Science.gov

Sample records for chorismate synthase revealed

  1. Functional Contribution of Chorismate Synthase, Anthranilate Synthase, and Chorismate Mutase to Penetration Resistance in Barley-Powdery Mildew Interactions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant processes resulting from primary or secondary metabolism have been hypothesized to contribute to defense against microbial attack. Barley chorismate synthase (HvCS), anthranilate synthase alpha subunit 2 (HvASa2) and chorismate mutase 1 (HvCM1) occupy pivotal branch-points downstream of the s...

  2. Structural analysis of a 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase with an N-terminal chorismate mutase-like regulatory domain

    SciTech Connect

    Light, Samuel H.; Halavaty, Andrei S.; Minasov, George; Shuvalova, Ludmilla; Anderson, Wayne F.

    2012-06-27

    3-Deoxy-D-arabino-heptulosonate 7-phosphate synthase (DAHPS) catalyzes the first step in the biosynthesis of a number of aromatic metabolites. Likely because this reaction is situated at a pivotal biosynthetic gateway, several DAHPS classes distinguished by distinct mechanisms of allosteric regulation have independently evolved. One class of DAHPSs contains a regulatory domain with sequence homology to chorismate mutase - an enzyme further downstream of DAHPS that catalyzes the first committed step in tyrosine/phenylalanine biosynthesis - and is inhibited by chorismate mutase substrate (chorismate) and product (prephenate). Described in this work, structures of the Listeria monocytogenes chorismate/prephenate regulated DAHPS in complex with Mn{sup 2+} and Mn{sup 2+} + phosphoenolpyruvate reveal an unusual quaternary architecture: DAHPS domains assemble as a tetramer, from either side of which chorismate mutase-like (CML) regulatory domains asymmetrically emerge to form a pair of dimers. This domain organization suggests that chorismate/prephenate binding promotes a stable interaction between the discrete regulatory and catalytic domains and supports a mechanism of allosteric inhibition similar to tyrosine/phenylalanine control of a related DAHPS class. We argue that the structural similarity of chorismate mutase enzyme and CML regulatory domain provides a unique opportunity for the design of a multitarget antibacterial.

  3. Conversion of anthranilate synthase into isochorismate synthase: implications for the evolution of chorismate-utilizing enzymes.

    PubMed

    Plach, Maximilian G; Löffler, Patrick; Merkl, Rainer; Sterner, Reinhard

    2015-09-14

    Chorismate-utilizing enzymes play a vital role in the biosynthesis of metabolites in plants as well as free-living and infectious microorganisms. Among these enzymes are the homologous primary metabolic anthranilate synthase (AS) and secondary metabolic isochorismate synthase (ICS). Both catalyze mechanistically related reactions by using ammonia and water as nucleophiles, respectively. We report that the nucleophile specificity of AS can be extended from ammonia to water by just two amino acid exchanges in a channel leading to the active site. The observed ICS/AS bifunctionality demonstrates that a secondary metabolic enzyme can readily evolve from a primary metabolic enzyme without requiring an initial gene duplication event. In a general sense, these findings add to our understanding how nature has used the structurally predetermined features of enzyme superfamilies to evolve new reactions.

  4. Conversion of aminodeoxychorismate synthase into anthranilate synthase with Janus mutations: mechanism of pyruvate elimination catalyzed by chorismate enzymes.

    PubMed

    Culbertson, Justin E; Chung, Dong hee; Ziebart, Kristin T; Espiritu, Eduardo; Toney, Michael D

    2015-04-14

    The central importance of chorismate enzymes in bacteria, fungi, parasites, and plants combined with their absence in mammals makes them attractive targets for antimicrobials and herbicides. Two of these enzymes, anthranilate synthase (AS) and aminodeoxychorismate synthase (ADCS), are structurally and mechanistically similar. The first catalytic step, amination at C2, is common between them, but AS additionally catalyzes pyruvate elimination, aromatizing the aminated intermediate to anthranilate. Despite prior attempts, the conversion of a pyruvate elimination-deficient enzyme into an elimination-proficient one has not been reported. Janus, a bioinformatics method for predicting mutations required to functionally interconvert homologous enzymes, was employed to predict mutations to convert ADCS into AS. A genetic selection on a library of Janus-predicted mutations was performed. Complementation of an AS-deficient strain of Escherichia coli grown on minimal medium led to several ADCS mutants that allow growth in 6 days compared to 2 days for wild-type AS. The purified mutant enzymes catalyze the conversion of chorismate to anthranilate at rates that are ∼50% of the rate of wild-type ADCS-catalyzed conversion of chorismate to aminodeoxychorismate. The residues mutated do not contact the substrate. Molecular dynamics studies suggest that pyruvate elimination is controlled by the conformation of the C2-aminated intermediate. Enzymes that catalyze elimination favor the equatorial conformation, which presents the C2-H to a conserved active site lysine (Lys424) for deprotonation and maximizes stereoelectronic activation. Acid/base catalysis of pyruvate elimination was confirmed in AS and salicylate synthase by showing incorporation of a solvent-derived proton into the pyruvate methyl group and by solvent kinetic isotope effects on pyruvate elimination catalyzed by AS. PMID:25710100

  5. Crystallization and X-ray diffraction analysis of salicylate synthase, a chorismate-utilizing enyme involved in siderophore biosynthesis

    SciTech Connect

    Parsons, James F. Shi, Katherine; Calabrese, Kelly; Ladner, Jane E.

    2006-03-01

    Salicylate synthase, which catalyzes the first step in the synthesis of the siderophore yersiniabactin, has been crystallized. Diffraction data have been collected to 2.5 Å. Bacteria have evolved elaborate schemes that help them thrive in environments where free iron is severely limited. Siderophores such as yersiniabactin are small iron-scavenging molecules that are deployed by bacteria during iron starvation. Several studies have linked siderophore production and virulence. Yersiniabactin, produced by several Enterobacteriaceae, is derived from the key metabolic intermediate chorismic acid via its conversion to salicylate by salicylate synthase. Crystals of salicylate synthase from the uropathogen Escherichia coli CFT073 have been grown by vapour diffusion using polyethylene glycol as the precipitant. The monoclinic (P2{sub 1}) crystals diffract to 2.5 Å. The unit-cell parameters are a = 57.27, b = 164.07, c = 59.04 Å, β = 108.8°. The solvent content of the crystals is 54% and there are two molecules of the 434-amino-acid protein in the asymmetric unit. It is anticipated that the structure will reveal key details about the reaction mechanism and the evolution of salicylate synthase.

  6. Crystallization and X-ray diffraction analysis of salicylate synthase, a chorismate-utilizing enyme involved in siderophore biosynthesis

    PubMed Central

    Parsons, James F.; Shi, Katherine; Calabrese, Kelly; Ladner, Jane E.

    2006-01-01

    Bacteria have evolved elaborate schemes that help them thrive in environments where free iron is severely limited. Siderophores such as yersiniabactin are small iron-scavenging molecules that are deployed by bacteria during iron starvation. Several studies have linked siderophore production and virulence. Yersiniabactin, produced by several Enterobacteriaceae, is derived from the key metabolic intermediate chorismic acid via its conversion to salicylate by salicylate synthase. Crystals of salicylate synthase from the uropathogen Escherichia coli CFT073 have been grown by vapour diffusion using polyethylene glycol as the precipitant. The monoclinic (P21) crystals diffract to 2.5 Å. The unit-cell parameters are a = 57.27, b = 164.07, c = 59.04 Å, β = 108.8°. The solvent content of the crystals is 54% and there are two molecules of the 434-amino-acid protein in the asymmetric unit. It is anticipated that the structure will reveal key details about the reaction mechanism and the evolution of salicylate synthase. PMID:16511320

  7. Investigation of potential inhibitors of chorismate-utilizing enzymes.

    PubMed

    Švarcová, Markéta; Krátký, Martin; Vinšova, Jarmila

    2015-01-01

    Chorismate-utilizing enzymes (CUE) such as chorismate mutase, anthranilate synthase, chorismate pyruvate-lyase, 4-amino-4-deoxychorismate synthase, isochorismate synthase and salicylate synthase are responsible for converting chorismate into various products necessary for the survival of bacteria. The absence of these enzymes in humans and their importance in the virulence and survival of bacteria make them suitable targets for potential antimicrobial compounds. Furthermore, the CUE have significant structural homology and similar catalytic mechanisms, enabling the strategy of affecting multiple enzymes with one single inhibitor. This review follows up the investigation of mechanisms of CUE-catalysed reactions and the concurrent development of CUE inhibitors. Many active compounds were found amongst the structures mimicking the transition state of chorismate during the reaction. Most recently, high nanomolar and low micromolar inhibitors against isochorismate-pyruvate lyase were identified, which were also effective against chorismate mutase and salicylate synthase and belong to the most active inhibitors reported up to date.

  8. Synthesis and evaluation of 2,5-dihydrochorismate analogues as inhibitors of the chorismate-utilising enzymes.

    PubMed

    Payne, Richard J; Bulloch, Esther M M; Toscano, Miguel M; Jones, Michelle A; Kerbarh, Olivier; Abell, Chris

    2009-06-01

    A library of 2,5-dihydrochorismate analogues were designed as inhibitors of the chorismate-utilising enzymes including anthranilate synthase, isochorismate synthase, salicylate synthase and 4-amino-4-deoxychorismate synthase. The inhibitors were synthesised in seven or eight steps from shikimic acid, sourced from star anise. The compounds exhibited moderate but differential inhibition against the four chorismate-utilising enzymes.

  9. Crystallization and preliminary X-ray crystallographic studies of Mycobacterium tuberculosis chorismate mutase

    SciTech Connect

    Qamra, Rohini; Prakash, Prachee; Aruna, Bandi; Hasnain, Seyed E.; Mande, Shekhar C.

    2005-05-01

    Chorismate mutase from M. tuberculosis has been crystallized. Preliminary X-ray crystallographic studies reveal the occurrence of a dimeric molecule in the crystal asymmetric unit. Chorismate mutase catalyzes the first committed step in the biosynthesis of the aromatic amino acids phenylalanine and tyrosine in bacteria, fungi and higher plants. The recent re-annotation of the Mycobacterium tuberculosis genome has revealed the presence of a duplicate set of genes coding for chorismate mutase. The mycobacterial gene Rv1885c bears <20% sequence homology to other bacterial chorismate mutases, thus serving as a potential target for the development of inhibitors specific to the pathogen. The M. tuberculosis chorismate mutase was crystallized in space group C2 and the crystals diffracted to a resolution of 2.2 Å. Matthews coefficient and self-rotation function calculations revealed the presence of two monomers in the asymmetric unit.

  10. Pericyclic reactions catalyzed by chorismate-utilizing enzymes

    PubMed Central

    Lamb, Audrey L.

    2011-01-01

    One of the fundamental questions of enzymology is how catalytic power is derived. This review focuses on recent developments in the structure-function relationships of chorismate-utilizing enzymes involved in siderophore biosynthesis to provide insight into the biocatalysis of pericyclic reactions. Specifically, salicylate synthesis by the two-enzyme pathway in Pseudomonas aeruginosa is examined. The isochorismate-pyruvate lyase is discussed in the context of its homologues, the chorismate mutases, and the isochorismate synthase is compared to its homologues in the MST-family (menaquinone, siderophore or tryptophan biosynthesis) of enzymes. The tentative conclusion is that the activities observed cannot be reconciled by inspection of the active site participants alone. Instead, individual activities must arise from unique dynamic properties of each enzyme that are tuned to promote specific chemistries. PMID:21823653

  11. Structural evolution of differential amino acid effector regulation in plant chorismate mutases.

    PubMed

    Westfall, Corey S; Xu, Ang; Jez, Joseph M

    2014-10-10

    Chorismate mutase converts chorismate into prephenate for aromatic amino acid biosynthesis. To understand the molecular basis of allosteric regulation in the plant chorismate mutases, we analyzed the three Arabidopsis thaliana chorismate mutase isoforms (AtCM1-3) and determined the x-ray crystal structures of AtCM1 in complex with phenylalanine and tyrosine. Functional analyses show a wider range of effector control in the Arabidopsis chorismate mutases than previously reported. AtCM1 is activated by tryptophan with phenylalanine and tyrosine acting as negative effectors; however, tryptophan, cysteine, and histidine activate AtCM3. AtCM2 is a nonallosteric form. The crystal structure of AtCM1 in complex with tyrosine and phenylalanine identifies differences in the effector sites of the allosterically regulated yeast enzyme and the other two Arabidopsis isoforms. Site-directed mutagenesis of residues in the effector site reveals key features leading to differential effector regulation in these enzymes. In AtCM1, mutations of Gly-213 abolish allosteric regulation, as observed in AtCM2. A second effector site position, Gly-149 in AtCM1 and Asp-132 in AtCM3, controls amino acid effector specificity in AtCM1 and AtCM3. Comparisons of chorismate mutases from multiple plants suggest that subtle differences in the effector site are conserved in different lineages and may lead to specialized regulation of this branch point enzyme.

  12. The structure of MbtI from Mycobacterium tuberculosis, the first enzyme in the biosynthesis of the siderophore mycobactin, reveals it to be a salicylate synthase.

    PubMed

    Harrison, Anthony J; Yu, Minmin; Gårdenborg, Therés; Middleditch, Martin; Ramsay, Rochelle J; Baker, Edward N; Lott, J Shaun

    2006-09-01

    The ability to acquire iron from the extracellular environment is a key determinant of pathogenicity in mycobacteria. Mycobacterium tuberculosis acquires iron exclusively via the siderophore mycobactin T, the biosynthesis of which depends on the production of salicylate from chorismate. Salicylate production in other bacteria is either a two-step process involving an isochorismate synthase (chorismate isomerase) and a pyruvate lyase, as observed for Pseudomonas aeruginosa, or a single-step conversion catalyzed by a salicylate synthase, as with Yersinia enterocolitica. Here we present the structure of the enzyme MbtI (Rv2386c) from M. tuberculosis, solved by multiwavelength anomalous diffraction at a resolution of 1.8 A, and biochemical evidence that it is the salicylate synthase necessary for mycobactin biosynthesis. The enzyme is critically dependent on Mg2+ for activity and produces salicylate via an isochorismate intermediate. MbtI is structurally similar to salicylate synthase (Irp9) from Y. enterocolitica and the large subunit of anthranilate synthase (TrpE) and shares the overall architecture of other chorismate-utilizing enzymes, such as the related aminodeoxychorismate synthase PabB. Like Irp9, but unlike TrpE or PabB, MbtI is neither regulated by nor structurally stabilized by bound tryptophan. The structure of MbtI is the starting point for the design of inhibitors of siderophore biosynthesis, which may make useful lead compounds for the production of new antituberculosis drugs, given the strong dependence of pathogenesis on iron acquisition in M. tuberculosis. PMID:16923875

  13. Structure of Aminodeoxychorismate Synthase from Stenotrophomonas maltophilia†

    PubMed Central

    Bera, Asim K.; Atanasova, Vesna; Dhanda, Anjali; Ladner, Jane E.; Parsons, James F.

    2012-01-01

    PabB, aminodeoxychorismate synthase, is the chorismic acid binding component of the heterodimeric PabAB complex that converts chorismic acid to 4-amino-4-deoxychorismate, a precursor of p-aminobenzoate and folic acid in microorganisms. The second component, a glutamine amidotransferase subunit, PabA, generates ammonia that is channeled to the PabB active site where it attacks the C4 carbon of a chorismate derived intermediate that is covalently bound, through C2, to an active site lysine residue. The presence of a PIKGT motif was, until recently, believed to be discriminate PabB enzymes from the closely related enzyme anthranilate synthase, which typically contains a PIAGT active site motif and does not form a covalent enzyme-substrate intermediate with chorismate. A subclass of PabB enzymes that employ an alternative mechanism requiring two equivalents of ammonia from glutamine and that feature a noncovalently bound 2-amino-2-deoxyisochorismate intermediate was recently identified. Here we report the 2.25 Å crystal structure of PabB from the emerging pathogen Stenotrophomonas maltophilia. It is the first reported structure of a PabB that features the PIAGT motif. Surprisingly, no dedicated pabA is evident in the genome of S. maltophilia suggesting that another cellular amidotransferase is able to fulfill the role of PabA in this organism. Evaluation of the ammonia-dependent aminodeoxychorismate synthase activity of S. maltophilia PabB alone revealed that it is virtually inactive. However, in the presence of a heterologous PabA surrogate, typical levels of activity were observed using either glutamine or ammonia as the nitrogen source. Additionally, the structure suggests that a key segment of the polypeptide can remodel itself to interact with a nonspecialized or shared amidotransferase partner in vivo. The structure and mass spectral analysis further suggest that S. maltophilia PabB, like Escherichia coli PabB, binds tryptophan in a vestigial regulatory site

  14. Ligand binding induces an ammonia channel in 2-amino-2-desoxyisochorismate (ADIC) synthase PhzE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    PhzE utilizes chorismate and glutamine to synthesize 2-amino-2-desoxyisochorismate (ADIC) in the first step of phenazine biosynthesis. At variance with the related anthranilate synthase, the monomer of PhzE consists of a single chain that contains both a chorismate-converting domain of the menaquino...

  15. Irp9, encoded by the high-pathogenicity island of Yersinia enterocolitica, is able to convert chorismate into salicylate, the precursor of the siderophore yersiniabactin.

