Science.gov

Sample records for choriomeningitis virus-induced immunopathology

  1. Immunopathological Basis of Lymphocytic Choriomeningitis Virus-Induced Chorioretinitis and Keratitis▿

    PubMed Central

    Zinkernagel, Martin S.; Bolinger, Beatrice; Krebs, Philippe; Onder, Lucas; Miller, Simone; Ludewig, Burkhard

    2009-01-01

    The infection of humans with the rodent-borne lymphocytic choriomeningitis virus (LCMV) can lead to central nervous system disease in adults or severe neurological disease with hydrocephalus and chorioretinitis in children infected congenitally. Although LCMV-induced meningitis and encephalitis have been studied extensively, the immunopathological mechanisms underlying LCMV infection-associated ocular disease remain elusive. We report here that the intraocular administration of the neurotropic LCMV strain Armstrong (Arm) elicited pronounced chorioretinitis and keratitis and that infection with the more viscerotropic strains WE and Docile precipitated less severe immunopathological ocular disease. Time course analyses revealed that LCMV Arm infection of the uvea and neuroretina led to monophasic chorioretinitis which peaked between days 7 and 12 after infection. Analyses of T-cell-deficient mouse strains showed that LCMV-mediated ocular disease was strictly dependent on the presence of virus-specific CD8+ T cells and that the contribution of CD4+ T cells was negligible. Whereas the topical application of immunosuppressive agents did not prevent the development of chorioretinitis, passive immunization with hyperimmune sera partially prevented retinal and corneal damage. Likewise, mice displaying preexisting LCMV-specific T-cell responses were protected against LCMV-induced ocular disease. Thus, antibody- and/or T-cell-based vaccination protocols could be employed as preventive strategies against LCMV-mediated chorioretinitis. PMID:18945766

  2. Prevention of Influenza Virus-Induced Immunopathology by TGF-β Produced during Allergic Asthma

    PubMed Central

    Furuya, Yoichi; Furuya, Andrea K. M.; Roberts, Sean; Sanfilippo, Alan M.; Salmon, Sharon L.; Metzger, Dennis W.

    2015-01-01

    Asthma is believed to be a risk factor for influenza infection, however little experimental evidence exists to directly demonstrate the impact of asthma on susceptibility to influenza infection. Using a mouse model, we now report that asthmatic mice are actually significantly more resistant to a lethal influenza virus challenge. Notably, the observed increased resistance was not attributable to enhanced viral clearance, but instead, was due to reduced lung inflammation. Asthmatic mice exhibited a significantly reduced cytokine storm, as well as reduced total protein levels and cytotoxicity in the airways, indicators of decreased tissue injury. Further, asthmatic mice had significantly increased levels of TGF-β1 and the heightened resistance of asthmatic mice was abrogated in the absence of TGF-β receptor II. We conclude that a transient increase in TGF-β expression following acute asthma can induce protection against influenza-induced immunopathology. PMID:26407325

  3. Use of a high-affinity peptide that aborts MHC-restricted cytotoxic T lymphocyte activity against multiple viruses in vitro and virus-induced immunopathologic disease in vivo.

    PubMed

    Oldstone, M B; von Herrath, M; Lewicki, H; Hudrisier, D; Whitton, J L; Gairin, J E

    1999-04-10

    Binding of a specific peptide(s) from a viral protein to major histocompatibility complex (MHC) class I molecules is a critical step in the activation of CD8(+) cytotoxic T lymphocytes (CTLs). Once activated, CTLs can cause lethal disease in an infected host, for example, by killing virus-containing ependymal and ventricular cells in the central nervous system or viral protein-expressing beta cells in the pancreatic islets of Langerhans. Here we describe the usage of a designed (not natural) high-affinity peptide to compete with viral peptide(s)-MHC binding. This peptide blocks virus-induced CTL-mediated disease both in the CNS and in the pancreatic islets in vivo. Further, the blocking peptide aborts MHC-restricted killing of target cells by CTLs generated to three separate viruses: lymphocytic choriomeningitis virus, influenza virus, and simian virus 40. Copyright 1999 Academic Press.

  4. Virus-induced Transient Bone Marrow Aplasia: Major Role of Interferon-α/β during Acute Infection with the Noncytopathic Lymphocytic Choriomeningitis Virus

    PubMed Central

    Binder, Daniel; Fehr, Jörg; Hengartner, Hans; Zinkernagel, Rolf M.

    1997-01-01

    The hematologic consequences of infection with the noncytopathic lymphocytic choriomeningitis virus (LCMV) were studied in wild-type mice with inherent variations in their interferon (IFN)-α/β responder ability and in mutant mice lacking α/β (IFN-α/β R0/0) or γ IFN (IFN-γ R0/0) receptors. During the first week of infection, wild type mice demonstrated a transient pancytopenia. Within a given genetic background, the extent of the blood cell abnormalities did not correlate with the virulence of the LCMV isolate but variations were detected between different mouse strains; they were found to depend on their IFN-α/β responder phenotype. Whereas IFN-γ R0/0 mice were comparable to wild-type mice, IFN-α/β R0/0 mice exhibited unchanged peripheral blood values during acute LCMV infection. In parallel, the bone marrow (BM) cellularity, the pluripotential and committed progenitor compartments were up to 30-fold reduced in wild type and IFN-γ R0/0, but remained unchanged in IFN-α/β R0/0 mice. Viral titers in BM 3 d after LCMV infection were similar in these mice, but antigen localization was different. Viral antigen was predominantly confined to stromal BM in normal mice and IFN-γ R0/0 knockouts, whereas, in IFN-α/β R0/0 mice, LCMV was detected in >90% of megakaryocytes and 10–15% of myeloid precursors, but not in erythroblasts. Although IFN-α/β efficiently prevented viral replication in potentially susceptible hematopoietic cells, even in overwhelming LCMV infection, unlimited virus multiplication in platelet and myeloid precursors in IFN-α/β R0/0 mice did not interfere with the number of circulating blood cells. Natural killer (NK) cell expansion and activity in the BM was comparable on day 3 after infection in mutant and control mice. Adaptive immune responses did not play a major role because comparable kinetics of LCMV-induced pancytopenia and transient depletion of the pluripotential and committed progenitor compartments were observed in CD80

  5. COPD immunopathology.

    PubMed

    Caramori, Gaetano; Casolari, Paolo; Barczyk, Adam; Durham, Andrew L; Di Stefano, Antonino; Adcock, Ian

    2016-07-01

    The immunopathology of chronic obstructive pulmonary disease (COPD) is based on the innate and adaptive inflammatory immune responses to the chronic inhalation of cigarette smoking. In the last quarter of the century, the analysis of specimens obtained from the lower airways of COPD patients compared with those from a control group of age-matched smokers with normal lung function has provided novel insights on the potential pathogenetic role of the different cells of the innate and acquired immune responses and their pro/anti-inflammatory mediators and intracellular signalling pathways, contributing to a better knowledge of the immunopathology of COPD both during its stable phase and during its exacerbations. This also has provided a scientific rationale for new drugs discovery and targeting to the lower airways. This review summarises and discusses the immunopathology of COPD patients, of different severity, compared with control smokers with normal lung function.

  6. Microcephaly Caused by Lymphocytic Choriomeningitis Virus.

    PubMed

    Delaine, Maia; Weingertner, Anne-Sophie; Nougairede, Antoine; Lepiller, Quentin; Fafi-Kremer, Samira; Favre, Romain; Charrel, Rémi

    2017-09-01

    We report congenital microencephaly caused by infection with lymphocytic choriomeningitis virus in the fetus of a 29-year-old pregnant women at 23 weeks' gestation. The diagnosis was made by ultrasonography and negative results for other agents and confirmed by a positive PCR result for lymphocytic choriomeningitis virus in an amniotic fluid sample.

  7. Cytomegalovirus-induced immunopathology and its clinical consequences

    PubMed Central

    2011-01-01

    Human cytomegalovirus (CMV) is a ubiquitous DNA virus that causes severe disease in patients with immature or impaired immune systems. During active infection, CMV modulates host immunity, and CMV-infected patients often develop signs of immune dysfunction, such as immunosuppression and autoimmune phenomena. Furthermore, active viral infection has been observed in several autoimmune diseases, and case reports have linked primary CMV infection and the onset of autoimmune disorders. In addition, CMV infection promotes allograft rejection and graft-versus-host disease in solid organ and bone marrow transplant recipients, respectively, further implicating CMV in the genesis and maintenance of immunopathological phenomena. The mechanisms by which CMV could induce inhibition of host defense, inflammation, and autoimmunity are discussed, as is the treatment of virus-induced immunopathology with antivirals. PMID:21473750

  8. Immunopathology of Brucella infection.

    PubMed

    Baldi, Pablo C; Giambartolomei, Guillermo H

    2013-04-01

    In spite of the protean nature of the disease, inflammation is a hallmark of brucellosis and affected tissues usually exhibit inflammatory infiltrates. As Brucella lacks exotoxins, exoproteases or cytolysins, pathological findings in brucellosis probably arise from inflammation-driven processes. The cellular and molecular bases of immunopathological phenomena probably involved in Brucella pathogenesis have been unraveled in the last few years. Brucella-infected osteoblasts, either alone or in synergy with infected macrophages, produce cytokines, chemokines and matrixmetalloproteinases (MMPs), and similar phenomena are mounted by fibroblast-like synoviocytes. The released cytokines promote the secretion of MMPs and induce osteoclastogenesis. Altogether, these phenomena may contribute to the bone loss and cartilage degradation usually observed in brucellar arthritis and osteomyelitis. Proinflammatory cytokines may be also involved in the pathogenesis of neurobrucellosis. B. abortus and its lipoproteins elicit an inflammatory response in the CNS of mice, leading to astrogliosis, a characteristic feature of neurobrucellosis. Heat-killed bacteria (HKBA) and the L-Omp19 lipoprotein elicit astrocyte apoptosis and proliferation (two features of astrogliosis), and apoptosis depends on TNF-α signaling. Brucella also infects and replicates in human endothelial cells, inducing the production of chemokines and IL-6, and an increased expression of adhesion molecules. The sustained inflammatory process derived from the longlasting infection of the endothelium may be important for the development of endocarditis. Therefore, while Brucella induces a low grade inflammation as compared to other pathogens, its prolonged intracellular persistence in infected tissues supports a long-lasting inflammatory response that mediates different pathways of tissue damage. In this context, approaches to avoid the invasion of host cells or limit the intracellular survival of the bacterium may be

  9. The Lymphocytic Choriomeningitis Virus Matrix Protein PPXY Late Domain Drives the Production of Defective Interfering Particles

    PubMed Central

    Ziegler, Christopher M.; Eisenhauer, Philip; Bruce, Emily A.; Weir, Marion E.; King, Benjamin R.; Klaus, Joseph P.; Krementsov, Dimitry N.; Shirley, David J.; Ballif, Bryan A.; Botten, Jason

    2016-01-01

    Arenaviruses cause severe diseases in humans but establish asymptomatic, lifelong infections in rodent reservoirs. Persistently-infected rodents harbor high levels of defective interfering (DI) particles, which are thought to be important for establishing persistence and mitigating virus-induced cytopathic effect. Little is known about what drives the production of DI particles. We show that neither the PPXY late domain encoded within the lymphocytic choriomeningitis virus (LCMV) matrix protein nor a functional endosomal sorting complex transport (ESCRT) pathway is absolutely required for the generation of standard infectious virus particles. In contrast, DI particle release critically requires the PPXY late domain and is ESCRT-dependent. Additionally, the terminal tyrosine in the PPXY motif is reversibly phosphorylated and our findings indicate that this posttranslational modification may regulate DI particle formation. Thus we have uncovered a new role for the PPXY late domain and a possible mechanism for its regulation. PMID:27010636

  10. Immunopathology of Schistosoma mansoni infection.

    PubMed Central

    Boros, D L

    1989-01-01

    Schistosomiasis mansoni is a chronic helminthic disease that affects about 100 million people in the tropics. The worms have a life span of 5 to 10 years, and they live in the mesenteric veins of the host. Lightly infected individuals are asymptomatic or manifest mild intestinal symptoms. Heavily infected individuals often develop severe morbidity with hepatosplenomegaly, sometimes with a fatal outcome. Morbidity is attributed to the strong humoral and T-cell-mediated host immune responses developed to a variety of parasite antigens and expressed as tissue inflammations. The immunopathology includes dermatitis, immune complex-mediated kidney disease, and, chiefly, T-cell-mediated granuloma formation and fibrosis around disseminated parasite eggs. This review describes the mechanisms of induction and expression of immunopathology in infected persons and experimental animals. Immunoregulatory mechanisms that modulate the enhanced immune responses and may ameliorate excessive morbidity are discussed. PMID:2504481

  11. Immunopathology of nephritis in Africa*

    PubMed Central

    1972-01-01

    Clinicians have long suspected a relationship between malaria and nephritis in Africa. The results of tests made several years ago suggested that the relationship might be an immunological one. This memorandum discusses clinical, epidemiological, morphological, and immunopathological aspects of malaria-associated nephropathy, will special emphasis on immunological investigations. Immunofluorescence studies on renal biopsies from patients with the nephrotic syndrome and Plasmodium malariae parasitaemia have shown the presence of immunoglobulin (Ig) deposits with certain complement components on glomerular basement membranes. IgG with anti-P. malariae specificity has been found in eluates of kidney tissue from such patients and P. malariae antigen was identified in the glomerular basement membrane by immunofluorescence studies. These observations support the view that the nephropathy associated with P. malariae infections is a form of immune complex nephritis initiated by circulating P. malariae antigens and anti-P. malariae antibodies. Additional support is obtained from electron microscope studies, which show that electron-dense material is associated with the glomerular basement membrane in certain diseases of the kidney in which immune complexes have been detected in glomeruli by immunofluorescence methods. The view that malarial nephritis is a form of immune complex disease should be useful in stimulating new approaches to the study of the pathogenesis of both the initiating and the perpetuating immunopathological lesion. PMID:4557907

  12. Accelerated and Improved Quantification of Lymphocytic Choriomeningitis Virus (LCMV) Titers by Flow Cytometry

    PubMed Central

    Korns Johnson, Darlynn; Homann, Dirk

    2012-01-01

    Lymphocytic choriomeningitis virus (LCMV), a natural murine pathogen, is a member of the Arenavirus family, may cause atypical meningitis in humans, and has been utilized extensively as a model pathogen for the study of virus-induced disease and immune responses. Historically, viral titers have been quantified by a standard plaque assay, but for non-cytopathic viruses including LCMV this requires lengthy incubation, so results cannot be obtained rapidly. Additionally, due to specific technical constraints of the plaque assay including the visual detection format, it has an element of subjectivity along with limited sensitivity. In this study, we describe the development of a FACS-based assay that utilizes detection of LCMV nucleoprotein (NP) expression in infected cells to determine viral titers, and that exhibits several advantages over the standard plaque assay. We show that the LCMV-NP FACS assay is an objective and reproducible detection method that requires smaller sample volumes, exhibits a ∼20-fold increase in sensitivity to and produces results three times faster than the plaque assay. Importantly, when applied to models of acute and chronic LCMV infection, the LCMV-NP FACS assay revealed the presence of infectious virus in samples that were determined to be negative by plaque assay. Therefore, this technique represents an accelerated, enhanced and objective alternative method for detection of infectious LCMV that is amenable to adaptation for other viral infections as well as high throughput diagnostic platforms. PMID:22615984

  13. The implications of immunopathology for parasite evolution.

    PubMed

    Best, Alex; Long, Gráinne; White, Andy; Boots, Mike

    2012-08-22

    By definition, parasites harm their hosts, but in many infections much of the pathology is driven by the host immune response rather than through direct damage inflicted by parasites. While these immunopathological effects are often well studied and understood mechanistically in individual disease interactions, there remains relatively little understanding of their broader impact on the evolution of parasites and their hosts. Here, we theoretically investigate the implications of immunopathology, broadly defined as additional mortality associated with the host's immune response, on parasite evolution. In particular, we examine how immunopathology acting on different epidemiological traits (namely transmission, virulence and recovery) affects the evolution of disease severity. When immunopathology is costly to parasites, such that it reduces their fitness, for example by decreasing transmission, there is always selection for increased disease severity. However, we highlight a number of host-parasite interactions where the parasite may benefit from immunopathology, and highlight scenarios that may lead to the evolution of slower growing parasites and potentially reduced disease severity. Importantly, we find that conclusions on disease severity are highly dependent on how severity is measured. Finally, we discuss the effect of treatments used to combat disease symptoms caused by immunopathology.

  14. Lymphocytic Choriomeningitis Virus–associated Meningitis, Southern Spain

    PubMed Central

    Navarro-Marí, José-María; Sánchez-Seco, María-Paz; Gegúndez, María-Isabel; Palacios, Gustavo; Savji, Nazir; Lipkin, W. Ian; Fedele, Giovanni; de Ory-Manchón, Fernando

    2012-01-01

    Lymphocytic choriomeningitis virus (LCMV) was detected in 2 patients with acute meningitis in southern Spain within a 3-year period. Although the prevalence of LCMV infection was low (2 [1.3%] of 159 meningitis patients), it represents 2.9% of all pathogens detected. LCMV is a noteworthy agent of neurologic illness in immunocompetent persons. PMID:22515986

  15. Endogenous Il10 alleviates the systemic antiviral cellular immune response and T cell-mediated immunopathology in select organs of acutely LCMV-infected mice.

    PubMed

    Jakobshagen, Kristin; Ward, Beate; Baschuk, Nikola; Huss, Sebastian; Brunn, Anna; Malecki, Monika; Fiolka, Michael; Rappl, Gunther; Corogeanu, Diana; Karow, Ulrike; Schiller, Petra; Abken, Hinrich; Heukamp, Lukas C; Deckert, Martina; Krönke, Martin; Utermöhlen, Olaf

    2015-11-01

    The immunoregulatory cytokine IL-10 suppresses T-cell immunity. The complementary question, whether IL-10 is also involved in limiting the collateral damage of vigorous T cell responses, has not been addressed in detail. Here, we report that the particularly strong virus-specific immune response during acute primary infection with the lymphocytic choriomeningitis virus (LCMV) in mice is significantly further increased in Il10-deficient mice, particularly regarding frequencies and cytotoxic activity of CD8(+) T cells. This increase results in exacerbating immunopathology in select organs, ranging from transient local swelling to an increased risk for mortality. Remarkably, LCMV-induced, T cell-mediated hepatitis is not affected by endogenous Il10. The alleviating effect of Il10 on LCMV-induced immunopathology was found to be operative in delayed-type hypersensitivity footpad-swelling reaction and in debilitating meningitis in mice of both the C57BL/6 and BALB/c strains. These strains are prototypic counterpoles for genetically imprinted type 1-biased versus type 2-biased T cell-mediated immune responses against various infectious pathogens. However, during acute LCMV infection, neither systemic cytokine patterns nor the impact of Il10 on LCMV-induced immunopathology differed conspicuously between these two strains of mice. This study documents a physiological role of Il10 in the regulation of a balanced T-cell response limiting immunopathological damage.

  16. Immunopathologic Studies in Relapsing Polychondritis

    PubMed Central

    Herman, Jerome H.; Dennis, Marie V.

    1973-01-01

    Serial studies have been performed on three patients with relapsing polychondritis in an attempt to define a potential immunopathologic role for degradation constituents of cartilage in the causation and/or perpetuation of the inflammation observed. Crude proteoglycan preparations derived by disruptive and differential centrifugation techniques from human costal cartilage, intact chondrocytes grown as monolayers, their homogenates and products of synthesis provided antigenic material for investigation. Circulating antibody to such antigens could not be detected by immunodiffusion, hemagglutination, immunofluorescence or complement mediated chondrocyte cytotoxicity as assessed by 51Cr release. Similarly, radiolabeled incorporation studies attempting to detect de novo synthesis of such antibody by circulating peripheral blood lymphocytes as assessed by radioimmunodiffusion, immune absorption to neuraminidase treated and untreated chondrocytes and immune coprecipitation were negative. Delayed hypersensitivity to cartilage constituents was studied by peripheral lymphocyte transformation employing [3H]thymidine incorporation and the release of macrophage aggregation factor. Positive results were obtained which correlated with periods of overt disease activity. Similar results were observed in patients with classical rheumatoid arthritis manifesting destructive articular changes. This study suggests that cartilage antigenic components may facilitate perpetuation of cartilage inflammation by cellular immune mechanisms. Images PMID:4265382

  17. Genes determining the course of virus persistence in the liver: lessons from murine infection with lymphocytic choriomeningitis virus.

    PubMed

    Lang, Philipp A; Recher, Mike; Häussinger, Dieter; Lang, Karl S

    2010-01-01

    More than 500 million people worldwide are persistently infected with either hepatitis B virus (HBV) or hepatitis C virus (HCV). Although both viruses are poorly cytopathic, persistent infection causes severe immunopathologic damage to liver tissue; histologically, such damage is characterized by fatty liver disease, liver fibrosis, and a higher likelihood of hepatocellular carcinoma. Virus-specific CD8+ T cells play a crucial role during infection with hepatitis viruses. On the one hand, rapid activation of CD8+ T cells can control the virus and therefore inhibit its persistence. On the other hand, once the virus persists in the liver, the chronic activation of virus-specific T cells leads to continued liver cell damage. This double-edged role of CD8+ T cells determines the final outcome of infection. In half of cases of human HCV infection, the virus persists; in the other half, the virus is controlled. Additional insights into the molecular mechanisms that determine the course of the disease may be gained from the study of appropriate murine models. This review discusses the similarities and differences between infection with lymphocytic choriomeningitis virus (LCMV) in mice and chronic infection with hepatitis virus in humans.

  18. Immunopathology of psoriasis and psoriatic arthritis

    PubMed Central

    Veale, D; Ritchlin, C; FitzGerald, O

    2005-01-01

    Psoriatic arthritis (PsA) is characterised by several unique clinical features that differentiate it from rheumatoid arthritis (RA). Attempts to identify immunopathological mechanisms, some shared with psoriasis, that underlie these differences from RA have been most challenging. Recent research studies, however, highlight novel findings in PsA at the molecular, cellular, and tissue levels that form the basis for a new understanding of this relatively common form of inflammatory arthritis. In particular, the availability of new, biological antitumour necrosis factor α therapies have allowed further insight into the immunopathology of psoriasis and PsA. This brief review focuses on immunohistological studies in psoriatic skin, PsA synovium, and bone to demonstrate how these data advance our knowledge of disease pathogenesis. PMID:15708930

  19. Lessons learned and concepts formed from study of the pathogenesis of the two negative-strand viruses lymphocytic choriomeningitis and influenza.

    PubMed

    Oldstone, Michael B A

    2013-03-12

    Viruses have unique lifestyles. To describe the pathogenesis and significance of viral infection in terms of host responses, resultant injury, and therapy, we focused on two RNA viruses: lymphocytic choriomeningitis (LCMV) and influenza (Flu). Many of the currently established concepts and consequences about viruses and immunologic tolerance, virus-induced immunosuppression, virus-induced autoimmunity, immune complex disease, and virus-lymphocyte and virus-dendritic cell interactions evolved through studies of LCMV in its natural murine host. Similarly, the mechanisms, aftermath, and treatment of persistent RNA viruses emerged, in large part, from research on LCMV. Analysis of acute influenza virus infections uncovered the prominent direct role that cytokine storm plays in the pathogenesis, morbidity, and mortality from this disease. Cytokine storm of influenza virus infection is initiated via a pulmonary endothelial cell amplification loop involving IFN-producing cells and virus-infected pulmonary epithelial cells. Importantly, the cytokine storm is chemically treatable with specific agonist therapy directed to the sphingosphine 1 phosphate receptor 1, which is located on pulmonary endothelial cells, pointing to the endothelial cells as the gatekeepers of this hyperaggressive host immune response.

  20. Solid Organ Transplant–associated Lymphocytic Choriomeningitis, United States, 2011

    PubMed Central

    Ströher, Ute; Farnon, Eileen; Campbell, Shelley; Cannon, Deborah; Paddock, Christopher D.; Drew, Clifton P.; Kuehnert, Matthew; Knust, Barbara; Gruenenfelder, Robert; Zaki, Sherif R.; Rollin, Pierre E.; Nichol, Stuart T.

    2012-01-01

    Three clusters of organ transplant–associated lymphocytic choriomeningitis virus (LCMV) transmissions have been identified in the United States; 9 of 10 recipients died. In February 2011, we identified a fourth cluster of organ transplant–associated LCMV infections. Diabetic ketoacidosis developed in the organ donor in December 2010; she died with generalized brain edema after a short hospitalization. Both kidneys, liver, and lung were transplanted to 4 recipients; in all 4, severe posttransplant illness developed; 2 recipients died. Through multiple diagnostic methods, we identified LCMV infection in all persons, including in at least 1 sample from the donor and 4 recipients by reverse transcription PCR, and sequences of a 396-bp fragment of the large segment of the virus from all 5 persons were identical. In this cluster, all recipients developed severe illness, but 2 survived. LCMV infection should be considered as a possible cause of severe posttransplant illness. PMID:22839997

  1. Cell Entry of Lymphocytic Choriomeningitis Virus Is Restricted In Myotubes

    PubMed Central

    Iwasaki, Masaharu; Urata, Shuzo; Cho, Yoshitake; Ngo, Nhi; de la Torre, Juan C.

    2014-01-01

    In mice persistently infected since birth with the prototypic arenavirus lymphocytic choriomeningitis viurs, viral antigen and RNA are readily detected in most organs and cell types but remarkably absent in skeletal muscle. Here we report that mouse C2C12 myoblasts that are readily infected by LCMV, become highly refractory to LCMV infection upon their differentiation into myotubes. Myotube’s resistance to LCMV was not due to an intracellular restriction of virus replication but rather an impaired cell entry mediated by the LCMV surface glycoprotein. Our findings provide an explanation for the observation that in LCMV carrier mice myotubes, which are constantly exposed to blood-containing virus, remain free of viral antigen and RNA despite myotubes express high levels of the LCMV receptor alpha dystroglycan and do not pose an intracellular blockade to LCMV multiplication. PMID:24928036

  2. Alterations in behavior resulting from persistent lymphocytic choriomeningitis virus infection.

    PubMed

    Hotchin, J; Seegal, R

    1978-01-01

    We have studied behavioral change in mice persistently infected as neonates with lymphocytic choriomeningitis virus. Open-field, electric shock startle, and locomotor behavior were measured on these persistently infected mice and normal controls when they were 2--6 months of age. The infected mice exhibited significantly greater latency to move in the open-field, were more sensitive to low current electric shock and were slightly less active when tested for 4 days in running wheels. Immunofluorescent examination of adult mouse brain 14 days after the initiation of persistent infection with cyclophosphamide (given 3 days after virus) demonstrated viral antigen in hippocampal and olfactory tissue. Behavioral results were interpreted in terms of direct effects of virus on the brain, perhaps altering certain critical neurophysiologic and neurochemical parameters. The possible relationship between limbic system pathology and human mental disorder is raised.

  3. Pet Rodents and Fatal Lymphocytic Choriomeningitis in Transplant Patients

    PubMed Central

    Pavlin, Boris I.; Albariño, Cesar G.; Comer, James A.; Erickson, Bobbie R.; Oliver, Jennifer B.; Sealy, Tara K.; Vincent, Martin J.; Nichol, Stuart T.; Paddock, Christopher D.; Tumpey, Abbigail J.; Wagoner, Kent D.; Glauer, R. David; Smith, Kathleen A.; Winpisinger, Kim A.; Parsely, Melody S.; Wyrick, Phil; Hannafin, Christopher H.; Bandy, Utpala; Zaki, Sherif; Rollin, Pierre E.; Ksiazek, Thomas G.

    2007-01-01

    In April 2005, 4 transplant recipients became ill after receiving organs infected with lymphocytic choriomeningitis virus (LCMV); 3 subsequently died. All organs came from a donor who had been exposed to a hamster infected with LCMV. The hamster was traced back through a Rhode Island pet store to a distribution center in Ohio, and more LCMV-infected hamsters were discovered in both. Rodents from the Ohio facility and its parent facility in Arkansas were tested for the same LCMV strain as the 1 involved in the transplant-associated deaths. Phylogenetic analysis of virus sequences linked the rodents from the Ohio facility to the Rhode Island pet store, the index hamster, and the transplant recipients. This report details the animal traceback and the supporting laboratory investigations. PMID:17553250

  4. Gene-gun DNA vaccination aggravates respiratory syncytial virus-induced pneumonitis.

    PubMed

    Bartholdy, Christina; Olszewska, Wieslawa; Stryhn, Anette; Thomsen, Allan Randrup; Openshaw, Peter J M

    2004-10-01

    A CD8+ T-cell memory response to respiratory syncytial virus (RSV) was generated by using a DNA vaccine construct encoding the dominant Kd-restricted epitope from the viral transcription anti-terminator protein M2 (M2(82-90)), linked covalently to human beta2-microglobulin (beta2m). Cutaneous gene-gun immunization of BALB/c mice with this construct induced an antigen-specific CD8+ T-cell memory. After intranasal RSV challenge, accelerated CD8+ T-cell responses were observed in pulmonary lymph nodes and virus clearance from the lungs was enhanced. The construct induced weaker CD8+ T-cell responses than those elicited with recombinant vaccinia virus expressing the complete RSV M2 protein, but stronger than those induced by a similar DNA construct without the beta2m gene. DNA vaccination led to enhanced pulmonary disease after RSV challenge, with increased weight loss and cell recruitment to the lung. Depletion of CD8+ T cells reduced, but did not abolish, enhancement of disease. Mice vaccinated with a construct encoding a class I-restricted lymphocytic choriomeningitis virus epitope and beta2m suffered more severe weight loss after RSV infection than unvaccinated RSV-infected mice, although RSV-specific CD8+ T-cell responses were not induced. Thus, in addition to specific CD8+ T cell-mediated immunopathology, gene-gun DNA vaccination causes non-specific enhancement of RSV disease without affecting virus clearance.

  5. Ocular immunopathologic findings of experimental onchocerciasis.

    PubMed

    Donnelly, J J; Rockey, J H; Bianco, A E; Soulsby, E J

    1984-04-01

    Ocular immunopathologic responses of inbred guinea pigs infected with Onchocerca microfilariae from domesticated animals were studied as a laboratory model of human ocular onchocerciasis. A single intracorneal infection of normal guinea pigs with microfilariae produced only minimal ocular lesions. In contrast, intracorneal infection of guinea pigs previously immunized by systemic infection with microfilariae produced intense corneal and uveal inflammation. Transfer of splenic lymphocytes from immunized donors to syngeneic normal recipients substituted effectively for the active immunization. Cell recipients produced marked corneal inflammatory reactions when challenged by a single intracorneal infection. Fresh and cryopreserved microfilariae produced identical reactions. The corneal inflammatory infiltrates were composed primarily of eosinophils, neutrophils, and plasma cells and resembled human onchocercal keratitis. Diethylcarbamazine citrate administration after a challenge intracorneal infection increased the severity of the corneal inflammatory response in immunized animals.

  6. [Novel immunopathological approaches to pulmonary arterial hypertension].

    PubMed

    Perros, Frédéric; Montani, David; Dorfmüller, Peter; Huertas, Alice; Chaumais, Marie-Camille; Cohen-Kaminsky, Sylvia; Humbert, Marc

    2011-04-01

    Inflammation is important for the initiation and the maintenance of vascular remodeling in the most commun animal models of pulmonary hypertension (PH), and its therapeutical targeting blocks PH development in these models. In human, pulmonary vascular lesions of PH are also the source of an intense chemokine production, linked to inflammatory cell recruitment. However, arteritis is uncommon in PH patients. Of note, current PH treatments have immunomodulatory properties. In addition, some studies have shown a correlation between levels of circulating inflammatory mediators and patients' survival. The study of autoimmunity in the pathophysiology of pulmonary arterial hypertension is becoming an area of intense investigation. New immunopathological approaches to PH should allow the development of innovative treatments for this very severe condition.

  7. CD169+ macrophages regulate PD-L1 expression via type I interferon and thereby prevent severe immunopathology after LCMV infection

    PubMed Central

    Shaabani, Namir; Duhan, Vikas; Khairnar, Vishal; Gassa, Asmae; Ferrer-Tur, Rita; Häussinger, Dieter; Recher, Mike; Zelinskyy, Gennadiy; Liu, Jia; Dittmer, Ulf; Trilling, Mirko; Scheu, Stefanie; Hardt, Cornelia; Lang, Philipp A; Honke, Nadine; Lang, Karl S

    2016-01-01

    Upon infection with persistence-prone virus, type I interferon (IFN-I) mediates antiviral activity and also upregulates the expression of programmed death ligand 1 (PD-L1), and this upregulation can lead to CD8+ T-cell exhaustion. How these very diverse functions are regulated remains unknown. This study, using the lymphocytic choriomeningitis virus, showed that a subset of CD169+ macrophages in murine spleen and lymph nodes produced high amounts of IFN-I upon infection. Absence of CD169+ macrophages led to insufficient production of IFN-I, lower antiviral activity and persistence of virus. Lack of CD169+ macrophages also limited the IFN-I-dependent expression of PD-L1. Enhanced viral replication in the absence of PD-L1 led to persistence of virus and prevented CD8+ T-cell exhaustion. As a consequence, mice exhibited severe immunopathology and died quickly after infection. Therefore, CD169+ macrophages are important contributors to the IFN-I response and thereby influence antiviral activity, CD8+ T-cell exhaustion and immunopathology. PMID:27809306

  8. [Isolation of lymphocytic choriomeningitis virus from human individuals].

    PubMed

    Saavedra, M C; Ambrosio, A M; Riera, L; Levis, S; Sottosanti, J; Sabattini, M

    2001-01-01

    The activity of lymphocytic choriomeningitis virus (LCMv) in Argentina has been previously reported on the basis of serological evidence in rodents and humans and the isolation of only one strain of LCMv from a Mus domesticus captured in the province of Córdoba. The aim of this paper was to register patients with serological diagnosis of LCM, to isolate and to identify human strains of LCMv in Argentina. During the last 19 years, 15 cases were diagnosed as LCM by immunoflourescent indirect assay (IFI) and enzyme-linked immunosorbent assay (ELISA) but when neutralizing assay (NT) was incorporated, eight cases were classified as confirmed, three as probable and four as negative. The geographic distribution of the cases included three provinces: Córdoba, Buenos Aires and Santa Fe. Viral isolation was attempted in five patients classified as confirmed and only two resulted positive (P5226 and P8573). They were identified as LCMv by IFI and NT. The coexistence of LCMv with other arenaviruses, such as Junin and Oliveros viruses, in the same area, raises the probability of interactions between them, which could modify the virulence and/or pathogenicity for humans associated to genomic changes. Future studies of antigenic, genomic and virulence variability of different Argentine strains of LCMv, as well as the systematic search for human infection, will contribute to define the importance of this viral agent in our country and to implement control measures.

  9. Antiviral Effect of Interferon Lambda Against Lymphocytic Choriomeningitis Virus.

    PubMed

    Lukacikova, Lubomira; Oveckova, Ingrid; Betakova, Tatiana; Laposova, Katarina; Polcicova, Katarina; Pastorekova, Silvia; Pastorek, Jaromir; Tomaskova, Jana

    2015-07-01

    Lambda interferons inhibit replication of many viruses, but their role in the inhibition of lymphocytic choriomeningitis virus (LCMV) infection remains unclear. In this study, we examined the antiviral effects of interferon (IFN)-λ2 and IFN-λ3 against LCMV in A549 cells. We found that IFN-λ2 is a more potent inhibitor of LCMV strain MX compared with IFN-λ3, whereas both cytokines have similar antiviral effects against an immunosuppressive variant of LCMV, clone-13. We also demonstrated that the antiviral activity of IFN-λ2 is more effective if it is delivered early rather than after establishment of a long-term infection, suggesting that virus replication is only partially responsive to the cytokine. In agreement with this observation, we showed that LCMV infection significantly reduces IFNLR1 mRNA expression in infected cells. In addition, LCMV infection, to some extent, compromises the signal transduction pathway of IFN-λ2. This implies that IFN receptors as well as their downstream signaling components could be selectively targeted either directly by LCMV proteins or indirectly by cellular factor(s) that are induced or activated by LCMV infection.

  10. Inhibition of diacylglycerol kinase alpha restores restimulation-induced cell death and reduces immunopathology in XLP-1

    PubMed Central

    Ruffo, Elisa; Malacarne, Valeria; Larsen, Sasha E.; Das, Rupali; Patrussi, Laura; Wülfing, Christoph; Biskup, Christoph; Kapnick, Senta M.; Verbist, Katherine; Tedrick, Paige; Schwartzberg, Pamela L.; Baldari, Cosima T.; Rubio, Ignacio; Nichols, Kim E.; Snow, Andrew L.; Baldanzi, Gianluca; Graziani, Andrea

    2016-01-01

    X-linked lymphoproliferative disease (XLP-1) is an often-fatal primary immunodeficiency associated with the exuberant expansion of activated CD8+ T cells following Epstein-Barr virus (EBV) infection. XLP-1 is caused by defects in SAP, an adaptor protein that modulates T cell receptor (TCR)-induced signaling. SAP-deficient T cells exhibit impaired TCR restimulation-induced cell death (RICD) and diminished TCR-induced inhibition of diacylglycerol kinase alpha (DGKα), leading to increased diacylglycerol metabolism and decreased signaling through Ras and PKCθ. Here, we show that down-regulation of DGKα activity in SAP-deficient T cells restores diacylglycerol signaling at the immune synapse and rescues RICD via induction of the pro-apoptotic proteins NUR77 and NOR1. Importantly, pharmacological inhibition of DGKα prevents the excessive CD8+ T cell expansion and IFNγ production that occur in Sap-deficient mice following Lymphocytic Choriomeningitis Virus infection without impairing lytic activity. Collectively, these data highlight DGKα as a viable therapeutic target to reverse the life-threatening EBV-associated immunopathology that occurs in XLP-1 patients. PMID:26764158

  11. Inhibition of diacylglycerol kinase α restores restimulation-induced cell death and reduces immunopathology in XLP-1.

    PubMed

    Ruffo, Elisa; Malacarne, Valeria; Larsen, Sasha E; Das, Rupali; Patrussi, Laura; Wülfing, Christoph; Biskup, Christoph; Kapnick, Senta M; Verbist, Katherine; Tedrick, Paige; Schwartzberg, Pamela L; Baldari, Cosima T; Rubio, Ignacio; Nichols, Kim E; Snow, Andrew L; Baldanzi, Gianluca; Graziani, Andrea

    2016-01-13

    X-linked lymphoproliferative disease (XLP-1) is an often-fatal primary immunodeficiency associated with the exuberant expansion of activated CD8(+) T cells after Epstein-Barr virus (EBV) infection. XLP-1 is caused by defects in signaling lymphocytic activation molecule (SLAM)-associated protein (SAP), an adaptor protein that modulates T cell receptor (TCR)-induced signaling. SAP-deficient T cells exhibit impaired TCR restimulation-induced cell death (RICD) and diminished TCR-induced inhibition of diacylglycerol kinase α (DGKα), leading to increased diacylglycerol metabolism and decreased signaling through Ras and PKCθ (protein kinase Cθ). We show that down-regulation of DGKα activity in SAP-deficient T cells restores diacylglycerol signaling at the immune synapse and rescues RICD via induction of the proapoptotic proteins NUR77 and NOR1. Pharmacological inhibition of DGKα prevents the excessive CD8(+) T cell expansion and interferon-γ production that occur in SAP-deficient mice after lymphocytic choriomeningitis virus infection without impairing lytic activity. Collectively, these data highlight DGKα as a viable therapeutic target to reverse the life-threatening EBV-associated immunopathology that occurs in XLP-1 patients.

  12. Virus-induced aggregates in infected cells.

    PubMed

    Moshe, Adi; Gorovits, Rena

    2012-10-17

    During infection, many viruses induce cellular remodeling, resulting in the formation of insoluble aggregates/inclusions, usually containing viral structural proteins. Identification of aggregates has become a useful diagnostic tool for certain viral infections. There is wide variety of viral aggregates, which differ by their location, size, content and putative function. The role of aggregation in the context of a specific virus is often poorly understood, especially in the case of plant viruses. The aggregates are utilized by viruses to house a large complex of proteins of both viral and host origin to promote virus replication, translation, intra- and intercellular transportation. Aggregated structures may protect viral functional complexes from the cellular degradation machinery. Alternatively, the activation of host defense mechanisms may involve sequestration of virus components in aggregates, followed by their neutralization as toxic for the host cell. The diversity of virus-induced aggregates in mammalian and plant cells is the subject of this review.

  13. Immune response and immunopathology during toxoplasmosis1

    PubMed Central

    Dupont, Christopher D.; Christian, David A.; Hunter, Christopher A.

    2012-01-01

    Toxoplasma gondii is a protozoan parasite of medical and veterinary significance that is able to infect any warm-blooded vertebrate host. In addition to its importance to public health, several inherent features of the biology of T. gondii have made it an important model organism to study host-pathogen interactions. One factor is the genetic tractability of the parasite, which allows studies on the microbial factors that affect virulence and allows the development of tools that facilitate immune studies. Additionally, mice are natural hosts for T. gondii, and the availability of numerous reagents to study the murine immune system makes this an ideal experimental system to understand the functions of cytokines and effector mechanisms involved in immunity to intracellular microorganisms. In this article, we will review current knowledge of the innate and adaptive immune responses required for resistance to toxoplasmosis, the events that lead to the development of immunopathology, and the natural regulatory mechanisms that limit excessive inflammation during this infection. PMID:22955326

  14. Sex differences in HIV-1-mediated immunopathology.

    PubMed

    Ziegler, Susanne; Altfeld, Marcus

    2016-03-01

    The article reviews our current knowledge regarding the role of sex and sex hormones in regulating innate immune responses to viral infections, which may account for the described sex differences in immunity to HIV-1. Prominent sex differences exist in various infectious and autoimmune diseases. Biological mechanisms underlying these differences include the modulation of immunological pathways by sex hormones and gene dosage effects of immunomodulatory genes encoded by the X chromosome. During HIV-1 infections, women have been shown to present with lower viral load levels in primary infection, although their progression to AIDS is faster in comparison with men when accounting for viral load levels in chronic infection. HIV-1-infected women furthermore tend to have higher levels of immune activation and interferon-stimulated gene expression in comparison with men for the same viral load, which has been associated to innate sensing of HIV-1 by Toll-like receptor 7 and the consequent interferon-α production by plasmacytoid dendritic cells. Improvement in understanding the mechanisms associated with sex differences in HIV-1-mediated immunopathology will be critical to take sex differences into consideration when designing experimental and clinical studies in HIV-1-infected populations.

  15. A basic overview of multiple sclerosis immunopathology.

    PubMed

    Grigoriadis, N; van Pesch, V

    2015-10-01

    Multiple sclerosis (MS) is a multi-component disease characterized by inflammation, neurodegeneration and failure of central nervous system (CNS) repair mechanisms. Immune dysregulation appears to originate with dendritic cells (antigen-presenting cells) which have an activated phenotype in individuals with MS. Dendritic cells migrate across the blood-brain barrier and induce differentiation of memory T cells into pro-inflammatory T helper 1 (Th1) and Th17 lymphocytes. In turn, induction of macrophage and microglial activation produces other pro-inflammatory cytokines and oxygen and nitric oxide radicals responsible for the demyelination and axonal loss. Other known mediators of MS pathology include CD8+ T cells and memory B cells within the CNS. Some pathological hallmarks of MS are early axonal degeneration and progressive decline of brain volume in patients with clinically isolated syndromes who progress to clinically definite MS. Many new options to interfere with the course of MS have become available in recent years. To limit inflammatory demyelinating processes and delay disease progression, intervention to control inflammation must begin as early as possible. Each distinct type of immunotherapy (immunomodulation, immunosuppression and immune-selective intervention - blockade type, sequestering type or depleting type) corresponds to a specific underlying immunopathology of MS.

  16. Differential impact of interferon regulatory factor 7 in initiation of the type I interferon response in the lymphocytic choriomeningitis virus-infected central nervous system versus the periphery.

    PubMed

    Christensen, Jeanette Erbo; Fenger, Christina; Issazadeh-Navikas, Shohreh; Krug, Anna; Liljestrøm, Peter; Goriely, Stanislas; Paludan, Søren Riis; Finsen, Bente; Christensen, Jan Pravsgaard; Thomsen, Allan Randrup

    2012-07-01

    Interferon (IFN) regulatory factors (IRFs) are a family of transcription factors involved in regulating type I IFN genes and other genes participating in the early antiviral host response. To better understand the mechanisms involved in virus-induced central nervous system (CNS) inflammation, we studied the influence of IRF1, -3, -7, and -9 on the transcriptional activity of key genes encoding antiviral host factors in the CNS of mice infected with lymphocytic choriomeningitis virus (LCMV). A key finding is that neither IRF3 nor IRF7 is absolutely required for induction of a type I IFN response in the LCMV-infected CNS, whereas concurrent elimination of both factors markedly reduces the virus-induced host response. This is unlike the situation in the periphery, where deficiency of IRF7 almost eliminates the LCMV-induced production of the type I IFNs. This difference is seemingly related to the local environment, as peripheral production of type I IFNs is severely reduced in intracerebrally (i.c.) infected IRF7-deficient mice, which undergo a combined infection of the CNS and peripheral organs, such as spleen and lymph nodes. Interestingly, despite the redundancy of IRF7 in initiating the type I IFN response in the CNS, the response is not abolished in IFN-β-deficient mice, as might have been expected. Collectively, these data demonstrate that the early type I IFN response to LCMV infection in the CNS is controlled by a concerted action of IRF3 and -7. Consequently this work provides strong evidence for differential regulation of the type I IFN response in the CNS versus the periphery during viral infection.

  17. Meningitis caused by lymphocytic choriomeningitis virus in a patient with leukemia.

    PubMed

    Al-Zein, Naser; Boyce, Thomas G; Correa, Armando G; Rodriguez, Vilmarie

    2008-10-01

    We report a case of 15-year-old girl with T-cell acute lymphoblastic leukemia who had fever, neutropenia, and severe headache while receiving maintenance chemotherapy. Cerebrospinal fluid testing revealed a lymphocytic pleocytosis and no evidence of relapsed leukemia. Meningitis caused by lymphocytic choriomeningitis virus was identified serologically. The patient's course was complicated by hydrocephalus requiring ventriculoperitoneal shunt placement and by an intracranial hemorrhage. Lymphocytic choriomeningitis virus is a rare cause of aseptic meningitis that should be considered in the symptomatic immunocompromised patient with an appropriate exposure history.

  18. Trace-forward investigation of mice in response to lymphocytic choriomeningitis virus outbreak.

    PubMed

    Edison, Laura; Knust, Barbara; Petersen, Bret; Gabel, Julie; Manning, Craig; Drenzek, Cherie; Ströher, Ute; Rollin, Pierre E; Thoroughman, Douglas; Nichol, Stuart T

    2014-02-01

    During follow-up of a 2012 US outbreak of lymphocytic choriomeningitis virus (LCMV), we conducted a trace-forward investigation. LCMV-infected feeder mice originating from a US rodent breeding facility had been distributed to >500 locations in 21 states. All mice from the facility were euthanized, and no additional persons tested positive for LCMV infection.

  19. Independent Lineage of Lymphocytic Choriomeningitis Virus in Wood Mice (Apodemus sylvaticus), Spain

    PubMed Central

    Ledesma, Juan; Fedele, Cesare Giovanni; Carro, Francisco; Lledó, Lourdes; Sánchez-Seco, María Paz; Tenorio, Antonio; Soriguer, Ramón Casimiro; Saz, José Vicente; Domínguez, Gerardo; Rosas, María Flora; Barandika, Jesús Félix

    2009-01-01

    To clarify the presence of lymphocytic choriomeningitis virus (LCMV) in Spain, we examined blood and tissue specimens from 866 small mammals. LCMV RNA was detected in 3 of 694 wood mice (Apodemus sylvaticus). Phylogenetic analyses suggest that the strains constitute a new evolutionary lineage. LCMV antibodies were detected in 4 of 10 rodent species tested. PMID:19861074

  20. Independent lineage of lymphocytic choriomeningitis virus in wood mice (Apodemus sylvaticus), Spain.

    PubMed

    Ledesma, Juan; Fedele, Cesare Giovanni; Carro, Francisco; Lledó, Lourdes; Sánchez-Seco, María Paz; Tenorio, Antonio; Soriguer, Ramón Casimiro; Saz, José Vicente; Domínguez, Gerardo; Rosas, María Flora; Barandika, Jesús Félix; Gegúndez, María Isabel

    2009-10-01

    To clarify the presence of lymphocytic choriomeningitis virus (LCMV) in Spain, we examined blood and tissue specimens from 866 small mammals. LCMV RNA was detected in 3 of 694 wood mice (Apodemus sylvaticus). Phylogenetic analyses suggest that the strains constitute a new evolutionary lineage. LCMV antibodies were detected in 4 of 10 rodent species tested.

  1. Immunopathology of the noninfectious posterior and intermediate uveitides.

    PubMed

    Boyd, S R; Young, S; Lightman, S

    2001-01-01

    The posterior and intermediate uveitides share an underlying immune etiology; however, they can be clinically and immunopathologically distinguished. Although the initiating stimuli for posterior and intermediate uveities are not known, it is believed that an exogenous agent (such as a bacterium or a virus) or an endogenous molecule may induce disease. In either case, T-helper lymphocytes in conjunction with human leukocyte antigens are likely to be involved. This review examines the epidemiology, histology, immunopathology, and theories of pathogenesis of several posterior and intermediate uveitides, including sympathetic ophthalmia, Vogt-Koyanagi-Harada syndrome, Behçet's disease, sarcoidosis, intermediate uveitis, white dot syndromes, and birdshot retinochoroidopathy.

  2. Intestinal Microbiota Modulates Gluten-Induced Immunopathology in Humanized Mice

    PubMed Central

    Galipeau, Heather J.; McCarville, Justin L.; Huebener, Sina; Litwin, Owen; Meisel, Marlies; Jabri, Bana; Sanz, Yolanda; Murray, Joseph A.; Jordana, Manel; Alaedini, Armin; Chirdo, Fernando G.; Verdu, Elena F.

    2016-01-01

    Celiac disease (CD) is an immune-mediated enteropathy triggered by gluten in genetically susceptible individuals. The recent increase in CD incidence suggests that additional environmental factors, such as intestinal microbiota alterations, are involved in its pathogenesis. However, there is no direct evidence of modulation of gluten-induced immunopathology by the microbiota. We investigated whether specific microbiota compositions influence immune responses to gluten in mice expressing the human DQ8 gene, which confers moderate CD genetic susceptibility. Germ-free mice, clean specific-pathogen-free (SPF) mice colonized with a microbiota devoid of opportunistic pathogens and Proteobacteria, and conventional SPF mice that harbor a complex microbiota that includes opportunistic pathogens were used. Clean SPF mice had attenuated responses to gluten compared to germ-free and conventional SPF mice. Germ-free mice developed increased intraepithelial lymphocytes, markers of intraepithelial lymphocyte cytotoxicity, gliadin-specific antibodies, and a proinflammatory gliadin-specific T-cell response. Antibiotic treatment, leading to Proteobacteria expansion, further enhanced gluten-induced immunopathology in conventional SPF mice. Protection against gluten-induced immunopathology in clean SPF mice was reversed after supplementation with a member of the Proteobacteria phylum, an enteroadherent Escherichia coli isolated from a CD patient. The intestinal microbiota can both positively and negatively modulate gluten-induced immunopathology in mice. In subjects with moderate genetic susceptibility, intestinal microbiota changes may be a factor that increases CD risk. PMID:26456581

  3. Intestinal microbiota modulates gluten-induced immunopathology in humanized mice.

    PubMed

    Galipeau, Heather J; McCarville, Justin L; Huebener, Sina; Litwin, Owen; Meisel, Marlies; Jabri, Bana; Sanz, Yolanda; Murray, Joseph A; Jordana, Manel; Alaedini, Armin; Chirdo, Fernando G; Verdu, Elena F

    2015-11-01

    Celiac disease (CD) is an immune-mediated enteropathy triggered by gluten in genetically susceptible individuals. The recent increase in CD incidence suggests that additional environmental factors, such as intestinal microbiota alterations, are involved in its pathogenesis. However, there is no direct evidence of modulation of gluten-induced immunopathology by the microbiota. We investigated whether specific microbiota compositions influence immune responses to gluten in mice expressing the human DQ8 gene, which confers moderate CD genetic susceptibility. Germ-free mice, clean specific-pathogen-free (SPF) mice colonized with a microbiota devoid of opportunistic pathogens and Proteobacteria, and conventional SPF mice that harbor a complex microbiota that includes opportunistic pathogens were used. Clean SPF mice had attenuated responses to gluten compared to germ-free and conventional SPF mice. Germ-free mice developed increased intraepithelial lymphocytes, markers of intraepithelial lymphocyte cytotoxicity, gliadin-specific antibodies, and a proinflammatory gliadin-specific T-cell response. Antibiotic treatment, leading to Proteobacteria expansion, further enhanced gluten-induced immunopathology in conventional SPF mice. Protection against gluten-induced immunopathology in clean SPF mice was reversed after supplementation with a member of the Proteobacteria phylum, an enteroadherent Escherichia coli isolated from a CD patient. The intestinal microbiota can both positively and negatively modulate gluten-induced immunopathology in mice. In subjects with moderate genetic susceptibility, intestinal microbiota changes may be a factor that increases CD risk.

  4. Virus-induced immunosuppression in chickens.

    PubMed

    Sharma, J M; Karaca, K; Pertile, T

    1994-07-01

    Reovirus and infectious bursal disease virus are among the naturally occurring viruses that cause immunosuppression in chickens. Both viruses cause necrotic lesions in the bursa of Fabricius and may destroy B cells. This may explain their ability to cause humoral immune suppression. The mechanism(s) of virus-induced suppression of cellular immunity is not well understood. Both viruses inhibit the mitogenic response of T cells in chickens. We have noted that this inhibition may be mediated by inhibitory cytokines such as transforming growth factor-beta and nitric oxide produced by activated macrophages. Preliminary studies have indicated that pretreatment of chickens with an immunomodulator, acemannan, reduced the reovirus-induced inhibition of T cells.

  5. Clinical and Pathomorphological Data on Hydro-Cephalus Caused by Prenatal Infection by the Lymphocytic Choriomeningitis Virus

    DTIC Science & Technology

    1991-01-01

    AD-A241 779 CLINICAL AND PATHOMORPHOLOGICAL DATA ON HYDRO- CEPHALUS CAUSED BY PRENATAL INFECTION BY THE LYMPHOCYTIC CHORIOMENINCITIS VIRUS M. M...PRENATAL INFECTION BY THE LYMPHOCYTIC CHORIOMENINGITIS VIRUS M. M. Sheynbergas, R. S. Pmashekas, R. L. Pikelite, Yu. P. Tulyavichene, Yu. M. Sverdlov, I. K...Chibirene, A. B. Raynite-Audinene* The first case of probable prenatal infection caused by /1004** the lymphocytic choriomeningitis virus was

  6. Mechanistic perspective of the oxido-immunopathologic resolution property of kolaviron in mice influenza pneumonitis.

    PubMed

    Awogbindin, Ifeoluwa O; Olaleye, David O; Farombi, Ebenezer O

    2017-03-01

    Implicated in influenza-associated pathology are innate defence overzealousness and unabated secretion of oxidative tissue-sensitive antimicrobial agents. At different time points, mice were pre-treated with kolaviron (400 mg/kg), a natural antioxidant and anti-inflammatory agent, and subsequently challenged with 2 LD50 influenza A/H3N2/Perth/16/09 virus. After euthanasia at day 6, blood, lungs, liver and spleen were collected and processed for biochemical, immunohistochemical and flow cytometric assessment of redo-inflammatory imbalance, cytokine storm indices and T helper 1 host response. Previously kolaviron was reported to delay mortality onset, improve morbidity and attenuate myeloperoxidase activity and nitric oxide production with minimal impact on viral clearance. This study additionally confirmed nitric oxide, but not hydrogen peroxide, as the major culprit implicated in influenza virus-induced oxido-pathology. Systemic effect of the sustained inflammation and nitrosative stress was more prominent in the spleen and lung than in the liver of mice infected with A/H3N2/Perth/16/09. Influential to immunopathology was heightened pulmonary expression of IL-1β, RANTES, IL-10, MCP-1, NF-κB, iNOS and COX-2. However, kolaviron combated the influenza-established nitrative stress, reversed the elicited cytokine storm and restored the oxidized environment to a reductive milieu. Our data also suggest that kolaviron administration early in infection may foster CD4(+) response. These data indicate that kolaviron may confer disease-dwindling properties during acute influenza infection via a system-wide protective approach involving multiple targets especially at the early stage of the infection.

  7. Rabies Virus-Induced Membrane Fusion Pathway

    PubMed Central

    Gaudin, Yves

    2000-01-01

    Fusion of rabies virus with membranes is triggered at low pH and is mediated by the viral glycoprotein (G). The rabies virus-induced fusion pathway was studied by investigating the effects of exogenous lipids having various dynamic molecular shapes on the fusion process. Inverted cone-shaped lysophosphatidylcholines (LPCs) blocked fusion at a stage subsequent to fusion peptide insertion into the target membrane. Consistent with the stalk-hypothesis, LPC with shorter alkyl chains inhibited fusion at lower membrane concentrations and this inhibition was compensated by the presence of oleic acid. However, under suboptimal fusion conditions, short chain LPCs, which were translocated in the inner leaflet of the membranes, considerably reduced the lag time preceding membrane merging, resulting in faster kinetics of fusion. This indicated that the rate limiting step for fusion is the formation of a fusion pore in a diaphragm of restricted hemifusion. The previously described cold-stabilized prefusion complex was also characterized. This intermediate is at a well-advanced stage of the fusion process when the hemifusion diaphragm is destabilized, but lipid mixing is still restricted, probably by a ring-like complex of glycoproteins. I provide evidence that this state has a dynamic character and that its lipid organization can reverse back to two lipid bilayers. PMID:10931871

  8. Virus-induced congenital malformations in cattle.

    PubMed

    Agerholm, Jørgen S; Hewicker-Trautwein, Marion; Peperkamp, Klaas; Windsor, Peter A

    2015-09-24

    Diagnosing the cause of bovine congenital malformations (BCMs) is challenging for bovine veterinary practitioners and laboratory diagnosticians as many known as well as a large number of not-yet reported syndromes exist. Foetal infection with certain viruses, including bovine virus diarrhea virus (BVDV), Schmallenberg virus (SBV), blue tongue virus (BTV), Akabane virus (AKAV), or Aino virus (AV), is associated with a range of congenital malformations. It is tempting for veterinary practitioners to diagnose such infections based only on the morphology of the defective offspring. However, diagnosing a virus as a cause of BCMs usually requires laboratory examination and even in such cases, interpretation of findings may be challenging due to lack of experience regarding genetic defects causing similar lesions, even in cases where virus or congenital antibodies are present. Intrauterine infection of the foetus during the susceptible periods of development, i.e. around gestation days 60-180, by BVDV, SBV, BTV, AKAV and AV may cause malformations in the central nervous system, especially in the brain. Brain lesions typically consist of hydranencephaly, porencephaly, hydrocephalus and cerebellar hypoplasia, which in case of SBV, AKAV and AV infections may be associated by malformation of the axial and appendicular skeleton, e.g. arthrogryposis multiplex congenita. Doming of the calvarium is present in some, but not all, cases. None of these lesions are pathognomonic so diagnosing a viral cause based on gross lesions is uncertain. Several genetic defects share morphology with virus induced congenital malformations, so expert advice should be sought when BCMs are encountered.

  9. Optimal lymphocytic choriomeningitis virus sequences restricted by H-2Db major histocompatibility complex class I molecules and presented to cytotoxic T lymphocytes.

    PubMed

    Gairin, J E; Mazarguil, H; Hudrisier, D; Oldstone, M B

    1995-04-01

    Infection with lymphocytic choriomeningitis virus induces the generation of CD8+ cytotoxic T lymphocytes (CTL). In the H-2b mouse, this cellular immune response is directed against three viral structural epitopes (GP1, GP2, and NP) presented by the major histocompatibility complex (MHC) class I H-2Db molecules. This study was undertaken to delineate which sequence of each of these three epitopes is optimal for MHC binding and CTL recognition. The first step was to synthesize the relevant peptides truncated at the N or C terminus and flanking the crucial H-2Db-anchoring Asn residue in position 5. These peptides were then tested (i) for their binding properties in two H-2Db-specific assays with viable cells (upregulation of H-2Db expression on the surface of RMA-S cells and competition against the Db-restricted peptide 125I-gp276-286 on T2-Db cells) and (ii) for their abilities to sensitize H-2b target cells for CTL lysis in vitro. For optimal antigenic presentation, all three epitopes required the MHC-anchoring Asn residue at position 5 of their sequences. The results clearly and unambiguously delineated optimal lengths for two of the epitopes and two options for the third. NP appeared as a conventional 9-amino-acid (aa)-long peptide, np396-404 (FQPQNGQFI). GP2 was defined as a longer peptide (11 aa), gp276-286 (SGVENPGGYCL). Characterization of the GP1 epitope was more complex: the 9-aa-long peptide gp33-41 (KAVYNFATC) and the carboxyl-extended 11-aa-long peptide gp33-43 (KAVYN FATCGI) were both established as possible optimal sequences depending on the cell line used to test binding and lysis.

  10. Optimal lymphocytic choriomeningitis virus sequences restricted by H-2Db major histocompatibility complex class I molecules and presented to cytotoxic T lymphocytes.

    PubMed Central

    Gairin, J E; Mazarguil, H; Hudrisier, D; Oldstone, M B

    1995-01-01

    Infection with lymphocytic choriomeningitis virus induces the generation of CD8+ cytotoxic T lymphocytes (CTL). In the H-2b mouse, this cellular immune response is directed against three viral structural epitopes (GP1, GP2, and NP) presented by the major histocompatibility complex (MHC) class I H-2Db molecules. This study was undertaken to delineate which sequence of each of these three epitopes is optimal for MHC binding and CTL recognition. The first step was to synthesize the relevant peptides truncated at the N or C terminus and flanking the crucial H-2Db-anchoring Asn residue in position 5. These peptides were then tested (i) for their binding properties in two H-2Db-specific assays with viable cells (upregulation of H-2Db expression on the surface of RMA-S cells and competition against the Db-restricted peptide 125I-gp276-286 on T2-Db cells) and (ii) for their abilities to sensitize H-2b target cells for CTL lysis in vitro. For optimal antigenic presentation, all three epitopes required the MHC-anchoring Asn residue at position 5 of their sequences. The results clearly and unambiguously delineated optimal lengths for two of the epitopes and two options for the third. NP appeared as a conventional 9-amino-acid (aa)-long peptide, np396-404 (FQPQNGQFI). GP2 was defined as a longer peptide (11 aa), gp276-286 (SGVENPGGYCL). Characterization of the GP1 epitope was more complex: the 9-aa-long peptide gp33-41 (KAVYNFATC) and the carboxyl-extended 11-aa-long peptide gp33-43 (KAVYN FATCGI) were both established as possible optimal sequences depending on the cell line used to test binding and lysis. PMID:7533855

  11. CCR5 and CXCR3 Are Dispensable for Liver Infiltration, but CCR5 Protects against Virus-Induced T-Cell-Mediated Hepatic Steatosis▿

    PubMed Central

    Holst, P. J.; Orskov, C.; Qvortrup, K.; Christensen, J. P.; Thomsen, A. R.

    2007-01-01

    CCR5 and CXCR3 are important molecules in regulating the migration of activated lymphocytes. Thus, the majority of tissue-infiltrating T cells found in the context of autoimmune conditions and viral infections express CCR5 and CXCR3, and the principal chemokine ligands are expressed within inflamed tissues. Accordingly, intervention studies have pointed to nonredundant roles of these receptors in models of allograft rejection, viral infection, and autoimmunity. In spite of this, considerable controversy exists, with many studies failing to support a role for CCR5 or CXCR3 in disease pathogenesis. One possible explanation is that different chemokine receptors may take over in the absence of any individual receptor, thus rendering individual receptors redundant. We have attempted to address this issue by analyzing CCR5−/−, CXCR3−/−, and CCR5/CXCR3−/− mice with regard to virus-induced liver inflammation, generation and recruitment of effector cells, virus control, and immunopathology. Our results indicate that CCR5 and CXCR3 are largely dispensable for tissue infiltration and virus control. In contrast, the T-cell response is accelerated in CCR5−/− and CCR5/CXCR3−/− mice and the absence of CCR5 is associated with the induction of CD8+ T-cell-mediated immunopathology consisting of marked hepatic microvesicular steatosis. PMID:17626099

  12. Genetic reassortants of lymphocytic choriomeningitis virus: unexpected disease and mechanism of pathogenesis.

    PubMed Central

    Riviere, Y; Oldstone, M B

    1986-01-01

    Reassortant viruses of different strains of lymphocytic choriomeningitis viruses cause lethal disease after inoculation into neonatal BALB/c WEHI mice, but, in contrast, parental strains or reciprocal reassortants do not cause lethal disease. The disease is characterized by inhibition of growth and death. The pathogenic mechanism is the induction of interferon combined with higher virus titers and subsequent liver necrosis. The generation of lethal reassortants from nonlethal parent viruses likely has implications for understanding the outbreaks of unanticipated virulent disease within a viral family. Images PMID:2426464

  13. Identification of lymphocytic choriomeningitis mammarenavirus in house mouse (Mus musculus, Rodentia) in French Guiana.

    PubMed

    Lavergne, Anne; de Thoisy, Benoît; Tirera, Sourakhata; Donato, Damien; Bouchier, Christiane; Catzeflis, François; Lacoste, Vincent

    2016-01-01

    Thirty-seven house mice (Mus musculus, Rodentia) caught in different localities in French Guiana were screened to investigate the presence of lymphocytic choriomeningitis mammarenavirus (LCMV). Two animals trapped in an urban area were found positive, hosting a new strain of LCMV, that we tentatively named LCMV "Comou". The complete sequence was determined using a metagenomic approach. Phylogenetic analyses revealed that this strain is related to genetic lineage I composed of strains inducing severe disease in humans. These results emphasize the need for active surveillance in humans as well as in house mouse populations, which is a rather common rodent in French Guianese cities and settlements.

  14. Immunopathologic features of de novo membranous nephropathy in renal allografts.

    PubMed

    Ward, H J; Koyle, M A

    1988-03-01

    De novo membranous nephropathy (MN) is now one of the most common forms of posttransplant glomerular disease, second only to allograft glomerulopathy. We investigated several immunopathologic and physicochemical properties of the immune complex (IC) or IC components displayed in the sera of patients with de novo MN. The parameters studied included detection of small (9S) preformed IC by monoclonal rheumatoid factor, determination of IC isoelectric point by chromatofocusing, detection of cationic IgG spectrotypes (pI 8.0-9.2), and demonstration of brush border or tubular epithelial/interstitial antibodies in the sera by indirect immunofluorescence. Of 7 de novo MN sera, 5 demonstrated the presence of each of these four immunopathologic features, whereas normal transplant patients, transplant recipients with recurrent focal sclerosis (FSGN), and those with chronic rejection did not display such features. Sera of patients with untreated idiopathic MN revealed immunochemical properties of IC that were similar to those seen in circulating IC of de novo MN. These studies suggest that a strongly nephritogenic internal milieu exists in transplant recipients with de novo MN. Our data indicate that unique immunochemical properties of IC or their components may predispose to subepithelial immune deposit formation and should provide new insights into the pathogenesis of idiopathic human MN.

  15. High frequency of cross-reactive cytotoxic T lymphocytes elicited during the virus-induced polyclonal cytotoxic T lymphocyte response

    PubMed Central

    1993-01-01

    Polyclonal stimulation of CD8+ cytotoxic T lymphocytes (CTL) occurs during infection with many viruses including those not known to transform CTL or encode superantigens. This polyclonal CTL response includes the generation of high levels of allospecific CTL directed against many class I haplotypes. In this report we investigated whether the allospecific CTL generated during an acute lymphocytic choriomeningitis virus (LCMV) infection of C57BL/6 mice were stimulated specifically by antigen recognition or nonspecifically by polyclonal mechanisms possibly involving lymphokines or superantigens. An examination of the ability of different strains of mice to induce high levels of CTL specific for a given alloantigen showed that most, but not all, strains generated high levels of allospecific CTL, and that their abilities to generate them mapped genetically to the major histocompatibility complex locus, exclusive of the class II region. This indicated that the virus-induced allospecific CTL generation was independent of the class II allotype, and mice depleted of CD4+ cells generated allospecific CTL, indicating independence of class II-CD4+ cell interactions and resulting CD4+ cell-secreted lymphokines. FACS staining with a variety of V beta-binding antibodies did not show a superantigen-like depletion or enrichment of any tested V beta + subset during infection. Several experiments provided evidence in support of direct stimulation of CD8+ cells via the T cell receptor: (a) both virus- and allo-specific killing were enriched within a given V beta subpopulation; (b) relative CTL precursor frequencies against different class I alloantigens changed during the course of virus infection; (c) the relative levels of virus-induced, allospecific CTL-mediated lysis at day 8 after infection did not parallel the CTL precursor frequencies before infection; and (d) limiting dilution analyses of day 8 LCMV- infected spleen cells stimulated by virus-infected syngeneic peritoneal

  16. In vivo treatment with a MHC class I-restricted blocking peptide can prevent virus-induced autoimmune diabetes.

    PubMed

    von Herrath, M G; Coon, B; Lewicki, H; Mazarguil, H; Gairin, J E; Oldstone, M B

    1998-11-01

    We tested the in vivo potential of a MHC class I-restricted blocking peptide to sufficiently lower an anti-viral CTL response for preventing virus-induced CTL-mediated autoimmune diabetes (insulin-dependent diabetes mellitus (IDDM)) in vivo without affecting systemic viral clearance. By designing and screening several peptides with high binding affinities to MHC class I H-2Db for best efficiency in blocking killing of target cells by lymphocytic choriomeningitis virus (LCMV) and other viral CTL, we identified the peptide for this study. In vitro, it selectively lowered CTL killing restricted to the Db allele, which correlated directly with the affinity of the respective epitopes. Expression of the blocking peptide in the target cell lowered recognition of all Db-restricted LCMV epitopes. In addition, in vitro expansion of LCMV memory CTL was prevented, resulting in decreased IFN-gamma secretion. In vivo, a 2-wk treatment with this peptide lowered the LCMV Db-restricted CTL response by over threefold without affecting viral clearance. However, the CTL reduction by the peptide treatment was sufficient to prevent LCMV-induced IDDM in rat insulin promoter-LCMV-glycoprotein transgenic mice. Following LCMV infection, these mice develop IDDM, which depends on Db-restricted anti-self (viral) CTL. Precursor numbers of splenic LCMV-CTL in peptide-treated mice were reduced, but their cytokine profile was not altered, indicating that the peptide did not induce regulatory cells. Further, non-LCMV-CTL recognizing the blocking peptide secreted IFN-gamma and did not protect from IDDM. This study demonstrates that in vivo treatment with a MHC class I blocking peptide can prevent autoimmune disease by directly affecting expansion of autoreactive CTL.

  17. Mechanisms Involved in Virus-Induced Neural Cell Death

    DTIC Science & Technology

    2001-09-01

    We are using experimental infection with reoviruses as a model to study how viruses induce cell death (apoptosis) and cause dysregulation of the cell...and their ligand (TRAIL). Apoptosis involves both death-receptor (DR) and mitochondrial-associated cell death pathways, and leads to the early

  18. Virus-Induced gene silencing in ornamental plants

    USDA-ARS?s Scientific Manuscript database

    Virus-Induced Gene Silencing (VIGS) provides an attractive tool for high throughput analysis of the functional effects of gene knock-down. Virus genomes are engineered to include fragments of target host genes, and the infected plant recognizes and silences the target genes as part of its viral defe...

  19. Virus-Induced Gene Silencing in Ornametal Plants

    USDA-ARS?s Scientific Manuscript database

    Virus-Induced Gene Silencing (VIGS) provides an attractive tool for high throughput analysis of the functional effects of gene knock-down. Virus genomes are engineered to include fragments of target host genes, and the infected plant recognizes and silences the target genes as part of its viral defe...

  20. Virus-induced gene silencing (VIGS) in barley seedling leaves

    USDA-ARS?s Scientific Manuscript database

    Virus-induced gene silencing (VIGS) is one of the most potent reverse genetics technologies for gene functional characterization. This method exploits a dsRNA-mediated antiviral defense mechanism in plants. Using this method allows researchers to generate rapid phenotypic data in a relatively rapid ...

  1. BK Polyomavirus and the Transplanted Kidney: Immunopathology and Therapeutic Approaches

    PubMed Central

    Lamarche, Caroline; Orio, Julie; Collette, Suzon; Senécal, Lynne; Hébert, Marie-Josée; Renoult, Édith; Tibbles, Lee Anne; Delisle, Jean-Sébastien

    2016-01-01

    Abstract BK polyomavirus is ubiquitous, with a seropositivity rate of over 75% in the adult population. Primary infection is thought to occur in the respiratory tract, but asymptomatic BK virus latency is established in the urothelium. In immunocompromised host, the virus can reactivate but rarely compromises kidney function except in renal grafts, where it causes a tubulointerstitial inflammatory response similar to acute rejection. Restoring host immunity against the virus is the cornerstone of treatment. This review covers the virus-intrinsic features, the posttransplant microenvironment as well as the host immune factors that underlie the pathophysiology of polyomavirus-associated nephropathy. Current and promising therapeutic approaches to treat or prevent this complication are discussed in relation to the complex immunopathology of this condition. PMID:27391196

  2. The immunopathology of canine vector-borne diseases

    PubMed Central

    2011-01-01

    The canine vector-borne infectious diseases (CVBDs) are an emerging problem in veterinary medicine and the zoonotic potential of many of these agents is a significant consideration for human health. The successful diagnosis, treatment and prevention of these infections is dependent upon firm understanding of the underlying immunopathology of the diseases in which there are unique tripartite interactions between the microorganism, the vector and the host immune system. Although significant advances have been made in the areas of molecular speciation and the epidemiology of these infections and their vectors, basic knowledge of the pathology and immunology of the diseases has lagged behind. This review summarizes recent studies of the pathology and host immune response in the major CVBDs (leishmaniosis, babesiosis, ehrlichiosis, hepatozoonosis, anaplasmosis, bartonellosis and borreliosis). The ultimate application of such immunological investigation is the development of effective vaccines. The current commercially available vaccines for canine leishmaniosis, babesiosis and borreliosis are reviewed. PMID:21489234

  3. The two faces of heterologous immunity: protection or immunopathology.

    PubMed

    Sharma, Shalini; Thomas, Paul G

    2014-03-01

    Immunity to previously encountered viruses can alter responses to unrelated pathogens. This phenomenon, which is known as heterologous immunity, has been well established in animal model systems. Heterologous immunity appears to be relatively common and may be beneficial by boosting protective responses. However, heterologous reactivity can also result in severe immunopathology. The key features that define heterologous immune modulation include alterations in the CD4(+) and CD8(+) T cell compartments and changes in viral dynamics and disease progression. In this review, we discuss recent advances and the current understanding of antiviral immunity in heterologous infections. The difficulties of studying these complex heterologous infections in humans are discussed, with special reference to the variations in HLA haplotypes and uncertainties about individuals' infection history. Despite these limitations, epidemiological analyses in humans and the data from mouse models of coinfection can be applied toward advancing the design of therapeutics and vaccination strategies.

  4. Naturally occurring Parelaphostrongylus tenuis-associated choriomeningitis in a guinea pig with neurologic signs.

    PubMed

    Southard, T; Bender, H; Wade, S E; Grunenwald, C; Gerhold, R W

    2013-05-01

    An adult male guinea pig (Cavia porcellus) with a 1-month history of hind limb paresis, torticollis, and seizures was euthanized and submitted for necropsy. Gross examination was unremarkable, but histologic examination revealed multifocal eosinophilic and lymphoplasmacytic choriomeningitis and cross sections of nematode parasites within the leptomeninges of the midbrain and diencephalon. Morphologic features of the nematode were consistent with a metastrongyle, and the parasite was identified as Parelaphostrongylus tenuis by polymerase chain reaction testing and nucleotide sequencing. Further questioning of the owner revealed that the guinea pig was fed grass from a yard often grazed by white-tailed deer (Odocoileus virginianus). To the authors' knowledge, this is the first report of a naturally occurring P. tenuis infection in a guinea pig.

  5. Lymphocytic Choriomeningitis Virus in Employees and Mice at Multipremises Feeder-Rodent Operation, United States, 2012

    PubMed Central

    Ströher, Ute; Edison, Laura; Albariño, César G.; Lovejoy, Jodi; Armeanu, Emilian; House, Jennifer; Cory, Denise; Horton, Clayton; Fowler, Kathy L.; Austin, Jessica; Poe, John; Humbaugh, Kraig E.; Guerrero, Lisa; Campbell, Shelley; Gibbons, Aridth; Reed, Zachary; Cannon, Deborah; Manning, Craig; Petersen, Brett; Metcalf, Douglas; Marsh, Bret; Nichol, Stuart T.; Rollin, Pierre E.

    2014-01-01

    We investigated the extent of lymphocytic choriomeningitis virus (LCMV) infection in employees and rodents at 3 commercial breeding facilities. Of 97 employees tested, 31 (32%) had IgM and/or IgG to LCMV, and aseptic meningitis was diagnosed in 4 employees. Of 1,820 rodents tested in 1 facility, 382 (21%) mice (Mus musculus) had detectable IgG, and 13 (0.7%) were positive by reverse transcription PCR; LCMV was isolated from 8. Rats (Rattus norvegicus) were not found to be infected. S-segment RNA sequence was similar to strains previously isolated in North America. Contact by wild mice with colony mice was the likely source for LCMV, and shipments of infected mice among facilities spread the infection. The breeding colonies were depopulated to prevent further human infections. Future outbreaks can be prevented with monitoring and management, and employees should be made aware of LCMV risks and prevention. PMID:24447605

  6. A comparison of biochemical and biological properties of standard and defective lymphocytic choriomeningitis virus

    PubMed Central

    Welsh, R. M.; Burner, P. A.; Holland, J. J.; Oldstone, M. B. A.; Thompson, H. A.; Villarreal, L. P.

    1975-01-01

    Lymphocytic choriomeningitis (LCM) virus infection of the mouse is the best-studied model of persistent viral infection. In cell culture, persistent LCM virus infections are associated with the production of large quantities of defective interfering (DI) LCM virus. These defective interfering particles cannot replicate by themselves yet can interfere with the replication of the standard virus and prevent the cytolytic effect caused by the standard virus. It is important to determine the mechanism of interference and to establish whether the DI virus plays a role in vivo. Biological and biochemical properties of the standard and DI virus particles and also virus enzymes are compared. Antigenic analyses reveal that cells releasing only DI virus particles have less cell surface expression of viral antigens than cells releasing the standard virus. In the animal model, the DI virus is shown to have a protective effect against the pathogenesis of the LCM virus disease both in the mouse and in the rat. PMID:60182

  7. A comparison of biochemical and biological properties of standard and defective lymphocytic choriomeningitis virus.

    PubMed

    Welsh, R M; Burner, P A; Holland, J J; Oldstone, M B; Thompson, H A; Villarreal, L P

    1975-01-01

    Lymphocytic choriomeningitis (LCM) virus infection of the mouse is the best-studied model of persistent viral infection. In cell culture, persistent LCM virus infections are associated with the production of large quantities of defective interfering (DI) LCM virus. These defective interfering particles cannot replicate by themselves yet can interfere with the replication of the standard virus and prevent the cytolytic effect caused by the standard virus. It is important to determine the mechanism of interference and to establish whether the DI virus plays a role in vivo. Biological and biochemical properties of the standard and DI virus particles and also virus enzymes are compared. Antigenic analyses reveal that cells releasing only DI virus particles have less cell surface expression of viral antigens than cells releasing the standard virus. In the animal model, the DI virus is shown to have a protective effect against the pathogenesis of the LCM virus disease both in the mouse and in the rat.

  8. Mechanisms of Virus-Induced Neural Cell Death

    DTIC Science & Technology

    2003-09-01

    We are using experimental infection with reoviruses to study how viruses induce cell death . (apoptosis), and the significance of apoptosis in the...pathogenesis of viral infection. We have developed one of the best-characterized experimental models for investigating and manipulating viral cell death pathways...We have shown that apoptosis is a major mechanism of reovirus-induced cell death in murine models of key human viral infections including

  9. Influenza virus induces apoptosis via BAD-mediated mitochondrial dysregulation.

    PubMed

    Tran, Anh T; Cortens, John P; Du, Qiujiang; Wilkins, John A; Coombs, Kevin M

    2013-01-01

    Influenza virus infection results in host cell death and major tissue damage. Specific components of the apoptotic pathway, a signaling cascade that ultimately leads to cell death, are implicated in promoting influenza virus replication. BAD is a cell death regulator that constitutes a critical control point in the intrinsic apoptosis pathway, which occurs through the dysregulation of mitochondrial outer membrane permeabilization and the subsequent activation of downstream apoptogenic factors. Here we report a novel proviral role for the proapoptotic protein BAD in influenza virus replication. We show that influenza virus-induced cytopathology and cell death are considerably inhibited in BAD knockdown cells and that both virus replication and viral protein production are dramatically reduced, which suggests that virus-induced apoptosis is BAD dependent. Our data showed that influenza viruses induced phosphorylation of BAD at residues S112 and S136 in a temporal manner. Viral infection also induced BAD cleavage, late in the viral life cycle, to a truncated form that is reportedly a more potent inducer of apoptosis. We further demonstrate that knockdown of BAD resulted in reduced cytochrome c release and suppression of the intrinsic apoptotic pathway during influenza virus replication, as seen by an inhibition of caspases-3, caspase-7, and procyclic acidic repetitive protein (PARP) cleavage. Our data indicate that influenza viruses carefully modulate the activation of the apoptotic pathway that is dependent on the regulatory function of BAD and that failure of apoptosis activation resulted in unproductive viral replication.

  10. Influenza Virus Induces Apoptosis via BAD-Mediated Mitochondrial Dysregulation

    PubMed Central

    Tran, Anh T.; Cortens, John P.; Du, Qiujiang; Wilkins, John A.

    2013-01-01

    Influenza virus infection results in host cell death and major tissue damage. Specific components of the apoptotic pathway, a signaling cascade that ultimately leads to cell death, are implicated in promoting influenza virus replication. BAD is a cell death regulator that constitutes a critical control point in the intrinsic apoptosis pathway, which occurs through the dysregulation of mitochondrial outer membrane permeabilization and the subsequent activation of downstream apoptogenic factors. Here we report a novel proviral role for the proapoptotic protein BAD in influenza virus replication. We show that influenza virus-induced cytopathology and cell death are considerably inhibited in BAD knockdown cells and that both virus replication and viral protein production are dramatically reduced, which suggests that virus-induced apoptosis is BAD dependent. Our data showed that influenza viruses induced phosphorylation of BAD at residues S112 and S136 in a temporal manner. Viral infection also induced BAD cleavage, late in the viral life cycle, to a truncated form that is reportedly a more potent inducer of apoptosis. We further demonstrate that knockdown of BAD resulted in reduced cytochrome c release and suppression of the intrinsic apoptotic pathway during influenza virus replication, as seen by an inhibition of caspases-3, caspase-7, and procyclic acidic repetitive protein (PARP) cleavage. Our data indicate that influenza viruses carefully modulate the activation of the apoptotic pathway that is dependent on the regulatory function of BAD and that failure of apoptosis activation resulted in unproductive viral replication. PMID:23135712

  11. Limiting immunopathology: Interaction between carotenoids and enzymatic antioxidant defences.

    PubMed

    Babin, A; Saciat, C; Teixeira, M; Troussard, J-P; Motreuil, S; Moreau, J; Moret, Y

    2015-04-01

    The release of reactive oxygen and nitrogen species (ROS and RNS) during the inflammatory response generates damages to host tissues, referred to as immunopathology, and is an important factor in ecological immunology. The integrated antioxidant system, comprising endogenous antioxidant enzymes (e.g. superoxide dismutase SOD, and catalase CAT) and dietary antioxidants (e.g. carotenoids), helps to cope with immune-mediated oxidative stress. Crustaceans store large amounts of dietary carotenoids for yet unclear reasons. While being immunostimulants and antioxidants, the interaction of these pigments with antioxidant enzymes remains unclear. Here, we tested the interaction between dietary supplementation with carotenoids and immune challenge on immune defences and the activity of the antioxidant enzymes SOD and CAT, in the amphipod crustacean Gammarus pulex. Dietary supplementation increased the concentrations of circulating carotenoids and haemocytes in the haemolymph, while the immune response induced the consumption of circulating carotenoids and a drop of haemocyte density. Interestingly, supplemented gammarids exhibited down-regulated SOD activity but high CAT activity compared to control ones. Our study reveals specific interactions of dietary carotenoids with endogenous antioxidant enzymes, and further underlines the potential importance of carotenoids in the evolution of immunity and/or of antioxidant mechanisms in crustaceans. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Immunopathological Features of Canine Myocarditis Associated with Leishmania infantum Infection.

