) versus Dryvax immunization in which protection was assessed against subsequent Dryvax challenge. Vaccinia virus–specific CD8+ T cells induced by both MVA and Dryvax were highly polyfunctional; they degranulated and produced interferon γ, interleukin 2, macrophage inflammatory protein 1β, and tumor necrosis factor α after antigenic stimulation. Responding CD8+ T cells exhibited an unusual phenotype (CD45RO−CD27intermediate). The unique phenotype and high degree of polyfunctionality induced by vaccinia virus also extended to inserted HIV gene products of recombinant NYVAC. This quality of the CD8+ T cell response may be at least partially responsible for the profound efficacy of these vaccines in protection against smallpox and serves as a benchmark against which other vaccines can be evaluated. PMID:17535971

  12. Herpes Simplex Virus-Induced Keratitis: Evaluation of the Role of Molecular Mimicry in Lesion Pathogenesis

    PubMed Central

    Deshpande, Shilpa P.; Lee, Sujin; Zheng, Mei; Song, Byeongwoon; Knipe, David; Kapp, Judith A.; Rouse, Barry T.

    2001-01-01

    Viruses are suspected but usually unproven triggering factors in autoimmunity. One favored mechanism to explain the role of viruses in the genesis of autoimmunity is molecular mimicry. An immunoinflammatory blinding lesion called herpetic stromal keratitis (HSK) that follows ocular infection with herpes simplex virus (HSV) is suggested to result from a CD4+ T-cell response to a UL6 peptide of HSV that cross-reacts with a corneal autopeptide shared with the immunoglobulin G2ab (IgG2ab) isotype. The present report reevaluates the molecular mimicry hypothesis to explain HSK pathogenesis. Our results failed to reveal cross-reactivity between the UL6 and IgG2ab peptides or between peptide reactive T cells and HSV antigens. More importantly, animals infected with HSV failed to develop responses that reacted with either peptide, and infection with a recombinant vaccinia UL6 vector failed to cause HSK, in spite of generating UL6 reactivity. Other lines of evidence also failed to support the molecular mimicry hypothesis, such as the failure to affect HSK severity upon tolerization of susceptible BALB/c and B-cell-deficient mice with IgG2ab or UL6 peptides. An additional study system revealed that HSK could be induced in mouse strains, such as the OT2 × RAG1−/− mice (T cell receptor transgenic recognizing OVA323–339) that were unable to produce CD4+ T-cell responses to any detectable HSV antigens. Our results cast doubt on the molecular mimicry hypothesis as an explanation for the pathogenesis of HSK and indicate that if autoimmunity is involved its likely proceeds via a bystander activation mechanism. PMID:11238834

  13. The New World arenavirus Tacaribe virus induces caspase-dependent apoptosis in infected cells.

    PubMed

    Wolff, Svenja; Groseth, Allison; Meyer, Bjoern; Jackson, David; Strecker, Thomas; Kaufmann, Andreas; Becker, Stephan

    2016-04-01

    The Arenaviridae is a diverse and growing family of viruses that already includes more than 25 distinct species. While some of these viruses have a significant impact on public health, others appear to be non-pathogenic. At present little is known about the host cell responses to infection with different arenaviruses, particularly those found in the New World; however, apoptosis is known to play an important role in controlling infection of many viruses. Here we show that infection with Tacaribe virus (TCRV), which is widely considered the prototype for non-pathogenic arenaviruses, leads to stronger induction of apoptosis than does infection with its human-pathogenic relative Junín virus. TCRV-induced apoptosis occurred in several cell types during late stages of infection and was shown to be caspase-dependent, involving the activation of caspases 3, 7, 8 and 9. Further, UV-inactivated TCRV did not induce apoptosis, indicating that the activation of this process is dependent on active viral replication/transcription. Interestingly, when apoptosis was inhibited, growth of TCRV was not enhanced, indicating that apoptosis does not have a direct negative effect on TCRV infection in vitro. Taken together, our data identify and characterize an important virus-host cell interaction of the prototypic, non-pathogenic arenavirus TCRV, which provides important insight into the growing field of arenavirus research aimed at better understanding the diversity in responses to different arenavirus infections and their functional consequences.

  14. Ganjam virus/Nairobi sheep disease virus induces a pro-inflammatory response in infected sheep.

    PubMed

    Bin Tarif, Abid; Lasecka, Lidia; Holzer, Barbara; Baron, Michael D

    2012-10-19

    Partly due to climate change, and partly due to changes of human habitat occupation, the impact of tick-borne viruses is increasing. Nairobi sheep disease virus (NSDV) and Ganjam virus (GV) are two names for the same virus, which causes disease in sheep and goats and is currently known to be circulating in India and East Africa. The virus is transmitted by ixodid ticks and causes a severe hemorrhagic disease. We have developed a real-time PCR assay for the virus genome and validated it in a pilot study of the pathogenicity induced by two different isolates of NSDV/GV. One isolate was highly adapted to tissue culture, grew in most cell lines tested, and was essentially apathogenic in sheep. The second isolate appeared to be poorly adapted to cell culture and retained pathogenicity in sheep. The real-time PCR assay for virus easily detected 4 copies or less of the viral genome, and allowed a quantitative measure of the virus in whole blood. Measurement of the changes in cytokine mRNAs showed similar changes to those observed in humans infected by the closely related virus Crimean Congo hemorrhagic fever virus.

  15. Enhancement of basophil chemotaxis in vitro by virus-induced interferon.

    PubMed Central

    Lett-Brown, M A; Aelvoet, M; Hooks, J J; Georgiades, J A; Thueson, D O; Grant, J A

    1981-01-01

    It is well established that viral infections may precipitate or worsen attacks of bronchial asthma. Furthermore, in symptomatic atopic subjects, the local accumulation of basophils and the production of a basophil chemotactic factor have been reported. We have investigated the effect of cell-free supernates from viral stimulated cultures of human mononuclear cells on the in vitro migration of human basophils. Our results show the presence of a factor in these culture supernates that enhances the migration of basophils toward two separate chemoattractants, a peptide from C5 and a lymphokine. The enhancing activity, while affecting basophil migration, did not change the response of monocytes. The enhancing activity resembled viral-induced interferon when (a) pH 2 stability, (b) heat resistance, (c) trypsin sensitivity, and (d) species-specificity were compared. Finally, the enhancing activity for basophil chemotaxis and the interferon titer were highly correlated in preparations with a 10(4)-fold difference in interferon specific activity. Our studies show that viral-induced interferon can augment the in vitro chemotactic response of basophils. Because mediators present in basophils may be involved in the pathogenesis of immediate hypersensitivity, the modulation of basophil movement by interferon suggests a possible mechanism for the association between viral infections and atopic disorders. PMID:6161946

  16. Reversal of hepatitis B virus-induced systemic immune tolerance by intrinsic innate immune stimulation.

    PubMed

    Han, Qiuju; Lan, Peixiang; Zhang, Jian; Zhang, Cai; Tian, Zhigang

    2013-08-01

    Systemic immune tolerance induced by chronic hepatitis B virus (HBV) infection is a significant question, but the mechanism of which remains unclear. In this mini-review, we summarize the impaired innate and adaptive immune responses involved in immune tolerance in chronic HBV infection. Furthermore, we delineate a novel dual functional small RNA to inhibit HBV replication and stimulate innate immunity against HBV, which proposed a promising immunotherapeutic intervention to interrupt HBV-induced immunotolerance. A mouse model of HBV persistence was established and used to observe the immune tolerant to HBV vaccination, the cell-intrinsic immune tolerance of which might be reversed by chemically synthesized dual functional small RNA (3p-hepatitis B Virus X gene [HBx]-small interfering RNA) in vitro experiments and by biologically constructed dual functional vector (single-stranded RNA-HBx- short hairpin RNA) in vivo experiment using HBV-carrier mice.

  17. Vaccinia virus-induced smallpox postvaccinal encephalitis in case of blood-brain barrier damage.

    PubMed

    Garcel, Aude; Fauquette, William; Dehouck, Marie-Pierre; Crance, Jean-Marc; Favier, Anne-Laure

    2012-02-08

    Smallpox vaccination is the only currently effective mean to combat the threat of variola virus used as a bioterrorism agent, although it is responsible for a rare but serious complication, the postvaccinal encephalitis (PVE). Development of safer vaccines therefore is a high priority as the PVE physiopathology is not well understood to date. If vaccinia virus (VACV) is responsible for PVE by central nervous system (CNS) dissemination, trans-migration of the VACV across the blood-brain barrier (BBB) would be supposed to be essential. Given the complexity of the pathogenesis of vaccinia neurovirulence, an in vitro BBB model was used to explore the mechanism of VACV to induce BBB permeability. Two VACV strains were studied, the neurovirulent Western Reserve strain (VACV-WR) and the vaccine reference Lister strain (VACV-List). A mouse model was also developed to study the ability of these two viral strains to propagate in the brain from the blood compartment, their neurovirulence and their neuropathogenesis. In vitro, the loss of permeability resulted from the tight-junctions disruption was induced by virus replication. The ability of VACV to release infectious particles at the abluminal side suggests the capacity of both VACV strains to migrate across the BBB from the blood to the CNS. In vivo, the virus replication in mice CNS was strain-dependent. The VACV-WR laboratory strain proved to be neuroinvasive and neurovirulent, whereas the VACV-List strain is safe in physiological conditions. Mice PVE was observed only with VACV-WR in the co-infection model, when BBB opening was obtained by lipopolysaccharide (LPS) treatment. This study suggests that VACV is able to cross the BBB but encephalitis occurs only in the presence of a co-infection by bacteria. So, a model of co-infection, mimicked by LPS treatment, could have important implication towards the assessment of neurovirulence of new vaccines.

  18. The relation of immune response to pathogenesis, vaccination and epidemiology in virus induced leukaemia.

    PubMed

    Jarrett, W F

    1975-03-01

    The antigenic systems of oncornaviruses and particularly feline leukaemia virus (FeLV) are reviewed briefly. The use of immunological methods in studying the epidemiology of the disease is described. The incidence of FeLV infection as judged by a serological survey is at least 100 times greater than that of leukaemia in the cat population. Horizontal transmission, due to virus replication in respiratory and alimentary epithelial cells, is common. A method of producing high titres of antibody against membrane antigens of virus infected cells is described; the use of such vaccination is discussed in relation to several epidemiological facets of feline leukaemia virus infection. Leukaemia viruses are well known to cause immunodepression to heterologous antigens. The hypothesis is advanced that depression of the humoral antibody response to leukaemia virus antigens and cell membrane antigens may be an early event allowing establishment and replication of virus in haemic and the lymphatic tissues. Subsequent depression of cell mediated immunity through direct action of thymic cells is known to take place in the cat system. This may allow further spread of the virus with replication in epithelial cells which are not susceptible to cytotoxic action. Thus the primary events leading to leukaemogenesis may be an interplay between immunostimulation and immunodepression.

  19. Mumps virus-induced innate immune responses in mouse Sertoli and Leydig cells.

    PubMed

    Wu, Han; Shi, Lili; Wang, Qing; Cheng, Lijing; Zhao, Xiang; Chen, Qiaoyuan; Jiang, Qian; Feng, Min; Li, Qihan; Han, Daishu

    2016-01-18

    Mumps virus (MuV) infection frequently causes orchitis and impairs male fertility. However, the mechanisms underlying the innate immune responses to MuV infection in the testis have yet to be investigated. This study showed that MuV induced innate immune responses in mouse Sertoli and Leydig cells through TLR2 and retinoic acid-inducible gene I (RIG-I) signaling, which result in the production of proinflammatory cytokines and chemokines, including TNF-α, IL-6, MCP-1, CXCL10, and type 1 interferons (IFN-α and IFN-β). By contrast, MuV did not induce the cytokine production in male germ cells. In response to MuV infection, Sertoli cells produced higher levels of proinflammatory cytokines and chemokines but lower levels of type 1 IFNs than Leydig cells did. The MuV-induced cytokine production by Sertoli and Leydig cells was significantly reduced by the knockout of TLR2 or the knockdown of RIG-I signaling. The local injection of MuV into the testis triggered the testicular innate immune responses in vivo. Moreover, MuV infection suppressed testosterone synthesis by Leydig cells. This is the first study examining the innate immune responses to MuV infection in testicular cells. The results provide novel insights into the mechanisms underlying the MuV-induced innate immune responses in the testis.

  20. Avian influenza virus-induced regulation of duck fibroblast gene expression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Highly pathogenic avian influenza (HPAI) H5N1 viruses have been non-pathogenic in ducks causing no disease or mild respiratory infections. However, in 2002, new viruses emerged causing systemic disease and death. To better understand the differences in pathogenicity of HPAI viruses in ducks, we in...

  1. A generic screening platform for inhibitors of virus induced cell fusion using cellular electrical impedance

    PubMed Central

    Watterson, Daniel; Robinson, Jodie; Chappell, Keith J.; Butler, Mark S.; Edwards, David J.; Fry, Scott R.; Bermingham, Imogen M.; Cooper, Matthew A.; Young, Paul R.

    2016-01-01

    Fusion of the viral envelope with host cell membranes is an essential step in the life cycle of all enveloped viruses. Despite such a clear target for antiviral drug development, few anti-fusion drugs have progressed to market. One significant hurdle is the absence of a generic, high-throughput, reproducible fusion assay. Here we report that real time, label-free measurement of cellular electrical impedance can quantify cell-cell fusion mediated by either individually expressed recombinant viral fusion proteins, or native virus infection. We validated this approach for all three classes of viral fusion and demonstrated utility in quantifying fusion inhibition using antibodies and small molecule inhibitors specific for dengue virus and respiratory syncytial virus. PMID:26976324

  2. Murine viral hepatitis involves NK cell depletion associated with virus-induced apoptosis

    PubMed Central

    LEHOUX, M; JACQUES, A; LUSIGNAN, S; LAMONTAGNE, L

    2004-01-01

    Mouse hepatitis virus type 3 (MHV3), a coronavirus, is an excellent animal model for the study of immunological disorders related to acute and chronic hepatitis. In this study, we have verified if the fulminant hepatitis induced by MHV3 could be related to an impairment of innate immunity. Groups of three C57BL/6 mice were infected with the pathogenic L2-MHV3 or attenuated YAC-MHV3 viruses, and the natural killer (NK) cell populations from liver, spleen and bone marrow were analysed. The percentage of intrahepatic NK1·1+T cell receptor (TCR)− cells did not increase while NK1·1+TCRinter cells decreased in both L2-MHV3- and YAC-MHV3-infected mice. Concurrently, splenic and myeloid NK1·1+ cells decreased in L2-MHV3-infected mice. However, the cytotoxic activity of NK cells increased in liver and decreased in bone marrow from pathogenic L2-MHV3-infected mice while no modification was detected in YAC-MHV3-infected mice. Flow cytometric analysis revealed that both normal and larger splenic or myeloid NK cells decreased more in pathogenic L2-MHV3-infected mice than in attenuated YAC-MHV3-infected mice. In vitro viral infections of interleukin (IL)-15-stimulated lymphoid cells from liver and bone marrow revealed that L2-MHV3 induced higher decreases in cell viability of NK1·1+ cells than the YAC-MHV3 variant. The NK cell decreases were due to the viral permissivity leading to cytopathic effects characterized by cell rounding, syncytia formation and apoptosis. Larger NK+ syncytia were observed in L2-MHV3-infected cells than in YAC-MHV3-infected cells. These results suggest that NK cell production is impaired by viral infection favouring fulminant hepatitis. PMID:15196242

  3. Activation of endothelial roundabout receptor 4 reduces the severity of virus-induced keratitis.

    PubMed

    Mulik, Sachin; Sharma, Shalini; Suryawanshi, Amol; Veiga-Parga, Tamara; Reddy, Pradeep B J; Rajasagi, Naveen K; Rouse, Barry T

    2011-06-15

    Antiangiogenic molecules exert a feedback control to restrain pathological angiogenesis, which includes physical binding or inhibition of angiogenic signaling in blood vessel endothelial cells. The latter is the case in which Slit2 ligand-dependent activation of the blood vessel endothelial cell receptor roundabout 4 (Robo4) occurs. In this study, we demonstrate that Robo4 receptors are upregulated following HSV infection of the eye on the majority of the new blood vessel endothelial cells that occur in the corneal stroma. However, expression levels of the ligand for Robo4 receptors, Slit2, was not significantly increased during the disease process, and the knockdown of Slit2 gene expression using lentiviral short hairpin RNAs had no effect on the extent of pathological angiogenesis. In contrast, providing additional Slit2 protein by subconjunctival administration resulted in significantly reduced angiogenesis. The Slit2 binding to Robo4 was shown to block the downstream vascular endothelial growth factor signaling molecules Arf 6 and Rac 1 and reduce the antiapoptotic molecule Bcl-xL in blood vessel endothelial cells. Our results indicate that augmenting the host Robo4/Slit2 system could provide a useful therapeutic approach to control pathological angiogenesis associated with HSV induced stromal keratitis.

  4. 20 alpha-hydroxysteroid dehydrogenase expression in a murine virus-induced myeloproliferative syndrome.

    PubMed

    Marcovistz, R; Le Bousse-Kerdiles, M C; Maillere, B; Smadja-Joffe, F; Poirrier, V; Jasmin, C

    1991-11-01

    The myeloproliferative sarcoma virus (MPSV) infection in DBA/2 mice leads to important quantitative and qualitative changes in their hemopoiesis. These findings suggest a disturbance in the production and action of a certain hemopoietic factor similar to IL3. Here, we show that the level of the 20 alpha-hydroxysteroid dehydrogenase (20 alpha-SDH) expression, which can be induced by IL3, is dramatically increased in spleen and thymus of MPSV-infected mice. Our results suggest that quantification of 20 alpha-SDH activity can be used to indicate abnormal production of a growth factor similar to IL3 in hemopoietic system diseases.