    PubMed

    Pelludat, Cosima; Brem, Daniela; Heesemann, Jürgen

    2003-09-01

    The Irp9 protein of Yersinia enterocolitica participates in the synthesis of salicylate, the precursor of the siderophore yersiniabactin. In Pseudomonas species, salicylate synthesis is mediated by two enzymes: isochorismate synthase and isochorismate pyruvate-lyase. Both enzymes are required for complementation of a Yersinia irp9 mutant. However, irp9 is not able to complement Escherichia coli entC for the production of enterobactin, which requires isochorismate as a precursor. These results suggest that Irp9 directly converts chorismate into salicylate.

  16. Structure and mechanism of MbtI, the salicylate synthase from Mycobacterium tuberculosis.

    PubMed

    Zwahlen, Jacque; Kolappan, Subramaniapillai; Zhou, Rong; Kisker, Caroline; Tonge, Peter J

    2007-01-30

    MbtI (rv2386c) from Mycobacterium tuberculosis catalyzes the initial transformation in mycobactin biosynthesis by converting chorismate to salicylate. We report here the structure of MbtI at 2.5 A resolution and demonstrate that isochorismate is a kinetically competent intermediate in the synthesis of salicylate from chorismate. At pH values below 7.5 isochorismate is the dominant product while above this pH value the enzyme converts chorismate to salicylate without the accumulation of isochorismate in solution. The salicylate and isochorismate synthase activities of MbtI are Mg2+-dependent, and in the absence of Mg2+ MbtI has a promiscuous chorismate mutase activity similar to that of the isochorismate pyruvate lyase, PchB, from Pseudomonas aeruginosa. MbtI is part of a larger family of chorismate-binding enzymes descended from a common ancestor (the MST family), that includes the isochorismate synthases and anthranilate synthases. The lack of active site residues unique to pyruvate eliminating members of this family, combined with the observed chorismate mutase activity, suggests that MbtI may exploit a sigmatropic pyruvate elimination mechanism similar to that proposed for PchB. Using a combination of structural, kinetic, and sequence based studies we propose a mechanism for MbtI applicable to all members of the MST enzyme family. PMID:17240979

  17. Structure and Mechanism of MbtI, the Salicylate Synthase from Mycobacterium tuberculosis

    SciTech Connect

    Zwahlen,J.; Kolappan, S.; Zhou, R.; Kisker, C.; Tonge, P.

    2007-01-01

    MbtI (rv2386c) from Mycobacterium tuberculosis catalyzes the initial transformation in mycobactin biosynthesis by converting chorismate to salicylate. We report here the structure of MbtI at 2.5 {angstrom} resolution and demonstrate that isochorismate is a kinetically competent intermediate in the synthesis of salicylate from chorismate. At pH values below 7.5 isochorismate is the dominant product while above this pH value the enzyme converts chorismate to salicylate without the accumulation of isochorismate in solution. The salicylate and isochorismate synthase activities of MbtI are Mg{sup 2+}-dependent, and in the absence of Mg{sup 2+} MbtI has a promiscuous chorismate mutase activity similar to that of the isochorismate pyruvate lyase, PchB, from Pseudomonas aeruginosa. MbtI is part of a larger family of chorismate-binding enzymes descended from a common ancestor (the MST family), that includes the isochorismate synthases and anthranilate synthases. The lack of active site residues unique to pyruvate eliminating members of this family, combined with the observed chorismate mutase activity, suggests that MbtI may exploit a sigmatropic pyruvate elimination mechanism similar to that proposed for PchB. Using a combination of structural, kinetic, and sequence based studies we propose a mechanism for MbtI applicable to all members of the MST enzyme family.

  18. Anthranilate synthase from Ruta graveolens. Duplicated AS alpha genes encode tryptophan-sensitive and tryptophan-insensitive isoenzymes specific to amino acid and alkaloid biosynthesis.

    PubMed Central

    Bohlmann, J; Lins, T; Martin, W; Eilert, U

    1996-01-01

    Anthranilate synthase (AS, EC 4.1.3.27) catalyzes the conversion of chorismate into anthranilate, the biosynthetic precursor of both tryptophan and numerous secondary metabolites, including inducible plant defense compounds. The higher plant Ruta graveolens produces tryptophan and elicitor-inducible, anthranilate-derived alkaloids by means of two differentially expressed nuclear genes for chloroplast-localized AS alpha subunits, AS alpha 1 and AS alpha 2. Mechanisms that partition chorismate between tryptophan and inducible alkaloids thus do not entail chloroplast/cytosol separation of AS isoenzymes and yet might involve differential feedback regulation of pathway-specific AS alpha subunits. The two AS alpha isoenzymes of R. graveolens were expressed as glutathione S-transferase fusion proteins in Escherichia coli deletion mutants defective in AS activity and were purified to homogeneity. Differential sensitivity of the transformed E. coli strains toward 5-methyltryptophan, a false-feedback inhibitor of AS, was demonstrated. Characterization of affinity-purified AS alpha isoenzymes revealed that the noninducible AS alpha 2 of R. graveolens is strongly feedback inhibited by 10 microns tryptophan. In contrast, the elicitor-inducible AS alpha 1 isoenzyme is only slightly affected even by tryptophan concentrations 10-fold higher than those observed in planta. These results are consistent with the hypothesis that chorismate flux into biosynthesis of tryptophan and defense-related alkaloid biosynthesis in R. graveolens is regulated at the site of AS alpha isoenzymes at both genetic and enzymatic levels. PMID:8787026

  19. Increase of 20-HETE synthase after brain ischemia in rats revealed by PET study with 11C-labeled 20-HETE synthase-specific inhibitor

    PubMed Central

    Kawasaki, Toshiyuki; Marumo, Toshiyuki; Shirakami, Keiko; Mori, Tomoko; Doi, Hisashi; Suzuki, Masaaki; Watanabe, Yasuyoshi; Chaki, Shigeyuki; Nakazato, Atsuro; Ago, Yukio; Hashimoto, Hitoshi; Matsuda, Toshio; Baba, Akemichi; Onoe, Hirotaka

    2012-01-01

    20-Hydroxyeicosatetraenoic acid (20-HETE), an arachidonic acid metabolite known to be produced after cerebral ischemia, has been implicated in ischemic and reperfusion injury by mediating vasoconstriction. To develop a positron emission tomography (PET) probe for 20-HETE synthase imaging, which might be useful for monitoring vasoconstrictive processes in patients with brain ischemia, we synthesized a 11C-labeled specific 20-HETE synthase inhibitor, N′(4-dimethylaminohexyloxy)phenyl imidazole ([11C]TROA). Autoradiographic study showed that [11C]TROA has high-specific binding in the kidney and liver consistent with the previously reported distribution of 20-HETE synthase. Using transient middle cerebral artery occlusion in rats, PET study showed significant increases in the binding of [11C]TROA in the ipsilateral hemisphere of rat brains after 7 and 10 days, which was blocked by co-injection of excess amounts of TROA (10 mg/kg). The increased [11C]TROA binding on the ipsilateral side returned to basal levels within 14 days. In addition, quantitative real-time PCR revealed that increased expression of 20-HETE synthase was only shown on the ipsilateral side on day 7. These results indicate that [11C]TROA might be a useful PET probe for imaging of 20-HETE synthase in patients with cerebral ischemia. PMID:22669478

  20. A new salicylate synthase AmS is identified for siderophores biosynthesis in Amycolatopsis methanolica 239(T).

    PubMed

    Xie, Feng; Dai, Shengwang; Shen, Jinzhao; Ren, Biao; Huang, Pei; Wang, Qiushui; Liu, Xueting; Zhang, Buchang; Dai, Huanqin; Zhang, Lixin

    2015-07-01

    Siderophores are important for the growth of bacteria or the applications in treatment of iron overload-associated diseases due to the iron-chelating property. Salicylate synthase played a key role in the biosynthesis of some NRPS-derived siderophores by the providing of an iron coordination moiety as the initial building block. A new salicylate synthase, namely AmS, was identified in the biosynthesis pathway of siderophore amychelin in Amycolatopsis methanolica 239(T), since it shunt chorismate, an integrant precursor, from primary to secondary metabolite flow. The amino acid sequence alignment and phylogenetic analysis showed that AmS grouped into a new cluster. In vitro assays of AmS revealed its wide temperature tolerance ranged from 0 to 40 °C and narrow pH tolerant ranged from 7.0 to 9.0. AmS was resistant to organic solvents and non-ionic detergents. Moreover, AmS converted chorismate to salicylate with K m of 129.05 μM, k cat of 2.20 min(-1) at optimal conditions, indicating its low substrate specificity and comparable velocity to reported counterparts (Irp9 and MbtI). These properties of AmS may improve the iron-seizing ability of A. methanolica to compete with its neighbors growing in natural environments. Most importantly, serine and cysteine residues were found to be important for the catalytic activity of AmS. This study presented AmS as a new cluster of salicylate synthase and the reaction mechanism and potential applications of salicylate synthase were highlighted as well. PMID:25586582

  1. Functional analysis of (4S)-limonene synthase mutants reveals determinants of catalytic outcome in a model monoterpene synthase.

    PubMed

    Srividya, Narayanan; Davis, Edward M; Croteau, Rodney B; Lange, B Markus

    2015-03-17

    Crystal structural data for (4S)-limonene synthase [(4S)-LS] of spearmint (Mentha spicata L.) were used to infer which amino acid residues are in close proximity to the substrate and carbocation intermediates of the enzymatic reaction. Alanine-scanning mutagenesis of 48 amino acids combined with enzyme fidelity analysis [percentage of (-)-limonene produced] indicated which residues are most likely to constitute the active site. Mutation of residues W324 and H579 caused a significant drop in enzyme activity and formation of products (myrcene, linalool, and terpineol) characteristic of a premature termination of the reaction. A double mutant (W324A/H579A) had no detectable enzyme activity, indicating that either substrate binding or the terminating reaction was impaired. Exchanges to other aromatic residues (W324H, W324F, W324Y, H579F, H579Y, and H579W) resulted in enzyme catalysts with significantly reduced activity. Sequence comparisons across the angiosperm lineage provided evidence that W324 is a conserved residue, whereas the position equivalent to H579 is occupied by aromatic residues (H, F, or Y). These results are consistent with a critical role of W324 and H579 in the stabilization of carbocation intermediates. The potential of these residues to serve as the catalytic base facilitating the terminal deprotonation reaction is discussed.

  2. RNA Sequencing Revealed Numerous Polyketide Synthase Genes in the Harmful Dinoflagellate Karenia mikimotoi

    PubMed Central

    Kimura, Kei; Okuda, Shujiro; Nakayama, Kei; Shikata, Tomoyuki; Takahashi, Fumio; Yamaguchi, Haruo; Skamoto, Setsuko; Yamaguchi, Mineo; Tomaru, Yuji

    2015-01-01

    The dinoflagellate Karenia mikimotoi forms blooms in the coastal waters of temperate regions and occasionally causes massive fish and invertebrate mortality. This study aimed to elucidate the toxic effect of K. mikimotoi on marine organisms by using the genomics approach; RNA-sequence libraries were constructed, and data were analyzed to identify toxin-related genes. Next-generation sequencing produced 153,406 transcript contigs from the axenic culture of K. mikimotoi. BLASTX analysis against all assembled contigs revealed that 208 contigs were polyketide synthase (PKS) sequences. Thus, K. mikimotoi was thought to have several genes encoding PKS metabolites and to likely produce toxin-like polyketide molecules. Of all the sequences, approximately 30 encoded eight PKS genes, which were remarkably similar to those of Karenia brevis. Our phylogenetic analyses showed that these genes belonged to a new group of PKS type-I genes. Phylogenetic and active domain analyses showed that the amino acid sequence of four among eight Karenia PKS genes was not similar to any of the reported PKS genes. These PKS genes might possibly be associated with the synthesis of polyketide toxins produced by Karenia species. Further, a homology search revealed 10 contigs that were similar to a toxin gene responsible for the synthesis of saxitoxin (sxtA) in the toxic dinoflagellate Alexandrium fundyense. These contigs encoded A1–A3 domains of sxtA genes. Thus, this study identified some transcripts in K. mikimotoi that might be associated with several putative toxin-related genes. The findings of this study might help understand the mechanism of toxicity of K. mikimotoi and other dinoflagellates. PMID:26561394

  3. RNA Sequencing Revealed Numerous Polyketide Synthase Genes in the Harmful Dinoflagellate Karenia mikimotoi.

    PubMed

    Kimura, Kei; Okuda, Shujiro; Nakayama, Kei; Shikata, Tomoyuki; Takahashi, Fumio; Yamaguchi, Haruo; Skamoto, Setsuko; Yamaguchi, Mineo; Tomaru, Yuji

    2015-01-01

    The dinoflagellate Karenia mikimotoi forms blooms in the coastal waters of temperate regions and occasionally causes massive fish and invertebrate mortality. This study aimed to elucidate the toxic effect of K. mikimotoi on marine organisms by using the genomics approach; RNA-sequence libraries were constructed, and data were analyzed to identify toxin-related genes. Next-generation sequencing produced 153,406 transcript contigs from the axenic culture of K. mikimotoi. BLASTX analysis against all assembled contigs revealed that 208 contigs were polyketide synthase (PKS) sequences. Thus, K. mikimotoi was thought to have several genes encoding PKS metabolites and to likely produce toxin-like polyketide molecules. Of all the sequences, approximately 30 encoded eight PKS genes, which were remarkably similar to those of Karenia brevis. Our phylogenetic analyses showed that these genes belonged to a new group of PKS type-I genes. Phylogenetic and active domain analyses showed that the amino acid sequence of four among eight Karenia PKS genes was not similar to any of the reported PKS genes. These PKS genes might possibly be associated with the synthesis of polyketide toxins produced by Karenia species. Further, a homology search revealed 10 contigs that were similar to a toxin gene responsible for the synthesis of saxitoxin (sxtA) in the toxic dinoflagellate Alexandrium fundyense. These contigs encoded A1-A3 domains of sxtA genes. Thus, this study identified some transcripts in K. mikimotoi that might be associated with several putative toxin-related genes. The findings of this study might help understand the mechanism of toxicity of K. mikimotoi and other dinoflagellates. PMID:26561394

  4. Structures of mesophilic and extremophilic citrate synthases reveal rigidity and flexibility for function.

    PubMed

    Wells, Stephen A; Crennell, Susan J; Danson, Michael J

    2014-10-01

    Citrate synthase (CS) catalyses the entry of carbon into the citric acid cycle and is highly-conserved structurally across the tree of life. Crystal structures of dimeric CSs are known in both "open" and "closed" forms, which differ by a substantial domain motion that closes the substrate-binding clefts. We explore both the static rigidity and the dynamic flexibility of CS structures from mesophilic and extremophilic organisms from all three evolutionary domains. The computational expense of this wide-ranging exploration is kept to a minimum by the use of rigidity analysis and rapid all-atom simulations of flexible motion, combining geometric simulation and elastic network modeling. CS structures from thermophiles display increased structural rigidity compared with the mesophilic enzyme. A CS structure from a psychrophile, stabilized by strong ionic interactions, appears to display likewise increased rigidity in conventional rigidity analysis; however, a novel modified analysis, taking into account the weakening of the hydrophobic effect at low temperatures, shows a more appropriate decreased rigidity. These rigidity variations do not, however, affect the character of the flexible dynamics, which are well conserved across all the structures studied. Simulation trajectories not only duplicate the crystallographically observed symmetric open-to-closed transitions, but also identify motions describing a previously unidentified antisymmetric functional motion. This antisymmetric motion would not be directly observed in crystallography but is revealed as an intrinsic property of the CS structure by modeling of flexible motion. This suggests that the functional motion closing the binding clefts in CS may be independent rather than symmetric and cooperative.

  5. X-ray structure of tRNA pseudouridine synthase TruD reveals an inserted domain with a novel fold.

    PubMed

    Ericsson, Ulrika B; Nordlund, Pär; Hallberg, B Martin

    2004-05-01

    Pseudouridine synthases catalyse the isomerisation of uridine to pseudouridine in structural RNA. The pseudouridine synthase TruD, that modifies U13 in tRNA, belongs to a recently identified and large family of pseudouridine synthases present in all kingdoms of life. We report here the crystal structure of Escherichia coli TruD at 2.0 A resolution. The structure reveals an overall V-shaped molecule with an RNA-binding cleft formed between two domains: a catalytic domain and an insertion domain. The catalytic domain has a fold similar to that of the catalytic domains of previously characterised pseudouridine synthases, whereas the insertion domain displays a novel fold.

  6. Chorismate mutase: an alternatively spliced parasitism gene and a diagnostic marker for three important Globodera nematode species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The chorismate mutase gene is widely distributed in both cyst and root-knot nematode species and believed to play a critical role in nematode parasitism. In this study, we cloned a new chorismate mutase gene (Gt-cm-1) from Globodera tabacum and further characterized the gene structure in both G. tab...