    PubMed

    Costagliola, Alessandro; Piegari, Giuseppe; Otrocka-Domagala, Iwona; Ciccarelli, Davide; Iovane, Valentina; Oliva, Gaetano; Russo, Valeria; Rinaldi, Laura; Papparella, Serenella; Paciello, Orlando

    2016-01-01

    Myocarditis associated with infectious diseases may occur in dogs, including those caused by the protozoa Neospora caninum, Trypanosoma cruzi, Babesia canis, and Hepatozoon canis. However, although cardiac disease due to Leishmania infection has also been documented, the immunopathological features of myocarditis have not been reported so far. The aim of this study was to examine the types of cellular infiltrates and expression of MHC classes I and II in myocardial samples obtained at necropsy from 15 dogs with an established intravitam diagnosis of visceral leishmaniasis. Pathological features of myocardium were characterized by hyaline degeneration of cardiomyocytes, necrosis, and infiltration of mononuclear inflammatory cells consisting of lymphocytes and macrophages, sometimes with perivascular pattern; fibrosis was also present in various degrees. Immunophenotyping of inflammatory cells was performed by immunohistochemistry on cryostat sections obtained from the heart of the infected dogs. The predominant leukocyte population was CD8+ with a fewer number of CD4+ cells. Many cardiomyocytes expressed MHC classes I and II on the sarcolemma. Leishmania amastigote forms were not detected within macrophages or any other cell of the examined samples. Our study provided evidence that myocarditis in canine visceral leishmaniasis might be related to immunological alterations associated with Leishmania infection.

  13. Immunopathological Features of Canine Myocarditis Associated with Leishmania infantum Infection

    PubMed Central

    Piegari, Giuseppe; Otrocka-Domagala, Iwona; Ciccarelli, Davide; Iovane, Valentina; Oliva, Gaetano; Russo, Valeria; Rinaldi, Laura; Papparella, Serenella; Paciello, Orlando

    2016-01-01

    Myocarditis associated with infectious diseases may occur in dogs, including those caused by the protozoa Neospora caninum, Trypanosoma cruzi, Babesia canis, and Hepatozoon canis. However, although cardiac disease due to Leishmania infection has also been documented, the immunopathological features of myocarditis have not been reported so far. The aim of this study was to examine the types of cellular infiltrates and expression of MHC classes I and II in myocardial samples obtained at necropsy from 15 dogs with an established intravitam diagnosis of visceral leishmaniasis. Pathological features of myocardium were characterized by hyaline degeneration of cardiomyocytes, necrosis, and infiltration of mononuclear inflammatory cells consisting of lymphocytes and macrophages, sometimes with perivascular pattern; fibrosis was also present in various degrees. Immunophenotyping of inflammatory cells was performed by immunohistochemistry on cryostat sections obtained from the heart of the infected dogs. The predominant leukocyte population was CD8+ with a fewer number of CD4+ cells. Many cardiomyocytes expressed MHC classes I and II on the sarcolemma. Leishmania amastigote forms were not detected within macrophages or any other cell of the examined samples. Our study provided evidence that myocarditis in canine visceral leishmaniasis might be related to immunological alterations associated with Leishmania infection. PMID:27413751

  14. PATHOGENESIS OF CHRONIC DISEASE ASSOCIATED WITH PERSISTENT LYMPHOCYTIC CHORIOMENINGITIS VIRAL INFECTION

    PubMed Central

    Oldstone, Michael B. A.; Dixon, Frank J.

    1969-01-01

    Mice infected shortly after birth with lymphocytic choriomeningitis (LCM) virus are not immunologically tolerant, although they carry the virus throughout life. These LCM carrier mice make anti-LCM antibody, which apparently complexes with viral antigen in the circulation and these complexes accumulate in the glomeruli. LCM carrier mice of different strains vary significantly as to concentration of detectable infectious virus in their tissue, amount and time of appearance of anti-LCM antibody, and development of an associated chronic disease. The chronic disease consists primarily of glomerulonephritis, focal hepatic necrosis, and disseminated lymphoid infiltrations. LCM carriers of the SWR/J strain contain high tissue concentrations of virus, considerable anti-LCM antibody detectable in the glomeruli by 3 wk to 2 months of age and develop chronic disease within the first 2–3 months of life. In contrast, C3H strain LCM carriers contain 1/1000 as much infectious virus, less detectable anti-LCM antibody, and have not, over a 24 month observation period, developed any detectable disease. B10D2 old and new carrier mice with intermediate amounts of virus develop chronic disease during the latter half of the first year of life. The pathogenesis of the glomerulonephritis of chronic LCM disease is apparently related to the formation of circulating virus-antibody complexes which are trapped in the glomerular filter. There is no evidence for direct glomerular injury by the virus nor for any autoimmune response by the host. PMID:4179834

  15. Lymphocytic choriomeningitis virus (LCMV) infection of macaques: a model for Lassa fever.

    PubMed

    Zapata, Juan C; Pauza, C David; Djavani, Mahmoud M; Rodas, Juan D; Moshkoff, Dmitry; Bryant, Joseph; Ateh, Eugene; Garcia, Cybele; Lukashevich, Igor S; Salvato, Maria S

    2011-11-01

    Arenaviruses such as Lassa fever virus (LASV) and lymphocytic choriomeningitis virus (LCMV) are benign in their natural reservoir hosts, and can occasionally cause severe viral hemorrhagic fever (VHF) in non-human primates and in human beings. LCMV is considerably more benign for human beings than Lassa virus, however certain strains, like the LCMV-WE strain, can cause severe disease when the virus is delivered as a high-dose inoculum. Here we describe a rhesus macaque model for Lassa fever that employs a virulent strain of LCMV. Since LASV must be studied within Biosafety Level-4 (BSL-4) facilities, the LCMV-infected macaque model has the advantage that it can be used at BSL-3. LCMV-induced disease is rarely as severe as other VHF, but it is similar in cases where vascular leakage leads to lethal systemic failure. The LCMV-infected macaque has been valuable for describing the course of disease with differing viral strains, doses and routes of infection. By monitoring system-wide changes in physiology and gene expression in a controlled experimental setting, it is possible to identify events that are pathognomonic for developing VHF and potential treatment targets.

  16. O Mannosylation of alpha-dystroglycan is essential for lymphocytic choriomeningitis virus receptor function.

    PubMed

    Imperiali, Mauro; Thoma, Claudio; Pavoni, Ernesto; Brancaccio, Andrea; Callewaert, Nico; Oxenius, Annette

    2005-11-01

    Alpha-dystroglycan (alpha-DG) was identified as a common receptor for lymphocytic choriomeningitis virus (LCMV) and several other arenaviruses including the human pathogenic Lassa fever virus. Initial work postulated that interactions between arenavirus glycoproteins and alpha-DG are based on protein-protein interactions. We found, however, that susceptibility toward LCMV infection differed in various cell lines despite them expressing comparable levels of DG, suggesting that posttranslational modifications of alpha-DG would be involved in viral receptor function. Here, we demonstrate that glycosylation of alpha-DG, and in particular, O mannosylation, which is a rare type of O-linked glycosylation in mammals, is essential for LCMV receptor function. Cells that are defective in components of the O-mannosylation pathway showed strikingly reduced LCMV infectibility. As defective O mannosylation is associated with severe clinical symptoms in mammals such as congenital muscular dystrophies, it is likely that LCMV and potentially other arenaviruses may have selected this conserved and crucial posttranslational modification as the primary target structure for cell entry and infection.

  17. In vitro selection of lymphocytic choriomeningitis virus escape mutants by cytotoxic T lymphocytes.

    PubMed Central

    Aebischer, T; Moskophidis, D; Rohrer, U H; Zinkernagel, R M; Hengartner, H

    1991-01-01

    Cytotoxic T lymphocyte (CTL)-mediated cytolysis is induced via the interaction of the specific T-cell antigen receptor and the peptidic viral antigen associated with the major histocompatibility complex class I antigen. Here we demonstrate in vitro that lymphocytic choriomeningitis virus (LCMV) can escape the cytotoxic activity of LCMV-specific cloned CTLs by single amino acid changes within the recognized T-cell epitope defined by residues 275-289 of the LCMV glycoprotein [LCMV-GP-(275-289)]. LCMV-infected fibroblasts at a multiplicity of infection of 10(-3) exposed to virus-specific CTL at an effector-to-target cell ratio of 4:1 4 hr after infection was optimal for virus mutant selection. The selections were carried out with three LCMV-GP-(275-289)-specific CTL clones expressing T-cell antigen receptors containing the identical variable gene segments V alpha 4 and V beta 10 but different junctional regions; selection was also possible with LCMV-GP-(275-289)-specific cytotoxic polyclonal T cells. The most common escape mutation was an amino acid change of asparagine (AAT) to aspartic acid (GAT) at position 280; an additional mutation was glycine (GGT) to aspartic acid (GAT) at position 282. The results presented show that relevant point mutations within the T-cell epitope of LCMV-GP-(275-289) occur frequently and that they are selectable in vitro by CTLs. Images PMID:1722316

  18. Lymphocytic choriomeningitis virus (LCMV) infection of macaques: a model for Lassa fever

    PubMed Central

    Zapata, Juan C.; Pauza, C. David; Djavani, Mahmoud M.; Rodas, Juan D.; Moshkoff, Dmitry; Bryant, Joseph; Ateh, Eugene; Garcia, Cybele; Lukashevich, Igor S.; Salvato, Maria S.

    2011-01-01

    Arenaviruses such as Lassa fever virus (LASV) and lymphocytic choriomeningitis virus (LCMV) are benign in their natural reservoir hosts, and can occasionally cause severe viral hemorrhagic fever (VHF) in non-human primates and in human beings. LCMV is considerably more benign for human beings than Lassa virus, however certain strains, like the LCMV-WE strain, can cause severe disease when the virus is delivered as a high-dose inoculum. Here we describe a rhesus macaque model for Lassa fever that employs a virulent strain of LCMV. Since LASV must be studied within Biosafety Level-4 (BSL-4) facilities, the LCMV-infected macaque model has the advantage that it can be used at BSL-3. LCMV-induced disease is rarely as severe as other VHF, but it is similar in cases where vascular leakage leads to lethal systemic failure. The LCMV-infected macaque has been valuable for describing the course of disease with differing viral strains, doses and routes of infection. By monitoring system-wide changes in physiology and gene expression in a controlled experimental setting, it is possible to identify events that are pathognomonic for developing VHF and potential treatment targets. PMID:21820469

  19. Inhibition of Cellular Entry of Lymphocytic Choriomeningitis Virus by Amphipathic DNA Polymers

    PubMed Central

    Lee, Andrew M.; Rojek, Jillian M.; Gundersen, Anette; Ströher, Ute; Juteau, Jean-Marc; Vaillant, Andrew; Kunz, Stefan

    2008-01-01

    The prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) represents a powerful experimental model for the study of the basic virology and pathogenesis of arenaviruses. In the present study, we used the LCMV model to evaluate the anti-viral potential of phosphorothioate oligonucleotides against arenaviruses. Our findings indicate that amphipathic DNA polymers (APs) are potent inhibitors of infection with a series of LCMV isolates with IC50 in the low nanomolar range. APs target the surface glycoprotein (GP) of LCMV and block viral entry and cell-cell propagation of the virus, without affecting later steps in replication or release of progeny virus from infected cells. The anti-viral action of APs is sequence-independent but is critically dependent on their size and hydrophobicity. Mechanistically, we provide evidence that APs disrupt the interaction between LCMVGP and its cellular receptor, α-dystroglycan. Exposure of LCMV to APs does not affect the stability of the GP virion spike and has no effect on the conformation of a neutralizing antibody epitope, suggesting rather subtle changes in the conformation and/or conformational dynamics of the viral GP. PMID:18022208

  20. The Role of Myeloid Cell Activation and Arginine Metabolism in the Pathogenesis of Virus-Induced Diseases

    PubMed Central

    Burrack, Kristina S.; Morrison, Thomas E.

    2014-01-01

    When an antiviral immune response is generated, a balance must be reached between two opposing pathways: the production of proinflammatory and cytotoxic effectors that drive a robust antiviral immune response to control the infection and regulators that function to limit or blunt an excessive immune response to minimize immune-mediated pathology and repair tissue damage. Myeloid cells, including monocytes and macrophages, play an important role in this balance, particularly through the activities of the arginine-hydrolyzing enzymes nitric oxide synthase 2 (Nos2; iNOS) and arginase 1 (Arg1). Nitric oxide (NO) production by iNOS is an important proinflammatory mediator, whereas Arg1-expressing macrophages contribute to the resolution of inflammation and wound repair. In the context of viral infections, expression of these enzymes can result in a variety of outcomes for the host. NO has direct antiviral properties against some viruses, whereas during other virus infections NO can mediate immunopathology and/or inhibit the antiviral immune response to promote chronic infection. Arg1 activity not only has important wound healing functions but can also inhibit the antiviral immune response during some viral infections. Thus, depending on the specific virus and the tissue(s) involved, the activity of both of these arginine-hydrolyzing enzymes can either exacerbate or limit the severity of virus-induced disease. In this review, we will discuss a variety of viral infections, including HIV, SARS-CoV, LCMV, HCV, RSV, and others, where myeloid cells influence the control and clearance of the virus from the host, as well as the severity and resolution of tissue damage, via the activities of iNOS and/or Arg1. Clearly, monocyte/macrophage activation and arginine metabolism will continue to be important areas of investigation in the context of viral infections. PMID:25250029

  1. Epidemiology of virus-induced asthma exacerbations: with special reference to the role of human rhinovirus

    PubMed Central

    Saraya, Takeshi; Kurai, Daisuke; Ishii, Haruyuki; Ito, Anri; Sasaki, Yoshiko; Niwa, Shoichi; Kiyota, Naoko; Tsukagoshi, Hiroyuki; Kozawa, Kunihisa; Goto, Hajime; Takizawa, Hajime

    2014-01-01

    Viral respiratory infections may be associated with the virus-induced asthma in adults as well as children. Particularly, human rhinovirus is strongly suggested a major candidate for the associations of the virus-induced asthma. Thus, in this review, we reviewed and focused on the epidemiology, pathophysiology, and treatment of virus-induced asthma with special reference on human rhinovirus. Furthermore, we added our preliminary data regarding the clinical and virological findings in the present review. PMID:24904541

  2. Immunopathological predictors of prognosis in IgA nephropathy.

    PubMed

    Tomino, Yasuhiko

    2013-01-01

    IgA nephropathy (IgAN) is characterized by the expansion of the glomerular mesangial matrix with mesangial cell proliferation and/or mononuclear cell infiltration. Glomeruli typically contain generalized diffuse granular mesangial deposits of IgA (mainly galactose-deficient polymeric IgA1), IgG and C3. Electron-dense deposits are observed in the glomerular mesangial area and glomerular basement membrane. Therefore, this disease is considered to be an immune complex-mediated glomerulonephritis. The detailed observations of electron-dense deposits are of value for the evaluation of the disease activity. The evidence- and lumped-system-based histological classification can identify the magnitude of the risk of disease progression and is useful for predicting long-term renal outcome in this disease. A study of IgAN patients showed that the number of angiotensin-II-positive cells was correlated with mast cells containing both tryptase and chymase and containing only tryptase in the interstitial lesions with the most severe pathological changes. Hypercomplementemia occurs in the progression of IgAN and is controlled by an increase of complement regulatory proteins. The measurement of urinary levels of membrane attack complex and factor H and extraglomerular C3 deposition could be useful indicators of renal injury in patients with IgAN. Development of glomerulosclerosis in IgAN patients is associated with podocytopenia and the alteration of the podocyte components, i.e. podocalyxin and dendrin. It appears that the number of urinary podocytes and levels of urinary podocalyxin are useful for predicting histological changes in IgAN patients. A positive correlation was observed between acute extracapillary changes and the number of dendrin-positive nuclei per glomerulus in patients with IgAN. It is concluded that there are many immunopathological predictors of prognosis, including genetic background, in this disease. Thus, the early diagnostic screening of prognosis

  3. Varicella zoster virus triggers the immunopathology of giant cell arteritis.

    PubMed

    Gilden, Don; Nagel, Maria A

    2016-07-01

    Giant cell arteritis (GCA) is a severe form of vasculitis in the elderly. The recent discovery of varicella zoster virus (VZV) in the temporal arteries and adjacent skeletal muscle of patients with GCA, and the rationale and strategy for antiviral and corticosteroid treatment for GCA are reviewed. The clinical features of GCA include excruciating headache/head pain, often with scalp tenderness, a nodular temporal arteries and decreased temporal artery pulsations. Jaw claudication, night sweats, fever, malaise, and a history of polymyalgia rheumatica (aching and stiffness of large muscles primarily in the shoulder girdle, upper back, and pelvis without objective signs of weakness) are common. ESR and CRP are usually elevated. Diagnosis is confirmed by temporal artery biopsy which reveals vessel wall damage and inflammation, with multinucleated giant cells and/or epithelioid macrophages. Skip lesions are common. Importantly, temporal artery biopsies are pathologically negative in many clinically suspect cases. This review highlights recent virological findings in temporal arteries from patients with pathologically verified GCA and in temporal arteries from patients who manifest clinical and laboratory features of GCA, but whose temporal artery biopsies (Bx) are pathologically negative for GCA (Bx-negative GCA). Virological analysis revealed that VZV is present in most GCA-positive and GCA-negative temporal artery biopsies, mostly in skip areas that correlate with adjacent GCA pathology. The presence of VZV in Bx-positive and Bx-negative GCA temporal arteries indicates that VZV triggers the immunopathology of GCA. However, the presence of VZV in about 20% of temporal artery biopsies from non-GCA postmortem controls also suggests that VZV alone is not sufficient to produce disease. Treatment trials should be performed to determine if antiviral agents confer additional benefits to corticosteroids in both Bx-positive and Bx-negative GCA patients. These studies should

  4. Immune Evasion, Immunopathology and the Regulation of the Immune System

    PubMed Central

    Sorci, Gabriele; Cornet, Stéphane; Faivre, Bruno

    2013-01-01

    Costs and benefits of the immune response have attracted considerable attention in the last years among evolutionary biologists. Given the cost of parasitism, natural selection should favor individuals with the most effective immune defenses. Nevertheless, there exists huge variation in the expression of immune effectors among individuals. To explain this apparent paradox, it has been suggested that an over-reactive immune system might be too costly, both in terms of metabolic resources and risks of immune-mediated diseases, setting a limit to the investment into immune defenses. Here, we argue that this view neglects one important aspect of the interaction: the role played by evolving pathogens. We suggest that taking into account the co-evolutionary interactions between the host immune system and the parasitic strategies to overcome the immune response might provide a better picture of the selective pressures that shape the evolution of immune functioning. Integrating parasitic strategies of host exploitation can also contribute to understand the seemingly contradictory results that infection can enhance, but also protect from, autoimmune diseases. In the last decades, the incidence of autoimmune disorders has dramatically increased in wealthy countries of the northern hemisphere with a concomitant decrease of most parasitic infections. Experimental work on model organisms has shown that this pattern may be due to the protective role of certain parasites (i.e., helminths) that rely on the immunosuppression of hosts for their persistence. Interestingly, although parasite-induced immunosuppression can protect against autoimmunity, it can obviously favor the spread of other infections. Therefore, we need to think about the evolution of the immune system using a multidimensional trade-off involving immunoprotection, immunopathology and the parasitic strategies to escape the immune response. PMID:25436882

  5. [First evidence of lymphocytic choriomeningitis virus (Arenavirus) infection in Mus musculus rodents captured in the urban area of the municipality of Sincelejo, Sucre, Colombia].

    PubMed

    Castellar, Anais; Guevara, Marco; Rodas, Juan D; Londoño, Andrés F; Arroyave, Esteban; Díaz, Francisco J; Levis, Silvana; Blanco, Pedro J

    2017-04-01

    The lymphocytic choriomeningitis virus is an Old World arenavirus that infects Mus musculus, and can cause congenital hydrocephalus, chorioretinitis and multisystemic failure in transplant human recipients. Although the disease has not been clinically diagnosed in Colombia yet, there have been reports of infection with the Pichindé virus in rodents from Cauca and Valle del Cauca departments, and with the Guanarito virus in rodents from Córdoba department. To identify the lymphocytic choriomeningitis virus from Mus musculus captured in the municipality of Sincelejo. We evaluated 80 samples of plasma by ELISA using antigen from lymphocytic choriomeningitis virus. Additionally, a nested RT-PCR was performed to seropositive and seronegative samples for the S-segment. We found a 10% seroprevalence (8/80) and the viral genome was detected in 16 brain samples; the alignment (BLAST) and the phylogenetic analysis (MrBayes, version 3.2.2) confirmed the presence of the lymphocytic choriomeningitis virus. The results indicated that human infection with the lymphocytic choriomeningitis virus in humans could occur in the urban area of Sincelejo, although no cases have been reported so far.

  6. Suppressors of cytokine signaling 1 and 3 are upregulated in brain resident cells in response to virus-induced inflammation of the central nervous system via at least two distinctive pathways.

    PubMed

    Steffensen, Maria Abildgaard; Fenger, Christina; Christensen, Jeanette Erbo; Jørgensen, Carina Krogsgaard; Bassi, Maria Rosaria; Christensen, Jan Pravsgaard; Finsen, Bente; Thomsen, Allan Randrup

    2014-12-01

    Suppressors of cytokine signaling (SOCS) proteins are intracellular proteins that inhibit cytokine signaling in a variety of cell types. A number of viral infections have been associated with SOCS upregulation; however, not much is known about the mechanisms regulating SOCS expression during viral infection. In this study, we used two pathologically distinct intracerebral (i.c.) infection models to characterize temporal and spatial aspects of SOCS expression in the virus-infected central nervous system (CNS), and by employing various knockout mouse models, we sought to identify regulatory mechanisms that may underlie a virus induced upregulation of SOCS in the CNS. We found that i.c. infection with either lymphocytic choriomeningitis virus (LCMV) or yellow fever virus (YF) results in gradual upregulation of SOCS1/3 mRNA expression peaking at day 7 postinfection (p.i.). In the LCMV model, SOCS mRNA was expressed in brain resident cells, including astrocytes and some neurons, and for SOCS1 in particular this upregulation was almost entirely mediated by gamma interferon (IFN-γ) produced by infiltrating T cells. After infection with YF, we also found SOCS expression to be upregulated in brain resident cells with a peak on day 7 p.i., but in this model, the upregulation was only partially dependent on IFN-γ and T cells, indicating that at least one other mediator was involved in the upregulation of SOCS following YF infection. We conclude that virus-induced inflammation of the CNS is associated with upregulation of SOCS1/3 mRNA expression in brain resident cells and that at least two distinctive pathways can lead to this upregulation. In the present report, we have studied the induction of SOCS1 and SOCS3 expression in the context of virus-induced CNS infection. We found that both a noncytolytic and a cytolytic virus induce marked upregulation of SOCS1 and -3 expression. Notably, the kinetics of the observed upregulation follows that of activity within proinflammatory

  7. An Ultrasensitive Mechanism Regulates Influenza Virus-Induced Inflammation.

    PubMed

    Shoemaker, Jason E; Fukuyama, Satoshi; Eisfeld, Amie J; Zhao, Dongming; Kawakami, Eiryo; Sakabe, Saori; Maemura, Tadashi; Gorai, Takeo; Katsura, Hiroaki; Muramoto, Yukiko; Watanabe, Shinji; Watanabe, Tokiko; Fuji, Ken; Matsuoka, Yukiko; Kitano, Hiroaki; Kawaoka, Yoshihiro

    2015-06-01

    Influenza viruses present major challenges to public health, evident by the 2009 influenza pandemic. Highly pathogenic influenza virus infections generally coincide with early, high levels of inflammatory cytokines that some studies have suggested may be regulated in a strain-dependent manner. However, a comprehensive characterization of the complex dynamics of the inflammatory response induced by virulent influenza strains is lacking. Here, we applied gene co-expression and nonlinear regression analysis to time-course, microarray data developed from influenza-infected mouse lung to create mathematical models of the host inflammatory response. We found that the dynamics of inflammation-associated gene expression are regulated by an ultrasensitive-like mechanism in which low levels of virus induce minimal gene expression but expression is strongly induced once a threshold virus titer is exceeded. Cytokine assays confirmed that the production of several key inflammatory cytokines, such as interleukin 6 and monocyte chemotactic protein 1, exhibit ultrasensitive behavior. A systematic exploration of the pathways regulating the inflammatory-associated gene response suggests that the molecular origins of this ultrasensitive response mechanism lie within the branch of the Toll-like receptor pathway that regulates STAT1 phosphorylation. This study provides the first evidence of an ultrasensitive mechanism regulating influenza virus-induced inflammation in whole lungs and provides insight into how different virus strains can induce distinct temporal inflammation response profiles. The approach developed here should facilitate the construction of gene regulatory models of other infectious diseases.

  8. Prevalence of lymphocytic choriomeningitis virus infection in a human population of Argentina.

    PubMed

    Ambrosio, A M; Feuillade, M R; Gamboa, G S; Maiztegui, J I

    1994-03-01

    The activity of lymphocytic choriomeningitis virus (LCMV) in the endemic area of Argentine hemorrhagic fever has been previously reported and represents the first evidence of the coexistence of two arenaviruses pathogenic for humans, Junin and LCMV, in the same geographic area. Data are presented on the prevalence of LCMV human infection in a 10,000-km2 area located in Santa Fe Province, Argentina. Study subjects were males, 15-65 years old, living and/or working in the rural area of 41 localities. One serum sample was obtained from each 7,227 volunteers from a total population of 21,340 individuals with the described features. Antibodies to LCMV were assessed by means of an indirect immunofluorescence assay. These antibodies were found in 172 serum samples, with titers ranging from 1:8 to 1:128 (geometric mean titer = 15.03), and a mean percentage of infection of 2.38%. A significantly different distribution of positive individuals was found between the eastern (1.54%) and western (3.07%) borders of the region studied (P < 0.0003). The higher percentage of infection on the western side was due to the existence of two clusters of counties with a mean percentage of 6.06% that was significantly different from the 1.67% obtained in the rest of the study area (P < 0.0003). These results provide new information on the LCMV activity in Argentina, and update the evidence on the coexistence of two arenaviruses in the same region of Argentina. This circumstance increases the probability of generation of viral reassortants with changes that could determine the need for new therapeutic and/or preventive strategies for arenaviral diseases.

  9. The role of proinflammatory cytokines in wasting disease during lymphocytic choriomeningitis virus infection.

    PubMed

    Kamperschroer, Cris; Quinn, Daniel G

    2002-07-01

    Infection with pathogens often leads to loss of body weight, but the cause of weight loss during infection is poorly understood. We used the infection of mice with lymphocytic choriomeningitis virus (LCMV) as a model to study how pathogens induce weight loss. If LCMV is introduced into the CNS of CTL-deficient mice, the immune response against the virus leads to a severe weight loss called wasting disease. We planned to determine what components of this antiviral immune response mediate wasting disease. By adoptive transfer, we show that CD4 T cells activated by LCMV infection are sufficient to cause wasting disease. We examined the role of cytokines in LCMV-induced wasting disease using mice lacking specific cytokines or cytokine receptors. Results of adoptive transfer experiments suggest that TNF-alpha is not involved in LCMV-induced wasting disease and show that IFN-gamma contributes to the disease. Consistent with a role for IFN-gamma in wasting, we find that IFN-gamma is necessary for LCMV-specific CD4 T cell responses in the CNS, most likely because it is required to induce MHC class II expression. Our data also indicate that IL-1 is required for LCMV-induced wasting and that IL-6 contributes to the wasting disease. Additionally, our results identify alpha-melanocyte-stimulating hormone as a potential mediator of the disease. Overall, this work defines the critical role of virus-primed CD4 T cells and of proinflammatory cytokines in the pathogenesis of wasting disease induced by LCMV infection.

  10. An MHC class Ib-restricted CD8+ T cell response to lymphocytic choriomeningitis virus.

    PubMed

    Chen, Lili; Jay, David C; Fairbanks, Jared D; He, Xiao; Jensen, Peter E

    2011-12-15

    Conventional MHC class Ia-restricted CD8(+) T cells play a dominant role in the host response to virus infections, but recent studies indicate that T cells with specificity for nonclassical MHC class Ib molecules may also participate in host defense. To investigate the potential role of class Ib molecules in anti-viral immune responses, K(b-/-)D(b-/-)CIITA(-/-) mice lacking expression of MHC class Ia and class II molecules were infected with lymphocytic choriomeningitis virus (LCMV). These animals have a large class Ib-selected CD8(+) T cell population and they were observed to mediate partial (but incomplete) virus clearance during acute LCMV infection as compared with K(b-/-)D(b-/-)β(2)-microglobulin(-/-) mice that lack expression of both MHC class Ia and class Ib molecules. Infection was associated with expansion of splenic CD8(+) T cells and induction of granzyme B and IFN-γ effector molecules in CD8(+) T cells. Partial virus clearance was dependent on CD8(+) cells. In vitro T cell restimulation assays demonstrated induction of a population of β(2)-microglobulin-dependent, MHC class Ib-restricted CD8(+) T cells with specificity for viral Ags and yet to be defined nonclassical MHC molecules. MHC class Ib-restricted CD8(+) T cell responses were also observed after infection of K(b-/-)D(b-/-)mice despite the low number of CD8(+) T cells in these animals. Long-term infection studies demonstrated chronic infection and gradual depletion of CD8(+) T cells in K(b-/-)D(b-/-)CIITA(-/-) mice, demonstrating that class Ia molecules are required for viral clearance. These findings demonstrate that class Ib-restricted CD8(+) T cells have the potential to participate in the host immune response to LCMV.

  11. Evidence of Lymphocytic Choriomeningitis Virus (LCMV) in Domestic Mice in Gabon: Risk of Emergence of LCMV Encephalitis in Central Africa

    PubMed Central

    N′Dilimabaka, Nadine; Berthet, Nicolas; Rougeron, Virginie; Mangombi, Joa Braïthe; Durand, Patrick; Maganga, Gael D.; Bouchier, Christiane; Schneider, Bradley S.; Fair, Joseph; Renaud, François

    2014-01-01

    Lymphocytic choriomeningitis virus (LCMV) can cause acute fatal disease on all continents but was never detected in Africa. We report the first detection of LCMV RNA in a common European house mouse (Mus musculus domesticus) in Africa. Phylogenetic analyses show a close relationship with North American strains. These findings suggest that there is a risk of the appearance of LCMV acute encephalitis cases. This is a perfect example of virus dissemination by its natural host that may have dramatic public health consequences. PMID:25378495

  12. Inflammatory Monocytes Recruited to the Liver within 24 Hours after Virus-Induced Inflammation Resemble Kupffer Cells but Are Functionally Distinct

    PubMed Central

    Movita, Dowty; Biesta, Paula; Kreefft, Kim; Haagmans, Bart; Zuniga, Elina; Herschke, Florence; De Jonghe, Sandra; Janssen, Harry L. A.; Gama, Lucio; Boonstra, Andre

    2015-01-01

    ABSTRACT Due to a scarcity of immunocompetent animal models for viral hepatitis, little is known about the early innate immune responses in the liver. In various hepatotoxic models, both pro- and anti-inflammatory activities of recruited monocytes have been described. In this study, we compared the effect of liver inflammation induced by the Toll-like receptor 4 ligand lipopolysaccharide (LPS) with that of a persistent virus, lymphocytic choriomeningitis virus (LCMV) clone 13, on early innate intrahepatic immune responses in mice. LCMV infection induces a remarkable influx of inflammatory monocytes in the liver within 24 h, accompanied by increased transcript levels of several proinflammatory cytokines and chemokines in whole liver. Importantly, while a single LPS injection results in similar recruitment of inflammatory monocytes to the liver, the functional properties of the infiltrating cells are dramatically different in response to LPS versus LCMV infection. In fact, intrahepatic inflammatory monocytes are skewed toward a secretory phenotype with impaired phagocytosis in LCMV-induced liver inflammation but exhibit increased endocytic capacity after LPS challenge. In contrast, F4/80high-Kupffer cells retain their steady-state endocytic functions upon LCMV infection. Strikingly, the gene expression levels of inflammatory monocytes dramatically change upon LCMV exposure and resemble those of Kupffer cells. Since inflammatory monocytes outnumber Kupffer cells 24 h after LCMV infection, it is highly likely that inflammatory monocytes contribute to the intrahepatic inflammatory response during the early phase of infection. Our findings are instrumental in understanding the early immunological events during virus-induced liver disease and point toward inflammatory monocytes as potential target cells for future treatment options in viral hepatitis. IMPORTANCE Insights into how the immune system deals with hepatitis B virus (HBV) and HCV are scarce due to the lack of

  13. Virus -induced plankton dynamic and sea spray oragnics

    NASA Astrophysics Data System (ADS)

    Facchini, Maria Cristina; O'Dowd, Colin; Danovaro, Roberto

    2015-04-01

    The processes that link phytoplankton biomass and productivity to the organic matter enrichment in sea spray aerosol are far from being understood and modelling predictions remain highly uncertain at the moment. While some studies have asserted that the enrichment of OM in sea spray aerosol is independent on marine productivity, others, on the contrary, have shown significant correlation with phytoplankton biomass and productivity (Chl-a retrieved by satellites). Here we show that viral infection of prokaryotes and phytoplankton, by inducing the release of large quantities of surfaceactive organic matter (cell debris, exudates and other colloidal gel-forming material), in part due to cell lysis and plankton defence reactions, and in part from rapid virus multiplication, triggers the organic matter (OM) enrichment in the sea-spray particles during blooms. We show that virus-induced bloom dynamics may explain the contrasting results present in literature on the link between primary productivity and OM sea spray enrichment.

  14. Cell entry of Lassa virus induces tyrosine phosphorylation of dystroglycan.

    PubMed

    Moraz, Marie-Laurence; Pythoud, Christelle; Turk, Rolf; Rothenberger, Sylvia; Pasquato, Antonella; Campbell, Kevin P; Kunz, Stefan

    2013-05-01

    The extracellular matrix (ECM) receptor dystroglycan (DG) serves as a cellular receptor for the highly pathogenic arenavirus Lassa virus (LASV) that causes a haemorrhagic fever with high mortality in human. In the host cell, DG provides a molecular link between the ECM and the actin cytoskeleton via the adapter proteins utrophin or dystrophin. Here we investigated post-translational modifications of DG in the context of LASV cell entry. Using the tyrosine kinase inhibitor genistein, we found that tyrosine kinases are required for efficient internalization of virus particles, but not virus-receptor binding. Engagement of cellular DG by LASV envelope glycoprotein (LASV GP) in human epithelial cells induced tyrosine phosphorylation of the cytoplasmic domain of DG. LASV GP binding to DG further resulted in dissociation of the adapter protein utrophin from virus-bound DG. This virus-induced dissociation of utrophin was affected by genistein treatment, suggesting a role of receptor tyrosine phosphorylation in the process.

  15. Cell entry of Lassa virus induces tyrosine phosphorylation of dystroglycan

    PubMed Central

    Moraz, Marie-Laurence; Pythoud, Christelle; Turk, Rolf; Rothenberger, Sylvia; Pasquato, Antonella; Campbell, Kevin P.; Kunz, Stefan

    2013-01-01

    The extracellular matrix (ECM) receptor dystroglycan (DG) serves as a cellular receptor for the highly pathogenic arenavirus Lassa virus (LASV) that causes a hemorrhagic fever with high mortality in man. In the host cell, DG provides a molecular link between the ECM and the actin cytoskeleton via the adapter proteins utrophin or dystrophin. Here we investigated post-translational modifications of DG in the context of LASV cell entry. Using the tyrosine kinase inhibitor genistein, we found that tyrosine kinases are required for efficient internalization of virus particles, but not virus-receptor binding. Engagement of cellular DG by LASV envelope glycoprotein (LASV GP) in human epithelial cells induced tyrosine phosphorylation of the cytoplasmic domain of DG. LASV GP binding to DG further resulted in dissociation of the adapter protein utrophin from virus-bound DG. This virus-induced dissociation of utrophin was affected by genistein treatment, suggesting a role of receptor tyrosine phosphorylation in the process. PMID:23279385

  16. TPL-2 Regulates Macrophage Lipid Metabolism and M2 Differentiation to Control TH2-Mediated Immunopathology

    PubMed Central

    Entwistle, Lewis J.; Khoury, Hania; Papoutsopoulou, Stamatia; Mahmood, Radma; Mansour, Nuha R.; Ching-Cheng Huang, Stanley; Pearce, Edward J.; Pedro S. de Carvalho, Luiz; Ley, Steven C.

    2016-01-01

    Persistent TH2 cytokine responses following chronic helminth infections can often lead to the development of tissue pathology and fibrotic scarring. Despite a good understanding of the cellular mechanisms involved in fibrogenesis, there are very few therapeutic options available, highlighting a significant medical need and gap in our understanding of the molecular mechanisms of TH2-mediated immunopathology. In this study, we found that the Map3 kinase, TPL-2 (Map3k8; Cot) regulated TH2-mediated intestinal, hepatic and pulmonary immunopathology following Schistosoma mansoni infection or S. mansoni egg injection. Elevated inflammation, TH2 cell responses and exacerbated fibrosis in Map3k8–/–mice was observed in mice with myeloid cell-specific (LysM) deletion of Map3k8, but not CD4 cell-specific deletion of Map3k8, indicating that TPL-2 regulated myeloid cell function to limit TH2-mediated immunopathology. Transcriptional and metabolic assays of Map3k8–/–M2 macrophages identified that TPL-2 was required for lipolysis, M2 macrophage activation and the expression of a variety of genes involved in immuno-regulatory and pro-fibrotic pathways. Taken together this study identified that TPL-2 regulated TH2-mediated inflammation by supporting lipolysis and M2 macrophage activation, preventing TH2 cell expansion and downstream immunopathology and fibrosis. PMID:27487182

  17. Immunopathology and Cytokine Responses in Commercial Broiler Chickens with Gangrenous Dermatitis

    USDA-ARS?s Scientific Manuscript database

    Gangrene dermatitis (GD) is an emerging disease of increasing economic importance in poultry that results from infection by Clostridium septicum and C. perfringens (CP) type A. Lack of a reproducible disease model has been a major obstacle in understanding the immunopathology of GD. To gain better u...

  18. Timed Action of IL-27 Protects from Immunopathology while Preserving Defense in Influenza

    PubMed Central

    Liu, Francesca Diane M.; Kenngott, Elisabeth E.; Schröter, Micha F.; Kühl, Anja; Jennrich, Silke; Watzlawick, Ralf; Hoffmann, Ute; Wolff, Thorsten; Norley, Stephen; Scheffold, Alexander; Stumhofer, Jason S.; Saris, Christiaan J. M.; Schwab, Jan M.; Hunter, Christopher A.; Debes, Gudrun F.; Hamann, Alf

    2014-01-01

    Infection with influenza virus can result in massive pulmonary infiltration and potentially fatal immunopathology. Understanding the endogenous mechanisms that control immunopathology could provide a key to novel adjunct therapies for this disease. Here we show that the cytokine IL-27 plays a crucial role in protection from exaggerated inflammation during influenza virus infection. Using Il-27ra −/− mice, IL-27 was found to limit immunopathology, neutrophil accumulation, and dampened TH1 or TH17 responses via IL-10–dependent and -independent pathways. Accordingly, the absence of IL-27 signals resulted in a more severe disease course and in diminished survival without impacting viral loads. Consistent with the delayed expression of endogenous Il-27p28 during influenza, systemic treatment with recombinant IL-27 starting at the peak of virus load resulted in a major amelioration of lung pathology, strongly reduced leukocyte infiltration and improved survival without affecting viral clearance. In contrast, early application of IL-27 impaired virus clearance and worsened disease. These findings demonstrate the importance of IL-27 for the physiological control of immunopathology and the potential value of well-timed IL-27 application to treat life-threatening inflammation during lung infection. PMID:24809349

  19. Timed action of IL-27 protects from immunopathology while preserving defense in influenza.

    PubMed

    Liu, Francesca Diane M; Kenngott, Elisabeth E; Schröter, Micha F; Kühl, Anja; Jennrich, Silke; Watzlawick, Ralf; Hoffmann, Ute; Wolff, Thorsten; Norley, Stephen; Scheffold, Alexander; Stumhofer, Jason S; Saris, Christiaan J M; Schwab, Jan M; Hunter, Christopher A; Debes, Gudrun F; Hamann, Alf

    2014-05-01

    Infection with influenza virus can result in massive pulmonary infiltration and potentially fatal immunopathology. Understanding the endogenous mechanisms that control immunopathology could provide a key to novel adjunct therapies for this disease. Here we show that the cytokine IL-27 plays a crucial role in protection from exaggerated inflammation during influenza virus infection. Using Il-27ra-/- mice, IL-27 was found to limit immunopathology, neutrophil accumulation, and dampened TH1 or TH17 responses via IL-10-dependent and -independent pathways. Accordingly, the absence of IL-27 signals resulted in a more severe disease course and in diminished survival without impacting viral loads. Consistent with the delayed expression of endogenous Il-27p28 during influenza, systemic treatment with recombinant IL-27 starting at the peak of virus load resulted in a major amelioration of lung pathology, strongly reduced leukocyte infiltration and improved survival without affecting viral clearance. In contrast, early application of IL-27 impaired virus clearance and worsened disease. These findings demonstrate the importance of IL-27 for the physiological control of immunopathology and the potential value of well-timed IL-27 application to treat life-threatening inflammation during lung infection.

  20. [Neutralization test for lymphocytic choriomeningitis virus for distinguishing between two arenavirus infections in Argentina].

    PubMed

    Ambrosio, A M; Riera, L; Saavedra, M C; Sottosanti, J J

    2001-01-01

    The active coexistence of two pathogenic arenaviruses, Junin (JUNV) and lymphocytic choriomeningitis (LCMV), in the same region of Argentina, has been known since the early 70's, and records of clinical and subclinical human infections by one and/or the other agent have been continuously produced for the last 25 years. Anti-LCMV antibody is currently searched only by indirect immunofluorescence, a test that shows cross reactions among a number of arenaviruses yielding, in the cases of LCMV and JUNV consecutive infections, a concomitant seroconversion for both viruses, as an inconclusive diagnostic result. In contrast, neutralization (NT) tests reveal arenavirus antibodies directed to unique epitopes on these virus envelopes, thus allowing to disclose the sequence in the cases of consecutive infections. In this paper, the characteristics of neutralization (NT) test for LCMV in cell cultures are described, as well as its performance in the field diagnosis of LCMV human infections. The native LCMV strain Cba An 13065 was inoculated on L-929 cell (ATCC CCL 1), and procedures were followed to perform a constant virus-variable serum NT test. Final points of sera titrations were expressed as the maximal serum dilution that yielded 75% of pfu inhibition. This NT test was assayed on paired serum samples of 36 patients with confirmed Argentine hemorrhagic fever (AHF) (a disease caused by JUNV), who had had a known previous contact with LCMV through IFI. The use of this one test led to confusing diagnosis of the disease due to concomitant seroconversion for JUNV and LCMV. By using NT test, it was shown that: some of them were possibly not infected by LCMV, and that 30/36 cases (83.3%) had a pre-existing level of LCMV antibody, with titers in the range of 5 to 640, remaining unchanged 60 days after the clinical AHF. This shows that NT antibodies to LCMV are not influenced by the outcome of the immune response to JUNV, thus confirming the efficiency of NT test as identificator

  1. Structural and functional identification of major histocompatibility complex class I-restricted self-peptides as naturally occurring molecular mimics of viral antigens. Possible role in CD8+ T cell-mediated, virus-induced autoimmune disease.

    PubMed

    Hudrisier, D; Riond, J; Burlet-Schiltz, O; von Herrath, M G; Lewicki, H; Monsarrat, B; Oldstone, M B; Gairin, J E

    2001-06-01

    Structural similarity (molecular mimicry) between viral epitopes and self-peptides can lead to the induction of autoaggressive CD4(+) as well as CD8(+) T cell responses. Based on the flexibility of T cell receptor/antigen/major histocompatibility complex recognition, it has been proposed that a self-peptide could replace a viral epitope for T cell recognition and therefore participate in pathophysiological processes in which T cells are involved. To address this issue, we used, as a molecular model of viral antigen, the H-2D(b)-restricted immunodominant epitope nucleoprotein (NP)-(396-404) (FQPQNGQFI) of lymphocytic choriomeningitis virus (LCMV). We identified peptide sequences from murine self-proteins that share structural and functional homology with LCMV NP-(396-404) and that bound to H-2D(b) with high affinity. One of these self-peptides, derived from tumor necrosis factor receptor I (FGPSNWHFM, amino acids 302-310), maintained LCMV-specific CD8(+) T cells in an active state as observed both in vitro in cytotoxic assays and in vivo in a model of virus-induced autoimmune diabetes, the rat insulin promoter-LCMV NP transgenic mouse. The natural occurrence and molecular concentration at the surface of H-2(b) spleen cells of tumor necrosis factor receptor I-(302-310) were determined by on-line micro-high pressure liquid chromatography/mass spectrometry and supported its biological relevance.

  2. Efficient Virus-Induced Gene Silencing in Solanum rostratum

    PubMed Central

    Meng, Lan-Huan; Wang, Rui-Heng; Zhu, Ben-Zhong; Zhu, Hong-Liang; Luo, Yun-Bo; Fu, Da-Qi

    2016-01-01

    Solanum rostratum is a “super weed” that grows fast, is widespread, and produces the toxin solanine, which is harmful to both humans and other animals. To our knowledge, no study has focused on its molecular biology owing to the lack of available transgenic methods and sequence information for S. rostratum. Virus-induced gene silencing (VIGS) is a powerful tool for the study of gene function in plants; therefore, in the present study, we aimed to establish tobacco rattle virus (TRV)-derived VIGS in S. rostratum. The genes for phytoene desaturase (PDS) and Chlorophyll H subunit (ChlH) of magnesium protoporphyrin chelatase were cloned from S. rostratum and used as reporters of gene silencing. It was shown that high-efficiency VIGS can be achieved in the leaves, flowers, and fruit of S. rostratum. Moreover, based on our comparison of three different types of infection methods, true leaf infection was found to be more efficient than cotyledon and sprout infiltration in long-term VIGS in multiple plant organs. In conclusion, the VIGS technology and tomato genomic sequences can be used in the future to study gene function in S. rostratum. PMID:27258320

  3. Virus-Induced Dormancy in the Archaeon Sulfolobus islandicus

    PubMed Central

    Bautista, Maria A.; Zhang, Changyi

    2015-01-01

    ABSTRACT We investigated the interaction between Sulfolobus spindle-shaped virus (SSV9) and its native archaeal host Sulfolobus islandicus. We show that upon exposure to SSV9, S. islandicus strain RJW002 has a significant growth delay where the majority of cells are dormant (viable but not growing) for 24 to 48 hours postinfection (hpi) compared to the growth of controls without virus. We demonstrate that in this system, dormancy (i) is induced by both active and inactive virus particles at a low multiplicity of infection (MOI), (ii) is reversible in strains with active CRISPR-Cas immunity that prevents the establishment of productive infections, and (iii) results in dramatic and rapid host death if virus persists in the culture even at low levels. Our results add a new dimension to evolutionary models of virus-host interactions, showing that the mere presence of a virus induces host cell stasis and death independent of infection. This novel, highly sensitive, and risky bet-hedging antiviral response must be integrated into models of virus-host interactions in this system so that the true ecological impact of viruses can be predicted and understood. PMID:25827422

  4. Virus-induced gene silencing in eggplant (Solanum melongena).

    PubMed

    Liu, Haiping; Fu, Daqi; Zhu, Benzhong; Yan, Huaxue; Shen, Xiaoying; Zuo, Jinhua; Zhu, Yi; Luo, Yunbo

    2012-06-01

    Eggplant (Solanum melongena) is an economically important vegetable requiring investigation into its various genomic functions. The current limitation in the investigation of genomic function in eggplant is the lack of effective tools available for conducting functional assays. Virus-induced gene silencing (VIGS) has played a critical role in the functional genetic analyses. In this paper, TRV-mediated VIGS was successfully elicited in eggplant. We first cloned the CDS sequence of PDS (PHYTOENE DESATURASE) in eggplant and then silenced the PDS gene. Photo-bleaching was shown on the newly-developed leaves four weeks after agroinoculation, indicating that VIGS can be used to silence genes in eggplant. To further illustrate the reliability of VIGS in eggplant, we selected Chl H, Su and CLA1 as reporters to elicit VIGS using the high-pressure spray method. Suppression of Chl H and Su led to yellow leaves, while the depletion of CLA1 resulted in albino. In conclusion, four genes, PDS, Chl H, Su (Sulfur), CLA1, were down-regulated significantly by VIGS, indicating that the VIGS system can be successfully applied in eggplant and is a reliable tool for the study of gene function. © 2012 Institute of Botany, Chinese Academy of Sciences.

  5. Zika Virus-Induced Microcephaly and Its Possible Molecular Mechanism.

    PubMed

    Faizan, Md Imam; Abdullah, Mohd; Ali, Sher; Naqvi, Irshad H; Ahmed, Anwar; Parveen, Shama

    2016-01-01

    Zika virus is an arthropod-borne re-emerging pathogen associated with the global pandemic of 2015-2016. The devastating effect of Zika viral infection is reflected by its neurological manifestations such as microcephaly in newborns. This scenario evoked our interest to uncover the neurotropic localization, multiplication of the virus, and the mechanism of microcephaly. The present report provides an overview of a possible molecular mechanism of Zika virus-induced microcephaly based on recent publications. Transplacental transmission of Zika viral infection from mother to foetus during the first trimester of pregnancy results in propagation of the virus in human neural progenitor cells (hNPCs), where entry is facilitated by the receptor (AXL protein) leading to the alteration of signalling and immune pathways in host cells. Further modification of the viral-induced TLR3-mediated immune network in the infected hNPCs affects viral replication. Downregulation of neurogenesis and upregulation of apoptosis in hNPCs leads to cell cycle arrest and death of the developing neurons. In addition, it is likely that the environmental, physiological, immunological, and genetic factors that determine in utero transmission of Zika virus are also involved in neurotropism. Despite the global concern regarding the Zika-mediated epidemic, the precise molecular mechanism of neuropathogenesis remains elusive.

  6. Virus-induced exacerbations in asthma and COPD

    PubMed Central

    Kurai, Daisuke; Saraya, Takeshi; Ishii, Haruyuki; Takizawa, Hajime

    2013-01-01

    Chronic obstructive pulmonary disease (COPD) is characterized by chronic airway inflammation and/or airflow limitation due to pulmonary emphysema. Chronic bronchitis, pulmonary emphysema, and bronchial asthma may all be associated with airflow limitation; therefore, exacerbation of asthma may be associated with the pathophysiology of COPD. Furthermore, recent studies have suggested that the exacerbation of asthma, namely virus-induced asthma, may be associated with a wide variety of respiratory viruses. COPD and asthma have different underlying pathophysiological processes and thus require individual therapies. Exacerbation of both COPD and asthma, which are basically defined and diagnosed by clinical symptoms, is associated with a rapid decline in lung function and increased mortality. Similar pathogens, including human rhinovirus, respiratory syncytial virus, influenza virus, parainfluenza virus, and coronavirus, are also frequently detected during exacerbation of asthma and/or COPD. Immune response to respiratory viral infections, which may be related to the severity of exacerbation in each disease, varies in patients with both COPD and asthma. In this regard, it is crucial to recognize and understand both the similarities and differences of clinical features in patients with COPD and/or asthma associated with respiratory viral infections, especially in the exacerbative stage. In relation to definition, epidemiology, and pathophysiology, this review aims to summarize current knowledge concerning exacerbation of both COPD and asthma by focusing on the clinical significance of associated respiratory virus infections. PMID:24098299

  7. Virus-induced gene silencing in Rauwolfia species.

    PubMed

    Corbin, Cyrielle; Lafontaine, Florent; Sepúlveda, Liuda Johana; Carqueijeiro, Ines; Courtois, Martine; Lanoue, Arnaud; Dugé de Bernonville, Thomas; Besseau, Sébastien; Glévarec, Gaëlle; Papon, Nicolas; Atehortúa, Lucia; Giglioli-Guivarc'h, Nathalie; Clastre, Marc; St-Pierre, Benoit; Oudin, Audrey; Courdavault, Vincent

    2017-07-01

    Elucidation of the monoterpene indole alkaloid biosynthesis has recently progressed in Apocynaceae through the concomitant development of transcriptomic analyses and reverse genetic approaches performed by virus-induced gene silencing (VIGS). While most of these tools have been primarily adapted for the Madagascar periwinkle (Catharanthus roseus), the VIGS procedure has scarcely been used on other Apocynaceae species. For instance, Rauwolfia sp. constitutes a unique source of specific and valuable monoterpene indole alkaloids such as the hypertensive reserpine but are also well recognized models for studying alkaloid metabolism, and as such would benefit from an efficient VIGS procedure. By taking advantage of a recent modification in the inoculation method of the Tobacco rattle virus vectors via particle bombardment, we demonstrated that the biolistic-mediated VIGS approach can be readily used to silence genes in both Rauwolfia tetraphylla and Rauwolfia serpentina. After establishing the bombardment conditions minimizing injuries to the transformed plantlets, gene downregulation efficiency was evaluated at approximately a 70% expression decrease in both species by silencing the phytoene desaturase encoding gene. Such a gene silencing approach will thus constitute a critical tool to identify and characterize genes involved in alkaloid biosynthesis in both of these prominent Rauwolfia species.

  8. Occurrence of virus-induced COPD exacerbations during four seasons.

    PubMed

    Djamin, Remco S; Uzun, Sevim; Snelders, Eveline; Kluytmans, Jan J W; Hoogsteden, Henk C; Aerts, Joachim G J V; Van Der Eerden, Menno M

    2015-02-01

    In this study, we investigated the occurrence of viral infections in acute exacerbations of chronic obstructive pulmonary disease (COPD) during four seasons. Viral infections were detected by the use of real-time reverse transcriptase polymerase chain reaction on pharyngeal swabs. During a 12-month period pharyngeal swabs were obtained in 136 exacerbations of 63 patients. In 35 exacerbations (25.7%) a viral infection was detected. Most viral infections occurred in the winter (n = 14, 40.0%), followed by summer (n = 9, 25.7%), autumn (n = 6, 17.1%), and spring (n = 6, 17.1%). Rhinovirus was the most frequently isolated virus (n = 19, 51.4%), followed by respiratory syncytial virus (n = 6, 16.2%), human metapneumovirus (n = 5, 13.5%), influenza A (n = 4, 10.8%), parainfluenza 4 (n = 2, 5.4%), and parainfluenza 3 (n = 1, 2.7%). This study showed that virus-induced COPD exacerbations occur in all four seasons with a peak in the winter months. However, the distribution of rhinovirus infections showed a different pattern, with most infections occurring in July.

  9. Virus-Induced Silencing of a Plant Cellulose Synthase Gene

    PubMed Central

    Burton, Rachel A.; Gibeaut, David M.; Bacic, Antony; Findlay, Kim; Roberts, Keith; Hamilton, Andrew; Baulcombe, David C.; Fincher, Geoffrey B.

    2000-01-01

    Specific cDNA fragments corresponding to putative cellulose synthase genes (CesA) were inserted into potato virus X vectors for functional analysis in Nicotiana benthamiana by using virus-induced gene silencing. Plants infected with one group of cDNAs had much shorter internode lengths, small leaves, and a “dwarf” phenotype. Consistent with a loss of cell wall cellulose, abnormally large and in many cases spherical cells ballooned from the undersurfaces of leaves, particularly in regions adjacent to vascular tissues. Linkage analyses of wall polysaccharides prepared from infected leaves revealed a 25% decrease in cellulose content. Transcript levels for at least one member of the CesA cellulose synthase gene family were lower in infected plants. The decrease in cellulose content in cell walls was offset by an increase in homogalacturonan, in which the degree of esterification of carboxyl groups decreased from ∼50 to ∼33%. The results suggest that feedback loops interconnect the cellular machinery controlling cellulose and pectin biosynthesis. On the basis of the phenotypic features of the infected plants, changes in wall composition, and the reduced abundance of CesA mRNA, we concluded that the cDNA fragments silenced one or more cellulose synthase genes. PMID:10810144

  10. Hemorrhagic Fever Occurs After Intravenous, But Not After Intragastric, Inoculation of Rhesus Macaques With Lymphocytic Choriomeningitis Virus

    PubMed Central

    Lukashevich, Igor S.; Djavani, Mahmoud; Rodas, Juan D.; Zapata, Juan C.; Usborne, Amy; Emerson, Carol; Mitchen, Jacque; Jahrling, Peter B.; Salvato, Maria S.

    2008-01-01

    Arenaviruses can cause hemorrhagic fever and death in primates and guinea pigs, but these viruses are not highly pathogenic for most rodent carriers. In the United States, arenaviruses precipitated outbreaks of hepatitis in captive monkeys, and they present an emerging health threat in the tropical areas of Africa and South America. We describe infection of rhesus macaques with the prototype arenavirus, lymphocytic choriome-ningitis virus (LCMV), using the WE strain that has been known to cause both encephalopathy and multifocal hemorrhage. Five macaques were inoculated: two by the intravenous (i.v.) and three by the intragastric (i.g.) route. Whereas the two i.v.-inoculated monkeys developed signs and lesions consistent with fatal hemorrhagic fever, the i.g.-inoculated monkeys had an attenuated infection with no disease. Pathological signs of the primate i.v. infection differ significantly from guinea pig arenavirus infections and make this a superior model for human viral hemorrhagic disease. PMID:11992578

  11. Macrophages in Immunopathology of Atherosclerosis: A Target for Diagnostics and Therapy

    PubMed Central

    Orekhov, Alexander N; Sobenin, Igor A; Gavrilin, Mikhail A; Gratchev, Alexei; Kotyashova, Svetlana Y; Nikiforov, Nikita G; Kzhyshkowska, Julia

    2015-01-01

    Immunopathology plays important roles in the development of different life-threatening diseases, such as atherosclerosis and its consequences (acute myocardial infarction and stroke), cancer, chronic inflammatory diseases. Effective modulation of the immune system may significantly increase the efficacy of prevention and therapy efforts. Currently there are no marketed drugs capable of normalizing immune system function in an intrinsic and comprehensive way. Here, we describe a test system designed for complex analysis of monocyte activity in individuals to diagnose immunopathology and monitor treatment efficacy. This cell-based test system may also be useful for screening compounds with an immune-correcting effects. Both diagnostic and screening systems are based on primary culture of human monocytes and/or monocyte-derived macrophages. This is the first step in creating a method for assessment of macrophage activity, which is required for further development of immune-correcting drugs. The existing preliminary data provide the basis for realization of this idea. PMID:25312739

  12. New insights into the immunopathology and control of dengue virus infection.

    PubMed

    Screaton, Gavin; Mongkolsapaya, Juthathip; Yacoub, Sophie; Roberts, Catherine

    2015-12-01

    Dengue virus poses a major threat to global public health: two-thirds of the world's population is now at risk from infection by this mosquito-borne virus. Dengue virus causes a range of diseases with a small proportion of infected patients developing severe plasma leakage that leads to dengue shock syndrome, organ impairment and bleeding. Infection with one of the four viral serotypes results in the development of homotypic immunity to that serotype. However, subsequent infection with a different serotype is associated with an increased risk of developing severe disease, which has led to the suggestion that severe disease is triggered by immunopathology. This Review outlines recent advances in the understanding of immunopathology, vaccine development and human monoclonal antibodies produced against dengue virus.

  13. [Humoral immunopathologic changes in the myocardium after clinical allotransplantation of the heart].

    PubMed

    Beletskaia, L V; Baranova, F S; Khalimova, Z A; Kurenkova, L G; Kazakov, E N; Kormer, A I; Chestukhin, V V; Za'idenov, V a; Boikina, T V; Selezneva, E A

    1995-01-01

    Endomyocardial diagnostic biopsies, recipient heart removed at operation, endomyocardial biopsies of allotransplants and postmortem material were studied using immunofluorescence to specify immunopathological process and to detect humoral rejection. Altogether 306 samples from 55 patients were studied. In the early postoperative period (one year) 8 out of 18 patients with heart transplants repeatedly showed immunopathologic picture of acute humoral (vascular) rejection which was characterized by a widespread immunoglobulin G and complement fixation in the capillary walls accompanied by enhanced capillary permeability and fibrin deposition in intestitial tissue. Such patients often had graft dysfunction. 1 to 5 years after transplantation in 24 out of 37 patients discrete focal immunoglobulin and complement fixation was observed as one of chronic rejection component.

  14. Effector CD8(+) T cell-derived interleukin-10 enhances acute liver immunopathology.

    PubMed

    Fioravanti, Jessica; Di Lucia, Pietro; Magini, Diletta; Moalli, Federica; Boni, Carolina; Benechet, Alexandre Pierre; Fumagalli, Valeria; Inverso, Donato; Vecchi, Andrea; Fiocchi, Amleto; Wieland, Stefan; Purcell, Robert; Ferrari, Carlo; Chisari, Francis V; Guidotti, Luca G; Iannacone, Matteo

    2017-09-01

    Besides secreting pro-inflammatory cytokines, chemokines and effector molecules, effector CD8(+) T cells that arise upon acute infection with certain viruses have been shown to produce the regulatory cytokine interleukin (IL)-10 and, therefore, contain immunopathology. Whether the same occurs during acute hepatitis B virus (HBV) infection and role that IL-10 might play in liver disease is currently unknown. Mouse models of acute HBV pathogenesis, as well as chimpanzees and patients acutely infected with HBV, were used to analyse the role of CD8(+) T cell-derived IL-10 in liver immunopathology. Mouse HBV-specific effector CD8(+) T cells produce significant amounts of IL-10 upon in vivo antigen encounter. This is corroborated by longitudinal data in a chimpanzee acutely infected with HBV, where serum IL-10 was readily detectable and correlated with intrahepatic CD8(+) T cell infiltration and liver disease severity. Unexpectedly, mouse and human CD8(+) T cell-derived IL-10 was found to act in an autocrine/paracrine fashion to enhance IL-2 responsiveness, thus preventing antigen-induced HBV-specific effector CD8(+) T cell apoptosis. Accordingly, the use of mouse models of HBV pathogenesis revealed that the IL-10 produced by effector CD8(+) T cells promoted their own intrahepatic survival and, thus supported, rather than suppressed liver immunopathology. Effector CD8(+) T cell-derived IL-10 enhances acute liver immunopathology. Altogether, these results extend our understanding of the cell- and tissue-specific role that IL-10 exerts in immune regulation. Lay summary: Interleukin-10 is mostly regarded as an immunosuppressive cytokine. We show here that HBV-specific CD8(+) T cells produce IL-10 upon antigen recognition and that this cytokine enhances CD8(+) T cell survival. As such, IL-10 paradoxically promotes rather than suppresses liver disease. Copyright © 2017 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  15. Differential chemokine expression following respiratory virus infection reflects Th1- or Th2-biased immunopathology.

    PubMed

    Culley, Fiona J; Pennycook, Alasdair M J; Tregoning, John S; Hussell, Tracy; Openshaw, Peter J M

    2006-05-01

    Respiratory syncytial virus (RSV) is a major viral pathogen of infants that also reinfects adults. During RSV infection, inflammatory host cell recruitment to the lung plays a central role in determining disease outcome. Chemokines mediate cell recruitment to sites of inflammation and are influenced by, and influence, the production of cytokines. We therefore compared chemokine production in a mouse model of immunopathogenic RSV infection in which either Th1 or Th2 immunopathology is induced by prior sensitization to individual RSV proteins. Chemokine expression profiles were profoundly affected by the nature of the pulmonary immunopathology: "Th2" immunopathology in BALB/c mice was associated with increased and prolonged expression of CCL2 (MCP-1), CXCL10 (IP-10), and CCL11 (eotaxin) starting within 24 h of challenge. C57BL/6 mice with "Th2" pathology (enabled by a deficiency of CD8+ cells) also showed increased CCL2 production. No differences in chemokine receptor expression were detected. Chemokine blockers may therefore be of use for children with bronchiolitis.

  16. Fluorescence spectroscopic detection of virus-induced atherosclerosis

    NASA Astrophysics Data System (ADS)

    Yan, Wei-dong; Perk, Masis; Nation, Patric N.; Power, Robert F.; Liu, Liying; Jiang, Xiuyan; Lucas, Alexandra

    1994-07-01

    Laser-induced fluorescence (LF) has been developed as a diagnostic tool for the detection of atherosclerosis. We have examined the use of LF for the identification of accelerated atherosclerotic plaque growth induced by Marek's Disease Virus (MDV) infection in White Leghorn rooster chicks (R) as well as plaque regression after treatment. Twenty-eight newborn R were infected with 12,000 cfu of MDV. Twelve parallel control R had saline injection. LF spectra were recorded from the arteries in vitro with a CeramOptec laser angioplasty catheter during 308 nm XeCl excimer laser excitation. Significant differences were detected at 440 to 475, 525, 550, 600, and 650 nm in MDV-R (p<0.05). In a subsequent study, 60 R were infected with 5,000 cfu of MDV, and were then treated with either Pravastatin (PRV) or placebo at 3 months post infection. These PRV-R were followed for 6 months to detect changes in atherosclerotic plaque development. PRV reduced intimal proliferation produced by MDV infection on histological examination (PRV-R 128.0+/- 44.0 micrometers , placebo-R 412.2+/- 91.5 micrometers , pequals0.007). MDV infected, PRV treated R were examined for LF changes that correlated with decreased atherosclerosis. There was an associated significant increase in LF intensity in PRV-R at 405 to 425 nm (p<0.001). In conclusion, LF can detect intimal proliferation in virus- induced atherosclerosis and atherosclerotic plaque regression after PRV therapy.

  17. Nutrigenomics Therapy of Hepatisis C Virus Induced-hepatosteatosis

    PubMed Central

    2010-01-01

    Nutrigenomics is a relatively new branch of nutrition science, which aim is to study the impact of the foods we eat on the function of our genes. Hepatosteatosis is strongly associated with hepatitis C virus infection, which is known to increase the risk of the disease progression and reduce the likelihood of responding to anti- virus treatment. It is well documented that hepatitis C virus can directly alter host cell lipid metabolism through nuclear transcription factors. To date, only a limited number of studies have been on the effect of human foods on the nuclear transcription factors of hepatitis C virus -induced hepatosteatosis. Three nutrients, selected among 46 different nutrients: β-carotene, vitamin D2, and linoleic acid were found in a cell culture system to inhibit hepatitis C virus RNA replication. In addition, polyunsaturated fatty acids (PUFAs) especially arachidonic acid (AA), docosahexaenoic acid (DHA), and eicosapentaenoic acid (EPA) have been demonstrated to inhibit hepatitis C virus RNA replication. These PUFAs, in particular the highly unsaturated n-3 fatty acids change the gene expression of PPARa and SREBP, suppress the expression of mRNAs encoding key metabolic enzymes and hereby suppress hepatic lipogenesis and triglyceride synthesis, as well as secretion and accumulation in tissues. A recent prospective clinical trial of 1,084 chronic hepatitis C patients compared to 2,326 healthy subjects suggests that chronic hepatitis C patients may benefit from strict dietary instructions. Increasing evidence suggest that some crucial nuclear transcription factors related to hepatitis C virus -associated hepatosteatosis and hepatitis C virus RNA itself can be controlled by specific anti- hepatitis C virus nutrition. It seems important that these findings are taken into account and specific nutritional supplements developed to be used in combination with interferon as adjunctive therapy with the aim to improve both the early as well as the sustained

  18. Nutrigenomics therapy of hepatisis C virus induced-hepatosteatosis.

    PubMed

    Liu, Qing; Bengmark, Stig; Qu, Shen

    2010-05-20

    Nutrigenomics is a relatively new branch of nutrition science, which aim is to study the impact of the foods we eat on the function of our genes. Hepatosteatosis is strongly associated with hepatitis C virus infection, which is known to increase the risk of the disease progression and reduce the likelihood of responding to anti- virus treatment. It is well documented that hepatitis C virus can directly alter host cell lipid metabolism through nuclear transcription factors. To date, only a limited number of studies have been on the effect of human foods on the nuclear transcription factors of hepatitis C virus -induced hepatosteatosis.Three nutrients, selected among 46 different nutrients: beta-carotene, vitamin D2, and linoleic acid were found in a cell culture system to inhibit hepatitis C virus RNA replication. In addition, polyunsaturated fatty acids (PUFAs) especially arachidonic acid (AA), docosahexaenoic acid (DHA), and eicosapentaenoic acid (EPA) have been demonstrated to inhibit hepatitis C virus RNA replication. These PUFAs, in particular the highly unsaturated n-3 fatty acids change the gene expression of PPARa and SREBP, suppress the expression of mRNAs encoding key metabolic enzymes and hereby suppress hepatic lipogenesis and triglyceride synthesis, as well as secretion and accumulation in tissues. A recent prospective clinical trial of 1,084 chronic hepatitis C patients compared to 2,326 healthy subjects suggests that chronic hepatitis C patients may benefit from strict dietary instructions.Increasing evidence suggest that some crucial nuclear transcription factors related to hepatitis C virus -associated hepatosteatosis and hepatitis C virus RNA itself can be controlled by specific anti- hepatitis C virus nutrition. It seems important that these findings are taken into account and specific nutritional supplements developed to be used in combination with interferon as adjunctive therapy with the aim to improve both the early as well as the sustained

  19. Differential Inhibition of Macrophage Activation by Lymphocytic Choriomeningitis Virus and Pichinde Virus Is Mediated by the Z Protein N-Terminal Domain

    PubMed Central

    Xing, Junji; Chai, Zheng; Ly, Hinh

    2015-01-01

    Several arenavirus pathogens, such as Lassa and Junin viruses, inhibit macrophage activation, the molecular mechanism of which is unclear. We show that lymphocytic choriomeningitis virus (LCMV) can also inhibit macrophage activation, in contrast to Pichinde and Tacaribe viruses, which are not known to naturally cause human diseases. Using a recombinant Pichinde virus system, we show that the LCMV Z N-terminal domain (NTD) mediates the inhibition of macrophage activation and immune functions. PMID:26423945

  20. LCMV: Propagation, quantitation, and storage

    PubMed Central

    Seedhom, Mina O.

    2011-01-01

    Lymphocytic choriomeningitis virus (LCMV) is an enveloped ambisense RNA virus and the prototypic virus of the arenavirus group. It can cause viral meningitis and other ailments in humans, but it's natural host is the mouse. The LCMV/mouse model has been useful for examining mechanisms of viral persistence and basic concepts of virus-induced immunity and immunopathology. Here we discuss strain differences and biosafety containment issues for LCMV. Recommendations are made for techniques to propagate LCMV to high titers, to quantify it by plaque assay and PCR techniques, and to preserve its infectivity by appropriate storage. PMID:18770534

  1. Immunopathologic characteristics of nasal polyps in adult Koreans: A single-center study.

    PubMed

    Shin, Seung-Heon; Kim, Yee-Hyuk; Ye, Mi-Kyung; Choi, Sung-Yong

    2017-05-01

    Chronic rhinosinusitis with nasal polyps (NP) (CRSwNP) is classified into eosinophilic and noneosinophilic types based on the level of tissue eosinophilia. The immunopathologic features of Western and Asian CRSwNP differ. The aim of this study was to investigate the immunopathologic characteristics of Korean patients with eosinophilic NP versus noneosinophilic NP and those with atopic NP versus nonatopic NP. Tissue samples were collected from 81 patients with NP and 24 controls. The clinical characteristics of all the patients were analyzed. Tissues were investigated for expression of chemical mediators, including interleukin (IL) 5, IL-10, IL-17, interferon-γ, and tumor growth factor-β1; transcription factors, including GATA binding protein 3 (GATA-3), forkhead box P3 (Foxp3), retinoic acid-related orphan receptor C (RORC), and T-box transcription factor (T-bet), and extracellular matrix, including collagen type I, fibronectin, tissue inhibitor of metalloproteinase 1, and matrix metalloproteinase (MMP) 9. Although the clinical characteristics differed between eosinophilic and noneosinophilic NPs, atopic status did not affect the clinical findings of CRSwNP. Both T-helper 1 and 2 cytokines increased significantly in patients with eosinophilic NP, but atopic status did not affect the expression of any of the chemical mediators. GATA-3 messenger RNA (mRNA) expression increased significantly in patients with eosinophilic NP, and RORC mRNA expression increased significantly in patients with noneosinophilic NP. T-bet, RORC, and Foxp3 mRNA expression increased significantly in patients with nonatopic NP. Fibronectin and MMP-9 mRNA expression increased significantly in patients with noneosinophilic NP, whereas only MMP-9 mRNA increased significantly in patients with eosinophilic and those with noneosinophilic NP. The immunopathologic characteristics differed between eosinophilic NP and noneosinophilic NP and between atopic NP and nonatopic NP. The different underlying

  2. Immunopathological Roles of Cytokines, Chemokines, Signaling Molecules, and Pattern-Recognition Receptors in Systemic Lupus Erythematosus

    PubMed Central

    Yu, Shui-Lian; Kuan, Woon-Pang; Wong, Chun-Kwok; Li, Edmund K.; Tam, Lai-Shan

    2012-01-01

    Systemic lupus erythematosus (SLE) is an autoimmune disease with unknown etiology affecting more than one million individuals each year. It is characterized by B- and T-cell hyperactivity and by defects in the clearance of apoptotic cells and immune complexes. Understanding the complex process involved and the interaction between various cytokines, chemokines, signaling molecules, and pattern-recognition receptors (PRRs) in the immune pathways will provide valuable information on the development of novel therapeutic targets for treating SLE. In this paper, we review the immunopathological roles of novel cytokines, chemokines, signaling molecules, PRRs, and their interactions in immunoregulatory networks and suggest how their disturbances may implicate pathological conditions in SLE. PMID:22312407

  3. Impaired responsiveness to gamma interferon of macrophages infected with lymphocytic choriomeningitis virus clone 13: susceptibility to histoplasmosis.

    PubMed Central

    Villarete, L; de Fries, R; Kolhekar, S; Howard, D; Ahmed, R; Wu-Hsieh, B

    1995-01-01

    Lymphocytic choriomeningitis virus clone 13 (LCMV clone 13), a variant isolated from the spleens of neonatally infected mice, causes persistent infections in mice infected as adults. Such persistently infected mice succumb to a normally sublethal dose of Histoplasma capsulatum, and their macrophages contain overwhelming numbers of yeast cells of the fungus. Both LCMV clone 13 and H. capsulatum yeast cells target and replicate in macrophages of the host. We sought to study the effects of LCMV clone 13 on the ability of macrophages to control growth of H. capsulatum in vitro. We show that the growth of H. capsulatum within macrophages was not directly affected by the presence of LCMV clone 13. However, macrophages containing LCMV clone 13 did not respond fully to gamma interferon (IFN-gamma) stimulation. Such unresponsiveness resulted in proliferation of the fungus within macrophages cultured in the presence of IFN-gamma. The addition of anti-IFN-alpha/beta antibodies to LCMV clone 13-infected macrophage cultures restored macrophage responsiveness to IFN-gamma. These results indicate that production of IFN-alpha/beta by LCMV clone 13-infected macrophages antagonizes their responsiveness to IFN-gamma. Such antagonism may be one of the mechanisms by means of which certain viruses cause immune suppression and susceptibility to opportunistic infections. PMID:7890411

  4. Persistent infection with lymphocytic choriomeningitis virus enhances expression of MHC class I glycoprotein on cultured mouse brain endothelial cells.

    PubMed

    Gairin, J E; Joly, E; Oldstone, M B

    1991-06-01

    Brain endothelial cells (EC) represent a major component of the blood/brain barrier, which activated CTL cross to enter the central nervous system. Several viruses also penetrate the central nervous system through the blood stream via the brain EC. The studies reported here focus on understanding the principles and consequences of interactions among viruses, lymphocytes, and EC in the brain. As shown persistent but not acute infection by lymphocytic choriomeningitis virus enhances the expression of MHC class I glycoproteins on the brain EC of mice. This increase in MHC expression during viral infection does not seem to result from the release of cytokines. However, replicative virus is required, because UV inactivated virus fails to enhance MHC expression. Viral determinants appear on EC surfaces after infection and serve as targets for CTL directed lysis. In contrast, neurons (OBL 21 neuronal cell line), which express negligible amounts of MHC class I glycoproteins, show no gain in MHC markers during persistent viral infection and are not targets for virus-specific CTL killing.

  5. Development of replication-defective lymphocytic choriomeningitis virus vectors for the induction of potent CD8+ T cell immunity

    PubMed Central

    Flatz, Lukas; Hegazy, Ahmed N; Bergthaler, Andreas; Verschoor, Admar; Claus, Christina; Fernandez, Marylise; Gattinoni, Luca; Johnson, Susan; Kreppel, Florian; Kochanek, Stefan; van den Broek, Maries; Radbruch, Andreas; Lévy, Frédéric; Lambert, Paul-Henri; Siegrist, Claire-Anne; Restifo, Nicholas P; Löhning, Max; Ochsenbein, Adrian F; Nabel, Gary J; Pinschewer, Daniel D

    2011-01-01

    Lymphocytic choriomeningitis virus (LCMV) exhibits natural tropism for dendritic cells and represents the prototypic infection that elicits protective CD8+ T cell (cytotoxic T lymphocyte (CTL)) immunity. Here we have harnessed the immunobiology of this arenavirus for vaccine delivery. By using producer cells constitutively synthesizing the viral glycoprotein (GP), it was possible to replace the gene encoding LCMV GP with vaccine antigens to create replication-defective vaccine vectors. These rLCMV vaccines elicited CTL responses that were equivalent to or greater than those elicited by recombinant adenovirus 5 or recombinant vaccinia virus in their magnitude and cytokine profiles, and they exhibited more effective protection in several models. In contrast to recombinant adenovirus 5, rLCMV failed to elicit vector-specific antibody immunity, which facilitated re-administration of the same vector for booster vaccination. In addition, rLCMV elicited T helper type 1 CD4+ T cell responses and protective neutralizing antibodies to vaccine antigens. These features, together with low seroprevalence in humans, suggest that rLCMV may show utility as a vaccine platform against infectious diseases and cancer. PMID:20139992

  6. Circulating natural killer and gammadelta T cells decrease soon after infection of rhesus macaques with lymphocytic choriomeningitis virus.

    PubMed

    Rodas, Juan D; Cairo, Cristiana; Djavani, Mahmoud; Zapata, Juan Carlos; Ruckwardt, Tracy; Bryant, Joseph; Pauza, C David; Lukashevich, Igor S; Salvato, Maria S

    2009-07-01

    Rhesus macaques infected with the WE strain of lymphocytic choriomeningitis virus (LCMV-WE) serve as a model for human infection with Lassa fever virus. To identify the earliest events of acute infection, rhesus macaques were monitored immediately after lethal infection for changes in peripheral blood mononuclear cells (PBMCs). Changes in CD3, CD4, CD8 and CD20 subsets did not vary outside the normal fluctuations of these blood cell populations; however, natural killer (NK) and gammadelta T cells increased slightly on day 1 and then decreased significantly after two days. The NK subsets responsible for the decrease were primarily CD3-CD8+ or CD3-CD16+ and not the NKT (primarily CD3+CD56+) subset. Macaques infected with a non-virulent arenavirus, LCMV-Armstrong, showed a similar drop in circulating NK and gammadelta T cells, indicating that this is not a pathogenic event. V(3)9 T cells, representing the majority of circulating gammadelta T cells in rhesus macaques, displayed significant apoptosis when incubated with LCMV in cell culture; however, the low amount of cell death for virus-co-cultured NK cells was insufficient to account for the observed disappearance of this subset. Our observations in primates are similar to those seen in LCMV-infected mice, where decreased circulating NK cells were attributed to margination and cell death. Thus, the disappearance of these cells during acute hemorrhagic fever in rhesus macaques may be a cytokine-induced lymphopenia common to many virus infections.

  7. Probiotics, prebiotics and immunomodulation of gut mucosal defences: homeostasis and immunopathology.

    PubMed

    Hardy, Holly; Harris, Jennifer; Lyon, Eleanor; Beal, Jane; Foey, Andrew D

    2013-05-29

    Probiotics are beneficial microbes that confer a realistic health benefit on the host, which in combination with prebiotics, (indigestible dietary fibre/carbohydrate), also confer a health benefit on the host via products resulting from anaerobic fermentation. There is a growing body of evidence documenting the immune-modulatory ability of probiotic bacteria, it is therefore reasonable to suggest that this is potentiated via a combination of prebiotics and probiotics as a symbiotic mix. The need for probiotic formulations has been appreciated for the health benefits in "topping up your good bacteria" or indeed in an attempt to normalise the dysbiotic microbiota associated with immunopathology. This review will focus on the immunomodulatory role of probiotics and prebiotics on the cells, molecules and immune responses in the gut mucosae, from epithelial barrier to priming of adaptive responses by antigen presenting cells: immune fate decision-tolerance or activation? Modulation of normal homeostatic mechanisms, coupled with findings from probiotic and prebiotic delivery in pathological studies, will highlight the role for these xenobiotics in dysbiosis associated with immunopathology in the context of inflammatory bowel disease, colorectal cancer and hypersensitivity.

  8. Host Transcriptional Profiles and Immunopathologic Response following Mycobacterium avium subsp. paratuberculosis Infection in Mice.

    PubMed

    Shin, Min-Kyoung; Park, Hongtae; Shin, Seung Won; Jung, Myunghwan; Lee, Su-Hyung; Kim, Dae-Yong; Yoo, Han Sang

    2015-01-01

    Paratuberculosis or Johne's disease is a chronic granulomatous enteropathy in ruminants caused by Mycobacterium avium subsp. paratuberculosis (MAP) infection. In the present study, we examined the host response to MAP infection in spleens of mice in order to investigate the host immunopathology accompanying host-pathogen interaction. Transcriptional profiles of the MAP-infected mice at 3 and 6 weeks p.i. showed severe histopathological changes, whereas those at 12 weeks p.i. displayed reduced lesion severity in the spleen and liver. MAP-infected mice at 3 and 6 weeks p.i. showed up-regulation of interferon-related genes, scavenger receptor, and complement components, suggesting an initial innate immune reaction, such as macrophage activation, bactericidal activity, and macrophage invasion of MAP. Concurrently, MAP-infected mice at 3 and 6 weeks p.i. were also suggested to express M2 macrophage phenotype with up-regulation of Mrc1, and Marco and down-regulation of MHC class II, Ccr7, and Irf5, and canonical pathways related to the T cell response including ICOS-ICOSL signaling in T helper cells, calcium-induced T lymphocyte apoptosis, and CD28 signaling in T helper cell. These results provide information which furthers the understanding of the immunopathologic response to MAP infection in mice, thereby providing insights valuable for research into the pathogenesis for MAP infection.

  9. Dendritic Cell Autophagy Contributes to Herpes Simplex Virus-Driven Stromal Keratitis and Immunopathology

    PubMed Central

    Jiang, Yike; Yin, Xiaotang; Stuart, Patrick M.

    2015-01-01

    ABSTRACT Herpetic stromal keratitis (HSK) is a blinding ocular disease that is initiated by HSV-1 and characterized by chronic inflammation in the cornea. Although HSK immunopathology of the cornea is well documented in animal models, events preceding this abnormal inflammatory cascade are poorly understood. In this study, we have examined the activation of pathological CD4+ T cells in the development of HSK. Dendritic cell autophagy (DC-autophagy) is an important pathway regulating major histocompatibility complex class II (MHCII)-dependent antigen presentation and proper CD4+ T cell activation during infectious diseases. Using DC-autophagy-deficient mice, we found that DC-autophagy significantly and specifically contributes to HSK disease without impacting early innate immune infiltration, viral clearance, or host survival. Instead, the observed phenotype was attributable to the abrogated activation of CD4+ T cells and reduced inflammation in HSK lesions. We conclude that DC-autophagy is an important contributor to primary HSK immunopathology upstream of CD4+ T cell activation. PMID:26507231

  10. Distinct surveillance pathway for immunopathology during acute infection via autophagy and SR-BI

    PubMed Central

    Pfeiler, Susanne; Khandagale, Avinash B.; Magenau, Astrid; Nichols, Maryana; Heijnen, Harry F. G.; Rinninger, Franz; Ziegler, Tilman; Seveau, Stephanie; Schubert, Sören; Zahler, Stefan; Verschoor, Admar; Latz, Eicke; Massberg, Steffen; Gaus, Katharina; Engelmann, Bernd

    2016-01-01

    The mechanisms protecting from immunopathology during acute bacterial infections are incompletely known. We found that in response to apoptotic immune cells and live or dead Listeria monocytogenes scavenger receptor BI (SR-BI), an anti-atherogenic lipid exchange mediator, activated internalization mechanisms with characteristics of macropinocytosis and, assisted by Golgi fragmentation, initiated autophagic responses. This was supported by scavenger receptor-induced local increases in membrane cholesterol concentrations which generated lipid domains particularly in cell extensions and the Golgi. SR-BI was a key driver of beclin-1-dependent autophagy during acute bacterial infection of the liver and spleen. Autophagy regulated tissue infiltration of neutrophils, suppressed accumulation of Ly6C+ (inflammatory) macrophages, and prevented hepatocyte necrosis in the core of infectious foci. Perifocal levels of Ly6C+ macrophages and Ly6C− macrophages were unaffected, indicating predominant regulation of the focus core. SR-BI-triggered autophagy promoted co-elimination of apoptotic immune cells and dead bacteria but barely influenced bacterial sequestration and survival or inflammasome activation, thus exclusively counteracting damage inflicted by immune responses. Hence, SR-BI- and autophagy promote a surveillance pathway that partially responds to products of antimicrobial defenses and selectively prevents immunity-induced damage during acute infection. Our findings suggest that control of infection-associated immunopathology can be based on a unified defense operation. PMID:27694929

  11. Probiotics, Prebiotics and Immunomodulation of Gut Mucosal Defences: Homeostasis and Immunopathology

    PubMed Central

    Hardy, Holly; Harris, Jennifer; Lyon, Eleanor; Beal, Jane; Foey, Andrew D.