  5. Marek’s disease virus induced transient atrophy of cecal tonsils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although bursal and thymic atrophy associated with Marek’s disease (MD) is well established and characterized, the effect of Marek's disease virus (MDV) infection on lymphoid aggregates within the gut-associated lymphoid tissue (GALT) is not known. The cecal tonsils (CT) are the two largest lympho...

  6. Marek’s disease virus-induced transient cecal tonsil atrophy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Marek’s disease (MD) is a lymphoproliferative disease of domestic chickens that is caused by a highly cell-associated oncogenic '-herpesvirus, Marek’s disease virus (MDV). MDV replicates in chicken lymphocytes and establishes a latent infection within CD4+ T cells. MD is characterized by bursal/th...

  7. Duck lymphocytes. VIII. T-lymphoblastoid cell lines from reticuloendotheliosis virus-induced tumours.

    PubMed

    Chan, S W; Bando, Y; Warr, G W; Middleton, D L; Higgins, D A

    1999-04-01

    The T strain of reticuloendotheliosis virus (REV-T) obtained, along with the helper chicken syncytia virus (CSV), from the CSO4 cell line was highly oncogenic and rapidly fatal in ducks. Tumours were mainly seen in spleen, but neoplastic cells were observed microscopically in many organs. In vitro REV transformation of duck lymphocytes failed to yield stable cell lines, so cells from organs (blood, bone marrow, spleen, lymph node, bursa of Fabricius) of infected birds were used to establish cell lines. Some of these cell lines have been cloned. The success rates of establishment and cloning were increased if cells were cultured in a range of media containing different supplements; however, medium containing 5% foetal calf serum (FCS) and 5% duck serum was generally most efficacious for initial establishment, while spent medium from the parental line supplemented with a further 20% FCS gave best results for cloning. Cloned cell lines had the morphology of lymphoblastoid cells, with irregular nuclei and diffuse chromatin. Analysis of mRNA extracted from these cell lines showed that the uncloned lines were strongly expressing the β chain of the T cell antigen receptor (TCR) and weakly expressing immunoglobulin (Ig) polypeptides [λ light chain and μ, υ, υ (ΔFc) and α heavy chains in various proportions], suggesting the presence of T and B cells. The cloned cell lines that could be classified were TCR β+ ve T cells. This is the first report of the establishment, cloning and partial characterization of duck lymphoblastoid cell lines.

  8. Follicular dendritic cell disruption as a novel mechanism of virus-induced immunosuppression.

    PubMed

    Melzi, Eleonora; Caporale, Marco; Rocchi, Mara; Martín, Verónica; Gamino, Virginia; di Provvido, Andrea; Marruchella, Giuseppe; Entrican, Gary; Sevilla, Noemí; Palmarini, Massimo

    2016-10-11

    Arboviruses cause acute diseases that increasingly affect global health. We used bluetongue virus (BTV) and its natural sheep host to reveal a previously uncharacterized mechanism used by an arbovirus to manipulate host immunity. Our study shows that BTV, similarly to other antigens delivered through the skin, is transported rapidly via the lymph to the peripheral lymph nodes. Here, BTV infects and disrupts follicular dendritic cells, hindering B-cell division in germinal centers, which results in a delayed production of high affinity and virus neutralizing antibodies. Moreover, the humoral immune response to a second antigen is also hampered in BTV-infected animals. Thus, an arbovirus can evade the host antiviral response by inducing an acute immunosuppression. Although transient, this immunosuppression occurs at the critical early stages of infection when a delayed host humoral immune response likely affects virus systemic dissemination and the clinical outcome of disease.

  9. Well-tolerated Spirulina extract inhibits influenza virus replication and reduces virus-induced mortality

    PubMed Central

    Chen, Yi-Hsiang; Chang, Gi-Kung; Kuo, Shu-Ming; Huang, Sheng-Yu; Hu, I-Chen; Lo, Yu-Lun; Shih, Shin-Ru

    2016-01-01

    Influenza is one of the most common human respiratory diseases, and represents a serious public health concern. However, the high mutability of influenza viruses has hampered vaccine development, and resistant strains to existing anti-viral drugs have also emerged. Novel anti-influenza therapies are urgently needed, and in this study, we describe the anti-viral properties of a Spirulina (Arthrospira platensis) cold water extract. Anti-viral effects have previously been reported for extracts and specific substances derived from Spirulina, and here we show that this Spirulina cold water extract has low cellular toxicity, and is well-tolerated in animal models at one dose as high as 5,000 mg/kg, or 3,000 mg/kg/day for 14 successive days. Anti-flu efficacy studies revealed that the Spirulina extract inhibited viral plaque formation in a broad range of influenza viruses, including oseltamivir-resistant strains. Spirulina extract was found to act at an early stage of infection to reduce virus yields in cells and improve survival in influenza-infected mice, with inhibition of influenza hemagglutination identified as one of the mechanisms involved. Together, these results suggest that the cold water extract of Spirulina might serve as a safe and effective therapeutic agent to manage influenza outbreaks, and further clinical investigation may be warranted. PMID:27067133

  10. Mumps virus-induced innate immune responses in mouse Sertoli and Leydig cells

    PubMed Central

    Wu, Han; Shi, Lili; Wang, Qing; Cheng, Lijing; Zhao, Xiang; Chen, Qiaoyuan; Jiang, Qian; Feng, Min; Li, Qihan; Han, Daishu

    2016-01-01

    Mumps virus (MuV) infection frequently causes orchitis and impairs male fertility. However, the mechanisms underlying the innate immune responses to MuV infection in the testis have yet to be investigated. This study showed that MuV induced innate immune responses in mouse Sertoli and Leydig cells through TLR2 and retinoic acid-inducible gene I (RIG-I) signaling, which result in the production of proinflammatory cytokines and chemokines, including TNF-α, IL-6, MCP-1, CXCL10, and type 1 interferons (IFN-α and IFN-β). By contrast, MuV did not induce the cytokine production in male germ cells. In response to MuV infection, Sertoli cells produced higher levels of proinflammatory cytokines and chemokines but lower levels of type 1 IFNs than Leydig cells did. The MuV-induced cytokine production by Sertoli and Leydig cells was significantly reduced by the knockout of TLR2 or the knockdown of RIG-I signaling. The local injection of MuV into the testis triggered the testicular innate immune responses in vivo. Moreover, MuV infection suppressed testosterone synthesis by Leydig cells. This is the first study examining the innate immune responses to MuV infection in testicular cells. The results provide novel insights into the mechanisms underlying the MuV-induced innate immune responses in the testis. PMID:26776505

  11. DNA ligand designed to antagonize EBNA1 represses Epstein-Barr virus-induced immortalization.

    PubMed

    Yasuda, Ai; Noguchi, Kohji; Minoshima, Masafumi; Kashiwazaki, Gengo; Kanda, Teru; Katayama, Kazuhiro; Mitsuhashi, Junko; Bando, Toshikazu; Sugiyama, Hiroshi; Sugimoto, Yoshikazu

    2011-12-01

    Epstein-Barr virus (EBV) transforms human B lymphocytes into immortalized cells in vitro and is associated with various malignancies in vivo. EBNA1, which is expressed in the majority of EBV-infected cells, recognizes specific DNA sequences at the cis-acting latent origin of plasmid replication (oriP) element of the EBV genome. EBNA1 plays a critical role in the viral episome maintenance and transactivates viral transforming genes in latently infected cells. Therefore, DNA-targeting agents that can disrupt the EBNA1-oriP interaction will offer novel functional inhibitors of EBNA1. Pyrrole-imidazole polyamides, sequence-specific DNA ligands, can be designed to interfere with the binding of various transcriptional factors. Here, we synthesized pyrrole-imidazole polyamides targeting EBNA1-bound DNA sequences and developed an inhibitor for the EBNA1-oriP interaction. A pyrrole-imidazole polyamide, designated as DSE-3, bound adjacent to the EBNA1 recognition sequences located in the dyad symmetry element of oriP, and selectively inhibited EBNA1-oriP binding both in vitro and in vivo. DSE-3 also inhibited the proliferation of established lymphoblastoid cell lines by eradicating EBV episomes from the cells. In addition, DSE-3 repressed the expression of viral transforming genes after infecting human peripheral blood mononuclear cells with EBV and, as a consequence, inhibited EBV-mediated B-cell immortalization. These results suggest that EBNA1 functions will be an attractive pharmacological target for EBV-associated diseases.

  12. Dengue virus induces mitochondrial elongation through impairment of Drp1-triggered mitochondrial fission.

    PubMed

    Barbier, Vincent; Lang, Diane; Valois, Sierra; Rothman, Alan L; Medin, Carey L

    2017-01-01

    Mitochondria are highly dynamic organelles that undergo continuous cycles of fission and fusion to maintain essential cellular functions. An imbalance between these two processes can result in many pathophysiological outcomes. Dengue virus (DENV) interacts with cellular organelles, including mitochondria, to successfully replicate in cells. This study used live-cell imaging and found an increase in mitochondrial length and respiration during DENV infection. The level of mitochondrial fission protein, Dynamin-related protein 1 (Drp1), was decreased on mitochondria during DENV infection, as well as Drp1 phosphorylated on serine 616, which is important for mitochondrial fission. DENV proteins NS4b and NS3 were also associated with subcellular fractions of mitochondria. Induction of fission through uncoupling of mitochondria or overexpression of Drp1 wild-type and Drp1 with a phosphomimetic mutation (S616D) significantly reduced viral replication. These results demonstrate that DENV infection causes an imbalance in mitochondrial dynamics by inhibiting Drp1-triggered mitochondrial fission, which promotes viral replication.

  13. Transcriptional Changes in Canine Distemper Virus-Induced Demyelinating Leukoencephalitis Favor a Biphasic Mode of Demyelination

    PubMed Central

    Ulrich, Reiner; Puff, Christina; Wewetzer, Konstantin; Kalkuhl, Arno; Deschl, Ulrich; Baumgärtner, Wolfgang

    2014-01-01

    Canine distemper virus (CDV)-induced demyelinating leukoencephalitis in dogs (Canis familiaris) is suggested to represent a naturally occurring translational model for subacute sclerosing panencephalitis and multiple sclerosis in humans. The aim of this study was a hypothesis-free microarray analysis of the transcriptional changes within cerebellar specimens of five cases of acute, six cases of subacute demyelinating, and three cases of chronic demyelinating and inflammatory CDV leukoencephalitis as compared to twelve non-infected control dogs. Frozen cerebellar specimens were used for analysis of histopathological changes including demyelination, transcriptional changes employing microarrays, and presence of CDV nucleoprotein RNA and protein using microarrays, RT-qPCR and immunohistochemistry. Microarray analysis revealed 780 differentially expressed probe sets. The dominating change was an up-regulation of genes related to the innate and the humoral immune response, and less distinct the cytotoxic T-cell-mediated immune response in all subtypes of CDV leukoencephalitis as compared to controls. Multiple myelin genes including myelin basic protein and proteolipid protein displayed a selective down-regulation in subacute CDV leukoencephalitis, suggestive of an oligodendrocyte dystrophy. In contrast, a marked up-regulation of multiple immunoglobulin-like expressed sequence tags and the delta polypeptide of the CD3 antigen was observed in chronic CDV leukoencephalitis, in agreement with the hypothesis of an immune-mediated demyelination in the late inflammatory phase of the disease. Analysis of pathways intimately linked to demyelination as determined by morphometry employing correlation-based Gene Set Enrichment Analysis highlighted the pathomechanistic importance of up-regulated genes comprised by the gene ontology terms “viral replication” and “humoral immune response” as well as down-regulated genes functionally related to “metabolite and energy generation”. PMID:24755553

  14. Interferon induced with helicase C domain 1 (IFIH1) and virus-induced autoimmunity: a review.

    PubMed

    Chistiakov, Dimitry A

    2010-02-01

    In addition to genetic factors, environmental triggers, including viruses and other pathogens, are thought to play a major role in the development of autoimmune disease. Recent findings have shown that viral-induced autoimmunity is likely to be genetically determined. In large-scale genetic analyses, an association of interferon induced with helicase C domain 1 (IFIH1) gene variants encoding a viral RNA-sensing helicase with susceptibility to several autoimmune diseases was found. To date, the precise role of IFIH1 in pathogenic mechanisms of viral-induced autoimmunity has yet to be fully elucidated. However, recent reports suggest that IFIH1 may play a role in the etiology of type 1 diabetes. Rare IFIH1 alleles have been shown to be protective against diabetes, and their carriage correlates with lower production of this helicase and its functional disruption. In contrast, upregulation of IFIH1 expression by viruses is associated with more severe disease, and could exacerbate the autoimmune process in susceptible individuals.

  15. Transcriptome Analysis of Capsicum Chlorosis Virus-Induced Hypersensitive Resistance Response in Bell Capsicum

    PubMed Central

    Widana Gamage, Shirani M. K.; McGrath, Desmond J.; Persley, Denis M.

    2016-01-01

    Background Capsicum chlorosis virus (CaCV) is an emerging pathogen of capsicum, tomato and peanut crops in Australia and South-East Asia. Commercial capsicum cultivars with CaCV resistance are not yet available, but CaCV resistance identified in Capsicum chinense is being introgressed into commercial Bell capsicum. However, our knowledge of the molecular mechanisms leading to the resistance response to CaCV infection is limited. Therefore, transcriptome and expression profiling data provide an important resource to better understand CaCV resistance mechanisms. Methodology/Principal Findings We assembled capsicum transcriptomes and analysed gene expression using Illumina HiSeq platform combined with a tag-based digital gene expression system. Total RNA extracted from CaCV/mock inoculated CaCV resistant (R) and susceptible (S) capsicum at the time point when R line showed a strong hypersensitive response to CaCV infection was used in transcriptome assembly. Gene expression profiles of R and S capsicum in CaCV- and buffer-inoculated conditions were compared. None of the genes were differentially expressed (DE) between R and S cultivars when mock-inoculated, while 2484 genes were DE when inoculated with CaCV. Functional classification revealed that the most highly up-regulated DE genes in R capsicum included pathogenesis-related genes, cell death-associated genes, genes associated with hormone-mediated signalling pathways and genes encoding enzymes involved in synthesis of defense-related secondary metabolites. We selected 15 genes to confirm DE expression levels by real-time quantitative PCR. Conclusion/Significance DE transcript profiling data provided comprehensive gene expression information to gain an understanding of the underlying CaCV resistance mechanisms. Further, we identified candidate CaCV resistance genes in the CaCV-resistant C. annuum x C. chinense breeding line. This knowledge will be useful in future for fine mapping of the CaCV resistance locus and potential genetic engineering of resistance into CaCV-susceptible crops. PMID:27398596

  16. Mumps Virus Induces Protein-Kinase-R-Dependent Stress Granules, Partly Suppressing Type III Interferon Production

    PubMed Central

    Hashimoto, Shin; Yamamoto, Soh; Ogasawara, Noriko; Sato, Toyotaka; Yamamoto, Keisuke; Katoh, Hiroshi; Kubota, Toru; Shiraishi, Tsukasa; Kojima, Takashi; Himi, Tetsuo; Tsutsumi, Hiroyuki; Yokota, Shin-ichi

    2016-01-01

    Stress granules (SGs) are cytoplasmic granular aggregations that are induced by cellular stress, including viral infection. SGs have opposing antiviral and proviral roles, which depend on virus species. The exact function of SGs during viral infection is not fully understood. Here, we showed that mumps virus (MuV) induced SGs depending on activation of protein kinase R (PKR). MuV infection strongly induced interferon (IFN)-λ1, 2 and 3, and IFN-β through activation of IFN regulatory factor 3 (IRF3) via retinoic acid inducible gene-I (RIG-I) and the mitochondrial antiviral signaling (MAVS) pathway. MuV-induced IFNs were strongly upregulated in PKR-knockdown cells. MuV-induced SG formation was suppressed by knockdown of PKR and SG marker proteins, Ras-GTPase-activating protein SH3-domain-binding protein 1 and T-cell-restricted intracellular antigen-1, and significantly increased the levels of MuV-induced IFN-λ1. However, viral titer was not altered by suppression of SG formation. PKR was required for induction of SGs by MuV infection and regulated type III IFN (IFN-λ1) mRNA stability. MuV-induced SGs partly suppressed type III IFN production by MuV; however, the limited suppression was not sufficient to inhibit MuV replication in cell culture. Our results provide insight into the relationship between SGs and IFN production induced by MuV infection. PMID:27560627

  17. Sendai virus trailer RNA binds TIAR, a cellular protein involved in virus-induced apoptosis.

    PubMed

    Iseni, Frédéric; Garcin, Dominique; Nishio, Machiko; Kedersha, Nancy; Anderson, Paul; Kolakofsky, Daniel

    2002-10-01

    Sendai virus (SeV) leader (le) and trailer (tr) RNAs are short transcripts generated during abortive antigenome and genome synthesis, respectively. Recom binant SeV (rSeV) that express tr-like RNAs from the leader region are non-cytopathic and, moreover, prevent wild-type SeV from inducing apoptosis in mixed infections. These rSeV thus appear to have gained a function. Here we report that tr RNA binds to a cellular protein with many links to apoptosis (TIAR) via the AU-rich sequence 5' UUUUAAAUUUU. Duplication of this AU-rich sequence alone within the le RNA confers TIAR binding on this le* RNA and a non-cytopathic phenotype to these rSeV in cell culture. Transgenic overexpression of TIAR during SeV infection promotes apoptosis and reverses the anti-apoptotic effects of le* RNA expression. More over, TIAR overexpression and SeV infection act synergistically to induce apoptosis. These short viral RNAs may act by sequestering TIAR, a multivalent RNA recognition motif (RRM) family RNA-binding protein involved in SeV-induced apoptosis. In this view, tr RNA is not simply a by-product of abortive genome synthesis, but is also an antigenome transcript that modulates the cellular antiviral response.