  7. Structures of lipoyl synthase reveal a compact active site for controlling sequential sulfur insertion reactions.

    PubMed

    Harmer, Jenny E; Hiscox, Martyn J; Dinis, Pedro C; Fox, Stephen J; Iliopoulos, Andreas; Hussey, James E; Sandy, James; Van Beek, Florian T; Essex, Jonathan W; Roach, Peter L

    2014-11-15

    Lipoyl cofactors are essential for living organisms and are produced by the insertion of two sulfur atoms into the relatively unreactive C-H bonds of an octanoyl substrate. This reaction requires lipoyl synthase, a member of the radical S-adenosylmethionine (SAM) enzyme superfamily. In the present study, we solved crystal structures of lipoyl synthase with two [4Fe-4S] clusters bound at opposite ends of the TIM barrel, the usual fold of the radical SAM superfamily. The cluster required for reductive SAM cleavage conserves the features of the radical SAM superfamily, but the auxiliary cluster is bound by a CX4CX5C motif unique to lipoyl synthase. The fourth ligand to the auxiliary cluster is an extremely unusual serine residue. Site-directed mutants show this conserved serine ligand is essential for the sulfur insertion steps. One crystallized lipoyl synthase (LipA) complex contains 5'-methylthioadenosine (MTA), a breakdown product of SAM, bound in the likely SAM-binding site. Modelling has identified an 18 Å (1 Å=0.1 nm) deep channel, well-proportioned to accommodate an octanoyl substrate. These results suggest that the auxiliary cluster is the likely sulfur donor, but access to a sulfide ion for the second sulfur insertion reaction requires the loss of an iron atom from the auxiliary cluster, which the serine ligand may enable.

  8. Nitric Oxide Synthases Reveal a Role for Calmodulin in Controlling Electron Transfer

    NASA Astrophysics Data System (ADS)

    Abu-Soud, Husam M.; Stuehr, Dennis J.

    1993-11-01

    Nitric oxide (NO) is synthesized within the immune, vascular, and nervous systems, where it acts as a wide-ranging mediator of mammalian physiology. The NO synthases (EC 1.14.13.39) isolated from neurons or endothelium are calmodulin dependent. Calmodulin binds reversibly to neuronal NO synthase in response to elevated Ca2+, triggering its NO production by an unknown mechanism. Here we show that calmodulin binding allows NADPH-derived electrons to pass onto the heme group of neuronal NO synthase. Calmodulin-triggered electron transfer to heme was independent of substrate binding, caused rapid enzymatic oxidation of NADPH in the presence of O_2, and was required for NO synthesis. An NO synthase isolated from cytokine-induced macrophages that contains tightly bound calmodulin catalyzed spontaneous electron transfer to its heme, consistent with bound calmodulin also enabling electron transfer within this isoform. Together, these results provide a basis for how calmodulin may regulate NO synthesis. The ability of calmodulin to trigger electron transfer within an enzyme is unexpected and represents an additional function for calcium-binding proteins in biology.

  9. Structure of isochorismate synthase in complex with magnesium

    PubMed Central

    Parsons, James F.; Shi, Katherine M.; Ladner, Jane E.

    2008-01-01

    The electron carrier menaquinone is one of many important bacterial metabolites that are derived from the key intermediate chorismic acid. MenF, the first enzyme in the menaquinone pathway, catalyzes the isomerization of chorismate to isochorismate. Here, an improved structure of MenF in a new crystal form is presented. The structure, solved at 2.0 Å resolution in complex with magnesium, reveals a well defined closed active site. Existing evidence suggests that the mechanism of the reaction catalyzed by MenF involves nucleophilic attack of a water molecule on the chorismate ring. The structure reveals a well defined water molecule located in an appropriate position for activation by Lys190 and attack on the substrate. PMID:18453696

  10. Expression of Fusion Proteins of Aspergillus terreus Reveals a Novel Allene Oxide Synthase*

    PubMed Central

    Hoffmann, Inga; Jernerén, Fredrik; Oliw, Ernst H.

    2013-01-01

    Aspergilli oxidize C18 unsaturated fatty acids by dioxygenase-cytochrome P450 fusion proteins to signal molecules involved in reproduction and host-pathogen interactions. Aspergillus terreus expresses linoleate 9R-dioxygenase (9R-DOX) and allene oxide synthase (AOS) activities in membrane fractions. The genome contains five genes (ATEG), which may code for a 9R-DOX-AOS fusion protein. The genes were cloned and expressed, but none of them oxidized 18:2n-6 to 9R-hydroperoxy-10(E),12(Z)-octadecadienoic acid (9R-HPODE). ATEG_02036 transformed 9R-HPODE to an unstable allene oxide, 9(R),10-epoxy-10,12(Z)-octadecadienoic acid. A substitution in the P450 domain (C1073S) abolished AOS activity. The N964V and N964D mutants both showed markedly reduced AOS activity, suggesting that Asn964 may facilitate homolytic cleavage of the dioxygen bond of 9R-HPODE with formation of compound II in analogy with plant AOS (CYP74) and prostacyclin synthase (CYP8A1). ATEG_03992 was identified as 5,8-linoleate diol synthase (5,8-LDS). Replacement of Asn878 in 5,8-LDS with leucine (N878L) mainly shifted ferryl oxygen insertion from C-5 toward C-6, but replacements of Gln881 markedly affected catalysis. The Q881L mutant virtually abolished the diol synthase activity. Replacement of Gln881 with Asn, Glu, Asp, or Lys residues augmented the homolytic cleavage of 8R-HPODE with formation of 10-hydroxy-8(9)-epoxy-12(Z)-octadecenoic acid (erythro/threo, 1–4:1) and/or shifted ferryl oxygen insertion from C-5 toward C-11. We conclude that homolysis and heterolysis of the dioxygen bond with formation of compound II in AOS and compound I in 5,8-LDS are influenced by Asn and Gln residues, respectively, of the I-helices. AOS of A. terreus appears to have evolved independently of CYP74 but with an analogous reaction mechanism. PMID:23479731

  11. In vivo instability of chorismate causes substrate loss during fermentative production of aromatics.

    PubMed

    Winter, Gal; Averesch, Nils J H; Nunez-Bernal, Dariela; Krömer, Jens O

    2014-09-01

    Metabolic engineering of microbial strains to produce aromatic compounds deriving from the shikimate pathway is of great interest to the chemical industry as a more sustainable alternative for feedstock production. Chorismate is a significant intermediate in the shikimate pathway. In this study, the formation of phenylalanine and phenylpyruvate as by-products in strains engineered downstream of the chorismate node for increased aromatic production was explored in yeast fermentations. Tracer experiments showed that these compounds are synthesized de novo during fermentation, under conditions in which their synthesis was genetically blocked. Chorismate stability evaluation, as well as deletion mutation analysis throughout the phenylalanine biosynthesis pathway, suggested that this synthesis was a result of intracellular, non-enzymatic rearrangement of chorismate to phenylpyruvate via prephenate, which was followed by enzymatic transamination of phenylpyruvate to form phenylalanine. These results not only aid in the development of strain-engineering strategies to avoid the accumulation of by-products during fermentations aimed at increased aromatics production, but also deepen our understanding of yeast metabolism.

  12. Operation mechanism of F(o) F(1)-adenosine triphosphate synthase revealed by its structure and dynamics.

    PubMed

    Iino, Ryota; Noji, Hiroyuki

    2013-03-01

    F(o) F(1) -Adenosine triphosphate (ATP) synthase, a complex of two rotary motor proteins, reversibly converts the electrochemical potential of protons across the cell membrane into phosphate transfer potential of ATP to provide the energy currency of the cell. The water-soluble motor is F(1) -ATPase, which possesses ATP synthesis/hydrolysis catalytic sites. Isolated F(1) hydrolyses ATP to rotate the rotary shaft against the stator ring. The membrane-embedded motor is F(o) , which is driven by proton flow down the proton electrochemical potential. In the F(o) F(1) complex, the direction of mechanical rotation, the chemical reaction, and the proton transport are determined by the relative amplitudes between the Gibbs free energy of the ATP hydrolysis reaction and the electrochemical potential of protons across the membrane. Therefore, F(o) F(1) -ATP synthase is a highly efficient molecular device in which the chemical, mechanical, and potential energies are tightly and reversibly converted. In this critical review, we summarize our latest knowledge about the operation mechanism of this sophisticated nanomachine, revealed by its structure and dynamics.

  13. Stereocontrolled Synthesis of a Potential Transition-State Inhibitor of the Salicylate Synthase MbtI from Mycobacterium tuberculosis.

    PubMed

    Liu, Zheng; Liu, Feng; Aldrich, Courtney C

    2015-07-01

    Mycobactins are small-molecule iron chelators (siderophores) produced by Mycobacterium tuberculosis (Mtb) for iron mobilization. The bifunctional salicylate synthase MbtI catalyzes the first step of mycobactin biosynthesis through the conversion of the primary metabolite chorismate into salicylic acid via isochorismate. We report the design, synthesis, and biochemical evaluation of an inhibitor based on the putative transition state (TS) for the isochorismatase partial reaction of MbtI. The inhibitor mimics the hypothesized charge buildup at C-4 of chorismate in the TS as well as C-O bond formation at C-6. Another important design element of the inhibitor is replacement of the labile pyruvate side chain in chorismate with a stable C-linked propionate isostere. We developed a stereocontrolled synthesis of the highly functionalized cyclohexene inhibitor that features an asymmetric aldol reaction using a titanium enolate, diastereoselective Grignard addition to a tert-butanesulfinyl aldimine, and ring closing olefin metathesis as key steps. PMID:26035083

  14. Structure of a heterotetrameric geranyl pyrophosphate synthase from mint (Mentha piperita) reveals intersubunit regulation.

    PubMed

    Chang, Tao-Hsin; Hsieh, Fu-Lien; Ko, Tzu-Ping; Teng, Kuo-Hsun; Liang, Po-Huang; Wang, Andrew H-J

    2010-02-01

    Terpenes (isoprenoids), derived from isoprenyl pyrophosphates, are versatile natural compounds that act as metabolism mediators, plant volatiles, and ecological communicators. Divergent evolution of homomeric prenyltransferases (PTSs) has allowed PTSs to optimize their active-site pockets to achieve catalytic fidelity and diversity. Little is known about heteromeric PTSs, particularly the mechanisms regulating formation of specific products. Here, we report the crystal structure of the (LSU . SSU)(2)-type (LSU/SSU = large/small subunit) heterotetrameric geranyl pyrophosphate synthase (GPPS) from mint (Mentha piperita). The LSU and SSU of mint GPPS are responsible for catalysis and regulation, respectively, and this SSU lacks the essential catalytic amino acid residues found in LSU and other PTSs. Whereas no activity was detected for individually expressed LSU or SSU, the intact (LSU . SSU)(2) tetramer produced not only C(10)-GPP at the beginning of the reaction but also C(20)-GGPP (geranylgeranyl pyrophosphate) at longer reaction times. The activity for synthesizing C(10)-GPP and C(20)-GGPP, but not C(15)-farnesyl pyrophosphate, reflects a conserved active-site structure of the LSU and the closely related mustard (Sinapis alba) homodimeric GGPPS. Furthermore, using a genetic complementation system, we showed that no C(20)-GGPP is produced by the mint GPPS in vivo. Presumably through protein-protein interactions, the SSU remodels the active-site cavity of LSU for synthesizing C(10)-GPP, the precursor of volatile C(10)-monoterpenes. PMID:20139160

  15. Structure of a heterotetrameric geranyl pyrophosphate synthase from mint (Mentha piperita) reveals intersubunit regulation.

    PubMed

    Chang, Tao-Hsin; Hsieh, Fu-Lien; Ko, Tzu-Ping; Teng, Kuo-Hsun; Liang, Po-Huang; Wang, Andrew H-J

    2010-02-01

    Terpenes (isoprenoids), derived from isoprenyl pyrophosphates, are versatile natural compounds that act as metabolism mediators, plant volatiles, and ecological communicators. Divergent evolution of homomeric prenyltransferases (PTSs) has allowed PTSs to optimize their active-site pockets to achieve catalytic fidelity and diversity. Little is known about heteromeric PTSs, particularly the mechanisms regulating formation of specific products. Here, we report the crystal structure of the (LSU . SSU)(2)-type (LSU/SSU = large/small subunit) heterotetrameric geranyl pyrophosphate synthase (GPPS) from mint (Mentha piperita). The LSU and SSU of mint GPPS are responsible for catalysis and regulation, respectively, and this SSU lacks the essential catalytic amino acid residues found in LSU and other PTSs. Whereas no activity was detected for individually expressed LSU or SSU, the intact (LSU . SSU)(2) tetramer produced not only C(10)-GPP at the beginning of the reaction but also C(20)-GGPP (geranylgeranyl pyrophosphate) at longer reaction times. The activity for synthesizing C(10)-GPP and C(20)-GGPP, but not C(15)-farnesyl pyrophosphate, reflects a conserved active-site structure of the LSU and the closely related mustard (Sinapis alba) homodimeric GGPPS. Furthermore, using a genetic complementation system, we showed that no C(20)-GGPP is produced by the mint GPPS in vivo. Presumably through protein-protein interactions, the SSU remodels the active-site cavity of LSU for synthesizing C(10)-GPP, the precursor of volatile C(10)-monoterpenes.

  16. The Plasmodiophora brassicae genome reveals insights in its life cycle and ancestry of chitin synthases

    PubMed Central

    Schwelm, Arne; Fogelqvist, Johan; Knaust, Andrea; Jülke, Sabine; Lilja, Tua; Bonilla-Rosso, German; Karlsson, Magnus; Shevchenko, Andrej; Dhandapani, Vignesh; Choi, Su Ryun; Kim, Hong Gi; Park, Ju Young; Lim, Yong Pyo; Ludwig-Müller, Jutta; Dixelius, Christina

    2015-01-01

    Plasmodiophora brassicae causes clubroot, a major disease of Brassica oil and vegetable crops worldwide. P. brassicae is a Plasmodiophorid, obligate biotrophic protist in the eukaryotic kingdom of Rhizaria. Here we present the 25.5 Mb genome draft of P. brassicae, developmental stage-specific transcriptomes and a transcriptome of Spongospora subterranea, the Plasmodiophorid causing powdery scab on potato. Like other biotrophic pathogens both Plasmodiophorids are reduced in metabolic pathways. Phytohormones contribute to the gall phenotypes of infected roots. We report a protein (PbGH3) that can modify auxin and jasmonic acid. Plasmodiophorids contain chitin in cell walls of the resilient resting spores. If recognized, chitin can trigger defense responses in plants. Interestingly, chitin-related enzymes of Plasmodiophorids built specific families and the carbohydrate/chitin binding (CBM18) domain is enriched in the Plasmodiophorid secretome. Plasmodiophorids chitin synthases belong to two families, which were present before the split of the eukaryotic Stramenopiles/Alveolates/Rhizaria/Plantae and Metazoa/Fungi/Amoebozoa megagroups, suggesting chitin synthesis to be an ancient feature of eukaryotes. This exemplifies the importance of genomic data from unexplored eukaryotic groups, such as the Plasmodiophorids, to decipher evolutionary relationships and gene diversification of early eukaryotes. PMID:26084520

  17. Flavone synthases from Lonicera japonica and L. macranthoides reveal differential flavone accumulation

    PubMed Central

    Wu, Jie; Wang, Xiao-Chen; Liu, Yang; Du, Hui; Shu, Qing-Yan; Su, Shang; Wang, Li-Jin; Li, Shan-Shan; Wang, Liang-Sheng

    2016-01-01

    Flavones are important secondary metabolites found in many plants. In Lonicera species, flavones contribute both physiological and pharmaceutical properties. However, flavone synthase (FNS), the key enzyme responsible for flavone biosynthesis, has not yet been characterized in Lonicera species. In this study, FNSII genes were identified from Lonicera japonica Thunb. and L. macranthoides Hand.-Mazz. In the presence of NADPH, the recombinant cytochrome P450 proteins encoded by LjFNSII-1.1, LjFNSII-2.1, and LmFNSII-1.1 converted eriodictyol, naringenin, and liquiritigenin to the corresponding flavones directly. The different catalytic properties between LjFNSII-2.1 and LjFNSII-1.1 were caused by a single amino acid substitution at position 242 (glutamic acid to lysine). A methionine at position 206 and a leucine at position 381 contributed considerably to the high catalytic activity of LjFNSII-1.1. In addition, LjFNSII-1.1&2.1 and LmFNSII-1.1 also biosynthesize flavones that were further modified by O-glycosylation in transgenic tobacco. The expression levels of the FNSII genes were consistent with flavone accumulation patterns in flower buds. Our findings suggested that the weak catalytic activity of LmFNSII-1.1 and the relatively low expression of LmFNSII-1.1 in flowers might be responsible for the low levels of flavone accumulation in flower buds of L. macranthoides. PMID:26754912

  18. Flavone synthases from Lonicera japonica and L. macranthoides reveal differential flavone accumulation

    NASA Astrophysics Data System (ADS)

    Wu, Jie; Wang, Xiao-Chen; Liu, Yang; Du, Hui; Shu, Qing-Yan; Su, Shang; Wang, Li-Jin; Li, Shan-Shan; Wang, Liang-Sheng

    2016-01-01

    Flavones are important secondary metabolites found in many plants. In Lonicera species, flavones contribute both physiological and pharmaceutical properties. However, flavone synthase (FNS), the key enzyme responsible for flavone biosynthesis, has not yet been characterized in Lonicera species. In this study, FNSII genes were identified from Lonicera japonica Thunb. and L. macranthoides Hand.-Mazz. In the presence of NADPH, the recombinant cytochrome P450 proteins encoded by LjFNSII-1.1, LjFNSII-2.1, and LmFNSII-1.1 converted eriodictyol, naringenin, and liquiritigenin to the corresponding flavones directly. The different catalytic properties between LjFNSII-2.1 and LjFNSII-1.1 were caused by a single amino acid substitution at position 242 (glutamic acid to lysine). A methionine at position 206 and a leucine at position 381 contributed considerably to the high catalytic activity of LjFNSII-1.1. In addition, LjFNSII-1.1&2.1 and LmFNSII-1.1 also biosynthesize flavones that were further modified by O-glycosylation in transgenic tobacco. The expression levels of the FNSII genes were consistent with flavone accumulation patterns in flower buds. Our findings suggested that the weak catalytic activity of LmFNSII-1.1 and the relatively low expression of LmFNSII-1.1 in flowers might be responsible for the low levels of flavone accumulation in flower buds of L. macranthoides.