    2013-01-01

    Probiotics are beneficial microbes that confer a realistic health benefit on the host, which in combination with prebiotics, (indigestible dietary fibre/carbohydrate), also confer a health benefit on the host via products resulting from anaerobic fermentation. There is a growing body of evidence documenting the immune-modulatory ability of probiotic bacteria, it is therefore reasonable to suggest that this is potentiated via a combination of prebiotics and probiotics as a symbiotic mix. The need for probiotic formulations has been appreciated for the health benefits in “topping up your good bacteria” or indeed in an attempt to normalise the dysbiotic microbiota associated with immunopathology. This review will focus on the immunomodulatory role of probiotics and prebiotics on the cells, molecules and immune responses in the gut mucosae, from epithelial barrier to priming of adaptive responses by antigen presenting cells: immune fate decision—tolerance or activation? Modulation of normal homeostatic mechanisms, coupled with findings from probiotic and prebiotic delivery in pathological studies, will highlight the role for these xenobiotics in dysbiosis associated with immunopathology in the context of inflammatory bowel disease, colorectal cancer and hypersensitivity. PMID:23760057

  12. Monocyte Activation in Immunopathology: Cellular Test for Development of Diagnostics and Therapy

    PubMed Central

    Ivanova, Ekaterina A.; Orekhov, Alexander N.

    2016-01-01

    Several highly prevalent human diseases are associated with immunopathology. Alterations in the immune system are found in such life-threatening disorders as cancer and atherosclerosis. Monocyte activation followed by macrophage polarization is an important step in normal immune response to pathogens and other relevant stimuli. Depending on the nature of the activation signal, macrophages can acquire pro- or anti-inflammatory phenotypes that are characterized by the expression of distinct patterns of secreted cytokines and surface antigens. This process is disturbed in immunopathologies resulting in abnormal monocyte activation and/or bias of macrophage polarization towards one or the other phenotype. Such alterations could be used as important diagnostic markers and also as possible targets for the development of immunomodulating therapy. Recently developed cellular tests are designed to analyze the phenotype and activity of living cells circulating in patient's bloodstream. Monocyte/macrophage activation test is a successful example of cellular test relevant for atherosclerosis and oncopathology. This test demonstrated changes in macrophage activation in subclinical atherosclerosis and breast cancer and could also be used for screening a panel of natural agents with immunomodulatory activity. Further development of cellular tests will allow broadening the scope of their clinical implication. Such tests may become useful tools for drug research and therapy optimization. PMID:26885534

  13. A role for extracellular amastigotes in the immunopathology of Chagas disease.

    PubMed

    Scharfstein, J; Morrot, A

    1999-01-01

    In spite of the growing knowledge obtained about immune control of Trypanosoma cruzi infection, the mechanisms responsible for the variable clinico-pathological expression of Chagas disease remain unknown. In a twist from previous concepts, recent studies indicated that tissue parasitism is a pre-requisite for the development of chronic myocarditis. This fundamental concept, together with the realization that T. cruzi organisms consist of genetically heterogeneous clones, offers a new framework for studies of molecular pathogenesis. In the present article, we will discuss in general terms the possible implications of genetic variability of T. cruzi antigens and proteases to immunopathology. Peptide epitopes from a highly polymorphic subfamily of trans-sialidase (TS) antigens were recently identified as targets of killer T cell (CTL) responses, both in mice and humans. While some class I MHC restricted CTL recognize epitopes derived from amastigote-specific TS-related antigens (TSRA), others are targeted to peptide epitopes originating from trypomastigote-specific TSRA. A mechanistic hypothesis is proposed to explain how the functional activity and specificity of class I MHC restricted killer T cells may control the extent to which tissue are exposed to prematurely released amastigotes. Chronic immunopathology may be exacerbated due the progressive accumulation of amastigote-derived antigens and pro-inflammatory molecules (eg. GPI-mucins and kinin-releasing proteases) in dead macrophage bodies.

  14. IL-23-mediated mononuclear phagocyte crosstalk protects mice from Citrobacter rodentium-induced colon immunopathology.

    PubMed

    Aychek, Tegest; Mildner, Alexander; Yona, Simon; Kim, Ki-Wook; Lampl, Nardy; Reich-Zeliger, Shlomit; Boon, Louis; Yogev, Nir; Waisman, Ari; Cua, Daniel J; Jung, Steffen

    2015-03-12

    Gut homeostasis and mucosal immune defense rely on the differential contributions of dendritic cells (DC) and macrophages. Here we show that colonic CX3CR1(+) mononuclear phagocytes are critical inducers of the innate response to Citrobacter rodentium infection. Specifically, the absence of IL-23 expression in macrophages or CD11b(+) DC results in the impairment of IL-22 production and in acute lethality. Highlighting immunopathology as a death cause, infected animals are rescued by the neutralization of IL-12 or IFNγ. Moreover, mice are also protected when the CD103(+) CD11b(-) DC compartment is rendered deficient for IL-12 production. We show that IL-12 production by colonic CD103(+) CD11b(-) DC is repressed by IL-23. Collectively, in addition to its role in inducing IL-22 production, macrophage-derived or CD103(-) CD11b(+) DC-derived IL-23 is required to negatively control the otherwise deleterious production of IL-12 by CD103(+) CD11b(-) DC. Impairment of this critical mononuclear phagocyte crosstalk results in the generation of IFNγ-producing former TH17 cells and fatal immunopathology.

  15. Host Transcriptional Profiles and Immunopathologic Response following Mycobacterium avium subsp. paratuberculosis Infection in Mice

    PubMed Central

    Shin, Min-Kyoung; Park, Hongtae; Shin, Seung Won; Jung, Myunghwan; Lee, Su-Hyung; Kim, Dae-Yong; Yoo, Han Sang

    2015-01-01

    Paratuberculosis or Johne’s disease is a chronic granulomatous enteropathy in ruminants caused by Mycobacterium avium subsp. paratuberculosis (MAP) infection. In the present study, we examined the host response to MAP infection in spleens of mice in order to investigate the host immunopathology accompanying host-pathogen interaction. Transcriptional profiles of the MAP-infected mice at 3 and 6 weeks p.i. showed severe histopathological changes, whereas those at 12 weeks p.i. displayed reduced lesion severity in the spleen and liver. MAP-infected mice at 3 and 6 weeks p.i. showed up-regulation of interferon-related genes, scavenger receptor, and complement components, suggesting an initial innate immune reaction, such as macrophage activation, bactericidal activity, and macrophage invasion of MAP. Concurrently, MAP-infected mice at 3 and 6 weeks p.i. were also suggested to express M2 macrophage phenotype with up-regulation of Mrc1, and Marco and down-regulation of MHC class II, Ccr7, and Irf5, and canonical pathways related to the T cell response including ICOS-ICOSL signaling in T helper cells, calcium-induced T lymphocyte apoptosis, and CD28 signaling in T helper cell. These results provide information which furthers the understanding of the immunopathologic response to MAP infection in mice, thereby providing insights valuable for research into the pathogenesis for MAP infection. PMID:26439498

  16. Regulation of CD4 T cells and their effects on immunopathological inflammation following viral infection.

    PubMed

    Bhattacharyya, Mitra; Madden, Patrick; Henning, Nathan; Gregory, Shana; Aid, Malika; Martinot, Amanda J; Barouch, Dan H; Penaloza-MacMaster, Pablo

    2017-10-01

    CD4 T cells help immune responses, but knowledge of how memory CD4 T cells are regulated and how they regulate adaptive immune responses and induce immunopathology is limited. Using adoptive transfer of virus-specific CD4 T cells, we show that naive CD4 T cells undergo substantial expansion following infection, but can induce lethal T helper type 1-driven inflammation. In contrast, memory CD4 T cells exhibit a biased proliferation of T follicular helper cell subsets and were able to improve adaptive immune responses in the context of minimal tissue damage. Our analyses revealed that type I interferon regulates the expansion of primary CD4 T cells, but does not seem to play a critical role in regulating the expansion of secondary CD4 T cells. Strikingly, blockade of type I interferon abrogated lethal inflammation by primary CD4 T cells following viral infection, despite that this treatment increased the numbers of primary CD4 T-cell responses. Altogether, these data demonstrate important aspects of how primary and secondary CD4 T cells are regulated in vivo, and how they contribute to immune protection and immunopathology. These findings are important for rational vaccine design and for improving adoptive T-cell therapies against persistent antigens. © 2017 John Wiley & Sons Ltd.

  17. NK cell-mediated immunopathology during an acute viral infection of the CNS.

    PubMed

    Alsharifi, Mohammed; Lobigs, Mario; Simon, Markus M; Kersten, Astrid; Müller, Klaus; Koskinen, Aulikki; Lee, Eva; Müllbacher, Arno

    2006-04-01

    Natural killer (NK) and cytotoxic T (Tc) cells are prime effector populations in the antiviral response of the host. Tc cells are essential for recovery from many viral diseases but may also be responsible for immunopathology. The role of NK cells in recovery from viral infections is less well established. We have studied acute virulent Semliki Forest virus (vSFV) infection of the central nervous system in C57BL/6J mice, which was mainly controlled by NK cells without marked Tc cell involvement. We show that mice with defects in the Fas and/or granule exocytosis pathways of cytotoxicity are more resistant to lethal vSFV infection than wild-type mice. On the other hand, mice defective in the IFN-gamma response are more sensitive than wild-type mice, whereas mice lacking the Tc cell compartment (beta-2 microglobulin-deficient mice) exhibit susceptibility similar to wild-type mice. The additional finding that depletion of NK cells significantly delayed the mean time to death but did not prevent mortality in SFV-infected B6 mice suggests that cytolytic activity of NK cells is detrimental, while IFN-gamma production is beneficial for recovery from SFV infection. This is the first study illustrating an NK cell-mediated immunopathological outcome to an acute viral infection.

  18. Cutaneous Manifestations of Non-Celiac Gluten Sensitivity: Clinical Histological and Immunopathological Features.

    PubMed

    Bonciolini, Veronica; Bianchi, Beatrice; Del Bianco, Elena; Verdelli, Alice; Caproni, Marzia

    2015-09-15

    The dermatological manifestations associated with intestinal diseases are becoming more frequent, especially now when new clinical entities, such as Non-Celiac Gluten Sensitivity (NCGS), are identified. The existence of this new entity is still debated. However, many patients with diagnosed NCGS that present intestinal manifestations have skin lesions that need appropriate characterization. We involved 17 patients affected by NCGS with non-specific cutaneous manifestations who got much better after a gluten free diet. For a histopathological and immunopathological evaluation, two skin samples from each patient and their clinical data were collected. The median age of the 17 enrolled patients affected by NCGS was 36 years and 76% of them were females. On the extensor surfaces of upper and lower limbs in particular, they all presented very itchy dermatological manifestations morphologically similar to eczema, psoriasis or dermatitis herpetiformis. This similarity was also confirmed histologically, but the immunopathological analysis showed the prevalence of deposits of C3 along the dermo-epidermal junction with a microgranular/granular pattern (82%). The exact characterization of new clinical entities such as Cutaneous Gluten Sensitivity and NCGS is an important objective both for diagnostic and therapeutic purposes, since these are patients who actually benefit from a GFD (Gluten Free Diet) and who do not adopt it only for fashion.

  19. The IL-17A/IL-17RA axis in pulmonary defence and immunopathology.

    PubMed

    Lorè, Nicola Ivan; Bragonzi, Alessandra; Cigana, Cristina

    2016-08-01

    The interleukin (IL)-17A/IL-17 receptor A (IL-17RA) axis is emerging as a key player in host defence. Several studies have demonstrated that IL-17A-mediated responses play a critical role in both acute and chronic inflammation induced by infectious agents, environmental stimuli and genetic diseases in the airways. In this regard, it is becoming evident that IL-17A/IL-17RA signalling may have a protective and beneficial impact on health, but that it can also result in detrimental outcomes. On one hand, the IL-17A/IL-17RA axis can contribute to the elimination of noxious stimuli and to the resolution of acute inflammatory processes; on the other hand, it can exacerbate immunopathological responses, contributing to the development and progression of chronic respiratory illnesses. In addition, cellular and molecular signatures underlying IL-17A/IL-17RA signalling have been increasingly identified, although further studies are needed to clarify such complex responses. Here, we discuss the latest discoveries on the role of the IL-17A/IL-17RA axis in driving host pulmonary defence and immunopathology.

  20. TRV Based Virus Induced Gene Silencing in Gladiolus (Gladiolus grandiflorus L.), A Monocotyledonous Ornamental Plant

    USDA-ARS?s Scientific Manuscript database

    Virus-induced gene silencing (VIGS) has not yet successfully been used as a tool for gene functional analysis in non-grass monocotyledonous geophytes. We therefore tested VIGS in gladiolus (Gladiolus grandiflora L) using a Tobacco Rattle Virus (TRV) vector containing a fragment of the gladiolus gene...

  1. Virus-induced gene silencing in cultivated cotton (Gossypium spp.) using Tobacco rattle virus

    USDA-ARS?s Scientific Manuscript database

    The study described here has optimized the conditions for virus induced gene silencing (VIGS) in three cultivated cotton species (Gossypium hirsutum, G. arboreum and G. herbaceum) using a Tobacco rattle virus (TRV) vector. The system was used to silence the homolog of the Arabidopsis thaliana chloro...

  2. IDENTITY OF "INHIBITOR" AND ANTIBODY IN EXTRACTS OF VIRUS-INDUCED RABBIT PAPILLOMAS

    PubMed Central

    Friedewald, William F.

    1940-01-01

    The "inhibitor" demonstrable in extracts of the virus-induced rabbit papillomas is identical with the antiviral antibody found in the blood of hosts bearing the growths. The conditions in these latter are frequently favorable to its extravasation in considerable amount into them. Its significance and its influence upon the recovery of virus from the papillomas are discussed. PMID:19871016

  3. Virus induced gene silencing of Arabidopsis gene homologues in wheat identify genes conferring improved drought tolerance

    USDA-ARS?s Scientific Manuscript database

    In a non-model staple crop like wheat, functional validation of potential drought stress responsive genes identified in Arabidopsis could provide gene targets for wheat breeding. Virus induced gene silencing (VIGS) of genes of interest can overcome the inherent problems of polyploidy and limited tra...

  4. Blockade of PD-1 Signaling Enhances Th2 Cell Responses and Aggravates Liver Immunopathology in Mice with Schistosomiasis japonica

    PubMed Central

    Zhou, Sha; Jin, Xin; Li, Yalin; Li, Wei; Chen, Xiaojun; Xu, Lei; Zhu, Jifeng; Xu, Zhipeng; Zhang, Yang; Liu, Feng; Su, Chuan

    2016-01-01

    Background More than 220 million people worldwide are chronically infected with schistosomes, causing severe disease or even death. The major pathological damage occurring in schistosomiasis is attributable to the granulomatous inflammatory response and liver fibrosis induced by schistosome eggs. The inflammatory response is tightly controlled and parallels immunosuppressive regulation, constantly maintaining immune homeostasis and limiting excessive immunopathologic damage in important host organs. It is well known that the activation of programmed death 1 (PD-1) signaling causes a significant suppression of T cell function. However, the roles of PD-1 signaling in modulating CD4+ T cell responses and immunopathology during schistosome infection, have yet to be defined. Methodology/Principal Findings Here, we show that PD-1 is upregulated in CD4+ T cells in Schistosoma japonicum (S. japonicum)-infected patients. We also show the upregulation of PD-1 expression in CD4+ T cells in the spleens, mesenteric lymph nodes, and livers of mice with S. japonicum infection. Finally, we found that the blockade of PD-1 signaling enhanced CD4+ T helper 2 (Th2) cell responses and led to more severe liver immunopathology in mice with S. japonicum infection, without a reduction of egg production or deposition in the host liver. Conclusions/Significance Overall, our study suggests that PD-1 signaling is specifically induced to control Th2-associated inflammatory responses during schistosome infection and is beneficial to the development of PD-1-based control of liver immunopathology. PMID:27792733

  5. Immunization with SARS coronavirus vaccines leads to pulmonary immunopathology on challenge with the SARS virus.

    PubMed

    Tseng, Chien-Te; Sbrana, Elena; Iwata-Yoshikawa, Naoko; Newman, Patrick C; Garron, Tania; Atmar, Robert L; Peters, Clarence J; Couch, Robert B

    2012-01-01

    Severe acute respiratory syndrome (SARS) emerged in China in 2002 and spread to other countries before brought under control. Because of a concern for reemergence or a deliberate release of the SARS coronavirus, vaccine development was initiated. Evaluations of an inactivated whole virus vaccine in ferrets and nonhuman primates and a virus-like-particle vaccine in mice induced protection against infection but challenged animals exhibited an immunopathologic-type lung disease. Four candidate vaccines for humans with or without alum adjuvant were evaluated in a mouse model of SARS, a VLP vaccine, the vaccine given to ferrets and NHP, another whole virus vaccine and an rDNA-produced S protein. Balb/c or C57BL/6 mice were vaccinated i.m. on day 0 and 28 and sacrificed for serum antibody measurements or challenged with live virus on day 56. On day 58, challenged mice were sacrificed and lungs obtained for virus and histopathology. All vaccines induced serum neutralizing antibody with increasing dosages and/or alum significantly increasing responses. Significant reductions of SARS-CoV two days after challenge was seen for all vaccines and prior live SARS-CoV. All mice exhibited histopathologic changes in lungs two days after challenge including all animals vaccinated (Balb/C and C57BL/6) or given live virus, influenza vaccine, or PBS suggesting infection occurred in all. Histopathology seen in animals given one of the SARS-CoV vaccines was uniformly a Th2-type immunopathology with prominent eosinophil infiltration, confirmed with special eosinophil stains. The pathologic changes seen in all control groups lacked the eosinophil prominence. These SARS-CoV vaccines all induced antibody and protection against infection with SARS-CoV. However, challenge of mice given any of the vaccines led to occurrence of Th2-type immunopathology suggesting hypersensitivity to SARS-CoV components was induced. Caution in proceeding to application of a SARS-CoV vaccine in humans is indicated.

  6. Neurogenic Inflammation – The Peripheral Nervous System’s Role in Host Defense and Immunopathology

    PubMed Central

    Chiu, Isaac M.; von Hehn, Christian A.; Woolf, Clifford J.

    2012-01-01

    The peripheral nervous and immune systems are traditionally thought of as serving separate functions. This line is, however, becoming increasingly blurred by new insights into neurogenic inflammation. Nociceptor neurons possess many of the same molecular recognition pathways for danger as immune cells and in response to danger, the peripheral nervous system directly communicates with the immune system, forming an integrated protective mechanism. The dense innervation network of sensory and autonomic fibers in peripheral tissues and high speed of neural transduction allows for rapid local and systemic neurogenic modulation of immunity. Peripheral neurons also appear to play a significant role in immune dysfunction in autoimmune and allergic diseases. Therefore, understanding the coordinated interaction of peripheral neurons with immune cells may advance therapeutic approaches to increase host defense and suppress immunopathology. PMID:22837035

  7. Neurogenic inflammation and the peripheral nervous system in host defense and immunopathology.

    PubMed

    Chiu, Isaac M; von Hehn, Christian A; Woolf, Clifford J

    2012-07-26

    The peripheral nervous and immune systems are traditionally thought of as serving separate functions. The line between them is, however, becoming increasingly blurred by new insights into neurogenic inflammation. Nociceptor neurons possess many of the same molecular recognition pathways for danger as immune cells, and, in response to danger, the peripheral nervous system directly communicates with the immune system, forming an integrated protective mechanism. The dense innervation network of sensory and autonomic fibers in peripheral tissues and high speed of neural transduction allows rapid local and systemic neurogenic modulation of immunity. Peripheral neurons also seem to contribute to immune dysfunction in autoimmune and allergic diseases. Therefore, understanding the coordinated interaction of peripheral neurons with immune cells may advance therapeutic approaches to increase host defense and suppress immunopathology.

  8. Nox enzymes and oxidative stress in the immunopathology of the gastrointestinal tract.

    PubMed

    Rokutan, Kazuhito; Kawahara, Tsukasa; Kuwano, Yuki; Tominaga, Kumiko; Nishida, Keisei; Teshima-Kondo, Shigetada

    2008-07-01

    Chronic inflammation caused by Helicobacter pylori infection or inflammatory bowel disease (IBD) is closely linked to cancer development. Innate immune abnormalities and enhanced production of reactive oxygen species through a phagocyte NADPH oxidase (Nox2) are key issues in understanding the pathogenesis of inflammation-dependent carcinogenesis. Besides Nox2, functionally distinct homologues (Nox1, Nox3, Nox4, Nox5, Duox1, and Duox2) have been identified. Nox1 and Duox2 are highly expressed in the gastrointestinal tract. Although the functional roles of Nox/Duox in the gastrointestinal tract are still unclear, we will review their potential roles in the gastrointestinal immunopathology, particularly in H. pylori-induced inflammation, IBD, and malignancy.

  9. Subgingival microbial communities in Leukocyte Adhesion Deficiency and their relationship with local immunopathology.

    PubMed

    Moutsopoulos, Niki M; Chalmers, Natalia I; Barb, Jennifer J; Abusleme, Loreto; Greenwell-Wild, Teresa; Dutzan, Nicolas; Paster, Bruce J; Munson, Peter J; Fine, Daniel H; Uzel, Gulbu; Holland, Steven M

    2015-03-01

    Leukocyte Adhesion Deficiency I (LAD-I) is a primary immunodeficiency caused by single gene mutations in the CD18 subunit of β2 integrins which result in defective transmigration of neutrophils into the tissues. Affected patients suffer from recurrent life threatening infections and severe oral disease (periodontitis). Microbial communities in the local environment (subgingival plaque) are thought to be the triggers for inflammatory periodontitis, yet little is known regarding the microbial communities associated with LAD-I periodontitis. Here we present the first comprehensive characterization of the subgingival communities in LAD-I, using a 16S rRNA gene-based microarray, and investigate the relationship of this tooth adherent microbiome to the local immunopathology of periodontitis. We show that the LAD subgingival microbiome is distinct from that of health and Localized Aggressive Periodontitits. Select periodontitis-associated species in the LAD microbiome included Parvimonas micra, Porphyromonas endodontalis, Eubacterium brachy and Treponema species. Pseudomonas aeruginosa, a bacterium not typically found in subgingival plaque is detected in LAD-I. We suggest that microbial products from LAD-associated communities may have a role in stimulating the local inflammatory response. We demonstrate that bacterial LPS translocates into the lesions of LAD-periodontitis potentially triggering immunopathology. We also show in in vitro assays with human macrophages and in vivo in animal models that microbial products from LAD-associated subgingival plaque trigger IL-23-related immune responses, which have been shown to dominate in patient lesions. In conclusion, our current study characterizes the subgingival microbial communities in LAD-periodontitis and supports their role as triggers of disease pathogenesis.

  10. Subgingival Microbial Communities in Leukocyte Adhesion Deficiency and Their Relationship with Local Immunopathology

    PubMed Central

    Moutsopoulos, Niki M.; Abusleme, Loreto; Greenwell-Wild, Teresa; Dutzan, Nicolas; Paster, Bruce J.; Munson, Peter J.; Fine, Daniel H.; Uzel, Gulbu; Holland, Steven M.

    2015-01-01

    Leukocyte Adhesion Deficiency I (LAD-I) is a primary immunodeficiency caused by single gene mutations in the CD18 subunit of β2 integrins which result in defective transmigration of neutrophils into the tissues. Affected patients suffer from recurrent life threatening infections and severe oral disease (periodontitis). Microbial communities in the local environment (subgingival plaque) are thought to be the triggers for inflammatory periodontitis, yet little is known regarding the microbial communities associated with LAD-I periodontitis. Here we present the first comprehensive characterization of the subgingival communities in LAD-I, using a 16S rRNA gene-based microarray, and investigate the relationship of this tooth adherent microbiome to the local immunopathology of periodontitis. We show that the LAD subgingival microbiome is distinct from that of health and Localized Aggressive Periodontitits. Select periodontitis-associated species in the LAD microbiome included Parvimonas micra, Porphyromonas endodontalis, Eubacterium brachy and Treponema species. Pseudomonas aeruginosa, a bacterium not typically found in subgingival plaque is detected in LAD-I. We suggest that microbial products from LAD-associated communities may have a role in stimulating the local inflammatory response. We demonstrate that bacterial LPS translocates into the lesions of LAD-periodontitis potentially triggering immunopathology. We also show in in vitro assays with human macrophages and in vivo in animal models that microbial products from LAD-associated subgingival plaque trigger IL-23-related immune responses, which have been shown to dominate in patient lesions. In conclusion, our current study characterizes the subgingival microbial communities in LAD-periodontitis and supports their role as triggers of disease pathogenesis. PMID:25741691

  11. Galectin-1-mediated suppression of Pseudomonas aeruginosa-induced corneal immunopathology.

    PubMed

    Suryawanshi, Amol; Cao, Zhiyi; Thitiprasert, Thananya; Zaidi, Tanveer S; Panjwani, Noorjahan

    2013-06-15

    Corneal infection with Pseudomonas aeruginosa leads to a severe immunoinflammatory lesion, often causing vision impairment and blindness. Although past studies have indicated a critical role for CD4(+) T cells, particularly Th1 cells, in corneal immunopathology, the relative contribution of recently discovered Th17 and regulatory T cells is undefined. In this study, we demonstrate that after corneal P. aeruginosa infection, both Th1 and Th17 cells infiltrate the cornea with increased representation of Th17 cells. In addition to Th1 and Th17 cells, regulatory T cells also migrate into the cornea during early as well as late stages of corneal pathology. Moreover, using galectin-1 (Gal-1), an immunomodulatory carbohydrate-binding molecule, we investigated whether shifting the balance among various CD4(+) T cell subsets can modulate P. aeruginosa-induced corneal immunopathology. We demonstrate in this study that local recombinant Gal-1 (rGal-1) treatment by subconjunctival injections significantly diminishes P. aeruginosa-mediated corneal inflammation through multiple mechanisms. Specifically, in our study, rGal-1 treatment significantly diminished corneal infiltration of total CD45(+) T cells, neutrophils, and CD4(+) T cells. Furthermore, rGal-1 treatment significantly reduced proinflammatory Th17 cell response in the cornea as well as local draining lymph nodes. Also, rGal-1 therapy promoted anti-inflammatory Th2 and IL-10 response in secondary lymphoid organs. Collectively, our results indicate that corneal P. aeruginosa infection induces a strong Th17-mediated corneal pathology, and treatment with endogenously derived protein such as Gal-1 may be of therapeutic value for the management of bacterial keratitis, a prevalent cause of vision loss and blindness in humans worldwide.

  12. Immunohistochemical and immunopathologic characterization of superficial stromal immune-mediated keratitis in horses.

    PubMed

    Pate, Diana O; Clode, Alison B; Olivry, Thierry; Cullen, John M; Salmon, Jacklyn H; Gilger, Brian C

    2012-07-01

    To describe the immunopathologic characteristics of superficial stromal immune-mediated keratitis (IMMK) immunopathologically by characterizing cellular infiltrate in affected corneas of horses. 10 client-owned horses with IMMK. Immunohistochemical staining was performed on keratectomy samples with equine antibodies against the T-cell marker CD3 and B-cell marker CD79a (10 eyes) and the T-helper cytotoxic marker CD4 and T-cell cytotoxic marker CD8 (6 eyes). Percentage of positively stained cells was scored on a scale from 0 (no cells stained) to 4 (> 75% of cells stained). Equine IgG, IgM, and IgA antibodies were used to detect corneal immunoglobulin via direct immunofluorescence (10 eyes). Serum and aqueous humor (AH) samples from 3 horses with IMMK were used to detect circulating and intraocular IgG against corneal antigens via indirect immunofluorescence on unaffected equine cornea. Percentage scores (scale, 0 to 4) of cells expressing CD3 (median, 2.35 [range, 0.2 to 3.7]; mean ± SD, 2.36 ± 1.08) were significantly greater than scores of cells expressing CD79a (median, 0.55 [range, 0 to 1.5]; mean, 0.69 ± 0.72). All samples stained positively for CD4- and CD8-expressing cells, with no significant difference in scoring. All samples stained positively for IgG, IgM, and IgA. No serum or AH samples collected from horses with IMMK reacted with unaffected equine cornea. Pathogenesis of superficial stromal IMMK included cell-mediated inflammation governed by both cytotoxic and helper T cells. Local immunoglobulins were present in affected corneas; however, corneal-binding immunoglobulins were not detected in the serum or AH from horses with IMMK.

  13. Exhaled breath temperature increases during mild exacerbations in children with virus-induced asthma.

    PubMed

    Xepapadaki, P; Xatziioannou, A; Chatzicharalambous, M; Makrinioti, H; Papadopoulos, N G

    2010-01-01

    Exhaled breath temperature (EBT) has been suggested as a non-invasive surrogate marker of airway inflammation in asthma. The aim of the study was to evaluate differences in EBT between periods of controlled disease and during exacerbations in children with virus-induced asthma. Twenty-nine children (aged 6-14 years) with a history of intermittent, virus-induced asthma were included in this case-control study. Cases presented with a common cold and/or mild exacerbation of asthma, while controls were free of asthmatic or common cold symptoms during the previous 6 weeks. A baseline questionnaire was obtained. Atopy assessment, central temperature and a spirometric measurement were recorded. EBT was measured with a new device (Delmedica, Singapore). A nasal wash (for identification of common respiratory viruses) was obtained. Twenty-four children (12 from each group) completed the study. Groups were homogeneous with respect to baseline characteristics. PCR revealed the presence of a virus in 3 out of 17 controls and 10 out of 12 cases (17.6 and 83.3%, respectively, p = 0.002). The most commonly identified virus was rhinovirus (3/3 controls and 7/10 cases, p = 0.02). EBT values were significantly higher for cases (34.91 +/- 0.62 degrees C) compared to controls (34.18 +/- 1.1 degrees C, p = 0.032). No important differences were observed in the increase rate of EBT (Deltae degrees T) between groups. Changes in airway inflammation during virus-induced asthma exacerbations are reflected in EBT changes. These preliminary data suggest a possible role of EBT measurements in the assessment of airway inflammation in children with virus-induced asthma. Copyright (c) 2010 S. Karger AG, Basel.

  14. Heparin prevents Zika virus induced-cytopathic effects in human neural progenitor cells.

    PubMed

    Ghezzi, Silvia; Cooper, Lynsay; Rubio, Alicia; Pagani, Isabel; Capobianchi, Maria Rosaria; Ippolito, Giuseppe; Pelletier, Julien; Meneghetti, Maria Cecilia Z; Lima, Marcelo A; Skidmore, Mark A; Broccoli, Vania; Yates, Edwin A; Vicenzi, Elisa

    2017-04-01

    The recent Zika virus (ZIKV) outbreak, which mainly affected Brazil and neighbouring states, demonstrated the paucity of information concerning the epidemiology of several flaviruses, but also highlighted the lack of available agents with which to treat such emerging diseases. Here, we show that heparin, a widely used anticoagulant, while exerting a modest inhibitory effect on Zika Virus replication, fully prevents virus-induced cell death of human neural progenitor cells (NPCs).

  15. Comparative analysis of radiation- and virus-induced leukemias in BALB/c mice

    SciTech Connect

    Newcomb, E.W.; Binari, R.; Fleissner, E.

    1985-01-15

    Endogenous murine leukemia virus (MuLV) proviral copies were analyzed in thymomas induced in normal BALB/c (Fv-1b) and in Fv-1n congenic mice by X-irradiation. Both strains of mice developed leukemia with similar kinetics, indicating that N-tropism of endogenous MuLV was not a rate-limiting factor in development of disease. Southern blot analysis, using a probe specific for ecotropic virus and for ecotropic-specific sequences retained in pathogenic, env-recombinant viruses, showed that the majority of radiation leukemias lacked newly acquired, clonally integrated, proviruses. This was in contrast to virus-induced leukemias, which routinely exhibited several new proviral integration sites. When an internal proviral DNA restriction fragment was monitored, some radiation leukemias showed evidence of nonclonal infection, accounting for more frequent isolation of infectious virus from such leukemias. Differences in expression of T-cell surface antigens were found in X-ray-induced and virus-induced leukemias. All radiation leukemias were TL positive, whereas virus-induced leukemias were primarily negative for TL. Some differences were also found in Lyt-1 and Lyt-2 expression. The data as a whole suggest that, in the majority of cases, radiation leukemogenesis is not initiated by a viral route--that is, the sort of viral mechanism for which exogenous infection by known pathogenic MuLV is the paradigm.

  16. IP-10 Is Elevated in Virus-Induced Acute Exacerbations in Childhood Asthma.

    PubMed

    Suzuki, Kazuo; Kato, Masahiko; Matsuda, Shinichi; Nukaga, Mariko; Enseki, Mayumi; Tabata, Hideyuki; Hirai, Kota; Yamada, Yoshiyuki; Maruyama, Kenichi; Hayashi, Yasuhide; Mochizuki, Hiroyuki

    2016-12-20

    Viral infections and sensitization to aeroallergens are major factors in the exacerbation of asthma and its development during early childhood. However, the cytokine profiles and eosinophil activation status linked to the association between viral infections and sensitization to aeroallergens are incompletely understood. Here we investigated respiratory viruses, serum eosinophil cationic protein (ECP), and various cytokines/chemokines in acute exacerbation of childhood asthma. We analyzed peripheral eosinophil counts, serum ECP, and 27 cytokines/chemokines in 76 virus-induced acute asthma cases with or without aeroallergen sensitization. Asthma due to sensitization was defined by a positive reaction to at least one aeroallergen in serum specific IgE antibody tests. Virus detection was performed using antigen detection kits and/or RT-PCR, followed by direct DNA sequencing analysis. Serum cytokines/chemokines were measured using a multi-cytokine detection system. Peripheral eosinophil counts and serum ECP and IL-5 levels were significantly elevated in sensitized cases compared with nonsensitized cases. Conversely, IP-10 values were significantly higher in nonsensitized cases. An inverse correlation between IP-10 and IL-5 production was identified in virus-induced acute exacerbations of asthma but not in controls. Cytokine profiles and eosinophil activation status might be different between sensitized and nonsensitized cases of virus-induced acute exacerbations of asthma.

  17. Influenza Virus Induces Inflammatory Response in Mouse Primary Cortical Neurons with Limited Viral Replication.

    PubMed

    Wang, Gefei; Li, Rui; Jiang, Zhiwu; Gu, Liming; Chen, Yanxia; Dai, Jianping; Li, Kangsheng

    2016-01-01

    Unlike stereotypical neurotropic viruses, influenza A viruses have been detected in the brain tissues of human and animal models. To investigate the interaction between neurons and influenza A viruses, mouse cortical neurons were isolated, infected with human H1N1 influenza virus, and then examined for the production of various inflammatory molecules involved in immune response. We found that replication of the influenza virus in neurons was limited, although early viral transcription was not affected. Virus-induced neuron viability decreased at 6 h postinfection (p.i.) but increased at 24 h p.i. depending upon the viral strain. Virus-induced apoptosis and cytopathy in primary cortical neurons were not apparent at 24 h p.i. The mRNA levels of inflammatory cytokines, chemokines, and type I interferons were upregulated at 6 h and 24 h p.i. These results indicate that the influenza virus induces inflammatory response in mouse primary cortical neurons with limited viral replication. The cytokines released in viral infection-induced neuroinflammation might play critical roles in influenza encephalopathy, rather than in viral replication-induced cytopathy.

  18. Characterization of lymphocytic choriomeningitis virus-binding protein(s): a candidate cellular receptor for the virus.

    PubMed

    Borrow, P; Oldstone, M B

    1992-12-01

    The attachment of lymphocytic choriomeningitis virus (LCMV) to murine and primate cell lines was quantitated by a fluorescence-activated cell sorter assay in which binding of biotinylated virus was detected with streptavidin-fluorescein isothiocyanate. Cell lines that were readily infected by LCMV (e.g., MC57, Rin, BHK, Vero, and HeLa) bound virus in a dose-dependent manner, whereas no significant binding was observed to lymphocytic cell lines (e.g., RMA and WIL 2) that were not readily infected. Binding was specific and competitively blocked by nonbiotinylated LCMV. It was also blocked by LCMV-specific antiserum and a neutralizing monoclonal antibody to the virus glycoprotein GP-1 but not by antibodies specific for GP-2, indicating that attachment was likely mediated by GP-1. Treatment of cells with any of several proteases abolished LCMV binding, whereas phospholipases including phosphatidylinositol-specific phospholipase C had no effect, indicating that one or more membrane proteins were involved in virus attachment. These proteins were characterized with a virus overlay protein blot assay. Virus bound to protein(s) with a molecular mass of 120 to 140 kDa in membranes from cell lines permissive for LCMV but not from nonpermissive cell lines. Binding was specific, since unlabeled LCMV, but not the unrelated enveloped virus herpes simplex virus type 1, competed with 125I-labeled LCMV for binding to the 120- to 140-kDa band. The proteinaceous nature of the LCMV-binding substance was confirmed by the lack of virus binding to proteinase K-treated membrane components. By contrast, glycosidase treatment of membranes did not abolish virus binding. However, in membranes treated with endoglycosidase F/N-glycosidase F, and/or neuraminidase and in membranes from cells grown in tunicamycin, the molecular mass of the LCMV-binding entity was reduced. Hence, LCMV attachment to rodent fibroblastic cell lines is mediated by a glycoprotein(s) with a molecular mass of 120 to 140 k

  19. Comorbidity of Narcolepsy Type 1 With Autoimmune Diseases and Other Immunopathological Disorders: A Case-Control Study

    PubMed Central

    Martinez-Orozco, Francisco Javier; Vicario, Jose Luis; De Andres, Clara; Fernandez-Arquero, Miguel; Peraita-Adrados, Rosa

    2016-01-01

    Background Several evidences suggest that autoimmune diseases (ADs) tend to co-occur in an individual and within the same family. Narcolepsy type 1 (NT1) is a chronic sleep disorder caused by a selective loss of hypocretin-producing neurons due to a mechanism of neural destruction that indicates an autoimmune pathogenesis, although no evidence is available. We report on the comorbidity of ADs and other immunopathological diseases (including allergy diseases) in narcolepsy. Methods We studied 158 Caucasian NT1 patients (60.7% male; mean age 49.4 ± 19.7 years), in whom the diagnosis was confirmed by polysomnography followed by a multiple sleep latency test, or by hypocretin-1 levels measurements. Results Thirty out of 158 patients (18.99%; 53.3% female; 29 sporadic and one familial cases) had one or more immunopathological diseases associated. A control group of 151 subjects were matched by gender and age with the narcolepsy patients. Results demonstrated that there was a higher frequency of ADs in our series of narcolepsy patients compared to the sample of general population (odds ratio: 3.17; 95% confidence interval: 1.01 - 10.07; P = 0.040). A temporal relationship with the age at onset of the diseases was found. Conclusions Cataplexy was significantly more severe in NT1 patients with immunopathological diseases, and immunopathological diseases are a risk factor for severe forms of cataplexy in our series (odds ratio: 23.6; 95% confidence interval: 5.5 - 100.1). PMID:27298657

  20. [Professor Adam Nowosławski (1925-2012)--founder of the Polish School of Immunopathology].

    PubMed

    Madaliński, Kazimierz

    2012-01-01

    Professor dr med. Adam Nowosławski, has died at age of 87, on February 3, 2012, the founder of the Polish school of immunopathology, member of Polish Academy of Sciences and of Polish Academy of Art and Sciences. Professor was born on April 30, 1925 in Rzeszów (SE Poland). During the Second World War he took part in the anti-nazi resistance movement; he was the soldier of the 'Baszta' regiment of the Home Army. Subsequently, he was imprisoned in the Pawiak and concentration camps: Majdanek and Buchenwald. The medical studies he has completed at Warsaw Medical Academy between 1946-1951. The degree of doctor of medicine Prof. Adam Nowosławski has obtained in 1963, habilitation degree in the field of immunopathology--in 1966; the title of Professor he has obtained in 1980. His scientific achievements consist of 170 publications, including 101 original papers. His publications were quoted in several American books for students and physicians. Topics of his early papers concerned the immunopatogenesis ofPneumocystis carinii--induced pneumonia in premature babies, immunopatogenesis of rheumatoid arthritis, and the origin of rheumatoid factor. The enormous role in the field of hepatology played research on the virus of hepatitis B. These studies dealt with the discovery of HB core antigen which had the cellular localization different from HB surface antigen and with the parameters of the immune response to infection. Papers published on this topic were the mostly quoted in the literature and earned him national awards. The activity of Prof. Adam Nowosławski in the field of HIV/AIDS prevention was honored by the special prize of the Minister of Health. Professor was the honorary member of the two Societies: Polish Society of Pathologists and Polish Society of Hepatology. He was also the member of International Association for the Study of the Liver and International Academy of Pathology. Prof. Adam Nowosławski received the national medals: Polonia Restituta Crosses

  1. A high-throughput virus-induced gene-silencing vector for screening transcription factors in virus-induced plant defense response in orchid.

    PubMed

    Lu, Hsiang-Chia; Hsieh, Ming-Hsien; Chen, Cheng-En; Chen, Hong-Hwa; Wang, Hsiang-Iu; Yeh, Hsin-Hung

    2012-06-01

    The large number of species and worldwide spread of species of Orchidaceae indicates their successful adaptation to environmental stresses. Thus, orchids provide rich resources to study how plants have evolved to cope with stresses. This report describes our improvement of our previously reported orchid virus-induced gene silencing vector, pCymMV-pro60, with a modified Gateway cloning system which requires only one recombination and can be inoculated by agroinfiltration. We cloned 1,700 DNA fragments, including 187 predicted transcription factors derived from an established expression sequence tag library of orchid, into pCymMV-Gateway. Phalaenopsis aphrodite was inoculated with these vectors that contained DNA fragments of the 187 predicted transcription factors. The viral vector initially triggered the expression of the salicylic acid (SA)-related plant defense responses and later induced silencing of the endogenous target transcription factor genes. By monitoring the expression of the SA-related plant defense marker PhaPR1 (homolog of PR1), we identified a gene, PhaTF15, involved in the expression of PhaPR1. Knockdown of PhaTF15 by virus-induced gene silencing and by transient delivery of double-stranded RNA (dsRNA) reduced expression of the orchid homolog of the conserved positive defense regulator NPR1, PhaNPR1. Cymbidium mosaic virus also accumulated to high levels with knockdown of PhaTF15 by transient delivery of dsRNA. We demonstrated efficient cloning and screening strategies for high-throughput analysis of orchid and identify a gene, PhaTF15, involved in regulation of SA-related plant defense.

  2. Age-related Defects in Ocular and Nasal Mucosal Immune System and the Immunopathology of Dry Eye Disease

    PubMed Central

    Farid, Marjan; Agrawal, Anshu; Fremgen, Daniel; Tao, Jeremiah; Chuyi, He; Nesburn, Anthony B.; BenMohamed, Lbachir

    2014-01-01

    Dry eye disease (DED) is a prevalent public health concern that affects up to 30% of adults and is particularly chronic and severe in the elderly. Two interconnected mechanisms cause DED: (1) an age-related dysfunction of lacrimal and meibomian glands, which leads to decreased tear production and/or an increase in tear evaporation; and (2) an age-related uncontrolled inflammation of the surface of the eye triggered by yet-to-be-determined internal immunopathological mechanisms, independent of tear deficiency and evaporation. In this review we summarize current knowledge on animal models that mimic both the severity and chronicity of inflammatory DED and that have been reliably used to provide insights into the immunopathological mechanisms of DED, and we provide an overview of the opportunities and limitations of the rabbit model in investigating the role of both ocular and nasal mucosal immune systems in the immunopathology of inflammatory DED and in testing novel immunotherapies aimed at delaying or reversing the uncontrolled age-related inflammatory DED. PMID:25535823

  3. 99th Dahlem Conference on Infection, Inflammation and Chronic Inflammatory Disorders: Symbionts and immunopathology in chronic diseases: insights from evolution

    PubMed Central

    Ewald, P W

    2010-01-01

    Immunological aetiologies of disease are not generally well understood, but have been attributed to intrinsic immunological imbalances, infectious triggers or persistent infections. Evolutionary considerations lead to the formulation of three feasible categories of immunopathology for common diseases. One category of hypotheses presumes that the immune system is exposed to environmental conditions to which the individual is not well adapted. One hypothesis within this category, often referred to as the hygiene hypothesis, proposes that new more hygienic environmental conditions have generated compositions of symbionts that differ from those to which humans have been adapted. A second category of hypotheses proposes that infectious agents act as triggers of immunopathology by shifting the immune system into a self-destructive state. A third category proposes that infectious agents keep the immune in a self-destructive state by causing persistent infections. To evaluate disease causation rigorously and to determine the appropriate interventions, these three categories of causation need to considered for every disease that involves immunopathology. Assessment of the progress in understanding oncogenesis and other chronic diseases emphasizes the value of such integrated assessments. PMID:20415848

  4. Virus-triggered acquired immunodeficiency by cytotoxic T-cell-dependent destruction of antigen-presenting cells and lymph follicle structure.

    PubMed Central

    Odermatt, B; Eppler, M; Leist, T P; Hengartner, H; Zinkernagel, R M

    1991-01-01

    Virus-induced acquired immune suppression in mice infected with lymphocytic choriomeningitis virus is shown here to be caused by the CD8+-T-cell-dependent elimination of macrophages/antigen-presenting cells. Surprisingly, this is associated with severe destruction of the follicular organization of lymphoid organs, indicating a crucial role for dendritic cells and marginal zone macrophages in maintaining follicular structure. Once established, this immunopathology cannot be readily reversed by the elimination of CD8+ effector cells. Such a T-cell-mediated pathogenesis may play a pivotal role in acquired virus-induced immunosuppression and may represent one strategy by which virus escapes immune surveillance and establishes persistent infections in initially immunocompetent hosts. Images PMID:1910175

  5. Immunity, immunopathology, and human vaccine development against sexually transmitted Chlamydia trachomatis

    PubMed Central

    Rey-Ladino, Jose; Ross, Allen GP; Cripps, Allan W

    2014-01-01

    This review examines the immunity, immunopathology, and contemporary problems of vaccine development against sexually transmitted Chlamydia trachomatis. Despite improved surveillance and treatment initiatives, the incidence of C. trachomatis infection has increased dramatically over the past 30 years in both the developed and developing world. Studies in animal models have shown that protective immunity to C. trachomatis is largely mediated by Th1 T cells producing IFN-γ which is needed to prevent dissemination of infection. Similar protection appears to develop in humans but in contrast to mice, immunity in humans may take years to develop. Animal studies and evidence from human infection indicate that immunity to C. trachomatis is accompanied by significant pathology in the upper genital tract. Although no credible evidence is currently available to indicate that autoimmunity plays a role, nevertheless, this underscores the necessity to design vaccines strictly based on chlamydial-specific antigens and to avoid those displaying even minimal sequence homologies with host molecules. Current advances in C. trachomatis vaccine development as well as alternatives for designing new vaccines for this disease are discussed. A novel approach for chlamydia vaccine development, based on targeting endogenous dendritic cells, is described. PMID:25483666

  6. Improved impression cytology techniques for the immunopathological diagnosis of superficial viral infections

    PubMed Central

    Thiel, M; Bossart, W; Bernauer, W

    1997-01-01

    BACKGROUND—For epidemiological and therapeutic reasons early diagnosis of superficial viral infections is crucial. Conventional microbiological techniques are expensive, time consuming, and not sufficiently sensitive. In this study impression cytology techniques were evaluated to analyse their diagnostic potential in viral infections of the ocular surface.
METHOD—A Biopore membrane device instead of the original impression cytology technique was used to allow better quality and handling of the specimens. The impressions were processed, using monoclonal antibodies and immunoperoxidase or immunofluorescence techniques to assess the presence of herpes simplex virus, varicella zoster virus, or adenovirus antigens. Ocular surface specimens from healthy individuals (n=10) and from patients with suspected viral surface disease (n=19) were studied. Infected and non-infected cell cultures served as controls.
RESULTS—This modified technique of impression cytology allowed the collection of large conjunctival and corneal epithelial cell layers with excellent morphology. Immunocytological staining of these samples provided diagnostic results for all three viruses in patients with viral surface disease.
CONCLUSIONS—The use of Biopore membrane devices for the collection of ocular surface epithelia offers new diagnostic possibilities for external eye diseases. Immunopathological methods that are applied directly on these membrane devices can provide virological results within 1-4 hours. This contributes considerably to the clinical management of patients with infectious diseases of the ocular surface.

 PMID:9505824

  7. A novel mouse model of Schistosoma haematobium egg-induced immunopathology.

    PubMed

    Fu, Chi-Ling; Odegaard, Justin I; Herbert, De'Broski R; Hsieh, Michael H

    2012-01-01

    Schistosoma haematobium is the etiologic agent for urogenital schistosomiasis, a major source of morbidity and mortality for more than 112 million people worldwide. Infection with S. haematobium results in a variety of immunopathologic sequelae caused by parasite oviposition within the urinary tract, which drives inflammation, hematuria, fibrosis, bladder dysfunction, and increased susceptibility to urothelial carcinoma. While humans readily develop urogenital schistosomiasis, the lack of an experimentally-tractable model has greatly impaired our understanding of the mechanisms that underlie this important disease. We have developed an improved mouse model of S. haematobium urinary tract infection that recapitulates several aspects of human urogenital schistosomiasis. Following microinjection of purified S. haematobium eggs into the bladder wall, mice consistently develop macrophage-rich granulomata that persist for at least 3 months and pass eggs in their urine. Importantly, egg-injected mice also develop urinary tract fibrosis, bladder dysfunction, and various urothelial changes morphologically reminiscent of human urogenital schistosomiasis. As expected, S. haematobium egg-induced immune responses in the immediate microenvironment, draining lymph nodes, and systemic circulation are associated with a Type 2-dominant inflammatory response, characterized by high levels of interleukin-4, eosinophils, and IgE. Taken together, our novel mouse model may help facilitate a better understanding of the unique pathophysiological mechanisms of epithelial dysfunction, tissue fibrosis, and oncogenesis associated with urogenital schistosomiasis.

  8. Mucosal Herpes Immunity and Immunopathology to Ocular and Genital Herpes Simplex Virus Infections

    PubMed Central

    Chentoufi, Aziz Alami; BenMohamed, Lbachir

    2012-01-01

    Herpes simplex viruses type 1 and type 2 (HSV-1 and HSV-2) are amongst the most common human infectious viral pathogens capable of causing serious clinical diseases at every stage of life, from fatal disseminated disease in newborns to cold sores genital ulcerations and blinding eye disease. Primary mucocutaneous infection with HSV-1 & HSV-2 is followed by a lifelong viral latency in the sensory ganglia. In the majority of cases, herpes infections are clinically asymptomatic. However, in symptomatic individuals, the latent HSV can spontaneously and frequently reactivate, reinfecting the muco-cutaneous surfaces and causing painful recurrent diseases. The innate and adaptive mucosal immunities to herpes infections and disease remain to be fully characterized. The understanding of innate and adaptive immune mechanisms operating at muco-cutaneous surfaces is fundamental to the design of next-generation herpes vaccines. In this paper, the phenotypic and functional properties of innate and adaptive mucosal immune cells, their role in antiherpes immunity, and immunopathology are reviewed. The progress and limitations in developing a safe and efficient mucosal herpes vaccine are discussed. PMID:23320014

  9. The Immunopathologic Effects of Mycoplasma Pneumoniae and CARDS Toxin: A Primate Model.

    PubMed

    Maselli, Diego J; Medina, Jorge L; Brooks, Edward G; Coalson, Jacqueline J; Kannan, Thirumalai R; Winter, Vicki T; Principe, Molly; Cagle, Marianna P; Baseman, Joel B; Dube, Peter H; Peters, Jay I

    2017-09-15

    Mycoplasma pneumoniae infection has been linked to poor asthma outcomes. M. pneumoniae produces an ADP-ribosylating and vacuolating toxin called Community Acquired Respiratory Distress Syndrome (CARDS) toxin that has a major role in inflammation and airway dysfunction. The objective was to evaluate the immunopathological effects in primates exposed to M. pneumoniae or CARDS toxin. Thirteen baboons were exposed to M. pneumoniae or CARDS toxin. At day 7 and 14, bronchoalveolar lavage fluid was collected and analyzed for cell count, percent of each type of cell, CARDS toxin by PCR, CARDS toxin by antigen capture, eosinophilic cationic protein, and cytokine profiles. Serum IgM, IgG and IgE responses to CARDS toxin were measured. All animals had a necropsy for analysis of the histopathological changes on lungs. No animal developed signs of infection. The serological responses to CARDS toxin were variable. At day 14, 4 of 7 animals exposed to M. pneumoniae and all 4 animals exposed to CARDS toxin developed histological "asthma-like" changes. T-cell intracellular cytokine analysis revealed an increasing ratio of IL-4/IFN-γ over time. Both M. pneumoniae and CARDS toxin exposure resulted in similar histopathological pulmonary changes suggesting that CARDS toxin plays a major role in the inflammatory response.

  10. Immunopathology and cytokine responses in commercial broiler chickens with gangrenous dermatitis.

    PubMed

    Li, Guangxing; Lillehoj, Hyun S; Lee, Kyung Woo; Lee, Sung Hyen; Park, Myeong Seon; Jang, Seung I; Bauchan, Gary R; Gay, Cyril G; Ritter, G Donald; Bautista, Daniel A; Siragusa, Gregory R

    2010-08-01

    Gangrenous dermatitis (GD) is an emerging disease of increasing economic importance in poultry resulting from infection by Clostridium septicum and Clostridium perfringens type A. Lack of a reproducible disease model has been a major obstacle in understanding the immunopathology of GD. To gain better understanding of host-pathogen interactions in GD infection, we evaluated various immune parameters in two groups of birds from a recent commercial outbreak of GD, the first showing typical disease signs and pathological lesions (GD-like birds) and the second lacking clinical signs (GD-free birds). Our results revealed that GD-like birds showed: reduced T-cell and B-cell mitogen-stimulated lymphoproliferation; higher levels of serum nitric oxide and alpha-1-acid glycoprotein; greater numbers of K55(+), K1(+), CD8(+), and MHC class II(+) intradermal lymphocytes, and increased K55(+), K1(+), CD8(+), TCR1(+), TCR2(+), Bu1(+), and MHC class II(+) intestinal intraepithelial lymphocytes; and increased levels of mRNAs encoding proinflammatory cytokines and chemokines in skin compared with GD-free chickens. These results provide the first evidence of altered systemic and local (skin and intestine) immune responses in GD pathogenesis in chickens.

  11. Immunopathology of experimental Chagas' disease: binding of T cells to Trypanosoma cruzi-infected heart tissue.

    PubMed Central

    Mortatti, R C; Maia, L C; de Oliveira, A V; Munk, M E

    1990-01-01

    The immunopathology of Chagas' disease was studied in the experimental model of chronic infection in C57BL/10JT or mice. Sublethal infection with Trypanosoma cruzi, Y strain, induced specific antibodies and a delayed hypersensitivity response to parasite antigens. Mice developed chronic chagasic myocarditis but not skeletal muscle myositis. Binding of T cells to infected heart tissue was investigated during short-term cocultivation of lymphocytes with heart cryostat sections. T cells from infected mice and from normal controls bound equally to myocardium and liver sections from both infected and normal mice. A search in depth was attempted with cells heavily tagged with 99mTc. Labeled T cells from chagasic mice bound to both normal and infected myocardium slices. 99mTc-labeled T cells from controls gave the same binding values. Glass-adherent spleen cells behaved identically to T cells. Prior treatment of the tissue with serum from chronically infected mice did not increase the number of binding cells. Peritoneal macrophages tagged with 99mTc-sulfur colloid also bound to infected myocardium slices. The binding of macrophages was not changed by pretreatment of infected tissue with anti-T, cruzi antibodies. In short, this work did not detect any population of T cells or macrophages which could bind specifically to infected heart tissue to initiate an autoreactive process. Images PMID:2228230

  12. Chemokine receptor Ccr1 drives neutrophil-mediated kidney immunopathology and mortality in invasive candidiasis.

    PubMed

    Lionakis, Michail S; Fischer, Brett G; Lim, Jean K; Swamydas, Muthulekha; Wan, Wuzhou; Richard Lee, Chyi-Chia; Cohen, Jeffrey I; Scheinberg, Phillip; Gao, Ji-Liang; Murphy, Philip M

    2012-01-01

    Invasive candidiasis is the 4(th) leading cause of nosocomial bloodstream infection in the US with mortality that exceeds 40% despite administration of antifungal therapy; neutropenia is a major risk factor for poor outcome after invasive candidiasis. In a fatal mouse model of invasive candidiasis that mimics human bloodstream-derived invasive candidiasis, the most highly infected organ is the kidney and neutrophils are the major cellular mediators of host defense; however, factors regulating neutrophil recruitment have not been previously defined. Here we show that mice lacking chemokine receptor Ccr1, which is widely expressed on leukocytes, had selectively impaired accumulation of neutrophils in the kidney limited to the late phase of the time course of the model; surprisingly, this was associated with improved renal function and survival without affecting tissue fungal burden. Consistent with this, neutrophils from wild-type mice in blood and kidney switched from Ccr1(lo) to Ccr1(high) at late time-points post-infection, when Ccr1 ligands were produced at high levels in the kidney and were chemotactic for kidney neutrophils ex vivo. Further, when a 1∶1 mixture of Ccr1(+/+) and Ccr1(-/-) donor neutrophils was adoptively transferred intravenously into Candida-infected Ccr1(+/+) recipient mice, neutrophil trafficking into the kidney was significantly skewed toward Ccr1(+/+) cells. Thus, neutrophil Ccr1 amplifies late renal immunopathology and increases mortality in invasive candidiasis by mediating excessive recruitment of neutrophils from the blood to the target organ.

  13. TNF superfamily cytokines in the promotion of Th9 differentiation and immunopathology.

    PubMed

    Meylan, Françoise; Siegel, Richard M

    2017-01-01

    The tumor necrosis factor (TNF) receptors and their corresponding cytokine ligands have been implicated in many aspects of the biology of immune functions. TNF receptors have key roles during various stages of T cell homeostasis. Many of them can co-stimulate lymphocyte proliferation and cytokine production. Additionally, several TNF cytokines can regulate T cell differentiation, including promoting Th1, Th2, Th17, and more recently the newly described Th9 subset. Four TNF family cytokines have been identified as regulators for IL-9 production by T cells. OX40L, TL1A, and GITRL can promote Th9 formation but can also divert iTreg into Th9, while 4-1BBL seems to inhibit IL-9 production from iTreg and has not been studied for its ability to promote Th9 generation. Regulation of IL-9 production by TNF family cytokines has repercussions in vivo, including enhancement of anti-tumor immunity and immunopathology in allergic lung and ocular inflammation. Regulating T cell production of IL-9 through blockade or agonism of TNF family cytokine receptors may be a therapeutic strategy for autoimmune and allergic diseases and in tumor.

  14. A Novel Mouse Model of Schistosoma haematobium Egg-Induced Immunopathology

    PubMed Central

    Fu, Chi-Ling; Odegaard, Justin I.; Herbert, De'Broski R.; Hsieh, Michael H.

    2012-01-01

    Schistosoma haematobium is the etiologic agent for urogenital schistosomiasis, a major source of morbidity and mortality for more than 112 million people worldwide. Infection with S. haematobium results in a variety of immunopathologic sequelae caused by parasite oviposition within the urinary tract, which drives inflammation, hematuria, fibrosis, bladder dysfunction, and increased susceptibility to urothelial carcinoma. While humans readily develop urogenital schistosomiasis, the lack of an experimentally-tractable model has greatly impaired our understanding of the mechanisms that underlie this important disease. We have developed an improved mouse model of S. haematobium urinary tract infection that recapitulates several aspects of human urogenital schistosomiasis. Following microinjection of purified S. haematobium eggs into the bladder wall, mice consistently develop macrophage-rich granulomata that persist for at least 3 months and pass eggs in their urine. Importantly, egg-injected mice also develop urinary tract fibrosis, bladder dysfunction, and various urothelial changes morphologically reminiscent of human urogenital schistosomiasis. As expected, S. haematobium egg-induced immune responses in the immediate microenvironment, draining lymph nodes, and systemic circulation are associated with a Type 2-dominant inflammatory response, characterized by high levels of interleukin-4, eosinophils, and IgE. Taken together, our novel mouse model may help facilitate a better understanding of the unique pathophysiological mechanisms of epithelial dysfunction, tissue fibrosis, and oncogenesis associated with urogenital schistosomiasis. PMID:22479181

  15. Spontaneous murine lupus-like syndromes. Clinical and immunopathological manifestations in several strains.

    PubMed

    Andrews, B S; Eisenberg, R A; Theofilopoulos, A N; Izui, S; Wilson, C B; McConahey, P J; Murphy, E D; Roths, J B; Dixon, F J

    1978-11-01

    MRL/1 and BXSB male mice have a systemic lupus erythematosus (SLE)-like disease similar to but more acute than that occurring in NZB X W mice. The common elements of lymphoid hyperplasia, B-cell hyperactivity, autoantibodies, circulating immune complex (IC), complement consumption, IC glomerulonephritis with gp70 deposition, and thymic atrophy were found in all three kinds of SLE mice. On the basis of these common elements, SLE seen in these mice can be considered a single disease in the same sense that human SLE is one disease. The differences in the SLE expressed in the different mice are no greater than those found in an unselected series of humans with SLE. However, the significant quantitative and qualitative variations in abnormal immunologic expression suggest that different constellations of factors, genetic and/or pathophysiologic, may operate in the three murine strains and that each constellation is capable of leading, via its particular abnormal immunologic consequences, to the activation of common immunopathologic effector mechanisms that cause quite similar SLE-like syndromes. From an experimental point of view, the availability of several inbred murine strains of commonplace histocompatibility types that express an SLE-like syndrome makes possible innumerable manipulations which should help to elucidate the nature and cause(s) of this disorder.

  16. EGFR activation suppresses respiratory virus-induced IRF1-dependent CXCL10 production.

    PubMed

    Kalinowski, April; Ueki, Iris; Min-Oo, Gundula; Ballon-Landa, Eric; Knoff, David; Galen, Benjamin; Lanier, Lewis L; Nadel, Jay A; Koff, Jonathan L

    2014-07-15

    Airway epithelial cells are the primary cell type involved in respiratory viral infection. Upon infection, airway epithelium plays a critical role in host defense against viral infection by contributing to innate and adaptive immune responses. Influenza A virus, rhinovirus, and respiratory syncytial virus (RSV) represent a broad range of human viral pathogens that cause viral pneumonia and induce exacerbations of asthma and chronic obstructive pulmonary disease. These respiratory viruses induce airway epithelial production of IL-8, which involves epidermal growth factor receptor (EGFR) activation. EGFR activation involves an integrated signaling pathway that includes NADPH oxidase activation of metalloproteinase, and EGFR proligand release that activates EGFR. Because respiratory viruses have been shown to activate EGFR via this signaling pathway in airway epithelium, we investigated the effect of virus-induced EGFR activation on airway epithelial antiviral responses. CXCL10, a chemokine produced by airway epithelial cells in response to respiratory viral infection, contributes to the recruitment of lymphocytes to target and kill virus-infected cells. While respiratory viruses activate EGFR, the interaction between CXCL10 and EGFR signaling pathways is unclear, and the potential for EGFR signaling to suppress CXCL10 has not been explored. Here, we report that respiratory virus-induced EGFR activation suppresses CXCL10 production. We found that influenza virus-, rhinovirus-, and RSV-induced EGFR activation suppressed IFN regulatory factor (IRF) 1-dependent CXCL10 production. In addition, inhibition of EGFR during viral infection augmented IRF1 and CXCL10. These findings describe a novel mechanism that viruses use to suppress endogenous antiviral defenses, and provide potential targets for future therapies.

  17. EGFR activation suppresses respiratory virus-induced IRF1-dependent CXCL10 production

    PubMed Central

    Kalinowski, April; Ueki, Iris; Min-Oo, Gundula; Ballon-Landa, Eric; Knoff, David; Galen, Benjamin; Lanier, Lewis L.; Nadel, Jay A.

    2014-01-01

    Airway epithelial cells are the primary cell type involved in respiratory viral infection. Upon infection, airway epithelium plays a critical role in host defense against viral infection by contributing to innate and adaptive immune responses. Influenza A virus, rhinovirus, and respiratory syncytial virus (RSV) represent a broad range of human viral pathogens that cause viral pneumonia and induce exacerbations of asthma and chronic obstructive pulmonary disease. These respiratory viruses induce airway epithelial production of IL-8, which involves epidermal growth factor receptor (EGFR) activation. EGFR activation involves an integrated signaling pathway that includes NADPH oxidase activation of metalloproteinase, and EGFR proligand release that activates EGFR. Because respiratory viruses have been shown to activate EGFR via this signaling pathway in airway epithelium, we investigated the effect of virus-induced EGFR activation on airway epithelial antiviral responses. CXCL10, a chemokine produced by airway epithelial cells in response to respiratory viral infection, contributes to the recruitment of lymphocytes to target and kill virus-infected cells. While respiratory viruses activate EGFR, the interaction between CXCL10 and EGFR signaling pathways is unclear, and the potential for EGFR signaling to suppress CXCL10 has not been explored. Here, we report that respiratory virus-induced EGFR activation suppresses CXCL10 production. We found that influenza virus-, rhinovirus-, and RSV-induced EGFR activation suppressed IFN regulatory factor (IRF) 1-dependent CXCL10 production. In addition, inhibition of EGFR during viral infection augmented IRF1 and CXCL10. These findings describe a novel mechanism that viruses use to suppress endogenous antiviral defenses, and provide potential targets for future therapies. PMID:24838750

  18. The role of macrophage IL-10/innate IFN interplay during virus-induced asthma

    PubMed Central

    Zdrenghea, Mihnea T; Makrinioti, Heidi; Muresan, Adriana; Johnston, Sebastian L; Stanciu, Luminita A

    2015-01-01

    Activation through different signaling pathways results in two functionally different types of macrophages, the pro-inflammatory (M1) and the anti-inflammatory (M2). The polarization of macrophages toward the pro-inflammatory M1 phenotype is considered to be critical for efficient antiviral immune responses in the lung. Among the various cell types that are present in the asthmatic airways, macrophages have emerged as significant participants in disease pathogenesis, because of their activation during both the inflammatory and resolution phases, with an impact on disease progression. Polarized M1 and M2 macrophages are able to reversibly undergo functional redifferentiation into anti-inflammatory or pro-inflammatory macrophages, respectively, and therefore, macrophages mediate both processes. Recent studies have indicated a predominance of M2 macrophages in asthmatic airways. During a virus infection, it is likely that M2 macrophages would secrete higher amounts of the suppressor cytokine IL-10, and less innate IFNs. However, the interactions between IL-10 and innate IFNs during virus-induced exacerbations of asthma have not been well studied. The possible role of IL-10 as a therapy in allergic asthma has already been suggested, but the divergent roles of this suppressor molecule in the antiviral immune response raise concerns. This review attempts to shed light on macrophage IL-10–IFNs interactions and discusses the role of IL-10 in virus-induced asthma exacerbations. Whereas IL-10 is important in terminating pro-inflammatory and antiviral immune responses, the presence of this immune regulatory cytokine at the beginning of virus infection could impair the response to viruses and play a role in virus-induced asthma exacerbations. PMID:25430775

  19. Molecular and Functional Dissection of the H-2Db-Restricted Subdominant Cytotoxic T-Cell Response to Lymphocytic Choriomeningitis Virus

    PubMed Central

    Hudrisier, Denis; Riond, Joëlle; Gairin, Jean Edouard

    2001-01-01

    Infection of H-2b mice with lymphocytic choriomeningitis virus (LCMV) generates an H-2Db-restricted cytotoxic T-lymphocyte (CTL) response whose subdominant component is directed against the GP92-101 (CSANNSHHYI) epitope. The aim of this study was to identify the functional parameters accounting for this subdominance. We found that the two naturally occurring (genetically encoded and posttranslationally modified) forms of LCMV GP92-101 were immunogenic, did not act as T-cell antagonists, and bound efficiently to but were unable to form stable complexes with H-2Db, a crucial factor for immunodominance. Thus, the H-2Db-restricted subdominant CTL response to LCMV resulted not from altered T-cell activation but from impaired major histocompatibility complex presentation properties. PMID:11160751

  20. Molecular and functional dissection of the H-2Db-restricted subdominant cytotoxic T-cell response to lymphocytic choriomeningitis virus.

    PubMed

    Hudrisier, D; Riond, J; Gairin, J E

    2001-03-01

    Infection of H-2b mice with lymphocytic choriomeningitis virus (LCMV) generates an H-2Db-restricted cytotoxic T-lymphocyte (CTL) response whose subdominant component is directed against the GP92-101 (CSANNSHHYI) epitope. The aim of this study was to identify the functional parameters accounting for this subdominance. We found that the two naturally occurring (genetically encoded and posttranslationally modified) forms of LCMV GP92-101 were immunogenic, did not act as T-cell antagonists, and bound efficiently to but were unable to form stable complexes with H-2Db, a crucial factor for immunodominance. Thus, the H-2Db-restricted subdominant CTL response to LCMV resulted not from altered T-cell activation but from impaired major histocompatibility complex presentation properties.

  1. Proteome analysis of sheep B lymphocytes in the course of bovine leukemia virus-induced leukemia.

    PubMed

    Reichert, Michal

    2017-07-01

    Presented are the results of a study of the expression pattern of different proteins in the course of bovine leukemia virus-induced leukemia in experimental sheep and I discuss how the obtained data may be useful in gaining a better understanding of the pathogenesis of the disease, diagnosis, and for the selection of possible therapeutic targets. In cattle, the disease is characterized by life-long persistent lymphocytosis leading to leukemia/lymphoma in about 5% of infected animals. In sheep, as opposed to cattle, the course of the disease is always fatal and clinical symptoms usually occur within a three-year period after infection. For this reason, sheep are an excellent experimental model of retrovirus-induced leukemia. This model can be useful for human pathology, as bovine leukemia virus is closely related to human T-lymphotropic virus type 1. The data presented here provide novel insights into the molecular mechanisms of the bovine leukemia virus-induced tumorigenic process and indicate the potential marker proteins both for monitoring progression of the disease and as possible targets of pharmacological intervention. A study of the proteome of B lymphocytes from four leukemic sheep revealed 11 proteins with altered expression. Among them, cytoskeleton and intermediate filament proteins were the most abundant, although proteins belonging to the other functional groups, i.e. enzymes, regulatory proteins, and transcription factors, were also present. It was found that trypsin inhibitor, platelet factor 4, thrombospondin 1, vasodilator-stimulated phosphoprotein, fibrinogen alpha chain, zyxin, filamin-A, and vitamin D-binding protein were downregulated, whereas cleavage and polyadenylation specificity factor subunit 5, non-POU domain-containing octamer-binding protein and small glutamine-rich tetratricopeptide repeat-containing protein alpha were upregulated. Discussed are the possible mechanisms of their altered expression and its significance in the bovine

  2. MR VIGS: microRNA-based virus-induced gene silencing in plants.

    PubMed

    Chen, Weiwei; Zhang, Qi; Kong, Junhua; Hu, Feng; Li, Bin; Wu, Chaoqun; Qin, Cheng; Zhang, Pengcheng; Shi, Nongnong; Hong, Yiguo

    2015-01-01

    In plants, microRNA (miRNA)-based virus-induced gene silencing, dubbed MR VIGS, is a powerful technique to delineate the biological functions of genes. By targeting to a specific sequence, miRNAs can knock down expression of genes with fewer off-target effects. Here, using a modified Cabbage leaf curling virus (CaLCuV) and Tobacco rattle virus (TRV) as vectors, we describe two virus-based miRNA expression systems to perform MR VIGS for plant functional genomics assays.

  3. THE EFFECT OF CHEMICAL CARCINOGENS ON VIRUS-INDUCED RABBIT PAPILLOMAS

    PubMed Central

    Rous, Peyton; Friedewald, William F.

    1944-01-01

    The application of methylcholanthrene and tar to virus-induced papillomas of the domestic rabbit caused them to become carcinomatous with great rapidity, and the malignant changes were frequently multiple. In bringing on the cancers the chemical agents acted in their specific capacity as carcinogens, not as ordinary stimulants of cell proliferation. The cancers derived from the virus-infected cells and were of the same types as arise from these elements spontaneously after a much longer time. The evidence would seem to indicate that the chemical carcinogens acted by way of the virus. PMID:19871385

  4. RIG-I Signaling Is Essential for Influenza B Virus-Induced Rapid Interferon Gene Expression

    PubMed Central

    Österlund, Pamela; Westenius, Veera; Latvala, Sinikka; Diamond, Michael S.; Gale, Michael; Julkunen, Ilkka

    2015-01-01

    ABSTRACT Influenza B virus causes annual epidemics and, along with influenza A virus, accounts for substantial disease and economic burden throughout the world. Influenza B virus infects only humans and some marine mammals and is not responsible for pandemics, possibly due to a very low frequency of reassortment and a lower evolutionary rate than that of influenza A virus. Influenza B virus has been less studied than influenza A virus, and thus, a comparison of influenza A and B virus infection mechanisms may provide new insight into virus-host interactions. Here we analyzed the early events in influenza B virus infection and interferon (IFN) gene expression in human monocyte-derived macrophages and dendritic cells. We show that influenza B virus induces IFN regulatory factor 3 (IRF3) activation and IFN-λ1 gene expression with faster kinetics than does influenza A virus, without a requirement for viral protein synthesis or replication. Influenza B virus-induced activation of IRF3 required the fusion of viral and endosomal membranes, and nuclear accumulation of IRF3 and viral NP occurred concurrently. In comparison, immediate early IRF3 activation was not observed in influenza A virus-infected macrophages. Experiments with RIG-I-, MDA5-, and RIG-I/MDA5-deficient mouse fibroblasts showed that RIG-I is the critical pattern recognition receptor needed for the influenza B virus-induced activation of IRF3. Our results show that innate immune mechanisms are activated immediately after influenza B virus entry through the endocytic pathway, whereas influenza A virus avoids early IRF3 activation and IFN gene induction. IMPORTANCE Recently, a great deal of interest has been paid to identifying the ligands for RIG-I under conditions of natural infection, as many previous studies have been based on transfection of cells with different types of viral or synthetic RNA structures. We shed light on this question by analyzing the earliest step in innate immune recognition of

  5. Type I interferon is a therapeutic target for virus-induced lethal vascular damage.

    PubMed

    Baccala, Roberto; Welch, Megan J; Gonzalez-Quintial, Rosana; Walsh, Kevin B; Teijaro, John R; Nguyen, Anthony; Ng, Cherie T; Sullivan, Brian M; Zarpellon, Alessandro; Ruggeri, Zaverio M; de la Torre, Juan Carlos; Theofilopoulos, Argyrios N; Oldstone, Michael B A

    2014-06-17

    The outcome of a viral infection reflects the balance between virus virulence and host susceptibility. The clone 13 (Cl13) variant of lymphocytic choriomeningitis virus--a prototype of Old World arenaviruses closely related to Lassa fever virus--elicits in C57BL/6 and BALB/c mice abundant negative immunoregulatory molecules, associated with T-cell exhaustion, negligible T-cell-mediated injury, and high virus titers that persist. Conversely, here we report that in NZB mice, despite the efficient induction of immunoregulatory molecules and high viremia, Cl13 generated a robust cytotoxic T-cell response, resulting in thrombocytopenia, pulmonary endothelial cell loss, vascular leakage, and death within 6-8 d. These pathogenic events required type I IFN (IFN-I) signaling on nonhematopoietic cells and were completely abrogated by IFN-I receptor blockade. Thus, IFN-I may play a prominent role in hemorrhagic fevers and other acute virus infections associated with severe vascular pathology, and targeting IFN-I or downstream effector molecules may be an effective therapeutic approach.

  6. Virus-induced gene complementation reveals a transcription factor network in modulation of tomato fruit ripening

    PubMed Central

    Zhou, Tao; Zhang, Hang; Lai, Tongfei; Qin, Cheng; Shi, Nongnong; Wang, Huizhong; Jin, Mingfei; Zhong, Silin; Fan, Zaifeng; Liu, Yule; Wu, Zirong; Jackson, Stephen; Giovannoni, James J.; Rolin, Dominique; Gallusci, Philippe; Hong, Yiguo

    2012-01-01

    Plant virus technology, in particular virus-induced gene silencing, is a widely used reverse- and forward-genetics tool in plant functional genomics. However the potential of virus technology to express genes to induce phenotypes or to complement mutants in order to understand the function of plant genes is not well documented. Here we exploit Potato virus X as a tool for virus-induced gene complementation (VIGC). Using VIGC in tomato, we demonstrated that ectopic viral expression of LeMADS-RIN, which encodes a MADS-box transcription factor (TF), resulted in functional complementation of the non-ripening rin mutant phenotype and caused fruits to ripen. Comparative gene expression analysis indicated that LeMADS-RIN up-regulated expression of the SBP-box (SQUAMOSA promoter binding protein-like) gene LeSPL-CNR, but down-regulated the expression of LeHB-1, an HD-Zip homeobox TF gene. Our data support the hypothesis that a transcriptional network may exist among key TFs in the modulation of fruit ripening in tomato. PMID:23150786

  7. Respiratory syncytial virus infection and virus-induced inflammation are modified by contaminants of indoor air

    PubMed Central

    Foster, Serene; Bedford, Kirk J; Gould, Melanie E L; Coward, William R; Hewitt, Colin R A

    2003-01-01

    The airway epithelium is the first cellular component of the lung to be encountered by the particles and pathogens present in inhaled air. In addition to its role as a physical barrier, the immunological activity of the airway epithelium is an essential part of the pulmonary immune system. This means that the symptoms of lung diseases that involve immunological mechanisms are frequently exacerbated by infection of the airway epithelium with respiratory viruses. The virus-induced enhancement of immunological activity in infected epithelial cells is well characterized. However, the effects that contaminants of inhaled air have upon the infectivity and replication of respiratory viruses and the inflammation they cause, are comparatively unknown. In this study, we have shown that pre-exposure of airway epithelial cells to bacterial lipopolysaccharides or a proteolytically active house dust mite allergen, is able to, respectively, inhibit or enhance the level of cellular infection with respiratory syncytial virus and similarly alter virus-induced expression of the inflammatory chemokine interleukin-8. These results suggest that respiratory syncytial virus infection and the inflammation caused by respiratory syncytial virus may be modified by the biologically active contaminants of indoor air. PMID:12519309

  8. Unique role for ATG5 in neutrophil-mediated immunopathology during M. tuberculosis infection.

    PubMed

    Kimmey, Jacqueline M; Huynh, Jeremy P; Weiss, Leslie A; Park, Sunmin; Kambal, Amal; Debnath, Jayanta; Virgin, Herbert W; Stallings, Christina L

    2015-12-24

    Mycobacterium tuberculosis, a major global health threat, replicates in macrophages in part by inhibiting phagosome-lysosome fusion, until interferon-γ (IFNγ) activates the macrophage to traffic M. tuberculosis to the lysosome. How IFNγ elicits this effect is unknown, but many studies suggest a role for macroautophagy (herein termed autophagy), a process by which cytoplasmic contents are targeted for lysosomal degradation. The involvement of autophagy has been defined based on studies in cultured cells where M. tuberculosis co-localizes with autophagy factors ATG5, ATG12, ATG16L1, p62, NDP52, BECN1 and LC3 (refs 2-6), stimulation of autophagy increases bacterial killing, and inhibition of autophagy increases bacterial survival. Notably, these studies reveal modest (~1.5-3-fold change) effects on M. tuberculosis replication. By contrast, mice lacking ATG5 in monocyte-derived cells and neutrophils (polymorponuclear cells, PMNs) succumb to M. tuberculosis within 30 days, an extremely severe phenotype similar to mice lacking IFNγ signalling. Importantly, ATG5 is the only autophagy factor that has been studied during M. tuberculosis infection in vivo and autophagy-independent functions of ATG5 have been described. For this reason, we used a genetic approach to elucidate the role for multiple autophagy-related genes and the requirement for autophagy in resistance to M. tuberculosis infection in vivo. Here we show that, contrary to expectation, autophagic capacity does not correlate with the outcome of M. tuberculosis infection. Instead, ATG5 plays a unique role in protection against M. tuberculosis by preventing PMN-mediated immunopathology. Furthermore, while Atg5 is dispensable in alveolar macrophages during M. tuberculosis infection, loss of Atg5 in PMNs can sensitize mice to M. tuberculosis. These findings shift our understanding of the role of ATG5 during M. tuberculosis infection, reveal new outcomes of ATG5 activity, and shed light on early events in innate

  9. A project by the SIDeMaST Immunopathology Group on cutaneous vasculitis.

    PubMed

    Papini, M; Quaglino, P; La Placa, M; Marzano, A V

    2015-04-01

    Vasculitides are a challenge to the clinician, in terms of both diagnosis and therapy. Multiple classification systems have been implemented and the numerous classification schemes reflect the complexity of establishing a simple classification that could be functional for daily care. Although vasculitis classification has become increasingly elaborated, some areas remain ill defined. Some forms of vasculitis are still difficult to assign to a specific disease entity. Generally accepted operational criteria are available for many vasculitides, but for some entities there are no effective criteria. Moreover, diagnostic criteria for vasculitis with sufficient strength and/or confidence that can be universally accepted are not yet available. The need for diagnostic criteria validated and agreed upon is particularly relevant in the context of cutaneous vasculitis. The project of the SIDeMaST Italian Group of Immunopathology on cutaneous vasculitis is a national prospective observational study designed to develop and validate diagnostic criteria and to improve and validate classification criteria for cutaneous small vessel vasculitis also known as leukocytoclastic vasculitis (CLV). Primary objective of the study will also be that of developing the CUtaneous VAsculitis Severity Index (CUVASI). Secondary objectives of the project will be: 1) definition of the etiological agents that are most frequently associated with CLV; 2) search for possible correlations between causative agent and peculiar clinical and/or histopathological aspects; 3) evaluation of immunofluorescence pattern observed in this specific group of primitive cutaneous vasculitis in order to characterize the diagnostic sensitivity and specificity of this technique; 4) identification of a set of clinical investigations and laboratory tests to be performed for a correct CLV assessment. Actually 15 Italian dermatological clinics are contributing to the project and anticipated recruiting >100 patients with CLV

  10. Cytology, immunopathology and flow cytometry in the diagnosis of pleural and peritoneal effusions.

    PubMed

    Croonen, A M; van der Valk, P; Herman, C J; Lindeman, J

    1988-06-01

    There were 106 pleural and peritoneal effusions studied in order to investigate the contribution of immunocytochemistry and flow cytometry to routine cytologic diagnosis. A panel of antibodies (to cytokeratin, vimentin, human milk fat globule, epithelial membrane antigen and carcinoembryonic antigen) was applied to aceton-fixed slides, using immunoperoxydase and immunofluorescence methods. Flow cytometry was performed using a double labeling method, i.e., propidium iodide for DNA staining and keratin for labeling of epithelial cells. In this way DNA aneuploidy was more evident in the histograms when the fluid contained many reactive nonepithelial cells (lymphocytes). A designation of marker profiles was made for the three most frequently occurring diagnoses, i.e., reactive mesothelial proliferation (I), adenocarcinoma (II), and malignant mesothelioma (III). For the differentiation between adenocarcinoma and malignant mesothelioma, carcinoembryonic antigen was the most useful marker as 75% of the adenocarcinomas was carcinoembryonic antigen-positive and the malignant mesotheliomas were consistently negative. Furthermore, evident DNA-aneuploidy strongly supported the diagnosis of adenocarcinoma, as most malignant mesotheliomas were DNA-euploid, even though occasional DNA-aneuploidy was found in malignant mesotheliomas when different effusions from the same patient were examined. For the differentiation between reactive mesothelial cells and malignant mesothelioma human milk fat globule and/or epithelial membrane antigen, in this study proved to be most reliable, their presence strongly indicating malignancy. It is stressed that the method used (fixation, antibodies, washing procedures) can influence these findings. In 16 patients (17%) performing immunopathology and/or flow cytometry meant an important contribution to diagnosis.