  18. γδ T Cells Play a Protective Role in Chikungunya Virus-Induced Disease

    PubMed Central

    Ferris, Martin T.; Whitmore, Alan C.; Montgomery, Stephanie A.; Thurlow, Lance R.; McGee, Charles E.; Rodriguez, Carlos A.; Lim, Jean K.; Heise, Mark T.

    2015-01-01

    ABSTRACT Chikungunya virus (CHIKV) is an alphavirus responsible for causing epidemic outbreaks of polyarthralgia in humans. Because CHIKV is initially introduced via the skin, where γδ T cells are prevalent, we evaluated the response of these cells to CHIKV infection. CHIKV infection led to a significant increase in γδ T cells in the infected foot and draining lymph node that was associated with the production of proinflammatory cytokines and chemokines in C57BL/6J mice. γδ T cell−/− mice demonstrated exacerbated CHIKV disease characterized by less weight gain and greater foot swelling than occurred in wild-type mice, as well as a transient increase in monocytes and altered cytokine/chemokine expression in the foot. Histologically, γδ T cell−/− mice had increased inflammation-mediated oxidative damage in the ipsilateral foot and ankle joint compared to wild-type mice which was independent of differences in CHIKV replication. These results suggest that γδ T cells play a protective role in limiting the CHIKV-induced inflammatory response and subsequent tissue and joint damage. IMPORTANCE Recent epidemics, including the 2004 to 2007 outbreak and the spread of CHIKV to naive populations in the Caribbean and Central and South America with resultant cases imported into the United States, have highlighted the capacity of CHIKV to cause explosive epidemics where the virus can spread to millions of people and rapidly move into new areas. These studies identified γδ T cells as important to both recruitment of key inflammatory cell populations and dampening the tissue injury due to oxidative stress. Given the importance of these cells in the early response to CHIKV, this information may inform the development of CHIKV vaccines and therapeutics. PMID:26491151

  19. A complement-microglial axis drives synapse loss during virus-induced memory impairment.

    PubMed

    Vasek, Michael J; Garber, Charise; Dorsey, Denise; Durrant, Douglas M; Bollman, Bryan; Soung, Allison; Yu, Jinsheng; Perez-Torres, Carlos; Frouin, Arnaud; Wilton, Daniel K; Funk, Kristen; DeMasters, Bette K; Jiang, Xiaoping; Bowen, James R; Mennerick, Steven; Robinson, John K; Garbow, Joel R; Tyler, Kenneth L; Suthar, Mehul S; Schmidt, Robert E; Stevens, Beth; Klein, Robyn S

    2016-06-23

    Over 50% of patients who survive neuroinvasive infection with West Nile virus (WNV) exhibit chronic cognitive sequelae. Although thousands of cases of WNV-mediated memory dysfunction accrue annually, the mechanisms responsible for these impairments are unknown. The classical complement cascade, a key component of innate immune pathogen defence, mediates synaptic pruning by microglia during early postnatal development. Here we show that viral infection of adult hippocampal neurons induces complement-mediated elimination of presynaptic terminals in a murine WNV neuroinvasive disease model. Inoculation of WNV-NS5-E218A, a WNV with a mutant NS5(E218A) protein leads to survival rates and cognitive dysfunction that mirror human WNV neuroinvasive disease. WNV-NS5-E218A-recovered mice (recovery defined as survival after acute infection) display impaired spatial learning and persistence of phagocytic microglia without loss of hippocampal neurons or volume. Hippocampi from WNV-NS5-E218A-recovered mice with poor spatial learning show increased expression of genes that drive synaptic remodelling by microglia via complement. C1QA was upregulated and localized to microglia, infected neurons and presynaptic terminals during WNV neuroinvasive disease. Murine and human WNV neuroinvasive disease post-mortem samples exhibit loss of hippocampal CA3 presynaptic terminals, and murine studies revealed microglial engulfment of presynaptic terminals during acute infection and after recovery. Mice with fewer microglia (Il34(-/-) mice with a deficiency in IL-34 production) or deficiency in complement C3 or C3a receptor were protected from WNV-induced synaptic terminal loss. Our study provides a new murine model of WNV-induced spatial memory impairment, and identifies a potential mechanism underlying neurocognitive impairment in patients recovering from WNV neuroinvasive disease.

  20. Phenotypes of murine leukemia virus-induced tumors: influence of 3' viral coding sequences.

    PubMed Central

    Ott, D E; Keller, J; Sill, K; Rein, A

    1992-01-01

    Murine leukemia viruses (MuLVs) induce leukemias and lymphomas in mice. We have used fluorescence-activated cell sorter analysis to determine the hematopoietic phenotypes of tumor cells induced by a number of MuLVs. Tumor cells induced by ecotropic Moloney, amphotropic 4070A, and 10A1 MuLVs and by two chimeric MuLVs, Mo(4070A) and Mo(10A1), were examined with antibodies to 13 lineage-specific cell surface markers found on myeloid cell, T-cell, and B-cell lineages. The chimeric Mo(4070A) and Mo(10A1) MuLVs, consisting of Moloney MuLV with the carboxy half of the Pol region and nearly all of the Env region of 4070A and 10A1, respectively, were constructed to examine the possible influence of these sequences on Moloney MuLV-induced tumor cell phenotypes. In some instances, these phenotypic analyses were supplemented by Southern blot analysis for lymphoid cell-specific genomic DNA rearrangements at the immunoglobulin heavy-chain, the T-cell receptor gamma, and the T-cell receptor beta loci. The results of our analysis showed that Moloney MuLV, 4070A, Mo(4070A), and Mo(10A1) induced mostly T-cell tumors. Moloney MuLV and Mo(4070A) induced a wide variety of T-cell phenotypes, ranging from immature to mature phenotypes, while 4070A induced mostly prothymocyte and double-negative (CD4- CD8-) T-cell tumors. The tumor phenotypes obtained with 10A1 and Mo(10A1) were each less variable than those obtained with the other MuLVs tested. 10A1 uniformly induced a tumor consisting of lineage marker-negative cells that lack lymphoid cell-specific DNA rearrangements and histologically appear to be early undifferentiated erythroid cell-like precursors. The Mo(10A1) chimera consistently induced an intermediate T-cell tumor. The chimeric constructions demonstrated that while 4070A 3' pol and env sequences apparently did not influence the observed tumor cell phenotypes, the 10A1 half of pol and env had a strong effect on the phenotypes induced by Mo(10A1) that resulted in a phenotypic consistency not seen with other viruses. This result implicates 10A1 env in an active role in the tumorigenic process. Images PMID:1326661

  1. The TIM-3 pathway ameliorates Theiler's murine encephalomyelitis virus-induced demyelinating disease.

    PubMed

    Kaneyama, Tomoki; Tomiki, Hiroki; Tsugane, Sayaka; Inaba, Yuji; Ichikawa, Motoki; Akiba, Hisaya; Yagita, Hideo; Kim, Byung S; Koh, Chang-Sung

    2014-07-01

    Infection by Theiler's murine encephalomyelitis virus (TMEV) in the central nervous system (CNS) induces an immune-mediated demyelinating disease in susceptible mouse strains and serves as a relevant infection model for human multiple sclerosis. T-cell immunoglobulin and mucin domain-3 (TIM-3) has been demonstrated to play a crucial role in the maintenance of peripheral tolerance. In this study, we examined the regulatory role of the TIM-3 pathway in the development of TMEV-induced demyelinating disease (TMEV-IDD). The expression of TIM-3 was increased at both protein and mRNA levels in the spinal cords of mice with TMEV-IDD compared with naive controls. In addition, by utilizing a blocking mAb, we demonstrate that TIM-3 negatively regulates TMEV-specific ex vivo production of IFN-γ and IL-10 by CD4(+) T cells and IFN-γ by CD8(+) T cells from the CNS of mice with TMEV-IDD at 36 days post-infection (dpi). In vivo blockade of TIM-3 by using the anti-TIM-3 mAb resulted in significant exacerbation of the development of TMEV-IDD both clinically and histologically. The number of infiltrating mononuclear cells in the CNS was also increased in mice administered with anti-TIM-3 mAb both at the induction phase (10 dpi) and at the effector phase (36 dpi). Flow cytometric analysis of intracellular cytokines revealed that the number of CD4(+) T cells producing TNF, IL-4, IL-10 and IL-17 was significantly increased at the effector phase in the CNS of anti-TIM-3 mAb-treated mice. These results suggest that the TIM-3 pathway plays a critical role in the regulation of TMEV-IDD.

  2. Influenza virus-induced lung inflammation was modulated by cigarette smoke exposure in mice.

    PubMed

    Han, Yan; Ling, Man To; Mao, Huawei; Zheng, Jian; Liu, Ming; Lam, Kwok Tai; Liu, Yuan; Tu, Wenwei; Lau, Yu-Lung

    2014-01-01

    Although smokers have increased susceptibility and severity of seasonal influenza virus infection, there is no report about the risk of 2009 pandemic H1N1 (pdmH1N1) or avian H9N2 (H9N2/G1) virus infection in smokers. In our study, we used mouse model to investigate the effect of cigarette smoke on pdmH1N1 or H9N2 virus infection. Mice were exposed to cigarette smoke for 21 days and then infected with pdmH1N1 or H9N2 virus. Control mice were exposed to air in parallel. We found that cigarette smoke exposure alone significantly upregulated the lung inflammation. Such prior cigarette smoke exposure significantly reduced the disease severity of subsequent pdmH1N1 or H9N2 virus infection. For pdmH1N1 infection, cigarette smoke exposed mice had significantly lower mortality than the control mice, possibly due to the significantly decreased production of inflammatory cytokines and chemokines. Similarly, after H9N2 infection, cigarette smoke exposed mice displayed significantly less weight loss, which might be attributed to lower cytokines and chemokines production, less macrophages, neutrophils, CD4+ and CD8+ T cells infiltration and reduced lung damage compared to the control mice. To further investigate the underlying mechanism, we used nicotine to mimic the effect of cigarette smoke both in vitro and in vivo. Pre-treating the primary human macrophages with nicotine for 72 h significantly decreased their expression of cytokines and chemokines after pdmH1N1 or H9N2 infection. The mice subcutaneously and continuously treated with nicotine displayed significantly less weight loss and lower inflammatory response than the control mice upon pdmH1N1 or H9N2 infection. Moreover, α7 nicotinic acetylcholine receptor knockout mice had more body weight loss than wild-type mice after cigarette smoke exposure and H9N2 infection. Our study provided the first evidence that the pathogenicity of both pdmH1N1 and H9N2 viruses was alleviated in cigarette smoke exposed mice, which might partially be attributed to the immunosuppressive effect of nicotine.

  3. Intrinsic cellular signaling mechanisms determine the sensitivity of cancer cells to virus-induced apoptosis

    PubMed Central

    Wang, Yunfei; Li, Dawei; Luo, Jian; Tian, Guimei; Zhao, Lisa Y.; Liao, Daiqing

    2016-01-01

    Cancer cells of epithelial and mesenchymal phenotypes exhibit different sensitivities to apoptosis stimuli, but the mechanisms underlying this phenomenon remain partly understood. We constructed a novel recombinant adenovirus expressing Ad12 E1A (Ad-E1A12) that can strongly induce apoptosis. Ad-E1A12 infection of epithelial cancer cells displayed dramatic detachment and apoptosis, whereas cancer cells of mesenchymal phenotypes with metastatic propensity were markedly more resistant to this virus. Notably, forced detachment of epithelial cells did not further sensitize them to Ad-E1A12-induced apoptosis, suggesting that cell detachment is a consequence rather than the cause of Ad-E1A12-induced apoptosis. Ad-E1A12 increased phosphorylation of AKT1 and ribosomal protein S6 through independent mechanisms in different cell types. Ad-E1A12–induced AKT1 phosphorylation was PI3K-dependent in epithelial cancer cells, and mTOR-dependent in mesenchymal cancer cells. Epithelial cancer cells upon Ad-E1A12-induced detachment could not sustain AKT activation due to AKT1 degradation, but AKT1 activation was maintained in mesenchymal cancer cells. Expression of epithelial cell-restricted miR-200 family in mesenchymal cells limited mTOR signaling and sensitized them to Ad-E1A12-induced cell killing. Thus, epithelial cancer cells rely on the canonical PI3K-AKT signaling pathway for survival, while mesenchymal cancer cells deploy the PI3K-independent mTORC2-AKT axis in response to strong death stimuli. PMID:27849011

  4. Influenza virus-induced lung injury: pathogenesis and implications for treatment.

    PubMed

    Herold, Susanne; Becker, Christin; Ridge, Karen M; Budinger, G R Scott

    2015-05-01

    The influenza viruses are some of the most important human pathogens, causing substantial seasonal and pandemic morbidity and mortality. In humans, infection of the lower respiratory tract of can result in flooding of the alveolar compartment, development of acute respiratory distress syndrome and death from respiratory failure. Influenza-mediated damage of the airway, alveolar epithelium and alveolar endothelium results from a combination of: 1) intrinsic viral pathogenicity, attributable to its tropism for host airway and alveolar epithelial cells; and 2) a robust host innate immune response, which, while contributing to viral clearance, can worsen the severity of lung injury. In this review, we summarise the molecular events at the virus-host interface during influenza virus infection, highlighting some of the important cellular responses. We discuss immune-mediated viral clearance, the mechanisms promoting or perpetuating lung injury, lung regeneration after influenza-induced injury, and recent advances in influenza prevention and therapy.

  5. Infection with Usutu Virus Induces an Autophagic Response in Mammalian Cells

    PubMed Central

    Blázquez, Ana-Belén; Escribano-Romero, Estela; Merino-Ramos, Teresa; Saiz, Juan-Carlos; Martín-Acebes, Miguel A.

    2013-01-01

    Usutu virus (USUV) is an African mosquito-borne flavivirus closely related to West Nile virus and Japanese encephalitis virus, which host range includes mainly mosquitoes and birds, although infections in humans have been also documented, thus warning about USUV as a potential health threat. Circulation of USUV in Africa was documented more than 50 years ago, but it was not until the last decade that it emerged in Europe causing episodes of avian mortality and some human severe cases. Since autophagy is a cellular pathway that can play important roles on different aspects of viral infections and pathogenesis, the possible implication of this pathway in USUV infection has been examined using Vero cells and two viral strains of different origin. USUV infection induced the unfolded protein response, revealed by the splicing of Xbp-1 mRNA. Infection with USUV also stimulated the autophagic process, which was demonstrated by an increase in the cytoplasmic aggregation of microtubule-associated protein 1 light chain 3 (LC3), a marker of autophagosome formation. In addition to this, an increase in the lipidated form of LC3, that is associated with autophagosome formation, was noticed following infection. Pharmacological modulation of the autophagic pathway with the inductor of autophagy rapamycin resulted in an increase in virus yield. On the other hand, treatment with 3-methyladenine or wortmannin, two distinct inhibitors of phosphatidylinositol 3-kinases involved in autophagy, resulted in a decrease in virus yield. These results indicate that USUV virus infection upregulates the cellular autophagic pathway and that drugs that target this pathway can modulate the infection of this virus, thus identifying a potential druggable pathway in USUV-infection. PMID:24205422

  6. Vaccinia Virus Induces Rapid Necrosis in Keratinocytes by a STAT3-Dependent Mechanism

    PubMed Central

    He, Yong; Fisher, Robert; Chowdhury, Soma; Sultana, Ishrat; Pereira, Claudia P.; Bray, Mike; Reed, Jennifer L.