  19. Acetohydroxyacid synthase activity and transcripts profiling reveal tissue-specific regulation of ahas genes in sunflower.

    PubMed

    Ochogavía, Ana C; Breccia, Gabriela; Vega, Tatiana; Felitti, Silvina A; Picardi, Liliana A; Nestares, Graciela

    2014-07-01

    Acetohydroxyacid synthase (AHAS) is the target site of several herbicides and catalyses the first step in the biosynthesis of branched chain amino acid. Three genes coding for AHAS catalytic subunit (ahas1, ahas2 and ahas3) have been reported for sunflower. The aim of this work was to study the expression pattern of ahas genes family and AHAS activity in sunflower (Helianthus annuus L.). Different organs (leaves, hypocotyls, roots, flowers and embryos) were evaluated at several developmental stages. The transcriptional profile was studied through RT-qPCR. The highest expression for ahas1 was shown in leaves, where all the induced and natural gene mutations conferring herbicide resistance were found. The maximal expression of ahas2 and ahas3 occurred in immature flowers and embryos. The highest AHAS activity was found in leaves and immature embryos. Correlation analysis among ahas gene expression and AHAS activity was discussed. Our results show that differences in ahas genes expression are tissue-specific and temporally regulated. Moreover, the conservation of multiple AHAS isoforms in sunflower seems to result from different expression requirements controlled by tissue-specific regulatory mechanisms at different developmental stages. PMID:24908515

  20. Modeling studies with Helicobacter pylori octaprenyl pyrophosphate synthase reveal the enzymatic mechanism of trans-prenyltransferases.

    PubMed

    Zhang, Jinyong; Zhang, Xiaoli; Zhang, Rui; Wu, Chao; Guo, Ying; Mao, Xuhu; Guo, Gang; Zhang, Ying; Wang, Da-Cheng; Li, Defeng; Zou, Quanming

    2012-12-01

    Octaprenyl pyrophosphate synthase (OPPs), an enzyme belonging to the trans-prenyltransferases family, is involved in the synthesis of C40 octaprenyl pyrophosphate (OPP) by reacting farnesyl pyrophosphate (FPP) with five isopentenyl pyrophosphates (IPP). It has been reported that OPPs is essential for bacteria's normal growth and is a potential target for novel antibacterial drug design. Here we report the crystal structure of OPPs from Helicobacter pylori, determined by MAD method at 2.8 Å resolution and refined to 2.0 Å resolution. The substrate IPP was docked into HpOPPs structure and residues involved in IPP recognition were identified. The other substrate FPP, the intermediate GGPP and a nitrogen-containing bisphosphonate drug were also modeled into the structure. The resulting model shed some lights on the enzymatic mechanism, including (1) residues Arg87, Lys36 and Arg39 are essential for IPP binding; (2) residues Lys162, Lys224 and Gln197 are involved in FPP binding; (3) the second DDXXD motif may involve in FPP binding by Mg(2+) mediated interactions; (4) Leu127 is probably involved in product chain length determination in HpOPPs and (5) the intermediate products such as GGPP need a rearrange to occupy the binding site of FPP and then IPP is reloaded. Our results also indicate that the nitrogen-containing bisphosphonate drugs are potential inhibitors of FPPs and other trans-prenyltransferases aiming at blocking the binding of FPP.

  1. Flavone synthases from Lonicera japonica and L. macranthoides reveal differential flavone accumulation.

    PubMed

    Wu, Jie; Wang, Xiao-Chen; Liu, Yang; Du, Hui; Shu, Qing-Yan; Su, Shang; Wang, Li-Jin; Li, Shan-Shan; Wang, Liang-Sheng

    2016-01-01

    Flavones are important secondary metabolites found in many plants. In Lonicera species, flavones contribute both physiological and pharmaceutical properties. However, flavone synthase (FNS), the key enzyme responsible for flavone biosynthesis, has not yet been characterized in Lonicera species. In this study, FNSII genes were identified from Lonicera japonica Thunb. and L. macranthoides Hand.-Mazz. In the presence of NADPH, the recombinant cytochrome P450 proteins encoded by LjFNSII-1.1, LjFNSII-2.1, and LmFNSII-1.1 converted eriodictyol, naringenin, and liquiritigenin to the corresponding flavones directly. The different catalytic properties between LjFNSII-2.1 and LjFNSII-1.1 were caused by a single amino acid substitution at position 242 (glutamic acid to lysine). A methionine at position 206 and a leucine at position 381 contributed considerably to the high catalytic activity of LjFNSII-1.1. In addition, LjFNSII-1.1&2.1 and LmFNSII-1.1 also biosynthesize flavones that were further modified by O-glycosylation in transgenic tobacco. The expression levels of the FNSII genes were consistent with flavone accumulation patterns in flower buds. Our findings suggested that the weak catalytic activity of LmFNSII-1.1 and the relatively low expression of LmFNSII-1.1 in flowers might be responsible for the low levels of flavone accumulation in flower buds of L. macranthoides. PMID:26754912

  2. The Plasmodiophora brassicae genome reveals insights in its life cycle and ancestry of chitin synthases.

    PubMed

    Schwelm, Arne; Fogelqvist, Johan; Knaust, Andrea; Jülke, Sabine; Lilja, Tua; Bonilla-Rosso, German; Karlsson, Magnus; Shevchenko, Andrej; Dhandapani, Vignesh; Choi, Su Ryun; Kim, Hong Gi; Park, Ju Young; Lim, Yong Pyo; Ludwig-Müller, Jutta; Dixelius, Christina

    2015-01-01

    Plasmodiophora brassicae causes clubroot, a major disease of Brassica oil and vegetable crops worldwide. P. brassicae is a Plasmodiophorid, obligate biotrophic protist in the eukaryotic kingdom of Rhizaria. Here we present the 25.5 Mb genome draft of P. brassicae, developmental stage-specific transcriptomes and a transcriptome of Spongospora subterranea, the Plasmodiophorid causing powdery scab on potato. Like other biotrophic pathogens both Plasmodiophorids are reduced in metabolic pathways. Phytohormones contribute to the gall phenotypes of infected roots. We report a protein (PbGH3) that can modify auxin and jasmonic acid. Plasmodiophorids contain chitin in cell walls of the resilient resting spores. If recognized, chitin can trigger defense responses in plants. Interestingly, chitin-related enzymes of Plasmodiophorids built specific families and the carbohydrate/chitin binding (CBM18) domain is enriched in the Plasmodiophorid secretome. Plasmodiophorids chitin synthases belong to two families, which were present before the split of the eukaryotic Stramenopiles/Alveolates/Rhizaria/Plantae and Metazoa/Fungi/Amoebozoa megagroups, suggesting chitin synthesis to be an ancient feature of eukaryotes. This exemplifies the importance of genomic data from unexplored eukaryotic groups, such as the Plasmodiophorids, to decipher evolutionary relationships and gene diversification of early eukaryotes. PMID:26084520

  3. The Crystal Structure of Escherichia coli Spermidine Synthase SpeE Reveals a Unique Substrate-binding Pocket

    SciTech Connect

    Zhou, X.; Chua, T; Tkaczuk, K; Bujnicki, J; Sivaraman, J

    2010-01-01

    Polyamines are essential in all branches of life. Biosynthesis of spermidine, one of the most ubiquitous polyamines, is catalyzed by spermidine synthase (SpeE). Although the function of this enzyme from Escherichia coli has been thoroughly characterized, its structural details remain unknown. Here, we report the crystal structure of E. coli SpeE and study its interaction with the ligands by isothermal titration calorimetry and computational modelling. SpeE consists of two domains - a small N-terminal {beta}-strand domain, and a C-terminal catalytic domain that adopts a canonical methyltransferase (MTase) Rossmann fold. The protein forms a dimer in the crystal and in solution. Structural comparison of E. coli SpeE to its homologs reveals that it has a large and unique substrate-binding cleft that may account for its lower amine substrate specificity.

  4. Substrate-bound Structures of Benzylsuccinate Synthase Reveal How Toluene Is Activated in Anaerobic Hydrocarbon Degradation*

    PubMed Central

    Funk, Michael A.; Marsh, E. Neil G.; Drennan, Catherine L.

    2015-01-01

    Various bacteria perform anaerobic degradation of small hydrocarbons as a source of energy and cellular carbon. To activate non-reactive hydrocarbons such as toluene, enzymes conjugate these molecules to fumarate in a radical-catalyzed, C—C bond-forming reaction. We have determined x-ray crystal structures of the glycyl radical enzyme that catalyzes the addition of toluene to fumarate, benzylsuccinate synthase (BSS), in two oligomeric states with fumarate alone or with both substrates. We find that fumarate is secured at the bottom of a long active site cavity with toluene bound directly above it. The two substrates adopt orientations that appear ideal for radical-mediated C—C bond formation; the methyl group of toluene is positioned between fumarate and a cysteine that forms a thiyl radical during catalysis, which is in turn adjacent to the glycine that serves as a radical storage residue. Toluene is held in place by fumarate on one face and tight packing by hydrophobic residues on the other face and sides. These hydrophobic residues appear to become ordered, thus encapsulating toluene, only in the presence of BSSβ, a small protein subunit that forms a tight complex with BSSα, the catalytic subunit. Enzymes related to BSS are able to metabolize a wide range of hydrocarbons through attachment to fumarate. Using our structures as a guide, we have constructed homology models of several of these “X-succinate synthases” and determined conservation patterns that will be useful in understanding the basis for catalysis and specificity in this family of enzymes. PMID:26224635

  5. Isotope Effects on the Enzymatic and Non-Enzymatic Reactions of Chorismate

    PubMed Central

    Wright, S. Kirk; DeClue, Michael S.; Mandal, Ajay; Lee, Lac; Wiest, Olaf; Cleland, W. Wallace; Hilvert, Donald

    2008-01-01

    The important biosynthetic intermediate chorismate reacts thermally by two competitive pathways, one leading to 4-hydroxybenzoate via elimination of the enolpyruvyl side chain, and the other to prephenate by a facile Claisen rearrangement. Measurements with isotopically labeled chorismate derivatives indicate that both are concerted sigmatropic processes, controlled by the orientation of the enolpyruvyl group. In the elimination reaction of [4-2H]chorismate, roughly 60% of the label was found in pyruvate after 3 h at 60 °C. Moreover, a 1.846±0.057 2H isotope effect for the transferred hydrogen atom and a 1.0374±0.0005 18O isotope effect for the ether oxygen show that the transition state for this process is highly asymmetric, with hydrogen atom transfer from C4 to C9 significantly less advanced than C—O bond cleavage. In the competing Claisen rearrangement, a very large 18O isotope effect at the bond-breaking position (1.0482±0.0005) and a smaller 13C isotope effect at the bond-making position (1.0118±0.0004) were determined. Isotope effects of similar magnitude characterized the transformations catalyzed by evolutionarily unrelated chorismate mutases from Escherichia coli and Bacillus subtilis. The enzymatic reactions, like their solution counterpart, are thus concerted [3,3]-sigmatropic processes in which C—C bond formation lags behind C—O bond cleavage. However, as substantially larger 18O and smaller 13C isotope effects were observed for a mutant enzyme in which chemistry is fully rate determining, the ionic active site may favor a somewhat more polarized transition state than that seen in solution. PMID:16159290

  6. Interrogation of Global Active Site Occupancy of a Fungal Iterative Polyketide Synthase Reveals Strategies for Maintaining Biosynthetic Fidelity

    PubMed Central

    Vagstad, Anna L.; Bumpus, Stefanie B.; Belecki, Katherine; Kelleher, Neil L.; Townsend, Craig A.

    2012-01-01

    Nonreducing iterative polyketide synthases (NR-PKSs) are responsible for assembling the core of fungal aromatic natural products with diverse biological properties. Despite recent advances in the field, many mechanistic details of polyketide assembly by these megasynthases remain unknown. To expand our understanding of substrate loading, polyketide elongation, cyclization, and product release, active site occupancy and product output were explored by Fourier transform mass spectrometry using the norsolorinic acid anthrone-producing polyketide synthase, PksA, from the aflatoxin biosynthetic pathway in Aspergillus parasiticus. Here we report the simultaneous observation of covalent intermediates from all catalytic domains of PksA from in vitro reconstitution reactions. The data provide snapshots of iterative catalysis and reveal an underappreciated editing function for the C-terminal thioesterase domain beyond its recently established synthetic role in Claisen/Dieckmann cyclization and product release. The specificity of thioesterase catalyzed hydrolysis was explored using biosynthetically relevant protein-bound and small molecule acyl substrates, and demonstrated activity against hexanoyl and acetyl, but not malonyl. Processivity of polyketide extension was supported by the inability of a nonhydrolyzable malonyl analog to trap products of intermediate chain lengths and by the detection of only fully extended species observed covalently bound to, and as the predominant products released by, PksA. High occupancy of the malonyl transacylase domain and fast relative rate of malonyl transfer compared to starter unit transfer indicate that rapid loading of extension units onto the carrier domain facilitates efficient chain extension in a manner kinetically favorable to ultimate product formation. PMID:22452347

  7. Exploration of swapping enzymatic function between two proteins: a simulation study of chorismate mutase and isochorismate pyruvate lyase.

    PubMed

    Choutko, Alexandra; Eichenberger, Andreas P; van Gunsteren, Wilfred F; Dolenc, Jožica

    2013-06-01

    The enzyme chorismate mutase EcCM from Escherichia coli catalyzes one of the few pericyclic reactions in biology, the transformation of chorismate to prephenate. The isochorismate pyruvate lyase PchB from Pseudomonas aeroginosa catalyzes another pericyclic reaction, the isochorismate to salicylate transformation. Interestingly, PchB possesses weak chorismate mutase activity as well thus being able to catalyze two distinct pericyclic reactions in a single active site. EcCM and PchB possess very similar folds, despite their low sequence identity. Using molecular dynamics simulations of four combinations of the two enzymes (EcCM and PchB) with the two substrates (chorismate and isochorismate) we show that the electrostatic field due to EcCM at atoms of chorismate favors the chorismate to prephenate transition and that, analogously, the electrostatic field due to PchB at atoms of isochorismate favors the isochorismate to salicylate transition. The largest differences between EcCM and PchB in electrostatic field strengths at atoms of the substrates are found to be due to residue side chains at distances between 0.6 and 0.8 nm from particular substrate atoms. Both enzymes tend to bring their non-native substrate in the same conformation as their native substrate. EcCM and to a lower extent PchB fail in influencing the forces on and conformations of the substrate such as to favor the other chemical reaction (isochorismate pyruvate lyase activity for EcCM and chorismate mutase activity for PchB). These observations might explain the difficulty of engineering isochorismate pyruvate lyase activity in EcCM by solely mutating active site residues. PMID:23595942

  8. Mutational analysis of white spruce (Picea glauca) ent-kaurene synthase (PgKS) reveals common and distinct mechanisms of conifer diterpene synthases of general and specialized metabolism.

    PubMed

    Zerbe, Philipp; Chiang, Angela; Bohlmann, Jörg

    2012-02-01

    Conifer diterpene synthases (diTPSs) catalyze the multi-step cycloisomerization of geranylgeranyl diphosphate, or copalyl diphosphate, to a variety of diterpenes in general (i.e., primary) and specialized (i.e., secondary) metabolism. Despite their functional diversity, the known conifer diTPSs are structurally closely related, with variations in three conserved domains, α, β and γ. The catalytic specificity of conifer class I and class I/II diTPSs is predominantly determined by the protein environment of the C-terminal class I active site through stabilization of common and unique carbocation intermediates. Using the crystal structure of Taxus brevifolia taxadiene synthase as template, comparative modeling and mutagenesis of the class I diTPS ent-kaurene synthase from Picea glauca (PgKS) was performed to elucidate the catalytic specificity of PgKS relative to spruce diTPSs of specialized metabolism. N-terminal truncations demonstrated a role for the βγ domain in class I enzyme activity for PgKS, facilitating the closure of the class I active site upon substrate binding. Based on position, Arg476 and Asp736 in the C-terminal α domain of PgKS may contribute to this conformational transition and appear critical for catalysis. Consistent with the mechanism of other diTPSs, the subsequent ionization of a copalyl diphosphate substrate and coordination of the diphosphate group is controlled by strictly conserved residues in the DDxxD and NDIQGCKRE motif of PgKS, such as Asn656 and Arg653. Furthermore, Lys478, Trp502, Met588, Ala615 and Ile619 control the enzymatic activity and specificity of PgKS via carbocation stabilization en route to ent-kaurene. These positions show a high level of amino acid variation, consistent with functional plasticity among conifer diTPSs of different functions in general or specialized metabolism.