  11. Virulence, immunopathology and transmissibility of selected strains of Mycobacterium tuberculosis in a murine model

    PubMed Central

    Marquina-Castillo, Brenda; García-García, Lourdes; Ponce-de-León, Alfredo; Jimenez-Corona, Maria-Eugenia; Bobadilla-del Valle, Miriam; Cano-Arellano, Bulmaro; Canizales-Quintero, Sergio; Martinez-Gamboa, Areli; Kato-Maeda, Midori; Robertson, Brian; Young, Douglas; Small, Peter; Schoolnik, Gary; Sifuentes-Osornio, Jose; Hernandez-Pando, Rogelio

    2009-01-01

    After encounter with Mycobacterium tuberculosis, a series of non-uniform immune responses are triggered that define the course of the infection. Eight M. tuberculosis strains were selected from a prospective population-based study of pulmonary tuberculosis patients (1995–2003) based on relevant clinical/epidemiological patterns and tested in a well-characterized BALB/c mouse model of progressive pulmonary tuberculosis. In addition, a new mouse model of transmissibility consisting of prolonged cohousing (up to 60 days) of infected and naïve animals was tested. Four phenotypes were defined based on strain virulence (mouse survival, lung bacillary load and tissue damage), immunology response (cytokine expression determined by real-time polymerase chain reaction) and transmissibility (lung bacillary loads and cutaneous delayed-type hypersensitivity in naïve animals).We identified four clearly defined strain phenotypes: (1) hypervirulent strain with non-protective immune response and highly transmissible; (2) virulent strain, associated with high expression of proinflammatory cytokines (tumour necrosis factor and interferon) and very low anti-inflammatory cytokine expression (interleukins 4 and 10), which induced accelerated death by immunopathology; (3) strain inducing efficient protective immunity with lower virulence, and (4) strain demonstrating strong and early macrophage activation (innate immunity) with delayed participation of acquired immunity (interferon expression). We were able to correlate virulent and transmissible phenotypes in the mouse model and markers of community transmission such as tuberculin reactivity among contacts, rapid progression to disease and cluster status. However, we were not able to find correlation with the other two phenotypes. Our new transmission model supported the hypothesis that among these strains increased virulence was linked to increased transmission. PMID:19191912

  12. The Antiviral Alkaloid Berberine Reduces Chikungunya Virus-Induced Mitogen-Activated Protein Kinase Signaling.

    PubMed

    Varghese, Finny S; Thaa, Bastian; Amrun, Siti Naqiah; Simarmata, Diane; Rausalu, Kai; Nyman, Tuula A; Merits, Andres; McInerney, Gerald M; Ng, Lisa F P; Ahola, Tero

    2016-11-01

    Chikungunya virus (CHIKV) has infected millions of people in the tropical and subtropical regions since its reemergence in the last decade. We recently identified the nontoxic plant alkaloid berberine as an antiviral substance against CHIKV in a high-throughput screen. Here, we show that berberine is effective in multiple cell types against a variety of CHIKV strains, also at a high multiplicity of infection, consolidating the potential of berberine as an antiviral drug. We excluded any effect of this compound on virus entry or on the activity of the viral replicase. A human phosphokinase array revealed that CHIKV infection specifically activated the major mitogen-activated protein kinase (MAPK) signaling pathways extracellular signal-related kinase (ERK), p38 and c-Jun NH2-terminal kinase (JNK). Upon treatment with berberine, this virus-induced MAPK activation was markedly reduced. Subsequent analyses with specific inhibitors of these kinases indicated that the ERK and JNK signaling cascades are important for the generation of progeny virions. In contrast to specific MAPK inhibitors, berberine lowered virus-induced activation of all major MAPK pathways and resulted in a stronger reduction in viral titers. Further, we assessed the in vivo efficacy of berberine in a mouse model and measured a significant reduction of CHIKV-induced inflammatory disease. In summary, we demonstrate the efficacy of berberine as a drug against CHIKV and highlight the importance of the MAPK signaling pathways in the alphavirus infectious cycle. Chikungunya virus (CHIKV) is a mosquito-borne virus that causes severe and persistent muscle and joint pain and has recently spread to the Americas. No licensed drug exists to counter this virus. In this study, we report that the alkaloid berberine is antiviral against different CHIKV strains and in multiple human cell lines. We demonstrate that berberine collectively reduced the virus-induced activation of cellular mitogen-activated protein kinase

  13. Single H2Kb, H2Db and double H2KbDb knockout mice: peripheral CD8+ T cell repertoire and anti-lymphocytic choriomeningitis virus cytolytic responses.

    PubMed

    Pérarnau, B; Saron, M F; Reina San Martin, B; Bervas, N; Ong, H; Soloski, M J; Smith, A G; Ure, J M; Gairin, J E; Lemonnier, F A

    1999-04-01

    Single H2Kb, H2Db and double H2KbDb homozygous knockout (KO) mice were generated and their peripheral CD8+ T cell repertoires compared to that of C57BL/6 (B6) mice. Limited (10-20%, H2Db), substantial (30-50%, H2Kb) and profound (90%, H2KbDb) reduction of peripheral CD8+ T cells was observed in KO mice, without Vbeta diversity alteration. Classical class Ia molecules therefore ensure most but not all of the peripheral CD8+ T cell repertoire education. As expected, H2Kb but also H2Db KO mice developed choriomeningitis following intracranial infection by lymphocytic choriomeningitis virus with the same kinetics, lethality and CD8+ cell implication as wild-type B6 mice. By contrast, H2KbDb (class Ia-Ib+) KO mice survived. Choriomeningitis of H2Db KO mice was linked to the development of a subdominant (in normal B6 mice) H2Kb-restricted cytotoxic T lymphocyte response. Mice expressing a restricted set of histocompatibility class I molecules should represent useful tools to evaluate the immunological potentials of individual MHC class I molecules.

  14. Recognition of viral antigens in 6/94 virus-induced T-cell-mediated cytotoxicity.

    PubMed

    Pickel, K; Solvay, M J

    1979-01-24

    Distinct events in the virus-stimulated T-cell-mediated cytotoxicity (V-CMC) have been investigated: 1.) The induction of V-CMC is possible by immunizing mice with infectious as well as UV-inactivated virus (parainfluenza type 1 strain 6/94), or with virus-infected cells either compatible or imcompatible with the recipient. 2). Recognition of viral antigens by the effector cells occurs independently of the H2 environment: Fractionation of effector cells on columns loaded with virus-infected cells eliminates virus-specific cytotoxic cells. Effector cells and cells on the column need not share H-2 antigens. The findings are discussed with regard to the H2 restriction of the virus induced T-cells mediated cytotoxicity.

  15. A virus-induced gene silencing method to study soybean cyst nematode parasitism in Glycine max

    PubMed Central

    2013-01-01

    Background Bean pod mottle virus (BPMV) based virus-induced gene silencing (VIGS) vectors have been developed and used in soybean for the functional analysis of genes involved in disease resistance to foliar pathogens. However, BPMV-VIGS protocols for studying genes involved in disease resistance or symbiotic associations with root microbes have not been developed. Findings Here we describe a BPMV-VIGS protocol suitable for reverse genetic studies in soybean roots. We use this method for analyzing soybean genes involved in resistance to soybean cyst nematode (SCN). A detailed SCN screening pipeline is described. Conclusions The VIGS method described here provides a new tool to identify genes involved in soybean-nematode interactions. This method could be adapted to study genes associated with any root pathogenic or symbiotic associations. PMID:23830484

  16. The methyltransferase Setdb2 mediates virus-induced susceptibility to bacterial superinfection

    PubMed Central

    Schliehe, Christopher; Swaminanthan, Savitha; Bosnjak, Berislav; Bauer, Lisa; Kandasamy, Richard K.; Griesshammer, Isabel M.; Kosack, Lindsay; Schmitz, Frank; Litvak, Vladimir; Sissons, James; Lercher, Alexander; Bhattacharya, Anannya; Khamina, Kseniya; Trivett, Anna L.; Tessarollo, Lino; Mesteri, Ildiko; Hladik, Anastasiya; Merkler, Doron; Kubicek, Stefan; Knapp, Sylvia; Epstein, Michelle M.; Bergthaler, Andreas

    2014-01-01

    Immune responses are tightly regulated to ensure efficient pathogen clearance while avoiding tissue damage. Here we report that SET domain bifurcated 2 (Setdb2) was the only protein lysine methyltransferase induced during influenza virus infection. Setdb2 expression depended on type-I interferon signaling and it repressed the expression of the neutrophil attractant Cxcl1 and other NF-κB target genes. This coincided with Setdb2 occupancy at the Cxcl1 promoter, which in the absence of Setdb2 displayed reduced H3K9 tri-methylation. Setdb2 hypomorphic gene-trap mice exhibited increased neutrophil infiltration in sterile lung inflammation and were less sensitive to bacterial superinfection upon influenza virus infection. This suggests that a Setdb2-mediated regulatory crosstalk between the type-I interferon and NF-κB pathways represents an important mechanism for virus-induced susceptibility to bacterial superinfection. PMID:25419628

  17. Epithelial-mesenchymal transition: molecular pathways of hepatitis viruses-induced hepatocellular carcinoma progression.

    PubMed

    Panebianco, Concetta; Saracino, Chiara; Pazienza, Valerio

    2014-08-01

    Hepatocellular carcinoma is the fifth most common tumor and the third cause of death for cancer in the world. Among the main causative agents of this tumor is the chronic infection by hepatitis viruses B and C, which establish a context of chronic inflammation degenerating in fibrosis, cirrhosis, and, finally, cancer. Recent findings, however, indicate that hepatitis viruses are not only responsible for cancer onset but also for its progression towards metastasis. Indeed, they are able to promote epithelial-mesenchymal transition, a process of cellular reprogramming underlying tumor spread. In this manuscript, we review the currently known molecular mechanisms by which hepatitis viruses induce epithelial-mesenchymal transition and, thus, hepatocellular carcinoma progression.

  18. [Submicroscopic features of cells in the microenvironment of hematopoietic development of virus-induced Rauscher leukemia].

    PubMed

    Butenko, Z A; Naumenko, O I

    1993-06-01

    The study was made of submicroscopic changes in the cells of bone marrow and splenic microenvironment in mice developing virus-induced Rauscher leukemia. As shown by electron microscopy, ultrastructural cytochemistry and immunocytochemistry, ultrastructure of the complexes from the stromal and hemopoietic cells underwent noticeable alterations as early as the first days after the virus introduction. This suggests that bone marrow is the primary target of the virus in Rauscher leukemia. Affections of the macrophages, dendrite, interdigital and lymphoid cells of the spleen reflect their participation in the body defenses against the virus. Progressive shift of erythropoiesis from the bone marrow into the spleen is related to morphofunctional changes in the microenvironmental cells. The findings may be useful in consideration of cellular pathogenetic aspects of acute leukemia.

  19. Strategies for altering plant traits using virus-induced gene silencing technologies.

    PubMed

    Lacomme, Christophe

    2015-01-01

    The rapid progress in genome sequencing and transcriptome analysis in model and crop plants has made possible the identification of a vast number of genes potentially associated with economically important complex traits. The ultimate goal is to assign functions to these genes by using forward and reverse genetic screens. Plant viruses have been developed for virus-induced gene silencing (VIGS) to generate rapid gene knockdown phenotypes in numerous plant species. To fulfill its potential for high-throughput phenomics, it is of prime importance to ensure that parameters conditioning the VIGS response, i.e., plant-virus interactions and associated loss-of-function screens, are "fit for purpose" and optimized to unequivocally conclude the role of a gene of interest in relation to a given trait. This chapter will review and discuss the different strategies used for the development of VIGS-based phenomics in model and crop species.

  20. Sequence of protein synthesis in cells infected by human cytomegalovirus: early and late virus-induced polypeptides.

    PubMed Central

    Stinski, M F

    1978-01-01

    At least 10 distinct early virus-induced polypeptides were synthesized within 0 to 6 h after infection of permissive cells with cytomegalovirus. These virus-induced polypeptides were synthesized before and independently of viral DNA replication. A majority of these early virus-induced polypeptides were also synthesized in nonpermissive cells, which do not permit viral DNA replication. The virus-induced polypeptides synthesized before viral DNA replication were hypothesized to be nonstructural proteins coded for by the cytomegalovirus genome. Their synthesis was found to be a sequential process, since three proteins preceded the synthesis of the others. Synthesis of all early cytomegalovirus-induced proteins was a transient process; the proteins reached their highest molar ratios before the onset of viral DNA replication. Late viral proteins were synthesized at the time of the onset of viral DNA replication, which was approximately 15 h after infection. Their synthesis was continuous and increased in molar ratios with the accumulation of newly synthesized viral DNA in the cells. The presence of the amino acid analog canavanine or azetadine during the early stage of infection suppressed viral DNA replication. The amount of viral DNA synthesis was directly correlated to the relative amount of late viral protein synthesis. Because synthesis of late viral proteins depended upon viral DNA replication, the proteins were not detected in permissive cells treated with an inhibitor of viral DNA synthesis or in nonpermissive cells that are restrictive for cytomegalovirus DNA replication. Images PMID:209215

  1. Virus-induced gene silencing and transient gene expression in soybean using Bean pod mottle virus infectious clones

    USDA-ARS?s Scientific Manuscript database

    Virus-induced gene silencing (VIGS) is a powerful and rapid approach for determining the functions of plant genes. The basis of VIGS is that a viral genome is engineered so that it can carry fragments of plant genes, typically in the 200-300 base pair size range. The recombinant viruses are used to ...

  2. Virus-induced gene silencing of RPC5-like subunit of RNA polymerase III caused pleiotropic effects in Nicotiana benthamiana

    USDA-ARS?s Scientific Manuscript database

    In eukaryotic cells, RNA polymerase III is highly conserved, contains 17 subunits and transcribes housekeeping genes such as ribosomal 50S rRNA, tRNA and other small RNAs. Functional roles of the RPC5 are poorly characterized in the literature. In this work, we report that virus-induced gene silenci...

  3. Evaluating the ability of the barley stripe mosaic virus-induced gene silencing system to simultaneously silence two wheat genes

    USDA-ARS?s Scientific Manuscript database

    Virus-induced gene silencing (VIGS) is an important tool for rapid assessment of gene function in plants. The ability of the Barley Stripe Mosaic Virus (BSMV) VIGS system to simultaneously silence two genes was assessed by comparing the extent of down-regulation of the wheat PDS and SGT1 genes afte...

  4. Evaluating the Ability of the Barley Stripe Mosaic Virus-Induced Gene Silencing System to Simultaneously Silence Two Wheat Genes

    USDA-ARS?s Scientific Manuscript database

    Virus-induced gene silencing (VIGS) is an important tool for rapid assessment of gene function in plants. The ability of the Barley stripe mosaic virus (BSMV) VIGS system to simultaneously silence two genes was assessed by comparing the extent of down-regulation of the wheat PDS and SGT1 genes afte...

  5. Virus-induced gene silencing in diverse maize lines using the Brome Mosaic virus-based silencing vector

    USDA-ARS?s Scientific Manuscript database

    Virus-induced gene silencing (VIGS) is a widely used tool for gene function studies in many plant species, though its use in monocots has been limited. Using a Brome mosaic virus (BMV) vector designed to silence the maize phytoene desaturase gene, a genetically diverse set of maize inbred lines was ...

  6. Transcriptome analyses and virus induced gene silencing identify genes in the Rpp4-mediated Asian soybean rust resistance pathway

    USDA-ARS?s Scientific Manuscript database

    Rpp4 (Resistance to Phakopsora pachyrhizi 4) confers resistance to P. pachyrhizi, the causal agent of Asian soybean rust (ASR). By combining expression profiling and virus induced gene silencing (VIGS), we are developing a genetic framework for Rpp4-mediated resistance. We measured gene expression i...

  7. Does developmental exposure to perflurooctanoic acid (PFOA) induce immunopathologies commonly observed in neurodevelopmental disorders?

    PubMed

    Hu, Qing; Franklin, Jason N; Bryan, Ian; Morris, Erin; Wood, Andrew; DeWitt, Jamie C

    2012-12-01

    Immune comorbidities often are reported in subsets of patients with neurodevelopmental disorders, including autism spectrum disorders and attention-deficit hyperactivity disorder. A common immunopathology is an increase in serum autoantibodies against myelin basic protein (MBP) relative to control patients. Increases in autoantibodies suggest possible deficits in self-tolerance that may contribute to the formation of brain-specific autoantibodies and subsequent effects on the central nervous system (CNS). Oppositely, the formation of neuronal autoantibodies may be a reaction to neuronal injury or damage. Perfluorooctanoic acid (PFOA) is an environmental pollutant that induces multisystem toxicity in rodent models, including immunotoxicity and neurotoxicity. We hypothesized that developmental exposure to PFOA may induce immunotoxicity similar to that observed in subsets of patients with neurodevelopmental disorders. To test this hypothesis, we evaluated subsets of T cells from spleens, serum markers of autoreactivity, and levels of MBP and T cell infiltration in the cerebella of adult offspring exposed to 0.02, 0.2, or 2mg/kg of PFOA given to dams from gestation through lactation. Litter weights of offspring from dams exposed to 2mg/kg of PFOA were reduced by 32.6%, on average, from postnatal day one (PND1) through weaning (PND21). The percentage of splenic CD4+CD25+Foxp3+ T cells in male and female offspring from dams exposed to 2mg/kg of PFOA was reduced by 22% relative to the control percentage. Ex vivo co-cultures of splenic CD4+CD25+ T cells and CD4+CD25- T cells from dosed male offspring produced less IL-10 relative to control cells. Anti-ssDNA, a serum marker of autoreactivity, was decreased by 26%, on average, in female offspring from dams exposed to 0.02 and 2mg/kg PFOA. No other endpoints were statistically different by dose. These data suggest that developmental PFOA exposure may impact T cell responses and may be a possible route to downstream effects on

  8. Unique role for ATG5 in PMN-mediated immunopathology during M. tuberculosis infection

    PubMed Central

    Kimmey, Jacqueline M.; Huynh, Jeremy P.; Weiss, Leslie A.; Park, Sunmin; Kambal, Amal; Debnath, Jayanta; Virgin, Herbert W.; Stallings, Christina L.

    2015-01-01

    Summary Paragraph Mycobacterium tuberculosis (Mtb), a major global health threat, replicates in macrophages (MΦ) in part by inhibiting phagosome-lysosome fusion, until IFN-γ activates the MΦ to traffic Mtb to the lysosome. How IFN-γ elicits this effect is unknown, but many studies suggest a role for macroautophagy (autophagy herein), a cellular process by which cytoplasmic contents are sequestered into an autophagosome and targeted for lysosomal degradation1. The involvement of autophagy has been defined based on studies in cultured MΦ or dendritic cells (DC) where Mtb colocalizes with autophagy (ATG) factors ATG5, ATG12, ATG16L1, p62, NDP52, Beclin1 and LC32–6, stimulation of autophagy increases bacterial killing6–8, and inhibition of autophagy allows for increased bacterial survival1,2,4,6,7. Notably, these studies reveal modest (e.g. 1.5- to 3-fold change) effects on Mtb replication. In contrast, Atg5fl/fl-LysM-Cre mice lacking ATG5 in monocyte-derived cells and neutrophils (polymorphic mononuclear cells, PMN) succumb to Mtb within 30 days4,9, an extremely severe phenotype similar to mice lacking IFN-γ signaling10,11. Importantly, ATG5 is the only ATG factor that has been studied during Mtb infection in vivo and autophagy-independent functions of ATG5 have been described12–18. For this reason, we used a genetic approach to elucidate the role for multiple ATG genes and the requirement for autophagy in resistance to Mtb infection in vivo. We have discovered that, contrary to expectation, autophagic capacity does not correlate with the outcome of Mtb infection. Instead, ATG5 plays a unique role in protection against Mtb by preventing PMN-mediated immunopathology. Furthermore, while ATG5 is dispensable in alveolar MΦ during Mtb infection, loss of Atg5 in PMN can sensitize mice to Mtb. These findings shift our understanding of the role of ATG5 during Mtb infection, reveal a new outcome of ATG5 activity, and shed light on early events in innate immunity

  9. Distinct immunopathologic characteristics of various types of chronic rhinosinusitis in adult Chinese.

    PubMed

    Cao, Ping-Ping; Li, Hua-Bin; Wang, Bao-Feng; Wang, Shui-Bin; You, Xue-Jun; Cui, Yong-Hua; Wang, De-Yun; Desrosiers, Martin; Liu, Zheng

    2009-09-01

    Chronic rhinosinusitis (CRS) with nasal polyps (CRSwNP) and without nasal polyps (CRSsNP) is reported to be different in inflammatory patterns of the sinonasal mucosa in white patients. Studies in nonwhite populations may further be helpful to understand the pathogenic mechanisms of CRS. To investigate the immunopathologic profiles of CRSwNP and CRSsNP in adult Chinese. Histologic characteristics of surgical samples were analyzed in 50 controls, 94 CRSsNP patients, and 151 CRSwNP patients. Tissue samples from 17 controls, 36 CRSsNP patients, and 45 CRSwNP patients were stained for CD3, CD4, CD8, CD20, CD68, myeloperoxidase, and dendritic cell lysosome-associated membrane protein. Expression profiles of transcription factors of T-cell subsets in relation to cytokines and a marker of natural killer T cell (Valpha24) were examined by means of quantitative RT-PCR. Over half of CRSwNP patients presented noneosinophilic inflammation. CRSwNP had a higher number of eosinophils, plasma cells, and CD3(+), CD8(+), CD20(+), and CD68(+) cells and a lower myeloperoxidase expression rate than CRSsNP. Expression levels of transcription factors and cytokines of T(H)1/T(H)2/T(H)17 were increased, whereas the expression rate of Forkhead box p3 and TGF-beta1 was decreased in both CRSsNP and CRSwNP compared with controls. Comparing CRSsNP and CRSwNP, CRSsNP had higher levels of IFN-gamma expression, whereas only eosinophilic CRSwNP demonstrated an enhanced expression of GATA-3 and IL-5. Compared with noneosinophilic CRSwNP, an exaggerated T(H)2/T(H)17 reaction and Valpha24 expression were found in eosinophilic CRSwNP. Both Chinese CRSsNP and CRSwNP patients demonstrate impaired regulatory T cell function and enhanced T(H)1/T(H)2/T(H)17 responses. CRSsNP is confirmed to be a predominant T(H)1 milieu, whereas T(H)2 skewed inflammation with predominant T(H)17 reactions, and infiltration of natural killer T cells can be demonstrated only in eosinophilic CRSwNP, but not in noneosinophilic

  10. Interleukin-1β Mediates Virus-Induced M2 Muscarinic Receptor Dysfunction and Airway Hyperreactivity

    PubMed Central

    Rynko, Abby E.; Fryer, Allison D.

    2014-01-01

    Respiratory viral infections are associated with the majority of asthma attacks. Inhibitory M2 receptors on parasympathetic nerves, which normally limit acetylcholine (ACh) release, are dysfunctional after respiratory viral infection. Because IL-1β is up-regulated during respiratory viral infections, we investigated whether IL-1β mediates M2 receptor dysfunction during parainfluenza virus infection. Virus-infected guinea pigs were pretreated with the IL-1β antagonist anakinra. In the absence of anakinra, viral infection increased bronchoconstriction in response to vagal stimulation but not to intravenous ACh, and neuronal M2 muscarinic receptors were dysfunctional. Pretreatment with anakinra prevented virus-induced increased bronchoconstriction and M2 receptor dysfunction. Anakinra did not change smooth muscle M3 muscarinic receptor response to ACh, lung viral loads, or blood and bronchoalveolar lavage leukocyte populations. Respiratory virus infection decreased M2 receptor mRNA expression in parasympathetic ganglia extracted from infected animals, and this was prevented by blocking IL-1β or TNF-α. Treatment of SK-N-SH neuroblastoma cells or primary cultures of guinea pig parasympathetic neurons with IL-1β directly decreased M2 receptor mRNA, and this was not synergistic with TNF-α treatment. Treating guinea pig trachea segment with TNF-α or IL-1β in vitro increased tracheal contractions in response to activation of airway nerves by electrical field stimulation. Blocking IL-1β during TNF-α treatment prevented this hyperresponsiveness. These data show that virus-induced hyperreactivity and M2 dysfunction involves IL-1β and TNF-α, likely in sequence with TNF-α causing production of IL-1β. PMID:24735073

  11. Novel Strategy To Protect against Influenza Virus-Induced Pneumococcal Disease without Interfering with Commensal Colonization

    PubMed Central

    Greene, Christopher J.; Marks, Laura R.; Hu, John C.; Reddinger, Ryan; Mandell, Lorrie; Roche-Hakansson, Hazeline; King-Lyons, Natalie D.

    2016-01-01

    Streptococcus pneumoniae commonly inhabits the nasopharynx as a member of the commensal biofilm. Infection with respiratory viruses, such as influenza A virus, induces commensal S. pneumoniae to disseminate beyond the nasopharynx and to elicit severe infections of the middle ears, lungs, and blood that are associated with high rates of morbidity and mortality. Current preventive strategies, including the polysaccharide conjugate vaccines, aim to eliminate asymptomatic carriage with vaccine-type pneumococci. However, this has resulted in serotype replacement with, so far, less fit pneumococcal strains, which has changed the nasopharyngeal flora, opening the niche for entry of other virulent pathogens (e.g., Streptococcus pyogenes, Staphylococcus aureus, and potentially Haemophilus influenzae). The long-term effects of these changes are unknown. Here, we present an attractive, alternative preventive approach where we subvert virus-induced pneumococcal disease without interfering with commensal colonization, thus specifically targeting disease-causing organisms. In that regard, pneumococcal surface protein A (PspA), a major surface protein of pneumococci, is a promising vaccine target. Intradermal (i.d.) immunization of mice with recombinant PspA in combination with LT-IIb(T13I), a novel i.d. adjuvant of the type II heat-labile enterotoxin family, elicited strong systemic PspA-specific IgG responses without inducing mucosal anti-PspA IgA responses. This response protected mice from otitis media, pneumonia, and septicemia and averted the cytokine storm associated with septic infection but had no effect on asymptomatic colonization. Our results firmly demonstrated that this immunization strategy against virally induced pneumococcal disease can be conferred without disturbing the desirable preexisting commensal colonization of the nasopharynx. PMID:27001538

  12. Pleiotropic Effects of Levofloxacin, Fluoroquinolone Antibiotics, against Influenza Virus-Induced Lung Injury.

    PubMed

    Enoki, Yuki; Ishima, Yu; Tanaka, Ryota; Sato, Keizo; Kimachi, Kazuhiko; Shirai, Tatsuya; Watanabe, Hiroshi; Chuang, Victor T G; Fujiwara, Yukio; Takeya, Motohiro; Otagiri, Masaki; Maruyama, Toru

    2015-01-01

    Reactive oxygen species (ROS) and nitric oxide (NO) are major pathogenic molecules produced during viral lung infections, including influenza. While fluoroquinolones are widely used as antimicrobial agents for treating a variety of bacterial infections, including secondary infections associated with the influenza virus, it has been reported that they also function as anti-oxidants against ROS and as a NO regulator. Therefore, we hypothesized that levofloxacin (LVFX), one of the most frequently used fluoroquinolone derivatives, may attenuate pulmonary injuries associated with influenza virus infections by inhibiting the production of ROS species such as hydroxyl radicals and neutrophil-derived NO that is produced during an influenza viral infection. The therapeutic impact of LVFX was examined in a PR8 (H1N1) influenza virus-induced lung injury mouse model. ESR spin-trapping experiments indicated that LVFX showed scavenging activity against neutrophil-derived hydroxyl radicals. LVFX markedly improved the survival rate of mice that were infected with the influenza virus in a dose-dependent manner. In addition, the LVFX treatment resulted in a dose-dependent decrease in the level of 8-hydroxy-2'-deoxyguanosine (a marker of oxidative stress) and nitrotyrosine (a nitrative marker) in the lungs of virus-infected mice, and the nitrite/nitrate ratio (NO metabolites) and IFN-γ in BALF. These results indicate that LVFX may be of substantial benefit in the treatment of various acute inflammatory disorders such as influenza virus-induced pneumonia, by inhibiting inflammatory cell responses and suppressing the overproduction of NO in the lungs.

  13. Poorly Cross-Linked Peptidoglycan in MRSA Due to mecA Induction Activates the Inflammasome and Exacerbates Immunopathology.

    PubMed

    Müller, Sabrina; Wolf, Andrea J; Iliev, Iliyan D; Berg, Bethany L; Underhill, David M; Liu, George Y

    2015-11-11

    Methicillin-resistant S. aureus (MRSA) is a leading health problem. Compared to methicillin-sensitive S. aureus, MRSA infections are associated with greater morbidity and mortality, but the mechanisms underlying MRSA pathogenicity are unclear. Here we show that the protein conferring β-lactam antibiotic resistance, penicillin-binding protein 2A (encoded by the mecA gene), directly contributes to pathogenicity during MRSA infection. MecA induction leads to a reduction in peptidoglycan cross-linking that allows for enhanced degradation and detection by phagocytes, resulting in robust IL-1β production. Peptidoglycan isolated from β-lactam-challenged MRSA strongly induces the NLRP3 inflammasome in macrophages, but these effects are lost upon peptidoglycan solubilization. Mutant MRSA bacteria with naturally occurring reduced peptidoglycan cross-links induce high IL-1β levels in vitro and cause increased pathology in vivo. β-lactam treatment of MRSA skin infection exacerbates immunopathology, which is IL-1 dependent. Thus, antibiotic-induced expression of mecA during MRSA skin infection contributes to immunopathology by altering peptidoglycan structure.

  14. Immunopathologic Changes in the Thymus of Calves Pre-infected with BVDV and Challenged with BHV-1.

    PubMed

    Romero-Palomo, F; Risalde, M A; Gómez-Villamandos, J C

    2017-04-01

    The aim of this work was to investigate the effect of pre-infection with bovine viral diarrhoea virus (BVDV) on thymus immune cells from calves challenged with bovine herpesvirus 1 (BHV-1). Twelve Friesian calves, aged 8 to 9 months, were inoculated with non-cytopathic BVDV-1. Ten of them were subsequently challenged with BHV-1 and euthanized in batches of two at 1, 2, 4, 7 or 14 dpi with BHV-1. The other two calves were euthanized prior to the second inoculation and were used as BVDV-infected controls. A further 10 calves were inoculated solely with BHV-1 and euthanized at the same time points. Two calves were not inoculated with any agent and were used as negative controls. Quantitative changes in immune cells were evaluated with immunohistochemical methods to compare coinfected calves and calves challenged only with BHV-1. The results of this study pointed out BVDV as responsible for the thymic lesions observed in the experiment as well as for the majority of immunopathologic changes, including a downregulation of Foxp3 lymphocytes and TGFβ, which reverted as BVDV was cleared, and an overexpression of medullary CD8+ T cells. However, despite not inducing evident lesions in the thymus, BHV-1 seemed to prompt some immune alterations. Collectively, these data contribute to the knowledge on the immunopathologic alterations of the thymus during BVDV infections, and its importance in the development of secondary infections. © 2015 Blackwell Verlag GmbH.

  15. Cowpox virus induces interleukin-10 both in vitro and in vivo

    PubMed Central

    Spesock, April H.; Barefoot, Brice E.; Ray, Caroline A.; Kenan, Daniel J.; Gunn, Michael D.; Ramsburg, Elizabeth A.; Pickup, David J.

    2011-01-01

    Cowpox virus infection induces interleukin-10 (IL-10) production from mouse bone marrow-derived dendritic cells (BMDCs) or cells of the mouse macrophage line (RAW264.7) at about 1800 pg/ml, whereas infections with vaccinia virus (strains WR or MVA) induced much less IL-10. Similarly, in vivo, IL-10 levels in bronchoalveolar lavage fluids of mice infected with cowpox virus were significantly higher than those after vaccinia virus infection. However, after intranasal cowpox virus infection, although dendritic and T-cell accumulations in the lungs of IL-10 deficient mice were greater than those in wild-type mice, weight-loss and viral burdens were not significantly different. IL-10 deficient mice were more susceptible than wild-type mice to reinfection with cowpox virus even though titers of neutralizing antibodies and virus-specific CD8 T cells were similar between IL-10 deficient and wild-type mice. Greater bronchopneumonia in IL-10 deficient mice than wild-type mice suggests that IL-10 contributes to the suppression of immunopathology in the lungs. PMID:21658738

  16. Cross-protection against lymphocytic choriomeningitis virus mediated by a CD4+ T-cell clone specific for an envelope glycoprotein epitope of Lassa virus.

    PubMed Central

    La Posta, V J; Auperin, D D; Kamin-Lewis, R; Cole, G A

    1993-01-01

    Recombinant vaccinia virus expressing the Lassa virus (LV) envelope glycoprotein precursor, V-LSGPC, was used to study the basis of LV-induced cross-protective immunity against the closely related arenavirus lymphocytic choriomeningitis virus (LCMV). C3H/HeJ mice primed with V-LSGPC developed neither circulating antibodies nor CD8+ cytotoxic T cells specific for LCMV, yet they resisted a normally lethal LCMV challenge. Spleen cells from such mice gave a proliferative response to LCMV in vitro that was inhibitable by anti-CD4 antibody. Synthetic peptides corresponding to predicted T-cell sites common to the envelope glycoprotein precursor (GP-C) of LV and that of LCMV were used to map the specificity of the proliferative response to an epitope located between amino acids 403 and 417 of LV GP-C. Several CD4+ T-cell clones specific for the 403-417 peptide were isolated and found to produce gamma interferon in response to both the peptide and LCMV. One of these clones, C9, was selected for further study. C9 lysed I-AK-bearing target cells, and when adoptively transferred to C3H/HeJ mice, it was capable of mediating both a peptide-specific delayed hypersensitivity reaction and resistance to lethal LCMV challenge. These collective findings demonstrate, for the first time, that CD4+ T cells can play a major role in arenavirus-specific cross-protective immunity. PMID:7684468

  17. Identification of Amino Acid Residues Critical for the Anti-Interferon Activity of the Nucleoprotein of the Prototypic Arenavirus Lymphocytic Choriomeningitis Virus ▿

    PubMed Central

    Martínez-Sobrido, Luis; Emonet, Sébastien; Giannakas, Panagiotis; Cubitt, Beatrice; García-Sastre, Adolfo; de la Torre, Juan C.

    2009-01-01

    Lymphocytic choriomeningitis virus (LCVM) nucleoprotein (NP) counteracts the host type I interferon (IFN) response by inhibiting activation of the IFN regulatory factor 3 (IRF3). In this study, we have mapped the regions and specific amino acid residues within NP involved in its anti-IFN activity. We identified a region spanning residues 382 to 386 as playing a critical role in the IFN-counteracting activity of NP. Alanine substitutions at several positions within this region resulted in NP mutants that lacked the IFN-counteracting activity but retained their functions in virus RNA synthesis and assembly of infectious particles. We used reverse genetics to rescue a recombinant LCMV strain carrying mutation D382A in its NP [rLCMV/NP*(D382A)]. Compared to wild-type (WT) LCMV, rLCMV/NP*(D382A) exhibited a higher level of attenuation in IFN-competent than IFN-deficient cells. In addition, A549 cells infected with rLCMV/NP*(D382A), but not with WT LCMV, produced IFN and failed to rescue replication of the IFN-sensitive Newcastle disease virus. PMID:19710144

  18. Inhibition of immunologic injury of cultured cells infected with lymphocytic choriomeningitis virus: role of defective interfering virus in regulating viral antigenic expression

    PubMed Central

    Welsh, RM; Oldstone, MBA

    1977-01-01

    The expression of viral antigens on the surfaces of lymphocytic choriomeningitis virus (LCMV)-infected L-929 cells peaked 2-4 days postinfection and thereafter precipitously declined. Little or no viral antigen was expressed on the plasma membrane surfaces of persistently infected cells, but LCMV antigens were clearly present in the cytoplasms of most of those cells. Cells early after acute infection (days 2-4) were lysed by both virus-specific antibody and complement (C) and immune T lymphocytes. To the contrary, antibody and C did not kill persistently infected cells, but T lymphocytes did kill such cells although at a lower efficiency than acutely infected cells. The expression of viral antigens on the surfaces of infected cells was regulated by the virus- cell interaction in the absence of immune reagents and was closely associated with defective interfering (DI) LCMV interference. DI LCMV, per se, blocked the synthesis and cell surface expression of LCMV antigens, and DI LCMV generation immediately preceded a precipitous reduction in cell surface antigenicity during the acute infection. Persistently infected cells produced DI LCMV but no detectable S LCMV. Peritoneal cells isolated from mice persistently infected with LCMV resembled cultured persistently infected cells in their reduced expression of cell surface antigens and their resistance to LCMV superinfection. It is proposed that DI virus-mediated interference with viral protein synthesis may allow cells to escape immune surveillance during persistent infections. PMID:301173

  19. Characterization of the T cell response to human rhinovirus in children: implications for understanding the immunopathology of the common cold.

    PubMed

    Wimalasundera, S S; Katz, D R; Chain, B M

    1997-09-01

    Human rhinovirus (HRV) is a frequent respiratory pathogen, responsible for a large proportion of cases of the "common cold" and linked to acute asthma, especially in children. T cell responses to HRV and their contribution to HRV-associated pathology were investigated. T cells were obtained from tonsils removed from children at routine tonsillectomy. Proliferative and cytokine responses were measured after in vitro restimulation with purified HRV preparations of both major and minor serotypes. Most tonsils tested showed T cell proliferation, and responses to multiple serotypes in one tonsil were observed frequently. Responding T cells were CD4-positive and produced interleukin-2 and interferon-gamma but no interleukin-4. Thus, children respond to HRV, a proportion of the response is serotype-cross-reactive, and a Th1 reaction predominates. In addition to contributing to protection, this response may enhance expression of virus receptor and be implicated in the immunopathology of HRV infection.

  20. Prevention of Herpes Simplex Virus Induced Stromal Keratitis by a Glycoprotein B-Specific Monoclonal Antibody

    PubMed Central

    Krawczyk, Adalbert; Dirks, Miriam; Kasper, Maren; Buch, Anna; Dittmer, Ulf; Giebel, Bernd; Wildschütz, Lena; Busch, Martin; Goergens, Andre; Schneweis, Karl E.; Eis-Hübinger, Anna M.; Sodeik, Beate; Heiligenhaus, Arnd; Roggendorf, Michael; Bauer, Dirk

    2015-01-01

    The increasing incidence of acyclovir (ACV) and multidrug-resistant strains in patients with corneal HSV-1 infections leading to Herpetic Stromal Keratitis (HSK) is a major health problem in industrialized countries and often results in blindness. To overcome this obstacle, we have previously developed an HSV-gB-specific monoclonal antibody (mAb 2c) that proved to be highly protective in immunodeficient NOD/SCID-mice towards genital infections. In the present study, we examined the effectivity of mAb 2c in preventing the immunopathological disease HSK in the HSK BALB/c mouse model. Therefore, mice were inoculated with HSV-1 strain KOS on the scarified cornea to induce HSK and subsequently either systemically or topically treated with mAb 2c. Systemic treatment was performed by intravenous administration of mAb 2c 24 h prior to infection (pre-exposure prophylaxis) or 24, 40, and 56 hours after infection (post-exposure immunotherapy). Topical treatment was performed by periodical inoculations (5 times per day) of antibody-containing eye drops as control, starting at 24 h post infection. Systemic antibody treatment markedly reduced viral loads at the site of infection and completely protected mice from developing HSK. The administration of the antiviral antibody prior or post infection was equally effective. Topical treatment had no improving effect on the severity of HSK. In conclusion, our data demonstrate that mAb 2c proved to be an excellent drug for the treatment of corneal HSV-infections and for prevention of HSK and blindness. Moreover, the humanized counterpart (mAb hu2c) was equally effective in protecting mice from HSV-induced HSK when compared to the parental mouse antibody. These results warrant the future development of this antibody as a novel approach for the treatment of corneal HSV-infections in humans. PMID:25587898

  1. A novel PRD I and TG binding activity involved in virus-induced transcription of IFN-A genes.

    PubMed Central

    Génin, P; Bragança, J; Darracq, N; Doly, J; Civas, A

    1995-01-01

    Comparative analysis of the inducible elements of the mouse interferon A4 and A11 gene promoters (IE-A4 and IE-A11) by transient transfection experiments, DNase 1 footprinting and electrophoretic mobility shift assays resulted in identification of a virus-induced binding activity suggested to be involved in NDV-induced activation of transcription of these genes. The virus-induced factor, termed VIF, is activated early by contact of virions with cells. It specifically recognizes the PRD I-like domain shared by both inducible elements, as well as the TG-like domain of IE-A4. This factor, distinct from the IRF-1, IRF-2 and the alpha F1 binding proteins and presenting a different affinity pattern from that of the TG protein, is proposed as a candidate for IFN-type I gene regulation. Images PMID:8559665

  2. Development of Virus-Induced Gene Expression and Silencing Vector Derived from Grapevine Algerian Latent Virus

    PubMed Central

    Park, Sang-Ho; Choi, Hoseong; Kim, Semin; Cho, Won Kyong; Kim, Kook-Hyung

    2016-01-01

    Grapevine Algerian latent virus (GALV) is a member of the genus Tombusvirus in the Tombusviridae and infects not only woody perennial grapevine plant but also herbaceous Nicotiana benthamiana plant. In this study, we developed GALV-based gene expression and virus-induced gene silencing (VIGS) vectors in N. benthamiana. The GALV coat protein deletion vector, pGMG, was applied to express the reporter gene, green fluorescence protein (GFP), but the expression of GFP was not detected due to the necrotic cell death on the infiltrated leaves. The p19 silencing suppressor of GALV was engineered to inactivate its expression and GFP was successfully expressed with unrelated silencing suppressor, HC-Pro, from soybean mosaic virus. The pGMG vector was used to knock down magnesium chelatase (ChlH) gene in N. benthamaina and the silencing phenotype was clearly observed on systemic leaves. Altogether, the GALV-derived vector is expected to be an attractive tool for useful gene expression and VIGS vectors in grapevine as well as N. benthamiana. PMID:27493613

  3. Development of a virus induced gene silencing vector from a legumes infecting tobamovirus.

    PubMed

    Várallyay, Eva; Lichner, Zsuzsanna; Sáfrány, Judit; Havelda, Z; Salamon, P; Bisztray, Gy; Burgyán, J

    2010-12-01

    Medicago truncatula, the model plant of legumes, is well characterized, but there is only a little knowledge about it as a viral host. Viral vectors can be used for expressing foreign genes or for virus-induced gene silencing (VIGS), what is a fast and powerful tool to determine gene functions in plants. Viral vectors effective on Nicotiana benthamiana have been constructed from a number of viruses, however, only few of them were effective in other plants. A Tobamovirus, Sunnhemp mosaic virus (SHMV) systemically infects Medicago truncatula without causing severe symptoms. To set up a viral vector for Medicago truncatula, we prepared an infectious cDNA clone of SHMV. We constructed two VIGS vectors differing in the promoter element to drive foreign gene expression. The vectors were effective both in the expression and in the silencing of a transgene Green Fluorescent Protein (GFP) and in silencing of an endogenous gene Phytoene desaturase (PDS) on N. benthamiana. Still only one of the vectors was able to successfully silence the endogenous Chlorata 42 gene in M. truncatula.

  4. Incidence of Alpha-Herpes virus induced ocular disease in Suriname.

    PubMed

    Adhin, Malti R; Grunberg, Meritha G; Labadie-Bracho, Mergiory; Pawiroredjo, Jerrel

    2012-12-01

    Herpes simplex virus (HSV) infection of the corneal stroma is the most prominent cause of scar formation impairing visual acuity and HSV keratitis is the leading cause of corneal opacity throughout the world. Suriname lacked test systems for microbial causes of ocular disease, therefore a polymerase chain reaction-based Herpes virus assay was introduced, enabling prompt recognition, and timely treatment, preventing progressive eye damage. The incidence and epidemiology of Herpes simplex virus type 1 (HSV-1), type 2 (HSV-2), and varicella zoster virus (VZV) in ocular disease in Suriname was assessed. In a cross-sectional prospective study, ocular swabs were collected from 91 patients with a presumptive α-Herpes virus ocular infection attending the Academic Hospital between November 2008 and August 2010 and were tested by a PCR-based α-Herpes virus assay. Alpha-Herpes virus ophthalmic infections were caused predominantly by HSV-1 with a prevalence of 31%. The prevalences of VZV, HSV-2, and a mixed HSV-1/HSV-2 infection were 4%, 3%, and 2%, respectively. The first reported annual incidence of herpetic induced ocular disease in Suriname was estimated at 11.4 per 100,000 person-years (95% CI, 4.8-18.1). No clear age, ethnic or gender dependent difference in incidence was observed. The information obtained on α-Herpes virus positive ocular infections and the distribution of subtypes provided the first insight in the South American situation of α-Herpes virus induced ocular disease.

  5. Foxtail Mosaic Virus-Induced Gene Silencing in Monocot Plants1[OPEN

    PubMed Central

    Liu, Na; Xie, Ke; Jia, Qi; Zhao, Jinping; Chen, Tianyuan; Li, Huangai; Wei, Xiang; Diao, Xianmin; Hong, Yiguo

    2016-01-01

    Virus-induced gene silencing (VIGS) is a powerful technique to study gene function in plants. However, very few VIGS vectors are available for monocot plants. Here we report that Foxtail mosaic virus (FoMV) can be engineered as an effective VIGS system to induce efficient silencing of endogenous genes in monocot plants including barley (Hordeum vulgare L.), wheat (Triticum aestivum) and foxtail millet (Setaria italica). This is evidenced by FoMV-based silencing of phytoene desaturase (PDS) and magnesium chelatase in barley, of PDS and Cloroplastos alterados1 in foxtail millet and wheat, and of an additional gene IspH in foxtail millet. Silencing of these genes resulted in photobleached or chlorosis phenotypes in barley, wheat, and foxtail millet. Furthermore, our FoMV-based gene silencing is the first VIGS system reported for foxtail millet, an important C4 model plant. It may provide an efficient toolbox for high-throughput functional genomics in economically important monocot crops. PMID:27225900

  6. A virus-induced gene silencing approach to understanding alkaloid metabolism in Catharanthus roseus

    PubMed Central

    Liscombe, David K.; O’Connor, Sarah E.

    2011-01-01

    The anticancer agents vinblastine and vincristine are bisindole alkaloids derived from coupling vindoline and catharanthine, monoterpenoid indole alkaloids produced exclusively by Madagascar periwinkle (Catharanthus roseus) plants. Industrial production of vinblastine and vincristine currently relies on isolation from C. roseus leaves, a process that affords these compounds in 0.0003–0.01% yields. Metabolic engineering efforts to improve alkaloid content or provide alternative sources of the bisindole alkaloids ultimately rely on the isolation and characterization of the genes involved. Several vindoline biosynthetic genes have been isolated, and the cellular and subcellular organization of the corresponding enzymes has been well studied. However, due to the leaf-specific localization of vindoline biosynthesis, and the lack of production of this precursor in cell suspension and hairy root cultures of C. roseus, further elucidation of this pathway demands the development of reverse genetics approaches to assay gene function in planta. The bipartite pTRV vector system is a Tobacco Rattle Virus-based virus-induced gene silencing (VIGS) platform that has provided efficient and effective means to assay gene function in diverse plant systems. We have developed a VIGS method to investigate gene function in C. roseus plants using the pTRV vector system. The utility of this approach in understanding gene function in C. roseus leaves is demonstrated by silencing known vindoline biosynthetic genes previously characterized in vitro. PMID:21802100

  7. Compromised virus-induced gene silencing in RDR6-deficient plants.

    PubMed

    Vaistij, Fabián E; Jones, Louise

    2009-03-01

    RNA silencing in plants serves as a potent antiviral defense mechanism through the action of small interfering RNAs (siRNAs), which direct RNA degradation. siRNAs can be derived directly from the viral genome or via the action of host-encoded RNA-dependent RNA polymerases (RDRs). Plant genomes encode multiple RDRs, and it has been demonstrated that plants defective for RDR6 hyperaccumulate several classes of virus. In this study, we compared the effectiveness of virus-induced gene silencing (VIGS) and RNA-directed DNA methylation (RdDM) in wild-type and RDR6-deficient Nicotiana benthamiana plants. For the potexvirus Potato virus X (PVX) and the potyvirus Plum pox virus (PPV), the efficiency of both VIGS and RdDM were compromised in RDR6-defective plants despite accumulating high levels of viral siRNAs similar to infection of wild-type plants. The reduced efficiency of VIGS and RdDM was unrelated to the size class of siRNA produced and, at least for PVX, was not dependent on the presence of the virus-encoded silencing suppressor protein, 25K. We suggest that primary siRNAs produced from PVX and PPV in the absence of RDR6 may not be good effectors of silencing and that RDR6 is required to produce secondary siRNAs that drive a more effective antiviral response.

  8. Functional analyses of cellulose synthase genes in flax (Linum usitatissimum) by virus-induced gene silencing.

    PubMed

    Chantreau, Maxime; Chabbert, Brigitte; Billiard, Sylvain; Hawkins, Simon; Neutelings, Godfrey

    2015-12-01

    Flax (Linum usitatissimum) bast fibres are located in the stem cortex where they play an important role in mechanical support. They contain high amounts of cellulose and so are used for linen textiles and in the composite industry. In this study, we screened the annotated flax genome and identified 14 distinct cellulose synthase (CESA) genes using orthologous sequences previously identified. Transcriptomics of 'primary cell wall' and 'secondary cell wall' flax CESA genes showed that some were preferentially expressed in different organs and stem tissues providing clues as to their biological role(s) in planta. The development for the first time in flax of a virus-induced gene silencing (VIGS) approach was used to functionally evaluate the biological role of different CESA genes in stem tissues. Quantification of transcript accumulation showed that in many cases, silencing not only affected targeted CESA clades, but also had an impact on other CESA genes. Whatever the targeted clade, inactivation by VIGS affected plant growth. In contrast, only clade 1- and clade 6-targeted plants showed modifications in outer-stem tissue organization and secondary cell wall formation. In these plants, bast fibre number and structure were severely impacted, suggesting that the targeted genes may play an important role in the establishment of the fibre cell wall. Our results provide new fundamental information about cellulose biosynthesis in flax that should facilitate future plant improvement/engineering.

  9. Characterization of virus-induced gene silencing in tobacco plants infected with apple latent spherical virus.

    PubMed

    Yaegashi, H; Yamatsuta, T; Takahashi, T; Li, C; Isogai, M; Kobori, T; Ohki, S; Yoshikawa, N

    2007-01-01

    Apple latent spherical virus (ALSV) expressing green fluorescent protein (GFP-ALSV) was used for analysis of virus-induced gene silencing (VIGS) in tobacco plants expressing GFP (GFP-tobacco). In GFP-tobacco inoculated with GFP-ALSV, small dark spots appeared on inoculated leaves at 5 days post-inoculation (dpi), then expanded, and finally covered the whole area of the leaves after 12 dpi. Most of the fluorescence of upper leaves above the 12th true leaf disappeared at 21 dpi. Thus, GFP-ALSV infection efficiently triggered VIGS of a transgene (GFP gene) in tobacco plants. Analysis of GFP-silenced leaves showed that viral RNAs and proteins accumulated in all leaves where most GFP mRNA had been degraded. The siRNAs derived from ALSV-RNAs were not detected in samples from which siRNA of GFP mRNA could be easily detected. Direct tissue blot analysis showed that the spread of GFP-ALSV always preceded the induction of VIGS in infected leaves of GFP-tobacco. GFP leaf patch tests using Nicotiana benthamiana line 16c showed that Vp20, one of the three capsid proteins, is a silencing suppressor which interferes with systemic silencing.

  10. Common Viral Integration Sites Identified in Avian Leukosis Virus-Induced B-Cell Lymphomas

    PubMed Central

    Justice, James F.; Morgan, Robin W.

    2015-01-01

    ABSTRACT Avian leukosis virus (ALV) induces B-cell lymphoma and other neoplasms in chickens by integrating within or near cancer genes and perturbing their expression. Four genes—MYC, MYB, Mir-155, and TERT—have previously been identified as common integration sites in these virus-induced lymphomas and are thought to play a causal role in tumorigenesis. In this study, we employ high-throughput sequencing to identify additional genes driving tumorigenesis in ALV-induced B-cell lymphomas. In addition to the four genes implicated previously, we identify other genes as common integration sites, including TNFRSF1A, MEF2C, CTDSPL, TAB2, RUNX1, MLL5, CXorf57, and BACH2. We also analyze the genome-wide ALV integration landscape in vivo and find increased frequency of ALV integration near transcriptional start sites and within transcripts. Previous work has shown ALV prefers a weak consensus sequence for integration in cultured human cells. We confirm this consensus sequence for ALV integration in vivo in the chicken genome. PMID:26670384

  11. Virus-Induced Gene Silencing in Cultivated Cotton (Gossypium spp.) Using Tobacco Rattle Virus.

    PubMed

    Mustafa, Roma; Shafiq, Muhammad; Mansoor, Shahid; Briddon, Rob W; Scheffler, Brian E; Scheffler, Jodi; Amin, Imran

    2016-01-01

    The study described here has optimized the conditions for virus-induced gene silencing (VIGS) in three cultivated cotton species (Gossypium hirsutum, G. arboreum, and G. herbaceum) using a Tobacco rattle virus (TRV) vector. The system was used to silence the homolog of the Arabidopsis thaliana chloroplastos alterados 1 (AtCLA1) gene, involved in chloroplast development, in G. herbaceum, G. arboreum, and six commercial G. hirsutum cultivars. All plants inoculated with the TRV vector to silence CLA1 developed a typical albino phenotype indicative of silencing this gene. Although silencing in G. herbaceum and G. arboreum was complete, silencing efficiency differed for each G. hirsutum cultivar. Reverse transcriptase polymerase chain reaction (PCR) and real-time quantitative PCR showed a reduction in mRNA levels of the CLA1 homolog in all three species, with the highest efficiency (lowest CLA1 mRNA levels) in G. arboreum followed by G. herbaceum and G. hirsutum. The results indicate that TRV is a useful vector for VIGS in Gossypium species. However, selection of host cultivar is important. With the genome sequences of several cotton species recently becoming publicly available, this system has the potential to provide a very powerful tool for the rapid, large-scale reverse-genetic analysis of genes in Gossypium spp.

  12. Delineation of autoantibody repertoire through differential proteogenomics in hepatitis C virus-induced cryoglobulinemia

    PubMed Central

    Ogishi, Masato; Yotsuyanagi, Hiroshi; Moriya, Kyoji; Koike, Kazuhiko

    2016-01-01

    Antibodies cross-reactive to pathogens and autoantigens are considered pivotal in both infection control and accompanying autoimmunity. However, the pathogenic roles of autoantibodies largely remain elusive without a priori knowledge of disease-specific autoantigens. Here, through a novel quantitative proteogenomics approach, we demonstrated a successful identification of immunoglobulin variable heavy chain (VH) sequences highly enriched in pathological immune complex from clinical specimens obtained from a patient with hepatitis C virus-induced cryoglobulinemia (HCV-CG). Reconstructed single-domain antibodies were reactive to both HCV antigens and potentially liver-derived human proteins. Moreover, over the course of antiviral therapy, a substantial “de-evolution” of a distinct sub-repertoire was discovered, to which proteomically identified cryoprecipitation-prone autoantibodies belonged. This sub-repertoire was characterized by IGHJ6*03-derived, long, hydrophobic complementarity determining region (CDR-H3). This study provides a proof-of-concept of de novo mining of autoantibodies and corresponding autoantigen candidates in a disease-specific context in human, thus facilitating future reverse-translational research for the discovery of novel biomarkers and the development of antigen-specific immunotherapy against various autoantibody-related disorders. PMID:27403724

  13. Host genome integration and giant virus-induced reactivation of the virophage mavirus.

    PubMed

    Fischer, Matthias G; Hackl, Thomas

    2016-12-07

    Endogenous viral elements are increasingly found in eukaryotic genomes, yet little is known about their origins, dynamics, or function. Here we provide a compelling example of a DNA virus that readily integrates into a eukaryotic genome where it acts as an inducible antiviral defence system. We found that the virophage mavirus, a parasite of the giant Cafeteria roenbergensis virus (CroV), integrates at multiple sites within the nuclear genome of the marine protozoan Cafeteria roenbergensis. The endogenous mavirus is structurally and genetically similar to eukaryotic DNA transposons and endogenous viruses of the Maverick/Polinton family. Provirophage genes are not constitutively expressed, but are specifically activated by superinfection with CroV, which induces the production of infectious mavirus particles. Virophages can inhibit the replication of mimivirus-like giant viruses and an anti-viral protective effect of provirophages on their hosts has been hypothesized. We find that provirophage-carrying cells are not directly protected from CroV; however, lysis of these cells releases infectious mavirus particles that are then able to suppress CroV replication and enhance host survival during subsequent rounds of infection. The microbial host-parasite interaction described here involves an altruistic aspect and suggests that giant-virus-induced activation of provirophages might be ecologically relevant in natural protist populations.

  14. A Foxtail mosaic virus Vector for Virus-Induced Gene Silencing in Maize.

    PubMed

    Mei, Yu; Zhang, Chunquan; Kernodle, Bliss M; Hill, John H; Whitham, Steven A

    2016-06-01

    Plant viruses have been widely used as vectors for foreign gene expression and virus-induced gene silencing (VIGS). A limited number of viruses have been developed into viral vectors for the purposes of gene expression or VIGS in monocotyledonous plants, and among these, the tripartite viruses Brome mosaic virus and Cucumber mosaic virus have been shown to induce VIGS in maize (Zea mays). We describe here a new DNA-based VIGS system derived from Foxtail mosaic virus (FoMV), a monopartite virus that is able to establish systemic infection and silencing of endogenous maize genes homologous to gene fragments inserted into the FoMV genome. To demonstrate VIGS applications of this FoMV vector system, four genes, phytoene desaturase (functions in carotenoid biosynthesis), lesion mimic22 (encodes a key enzyme of the porphyrin pathway), iojap (functions in plastid development), and brown midrib3 (caffeic acid O-methyltransferase), were silenced and characterized in the sweet corn line Golden × Bantam. Furthermore, we demonstrate that the FoMV infectious clone establishes systemic infection in maize inbred lines, sorghum (Sorghum bicolor), and green foxtail (Setaria viridis), indicating the potential wide applications of this viral vector system for functional genomics studies in maize and other monocots. © 2016 American Society of Plant Biologists. All Rights Reserved.

  15. A Foxtail mosaic virus Vector for Virus-Induced Gene Silencing in Maize1[OPEN

    PubMed Central

    Mei, Yu; Kernodle, Bliss M.; Hill, John H.

    2016-01-01

    Plant viruses have been widely used as vectors for foreign gene expression and virus-induced gene silencing (VIGS). A limited number of viruses have been developed into viral vectors for the purposes of gene expression or VIGS in monocotyledonous plants, and among these, the tripartite viruses Brome mosaic virus and Cucumber mosaic virus have been shown to induce VIGS in maize (Zea mays). We describe here a new DNA-based VIGS system derived from Foxtail mosaic virus (FoMV), a monopartite virus that is able to establish systemic infection and silencing of endogenous maize genes homologous to gene fragments inserted into the FoMV genome. To demonstrate VIGS applications of this FoMV vector system, four genes, phytoene desaturase (functions in carotenoid biosynthesis), lesion mimic22 (encodes a key enzyme of the porphyrin pathway), iojap (functions in plastid development), and brown midrib3 (caffeic acid O-methyltransferase), were silenced and characterized in the sweet corn line Golden × Bantam. Furthermore, we demonstrate that the FoMV infectious clone establishes systemic infection in maize inbred lines, sorghum (Sorghum bicolor), and green foxtail (Setaria viridis), indicating the potential wide applications of this viral vector system for functional genomics studies in maize and other monocots. PMID:27208311

  16. Method: low-cost delivery of the cotton leaf crumple virus-induced gene silencing system

    PubMed Central

    2012-01-01

    Background We previously developed a virus-induced gene silencing (VIGS) vector for cotton from the bipartite geminivirusCotton leaf crumple virus (CLCrV). The original CLCrV VIGS vector was designed for biolistic delivery by a gene gun. This prerequisite limited the use of the system to labs with access to biolistic equipment. Here we describe the adaptation of this system for delivery by Agrobacterium (Agrobacterium tumefaciens). We also describe the construction of two low-cost particle inflow guns. Results The biolistic CLCrV vector was transferred into two Agrobacterium binary plasmids. Agroinoculation of the binary plasmids into cotton resulted in silencing and GFP expression comparable to the biolistic vector. Two homemade low-cost gene guns were used to successfully inoculate cotton (G. hirsutum) and N. benthamiana with either the CLCrV VIGS vector or the Tomato golden mosaic virus (TGMV) VIGS vector respectively. Conclusions These innovations extend the versatility of CLCrV-based VIGS for analyzing gene function in cotton. The two low-cost gene guns make VIGS experiments affordable for both research and teaching labs by providing a working alternative to expensive commercial gene guns. PMID:22853641

  17. A CRISPR-Based Screen Identifies Genes Essential for West-Nile-Virus-Induced Cell Death.

    PubMed

    Ma, Hongming; Dang, Ying; Wu, Yonggan; Jia, Gengxiang; Anaya, Edgar; Zhang, Junli; Abraham, Sojan; Choi, Jang-Gi; Shi, Guojun; Qi, Ling; Manjunath, N; Wu, Haoquan

    2015-07-28

    West Nile virus (WNV) causes an acute neurological infection attended by massive neuronal cell death. However, the mechanism(s) behind the virus-induced cell death is poorly understood. Using a library containing 77,406 sgRNAs targeting 20,121 genes, we performed a genome-wide screen followed by a second screen with a sub-library. Among the genes identified, seven genes, EMC2, EMC3, SEL1L, DERL2, UBE2G2, UBE2J1, and HRD1, stood out as having the strongest phenotype, whose knockout conferred strong protection against WNV-induced cell death with two different WNV strains and in three cell lines. Interestingly, knockout of these genes did not block WNV replication. Thus, these appear to be essential genes that link WNV replication to downstream cell death pathway(s). In addition, the fact that all of these genes belong to the ER-associated protein degradation (ERAD) pathway suggests that this might be the primary driver of WNV-induced cell death. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Recombinant infectious hematopoietic necrosis viruses induce protection for rainbow trout Oncorhynchus mykiss.

    PubMed

    Romero, Alejandro; Figueras, Antonio; Thoulouze, Maria-Isabel; Bremont, Michael; Novoa, Beatriz

    2008-07-07

    Infectious hematopoietic necrosis virus (IHNV) and viral hemorrhagic septicaemia virus (VHSV) are rhabdoviruses that infect salmonids, producing serious economic losses. Two recombinant IHN viruses were generated by reverse genetics. For one (rIHNV GFP) the IHNV NV gene was replaced with the green fluorescent protein (GFP) gene. In the other (rIHNV-Gvhsv GFP) the G gene was also exchanged for that of VHSV. No mortalities, external signs or histological lesions were observed in experimental infections conducted with the recombinant viruses. Neither the rIHNV GFP nor rIHNV-Gvhsv GFP was detected by RT-PCR in any of the examined tissues from experimentally infected fish. In order to assess their potential as vaccines against the wild type viruses, rainbow trout were vaccinated with the recombinant viruses by intraperitoneal injection and challenged 30 d later with virulent IHNV or VHSV. The GFP viruses provided protection against both wild type viruses. None of the recombinant viruses induced antibody production, and the expression of interferon (IFNalpha4) and interferon induced genes such as Mx protein and ISG-15 was not different to that of controls. The rIHNV-Gvhsv GFP did not inhibit cellular apoptosis as it was observed in an IHNV inoculated fish cell line. These studies suggest that the recombinant rIHNV-Gvhsv GFP is a promising candidate as a live recombinant vaccine and also provides a good model to further study viral pathogenicity and the molecular basis of protection against these viral infections.

  19. Disruption of Rpp1-mediated soybean rust immunity by virus-induced gene silencing.

    PubMed

    Cooper, Bret; Campbell, Kimberly B; McMahon, Michael B; Luster, Douglas G

    2013-01-01

    Phakopsora pachyrhizi, a fungus that causes rust disease on soybean, has potential to impart significant yield loss and disrupt food security and animal feed production. Rpp1 is a soybean gene that confers immunity to soybean rust, and it is important to understand how it regulates the soybean defense system and to use this knowledge to protect commercial crops. It was previously discovered that some soybean proteins resembling transcription factors accumulate in the nucleus of Rpp1 soybeans. To determine if they contribute to immunity, Bean pod mottle virus was used to attenuate or silence the expression of their genes. Rpp1 plants subjected to virus-induced gene silencing exhibited reduced amounts of RNA for 5 of the tested genes, and the plants developed rust-like symptoms after subsequent inoculation with fungal spores. Symptoms were associated with the accumulation of rust fungal RNA and protein. Silenced plants also had reduced amounts of RNA for the soybean Myb84 transcription factor and soybean isoflavone O-methyltransferase, both of which are important to phenylpropanoid biosynthesis and lignin formation, crucial components of rust resistance. These results help resolve some of the genes that contribute to Rpp1-mediated immunity and improve upon the knowledge of the soybean defense system. It is possible that these genes could be manipulated to enhance rust resistance in otherwise susceptible soybean cultivars.

  20. Outer nuclear membrane fusion of adjacent nuclei in varicella-zoster virus-induced syncytia.

    PubMed

    Wang, Wei; Yang, Lianwei; Huang, Xiumin; Fu, Wenkun; Pan, Dequan; Cai, Linli; Ye, Jianghui; Liu, Jian; Xia, Ningshao; Cheng, Tong; Zhu, Hua

    2017-09-11

    Syncytia formation has been considered important for cell-to-cell spread and pathogenesis of many viruses. As a syncytium forms, individual nuclei often congregate together, allowing close contact of nuclear membranes and possibly fusion to occur. However, there is currently no reported evidence of nuclear membrane fusion between adjacent nuclei in wild-type virus-induced syncytia. Varicella-zoster virus (VZV) is one typical syncytia-inducing virus that causes chickenpox and shingles in humans. Here, we report, for the first time, an interesting observation of apparent fusion of the outer nuclear membranes from juxtaposed nuclei that comprise VZV syncytia both in ARPE-19 human epithelial cells in vitro and in human skin xenografts in the SCID-hu mouse model in vivo. This work reveals a novel aspect of VZV-related cytopathic effect in the context of multinucleated syncytia. Additionally, the information provided by this study could be helpful for future studies on interactions of viruses with host cell nuclei. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. The development of Akabane virus-induced congenital abnormalities in cattle.

    PubMed

    Kirkland, P D; Barry, R D; Harper, P A; Zelski, R Z

    1988-06-11

    A prospective study of the incidence and severity of congenital deformities of calves, attributable to maternal infection by Akabane virus, was carried out on a population of 174 susceptible animals that were between one and nine months pregnant at the time of infection. The study was carried out in the Hunter Valley of New South Wales during 1983, after an epidemic of Akabane virus infection in late February to early March 1983. The incidence of virus-induced abnormalities in calves and fetuses was 17.8 per cent (31/174). The highest incidence of abnormalities occurred during the third and sixth months of gestation (27 to 29 per cent). The earliest abnormality was observed after infection at 76 days of gestation, and the last after infection at 249 days. The development of the pathological entities of hydranencephaly/porencephaly and arthrogryposis were found to be quite distinct. Cases of hydranencephaly and porencephaly developed after infection between 76 and 104 days of gestation whereas arthrogryposis developed after infection between 103 and 174 days of infection. It was concluded that the type of congenital deformity produced by maternal infection with Akabane virus was dependent on the stage of fetal development at the time of infection. The data suggest that the infection was transplacental and that fetuses of less than two months of age were protected from infection.

  2. Autophagy Genes Enhance Murine Gammaherpesvirus 68 Reactivation From Latency by Preventing Virus-induced Systemic Inflammation

    PubMed Central

    Park, Sunmin; Buck, Michael D.; Desai, Chandni; Zhang, Xin; Loginicheva, Ekaterina; Martinez, Jennifer; Freeman, Michael L.; Saitoh, Tatsuya; Akira, Shizuo; Guan, Jun-Lin; He, You-Wen; Blackman, Marcia A.; Handley, Scott A.; Levine, Beth; Green, Douglas R.; Reese, Tiffany A.; Artyomov, Maxim N.; Virgin, Herbert W.

    2016-01-01

    SUMMARY Host genes that regulate systemic inflammation upon chronic viral infection are incompletely understood. Murine γ-herpesvirus 68 (MHV68) infection is characterized by latency in macrophages, and reactivation is inhibited by Interferon-γ (IFN-γ). Using a Lysozyme-M-cre (LysMcre) expression system, we show that deletion of autophagy-related (Atg) genes Fip200, beclin 1, Atg14, Atg16L1, Atg7, Atg3, and Atg5, in the myeloid compartment, inhibited MHV68 reactivation in macrophages. Atg5-deficiency did not alter reactivation from B cells, and effects on reactivation from macrophages were not explained by alterations in productive viral replication or the establishment of latency. Rather, chronic MHV68 infection triggered increased systemic inflammation, increased T cell production of IFN-γ and an IFN-γ-induced transcriptional signature in macrophages from Atg gene-deficient mice. The Atg5-related reactivation defect was partially reversed by neutralization of IFN-γ. Thus Atg genes in myeloid cells dampen virus-induced systemic inflammation, creating an environment that fosters efficient MHV68 reactivation from latency. PMID:26764599

  3. The methyltransferase Setdb2 mediates virus-induced susceptibility to bacterial superinfection.

    PubMed

    Schliehe, Christopher; Flynn, Elizabeth K; Vilagos, Bojan; Richson, Udochuku; Swaminanthan, Savitha; Bosnjak, Berislav; Bauer, Lisa; Kandasamy, Richard K; Griesshammer, Isabel M; Kosack, Lindsay; Schmitz, Frank; Litvak, Vladimir; Sissons, James; Lercher, Alexander; Bhattacharya, Anannya; Khamina, Kseniya; Trivett, Anna L; Tessarollo, Lino; Mesteri, Ildiko; Hladik, Anastasiya; Merkler, Doron; Kubicek, Stefan; Knapp, Sylvia; Epstein, Michelle M; Symer, David E; Aderem, Alan; Bergthaler, Andreas

    2015-01-01

    Immune responses are tightly regulated to ensure efficient pathogen clearance while avoiding tissue damage. Here we report that Setdb2 was the only protein lysine methyltransferase induced during infection with influenza virus. Setdb2 expression depended on signaling via type I interferons, and Setdb2 repressed expression of the gene encoding the neutrophil attractant CXCL1 and other genes that are targets of the transcription factor NF-κB. This coincided with occupancy by Setdb2 at the Cxcl1 promoter, which in the absence of Setdb2 displayed diminished trimethylation of histone H3 Lys9 (H3K9me3). Mice with a hypomorphic gene-trap construct of Setdb2 exhibited increased infiltration of neutrophils during sterile lung inflammation and were less sensitive to bacterial superinfection after infection with influenza virus. This suggested that a Setdb2-mediated regulatory crosstalk between the type I interferons and NF-κB pathways represents an important mechanism for virus-induced susceptibility to bacterial superinfection.

  4. Virus-induced gene silencing of fiber-related genes in cotton.

    PubMed

    Tuttle, John R; Haigler, Candace H; Robertson, Dominique Niki

    2015-01-01

    Virus-Induced Gene Silencing (VIGS) is a useful method for transient downregulation of gene expression in crop plants. The geminivirus Cotton leaf crumple virus (CLCrV) has been modified to serve as a VIGS vector for persistent gene silencing in cotton. Here the use of Green Fluorescent Protein (GFP) is described as a marker for identifying silenced tissues in reproductive tissues, a procedure that requires the use of transgenic plants. Suggestions are given for isolating and cloning combinations of target and marker sequences so that the total length of inserted foreign DNA is between 500 and 750 bp. Using this strategy, extensive silencing is achieved with only 200-400 bp of sequence homologous to an endogenous gene, reducing the possibility of off-target silencing. Cotyledons can be inoculated using either the gene gun or Agrobacterium and will continue to show silencing throughout fruit and fiber development. CLCrV is not transmitted through seed, and VIGS is limited to genes expressed in the maternally derived seed coat and fiber in the developing seed. This complicates the use of GFP as a marker for VIGS because cotton fibers must be separated from unsilenced tissue in the seed to determine if they are silenced. Nevertheless, fibers from a large number of seeds can be rapidly screened following placement into 96-well plates. Methods for quantifying the extent of silencing using semiquantitative RT-PCR are given.

  5. Investigating Gene Function in Cereal Rust Fungi by Plant-Mediated Virus-Induced Gene Silencing.

    PubMed

    Panwar, Vinay; Bakkeren, Guus

    2017-01-01

    Cereal rust fungi are destructive pathogens, threatening grain production worldwide. Targeted breeding for resistance utilizing host resistance genes has been effective. However, breakdown of resistance occurs frequently and continued efforts are needed to understand how these fungi overcome resistance and to expand the range of available resistance genes. Whole genome sequencing, transcriptomic and proteomic studies followed by genome-wide computational and comparative analyses have identified large repertoire of genes in rust fungi among which are candidates predicted to code for pathogenicity and virulence factors. Some of these genes represent defence triggering avirulence effectors. However, functions of most genes still needs to be assessed to understand the biology of these obligate biotrophic pathogens. Since genetic manipulations such as gene deletion and genetic transformation are not yet feasible in rust fungi, performing functional gene studies is challenging. Recently, Host-induced gene silencing (HIGS) has emerged as a useful tool to characterize gene function in rust fungi while infecting and growing in host plants. We utilized Barley stripe mosaic virus-mediated virus induced gene silencing (BSMV-VIGS) to induce HIGS of candidate rust fungal genes in the wheat host to determine their role in plant-fungal interactions. Here, we describe the methods for using BSMV-VIGS in wheat for functional genomics study in cereal rust fungi.

  6. Four plant Dicers mediate viral small RNA biogenesis and DNA virus induced silencing

    PubMed Central

    Blevins, Todd; Rajeswaran, Rajendran; Shivaprasad, Padubidri V.; Beknazariants, Daria; Si-Ammour, Azeddine; Park, Hyun-Sook; Vazquez, Franck; Robertson, Dominique; Meins, Frederick; Hohn, Thomas; Pooggin, Mikhail M.

    2006-01-01

    Like other eukaryotes, plants use DICER-LIKE (DCL) proteins as the central enzymes of RNA silencing, which regulates gene expression and mediates defense against viruses. But why do plants like Arabidopsis express four DCLs, a diversity unmatched by other kingdoms? Here we show that two nuclear DNA viruses (geminivirus CaLCuV and pararetrovirus CaMV) and a cytoplasmic RNA tobamovirus ORMV are differentially targeted by subsets of DCLs. DNA virus-derived small interfering RNAs (siRNAs) of specific size classes (21, 22 and 24 nt) are produced by all four DCLs, including DCL1, known to process microRNA precursors. Specifically, DCL1 generates 21 nt siRNAs from the CaMV leader region. In contrast, RNA virus infection is mainly affected by DCL4. While the four DCLs are partially redundant for CaLCuV-induced mRNA degradation, DCL4 in conjunction with RDR6 and HEN1 specifically facilitates extensive virus-induced silencing in new growth. Additionally, we show that CaMV infection impairs processing of endogenous RDR6-derived double-stranded RNA, while ORMV prevents HEN1-mediated methylation of small RNA duplexes, suggesting two novel viral strategies of silencing suppression. Our work highlights the complexity of virus interaction with host silencing pathways and suggests that DCL multiplicity helps mediate plant responses to diverse viral infections. PMID:17090584

  7. Graft-accelerated virus-induced gene silencing facilitates functional genomics in rose flowers.

    PubMed

    Yan, Huijun; Shi, Shaochuan; Ma, Nan; Cao, Xiaoqian; Zhang, Hao; Qiu, Xianqin; Wang, Qigang; Jian, Hongying; Zhou, Ningning; Zhang, Zhao; Tang, Kaixue

    2017-09-12

    Rose has emerged as a model ornamental plant for studies of flower development, senescence, and morphology, as well as the metabolism of floral fragrances and colors. Virus-induced gene silencing (VIGS) has long since been used in functional genomics studies of rose by vacuum infiltration of cuttings or seedlings with an Agrobacterium suspension carrying TRV-derived vectors. However, VIGS in rose flowers remains a challenge because of its low efficiency and long time to silencing. Here we present a novel and rapid VIGS method that can be used to analyze gene function in rose, called 'graft-accelerated VIGS', where axillary sprouts are cut off the rose plant and vacuum infiltrated with Agrobacterium. The inoculated scions are then grafted back onto the plants to flower and silencing phenotypes can be observed within five weeks post infiltration. Using this new method, we successfully silenced the expression of the RhDFR1, RhAG, and RhNUDX1 in rose flowers, and affected their color, petal number, as well as fragrance, respectively. This grafting method will facilitate high-throughput functional analysis of genes in rose flowers. Importantly, it may also be applied to other woody species that are not currently amenable to VIGS by conventional leaf or plantlet/seedling infiltration methods. This article is protected by copyright. All rights reserved.

  8. Tobacco rattle virus-based virus-induced gene silencing in Nicotiana benthamiana.

    PubMed

    Senthil-Kumar, Muthappa; Mysore, Kirankumar S

    2014-07-01

    Tobacco rattle virus (TRV)-based virus-induced gene silencing (VIGS) is widely used in various plant species to downregulate the expression of a target plant gene. TRV is a bipartite, positive-strand RNA virus with the TRV1 and TRV2 genomes. To induce post-transcriptional gene silencing (PTGS), the TRV2 genome is genetically modified to carry a fragment of the target gene and delivered into the plant (along with the TRV1 genome) by agroinoculation. TRV1- and TRV2-carrying Agrobacterium strains are then co-inoculated into 3-week-old plant leaves by one of three methods: a needleless syringe, the agrodrench method or by pricking with a toothpick. Target gene silencing occurs in the newly developed noninoculated leaves within 2-3 weeks of TRV inoculation. The TRV-VIGS protocol described here takes only 4 weeks to implement, and it is faster and easier to perform than other gene silencing techniques that are currently available. Although we use Nicotiana benthamiana as an example, the protocol is adaptable to other plant species.

  9. Disruption of Rpp1-mediated soybean rust immunity by virus-induced gene silencing

    PubMed Central

    Cooper, Bret; Campbell, Kimberly B; McMahon, Michael B; Luster, Douglas G

    2013-01-01

    Phakopsora pachyrhizi, a fungus that causes rust disease on soybean, has potential to impart significant yield loss and disrupt food security and animal feed production. Rpp1 is a soybean gene that confers immunity to soybean rust, and it is important to understand how it regulates the soybean defense system and to use this knowledge to protect commercial crops. It was previously discovered that some soybean proteins resembling transcription factors accumulate in the nucleus of Rpp1 soybeans. To determine if they contribute to immunity, Bean pod mottle virus was used to attenuate or silence the expression of their genes. Rpp1 plants subjected to virus-induced gene silencing exhibited reduced amounts of RNA for 5 of the tested genes, and the plants developed rust-like symptoms after subsequent inoculation with fungal spores. Symptoms were associated with the accumulation of rust fungal RNA and protein. Silenced plants also had reduced amounts of RNA for the soybean Myb84 transcription factor and soybean isoflavone O-methyltransferase, both of which are important to phenylpropanoid biosynthesis and lignin formation, crucial components of rust resistance. These results help resolve some of the genes that contribute to Rpp1-mediated immunity and improve upon the knowledge of the soybean defense system. It is possible that these genes could be manipulated to enhance rust resistance in otherwise susceptible soybean cultivars. PMID:24401541

  10. Role of TNF-α in virus-induced airway hyperresponsiveness and neuronal M2 muscarinic receptor dysfunction

    PubMed Central

    Nie, Zhenying; Scott, Gregory D; Weis, Patrick D; Itakura, Asako; Fryer, Allison D; Jacoby, David B

    2011-01-01

    BACKGROUND AND PURPOSE Infections with respiratory viruses induce exacerbations of asthma, increase acetylcholine release and potentiate vagally mediated bronchoconstriction by blocking inhibitory M2 muscarinic receptors on parasympathetic neurons. Here we test whether virus-induced M2 receptor dysfunction and airway hyperresponsiveness are tumour necrosis factor-alpha (TNF-α) dependent. EXPERIMENTAL APPROACH Guinea pigs were pretreated with etanercept or phosphate-buffered saline 24 h before intranasal infection with parainfluenza. Four days later, pulmonary inflation pressure, heart rate and blood pressure were measured. M2 receptor function was assessed by the potentiation by gallamine (an M2 receptor antagonist) of bronchoconstriction caused by electrical stimulation of the vagus nerves and measured as increased pulmonary inflation pressure. Human airway epithelial cells were infected with influenza and TNF-α concentration in supernatant was measured before supernatant was applied to human neuroblastoma cells. M2 receptor expression in these neuroblastoma cells was measured by qRT-PCR. KEY RESULTS Influenza-infected animals were hyperresponsive to vagal stimulation but not to intravenous ACh. Gallamine did not potentiate vagally induced bronchoconstriction in virus-infected animals, indicating M2 receptor dysfunction. Etanercept prevented virus-induced airway hyperresponsiveness and M2 receptor dysfunction, without changing lung viral titres. Etanercept caused a non-significant decrease in total cells, macrophages and neutrophils in bronchoalveolar lavage. Influenza infection significantly increased TNF-α release from isolated epithelial cells, sufficient to decrease M2 receptors in neuroblastoma cells. This ability of supernatants from infected epithelial cells to inhibit M2 receptor expression was blocked by etanercept. CONCLUSIONS AND IMPLICATIONS TNF-α is a key mediator of virus-induced M2 muscarinic receptor dysfunction and airway hyperresponsiveness

  11. Genetic control of radiation leukemia virus-induced tumorigenesis. I. Role of the major murine histocompatibility complex, H-2

    PubMed Central

    1977-01-01

    Resistance to radiation leukemia virus-induced leukemogenesis is associated with the H-2D region of the H-2 complex, or with closely linked loci. The H-2Dd allele confers resistance ot the disease, while the H-2D-Q and H-2Ds alleles are associated with susceptibility. It is not clear whether Ir genes, or an alternative mechanism are responsible for the observed H-2-linked resistance to the disease. PMID:197195

  12. Cytokines Interleukin 4 (IL-4) and Interleukin 10 (IL-10) Gene Polymorphisms as Potential Host Susceptibility Factors in Virus-Induced Encephalitis.

    PubMed

    Yu, Ying; Chen, Ying; Wang, Feng-Ling; Sun, Jing; Li, Hai-Jun; Liu, Jia-Ming

    2017-09-22

    BACKGROUND This study aimed to analyze and explore the relationship between the cytokines IL-4 and IL-10 in relation to gene polymorphism and their respective effects on the susceptibility to virus-induced encephalitis. MATERIAL AND METHODS From January 2012 to June 2013, 112 patients with virus-induced encephalitis (the case group and 109 healthy individuals (the control group) were recruited for the purposes of this study. The functional variations that IL-4 and IL-10 genes exhibit were detected through the use of a function analysis and selection tool for single-nucleotide polymorphisms (FASTSNP). The genotypes of IL-4 were rs2227283 and IL-4 rs2227288, and the genotypes of IL-10 were rs1800871 and IL-10 rs1800872. These genotypes were respectively assessed using direct sequencing. RESULTS IL-4 rs2227283 and IL-10 rs1800871 have no correlation in with risk of virus-induced encephalitis (both P>0.05) GA and AA genotypes were related to IL-4 rs2227288 and GT, while TT and GT + TT genotypes were related to IL-10 rs1800872. These were highlighted as being risk factors in virus-induced encephalitis (all P<0.05). However, the duration of fever, white blood cell (WBC) count, C-reactive protein (CRP), neutrophils, and lymphocytes and monocytes of virus-induced encephalitis patients with IL-4 rs2227288 and IL-10 rs1800872 all displayed significant differences (all P<0.05). Frequencies of GAGT and CAGT haplotypes were evaluated and deemed to be of statistical significance and subsequently were highlighted as being risk factors in virus-induced encephalitis (all P<0.05). CONCLUSIONS IL-4 rs2227288 and IL-10 rs1800872 may contribute to an increased risk for virus-induced encephalitis. Through use of direct sequencing, we showed that genotypes of IL-4 rs2227288 and IL-10 rs1800872 may have particular host susceptibility to virus-induced encephalitis.

  13. Evaluation of the immunomodulatory and antiviral effects of the cytokine combination IFN-α and IL-7 in the lymphocytic choriomeningitis virus and Friend retrovirus mouse infection models.

    PubMed

    Audigé, Annette; Hofer, Ursula; Dittmer, Ulf; van den Broek, Maries; Speck, Roberto F

    2011-10-01

    Existing therapies for chronic viral infections are still suboptimal or have considerable side effects, so new therapeutic strategies need to be developed. One option is to boost the host's immune response with cytokines. We have recently shown in an acute ex vivo HIV infection model that co-administration of interferon (IFN)-α and interleukin (IL)-7 allows us to combine the potent anti-HIV activity of IFN-α with the beneficial effects of IL-7 on T-cell survival and function. Here we evaluated the effect of combining IFN-α and IL-7 on viral replication in vivo in the chronic lymphocytic choriomeningitis virus (LCMV) and acute Friend retrovirus (FV) infection models. In the chronic LCMV model, cytokine treatment was started during the early replication phase (i.e., on day 7 post-infection [pi]). Under the experimental conditions used, exogenous IFN-α inhibited FV replication, but had no effect on viral replication in the LCMV model. There was no therapeutic benefit of IL-7 either alone or in combination with IFN-α in either of the two infection models. In the LCMV model, dose-dependent effects of the cytokine combination on T-cell phenotype/function were observed. It is possible that these effects would translate into antiviral activity in re-challenged mice. It is also possible that another type of IFN-α/β or induction of endogenous IFN-α/β alone or in combination with IL-7 would have antiviral activity in the LCMV model. Furthermore, we cannot exclude that some effect on viral titers would have been seen at later time points not investigated here (i.e., beyond day 34 pi). Finally, IFN-α/IL-7 may inhibit the replication of other viruses. Thus it might be worth testing these cytokines in other in vivo models of chronic viral infections.