    2014-01-01

    Rationale Humans with a dominant negative mutation in STAT3 are susceptible to severe skin infections, suggesting an essential role for STAT3 signaling in defense against cutaneous pathogens. Methods To focus on innate antiviral defenses in keratinocytes, we used a standard model of cutaneous infection of severe combined immunodeficient mice with the current smallpox vaccine, ACAM-2000. In parallel, early events post-infection with the smallpox vaccine ACAM-2000 were investigated in cultured keratinocytes of human and mouse origin. Results Mice treated topically with a STAT3 inhibitor (Stattic) developed larger vaccinia lesions with higher virus titers and died more rapidly than untreated controls. Cultured human and murine keratinocytes infected with ACAM-2000 underwent rapid necrosis, but when treated with Stattic or with inhibitors of RIP1 kinase or caspase-1, they survived longer, produced higher titers of virus, and showed reduced activation of type I interferon responses and inflammatory cytokines release. Treatment with inhibitors of RIP1 kinase and STAT3, but not caspase-1, also reduced the inflammatory response of keratinocytes to TLR ligands. Vaccinia growth properties in Vero cells, which are known to be defective in some antiviral responses, were unaffected by inhibition of RIP1K, caspase-1, or STAT3. Conclusions Our findings indicate that keratinocytes suppress the replication and spread of vaccinia virus by undergoing rapid programmed cell death, in a process requiring STAT3. These data offer a new framework for understanding susceptibility to skin infection in patients with STAT3 mutations. Interventions which promote prompt necroptosis/pyroptosis of infected keratinocytes may reduce risks associated with vaccination with live vaccinia virus. PMID:25419841

  7. Carbocisteine reduces virus-induced pulmonary inflammation in mice exposed to cigarette smoke.

    PubMed

    Yageta, Yuichi; Ishii, Yukio; Morishima, Yuko; Ano, Satoshi; Ohtsuka, Shigeo; Matsuyama, Masashi; Takeuchi, Kaoru; Itoh, Ken; Yamamoto, Masayuki; Hizawa, Nobuyuki

    2014-05-01

    Carbocisteine (S-CMC) inhibits viral infection and prevents acute exacerbation of chronic obstructive pulmonary disease. We recently demonstrated the protective effects of NF-E2-related factor (Nrf) 2 against influenza virus (FluV)-induced pulmonary inflammation in mice exposed to cigarette smoke (CS). In our current study, we investigated the effects of S-CMC on Nrf2 activation in cultured macrophages, and in mice infected with influenza after exposure to CS. Nuclear translocation of Nrf2 and the expression of Nrf2-targeted antioxidant genes, such as heavy and light subunits of γ glutamyl cysteine synthetase and heme oxigenase-1, were enhanced in a dose-dependent manner after treatment with S-CMC in peritoneal and alveolar macrophages of wild-type mice, but not in those of Nrf2-deficient mice. Nuclear translocation of Nrf2 in macrophages was inhibited by the phosphatidylinositol 3-kinase inhibitor, LY294002. Phosphorylated Akt, Nrf2, and heme oxigenase-1 were induced in the alveolar macrophages of the lungs in wild-type mice after S-CMC administration. The extent of oxidative stress, inflammatory cell infiltration, pulmonary edema, and goblet cell hyperplasia was suppressed by S-CMC administration in the lungs of wild-type mice after exposure to both CS and FluV. Our findings suggest that S-CMC reduces pulmonary inflammation and mucus overproduction in mice exposed to CS after infection with FluV via the activation of Nrf2.

  8. A recombinant pseudotyped lentivirus expressing the envelope glycoprotein of Hantaan virus induced protective immunity in mice

    PubMed Central

    2013-01-01

    Background Hantaviruses cause acute hemorrhagic fever with renal syndrome (HFRS). Currently, several types of inactivated HFRS vaccines are widely used, however the limited ability of these immunogen to elicit neutralizing antibodies restricts vaccine efficacy. Development of an effective vaccine to overcome this weakness is must. Methods In the present study, a recombinant pseudotyped lentivirus bearing the hantaan virus (HTNV) envelope glycoproteins (GP), rLV-M, was constructed. C57BL/6 mice were immunized with the rLV-M and a series of immunological assays were conducted to determine the immunogenicity of the recombinant pseudotyped lentivirus. The humoral and cell-mediated immune responses induced by rLV-M were compared with those of the inactivated HFRS vaccine. Results Indirect immunofluorescence assay (IFA) showed the rLV-M expressed target proteins in HEK-293cells. In mice, the rLV-M efficiently induced GP-specific humoral responses and protection against HTNV infection. Furthermore, the rLV-M induced higher neutralizing antibody titers than the inactivated HFRS vaccine control. Conclusions The results indicated the potential of using a pseudotyped lentivirus as a delivery vector for a hantavirus vaccine immunogen. PMID:24093752

  9. Four-segmented Rift Valley fever virus induces sterile immunity in sheep after a single vaccination.

    PubMed

    Wichgers Schreur, Paul J; Kant, Jet; van Keulen, Lucien; Moormann, Rob J M; Kortekaas, Jeroen

    2015-03-17

    Rift Valley fever virus (RVFV), a mosquito-borne virus in the Bunyaviridae family, causes recurrent outbreaks with severe disease in ruminants and occasionally humans. The virus comprises a segmented genome consisting of a small (S), medium (M) and large (L) RNA segment of negative polarity. The M-segment encodes a glycoprotein precursor (GPC) protein that is co-translationally cleaved into Gn and Gc, which are required for virus entry and fusion. Recently we developed a four-segmented RVFV (RVFV-4s) by splitting the M-genome segment, and used this virus to study RVFV genome packaging. Here we evaluated the potential of a RVFV-4s variant lacking the NSs gene (4s-ΔNSs) to induce protective immunity in sheep. Groups of seven lambs were either mock-vaccinated or vaccinated with 10(5) or 10(6) tissue culture infective dose (TCID50) of 4s-ΔNSs via the intramuscular (IM) or subcutaneous (SC) route. Three weeks post-vaccination all lambs were challenged with wild-type RVFV. Mock-vaccinated lambs developed high fever and high viremia within 2 days post-challenge and three animals eventually succumbed to the infection. In contrast, none of the 4s-ΔNSs vaccinated animals developed clinical signs during the course of the experiment. Vaccination with 10(5) TCID50 via the IM route provided sterile immunity, whereas a 10(6) dose was required to induce sterile immunity via SC vaccination. Protection was strongly correlated with the presence of RVFV neutralizing antibodies. This study shows that 4s-ΔNSs is able to induce sterile immunity in the natural target species after a single vaccination, preferably administrated via the IM route.

  10. Respiratory syncytial virus-induced CCL5/RANTES contributes to exacerbation of allergic airway inflammation.

    PubMed

    John, Alison E; Berlin, Aaron A; Lukacs, Nicholas W

    2003-06-01

    Severe respiratory syncytial virus (RSV) infection has a significant impact on airway function and may induce or exacerbate the response to a subsequent allergic challenge. In a murine model combining early RSV infection with later cockroach allergen (CRA) challenge, we examined the role of RSV-induced CCL5/RANTES production on allergic airway responses. RSV infection increased CCL5 mRNA and protein levels, peaking at days 8 and 12, respectively. Administration of CCL5 antiserum during days 0-14 of the RSV infection did not significantly alter viral protein expression when compared to mice treated with control serum. In mice receiving the combined RSV-allergen challenge, lungs collected on day 22 exhibited significantly increased numbers of CD4- and CD8-positive T cells. This increase in T cell numbers was not observed in mice receiving alpha-CCL5. On day 43, peribronchial eosinophilia and leukotriene levels were increased in RSV-allergen mice. Pretreatment with CCL5 antiserum resulted in decreased recruitment of inflammatory cells to bronchoalveolar and peribronchial regions of the lungs and these reductions were associated with a reduction in both T cell recruitment into the bronchoalveolar space, leukotriene release and chemokine generation. Thus, CCL5 released during RSV infection has a significant effect on the inflammatory response to subsequent allergic airway challenges.

  11. Autoanti-idiotypes exhibit mimicry of myocyte antigens in virus-induced myocarditis.

    PubMed Central

    Paque, R E; Miller, R

    1991-01-01

    Mice infected with coxsackievirus B develop immunologically mediated inflammatory myocarditis in heart tissue that results in the development of autoantibodies with multiple idiotypes. The specificity and temporal development of autoantibodies produced during coxsackievirus B3 infection were assessed. Antiviral idiotypes and anti-idiotypic antibodies against coxsackievirus B3 idiotypes were detected and quantitated over 21- and 42-day periods, respectively. Both polyclonal and monoclonal anti-idiotypes exhibited greater but nonspecific binding to heart, liver, kidney, and spleen cells from virus-exposed animals and normal tissue. Binding of anti-idiotypes was also demonstrated to myosin and to solubilized heart-associated antigens but not to virus. Western immunoblot analysis revealed that monoclonal and polyclonal anti-idiotypes selectively bound to hypertonic, salt-extracted, solubilized proteins of myocyte extracts of virus-exposed animals. Images PMID:1845881

  12. Multiple transport systems mediate virus-induced acquired resistance to oxidative stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this paper, we report the phenomenon of acquired cross-tolerance to oxidative (UV-C and H2O2) stress in Nicotiana benthamiana plants infected with Potato virus X (PVX) and investigate the functional expression of transport systems in mediating this phenomenon. By combining multiple approaches, we...

  13. Virus-induced changes in the subcellular distribution of glutathione precursors in Cucurbita pepo (L.).

    PubMed

    Zechmann, B; Zellnig, G; Müller, M

    2007-05-01

    Changes in glutathione contents occur in plants during environmental stress situations, such as pathogen attack, as the formation of reactive oxygen species leads to the activation of the antioxidative defence system. As glutathione is synthesized out of its constituents cysteine, glycine, and glutamate the availability of these components will limit glutathione synthesis in plants especially during stress situations and therefore the ability of the plant to fight oxidative stress. To gain a deeper insight into possible limitations of glutathione synthesis during pathogen attack the present investigations were aimed to study how the subcellular distribution of glutathione precursors correlates with the subcellular distribution of glutathione during virus attack in plants. Selective antibodies against cysteine, glutamate, and glycine were used to study the impact of Zucchini yellow mosaic virus (ZYMV) infection on glutathione precursor contents within different cell compartments of cells from Cucurbita pepo (L.) plants with the transmission electron microscope (TEM). Generally, levels of cysteine and glutamate were found to be strongly decreased in most cell compartments of younger and older leaves including glutathione-producing cell compartments such as plastids and the cytosol. The strongest decrease of cysteine was found in plastids (- 54 %) and mitochondria (- 51 %) of younger leaves and in vacuoles (- 37 %) and plastids (- 29 %) of older leaves. The strongest decrease of glutamate in younger leaves occurred in peroxisomes (- 67 %) and nuclei (- 58 %) and in peroxisomes (- 64 %) and plastids (- 52 %) of the older ones. Glycine levels were found to be strongly decreased (- 63 % in mitochondria and - 53 % in plastids) in most cell compartments of older leaves and strongly increased (about 50 % in plastids and peroxisomes) in all cell compartments of the younger ones. These results indicate that low glycine contents in the older leaves were responsible for low levels of glutathione in these organs during ZYMV infection rather than limited amounts of cysteine or glutamate. Glutathione precursors were virtually absent in cell walls and intercellular spaces and play therefore no important role during ZYMV attack in the apoplast. While glutamate was absent in vacuoles, elevated levels of glycine (up to 30 %) and decreased cysteine contents (up to - 37 %) were observed in vacuoles during ZYMV infection. The impact of the present results on the current knowledge about glutathione synthesis and degradation on the cellular level during ZYMV infection are discussed.

  14. Epstein–Barr Virus-Induced Mononucleosis as an Imitator of Severe Preeclampsia

    PubMed Central

    Staley, S. Allison; Smid, Marcela C.; Dotters-Katz, Sarah K.; Stringer, Elizabeth M.

    2017-01-01

    Background In pregnancy, conditions presenting with hematologic abnormalities, transaminitis, and proteinuria pose diagnostic challenges in pregnancy. Case We present the case of an 18-year-old woman, G1P0, at 33 weeks' gestation with fever of unknown cause, who developed progressively elevated liver enzymes, proteinuria, and thrombocytopenia, due to Epstein–Barr virus (EBV) infection. Conclusion Acute infection with EBV should be included in the differential diagnosis of preeclampsia with severe features, particularly in the setting of fever. Supportive treatment and observation may prevent iatrogenic preterm birth. PMID:28210518

  15. The protective immune response against infectious bronchitis virus induced by multi-epitope based peptide vaccines.

    PubMed

    Yang, Tai; Wang, Hong-Ning; Wang, Xue; Tang, Jun-Ni; Lu, Dan; Zhang, Yun-Fei; Guo, Zi-Cheng; Li, Yu-Ling; Gao, Rong; Kang, Run-Min

    2009-07-01

    Peptide vaccine was found to be an effective and powerful approach to a variety of pathogens. To explore multi-epitope based peptide vaccines against infectious bronchitis virus (IBV), the immunogenic peptides were fused to the 3' terminal of glutathione S transferase gene (GST) and expressed in Escherichia coli. ELISA and Western blot analysis showed that the purified fusion proteins had excellent immune activity with chicken anti-IBV serum. During the vaccination course, the candidate peptide vaccines induced strong humoral and cellular response, and provided up to 80.0% immune protection, while all non-immunized chickens in the negative control group manifested obvious typical symptoms and died after virus challenge. Our finding provides a new way to develop multi-epitope based peptide vaccine against IBV.

  16. Well-tolerated Spirulina extract inhibits influenza virus replication and reduces virus-induced mortality.

    PubMed

    Chen, Yi-Hsiang; Chang, Gi-Kung; Kuo, Shu-Ming; Huang, Sheng-Yu; Hu, I-Chen; Lo, Yu-Lun; Shih, Shin-Ru

    2016-04-12

    Influenza is one of the most common human respiratory diseases, and represents a serious public health concern. However, the high mutability of influenza viruses has hampered vaccine development, and resistant strains to existing anti-viral drugs have also emerged. Novel anti-influenza therapies are urgently needed, and in this study, we describe the anti-viral properties of a Spirulina (Arthrospira platensis) cold water extract. Anti-viral effects have previously been reported for extracts and specific substances derived from Spirulina, and here we show that this Spirulina cold water extract has low cellular toxicity, and is well-tolerated in animal models at one dose as high as 5,000 mg/kg, or 3,000 mg/kg/day for 14 successive days. Anti-flu efficacy studies revealed that the Spirulina extract inhibited viral plaque formation in a broad range of influenza viruses, including oseltamivir-resistant strains. Spirulina extract was found to act at an early stage of infection to reduce virus yields in cells and improve survival in influenza-infected mice, with inhibition of influenza hemagglutination identified as one of the mechanisms involved. Together, these results suggest that the cold water extract of Spirulina might serve as a safe and effective therapeutic agent to manage influenza outbreaks, and further clinical investigation may be warranted.

  17. A Recombinant Adenovirus Expressing Ovine Interferon Tau Prevents Influenza Virus-Induced Lethality in Mice

    PubMed Central

    Pascual, E.; Avia, M.; Rangel, G.; de Molina, A.; Alejo, A.; Sevilla, N.

    2016-01-01

    Ovine interferon tau (IFN-τ) is a unique type I interferon with low toxicity and a broad host range in vivo. We report the generation of a nonreplicative recombinant adenovirus expressing biologically active IFN-τ. Using the B6.A2G-Mx1 mouse model, we showed that single-dose intranasal administration of recombinant Ad5-IFN-τ can effectively prevent lethality and disease induced by highly virulent hv-PR8 influenza virus by activating the interferon response and preventing viral replication. PMID:26739058

  18. Epstein-Barr virus induces MCP-1 secretion by human monocytes via TLR2.

    PubMed

    Gaudreault, Eric; Fiola, Stéphanie; Olivier, Martin; Gosselin, Jean

    2007-08-01

    Epstein-Barr virus (EBV) is a gammaherpesvirus infecting the majority of the human adult population in the world. TLR2, a member of the Toll-like receptor (TLR) family, has been implicated in the immune responses to different viruses including members of the herpesvirus family, such as human cytomegalovirus, herpes simplex virus type 1, and varicella-zoster virus. In this report, we demonstrate that infectious and UV-inactivated EBV virions lead to the activation of NF-kappaB through TLR2 using HEK293 cells cotransfected with TLR2-expressing vector along with NF-kappaB-Luc reporter plasmid. NF-kappaB activation in HEK293-TLR2 cells (HEK293 cells transfected with TLR2) by EBV was not enhanced by the presence of CD14. The effect of EBV was abrogated by pretreating HEK293-TLR2 cells with blocking anti-TLR2 antibodies or by preincubating viral particles with neutralizing anti-EBV antibodies 72A1. In addition, EBV infection of primary human monocytes induced the release of MCP-1 (monocyte chemotactic protein 1), and the use of small interfering RNA targeting TLR2 significantly reduced such a chemokine response to EBV. Taken together, these results indicate that TLR2 may be an important pattern recognition receptor in the immune response directed against EBV infection.

  19. Proteomic Profiling of Human Liver Biopsies: Hepatitis C Virus-Induced Fibrosis and Mitochondrial Dysfunction

    SciTech Connect

    Diamond, Deborah L.; Jacobs, Jon M.; Paeper, Bryan; Proll, Sean; Gritsenko, Marina A.; Carithers, Jr., Robert L.; Larson , Anne M.; Yeh, Matthew M.; Camp, David G.; Smith, Richard D.; Katze, Michael G.

    2007-09-01

    Liver biopsies from HCV-infected patients offer the unique opportunity to study human liver biology and disease in vivo. However, the low protein yields associated with these small samples present a significant challenge for proteomic analysis. In this study we describe the application of an ultra-sensitive proteomics platform for performing robust quantitative proteomic studies on microgram amounts of HCV-infected human liver tissue from 15 patients at different stages of fibrosis. A high quality liver protein data base containing 5,920 unique protein identifications supported high throughput quantitative studies using 16O:18O stable isotope labeling in combination with the accurate mass and time (AMT) tag approach. A total of 1,641 liver biopsy proteins were quantified and ANOVA identified 210 proteins exhibiting statistically significant differences associated with fibrosis stage. Hierarchical clustering revealed that biopsies representative of later fibrosis stages (e.g. Batts-Ludwig stages 3-4) exhibited a distinct protein expression profile indicating an apparent down-regulation of many proteins when compared to samples from earlier fibrosis stages (e.g. Batts-Ludwig stages 0-2). Functional analysis of these signature proteins suggests that impairment of key mitochondrial processes including fatty acid oxidation and oxidative phosphorylation, and response to oxidative stress and reactive oxygen species occurs during advanced stage 3-4 fibrosis. In conclusion, the results reported here represent a significant advancement in clinical proteomics providing to our knowledge, the first demonstration of global proteomic alterations accompanying liver disease progression in patients chronically infected with HCV. Our findings contribute to a generally emerging theme associating oxidative stress and hepatic mitochondrial dysfunction with HCV pathogenesis.