  9. The structure of dimethylallyl tryptophan synthase reveals a common architecture of aromatic prenyltransferases in fungi and bacteria.

    PubMed

    Metzger, Ute; Schall, Christoph; Zocher, Georg; Unsöld, Inge; Stec, Edyta; Li, Shu-Ming; Heide, Lutz; Stehle, Thilo

    2009-08-25

    Ergot alkaloids are toxins and important pharmaceuticals that are produced biotechnologically on an industrial scale. The first committed step of ergot alkaloid biosynthesis is catalyzed by dimethylallyl tryptophan synthase (DMATS; EC 2.5.1.34). Orthologs of DMATS are found in many fungal genomes. We report here the x-ray structure of DMATS, determined at a resolution of 1.76 A. A complex of DMATS from Aspergillus fumigatus with its aromatic substrate L-tryptophan and with an analogue of its isoprenoid substrate dimethylallyl diphosphate reveals the structural basis of this enzyme-catalyzed Friedel-Crafts reaction, which shows strict regiospecificity for position 4 of the indole nucleus of tryptophan as well as unusual independence of the presence of Mg(2+) ions. The 3D structure of DMATS belongs to a rare beta/alpha barrel fold, called prenyltransferase barrel, that was recently discovered in a small group of bacterial enzymes with no sequence similarity to DMATS. These bacterial enzymes catalyze the prenylation of aromatic substrates in the biosynthesis of secondary metabolites (i.e., a reaction similar to that of DMATS).

  10. The structure of dimethylallyl tryptophan synthase reveals a common architecture of aromatic prenyltransferases in fungi and bacteria

    PubMed Central

    Metzger, Ute; Schall, Christoph; Zocher, Georg; Unsöld, Inge; Stec, Edyta; Li, Shu-Ming; Heide, Lutz; Stehle, Thilo

    2009-01-01

    Ergot alkaloids are toxins and important pharmaceuticals that are produced biotechnologically on an industrial scale. The first committed step of ergot alkaloid biosynthesis is catalyzed by dimethylallyl tryptophan synthase (DMATS; EC 2.5.1.34). Orthologs of DMATS are found in many fungal genomes. We report here the x-ray structure of DMATS, determined at a resolution of 1.76 Å. A complex of DMATS from Aspergillus fumigatus with its aromatic substrate L-tryptophan and with an analogue of its isoprenoid substrate dimethylallyl diphosphate reveals the structural basis of this enzyme-catalyzed Friedel-Crafts reaction, which shows strict regiospecificity for position 4 of the indole nucleus of tryptophan as well as unusual independence of the presence of Mg2+ ions. The 3D structure of DMATS belongs to a rare β/α barrel fold, called prenyltransferase barrel, that was recently discovered in a small group of bacterial enzymes with no sequence similarity to DMATS. These bacterial enzymes catalyze the prenylation of aromatic substrates in the biosynthesis of secondary metabolites (i.e., a reaction similar to that of DMATS). PMID:19706516

  11. Inhibition studies of Mycobacterium tuberculosis salicylate synthase (MbtI).

    PubMed

    Manos-Turvey, Alexandra; Bulloch, Esther M M; Rutledge, Peter J; Baker, Edward N; Lott, J Shaun; Payne, Richard J

    2010-07-01

    Mycobacterium tuberculosis salicylate synthase (MbtI), a member of the chorismate-utilizing enzyme family, catalyses the first committed step in the biosynthesis of the siderophore mycobactin T. This complex secondary metabolite is essential for both virulence and survival of M. tuberculosis, the etiological agent of tuberculosis (TB). It is therefore anticipated that inhibitors of this enzyme may serve as TB therapies with a novel mode of action. Herein we describe the first inhibition study of M. tuberculosis MbtI using a library of functionalized benzoate-based inhibitors designed to mimic the substrate (chorismate) and intermediate (isochorismate) of the MbtI-catalyzed reaction. The most potent inhibitors prepared were those designed to mimic the enzyme intermediate, isochorismate. These compounds, based on a 2,3-dihydroxybenzoate scaffold, proved to be low-micromolar inhibitors of MbtI. The most potent inhibitors in this series possessed hydrophobic enol ether side chains at C3 in place of the enol-pyruvyl side chain found in chorismate and isochorismate. PMID:20512795

  12. Production of protocatechuic acid by Corynebacterium glutamicum expressing chorismate-pyruvate lyase from Escherichia coli.

    PubMed

    Okai, Naoko; Miyoshi, Takanori; Takeshima, Yasunobu; Kuwahara, Hiroaki; Ogino, Chiaki; Kondo, Akihiko

    2016-01-01

    Protocatechuic acid (3,4-dihydroxybenzoic acid; PCA) serves as a building block for polymers and pharmaceuticals. In this study, the biosynthetic pathway for PCA from glucose was engineered in Corynebacterium glutamicum. The pathway to PCA-employed elements of the chorismate pathway by using chorismate-pyruvate lyase (CPL) and 4-hydroxybenzoate hydroxylase (4-HBA hydroxylase). As C. glutamicum has the potential to synthesize the aromatic amino acid intermediate chorismate and possesses 4-HBA hydroxylase, we focused on expressing Escherichia coli CPL in a phenylalanine-producing strain of C. glutamicum ATCC21420. To secrete PCA, the gene (ubiC) encoding CPL from E. coli was expressed in C. glutamicum ATCC 21420 (strain F(UbiC)). The formation of 28.8 mg/L of extracellular 4-HBA (36 h) and 213 ± 29 mg/L of extracellular PCA (80 h) was obtained by the C. glutamicum strain F(UbiC) from glucose. The strain ATCC21420 was also found to produce extracellular PCA. PCA fermentation was performed using C. glutamicum strain F(UbiC) in a bioreactor at the optimized pH of 7.5. C. glutamicum F(UbiC) produced 615 ± 2.1 mg/L of PCA from 50 g/L of glucose after 72 h. Further, fed-batch fermentation of PCA by C. glutamicum F(UbiC) was performed with feedings of glucose every 24 h. The maximum production of PCA (1140.0 ± 11.6 mg/L) was achieved when 117.0 g/L of glucose was added over 96 h of fed-batch fermentation. PMID:26392137

  13. Silencing of hydroperoxide lyase and allene oxide synthase reveals substrate and defense signaling crosstalk in Nicotiana attenuata.

    PubMed

    Halitschke, Rayko; Ziegler, Jörg; Keinänen, Markku; Baldwin, Ian T

    2004-10-01

    The fatty acid hydroperoxide (HP) substrates required for the biosynthesis of jasmonic acid (JA) and green leaf volatiles (GLVs) are supplied by separate lipoxygenases (LOX). We silenced the expression of two genes downstream of the LOX: allene oxide synthase (AOS) and HP lyase (HPL) by antisense expression of endogenous genes (NaAOS, NaHPL) in Nicotiana attenuata, in which the biosynthesis of JA is amplified by herbivore-specific elicitors. We report that these elicitors also amplify wound-induced GLV releases, but suppress the wound-induced increase of NaHPL transcripts, suggesting that substrate flux controls GLV biosynthesis. As expected, silencing of NaHPL and NaAOS reduced GLV release and JA accumulation, respectively. Surprisingly, HPL- and AOS-silenced plants had enhanced JA and GLV responses, suggesting substrate 'crosstalk' between these two oxylipin cascades. Plants with depleted GLVs (as-hpl) were less attractive than wild type (WT) or empty vector control plants in choice-tests with native lepidopteran herbivores. In feeding trials, Manduca sexta larvae developed slower on as-hpl plants. The reduced larval consumption and performance, which was not caused by increases in defense responses in as-hpl plants, could be restored to WT levels by the addition of synthetic GLVs, demonstrating that GLVs function as feeding stimulants. Gene expression profiling by cDNA microarray analysis and characterization of several induced defenses in herbivore-elicited as-hpl and as-aos plants revealed differential involvement of JA and GLVs in defense signaling. Elicitation of volatile terpenoids (an indirect defense) requires JA signaling, where as trypsin protease inhibitor elicitation (a direct defense) requires both functional JA and GLV cascades.

  14. The role of two Pseudomonas aeruginosa anthranilate synthases in tryptophan and quorum signal production

    PubMed Central

    Palmer, Gregory C.; Jorth, Peter A.

    2013-01-01

    Pseudomonas aeruginosa is a Gram-negative, opportunistic pathogen that causes infections in the lungs of individuals with the genetic disease cystic fibrosis. Density-dependent production of toxic factors regulated by the Pseudomonas quinolone signal (2-heptyl-3-hydroxy-4-quinolone; PQS) have been proposed to be involved in P. aeruginosa virulence. PQS biosynthesis requires conversion of the central metabolite chorismate to anthranilate by anthranilate synthase. This reaction is also the first step in tryptophan biosynthesis. P. aeruginosa possesses two functional anthranilate synthases, TrpEG and PhnAB, and these enzymes are not functionally redundant, as trpEG mutants are tryptophan auxotrophs but produce PQS while mutants in phnAB are tryptophan prototrophs but do not produce PQS in minimal media. The goal of the work described in this paper was to determine the mechanism for this lack of functional complementation of TrpEG and PhnAB. Our results reveal that overexpression of either enzyme compensates for tryptophan auxotrophy and PQS production in the trpEG and phnAB mutants respectively, leading to the hypothesis that differential regulation of these genes is responsible for the lack of functional complementation. In support of this hypothesis, trpEG was shown to be expressed primarily during low-density growth while phnAB was expressed primarily at high density. Furthermore, dysregulation of phnAB expression eliminated tryptophan auxotrophy in the P. aeruginosa trpEG mutant. Based on these data, we propose a model for anthranilate sequestration by differential transcriptional regulation of the two P. aeruginosa anthranilate synthase enzymes. PMID:23449919

  15. Metabolic design of a platform Escherichia coli strain producing various chorismate derivatives.

    PubMed

    Noda, Shuhei; Shirai, Tomokazu; Oyama, Sachiko; Kondo, Akihiko

    2016-01-01

    A synthetic metabolic pathway suitable for the production of chorismate derivatives was designed in Escherichia coli. An L-phenylalanine-overproducing E. coli strain was engineered to enhance the availability of phosphoenolpyruvate (PEP), which is a key precursor in the biosynthesis of aromatic compounds in microbes. Two major reactions converting PEP to pyruvate were inactivated. Using this modified E.coli as a base strain, we tested our system by carrying out the production of salicylate, a high-demand aromatic chemical. The titer of salicylate reached 11.5 g/L in batch culture after 48 h cultivation in a 2-liter jar fermentor, and the yield from glucose as the sole carbon source exceeded 40% (mol/mol). In this test case, we found that pyruvate was synthesized primarily via salicylate formation and the reaction converting oxaloacetate to pyruvate. In order to demonstrate the generality of our designed strain, we employed this platform for the production of each of 7 different chorismate derivatives. Each of these industrially important chemicals was successfully produced to levels of 1-3g/L in test tube-scale culture.

  16. Pre-steady-state kinetic analysis of the three Escherichia coli pseudouridine synthases TruB, TruA, and RluA reveals uniformly slow catalysis.

    PubMed

    Wright, Jaden R; Keffer-Wilkes, Laura C; Dobing, Selina R; Kothe, Ute

    2011-12-01

    Pseudouridine synthases catalyze formation of the most abundant modification of functional RNAs by site-specifically isomerizing uridines to pseudouridines. While the structure and substrate specificity of these enzymes have been studied in detail, the kinetic and the catalytic mechanism of pseudouridine synthases remain unknown. Here, the first pre-steady-state kinetic analysis of three Escherichia coli pseudouridine synthases is presented. A novel stopped-flow absorbance assay revealed that substrate tRNA binding by TruB takes place in two steps with an overall rate of 6 sec(-1). In order to observe catalysis of pseudouridine formation directly, the traditional tritium release assay was adapted for the quench-flow technique, allowing, for the first time, observation of a single round of pseudouridine formation. Thereby, the single-round rate constant of pseudouridylation (k(Ψ)) by TruB was determined to be 0.5 sec(-1). This rate constant is similar to the k(cat) obtained under multiple-turnover conditions in steady-state experiments, indicating that catalysis is the rate-limiting step for TruB. In order to investigate if pseudouridine synthases are characterized by slow catalysis in general, the rapid kinetic quench-flow analysis was also performed with two other E. coli enzymes, RluA and TruA, which displayed rate constants of pseudouridine formation of 0.7 and 0.35 sec(-1), respectively. Hence, uniformly slow catalysis might be a general feature of pseudouridine synthases that share a conserved catalytic domain and supposedly use the same catalytic mechanism.

  17. RNAi and Homologous Over-Expression Based Functional Approaches Reveal Triterpenoid Synthase Gene-Cycloartenol Synthase Is Involved in Downstream Withanolide Biosynthesis in Withania somnifera.

    PubMed

    Mishra, Smrati; Bansal, Shilpi; Mishra, Bhawana; Sangwan, Rajender Singh; Asha; Jadaun, Jyoti Singh; Sangwan, Neelam S

    2016-01-01

    Withania somnifera Dunal, is one of the most commonly used medicinal plant in Ayurvedic and indigenous medicine traditionally owing to its therapeutic potential, because of major chemical constituents, withanolides. Withanolide biosynthesis requires the activities of several enzymes in vivo. Cycloartenol synthase (CAS) is an important enzyme in the withanolide biosynthetic pathway, catalyzing cyclization of 2, 3 oxidosqualene into cycloartenol. In the present study, we have cloned full-length WsCAS from Withania somnifera by homology-based PCR method. For gene function investigation, we constructed three RNAi gene-silencing constructs in backbone of RNAi vector pGSA and a full-length over-expression construct. These constructs were transformed in Agrobacterium strain GV3101 for plant transformation in W. somnifera. Molecular and metabolite analysis was performed in putative Withania transformants. The PCR and Southern blot results showed the genomic integration of these RNAi and overexpression construct(s) in Withania genome. The qRT-PCR analysis showed that the expression of WsCAS gene was considerably downregulated in stable transgenic silenced Withania lines compared with the non-transformed control and HPLC analysis showed that withanolide content was greatly reduced in silenced lines. Transgenic plants over expressing CAS gene displayed enhanced level of CAS transcript and withanolide content compared to non-transformed controls. This work is the first full proof report of functional validation of any metabolic pathway gene in W. somnifera at whole plant level as per our knowledge and it will be further useful to understand the regulatory role of different genes involved in the biosynthesis of withanolides.

  18. RNAi and Homologous Over-Expression Based Functional Approaches Reveal Triterpenoid Synthase Gene-Cycloartenol Synthase Is Involved in Downstream Withanolide Biosynthesis in Withania somnifera

    PubMed Central

    Mishra, Bhawana; Sangwan, Rajender Singh; Asha; Jadaun, Jyoti Singh; Sangwan, Neelam S.

    2016-01-01

    Withania somnifera Dunal, is one of the most commonly used medicinal plant in Ayurvedic and indigenous medicine traditionally owing to its therapeutic potential, because of major chemical constituents, withanolides. Withanolide biosynthesis requires the activities of several enzymes in vivo. Cycloartenol synthase (CAS) is an important enzyme in the withanolide biosynthetic pathway, catalyzing cyclization of 2, 3 oxidosqualene into cycloartenol. In the present study, we have cloned full-length WsCAS from Withania somnifera by homology-based PCR method. For gene function investigation, we constructed three RNAi gene-silencing constructs in backbone of RNAi vector pGSA and a full-length over-expression construct. These constructs were transformed in Agrobacterium strain GV3101 for plant transformation in W. somnifera. Molecular and metabolite analysis was performed in putative Withania transformants. The PCR and Southern blot results showed the genomic integration of these RNAi and overexpression construct(s) in Withania genome. The qRT-PCR analysis showed that the expression of WsCAS gene was considerably downregulated in stable transgenic silenced Withania lines compared with the non-transformed control and HPLC analysis showed that withanolide content was greatly reduced in silenced lines. Transgenic plants over expressing CAS gene displayed enhanced level of CAS transcript and withanolide content compared to non-transformed controls. This work is the first full proof report of functional validation of any metabolic pathway gene in W. somnifera at whole plant level as per our knowledge and it will be further useful to understand the regulatory role of different genes involved in the biosynthesis of withanolides. PMID:26919744

  19. RNAi and Homologous Over-Expression Based Functional Approaches Reveal Triterpenoid Synthase Gene-Cycloartenol Synthase Is Involved in Downstream Withanolide Biosynthesis in Withania somnifera.