  14. Chronic lymphocytic choriomeningitis virus infection actively down-regulates CD4+ T cell responses directed against a broad range of epitopes.

    PubMed

    Mothé, Bianca R; Stewart, Barbara S; Oseroff, Carla; Bui, Huynh-Hoa; Stogiera, Stephanie; Garcia, Zacarias; Dow, Courtney; Rodriguez-Carreno, Maria Pilar; Kotturi, Maya; Pasquetto, Valerie; Botten, Jason; Crotty, Shane; Janssen, Edith; Buchmeier, Michael J; Sette, Alessandro

    2007-07-15

    Activation of CD4(+) T cells helps establish and sustain CD8(+) T cell responses and is required for the effective clearance of acute infection. CD4-deficient mice are unable to control persistent infection and CD4(+) T cells are usually defective in chronic and persistent infections. We investigated the question of how persistent infection impacted pre-existing lymphocytic choriomeningitis virus (LCMV)-specific CD4(+) T cell responses. We identified class II-restricted epitopes from the entire set of open reading frames from LCMV Armstrong in BALB/c mice (H-2(d)) acutely infected with LCMV Armstrong. Of nine epitopes identified, six were restricted by I-A(d), one by I-E(d) and two were dually restricted by both I-A(d) and I-E(d) molecules. Additional experiments revealed that CD4(+) T cell responses specific for these epitopes were not generated following infection with the immunosuppressive clone 13 strain of LCMV. Most importantly, in peptide-immunized mice, established CD4(+) T cell responses to these LCMV CD4 epitopes as well as nonviral, OVA-specific responses were actively suppressed following infection with LCMV clone 13 and were undetectable within 12 days after infection, suggesting an active inhibition of established helper responses. To address this dysfunction, we performed transfer experiments using both the Smarta and OT-II systems. OT-II cells were not detected after clone 13 infection, indicating physical deletion, while Smarta cells proliferated but were unable to produce IFN-gamma, suggesting impairment of the production of this cytokine. Thus, multiple mechanisms may be involved in the impairment of helper responses in the setting of early persistent infection.

  15. Persistent Virus Infection despite Chronic Cytotoxic T-Lymphocyte Activation in Gamma Interferon-Deficient Mice Infected with Lymphocytic Choriomeningitis Virus

    PubMed Central

    Bartholdy, Christina; Christensen, Jan Pravsgaard; Wodarz, Dominik; Thomsen, Allan Randrup

    2000-01-01

    The role of gamma interferon (IFN-γ) in the permanent control of infection with a noncytopathic virus was studied by comparing immune responses in wild-type and IFN-γ-deficient (IFN-γ −/−) mice infected with a slowly invasive strain of lymphocytic choriomeningitis virus (LCMV Armstrong). While wild-type mice rapidly cleared the infection, IFN-γ −/− mice became chronically infected. Virus persistence in the latter mice did not reflect failure to generate cytotoxic T-lymphocyte (CTL) effectors, as an unimpaired primary CTL response was observed. Furthermore, while ex vivo CTL activity gradually declined in wild-type mice, long-standing cytolytic activity was demonstrated in IFN-γ −/− mice. The prolonged effector phase in infected IFN-γ −/− mice was associated with elevated numbers of CD8+ T cells. Moreover, a higher proportion of these cells retained an activated phenotype and was actively cycling. However, despite the increased CD8+ T-cell turnover, which might have resulted in depletion of the memory CTL precursor pool, no evidence for exhaustion was observed. In fact, at 3 months postinfection we detected higher numbers of LCMV-specific CTL precursors in IFN-γ −/− mice than in wild-type mice. These findings indicate that in the absence of IFN-γ, CTLs cannot clear the infection and are kept permanently activated by the continuous presence of live virus, resulting in a delicate new balance between viral load and immunity. This interpretation of our findings is supported by mathematical modeling describing the effect of eliminating IFN-γ-mediated antiviral activity on the dynamics between virus replication and CTL activity. PMID:11044074

  16. Tiotropium Attenuates Virus-Induced Pulmonary Inflammation in Cigarette Smoke–Exposed Mice

    PubMed Central

    Bucher, Hannes; Duechs, Matthias J.; Tilp, Cornelia; Jung, Birgit

    2016-01-01

    Viral infections trigger exacerbations in chronic obstructive pulmonary disease (COPD), and tiotropium, a M3 receptor antagonist, reduces exacerbations in patients by unknown mechanisms. In this report, we investigated whether tiotropium has anti-inflammatory effects in mice exposed to cigarette smoke (CS) and infected with influenza virus A/PR/8/34 (H1N1) or respiratory syncytial virus (RSV) and compared these effects with those of steroid fluticasone and PDE4-inhibitor roflumilast. Mice were exposed to CS; infected with H1N1 or RSV; and treated with tiotropium, fluticasone, or roflumilast. The amount of cells and cytokine levels in the airways, lung function, and viral load was determined. NCI-H292 cells were infected with H1N1 or RSV and treated with the drugs. In CS/H1N1-exposed mice, tiotropium reduced neutrophil and macrophage numbers and levels of interleukin-6 (IL-6) and interferon-γ (IFN-γ) in the airways and improved lung function. In contrast, fluticasone increased the loss of body weight; failed to reduce neutrophil or macrophage numbers; increased IL-6, KC, and tumor necrosis factor-α (TNF-α) in the lungs; and worsened lung function. Treatment with roflumilast reduced macrophage numbers, IL-6, and KC in the lungs but had no effect on neutrophil numbers or lung function. In CS/RSV-exposed mice, treatment with tiotropium, but not fluticasone or roflumilast, reduced neutrophil numbers and IL-6 and TNF-α levels in the lungs. Viral load of H1N1 and RSV was significantly elevated in CS/virus-exposed mice and NCI-H292 cells after fluticasone treatment, whereas tiotropium and roflumilast had no effect. In conclusion, tiotropium has anti-inflammatory effects on CS/virus-induced inflammation in mice that are superior to the effects of roflumilast and fluticasone. This finding might help to explain the observed reduction of exacerbation rates in COPD patients. PMID:27016458

  17. Latitudinal variation in virus-induced mortality of phytoplankton across the North Atlantic Ocean.

    PubMed

    Mojica, Kristina D A; Huisman, Jef; Wilhelm, Steven W; Brussaard, Corina P D

    2016-02-01

    Viral lysis of phytoplankton constrains marine primary production, food web dynamics and biogeochemical cycles in the ocean. Yet, little is known about the biogeographical distribution of viral lysis rates across the global ocean. To address this, we investigated phytoplankton group-specific viral lysis rates along a latitudinal gradient within the North Atlantic Ocean. The data show large-scale distribution patterns of different virus groups across the North Atlantic that are associated with the biogeographical distributions of their potential microbial hosts. Average virus-mediated lysis rates of the picocyanobacteria Prochlorococcus and Synechococcus were lower than those of the picoeukaryotic and nanoeukaryotic phytoplankton (that is, 0.14 per day compared with 0.19 and 0.23 per day, respectively). Total phytoplankton mortality (virus plus grazer-mediated) was comparable to the gross growth rate, demonstrating high turnover rates of phytoplankton populations. Virus-induced mortality was an important loss process at low and mid latitudes, whereas phytoplankton mortality was dominated by microzooplankton grazing at higher latitudes (>56°N). This shift from a viral-lysis-dominated to a grazing-dominated phytoplankton community was associated with a decrease in temperature and salinity, and the decrease in viral lysis rates was also associated with increased vertical mixing at higher latitudes. Ocean-climate models predict that surface warming will lead to an expansion of the stratified and oligotrophic regions of the world's oceans. Our findings suggest that these future shifts in the regional climate of the ocean surface layer are likely to increase the contribution of viral lysis to phytoplankton mortality in the higher-latitude waters of the North Atlantic, which may potentially reduce transfer of matter and energy up the food chain and thus affect the capacity of the northern North Atlantic to act as a long-term sink for CO2.

  18. Latitudinal variation in virus-induced mortality of phytoplankton across the North Atlantic Ocean

    PubMed Central

    Mojica, Kristina D A; Huisman, Jef; Wilhelm, Steven W; Brussaard, Corina P D

    2016-01-01

    Viral lysis of phytoplankton constrains marine primary production, food web dynamics and biogeochemical cycles in the ocean. Yet, little is known about the biogeographical distribution of viral lysis rates across the global ocean. To address this, we investigated phytoplankton group-specific viral lysis rates along a latitudinal gradient within the North Atlantic Ocean. The data show large-scale distribution patterns of different virus groups across the North Atlantic that are associated with the biogeographical distributions of their potential microbial hosts. Average virus-mediated lysis rates of the picocyanobacteria Prochlorococcus and Synechococcus were lower than those of the picoeukaryotic and nanoeukaryotic phytoplankton (that is, 0.14 per day compared with 0.19 and 0.23 per day, respectively). Total phytoplankton mortality (virus plus grazer-mediated) was comparable to the gross growth rate, demonstrating high turnover rates of phytoplankton populations. Virus-induced mortality was an important loss process at low and mid latitudes, whereas phytoplankton mortality was dominated by microzooplankton grazing at higher latitudes (>56°N). This shift from a viral-lysis-dominated to a grazing-dominated phytoplankton community was associated with a decrease in temperature and salinity, and the decrease in viral lysis rates was also associated with increased vertical mixing at higher latitudes. Ocean-climate models predict that surface warming will lead to an expansion of the stratified and oligotrophic regions of the world's oceans. Our findings suggest that these future shifts in the regional climate of the ocean surface layer are likely to increase the contribution of viral lysis to phytoplankton mortality in the higher-latitude waters of the North Atlantic, which may potentially reduce transfer of matter and energy up the food chain and thus affect the capacity of the northern North Atlantic to act as a long-term sink for CO2. PMID:26262815

  19. An efficient virus-induced gene silencing vector for maize functional genomics research.

    PubMed

    Wang, Rong; Yang, Xinxin; Wang, Nian; Liu, Xuedong; Nelson, Richard S; Li, Weimin; Fan, Zaifeng; Zhou, Tao

    2016-04-01

    Maize is a major crop whose rich genetic diversity provides an advanced resource for genetic research. However, a tool for rapid transient gene function analysis in maize that may be utilized in most maize cultivars has been lacking, resulting in reliance on time-consuming stable transformation and mutation studies to obtain answers. We developed an efficient virus-induced gene silencing (VIGS) vector for maize based on a naturally maize-infecting cucumber mosaic virus (CMV) strain, ZMBJ-CMV. An infectious clone of ZMBJ-CMV was constructed, and a vascular puncture inoculation method utilizing Agrobacterium was optimized to improve its utility for CMV infection of maize. ZMBJ-CMV was then modified to function as a VIGS vector. The ZMBJ-CMV vector induced mild to moderate symptoms in many maize lines, making it useful for gene function studies in critically important maize cultivars, such as the sequenced reference inbred line B73. Using this CMV VIGS system, expression of two endogenous genes, ZmPDS and ZmIspH, was found to be decreased by 75% and 78%, respectively, compared with non-silenced tissue. Inserts with lengths of 100-300 bp produced the most complete transcriptional and visual silencing phenotypes. Moreover, genes related to autophagy, ZmATG3 and ZmATG8a, were also silenced, and it was found that they function in leaf starch degradation. These results indicate that our ZMBJ-CMV VIGS vector provides a tool for rapid and efficient gene function studies in maize. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  20. Virus-induced alterations in insulin release in hamster islets of Langerhans.

    PubMed

    Rayfield, E J; Seto, Y; Walsh, S; McEvoy, R C

    1981-11-01

    After the inoculation of Golden Syrian hamsters with the TC-83 vaccine strain of Venezuelan encephalitis (VE) virus, a sustained diminution in glucose-stimulated insulin release and glucose intolerance of shorter duration develops. To understand better the mechanism of this defect in insulin release, we examined insulin secretion in response to several test agents in isolated perifused islets from control and 24-d post-VE virus-infected hamsters. 50 islets were used in all perifusion experiments, and data were expressed as total insulin released as well as peak response for each test agent during a 30-min perifusion period from control and VE-infected islets. After perifusion with 20 mM glucose, a 45% diminution of insulin release was noted in VE-infected islets in comparison with control islets, which in turn was similar to in vivo findings. However, following 1-mM tolbutamide stimulation, insulin release was similar in control and VE-infected islets. In separate studies, 1 mM tolbutamide, 10 mM theophilline, 1 mM dibutyryl cyclic (c)AMP, and 1 mM 8-bromo-cAMP resulted in statistically similar insulin-release curves in control and VE-infected islets. Additional experiments assessing [5-3H]glucose use in control and infected islets after 20 min of perifusion with 20 mM glucose revealed virtually identical values (239 +/- 30-control; and 222 +/- 27-VE-infected islets). Morphological and morphometric evaluation of VE-infected islets (21 d following virus inoculation) showed no changes in islet volume density, beta cell density, and beta cell granulation. Thus, VE virus induces a defect in glucose-stimulated insulin release from hamster beta cells that can be corrected by cAMP analogues and does not alter islet glucose use.

  1. Efficient virus-induced gene silencing in plants using a modified geminivirus DNA1 component.

    PubMed

    Huang, Changjun; Xie, Yan; Zhou, Xueping

    2009-04-01

    Virus-induced gene silencing (VIGS) is currently recognized as a powerful reverse genetics tool for application in functional genomics. DNA1, a satellite-like and single-stranded DNA molecule associated with begomoviruses (Family Geminiviridae), has been shown to replicate autonomously but requires the helper virus for its dissemination. We developed a VIGS vector based on the DNA1 component of tobacco curly shoot virus (TbCSV), a monopartite begomovirus, by inserting a multiple cloning site between the replication-associated protein open reading frame and the A-rich region for subsequent insertion of DNA fragments of genes targeted for silencing. When a host gene (sulphur, Su) or transgene (green fluorescent protein, GFP) was inserted into the modified DNA1 vector and co-agroinoculated with TbCSV, efficient silencing of the cognate gene was observed in Nicotiana benthamiana plants. More interestingly, we demonstrated that this modified DNA1 could effectively suppress GFP in transgenic N. benthamiana or endogenous Su in tobacco plants when co-agroinoculated with tomato yellow leaf curl China virus (TYLCCNV), another monopartite begomovirus that does not induce any viral symptoms. A gene-silencing system in Nicotiana spp., Solanum lycopersicum and Petunia hybrida plants was then established using TYLCCNV and the modified DNA1 vector. The system can be used to silence genes involved in meristem and flower development. The modified DNA1 vector was used to silence the AtTOM homologous genes (NbTOM1 and NbTOM3) in N. benthamiana. Silencing of NbTOM1 or NbTOM3 can reduce tobamovirus multiplication to a lower level, and silencing of both genes simultaneously can completely inhibit tobamovirus multiplication. Previous studies have reported that DNA1 is associated with both monopartite and bipartite begomoviruses, as well as curtoviruses. This vector system can therefore be applied for the study, analysis and discovery of gene function in a variety of important crop plants.

  2. Systematic knockdown of morphine pathway enzymes in opium poppy using virus-induced gene silencing.

    PubMed

    Wijekoon, Champa P; Facchini, Peter J

    2012-03-01

    Opium poppy (Papaver somniferum) remains the sole commercial source for several pharmaceutical alkaloids including the narcotic analgesics codeine and morphine, and the semi-synthetic drugs oxycodone, buprenorphine and naltrexone. Although most of the biosynthetic genes have been identified, the post-transcriptional regulation of the morphinan alkaloid pathway has not been determined. We have used virus-induced gene silencing (VIGS) as a functional genomics tool to investigate the regulation of morphine biosynthesis via a systematic reduction in enzyme levels responsible for the final six steps in the pathway. Specific gene silencing was confirmed at the transcript level by real-time quantitative PCR (polymerase chain reaction), and at the protein level by immunoblot analysis using antibodies raised against salutaridine synthase (SalSyn), salutaridine reductase (SalR), salutaridine 7-O-acetyltransferase (SalAT), thebaine 6-O-demethylase (T6ODM), codeinone reductase (COR), and codeine O-demethylase (CODM). In some cases, silencing a specific biosynthetic gene resulted in a predictable accumulation of the substrate for the corresponding enzyme. Reduced SalSyn, SalR, T6ODM and CODM protein levels correlated with lower morphine levels and a substantial increase in the accumulation of reticuline, salutaridine, thebaine and codeine, respectively. In contrast, the silencing of genes encoding SalAT and COR resulted in the accumulation of salutaridine and reticuline, respectively, which are not the corresponding enzymatic substrates. The silencing of alkaloid biosynthetic genes using VIGS confirms the physiological function of enzymes previously characterized in vitro, provides insight into the biochemical regulation of morphine biosynthesis, and demonstrates the immense potential for metabolic engineering in opium poppy.

  3. Canine distemper virus induces apoptosis in cervical tumor derived cell lines.

    PubMed

    Del Puerto, Helen L; Martins, Almir S; Milsted, Amy; Souza-Fagundes, Elaine M; Braz, Gissandra F; Hissa, Barbara; Andrade, Luciana O; Alves, Fabiana; Rajão, Daniela S; Leite, Rômulo C; Vasconcelos, Anilton C

    2011-06-30

    Apoptosis can be induced or inhibited by viral proteins, it can form part of the host defense against virus infection, or it can be a mechanism for viral spread to neighboring cells. Canine distemper virus (CDV) induces apoptotic cells in lymphoid tissues and in the cerebellum of dogs naturally infected. CDV also produces a cytopathologic effect, leading to apoptosis in Vero cells in tissue culture. We tested canine distemper virus, a member of the Paramyxoviridae family, for the ability to trigger apoptosis in HeLa cells, derived from cervical cancer cells resistant to apoptosis. To study the effect of CDV infection in HeLa cells, we examined apoptotic markers 24 h post infection (pi), by flow cytometry assay for DNA fragmentation, real-time PCR assay for caspase-3 and caspase-8 mRNA expression, and by caspase-3 and -8 immunocytochemistry. Flow cytometry showed that DNA fragmentation was induced in HeLa cells infected by CDV, and immunocytochemistry revealed a significant increase in the levels of the cleaved active form of caspase-3 protein, but did not show any difference in expression of caspase-8, indicating an intrinsic apoptotic pathway. Confirming this observation, expression of caspase-3 mRNA was higher in CDV infected HeLa cells than control cells; however, there was no statistically significant change in caspase-8 mRNA expression profile. Our data suggest that canine distemper virus induced apoptosis in HeLa cells, triggering apoptosis by the intrinsic pathway, with no participation of the initiator caspase -8 from the extrinsic pathway. In conclusion, the cellular stress caused by CDV infection of HeLa cells, leading to apoptosis, can be used as a tool in future research for cervical cancer treatment and control.

  4. Optimizing virus-induced gene silencing efficiency with Cymbidium mosaic virus in Phalaenopsis flower.

    PubMed

    Hsieh, Ming-Hsien; Lu, Hsiang-Chia; Pan, Zhao-Jun; Yeh, Hsin-Hung; Wang, Shyh-Shyan; Chen, Wen-Huei; Chen, Hong-Hwa

    2013-03-01

    Virus-induced gene silencing (VIGS) is a good way to study floral gene functions of orchids, especially those with a long life cycle. To explore the applicability and improve viral silencing efficiency for application of Cymbidium mosaic virus (CymMV)-induced gene silencing, we examined several variables, including the optimal length of the DNA fragment, the effect of developmental maturation status of inflorescence, and suitable inoculation sites. A CymMV-based VIGS system can be used with orchids to silence genes including PeUFGT3, PeMADS5 and PeMADS6 and induce prominent phenotypes with silencing efficiency up to 95.8% reduction. The DNA fragment size used for silencing can be as small as 78-85 bp and still reach 61.5-95.8% reduction. The effect of cDNA location as a target in VIGS varies among genes because of non-target gene influence when using the 5' terminus of the coding region of both PeMADS5 and PeMADS6. Use of VIGS to knock down a B-class MADS-box gene (PeMADS6) in orchids with different maturation status of inflorescence allowed for observing discernable knockdown phenotypes in flowers. Furthermore, silencing effects with Agro-infiltration did not differ with both leaf and inflorescence injections, but injection in the leaf saved time and produced less damage to plants. We propose an optimized approach for VIGS using CymMV as a silencing vector for floral functional genomics in Phalaenopsis orchid with Agro-infiltration: (1) DNA fragment length about 80 bp, (2) a more mature status of inflorescence and (3) leaf injection.

  5. Functional genomic analysis of cotton genes with agrobacterium-mediated virus-induced gene silencing.

    PubMed

    Gao, Xiquan; Shan, Libo

    2013-01-01

    Cotton (Gossypium spp.) is one of the most agronomically important crops worldwide for its unique textile fiber production and serving as food and feed stock. Molecular breeding and genetic engineering of useful genes into cotton have emerged as advanced approaches to improve cotton yield, fiber quality, and resistance to various stresses. However, the understanding of gene functions and regulations in cotton is largely hindered by the limited molecular and biochemical tools. Here, we describe the method of an Agrobacterium infiltration-based virus-induced gene silencing (VIGS) assay to transiently silence endogenous genes in cotton at 2-week-old seedling stage. The genes of interest could be readily silenced with a consistently high efficiency. To monitor gene silencing efficiency, we have cloned cotton GrCla1 from G. raimondii, a homolog gene of Arabidopsis Cloroplastos alterados 1 (AtCla1) involved in chloroplast development, and inserted into a tobacco rattle virus (TRV) binary vector pYL156. Silencing of GrCla1 results in albino phenotype on the newly emerging leaves, serving as a visual marker for silencing efficiency. To further explore the possibility of using VIGS assay to reveal the essential genes mediating disease resistance to Verticillium dahliae, a fungal pathogen causing severe Verticillium wilt in cotton, we developed a seedling infection assay to inoculate cotton seedlings when the genes of interest are silenced by VIGS. The method we describe here could be further explored for functional genomic analysis of cotton genes involved in development and various biotic and abiotic stresses.

  6. IL-23 is required for the development of severe egg-induced immunopathology in schistosomiasis and for lesional expression of IL-17.

    PubMed

    Rutitzky, Laura I; Bazzone, Lindsey; Shainheit, Mara G; Joyce-Shaikh, Barbara; Cua, Daniel J; Stadecker, Miguel J

    2008-02-15

    In infection with the trematode helminth Schistosoma mansoni, the severity of CD4 T cell-mediated hepatic granulomatous and fibrosing inflammation against parasite eggs varies considerably in humans and among mouse strains. In mice, either the natural high pathology, or high pathology induced by concomitant immunization with schistosome egg Ags (SEA) in CFA (SEA/CFA), results from a failure to contain a net proinflammatory cytokine environment. We previously demonstrated that the induction of severe immunopathology was dependent on the IL-12/IL-23 common p40 subunit, and correlated with an increase in IL-17, thus implying IL-23 in the pathogenesis. We now show that mice lacking the IL-23-specific subunit p19 are impaired in developing severe immunopathology following immunization with SEA/CFA, which is associated with a marked drop of IL-17 in the granulomas, but not in the draining mesenteric lymph nodes, and with a markedly suppressed SEA-specific IFN-gamma response regulated by a striking increase in IL-10. The granulomas are characterized by a significant reduction in Gr-1(+) cell recruitment and by alternative macrophage activation. Taken together, these results demonstrate that IL-23 per se is not necessary for the generation of IL-17-producing T cells, but is essential for the development of severe schistosome egg-induced immunopathology, and its absence cannot be overcome with other possible compensatory mechanisms.

  7. Agrobacterium-mediated virus-induced gene silencing assay in cotton.

    PubMed

    Gao, Xiquan; Britt, Robert C; Shan, Libo; He, Ping

    2011-08-20

    Cotton (Gossypium hirsutum) is one of the most important crops worldwide. Considerable efforts have been made on molecular breeding of new varieties. The large-scale gene functional analysis in cotton has been lagged behind most of the modern plant species, likely due to its large size of genome, gene duplication and polyploidy, long growth cycle and recalcitrance to genetic transformation(1). To facilitate high throughput functional genetic/genomic study in cotton, we attempt to develop rapid and efficient transient assays to assess cotton gene functions. Virus-Induced Gene Silencing (VIGS) is a powerful technique that was developed based on the host Post-Transcriptional Gene Silencing (PTGS) to repress viral proliferation(2,3). Agrobacterium-mediated VIGS has been successfully applied in a wide range of dicots species such as Solanaceae, Arabidopsis and legume species, and monocots species including barley, wheat and maize, for various functional genomic studies(3,4). As this rapid and efficient approach avoids plant transformation and overcomes functional redundancy, it is particularly attractive and suitable for functional genomic study in crop species like cotton not amenable for transformation. In this study, we report the detailed protocol of Agrobacterium-mediated VIGS system in cotton. Among the several viral VIGS vectors, the tobacco rattle virus (TRV) invades a wide range of hosts and is able to spread vigorously throughout the entire plant yet produce mild symptoms on the hosts5. To monitor the silencing efficiency, GrCLA1, a homolog gene of Arabidopsis Cloroplastos alterados 1 gene (AtCLA1) in cotton, has been cloned and inserted into the VIGS binary vector pYL156. CLA1 gene is involved in chloroplast development(6), and previous studies have shown that loss-of-function of AtCLA1 resulted in an albino phenotype on true leaves(7), providing an excellent visual marker for silencing efficiency. At approximately two weeks post Agrobacterium infiltration

  8. High rates of virus-induced gene silencing by tobacco rattle virus in Populus.

    PubMed

    Shen, Zedan; Sun, Jian; Yao, Jun; Wang, Shaojie; Ding, Mingquan; Zhang, Huilong; Qian, Zeyong; Zhao, Nan; Sa, Gang; Zhao, Rui; Shen, Xin; Polle, Andrea; Chen, Shaoliang

    2015-09-01

    Virus-induced gene silencing (VIGS) has been shown to be an effective tool for investigating gene functions in herbaceous plant species, but has rarely been tested in trees. The establishment of a fast and reliable transformation system is especially important for woody plants, many of which are recalcitrant to transformation. In this study, we established a tobacco rattle virus (TRV)-based VIGS system for two Populus species, Populus euphratica and P. × canescens. Here, TRV constructs carrying a 266 bp or a 558 bp fragment of the phytoene desaturase (PDS) gene were Agrobacterium-infiltrated into leaves of the two poplar species. Agrobacterium-mediated delivery of the shorter insert, TRV2-PePDS266, into the host poplars resulted in expected photobleaching in both tree species, but not the longer insert, PePDS558. The efficiency of VIGS was temperature-dependent, increasing by raising the temperature from 18 to 28 °C. The optimized TRV-VIGS system at 28 °C resulted in a high silencing frequency and efficiency up to 65-73 and 83-94%, respectively, in the two tested poplars. Moreover, syringe inoculation of Agrobacterium in 100 mM acetosyringone induced a more efficient silencing in the two poplar species, compared with other agroinfiltration methods, e.g., direct injection, misting and agrodrench. There were plant species-related differences in the response to VIGS because the photobleaching symptoms were more severe in P. × canescens than in P. euphratica. Furthermore, VIGS-treated P. euphratica exhibited a higher recovery rate (50%) after several weeks of the virus infection, compared with TRV-infected P. × canescens plants (20%). Expression stability of reference genes was screened to assess the relative abundance of PePDS mRNA in VIGS-treated P. euphratica and P. × canescens. PeACT7 was stably expressed in P. euphratica and UBQ-L was selected as the most suitable reference gene for P. × canescens using three different

  9. Highly efficient virus-induced gene silencing in apple and soybean by apple latent spherical virus vector and biolistic inoculation.

    PubMed

    Yamagishi, Noriko; Yoshikawa, Nobuyuki

    2013-01-01

    Virus-induced gene silencing (VIGS) is an effective tool for the analysis of the gene function in plants within a short time. However, in woody fruit tree like apple, some of Solanum crops, and soybean, it is generally difficult to inoculate virus vector by conventional inoculation methods. Here, we show efficient VIGS in apple and soybean by Apple latent spherical virus (ALSV) vector and biolistic inoculation. The plants inoculated with ALSV vectors by particle bombardment showed uniform silenced phenotypes of target genes within 2-3 weeks post inoculation.

  10. Cell-type deconvolution with immune pathways identifies gene networks of host defense and immunopathology in leprosy

    PubMed Central

    Inkeles, Megan S.; Teles, Rosane M.B.; Pouldar, Delila; Andrade, Priscila R.; Madigan, Cressida A.; Ambrose, Mike; Sarno, Euzenir N.; Rea, Thomas H.; Ochoa, Maria T.; Iruela-Arispe, M. Luisa; Swindell, William R.; Ottenhoff, Tom H.M.; Geluk, Annemieke; Bloom, Barry R.

    2016-01-01

    Transcriptome profiles derived from the site of human disease have led to the identification of genes that contribute to pathogenesis, yet the complex mixture of cell types in these lesions has been an obstacle for defining specific mechanisms. Leprosy provides an outstanding model to study host defense and pathogenesis in a human infectious disease, given its clinical spectrum, which interrelates with the host immunologic and pathologic responses. Here, we investigated gene expression profiles derived from skin lesions for each clinical subtype of leprosy, analyzing gene coexpression modules by cell-type deconvolution. In lesions from tuberculoid leprosy patients, those with the self-limited form of the disease, dendritic cells were linked with MMP12 as part of a tissue remodeling network that contributes to granuloma formation. In lesions from lepromatous leprosy patients, those with disseminated disease, macrophages were linked with a gene network that programs phagocytosis. In erythema nodosum leprosum, neutrophil and endothelial cell gene networks were identified as part of the vasculitis that results in tissue injury. The present integrated computational approach provides a systems approach toward identifying cell-defined functional networks that contribute to host defense and immunopathology at the site of human infectious disease. PMID:27699251

  11. Ebola Virus Replication and Disease Without Immunopathology in Mice Expressing Transgenes to Support Human Myeloid and Lymphoid Cell Engraftment.

    PubMed

    Spengler, Jessica R; Lavender, Kerry J; Martellaro, Cynthia; Carmody, Aaron; Kurth, Andreas; Keck, James G; Saturday, Greg; Scott, Dana P; Nichol, Stuart T; Hasenkrug, Kim J; Spiropoulou, Christina F; Feldmann, Heinz; Prescott, Joseph

    2016-10-15

    The study of Ebola virus (EBOV) pathogenesis in vivo has been limited to nonhuman primate models or use of an adapted virus to cause disease in rodent models. Herein we describe wild-type EBOV (Makona variant) infection of mice engrafted with human hematopoietic CD34(+) stem cells (Hu-NSG™-SGM3 mice; hereafter referred to as SGM3 HuMice). SGM3 HuMice support increased development of myeloid immune cells, which are primary EBOV targets. In SGM3 HuMice, EBOV replicated to high levels, and disease was observed following either intraperitoneal or intramuscular inoculation. Despite the high levels of viral antigen and inflammatory cell infiltration in the liver, the characteristic histopathology of Ebola virus disease was not observed, and this absence of severe immunopathology may have contributed to the recovery and survival of some of the animals. Future investigations into the underlying mechanisms of the atypical disease presentation in SGM3 HuMice will provide additional insights into the immunopathogenesis of severe EBOV disease. Published by Oxford University Press for the Infectious Diseases Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  12. Reciprocal crosstalk between dendritic cells and natural killer cells under the effects of PGE2 in immunity and immunopathology

    PubMed Central

    Harizi, Hedi

    2013-01-01

    The reciprocal activating crosstalk between dendritic cells (DCs) and natural killer (NK) cells plays a pivotal role in regulating immune defense against viruses and tumors. The cytokine-producing capacity, Th-cell polarizing ability and chemokine expression, migration and stimulatory functions of DCs are regulated by activated NK cells. Conversely, the innate and effector functions of NK cells require close interactions with activated DCs. Cell membrane-associated molecules and soluble mediators, including cytokines and prostaglandins (PGs), contribute to the bidirectional crosstalk between DCs and NK cells. One of the most well-known and well-studied PGs is PGE2. Produced by many cell types, PGE2 has been shown to affect various aspects of the immune and inflammatory responses by acting on all components of the immune system. There is emerging evidence that PGE2 plays crucial roles in DC and NK cell biology. Several studies have shown that DCs are not only a source of PGE2, but also a target of its immunomodulatory action in normal immune response and during immune disorders. Although NK cells appear to be unable to produce PGE2, they are described as powerful PGE2-responding cells, as they express all PGE2 E-prostanoid (EP) receptors. Several NK cell functions (lysis, migration, proliferation, cytokine production) are influenced by PGE2. This review highlights the effects of PGE2 on DC–NK cell crosstalk and its subsequent impact on immune regulations in normal and immunopathological processes. PMID:23524652

  13. Chronic graft-versus-host disease in the rat radiation chimera. III. Immunology and immunopathology in rapidly induced models

    SciTech Connect

    Beschorner, W.E.; Tutschka, P.J.; Santos, G.W.

    1983-03-01

    Although chronic graft-versus-host disease (GVHD) frequently develops in the long-term rat radiation chimera, we present three additional models in which a histologically similar disease is rapidly induced. These include adoptive transfer of spleen and bone marrow from rats with spontaneous chronic GVHD into lethally irradiated rats of the primary host strain; sublethal irradiation of stable chimeras followed by a booster transplant; and transfer of spleen cells of chimeras recovering from acute GVHD into second-party (primary recipient strain) or third-party hosts. Some immunopathologic and immune abnormalities associated with spontaneous chronic GVHD were not observed in one or more of the induced models. Thus, IgM deposition in the skin, antinuclear antibodies, and vasculitis appear to be paraphenomena. On the other hand, lymphoid hypocellularity of the thymic medulla, immaturity of splenic follicles, and nonspecific suppressor cells were consistently present in the long term chimeras, and in all models. These abnormalities therefore may be pathogenetically important, or closely related to the development of chronic GVHD.

  14. Studies on glycoxidatively modified human IgG: Implications in immuno-pathology of type 2 diabetes mellitus.

    PubMed

    Islam, Sidra; Moinuddin; Mir, Abdul Rouf; Arfat, Mir Yasir; Alam, Khursheed; Ali, Asif

    2017-11-01

    Structural rearrangements and condensations of proteins under hyperglycemic stress have been implicated in various pathological disorders. This study aims to probe the role of methylglyoxal (MG) modified human immunoglobulin G (MG-IgG) in immuno-pathology of type 2 diabetes mellitus (T2DM). MG was found to perturb the structural integrity of IgG, affect its aromatic micro-environment and cause the generation of advanced glycation end products (AGEs) and aggregate adducts. It liberated the hydrophobic pockets of the protein, reduced its β pleated sheet structure and affected its tertiary conformation. Transition from β sheet to α helix and random coil was also observed in IgG upon modification by MG. It acted with strong oxidative potential and caused oligomerisation and disordered or amorphous type aggregation in the modified protein. Modified IgG had a cytotoxic and genotoxic impact. The MG modified IgG presented novel antigenic determinants that lead to an aggressive immune response. The antibodies had high affinity towards the immunogen. Auto-antibodies derived from T2DM patients exhibited strong affinity towards the modified IgG in comparison to the unmodified protein. Specificity of serum antibodies from T2DM patients was further confirmed by competitive-inhibition ELISA. The potential role of MG-IgG in the immunopathogenesis of T2DM has been discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Reciprocal crosstalk between dendritic cells and natural killer cells under the effects of PGE2 in immunity and immunopathology.

    PubMed

    Harizi, Hedi

    2013-05-01

    The reciprocal activating crosstalk between dendritic cells (DCs) and natural killer (NK) cells plays a pivotal role in regulating immune defense against viruses and tumors. The cytokine-producing capacity, Th-cell polarizing ability and chemokine expression, migration and stimulatory functions of DCs are regulated by activated NK cells. Conversely, the innate and effector functions of NK cells require close interactions with activated DCs. Cell membrane-associated molecules and soluble mediators, including cytokines and prostaglandins (PGs), contribute to the bidirectional crosstalk between DCs and NK cells. One of the most well-known and well-studied PGs is PGE2. Produced by many cell types, PGE2 has been shown to affect various aspects of the immune and inflammatory responses by acting on all components of the immune system. There is emerging evidence that PGE2 plays crucial roles in DC and NK cell biology. Several studies have shown that DCs are not only a source of PGE2, but also a target of its immunomodulatory action in normal immune response and during immune disorders. Although NK cells appear to be unable to produce PGE2, they are described as powerful PGE2-responding cells, as they express all PGE2 E-prostanoid (EP) receptors. Several NK cell functions (lysis, migration, proliferation, cytokine production) are influenced by PGE2. This review highlights the effects of PGE2 on DC-NK cell crosstalk and its subsequent impact on immune regulations in normal and immunopathological processes.

  16. Evaluation of immunopathologic effects of aqueous extract of Echinacea purpurea in mice after experimental challenge with Pasteurella multocida serotype A.

    PubMed

    Rezaie, A; Gharibi, D; Ghorbanpoor, M; Anbari, S; Pourmahdi Broojeni, M

    2014-01-01

    In order to assess the immunopathological effects of aqueous Echinacea purpurea extract (EPE) on mice experimentally challenged with Pasteurella multocida serotype A, forty female BALB/c mice were randomly divided into four groups. The groups included a control group (received sterile distilled water 2 times/week for 2 weeks, intraperitoneally and then 100 µl sterile saline intranasally), a PMA group (received sterile distilled water as the control group and after 2 weeks, 5.6 × 10(3) CFU/ml of P. multocida serotype A, intranasally), an EPE+PMA group (received E. purpurea extract intraperitoneally 2 times/week for 2 weeks and then challenged as the PMA group) and an EPE group (received E. purpurea extract as EPE+PMA group and then 100 µl sterile saline intranasally). After 24 and 48 h post challenge, half of the animals in each group were sacrificed and analyzed for bacterial counts in their lungs and livers, TNFα serum levels and histapathological changes. The results showed significant differences in lung bacterial counts between PMA and EPE+PMA groups. TNFα serum level was significantly higher in the PMA group. Histopathological examination revealed infiltration of neutrophils in alveolar septa and hyperemia in the PMA group. In addition, the criteria of bronchopneumonia were partially recovered in the EPE+PMA compared to the PMA group. According to the results, it seems that E. purpurea extract has an immunomodulatory effect and can be used to prevent or control of pneumonia caused by Pasteurella.

  17. Toll Like Receptor 3 modulates immunopathology during a Schistosoma mansoni egg-driven Th2 response in the lung

    PubMed Central

    Joshi, Amrita D.; Schaller, Matthew; Lukacs, Nicholas W.; Kunkel, Steven L.; Hogaboam, Cory M.

    2010-01-01

    We examined the role of Toll Like Receptor 3 (TLR3) in Th2-driven pulmonary granulomatous disease, using wildtype (TLR3+/+) and TLR3 gene deficient (TLR3−/−) mice in a well-established model of S. mansoni egg induced pulmonary granuloma. The intravenous bolus injection of S. mansoni eggs into S. mansoni-sensitized TLR3+/+ mice was associated with an increase in TLR3 transcript expression in alveolar macrophages and ex vivo spleen and lung cultures at day 8 after egg injection. Lungs from TLR3−/− mice showed an increase in granuloma size, greater collagen deposition around the granuloma, and increased Th2 cytokine and chemokine levels compared with similarly sensitized and challenged TLR3+/+ mice. Macrophages from TLR3−/− mice exhibited a M2 phenotype characterized by increased arginase and CCL2 expression. Significantly greater numbers of CD4+CD25+ T cells were present in the lungs of TLR3−/− mice compared with TLR3+/+ mice at day 8 after egg embolization. Cells derived from granulomatous lung and lung draining lymph nodes of TLR3−/− mice released significantly higher levels of IL-17 levels relative to TLR3+/+ cells. Thus, our data suggest that TLR3 has a major regulatory role during a Th2-driven granulomatous response as its absence enhanced immunopathology. PMID:19009529

  18. Evidence for MHC I-restricted CD8+ T-cell-mediated immunopathology in canine masticatory muscle myositis and polymyositis.

    PubMed

    Neumann, J; Bilzer, T

    2006-02-01

    Masticatory muscle myositis (MMM) is the most common inflammatory myopathy (IM) in dogs, associated with antibodies against myosin. To further elucidate the immunopathogenesis, we investigated muscles of 53 dogs with MMM, 32 dogs with polymyositis (PM), and 4 dogs suffering from both, with regard to the presence and location of CD4(+) and CD8(+)T cells, B cells, macrophages, major histocompatibility complex (MHC) class I and class II antigens, and autoantibodies. CD8(+)T cells were found in MMM (91%) and PM (75%), mostly paralleled (68% and 61%) by enhanced expression of MHC class I antigen on muscle fibers. CD8(+)T cells invading intact and neighboring necrotic muscle fibers were present in MMM (39%) and PM (42%). Dogs with MMM lacking intramuscular (26%) and circulating (36%) autoantibodies also had CD8(+) T-cell infiltrations and muscle-fiber lesions. Since MHC class I antigen and CD8(+) T cells were detected in the presence of CD4(+) T cells, regardless of antimuscular antibodies, we consider MMM and PM in the dog as a CD8(+) T-cell-mediated immunopathological disease that initiates muscle-fiber destruction and leads to production of myosin autoantibodies.

  19. Contribution of the Purinergic Receptor P2X7 to Development of Lung Immunopathology during Influenza Virus Infection

    PubMed Central

    Ermler, Megan E.; Schotsaert, Michael; Gonzalez, Ma G.; Gillespie, Virginia; Lim, Jean K.; García-Sastre, Adolfo

    2017-01-01

    ABSTRACT An exacerbated immune response is one of the main causes of influenza-induced lung damage during infection. The molecular mechanisms regulating the fate of the initial immune response to infection, either as a protective response or as detrimental immunopathology, are not well understood. The purinergic receptor P2X7 is an ionotropic nucleotide-gated ion channel receptor expressed on immune cells that has been implicated in induction and maintenance of excessive inflammation. Here, we analyze the role of this receptor in a mouse model of influenza virus infection using a receptor knockout (KO) mouse strain. Our results demonstrate that the absence of the P2X7 receptor results in a better outcome to influenza virus infection characterized by reduced weight loss and increased survival upon experimental influenza challenge compared to wild-type mice. This effect was not virus strain specific. Overall lung pathology and apoptosis were reduced in virus-infected KO mice. Production of proinflammatory cytokines and chemokines such as interleukin-10 (IL-10), gamma interferon (IFN-γ), and CC chemokine ligand 2 (CCL2) was also reduced in the lungs of the infected KO mice. Infiltration of neutrophils and depletion of CD11b+ macrophages, characteristic of severe influenza virus infection in mice, were lower in the KO animals. Together, these results demonstrate that activation of the P2X7 receptor is involved in the exacerbated immune response observed during influenza virus infection. PMID:28351919

  20. Evaluation of immunopathologic effects of aqueous extract of Echinacea purpurea in mice after experimental challenge with Pasteurella multocida serotype A

    PubMed Central

    Rezaie, A; Gharibi, D; Ghorbanpoor, M; Anbari, S; Pourmahdi Broojeni, M

    2014-01-01

    In order to assess the immunopathological effects of aqueous Echinacea purpurea extract (EPE) on mice experimentally challenged with Pasteurella multocida serotype A, forty female BALB/c mice were randomly divided into four groups. The groups included a control group (received sterile distilled water 2 times/week for 2 weeks, intraperitoneally and then 100 µl sterile saline intranasally), a PMA group (received sterile distilled water as the control group and after 2 weeks, 5.6 × 103 CFU/ml of P. multocida serotype A, intranasally), an EPE+PMA group (received E. purpurea extract intraperitoneally 2 times/week for 2 weeks and then challenged as the PMA group) and an EPE group (received E. purpurea extract as EPE+PMA group and then 100 µl sterile saline intranasally). After 24 and 48 h post challenge, half of the animals in each group were sacrificed and analyzed for bacterial counts in their lungs and livers, TNFα serum levels and histapathological changes. The results showed significant differences in lung bacterial counts between PMA and EPE+PMA groups. TNFα serum level was significantly higher in the PMA group. Histopathological examination revealed infiltration of neutrophils in alveolar septa and hyperemia in the PMA group. In addition, the criteria of bronchopneumonia were partially recovered in the EPE+PMA compared to the PMA group. According to the results, it seems that E. purpurea extract has an immunomodulatory effect and can be used to prevent or control of pneumonia caused by Pasteurella. PMID:27175135

  1. A Numerically Subdominant CD8 T Cell Response to Matrix Protein of Respiratory Syncytial Virus Controls Infection with Limited Immunopathology

    PubMed Central

    Liu, Jie; Haddad, Elias K.; Marceau, Joshua; Morabito, Kaitlyn M.; Rao, Srinivas S.; Filali-Mouhim, Ali; Sekaly, Rafick-Pierre; Graham, Barney S.

    2016-01-01

    CD8 T cells are involved in pathogen clearance and infection-induced pathology in respiratory syncytial virus (RSV) infection. Studying bulk responses masks the contribution of individual CD8 T cell subsets to protective immunity and immunopathology. In particular, the roles of subdominant responses that are potentially beneficial to the host are rarely appreciated when the focus is on magnitude instead of quality of response. Here, by evaluating CD8 T cell responses in CB6F1 hybrid mice, in which multiple epitopes are recognized, we found that a numerically subdominant CD8 T cell response against DbM187 epitope of the virus matrix protein expressed high avidity TCR and enhanced signaling pathways associated with CD8 T cell effector functions. Each DbM187 T effector cell lysed more infected targets on a per cell basis than the numerically dominant KdM282 T cells, and controlled virus replication more efficiently with less pulmonary inflammation and illness than the previously well-characterized KdM282 T cell response. Our data suggest that the clinical outcome of viral infections is determined by the integrated functional properties of a variety of responding CD8 T cells, and that the highest magnitude response may not necessarily be the best in terms of benefit to the host. Understanding how to induce highly efficient and functional T cells would inform strategies for designing vaccines intended to provide T cell-mediated immunity. PMID:26943673

  2. Comparison of rapid immunodiagnosis assay kit with molecular and immunopathological approaches for diagnosis of rabies in cattle

    PubMed Central

    Ahmad, Ajaz; Singh, C. K.

    2016-01-01

    Aim: Presently, diagnosis of rabies is primarily based on, conventional fluorescent antibody technique (FAT), immunopathological and molecular techniques. Recently, rapid immunodiagnostic assay (RIDA) - A monoclonal antibody-based technique has been introduced for rapid diagnosis of rabies. The present investigation is envisaged to study the efficacy of RIDA kit for the diagnosis of rabies in cattle. Materials and Methods: About 11 brain samples from cattle, clinically suspected for rabies, were screened by the FAT, Heminested reverse transcriptase polymerase chain reaction (HnRT-PCR), Immunohistochemistry (IHC), and RIDA. Results: The sensitivity for detection of rabies from brain tissue by RIDA was 85.7% as compared to 100% by IHC as well as HnRT-PCR. The accuracy of detection of rabies by RIDA was 91.6% as compared to 100% that of IHC and HnRT-PCR, whereas specificity of RIDA was 100% like that of the IHC and HnRT-PCR. Conclusion: Despite a comparatively low-sensitivity and accuracy of RIDA, latter can still be useful in screening a large number of field samples promptly. However, it is recommended that negative results with RIDA in cattle need to be authenticated by suitable alternative diagnostic approaches. PMID:27051193

  3. Severe acute respiratory syndrome-associated coronavirus vaccines formulated with delta inulin adjuvants provide enhanced protection while ameliorating lung eosinophilic immunopathology.

    PubMed

    Honda-Okubo, Yoshikazu; Barnard, Dale; Ong, Chun Hao; Peng, Bi-Hung; Tseng, Chien-Te Kent; Petrovsky, Nikolai

    2015-03-01

    Although the severe acute respiratory syndrome-associated coronavirus (SARS-CoV) epidemic was controlled by nonvaccine measures, coronaviruses remain a major threat to human health. The design of optimal coronavirus vaccines therefore remains a priority. Such vaccines present major challenges: coronavirus immunity often wanes rapidly, individuals needing to be protected include the elderly, and vaccines may exacerbate rather than prevent coronavirus lung immunopathology. To address these issues, we compared in a murine model a range of recombinant spike protein or inactivated whole-virus vaccine candidates alone or adjuvanted with either alum, CpG, or Advax, a new delta inulin-based polysaccharide adjuvant. While all vaccines protected against lethal infection, addition of adjuvant significantly increased serum neutralizing-antibody titers and reduced lung virus titers on day 3 postchallenge. Whereas unadjuvanted or alum-formulated vaccines were associated with significantly increased lung eosinophilic immunopathology on day 6 postchallenge, this was not seen in mice immunized with vaccines formulated with delta inulin adjuvant. Protection against eosinophilic immunopathology by vaccines containing delta inulin adjuvants correlated better with enhanced T-cell gamma interferon (IFN-γ) recall responses rather than reduced interleukin-4 (IL-4) responses, suggesting that immunopathology predominantly reflects an inadequate vaccine-induced Th1 response. This study highlights the critical importance for development of effective and safe coronavirus vaccines of selection of adjuvants based on the ability to induce durable IFN-γ responses. Coronaviruses such as SARS-CoV and Middle East respiratory syndrome-associated coronavirus (MERS-CoV) cause high case fatality rates and remain major human public health threats, creating a need for effective vaccines. While coronavirus antigens that induce protective neutralizing antibodies have been identified, coronavirus vaccines

  4. A conserved virus-induced cytoplasmic TRAMP-like complex recruits the exosome to target viral RNA for degradation

    PubMed Central

    Molleston, Jerome M.; Sabin, Leah R.; Moy, Ryan H.; Menghani, Sanjay V.; Rausch, Keiko; Gordesky-Gold, Beth; Hopkins, Kaycie C.; Zhou, Rui; Jensen, Torben Heick; Wilusz, Jeremy E.; Cherry, Sara

    2016-01-01

    RNA degradation is tightly regulated to selectively target aberrant RNAs, including viral RNA, but this regulation is incompletely understood. Through RNAi screening in Drosophila cells, we identified the 3′-to-5′ RNA exosome and two components of the exosome cofactor TRAMP (Trf4/5–Air1/2–Mtr4 polyadenylation) complex, dMtr4 and dZcchc7, as antiviral against a panel of RNA viruses. We extended our studies to human orthologs and found that the exosome as well as TRAMP components hMTR4 and hZCCHC7 are antiviral. While hMTR4 and hZCCHC7 are normally nuclear, infection by cytoplasmic RNA viruses induces their export, forming a cytoplasmic complex that specifically recognizes and induces degradation of viral mRNAs. Furthermore, the 3′ untranslated region (UTR) of bunyaviral mRNA is sufficient to confer virus-induced exosomal degradation. Altogether, our results reveal that signals from viral infection repurpose TRAMP components to a cytoplasmic surveillance role where they selectively engage viral RNAs for degradation to restrict a broad range of viruses. PMID:27474443

  5. Axin expression delays herpes simplex virus-induced autophagy and enhances viral replication in L929 cells.

    PubMed

    Choi, Eun-Jin; Kee, Sun-Ho

    2014-02-01

    Axin, a negative regulator of the Wnt signaling pathway, plays a critical role in various cellular events including cell proliferation and cell death. Axin-regulated cell death affects multiple processes, including viral replication. For example, axin expression suppresses herpes simplex virus (HSV)-induced necrotic cell death and enhances viral replication. Based on these observations, this study investigated the involvement of autophagy in regulation of HSV replication and found axin expression inhibits autophagy-mediated suppression of viral replication in L929 cells. HSV infection induced autophagy in a time- and viral dose-dependent manner in control L929 cells (L-EV), whereas virus-induced autophagy was delayed in axin-expressing L929 cells (L-axin). Subsequent analysis showed that induction of autophagy by rapamycin reduced HSV replication, and that inhibiting autophagy by 3-methyladenine (3MA) and beclin-1 knockdown facilitated viral replication in L-EV cells. In addition, preventing autophagy with 3MA suppressed virus-induced cytotoxicity in L-EV cells. In contrast, HSV replication in L-axin cells was resistant to changes in autophagy. These results suggest that axin expression may render L929 cells resistant to HSV-infection induced autophagy, leading to enhanced viral replication. © 2014 The Societies and Wiley Publishing Asia Pty Ltd.

  6. Disruption of plant carotenoid biosynthesis through virus-induced gene silencing affects oviposition behaviour of the butterfly Pieris rapae.

    PubMed

    Zheng, Si-Jun; Snoeren, Tjeerd A L; Hogewoning, Sander W; van Loon, Joop J A; Dicke, Marcel

    2010-05-01

    Optical plant characteristics are important cues to plant-feeding insects. In this article, we demonstrate for the first time that silencing the phytoene desaturase (PDS) gene, encoding a key enzyme in plant carotenoid biosynthesis, affects insect oviposition site selection behaviour. Virus-induced gene silencing employing tobacco rattle virus was used to knock down endogenous PDS expression in three plant species (Arabidopsis thaliana, Brassica nigra and Nicotiana benthamiana) by its heterologous gene sequence from Brassica oleracea. We investigated the consequences of the silencing of PDS on oviposition behaviour by Pieris rapae butterflies on Arabidopsis and Brassica plants; first landing of the butterflies on Arabidopsis plants (to eliminate an effect of contact cues); first landing on Arabidopsis plants enclosed in containers (to eliminate an effect of volatiles); and caterpillar growth on Arabidopsis plants. Our results show unambiguously that P. rapae has an innate ability to visually discriminate between green and variegated green-whitish plants. Caterpillar growth was significantly lower on PDS-silenced than on empty vector control plants. This study presents the first analysis of PDS function in the interaction with an herbivorous insect. We conclude that virus-induced gene silencing is a powerful tool for investigating insect-plant interactions in model and nonmodel plants.

  7. Impact of bacterial colonization on the severity, and accompanying airway inflammation, of virus-induced wheezing in children.

    PubMed

    Yu, D; Wei, L; Zhengxiu, L; Jian, L; Lijia, W; Wei, L; Xiqiang, Y; Xiaodong, Z; Zhou, F; Enmei, L

    2010-09-01

    It is reported that bacterial colonization of the airway in neonates affects the likelihood and severity of subsequent wheezing in childhood. This study aimed to explore the impact of bacterial colonization on the severity of virus-induced wheezing, and accompanying airway inflammation. Nasopharyngeal aspirates (NPAs) from 68 hospitalized children with bronchiolitis and 85 children with recurrent wheezing were obtained. Eleven common respiratory viruses were sought by PCR and/or direct fluorescence assay. Bacteria were isolated from NPAs by routine culture methods. Cell numbers and concentrations of cytokines/chemokines in the NPAs were measured, and nucleated cells were characterized. The frequency of bacterial colonization in children with recurrent wheezing was significantly higher than in children with an initial attack of bronchiolitis. Bacterial colonization accompanying virus infection had no effect on clinical manifestations, duration of hospitalization, concentrations of cytokines/chemokines (except interleukin-10 (IL-10)) or cellularity in the children with bronchiolitis; however, among the children with recurrent wheezing, those who had coexistent non-invasive bacterial colonization and virus infection presented more frequent cyanosis, longer duration of hospitalization, a higher concentration of IL-10 and a higher percentage of neutrophils in NPAs than those with virus infection but without bacterial colonization. Bacterial colonization was common in children with virus-induced wheezing, particularly in the situation of recurrent wheezing. To some extent, bacterial colonization accompanying virus infection may contribute to the severity of the wheezing because of its impact on airway inflammation.

  8. Stimulation of local solid tumour development of the nonproducer Marek's disease tumour transplant JMV by virus-induced immunosuppression.

    PubMed

    Bulow, V V; Weiland, F

    1980-01-01

    Chickens could be protected against lethal lymphoblastic leukaemia due to the nonproducer JMV Marek's disease (MD) tumour transplant by infection with the herpesvirus of turkeys (HVT) or various strains of MD virus. However, solid JMV tumours developed in MD virus-infected birds at the site of intramuscular or subcutaneous transplantation, but tumours never developed at the site of MD virus inoculation. The incidence and extent of local tumour growth, the development of metastases and the inhibition of tumour regression were related to the pathogenicity of the MD virus strains used for pre-treatment of the chickens. Infection of chickens with reticulo-endotheliosis virus (REV-C) or with chick syncytial virus (CSV), which are nonprotective against MD virus or JMV transplants, stimulated local tumour development of the attenuated JMV-A variant of the JMV transplant. Chickens which did not reject local tumours died of visceral JMV tumour metastases. A direct helper mechanism of viral infection on the oncogenicity of transplants was excluded. The results suggested that virus-induced immunosuppression stimulated the development of local JMV tumours which never occurred in normal chickens. Immunity to the JMV transplant, including resistance to lethal leukaemia and successful regression of local tumours, did not coincide with immunity to MD virus-induced visceral lymphomas or nerve lesions. Vaccinal induced tumour immunity evidently was defective. The significance of these results is discussed with reference to immunological functions of MD tumour-specific antigens.

  9. Clinical, demographic and immunopathological spectrum of subepidermal autoimmune bullous diseases at a tertiary center: A 1-year audit.

    PubMed

    De, Dipankar; Khullar, Geeti; Handa, Sanjeev; Saikia, Uma Nahar; Radotra, Bishan Das; Saikia, Biman; Minz, Ranjana W

    2016-01-01

    The subepidermal autoimmune bullous diseases are a subset of immunobullous diseases encountered less frequently in the Indian population. There is a paucity of data on the prevalence, demographic and clinicopathological spectrum of various subepidermal autoimmune bullous diseases from India. To determine the demographic and clinicopathological profile of subepidermal autoimmune bullous diseases in Indian patients, presenting to the Immunobullous Disease Clinic of Postgraduate Institute of Medical Education and Research, Chandigarh. Patients seen from November 2013 to November 2014 who fulfilled the preset diagnostic criteria of subepidermal autoimmune bullous diseases were identified from case records. Data regarding demographic characteristics, clinical profile, immunopathological findings and treatment were collected from the predesigned proforma. Of 268 cases of autoimmune bullous diseases registered, 50 (18.7%) were subepidermal autoimmune bullous diseases. Bullous pemphigoid was most frequently seen in 20 (40%) cases, followed by dermatitis herpetiformis in 14 (28%), mucous membrane pemphigoid in 6 (12%), chronic bullous dermatosis of childhood / linear immunoglobulin A bullous dermatosis in 5 (10%), lichen planus pemphigoides in 3 (6%), pemphigoid gestationis and epidermolysis bullosa acquisita in 1 (2%) case each. None of the patients had bullous systemic lupus erythematosus. We could not perform direct and indirect immunofluorescence using salt-split skin as a substrate and immunoblotting due to non-availability of these facilities. Therefore, misclassification of subepidermal autoimmune bullous diseases in some cases cannot be confidently excluded. Subepidermal autoimmune bullous diseases are not uncommon in Indian patients. Bullous pemphigoid contributes maximally to the burden of subepidermal autoimmune bullous diseases in India, similar to that in the West, although the proportion is lower and disease onset is earlier. Dermatitis herpetiformis was

  10. Effect of recombinant human macrophage colony-stimulating factor 1 on immunopathology of experimental brucellosis in mice.

    PubMed Central

    Doyle, A G; Halliday, W J; Barnett, C J; Dunn, T L; Hume, D A

    1992-01-01

    Brucella abortus injected into CBA mice replicated primarily in the spleen and liver, reaching a peak bacterial count in both organs about 7 days postinfection. The organism was eliminated from the liver but declined to a chronic phase in the spleen. The infection caused hepatosplenomegaly. An influx of macrophages into the two organs was monitored by quantitative Northern (RNA blot) analysis of the macrophage-specific marker lysozyme mRNA. Lysozyme mRNA was detectable in spleen and increased three- to fourfold during infection. In liver, lysozyme mRNA was initially undetectable, but at about the peak of infection it reached a level comparable to that in the spleen. Macrophage colony-stimulating factor 1 (CSF-1) has been reported to be elevated in the circulation of animals infected with B. abortus and is known to stimulate monocytopoiesis. To investigate the role of CSF-1 in pathogenesis, we studied the effect of further increasing the CSF-1 concentration by administration of recombinant human CSF-1. Since the infection is characterized by several distinct phases, recombinant human CSF-1 was administered at defined times relative to these phases. Pronounced effects were observed only when CSF-1 administration was begun during the developing acute phase. The consequences were decreased bacterial numbers in the spleen but an increase in the liver, reduced antibody generation, and increased hepatosplenomegaly. A feature of many chronic intracellular infections is immunosuppression. B. abortus caused a substantial diminution of responsiveness of spleen cells to T-cell mitogens, particularly concanavalin A. This action was mimicked by CSF-1 treatment of the animals prior to spleen cell isolation. The results suggest that CSF-1 plays a role in macrophage recruitment in brucellosis and that recruited macrophages contribute to the immunopathology and immunosuppression. PMID:1548070

  11. A Highly Efficacious Herpes Simplex Virus 1 Vaccine Blocks Viral Pathogenesis and Prevents Corneal Immunopathology via Humoral Immunity

    PubMed Central

    Royer, Derek J.; Gurung, Hem R.; Jinkins, Jeremy K.; Geltz, Joshua J.; Wu, Jennifer L.; Halford, William P.

    2016-01-01

    ABSTRACT Correlates of immunologic protection requisite for an efficacious herpes simplex virus 1 (HSV-1) vaccine remain unclear with respect to viral pathogenesis and clinical disease. In the present study, mice were vaccinated with a novel avirulent, live attenuated virus (0ΔNLS) or an adjuvanted glycoprotein D subunit (gD-2) similar to that used in several human clinical trials. Mice vaccinated with 0ΔNLS showed superior protection against early viral replication, neuroinvasion, latency, and mortality compared to that of gD-2-vaccinated or naive mice following ocular challenge with a neurovirulent clinical isolate of HSV-1. Moreover, 0ΔNLS-vaccinated mice exhibited protection against ocular immunopathology and maintained corneal mechanosensory function. Vaccinated mice also showed suppressed T cell activation in the draining lymph nodes following challenge. Vaccine efficacy correlated with serum neutralizing antibody titers. Humoral immunity was identified as the correlate of protection against corneal neovascularization, HSV-1 shedding, and latency through passive immunization. Overall, 0ΔNLS affords remarkable protection against HSV-1-associated ocular sequelae by impeding viral replication, dissemination, and establishment of latency. IMPORTANCE HSV-1 manifests in a variety of clinical presentations ranging from a rather benign “cold sore” to more severe forms of infection, including necrotizing stromal keratitis and herpes simplex encephalitis. The present study was undertaken to evaluate a novel vaccine to ocular HSV-1 infection not only for resistance to viral replication and spread but also for maintenance of the visual axis. The results underscore the necessity to reconsider strategies that utilize attenuated live virus as opposed to subunit vaccines against ocular HSV-1 infection. PMID:27030264

  12. Specific Antibody and Interferon-Gamma Responses Associated with Immunopathological Forms of Bovine Paratuberculosis in Slaughtered Friesian Cattle

    PubMed Central

    Vazquez, Patricia; Garrido, Joseba M.; Juste, Ramon A.

    2013-01-01

    Mycobacterium avium subsp. paratuberculosis (MAP) infection causes a chronic granulomatous inflammatory regional enteritis in ruminants. Cell-mediated immune responses are assumed to be protective and therefore, to be associated with its more delimited lesion types, while humoral responses are mainly associated with diffuse histopathological lesions. However, this duality of immune responses has been recently questioned. The aim of this study was to assess the relationship between both types of immunological responses and the type and extension of intestinal lesions and the presence of MAP in bovine tissues. Standard histopathological examinations, two microbiological procedures (culture and real time PCR (rtPCR)), as well as MAP specific antibody and interferon gamma (IFN-γ) release assays (IGRA) were performed on tissues and blood of 333 slaughtered Holstein-Friesian animals. Paratuberculous lesions were observed in 176 (52.9%) of the animals and overall MAP detection rates were estimated at 13.5% and 28.5% for tissue culture and rtPCR, respectively. Unlike the relatively constant non-specific IFN-γ release, both the antibody levels and the specific IFN-γ release significantly increased with tissue damage. Delimited immunopathological forms, which accounted for 93.2% of all forms, were mostly related to positive testing in the IGRA (38.4%) whereas diffuse ones (6.8%) were associated with antibody seropositivity (91.7%). However, since the frequency of positive immune responses in both tests increased as the lesions severity increased, polarization of Th1/Th2 responses was less prominent than expected. MAP was detected in the majority of ELISA-positive animals (culture+: 90%, rtPCR+: 85%) but the bacteria was only confirmed in the 36.1% of IGRA-positive animals by any of the two microbiological tests. In terms of diagnosis, the antibody test was a good indicator of advanced tissue damage (diffuse forms), but the IGRA did not associate well with more delimited

  13. Specific antibody and interferon-gamma responses associated with immunopathological forms of bovine paratuberculosis in slaughtered Friesian cattle.

    PubMed

    Vazquez, Patricia; Garrido, Joseba M; Juste, Ramon A

    2013-01-01

    Mycobacterium avium subsp. paratuberculosis (MAP) infection causes a chronic granulomatous inflammatory regional enteritis in ruminants. Cell-mediated immune responses are assumed to be protective and therefore, to be associated with its more delimited lesion types, while humoral responses are mainly associated with diffuse histopathological lesions. However, this duality of immune responses has been recently questioned. The aim of this study was to assess the relationship between both types of immunological responses and the type and extension of intestinal lesions and the presence of MAP in bovine tissues. Standard histopathological examinations, two microbiological procedures (culture and real time PCR (rtPCR)), as well as MAP specific antibody and interferon gamma (IFN-γ) release assays (IGRA) were performed on tissues and blood of 333 slaughtered Holstein-Friesian animals. Paratuberculous lesions were observed in 176 (52.9%) of the animals and overall MAP detection rates were estimated at 13.5% and 28.5% for tissue culture and rtPCR, respectively. Unlike the relatively constant non-specific IFN-γ release, both the antibody levels and the specific IFN-γ release significantly increased with tissue damage. Delimited immunopathological forms, which accounted for 93.2% of all forms, were mostly related to positive testing in the IGRA (38.4%) whereas diffuse ones (6.8%) were associated with antibody seropositivity (91.7%). However, since the frequency of positive immune responses in both tests increased as the lesions severity increased, polarization of Th1/Th2 responses was less prominent than expected. MAP was detected in the majority of ELISA-positive animals (culture+: 90%, rtPCR+: 85%) but the bacteria was only confirmed in the 36.1% of IGRA-positive animals by any of the two microbiological tests. In terms of diagnosis, the antibody test was a good indicator of advanced tissue damage (diffuse forms), but the IGRA did not associate well with more delimited

  14. A Highly Efficacious Herpes Simplex Virus 1 Vaccine Blocks Viral Pathogenesis and Prevents Corneal Immunopathology via Humoral Immunity.

    PubMed

    Royer, Derek J; Gurung, Hem R; Jinkins, Jeremy K; Geltz, Joshua J; Wu, Jennifer L; Halford, William P; Carr, Daniel J J

    2016-06-01

    Correlates of immunologic protection requisite for an efficacious herpes simplex virus 1 (HSV-1) vaccine remain unclear with respect to viral pathogenesis and clinical disease. In the present study, mice were vaccinated with a novel avirulent, live attenuated virus (0ΔNLS) or an adjuvanted glycoprotein D subunit (gD-2) similar to that used in several human clinical trials. Mice vaccinated with 0ΔNLS showed superior protection against early viral replication, neuroinvasion, latency, and mortality compared to that of gD-2-vaccinated or naive mice following ocular challenge with a neurovirulent clinical isolate of HSV-1. Moreover, 0ΔNLS-vaccinated mice exhibited protection against ocular immunopathology and maintained corneal mechanosensory function. Vaccinated mice also showed suppressed T cell activation in the draining lymph nodes following challenge. Vaccine efficacy correlated with serum neutralizing antibody titers. Humoral immunity was identified as the correlate of protection against corneal neovascularization, HSV-1 shedding, and latency through passive immunization. Overall, 0ΔNLS affords remarkable protection against HSV-1-associated ocular sequelae by impeding viral replication, dissemination, and establishment of latency. HSV-1 manifests in a variety of clinical presentations ranging from a rather benign "cold sore" to more severe forms of infection, including necrotizing stromal keratitis and herpes simplex encephalitis. The present study was undertaken to evaluate a novel vaccine to ocular HSV-1 infection not only for resistance to viral replication and spread but also for maintenance of the visual axis. The results underscore the necessity to reconsider strategies that utilize attenuated live virus as opposed to subunit vaccines against ocular HSV-1 infection. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  15. Thymic Germinal Centers and Corticosteroids in Myasthenia Gravis: an Immunopathological Study in 1035 Cases and a Critical Review.

    PubMed

    Truffault, Frédérique; de Montpreville, Vincent; Eymard, Bruno; Sharshar, Tarek; Le Panse, Rozen; Berrih-Aknin, Sonia

    2017-02-01

    The most common form of Myasthenia gravis (MG) is due to anti-acetylcholine receptor (AChR) antibodies and is frequently associated with thymic pathology. In this review, we discuss the immunopathological characteristics and molecular mechanisms of thymic follicular hyperplasia, the effects of corticosteroids on this thymic pathology, and the role of thymic epithelial cells (TEC), a key player in the inflammatory thymic mechanisms. This review is based not only on the literature data but also on thymic transcriptome results and analyses of pathological and immunological correlations in a vast cohort of 1035 MG patients without thymoma. We show that among patients presenting a thymic hyperplasia with germinal centers (GC), 80 % are females, indicating that thymic follicular hyperplasia is mainly a disease of women. The presence of anti-AChR antibodies is correlated with the degree of follicular hyperplasia, suggesting that the thymus is a source of anti-AChR antibodies. The degree of hyperplasia is not dependent upon the time from the onset, implying that either the antigen is chronically expressed and/or that the mechanisms of the resolution of the GC are not efficiently controlled. Glucocorticoids, a conventional therapy in MG, induce a significant reduction in the GC number, together with changes in the expression of chemokines and angiogenesis. These changes are likely related to the acetylation molecular process, overrepresented in corticosteroid-treated patients, and essential for gene regulation. Altogether, based on the pathological and molecular thymic abnormalities found in MG patients, this review provides some explanations for the benefit of thymectomy in early-onset MG patients.

  16. Immunopathological features of palatine tonsil characteristic of IgA nephropathy: IgA1 localization in follicular dendritic cells.

    PubMed

    Kusakari, C; Nose, M; Takasaka, T; Yuasa, R; Kato, M; Miyazono, K; Fujita, T; Kyogoku, M

    1994-01-01

    IgA nephropathy (IgAN) is generally thought to be mediated by the glomerular deposition of circulating immune complexes containing IgA as the major antibody component. Upper respiratory infections and tonsillitis often precede IgAN, and in some cases tonsillectomy is effective for the treatment of IgAN. Thus, the tonsil seems to be a unique organ causing initial and/or progressive events to generate nephritogenic immune complexes in IgAN. In this study we focused on the analysis of immunopathological features of the palatine tonsil characteristic of IgAN patients by using an immunohistochemical technique. The IgA1 subclass was demonstrated in follicular dendritic cells (FDC) of the tonsil of IgAN patients, but not in FDC of non-IgAN controls. On the other hand, IgA2, IgG, IgM and C3 did not show any differences in distribution between the two groups. Moreover, the expression of decay-accelerating factor (DAF), an inhibitor of homologous complement activation, and transforming growth factor-beta 1 (TGF-beta 1), an inducer of antibody-producing cells to IgA class switching, in FDC and interdigitating dendritic cells of the tonsil, respectively, which was also clarified in this study for the first time, was found to be identically distributed in the two groups. These findings may support the idea that IgA1, possibly in an immune complex form, is trapped by FDC and plays an important role in the persistent activation of particular B cell repertoires responsible for the onset and/or progression of IgAN.

  17. Immunopathological features of palatine tonsil characteristic of IgA nephropathy: IgA1 localization in follicular dendritic cells.

    PubMed Central

    Kusakari, C; Nose, M; Takasaka, T; Yuasa, R; Kato, M; Miyazono, K; Fujita, T; Kyogoku, M

    1994-01-01

    IgA nephropathy (IgAN) is generally thought to be mediated by the glomerular deposition of circulating immune complexes containing IgA as the major antibody component. Upper respiratory infections and tonsillitis often precede IgAN, and in some cases tonsillectomy is effective for the treatment of IgAN. Thus, the tonsil seems to be a unique organ causing initial and/or progressive events to generate nephritogenic immune complexes in IgAN. In this study we focused on the analysis of immunopathological features of the palatine tonsil characteristic of IgAN patients by using an immunohistochemical technique. The IgA1 subclass was demonstrated in follicular dendritic cells (FDC) of the tonsil of IgAN patients, but not in FDC of non-IgAN controls. On the other hand, IgA2, IgG, IgM and C3 did not show any differences in distribution between the two groups. Moreover, the expression of decay-accelerating factor (DAF), an inhibitor of homologous complement activation, and transforming growth factor-beta 1 (TGF-beta 1), an inducer of antibody-producing cells to IgA class switching, in FDC and interdigitating dendritic cells of the tonsil, respectively, which was also clarified in this study for the first time, was found to be identically distributed in the two groups. These findings may support the idea that IgA1, possibly in an immune complex form, is trapped by FDC and plays an important role in the persistent activation of particular B cell repertoires responsible for the onset and/or progression of IgAN. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:7507015

  18. Different cytokine profile and eosinophil activation are involved in rhinovirus- and RS virus-induced acute exacerbation of childhood wheezing.

    PubMed

    Kato, Masahiko; Tsukagoshi, Hiroyuki; Yoshizumi, Masakazu; Saitoh, Mika; Kozawa, Kunihisa; Yamada, Yoshiyuki; Maruyama, Kenichi; Hayashi, Yasuhide; Kimura, Hirokazu

    2011-02-01

    Because little information is available on eosinophil activation and cytokine response in virus-induced wheezing, we attempted to detect respiratory viruses and measure eosinophil cationic protein (ECP), and 27 types of cytokines/chemokines in both serum and nasal secretions from children with wheezing. This study was an observational, case-control investigation of 267 subjects, who were visited and/or hospitalized with acute respiratory symptoms (with wheezing: men, 115; women, 59; mean/median age, 3.6/3.0 years) or who were visited for regular physical examination and treatment (non-symptomatic wheezing: men, 48; women, 31; mean/median, 5.0/4.7 years), and 14 control subjects (controls: men, 9; women, 5; mean/median, 3.6/3.7 years). We detected viruses in nasal secretions from 174 patients with acute exacerbations of wheezing using antigen detection kits or reverse transcription-polymerase chain reaction, followed by direct DNA sequencing analysis. We measured peripheral eosinophil counts, and serum concentrations of ECP and 27 cytokines/chemokines using a multiplex bead-based assay in patients with wheezing or non-symptomatic wheezing. We also examined nasal ECP and 27 cytokines/chemokines in patients with wheezing. Of 174 samples from wheezing exacerbations, rhinovirus was detected in 59; respiratory syncytial (RS) virus in 44; enterovirus in 17; other viruses in 19; and no viruses in 35. Serum concentrations of ECP, IL-5, IL-6, IL-1ra, and IP-10 were significantly elevated in rhinovirus-induced wheezing compared with non-symptomatic wheezing. Similarly, serum ECP, IL-5, and IP-10 were significantly higher in rhinovirus-induced wheezing than in controls. On the other hand, IL-1ra and IP-10, but not ECP and IL-5 were significantly higher in RS virus-induced wheezing than in controls. Furthermore, only IL-5 was significantly elevated in the rhinovirus group compared with the RS virus group in both serum and nasal secretions. Different cytokine profile and

  19. Antigen-pulsed bone marrow derived and pulmonary dendritic cells promote Th2 cell responses and immunopathology in lungs during the pathogenesis of murine mycoplasma pneumonia1

    PubMed Central

    Dobbs, Nicole A.; Zhou, Xia; Pulse, Mark; Hodge, Lisa M.; Schoeb, Trenton R.; Simecka, Jerry W.

    2014-01-01

    Mycoplasmas are a common cause of pneumonia in humans and animals, and attempts to create vaccines have not only failed to generate protective host responses, but exacerbated the disease. Mycoplasma pulmonis causes a chronic inflammatory lung disease resulting from a persistent infection, similar to other mycoplasma respiratory diseases. Using this model, Th1 subsets promote resistance to mycoplasma disease and infection, while Th2 responses contribute to immunopathology. The purpose of these studies was to evaluate the capacity of cytokine differentiated dendritic cells (DC) populations to influence the generation of protective and/or pathologic immune responses during M. pulmonis respiratory disease in BALB/c mice. We hypothesized that intratracheal inoculation of mycoplasma antigen-pulsed bone marrow derived dendritic cells (BMDC) could result in the generation of protective T cell responses during mycoplasma infection. However, intratracheal inoculation (priming) of mice with antigen-pulsed DCs resulted enhanced pathology in the recipient mice when challenged with mycoplasma. Inoculation of immunodeficient SCID mice with antigen-pulsed DCs demonstrated that this effect was dependent on lymphocyte responses. Similar results were observed when mice were primed with antigen-pulsed pulmonary, but not splenic, DCs. Lymphocytes generated in uninfected mice after the transfer of either antigen-pulsed BMDCs or pulmonary DCs were shown to be IL13+ Th2 cells, known to be associated with immunopathology. Thus, resident pulmonary DC most likely promote the development of immunopathology in mycoplasma disease through the generation of mycoplasma-specific Th2 responses. Vaccination strategies that disrupt or bypass this process could potentially result in a more effective vaccination. PMID:24973442

  20. Coinfection with the intestinal nematode Heligmosomoides polygyrus markedly reduces hepatic egg-induced immunopathology and proinflammatory cytokines in mouse models of severe schistosomiasis.

    PubMed

    Bazzone, Lindsey E; Smith, Patrick M; Rutitzky, Laura I; Shainheit, Mara G; Urban, Joseph F; Setiawan, Tommy; Blum, Arthur M; Weinstock, Joel V; Stadecker, Miguel J

    2008-11-01

    Infection with the trematode helminth Schistosoma mansoni results in a parasite egg-induced, CD4 T-cell-mediated, hepatointestinal granulomatous and fibrosing inflammation that varies greatly in severity, with a higher frequency of milder forms typically occurring in regions where the disease is endemic. One possible explanation for this is that in these regions the degree of inflammation is lessened by widespread concurrent infection with gastrointestinal nematodes. We tested this hypothesis by establishing a murine coinfection model in which mice were infected with the intestinal nematode parasite Heligmosomoides polygyrus prior to infection with S. mansoni. In CBA mice that naturally display a severe form of schistosomiasis, preinfection with H. polygyrus resulted in a marked reduction in schistosome egg-induced hepatic immunopathology, which was associated with significant decreases in the levels of interleukin-17 (IL-17), gamma interferon, tumor necrosis factor alpha, IL-23, IL-6, and IL-1beta and with increases in the levels of IL-4, IL-5, IL-10, and transforming growth factor beta in mesenteric lymph node cells, purified CD4 T cells, and isolated liver granuloma cells. There also were increases in liver Ym1 and forkhead box P3 transcription factor expression. In another model of high-pathology schistosomiasis induced in C57BL/6 mice by immunization with schistosome egg antigens in complete Freund's adjuvant, coinfection with the nematodes also resulted in a marked inhibition of hepatic immunopathology accompanied by similar shifts in cytokine production. These findings demonstrate that intestinal nematodes prevent Th1- and Th17-cell-mediated inflammation by promoting a strong Th2-polarized environment associated with increases in the levels of alternatively activated macrophages and T regulatory cells, which result in significant amelioration of schistosome-induced immunopathology.

  1. Characterization of Clonality of Epstein-Barr Virus-Induced Human B Lymphoproliferative Disease in Mice with Severe Combined Immunodeficiency

    PubMed Central

    Nakamine, Hirokazu; Masih, Aneal S.; Okano, Motohiko; Taguchi, Yuichi; Pirruccello, Samuel J.; Davis, Jack R.; Mahloch, Mark L.; Beisel, Kirk W.; Kleveland, Kimberly; Sanger, Warren G.; Purtilo, David T.

    1993-01-01

    To improve the diagnostic accuracy and understanding of the pathogenesis of lymphoproliferative diseases (LPDs) occurring in immunosuppressed transplant recipients (post-transplantation LPD), clonality of Epstein-Barr virus-induced human LPDs in mice with severe combined immunodeficiency was examined by analyzing: 1) human immunoglobulin genes and their products, 2) the clonality of Epstein-Barr virus DNA, and 3) genetic alteration of c-myc or bcl-2 genes. A spectrum of clonality was found in the LPDs comparable with that reported for post-transplantation LPDs, although rearrangements of c-myc or bcl-2 genes were not detected. It is confirmed that this system is useful in terms of clonality for understanding the early phases in the pathogenesis of post-transplantation LPD or LPD in immune deficient patients. ImagesFigure 1Figure 2Figure 3Figure 4Figure 5 PMID:8380952

  2. Virus-induced diabetes mellitus. VI. Genetically determined host differences in the replicating of encephalomyocarditis virus in pancreatic beta cells

    PubMed Central

    1976-01-01

    Beta cells were isolated from strains of mice that were susceptible and resistant to encephalomyocarditis (EMC) viral-induced diabetes mellitus. Beta cells from susceptible mice that were infected in vivo with EMC virus showed higher viral titers, more severe degranulation, and lower concentrations of immunoreactive insulin than beta cells from resistant mice. Immunofluorescence and infectious center assays revealed that pancreas from susceptible mice contained at least 10 times more infected cells than pancreas from resistant mice. Beta cell cultures prepared from susceptible mice and infected in vitro also showed higher viral titers and more severe cytopathologic changes than beta cell cultures from resistant mice. In contrast to beta cell cultures, virus replicated equally well in primary embryo and kidney cell cultures from susceptible and resistant strains of mice. It is concluded that the development of EMC virus-induced diabetes is related to genetically determined host differences in the capacity of the virus to infect beta cells. PMID:177713

  3. Inhibition of megakaryocyte development in the bone marrow underlies dengue virus-induced thrombocytopenia in humanized mice.

    PubMed

    Sridharan, Aishwarya; Chen, Qingfeng; Tang, Kin Fai; Ooi, Eng Eong; Hibberd, Martin L; Chen, Jianzhu

    2013-11-01

    A characteristic clinical feature of dengue virus infection is thrombocytopenia, though its underlying mechanism is not definitively determined. By adoptive transfer of human CD34(+) fetal liver cells into immunodeficient mice, we have constructed humanized mice with significant levels of human platelets, monocytes/macrophages, and hepatocytes. Infection of these mice with both lab-adapted and clinical strains of dengue virus induces characteristic human hematological changes, including transient leukopenia and thrombocytopenia. We show that the specific depletion of human platelets is not mediated by antibodies in the periphery or reduced production of human thrombopoietin in the liver but reduction of human megakaryocytes and megakaryocyte progenitors in the bone marrow of the infected mice. These findings identify inhibition of platelet production in the bone marrow as a key mechanism underlying dengue-induced thrombocytopenia and suggest the utility of the improved humanized mouse model in studying dengue virus infection and pathogenesis in a human cell context.

  4. Inhibition of Megakaryocyte Development in the Bone Marrow Underlies Dengue Virus-Induced Thrombocytopenia in Humanized Mice

    PubMed Central

    Sridharan, Aishwarya; Chen, Qingfeng; Tang, Kin Fai; Ooi, Eng Eong

    2013-01-01

    A characteristic clinical feature of dengue virus infection is thrombocytopenia, though its underlying mechanism is not definitively determined. By adoptive transfer of human CD34+ fetal liver cells into immunodeficient mice, we have constructed humanized mice with significant levels of human platelets, monocytes/macrophages, and hepatocytes. Infection of these mice with both lab-adapted and clinical strains of dengue virus induces characteristic human hematological changes, including transient leukopenia and thrombocytopenia. We show that the specific depletion of human platelets is not mediated by antibodies in the periphery or reduced production of human thrombopoietin in the liver but reduction of human megakaryocytes and megakaryocyte progenitors in the bone marrow of the infected mice. These findings identify inhibition of platelet production in the bone marrow as a key mechanism underlying dengue-induced thrombocytopenia and suggest the utility of the improved humanized mouse model in studying dengue virus infection and pathogenesis in a human cell context. PMID:23966397

  5. Influenza virus-induced encephalopathy in mice: interferon production and natural killer cell activity during acute infection.