  20. Marek’s disease virus induces transient atrophy of cecal tonsils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Marek’s disease (MD) is a lymphoproliferative disease of domestic chickens caused by an immunosupperessive alpha herpesvirus, Marek’s disease virus (MDV). Clinical signs of MD include bursal/thymic atrophy and neurological disorders. The cecal tonsils (CT) are the largest lymphoid aggregates of avia...

  1. Disruption of Rpp1-mediated soybean rust resistance by virus-induced gene silencing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean rust is a fungus that causes disease on soybeans. The discovery of soybean genes and proteins that are important for disease resistance to soybean rust may help improve soybean cultivars through breeding or transgenic technology. Proteins previously discovered in the cell nucleus of soybea...

  2. Characterization of Influenza Virus-Induced Leukocyte Adherence to Human Umbilical Vein Endothelial Cell Monolayers

    DTIC Science & Technology

    1993-07-01

    maximally thelial cells lining blood vessels, since as both enteroviruses induced expression of E-%electin and ICAM- I Ag (data not that cause ain...Kirkpatrick, C. J., B. D. Bultnann. and H. Cruler. 1985. In- In summary, we have demonstrated a time- and teraction between enteroviruses and human

  3. Transcriptional changes in canine distemper virus-induced demyelinating leukoencephalitis favor a biphasic mode of demyelination.

    PubMed

    Ulrich, Reiner; Puff, Christina; Wewetzer, Konstantin; Kalkuhl, Arno; Deschl, Ulrich; Baumgärtner, Wolfgang

    2014-01-01

    Canine distemper virus (CDV)-induced demyelinating leukoencephalitis in dogs (Canis familiaris) is suggested to represent a naturally occurring translational model for subacute sclerosing panencephalitis and multiple sclerosis in humans. The aim of this study was a hypothesis-free microarray analysis of the transcriptional changes within cerebellar specimens of five cases of acute, six cases of subacute demyelinating, and three cases of chronic demyelinating and inflammatory CDV leukoencephalitis as compared to twelve non-infected control dogs. Frozen cerebellar specimens were used for analysis of histopathological changes including demyelination, transcriptional changes employing microarrays, and presence of CDV nucleoprotein RNA and protein using microarrays, RT-qPCR and immunohistochemistry. Microarray analysis revealed 780 differentially expressed probe sets. The dominating change was an up-regulation of genes related to the innate and the humoral immune response, and less distinct the cytotoxic T-cell-mediated immune response in all subtypes of CDV leukoencephalitis as compared to controls. Multiple myelin genes including myelin basic protein and proteolipid protein displayed a selective down-regulation in subacute CDV leukoencephalitis, suggestive of an oligodendrocyte dystrophy. In contrast, a marked up-regulation of multiple immunoglobulin-like expressed sequence tags and the delta polypeptide of the CD3 antigen was observed in chronic CDV leukoencephalitis, in agreement with the hypothesis of an immune-mediated demyelination in the late inflammatory phase of the disease. Analysis of pathways intimately linked to demyelination as determined by morphometry employing correlation-based Gene Set Enrichment Analysis highlighted the pathomechanistic importance of up-regulated genes comprised by the gene ontology terms "viral replication" and "humoral immune response" as well as down-regulated genes functionally related to "metabolite and energy generation".

  4. Suppressor T cell clones from patients with acute Epstein-Barr virus-induced infectious mononucleosis.

    PubMed Central

    Wang, F; Blaese, R M; Zoon, K C; Tosato, G

    1987-01-01

    Suppression and/or cytotoxicity are believed to play an important role in the defense against Epstein-Barr virus (EBV) infection. To analyze the role of suppressor T cells in relation to EBV, we sought to clone and study these T cells. Analysis of 152 T cell clones derived from the peripheral blood of two patients with acute EBV-induced infectious mononucleosis (IM) yielded 11 highly suppressive clones that had no cytotoxic activity for the natural killer sensitive K562 cell line, an autologous EBV-infected cell line, or an allogeneic EBV-infected B cell line. Four of six suppressor T cell clones also profoundly inhibited EBV-induced immunoglobulin production, and five of five clones delayed the outgrowth of immortalized cells. These results indicate that during acute IM, suppressor T cells capable of inhibiting B cell activation in the absence of cytotoxicity can be identified, and may play a key role in the control of EBV infection. Images PMID:3025263

  5. Involvement of Fas and FasL in Ectromelia virus-induced apoptosis in mouse brain.

    PubMed

    Krzyzowska, Małgorzata; Cymerys, Joanna; Winnicka, Anna; Niemiałtowski, Marek

    2006-02-01

    In this study we showed that the virulent Moscow strain of Ectromelia virus (ECTV-MOS) infection leads to induction of apoptosis in the BALB/c mouse central nervous system. ECTV-MOS-infected cells and inflammation sites were found in brain parenchyma between 5 and 15 days after footpad infection with ECTV-MOS. Infected cells consisted of microglia and monocytes, astrocytes and oligodendrocytes and these type of cells underwent apoptosis within 5-15 days post infection (d.p.i.). The highest number of apoptotic cells was found at 5 and 10 d.p.i. and represented mainly microglia (61.4% and 38.6% of apoptotic cells, respectively) and astrocytes (21% and 8.9%, respectively). The number of apoptotic oligodendrocytes was 5.4% and 4.5%, respectively. Fluorometric assays demonstrated involvement of caspase-1, -3 and -8 but not caspase-9 in apoptosis in ECTV-MOS-infected mouse brains. Expression of Fas/FasL was significantly increased on ECTV-MOS-infected cells between 5 and 15 d.p.i., whereas Fas was up-regulated also on the surrounding, non-infected cells. Taking together we may conclude that ECTV-MOS infection of microglia and astrocytes leads to local inflammation resulting in Fas/FasL up-regulation and apoptosis, which limits mouse central nervous system infection with ECTV-MOS.

  6. Dengue virus-induced thymus-derived suppressor cells in the spleen of mice.

    PubMed Central

    Tandon, P; Chaturvedi, U C; Mathur, A

    1979-01-01

    Adoptive transfer of spleen cells obtained from mice given three weekly i.p. doses of dengue type 2 virus (DV) suppressed DV antigen-specific antibody secretion as detected by the Jerne plaque technique. This suppression was produced by non-glass-adherent cells but not by glass-adherent cells. Immune spleen cells depleted of macrophages by carbonyl iron treatment had higher suppressor activity. Immune spleen cell homogenate could transfer the activity equally well. The immune spleen cells were separated into T and B lymphocytes by a nylon wool column. B lymphocytes had no suppressor activity; almost all the suppressor activity was present in T lymphocytes. Thus, macrophages and B lymphocytes had no suppressor activity; it was mediated by T lymphocytes through soluble factors. PMID:160396

  7. A Review of Chikungunya Virus-induced Arthralgia: Clinical Manifestations, Therapeutics, and Pathogenesis

    PubMed Central

    Goupil, Brad A.; Mores, Christopher N.

    2016-01-01

    Background: Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that circulates predominantly in tropical and subtropical regions, potentially affecting over 1 billion people. Recently, an outbreak began in the western hemisphere and has resulted in over 1.8 million reported suspected cases. Infection often results in severe fever, rash and debilitating polyarthralgia lasting weeks to months. Additionally, the current literature reports that CHIKV can result in a severe chronic arthralgia and/or arthritis that can last months to years following the initial infection. Objective: The purpose of this review is to evaluate the literature and summarize the current state of knowledge regarding CHIKV-associated disease, including clinical presentation, diagnosis, risk factors for development of severe disease, treatment, and pathogenesis in human patients. Additionally, recommendations are presented regarding avenues for clinical research to help further elucidate the pathogenesis of joint disease associated with CHIKV infection. Conclusion: While there is an association between initial CHIKV infection and acute disease, a causal relationship with development of chronic arthralgia has not been established at this time. Potential causes of chronic CHIKV-induced arthritis have been postulated, including viral persistence, induction of autoimmune disease, and exacerbation of pre-existing joint disease. While there are numerous reports of chronic CHIKV-associated arthralgia and/or arthritis, there is currently no evidence of a definitive link between initial infection and development of chronic disease. Additional, prospective clinical research on CHIKV-associated disease is necessary to further determine the potential role of virus and development of chronic joint disease. PMID:28077980

  8. The effect of infectious bursal disease virus induced immunosuppression on avian influenza virus vaccine efficacy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the field, poultry are exposed to a variety of infectious agents, many of which are immunosuppressive. Co-infections between these agents are common, and these co-infections have effects on disease, immune response, and vaccine efficacy. The effect of co-infections in poultry between immunosupp...

  9. Venezuelan Equine Encephalitis Virus Induces Apoptosis through the Unfolded Protein Response Activation of EGR1

    PubMed Central

    Baer, Alan; Lundberg, Lindsay; Swales, Danielle; Waybright, Nicole; Pinkham, Chelsea; Dinman, Jonathan D.

    2016-01-01

    ABSTRACT Venezuelan equine encephalitis virus (VEEV) is a previously weaponized arthropod-borne virus responsible for causing acute and fatal encephalitis in animal and human hosts. The increased circulation and spread in the Americas of VEEV and other encephalitic arboviruses, such as eastern equine encephalitis virus and West Nile virus, underscore the need for research aimed at characterizing the pathogenesis of viral encephalomyelitis for the development of novel medical countermeasures. The host-pathogen dynamics of VEEV Trinidad donkey-infected human astrocytoma U87MG cells were determined by carrying out RNA sequencing (RNA-Seq) of poly(A) and mRNAs. To identify the critical alterations that take place in the host transcriptome following VEEV infection, samples were collected at 4, 8, and 16 h postinfection and RNA-Seq data were acquired using an Ion Torrent PGM platform. Differential expression of interferon response, stress response factors, and components of the unfolded protein response (UPR) was observed. The protein kinase RNA-like endoplasmic reticulum kinase (PERK) arm of the UPR was activated, as the expression of both activating transcription factor 4 (ATF4) and CHOP (DDIT3), critical regulators of the pathway, was altered after infection. Expression of the transcription factor early growth response 1 (EGR1) was induced in a PERK-dependent manner. EGR1−/− mouse embryonic fibroblasts (MEFs) demonstrated lower susceptibility to VEEV-induced cell death than isogenic wild-type MEFs, indicating that EGR1 modulates proapoptotic pathways following VEEV infection. The influence of EGR1 is of great importance, as neuronal damage can lead to long-term sequelae in individuals who have survived VEEV infection. IMPORTANCE Alphaviruses represent a group of clinically relevant viruses transmitted by mosquitoes to humans. In severe cases, viral spread targets neuronal tissue, resulting in significant and life-threatening inflammation dependent on a combination of virus-host interactions. Currently there are no therapeutics for infections cause by encephalitic alphaviruses due to an incomplete understanding of their molecular pathogenesis. Venezuelan equine encephalitis virus (VEEV) is an alphavirus that is prevalent in the Americas and that is capable of infecting horses and humans. Here we utilized next-generation RNA sequencing to identify differential alterations in VEEV-infected astrocytes. Our results indicated that the abundance of transcripts associated with the interferon and the unfolded protein response pathways was altered following infection and demonstrated that early growth response 1 (EGR1) contributed to VEEV-induced cell death. PMID:26792742

  10. Zika virus induces inflammasome activation in the glial cell line U87-MG.

    PubMed

    Tricarico, Paola Maura; Caracciolo, Ilaria; Crovella, Sergio; D'Agaro, Pierlanfranco

    2017-01-30

    In the last years, neurological complications related to Zika virus (ZIKV) infection have emerged as an important threat to public health worldwide. ZIKV infection has been associated to neurological disorders such as congenital microcephaly in newborns and Guillain-Barré syndrome, myelopathy and encephalitis in adults. ZIKV is characterized by neurotropism and neurovirulence. Several studies have identified microglial nodules, gliosis, neuronal and glial cells degeneration and necrosis in the brain of ZIKV infected infants, suggesting that ZIKV could play a role in these neurological disorders through neuroinflammation and microglial activation. Little information is available about neuroinflammation and ZIKV-related neurological disorders. Therefore, we investigated if ZIKV is able to infect a glial cell line (U87-MG) and how the glial cell line responds to this infection in terms of inflammation (IL-1β, NLRP-3 and CASP-1), oxidative stress (SOD2 and HemeOX) and cell death. We observed a significant increase of ZIKV load in both cells and supernatants after 72 h, compared to 48 h of infection. We found that ZIKV infection induces an increase of IL-1β, NLRP-3 and CASP-1 genes expression. Significant increase of IL-1β and unchanged pro-IL-1β protein levels have also been detected. Moreover, we observed SOD2 and HemeOX increased gene expression mainly after 72 h post ZIKV infection. Subsequently, we found a decrease of U87-MG cell viability, after both 48 h and 72 h of ZIKV infection. Our results show that U87-MG cells are susceptible to ZIKV infection. ZIKV is able to successfully replicate in infected cells causing oxidative stress, NLRP3 inflammasome activation and subsequent release of mature IL-1β; this process culminates in cell death. Thus, considering the central role of neuroinflammation in neurological disorders, it is important to comprehend every aspect of this mechanism in order to better understand the pathogenesis of ZIKV infection and to identify possible strategies to fight the virus by rescuing cell death.

  11. Neo-Epitopes Generated on Hydroxyl Radical Modified GlycatedIgG Have Role in Immunopathology of Diabetes Type 2

    PubMed Central

    Islam, Sidra; Mir, Abdul Rouf; Raghav, Alok; Khan, Farzana; Alam, Khursheed; Ali, Asif; Uddin, Moin

    2017-01-01

    Glycoxidation plays a crucial role in diabetes and its associated complications. Among the glycoxidation agents, methylglyoxal (MG) is known to have very highglycationpotential witha concomitant generation of reactive oxygen species (ROS) during its synthesis and degradation. The presentstudy probes the MG and ROSinduced structural damage to immunoglobulin G (IgG) and alterations in its immunogenicity in diabetes type 2 patients (T2DM). Human IgG was first glycated with MG followed by hydroxyl radical (OH•) modification. Glycoxidation mediated effects on IgG were evaluated by various physicochemical techniques likeultraviolet (UV) and fluorescence spectroscopy, 8-anilinonaphthalene-1-sulfonic acid (ANS) binding studies, carbonyl andfree sulfhydryl groups assay, matrix assisted laser desorption ionization mass spectrometry-time of flight (MALDI-TOF), red blood cell (RBC) haemolysis assay, Congored (CR) staining analysis and scanning electron microscopy (SEM). The results revealed hyperchromicityin UV, advanced glycation end product (AGE)specific and ANS fluorescence, quenching in tyrosine and tryptophan fluorescence intensity,enhanced carbonyl content,reduction in free sulfhydryl groups,pronounced shift in m/z value of IgGand decrease in antioxidant activity in RBC induced haemolysis assayupon glycoxidation. SEM and CRstaining assay showed highly altered surface morphology in glycoxidised sample as compared to the native. Enzyme linked immunosorbent assay (ELISA) and band shift assay were performed to assess the changes in immunogenicity of IgG upon glyoxidation and its role in T2DM. The serum antibodies derived from T2DM patients demonstrated strong affinity towards OH• treated MG glycatedIgG (OH•-MG-IgG) when compared to native IgG (N-IgG) or IgGs treated with MG alone (MG-IgG) or OH• alone (OH•-IgG). This study shows the cumulating effect of OH• on the glycation potential of MG. The results point towards the modification of IgG in diabetes patients under the effect of glycoxidative stress, leading to the generation of neo-epitopes on theIgG molecule and rendering it immunogenic. PMID:28046123

  12. The TNF-Family Cytokine TL1A Promotes Allergic Immunopathology through Group 2 Innate Lymphoid Cells

    PubMed Central

    Meylan, Françoise; Hawley, Eric T.; Barron, Luke; Barlow, Jillian L.; Penumetcha, Pallavi; Pelletier, Martin; Sciumè, Giuseppe; Richard, Arianne C.; Hayes, Erika T.; Gomez-Rodriguez, Julio; Chen, Xi; Paul, William E.; Wynn, Thomas A.; McKenzie, Andrew N.J.; Siegel, Richard M.

    2014-01-01

    The TNF-family cytokine TL1A (TNFSF15) costimulates T cells and promotes diverse T-cell dependent models of autoimmune disease through its receptor DR3. TL1A polymorphisms also confer susceptibility to inflammatory bowel disease. Here we find that allergic pathology driven by constitutive TL1A expression depends on IL-13, but not T, NKT, mast cells or commensal intestinal flora. Group 2 innate lymphoid cells (ILC2) express surface DR3 and produce IL-13 and other type 2 cytokines in response to TL1A. DR3 is required for ILC2 expansion and function in the setting of T cell dependent and independent models of allergic disease. By contrast, DR3 deficient ILC2 can still differentiate, expand and produce IL-13 when stimulated by IL-25 or IL-33, and mediate expulsion of intestinal helminths. These data identify costimulation of ILC2 as a novel function of TL1A important for allergic lung disease, and suggest that TL1A may be a therapeutic target in these settings. PMID:24368564

  13. [Influence of GABA derivatives on some indices of lipid peroxidation in immunocompetent organs under experimental immunopathology conditions].