    PubMed

    Mishra, Smrati; Bansal, Shilpi; Mishra, Bhawana; Sangwan, Rajender Singh; Asha; Jadaun, Jyoti Singh; Sangwan, Neelam S

    2016-01-01

    Withania somnifera Dunal, is one of the most commonly used medicinal plant in Ayurvedic and indigenous medicine traditionally owing to its therapeutic potential, because of major chemical constituents, withanolides. Withanolide biosynthesis requires the activities of several enzymes in vivo. Cycloartenol synthase (CAS) is an important enzyme in the withanolide biosynthetic pathway, catalyzing cyclization of 2, 3 oxidosqualene into cycloartenol. In the present study, we have cloned full-length WsCAS from Withania somnifera by homology-based PCR method. For gene function investigation, we constructed three RNAi gene-silencing constructs in backbone of RNAi vector pGSA and a full-length over-expression construct. These constructs were transformed in Agrobacterium strain GV3101 for plant transformation in W. somnifera. Molecular and metabolite analysis was performed in putative Withania transformants. The PCR and Southern blot results showed the genomic integration of these RNAi and overexpression construct(s) in Withania genome. The qRT-PCR analysis showed that the expression of WsCAS gene was considerably downregulated in stable transgenic silenced Withania lines compared with the non-transformed control and HPLC analysis showed that withanolide content was greatly reduced in silenced lines. Transgenic plants over expressing CAS gene displayed enhanced level of CAS transcript and withanolide content compared to non-transformed controls. This work is the first full proof report of functional validation of any metabolic pathway gene in W. somnifera at whole plant level as per our knowledge and it will be further useful to understand the regulatory role of different genes involved in the biosynthesis of withanolides. PMID:26919744

  20. Crystallization of the c[subscript 14]-rotor of the chloroplast ATP synthase reveals that it contains pigments

    SciTech Connect

    Varco-Merth, Benjamin; Fromme, Raimund; Wang, Meitian; Fromme, Petra

    2008-08-27

    The ATP synthase is one of the most important enzymes on earth as it couples the transmembrane electrochemical potential of protons to the synthesis of ATP from ADP and inorganic phosphage, providing the main ATP source of almost all higher life on earth. During ATP synthesis, stepwise protonation of a conserved carboxylate on each protein subunit of an oligomeric ring of 10--15 c-subunits is commonly thought to drive rotation of the rotor moiety (c{sub 10-14}{gamma}{sup {epsilon}}) relative to stator moiety ({alpha}{sub 3}{beta}{sub 3}{delta}ab{sub 2}). Here we report the isolation and crystallization of the c{sub 14}-ring of subunit c from the spinach chloroplast enzyme diffracting as far as 2.8 {angstrom}. Though ATP synthase was not previously know to contain any pigments, the crystals of the c-subunit possessed a strong yellow color. The pigment analysis revaled that they contain 1 chlorophyll and 2 carotenoids, thereby showing for the first time that the chloroplast ATP synthase contains cofactors, leading to the question of the possible roles of the functions of the pigments in the chloroplast ATP synthase.

  1. A novel mechanism of gene regulation identified in the chorismate mutase gene from the potato cyst nematode Globodera rostochiensis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alternative pre-mRNA splicing, a widely used means to control gene expression in eukaryotic organisms, has not been documented in plant parasitic nematodes. Here we report that a chorismate mutase gene (GrCM1) expressed exclusively within the subventral gland cells of the potato cyst nematode Golob...

  2. Anthranilate synthase/anthranilate 5-phosphoribosyl 1-pyrophosphate phosphoribosyltransferase from Aerobacter aerogenes

    PubMed Central

    Egan, A. F.; Gibson, F.

    1972-01-01

    1. Anthranilate synthase and phosphoribosyltransferase from Aerobacter aerogenes purify simultaneously and sediment together on sucrose gradients, showing that they occur as an enzyme aggregate. Both activities of the intact aggregate are subject to inhibition by tryptophan. 2. By using appropriate auxotrophic mutants it was shown that an intact active enzyme aggregate is formed when the components come from separate mutant strains. An intact active aggregate can also be formed when one component is from Escherichia coli and the other from A. aerogenes. 3. Phosphoribosyltransferase of A. aerogenes is active when not in an aggregate with anthranilate synthase, but is not subject to tryptophan inhibition, indicating that the inhibitor site is on the anthranilate synthase component. 4. Anthranilate synthase can be active and sensitive to tryptophan inhibition when complexed with an inactive phosphoribosyltransferase. 5. Kinetic studies on the anthranilate synthase activity show that tryptophan is a competitive inhibitor with respect to chorismate and a non-competitive inhibitor with respect to either glutamine or NH4+ ions. This is consistent with a sequential mechanism of the ordered type in which chorismate is the first reactant. PMID:4352716

  3. Protein packing interactions and polymorphy of chorismate lyase from E. Coli

    NASA Astrophysics Data System (ADS)

    Gallagher, Travis

    2001-11-01

    The enzyme chorismate lyase from E. coli crystallizes into three well characterized polymorphs in identical conditions. The Wild-type enzyme tends to aggregate, even in the presence of a reducing agent, and yields monoclinic crystals that grow in intricate clusters. Protein aggregation was largely eliminated by mutating the protein's two cysteines to serines. The double mutant retains full enzymatic activity and grows singly in two new forms: triclinic and orthorhombic. The triclinic crystals diffract to 0.9 Å resolution. A single-cysteine mutant that crystallizes in the orthorhombic form was used to determine the structure, enabling examination of the packing interactions at 2.0 Å resolution or better in all three forms. A novel system for labeling contacts is proposed, and relations between packing patterns and crystal properties are discussed. Diffraction resolution is found to correlate with coordination number and with the root-mean-square deviation from mean extent of the contacts. Implications for contact energies are considered.

  4. Mining for Nonribosomal Peptide Synthetase and Polyketide Synthase Genes Revealed a High Level of Diversity in the Sphagnum Bog Metagenome

    PubMed Central

    Müller, Christina A.; Oberauner-Wappis, Lisa; Peyman, Armin; Amos, Gregory C. A.; Wellington, Elizabeth M. H.

    2015-01-01

    Sphagnum bog ecosystems are among the oldest vegetation forms harboring a specific microbial community and are known to produce an exceptionally wide variety of bioactive substances. Although the Sphagnum metagenome shows a rich secondary metabolism, the genes have not yet been explored. To analyze nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs), the diversity of NRPS and PKS genes in Sphagnum-associated metagenomes was investigated by in silico data mining and sequence-based screening (PCR amplification of 9,500 fosmid clones). The in silico Illumina-based metagenomic approach resulted in the identification of 279 NRPSs and 346 PKSs, as well as 40 PKS-NRPS hybrid gene sequences. The occurrence of NRPS sequences was strongly dominated by the members of the Protebacteria phylum, especially by species of the Burkholderia genus, while PKS sequences were mainly affiliated with Actinobacteria. Thirteen novel NRPS-related sequences were identified by PCR amplification screening, displaying amino acid identities of 48% to 91% to annotated sequences of members of the phyla Proteobacteria, Actinobacteria, and Cyanobacteria. Some of the identified metagenomic clones showed the closest similarity to peptide synthases from Burkholderia or Lysobacter, which are emerging bacterial sources of as-yet-undescribed bioactive metabolites. This report highlights the role of the extreme natural ecosystems as a promising source for detection of secondary compounds and enzymes, serving as a source for biotechnological applications. PMID:26002894

  5. Structure of isochorismate synthase DhbC from Bacillus anthracis

    PubMed Central

    Domagalski, M. J.; Tkaczuk, K. L.; Chruszcz, M.; Skarina, T.; Onopriyenko, O.; Cymborowski, M.; Grabowski, M.; Savchenko, A.; Minor, W.

    2013-01-01

    The isochorismate synthase DhbC from Bacillus anthracis is essential for the biosynthesis of the siderophore bacillibactin by this pathogenic bacterium. The structure of the selenomethionine-substituted protein was determined to 2.4 Å resolution using single-wavelength anomalous diffraction. B. anthracis DhbC bears the strongest resemblance to the Escherichia coli isochorismate synthase EntC, which is involved in the biosynthesis of another siderophore, namely enterobactin. Both proteins adopt the characteristic fold of other chorismate-utilizing enzymes, which are involved in the biosynthesis of various products, including siderophores, menaquinone and tryptophan. The conservation of the active-site residues, as well as their spatial arrangement, suggests that these enzymes share a common Mg2+-dependent catalytic mechanism. PMID:23989140

  6. [Stroke and iridodonesis revealing a homocystinuria caused by a compound heterozygous mutation of cystathionine beta-synthase].

    PubMed

    Lefaucheur, R; Triquenot-Bagan, A; Quillard, M; Genevois, O; Hannequin, D

    2008-01-01

    Iridodonesis or tremulous iris is a clinical sign of ectopia lentis which is frequently associated with homocystinuria. We present a forty-two-year-old woman victim of a left middle cerebral artery ischemic stroke. The clinical examination found bilateral iridodonesis and laboratory tests showed an increased level of serum homocysteine and homocystinuria. Homocystinuria was caused by a compound heterozygous I278T and D444N mutation of cystathionine beta-synthase (CBS) gene and also a C667T heterozygous polymorphism of methylene-tetrahydrofolate-reductase gene. This case was atypical because of the incomplete phenotype, development of complications in adulthood and the association of a rare compound heterozygous mutation of the CBS gene. PMID:18805305

  7. [Stroke and iridodonesis revealing a homocystinuria caused by a compound heterozygous mutation of cystathionine beta-synthase].

    PubMed

    Lefaucheur, R; Triquenot-Bagan, A; Quillard, M; Genevois, O; Hannequin, D

    2008-01-01

    Iridodonesis or tremulous iris is a clinical sign of ectopia lentis which is frequently associated with homocystinuria. We present a forty-two-year-old woman victim of a left middle cerebral artery ischemic stroke. The clinical examination found bilateral iridodonesis and laboratory tests showed an increased level of serum homocysteine and homocystinuria. Homocystinuria was caused by a compound heterozygous I278T and D444N mutation of cystathionine beta-synthase (CBS) gene and also a C667T heterozygous polymorphism of methylene-tetrahydrofolate-reductase gene. This case was atypical because of the incomplete phenotype, development of complications in adulthood and the association of a rare compound heterozygous mutation of the CBS gene.

  8. Functional Genomics Reveals That a Compact Terpene Synthase Gene Family Can Account for Terpene Volatile Production in Apple1[W

    PubMed Central

    Nieuwenhuizen, Niels J.; Green, Sol A.; Chen, Xiuyin; Bailleul, Estelle J.D.; Matich, Adam J.; Wang, Mindy Y.; Atkinson, Ross G.

    2013-01-01

    Terpenes are specialized plant metabolites that act as attractants to pollinators and as defensive compounds against pathogens and herbivores, but they also play an important role in determining the quality of horticultural food products. We show that the genome of cultivated apple (Malus domestica) contains 55 putative terpene synthase (TPS) genes, of which only 10 are predicted to be functional. This low number of predicted functional TPS genes compared with other plant species was supported by the identification of only eight potentially functional TPS enzymes in apple ‘Royal Gala’ expressed sequence tag databases, including the previously characterized apple (E,E)-α-farnesene synthase. In planta functional characterization of these TPS enzymes showed that they could account for the majority of terpene volatiles produced in cv Royal Gala, including the sesquiterpenes germacrene-D and (E)-β-caryophyllene, the monoterpenes linalool and α-pinene, and the homoterpene (E)-4,8-dimethyl-1,3,7-nonatriene. Relative expression analysis of the TPS genes indicated that floral and vegetative tissues were the primary sites of terpene production in cv Royal Gala. However, production of cv Royal Gala floral-specific terpenes and TPS genes was observed in the fruit of some heritage apple cultivars. Our results suggest that the apple TPS gene family has been shaped by a combination of ancestral and more recent genome-wide duplication events. The relatively small number of functional enzymes suggests that the remaining terpenes produced in floral and vegetative and fruit tissues are maintained under a positive selective pressure, while the small number of terpenes found in the fruit of modern cultivars may be related to commercial breeding strategies. PMID:23256150

  9. A Novel N-Acetylglutamate Synthase Architecture Revealed by the Crystal Structure of the Bifunctional Enzyme from Maricaulis maris

    SciTech Connect

    Shi, Dashuang; Li, Yongdong; Cabrera-Luque, Juan; Jin, Zhongmin; Yu, Xiaolin; Zhao, Gengxiang; Haskins, Nantaporn; Allewell, Norma M.; Tuchman, Mendel

    2012-05-24

    Novel bifunctional N-acetylglutamate synthase/kinases (NAGS/K) that catalyze the first two steps of arginine biosynthesis and are homologous to vertebrate N-acetylglutamate synthase (NAGS), an essential cofactor-producing enzyme in the urea cycle, were identified in Maricaulis maris and several other bacteria. Arginine is an allosteric inhibitor of NAGS but not NAGK activity. The crystal structure of M. maris NAGS/K (mmNAGS/K) at 2.7 {angstrom} resolution indicates that it is a tetramer, in contrast to the hexameric structure of Neisseria gonorrhoeae NAGS. The quaternary structure of crystalline NAGS/K from Xanthomonas campestris (xcNAGS/K) is similar, and cross-linking experiments indicate that both mmNAGS/K and xcNAGS are tetramers in solution. Each subunit has an amino acid kinase (AAK) domain, which is likely responsible for N-acetylglutamate kinase (NAGK) activity and has a putative arginine binding site, and an N-acetyltransferase (NAT) domain that contains the putative NAGS active site. These structures and sequence comparisons suggest that the linker residue 291 may determine whether arginine acts as an allosteric inhibitor or activator in homologous enzymes in microorganisms and vertebrates. In addition, the angle of rotation between AAK and NAT domains varies among crystal forms and subunits within the tetramer. A rotation of 26{sup o} is sufficient to close the predicted AcCoA binding site, thus reducing enzymatic activity. Since mmNAGS/K has the highest degree of sequence homology to vertebrate NAGS of NAGS and NAGK enzymes whose structures have been determined, the mmNAGS/K structure was used to develop a structural model of human NAGS that is fully consistent with the functional effects of the 14 missense mutations that were identified in NAGS-deficient patients.

  10. A Novel N-Acetylglutamate Synthase Architecture Revealed by the Crystal Structure of the Bifunctional Enzyme from Maricaulis maris

    PubMed Central

    Shi, Dashuang; Li, Yongdong; Cabrera-Luque, Juan; Jin, Zhongmin; Yu, Xiaolin; Zhao, Gengxiang; Haskins, Nantaporn; Allewell, Norma M.; Tuchman, Mendel

    2011-01-01

    Novel bifunctional N-acetylglutamate synthase/kinases (NAGS/K) that catalyze the first two steps of arginine biosynthesis and are homologous to vertebrate N-acetylglutamate synthase (NAGS), an essential cofactor-producing enzyme in the urea cycle, were identified in Maricaulis maris and several other bacteria. Arginine is an allosteric inhibitor of NAGS but not NAGK activity. The crystal structure of M. maris NAGS/K (mmNAGS/K) at 2.7 Å resolution indicates that it is a tetramer, in contrast to the hexameric structure of Neisseria gonorrhoeae NAGS. The quaternary structure of crystalline NAGS/K from Xanthomonas campestris (xcNAGS/K) is similar, and cross-linking experiments indicate that both mmNAGS/K and xcNAGS are tetramers in solution. Each subunit has an amino acid kinase (AAK) domain, which is likely responsible for N-acetylglutamate kinase (NAGK) activity and has a putative arginine binding site, and an N-acetyltransferase (NAT) domain that contains the putative NAGS active site. These structures and sequence comparisons suggest that the linker residue 291 may determine whether arginine acts as an allosteric inhibitor or activator in homologous enzymes in microorganisms and vertebrates. In addition, the angle of rotation between AAK and NAT domains varies among crystal forms and subunits within the tetramer. A rotation of 26° is sufficient to close the predicted AcCoA binding site, thus reducing enzymatic activity. Since mmNAGS/K has the highest degree of sequence homology to vertebrate NAGS of NAGS and NAGK enzymes whose structures have been determined, the mmNAGS/K structure was used to develop a structural model of human NAGS that is fully consistent with the functional effects of the 14 missense mutations that were identified in NAGS-deficient patients. PMID:22174908

  11. Structures of trehalose synthase from Deinococcus radiodurans reveal that a closed conformation is involved in catalysis of the intramolecular isomerization

    PubMed Central

    Wang, Yung-Lin; Chow, Sih-Yao; Lin, Yi-Ting; Hsieh, Yu-Chiao; Lee, Guan-Chiun; Liaw, Shwu-Huey

    2014-01-01

    Trehalose synthase catalyzes the simple conversion of the inexpensive maltose into trehalose with a side reaction of hydrolysis. Here, the crystal structures of the wild type and the N253A mutant of Deinococcus radiodurans trehalose synthase (DrTS) in complex with the inhibitor Tris are reported. DrTS consists of a catalytic (β/α)8 barrel, subdomain B, a C-terminal β domain and two TS-unique subdomains (S7 and S8). The C-terminal domain and S8 contribute the majority of the dimeric interface. DrTS shares high structural homology with sucrose hydrolase, amylosucrase and sucrose isomerase in complex with sucrose, in particular a virtually identical active-site architecture and a similar substrate-induced rotation of subdomain B. The inhibitor Tris was bound and mimics a sugar at the −1 subsite. A maltose was modelled into the active site, and subsequent mutational analysis suggested that Tyr213, Glu320 and Glu324 are essential within the +1 subsite for the TS activity. In addition, the interaction networks between subdomains B and S7 seal the active-site entrance. Disruption of such networks through the replacement of Arg148 and Asn253 with alanine resulted in a decrease in isomerase activity by 8–9-fold and an increased hydrolase activity by 1.5–1.8-fold. The N253A structure showed a small pore created for water entry. Therefore, our DrTS-Tris may represent a substrate-induced closed conformation that will facilitate intramolecular isomerization and minimize disaccharide hydrolysis. PMID:25478833

  12. Structures of trehalose synthase from Deinococcus radiodurans reveal that a closed conformation is involved in catalysis of the intramolecular isomerization.