    PubMed Central

    Wabuke-Bunoti, M A; Bennink, J R; Plotkin, S A

    1986-01-01

    Mice injected intracerebrally with infectious influenza virus (60 hemagglutinin units) developed lethargy, seizures, comas, and died 2 to 5 days postinfection. As early as 6 h after infection, the cerebrospinal fluid (CSF) in these animals was infiltrated with polymorphonuclear cells, mononuclear leukocytes, and large granular lymphocytes. Potent natural killer (NK) cell activity was observed for both CSF and spleen cell populations over the same period. This NK cell activity correlated with interferon (IFN) levels in the CSF and serum. Treatment of lethally infected mice with either anti-IFN alpha-IFN beta or anti-ganglio-n-tetraoglyceramide antiserum ameliorated the disease, reduced mortality, and effected changes in the relative proportions of inflammatory cell populations infiltrating the CSF. The possible significance of IFN and NK cell activity in the development of this influenza virus-induced encephalopathy is discussed. PMID:2431159

  6. Virus induced gene silencing (VIGS) for functional analysis of wheat genes involved in Zymoseptoria tritici susceptibility and resistance.

    PubMed

    Lee, Wing-Sham; Rudd, Jason J; Kanyuka, Kostya

    2015-06-01

    Virus-induced gene silencing (VIGS) has emerged as a powerful reverse genetic technology in plants supplementary to stable transgenic RNAi and, in certain species, as a viable alternative approach for gene functional analysis. The RNA virus Barley stripe mosaic virus (BSMV) was developed as a VIGS vector in the early 2000s and since then it has been used to study the function of wheat genes. Several variants of BSMV vectors are available, with some requiring in vitro transcription of infectious viral RNA, while others rely on in planta production of viral RNA from DNA-based vectors delivered to plant cells either by particle bombardment or Agrobacterium tumefaciens. We adapted the latest generation of binary BSMV VIGS vectors for the identification and study of wheat genes of interest involved in interactions with Zymoseptoria tritici and here present detailed and the most up-to-date protocols. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Effects of long term feeding of raw soya bean flour on virus-induced pancreatic carcinogenesis in guinea fowl.

    PubMed

    Kirev, T; Woutersen, R A; Kiril, A

    1999-01-29

    The effects of a diet enriched with 25% raw soya bean flour (RSF) on the pancreas and on the avian retrovirus Pts 56-induced pancreatic carcinogenesis in guinea fowl were studied. It has been shown that prolonged RSF feeding of new-hatched virus-infected and uninfected guinea fowl-poults induced enlargement of the pancreas, which was less pronounced when administration of the RSF supplemented diet started at the age of 75 days. Time-dependent multifocal inter- and intralobular hyperplasia of pleomorphic ducts lined by mucin-producing epithelium in the exocrine pancreas of virus-infected guinea fowls fed a RSF supplemented diet was regularly observed. Enlargement of virus-induced ductular neoplasms has been shown only after simultaneous RSF and virus administration.

  8. Virus induced gene silencing (VIGS) for functional analysis of wheat genes involved in Zymoseptoria tritici susceptibility and resistance

    PubMed Central

    Lee, Wing-Sham; Rudd, Jason J.; Kanyuka, Kostya

    2015-01-01

    Virus-induced gene silencing (VIGS) has emerged as a powerful reverse genetic technology in plants supplementary to stable transgenic RNAi and, in certain species, as a viable alternative approach for gene functional analysis. The RNA virus Barley stripe mosaic virus (BSMV) was developed as a VIGS vector in the early 2000s and since then it has been used to study the function of wheat genes. Several variants of BSMV vectors are available, with some requiring in vitro transcription of infectious viral RNA, while others rely on in planta production of viral RNA from DNA-based vectors delivered to plant cells either by particle bombardment or Agrobacterium tumefaciens. We adapted the latest generation of binary BSMV VIGS vectors for the identification and study of wheat genes of interest involved in interactions with Zymoseptoria tritici and here present detailed and the most up-to-date protocols. PMID:26092793

  9. [Observation of cells tolerant of tobacco mosaic virus in virus-induced local lesions in Datura stramonium L. leaves].

    PubMed

    Reunov, A V; Lega, S N; Nagorskaia, V P; Lapshina, L A

    2011-01-01

    Ultrastructural examination of tobacco mosaic virus-induced local lesions developing in leaves of Datura stramonium plants demonstrated that, in the central area of the lesions, the cell response to viral invasion was not uniform. Most cells exhibited an acute hypersensitive reaction and underwent rapid and complete necrosis. However, some cells, despite considerable virus accumulation and immediate contact with completely collapsed cells, maintained a certain degree of structural integrity. Analysis performed showed that the proportion of collapsed and uncollapsed cells in the lesion centre 3 to 5 days after infection did not change essentially. These data suggest that the absence of hypersensitive response in some cells in the lesion centre is not due to an early stage of infection but is likely caused by cell tolerance of the virus.

  10. Immune response to acute virus infection in the Syrian hamster. II. Studies on the identity of virus-induced cytotoxic effector cells

    SciTech Connect

    Nelles, M.J.; Duncan, W.R.; Streilein, J.W.

    1981-01-01

    The identity of the effector cell(s) mediating vaccinia virus-induced cytotoxic activity in Syrian hamsters undergoing acute virus infection has been investigated. Two different approaches have been utilized in this regard. Although T cells do not mediate vaccinia virus-induced cytotoxic activity directly, functional T cells were required for the in vivo development of a significant portion of vaccinia virus-induced cytotoxic activity. In addition, incorporation of aggregated gamma-globulins as well as anti-immunoglobulin reagents into the in vitro 51 Cr release assay inhibited a significant proportion of the cytotoxic activity mediated by spleen cells obtained from acutely infected hamsters possessing an intact thymus. Both approaches have yielded information consistent with the idea that a sizable portion of vaccinia virus-induced cytotoxic activity in the Syrian hamster is effected by K cells mediating antibody-dependent cell-mediated cytotoxicity (ADCC). The significance of this observation is discussed with regard to hamster viral immunity in general.

  11. Induction and maintenance of DNA methylation in plant promoter sequences by apple latent spherical virus-induced transcriptional gene silencing

    PubMed Central

    Kon, Tatsuya; Yoshikawa, Nobuyuki

    2014-01-01

    Apple latent spherical virus (ALSV) is an efficient virus-induced gene silencing vector in functional genomics analyses of a broad range of plant species. Here, an Agrobacterium-mediated inoculation (agroinoculation) system was developed for the ALSV vector, and virus-induced transcriptional gene silencing (VITGS) is described in plants infected with the ALSV vector. The cDNAs of ALSV RNA1 and RNA2 were inserted between the cauliflower mosaic virus 35S promoter and the NOS-T sequences in a binary vector pCAMBIA1300 to produce pCALSR1 and pCALSR2-XSB or pCALSR2-XSB/MN. When these vector constructs were agroinoculated into Nicotiana benthamiana plants with a construct expressing a viral silencing suppressor, the infection efficiency of the vectors was 100%. A recombinant ALSV vector carrying part of the 35S promoter sequence induced transcriptional gene silencing of the green fluorescent protein gene in a line of N. benthamiana plants, resulting in the disappearance of green fluorescence of infected plants. Bisulfite sequencing showed that cytosine residues at CG and CHG sites of the 35S promoter sequence were highly methylated in the silenced generation zero plants infected with the ALSV carrying the promoter sequence as well as in progeny. The ALSV-mediated VITGS state was inherited by progeny for multiple generations. In addition, induction of VITGS of an endogenous gene (chalcone synthase-A) was demonstrated in petunia plants infected with an ALSV vector carrying the native promoter sequence. These results suggest that ALSV-based vectors can be applied to study DNA methylation in plant genomes, and provide a useful tool for plant breeding via epigenetic modification. PMID:25426109

  12. Contribution of virus-induced lysis and protozoan grazing to benthic bacterial mortality estimated simultaneously in microcosms.

    PubMed

    Fischer, Ulrike R; Wieltschnig, Claudia; Kirschner, Alexander K T; Velimirov, Branko

    2006-08-01

    In contrast to the water column, the fate of bacterial production in freshwater sediments is still a matter of debate. Thus, the importance of virus-induced lysis and protozoan grazing of bacteria was investigated for the first time simultaneously in a silty sediment layer of a mesotrophic oxbow lake. Microcosms were installed in the laboratory in order to study the dynamics of these processes over 15 days. All microbial and physicochemical parameters showed acceptable resemblance to field data observed during a concomitant in situ study, and similar conclusions can be drawn with respect to the quantitative impact of viruses and protozoa on the bacterial compartment. Viral decay rates ranged from undetectable to 0.078 h(-1) (average, 0.033 h(-1)), and the control of bacterial production from below the detection limit to 36% (average, 12%). The contribution of virus-induced lysis of bacteria to the dissolved organic matter pool as well as to benthic bacterial nutrition was low. Ingestion rates of protozoan grazers ranged from undetectable to 24.7 bacteria per heterotrophic nanoflagellate (HNF) per hour (average, 4.8 bacteria HNF(-1) h(-1)) and from undetectable to 73.3 bacteria per ciliate per hour (average, 11.2 bacteria ciliate(-1) h(-1)). Heterotrophic nanoflagellate and ciliates together cropped up to 5% (average, 1%) of bacterial production. The viral impact on bacteria prevailed over protozoan grazing by a factor of 2.5-19.9 (average, 9.5). In sum, these factors together removed up to 36% (average, 12%) of bacterial production. The high number of correlations between viral and protozoan parameters is discussed in view of a possible relationship between virus removal and the presence of protozoan grazers.

  13. Newcastle disease virus induces stable formation of bona fide stress granules to facilitate viral replication through manipulating host protein translation.

    PubMed

    Sun, Yingjie; Dong, Luna; Yu, Shengqing; Wang, Xiaoxu; Zheng, Hang; Zhang, Pin; Meng, Chunchun; Zhan, Yuan; Tan, Lei; Song, Cuiping; Qiu, Xusheng; Wang, Guijun; Liao, Ying; Ding, Chan

    2017-04-01

    Mammalian cells respond to various environmental stressors to form stress granules (SGs) by arresting cytoplasmic mRNA, protein translation element, and RNA binding proteins. Virus-induced SGs function in different ways, depending on the species of virus; however, the mechanism of SG regulation of virus replication is not well understood. In this study, Newcastle disease virus (NDV) triggered stable formation of bona fide SGs on HeLa cells through activating the protein kinase R (PKR)/eIF2α pathway. NDV-induced SGs contained classic SG markers T-cell internal antigen (TIA)-1, Ras GTPase-activating protein-binding protein (G3BP)-1, eukaryotic initiation factors, and small ribosomal subunit, which could be disassembled in the presence of cycloheximide. Treatment with nocodazole, a microtubule disruption drug, led to the formation of relatively small and circular granules, indicating that NDV infection induces canonical SGs. Furthermore, the role of SGs on NDV replication was investigated by knockdown of TIA-1 and TIA-1-related (TIAR) protein, the 2 critical components involved in SG formation from the HeLa cells, followed by NDV infection. Results showed that depletion of TIA-1 or TIAR inhibited viral protein synthesis, reduced extracellular virus yields, but increased global protein translation. FISH revealed that NDV-induced SGs contained predominantly cellular mRNA rather than viral mRNA. Deletion of TIA-1 or TIAR reduced NP mRNA levels in polysomes. These results demonstrate that NDV triggers stable formation of bona fide SGs, which benefit viral protein translation and virus replication by arresting cellular mRNA.-Sun, Y., Dong, L., Yu, S., Wang, X., Zheng, H., Zhang, P., Meng, C., Zhan, Y., Tan, L., Song, C., Qiu, X., Wang, G., Liao, Y., Ding, C. Newcastle disease virus induces stable formation of bona fide stress granules to facilitate viral replication through manipulating host protein translation.

  14. Interferon Gene Expression in Sputum Cells Correlates with the Asthma Index Score During Virus-Induced Exacerbations

    PubMed Central

    Schwantes, Elizabeth A.; Manthei, David M.; Denlinger, Loren C.; Evans, Michael D.; Gern, James E.; Jarjour, Nizar N.; Mathur, Sameer K.

    2014-01-01

    Rationale The majority of asthma exacerbations are related to viral respiratory infections. Some, but not all, previous studies have reported that low interferon responses in patients with asthma increase the risk for virus-induced exacerbations. Objective We sought to determine the relationship between lower airway inflammatory biomarkers, specifically interferon gene expression, and the severity or presence of an exacerbation in asthmatics experiencing a naturally occurring viral infection. Methods Sputum samples were analyzed from subjects in an asthma exacerbation study who experienced a confirmed viral infection. Subjects were monitored for daily symptoms, medication use, and peak expiratory flow rate until baseline. Sputum samples were assessed for cell counts and gene expression. Results IFN-γ expression was significantly greater in patients with asthma exacerbations compared to non-exacerbating patients (p=0.002). IFN-α1, IFN-β1, and IFN-γ mRNA levels correlated with the peak Asthma Index (r=0.58, p<0.001; r=0.57, p=0.001; and r=0.51, p=0.004, respectively). Additionally, IL-13, IL-10 and eosinophil major basic protein mRNA levels were greater in patients with asthma exacerbations compared to non-exacerbating patients (p=0.03, p=0.06, and p=0.02, respectively), and IL-13 mRNA correlated with the peak Asthma Index (p=0.006). Conclusions Our findings indicate that asthma exacerbations are associated with increased rather than decreased expression of interferons early in the course of infection. These findings raise the possibility that excessive virus-induced interferon production during acute infections can contribute to airway inflammation and exacerbations of asthma. PMID:24450586

  15. Dietary abscisic acid ameliorates influenzavirus-associated disease and pulmonary immunopathology through a PPARγ-dependent mechanism

    PubMed Central

    Hontecillas, Raquel; Roberts, Paul C.; Carbo, Adria; Vives, Cristina; Horne, William T; Genis, Sandra; Velayudhan, Binu; Bassaganya-Riera, Josep

    2012-01-01

    The anti-inflammatory phytohormone abscisic acid (ABA) modulates immune and inflammatory responses in mouse models of colitis and obesity. ABA has been identified as a ligand of lanthionine synthetase C-like 2, a novel therapeutic target upstream of the peroxisome proliferator-activated receptor γ (PPAR γ) pathway. The goal of this study was to investigate the immune modulatory mechanisms underlying the anti-inflammatory efficacy of ABA against influenza-associated pulmonary inflammation. Wild type (WT) and conditional knockout mice with defective PPAR γ expression in lung epithelial and hematopoietic cells (cKO) treated orally with or without ABA (100 mg/kg diet) were challenged with Influenza A/Udorn (H3N2) to assess ABA’s impact in disease, lung lesions and gene expression. Dietary ABA ameliorated disease activity, lung inflammatory pathology, accelerated recovery and increased survival in WT mice. ABA suppressed leukocyte infiltration and MCP-1 mRNA expression in WT mice through PPAR γ, since this effect was abrogated in cKO mice. ABA ameliorated disease when administered therapeutically on the same day of the infection to WT but not mice lacking PPAR γ in myeloid cells. We also show that ABA’s greater impact is between days 7 and 10 post-challenge when it regulates the expression of genes involved in resolution, like 5 lipoxygenase and other members of the 5-lipoxygenase pathway. Furthermore, ABA significantly increased the expression of the immunoregulatory cytokine IL-10 in WT mice. Our results show that ABA, given preventively or therapeutically, ameliorates influenza virus-induced pathology by activating PPAR γ in pulmonary immune cells, suppressing initial proinflammatory responses and promoting resolution. PMID:22995385

  16. Dietary abscisic acid ameliorates influenza-virus-associated disease and pulmonary immunopathology through a PPARγ-dependent mechanism.

    PubMed

    Hontecillas, Raquel; Roberts, Paul C; Carbo, Adria; Vives, Cristina; Horne, William T; Genis, Sandra; Velayudhan, Binu; Bassaganya-Riera, Josep

    2013-06-01

    The anti-inflammatory phytohormone abscisic acid (ABA) modulates immune and inflammatory responses in mouse models of colitis and obesity. ABA has been identified as a ligand of lanthionine synthetase C-like 2, a novel therapeutic target upstream of the peroxisome proliferator-activated receptor γ (PPARγ) pathway. The goal of this study was to investigate the immune modulatory mechanisms underlying the anti-inflammatory efficacy of ABA against influenza-associated pulmonary inflammation. Wild-type (WT) and conditional knockout mice with defective PPARγ expression in lung epithelial and hematopoietic cells (cKO) treated orally with or without ABA (100 mg/kg diet) were challenged with influenza A/Udorn (H3N2) to assess ABA's impact in disease, lung lesions and gene expression. Dietary ABA ameliorated disease activity and lung inflammatory pathology, accelerated recovery and increased survival in WT mice. ABA suppressed leukocyte infiltration and monocyte chemotactic protein 1 mRNA expression in WT mice through PPARγ since this effect was abrogated in cKO mice. ABA ameliorated disease when administered therapeutically on the same day of the infection to WT but not mice lacking PPARγ in myeloid cells. We also show that ABA's greater impact is between days 7 and 10 postchallenge when it regulates the expression of genes involved in resolution, like 5-lipoxygenase and other members of the 5-lipoxygenase pathway. Furthermore, ABA significantly increased the expression of the immunoregulatory cytokine interleukin-10 in WT mice. Our results show that ABA, given preventively or therapeutically, ameliorates influenza-virus-induced pathology by activating PPARγ in pulmonary immune cells, suppressing initial proinflammatory responses and promoting resolution.

  17. Immunopathology of angioimmunoblastic lymphadenopathy.

    PubMed Central

    Jones, D. B.; Castleden, M.; Smith, J. L.; Mepham, B. L.; Wright, D. H.

    1978-01-01

    Eight patients with angioimmunoblastic lymphadenopathy have been studied by a variety of immunological and pathological techniques. They exhibited a spectrum of immunological reactivities that, in this small series, could be roughly correlated with survival. Those patients with relative B-cell predominance as shown by cell marker studies, histologically showed large numbers of plasma cells, and this pattern was associated in 3 of our patients with a survival of 3 years or more. T-cell predominance or both B- and T-cell depletion was associated histologically with large numbers of blast cells and eosinophils, but with few plasma cells. These patients responded poorly to therapy and had short survival times. One patient with B-cell predominance subsequently died of a histiocytic lymphoma. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 PMID:678427

  18. Autoimmunity in immunopathology.

    PubMed

    Carpenter, A B; Rabin, B S

    1983-12-01

    When the immune system fails to discriminate foreign microorganisms from the body's own tissue, an autoimmune disease may result. The association of immunologic disease with the histocompatibility system, the laboratory findings of autoimmune diseases, and the techniques used to evaluate these diseases are highlighted.

  19. A high throughput barley stripe mosaic virus vector for virus induced gene silencing in monocots and dicots.

    PubMed

    Yuan, Cheng; Li, Cui; Yan, Lijie; Jackson, Andrew O; Liu, Zhiyong; Han, Chenggui; Yu, Jialin; Li, Dawei

    2011-01-01

    Barley stripe mosaic virus (BSMV) is a single-stranded RNA virus with three genome components designated alpha, beta, and gamma. BSMV vectors have previously been shown to be efficient virus induced gene silencing (VIGS) vehicles in barley and wheat and have provided important information about host genes functioning during pathogenesis as well as various aspects of genes functioning in development. To permit more effective use of BSMV VIGS for functional genomics experiments, we have developed an Agrobacterium delivery system for BSMV and have coupled this with a ligation independent cloning (LIC) strategy to mediate efficient cloning of host genes. Infiltrated Nicotiana benthamiana leaves provided excellent sources of virus for secondary BSMV infections and VIGS in cereals. The Agro/LIC BSMV VIGS vectors were able to function in high efficiency down regulation of phytoene desaturase (PDS), magnesium chelatase subunit H (ChlH), and plastid transketolase (TK) gene silencing in N. benthamiana and in the monocots, wheat, barley, and the model grass, Brachypodium distachyon. Suppression of an Arabidopsis orthologue cloned from wheat (TaPMR5) also interfered with wheat powdery mildew (Blumeria graminis f. sp. tritici) infections in a manner similar to that of the A. thaliana PMR5 loss-of-function allele. These results imply that the PMR5 gene has maintained similar functions across monocot and dicot families. Our BSMV VIGS system provides substantial advantages in expense, cloning efficiency, ease of manipulation and ability to apply VIGS for high throughput genomics studies.

  20. Involvement of the PI3K and ERK signaling pathways in largemouth bass virus-induced apoptosis and viral replication.

    PubMed

    Huang, Xiaohong; Wang, Wei; Huang, Youhua; Xu, Liwen; Qin, Qiwei

    2014-12-01

    Increased reports demonstrated that largemouth Bass, Micropterus salmoides in natural and artificial environments were always suffered from an emerging iridovirus disease, largemouth Bass virus (LMBV). However, the underlying mechanism of LMBV pathogenesis remained largely unknown. Here, we investigated the cell signaling events involved in virus induced cell death and viral replication in vitro. We found that LMBV infection in epithelioma papulosum cyprini (EPC) cells induced typical apoptosis, evidenced by the appearance of apoptotic bodies, cytochrome c release, mitochondrial membrane permeabilization (MMP) destruction and reactive oxygen species (ROS) generation. Two initiators of apoptosis, caspase-8 and caspase-9, and the executioner of apoptosis, caspase-3, were all significantly activated with the infection time, suggested that not only mitochondrion-mediated, but also death receptor-mediated apoptosis were involved in LMBV infection. Reporter gene assay showed that the promoter activity of transcription factors including p53, NF-κB, AP-1 and cAMP response element-binding protein (CREB) were decreased during LMBV infection. After treatment with different signaling pathway inhibitors, virus production were significantly suppressed by the inhibition of phosphatidylinositol 3-kinase (PI3K) pathway and extracellular-signal-regulated kinases (ERK) signaling pathway. Furthermore, LMBV infection induced apoptosis was enhanced by PI3K inhibitor LY294002, but decreased by addition of ERK inhibitor UO126. Therefore, we speculated that apoptosis was sophisticatedly regulated by a series of cell signaling events for efficient virus propagation. Taken together, our results provided new insights into the molecular mechanism of ranavirus infection.

  1. Institutional Animal Care and Use Committee Considerations Regarding the Use of Virus-Induced Carcinogenesis and Oncolytic Viral Models.

    PubMed

    Lewis, Stephanie D; Hickman-Davis, Judy M; Bergdall, Valerie K

    2016-01-01

    The use of virus-induced carcinogenesis and oncologic experimental animal models is essential in understanding the mechanisms of cancer development to advance prevention, diagnosis, and treatment methods. The Institutional Animal Care and Use Committee (IACUC) is responsible for both the complex philosophical and practical considerations associated with animal models of cancer. Animal models of cancer carry their own unique issues that require special consideration from the IACUC. Many of the considerations to be discussed apply to cancer models in general; specific issues related to viral carcinogenesis or oncolytic viruses will be specifically discussed as they arise. Responsible animal use integrates good science, humane care, and regulatory compliance. To meet those standards, the IACUC, in conjunction with the research investigator and attending veterinarian, must address a wide range of issues, including animal model selection, cancer model selection, humane end point considerations, experimental considerations, postapproval monitoring, reporting requirements, and animal management and personnel safety considerations. © The Author 2016. Published by Oxford University Press on behalf of the Institute for Laboratory Animal Research. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  2. A High Throughput Barley Stripe Mosaic Virus Vector for Virus Induced Gene Silencing in Monocots and Dicots

    PubMed Central

    Yan, Lijie; Jackson, Andrew O.; Liu, Zhiyong; Han, Chenggui; Yu, Jialin; Li, Dawei

    2011-01-01

    Barley stripe mosaic virus (BSMV) is a single-stranded RNA virus with three genome components designated alpha, beta, and gamma. BSMV vectors have previously been shown to be efficient virus induced gene silencing (VIGS) vehicles in barley and wheat and have provided important information about host genes functioning during pathogenesis as well as various aspects of genes functioning in development. To permit more effective use of BSMV VIGS for functional genomics experiments, we have developed an Agrobacterium delivery system for BSMV and have coupled this with a ligation independent cloning (LIC) strategy to mediate efficient cloning of host genes. Infiltrated Nicotiana benthamiana leaves provided excellent sources of virus for secondary BSMV infections and VIGS in cereals. The Agro/LIC BSMV VIGS vectors were able to function in high efficiency down regulation of phytoene desaturase (PDS), magnesium chelatase subunit H (ChlH), and plastid transketolase (TK) gene silencing in N. benthamiana and in the monocots, wheat, barley, and the model grass, Brachypodium distachyon. Suppression of an Arabidopsis orthologue cloned from wheat (TaPMR5) also interfered with wheat powdery mildew (Blumeria graminis f. sp. tritici) infections in a manner similar to that of the A. thaliana PMR5 loss-of-function allele. These results imply that the PMR5 gene has maintained similar functions across monocot and dicot families. Our BSMV VIGS system provides substantial advantages in expense, cloning efficiency, ease of manipulation and ability to apply VIGS for high throughput genomics studies. PMID:22031834

  3. Decreased Diversity of the Oral Microbiota of Patients with Hepatitis B Virus-Induced Chronic Liver Disease: A Pilot Project

    PubMed Central

    Ling, Zongxin; Liu, Xia; Cheng, Yiwen; Jiang, Xiawei; Jiang, Haiyin; Wang, Yuezhu; Li, Lanjuan

    2015-01-01

    Increasing evidence suggests that altered gut microbiota is implicated in the pathogenesis of hepatitis B virus-induced chronic liver disease (HBV-CLD). However, the structure and composition of the oral microbiota of patients with HBV-CLD remains unclear. High-throughput pyrosequencing showed that decreased oral bacterial diversity was found in patients with HBV-CLD. The Firmicutes/Bacteroidetes ratio was increased significantly, which indicated that dysbiosis of the oral microbiota participated in the process of HBV-CLD development. However, the changing patterns of the oral microbiota in patients with HBV-induced liver cirrhosis (LC) were almost similar to patients with chronic hepatitis B (CHB). HBV infection resulted in an increase in potential H2S- and CH3SH-producing phylotypes such as Fusobacterium, Filifactor, Eubacterium, Parvimonas and Treponema, which might contribute to the increased oral malodor. These key oral-derived phylotypes might invade into the gut as opportunistic pathogens and contribute to altering the composition of the gut microbiota. This study provided important clues that dysbiosis of the oral microbiota might be involved in the development of HBV-CLD. Greater understanding of the relationships between the dysbiosis of oral microbiota and the development of HBV-CLD might facilitate the development of non-invasive differential diagnostic procedures and targeted treatments of HBV-CLD patients harbouring specific oral phylotypes. PMID:26606973

  4. Development and application of an efficient virus-induced gene silencing system in Nicotiana tabacum using geminivirus alphasatellite*

    PubMed Central

    Huang, Chang-jun; Zhang, Tong; Li, Fang-fang; Zhang, Xin-yue; Zhou, Xue-ping

    2011-01-01

    Virus-induced gene silencing (VIGS) is a recently developed technique for characterizing the function of plant genes by gene transcript suppression and is increasingly used to generate transient loss-of-function assays. Here we report that the 2mDNA1, a geminivirus satellite vector, can induce efficient gene silencing in Nicotiana tabacum with Tobacco curly shoot virus. We have successfully silenced the β-glucuronidase (GUS) gene in GUS transgenic N. tabacum plants and the sulphur desaturase (Su) gene in five different N. tabacum cultivars. These pronounced and severe silencing phenotypes are persistent and ubiquitous. Once initiated in seedlings, the silencing phenotype lasted for the entire life span of the plants and silencing could be induced in a variety of tissues and organs including leaf, shoot, stem, root, and flower, and achieved at any growth stage. This system works well between 18–32 °C. We also silenced the NtEDS1 gene and demonstrated that NtEDS1 is essential for N gene mediated resistance against Tobacco mosaic virus in N. tabacum. The above results indicate that this system has great potential as a versatile VIGS system for routine functional analysis of genes in N. tabacum. PMID:21265040

  5. Virus-induced gene silencing of P23k in barley leaf reveals morphological changes involved in secondary wall formation.

    PubMed

    Oikawa, Ai; Rahman, Abidur; Yamashita, Tetsuro; Taira, Hideharu; Kidou, Shin-Ichiro

    2007-01-01

    P23k is a monocot-unique protein that is highly expressed in the scutellum of germinating barley seed. Previous expression analyses suggested that P23k is involved in sugar translocation and/or sugar metabolism. However, the role of P23k in barley physiology remains unclear. Here, to elucidate its physiological function, BSMV-based virus-induced gene silencing (VIGS) of P23k in barley leaves was performed. Expression and localization analyses of P23k mRNA in barley leaves showed up-regulation of P23k transcript with increased photosynthetic activity and the localization of these transcripts to the vascular bundles and sclerenchyma, where secondary wall formation is most active. VIGS of the P23k gene led to abnormal leaf development, asymmetric orientation of main veins, and cracked leaf edges caused by mechanical weakness. In addition, histochemical analyses indicated that the distribution of P23k in leaves coincides with the distribution of cell wall polysaccharides. Considering these results together, it is proposed that P23k is involved in the synthesis of cell wall polysaccharides and contributes to secondary wall formation in barley leaves.

  6. Virus-induced gene silencing of WRKY53 and an inducible phenylalanine ammonia-lyase in wheat reduces aphid resistance.

    PubMed

    Van Eck, Leon; Schultz, Thia; Leach, Jan E; Scofield, Steven R; Peairs, Frank B; Botha, Anna-Maria; Lapitan, Nora L V

    2010-12-01

    Although several wheat genes differentially expressed during the Russian wheat aphid resistance response have recently been identified, their requirement for and specific role in resistance remain unclear. Progress in wheat-aphid interaction research is hampered by inadequate collections of mutant germplasm and difficulty in transforming hexaploid wheat. Virus-induced gene silencing (VIGS) technology is emerging as a viable reverse genetics approach in cereal crops. However, the potential of VIGS for determining aphid defence gene function in wheat has not been evaluated. We report on the use of recombinant barley stripe mosaic virus (BSMV) to target and silence a WRKY53 transcription factor and an inducible phenylalanine ammonia-lyase (PAL) gene, both predicted to contribute to aphid defence in a genetically resistant wheat line. After inoculating resistant wheat with the VIGS constructs, transcript abundance was reduced to levels similar to that observed in susceptible wheat. Notably, the level of PAL expression was also suppressed by the WKRY53 construct, suggesting that these genes operate in the same defence response network. Both knockdowns exhibited a susceptible phenotype upon aphid infestation, and aphids feeding on silenced plants exhibited a significant increase in fitness compared to aphids feeding on control plants. Altered plant phenotype and changes in aphid behaviour after silencing imply that WKRY53 and PAL play key roles in generating a successful resistance response. This study is the first report on the successful use of VIGS to investigate genes involved in wheat-insect interactions.

  7. Decreased Diversity of the Oral Microbiota of Patients with Hepatitis B Virus-Induced Chronic Liver Disease: A Pilot Project.

    PubMed

    Ling, Zongxin; Liu, Xia; Cheng, Yiwen; Jiang, Xiawei; Jiang, Haiyin; Wang, Yuezhu; Li, Lanjuan

    2015-11-26

    Increasing evidence suggests that altered gut microbiota is implicated in the pathogenesis of hepatitis B virus-induced chronic liver disease (HBV-CLD). However, the structure and composition of the oral microbiota of patients with HBV-CLD remains unclear. High-throughput pyrosequencing showed that decreased oral bacterial diversity was found in patients with HBV-CLD. The Firmicutes/Bacteroidetes ratio was increased significantly, which indicated that dysbiosis of the oral microbiota participated in the process of HBV-CLD development. However, the changing patterns of the oral microbiota in patients with HBV-induced liver cirrhosis (LC) were almost similar to patients with chronic hepatitis B (CHB). HBV infection resulted in an increase in potential H2S- and CH3SH-producing phylotypes such as Fusobacterium, Filifactor, Eubacterium, Parvimonas and Treponema, which might contribute to the increased oral malodor. These key oral-derived phylotypes might invade into the gut as opportunistic pathogens and contribute to altering the composition of the gut microbiota. This study provided important clues that dysbiosis of the oral microbiota might be involved in the development of HBV-CLD. Greater understanding of the relationships between the dysbiosis of oral microbiota and the development of HBV-CLD might facilitate the development of non-invasive differential diagnostic procedures and targeted treatments of HBV-CLD patients harbouring specific oral phylotypes.

  8. Virus-induced gene silencing unravels multiple transcription factors involved in floral growth and development in Phalaenopsis orchids.

    PubMed

    Hsieh, Ming-Hsien; Pan, Zhao-Jun; Lai, Pei-Han; Lu, Hsiang-Chia; Yeh, Hsin-Hung; Hsu, Chia-Chi; Wu, Wan-Lin; Chung, Mei-Chu; Wang, Shyh-Shyan; Chen, Wen-Huei; Chen, Hong-Hwa

    2013-09-01

    Orchidaceae, one of the largest angiosperm families, has significant commercial value. Isolation of genes involved in orchid floral development and morphogenesis, scent production, and colouration will advance knowledge of orchid flower formation and facilitate breeding new varieties to increase the commercial value. With high-throughput virus-induced gene silencing (VIGS), this study identified five transcription factors involved in various aspects of flower morphogenesis in the orchid Phalaenopsis equestris. These genes are PeMADS1, PeMADS7, PeHB, PebHLH, and PeZIP. Silencing PeMADS1 and PebHLH resulted in reduced flower size together with a pelaloid column containing petal-like epidermal cells and alterations of epidermal cell arrangement in lip lateral lobes, respectively. Silencing PeMADS7, PeHB, and PeZIP alone resulted in abortion of the first three fully developed flower buds of an inflorescence, which indicates the roles of the genes in late flower development. Furthermore, double silencing PeMADS1 and PeMADS6, C- and B-class MADS-box genes, respectively, produced a combinatorial phenotype with two genes cloned in separate vectors. Both PeMADS1 and PeMADS6 are required to ensure the normal development of the lip and column as well as the cuticle formation on the floral epidermal cell surface. Thus, VIGS allows for unravelling the interaction between two classes of MADS transcription factors for dictating orchid floral morphogenesis.

  9. Virus-induced gene silencing unravels multiple transcription factors involved in floral growth and development in Phalaenopsis orchids

    PubMed Central

    Hsieh, Ming-Hsien; Pan, Zhao-Jun; Lai, Pei-Han; Lu, Hsiang-Chia; Yeh, Hsin-Hung; Hsu, Chia-Chi; Wu, Wan-Lin; Chung, Mei-Chu; Wang, Shyh-Shyan; Chen, Wen-Huei; Chen, Hong-Hwa

    2013-01-01

    Orchidaceae, one of the largest angiosperm families, has significant commercial value. Isolation of genes involved in orchid floral development and morphogenesis, scent production, and colouration will advance knowledge of orchid flower formation and facilitate breeding new varieties to increase the commercial value. With high-throughput virus-induced gene silencing (VIGS), this study identified five transcription factors involved in various aspects of flower morphogenesis in the orchid Phalaenopsis equestris. These genes are PeMADS1, PeMADS7, PeHB, PebHLH, and PeZIP. Silencing PeMADS1 and PebHLH resulted in reduced flower size together with a pelaloid column containing petal-like epidermal cells and alterations of epidermal cell arrangement in lip lateral lobes, respectively. Silencing PeMADS7, PeHB, and PeZIP alone resulted in abortion of the first three fully developed flower buds of an inflorescence, which indicates the roles of the genes in late flower development. Furthermore, double silencing PeMADS1 and PeMADS6, C- and B-class MADS-box genes, respectively, produced a combinatorial phenotype with two genes cloned in separate vectors. Both PeMADS1 and PeMADS6 are required to ensure the normal development of the lip and column as well as the cuticle formation on the floral epidermal cell surface. Thus, VIGS allows for unravelling the interaction between two classes of MADS transcription factors for dictating orchid floral morphogenesis. PMID:23956416

  10. Brain Endothelial- and Epithelial-Specific Interferon Receptor Chain 1 Drives Virus-Induced Sickness Behavior and Cognitive Impairment.

    PubMed

    Blank, Thomas; Detje, Claudia N; Spieß, Alena; Hagemeyer, Nora; Brendecke, Stefanie M; Wolfart, Jakob; Staszewski, Ori; Zöller, Tanja; Papageorgiou, Ismini; Schneider, Justus; Paricio-Montesinos, Ricardo; Eisel, Ulrich L M; Manahan-Vaughan, Denise; Jansen, Stephan; Lienenklaus, Stefan; Lu, Bao; Imai, Yumiko; Müller, Marcus; Goelz, Susan E; Baker, Darren P; Schwaninger, Markus; Kann, Oliver; Heikenwalder, Mathias; Kalinke, Ulrich; Prinz, Marco

    2016-04-19

    Sickness behavior and cognitive dysfunction occur frequently by unknown mechanisms in virus-infected individuals with malignancies treated with type I interferons (IFNs) and in patients with autoimmune disorders. We found that during sickness behavior, single-stranded RNA viruses, double-stranded RNA ligands, and IFNs shared pathways involving engagement of melanoma differentiation-associated protein 5 (MDA5), retinoic acid-inducible gene 1 (RIG-I), and mitochondrial antiviral signaling protein (MAVS), and subsequently induced IFN responses specifically in brain endothelia and epithelia of mice. Behavioral alterations were specifically dependent on brain endothelial and epithelial IFN receptor chain 1 (IFNAR). Using gene profiling, we identified that the endothelia-derived chemokine ligand CXCL10 mediated behavioral changes through impairment of synaptic plasticity. These results identified brain endothelial and epithelial cells as natural gatekeepers for virus-induced sickness behavior, demonstrated tissue specific IFNAR engagement, and established the CXCL10-CXCR3 axis as target for the treatment of behavioral changes during virus infection and type I IFN therapy. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Virus-Induced Tubules: A Vehicle for Spread of Virions into Ovary Oocyte Cells of an Insect Vector.

    PubMed

    Liao, Zhenfeng; Mao, Qianzhuo; Li, Jiajia; Lu, Chengcong; Wu, Wei; Chen, Hongyan; Chen, Qian; Jia, Dongsheng; Wei, Taiyun

    2017-01-01

    Many arthropod-borne viruses are persistently propagated and transovarially transmitted by female insect vectors through eggs, but the mechanism remains poorly understood. Insect oocytes are surrounded by a layer of follicular cells, which are connected to the oocyte through actin-based microvilli. Here, we demonstrate that a plant reovirus, rice gall dwarf virus (RGDV), exploits virus-containing tubules composed of viral non-structural protein Pns11 to pass through actin-based junctions between follicular cells or through actin-based microvilli from follicular cells into oocyte of its leafhopper vector Recilia dorsalis, thus overcoming transovarial transmission barriers. We further determine that the association of Pns11 tubules with actin-based cellular junctions or microvilli of the ovary is mediated by a specific interaction between Pns11 and actin. Interestingly, RGDV can replicate and assemble progeny virions in the oocyte cytoplasm. The destruction of the tubule assembly by RNA interference with synthesized double-stranded RNA targeting the Pns11 gene strongly inhibits transovarial transmission of RGDV by its vectors. For the first time, we show that a virus can exploit virus-induced tubule as a vehicle to overcome the transovarial transmission barrier by insect vectors.

  12. Virus-Induced Tubules: A Vehicle for Spread of Virions into Ovary Oocyte Cells of an Insect Vector

    PubMed Central

    Liao, Zhenfeng; Mao, Qianzhuo; Li, Jiajia; Lu, Chengcong; Wu, Wei; Chen, Hongyan; Chen, Qian; Jia, Dongsheng; Wei, Taiyun

    2017-01-01

    Many arthropod-borne viruses are persistently propagated and transovarially transmitted by female insect vectors through eggs, but the mechanism remains poorly understood. Insect oocytes are surrounded by a layer of follicular cells, which are connected to the oocyte through actin-based microvilli. Here, we demonstrate that a plant reovirus, rice gall dwarf virus (RGDV), exploits virus-containing tubules composed of viral non-structural protein Pns11 to pass through actin-based junctions between follicular cells or through actin-based microvilli from follicular cells into oocyte of its leafhopper vector Recilia dorsalis, thus overcoming transovarial transmission barriers. We further determine that the association of Pns11 tubules with actin-based cellular junctions or microvilli of the ovary is mediated by a specific interaction between Pns11 and actin. Interestingly, RGDV can replicate and assemble progeny virions in the oocyte cytoplasm. The destruction of the tubule assembly by RNA interference with synthesized double-stranded RNA targeting the Pns11 gene strongly inhibits transovarial transmission of RGDV by its vectors. For the first time, we show that a virus can exploit virus-induced tubule as a vehicle to overcome the transovarial transmission barrier by insect vectors. PMID:28382031

  13. Virus-induced gene silencing-based functional verification of six genes associated with vernalization in wheat.

    PubMed

    Feng, Ya-Lan; Wang, Ke-Tao; Ma, Chao; Zhao, Yong-Ying; Yin, Jun

    2015-03-20

    Vernalization requirement is an important characteristic in crop breeding. Wheat is a widely grown crop in the world that possesses enormous economic significance. To better understand the gene networks in vernalization process, we performed a high-throughput RNA sequencing analysis comparing the transcriptomes of spring and winter wheat cultivars, with and without vernalization (unpublished data). In this study, we selected six unigenes (CL14010, CL12788, CL176, Unigene 16777, CL8746 and Unigene10196) from our transcriptome analysis based on their expression differences to further characterize their function. Transient silencing of the six unigenes individually were achieved through virus-induced gene silencing (VIGS) using BSMV vector. The period from germination to spike differentiation were recorded and compared between plants underwent VIGS silencing and the control. Our result showed that VIGS of the six unigenes significantly shortened the period from seedling to double ridge (DR) stage. Resulting in SD period ranging from 59.8 ± 0.60 to 65.8 ± 0.48 days, compared to 85.0 ± 0.73 days in the control. The results indicated that these six unigenes function as suppressors in vernalization process and silence or down-regulation of these genes promoted flower development in wheat. Further characterization of these six unigenes and their function in vernalization and flowering control is needed. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Mechanisms for virus-induced liver disease: tumor necrosis factor-mediated pathology independent of natural killer and T cells during murine cytomegalovirus infection.

    PubMed Central

    Orange, J S; Salazar-Mather, T P; Opal, S M; Biron, C A

    1997-01-01

    The contribution of endogenous NK cells and cytokines to virus-induced liver pathology was evaluated during murine cytomegalovirus infections of mice. In immunocompetent C57BL/6 mice, the virus induced a self-limited liver disease characterized by hepatitis, with focal inflammation, and large grossly visible subcapsular necrotic foci. The inflammatory foci were most numerous and contained the greatest number of cells 3 days after infection; they colocalized with areas of viral antigen expression. The largest number of necrotic foci was found 2 days after infection. Overall hepatic damage, assessed as increased expression of liver enzymes in serum, accompanied the development of inflammatory and necrotic foci. Experiments with neutralizing antibodies demonstrated that although virus-induced tumor necrosis factor (TNF) can have antiviral effects, it also mediated significant liver pathology. TNF was required for development of hepatic necrotic foci and increased levels of liver enzymes in serum but not for increased numbers of inflammatory foci. The necrotic foci and liver enzyme indications of pathology occurred independently of NK and T cells, because mice rendered NK-cell deficient by treatment with antibodies, T- and B-cell-deficient Rag-/- mice, and NK- and T-cell-deficient E26 mice all manifested both parameters of disease. Development of necrotic foci and maximally increased levels of liver enzymes in serum also were TNF dependent in NK-cell-deficient mice. Moreover, in the immunodeficient E26 mice, virus-induced liver disease was progressive, with eventual death of the host, and neutralization of TNF significantly increased longevity. These results establish conditions separating hepatitis from significant liver damage and demonstrate a cytokine-mediated component to viral pathogenesis. PMID:9371583

  15. Ellagic acid reduces murine schistosomiasis mansoni immunopathology via up-regulation of IL-10 and down-modulation of pro-inflammatory cytokines production.

    PubMed

    Allam, Gamal; Abuelsaad, Abdelaziz S A; Alblihed, Mohammed A; Alsulaimani, Adnan A

    2016-08-01

    The main immunopathology in schistosomiasis mansoni consists of a granulomatous inflammatory and fibrosing reaction in the liver and intestine against tissue trapped parasite eggs, which is mediated by CD4(+ )T cells. Ellagic acid (EA), a natural phenolic compound found in fruits and nuts, has potent anti-oxidant and anti-inflammatory properties. The aim of the present study was to evaluate the potential effect of EA in the treatment of murine schistosomiasis mansoni and its induced immunopathology. Mice were infected, each with 40 Schistosoma mansoni (S. mansoni) cercariae and treated with EA at a total dose of 600 mg/kg body weight. At week eight of infection, mice were sacrificed; worm and egg burden were estimated; hepatic granuloma volume and collagen fibers deposition were evaluated; splenocytes were prepared and cultured in the presence of S. mansoni antigens. EA treatment did not show any significant effect on worm or egg burden. However, hepatic granuloma volume and collagen fibers deposition were largely reduced with EA treatment. EA treatment augmented specific IL-10 production in response to S. mansoni antigenic stimulation. However, specific IL-1β, IL-4, IL-12, IL-13, IL-17A, TNF-α and IFN-γ production were significantly reduced with ex vivo and in vivo EA treatment. Serum IgM and IgG levels significantly increased, whereas specific IgA and IgE levels did not significantly change with EA treatment. EA treatment modulates cellular and humoral immune responses of infected mice and leads to a significant reduction of liver pathology in acute murine schistosomiasis mansoni.

  16. Disruption of interleukin-27 signaling results in impaired gamma interferon production but does not significantly affect immunopathology in murine schistosome infection.

    PubMed

    Shainheit, Mara G; Saraceno, Rosita; Bazzone, Lindsey E; Rutitzky, Laura I; Stadecker, Miguel J

    2007-06-01

    In schistosomiasis mansoni, parasite eggs cause hepatointestinal granulomatous inflammation and fibrosis mediated by CD4 T cells specific for egg antigens. The severity of disease varies extensively in humans and among mouse strains. Marked disease exacerbation induced in typically low-pathology C57BL/6 mice by immunization with schistosome egg antigens (SEA) in complete Freund's adjuvant (SEA/CFA) correlates with elevated production of the proinflammatory cytokines gamma interferon (IFN-gamma) and interleukin-17 (IL-17), which are regulated by IL-12 and IL-23, respectively. Here we examined the effect on the schistosome infection of a third member of the IL-12 family of heterodimeric cytokines, IL-27, using SEA/CFA-immunized and unimmunized mice deficient in the IL-27 receptor chain WSX-1 (WSX-1(-/-)). SEA-stimulated bulk mesenteric lymph node cells or CD4 T cells from 7-week-infected WSX-1(-/-) mice produced significantly less IFN-gamma than did those from C57BL/6 mice, even though there was no difference between these mice in exacerbated hepatic egg-induced granulomatous inflammation or in the levels of IL-17 induced by immunization with SEA/CFA. A fraction of the cells in the granulomas stained positive for IL-27, but there were no significant differences between WSX-1(-/-) and BL/6 mice, nor were there differences in the number of CD4 T cells and eosinophils. A 24-week chronic infection resulted in markedly reduced levels of proinflammatory cytokines, including IFN-gamma, in WSX-1(-/-) mice, but again the magnitude of immunopathology was not significantly different between the two groups. These findings indicate that despite the impaired IFN-gamma production, IL-27 signaling has no significant effect on either the magnitude of egg-induced immunopathology or on its closest in vitro correlate, IL-17.

  17. Resistance of human plasmacytoid dendritic CAL-1 cells to infection with lymphocytic choriomeningitis virus (LCMV) is caused by restricted virus cell entry, which is overcome by contact of CAL-1 cells with LCMV-infected cells.

    PubMed

    Iwasaki, Masaharu; Sharma, Siddhartha M; Marro, Brett S; de la Torre, Juan C

    2017-11-01

    Plasmacytoid dendritic cells (pDCs), a main source of type I interferon in response to viral infection, are an early cell target during lymphocytic choriomeningitis virus (LCMV) infection, which has been associated with the LCMV's ability to establish chronic infections. Human blood-derived pDCs have been reported to be refractory to ex vivo LCMV infection. In the present study we show that human pDC CAL-1 cells are refractory to infection with cell-free LCMV, but highly susceptible to infection with recombinant LCMVs carrying the surface glycoprotein of VSV, indicating that LCMV infection of CAL-1 cells is restricted at the cell entry step. Co-culture of uninfected CAL-1 cells with LCMV-infected HEK293 cells enabled LCMV to infect CAL-1 cells. This cell-to-cell spread required direct cell-cell contact and did not involve exosome pathway. Our findings indicate the presence of a novel entry pathway utilized by LCMV to infect pDC. Copyright © 2017. Published by Elsevier Inc.

  18. Anti-apoptotic Bcl-XL but not Mcl-1 contributes to protection against virus-induced apoptosis.

    PubMed

    Ohmer, Michaela; Weber, Arnim; Sutter, Gerd; Ehrhardt, Katrin; Zimmermann, Albert; Häcker, Georg

    2016-08-18

    Infection of mammalian cells with viruses often induces apoptosis. How the recognition of viruses leads to apoptosis of the infected cell and which host cell factors regulate this cell death is incompletely understood. In this study, we focussed on two major anti-apoptotic proteins of the host cell, whose abundance and activity are important for cell survival, the Bcl-2-like proteins Mcl-1 and Bcl-XL. During infection of epithelial cells and fibroblasts with modified vaccinia virus Ankara (MVA), Mcl-1 protein levels dropped but the MVA Bcl-2-like protein F1L could replace Mcl-1 functionally; a similar activity was found in vaccinia virus (VACV)-infected cells. During infection with murine cytomegalovirus (MCMV), Mcl-1-levels were not reduced but a viral Mcl-1-like activity was also generated. Infection of mouse macrophages with any of these viruses, on the other hand, induced apoptosis. Virus-induced macrophage apoptosis was unaltered in the absence of Mcl-1. However, apoptosis was substantially increased in infected Bcl-XL-deficient macrophages or macrophages treated with the Bcl-2/Bcl-XL-inhibitor ABT-737. Genetic loss of Bcl-XL or treatment of macrophages with ABT-737 reduced the generation of infectious VACV. These data show that Mcl-1 is dispensable for the regulation of apoptosis during infection with different large DNA viruses, either because the viruses replace its function (in fibroblasts and epithelial cells) or because the pro-apoptotic activity generated by the infection appears not to be blocked by it (in macrophages). Bcl-XL, on the other hand, can be important to maintain survival of virus-infected cells, and its activity can determine outcome of the infection.

  19. JC virus induces altered patterns of cellular gene expression: Interferon-inducible genes as major transcriptional targets

    SciTech Connect

    Verma, Saguna; Ziegler, Katja; Ananthula, Praveen; Co, Juliene K.G.; Frisque, Richard J.; Yanagihara, Richard; Nerurkar, Vivek R. . E-mail: nerurkar@pbrc.hawaii.edu

    2006-02-20

    Human polyomavirus JC (JCV) infects 80% of the population worldwide. Primary infection, typically occurring during childhood, is asymptomatic in immunocompetent individuals and results in lifelong latency and persistent infection. However, among the severely immunocompromised, JCV may cause a fatal demyelinating disease, progressive multifocal leukoencephalopathy (PML). Virus-host interactions influencing persistence and pathogenicity are not well understood, although significant regulation of JCV activity is thought to occur at the level of transcription. Regulation of the JCV early and late promoters during the lytic cycle is a complex event that requires participation of both viral and cellular factors. We have used cDNA microarray technology to analyze global alterations in gene expression in JCV-permissive primary human fetal glial cells (PHFG). Expression of more than 400 cellular genes was altered, including many that influence cell proliferation, cell communication and interferon (IFN)-mediated host defense responses. Genes in the latter category included signal transducer and activator of transcription 1 (STAT1), interferon stimulating gene 56 (ISG56), myxovirus resistance 1 (MxA), 2'5'-oligoadenylate synthetase (OAS), and cig5. The expression of these genes was further confirmed in JCV-infected PHFG cells and the human glioblastoma cell line U87MG to ensure the specificity of JCV in inducing this strong antiviral response. Results obtained by real-time RT-PCR and Western blot analyses supported the microarray data and provide temporal information related to virus-induced changes in the IFN response pathway. Our data indicate that the induction of an antiviral response may be one of the cellular factors regulating/controlling JCV replication in immunocompetent hosts and therefore constraining the development of PML.

  20. Chikungunya virus induces IPS-1-dependent innate immune activation and protein kinase R-independent translational shutoff.

    PubMed

    White, Laura K; Sali, Tina; Alvarado, David; Gatti, Evelina; Pierre, Philippe; Streblow, Daniel; Defilippis, Victor R

    2011-01-01

    Chikungunya virus (CHIKV) is an arthritogenic mosquito-transmitted alphavirus that is undergoing reemergence in areas around the Indian Ocean. Despite the current and potential danger posed by this virus, we know surprisingly little about the induction and evasion of CHIKV-associated antiviral immune responses. With this in mind we investigated innate immune reactions to CHIKV in human fibroblasts, a demonstrable in vivo target of virus replication and spread. We show that CHIKV infection leads to activation of the transcription factor interferon regulatory factor 3 (IRF3) and subsequent transcription of IRF3-dependent antiviral genes, including beta interferon (IFN-β). IRF3 activation occurs by way of a virus-induced innate immune signaling pathway that includes the adaptor molecule interferon promoter stimulator 1 (IPS-1). Despite strong transcriptional upregulation of these genes, however, translation of the corresponding proteins is not observed. We further demonstrate that translation of cellular (but not viral) genes is blocked during infection and that although CHIKV is found to trigger inactivation of the translational molecule eukaryotic initiation factor subunit 2α by way of the double-stranded RNA sensor protein kinase R, this response is not required for the block to protein synthesis. Furthermore, overall diminution of cellular RNA synthesis is also observed in the presence of CHIKV and transcription of IRF3-dependent antiviral genes appears specifically blocked late in infection. We hypothesize that the observed absence of IFN-β and antiviral proteins during infection results from an evasion mechanism exhibited by CHIKV that is dependent on widespread shutoff of cellular protein synthesis and a targeted block to late synthesis of antiviral mRNA transcripts.

  1. Anti-apoptotic Bcl-XL but not Mcl-1 contributes to protection against virus-induced apoptosis

    PubMed Central

    Ohmer, Michaela; Weber, Arnim; Sutter, Gerd; Ehrhardt, Katrin; Zimmermann, Albert; Häcker, Georg

    2016-01-01

    Infection of mammalian cells with viruses often induces apoptosis. How the recognition of viruses leads to apoptosis of the infected cell and which host cell factors regulate this cell death is incompletely understood. In this study, we focussed on two major anti-apoptotic proteins of the host cell, whose abundance and activity are important for cell survival, the Bcl-2-like proteins Mcl-1 and Bcl-XL. During infection of epithelial cells and fibroblasts with modified vaccinia virus Ankara (MVA), Mcl-1 protein levels dropped but the MVA Bcl-2-like protein F1L could replace Mcl-1 functionally; a similar activity was found in vaccinia virus (VACV)-infected cells. During infection with murine cytomegalovirus (MCMV), Mcl-1-levels were not reduced but a viral Mcl-1-like activity was also generated. Infection of mouse macrophages with any of these viruses, on the other hand, induced apoptosis. Virus-induced macrophage apoptosis was unaltered in the absence of Mcl-1. However, apoptosis was substantially increased in infected Bcl-XL-deficient macrophages or macrophages treated with the Bcl-2/Bcl-XL-inhibitor ABT-737. Genetic loss of Bcl-XL or treatment of macrophages with ABT-737 reduced the generation of infectious VACV. These data show that Mcl-1 is dispensable for the regulation of apoptosis during infection with different large DNA viruses, either because the viruses replace its function (in fibroblasts and epithelial cells) or because the pro-apoptotic activity generated by the infection appears not to be blocked by it (in macrophages). Bcl-XL, on the other hand, can be important to maintain survival of virus-infected cells, and its activity can determine outcome of the infection. PMID:27537523

  2. A high-throughput virus-induced gene silencing protocol identifies genes involved in multi-stress tolerance

    PubMed Central

    2013-01-01

    Background Understanding the function of a particular gene under various stresses is important for engineering plants for broad-spectrum stress tolerance. Although virus-induced gene silencing (VIGS) has been used to characterize genes involved in abiotic stress tolerance, currently available gene silencing and stress imposition methodology at the whole plant level is not suitable for high-throughput functional analyses of genes. This demands a robust and reliable methodology for characterizing genes involved in abiotic and multi-stress tolerance. Results Our methodology employs VIGS-based gene silencing in leaf disks combined with simple stress imposition and effect quantification methodologies for easy and faster characterization of genes involved in abiotic and multi-stress tolerance. By subjecting leaf disks from gene-silenced plants to various abiotic stresses and inoculating silenced plants with various pathogens, we show the involvement of several genes for multi-stress tolerance. In addition, we demonstrate that VIGS can be used to characterize genes involved in thermotolerance. Our results also showed the functional relevance of NtEDS1 in abiotic stress, NbRBX1 and NbCTR1 in oxidative stress; NtRAR1 and NtNPR1 in salinity stress; NbSOS1 and NbHSP101 in biotic stress; and NtEDS1, NbETR1, NbWRKY2 and NbMYC2 in thermotolerance. Conclusions In addition to widening the application of VIGS, we developed a robust, easy and high-throughput methodology for functional characterization of genes involved in multi-stress tolerance. PMID:24289810

  3. Rationale for developing new virus vectors to analyze gene function in grasses through virus-induced gene silencing.

    PubMed

    Ramanna, Hema; Ding, Xin Shun; Nelson, Richard S

    2013-01-01

    The exploding availability of genome and EST-based sequences from grasses requires a technology that allows rapid functional analysis of the multitude of genes that these resources provide. There are several techniques available to determine a gene's function. For gene knockdown studies, silencing through RNAi is a powerful tool. Gene silencing can be accomplished through stable transformation or transient expression of a fragment of a target gene sequence. Stable transformation in rice, maize, and a few other species, although routine, remains a relatively low-throughput process. Transformation in other grass species is difficult and labor-intensive. Therefore, transient gene silencing methods including Agrobacterium-mediated and virus-induced gene silencing (VIGS) have great potential for researchers studying gene function in grasses. VIGS in grasses already has been used to determine the function of genes during pathogen challenge and plant development. It also can be used in moderate-throughput reverse genetics screens to determine gene function. However, the number of viruses modified to serve as silencing vectors in grasses is limited, and the silencing phenotype induced by these vectors is not optimal: the phenotype being transient and with moderate penetration throughout the tissue. Here, we review the most recent information available for VIGS in grasses and summarize the strengths and weaknesses in current virus-grass host systems. We describe ways to improve current virus vectors and the potential of other grass-infecting viruses for VIGS studies. This work is necessary because VIGS for the foreseeable future remains a higher throughput and more rapid system to evaluate gene function than stable transformation.

  4. Virus-induced gene silencing (VIGS) in Cysticapnos vesicaria, a zygomorphic-flowered Papaveraceae (Ranunculales, basal eudicots)

    PubMed Central

    Hidalgo, Oriane; Bartholmes, Conny; Gleissberg, Stefan

    2012-01-01

    Background and Aims Studies of evolutionary diversification in the basal eudicot family Papaveraceae, such as the transition from actinomorphy to zygomorphy, are hampered by the lack of comparative functional studies. So far, gene silencing methods are only available in the actinomorphic species Eschscholzia californica and Papaver somniferum. This study addresses the amenability of Cysticapnos vesicaria, a derived fumitory with zygomorphic flowers, to virus-induced gene silencing (VIGS), and describes vegetative and reproductive traits in this species. Methods VIGS-mediated downregulation of the C. vesicaria PHYTOENE DESATURASE gene (CvPDS) and of the FLORICAULA gene CvFLO was carried out using Agrobacterium tumefaciens transfer of Tobacco rattle virus (TRV)-based vectors. Wild-type and vector-treated plants were characterized using reverse transcription–PCR (RT–PCR), in situ hybridization, and macroscopic and scanning electron microscopic imaging. Key Results Cysticapnos vesicaria germinates rapidly, can be grown at high density, has a short life cycle and is self-compatible. Inoculation of C. vesicaria with a CvPDS-VIGS vector resulted in strong photobleaching of green parts and reduction of endogenous CvPDS transcript levels. Gene silencing persisted during inflorescence development until fruit set. Inoculation of plants with CvFLO-VIGS affected floral phyllotaxis, symmetry and floral organ identities. Conclusions The high penetrance, severity and stability of pTRV-mediated silencing, including the induction of meristem-related phenotypes, make C. vesicaria a very promising new focus species for evolutionary–developmental (evo–devo) studies in the Papaveraceae. This now enables comparative studies of flower symmetry, inflorescence determinacy and other traits that diversified in the Papaveraceae. PMID:22307568

  5. Virus-induced plasma membrane aquaporin PsPIP2;1 silencing inhibits plant water transport of Pisum sativum.

    PubMed

    Song, Juanjuan; Ye, Guoliang; Qian, Zhengjiang; Ye, Qing

    2016-12-01

    Aquaporins (AQPs) are known to facilitate water transport across cell membranes, but the role of a single AQP in regulating plant water transport, particularly in plants other than Arabidopsis remains largely unexplored. In the present study, a virus-induced gene silencing (VIGS) technique was employed to suppress the expression of a specific plasma membrane aquaporin PsPIP2;1 of Pea plants (Pisum sativum), and subsequent effects of the gene suppression on root hydraulic conductivity (Lpr), leaf hydraulic conductivity (K leaf ), root cell hydraulic conductivity (Lprc), and leaf cell hydraulic conductivity (Lplc) were investigated, using hydroponically grown Pea plants. Compared with control plants, VIGS-PsPIP2;1 plants displayed a significant suppression of PsPIP2;1 in both roots and leaves, while the expression of other four PIP isoforms (PsPIP1;1, PsPIP1;2, PsPIP2;2, and PsPIP2;3) that were simultaneously monitored were not altered. As a consequence, significant declines in water transport of VIGS-PsPIP2;1 plants were observed at both organ and cell levels, i.e., as compared to control plants, Lpr and K leaf were reduced by 29 %, and Lprc and Lplc were reduced by 20 and 29 %, respectively. Our results demonstrate that PsPIP2;1 alone contributes substantially to root and leaf water transport in Pea plants, and highlight VIGS a useful tool for investigating the role of a single AQP in regulating plant water transport.

  6. Virus-induced gene silencing (VIGS)-mediated functional characterization of two genes involved in lignocellulosic secondary cell wall formation.

    PubMed

    Pandey, Shashank K; Nookaraju, Akula; Fujino, Takeshi; Pattathil, Sivakumar; Joshi, Chandrashekhar P

    2016-11-01

    Functional characterization of two tobacco genes, one involved in xylan synthesis and the other, a positive regulator of secondary cell wall formation, is reported. Lignocellulosic secondary cell walls (SCW) provide essential plant materials for the production of second-generation bioethanol. Therefore, thorough understanding of the process of SCW formation in plants is beneficial for efficient bioethanol production. Recently, we provided the first proof-of-concept for using virus-induced gene silencing (VIGS) approach for rapid functional characterization of nine genes involved in cellulose, hemicellulose and lignin synthesis during SCW formation. Here, we report VIGS-mediated functional characterization of two tobacco genes involved in SCW formation. Stems of VIGS plants silenced for both selected genes showed increased amount of xylem formation but thinner cell walls than controls. These results were further confirmed by production of stable transgenic tobacco plants manipulated in expression of these genes. Stems of stable transgenic tobacco plants silenced for these two genes showed increased xylem proliferation with thinner walls, whereas transgenic tobacco plants overexpressing these two genes showed increased fiber cell wall thickness but no change in xylem proliferation. These two selected genes were later identified as possible members of DUF579 family involved in xylan synthesis and KNAT7 transcription factor family involved in positive regulation of SCW formation, respectively. Glycome analyses of cell walls showed increased polysaccharide extractability in 1 M KOH extracts of both VIGS-NbDUF579 and VIGS-NbKNAT7 lines suggestive of cell wall loosening. Also, VIGS-NbDUF579 and VIGS-NbKNAT7 lines showed increased saccharification rates (74.5 and 40 % higher than controls, respectively). All these properties are highly desirable for producing higher quantities of bioethanol from lignocellulosic materials of bioenergy plants.

  7. Immune surveillance against virus-induced tumors and nonrejectability of spontaneous tumors: contrasting consequences of host versus tumor evolution.

    PubMed

    Klein, G; Klein, E

    1977-05-01

    Spontaneous tumours are defined as tumors that develop in the absence of all experimental interference. In contrast to the widely documented, strong rejection reactions against most virus-induced tumors, spontaneous tumors evoke little or no detectable rejection reaction in intact or preimmunized syngeneic hosts. The difference can be viewed in relation to the contrasting natural history of the two conditions. Spontaneous tumors evolve in several steps, as a fule. "Tumor progression" is a microevolutionary process at the level of the somatic tissue where successive clonal variants replace each other. Each new variant gains the upper hand due to its greater independence of some restricting host mechanism. Independence of immune restrictions must be part of this process. Host selection for immune resistance apparently plays no major role here, presumably because most of the naturally occurring tumors arise after the host has passed the peak of its reproductive period. Protection against the oncogenic effects of ubiquitous tumor viruses is, on the other hand, the result of host selection for immune mechanisms favoring prompt rejection of virus-transformed cells. This is neither synonymous with nor related to protection against the viral infection per se, which is frequently successful and usually quite harmless. A certain relationship can be perceived between the degree of viral ubiquity and the strength of immune protection against the corresponding tumor cells. Natural selection for host recognition of commonly occurring, virally induced changes in neoplastic cell membranes can be surmised to occur, at least in part, by the fixation of appropriate immune responsiveness (Ir) genes. The role of Ir genes for tumor recognition can be approached by the genetic analysis of the F1 hybrid resistance effect. Unresponsiveness to spontaneous tumors may be overcome by target-cell modification, e.g., by chemical coupling, somatic cell hybridization, or viral "xenogenization".

  8. Virus induced gene silencing of three putative prolyl 4-hydroxylases enhances plant growth in tomato (Solanum lycopersicum).

    PubMed

    Fragkostefanakis, Sotirios; Sedeek, Khalid E M; Raad, Maya; Zaki, Marwa Samir; Kalaitzis, Panagiotis

    2014-07-01

    Proline hydroxylation is a major posttranslational modification of hydroxyproline-rich glycoproteins (HRGPs) that is catalyzed by prolyl 4-hydroxylases (P4Hs). HRGPs such as arabinogalactan proteins (AGPs) and extensios play significant roles on cell wall structure and function and their implication in cell division and expansion has been reported. We used tobacco rattle virus (TRV)-based virus induced gene silencing to investigate the role of three tomato P4Hs, out of ten present in the tomato genome, in growth and development. Eight-days old tomato seedlings were infected with the appropriate TRV vectors and plants were allowed to grow under standard conditions for 6 weeks. Lower P4H mRNA levels were associated with lower hydroxyproline content in root and shoot tissues indicating successful gene silencing. P4H-silenced plants had longer roots and shoots and larger leaves. The increased leaf area can be attributed to increased cell division as indicated by the higher leaf epidermal cell number in SlP4H1- and SlP4H9-silenced plants. In contrast, SlP4H7-silenced plants had larger leaves due to enhanced cell expansion. Western blot analysis revealed that silencing of SlP4H7 and SlP4H9 was associated with reduced levels of JIM8-bound AGP and JIM11-bound extensin epitopes, while silencing of SlP4H1 reduced only the levels of AGP proteins. Collectively these results show that P4Hs have significant and distinct roles in cell division and expansion of tomato leaves.

  9. Influenza Virus-Induced Caspase-Dependent Enlargement of Nuclear Pores Promotes Nuclear Export of Viral Ribonucleoprotein Complexes

    PubMed Central

    Mühlbauer, Dirk; Dzieciolowski, Julia; Hardt, Martin; Hocke, Andreas; Schierhorn, Kristina L.; Mostafa, Ahmed; Müller, Christin; Wisskirchen, Christian; Herold, Susanne; Wolff, Thorsten; Ziebuhr, John

    2015-01-01

    ABSTRACT Influenza A viruses (IAV) replicate their segmented RNA genome in the nucleus of infected cells and utilize caspase-dependent nucleocytoplasmic export mechanisms to transport newly formed ribonucleoprotein complexes (RNPs) to the site of infectious virion release at the plasma membrane. In this study, we obtained evidence that apoptotic caspase activation in IAV-infected cells is associated with the degradation of the nucleoporin Nup153, an integral subunit of the nuclear pore complex. Transmission electron microscopy studies revealed a distinct enlargement of nuclear pores in IAV-infected cells. Transient expression and subcellular accumulation studies of multimeric marker proteins in virus-infected cells provided additional evidence for increased nuclear pore diameters facilitating the translocation of large protein complexes across the nuclear membrane. Furthermore, caspase 3/7 inhibition data obtained in this study suggest that active, Crm1-dependent IAV RNP export mechanisms are increasingly complemented by passive, caspase-induced export mechanisms at later stages of infection. IMPORTANCE In contrast to the process seen with most other RNA viruses, influenza virus genome replication occurs in the nucleus (rather than the cytoplasm) of infected cells. Therefore, completion of the viral replication cycle critically depends on intracellular transport mechanisms that ensure the translocation of viral ribonucleoprotein (RNP) complexes across the nuclear membrane. Here, we demonstrate that virus-induced cellular caspase activities cause a widening of nuclear pores, thereby facilitating nucleocytoplasmic translocation processes and, possibly, promoting nuclear export of newly synthesized RNPs. These passive transport mechanisms are suggested to complement Crm1-dependent RNP export mechanisms known to occur at early stages of the replication cycle and may contribute to highly efficient production of infectious virus progeny at late stages of the viral

  10. Virus-induced gene silencing (VIGS) of genes expressed in root, leaf, and meiotic tissues of wheat.

    PubMed

    Bennypaul, Harvinder S; Mutti, Jasdeep S; Rustgi, Sachin; Kumar, Neeraj; Okubara, Patricia A; Gill, Kulvinder S

    2012-03-01

    Barley stripe mosaic virus (BSMV)-based virus-induced gene silencing (VIGS) is an effective strategy for rapid functional analysis of genes in wheat leaves, but its utility to transiently express genes, and silencing in other tissues including root, flower, and developing grains, has not been demonstrated in monocots. We monitored green fluorescent protein (GFP) expression to demonstrate the utility of BSMV as a transient expression vector and silenced genes in various wheat tissues to expand VIGS utility to characterize tissue-specific genes. An antisense construct designed for coronatine insensitive1 (COI1) showed an 85% decrease in COI1 transcript level in roots accompanied by a 26% reduction in root length. Similarly, silencing of seed-specific granule-bound starch synthase by antisense and hairpin constructs resulted in up to 82% reduction in amylose content of the developing grains. VIGS of meiosis-specific genes demonstrated by silencing wheat homologue of disrupted meiosis cDNA1 (DMC1) by an antisense construct resulted in a 75-80% reduction in DMC1 transcript level accompanied by an average of 37.2 univalents at metaphase I. The virus-based transient GFP expression was observed in the leaf, phloem, and root cortex at 10-17 days post-inoculation. A novel observation was made that 8-11% of the first selfed generation progeny showed VIGS inheritance and that this proportion increased to 53-72% in the second and to 90-100% in the third generations. No viral symptoms were observed in the progeny, making it possible to study agronomic traits by VIGS. VIGS inheritance is particularly useful to study genes expressing during seed germination or other stages of early plant growth.

  11. Virus-induced gene silencing of Arabidopsis thaliana gene homologues in wheat identifies genes conferring improved drought tolerance.

    PubMed

    Manmathan, Harish; Shaner, Dale; Snelling, Jacob; Tisserat, Ned; Lapitan, Nora

    2013-03-01

    In a non-model staple crop like wheat (Triticum aestivumI L.), functional validation of potential drought stress responsive genes identified in Arabidopsis could provide gene targets for breeding. Virus-induced gene silencing (VIGS) of genes of interest can overcome the inherent problems of polyploidy and limited transformation potential that hamper functional validation studies in wheat. In this study, three potential candidate genes shown to be involved in abiotic stress response pathways in Arabidopsis thaliana were selected for VIGS experiments in wheat. These include Era1 (enhanced response to abscisic acid), Cyp707a (ABA 8'-hydroxylase), and Sal1 (inositol polyphosphate 1-phosphatase). Gene homologues for these three genes were identified in wheat and cloned in the viral vector barley stripe mosaic virus (BSMV) in the antisense direction, followed by rub inoculation of BSMV viral RNA transcripts onto wheat plants. Quantitative real-time PCR showed that VIGS-treated wheat plants had significant reductions in target gene transcripts. When VIGS-treated plants generated for Era1 and Sal1 were subjected to limiting water conditions, they showed increased relative water content, improved water use efficiency, reduced gas exchange, and better vigour compared to water-stressed control plants inoculated with RNA from the empty viral vector (BSMV0). In comparison, the Cyp707a-silenced plants showed no improvement over BSMV0-inoculated plants under limited water condition. These results indicate that Era1 and Sal1 play important roles in conferring drought tolerance in wheat. Other traits affected by Era1 silencing were also studied. Delayed seed germination in Era1-silenced plants suggests this gene may be a useful target for developing resistance to pre-harvest sprouting.

  12. Development of Agrobacterium-Mediated Virus-Induced Gene Silencing and Performance Evaluation of Four Marker Genes in Gossypium barbadense

    PubMed Central

    Pang, Jinhuan; Zhu, Yue; Li, Qing; Liu, Jinzhi; Tian, Yingchuan; Liu, Yule; Wu, Jiahe

    2013-01-01

    Gossypiumbarbadense is a cultivated cotton species and possesses many desirable traits, including high fiber quality and resistance to pathogens, especially Verticilliumdahliae (a devastating pathogen of Gossypium hirsutum, the main cultivated species). These elite traits are difficult to be introduced into G. hirsutum through classical breeding methods. In addition, genetic transformation of G. barbadense has not been successfully performed. It is therefore important to develop methods for evaluating the function and molecular mechanism of genes in G. barbadense. In this study, we had successfully introduced a virus-induced gene silencing (VIGS) system into three cultivars of G. barbadense by inserting marker genes into the tobacco rattle virus (TRV) vector. After we optimized the VIGS conditions, including light intensity, photoperiod, seedling age and Agrobacterium strain, 100% of plants agroinfiltrated with the GaPDS silencing vector showed white colored leaves. Three other marker genes, GaCLA1, GaANS and GaANR, were employed to further test this VIGS system in G. barbadense. The transcript levels of the endogenous genes in the silenced plants were reduced by more than 99% compared to control plants; these plants presented phenotypic symptoms 2 weeks after inoculation. We introduced a fusing sequence fragment of GaPDS and GaANR gene silencing vectors into a single plant, which resulted in both photobleaching and brownish coloration. The extent of silencing in plants agroinfiltrated with fusing two-gene-silencing vector was consistent with plants harboring a single gene silencing vector. The development of this VIGS system should promote analysis of gene function in G. barbadense, and help to contribute desirable traits for breeding of G. barbadense and G. hirsutum. PMID:24023833

  13. A high-throughput virus-induced gene silencing protocol identifies genes involved in multi-stress tolerance.

    PubMed

    Ramegowda, Venkategowda; Senthil-kumar, Muthappa; Udayakumar, Makarla; Mysore, Kirankumar S

    2013-12-01

    Understanding the function of a particular gene under various stresses is important for engineering plants for broad-spectrum stress tolerance. Although virus-induced gene silencing (VIGS) has been used to characterize genes involved in abiotic stress tolerance, currently available gene silencing and stress imposition methodology at the whole plant level is not suitable for high-throughput functional analyses of genes. This demands a robust and reliable methodology for characterizing genes involved in abiotic and multi-stress tolerance. Our methodology employs VIGS-based gene silencing in leaf disks combined with simple stress imposition and effect quantification methodologies for easy and faster characterization of genes involved in abiotic and multi-stress tolerance. By subjecting leaf disks from gene-silenced plants to various abiotic stresses and inoculating silenced plants with various pathogens, we show the involvement of several genes for multi-stress tolerance. In addition, we demonstrate that VIGS can be used to characterize genes involved in thermotolerance. Our results also showed the functional relevance of NtEDS1 in abiotic stress, NbRBX1 and NbCTR1 in oxidative stress; NtRAR1 and NtNPR1 in salinity stress; NbSOS1 and NbHSP101 in biotic stress; and NtEDS1, NbETR1, NbWRKY2 and NbMYC2 in thermotolerance. In addition to widening the application of VIGS, we developed a robust, easy and high-throughput methodology for functional characterization of genes involved in multi-stress tolerance.

  14. Virus-induced gene silencing in transgenic plants: transgene silencing and reactivation associate with two patterns of transgene body methylation.

    PubMed

    Zhao, Mingmin; San León, David; Delgadillo, Ma Otilia; García, Juan Antonio; Simón-Mateo, Carmen

    2014-08-01

    We used bisulfite sequencing to study the methylation of a viral transgene whose expression was silenced upon plum pox virus infection of the transgenic plant and its subsequent recovery as a consequence of so-called virus-induced gene silencing (VIGS). VIGS was associated with a general increase in the accumulation of small RNAs corresponding to the coding region of the viral transgene. After VIGS, the transgene promoter was not methylated and the coding region showed uneven methylation, with the 5' end being mostly unmethylated in the recovered tissue or mainly methylated at CG sites in regenerated silenced plants. The methylation increased towards the 3' end, which showed dense methylation in all three contexts (CG, CHG and CHH). This methylation pattern and the corresponding silenced status were maintained after plant regeneration from recovered silenced tissue and did not spread into the promoter region, but were not inherited in the sexual offspring. Instead, a new pattern of methylation was observed in the progeny plants consisting of disappearance of the CHH methylation, similar CHG methylation at the 3' end, and an overall increase in CG methylation in the 5' end. The latter epigenetic state was inherited over several generations and did not correlate with transgene silencing and hence virus resistance. These results suggest that the widespread CG methylation pattern found in body gene bodies located in euchromatic regions of plant genomes may reflect an older silencing event, and most likely these genes are no longer silenced. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  15. Development of Agrobacterium-mediated virus-induced gene silencing and performance evaluation of four marker genes in Gossypium barbadense.

    PubMed

    Pang, Jinhuan; Zhu, Yue; Li, Qing; Liu, Jinzhi; Tian, Yingchuan; Liu, Yule; Wu, Jiahe

    2013-01-01

    Gossypiumbarbadense is a cultivated cotton species and possesses many desirable traits, including high fiber quality and resistance to pathogens, especially Verticilliumdahliae (a devastating pathogen of Gossypium hirsutum, the main cultivated species). These elite traits are difficult to be introduced into G. hirsutum through classical breeding methods. In addition, genetic transformation of G. barbadense has not been successfully performed. It is therefore important to develop methods for evaluating the function and molecular mechanism of genes in G. barbadense. In this study, we had successfully introduced a virus-induced gene silencing (VIGS) system into three cultivars of G. barbadense by inserting marker genes into the tobacco rattle virus (TRV) vector. After we optimized the VIGS conditions, including light intensity, photoperiod, seedling age and Agrobacterium strain, 100% of plants agroinfiltrated with the GaPDS silencing vector showed white colored leaves. Three other marker genes, GaCLA1, GaANS and GaANR, were employed to further test this VIGS system in G. barbadense. The transcript levels of the endogenous genes in the silenced plants were reduced by more than 99% compared to control plants; these plants presented phenotypic symptoms 2 weeks after inoculation. We introduced a fusing sequence fragment of GaPDS and GaANR gene silencing vectors into a single plant, which resulted in both photobleaching and brownish coloration. The extent of silencing in plants agroinfiltrated with fusing two-gene-silencing vector was consistent with plants harboring a single gene silencing vector. The development of this VIGS system should promote analysis of gene function in G. barbadense, and help to contribute desirable traits for breeding of G. barbadense and G. hirsutum.

  16. Lactate Dehydrogenase-Elevating Virus Induces Systemic Lymphocyte Activation via TLR7-Dependent IFNα Responses by Plasmacytoid Dendritic Cells

    PubMed Central

    Ammann, Christoph G.; Messer, Ronald J.; Peterson, Karin E.; Hasenkrug, Kim J.

    2009-01-01

    Background Lactate dehydrogenase-elevating virus (LDV) is a natural infectious agent of mice. Like several other viruses, LDV causes widespread and very rapid but transient activation of both B cells and T cells in lymphoid tissues and the blood. The mechanism of this activation has not been fully described and is the focus of the current studies. Principal Findings A known inducer of early lymphocyte activation is IFNα, a cytokine strongly induced by LDV infection. Neutralization of IFNα in the plasma from infected mice ablated its ability to activate lymphocytes in vitro. Since the primary source of virus-induced IFNα in vivo is often plasmacytoid dendritic cells (pDC's), we depleted these cells prior to LDV infection and tested for lymphocyte activation. Depletion of pDC's in vivo eradicated both the LDV-induced IFNα response and lymphocyte activation. A primary receptor in pDC's for single stranded RNA viruses such as LDV is the toll-like receptor 7 (TLR7) pattern recognition receptor. Infection of TLR7-knockout mice revealed that both the IFNα response and lymphocyte activation were dependent on TLR7 signaling in vivo. Interestingly, virus levels in both TLR7 knockout mice and pDC-depleted mice were indistinguishable from controls indicating that LDV is largely resistant to the systemic IFNα response. Conclusion Results indicate that LDV-induced activation of lymphocytes is due to recognition of LDV nucleic acid by TLR7 pattern recognition receptors in pDC's that respond with a lymphocyte-inducing IFNα response. PMID:19568424

  17. A visual reporter system for virus-induced gene silencing in tomato fruit based on anthocyanin accumulation.

    PubMed

    Orzaez, Diego; Medina, Aurora; Torre, Sara; Fernández-Moreno, Josefina Patricia; Rambla, José Luis; Fernández-Del-Carmen, Asun; Butelli, Eugenio; Martin, Cathie; Granell, Antonio

    2009-07-01

    Virus-induced gene silencing (VIGS) is a powerful tool for reverse genetics in tomato (Solanum lycopersicum). However, the irregular distribution of the effects of VIGS hampers the identification and quantification of nonvisual phenotypes. To overcome this limitation, a visually traceable VIGS system was developed for fruit, comprising two elements: (1) a transgenic tomato line (Del/Ros1) expressing Antirrhinum majus Delila and Rosea1 transcription factors under the control of the fruit-specific E8 promoter, showing a purple-fruited, anthocyanin-rich phenotype; and (2) a modified tobacco rattle virus VIGS vector incorporating partial Rosea1 and Delila sequences, which was shown to restore the red-fruited phenotype upon agroinjection in Del/Ros1 plants. Dissection of silenced areas for subsequent chemometric analysis successfully identified the relevant metabolites underlying gene function for three tomato genes, phytoene desaturase, TomloxC, and SlODO1, used for proof of concept. The C-6 aldehydes derived from lipid 13-hydroperoxidation were found to be the volatile compounds most severely affected by TomloxC silencing, whereas geranial and 6-methyl-5-hepten-2-one were identified as the volatiles most severely reduced by phytoene desaturase silencing in ripening fruit. In a third example, silencing of SlODO1, a tomato homolog of the ODORANT1 gene encoding a myb transcription factor, which regulates benzenoid metabolism in petunia (Petunia hybrida) flowers, resulted in a sharp accumulation of benzaldehyde in tomato fruit. Together, these results indicate that fruit VIGS, enhanced by anthocyanin monitoring, can be a powerful tool for reverse genetics in the study of the metabolic networks operating during fruit ripening.

  18. Virus-Induced Chaperone-Enriched (VICE) domains function as nuclear protein quality control centers during HSV-1 infection.

    PubMed

    Livingston, Christine M; Ifrim, Marius F; Cowan, Ann E; Weller, Sandra K

    2009-10-01

    Virus-Induced Chaperone-Enriched (VICE) domains form adjacent to nuclear viral replication compartments (RC) during the early stages of HSV-1 infection. Between 2 and 3 hours post infection at a MOI of 10, host protein quality control machinery such as molecular chaperones (e.g. Hsc70), the 20S proteasome and ubiquitin are reorganized from a diffuse nuclear distribution pattern to sequestration in VICE domains. The observation that VICE domains contain putative misfolded proteins suggests that they may be similar to nuclear inclusion bodies that form under conditions in which the protein quality control machinery is overwhelmed by the presence of misfolded proteins. The detection of Hsc70 in VICE domains, but not in nuclear inclusion bodies, indicates that Hsc70 is specifically reorganized by HSV-1 infection. We hypothesize that HSV-1 infection induces the formation of nuclear protein quality control centers to remodel or degrade aberrant nuclear proteins that would otherwise interfere with productive infection. Detection of proteolytic activity in VICE domains suggests that substrates may be degraded by the 20S proteasome in VICE domains. FRAP analysis reveals that GFP-Hsc70 is dynamically associated with VICE domains, suggesting a role for Hsc70 in scanning the infected nucleus for misfolded proteins. During 42 degrees C heat shock, Hsc70 is redistributed from VICE domains into RC perhaps to remodel viral replication and regulatory proteins that have become insoluble in these compartments. The experiments presented in this paper suggest that VICE domains are nuclear protein quality control centers that are modified by HSV-1 to promote productive infection.