    PubMed

    Samotrueva, M A; Magomedov, M M; Khlebtsova, E B; Tiurenkov, I N

    2011-01-01

    The effects of GABA derivatives phenotropil (25 mg/kg), phenibut (25 mg/kg), and baclofen (2 mg/kg) on the process of lipid peroxidation (LPO), as manifested by the initial level of malonic dialdehyde, velocity of spontaneous and ascorbate-dependent LPO, and the catalase activity in the homogenates of thymus and spleen, have been studied on rats of the Wistar line with cyclophosphamide (CPHA) immunodepression and lipopolysacharide (LPS) immune stress. It is established that, under the action of CPHA and LPS, activation of the LPO processes takes place in the immune organs. Under these conditions, changes of the catalase activity exhibited some specific features: in the animals under LPS action, the catalase activity increased in the spleen, while being decreased in the thymus; under the influence of CPHA, the activity of this enzyme decreased in both organs. An analysis of the antioxidant activity of GABA derivatives under the conditions of CPHA-induced immunodepression showed that all substances upon intraperitoneal introduction for 5 days favored the elimination of disturbances by suppressing the LPO processes and increasing the antioxidant protection activity. On the background of LPS-induced immune stress, all the tested substances showed a correcting action with respect to indicated biochemical processes in the thymus, while only phenibut activated the antioxidant system in the spleen.

  14. TIR-domain-containing adapter-inducing interferon-β (TRIF) regulates Th17-mediated intestinal immunopathology in colitis

    PubMed Central

    Kanagavelu, S; Flores, C; Termini, J M; Riveron, R; Romero, L; Chung, K; Ruiz, J; Hyun, J; Yuan, X; Dagvadorj, J; Fukata, M

    2015-01-01

    Gastrointestinal mucosa reserves abundant Th17 cells where host response to commensal bacteria maintains Th17-cell generation. Although functional heterogeneity and dynamic plasticity of Th17 cells appear to be involved in chronic inflammatory disorders, how their plasticity is regulated in intestinal mucosa is unknown. Here we show that innate TRIF signaling regulates intestinal Th17-cell generation and plasticity during colitis. Absence of TRIF in mice resulted in increased severity of experimental colitis, which was associated with aberrant generation of Th17 cells especially of interferon (IFN)-γ-expressing Th17 cells in the lamina propria. The abnormal generation and plasticity of Th17 cells involved impaired expression of interleukin (IL)-27p28 by lamina propria macrophages but not dendritic cells. Treatment of TRIF-deficient mice with IL-27p28 during colitis reduced the number and IFN-γ expression of Th17 cells in the intestine. In vitro, TRIF-deficient macrophages induced more Th17 cells than wild-type (WT) macrophages during co-culture with WT naive T cells in response to cecal bacterial antigen. Many of Th17 cells induced by TRIF-deficient macrophages expressed IFN-γ due to impaired expression of IL-27p28 by macrophages and defective activation of STAT1 in T cells. These results outline TRIF-dependent regulatory mechanism by which host response to intestinal bacteria maintains Th17-cell-mediated pathology during colitis. PMID:25073675

  15. Immuno-pathological studies on broiler chicken experimentally infected with Escherichia coli and supplemented with neem (Azadirachta indica) leaf extract

    PubMed Central

    Sharma, Vikash; Jakhar, K. K.; Dahiya, Swati

    2016-01-01

    Aim: The present study was conducted to evaluate the effects of neem leaf extract (NLE) supplementation on immunological response and pathology of different lymphoid organs in experimentally Escherichia coli challenged broiler chickens. Materials and Methods: For this study, we procured 192-day-old broiler chicks from local hatchery and divided them into Groups A and Group B containing 96 birds each on the first day. Chicks of Group A were supplemented with 10% NLE in water, whereas chicks of Group B were not supplemented with NLE throughout the experiment. At 7th day of age, chicks of Group A were divided into A1 and A2 and Group B into B1 and B2 with 54 and 42 chicks, respectively, and chicks of Groups A1 and B1 were injected with E. coli O78 at 107 colony-forming units/0.5 ml intraperitoneally. Six chicks from each group were sacrificed at 0, 2, 4, 7, 14, 21, and 28 days post infection; blood was collected and thorough post-mortem examination was conducted. Tissue pieces of spleen and bursa of Fabricius were collected in 10% buffered formalin for histopathological examination. Serum was separated for immunological studies. Result: E. coli specific antibody titer was significantly higher in Group A1 in comparison to Group B1. Delayed-type hypersensitivity response against 2,4 dinirochlorobenzene (DNCB) antigen was significantly higher in Group A1 as compared to Group B1. Pathological studies revealed that E. coli infection caused depletion of lymphocytes in bursa of Fabricius and spleen. Severity of lesions in Group A1 was significantly lower in comparison to Group B1. Conclusion: 10% NLE supplementation enhanced the humoral as well as cellular immune responses attributed to its immunomodulatory property in experimentally E. coli infected broiler chicken. PMID:27536035

  16. Efficacy of toltrazuril 5 % suspension against Eimeria bovis and Eimeria zuernii in calves and observations on the associated immunopathology.

    PubMed

    Jonsson, Nicholas N; Piper, Emily K; Gray, Christian P; Deniz, Abdulkerim; Constantinoiu, Constantin C

    2011-08-01

    16 Calves were each infected with suspensions containing a mixture of approximately 230,000 Eimeria bovis and 70,000 E. zuernii oocysts, which resulted in detection of oocysts in faeces of 12 of 16 calves by day +14 after infection. On day +14 after infection calves were either treated (n = 8) with toltrazuril at 15 mg/kg body weight or with a placebo. Observations were made on the clinical condition, faecal score and liveweight of calves daily from one day post infection (pi) until 24 days pi when all calves were euthanised and examined post mortem. Samples were collected from ileum and colon for histological, immunohistochemical and gene expression studies. The study demonstrated an efficacy of toltrazuril for the treatment of E. bovis and E. zuernii infections in calves reaching 99 % (based on arithmetic mean oocyst counts in faeces) within three days of treatment and remaining at or above this level for six days. Toltrazuril did not have a significant effect on the pattern and extent of immune cellular infiltration in the mucosa of ileum and colon, but the expression of the genes coding IL-2, IL-10 and TNF-α in the ileum and TNF-α in the colon were elevated in calves treated with toltrazuril. Higher levels of oocyst shedding were significantly associated with lower expression of genes coding for IL-2, IL-10 and higher IP-10. It is concluded that toltrazuril is effective for the treatment of coccidiosis due to E. bovis and E. zuernii in calves and enables the development of a normal or enhanced immune response to infection.

  17. Neo-Epitopes Generated on Hydroxyl Radical Modified GlycatedIgG Have Role in Immunopathology of Diabetes Type 2.

    PubMed

    Islam, Sidra; Mir, Abdul Rouf; Raghav, Alok; Khan, Farzana; Alam, Khursheed; Ali, Asif; Uddin, Moin

    2017-01-01

    Glycoxidation plays a crucial role in diabetes and its associated complications. Among the glycoxidation agents, methylglyoxal (MG) is known to have very highglycationpotential witha concomitant generation of reactive oxygen species (ROS) during its synthesis and degradation. The presentstudy probes the MG and ROSinduced structural damage to immunoglobulin G (IgG) and alterations in its immunogenicity in diabetes type 2 patients (T2DM). Human IgG was first glycated with MG followed by hydroxyl radical (OH•) modification. Glycoxidation mediated effects on IgG were evaluated by various physicochemical techniques likeultraviolet (UV) and fluorescence spectroscopy, 8-anilinonaphthalene-1-sulfonic acid (ANS) binding studies, carbonyl andfree sulfhydryl groups assay, matrix assisted laser desorption ionization mass spectrometry-time of flight (MALDI-TOF), red blood cell (RBC) haemolysis assay, Congored (CR) staining analysis and scanning electron microscopy (SEM). The results revealed hyperchromicityin UV, advanced glycation end product (AGE)specific and ANS fluorescence, quenching in tyrosine and tryptophan fluorescence intensity,enhanced carbonyl content,reduction in free sulfhydryl groups,pronounced shift in m/z value of IgGand decrease in antioxidant activity in RBC induced haemolysis assayupon glycoxidation. SEM and CRstaining assay showed highly altered surface morphology in glycoxidised sample as compared to the native. Enzyme linked immunosorbent assay (ELISA) and band shift assay were performed to assess the changes in immunogenicity of IgG upon glyoxidation and its role in T2DM. The serum antibodies derived from T2DM patients demonstrated strong affinity towards OH• treated MG glycatedIgG (OH•-MG-IgG) when compared to native IgG (N-IgG) or IgGs treated with MG alone (MG-IgG) or OH• alone (OH•-IgG). This study shows the cumulating effect of OH• on the glycation potential of MG. The results point towards the modification of IgG in diabetes patients under the effect of glycoxidative stress, leading to the generation of neo-epitopes on theIgG molecule and rendering it immunogenic.

  18. Killer Cell Immunoglobulin-like Receptors and Their HLA Ligands are Related with the Immunopathology of Chagas Disease

    PubMed Central

    Ayo, Christiane Maria; Reis, Pâmela Guimarães; Dalalio, Márcia Machado de Oliveira; Visentainer, Jeane Eliete Laguila; Oliveira, Camila de Freitas; de Araújo, Silvana Marques; de Oliveira Marques, Divina Seila; Sell, Ana Maria

    2015-01-01

    The aim of this study was to investigate the influence of killer cell immunoglobulin-like receptor (KIR) genes and their human leucocyte antigen (HLA) ligands in the susceptibility of chronic Chagas disease. This case-control study enrolled 131 serologically-diagnosed Chagas disease patients (59 men and 72 women, mean age of 60.4 ± 9.8 years) treated at the University Hospital of Londrina and the Chagas Disease Laboratory of the State University of Maringa. A control group was formed of 165 healthy individuals - spouses of patients or blood donors from the Regional Blood Bank in Maringa (84 men and 81 women, with a mean age of 59.0 ± 11.4 years). Genotyping of HLA and KIR was performed by PCR-SSOP. KIR2DS2-C1 in the absence of KIR2DL2 (KIR2DS2+/2DL2-/C1+) was more frequent in Chagas patients (P = 0.020; Pc = 0.040; OR = 2.14) and, in particular, those who manifested chronic chagasic cardiopathy—CCC (P = 0.0002; Pc = 0.0004; OR = 6.64; 95% CI = 2.30–18.60) when compared to the control group, and when CCC group was compared to the patients without heart involvement (P = 0.010; Pc = 0.020; OR = 3.97). The combination pair KIR2DS2+/2DL2-/KIR2DL3+/C1+ was also positively associated with chronic chagasic cardiopathy. KIR2DL2 and KIR2DS2 were related to immunopathogenesis in Chagas disease. The combination of KIR2DS2 activating receptor with C1 ligand, in the absence of KIR2DL2, may be related to a risk factor in the chronic Chagas disease and chronic chagasic cardiopathy. PMID:25978047

  19. Blockage of Galectin-receptor Interactions by α-lactose Exacerbates Plasmodium berghei-induced Pulmonary Immunopathology

    PubMed Central

    Liu, Jinfeng; Huang, Shiguang; Su, Xin-zhuan; Song, Jianping; Lu, Fangli

    2016-01-01

    Malaria-associated acute lung injury (ALI) is a frequent complication of severe malaria that is often caused by “excessive” immune responses. To better understand the mechanism of ALI in malaria infection, here we investigated the roles of galectin (Gal)-1, 3, 8, 9 and the receptors of Gal-9 (Tim-3, CD44, CD137, and PDI) in malaria-induced ALI. We injected alpha (α)-lactose into mice-infected with Plasmodium berghei ANKA (PbANKA) to block galectins and found significantly elevated total proteins in bronchoalveolar lavage fluid, higher parasitemia and tissue parasite burden, and increased numbers of CD68+ alveolar macrophages as well as apoptotic cells in the lungs after blockage. Additionally, mRNA levels of Gal-9, Tim-3, CD44, CD137, and PDI were significantly increased in the lungs at day 5 after infection, and the levels of CD137, IFN-α, IFN-β, IFN-γ, IL-4, and IL-10 in the lungs were also increased after α-lactose treatment. Similarly, the levels of Gal-9, Tim-3, IFN-α, IFN-β, IFN-γ, and IL-10 were all significantly increased in murine peritoneal macrophages co-cultured with PbANKA-infected red blood cells in vitro; but only IFN-α and IFN-β were significantly increased after α-lactose treatment. Our data indicate that Gal-9 interaction with its multiple receptors play an important role in murine malaria-associated ALI. PMID:27554340

  20. Immunity and immune response, pathology and pathologic changes: progress and challenges in the immunopathology of yellow fever.

    PubMed

    Quaresma, Juarez A S; Pagliari, Carla; Medeiros, Daniele B A; Duarte, Maria I S; Vasconcelos, Pedro F C

    2013-09-01

    Yellow fever is a viral hemorrhagic fever, which affects people living in Africa and South America and is caused by the yellow fever virus, the prototype species in the Flavivirus genus (Flaviviridae family). Yellow fever virus infection can produce a wide spectrum of symptoms, ranging from asymptomatic infection or oligosymptomatic illness to severe disease with a high fatality rate. In this review, we focus in the mechanisms associated with the physiopathology of yellow fever in humans and animal models. It has been demonstrated that several factors play a role in the pathological outcome of the severe form of the disease including direct viral cytopathic effect, necrosis and apoptosis of hepatocyte cells in the midzone, and a minimal inflammatory response as well as low-flow hypoxia and cytokine overproduction. New information has filled several gaps in the understanding of yellow fever pathogenesis and helped comprehend the course of illness. Finally, we discuss prospects for an immune therapy in the light of new immunologic, viral, and pathologic tools.

  1. Effect of clove and cinnamon extracts on experimental model of acute hematogenous pyelonephritis in albino rats: Immunopathological and antimicrobial study.

    PubMed

    Nassan, M A; Mohamed, E H; Abdelhafez, S; Ismail, T A

    2015-03-01

    Recent studies showed prominent antimicrobial activity of some plant extracts on some pathogenic microorganisms so we evaluated antimicrobial activity of aqueous extracts of clove and cinnamon using the agar well diffusion method. An in vivo study was carried out on 40 adult healthy male albino rats divided into four groups: Group 1: negative control group (received intragastric saline solution daily); Group 2: injected with mixed bacterial suspension of S. aureus and E.coli as a model of pyelonephritis then received intragastric saline solution daily; Group 3: injected with the same dose of mixed bacterial suspension then received intragastric clove extract 500 mg/kg/day; and Group (4): injected with mixed bacterial suspension then received intragastric cinnamon 500 mg/kg/day. Five rats from each group were sacrificed after 1 and 4 weeks. Serum and blood samples were collected for lysozymes activity and nitric oxide production, lymphocyte transformation test, as well as counting of both total and differential leukocytes and erythrocytes. Kidney samples were tested histopathologically. Both in vivo and in vitro results confirmed the efficacy of clove extract as natural antimicrobials and suggested the possibility of its use in treatment of such bacterial infections.

  2. Rebuilding an Immune-Mediated Central Nervous System Disease: Weighing the Pathogenicity of Antigen-Specific versus Bystander T Cells1

    PubMed Central

    McGavern, Dorian B.; Truong, Phi

    2017-01-01

    Although both self- and pathogen-specific T cells can participate in tissue destruction, recent studies have proposed that after viral infection, bystander T cells of an irrelevant specificity can bypass peptide-MHC restriction and contribute to undesired immunopathological consequences. To evaluate the importance of this mechanism of immunopathogenesis, we determined the relative contributions of Ag-specific and bystander CD8+ T cells to the development of CNS disease. Using lymphocytic choriomeningitis virus (LCMV) as a stimulus for T cell recruitment into the CNS, we demonstrate that bystander CD8+ T cells with an activated surface phenotype can indeed be recruited into the CNS over a chronic time window. These cells become anatomically positioned in the CNS parenchyma, and a fraction aberrantly acquires the capacity to produce the effector cytokine, IFN-β. However, when directly compared with their virus-specific counterparts, the contribution of bystander T cells to CNS damage was insignificant in nature (even when specifically activated). Although bystander T cells alone failed to cause tissue injury, transferring as few as 1000 naive LCMV-specific CD8+ T cells into a restricted repertoire containing only bystander T cells was sufficient to induce immune-mediated pathology and reconstitute a fatal CNS disease. These studies underscore the importance of specific T cells in the development of immunopathology and subsequent disease. Because of highly restrictive constraints imposed by the host, it is more likely that specific, rather than nonspecific, bystander T cells are the active participants in T cell-mediated diseases that afflict humans. PMID:15470017

  3. Envelope exchange for the generation of live-attenuated arenavirus vaccines.

    PubMed

    Bergthaler, Andreas; Gerber, Nicolas U; Merkler, Doron; Horvath, Edit; de la Torre, Juan Carlos; Pinschewer, Daniel D

    2006-06-01

    Arenaviruses such as Lassa fever virus cause significant mortality in endemic areas and represent potential bioterrorist weapons. The occurrence of arenaviral hemorrhagic fevers is largely confined to Third World countries with a limited medical infrastructure, and therefore live-attenuated vaccines have long been sought as a method of choice for prevention. Yet their rational design and engineering have been thwarted by technical limitations. In addition, viral genes had not been identified that are needed to cause disease but can be deleted or substituted to generate live-attenuated vaccine strains. Lymphocytic choriomeningitis virus, the prototype arenavirus, induces cell-mediated immunity against Lassa fever virus, but its safety for humans is unclear and untested. Using this virus model, we have developed the necessary methodology to efficiently modify arenavirus genomes and have exploited these techniques to identify an arenaviral Achilles' heel suitable for targeting in vaccine design. Reverse genetic exchange of the viral glycoprotein for foreign glycoproteins created attenuated vaccine strains that remained viable although unable to cause disease in infected mice. This phenotype remained stable even after extensive propagation in immunodeficient hosts. Nevertheless, the engineered viruses induced T cell-mediated immunity protecting against overwhelming systemic infection and severe liver disease upon wild-type virus challenge. Protection was established within 3 to 7 d after immunization and lasted for approximately 300 d. The identification of an arenaviral Achilles' heel demonstrates that the reverse genetic engineering of live-attenuated arenavirus vaccines is feasible. Moreover, our findings offer lymphocytic choriomeningitis virus or other arenaviruses expressing foreign glycoproteins as promising live-attenuated arenavirus vaccine candidates.