    PubMed

    Wang, Yung Lin; Chow, Sih Yao; Lin, Yi Ting; Hsieh, Yu Chiao; Lee, Guan Chiun; Liaw, Shwu Huey

    2014-12-01

    Trehalose synthase catalyzes the simple conversion of the inexpensive maltose into trehalose with a side reaction of hydrolysis. Here, the crystal structures of the wild type and the N253A mutant of Deinococcus radiodurans trehalose synthase (DrTS) in complex with the inhibitor Tris are reported. DrTS consists of a catalytic (β/α)8 barrel, subdomain B, a C-terminal β domain and two TS-unique subdomains (S7 and S8). The C-terminal domain and S8 contribute the majority of the dimeric interface. DrTS shares high structural homology with sucrose hydrolase, amylosucrase and sucrose isomerase in complex with sucrose, in particular a virtually identical active-site architecture and a similar substrate-induced rotation of subdomain B. The inhibitor Tris was bound and mimics a sugar at the -1 subsite. A maltose was modelled into the active site, and subsequent mutational analysis suggested that Tyr213, Glu320 and Glu324 are essential within the +1 subsite for the TS activity. In addition, the interaction networks between subdomains B and S7 seal the active-site entrance. Disruption of such networks through the replacement of Arg148 and Asn253 with alanine resulted in a decrease in isomerase activity by 8-9-fold and an increased hydrolase activity by 1.5-1.8-fold. The N253A structure showed a small pore created for water entry. Therefore, our DrTS-Tris may represent a substrate-induced closed conformation that will facilitate intramolecular isomerization and minimize disaccharide hydrolysis.

  13. Functional genomics reveals that a compact terpene synthase gene family can account for terpene volatile production in apple.

    PubMed

    Nieuwenhuizen, Niels J; Green, Sol A; Chen, Xiuyin; Bailleul, Estelle J D; Matich, Adam J; Wang, Mindy Y; Atkinson, Ross G

    2013-02-01

    Terpenes are specialized plant metabolites that act as attractants to pollinators and as defensive compounds against pathogens and herbivores, but they also play an important role in determining the quality of horticultural food products. We show that the genome of cultivated apple (Malus domestica) contains 55 putative terpene synthase (TPS) genes, of which only 10 are predicted to be functional. This low number of predicted functional TPS genes compared with other plant species was supported by the identification of only eight potentially functional TPS enzymes in apple 'Royal Gala' expressed sequence tag databases, including the previously characterized apple (E,E)-α-farnesene synthase. In planta functional characterization of these TPS enzymes showed that they could account for the majority of terpene volatiles produced in cv Royal Gala, including the sesquiterpenes germacrene-D and (E)-β-caryophyllene, the monoterpenes linalool and α-pinene, and the homoterpene (E)-4,8-dimethyl-1,3,7-nonatriene. Relative expression analysis of the TPS genes indicated that floral and vegetative tissues were the primary sites of terpene production in cv Royal Gala. However, production of cv Royal Gala floral-specific terpenes and TPS genes was observed in the fruit of some heritage apple cultivars. Our results suggest that the apple TPS gene family has been shaped by a combination of ancestral and more recent genome-wide duplication events. The relatively small number of functional enzymes suggests that the remaining terpenes produced in floral and vegetative and fruit tissues are maintained under a positive selective pressure, while the small number of terpenes found in the fruit of modern cultivars may be related to commercial breeding strategies. PMID:23256150

  14. Electrostatic transition state stabilization rather than reactant destabilization provides the chemical basis for efficient chorismate mutase catalysis

    PubMed Central

    Burschowsky, Daniel; van Eerde, André; Ökvist, Mats; Kienhöfer, Alexander; Kast, Peter; Hilvert, Donald; Krengel, Ute

    2014-01-01

    For more than half a century, transition state theory has provided a useful framework for understanding the origins of enzyme catalysis. As proposed by Pauling, enzymes accelerate chemical reactions by binding transition states tighter than substrates, thereby lowering the activation energy compared with that of the corresponding uncatalyzed process. This paradigm has been challenged for chorismate mutase (CM), a well-characterized metabolic enzyme that catalyzes the rearrangement of chorismate to prephenate. Calculations have predicted the decisive factor in CM catalysis to be ground state destabilization rather than transition state stabilization. Using X-ray crystallography, we show, in contrast, that a sluggish variant of Bacillus subtilis CM, in which a cationic active-site arginine was replaced by a neutral citrulline, is a poor catalyst even though it effectively preorganizes chorismate for the reaction. A series of high-resolution molecular snapshots of the reaction coordinate, including the apo enzyme, and complexes with substrate, transition state analog and product, demonstrate that an active site, which is only complementary in shape to a reactive substrate conformer, is insufficient for effective catalysis. Instead, as with other enzymes, electrostatic stabilization of the CM transition state appears to be crucial for achieving high reaction rates. PMID:25422475

  15. Electrostatic transition state stabilization rather than reactant destabilization provides the chemical basis for efficient chorismate mutase catalysis.

    PubMed

    Burschowsky, Daniel; van Eerde, André; Ökvist, Mats; Kienhöfer, Alexander; Kast, Peter; Hilvert, Donald; Krengel, Ute

    2014-12-01

    For more than half a century, transition state theory has provided a useful framework for understanding the origins of enzyme catalysis. As proposed by Pauling, enzymes accelerate chemical reactions by binding transition states tighter than substrates, thereby lowering the activation energy compared with that of the corresponding uncatalyzed process. This paradigm has been challenged for chorismate mutase (CM), a well-characterized metabolic enzyme that catalyzes the rearrangement of chorismate to prephenate. Calculations have predicted the decisive factor in CM catalysis to be ground state destabilization rather than transition state stabilization. Using X-ray crystallography, we show, in contrast, that a sluggish variant of Bacillus subtilis CM, in which a cationic active-site arginine was replaced by a neutral citrulline, is a poor catalyst even though it effectively preorganizes chorismate for the reaction. A series of high-resolution molecular snapshots of the reaction coordinate, including the apo enzyme, and complexes with substrate, transition state analog and product, demonstrate that an active site, which is only complementary in shape to a reactive substrate conformer, is insufficient for effective catalysis. Instead, as with other enzymes, electrostatic stabilization of the CM transition state appears to be crucial for achieving high reaction rates. PMID:25422475

  16. Electrostatic transition state stabilization rather than reactant destabilization provides the chemical basis for efficient chorismate mutase catalysis.

    PubMed

    Burschowsky, Daniel; van Eerde, André; Ökvist, Mats; Kienhöfer, Alexander; Kast, Peter; Hilvert, Donald; Krengel, Ute

    2014-12-01

    For more than half a century, transition state theory has provided a useful framework for understanding the origins of enzyme catalysis. As proposed by Pauling, enzymes accelerate chemical reactions by binding transition states tighter than substrates, thereby lowering the activation energy compared with that of the corresponding uncatalyzed process. This paradigm has been challenged for chorismate mutase (CM), a well-characterized metabolic enzyme that catalyzes the rearrangement of chorismate to prephenate. Calculations have predicted the decisive factor in CM catalysis to be ground state destabilization rather than transition state stabilization. Using X-ray crystallography, we show, in contrast, that a sluggish variant of Bacillus subtilis CM, in which a cationic active-site arginine was replaced by a neutral citrulline, is a poor catalyst even though it effectively preorganizes chorismate for the reaction. A series of high-resolution molecular snapshots of the reaction coordinate, including the apo enzyme, and complexes with substrate, transition state analog and product, demonstrate that an active site, which is only complementary in shape to a reactive substrate conformer, is insufficient for effective catalysis. Instead, as with other enzymes, electrostatic stabilization of the CM transition state appears to be crucial for achieving high reaction rates.

  17. Refined molecular hinge between allosteric and catalytic domain determines allosteric regulation and stability of fungal chorismate mutase.

    PubMed

    Helmstaedt, Kerstin; Heinrich, Gabriele; Lipscomb, William N; Braus, Gerhard H

    2002-05-14

    The yeast chorismate mutase is regulated by tyrosine as feedback inhibitor and tryptophan as crosspathway activator. The monomer consists of a catalytic and a regulatory domain covalently linked by the loop L220s (212-226), which functions as a molecular hinge. Two monomers form the active dimeric enzyme stabilized by hydrophobic interactions in the vicinity of loop L220s. The role of loop L220s and its environment for enzyme regulation, dimerization, and stability was analyzed. Substitution of yeast loop L220s in place of the homologous loop from the corresponding and similarly regulated Aspergillus enzyme (and the reverse substitution) changed tyrosine inhibition to activation. Yeast loop L220s substituted into the Aspergillus enzyme resulted in a tryptophan-inhibitable enzyme. Monomeric yeast chorismate mutases could be generated by substituting two hydrophobic residues in and near the hinge region. The resulting Thr-212-->Asp-Phe-28-->Asp enzyme was as stable as wild type, but lost allosteric regulation and showed reduced catalytic activity. These results underline the crucial role of this molecular hinge for inhibition, activation, quaternary structure, and stability of yeast chorismate mutase.

  18. A disulfide-stabilized conformer of methionine synthase reveals an unexpected role for the histidine ligand of the cobalamin cofactor

    SciTech Connect

    Datta, Supratim; Koutmos, Markos; Pattridge, Katherine A.; Ludwig, Martha L.; Matthews, Rowena G.

    2008-07-08

    B{sub 12}-dependent methionine synthase (MetH) from Escherichia coli is a large modular protein that is alternately methylated by methyltetrahydrofolate to form methylcobalamin and demethylated by homocysteine to form cob(I)alamin. Major domain rearrangements are required to allow cobalamin to react with three different substrates: homocysteine, methyltetrahydrofolate, and S-adenosyl-l-methionine (AdoMet). These same rearrangements appear to preclude crystallization of the wild-type enzyme. Disulfide cross-linking was used to lock a C-terminal fragment of the enzyme into a unique conformation. Cysteine point mutations were introduced at Ile-690 and Gly-743. These cysteine residues span the cap and the cobalamin-binding module and form a cross-link that reduces the conformational space accessed by the enzyme, facilitating protein crystallization. Here, we describe an x-ray structure of the mutant fragment in the reactivation conformation; this conformation enables the transfer of a methyl group from AdoMet to the cobalamin cofactor. In the structure, the axial ligand to the cobalamin, His-759, dissociates from the cobalamin and forms intermodular contacts with residues in the AdoMet-binding module. This unanticipated intermodular interaction is expected to play a major role in controlling the distribution of conformers required for the catalytic and the reactivation cycles of the enzyme.

  19. Pronounced Phenotypic Changes in Transgenic Tobacco Plants Overexpressing Sucrose Synthase May Reveal a Novel Sugar Signaling Pathway

    PubMed Central

    Nguyen, Quynh Anh; Luan, Sheng; Wi, Seung G.; Bae, Hanhong; Lee, Dae-Seok; Bae, Hyeun-Jong

    2016-01-01

    Soluble sugars not only serve as nutrients, but also act as signals for plant growth and development, but how sugar signals are perceived and translated into physiological responses in plants remains unclear. We manipulated sugar levels in transgenic plants by overexpressing sucrose synthase (SuSy), which is a key enzyme believed to have reversible sucrose synthesis and sucrose degradation functions. The ectopically expressed SuSy protein exhibited sucrose-degrading activity, which may change the flux of sucrose demand from photosynthetic to non-photosynthetic cells, and trigger an unknown sucrose signaling pathway that lead to increased sucrose content in the transgenic plants. An experiment on the transition from heterotrophic to autotrophic growth demonstrated the existence of a novel sucrose signaling pathway, which stimulated photosynthesis, and enhanced photosynthetic synthesis of sucrose, which was the direct cause or the sucrose increase. In addition, a light/dark time treatment experiment, using different day length ranges for photosynthesis/respiration showed the carbohydrate pattern within a 24-h day and consolidated the role of sucrose signaling pathway as a way to maintain sucrose demand, and indicated the relationships between increased sucrose and upregulation of genes controlling development of the shoot apical meristem (SAM). As a result, transgenic plants featured a higher biomass and a shorter time required to switch to reproduction compared to those of control plants, indicating altered phylotaxis and more rapid advancement of developmental stages in the transgenic plants. PMID:26793204

  20. Structure of a Heterotetrameric Geranyl Pyrophosphate Synthase from Mint (Mentha piperita) Reveals Intersubunit Regulation[W][OA

    PubMed Central

    Chang, Tao-Hsin; Hsieh, Fu-Lien; Ko, Tzu-Ping; Teng, Kuo-Hsun; Liang, Po-Huang; Wang, Andrew H.-J.

    2010-01-01

    Terpenes (isoprenoids), derived from isoprenyl pyrophosphates, are versatile natural compounds that act as metabolism mediators, plant volatiles, and ecological communicators. Divergent evolution of homomeric prenyltransferases (PTSs) has allowed PTSs to optimize their active-site pockets to achieve catalytic fidelity and diversity. Little is known about heteromeric PTSs, particularly the mechanisms regulating formation of specific products. Here, we report the crystal structure of the (LSU · SSU)2-type (LSU/SSU = large/small subunit) heterotetrameric geranyl pyrophosphate synthase (GPPS) from mint (Mentha piperita). The LSU and SSU of mint GPPS are responsible for catalysis and regulation, respectively, and this SSU lacks the essential catalytic amino acid residues found in LSU and other PTSs. Whereas no activity was detected for individually expressed LSU or SSU, the intact (LSU · SSU)2 tetramer produced not only C10-GPP at the beginning of the reaction but also C20-GGPP (geranylgeranyl pyrophosphate) at longer reaction times. The activity for synthesizing C10-GPP and C20-GGPP, but not C15-farnesyl pyrophosphate, reflects a conserved active-site structure of the LSU and the closely related mustard (Sinapis alba) homodimeric GGPPS. Furthermore, using a genetic complementation system, we showed that no C20-GGPP is produced by the mint GPPS in vivo. Presumably through protein–protein interactions, the SSU remodels the active-site cavity of LSU for synthesizing C10-GPP, the precursor of volatile C10-monoterpenes. PMID:20139160

  1. The Crystal Structure of (S)-3-O-geranylgeranylglycerol phosphate synthase Reveals an Ancient Fold for an Ancient Enzyme

    SciTech Connect

    Payandeh, Jian; Fujihashi, Masahiro; Gillon, Wanda; Pai, Emil F.

    2010-12-03

    We report crystal structures of the citrate and sn-glycerol-1-phosphate (G1P) complexes of (S)-3-O-geranylgeranylglyceryl phosphate synthase from Archaeoglobus fulgidus (AfGGGPS) at 1.55 and 2.0 {angstrom} resolution, respectively. AfGGGPS is an enzyme that performs the committed step in archaeal lipid biosynthesis, and it presents the first triose phosphate isomerase (TIM)-barrel structure with a prenyltransferase function. Our studies provide insight into the catalytic mechanism of AfGGGPS and demonstrate how it selects for the sn-G1P isomer. The replacement of 'Helix 3' by a 'strand' in AfGGGPS, a novel modification to the canonical TIM-barrel fold, suggests a model of enzyme adaptation that involves a 'greasy slide' and a 'swinging door.' We propose functions for the homologous PcrB proteins, which are conserved in a subset of pathogenic bacteria, as either prenyltransferases or being involved in lipoteichoic acid biosynthesis. Sequence and structural comparisons lead us to postulate an early evolutionary history for AfGGGPS, which may highlight its role in the emergence of Archaea.

  2. The Structure of Sucrose Phosphate Synthase from Halothermothrix orenii Reveals Its Mechanism of Action and Binding Mode

    SciTech Connect

    Chua,T.; Bujnicki, J.; Tan, T.; Huynh, F.; Patel, B.; Sivaraman, J.; Ogimoto, Y.; Miyano, K.; Sawa, H.

    2008-01-01

    Sucrose phosphate synthase (SPS) catalyzes the transfer of a glycosyl group from an activated donor sugar, such as uridine diphosphate glucose (UDP-Glc), to a saccharide acceptor D-fructose 6-phosphate (F6P), resulting in the formation of UDP and D-sucrose-6'-phosphate (S6P). This is a central regulatory process in the production of sucrose in plants, cyanobacteria, and proteobacteria. Here, we report the crystal structure of SPS from the nonphotosynthetic bacterium Halothermothrix orenii and its complexes with the substrate F6P and the product S6P. SPS has two distinct Rossmann-fold domains with a large substrate binding cleft at the interdomain interface. Structures of two complexes show that both the substrate F6P and the product S6P bind to the A-domain of SPS. Based on comparative analysis of the SPS structure with other related enzymes, the donor substrate, nucleotide diphosphate glucose, binds to the B-domain of SPS. Furthermore, we propose a mechanism of catalysis by H. orenii SPS. Our findings indicate that SPS from H. orenii may represent a valid model for the catalytic domain of plant SPSs and thus may provide useful insight into the reaction mechanism of the plant enzyme.

  3. Crystal Structure of Mycobacterium tuberculosis Polyketide Synthase 11 (PKS11) Reveals Intermediates in the Synthesis of Methyl-branched Alkylpyrones*

    PubMed Central

    Gokulan, Kuppan; O'Leary, Seán E.; Russell, William K.; Russell, David H.; Lalgondar, Mallikarjun; Begley, Tadhg P.; Ioerger, Thomas R.; Sacchettini, James C.