  19. Virus-induced gene silencing of Arabidopsis thaliana gene homologues in wheat identifies genes conferring improved drought tolerance

    PubMed Central

    Lapitan, Nora

    2013-01-01

    In a non-model staple crop like wheat (Triticum aestivumI L.), functional validation of potential drought stress responsive genes identified in Arabidopsis could provide gene targets for breeding. Virus-induced gene silencing (VIGS) of genes of interest can overcome the inherent problems of polyploidy and limited transformation potential that hamper functional validation studies in wheat. In this study, three potential candidate genes shown to be involved in abiotic stress response pathways in Arabidopsis thaliana were selected for VIGS experiments in wheat. These include Era1 (enhanced response to abscisic acid), Cyp707a (ABA 8’-hydroxylase), and Sal1 (inositol polyphosphate 1-phosphatase). Gene homologues for these three genes were identified in wheat and cloned in the viral vector barley stripe mosaic virus (BSMV) in the antisense direction, followed by rub inoculation of BSMV viral RNA transcripts onto wheat plants. Quantitative real-time PCR showed that VIGS-treated wheat plants had significant reductions in target gene transcripts. When VIGS-treated plants generated for Era1 and Sal1 were subjected to limiting water conditions, they showed increased relative water content, improved water use efficiency, reduced gas exchange, and better vigour compared to water-stressed control plants inoculated with RNA from the empty viral vector (BSMV0). In comparison, the Cyp707a-silenced plants showed no improvement over BSMV0-inoculated plants under limited water condition. These results indicate that Era1 and Sal1 play important roles in conferring drought tolerance in wheat. Other traits affected by Era1 silencing were also studied. Delayed seed germination in Era1-silenced plants suggests this gene may be a useful target for developing resistance to pre-harvest sprouting. PMID:23364940

  20. Attenuated P2X7 Pore Function as a Risk Factor for Virus-induced Loss of Asthma Control

    PubMed Central

    Denlinger, Loren C.; Shi, Lei; Guadarrama, Arturo; Schell, Kathy; Green, Dawn; Morrin, Alison; Hogan, Kirk; Sorkness, Ronald L.; Busse, William W.; Gern, James E.

    2009-01-01

    Rationale: Upper respiratory tract infection is a guideline accepted risk domain for the loss of asthma control. The ionotrophic nucleotide receptor P2X7 regulates compartmentalized acute inflammation and the immune response to airway pathogens. Objectives: We hypothesized that variability in P2X7 function contributes to neutrophilic airway inflammation during a cold and thereby is linked to acute asthma. Methods: Research volunteers with asthma were enrolled at the onset of a naturally occurring cold and monitored through convalescence, assessing symptoms, lung function, and airway inflammation. P2X7 pore activity in whole blood samples was measured using a genomically validated flow cytometric assay. Measurements and Main Results: Thirty-five participants with mild to moderate allergic asthma were enrolled and 31 completed all visits. P2X7 pore function correlated with the change in nasal lavage neutrophil counts during the cold (Rs = 0.514, P = 0.004) and was inversely related to the change in asthma symptoms (Rs = −0.486, P = 0.009). The change in peak expiratory flow recordings, precold use of inhaled corticosteroids, and P2X7 pore function were multivariate predictors of asthma symptoms (P = 0.001, < 0.001 and = 0.003 respectively). Attenuated P2X7 activity was associated with the risk of losing asthma control (crude odds ratio, 11.0; 95% confidence interval, 1.1–106.4) even after adjustment for inhaled corticosteroids and rhinovirus (odds ratio, 15.0). Conclusions: A whole blood P2X7 pore assay robustly identifies participants with loss-of-function genotypes. Using this assay as an epidemiologic tool, attenuated P2X7 pore activity may be a novel biomarker of virus-induced loss of asthma control. PMID:19201928

  1. Conventional but not plasmacytoid dendritic cells foster the systemic virus-induced type I IFN response needed for efficient CD8 T cell priming.

    PubMed

    Hervas-Stubbs, Sandra; Riezu-Boj, Jose-Ignacio; Mancheño, Uxua; Rueda, Paloma; Lopez, Lissette; Alignani, Diego; Rodríguez-García, Estefanía; Thieblemont, Nathalie; Leclerc, Claude

    2014-08-01

    Plasmacytoid dendritic cells (pDCs) are considered to be the principal type-I IFN (IFN-I) source in response to viruses, whereas the contribution of conventional DCs (cDCs) has been underestimated because, on a per-cell basis, they are not considered professional IFN-I-producing cells. We have investigated their respective roles in the IFN-I response required for CTL activation. Using a nonreplicative virus, baculovirus, we show that despite the high IFN-I-producing abilities of pDCs, in vivo cDCs but not pDCs are the pivotal IFN-I producers upon viral injection, as demonstrated by selective pDC or cDC depletion. The pathway involved in the virus-triggered IFN-I response is dependent on TLR9/MyD88 in pDCs and on stimulator of IFN genes (STING) in cDCs. Importantly, STING is the key molecule for the systemic baculovirus-induced IFN-I response required for CTL priming. The supremacy of cDCs over pDCs in fostering the IFN-I response required for CTL activation was also verified in the lymphocytic choriomeningitis virus model, in which IFN-β promoter stimulator 1 plays the role of STING. However, when the TLR-independent virus-triggered IFN-I production is impaired, the pDC-induced IFNs-I have a primary impact on CTL activation, as shown by the detrimental effect of pDC depletion and IFN-I signaling blockade on the residual lymphocytic choriomeningitis virus-triggered CTL response detected in IFN-β promoter stimulator 1(-/-) mice. Our findings reveal that cDCs play a major role in the TLR-independent virus-triggered IFN-I production required for CTL priming, whereas pDC-induced IFNs-I are dispensable but become relevant when the TLR-independent IFN-I response is impaired. Copyright © 2014 by The American Association of Immunologists, Inc.

  2. Role of Ca++ in virus-induced membrane fusion. Ca++ accumulation and ultrastructural changes induced by Sendai virus in chicken erythrocytes

    PubMed Central

    1978-01-01

    Some of the ultrastructural (freeze-etching technique), morphological, and biochemical effects of Sendai virus interaction with chicken erythrocytes have been studied under fusogenic (in the presence of CaCl2) and nonfusogenic (in the presence of ethyleneglycol-bis-N,N'- tetraacetic acid, [EGTA]) conditions. The following phenomena occur, irrespective of the presence of CaCl2 or EGTA: (a) binding of iodinated virus particles to chicken erythrocytes at 4 degrees C and their partial release from the cells at 37 degrees C; (b) gradual incorporation of the viral envelope and viral M-protein into plasma membrane, as visualized in the protoplasmic and exoplasmic fracture (P and E, respectively) faces of the membrane; and (c) virus-dependent transient clustering of intramembrane particles at 4 degrees C, which is reversible after transferring the cells back to 37 degrees C. The following virus-induced phenomena occur only in the presence of CaCl2: (a) rounding of cells followed by their fusion; (b) transient decrease in the density of intramembrane particles; and (c) the virus induces uptake of 45CaCl2 by chicken erythrocytes. The uptake is specific as it is inhibited by LaCl3, and no accumulation of [14C]glucose-1-phosphate ([14C]G-1-P) could be observed under the 45 CaCl2 uptake conditions. The data show that fusion of virus with plasma membrane is a Ca++- independent process and, as such, it should be distinguished from the virus-induced membrane-membrane and cell fusion processes. The latter is absolutely dependent on the rise of intracellular Ca++, as reflected by the fact that Ca++-induced rounding of chicken erythrocytes always precedes fusion (Volsky, D. and A. Loyter. 1977.Biochim. Biophys. Acta 471:253--259). PMID:211140

  3. Increased tumor necrosis factor-alpha (TNF-alpha) gene expression in parainfluenza type 1 (Sendai) virus-induced bronchiolar fibrosis.

    PubMed Central

    Uhl, E. W.; Moldawer, L. L.; Busse, W. W.; Jack, T. J.; Castleman, W. L.

    1998-01-01

    Increased airway resistance and airway hyperresponsiveness induced in rats by infection with parainfluenza type I (Sendai) virus is associated with bronchiolar fibrosis. To determine whether increased tumor necrosis factor (TNF)-alpha gene expression is an important regulatory event in virus-induced bronchiolar fibrosis, pulmonary TNF-alpha mRNA and protein expression was assessed in rat strains that are susceptible (Brown Norway; BN) and resistant (Fischer 344; F344) to virus-induced bronchiolar fibrosis. Virus-inoculated BN rats had increased TNF-alpha pulmonary mRNA levels (P < 0.05) and increased numbers of bronchiolar macrophages and fibroblasts expressing TNF-alpha protein compared with virus-inoculated F344 rats (P < 0.05). Virus inoculation also induced elevated TNF-alpha mRNA and protein levels (P < 0.05) in cultured rat alveolar macrophages (NR8383 cells). A 55-kd soluble TNF receptor-immunoglobulin G fusion protein (sTNFR-IgG) was used to inhibit TNF-alpha bioactivity in virus-inoculated BN rats. Treated rats had fewer proliferating bronchiolar fibroblasts, as detected by bromodeoxyuridine incorporation, compared with virus-inoculated control rats (P < 0.05). There was also increased mortality in p55sTNFR-IgG-treated virus-inoculated rats associated with increased viral replication and decreased numbers of macrophages and lymphocytes in bronchoalveolar lavage fluid (P < 0.05). The results of this study indicate that 1) Sendai virus can directly up-regulate TNF-alpha mRNA and protein expression in macrophages, 2) TNF-alpha is an important mediator of virus-induced bronchiolar fibrosis, and 3) TNF-alpha has a critical role in the termination of Sendai viral replication in the lung. Images Figure 2 PMID:9466578

  4. The SNARE Protein Syp71 Is Essential for Turnip Mosaic Virus Infection by Mediating Fusion of Virus-Induced Vesicles with Chloroplasts

    PubMed Central

    Hou, Xilin; Sanfaçon, Hélène; Wang, Aiming

    2013-01-01

    All positive-strand RNA viruses induce the biogenesis of cytoplasmic membrane-bound virus factories for viral genome multiplication. We have previously demonstrated that upon plant potyvirus infection, the potyviral 6K2 integral membrane protein induces the formation of ER-derived replication vesicles that subsequently target chloroplasts for robust genome replication. Here, we report that following the trafficking of the Turnip mosaic potyvirus (TuMV) 6K2 vesicles to chloroplasts, 6K2 vesicles accumulate at the chloroplasts to form chloroplast-bound elongated tubular structures followed by chloroplast aggregation. A functional actomyosin motility system is required for this process. As vesicle trafficking and fusion in planta are facilitated by a superfamily of proteins known as SNAREs (soluble N-ethylmaleimide-sensitive-factor attachment protein receptors), we screened ER-localized SNARES or SNARE-like proteins for their possible involvement in TuMV infection. We identified Syp71 and Vap27-1 that colocalize with the chloroplast-bound 6K2 complex. Knockdown of their expression using a Tobacco rattle virus (TRV)-based virus-induced gene silencing vector showed that Syp71 but not Vap27-1 is essential for TuMV infection. In Syp71-downregulated plant cells, the formation of 6K2-induced chloroplast-bound elongated tubular structures and chloroplast aggregates is inhibited and virus accumulation is significantly reduced, but the trafficking of the 6K2 vesicles from the ER to chloroplast is not affected. Taken together, these data suggest that Syp71 is a host factor essential for successful virus infection by mediating the fusion of the virus-induced vesicles with chloroplasts during TuMV infection. PMID:23696741

  5. The SNARE protein Syp71 is essential for turnip mosaic virus infection by mediating fusion of virus-induced vesicles with chloroplasts.

    PubMed

    Wei, Taiyun; Zhang, Changwei; Hou, Xilin; Sanfaçon, Hélène; Wang, Aiming

    2013-01-01

    All positive-strand RNA viruses induce the biogenesis of cytoplasmic membrane-bound virus factories for viral genome multiplication. We have previously demonstrated that upon plant potyvirus infection, the potyviral 6K2 integral membrane protein induces the formation of ER-derived replication vesicles that subsequently target chloroplasts for robust genome replication. Here, we report that following the trafficking of the Turnip mosaic potyvirus (TuMV) 6K2 vesicles to chloroplasts, 6K2 vesicles accumulate at the chloroplasts to form chloroplast-bound elongated tubular structures followed by chloroplast aggregation. A functional actomyosin motility system is required for this process. As vesicle trafficking and fusion in planta are facilitated by a superfamily of proteins known as SNAREs (soluble N-ethylmaleimide-sensitive-factor attachment protein receptors), we screened ER-localized SNARES or SNARE-like proteins for their possible involvement in TuMV infection. We identified Syp71 and Vap27-1 that colocalize with the chloroplast-bound 6K2 complex. Knockdown of their expression using a Tobacco rattle virus (TRV)-based virus-induced gene silencing vector showed that Syp71 but not Vap27-1 is essential for TuMV infection. In Syp71-downregulated plant cells, the formation of 6K2-induced chloroplast-bound elongated tubular structures and chloroplast aggregates is inhibited and virus accumulation is significantly reduced, but the trafficking of the 6K2 vesicles from the ER to chloroplast is not affected. Taken together, these data suggest that Syp71 is a host factor essential for successful virus infection by mediating the fusion of the virus-induced vesicles with chloroplasts during TuMV infection.

  6. The C-Terminal Region of Lymphocytic Choriomeningitis Virus Nucleoprotein Contains Distinct and Segregable Functional Domains Involved in NP-Z Interaction and Counteraction of the Type I Interferon Response▿

    PubMed Central

    Ortiz-Riaño, Emilio; Cheng, Benson Yee Hin; de la Torre, Juan Carlos; Martínez-Sobrido, Luis

    2011-01-01

    Several arenaviruses cause hemorrhagic fever (HF) disease in humans that is associated with high morbidity and significant mortality. Arenavirus nucleoprotein (NP), the most abundant viral protein in infected cells and virions, encapsidates the viral genome RNA, and this NP-RNA complex, together with the viral L polymerase, forms the viral ribonucleoprotein (vRNP) that directs viral RNA replication and gene transcription. Formation of infectious arenavirus progeny requires packaging of vRNPs into budding particles, a process in which arenavirus matrix-like protein (Z) plays a central role. In the present study, we have characterized the NP-Z interaction for the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV). The LCMV NP domain that interacted with Z overlapped with a previously documented C-terminal domain that counteracts the host type I interferon (IFN) response. However, we found that single amino acid mutations that affect the anti-IFN function of LCMV NP did not disrupt the NP-Z interaction, suggesting that within the C-terminal region of NP different amino acid residues critically contribute to these two distinct and segregable NP functions. A similar NP-Z interaction was confirmed for the HF arenavirus Lassa virus (LASV). Notably, LCMV NP interacted similarly with both LCMV Z and LASV Z, while LASV NP interacted only with LASV Z. Our results also suggest the presence of a conserved protein domain within NP but with specific amino acid residues playing key roles in determining the specificity of NP-Z interaction that may influence the viability of reassortant arenaviruses. In addition, this NP-Z interaction represents a potential target for the development of antiviral drugs to combat human-pathogenic arenaviruses. PMID:21976642

  7. The signal sequence of lymphocytic choriomeningitis virus contains an immunodominant cytotoxic T cell epitope that is restricted by both H-2D(b) and H-2K(b) molecules.

    PubMed

    Hudrisier, D; Oldstone, M B; Gairin, J E

    1997-07-21

    Infection of H-2b mice with lymphocytic choriomeningitis virus (LCMV) generates three well-characterized H-2D(b)-restricted immunodominant epitopes delineated in the NP, GP1, and GP2 proteins. Here we report that the H-2D(b)-restricted GP1 epitope GP33-41/43 (KAVYNFATC/GI) located in the signal sequence of LCMV is also the immunodominant epitope recognized by CTL at the surface of the same infected cells in the context of H-2K(b) restriction. The GP1 epitope bound to H-2D(b) and H-2K(b) molecules with comparable affinities. The respective binding processes involved different sets of peptide anchoring residues and required dramatically different conformations of the peptide backbone as well as rearrangement of residue side chains. The 10-mer peptide GP34-43 (AVYNFATCGI) was the optimal H-2K(b)-binding sequence and the 8-mer peptide GP34-41 (AVYNFATC) the minimal sequence for optimal H-2K(b)-restricted CTL recognition. Comparison of lytic activities of primary splenic anti-LCMV CTL from C57BL/6 (D(b+)/K(b+)), B10A.[5R] (D(b-)/K(b+)), and B10A.[2R] (D(b+)/K(b-)) mice against LCMV-infected or peptide-coated target cells expressing either one or the two MHC alleles revealed that the H-2K(b)-restricted component of the anti-GP1 CTL response was mounted independently of but as efficiently as its H-2D(b) counterpart. Analysis of the immune response against a GP1 variant that escapes CTL recognition showed that the GP1 epitope: (i) was likely the only immunodominant LCMV epitope in the context of H-2K(b), and (ii) could efficiently evade H-2D(b) and H-2K(b)-restricted CTL mediated lysis.

  8. Molecular basis of viral persistence: a single amino acid change in the glycoprotein of lymphocytic choriomeningitis virus is associated with suppression of the antiviral cytotoxic T-lymphocyte response and establishment of persistence.

    PubMed Central

    Salvato, M; Borrow, P; Shimomaye, E; Oldstone, M B

    1991-01-01

    Isolates of lymphocytic choriomeningitis virus (LCMV) that elicit a cytotoxic T-lymphocyte response (CTL+) have been compared with isolates that suppress the CTL response (CTL-) in an effort to map this phenotype. A single amino acid change in the glycoprotein of the LCMV Armstrong (ARM) strain is consistently associated with the CTL- trait and the ability of the virus to persist (P+). The CTL+ P- parental strain spontaneously gives rise to CTL- P+ variants within lymphoid tissues of mice persistently infected from birth. To map the structural basis of the phenotype, the complete RNA sequence of LCMV ARM 53b (CTL+) was compared with that of its variant ARM clone 13 (CTL-). Differences in 5 of 10,600 nucleotides were found. Three changes are noted in the large L RNA segment, and two are noted in the small S RNA segment. Only two of the changes distinguishing CTL+ from CTL- isolates affect amino acid coding: lysine to glutamine at amino acid 1079 of the polymerase protein, and phenylalanine to leucine at amino acid 260 of the envelope glycoprotein (GP). We also analyzed two additional CTL- variants and four spontaneous CTL+ revertants. All three CTL- variants differ from the original CTL+ parental strain at GP amino acid 260, indicating that this amino acid change is consistently associated with the CTL- phenotype. By contrast the other four mutations in LCMV are not associated with the CTL- phenotype. Sequence analysis of the coding regions of four CTL+ revertants of ARM clone 13 did not reveal back mutations at the GP 260 locus. This finding indicates that the GP 260 mutation is necessary but not sufficient for a CTL- P+ phenotype and that the reversion to CTL+ P- is likely either due to secondary mutations in other regions of the viral genome or to quasispecies within the revertant population that make significant contributions to the phenotype. Images PMID:1840619

  9. T cell-mediated hepatitis in mice infected with lymphocytic choriomeningitis virus. Liver cell destruction by H-2 class I-restricted virus-specific cytotoxic T cells as a physiological correlate of the /sup 51/Cr-release assay

    SciTech Connect

    Zinkernagel, R.M.; Haenseler, E.; Leist, T.; Cerny, A.; Hengartner, H.; Althage, A.

    1986-10-01

    A model for immunologically T cell-mediated hepatitis was established in mice infected with lymphocytic choriomeningitis virus (LCMV). The severity of hepatitis was monitored histologically and by determination of changes in serum levels of the enzymes alanine aminotransferase (ALT), aspartate aminotransferase (AST), glutamate dehydrogenase (GLDH), and alkaline phosphatase (AP). Kinetics of histological disease manifestations, increases of liver enzyme levels in the serum, and cytotoxic T cell activities in livers and spleens all correlated and were dependent upon several parameters: LCMV-isolate; LCMV-WE caused extensive hepatitis, LCMV-Armstrong virtually none. Virus dose. Route of infection; i.v. or i.p. infection caused hepatitis, whereas infection into the footpad did not. The general genetic background of the murine host; of the strains tested, Swiss mice and A-strain mice were more susceptible than C57BL or CBA mice; BALB/c and DBA/2 mice were least susceptible. The degree of immunocompetence of the murine host; T cell deficient nu/nu mice never developed hepatitis, whereas nu/+ or +/+ mice always did. B cell-depleted anti-IgM-treated mice developed immune-mediated hepatitis comparably or even more extensively than control mice. Local cytotoxic T cell activity; mononuclear cells isolated from livers during the period of overt hepatitis were two to five times more active than equal numbers of spleen cells. Adoptive transfer of nylon wool-nonadherent anti-Thy-1.2 and anti-Lyt-2 plus C-sensitive, anti-L3T4 plus C-resistant lymphocytes into irradiated mice preinfected with LCMV-WE caused a rapid time- and dose-dependent linear increase of serum enzyme levels. This increase was caused by adoptive transfer of lymphocytes if immune cell donors and recipient mice shared class I, but not when they shared class II histocompatibility antigens.

  10. A rapid virus-induced gene silencing (VIGS) method for assessing resistance and susceptibility to cassava mosaic disease.

    PubMed

    Beyene, Getu; Chauhan, Raj Deepika; Taylor, Nigel J

    2017-03-07

    Cassava mosaic disease (CMD) is a major constraint to cassava production in sub-Saharan Africa. Under field conditions, evaluation for resistance to CMD takes 12-18 months, often conducted across multiple years and locations under pressure from whitefly-mediated transmission. Under greenhouse or laboratory settings, evaluation for resistance or susceptibility to CMD involves transmission of the causal viruses from an infected source to healthy plants through grafting, or by using Agrobacterium-mediated or biolistic delivery of infectious clones. Following inoculation, visual assessment for CMD symptom development and recovery requires 12-22 weeks. Here we report a rapid screening system for determining resistance and susceptibility to CMD based on virus-induced gene silencing (VIGS) of an endogenous cassava gene. A VIGS vector was developed based on an infectious clone of the virulent strain of East African cassava mosaic virus (EACMV-K201). A sequence from the cassava (Manihot esculenta) ortholog of Arabidopsis SPINDLY (SPY) was cloned into the CP position of the DNA-A genomic component and used to inoculate cassava plants by Helios® Gene Gun microparticle bombardment. Silencing of Manihot esculenta SPY (MeSPY) using MeSPY1-VIGS resulted in shoot-tip necrosis followed by death of the whole plant in CMD susceptible cassava plants within 2-4 weeks. CMD resistant cultivars were not affected and remained healthy after challenge with MeSPY1-VIGS. Significantly higher virus titers were detected in CMD-susceptible cassava lines compared to resistant controls and were correlated with a concomitant reduction in MeSPY expression in susceptible plants. A rapid VIGS-based screening system was developed for assessing resistance and susceptibility to CMD. The method is space and resource efficient, reducing the time required to perform CMD screening to as little as 2-4 weeks. It can be employed as a high throughput rapid screening system to assess new cassava cultivars and for

  11. Involvement of fish signal transducer and activator of transcription 3 (STAT3) in SGIV replication and virus induced paraptosis.

    PubMed

    Huang, Xiaohong; Huang, Youhua; Yang, Ying; Wei, Shina; Qin, Qiwei

    2014-12-01

    Signal transducer and activator of transcription 3 (STAT3) is an important transcription factor which plays crucial roles in immune regulation, inflammation, cell proliferation, transformation, and other physiological processes of the organism. In this study, a novel STAT3 gene from orange spotted grouper (Ec-STAT3) was cloned and characterized. Bioinformatic analysis revealed that full-length of Ec-STAT3 was 3105-bp long and contained a 280-bp 5'UTR, a 470-bp 3'UTR, and a 2355-bp open reading frame (ORF) that encoded a 784-amino acid peptide. The deduced protein of Ec-STAT3 showed 98% identity to that of turbot (Scophthalmus maximus). Amino acid alignment showed that Ec-STAT3 contained four conserved domains, including a protein interaction domain, a coiled coil domain, a DNA binding domain, and an SH2 domain. Quantitative real-time PCR analysis showed that the highest expression level was detected in the liver, followed by skin and spleen. After injection with Singapore grouper iridovirus (SGIV), the transcript of Ec-STAT3 in spleen was increased significantly. To further explore the function of Ec-STAT3, we investigated the roles of Ec-STAT3 in SGIV infection in vitro. Immune fluorescence analysis indicated that SGIV infection altered the distribution of phosphorylated Ec-STAT3 in nucleus, and a small part of phosphorylated Ec-STAT3 was associated with virus assembly sites, suggesting that Ec-STAT3 might be important for SGIV infection. Using STAT3 specific inhibitor, S3I-201, we found that inhibition of Ec-STAT3 activation decreased the SGIV replication significantly. Moreover, inhibition of Ec-STAT3 activation obviously altered SGIV infection induced cell cycle arrest and the expression of pro-survival genes, including Bcl-2, Bcl-xL and Bax inhibitor. Together, our results firstly demonstrated the critical roles of fish STAT3 in DNA virus replication and virus induced paraptosis, but also provided new insights into the mechanism of iridovirus pathogenesis.

  12. Genetic determinants of feline leukemia virus-induced lymphoid tumors: patterns of proviral insertion and gene rearrangement.

    PubMed

    Tsatsanis, C; Fulton, R; Nishigaki, K; Tsujimoto, H; Levy, L; Terry, A; Spandidos, D; Onions, D; Neil, J C

    1994-12-01

    The genetic basis of feline leukemia virus (FeLV)-induced lymphoma was investigated in a series of 63 lymphoid tumors and tumor cell lines of presumptive T-cell origin. These were examined for virus-induced rearrangements of the c-myc, flvi-2 (bmi-1), fit-1, and pim-1 loci, for T-cell receptor (TCR) gene rearrangements, and for the presence of env recombinant FeLV (FeLV-B). The myc locus was most frequently affected in naturally occurring lymphomas (32%; n = 38) either by transduction (21%) or by proviral insertion (11%). Proviral insertions were also common at flvi-2 (24%). The two other loci were occupied in a smaller number of the naturally occurring tumors (fit-1, 8%; pim-1, 5%). Examination of the entire set of tumors showed that significant numbers were affected at two (19%) or three (5%) of the loci. Occupation of the fit-1 locus was observed most frequently in tumors induced by FeLV-myc strains, while flvi-2 insertions occurred with similar frequency in the presence or absence of obvious c-myc activation. These results suggest a hierarchy of mutational events in the genesis of feline T-cell lymphomas by FeLV and implicate insertion at fit-1 as a late progression step. The strongest links observed were with T-cell development, as monitored by rearrangement status of the TCR beta-chain gene, which was positively associated with activation of myc (P < 0.001), and with proviral insertion at flvi-2 (P = 0.02). This analysis also revealed a genetically distinct subset of thymic lymphomas with unrearranged TCR beta-chain genes in which the known target loci were involved very infrequently. The presence of env recombinant FeLV (FeLV-B) showed a negative correlation with proviral insertion at fit-1, possibly due to the rapid onset of these tumors. These results shed further light on the multistep process of FeLV leukemogenesis and the relationships between lymphoid cell maturation and susceptibility to FeLV transformation.

  13. Molecular Characterization of Oxysterol Binding to the Epstein-Barr Virus-induced Gene 2 (GPR183)*

    PubMed Central

    Benned-Jensen, Tau; Norn, Christoffer; Laurent, Stephane; Madsen, Christian M.; Larsen, Hjalte M.; Arfelt, Kristine N.; Wolf, Romain M.; Frimurer, Thomas; Sailer, Andreas W.; Rosenkilde, Mette M.

    2012-01-01

    Oxysterols are oxygenated cholesterol derivates that are emerging as a physiologically important group of molecules. Although they regulate a range of cellular processes, only few oxysterol-binding effector proteins have been identified, and the knowledge of their binding mode is limited. Recently, the family of G protein-coupled seven transmembrane-spanning receptors (7TM receptors) was added to this group. Specifically, the Epstein-Barr virus-induced gene 2 (EBI2 or GPR183) was shown to be activated by several oxysterols, most potently by 7α,25-dihydroxycholesterol (7α,25-OHC). Nothing is known about the binding mode, however. Using mutational analysis, we identify here four key residues for 7α,25-OHC binding: Arg-87 in TM-II (position II:20/2.60), Tyr-112 and Tyr-116 (positions III:09/3.33 and III:13/3.37) in TM-III, and Tyr-260 in TM-VI (position VI:16/6.51). Substituting these residues with Ala and/or Phe results in a severe decrease in agonist binding and receptor activation. Docking simulations suggest that Tyr-116 interacts with the 3β-OH group in the agonist, Tyr-260 with the 7α-OH group, and Arg-87, either directly or indirectly, with the 25-OH group, although nearby residues likely also contribute. In addition, Tyr-112 is involved in 7α,25-OHC binding but via hydrophobic interactions. Finally, we show that II:20/2.60 constitutes an important residue for ligand binding in receptors carrying a positively charged residue at this position. This group is dominated by lipid- and nucleotide-activated receptors, here exemplified by the CysLTs, P2Y12, and P2Y14. In conclusion, we present the first molecular characterization of oxysterol binding to a 7TM receptor and identify position II:20/2.60 as a generally important residue for ligand binding in certain 7TM receptors. PMID:22875855

  14. Simultaneous Occurrence of Varicella Zoster Virus-Induced Pancreatitis and Hepatitis in a Renal Transplant Recipient: A Case Report and Review of Literature

    PubMed Central

    Chhabra, Puneet; Ranjan, Priyadarshi; Bhasin, Deepak K

    2017-01-01

    Introduction: Gastrointestinal complications are common after renal transplantation, including oral lesions, esophagitis, gastritis, diarrhea, and colon carcinoma. The differential diagnosis is difficult in this scenario because multiple factors such as drugs, infections, and preexisting gastrointestinal disease come into play. Case Presentation: We report a case of varicella zoster virus-induced pancreatitis and hepatitis in a renal transplant recipient. The patient underwent renal transplantation 3 years earlier and now presented with severe pain in the epigastrium radiating to his back and had raised serum lipase levels and skin lesions characteristic of varicella. Liver enzyme levels were also elevated. He was started on a regimen of acyclovir. His pain improved in 24 hours, and liver enzyme levels returned to normal in 48 hours. Discussion: There is a paucity of literature on the simultaneous occurrence of varicella zoster virus-induced hepatitis and pancreatitis in both immunocompetent and immunocompromised patients. Our case highlights the gastrointestinal complications of varicella infection in immunocompromised patients that may precede the characteristic dermatologic manifestations, and the fact that rarely both hepatitis and pancreatitis may be seen. PMID:28333601

  15. Protective effects of recombinant human granulocyte macrophage colony stimulating factor on H1N1 influenza virus-induced pneumonia in mice.

    PubMed

    Huang, Hai; Li, Hong; Zhou, Pei; Ju, Dianwen

    2010-08-01

    Protective effects of recombinant human granulocyte macrophage colony stimulating factor (rHuGM-CSF) on H1N1 influenza virus infection was studied in vivo and in vitro. Mice were infected with H1N1 influenza A viruses and rHuGM-CSF at doses of 0.34, 0.67, and 1.34mgkg(-1)d(-1) was administrated for 7days before the mice were infected with influenza virus and continued for a further 3days. Compared with control mice, rHuGM-CSF was demonstrated to increase the survival rate of the infected mice by 50.0%, 55.6%, and 80.0% and increased the mean survival days by 25.7%, 30.0%, and 46.8%, respectively. Histopathological study of the lungs in pneumonia mice found that pre-treatment with rHuGM-CSF significantly ameliorated lung injury induced by influenza virus infection. In vitro study demonstrated that when rHuGM-CSF were co-incubated with peripheral blood mononuclear cells (PBMCs), the PBMCs culture supernatant induced a dose-dependent reduction of virus-induced cytopathic effect (CPE) in Madin-Darby canine kidney (MDCK) cells in vitro. These results suggested that rHuGM-CSF might be an effective and potential protection for H1N1 influenza virus-induced pneumonia. Copyright 2010 Elsevier Ltd. All rights reserved.

  16. Antibodies to CD9, a tetraspan transmembrane protein, inhibit canine distemper virus-induced cell-cell fusion but not virus-cell fusion.

    PubMed

    Schmid, E; Zurbriggen, A; Gassen, U; Rima, B; ter Meulen, V; Schneider-Schaulies, J

    2000-08-01

    Canine distemper virus (CDV) causes a life-threatening disease in several carnivores including domestic dogs. Recently, we identified a molecule, CD9, a member of the tetraspan transmembrane protein family, which facilitates, and antibodies to which inhibit, the infection of tissue culture cells with CDV (strain Onderstepoort). Here we describe that an anti-CD9 monoclonal antibody (MAb K41) did not interfere with binding of CDV to cells and uptake of virus. In addition, in single-step growth experiments, MAb K41 did not induce differences in the levels of viral mRNA and proteins. However, the virus release of syncytium-forming strains of CDV, the virus-induced cell-cell fusion in lytically infected cultures, and the cell-cell fusion of uninfected with persistently CDV-infected HeLa cells were strongly inhibited by MAb K41. These data indicate that anti-CD9 antibodies selectively block virus-induced cell-cell fusion, whereas virus-cell fusion is not affected.

  17. Chronic graft-versus-host disease in the rat radiation chimera: I. clinical features, hematology, histology, and immunopathology in long-term chimeras

    SciTech Connect

    Beschorner, W.E.; Tutschka, P.J.; Santos, G.W.

    1982-04-01

    The clinical features, pathology, and immunopathology of chronic graft-versus-host disease (GVHD) developing in the long-term rat radiation chimera are described. At 6 to 12 months post-transplant, the previously stable ACI/LEW chimeras developed patchy to diffuse severe hair loss and thickened skin folds, and had microscopic features resembling scleroderma, Sjogren's syndrome, and chronic hepatitis. Skin histology showed dermal inflammation and acanthosis with atrophy of the appendages, with progression to dermal sclerosis. The liver revealed chronic hepatitis with bile duct injury and proliferation and periportal piecemeal necrosis. The tongue had considerable submucosal inflammation, muscular necrosis, and atrophy and arteritis. The serous salivary glands, lacrimal glands, and bronchi had lymphocytic inflammation and injury to duct, acinar, and mucosal columnar epithelium. The thymus had lymphocyte depletion of the medulla with prominent epithelium. The spleen and lymph nodes had poorly developed germinal centers but increased numbers of plasma cells. IgM was observed along the basement membrane and around the basal cells of the skin and tongue and along the basement membrane of the bile ducts. IgM was present also in the arteries of the tongue. Immunoglobulins eluted from the skin, cross-reacted with the bile duct epithelium and usually with both ACI and Lewis skin. Increased titers of speckled antinuclear antibodies were present in the serum of rats with chronic (GVHD). Chronic GVHD in the long-term rat radiation chimera is very similar to human chronic GVHD and is a potentially excellent model for autoimmune disorders including scleroderma, Sjorgren's syndrome, and chronic hepatitis.

  18. Helicobacter pylori Induced Gastric Immunopathology Is Associated with Distinct Microbiota Changes in the Large Intestines of Long-Term Infected Mongolian Gerbils

    PubMed Central

    Heimesaat, Markus M.; Fischer, André; Plickert, Rita; Wiedemann, Tobias; Loddenkemper, Christoph; Göbel, Ulf B.

    2014-01-01

    Background Gastrointestinal (GI) inflammation in mice and men are frequently accompanied by distinct changes of the GI microbiota composition at sites of inflammation. Helicobacter (H.) pylori infection results in gastric immunopathology accompanied by colonization of stomachs with bacterial species, which are usually restricted to the lower intestine. Potential microbiota shifts distal to the inflammatory process following long-term H. pylori infection, however, have not been studied so far. Methodology/Principal Findings For the first time, we investigated microbiota changes along the entire GI tract of Mongolian gerbils after 14 months of infection with H. pylori B8 wildtype (WT) or its isogenic ΔcagY mutant (MUT) strain which is defective in the type IV secretion system and thus unable to modulate specific host pathways. Comprehensive cultural analyses revealed that severe gastric diseases such as atrophic pangastritis and precancerous transformations were accompanied by elevated luminal loads of E. coli and enterococci in the caecum and together with Bacteroides/Prevotella spp. in the colon of H. pylori WT, but not MUT infected gerbils as compared to naïve animals. Strikingly, molecular analyses revealed that Akkermansia, an uncultivable species involved in mucus degradation, was exclusively abundant in large intestines of H. pylori WT, but not MUT infected nor naïve gerbils. Conclusion/Significance Taken together, long-term infection of Mongolian gerbils with a H. pylori WT strain displaying an intact type IV secretion system leads to distinct shifts of the microbiota composition in the distal uninflamed, but not proximal inflamed GI tract. Hence, H. pylori induced immunopathogenesis of the stomach, including hypochlorhydria and hypergastrinemia, might trigger large intestinal microbiota changes whereas the exact underlying mechanisms need to be further unraveled. PMID:24941045

  19. Helicobacter pylori induced gastric immunopathology is associated with distinct microbiota changes in the large intestines of long-term infected Mongolian gerbils.

    PubMed

    Heimesaat, Markus M; Fischer, André; Plickert, Rita; Wiedemann, Tobias; Loddenkemper, Christoph; Göbel, Ulf B; Bereswill, Stefan; Rieder, Gabriele

    2014-01-01

    Gastrointestinal (GI) inflammation in mice and men are frequently accompanied by distinct changes of the GI microbiota composition at sites of inflammation. Helicobacter (H.) pylori infection results in gastric immunopathology accompanied by colonization of stomachs with bacterial species, which are usually restricted to the lower intestine. Potential microbiota shifts distal to the inflammatory process following long-term H. pylori infection, however, have not been studied so far. For the first time, we investigated microbiota changes along the entire GI tract of Mongolian gerbils after 14 months of infection with H. pylori B8 wildtype (WT) or its isogenic ΔcagY mutant (MUT) strain which is defective in the type IV secretion system and thus unable to modulate specific host pathways. Comprehensive cultural analyses revealed that severe gastric diseases such as atrophic pangastritis and precancerous transformations were accompanied by elevated luminal loads of E. coli and enterococci in the caecum and together with Bacteroides/Prevotella spp. in the colon of H. pylori WT, but not MUT infected gerbils as compared to naïve animals. Strikingly, molecular analyses revealed that Akkermansia, an uncultivable species involved in mucus degradation, was exclusively abundant in large intestines of H. pylori WT, but not MUT infected nor naïve gerbils. Taken together, long-term infection of Mongolian gerbils with a H. pylori WT strain displaying an intact type IV secretion system leads to distinct shifts of the microbiota composition in the distal uninflamed, but not proximal inflamed GI tract. Hence, H. pylori induced immunopathogenesis of the stomach, including hypochlorhydria and hypergastrinemia, might trigger large intestinal microbiota changes whereas the exact underlying mechanisms need to be further unraveled.

  20. A role for cytomegalovirus-specific CD4+CX3CR1+ T cells and cytomegalovirus-induced T-cell immunopathology in HIV-associated atherosclerosis.

    PubMed

    Sacre, Karim; Hunt, Peter W; Hsue, Priscilla Y; Maidji, Ekaterina; Martin, Jeffrey N; Deeks, Steven G; Autran, Brigitte; McCune, Joseph M

    2012-04-24

    HIV-infected individuals are at increased risk for myocardial infarction. Given observations that cytomegalovirus (CMV) infection, CMV-specific T cells, and CX3CR1 have each been associated with atherosclerosis, we hypothesized that CMV-induced T-cell immunopathology could contribute to HIV-associated atherosclerosis. We measured the expression of CX3CR1 on peripheral blood mononuclear cells and its association with carotid artery intima-media thickness (IMT) in 29 HIV-infected individuals and 48 uninfected controls. We analyzed the phenotype and specificity of CX3CR1(+)CD4(+) T cells, the production of CX3CL1 (the ligand of CX3CR1) by CMV-infected endothelial cells in vitro, and the migration of CD4(+) T cells induced by CX3CL1. The progression of atherosclerosis in HIV-infected individuals, as assessed by longitudinal measurements of carotid IMT, was associated with a high frequency of CD4(+) T cells that express the chemokine receptor CX3CR1. Such CD4(+)CX3CR1(+) T cells were antigen-primed, produced high levels of pro-inflammatory cytokines, and composed the majority of the CMV-specific CD4(+) T cells. CMV-stimulated CD4(+) T cells were also found to induce the production of CX3CL1 (the ligand for CX3CR1) by human arterial endothelial cells, driving the transendothelial migration of pro-inflammatory CD4(+) T cells. Finally, we observed that CD4(+)CX3CR1(+) T cells could be localized to the coronary arterial wall in HIV disease. HIV-associated atherosclerosis may be driven by a positive feedback pathway in which a high frequency of antigen-stimulated, CMV-specific CD4(+)CX3CR1(+) T cells induce endothelial cells to secrete CX3CL1, which itself drives progressive infiltration of the arterial wall by pro-inflammatory cells.

  1. Apple latent spherical virus vectors for reliable and effective virus-induced gene silencing among a broad range of plants including tobacco, tomato, Arabidopsis thaliana, cucurbits, and legumes

    SciTech Connect

    Igarashi, Aki; Yamagata, Kousuke; Sugai, Tomokazu; Takahashi, Yukari; Sugawara, Emiko; Tamura, Akihiro; Yaegashi, Hajime; Yamagishi, Noriko; Takahashi, Tsubasa; Isogai, Masamichi; Takahashi, Hideki; Yoshikawa, Nobuyuki

    2009-04-10

    Apple latent spherical virus (ALSV) vectors were evaluated for virus-induced gene silencing (VIGS) of endogenous genes among a broad range of plant species. ALSV vectors carrying partial sequences of a subunit of magnesium chelatase (SU) and phytoene desaturase (PDS) genes induced highly uniform knockout phenotypes typical of SU and PDS inhibition on model plants such as tobacco and Arabidopsis thaliana, and economically important crops such as tomato, legume, and cucurbit species. The silencing phenotypes persisted throughout plant growth in these plants. In addition, ALSV vectors could be successfully used to silence a meristem gene, proliferating cell nuclear antigen and disease resistant N gene in tobacco and RCY1 gene in A. thaliana. As ALSV infects most host plants symptomlessly and effectively induces stable VIGS for long periods, the ALSV vector is a valuable tool to determine the functions of interested genes among a broad range of plant species.

  2. Investigation of the role of delayed-type-hypersensitivity responses to myelin in the pathogenesis of Theiler's virus-induced demyelinating disease.

    PubMed Central

    Borrow, P; Welsh, C J; Tonks, P; Dean, D; Blakemore, W F; Nash, A A

    1998-01-01

    The contribution of autoimmune responses to the pathogenesis of Theiler's virus-induced demyelinating disease was investigated. Delayed-type hypersensitivity responses to myelin were examined in both symptomatic and asymptomatic mice at different times post-infection, in order to determine whether autoreactivity correlates with the development of demyelination. The results indicate that although autoimmune responses probably do not play a major role in the initiation of demyelination at early times post-infection, autoreactivity to myelin antigens dose eventually develop in symptomatic animals, perhaps through the mechanism of epitope spreading. Autoimmunity to myelin components is therefore an additional factor that may contribute to lesion progression in chronically diseased animals. Images Figure 2 PMID:9659218

  3. Prevention of type 2 herpes simplex virus induced cervical carcinoma in mice by prior immunization with a vaccine prepared from type 1 herpes simplex virus.

    PubMed

    Chen, M H; Dong, C Y; Liu, Z H; Skinner, G R; Hartley, C E

    1983-12-01

    Repeated intra-vaginal inoculation of mice with inactivated type 2 herpes simplex virus induced cervical carcinoma in approximately 50% of mice. Prior immunization with subunit vaccine Ac NFU1(S-) BHK reduced the frequency of cervical carcinoma to 19%. Inoculation of mice with a control preparation of uninfected cell extract never induced preinvasive or invasive cervical cancer. There was evidence of an antibody response in every vaccinated and/or innoculated animal. Mice developing cervical cancer had a significantly higher antibody titre to type 2 herpes virus than mice not developing cancer. These results are in general accord with sero-epidemiological studies of preinvasive and invasive cervical carcinoma in human subjects and suggests that this experimental model may be appropriate for further investigation of prevention of human cervical cancer by vaccination.

  4. Delay of vaccinia virus-induced apoptosis in nonpermissive Chinese hamster ovary cells by the cowpox virus CHOhr and adenovirus E1B 19K genes.

    PubMed Central

    Ink, B S; Gilbert, C S; Evan, G I

    1995-01-01

    The infection of vaccinia virus in Chinese hamster ovary (CHO) cells produces a rapid shutdown in protein synthesis, and the infection is abortive (R.R. Drillien, D. Spehner, and A. Kirn, Virology 111:488-499, 1978; D.E. Hruby, D.L. Lynn, R. Condit, and J.R. Kates, J. Gen. Virol. 47:485-488, 1980). Cowpox virus, which can productively infect CHO cells, had previously been shown to contain a host range gene, CHOhr, which confers on vaccinia virus the ability to replicate in CHO cells (D. Spehner, S. Gillard, R. Drillien, and A. Kirn, J. Virol. 62:1297-1304, 1988). We found that CHO cells underwent apoptosis when infected with vaccinia virus. The expression of the CHOhr gene in vaccinia virus allowed for the expression of late virus genes. CHOhr also delayed or prevented vaccinia virus-induced apoptosis in CHO cells such that there was sufficient time for replication of the virus before the cell died. The E1B 19K gene from adenovirus also delayed vaccinia virus-induced apoptosis; however, there was no detectable expression of late virus genes. Furthermore, E1B 19K also delayed cell death in CHO cells which had been productively infected with vaccinia virus. This study identifies a new antiapoptotic gene from cowpox virus, CHOhr, for which the protein contains an ankyrin-like repeat and shows no significant homology to other proteins. This work also indicates that an antiapoptotic gene from one virus family can delay cell death in an infection of a virus from a different family. PMID:7815529

  5. Gan-Lu-Siao-Du-yin, a prescription of traditional Chinese medicine, inhibited enterovirus 71 replication, translation, and virus-induced cell apoptosis.

    PubMed

    Hsieh, Ya Ju; Yen, Ming Hong; Chiang, Ya Wen; Yeh, Chia Feng; Chiang, Lien Chai; Shieh, Den En; Yeh, IJeng; Chang, Jung San

    2016-06-05

    Gan-Lu-Siao-Du-yin (GLSDY) is a prescription of traditional Chinese medicine. GLSDY contains 11 ingredients and is commonly used for endemic diseases. Enterovirus 71 (EV71) is an endemic disease that can cause meningoencephalitis with mortality and neurologic sequelae without any effective management. It is unknown whether GLSDY is effective against EV71 infection. To test the hypothesis that GLSDY can protect cell from EV71-induced injury. Effects of a hot water extract of GLSDY on EV71 were tested in human foreskin fibroblast cells (CCFS-1/KMC) and human rhabdomyosarcoma cells (RD cells) by plaque reduction assay and flow cytometry respectively. Inhibition of viral replication was further examined by reverse quantitative RT-PCR (qRT-PCR). Its effect on viral protein translation and virus-induced apoptosis were examined by western blot. GLSDY was dose-dependently effective against EV71 infection (p<0.0001) in both CCFS-1/KMC cells and RD cells. GLSDY was highly effective when supplemented after viral inoculation (P<0.0001) with an IC50 of 8.7μg/mL. GLSDY inhibited viral RNA replication (P<0.0001), formation of viral structural proteins (VP0, VP1, VP2 and VP3) and non-structural proteins (protease 2B and 3AB). Furthermore, 300μg/mL GLSDY is effective to inhibit virus-induced apoptosis possibly through direct inhibition of caspase-8 and indirectly by inhibition of Bax. GLSDY is cheap and readily available to manage EV71 infection by inhibiting viral replication, viral protein formations, and EV71-induced apoptosis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Virus-Induced Gene Silencing Identifies an Important Role of the TaRSR1 Transcription Factor in Starch Synthesis in Bread Wheat.

    PubMed

    Liu, Guoyu; Wu, Yufang; Xu, Mengjun; Gao, Tian; Wang, Pengfei; Wang, Lina; Guo, Tiancai; Kang, Guozhang

    2016-09-23

    The function of a wheat starch regulator 1 (TaRSR1) in regulating the synthesis of grain storage starch was determined using the barley stripe mosaic virus-virus induced gene-silencing (BSMV-VIGS) method in field experiments. Chlorotic stripes appeared on the wheat spikes infected with barley stripe mosaic virus-virus induced gene-silencing- wheat starch regulator 1 (BSMV-VIGS-TaRSR1) at 15 days after anthesis, at which time the transcription levels of the TaRSR1 gene significantly decreased. Quantitative real-time PCR was also used to measure the transcription levels of 26 starch synthesis-related enzyme genes in the grains of BSMV-VIGS-TaRSR1-silenced wheat plants at 20, 27, and 31 days after anthesis. The results showed that the transcription levels of some starch synthesis-related enzyme genes were markedly induced at different sampling time points: TaSSI, TaSSIV, TaBEIII, TaISA1, TaISA3, TaPHOL, and TaDPE1 genes were induced at each of the three sampling time points and TaAGPS1-b, TaAGPL1, TaAGPL2, TaSSIIb, TaSSIIc, TaSSIIIb, TaBEI, TaBEIIa, TaBEIIb, TaISA2, TaPHOH, and TaDPE2 genes were induced at one sampling time point. Moreover, both the grain starch contents, one thousand kernel weights, grain length and width of BSMV-VIGS-TaRSR1-infected wheat plants significantly increased. These results suggest that TaRSR1 acts as a negative regulator and plays an important role in starch synthesis in wheat grains by temporally regulating the expression of specific starch synthesis-related enzyme genes.

  7. Multiple granulomatous lung lesions in a patient with Epstein-Barr-virus-induced mononucleosis and new-onset systemic lupus erythematosus: a case report

    PubMed Central

    2012-01-01

    Introduction Granulomatous lesions are commonly encountered abnormalities in pulmonary pathology, and often pose a diagnostic challenge. We report an unusual case of granulomatous lung disease with uncommon characteristics, which developed following Epstein-Barr-virus-induced mononucleosis and new-onset systemic lupus erythematosus. We aim to highlight a diagnostic approach for the condition and to raise awareness of the possibility of it being related to the immunological reaction caused by Epstein-Barr virus infection. Case presentation A 36-year-old Japanese man, who had been diagnosed with Epstein-Barr-virus-induced infectious mononucleosis, new-onset systemic lupus erythematosus, and secondary Sjögren’s syndrome three weeks previously, presented to our facility with fever and diffuse pulmonary infiltrates. A computed tomography scan of the chest revealed multiple small nodules in both lungs. Fiberoptic bronchoscopy with bronchoalveolar lavage revealed lymphocytosis with predominance of T lymphocytes. A histological examination of a lung biopsy taken during video-assisted thoracic surgery showed randomly distributed tiny granulomatous lesions with infiltration of eosinophils. The differential diagnoses included hypersensitivity pneumonitis, sarcoidosis, and pulmonary involvement of Crohn’s disease, systemic lupus erythematosus, and Sjögren’s syndrome, but the clinical and pathological findings were not consistent with any of these. Our patient’s condition did not improve; therefore, prednisolone therapy was started because of the possibility of specific immunological reactions associated with Epstein-Barr virus infection. After steroid treatment, our patient showed radiological and clinical improvement. Conclusions To the best of our knowledge, this is the first case of a patient developing randomly distributed multiple granulomatous lung lesions with eosinophilic infiltrates after Epstein-Barr virus infection and systemic lupus erythematosus. On the

  8. Virus-Induced Gene Silencing Identifies an Important Role of the TaRSR1 Transcription Factor in Starch Synthesis in Bread Wheat

    PubMed Central

    Liu, Guoyu; Wu, Yufang; Xu, Mengjun; Gao, Tian; Wang, Pengfei; Wang, Lina; Guo, Tiancai; Kang, Guozhang

    2016-01-01

    The function of a wheat starch regulator 1 (TaRSR1) in regulating the synthesis of grain storage starch was determined using the barley stripe mosaic virus—virus induced gene-silencing (BSMV-VIGS) method in field experiments. Chlorotic stripes appeared on the wheat spikes infected with barley stripe mosaic virus-virus induced gene-silencing- wheat starch regulator 1 (BSMV-VIGS-TaRSR1) at 15 days after anthesis, at which time the transcription levels of the TaRSR1 gene significantly decreased. Quantitative real-time PCR was also used to measure the transcription levels of 26 starch synthesis-related enzyme genes in the grains of BSMV-VIGS-TaRSR1-silenced wheat plants at 20, 27, and 31 days after anthesis. The results showed that the transcription levels of some starch synthesis-related enzyme genes were markedly induced at different sampling time points: TaSSI, TaSSIV, TaBEIII, TaISA1, TaISA3, TaPHOL, and TaDPE1 genes were induced at each of the three sampling time points and TaAGPS1-b, TaAGPL1, TaAGPL2, TaSSIIb, TaSSIIc, TaSSIIIb, TaBEI, TaBEIIa, TaBEIIb, TaISA2, TaPHOH, and TaDPE2 genes were induced at one sampling time point. Moreover, both the grain starch contents, one thousand kernel weights, grain length and width of BSMV-VIGS-TaRSR1-infected wheat plants significantly increased. These results suggest that TaRSR1 acts as a negative regulator and plays an important role in starch synthesis in wheat grains by temporally regulating the expression of specific starch synthesis-related enzyme genes. PMID:27669224

  9. A virus-induced gene silencing screen identifies a role for Thylakoid Formation1 in Pseudomonas syringae pv tomato symptom development in tomato and Arabidopsis.

    PubMed

    Wangdi, Tamding; Uppalapati, Srinivasa Rao; Nagaraj, Satish; Ryu, Choong-Min; Bender, Carol L; Mysore, Kirankumar S

    2010-01-01

    Pseudomonas syringae pv tomato DC3000 (Pst DC3000), which causes disease in tomato (Solanum lycopersicum) and Arabidopsis (Arabidopsis thaliana), produces coronatine (COR), a non-host-specific phytotoxin. COR, which functions as a jasmonate mimic, is required for full virulence of Pst DC3000 and for the induction of chlorosis in host plants. Previous genetic screens based on insensitivity to COR and/or methyl jasmonate identified several potential targets for COR and methyl jasmonate. In this study, we utilized Nicotiana benthamiana and virus-induced gene silencing to individually reduce the expression of over 4,000 genes. The silenced lines of N. benthamiana were then screened for altered responses to purified COR. Using this forward genetics approach, several genes were identified with altered responses to COR. These were designated as ALC (for altered COR response) genes. When silenced, one of the identified genes, ALC1, produced a hypersensitive/necrosis-like phenotype upon COR application in a Coronatine-Insensitive1 (COI1)-dependent manner. To understand the involvement of ALC1 during the Pst DC3000-host interaction, we used the nucleotide sequence of ALC1 and identified its ortholog in Arabidopsis (Thylakoid Formation1 [THF1]) and tomato (SlALC1). In pathogenicity assays performed on Arabidopsis thf1 mutant and SlALC1-silenced tomato plants, Pst DC3000 induced accelerated coalescing necrotic lesions. Furthermore, we showed that COR affects ALC1 localization in chloroplasts in a COI1-dependent manner. In conclusion, our results show that the virus-induced gene silencing-based forward genetic screen has the potential to identify new players in COR signaling and disease-associated necrotic cell death.

  10. A Human Lin− CD123+ CD127low Population Endowed with ILC Features and Migratory Capabilities Contributes to Immunopathological Hallmarks of Psoriasis

    PubMed Central

    Mora-Velandia, Luz María; Castro-Escamilla, Octavio; Méndez, Andrés González; Aguilar-Flores, Cristina; Velázquez-Avila, Martha; Tussié-Luna, María Isabel; Téllez-Sosa, Juan; Maldonado-García, César; Jurado-Santacruz, Fermín; Ferat-Osorio, Eduardo; Martínez-Barnetche, Jesus; Pelayo, Rosana; Bonifaz, Laura C.

    2017-01-01

    -homing receptors (cutaneous lymphocyte antigen and CXCR4) and transmigrates through endothelial cells in response to SDF-1. An equivalent Lin− CD123low population was identified in control skin, which shows a broader phenotypic diversity and cytokine production, including IL-22 and IL-17. Remarkably, the CD123low population in the lesion and non-lesion skin of psoriasis patients expresses IL-17 and IL-22. Our findings suggest the identification of an alternative Lin− CD123+ CD127low population with ILC features endowed with migratory capabilities that might contribute to immunopathological hallmarks of psoriasis. PMID:28303135

  11. A Human Lin(-) CD123(+) CD127(low) Population Endowed with ILC Features and Migratory Capabilities Contributes to Immunopathological Hallmarks of Psoriasis.

    PubMed

    Mora-Velandia, Luz María; Castro-Escamilla, Octavio; Méndez, Andrés González; Aguilar-Flores, Cristina; Velázquez-Avila, Martha; Tussié-Luna, María Isabel; Téllez-Sosa, Juan; Maldonado-García, César; Jurado-Santacruz, Fermín; Ferat-Osorio, Eduardo; Martínez-Barnetche, Jesus; Pelayo, Rosana; Bonifaz, Laura C

    2017-01-01

    expresses skin-homing receptors (cutaneous lymphocyte antigen and CXCR4) and transmigrates through endothelial cells in response to SDF-1. An equivalent Lin(-) CD123(low) population was identified in control skin, which shows a broader phenotypic diversity and cytokine production, including IL-22 and IL-17. Remarkably, the CD123(low) population in the lesion and non-lesion skin of psoriasis patients expresses IL-17 and IL-22. Our findings suggest the identification of an alternative Lin(-) CD123(+) CD127(low) population with ILC features endowed with migratory capabilities that might contribute to immunopathological hallmarks of psoriasis.

  12. Immunopathology in Taenia solium neurocysticercosis.

    PubMed

    Fleury, A; Cardenas, G; Adalid-Peralta, L; Fragoso, G; Sciutto, E

    2016-03-01

    Neurocysticercosis is a clinically and radiologically heterogeneous disease, ranging from asymptomatic infection to a severe, potentially fatal clinical picture. The intensity and extension of the parasite-elicited inflammatory reaction is a key factor for such variability. The main features of the inflammatory process found in the brain and in the peripheral blood of neurocysticercosis patients will be discussed in this review, and the factors involved in its modulation will be herein presented.

  13. Virus-Induced Gene Silencing Using Tobacco Rattle Virus as a Tool to Study the Interaction between Nicotiana attenuata and Rhizophagus irregularis

    PubMed Central

    Groten, Karin; Pahari, Nabin T.; Xu, Shuqing; Miloradovic van Doorn, Maja; Baldwin, Ian T.

    2015-01-01

    Most land plants live in a symbiotic association with arbuscular mycorrhizal fungi (AMF) that belong to the phylum Glomeromycota. Although a number of plant genes involved in the plant-AMF interactions have been identified by analyzing mutants, the ability to rapidly manipulate gene expression to study the potential functions of new candidate genes remains unrealized. We analyzed changes in gene expression of wild tobacco roots (Nicotiana attenuata) after infection with mycorrhizal fungi (Rhizophagus irregularis) by serial analysis of gene expression (SuperSAGE) combined with next generation sequencing, and established a virus-induced gene-silencing protocol to study the function of candidate genes in the interaction. From 92,434 SuperSAGE Tag sequences, 32,808 (35%) matched with our in-house Nicotiana attenuata transcriptome database and 3,698 (4%) matched to Rhizophagus genes. In total, 11,194 Tags showed a significant change in expression (p<0.05, >2-fold change) after infection. When comparing the functions of highly up-regulated annotated Tags in this study with those of two previous large-scale gene expression studies, 18 gene functions were found to be up-regulated in all three studies mainly playing roles related to phytohormone metabolism, catabolism and defense. To validate the function of identified candidate genes, we used the technique of virus-induced gene silencing (VIGS) to silence the expression of three putative N. attenuata genes: germin-like protein, indole-3-acetic acid-amido synthetase GH3.9 and, as a proof-of-principle, calcium and calmodulin-dependent protein kinase (CCaMK). The silencing of the three plant genes in roots was successful, but only CCaMK silencing had a significant effect on the interaction with R. irregularis. Interestingly, when a highly activated inoculum was used for plant inoculation, the effect of CCaMK silencing on fungal colonization was masked, probably due to trans-complementation. This study demonstrates that large

  14. Herpes Simplex Virus 1 Glycoprotein M and the Membrane-Associated Protein UL11 Are Required for Virus-Induced Cell Fusion and Efficient Virus Entry

    PubMed Central

    Kim, In-Joong; Chouljenko, Vladimir N.; Walker, Jason D.

    2013-01-01

    Herpes simplex virus 1 (HSV-1) facilitates virus entry into cells and cell-to-cell spread by mediating fusion of the viral envelope with cellular membranes and fusion of adjacent cellular membranes. Although virus strains isolated from herpetic lesions cause limited cell fusion in cell culture, clinical herpetic lesions typically contain large syncytia, underscoring the importance of cell-to-cell fusion in virus spread in infected tissues. Certain mutations in glycoprotein B (gB), gK, UL20, and other viral genes drastically enhance virus-induced cell fusion in vitro and in vivo. Recent work has suggested that gB is the sole fusogenic glycoprotein, regulated by interactions with the viral glycoproteins gD, gH/gL, and gK, membrane protein UL20, and cellular receptors. Recombinant viruses were constructed to abolish either gM or UL11 expression in the presence of strong syncytial mutations in either gB or gK. Virus-induced cell fusion caused by deletion of the carboxyl-terminal 28 amino acids of gB or the dominant syncytial mutation in gK (Ala to Val at amino acid 40) was drastically reduced in the absence of gM. Similarly, syncytial mutations in either gB or gK did not cause cell fusion in the absence of UL11. Neither the gM nor UL11 gene deletion substantially affected gB, gC, gD, gE, and gH glycoprotein synthesis and expression on infected cell surfaces. Two-way immunoprecipitation experiments revealed that the membrane protein UL20, which is found as a protein complex with gK, interacted with gM while gM did not interact with other viral glycoproteins. Viruses produced in the absence of gM or UL11 entered into cells more slowly than their parental wild-type virus strain. Collectively, these results indicate that gM and UL11 are required for efficient membrane fusion events during virus entry and virus spread. PMID:23678175

  15. Virus-Induced Gene Silencing Using Tobacco Rattle Virus as a Tool to Study the Interaction between Nicotiana attenuata and Rhizophagus irregularis.

    PubMed

    Groten, Karin; Pahari, Nabin T; Xu, Shuqing; Miloradovic van Doorn, Maja; Baldwin, Ian T

    2015-01-01

    Most land plants live in a symbiotic association with arbuscular mycorrhizal fungi (AMF) that belong to the phylum Glomeromycota. Although a number of plant genes involved in the plant-AMF interactions have been identified by analyzing mutants, the ability to rapidly manipulate gene expression to study the potential functions of new candidate genes remains unrealized. We analyzed changes in gene expression of wild tobacco roots (Nicotiana attenuata) after infection with mycorrhizal fungi (Rhizophagus irregularis) by serial analysis of gene expression (SuperSAGE) combined with next generation sequencing, and established a virus-induced gene-silencing protocol to study the function of candidate genes in the interaction. From 92,434 SuperSAGE Tag sequences, 32,808 (35%) matched with our in-house Nicotiana attenuata transcriptome database and 3,698 (4%) matched to Rhizophagus genes. In total, 11,194 Tags showed a significant change in expression (p<0.05, >2-fold change) after infection. When comparing the functions of highly up-regulated annotated Tags in this study with those of two previous large-scale gene expression studies, 18 gene functions were found to be up-regulated in all three studies mainly playing roles related to phytohormone metabolism, catabolism and defense. To validate the function of identified candidate genes, we used the technique of virus-induced gene silencing (VIGS) to silence the expression of three putative N. attenuata genes: germin-like protein, indole-3-acetic acid-amido synthetase GH3.9 and, as a proof-of-principle, calcium and calmodulin-dependent protein kinase (CCaMK). The silencing of the three plant genes in roots was successful, but only CCaMK silencing had a significant effect on the interaction with R. irregularis. Interestingly, when a highly activated inoculum was used for plant inoculation, the effect of CCaMK silencing on fungal colonization was masked, probably due to trans-complementation. This study demonstrates that large

  16. β-Catenin Upregulates the Constitutive and Virus-Induced Transcriptional Capacity of the Interferon Beta Promoter through T-Cell Factor Binding Sites.

    PubMed

    Marcato, Vasco; Luron, Lionel; Laqueuvre, Lucie M; Simon, Dominique; Mansuroglu, Zeyni; Flamand, Marie; Panthier, Jean-Jacques; Souès, Sylvie; Massaad, Charbel; Bonnefoy, Eliette

    2016-01-01

    Rapid upregulation of interferon beta (IFN-β) expression following virus infection is essential to set up an efficient innate antiviral response. Biological roles related to the antiviral and immune response have also been associated with the constitutive production of IFN-β in naive cells. However, the mechanisms capable of modulating constitutive IFN-β expression in the absence of infection remain largely unknown. In this work, we demonstrate that inhibition of the kinase glycogen synthase kinase 3 (GSK-3) leads to the upregulation of the constitutive level of IFN-β expression in noninfected cells, provided that GSK-3 inhibition is correlated with the binding of β-catenin to the IFN-β promoter. Under these conditions, IFN-β expression occurred through the T-cell factor (TCF) binding sites present on the IFN-β promoter independently of interferon regulatory factor 3 (IRF3). Enhancement of the constitutive level of IFN-β per se was able to confer an efficient antiviral state to naive cells and acted in synergy with virus infection to stimulate virus-induced IFN-β expression. Further emphasizing the role of β-catenin in the innate antiviral response, we show here that highly pathogenic Rift Valley fever virus (RVFV) targets the Wnt/β-catenin pathway and the formation of active TCF/β-catenin complexes at the transcriptional and protein level in RVFV-infected cells and mice.

  17. Characterization of the Rana grylio virus 3{beta}-hydroxysteroid dehydrogenase and its novel role in suppressing virus-induced cytopathic effect

    SciTech Connect

    Sun Wei; Huang Youhua; Zhao Zhe; Gui Jianfang; Zhang Qiya . E-mail: zhangqy@ihb.ac.cn

    2006-12-08

    The 3{beta}-hydroxysteroid dehydrogenase (3{beta}-HSD) isoenzymes play a key role in cellular steroid hormone synthesis. Here, a 3{beta}-HSD gene homolog was cloned from Rana grylio virus (RGV), a member of family Iridoviridae. RGV 3{beta}-HSD gene has 1068 bp, encoding a 355 aa predicted protein. Transcription analyses showed that RGV 3{beta}-HSD gene was transcribed immediate-early during infection from an initiation site 19 nucleotides upstream of the translation start site. Confocal microscopy revealed that the 3{beta}-HSD-EGFP fusion protein was exclusively colocalized with the mitochondria marker (pDsRed2-Mito) in EPC cells. Upon morphological observation and MTT assay, it was revealed that overexpression of RGV 3{beta}-HSD in EPC cells could apparently suppress RGV-induced cytopathic effect (CPE). The present studies indicate that the RGV immediate-early 3{beta}-HSD gene encodes a mitochondria-localized protein, which has a novel role in suppressing virus-induced CPE. All these suggest that RGV 3{beta}-HSD might be a protein involved in host-virus interaction.

  18. Virus-induced gene silencing in soybean seeds and the emergence stage of soybean plants with Apple latent spherical virus vectors.

    PubMed

    Yamagishi, Noriko; Yoshikawa, Nobuyuki

    2009-09-01

    Virus-induced gene silencing (VIGS) has great potential as a reverse-genetics tool in plant genomics. In this study, we examined the potential of VIGS in soybean seeds and the emergence stage of soybean plants using Apple latent spherical virus (ALSV) vectors. Inoculation of an ALSV vector (soyPDS-ALSV) carrying a fragment of the soybean phytoene desaturase (soyPDS) gene into soybean seedlings resulted in a highly uniform photo-bleached phenotype, typical of PDS inhibition, on the upper leaves throughout plant growth. The photo-bleached phenotype was also found on all immature pods, all seed coats, and about 50% embryos of seeds on soybean plants infected with soyPDS-ALSV. Infection with an ALSV vector (soyIFS2-ALSV) having a fragment of soybean isoflavone synthase 2 (soyIFS2) gene also led to a reduction of the levels of both soyIFS2- and soyIFS1- mRNAs and an isoflavone content in the cotyledons of about 36% mature seeds of infected soybean plants. Furthermore, VIGS of soyPDS was induced in the next generation plants by the seed transmission of soyPDS-ALSV. Thus ALSV vectors will be useful for studying gene functions in the reproductive stages and early growth stages, such as emergence and cotyledon stages, in addition to the vegetative stages of soybean plants.

  19. Development of tobacco ringspot virus-based vectors for foreign gene expression and virus-induced gene silencing in a variety of plants.

    PubMed

    Zhao, Fumei; Lim, Seungmo; Igori, Davaajargal; Yoo, Ran Hee; Kwon, Suk-Yoon; Moon, Jae Sun

    2016-05-01

    We report here the development of tobacco ringspot virus (TRSV)-based vectors for the transient expression of foreign genes and for the analysis of endogenous gene function in plants using virus-induced gene silencing. The jellyfish green fluorescent protein (GFP) gene was inserted between the TRSV movement protein (MP) and coat protein (CP) regions, resulting in high in-frame expression of the RNA2-encoded viral polyprotein. GFP was released from the polyprotein via an N-terminal homologous MP-CP cleavage site and a C-terminal foot-and-mouth disease virus (FMDV) 2 A catalytic peptide in Nicotiana benthamiana. The VIGS target gene was introduced in the sense and antisense orientations into a SnaBI site, which was created by mutating the sequence following the CP stop codon. VIGS of phytoene desaturase (PDS) in N. benthamiana, Arabidopsis ecotype Col-0, cucurbits and legumes led to obvious photo-bleaching phenotypes. A significant reduction in PDS mRNA levels in silenced plants was confirmed by semi-quantitative RT-PCR. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Gene profiling of Graffi murine leukemia virus-induced lymphoid leukemias: identification of leukemia markers and Fmn2 as a potential oncogene.

    PubMed

    Charfi, Cyndia; Voisin, Véronique; Levros, Louis-Charles; Edouard, Elsy; Rassart, Eric

    2011-02-10

    The Graffi murine leukemia virus induces a large spectrum of leukemias in mice and thus provides a good model to compare the transcriptome of all types of leukemias. We analyzed the gene expression profiles of both T and B leukemias induced by the virus with DNA microarrays. Given that we considered that a 4-fold change in expression level was significant, 388 probe sets were associated to B, to T, or common to both leukemias. Several of them were not yet associated with lymphoid leukemia. We confirmed specific deregulation of Fmn2, Arntl2, Bfsp2, Gfra2, Gpm6a, and Gpm6b in B leukemia, of Nln, Fbln1, and Bmp7 in T leukemias, and of Etv5 in both leukemias. More importantly, we show that the mouse Fmn2 induced an anchorage-independent growth, a drastic modification in cell shape with a concomitant disruption of the actin cytoskeleton. Interestingly, we found that human FMN2 is overexpressed in approximately 95% of pre-B acute lymphoblastic leukemia with the highest expression levels in patients with a TEL/AML1 rearrangement. These results, surely related to the role of FMN2 in meiotic spindle maintenance, suggest its important role in leukemogenesis. Finally, we propose a new panel of genes potentially involved in T and/or B leukemias.

  1. Aqueous Extract of the Edible Gracilaria tenuistipitata Inhibits Hepatitis C Viral Replication via Cyclooxygenase-2 Suppression and Reduces Virus-Induced Inflammation

    PubMed Central

    Chang, Fang-Rong; Yang, Jin-Iong; Yeh, Chi-Chen; Chen, Wei-Chun; Wu, Shou-Fang; Chang, Hsueh-Wei; Lee, Jin-Ching

    2013-01-01

    Hepatitis C virus (HCV) is an important human pathogen leading to hepatocellular carcinoma. Using an in vitro cell-based HCV replicon and JFH-1 infection system, we demonstrated that an aqueous extract of the seaweed Gracilaria tenuistipitata (AEGT) concentration-dependently inhibited HCV replication at nontoxic concentrations. AEGT synergistically enhanced interferon-α (IFN-α) anti-HCV activity in a combination treatment. We found that AEGT also significantly suppressed virus-induced cyclooxygenase-2 (COX-2) expression at promoter transactivation and protein levels. Notably, addition of exogenous COX-2 expression in AEGT-treated HCV replicon cells gradually abolished AEGT anti-HCV activity, suggesting that COX-2 down-regulation was responsible for AEGT antiviral effects. Furthermore, we highlighted the inhibitory effect of AEGT in HCV-induced pro-inflammatory gene expression such as the expression of tumour necrosis factor-α, interleukin-1β, inducible nitrite oxide synthase and COX-2 in a concentration-dependent manner to evaluate the potential therapeutic supplement in the management of patients with chronic HCV infections. PMID:23469054

  2. Virus-induced gene silencing of the RPC5-like subunit of RNA polymerase III caused pleiotropic effects in Nicotiana benthamiana

    PubMed Central

    Nemchinov, Lev G.; Boutanaev, Alexander M.; Postnikova, Olga A.

    2016-01-01

    In eukaryotic cells, RNA polymerase III is highly conserved and transcribes housekeeping genes such as ribosomal 5S rRNA, tRNA and other small RNAs. The RPC5-like subunit is one of the 17 subunits forming RNAPIII and its exact functional roles in the transcription are poorly understood. In this work, we report that virus-induced gene silencing of transcripts encoding a putative RPC5-like subunit of the RNA Polymerase III in a model species Nicotiana benthamiana had pleiotropic effects, including but not limited to severe dwarfing appearance, chlorosis, nearly complete reduction of internodes and abnormal leaf shape. Using transcriptomic analysis, we identified genes and pathways affected by RPC5 silencing and thus presumably related to the cellular roles of the subunit as well as to the downstream cascade of reactions in response to partial loss of RNA Polymerase III function. Our results suggest that silencing of the RPC5L in N. benthamiana disrupted not only functions commonly associated with the core RNA Polymerase III transcripts, but also more diverse cellular processes, including responses to stress. We believe this is the first demonstration that activity of the RPC5 subunit is critical for proper functionality of RNA Polymerase III and normal plant development. PMID:27282827

  3. Inflammatory and oncogenic roles of a tumor stem cell marker doublecortin-like kinase (DCLK1) in virus-induced chronic liver diseases.

    PubMed

    Ali, Naushad; Chandrakesan, Parthasarathy; Nguyen, Charles B; Husain, Sanam; Gillaspy, Allison F; Huycke, Mark; Berry, William L; May, Randal; Qu, Dongfeng; Weygant, Nathaniel; Sureban, Sripathi M; Bronze, Michael S; Dhanasekaran, Danny N; Houchen, Courtney W

    2015-08-21

    Hepatocellular carcinoma (HCC) is the third most common cause of cancer-related mortality worldwide. We previously showed that a tumor/cancer stem cell (CSC) marker, doublecortin-like kinase (DCLK1) positively regulates hepatitis C virus (HCV) replication, and promotes tumor growth in colon and pancreas. Here, we employed transcriptome analysis, RNA interference, tumor xenografts, patient's liver tissues and hepatospheroids to investigate DCLK1-regulated inflammation and tumorigenesis in the liver. Our studies unveiled novel DCLK1-controlled feed-forward signaling cascades involving calprotectin subunit S100A9 and NFκB activation as a driver of inflammation. Validation of transcriptome data suggests that DCLK1 co-expression with HCV induces BRM/SMARCA2 of SW1/SNF1 chromatin remodeling complexes. Frequently observed lymphoid aggregates including hepatic epithelial and stromal cells of internodular septa extensively express DCLK1 and S100A9. The DCLK1 overexpression also correlates with increased levels of S100A9, c-Myc, and BRM levels in HCV/HBV-positive patients with cirrhosis and HCC. DCLK1 silencing inhibits S100A9 expression and hepatoma cell migration. Normal human hepatocytes (NHH)-derived spheroids exhibit CSC properties. These results provide new insights into the molecular mechanism of the hepatitis B/C-virus induced liver inflammation and tumorigenesis via DCLK1-controlled networks. Thus, DCLK1 appears to be a novel therapeutic target for the treatment of inflammatory diseases and HCC.

  4. Development of an Efficient Virus Induced Gene Silencing Strategy in the Non-Model Wild Ginger-Zingiber zerumbet and Investigation of Associated Proteome Changes

    PubMed Central

    Mahadevan, Chidambareswaren; Jaleel, Abdul; Deb, Lokesh; Thomas, George; Sakuntala, Manjula

    2015-01-01

    Zingiber zerumbet (Zingiberaceae) is a wild, tropical medicinal herb that shows a high degree of resistance to diseases affecting cultivated ginger. Barley stripe mosaic virus (BSMV) silencing vectors containing an endogenous phytoene desaturase (PDS) gene fragment were agroinfiltrated into young leaves of Z. zerumbet under controlled growth conditions to effect virus-induced gene silencing (VIGS). Infiltrated leaves as well as newly emerged leaves and tillers showed visual signs of PDS silencing after 30 days. Replication and systemic movement of the viral vectors in silenced plants were confirmed by RT-PCR. Real-time quantitative PCR analysis verified significant down-regulation of PDS transcripts in the silenced tissues. Label-free proteomic analysis was conducted in leaves with established PDS transcript down regulation and buffer-infiltrated (mock) leaves. A total of 474 proteins were obtained, which were up-regulated, down-regulated or modulated de novo during VIGS. Most of these proteins were localized to the chloroplast, as revealed by UniprotKB analysis, and among the up-regulated proteins there were abiotic stress responsive, photosynthetic, metabolic and membrane proteins. Moreover, the demonstration of viral proteins together with host proteins proved successful viral infection. We report for the first time the establishment of a high-throughput gene functional analysis platform using BSMV-mediated VIGS in Z. zerumbet, as well as proteomic changes associated with VIGS. PMID:25918840

  5. Virus-Induced Necrosis Is a Consequence of Direct Protein-Protein Interaction between a Viral RNA-Silencing Suppressor and a Host Catalase[C][W

    PubMed Central

    Inaba, Jun-ichi; Kim, Bo Min; Shimura, Hanako; Masuta, Chikara

    2011-01-01

    Many plant host factors are known to interact with viral proteins during pathogenesis, but how a plant virus induces a specific disease symptom still needs further research. A lily strain of Cucumber mosaic virus (CMV-HL) can induce discrete necrotic spots on infected Arabidopsis (Arabidopsis thaliana) plants; other CMV strains can induce similar spots, but they are not as distinct as those induced by CMV-HL. The CMV 2b protein (2b), a known RNA-silencing suppressor, is involved in viral movement and symptom induction. Using in situ proximity ligation assay immunostaining and the protoplast assays, we report here that CMV 2b interacts directly with Catalase3 (CAT3) in infected tissues, a key enzyme in the breakdown of toxic hydrogen peroxide. Interestingly, CAT3, normally localized in the cytoplasm (glyoxysome), was recruited to the nucleus by an interaction between 2b and CAT3. Although overexpression of CAT3 in transgenic plants decreased the accumulation of CMV and delayed viral symptom development to some extent, 2b seems to neutralize the cellular catalase contributing to the host defense response, thus favoring viral infection. Our results thus provide evidence that, in addition to altering the type of symptom by disturbing microRNA pathways, 2b can directly bind to a host factor that is important in scavenging cellular hydrogen peroxide and thus interfere specifically with that host factor, leading to the induction of a specific necrosis. PMID:21622812

  6. Virus-induced silencing of Comt, pAmt and Kas genes results in a reduction of capsaicinoid accumulation in chili pepper fruits.

    PubMed

    del Rosario Abraham-Juárez, Ma; del Carmen Rocha-Granados, Ma; López, Mercedes G; Rivera-Bustamante, Rafael Francisco; Ochoa-Alejo, Neftalí

    2008-02-01

    Capsaicinoids are responsible for the pungent taste of chili pepper fruits of Capsicum species. Capsaicinoids are biosynthesized through both the phenylpropanoid and the branched-fatty acids pathways. Fragments of Comt (encoding a caffeic acid O-methyltransferase), pAmt (a putative aminotransferase), and Kas (a beta-keto-acyl-[acyl-carrier-protein] synthase) genes, that are differentially expressed in placenta tissue of pungent chili pepper, were individually inserted into a Pepper huasteco yellow veins virus (PHYVV)-derived vector to determine, by virus-induced gene silencing, irrespective of whether these genes are involved in the biosynthesis of capsaicinoids. Reduction of the respective mRNA levels as well as the presence of related siRNAs confirmed the silencing of these three genes. Morphological alterations were evident in plants inoculated with PHYVV::Comt and PHYVV::Kas constructs; however, plants inoculated with PHYVV::pAmt showed no evident alterations. On the other hand, fruit setting was normal in all cases. Biochemical analysis of placenta tissues showed that, indeed, independent silencing of all three genes led to a dramatic reduction in capsaicinoid content in the fruits demonstrating the participation of these genes in capsaicinoid biosynthesis. Using this approach it was possible to generate non-pungent chili peppers at high efficiency.

  7. Inflammatory and oncogenic roles of a tumor stem cell marker doublecortin-like kinase (DCLK1) in virus-induced chronic liver diseases

    PubMed Central

    Ali, Naushad; Chandrakesan, Parthasarathy; Nguyen, Charles B.; Husain, Sanam; Gillaspy, Allison F.; Huycke, Mark; Berry, William L.; May, Randal; Qu, Dongfeng; Weygant, Nathaniel; Sureban, Sripathi M.; Bronze, Michael S.; Dhanasekaran, Danny N.; Houchen, Courtney W.

    2015-01-01

    Hepatocellular carcinoma (HCC) is the third most common cause of cancer-related mortality worldwide. We previously showed that a tumor/cancer stem cell (CSC) marker, doublecortin-like kinase (DCLK1) positively regulates hepatitis C virus (HCV) replication, and promotes tumor growth in colon and pancreas. Here, we employed transcriptome analysis, RNA interference, tumor xenografts, patient's liver tissues and hepatospheroids to investigate DCLK1-regulated inflammation and tumorigenesis in the liver. Our studies unveiled novel DCLK1-controlled feed-forward signaling cascades involving calprotectin subunit S100A9 and NFκB activation as a driver of inflammation. Validation of transcriptome data suggests that DCLK1 co-expression with HCV induces BRM/SMARCA2 of SW1/SNF1 chromatin remodeling complexes. Frequently observed lymphoid aggregates including hepatic epithelial and stromal cells of internodular septa extensively express DCLK1 and S100A9. The DCLK1 overexpression also correlates with increased levels of S100A9, c-Myc, and BRM levels in HCV/HBV-positive patients with cirrhosis and HCC. DCLK1 silencing inhibits S100A9 expression and hepatoma cell migration. Normal human hepatocytes (NHH)-derived spheroids exhibit CSC properties. These results provide new insights into the molecular mechanism of the hepatitis B/C-virus induced liver inflammation and tumorigenesis via DCLK1-controlled networks. Thus, DCLK1 appears to be a novel therapeutic target for the treatment of inflammatory diseases and HCC. PMID:25948779

  8. Virus-induced gene silencing is an effective tool for assaying gene function in the basal eudicot species Papaver somniferum (opium poppy).

    PubMed

    Hileman, Lena C; Drea, Sinéad; Martino, Gemma; Litt, Amy; Irish, Vivian F

    2005-10-01

    Virus-induced gene silencing (VIGS) is an attractive method for assaying gene function in species that are resistant to conventional genetic approaches. However, VIGS has been shown to be effective in only a few, closely related plant species. Tobacco rattle virus (TRV), a bipartite RNA virus, has a wide host range and so in principle could serve as an efficient vector for VIGS in a diverse array of plant species. Here we show that a vector based on TRV sequences is effective at silencing the endogenous phytoene desaturase (PapsPDS) gene in Papaver somniferum (opium poppy). We show that this vector does not compromise the growth or reproduction of poppy and the plants did not display viral symptoms. The silencing of PapsPDS resulted in a significant reduction in PapsPDS mRNA and a concomitant photobleached phenotype. The ability to rapidly assay gene function in P. somniferum will be valuable in manipulation of the opiate pathway in this pharmaceutically important species. We suggest that our vacuum infiltration method used to deliver TRV-based vectors into poppy is a promising approach for expanding VIGS to diverse angiosperm species in which traditional delivery methods fail to induce VIGS. Furthermore, these studies demonstrate the utility of TRV-VIGS for probing gene function in a basal eudicot species that is phylogenetically distant from model plant species.

  9. Optimization of automated segmentation of monkeypox virus-induced lung lesions from normal lung CT images using hard C-means algorithm

    NASA Astrophysics Data System (ADS)

    Castro, Marcelo A.; Thomasson, David; Avila, Nilo A.; Hufton, Jennifer; Senseney, Justin; Johnson, Reed F.; Dyall, Julie

    2013-03-01

    Monkeypox virus is an emerging zoonotic pathogen that results in up to 10% mortality in humans. Knowledge of clinical manifestations and temporal progression of monkeypox disease is limited to data collected from rare outbreaks in remote regions of Central and West Africa. Clinical observations show that monkeypox infection resembles variola infection. Given the limited capability to study monkeypox disease in humans, characterization of the disease in animal models is required. A previous work focused on the identification of inflammatory patterns using PET/CT image modality in two non-human primates previously inoculated with the virus. In this work we extended techniques used in computer-aided detection of lung tumors to identify inflammatory lesions from monkeypox virus infection and their progression using CT images. Accurate estimation of partial volumes of lung lesions via segmentation is difficult because of poor discrimination between blood vessels, diseased regions, and outer structures. We used hard C-means algorithm in conjunction with landmark based registration to estimate the extent of monkeypox virus induced disease before inoculation and after disease progression. Automated estimation is in close agreement with manual segmentation.