  4. Protection against measles virus-induced encephalitis by anti-mimotope antibodies: the role of antibody affinity.

    PubMed

    Olszewska, W; Obeid, O E; Steward, M W

    2000-06-20

    Synthetic peptides mimicking a conformational B-cell epitope (M2) of the measles virus fusion protein (MVF) were used for the immunization of BALB/c mice and the anti-peptide and anti-virus antibody titers induced were compared. Of the panel of tested peptides, a chimeric peptide consisting of two copies of a T-helper epitope (residues 288-302 of MVF) and one copy of the mimotope M2 (TTM2) and a multiple antigen peptide with eight copies of M2 (MAP-M2) induced the highest titers of anti-M2 and anti-MV antibodies. Furthermore, peptides TTM2 and MAP-M2 induced antibodies with highest affinity for the mimotope and highest avidity for measles virus. Immunization with the MAP-M2 construct induced high titers of high-affinity anti-M2 antibody despite the absence of a T-helper epitope, and lymphocyte proliferation data suggest that the addition of M2 to the MAP resulted in the generation of a structure capable of stimulating T-cell help. Sera with anti-M2 reactivity were pooled according to affinity values for binding to M2, and high- and low-affinity pools were tested for their ability to prevent MV-induced encephalitis in a mouse model. The high-affinity serum pool conferred protection in 100% of mice, whereas the lower affinity pool conferred protection to only 50% of animals. These results indicate the potential of mimotopes for use as synthetic peptide immunogens and highlight the importance of designing vaccines to induce antibodies of high affinity.

  5. Alphavirus-based vaccines encoding nonstructural proteins of hepatitis C virus induce robust and protective T-cell responses.

    PubMed

    Ip, Peng Peng; Boerma, Annemarie; Regts, Joke; Meijerhof, Tjarko; Wilschut, Jan; Nijman, Hans W; Daemen, Toos

    2014-04-01

    An absolute prerequisite for a therapeutic vaccine against hepatitis C virus (HCV) infection is the potency to induce HCV-specific vigorous and broad-spectrum T-cell responses. Here, we generated three HCV vaccines based on a recombinant Semliki Forest virus (rSFV) vector expressing all- or a part of the conserved nonstructural proteins (nsPs) of HCV. We demonstrated that an rSFV vector was able to encode a transgene as large as 6.1 kb without affecting its vaccine immunogenicity. Prime-boost immunizations of mice with rSFV expressing all nsPs induced strong and long-lasting NS3-specific CD8(+) T-cell responses. The strength and functional heterogeneity of the T-cell response was similar to that induced with rSFV expressing only NS3/4A. Furthermore this leads to a significant growth delay and negative selection of HCV-expressing EL4 tumors in an in vivo mouse model. In general, as broad-spectrum T-cell responses are only seen in patients with resolved HCV infection, this rSFV-based vector, which expresses all nsPs, inducing robust T-cell activity has a potential for the treatment of HCV infections.

  6. Virus-Induced Alterations in Primary Metabolism Modulate Susceptibility to Tobacco rattle virus in Arabidopsis1[C][W

    PubMed Central

    Fernández-Calvino, Lourdes; Osorio, Sonia; Hernández, M. Luisa; Hamada, Ignacio B.; del Toro, Francisco J.; Donaire, Livia; Yu, Agnés; Bustos, Regla; Fernie, Alisdair R.; Martínez-Rivas, José M.; Llave, César

    2014-01-01

    During compatible virus infections, plants respond by reprogramming gene expression and metabolite content. While gene expression studies are profuse, our knowledge of the metabolic changes that occur in the presence of the virus is limited. Here, we combine gene expression and metabolite profiling in Arabidopsis (Arabidopsis thaliana) infected with Tobacco rattle virus (TRV) in order to investigate the influence of primary metabolism on virus infection. Our results revealed that primary metabolism is reconfigured in many ways during TRV infection, as reflected by significant changes in the levels of sugars and amino acids. Multivariate data analysis revealed that these alterations were particularly conspicuous at the time points of maximal accumulation of TRV, although infection time was the dominant source of variance during the process. Furthermore, TRV caused changes in lipid and fatty acid composition in infected leaves. We found that several Arabidopsis mutants deficient in branched-chain amino acid catabolism or fatty acid metabolism possessed altered susceptibility to TRV. Finally, we showed that increments in the putrescine content in TRV-infected plants correlated with enhanced tolerance to freezing stress in TRV-infected plants and that impairment of putrescine biosynthesis promoted virus multiplication. Our results thus provide an interesting overview for a better understanding of the relationship between primary metabolism and virus infection. PMID:25358898

  7. Hepatitis C Virus-Induced Cancer Stem Cell-Like Signatures in Cell Culture and Murine Tumor Xenografts▿

    PubMed Central

    Ali, Naushad; Allam, Heba; May, Randal; Sureban, Sripathi M.; Bronze, Michael S.; Bader, Ted; Umar, Shahid; Anant, Srikant; Houchen, Courtney W.

    2011-01-01

    Hepatitis C virus (HCV) infection is a prominent risk factor for the development of hepatocellular carcinoma (HCC). Similar to most solid tumors, HCCs are believed to contain poorly differentiated cancer stem cell-like cells (CSCs) that initiate tumorigenesis and confer resistance to chemotherapy. In these studies, we demonstrate that the expression of an HCV subgenomic replicon in cultured cells results in the acquisition of CSC traits. These traits include enhanced expression of doublecortin and CaM kinase-like-1 (DCAMKL-1), Lgr5, CD133, α-fetoprotein, cytokeratin-19 (CK19), Lin28, and c-Myc. Conversely, curing of the replicon from these cells results in diminished expression of these factors. The putative stem cell marker DCAMKL-1 is also elevated in response to the overexpression of a cassette of pluripotency factors. The DCAMKL-1-positive cells isolated from hepatoma cell lines by fluorescence-activated cell sorting (FACS) form spheroids in Matrigel. The HCV RNA abundance and NS5B levels are significantly reduced by the small interfering RNA (siRNA)-led depletion of DCAMKL-1. We further demonstrate that HCV replicon-expressing cells initiate distinct tumor phenotypes compared to the tumors initiated by parent cells lacking the replicon. This HCV-induced phenotype is characterized by high-level expression/coexpression of DCAMKL-1, CK19, α-fetoprotein, and active c-Src. The results obtained by the analysis of liver tissues from HCV-positive patients and liver tissue microarrays reiterate these observations. In conclusion, chronic HCV infection appears to predispose cells toward the path of acquiring cancer stem cell-like traits by inducing DCAMKL-1 and hepatic progenitor and stem cell-related factors. DCAMKL-1 also represents a novel cellular target for combating HCV-induced hepatocarcinogenesis. PMID:21937640

  8. Borna disease virus-induced neuronal degeneration dependent on host genetic background and prevented by soluble factors.

    PubMed

    Wu, Yuan-Ju; Schulz, Herbert; Lin, Chia-Ching; Saar, Kathrin; Patone, Giannino; Fischer, Heike; Hübner, Norbert; Heimrich, Bernd; Schwemmle, Martin

    2013-01-29

    Infection of newborn rats with Borne disease virus (BDV) results in selective degeneration of granule cell neurons of the dentate gyrus (DG). To study cellular countermechanisms that might prevent this pathology, we screened for rat strains resistant to this BDV-induced neuronal degeneration. To this end, we infected hippocampal slice cultures of different rat strains with BDV and analyzed for the preservation of the DG. Whereas infected cultures of five rat strains, including Lewis (LEW) rats, exhibited a disrupted DG cytoarchitecture, slices of three other rat strains, including Sprague-Dawley (SD), were unaffected. However, efficiency of viral replication was comparable in susceptible and resistant cultures. Moreover, these rat strain-dependent differences in vulnerability were replicated in vivo in neonatally infected LEW and SD rats. Intriguingly, conditioned media from uninfected cultures of both LEW and SD rats could prevent BDV-induced DG damage in infected LEW hippocampal cultures, whereas infection with BDV suppressed the availability of these factors from LEW but not in SD hippocampal cultures. To gain further insights into the genetic basis for this rat strain-dependent susceptibility, we analyzed DG granule cell survival in BDV-infected cultures of hippocampal neurons derived from the F1 and F2 offspring of the crossing of SD and LEW rats. Genome-wide association analysis revealed one resistance locus on chromosome (chr) 6q16 in SD rats and, surprisingly, a locus on chr3q21-23 that was associated with susceptibility. Thus, BDV-induced neuronal degeneration is dependent on the host genetic background and is prevented by soluble protective factors in the disease-resistant SD rat strain.

  9. Critical role for macrophage migration inhibitory factor (MIF) in Ross River virus-induced arthritis and myositis.

    PubMed

    Herrero, Lara J; Nelson, Michelle; Srikiatkhachorn, Anon; Gu, Ran; Anantapreecha, Surapee; Fingerle-Rowson, Günter; Bucala, Richard; Morand, Eric; Santos, Leilani L; Mahalingam, Suresh

    2011-07-19

    Arthrogenic alphaviruses, such as Ross River virus (RRV), chikungunya, Sindbis, mayaro and o'nyong-nyong viruses circulate endemically worldwide, frequently causing outbreaks of polyarthritis. The exact mechanisms of how alphaviruses induce polyarthritis remain ill defined, although macrophages are known to play a key role. Macrophage migration inhibitory factor (MIF) is an important cytokine involved in rheumatoid arthritis pathogenesis. Here, we characterize the role of MIF in alphavirus-induced arthritides using a mouse model of RRV-induced arthritis, which has many characteristics of RRV disease in humans. RRV-infected WT mice developed severe disease associated with up-regulated MIF expression in serum and tissues, which corresponded to severe inflammation and tissue damage. MIF-deficient (MIF(-/-)) mice developed mild disease accompanied by a reduction in inflammatory infiltrates and muscle destruction in the tissues, despite having viral titers similar to WT mice. In addition, reconstitution of MIF into MIF(-/-) mice exacerbated RRV disease and treatment of mice with MIF antagonist ameliorated disease in WT mice. Collectively, these findings suggest that MIF plays a critical role in determining the clinical severity of alphavirus-induced musculoskeletal disease and may provide a target for the development of antiviral pharmaceuticals. The prospect being that early treatment with MIF-blocking pharmaceuticals may curtail the debilitating arthritis associated with alphaviral infections.

  10. Early life DNA vaccination with the H gene of Canine distemper virus induces robust protection against distemper.

    PubMed

    Jensen, Trine Hammer; Nielsen, Line; Aasted, Bent; Blixenkrone-Møller, Merete

    2009-08-20

    Young mink kits (n=8) were vaccinated with DNA plasmids encoding the viral haemagglutinin protein (H) of a vaccine strain of Canine distemper virus (CDV). Virus neutralising (VN) antibodies were induced after 2 immunisations and after the third immunisation all kits had high VN antibody titres. The VN antibody titres remained high for more than 4 months and the mink were protected against viraemia, lymphopenia, clinical disease and changes in the percentage of IFN-gamma producing peripheral blood leucocytes after challenge inoculation with a recent wild type strain of CDV. Essentially, these results demonstrate that early life DNA vaccination with the H gene of a CDV vaccine strain induced robust protective immunity against a recent wild type CDV.

  11. An Early Tobacco Mosaic Virus-Induced Oxidative Burst in Tobacco Indicates Extracellular Perception of the Virus Coat Protein1

    PubMed Central

    Allan, Andrew C.; Lapidot, Moshe; Culver, James N.; Fluhr, Robert

    2001-01-01

    Induction of reactive oxygen species (ROS) was observed within seconds of the addition of exogenous tobacco mosaic virus (TMV) to the outside of tobacco (Nicotiana tabacum cv Samsun NN, EN, or nn) epidermal cells. Cell death was correlated with ROS production. Infectivity of the TMV virus was not a prerequisite for this elicitation and isolated coat protein (CP) subunits could also elicit the fast oxidative burst. The rapid induction of ROS was prevented by both inhibitors of plant signal transduction and inhibitors of NAD(P)H oxidases, suggesting activation of a multi-step signal transduction pathway. Induction of intracellular ROS by TMV was detected in TMV-resistant and -susceptible tobacco cultivars isogenic for the N allele. The burst was also detected with strains of virus that either elicit (ToMV) or fail to elicit (TMV U1) N′ gene-mediated responses. Hence, early ROS generation is independent or upstream of known genetic systems in tobacco that can mediate hypersensitive responses. Analysis of other viruses and TMV CP mutants showed marked differences in their ability to induce ROS showing specificity of the response. Thus, initial TMV-plant cell interactions that lead to early ROS induction occur outside the plasma membrane in an event requiring specific CP epitopes. PMID:11351074

  12. De Novo Foliar Transcriptome of Chenopodium amaranticolor and Analysis of Its Gene Expression During Virus-Induced Hypersensitive Response

    PubMed Central

    Zhang, Yongqiang; Pei, Xinwu; Zhang, Chao; Lu, Zifeng; Wang, Zhixing; Jia, Shirong; Li, Weimin

    2012-01-01

    Background The hypersensitive response (HR) system of Chenopodium spp. confers broad-spectrum virus resistance. However, little knowledge exists at the genomic level for Chenopodium, thus impeding the advanced molecular research of this attractive feature. Hence, we took advantage of RNA-seq to survey the foliar transcriptome of C. amaranticolor, a Chenopodium species widely used as laboratory indicator for pathogenic viruses, in order to facilitate the characterization of the HR-type of virus resistance. Methodology and Principal Findings Using Illumina HiSeq™ 2000 platform, we obtained 39,868,984 reads with 3,588,208,560 bp, which were assembled into 112,452 unigenes (3,847 clusters and 108,605 singletons). BlastX search against the NCBI NR database identified 61,698 sequences with a cut-off E-value above 10−5. Assembled sequences were annotated with gene descriptions, GO, COG and KEGG terms, respectively. A total number of 738 resistance gene analogs (RGAs) and homology sequences of 6 key signaling proteins within the R proteins-directed signaling pathway were identified. Based on this transcriptome data, we investigated the gene expression profiles over the stage of HR induced by Tobacco mosaic virus and Cucumber mosaic virus by using digital gene expression analysis. Numerous candidate genes specifically or commonly regulated by these two distinct viruses at early and late stages of the HR were identified, and the dynamic changes of the differently expressed genes enriched in the pathway of plant-pathogen interaction were particularly emphasized. Conclusions To our knowledge, this study is the first description of the genetic makeup of C. amaranticolor, providing deep insight into the comprehensive gene expression information at transcriptional level in this species. The 738 RGAs as well as the differentially regulated genes, particularly the common genes regulated by both TMV and CMV, are suitable candidates which merit further functional characterization to dissect the molecular mechanisms and regulatory pathways of the HR-type of virus resistance in Chenopodium. PMID:23029338

  13. The evidence of porcine hemagglutinating encephalomyelitis virus induced nonsuppurative encephalitis as the cause of death in piglets

    PubMed Central

    Lan, Yungang; Zhao, Kui; Lv, Xiaoling; Lu, Huijun; Ding, Ning; Zhang, Jing; Shi, Junchao; Shan, Changjian

    2016-01-01

    An acute outbreak of porcine hemagglutinating encephalomyelitis virus (PHEV) infection in piglets, characterized with neurological symptoms, vomiting, diarrhea, and wasting, occurred in China. Coronavirus-like particles were observed in the homogenized tissue suspensions of the brain of dead piglets by electron microscopy, and a wild PHEV strain was isolated, characterized, and designated as PHEV-CC14. Histopathologic examinations of the dead piglets showed characteristics of non-suppurative encephalitis, and some neurons in the cerebral cortex were degenerated and necrotic, and neuronophagia. Similarly, mice inoculated with PHEV-CC14 were found to have central nervous system (CNS) dysfunction, with symptoms of depression, arched waists, standing and vellicating front claws. Furthmore, PHEV-positive labeling of neurons in cortices of dead piglets and infected mice supported the viral infections of the nervous system. Then, the major structural genes of PHEV-CC14 were sequenced and phylogenetically analyzed, and the strain shared 95%–99.2% nt identity with the other PHEV strains available in GenBank. Phylogenetic analysis clearly proved that the wild strain clustered into a subclass with a HEV-JT06 strain. These findings suggested that the virus had a strong tropism for CNS, in this way, inducing nonsuppurative encephalitis as the cause of death in piglets. Simultaneously, the predicted risk of widespread transmission showed a certain variation among the PHEV strains currently circulating around the world. Above all, the information presented in this study can not only provide good reference for the experimental diagnosis of PHEV infection for pig breeding, but also promote its new effective vaccine development. PMID:27672502

  14. Impact of Erb-B Signaling on Myelin Repair in the CNS Following Virus-Induced Damage

    DTIC Science & Technology

    2009-03-01

    ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER Creighton University Department of Medical Microbiology and...Drescher1 and Steven M. Tracy2; 1 Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE and 2...of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE 68178 The precise role of neuregulins in myelin

  15. Development and evaluation of aerosol delivery of antivirals for the treatment of equine virus induced respiratory infections

    SciTech Connect

    Martens, J.G.

    1985-01-01

    An aerosol delivery system incorporating the DeVilbiss ultrasonic nebulizer was developed for antiviral chemotherapy of equine viral respiratory infections. The system's delivery capabilities were proven effective by two modes of analysis: (a) a non-destructive, non-invasive radioactive tracer method utilizing a saline solution of DTPA labelled 99mTc and, (b) an invasive-terminal study using fluorescent polystyrene monodispersed latex particles. Particles were efficiently distributed throughout the lung parenchyma with deposition more heavily concentrated in the tracheobronchial region. Amantadine HCl was administered to the lungs of a yearling horse and three yearling Shetland ponies over a single 15-30 minute period with no untoward side effects. Likewise, ribavirin was aerosolized into the respiratory trace of an adult pony and a yearling horse for 15-30 minutes twice a day for three and seven days respectively. Neither the horse nor pony demonstrated signs of clinical illness or other signs of ribavirin toxicity. Attempts to produce a reproducible equine influenza disease model were made. During these studies, the authors were unsuccessful in developing a consistent respiratory disease model. Without this model the efficacy of antiviral compounds cannot be assessed. From the data generated in these studies, the implication of equine influenza viruses as the major single etiological agents responsible for equine respiratory disease is brought into question. Further, the author proposed that equine respiratory disease is a multiple agent-induced disease, which needs extensive investigation.

  16. Histopathology and immunohistochemistry of canine distemper virus-induced footpad hyperkeratosis (hard Pad disease) in dogs with natural canine distemper.

    PubMed

    Koutinas, A F; Baumgärtner, W; Tontis, D; Polizopoulou, Z; Saridomichelakis, M N; Lekkas, S

    2004-01-01

    Hard pad disease represents an uncommon manifestation of canine distemper virus (CDV) infection with a still uncertain pathogenesis. To study the pathogenesis of this uncommon, virally induced cutaneous lesion, the footpads of 19 dogs with naturally occurring distemper were investigated for histologic changes and distribution pattern of CDV antigen. All dogs displayed clinical signs of distemper, which had lasted from 10 to 75 days. Overt digital hyperkeratosis was observed in 12 animals (group A), whereas the footpads of the remaining seven dogs appeared normal macroscopically (group B). Orthokeratotic hyperkeratosis (12/12; 100%), irregular acanthosis (11/12; 92%), thickened rete ridges (10/12; 83%), and mild mononuclear perivascular (10/ 12; 83%) and periadnexal (7/12; 58%) dermatitis were the most common findings in dogs with hard pad disease. Surprisingly, orthokeratotic hyperkeratosis (5/7; 71%), irregular acanthosis (5/7; 71%), and thickened rete ridges (4/7; 57%) were also seen in the dogs without clinical evidence of digital hyperkeratosis. CDV-specific inclusion bodies and ballooning degeneration were not observed in the footpad epidermis of the 19 dogs. Immunohis-tochemistry revealed that CDV antigen was most frequently found in the stratum spinosum and granulosum and in the epithelial cells of the eccrine sweat glands and only rarely in the basal layer. Fibroblasts, pericytes, endothelial cells, and hair follicles were also positive in some animals. Despite the obvious difference regarding the macroscopic picture, the microscopic changes were less prominent between the animal groups. The selective infection of keratinocytes in the stratum spinosum might be the key event for the development of hard pad disease in the dog.

  17. In Ovo Delivery of CpG DNA Reduces Avian Infectious Laryngotracheitis Virus Induced Mortality and Morbidity

    PubMed Central

    Thapa, Simrika; Abdul Cader, Mohamed Sarjoon; Murugananthan, Kalamathy; Nagy, Eva; Sharif, Shayan; Czub, Markus; Abdul-Careem, Mohamed Faizal

    2015-01-01

    Endosomal toll-like receptor-21 and -9 sense CpG DNA activating production of pro-inflammatory mediators with antimicrobial effects. Here, we investigated the induction of antiviral response of in ovo delivered CpG DNA against infectious laryngotracheitis virus (ILTV) infection. We found that in ovo delivered CpG DNA significantly reduces ILTV infection pre-hatch correlating with the expression of IL-1β and increase of macrophages in lungs. As assessed in vitro, CpG DNA stimulated avian macrophages could be a potential source of IL-1β and other pro-inflammatory mediators. Since we also found that in ovo CpG DNA delivery maintains increased macrophages in the lungs post-hatch, we infected the chickens on the day of hatch with ILTV. We found that in ovo delivered CpG DNA significantly reduces mortality and morbidity resulting from ILTV infection encountered post-hatch. Thus, CpG DNA can be a candidate innate immune stimulant worthy of further investigation for the control of ILTV infection in chickens. PMID:25856635

  18. Inoculation of swine with foot-and-mouth disease SAP-mutant virus induces early protection against disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Foot-and-mouth disease virus (FMDV) leader proteinase (L^pro) cleaves itself from the viral polyprotein and cleaves the translation initiation factor eIF4G. As a result, host cell translation is inhibited, affecting the host innate immune response. We have demonstrated that L^pro is also associated ...

  19. Heat shock 70 protein interaction with Turnip mosaic virus RNA-dependent RNA polymerase within virus-induced membrane vesicles

    SciTech Connect

    Dufresne, Philippe J.; Thivierge, Karine; Cotton, Sophie; Beauchemin, Chantal; Ide, Christine; Ubalijoro, Eliane; Laliberte, Jean-Francois Fortin, Marc G.

    2008-04-25

    Tandem affinity purification was used in Arabidopsis thaliana to identify cellular interactors of Turnip mosaic virus (TuMV) RNA-dependent RNA polymerase (RdRp). The heat shock cognate 70-3 (Hsc70-3) and poly(A)-binding (PABP) host proteins were recovered and shown to interact with the RdRp in vitro. As previously shown for PABP, Hsc70-3 was redistributed to nuclear and membranous fractions in infected plants and both RdRp interactors were co-immunoprecipitated from a membrane-enriched extract using RdRp-specific antibodies. Fluorescently tagged RdRp and Hsc70-3 localized to the cytoplasm and the nucleus when expressed alone or in combination in Nicotiana benthamiana. However, they were redistributed to large perinuclear ER-derived vesicles when co-expressed with the membrane binding 6K-VPg-Pro protein of TuMV. The association of Hsc70-3 with the RdRp could possibly take place in membrane-derived replication complexes. Thus, Hsc70-3 and PABP2 are potentially integral components of the replicase complex and could have important roles to play in the regulation of potyviral RdRp functions.

  20. Hepatitis B Virus Induces Expression of Antioxidant Response Element-regulated Genes by Activation of Nrf2*

    PubMed Central

    Schaedler, Stephanie; Krause, Janis; Himmelsbach, Kiyoshi; Carvajal-Yepes, Monica; Lieder, Franziska; Klingel, Karin; Nassal, Michael; Weiss, Thomas S.; Werner, Sabine; Hildt, Eberhard

    2010-01-01

    The expression of a variety of cytoprotective genes is regulated by short cis-acting elements in their promoters, called antioxidant response elements (AREs). A central regulator of ARE-mediated gene expression is the NF-E2-related factor 2 (Nrf2). Human hepatitis B virus (HBV) induces a strong activation of Nrf2/ARE-regulated genes in vitro and in vivo. This is triggered by the HBV-regulatory proteins (HBx and LHBs) via c-Raf and MEK. The Nrf2/ARE-mediated induction of cytoprotective genes by HBV results in a better protection of HBV-positive cells against oxidative damage as compared with control cells. Furthermore, there is a significantly increased expression of the Nrf2/ARE-regulated proteasomal subunit PSMB5 in HBV-positive cells that is associated with a decreased level of the immunoproteasome subunit PSMB5i. In accordance with this finding, HBV-positive cells display a higher constitutive proteasome activity and a decreased activity of the immunoproteasome as compared with control cells even after interferon α/γ treatment. The HBV-dependent induction of Nrf2/ARE-regulated genes might ensure survival of the infected cell, shape the immune response to HBV, and thereby promote establishment of the infection. PMID:20956535

  1. Plum pox virus induces differential gene expression in the partially resistant stone fruit tree Prunus armeniaca cv. Goldrich.

    PubMed

    Schurdi-Levraud Escalettes, Valérie; Hullot, Clémence; Wawrzy'nczak, Danuta; Mathieu, Elodie; Eyquard, Jean-Philippe; Le Gall, Olivier; Decroocq, Véronique

    2006-06-07

    We investigated the changes in the expression profiles of the partially resistant apricot (Prunus armeniaca L.) cultivar Goldrich following inoculation with Plum pox virus (PPV) using cDNA-amplification fragment length polymorphism (AFLP). Altered expression patterns were detected and twenty-one differentially expressed cDNA had homologies with genes in databases coding for proteins involved in metabolism, signal transduction, defense, stress and intra/intercellular connections. Seven of the modified expressed patterns were further investigated by semi-quantitative RT-PCR or Northern blotting. The expression patterns of five of these genes were confirmed in the partially resistant P. armeniaca cv. 'Goldrich' and assessed in a susceptible genotype. One of these cDNAs, coding for a putative class III chitinase, appeared to be repressed in infected plants of the partially resistant genotype and expressed in the susceptible one which could be related to the partially resistant phenotype. On the contrary, the expression patterns of the genes coding for a transketolase, a kinesin-like and an ankyrin-like protein, were clearly linked to the susceptible interaction. These candidate genes could play a role either in the compatible interaction leading to virus invasion or to the quantitative resistance of apricot to PPV.

  2. Two and three dimensional characterization of Zucchini Yellow Mosaic Virus induced structural alterations in Cucurbita pepo L. plants.

    PubMed

    Zellnig, Günther; Pöckl, Michael Herbert; Möstl, Stefan; Zechmann, Bernd

    2014-05-01

    Infection of plants by Zucchini Yellow Mosaic Virus (ZYMV) induces severe ultrastructural changes. The aim of this study was to investigate ultrastructural changes during ZYMV-infection in Cucurbita pepo L. plants on the two and three dimensional (2D and 3D) level and to correlate these changes with the spread of ZYMV throughout the plant by transmission electron microscopy (TEM) and image analysis. This study revealed that after inoculation of the cotyledons ZYMV moved into roots [3 days post inoculation (dpi)], then moved upwards into the stem and apical meristem (5 dpi), then into the first true leaf (7 dpi) and could finally be found in all plant parts (9 dpi). ZYMV-infected cells contained viral inclusion bodies in the form of cylindrical inclusions (CIs). These CIs occurred in four different forms throughout the cytosol of roots and leaves: scrolls and pinwheels when cut transversely and long tubular structures and bundles of filaments when cut longitudinally. 3D reconstruction of ZYMV-infected cells containing scrolls revealed that they form long tubes throughout the cytosol. The majority has a preferred orientation and an average length and width of 3 μm and 120 nm, respectively. Image analysis revealed an increased size of cells and vacuoles (107% and 447%, respectively) in younger ZYMV-infected leaves leading to a similar ratio of cytoplasm to vacuole (about 1:1) in older and younger ZYMV-infected leaves which indicates advanced cell growth in younger tissues. The collected data advances the current knowledge about ZYMV-induced ultrastructural changes in Cucurbita pepo.

  3. Extensive structural change of the envelope protein of dengue virus induced by a tuned ionic strength: conformational and energetic analyses

    NASA Astrophysics Data System (ADS)

    Degrève, Léo; Fuzo, Carlos A.; Caliri, Antonio

    2012-12-01

    The Dengue has become a global public health threat, with over 100 million infections annually; to date there is no specific vaccine or any antiviral drug. The structures of the envelope (E) proteins of the four known serotype of the dengue virus (DENV) are already known, but there are insufficient molecular details of their structural behavior in solution in the distinct environmental conditions in which the DENVs are submitted, from the digestive tract of the mosquito up to its replication inside the host cell. Such detailed knowledge becomes important because of the multifunctional character of the E protein: it mediates the early events in cell entry, via receptor endocytosis and, as a class II protein, participates determinately in the process of membrane fusion. The proposed infection mechanism asserts that once in the endosome, at low pH, the E homodimers dissociate and insert into the endosomal lipid membrane, after an extensive conformational change, mainly on the relative arrangement of its three domains. In this work we employ all-atom explicit solvent Molecular Dynamics simulations to specify the thermodynamic conditions in that the E proteins are induced to experience extensive structural changes, such as during the process of reducing pH. We study the structural behavior of the E protein monomer at acid pH solution of distinct ionic strength. Extensive simulations are carried out with all the histidine residues in its full protonated form at four distinct ionic strengths. The results are analyzed in detail from structural and energetic perspectives, and the virtual protein movements are described by means of the principal component analyses. As the main result, we found that at acid pH and physiological ionic strength, the E protein suffers a major structural change; for lower or higher ionic strengths, the crystal structure is essentially maintained along of all extensive simulations. On the other hand, at basic pH, when all histidine residues are in the unprotonated form, the protein structure is very stable for ionic strengths ranging from 0 to 225 mM. Therefore, our findings support the hypothesis that the histidines constitute the hot points that induce configurational changes of E protein in acid pH, and give extra motivation to the development of new ideas for antivirus compound design.

  4. Alternative splicing and nonsense-mediated decay regulate telomerase reverse transcriptase (TERT) expression during virus-induced lymphomagenesis in vivo

    PubMed Central

    2010-01-01

    Background Telomerase activation, a critical step in cell immortalization and oncogenesis, is partly regulated by alternative splicing. In this study, we aimed to use the Marek's disease virus (MDV) T-cell lymphoma model to evaluate TERT regulation by splicing during lymphomagenesis in vivo, from the start point to tumor establishment. Results We first screened cDNA libraries from the chicken MDV lymphoma-derived MSB-1 T- cell line, which we compared with B (DT40) and hepatocyte (LMH) cell lines. The chTERT splicing pattern was cell line-specific, despite similar high levels of telomerase activity. We identified 27 alternative transcripts of chicken TERT (chTERT). Five were in-frame alternative transcripts without in vitro telomerase activity in the presence of viral or chicken telomerase RNA (vTR or chTR), unlike the full-length transcript. Nineteen of the 22 transcripts with a premature termination codon (PTC) harbored a PTC more than 50 nucleotides upstream from the 3' splice junction, and were therefore predicted targets for nonsense-mediated decay (NMD). The major PTC-containing alternatively spliced form identified in MSB1 (ie10) was targeted to the NMD pathway, as demonstrated by UPF1 silencing. We then studied three splicing events separately, and the balance between in-frame alternative splice variants (d5f and d10f) plus the NMD target i10ec and constitutively spliced chTERT transcripts during lymphomagenesis induced by MDV indicated that basal telomerase activity in normal T cells was associated with a high proportion of in-frame non functional isoforms and a low proportion of constitutively spliced chTERT. Telomerase upregulation depended on an increase in active constitutively spliced chTERT levels and coincided with a switch in alternative splicing from an in-frame variant to NMD-targeted variants. Conclusions TERT regulation by splicing plays a key role in telomerase upregulation during lymphomagenesis, through the sophisticated control of constitutive and alternative splicing. Using the MDV T-cell lymphoma model, we identified a chTERT splice variant as a new NMD target. PMID:20964812

  5. Marek's disease virus-induced transient paralysis is associated with cytokine gene expression in the nervous system.

    PubMed

    Abdul-Careem, M F; Hunter, B D; Sarson, A J; Mayameei, A; Zhou, H; Sharif, S

    2006-01-01

    Marek's disease (MD)-associated transient paralysis (TP) was experimentally induced in chickens by intraperitoneal inoculation of RB1B strain of Marek's disease virus (MDV). Between 7 and 11 days post-infection (d.p.i.), neck and limb paralysis was observed in 18% of infected chickens, which was associated with various degrees of edema, vacuolation, perivascular cuffing of mononuclear cells, and glial cell infiltration mainly in the cerebrum, cerebellum, and brain stem. The chickens that were infected but did not progress to develop TP until 12 d.p.i. also had similar lesions suggestive of encephalitis in the cerebrum, cerebellum, and brain stem. Chickens infected with MDV had more interleukin (IL)-6, IL-12, and interferon (IFN)-gamma in their brain tissues compared to uninfected chickens. Moreover, IL-18 was significantly increased in brain tissues of birds showing clinical signs of TP compared to uninfected birds. Importantly, the expression of IL-6, IL-18, and IFN- gamma in brain tissues of MDV-infected chickens with signs of TP was significantly increased compared to that in asymptomatic MDV-infected birds. MDV genome load in the brain of chickens showing clinical signs of TP was higher than that in asymptomatic MDV-infected chickens but was not statistically significant. The lesions in the cervical, thoracic, and lumbar spinal cord segments in MDVinfected chickens were characterized mainly by perivascular cuffing of mononuclear cells irrespective of the group. The expression of mRNA for IL-18 and IFN-gamma genes was not significantly different in spinal cord tissues of chickens with TP compared to clinically normal, MDV-infected and noninfected chickens. These results suggest possible underlying immunologic mechanisms for MDV-induced TP.

  6. In Vitro Infection with Dengue Virus Induces Changes in the Structure and Function of the Mouse Brain Endothelium

    PubMed Central

    Castellanos, Jaime E.

    2016-01-01

    Background The neurological manifestations of dengue disease are occurring with greater frequency, and currently, no information is available regarding the reasons for this phenomenon. Some viruses infect a