  10. Epstein-Barr virus-induced molecule 1 ligand chemokine is expressed by dendritic cells in lymphoid tissues and strongly attracts naive T cells and activated B cells.

    PubMed

    Ngo, V N; Tang, H L; Cyster, J G

    1998-07-06

    Movement of T and B lymphocytes through secondary lymphoid tissues is likely to involve multiple cues that help the cells navigate to appropriate compartments. Epstein-Barr virus- induced molecule 1 (EBI-1) ligand chemokine (ELC/MIP3beta) is expressed constitutively within lymphoid tissues and may act as such a guidance cue. Here, we have isolated mouse ELC and characterized its expression pattern and chemotactic properties. ELC is expressed constitutively in dendritic cells within the T cell zone of secondary lymphoid tissues. Recombinant ELC was strongly chemotactic for naive (L-selectinhi) CD4 T cells and for CD8 T cells and weakly attractive for resting B cells and memory (L-selectinlo) CD4 T cells. After activation through the B cell receptor, the chemotactic response of B cells was enhanced. Like its human counterpart, murine ELC stimulated cells transfected with EBI-1/CC chemokine receptor 7 (CCR7). Our findings suggest a central role for ELC in promoting encounters between recirculating T cells and dendritic cells and in the migration of activated B cells into the T zone of secondary lymphoid tissues.

  11. Virus-induced gene silencing is a versatile tool for unraveling the functional relevance of multiple abiotic-stress-responsive genes in crop plants

    PubMed Central

    Ramegowda, Venkategowda; Mysore, Kirankumar S.; Senthil-Kumar, Muthappa

    2014-01-01

    Virus-induced gene silencing (VIGS) is an effective tool for gene function analysis in plants. Over the last decade, VIGS has been successfully used as both a forward and reverse genetics technique for gene function analysis in various model plants, as well as crop plants. With the increased identification of differentially expressed genes under various abiotic stresses through high-throughput transcript profiling, the application of VIGS is expected to be important in the future for functional characterization of a large number of genes. In the recent past, VIGS was proven to be an elegant tool for functional characterization of genes associated with abiotic stress responses. In this review, we provide an overview of how VIGS is used in different crop species to characterize genes associated with drought-, salt-, oxidative- and nutrient-deficiency-stresses. We describe the examples from studies where abiotic stress related genes are characterized using VIGS. In addition, we describe the major advantages of VIGS over other currently available functional genomics tools. We also summarize the recent improvements, limitations and future prospects of using VIGS as a tool for studying plant responses to abiotic stresses. PMID:25071806

  12. Virus-induced gene silencing is a versatile tool for unraveling the functional relevance of multiple abiotic-stress-responsive genes in crop plants.

    PubMed

    Ramegowda, Venkategowda; Mysore, Kirankumar S; Senthil-Kumar, Muthappa

    2014-01-01

    Virus-induced gene silencing (VIGS) is an effective tool for gene function analysis in plants. Over the last decade, VIGS has been successfully used as both a forward and reverse genetics technique for gene function analysis in various model plants, as well as crop plants. With the increased identification of differentially expressed genes under various abiotic stresses through high-throughput transcript profiling, the application of VIGS is expected to be important in the future for functional characterization of a large number of genes. In the recent past, VIGS was proven to be an elegant tool for functional characterization of genes associated with abiotic stress responses. In this review, we provide an overview of how VIGS is used in different crop species to characterize genes associated with drought-, salt-, oxidative- and nutrient-deficiency-stresses. We describe the examples from studies where abiotic stress related genes are characterized using VIGS. In addition, we describe the major advantages of VIGS over other currently available functional genomics tools. We also summarize the recent improvements, limitations and future prospects of using VIGS as a tool for studying plant responses to abiotic stresses.

  13. Aqueous extract of the edible Gracilaria tenuistipitata inhibits hepatitis C viral replication via cyclooxygenase-2 suppression and reduces virus-induced inflammation.

    PubMed

    Chen, Kuan-Jen; Tseng, Chin-Kai; Chang, Fang-Rong; Yang, Jin-Iong; Yeh, Chi-Chen; Chen, Wei-Chun; Wu, Shou-Fang; Chang, Hsueh-Wei; Lee, Jin-Ching

    2013-01-01

    Hepatitis C virus (HCV) is an important human pathogen leading to hepatocellular carcinoma. Using an in vitro cell-based HCV replicon and JFH-1 infection system, we demonstrated that an aqueous extract of the seaweed Gracilaria tenuistipitata (AEGT) concentration-dependently inhibited HCV replication at nontoxic concentrations. AEGT synergistically enhanced interferon-α (IFN-α) anti-HCV activity in a combination treatment. We found that AEGT also significantly suppressed virus-induced cyclooxygenase-2 (COX-2) expression at promoter transactivation and protein levels. Notably, addition of exogenous COX-2 expression in AEGT-treated HCV replicon cells gradually abolished AEGT anti-HCV activity, suggesting that COX-2 down-regulation was responsible for AEGT antiviral effects. Furthermore, we highlighted the inhibitory effect of AEGT in HCV-induced pro-inflammatory gene expression such as the expression of tumour necrosis factor-α, interleukin-1β, inducible nitrite oxide synthase and COX-2 in a concentration-dependent manner to evaluate the potential therapeutic supplement in the management of patients with chronic HCV infections.

  14. Virus-induced multiple gene silencing to study redundant metabolic pathways in plants: silencing the starch degradation pathway in Nicotiana benthamiana.

    PubMed

    George, Gavin M; Bauer, Rolene; Blennow, Andreas; Kossmann, Jens; Lloyd, James R

    2012-07-01

    Virus-induced gene silencing (VIGS) is a rapid technique that allows for specific and reproducible post-transcriptional degradation of targeted mRNA. The method has been proven efficient for suppression of expression of many single enzymes. The metabolic networks of plants, however, often contain isoenzymes and gene families that are able to compensate for a mutation and mask the development of a silencing phenotype. Here, we show the application of multiple gene VIGS repression for the study of these redundant biological pathways. Several genes in the starch degradation pathway [disproportionating enzyme 1; (DPE1), disproportionating enzyme 2 (DPE2), and GWD] were silenced. The functionally distinct DPE enzymes are present in alternate routes for sugar export to the cytoplasm and result in an increase in starch production when silenced individually. Simultaneous silencing of DPE1 and DPE2 in Nicotiana benthamiana resulted in a near complete suppression in starch and accumulation of malto-oligosaccharides. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. pol-miR-731, a teleost miRNA upregulated by megalocytivirus, negatively regulates virus-induced type I interferon response, apoptosis, and cell cycle arrest

    PubMed Central

    Zhang, Bao-cun; Zhou, Ze-jun; Sun, Li

    2016-01-01

    Megalocytivirus is a DNA virus that is highly infectious in a wide variety of marine and freshwater fish, including Japanese flounder (Paralichthys olivaceus), a flatfish that is farmed worldwide. However, the infection mechanism of megalocytivirus remains largely unknown. In this study, we investigated the function of a flounder microRNA, pol-miR-731, in virus-host interaction. We found that pol-miR-731 was induced in expression by megalocytivirus and promoted viral replication at the early infection stage. In vivo and in vitro studies revealed that pol-miR-731 (i) specifically suppresses the expression of interferon regulatory factor 7 (IRF7) and cellular tumor antigen p53 in a manner that depended on the integrity of the pol-miR-731 complementary sequences in the 3′ untranslated regions of IRF7 and p53, (ii) disrupts megalocytivirus-induced Type I interferon response through IRF7, (iii) inhibits megalocytivirus-induced splenocyte apoptosis and cell cycle arrest through p53. Furthermore, overexpression of IRF7 and p53 abolished both the inhibitory effects of pol-miR-731 on these biological processes and its stimulatory effect on viral replication. These results disclosed a novel evasion mechanism of megalocytivirus mediated by a host miRNA. This study also provides the first evidence that a virus-induced host miRNA can facilitate viral infection by simultaneously suppressing several antiviral pathways. PMID:27311682

  16. Virus-induced gene silencing identifies Catharanthus roseus 7-deoxyloganic acid-7-hydroxylase, a step in iridoid and monoterpene indole alkaloid biosynthesis.

    PubMed

    Salim, Vonny; Yu, Fang; Altarejos, Joaquín; De Luca, Vincenzo

    2013-12-01

    Iridoids are a major group of biologically active molecules that are present in thousands of plant species, and one versatile iridoid, secologanin, is a precursor for the assembly of thousands of monoterpenoid indole alkaloids (MIAs) as well as a number of quinoline alkaloids. This study uses bioinformatics to screen large databases of annotated transcripts from various MIA-producing plant species to select candidate genes that may be involved in iridoid biosynthesis. Virus-induced gene silencing of the selected genes combined with metabolite analyses of silenced plants was then used to identify the 7-deoxyloganic acid 7-hydroxylase (CrDL7H) that is involved in the 3rd to last step in secologanin biosynthesis. Silencing of CrDL7H reduced secologanin levels by at least 70%, and increased the levels of 7-deoxyloganic acid to over 4 mg g(-1) fresh leaf weight compared to control plants in which this iridoid is not detected. Functional expression of this CrDL7H in yeast confirmed its biochemical activity, and substrate specificity studies showed its preference for 7-deoxyloganic acid over other closely related substrates. Together, these results suggest that hydroxylation precedes carboxy-O-methylation in the secologanin pathway in Catharanthus roseus. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  17. Out-of-sequence signal 3 as a mechanism for virus-induced immune suppression of CD8 T cell responses.

    PubMed

    Urban, Stina L; Welsh, Raymond M

    2014-09-01

    Virus infections are known to induce a transient state of immune suppression often associated with an inhibition of T cell proliferation in response to mitogen or cognate-antigen stimulation. Recently, virus-induced immune suppression has been linked to responses to type 1 interferon (IFN), a signal 3 cytokine that normally can augment the proliferation and differentiation of T cells exposed to antigen (signal 1) and co-stimulation (signal 2). However, pre-exposure of CD8 T cells to IFN-inducers such as viruses or poly(I∶C) prior to antigen signaling is inhibitory, indicating that the timing of IFN exposure is of essence. We show here that CD8 T cells pretreated with poly(I∶C) down-regulated the IFN receptor, up-regulated suppressor of cytokine signaling 1 (SOCS1), and were refractory to IFNβ-induced signal transducers and activators of transcription (STAT) phosphorylation. When exposed to a viral infection, these CD8 T cells behaved more like 2-signal than 3-signal T cells, showing defects in short lived effector cell differentiation, reduced effector function, delayed cell division, and reduced levels of survival proteins. This suggests that IFN-pretreated CD8 T cells are unable to receive the positive effects that type 1 IFN provides as a signal 3 cytokine when delivered later in the signaling process. This desensitization mechanism may partially explain why vaccines function poorly in virus-infected individuals.

  18. Sprouty-Related Ena/Vasodilator-Stimulated Phosphoprotein Homology 1-Domain-Containing Protein-2 Critically Regulates Influenza A Virus-Induced Pneumonia.

    PubMed

    Ito, Toshihiro; Itakura, Junya; Takahashi, Sakuma; Sato, Miwa; Mino, Megumi; Fushimi, Soichiro; Yamada, Masao; Morishima, Tuneo; Kunkel, Steven L; Matsukawa, Akihiro

    2016-07-01

    Influenza A virus causes acute respiratory infections that induce annual epidemics and occasional pandemics. Although a number of studies indicated that the virus-induced intracellular signaling events are important in combating influenza virus infection, the mechanism how specific molecule plays a critical role among various intracellular signaling events remains unknown. Raf/MEK/extracellular signal-regulated kinase cascade is one of the key signaling pathways during influenza virus infection, and the Sprouty-related Ena/vasodilator-stimulated phosphoprotein homology 1-domain-containing protein has recently been identified as a negative regulator of Raf-dependent extracellular signal-regulated kinase activation. Here, we examined the role of Raf/MEK/extracellular signal-regulated kinase cascade through sprouty-related Ena/vasodilator-stimulated phosphoprotein homology 1-domain-containing protein in influenza A viral infection because the expression of sprouty-related Ena/vasodilator-stimulated phosphoprotein homology 1-domain-containing protein was significantly enhanced in human influenza viral-induced pneumonia autopsy samples. Prospective animal trial. Research laboratory. Wild-type and sprouty-related Ena/vasodilator-stimulated phosphoprotein homology 1-domain-containing protein-2 knockout mice inoculated with influenza A. Wild-type or sprouty-related Ena/vasodilator-stimulated phosphoprotein homology 1-domain-containing protein-2 knockout mice were infected by intranasal inoculation of influenza A (A/PR/8). An equal volume of phosphate-buffered saline was inoculated intranasally into mock-infected mice. Influenza A infection of sprouty-related Ena/vasodilator-stimulated phosphoprotein homology 1-domain-containing protein-2 knockout mice led to higher mortality with greater viral load, excessive inflammation, and enhanced cytokine production than wild-type mice. Administration of MEK inhibitor, U0126, improved mortality and reduced both viral load and

  19. Molecular cloning and functional characterization of the lycopene ε-cyclase gene via virus-induced gene silencing and its expression pattern in Nicotiana tabacum.

    PubMed

    Shi, Yanmei; Wang, Ran; Luo, Zhaopeng; Jin, Lifeng; Liu, Pingping; Chen, Qiansi; Li, Zefeng; Li, Feng; Wei, Chunyang; Wu, Mingzhu; Wei, Pan; Xie, He; Qu, Lingbo; Lin, Fucheng; Yang, Jun

    2014-08-22

    Lycopene ε-cyclase (ε-LCY) is a key enzyme that catalyzes the synthesis of α-branch carotenoids through the cyclization of lycopene. Two cDNA molecules encoding ε-LCY (designated Ntε-LCY1 and Ntε-LCY2) were cloned from Nicotiana tabacum. Ntε-LCY1 and Ntε-LCY2 are encoded by two distinct genes with different evolutionary origins, one originating from the tobacco progenitor, Nicotiana sylvestris, and the other originating from Nicotiana tomentosiformis. The two coding regions are 97% identical at the nucleotide level and 95% identical at the amino acid level. Transcripts of Ntε-LCY were detectable in both vegetative and reproductive organs, with a relatively higher level of expression in leaves than in other tissues. Subcellular localization experiments using an Ntε-LCY1-GFP fusion protein demonstrated that mature Ntε-LCY1 protein is localized within the chloroplast in Bright Yellow 2 suspension cells. Under low-temperature and low-irradiation stress, Ntε-LCY transcript levels substantially increased relative to control plants. Tobacco rattle virus (TRV)-mediated silencing of ε-LCY in Nicotiana benthamiana resulted in an increase of β-branch carotenoids and a reduction in the levels of α-branch carotenoids. Meanwhile, transcripts of related genes in the carotenoid biosynthetic pathway observably increased, with the exception of β-OHase in the TRV-ε-lcy line. Suppression of ε-LCY expression was also found to alleviate photoinhibition of Potosystem II in virus-induced gene silencing (VIGS) plants under low-temperature and low-irradiation stress. Our results provide insight into the regulatory role of ε-LCY in plant carotenoid biosynthesis and suggest a role for ε-LCY in positively modulating low temperature stress responses.

  20. Biased agonism and allosteric modulation of G protein-coupled receptor 183 - a 7TM receptor also known as Epstein-Barr virus-induced gene 2.

    PubMed

    Daugvilaite, Viktorija; Madsen, Christian Medom; Lückmann, Michael; Echeverria, Clara Castello; Sailer, Andreas Walter; Frimurer, Thomas Michael; Rosenkilde, Mette Marie; Benned-Jensen, Tau

    2017-07-01

    The GPCR Epstein-Barr virus-induced gene 2 (EBI2, also known as GPR183) is activated by oxysterols and plays a pivotal role in the regulation of B cell migration during immune responses. While the molecular basis of agonist binding has been addressed in several studies, the concept of biased agonism of the EBI2 receptor has not been explored. We investigated the effects of the EBI2 endogenous agonist 7α,25-dihydroxycholesterol (7α,25-OHC) on G protein-dependent and -independent pathways as well as sodium ion allosterism using site-directed mutagenesis and functional studies. Moreover, we generated a homology model of the EBI2 receptor to investigate the structural basis of the allosteric modulation by sodium. Residue N114, located in the middle of transmembrane-III at position III:11/3.35, was found to function as an efficacy switch. Thus, substituting N114 with an alanine (N114A) completely abolished heterotrimeric G protein subunit Gi α activation by 7α,25-OHC even though the specific binding of [(3) H]-7α,25-OHC increased. In contrast, the N114A mutant was still able to recruit β-arrestin and even had an enhanced potency (18.7-fold) compared with EBI2 wild type. Sodium had a negative allosteric effect on oxysterol binding that was mediated via N114, verifying the key role of N114. This was further supported by molecular modelling of the ion binding site based on a EBI2 receptor homology model. Collectively, our data point to N114 as a key residue for EBI2 signalling controlling the balance between G protein-dependent and -independent pathways and facilitating sodium binding. © 2017 The British Pharmacological Society.

  1. Identification of an attenuated barley stripe mosaic virus for the virus-induced gene silencing of pathogenesis-related wheat genes.

    PubMed

    Buhrow, Leann M; Clark, Shawn M; Loewen, Michele C

    2016-01-01

    Virus-induced gene silencing (VIGS) has become an emerging technology for the rapid, efficient functional genomic screening of monocot and dicot species. The barley stripe mosaic virus (BSMV) has been described as an effective VIGS vehicle for the evaluation of genes involved in wheat and barley phytopathogenesis; however, these studies have been obscured by BSMV-induced phenotypes and defense responses. The utility of BSMV VIGS may be improved using a BSMV genetic background which is more tolerable to the host plant especially upon secondary infection of highly aggressive, necrotrophic pathogens such as Fusarium graminearum. BSMV-induced VIGS in Triticum aestivum (bread wheat) cv. 'Fielder' was assessed for the study of wheat genes putatively related to Fusarium Head Blight (FHB), the necrotrophism of wheat and other cereals by F. graminearum. Due to the lack of 'Fielder' spike viability and increased accumulation of Fusarium-derived deoxynivalenol contamination upon co-infection of BSMV and FHB, an attenuated BSMV construct was generated by the addition of a glycine-rich, C-terminal peptide to the BSMV γ b protein. This attenuated BSMV effectively silenced target wheat genes while limiting disease severity, deoxynivalenol contamination, and yield loss upon Fusarium co-infection compared to the original BSMV construct. The attenuated BSMV-infected tissue exhibited reduced abscisic, jasmonic, and salicylic acid defense phytohormone accumulation upon secondary Fusarium infection. Finally, the attenuated BSMV was used to investigate the role of the salicylic acid-responsive pathogenesis-related 1 in response to FHB. The use of an attenuated BSMV may be advantageous in characterizing wheat genes involved in phytopathogenesis, including Fusarium necrotrophism, where minimal viral background effects on defense are required. Additionally, the attenuated BSMV elicits reduced defense hormone accumulation, suggesting that this genotype may have applications for the

  2. Highly pathogenic avian influenza H5N1 virus induces cytokine dysregulation with suppressed maturation of chicken monocyte-derived dendritic cells.

    PubMed

    Kalaiyarasu, Semmannan; Kumar, Manoj; Senthil Kumar, Dhanapal; Bhatia, Sandeep; Dash, Sandeep Kumar; Bhat, Sushant; Khetan, Rohit K; Nagarajan, Shanmugasundaram

    2016-10-01

    One of the major causes of death in highly pathogenic avian influenza virus (HPAIV) infection in chickens is acute induction of pro-inflammatory cytokines (cytokine storm), which leads to severe pathology and acute mortality. DCs and respiratory tract macrophages are the major antigen presenting cells that are exposed to mucosal pathogens. We hypothesized that chicken DCs are a major target for induction of cytokine dysregulation by H5N1 HPAIV. It was found that infection of chicken peripheral blood monocyte-derived dendritic cells (chMoDCs) with H5N1 HPAIV produces high titers of progeny virus with more rounding and cytotoxicity than with H9N2 LPAIV. Expression of maturation markers (CD40, CD80 and CD83) was weaker in both H5N1 and H9N2 groups than in a LPS control group. INF-α, -β and -γ were significantly upregulated in the H5N1 group. Pro-inflammatory cytokines (IL-1β, TNF-α and IL-18) were highly upregulated in early mid (IL-1), and late (IL-6) phases of H5N1 virus infection. IL-8 (CXCLi2) mRNA expression was significantly stronger in the H5N1 group from 6 hr of infection. TLR3, 7, 15 and 21 were upregulated 24 hr after infection by H5N1 virus compared with H9N2 virus, with maximum expression of TLR 3 mRNA. Similarly, greater H5N1 virus-induced apoptotic cell death and cytotoxicity, as measured by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling and lactate dehydrogenase assays, respectively, were found. Thus, both H5N1 and H9N2 viruses evade the host immune system by inducing impairment of chMoDCs maturation and enhancing cytokine dysregulation in H5N1 HPAIV-infected cells.

  3. Antibody response is required for protection from Theiler's virus-induced encephalitis in C57BL/6 mice in the absence of CD8+ T cells.

    PubMed

    Kang, Bong-Su; Palma, Joann P; Lyman, Michael A; Dal Canto, Mauro; Kim, Byung S

    2005-09-15

    Intracerebral infection of susceptible mice with Theiler's murine encephalomyelitis virus (TMEV) induces immune-mediated demyelinating disease and this system serves as a relevant infectious model for human multiple sclerosis. It was previously shown that beta2M-deficient C57BL/6 mice lacking functional CD8+ T cells display increased viral persistence and enhanced susceptibility to TMEV-induced demyelination, and yet the majority of mice are free of clinical signs. To understand the mechanisms involved in this general resistance of C57BL/6 mice in the absence of CTL responses, mice (muMT) deficient in the B-cell compartment lacking membrane IgM molecules were treated with anti-CD8 antibody and then infected with TMEV. Although little difference in the proliferative responses of peripheral T cells to UV-inactivated TMEV and the resistance to demyelinating disease was observed between virus-infected muMT and control B6 mice, the levels of CD4(+) T cells were higher in the CNS of muMT mice. However, after treatment with anti-CD8 antibody, 100% of the mice displayed clinical gray matter disease and prolonged viral persistence in muMT mice, while only 10% of B6 mice showed clinical symptoms and very low viral persistence. Transfusion of sera from TMEV-infected B6 mice into anti-CD8 antibody-treated muMT mice partially restored resistance to virus-induced encephalitis. These results indicate that the early anti-viral antibody response is also important in the protection from TMEV-induced encephalitis particularly in the absence of CD8+ T cells.

  4. Virus-induced gene silencing of Withania somnifera squalene synthase negatively regulates sterol and defence-related genes resulting in reduced withanolides and biotic stress tolerance.

    PubMed

    Singh, Anup Kumar; Dwivedi, Varun; Rai, Avanish; Pal, Shaifali; Reddy, Sajjalavarahalli Gangireddy Eswara; Rao, Dodaghatta Krishnarao Venkata; Shasany, Ajit Kumar; Nagegowda, Dinesh A

    2015-12-01

    Withania somnifera (L.) Dunal is an important Indian medicinal plant that produces withanolides, which are triterpenoid steroidal lactones having diverse biological activities. To enable fast and efficient functional characterization of genes in this slow-growing and difficult-to-transform plant, a virus-induced gene silencing (VIGS) was established by silencing phytoene desaturase (PDS) and squalene synthase (SQS). VIGS of the gene encoding SQS, which provides precursors for triterpenoids, resulted in significant reduction of squalene and withanolides, demonstrating its application in studying withanolides biosynthesis in W. somnifera leaves. A comprehensive analysis of gene expression and sterol pathway intermediates in WsSQS-vigs plants revealed transcriptional modulation with positive feedback regulation of mevalonate pathway genes, and negative feed-forward regulation of downstream sterol pathway genes including DWF1 (delta-24-sterol reductase) and CYP710A1 (C-22-sterol desaturase), resulting in significant reduction of sitosterol, campesterol and stigmasterol. However, there was little effect of SQS silencing on cholesterol, indicating the contribution of sitosterol, campesterol and stigmasterol, but not of cholesterol, towards withanolides formation. Branch-point oxidosqualene synthases in WsSQS-vigs plants exhibited differential regulation with reduced CAS (cycloartenol synthase) and cycloartenol, and induced BAS (β-amyrin synthase) and β-amyrin. Moreover, SQS silencing also led to the down-regulation of brassinosteroid-6-oxidase-2 (BR6OX2), pathogenesis-related (PR) and nonexpressor of PR (NPR) genes, resulting in reduced tolerance to bacterial and fungal infection as well as to insect feeding. Taken together, SQS silencing negatively regulated sterol and defence-related genes leading to reduced phytosterols, withanolides and biotic stress tolerance, thus implicating the application of VIGS for functional analysis of genes related to withanolides

  5. The immune response in the CNS in Theiler's virus induced demyelinating disease switches from an early adaptive response to a chronic innate-like response.

    PubMed

    Gilli, Francesca; Li, Libin; Pachner, Andrew R

    2016-02-01

    Theiler's murine encephalomyelitis virus-induced demyelinating disease (TMEV-IDD) is an important model of the progressive disability caused by irreversible CNS tissue injury, and provides an example of how a CNS pathogen can cause inflammation, demyelination, and neuronal damage. We were interested in which molecules, especially inflammatory mediators, might be upregulated in the CNS throughout TMEV-IDD. We quantitated by a real-time RT-PCR multi-gene system the expression of a pathway-focused panel of genes at 30 and 165 days post infection, characterizing both the early inflammatory and the late neurodegenerative stages of TMEV-IDD. Also, we measured 32 cytokines/chemokines by multiplex Luminex analysis in CSF specimens from early and late TMEV-IDD as well as sham-treated mice. Results indicate that, in the later stage of TMEV-IDD, activation of the innate immune response is most prominent: TLRs, type I IFN response genes, and innate immunity-associated cytokines were highly expressed in late TMEV-IDD compared to sham (p ≤ 0.0001) and early TMEV-IDD (p < 0.05). Conversely, several molecular mediators of adaptive immune response were highly expressed in early TMEV-IDD (all p ≤ 0.001). Protein detection in the CSF was broadly concordant with mRNA abundance of the corresponding gene measured by real-time RT-PCR in the spinal cord, since several cytokines/chemokines were increased in the CSF of TMEV-IDD mice. Results show a clear shift from adaptive to innate immunity from early to late TMEV-IDD, indicating that adaptive and innate immune pathways are likely involved in the development and progression of the disease to different extents. CSF provides an optimal source of biomarkers of CNS neuroinflammation.

  6. Impact of caspase-1/11, -3, -7, or IL-1β/IL-18 deficiency on rabies virus-induced macrophage cell death and onset of disease

    PubMed Central

    Kip, E; Nazé, F; Suin, V; Vanden Berghe, T; Francart, A; Lamoral, S; Vandenabeele, P; Beyaert, R; Van Gucht, S; Kalai, M

    2017-01-01

    Rabies virus is a highly neurovirulent RNA virus, which causes about 59000 deaths in humans each year. Previously, we described macrophage cytotoxicity upon infection with rabies virus. Here we examined the type of cell death and the role of specific caspases in cell death and disease development upon infection with two laboratory strains of rabies virus: Challenge Virus Standard strain-11 (CVS-11) is highly neurotropic and lethal for mice, while the attenuated Evelyn–Rotnycki–Abelseth (ERA) strain has a broader cell tropism, is non-lethal and has been used as an oral vaccine for animals. Infection of Mf4/4 macrophages with both strains led to caspase-1 activation and IL-1β and IL-18 production, as well as activation of caspases-3, -7, -8, and -9. Moreover, absence of caspase-3, but not of caspase-1 and -11 or -7, partially inhibited virus-induced cell death of bone marrow-derived macrophages. Intranasal inoculation with CVS-11 of mice deficient for either caspase-1 and -11 or -7 or both IL-1β and IL-18 led to general brain infection and lethal disease similar to wild-type mice. Deficiency of caspase-3, on the other hand, significantly delayed the onset of disease, but did not prevent final lethal outcome. Interestingly, deficiency of caspase-1/11, the key executioner of pyroptosis, aggravated disease severity caused by ERA virus, whereas wild-type mice or mice deficient for either caspase-3, -7, or both IL-1β and IL-18 presented the typical mild symptoms associated with ERA virus. In conclusion, rabies virus infection of macrophages induces caspase-1- and caspase-3-dependent cell death. In vivo caspase-1/11 and caspase-3 differently affect disease development in response to infection with the attenuated ERA strain or the virulent CVS-11 strain, respectively. Inflammatory caspases seem to control attenuated rabies virus infection, while caspase-3 aggravates virulent rabies virus infection. PMID:28280602

  7. Virus-induced gene silencing of PEAM4 affects floral morphology by altering the expression pattern of PsSOC1a and PsPVP in pea.

    PubMed

    Chen, Zhe-Hao; Jia, Fei-Fei; Hu, Jiang-Qin; Pang, Ji-Liang; Xu, Lei; Wang, Li-Lin

    2014-01-15

    pea-MADS4 (PEAM4) regulates floral morphology in Pisum sativum L., however, its molecular mechanisms still remain unclear. Virus-induced gene silencing (VIGS) is a recently developed reverse genetic approach that facilities an easier and more rapid study of gene functions. In this study, the PEAM4 gene was effectively silenced by VIGS using a pea early browning virus (PEBV) in wild type pea JI992. The infected plants showed abnormal phenotypes, as the floral organs, especially the sepals and petals changed in both size and shape, which made the corolla less closed. The petals changed in morphology and internal symmetry with, the stamens reduced and carpel dehisced. Larger sepals and longer tendrils with small cauline leaves appeared, with some sepals turning into bracts, and secondary inflorescences with fused floral organs were formed, indicating a flower-to-inflorescence change. The infected plants also displayed a delayed and prolonged flowering time. The PEAM4-VIGS plants with altered floral morphology were similar to the pim (proliferating inflorescence meristem) mutant and also mimicked the phenotypes of ap1 mutants in Arabidopsis. The expression pattern of the homologous genes PsSOC1a and PsSVP, which were involved in flowering time and florescence morphological control downstream of PEAM4, were analyzed by real-time RT-PCR and mRNA in situ hybridization. PsSOC1a and PsSVP were ectopically expressed and enhanced in the floral meristems from PEAM4-silenced plants. Our data suggests that PEAM4 may have a similar molecular mechanism as AtAP1, which inhibits the expression of PsSOC1a and PsSVP in the floral meristem from the early stages of flower development. As such, in this way PEAM4 plays a crucial role in maintaining floral organ identity and flower development in pea. Copyright © 2013 Elsevier GmbH. All rights reserved.

  8. Proteomic and virus-induced gene silencing (VIGS) Analyses reveal that gossypol, brassinosteroids, and jasmonic acid contribute to the resistance of cotton to Verticillium dahliae.

    PubMed

    Gao, Wei; Long, Lu; Zhu, Long-Fu; Xu, Li; Gao, Wen-Hui; Sun, Long-Qing; Liu, Lin-Lin; Zhang, Xian-Long

    2013-12-01

    Verticillium wilt causes massive annual losses of cotton yield, but the mechanism of cotton resistance to Verticillium dahliae is complex and poorly understood. In this study, a comparative proteomic analysis was performed in resistant cotton (Gossypium barbadense cv7124) on infection with V. dahliae. A total of 188 differentially expressed proteins were identified by mass spectrometry (MALDI-TOF/TOF) analysis and could be classified into 17 biological processes based on Gene Ontology annotation. Most of these proteins were implicated in stimulus response, cellular processes and metabolic processes. Based on the proteomic analysis, several genes involved in secondary metabolism, reactive oxygen burst and phytohormone signaling pathways were identified for further physiological and molecular analysis. The roles of the corresponding genes were further characterized by employing virus-induced gene silencing (VIGS). Based on the results, we suggest that the production of gossypol is sufficient to affect the cotton resistance to V. dahliae. Silencing of GbCAD1, a key enzyme involving in gossypol biosynthesis, compromised cotton resistance to V. dahliae. Reactive oxygen species and salicylic acid signaling may be also implicated as regulators in cotton responsive to V. dahliae according to the analysis of GbSSI2, an important regulator in the crosstalk between salicylic acid and jasmonic acid signal pathways. Moreover, brassinosteroids and jasmonic acid signaling may play essential roles in the cotton disease resistance to V. dahliae. The brassinosteroids signaling was activated in cotton on inoculation with V. dahliae and the disease resistance of cotton was enhanced after exogenous application of brassinolide. Meanwhile, jasmonic acid signaling was also activated in cotton after inoculation with V. dahliae and brassinolide application. These data provide highlights in the molecular basis of cotton resistance to V. dahliae.

  9. The putative pocket protein binding site of Autographa californica nucleopolyhedrovirus BV/ODV-C42 is required for virus-induced nuclear actin polymerization.

    PubMed

    Li, Kun; Wang, Yun; Bai, Huimin; Wang, Qian; Song, Jianhua; Zhou, Yuan; Wu, Chunchen; Chen, Xinwen

    2010-08-01

    Nuclear filamentous actin (F-actin) is essential for nucleocapsid morphogenesis of lepidopteran nucleopolyhedroviruses. Previously, we had demonstrated that Autographa californica multiple nucleopolyhedrovirus (AcMNPV) BV/ODV-C42 (C42) is involved in nuclear actin polymerization by recruiting P78/83, an AcMNPV orf9-encoded N-WASP homology protein that is capable of activating an actin-related-protein 2/3 (Arp2/3) complex to initiate actin polymerization, to the nucleus. To further investigate the role of C42 in virus-induced actin polymerization, the recombinant bacmid vAc(p78/83nls-gfp), with a c42 knockout, p78/83 tagged with a nuclear localization signal coding sequence, and egfp as a reporter gene under the control of the Pp10 promoter, was constructed and transfected to Sf9 cells. In the nuclei of vAc(p78/83nls-gfp)-transfected cells, polymerized F-actin filaments were absent, whereas other actin polymerization elements (i.e., P78/83, G-actin, and Arp2/3 complex) were present. This in vivo evidence indicated that C42 actively participates in the nuclear actin polymerization process as a key element, besides its role in recruiting P78/83 to the nucleus. In order to collect in vitro evidence for the participation of C42 in actin polymerization, an anti-C42 antibody was used to neutralize the viral nucleocapsid, which is capable of initiating actin polymerization in vitro. Both the kinetics of pyrene-actin polymerization and F-actin-specific staining by phalloidin indicated that anti-C42 can significantly attenuate the efficiency of F-actin formation compared to that with control antibodies. Furthermore, we have identified the putative pocket protein binding sequence (PPBS) on C42 that is essential for C42 to exert its function in nuclear actin polymerization.

  10. An immunoreceptor tyrosine activation motif in the mouse mammary tumor virus envelope protein plays a role in virus-induced mammary tumors.

    PubMed

    Ross, Susan R; Schmidt, John W; Katz, Elad; Cappelli, Laura; Hultine, Stacy; Gimotty, Phyllis; Monroe, John G

    2006-09-01

    Mouse mammary tumor virus (MMTV) induces breast cancer with almost 100% efficiency in susceptible strains through insertional activation of protooncogenes, such as members of the wnt and fibroblast growth factor (fgf) families. We previously showed that expression of the MMTV envelope protein (Env) in normal immortalized mammary epithelial cells grown in three-dimensional cultures caused their morphological transformation, and that this phenotype depended on an immunoreceptor tyrosine-based activation motif (ITAM) present in Env and signaling through the Syk tyrosine kinase (E. Katz, M. H. Lareef, J. C. Rassa, S. M. Grande, L. B. King, J. Russo, S. R. Ross, and J. G. Monroe, J. Exp. Med. 201:431-439, 2005). Here, we examined the role of the Env protein in virus-induced mammary tumorigenesis in vivo. Similar to the effect seen in vitro, Env expression in the mammary glands of transgenic mice bearing either full-length wild-type provirus or only Env transgenes showed increased lobuloalveolar budding. Introduction of the ITAM mutation into the env of an infectious, replication-competent MMTV or into MMTV/murine leukemia virus pseudotypes had no effect on incorporation of Env into virus particles or on in vitro infectivity. Moreover, replication-competent MMTV bearing the ITAM mutation in Env infected lymphoid and mammary tissue at the same level as wild-type MMTV and was transmitted through milk. However, mammary tumor induction was greatly attenuated, and the pattern of oncogene activation was altered. Taken together, these studies indicate that the MMTV Env protein participates in mammary epithelial cell transformation in vivo and that this requires a functional ITAM in the envelope protein.

  11. Novel cytotoxic exhibition mode of antimicrobial peptide anoplin in MEL cells, the cell line of murine Friend leukemia virus-induced leukemic cells.

    PubMed

    Zhu, Li-Na; Fu, Cai-Yun; Zhang, Shi-Fu; Chen, Wei; Jin, Yuan-Ting; Zhao, Fu-Kun

    2013-09-01

    Anoplin is a recently discovered antimicrobial peptide (AMP) isolated from the venom sac of the spider wasp Anoplius samariensis, and it is one of the shortest α-helical AMP found naturally to date consisting of only ten amino acids. Previous results showed that anoplin exhibits potent antimicrobial activity but little hemolytic activity. In this study, we synthesized anoplin, studied its cytotoxicity in Friend virus-induced leukemia cells [murine erythroleukemia (MEL) cells], and proposed its possible mechanism. Our results showed that anoplin could inhibit the proliferation of MEL cells in a dose-dependent and time-dependent manner via disrupting the integrity of cell membrane, which indicated that anoplin exerts its cytotoxicity efficacy. In addition, the cell cycle distribution of MEL cells was arrested in the G₀/G₁ phase significantly. However, anoplin could not induce obvious apoptosis in MEL cells, as well as anoplin could not induce visible changes on morphology and quantity in the bone marrow cells isolated from normal mice. All of these results indicate that anoplin, as generally believed, is a selective AMP, a value characteristic in the design of safe therapeutic agents. The cytotoxicity of anoplin on MEL cells was mainly attributable to the plasma membrane perturbation and also to the intracellular events such as the arrest of cell cycle. Although this is an initial study that explored the activity of anoplin in vitro rather than in vivo, with the increasing resistance of conventional chemotherapy, there is no doubt that anoplin has desirable feature to be developed as a novel and selective anticancer agent. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.

  12. Identification of novel pepper genes involved in Bax- or INF1-mediated cell death responses by high-throughput virus-induced gene silencing.

    PubMed

    Lee, Jeong Hee; Kim, Young Cheol; Choi, Doil; Park, Jeong Mee

    2013-11-19

    Hot pepper is one of the economically important crops in Asia. A large number of gene sequences, including expressed sequence tag (EST) and genomic sequences are publicly available. However, it is still a daunting task to determine gene function due to difficulties in genetic modification of a pepper plants. Here, we show the application of the virus-induced gene silencing (VIGS) repression for the study of 459 pepper ESTs selected as non-host pathogen-induced cell death responsive genes from pepper microarray experiments in Nicotiana benthamiana. Developmental abnormalities in N. benthamiana plants are observed in the 32 (7%) pepper ESTs-silenced plants. Aberrant morphological phenotypes largely comprised of three groups: stunted, abnormal leaf, and dead. In addition, by employing the combination of VIGS and Agrobacterium-mediated transient assays, we identified novel pepper ESTs that involved in Bax or INF1-mediated cell death responses. Silencing of seven pepper ESTs homologs suppressed Bax or INF1-induced cell death, five of which suppressed both cell death responses in N. benthamiana. The genes represented by these five ESTs encode putative proteins with functions in endoplasmic reticulum (ER) stress and lipid signaling. The genes represented by the other two pepper ESTs showing only Bax-mediated cell death inhibition encode a CCCH-type zinc finger protein containing an ankyrin-repeat domain and a probable calcium-binding protein, CML30-like. Taken together, we effectively isolated novel pepper clones that are involved in hypersensitive response (HR)-like cell death using VIGS, and identified silenced clones that have different responses to Bax and INF1 exposure, indicating separate signaling pathways for Bax- and INF1-mediated cell death.

  13. A Visual Reporter System for Virus-Induced Gene Silencing in Tomato Fruit Based on Anthocyanin Accumulation1[C][W

    PubMed Central

    Orzaez, Diego; Medina, Aurora; Torre, Sara; Fernández-Moreno, Josefina Patricia; Rambla, José Luis; Fernández-del-Carmen, Asun; Butelli, Eugenio; Martin, Cathie; Granell, Antonio

    2009-01-01

    Virus-induced gene silencing (VIGS) is a powerful tool for reverse genetics in tomato (Solanum lycopersicum). However, the irregular distribution of the effects of VIGS hampers the identification and quantification of nonvisual phenotypes. To overcome this limitation, a visually traceable VIGS system was developed for fruit, comprising two elements: (1) a transgenic tomato line (Del/Ros1) expressing Antirrhinum majus Delila and Rosea1 transcription factors under the control of the fruit-specific E8 promoter, showing a purple-fruited, anthocyanin-rich phenotype; and (2) a modified tobacco rattle virus VIGS vector incorporating partial Rosea1 and Delila sequences, which was shown to restore the red-fruited phenotype upon agroinjection in Del/Ros1 plants. Dissection of silenced areas for subsequent chemometric analysis successfully identified the relevant metabolites underlying gene function for three tomato genes, phytoene desaturase, TomloxC, and SlODO1, used for proof of concept. The C-6 aldehydes derived from lipid 13-hydroperoxidation were found to be the volatile compounds most severely affected by TomloxC silencing, whereas geranial and 6-methyl-5-hepten-2-one were identified as the volatiles most severely reduced by phytoene desaturase silencing in ripening fruit. In a third example, silencing of SlODO1, a tomato homolog of the ODORANT1 gene encoding a myb transcription factor, which regulates benzenoid metabolism in petunia (Petunia hybrida) flowers, resulted in a sharp accumulation of benzaldehyde in tomato fruit. Together, these results indicate that fruit VIGS, enhanced by anthocyanin monitoring, can be a powerful tool for reverse genetics in the study of the metabolic networks operating during fruit ripening. PMID:19429602

  14. Impact of caspase-1/11, -3, -7, or IL-1β/IL-18 deficiency on rabies virus-induced macrophage cell death and onset of disease.

    PubMed

    Kip, E; Nazé, F; Suin, V; Vanden Berghe, T; Francart, A; Lamoral, S; Vandenabeele, P; Beyaert, R; Van Gucht, S; Kalai, M

    2017-01-01

    Rabies virus is a highly neurovirulent RNA virus, which causes about 59000 deaths in humans each year. Previously, we described macrophage cytotoxicity upon infection with rabies virus. Here we examined the type of cell death and the role of specific caspases in cell death and disease development upon infection with two laboratory strains of rabies virus: Challenge Virus Standard strain-11 (CVS-11) is highly neurotropic and lethal for mice, while the attenuated Evelyn-Rotnycki-Abelseth (ERA) strain has a broader cell tropism, is non-lethal and has been used as an oral vaccine for animals. Infection of Mf4/4 macrophages with both strains led to caspase-1 activation and IL-1β and IL-18 production, as well as activation of caspases-3, -7, -8, and -9. Moreover, absence of caspase-3, but not of caspase-1 and -11 or -7, partially inhibited virus-induced cell death of bone marrow-derived macrophages. Intranasal inoculation with CVS-11 of mice deficient for either caspase-1 and -11 or -7 or both IL-1β and IL-18 led to general brain infection and lethal disease similar to wild-type mice. Deficiency of caspase-3, on the other hand, significantly delayed the onset of disease, but did not prevent final lethal outcome. Interestingly, deficiency of caspase-1/11, the key executioner of pyroptosis, aggravated disease severity caused by ERA virus, whereas wild-type mice or mice deficient for either caspase-3, -7, or both IL-1β and IL-18 presented the typical mild symptoms associated with ERA virus. In conclusion, rabies virus infection of macrophages induces caspase-1- and caspase-3-dependent cell death. In vivo caspase-1/11 and caspase-3 differently affect disease development in response to infection with the attenuated ERA strain or the virulent CVS-11 strain, respectively. Inflammatory caspases seem to control attenuated rabies virus infection, while caspase-3 aggravates virulent rabies virus infection.

  15. Optimization of a Virus-Induced Gene Silencing System with Soybean yellow common mosaic virus for Gene Function Studies in Soybeans.

    PubMed

    Kim, Kil Hyun; Lim, Seungmo; Kang, Yang Jae; Yoon, Min Young; Nam, Moon; Jun, Tae Hwan; Seo, Min-Jung; Baek, Seong-Bum; Lee, Jeom-Ho; Moon, Jung-Kyung; Lee, Suk-Ha; Lee, Su-Heon; Lim, Hyoun-Sub; Moon, Jae Sun; Park, Chang-Hwan

    2016-04-01

    Virus-induced gene silencing (VIGS) is an effective tool for the study of soybean gene function. Successful VIGS depends on the interaction between virus spread and plant growth, which can be influenced by environmental conditions. Recently, we developed a new VIGS system derived from the Soybean yellow common mosaic virus (SYCMV). Here, we investigated several environmental and developmental factors to improve the efficiency of a SYCMV-based VIGS system to optimize the functional analysis of the soybean. Following SYCMV: Glycine max-phytoene desaturase (GmPDS) infiltration, we investigated the effect of photoperiod, inoculation time, concentration of Agrobacterium inoculm, and growth temperature on VIGS efficiency. In addition, the relative expression of GmPDS between non-silenced and silenced plants was measured by qRT-PCR. We found that gene silencing efficiency was highest at a photoperiod of 16/8 h (light/dark) at a growth temperature of approximately 27°C following syringe infiltration to unrolled unifoliolate leaves in cotyledon stage with a final SYCMV:GmPDS optimal density (OD)600 of 2.0. Using this optimized protocol, we achieved high efficiency of GmPDS-silencing in various soybean germplasms including cultivated and wild soybeans. We also confirmed that VIGS occurred in the entire plant, including the root, stem, leaves, and flowers, and could transmit GmPDS to other soybean germplasms via mechanical inoculation. This optimized protocol using a SYCMV-based VIGS system in the soybean should provide a fast and effective method to elucidate gene functions and for use in large-scale screening experiments.

  16. Identification of Novel Pepper Genes Involved in Bax- or INF1-Mediated Cell Death Responses by High-Throughput Virus-Induced Gene Silencing

    PubMed Central

    Lee, Jeong Hee; Kim, Young Cheol; Choi, Doil; Park, Jeong Mee

    2013-01-01

    Hot pepper is one of the economically important crops in Asia. A large number of gene sequences, including expressed sequence tag (EST) and genomic sequences are publicly available. However, it is still a daunting task to determine gene function due to difficulties in genetic modification of a pepper plants. Here, we show the application of the virus-induced gene silencing (VIGS) repression for the study of 459 pepper ESTs selected as non-host pathogen-induced cell death responsive genes from pepper microarray experiments in Nicotiana benthamiana. Developmental abnormalities in N. benthamiana plants are observed in the 32 (7%) pepper ESTs-silenced plants. Aberrant morphological phenotypes largely comprised of three groups: stunted, abnormal leaf, and dead. In addition, by employing the combination of VIGS and Agrobacterium-mediated transient assays, we identified novel pepper ESTs that involved in Bax or INF1-mediated cell death responses. Silencing of seven pepper ESTs homologs suppressed Bax or INF1-induced cell death, five of which suppressed both cell death responses in N. benthamiana. The genes represented by these five ESTs encode putative proteins with functions in endoplasmic reticulum (ER) stress and lipid signaling. The genes represented by the other two pepper ESTs showing only Bax-mediated cell death inhibition encode a CCCH-type zinc finger protein containing an ankyrin-repeat domain and a probable calcium-binding protein, CML30-like. Taken together, we effectively isolated novel pepper clones that are involved in hypersensitive response (HR)-like cell death using VIGS, and identified silenced clones that have different responses to Bax and INF1 exposure, indicating separate signaling pathways for Bax- and INF1-mediated cell death. PMID:24256816

  17. Molecular Cloning and Functional Characterization of the Lycopene ε-Cyclase Gene via Virus-Induced Gene Silencing and Its Expression Pattern in Nicotiana tabacum

    PubMed Central

    Shi, Yanmei; Wang, Ran; Luo, Zhaopeng; Jin, Lifeng; Liu, Pingping; Chen, Qiansi; Li, Zefeng; Li, Feng; Wei, Chunyang; Wu, Mingzhu; Wei, Pan; Xie, He; Qu, Lingbo; Lin, Fucheng; Yang, Jun

    2014-01-01

    Lycopene ε-cyclase (ε-LCY) is a key enzyme that catalyzes the synthesis of α-branch carotenoids through the cyclization of lycopene. Two cDNA molecules encoding ε-LCY (designated Ntε-LCY1 and Ntε-LCY2) were cloned from Nicotiana tabacum. Ntε-LCY1 and Ntε-LCY2 are encoded by two distinct genes with different evolutionary origins, one originating from the tobacco progenitor, Nicotiana sylvestris, and the other originating from Nicotiana tomentosiformis. The two coding regions are 97% identical at the nucleotide level and 95% identical at the amino acid level. Transcripts of Ntε-LCY were detectable in both vegetative and reproductive organs, with a relatively higher level of expression in leaves than in other tissues. Subcellular localization experiments using an Ntε-LCY1-GFP fusion protein demonstrated that mature Ntε-LCY1 protein is localized within the chloroplast in Bright Yellow 2 suspension cells. Under low-temperature and low-irradiation stress, Ntε-LCY transcript levels substantially increased relative to control plants. Tobacco rattle virus (TRV)-mediated silencing of ε-LCY in Nicotiana benthamiana resulted in an increase of β-branch carotenoids and a reduction in the levels of α-branch carotenoids. Meanwhile, transcripts of related genes in the carotenoid biosynthetic pathway observably increased, with the exception of β-OHase in the TRV-ε-lcy line. Suppression of ε-LCY expression was also found to alleviate photoinhibition of Potosystem II in virus-induced gene silencing (VIGS) plants under low-temperature and low-irradiation stress. Our results provide insight into the regulatory role of ε-LCY in plant carotenoid biosynthesis and suggest a role for ε-LCY in positively modulating low temperature stress responses. PMID:25153631

  18. Antibody response is required for protection from Theiler's virus-induced encephalitis in C57BL/6 mice in the absence of CD8{sup +} T cells

    SciTech Connect

    Kang, B.-S.; Palma, Joann P.; Lyman, Michael A.; Dal Canto, Mauro; Kim, Byung S. . E-mail: bskim@northwestern.edu

    2005-09-15

    Intracerebral infection of susceptible mice with Theiler's murine encephalomyelitis virus (TMEV) induces immune-mediated demyelinating disease and this system serves as a relevant infectious model for human multiple sclerosis. It was previously shown that {beta}{sub 2}M-deficient C57BL/6 mice lacking functional CD8{sup +} T cells display increased viral persistence and enhanced susceptibility to TMEV-induced demyelination, and yet the majority of mice are free of clinical signs. To understand the mechanisms involved in this general resistance of C57BL/6 mice in the absence of CTL responses, mice ({mu}MT) deficient in the B-cell compartment lacking membrane IgM molecules were treated with anti-CD8 antibody and then infected with TMEV. Although little difference in the proliferative responses of peripheral T cells to UV-inactivated TMEV and the resistance to demyelinating disease was observed between virus-infected {mu}MT and control B6 mice, the levels of CD4{sup +} T cells were higher in the CNS of {mu}MT mice. However, after treatment with anti-CD8 antibody, 100% of the mice displayed clinical gray matter disease and prolonged viral persistence in {mu}MT mice, while only 10% of B6 mice showed clinical symptoms and very low viral persistence. Transfusion of sera from TMEV-infected B6 mice into anti-CD8 antibody-treated {mu}MT mice partially restored resistance to virus-induced encephalitis. These results indicate that the early anti-viral antibody response is also important in the protection from TMEV-induced encephalitis particularly in the absence of CD8{sup +} T cells.

  19. Kaempferol ameliorates H9N2 swine influenza virus-induced acute lung injury by inactivation of TLR4/MyD88-mediated NF-κB and MAPK signaling pathways.

    PubMed

    Zhang, Ruihua; Ai, Xia; Duan, Yongjie; Xue, Man; He, Wenxiao; Wang, Cunlian; Xu, Tong; Xu, Mingju; Liu, Baojian; Li, Chunhong; Wang, Zhijun; Zhang, Ruihong; Wang, Guohua; Tian, Shufei; Liu, Huifeng

    2017-03-02

    Kaempferol, a very common type of dietary flavonoids, has been found to exert antioxidative and anti-inflammatory properties. The purpose of our investigation was designed to reveal the effect of kaempferol on H9N2 influenza virus-induced inflammation in vivo and in vitro. In vivo, BALB/C mice were infected intranasally with H9N2 influenza virus with or without kaempferol treatment to induce acute lung injury (ALI) model. In vitro, MH-S cells were infected with H9N2 influenza virus with or without kaempferol treatment. In vivo, kaempferol treatment attenuated pulmonary edema, the W/D mass ratio, pulmonary capillary permeability, myeloperoxidase (MPO) activity, and the numbers of inflammatory cells. Kaempferol reduced ROS and Malondialdehyde (MDA) production, and increased the superoxide dismutase (SOD) activity. Kaempferol also reduced overproduction of TNF-α, IL-1β and IL-6. In addition, kaempferol decreased the H9N2 viral titre. In vitro, ROS, MDA, TNF-α, IL-1β and IL-6 was also reduced by kaempferol. Moreover, our data showed that kaempferol significantly inhibited the upregulation of toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), phosphorylation level of IκBα and nuclear factor-κB (NF-κB) p65, NF-κB p65 DNA binding activity, and phosphorylation level of MAPKs, both in vivo and in vitro. These results suggest that kaempferol exhibits a protective effect on H9N2 virus-induced inflammation via suppression of TLR4/MyD88-mediated NF-κB and MAPKs pathways, and kaempferol may be considered as an effective drug for the potential treatment of influenza virus-induced ALI.

  20. Zika Virus Induced Cellular Remodeling.

    PubMed

    Rossignol, Evan D; Peters, Kristen N; Connor, John H; Bullitt, Esther

    2017-03-20

    Zika virus (ZIKV) has been associated with morbidities such as Guillain-Barré, infant microcephaly, and ocular disease. The spread of this positive-sense, single-stranded RNA virus and its growing public health threat underscore gaps in our understanding of basic ZIKV virology. To advance knowledge of the virus replication cycle within mammalian cells, we use serial section three-dimensional electron tomography to demonstrate the widespread remodeling of intracellular membranes upon infection with ZIKV. We report extensive structural rearrangements of the endoplasmic reticulum and reveal stages of the ZIKV viral replication cycle. Structures associated with RNA genome replication and virus assembly are observed integrated within the endoplasmic reticulum, and we show viruses in transit through the Golgi apparatus for viral maturation, and subsequent cellular egress. This study characterizes in detail the three-dimensional ultrastructural organization of the ZIKV replication cycle stages. Our results show close adherence of the ZIKV replication cycle to the existing flavivirus replication paradigm.

  1. Expression of Respiratory Syncytial Virus-Induced Chemokine Gene Networks in Lower Airway Epithelial Cells Revealed by cDNA Microarrays

    PubMed Central

    Zhang, Yuhong; Luxon, Bruce A.; Casola, Antonella; Garofalo, Roberto P.; Jamaluddin, Mohammad; Brasier, Allan R.

    2001-01-01

    expression by RSV-infected lower airway epithelial cells of chemokines, chemotactic proteins which may be responsible for the complex cellular infiltrate in virus-induced respiratory inflammation. PMID:11533168

  2. Elucidating the role of highly homologous Nicotiana benthamiana ubiquitin E2 gene family members in plant immunity through an improved virus-induced gene silencing approach.

    PubMed

    Zhou, Bangjun; Zeng, Lirong

    2017-01-01

    Virus-induced gene silencing (VIGS) has been used in many plant species as an attractive post transcriptional gene silencing (PTGS) method for studying gene function either individually or at large-scale in a high-throughput manner. However, the specificity and efficiency for knocking down members of a highly homologous gene family have remained to date a significant challenge in VIGS due to silencing of off-targets. Here we present an improved method for the selection and evaluation of gene fragments used for VIGS to specifically and efficiently knock down members of a highly homologous gene family. Using this method, we knocked down twelve and four members, respectively of group III of the gene family encoding ubiquitin-conjugating enzymes (E2) in Nicotiana benthamiana. Assays using these VIGS-treated plants revealed that the group III E2s are essential for plant development, plant immunity-associated reactive oxygen species (ROS) production, expression of the gene NbRbohB that is required for ROS production, and suppression of immunity-associated programmed cell death (PCD) by AvrPtoB, an effector protein of the bacterial pathogen Pseudomons syringae. Moreover, functional redundancy for plant development and ROS production was found to exist among members of group III E2s. We have found that employment of a gene fragment as short as approximately 70 base pairs (bp) that contains at least three mismatched nucleotides to other genes within any 21-bp sequences prevents silencing of off-target(s) in VIGS. This improved approach in the selection and evaluation of gene fragments allows for specific and efficient knocking down of highly homologous members of a gene family. Using this approach, we implicated N. benthamiana group III E2s in plant development, immunity-associated ROS production, and suppression of multiple immunity-associated PCD by AvrPtoB. We also unraveled functional redundancy among group III members in their requirement for plant development and

  3. Prevention of influenza virus induced bacterial superinfection by standardized Echinacea purpurea, via regulation of surface receptor expression in human bronchial epithelial cells.

    PubMed

    Vimalanathan, Selvarani; Schoop, Roland; Suter, Andy; Hudson, James

    2017-04-02

    risk of respiratory complications by preventing virus-induced bacterial adhesion and through the inhibition of inflammation super-stimulation (cytokine storms). Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Studies on the induction of histocompatibility gene mutations in germ cells of mice by chemical mutagens and/or virus-inducing compounds.

    PubMed

    Harnasch, D; Stumpf, R

    1984-05-01

    This work continues earlier studies concerning the use of histocompatibility mutations in mammalian germ cells as a mutagenicity test system (H test). The rate of spontaneous H mutations was re-examined using a new basis for the classification of H mutants. This procedure led to very high frequencies of suspected spontaneous H mutants: among C57Bl/6 mice, 6% and among C3H mice, 9%. F2 hybrids of a cross between these strains revealed 1% suspected H mutants. Using the same procedure, the sensitivity of the H test was examined with the mutagens ethylnitrosourea, benzo[a]pyrene, 2-acetylaminofluorene (2-AAF), with the solvent dimethyl sulfoxide (DMSO) and with the antibacterial nitrofurantoin. It was possible to demonstrate the mutagenic potential of all mutagens tested as well as their specific action on the different stages of male germ cell development. We succeeded in demonstrating the mutagenicity of 2-AAF for the first time in germ cells of a mammal. In contrast to the negative result with benzopyrene (BP) in the specific locus test, BP induced H mutants even at the very low dose of 2 mg/kg. DMSO was found to induce H mutations in spermatogonia. This extraordinary result is possibly due to the virus-inducing properties of this compound. Nitrofurantoin which is often used in treating bacterial infections of the urinary tract in humans showed a very stage-specific action on maturing spermatids. The value of the H test for mutagenicity testing is discussed with respect to its sensitivity and economy. The very high spontaneous frequency of suspected H mutants and the ease of inducing increased mutant frequencies by mutagens and by DMSO suggest the possibility that the majority of the histoincompatibilities found in the H test are due to induced antigenic gene products of endogenous viruses. This, however, does not interfere with the applicability of the H test for mutagenicity testing, but rather seems to augment its sensitivity to alkylating mutagens as well as

  5. Tomato Infection by Whitefly-Transmitted Circulative and Non-Circulative Viruses Induce Contrasting Changes in Plant Volatiles and Vector Behaviour

    PubMed Central

    Fereres, Alberto; Peñaflor, Maria Fernanda G. V.; Favaro, Carla F.; Azevedo, Kamila E. X.; Landi, Carolina H.; Maluta, Nathalie K. P.; Bento, José Mauricio S.; Lopes, Joao R.S.

    2016-01-01

    , this type of virus-induced manipulation of vector behaviour was not observed for the semi persistent crinivirus, ToCV, which is not specifically transmitted by B. tabaci and has a much less intimate virus-vector relationship. PMID:27529271

  6. Cerebrospinal fluid cyto-/chemokine profile during acute herpes simplex virus induced anti-N-methyl-d-aspartate receptor encephalitis and in chronic neurological sequelae.

    PubMed

    Kothur, Kavitha; Gill, Deepak; Wong, Melanie; Mohammad, Shekeeb S; Bandodkar, Sushil; Arbunckle, Susan; Wienholt, Louise; Dale, Russell C

    2017-08-01

    To examine the cytokine/chemokine profile of cerebrospinal fluid (CSF) during acute herpes simplex virus-induced N-methyl-d-aspartate receptor (NMDAR) autoimmunity and in chronic/relapsing post-herpes simplex virus encephalitis (HSE) neurological syndromes. We measured longitudinal serial CSF cyto-/chemokines (n=34) and a glial marker (calcium-binding astroglial protein, S100B) in one patient during acute HSE and subsequent anti-NMDAR encephalitis, and compared the results with those from two patients with anti-NMDAR encephalitis without preceding HSE. We also compared cyto-/chemokines in cross-sectional CSF samples from three children with previous HSE who had ongoing chronic or relapsing neurological symptoms (2yr 9 mo-16y after HSE) with those in a group of children having non-inflammatory neurological conditions (n=20). Acute HSE showed elevation of a broad range of all T-helper-subset-related cyto-/chemokines and S100B whereas the post-HSE anti-NMDAR encephalitis phase showed persistent elevation of two of five T-helper-1 (chemokine [C-X-C motif] ligand 9 [CXCL9], CXCL10), three of five predominantly B-cell (CXCL13, CCL19, a proliferation-inducing ligand [APRIL])-mediated cyto-/chemokines, and interferon-α. The post-HSE anti-NMDAR encephalitis inflammatory response was more pronounced than anti-NMDAR encephalitis. All three chronic post-HSE cases showed persistent elevation of CXCL9, CXCL10, and interferon-α, and there was histopathological evidence of chronic lymphocytic inflammation in one biopsied case 7 years after HSE. Two of three chronic cases showed a modest response to immune therapy. HSE-induced anti-NMDAR encephalitis is a complex and pronounced inflammatory syndrome. There is persistent CSF upregulation of cyto-/chemokines in chronic or relapsing post-HSE neurological symptoms, which may be modifiable with immune therapy. The elevated cyto-/chemokines may be targets of monoclonal therapies. © 2017 Mac Keith Press.

  7. Seasonal and pandemic influenza H1N1 viruses induce differential expression of SOCS-1 and RIG-I genes and cytokine/chemokine production in macrophages

    PubMed Central

    Ramírez-Martínez, Gustavo; Cruz-Lagunas, Alfredo; Jiménez-Alvarez, Luis; Espinosa, Enrique; Ortíz-Quintero, Blanca; Santos-Mendoza, Teresa; Herrera, María Teresa; Canché-Pool, Elsy; Mendoza, Criselda; Bañales, José L.; García-Moreno, Sara A.; Morán, Juan; Cabello, Carlos; Orozco, Lorena; Aguilar-Delfín, Irma; Hidalgo-Miranda, Alfredo; Romero, Sandra; Suratt, Benjamin T.; Selman, Moisés; Zúñiga, Joaquín

    2014-01-01

    Background Infection with pandemic (pdm) A/H1N1 virus induces high levels of pro-inflammatory mediators in blood and lungs of experimental animals and humans. Methods To compare the involvement of seasonal A/PR/8/34 and pdm A/H1N1 virus strains in the regulation of inflammatory responses, we analyzed the changes in the whole-genome expression induced by these strains in macrophages and A549 epithelial cells. We also focused on the functional implications (cytokine production) of the differential induction of suppressors of cytokine signaling (SOCS)-1, SOCS-3, retinoid-inducible gene (RIG)-I and interferon receptor 1 (IFNAR1) genes by these viral strains in early stages of the infection. Results We identified 130 genes differentially expressed by pdm A/H1N1 and A/PR/8/34 infections in macrophages. mRNA levels of SOCS-1 and RIG-I were up-regulated in macrophages infected with the A/PR/8/34 but not with pdm A/H1N1 virus. mRNA levels of SOCS-3 and IFNAR1 induced by A/PR/8/34 and pdm A/H1N1 strains in macrophages, as well as in A549 cells were similar. We found higher levels of IL-6, TNF-α, IL-10, CCL3, CCL5, CCL4 and CXCL8 (p<0.05) in supernatants from cultures of macrophages infected with the pdm A/H1N1 virus compared to those infected with the A/PR/8/34 strain, coincident with the lack of SOCS-1 and RIG-I expression. In contrast, levels of INF-α were higher in cultures of macrophages 48 h after infection with the A/PR/8/34 strain than with the pdm A/H1N1 virus. Conclusions These findings suggest that factors inherent to the pdm A/H1N1 viral strain may increase the production of inflammatory mediators by inhibiting SOCS-1 and modifying the expression of antiviral immunity-related genes, including RIG-I, in human macrophages. PMID:23434273

  8. Seasonal and pandemic influenza H1N1 viruses induce differential expression of SOCS-1 and RIG-I genes and cytokine/chemokine production in macrophages.

    PubMed

    Ramírez-Martínez, Gustavo; Cruz-Lagunas, Alfredo; Jiménez-Alvarez, Luis; Espinosa, Enrique; Ortíz-Quintero, Blanca; Santos-Mendoza, Teresa; Herrera, María Teresa; Canché-Pool, Elsy; Mendoza, Criselda; Bañales, José L; García-Moreno, Sara A; Morán, Juan; Cabello, Carlos; Orozco, Lorena; Aguilar-Delfín, Irma; Hidalgo-Miranda, Alfredo; Romero, Sandra; Suratt, Benjamin T; Selman, Moisés; Zúñiga, Joaquín

    2013-04-01

    Infection with pandemic (pdm) A/H1N1 virus induces high levels of pro-inflammatory mediators in blood and lungs of experimental animals and humans. To compare the involvement of seasonal A/PR/8/34 and pdm A/H1N1 virus strains in the regulation of inflammatory responses, we analyzed the changes in the whole-genome expression induced by these strains in macrophages and A549 epithelial cells. We also focused on the functional implications (cytokine production) of the differential induction of suppressors of cytokine signaling (SOCS)-1, SOCS-3, retinoid-inducible gene (RIG)-I and interferon receptor 1 (IFNAR1) genes by these viral strains in early stages of the infection. We identified 130 genes differentially expressed by pdm A/H1N1 and A/PR/8/34 infections in macrophages. mRNA levels of SOCS-1 and RIG-I were up-regulated in macrophages infected with the A/PR/8/34 but not with pdm A/H1N1 virus. mRNA levels of SOCS-3 and IFNAR1 induced by A/PR/8/34 and pdm A/H1N1 strains in macrophages, as well as in A549 cells were similar. We found higher levels of IL-6, TNF-α, IL-10, CCL3, CCL5, CCL4 and CXCL8 (p < 0.05) in supernatants from cultures of macrophages infected with the pdm A/H1N1 virus compared to those infected with the A/PR/8/34 strain, coincident with the lack of SOCS-1 and RIG-I expression. In contrast, levels of INF-α were higher in cultures of macrophages 48h after infection with the A/PR/8/34 strain than with the pdm A/H1N1 virus. These findings suggest that factors inherent to the pdm A/H1N1 viral strain may increase the production of inflammatory mediators by inhibiting SOCS-1 and modifying the expression of antiviral immunity-related genes, including RIG-I, in human macrophages. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Tomato Infection by Whitefly-Transmitted Circulative and Non-Circulative Viruses Induce Contrasting Changes in Plant Volatiles and Vector Behaviour.

    PubMed

    Fereres, Alberto; Peñaflor, Maria Fernanda G V; Favaro, Carla F; Azevedo, Kamila E X; Landi, Carolina H; Maluta, Nathalie K P; Bento, José Mauricio S; Lopes, Joao R S

    2016-08-11

    , this type of virus-induced manipulation of vector behaviour was not observed for the semi persistent crinivirus, ToCV, which is not specifically transmitted by B. tabaci and has a much less intimate virus-vector relationship.

  10. Solanum venturii, a suitable model system for virus-induced gene silencing studies in potato reveals StMKK6 as an important player in plant immunity.

    PubMed

    Dobnik, David; Lazar, Ana; Stare, Tjaša; Gruden, Kristina; Vleeshouwers, Vivianne G A A; Žel, Jana

    2016-01-01

    Virus-induced gene silencing (VIGS) is an optimal tool for functional analysis of genes in plants, as the viral vector spreads throughout the plant and causes reduced expression of selected gene over the whole plant. Potato (Solanum tuberosum) is one of the most important food crops, therefore studies performing functional analysis of its genes are very important. However, the majority of potato cultivars used in laboratory experimental setups are not well amenable to available VIGS systems, thus other model plants from Solanaceae family are used (usually Nicotiana benthamiana). Wild potato relatives can be a better choice for potato model, but their potential in this field was yet not fully explored. This manuscript presents the set-up of VIGS, based on Tobacco rattle virus (TRV) in wild potato relatives for functional studies in potato-virus interactions. Five different potato cultivars, usually used in our lab, did not respond to silencing of phytoene desaturase (PDS) gene with TRV-based vector. Thus screening of a large set of wild potato relatives (different Solanum species and their clones) for their susceptibility to VIGS was performed by silencing PDS gene. We identified several responsive species and further tested susceptibility of these genotypes to potato virus Y (PVY) strain NTN and N. In some species we observed that the presence of empty TRV vector restricted the movement of PVY. Fluorescently tagged PVY(N)-GFP spread systemically in only five of tested wild potato relatives. Based on the results, Solanum venturii (VNT366-2) was selected as the most suitable system for functional analysis of genes involved in potato-PVY interaction. The system was tested by silencing two different plant immune signalling-related kinases, StWIPK and StMKK6. Silencing of StMKK6 enabled faster spreading of the virus throughout the plant, while silencing of WIPK had no effect on spreading of the virus. The system employing S. venturii (VNT366-2) and PVY(N)-GFP is a

  11. Virus-induced gene-silencing in wheat spikes and grains and its application in functional analysis of HMW-GS-encoding genes.

    PubMed

    Ma, Meng; Yan, Yan; Huang, Li; Chen, Mingshun; Zhao, Huixian

    2012-08-10

    The Barley stripe mosaic virus (BSMV)-based vector has been developed and used for gene silencing in barley and wheat seedlings to assess gene functions in pathogen- or insect-resistance, but conditions for gene silencing in spikes and grains have not been evaluated. In this study, we explored the feasibility of using BSMV for gene silencing in wheat spikes or grains. Apparent photobleaching on the spikes infected with BSMV:PDS at heading stage was observed after 13 days post inoculation (dpi), and persisted until 30 dpi, while the spikes inoculated with BSMV:00 remained green during the same period. Grains of BSMV:PDS infected spikes also exhibited photobleaching. Molecular analysis indicated that photobleached spikes or grains resulted from the reduction of endogenous PDS transcript abundances, suggesting that BSMV:PDS was able to induce PDS silencing in wheat spikes and grains. Inoculation onto wheat spikes from heading to flowering stage was optimal for efficient silencing of PDS in wheat spikes. Furthermore, we used the BSMV-based system to reduce the transcript level of 1Bx14, a gene encoding for High-molecular-weight glutenin subunit 1Bx14 (HMW-GS 1Bx14), by 97 % in the grains of the BSMV:1Bx14 infected spikes at 15 dpi, compared with that in BSMV:00 infected spikes, and the reduction persisted until at least 25 dpi. The amount of the HMW-GS 1Bx14 was also detectably decreased. The percentage of glutenin macropolymeric proteins in total proteins was significantly reduced in the grains of 1Bx14-silenced plants as compared with that in the grains of BSMV:00 infected control plants, indicating that HMW-GS 1Bx14 is one of major components participating in the formation of glutenin macropolymers in wheat grains. This is one of the first reports of successful application of BSMV-based virus-induced-gene-silencing (VIGS) for gene knockdown in wheat spikes and grains and its application in functional analysis of the 1Bx14 gene. The established BSMV-VIGS system

  12. Immune- and Nonimmune-Compartment-Specific Interferon Responses Are Critical Determinants of Herpes Simplex Virus-Induced Generalized Infections and Acute Liver Failure.

    PubMed

    Parker, Zachary M; Pasieka, Tracy Jo; Parker, George A; Leib, David A

    2016-12-01

    blindness-inducing herpetic stromal keratitis, highly debilitating and lethal herpes simplex encephalitis, and generalized infections that can lead to herpes simplex virus-induced acute liver failure. While immune compromise is a known factor, the precise mechanisms that lead to generalized HSV infections are unknown. In this study, we used and developed a mouse model system in combination with real-time bioluminescence imaging to demonstrate the relative importance of the immune and nonimmune compartments for containing viral spread and promoting host survival after corneal infection. Our results shed light on the pathogenesis of HSV infections that lead to generalized infection and acute liver failure. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  13. Transcriptome Profiling of the Virus-Induced Innate Immune Response in Pteropus vampyrus and Its Attenuation by Nipah Virus Interferon Antagonist Functions

    PubMed Central

    Glennon, Nicole B.; Jabado, Omar; Lo, Michael K.

    2015-01-01

    ABSTRACT Bats are important reservoirs for several viruses, many of which cause lethal infections in humans but have reduced pathogenicity in bats. As the innate immune response is critical for controlling viruses, the nature of this response in bats and how it may differ from that in other mammals are of great interest. Using next-generation transcriptome sequencing (mRNA-seq), we profiled the transcriptional response of Pteropus vampyrus bat kidney (PVK) cells to Newcastle disease virus (NDV), an avian paramyxovirus known to elicit a strong innate immune response in mammalian cells. The Pteropus genus is a known reservoir of Nipah virus (NiV) and Hendra virus (HeV). Analysis of the 200 to 300 regulated genes showed that genes for interferon (IFN) and antiviral pathways are highly upregulated in NDV-infected PVK cells, including genes for beta IFN, RIG-I, MDA5, ISG15, and IRF1. NDV-infected cells also upregulated several genes not previously characterized to be antiviral, such as RND1, SERTAD1, CHAC1, and MORC3. In fact, we show that MORC3 is induced by both IFN and NDV infection in PVK cells but is not induced by either stimulus in human A549 cells. In contrast to NDV infection, HeV and NiV infection of PVK cells failed to induce these innate immune response genes. Likewise, an attenuated response was observed in PVK cells infected with recombinant NDVs expressing the NiV IFN antagonist proteins V and W. This study provides the first global profile of a robust virus-induced innate immune response in bats and indicates that henipavirus IFN antagonist mechanisms are likely active in bat cells. IMPORTANCE Bats are the reservoir host for many highly pathogenic human viruses, including henipaviruses, lyssaviruses, severe acute respiratory syndrome coronavirus, and filoviruses, and many other viruses have also been isolated from bats. Viral infections are reportedly asymptomatic or heavily attenuated in bat populations. Despite their ecological importance to viral

  14. Mutagenesis of Dengue Virus Protein NS2A Revealed a Novel Domain Responsible for Virus-Induced Cytopathic Effect and Interactions Between NS2A and NS2B Transmembrane Segments.

    PubMed

    Wu, Ren-Huang; Tsai, Ming-Han; Tsai, Kuen-Nan; Tian, Jia Ni; Wu, Jian-Sung; Wu, Su-Ying; Chern, Jyh-Haur; Chen, Chun-Hong; Yueh, Andrew

    2017-04-05

    The NS2A protein of Dengue virus (DENV) has eight predicted transmembrane segments (pTMS1-8) and participates in RNA replication, virion assembly, and host antiviral response. However, the roles of specific amino acid residues within the pTMS regions of NS2A during the viral life cycle are not clear. Here, we explored the function of DENV NS2A by introducing a series of alanine substitutions into the N-terminal half (pTMS1-4) of the protein in the context of a DENV infectious clone or subgenomic replicon. Six NS2A mutants (NM5, 7, 9, and 17-19) around pTMS1-2 displayed a novel phenotype showing a >1000-fold reduction in virus yield, an absence of plaque formation despite wild-type-like replicon activity, and infectious virus-like particle yields. The HEK293 cells infected with those six NS2A mutant viruses failed to cause a virus-induced cytopathic effect (CPE) by MitoCapture staining, cell proliferation, and lactate dehydrogenase release assays. Sequencing analyses of pseudorevertant viruses derived from lethal mutant viruses revealed two consensus reversion mutations, leucine-to-phenylalanine at codon 181 (L181F) within the pTMS7 of NS2A and isoleucine-to-threonine at codon 114 (I114T) within NS2B. The introduction of NS2A-L181F mutation into the lethal (NM15, 16, 25, and 33) and CPE-defective (NM7, 9, and 19) mutants substantially rescued virus infectivity and virus-induced CPE, respectively, whereas NS2B-L114T mutation rescued NM16, 25, and 33 mutants. In conclusion, the results revealed the essential roles of the N-terminal half of NS2A in RNA replication and virus-induced CPE. Intramolecular interactions between pTMSs of NS2A and intermolecular interactions between NS2A and NS2B protein were also implicated.Importance: The characterization of the N-terminal (current study) and C-terminal half of DENV NS2A is the most comprehensive mutagenesis study to date to investigate the function of NS2A during the flaviviral life cycle. A novel region responsible for

  15. The adenovirus EII early promoter has multiple EIA-sensitive elements, two of which function cooperatively in basal and virus-induced transcription.

    PubMed Central

    Manohar, C F; Kratochvil, J; Thimmapaya, B

    1990-01-01

    The mechanism by which the adenovirus-encoded nuclear oncogene EIA activates transcription of several viral and host promoters is an important issue in the regulation of eucaryotic gene expression and virus-host cell interactions. Identification of cis-acting elements of the promoters and the cognate host transcription factors that are targets for EIA action is crucial for our understanding of the EIA-mediated control of coordinately regulated genes. The adenovirus EII early promoter has a complex architecture and contains two overlapping promoters with start sites at +1 (major promoter) and -26 (minor promoter). The major promoter responds strongly to virus-encoded trans activators EIA and EIV and contains four elements: a TAGA motif analogous to the TATA box, two EIIF sites present in an inverted orientation, and an ATF/CREB site. To determine precisely the roles played by these cis-acting elements in both basal and virus-induced transcription when the promoter is situated in its natural context, we investigated the phenotype of a series of linker scan promoter substitution mutants inserted into the viral chromosome. Promoter constructs harboring linker scan mutations in each element were rebuilt into a novel EIA- adenovirus vector, and transcriptional activity was monitored in virus-infected cells. In the absence of virus-encoded trans activators, basal activity in vivo was dependent on all four cis-acting elements. Surprisingly, a promoter mutant with only one of the two EIIF sites intact could not promote transcription in vivo, suggesting that the two EIIF sites function cooperatively even in basal transcription. Promoters harboring mutations in either of these two EIIF sites also failed to bind to an infection-specific form of EIIF in gel shift assays and competed only very weakly for EIIF binding with the wild-type promoter fragment. The dramatic cooperativity shown by the two inverted EIIF sites of the EII promoter both in vivo and in vitro could reflect

  16. The TNF-family ligand TL1A and its receptor DR3 promote T cell-mediated allergic immunopathology by enhancing differentiation and pathogenicity of IL-9-producing T cells.

    PubMed

    Richard, Arianne C; Tan, Cuiyan; Hawley, Eric T; Gomez-Rodriguez, Julio; Goswami, Ritobrata; Yang, Xiang-Ping; Cruz, Anthony C; Penumetcha, Pallavi; Hayes, Erika T; Pelletier, Martin; Gabay, Odile; Walsh, Matthew; Ferdinand, John R; Keane-Myers, Andrea; Choi, Yongwon; O'Shea, John J; Al-Shamkhani, Aymen; Kaplan, Mark H; Gery, Igal; Siegel, Richard M; Meylan, Françoise

    2015-04-15

    The TNF family cytokine TL1A (Tnfsf15) costimulates T cells and type 2 innate lymphocytes (ILC2) through its receptor DR3 (Tnfrsf25). DR3-deficient mice have reduced T cell accumulation at the site of inflammation and reduced ILC2-dependent immune responses in a number of models of autoimmune and allergic diseases. In allergic lung disease models, immunopathology and local Th2 and ILC2 accumulation is reduced in DR3-deficient mice despite normal systemic priming of Th2 responses and generation of T cells secreting IL-13 and IL-4, prompting the question of whether TL1A promotes the development of other T cell subsets that secrete cytokines to drive allergic disease. In this study, we find that TL1A potently promotes generation of murine T cells producing IL-9 (Th9) by signaling through DR3 in a cell-intrinsic manner. TL1A enhances Th9 differentiation through an IL-2 and STAT5-dependent mechanism, unlike the TNF-family member OX40, which promotes Th9 through IL-4 and STAT6. Th9 differentiated in the presence of TL1A are more pathogenic, and endogenous TL1A signaling through DR3 on T cells is required for maximal pathology and IL-9 production in allergic lung inflammation. Taken together, these data identify TL1A-DR3 interactions as a novel pathway that promotes Th9 differentiation and pathogenicity. TL1A may be a potential therapeutic target in diseases dependent on IL-9. Copyright © 2015 by The American Association of Immunologists, Inc.

  17. The TNF-family ligand TL1A and its receptor DR3 promote T-cell mediated allergic immunopathology by enhancing differentiation and pathogenicity of IL-9 producing T cells1

    PubMed Central

    Richard, Arianne C.; Tan, Cuiyan; Hawley, Eric T.; Gomez-Rodriguez, Julio; Goswami, Ritobrata; Yang, Xiang-ping; Cruz, Anthony C.; Penumetcha, Pallavi; Hayes, Erika T.; Pelletier, Martin; Gabay, Odile; Walsh, Matthew; Ferdinand, John R.; Keane-Myers, Andrea; Choi, Yongwon; O'Shea, John J.; Al-Shamkhani, Aymen; Kaplan, Mark H.; Gery, Igal; Siegel, Richard M.; Meylan, Françoise

    2015-01-01

    The TNF family cytokine TL1A (Tnfsf15) costimulates T cells and type 2 innate lymphocytes (ILC2) through its receptor DR3 (Tnfrsf25). DR3-deficient mice have reduced T cell accumulation at the site of inflammation, and reduced ILC2-dependent immune responses in a number of models of autoimmune and allergic diseases. In allergic lung disease models, immunopathology and local Th2 and ILC2 accumulation is reduced in DR3 deficient mice despite normal systemic priming of Th2 responses and generation of T cells secreting IL-13 and IL-4, prompting the question of whether TL1A promotes the development of other T cell subsets that secrete cytokines to drive allergic disease. Here we find that TL1A potently promotes generation of murine T cells producing IL-9 (Th9) by signaling through DR3 in a cell-intrinsic manner. TL1A enhances Th9 differentiation through an IL-2 and STAT5-dependent mechanism, unlike the TNF-family member OX40, which promotes Th9 through IL-4 and STAT6. Th9 differentiated in the presence of TL1A are more pathogenic, and endogenous TL1A signaling through DR3 on T cells is required for maximal pathology and IL-9 production in allergic lung inflammation. Taken together, these data identify TL1A-DR3 interactions as a novel pathway that promotes Th9 differentiation and pathogenicity. TL1A may be a potential therapeutic target in diseases dependent on IL-9. PMID:25786692

  18. [Chronic posttraumatic ostemyelitis. 3. Immunopathological aspects].

    PubMed

    Ring, V J; Seifert, J; Probst, J; Brendel, W

    1976-02-05

    3. Immunological aspects 90 patients suffering from chronic posttraumatic osteomyelitis were examined immunologically. In 10-20% of the patients serum immunoglobulin levels were changed. Only 45% of the patients with staphylococcal infection had a positive anti-staphylolysin titer. In 10% of the patients so-called wound-specific antibodies were demonstrated; their possible autoimmune origin is discussed. A comparison of three groups of patients according to the immunological reactivity "hypoimmune", "humoral hyper-immune" and "cellular hyperimmune" showed that the worst clinical courses were observed in patinets with established delayed type hypersensitivity.

  19. Immune Restoration Diseases Reflect Diverse Immunopathological Mechanisms

    PubMed Central

    Price, Patricia; Murdoch, David M.; Agarwal, Upasna; Lewin, Sharon R.; Elliott, Julian H.; French, Martyn A.

    2009-01-01

    Summary: Up to one in four patients infected with human immunodeficiency virus type 1 and given antiretroviral therapy (ART) experiences inflammatory or cellular proliferative disease associated with a preexisting opportunistic infection, which may be subclinical. These immune restoration diseases (IRD) appear to result from the restoration of immunocompetence. IRD associated with intracellular pathogens are characterized by cellular immune responses and/or granulomatous inflammation. Mycobacterial and cryptococcal IRD are attributed to a pathological overproduction of Th1 cytokines. Clinicopathological characteristics of IRD associated with vi