    2013-01-01

    PKS11 is one of three type III polyketide synthases (PKSs) identified in Mycobacterium tuberculosis. Although many PKSs in M. tuberculosis have been implicated in producing complex cell wall glycolipids, the biological function of PKS11 is unknown. PKS11 has previously been proposed to synthesize alkylpyrones from fatty acid substrates. We solved the crystal structure of M. tuberculosis PKS11 and found the overall fold to be similar to other type III PKSs. PKS11 has a deep hydrophobic tunnel proximal to the active site Cys-138 to accommodate substrates. We observed electron density in this tunnel from a co-purified molecule that was identified by mass spectrometry to be palmitate. Co-crystallization with malonyl-CoA (MCoA) or methylmalonyl-CoA (MMCoA) led to partial turnover of the substrate, resulting in trapped intermediates. Reconstitution of the reaction in solution confirmed that both co-factors are required for optimal activity, and kinetic analysis shows that MMCoA is incorporated first, then MCoA, followed by lactonization to produce methyl-branched alkylpyrones. PMID:23615910

  4. Affinity chromatography and inhibition of chorismate mutase-prephenate dehydrogenase by derivatives of phenylalanine and tyrosine.

    PubMed Central

    Smith, G D; Roberts, D V; Daday, A

    1977-01-01

    Several derivatives of phenylalanine and tyrosine were prepared and tested for inhibition of chorismate mutase-prephenate dehydrogenase (EC 1.3.1.12) from Escherichia coli K12 (strain JP 232). The best inhibitors were N-toluene-p-sulphonyl-L-phenylalanine, N-benzenesulphonyl-L-phenylalanine and N-benzloxycarbonyl-L-phenylalanine. Consequently two compounds, N-toluene-sulphonyl-L-p-aminophenylalanine and N-p-aminobenzenesulphonyl-L-phenylalanine, were synthesized for coupling to CNBr-activated Sepharose-4B. The N-toluene-p-sulphonyl-L-p-aminophenylalanine-Sepharose-4B conjugate was shown to bind the enzyme very strongly at pH 7.5. The enzyme was not eluted by various eluents, including 1 M-NaCl, but could be quantitatively recovered by washing with buffer of pH9. Elution was more effective in the presence of 10 mM-1-adamantaneacetic acid, a competitive inhibitor of the enzyme. This affinity-chromatography procedure results in a high degree of purification of the enzyme and can be used to prepare the enzyme in a one-step procedure from the bacterial crude extract. Such a procedure may therefore prove useful in studying this enzyme in a state that closely resembles that in vivo. PMID:889568

  5. Two crystal structures of dihydrofolate reductase-thymidylate synthase from Cryptosporidium hominis reveal protein–ligand interactions including a structural basis for observed antifolate resistance

    SciTech Connect

    Anderson, Amy C.

    2005-03-01

    An analysis of the protein–ligand interactions in two crystal structures of DHFR-TS from C. hominis reveals a possible structural basis for observed antifolate resistance in C. hominis DHFR. A comparison with the structure of human DHFR reveals residue substitutions that may be exploited for the design of species-selective inhibitors. Cryptosporidium hominis is a protozoan parasite that causes acute gastrointestinal illness. There are no effective therapies for cryptosporidiosis, highlighting the need for new drug-lead discovery. An analysis of the protein–ligand interactions in two crystal structures of dihydrofolate reductase-thymidylate synthase (DHFR-TS) from C. hominis, determined at 2.8 and 2.87 Å resolution, reveals that the interactions of residues Ile29, Thr58 and Cys113 in the active site of C. hominis DHFR provide a possible structural basis for the observed antifolate resistance. A comparison with the structure of human DHFR reveals active-site differences that may be exploited for the design of species-selective inhibitors.

  6. Physiological roles of trehalose in Leptinotarsa larvae revealed by RNA interference of trehalose-6-phosphate synthase and trehalase genes.

    PubMed

    Shi, Ji-Feng; Xu, Qing-Yu; Sun, Qiang-Kun; Meng, Qing-Wei; Mu, Li-Li; Guo, Wen-Chao; Li, Guo-Qing

    2016-10-01

    Trehalose is proposed to serve multiple physiological roles in insects. However, its importance remains largely unconfirmed. In the present paper, we knocked down either a trehalose biosynthesis gene (trehalose-6-phosphate synthase, LdTPS) or each of three degradation genes (soluble trehalases LdTRE1a, LdTRE1b or membrane-bound LdTRE2) in Leptinotarsa decemlineata by RNA interference (RNAi). Knockdown of LdTPS decreased trehalose content and caused larval and pupal lethality. The LdTPS RNAi survivors consumed a greater amount of foliage, obtained a heavier body mass, accumulated more glycogen, lipid and proline, and had a smaller amount of chitin compared with the controls. Ingestion of trehalose but not glucose rescued the food consumption increase and larval mass rise, increased survivorship, and recovered glycogen, lipid and chitin to the normal levels. In contrast, silencing of LdTRE1a increased trehalose content and resulted in larval and pupal lethality. The surviving LdTRE1a RNAi hypomorphs fed a smaller quantity of food, had a lighter body weight, depleted lipid and several glucogenic amino acids, and contained a smaller amount of chitin. Neither trehalose nor glucose ingestion rescued these LdTRE1a RNAi defects. Silencing of LdTRE1b caused little effects. Knockdown of LdTRE2 caused larval death, increased trehalose contents in several tissues and diminished glycogen in the brain-corpora cardiaca-corpora allata complex (BCC). Feeding glucose but not trehalose partially rescued the high mortality rate and recovered glycogen content in the BCC. It seems that trehalose is involved in feeding regulation, sugar absorption, brain energy supply and chitin biosynthesis in L. decemlineata larvae. PMID:27524277

  7. Fluorescence Resonance Energy Transfer (FRET) and Proximity Ligation Assays Reveal Functionally Relevant Homo- and Heteromeric Complexes among Hyaluronan Synthases HAS1, HAS2, and HAS3*

    PubMed Central

    Bart, Geneviève; Vico, Nuria Ortega; Hassinen, Antti; Pujol, Francois M.; Deen, Ashik Jawahar; Ruusala, Aino; Tammi, Raija H.; Squire, Anthony; Heldin, Paraskevi; Kellokumpu, Sakari; Tammi, Markku I.

    2015-01-01

    In vertebrates, hyaluronan is produced in the plasma membrane from cytosolic UDP-sugar substrates by hyaluronan synthase 1–3 (HAS1–3) isoenzymes that transfer N-acetylglucosamine (GlcNAc) and glucuronic acid (GlcUA) in alternative positions in the growing polysaccharide chain during its simultaneous extrusion into the extracellular space. It has been shown that HAS2 immunoprecipitates contain functional HAS2 homomers and also heteromers with HAS3 (Karousou, E., Kamiryo, M., Skandalis, S. S., Ruusala, A., Asteriou, T., Passi, A., Yamashita, H., Hellman, U., Heldin, C. H., and Heldin, P. (2010) The activity of hyaluronan synthase 2 is regulated by dimerization and ubiquitination. J. Biol. Chem. 285, 23647–23654). Here we have systematically screened in live cells, potential interactions among the HAS isoenzymes using fluorescence resonance energy transfer (FRET) and flow cytometric quantification. We show that all HAS isoenzymes form homomeric and also heteromeric complexes with each other. The same complexes were detected both in Golgi apparatus and plasma membrane by using FRET microscopy and the acceptor photobleaching method. Proximity ligation assays with HAS antibodies confirmed the presence of HAS1-HAS2, HAS2-HAS2, and HAS2-HAS3 complexes between endogenously expressed HASs. C-terminal deletions revealed that the enzymes interact mainly via uncharacterized N-terminal 86-amino acid domain(s), but additional binding site(s) probably exist in their C-terminal parts. Of all the homomeric complexes HAS1 had the lowest and HAS3 the highest synthetic activity. Interestingly, HAS1 transfection reduced the synthesis of hyaluronan obtained by HAS2 and HAS3, suggesting functional cooperation between the isoenzymes. These data indicate a general tendency of HAS isoenzymes to form both homomeric and heteromeric complexes with potentially important functional consequences on hyaluronan synthesis. PMID:25795779

  8. The importance of chorismate mutase in the biocontrol potential of Trichoderma parareesei

    PubMed Central

    Pérez, Esclaudys; Rubio, M. Belén; Cardoza, Rosa E.; Gutiérrez, Santiago; Bettiol, Wagner; Monte, Enrique; Hermosa, Rosa

    2015-01-01

    Species of Trichoderma exert direct biocontrol activity against soil-borne plant pathogens due to their ability to compete for nutrients and to inhibit or kill their targets through the production of antibiotics and/or hydrolytic enzymes. In addition to these abilities, Trichoderma spp. have beneficial effects for plants, including the stimulation of defenses and the promotion of growth. Here we study the role in biocontrol of the T. parareesei Tparo7 gene, encoding a chorismate mutase (CM), a shikimate pathway branch point leading to the production of aromatic amino acids, which are not only essential components of protein synthesis but also the precursors of a wide range of secondary metabolites. We isolated T. parareesei transformants with the Tparo7 gene silenced. Compared with the wild-type, decreased levels of Tparo7 expression in the silenced transformants were accompanied by reduced CM activity, lower growth rates on different culture media, and reduced mycoparasitic behavior against the phytopathogenic fungi Rhizoctonia solani, Fusarium oxysporum and Botrytis cinerea in dual cultures. By contrast, higher amounts of the aromatic metabolites tyrosol, 2-phenylethanol and salicylic acid were detected in supernatants from the silenced transformants, which were able to inhibit the growth of F. oxysporum and B. cinerea. In in vitro plant assays, Tparo7-silenced transformants also showed a reduced capacity to colonize tomato roots. The effect of Tparo7-silencing on tomato plant responses was examined in greenhouse assays. The growth of plants colonized by the silenced transformants was reduced and the plants exhibited an increased susceptibility to B. cinerea in comparison with the responses observed for control plants. In addition, the plants turned yellowish and were defective in jasmonic acid- and ethylene-regulated signaling pathways which was seen by expression analysis of lipoxygenase 1 (LOX1), ethylene-insensitive protein 2 (EIN2) and pathogenesis

  9. The importance of chorismate mutase in the biocontrol potential of Trichoderma parareesei.

    PubMed

    Pérez, Esclaudys; Rubio, M Belén; Cardoza, Rosa E; Gutiérrez, Santiago; Bettiol, Wagner; Monte, Enrique; Hermosa, Rosa

    2015-01-01

    Species of Trichoderma exert direct biocontrol activity against soil-borne plant pathogens due to their ability to compete for nutrients and to inhibit or kill their targets through the production of antibiotics and/or hydrolytic enzymes. In addition to these abilities, Trichoderma spp. have beneficial effects for plants, including the stimulation of defenses and the promotion of growth. Here we study the role in biocontrol of the T. parareesei Tparo7 gene, encoding a chorismate mutase (CM), a shikimate pathway branch point leading to the production of aromatic amino acids, which are not only essential components of protein synthesis but also the precursors of a wide range of secondary metabolites. We isolated T. parareesei transformants with the Tparo7 gene silenced. Compared with the wild-type, decreased levels of Tparo7 expression in the silenced transformants were accompanied by reduced CM activity, lower growth rates on different culture media, and reduced mycoparasitic behavior against the phytopathogenic fungi Rhizoctonia solani, Fusarium oxysporum and Botrytis cinerea in dual cultures. By contrast, higher amounts of the aromatic metabolites tyrosol, 2-phenylethanol and salicylic acid were detected in supernatants from the silenced transformants, which were able to inhibit the growth of F. oxysporum and B. cinerea. In in vitro plant assays, Tparo7-silenced transformants also showed a reduced capacity to colonize tomato roots. The effect of Tparo7-silencing on tomato plant responses was examined in greenhouse assays. The growth of plants colonized by the silenced transformants was reduced and the plants exhibited an increased susceptibility to B. cinerea in comparison with the responses observed for control plants. In addition, the plants turned yellowish and were defective in jasmonic acid- and ethylene-regulated signaling pathways which was seen by expression analysis of lipoxygenase 1 (LOX1), ethylene-insensitive protein 2 (EIN2) and pathogenesis

  10. The importance of chorismate mutase in the biocontrol potential of Trichoderma parareesei.

    PubMed

    Pérez, Esclaudys; Rubio, M Belén; Cardoza, Rosa E; Gutiérrez, Santiago; Bettiol, Wagner; Monte, Enrique; Hermosa, Rosa

    2015-01-01

    Species of Trichoderma exert direct biocontrol activity against soil-borne plant pathogens due to their ability to compete for nutrients and to inhibit or kill their targets through the production of antibiotics and/or hydrolytic enzymes. In addition to these abilities, Trichoderma spp. have beneficial effects for plants, including the stimulation of defenses and the promotion of growth. Here we study the role in biocontrol of the T. parareesei Tparo7 gene, encoding a chorismate mutase (CM), a shikimate pathway branch point leading to the production of aromatic amino acids, which are not only essential components of protein synthesis but also the precursors of a wide range of secondary metabolites. We isolated T. parareesei transformants with the Tparo7 gene silenced. Compared with the wild-type, decreased levels of Tparo7 expression in the silenced transformants were accompanied by reduced CM activity, lower growth rates on different culture media, and reduced mycoparasitic behavior against the phytopathogenic fungi Rhizoctonia solani, Fusarium oxysporum and Botrytis cinerea in dual cultures. By contrast, higher amounts of the aromatic metabolites tyrosol, 2-phenylethanol and salicylic acid were detected in supernatants from the silenced transformants, which were able to inhibit the growth of F. oxysporum and B. cinerea. In in vitro plant assays, Tparo7-silenced transformants also showed a reduced capacity to colonize tomato roots. The effect of Tparo7-silencing on tomato plant responses was examined in greenhouse assays. The growth of plants colonized by the silenced transformants was reduced and the plants exhibited an increased susceptibility to B. cinerea in comparison with the responses observed for control plants. In addition, the plants turned yellowish and were defective in jasmonic acid- and ethylene-regulated signaling pathways which was seen by expression analysis of lipoxygenase 1 (LOX1), ethylene-insensitive protein 2 (EIN2) and pathogenesis

  11. Toward Accurate Modelling of Enzymatic Reactions: All Electron Quantum Chemical Analysis combined with QM/MM Calculation of Chorismate Mutase

    SciTech Connect

    Ishida, Toyokazu

    2008-09-17

    To further understand the catalytic role of the protein environment in the enzymatic process, the author has analyzed the reaction mechanism of the Claisen rearrangement of Bacillus subtilis chorismate mutase (BsCM). By introducing a new computational strategy that combines all-electron QM calculations with ab initio QM/MM modelings, it was possible to simulate the molecular interactions between the substrate and the protein environment. The electrostatic nature of the transition state stabilization was characterized by performing all-electron QM calculations based on the fragment molecular orbital technique for the entire enzyme.

  12. Stereocontrolled Synthesis of a Potential Transition-State Inhibitor of the Salicylate Synthase MbtI from Mycobacterium tuberculosis

    PubMed Central

    Liu, Zheng; Liu, Feng; Aldrich, Courtney C.

    2015-01-01

    Mycobactins are small-molecule iron chelators (siderophores) produced by Mycobacterium tuberculosis (Mtb) for iron mobilization. The bifunctional salicylate synthase MbtI catalyzes the first step of mycobactin biosynthesis through the conversion of the primary metabolite chorismate into salicylic acid via isochorismate. We report the design, synthesis and biochemical evaluation of an inhibitor based on the putative transition-state (TS) for the isochorismatase partial reaction of MbtI. The inhibitor mimics the hypothesized charge build-up at C-4 of chorismate in the TS as well as C-O bond-formation at C-6. Another important design element of the inhibitor is replacement of the labile pyruvate side-chain in chorismate with a stable C-linked propionate isostere. We developed a stereocontrolled synthesis of the highly functionalized cyclohexene inhibitor that features an asymmetric aldol reaction using a titanium enolate, diastereoselective Grignard addition to a tert-butanesulfinyl aldimine, and ring closing olefin metathesis as key steps. PMID:26035083

  13. Subcellular localization of chorismate-mutase isoenzymes in protoplasts from mesophyll and suspension-cultured cells of Nicotiana silvestris.

    PubMed

    d'Amato, T A; Ganson, R J; Gaines, C G; Jensen, R A

    1984-09-01

    The subcellular locations of two readily discriminated chorismate-mutase (EC 5.4.99.5) isoenzymes from Nicotiana silvestris Speg. et Comes were determined in protoplasts prepared from both leaf tissue and isogenic suspension-cultured cells. Differential centrifugation was used to obtain fractions containing plastids, a mixture of mitochondria and microbodies, and soluble cytosolic proteins. Isoenzyme CM-1 is sensitive to feedback inhibition by L-tyrosine and comprises the major fraction of total chorismate mutase in suspension-cultured cells. Isoenzyme CM-2 is not inhibited by L-tyrosine and its expression is maximal in organismal (leaf) tissue. Isoenzyme CM-1 is located in the plastid compartment since (i) proplastids contained more CM-1 activity than chloroplasts, (ii) both chloroplast and proplastid fractions possessed the tyrosine-sensitive isoenzyme, and (iii) latency determinations on washed chloroplast preparations confirmed the internal location of a tyrosine-sensitive isoenzyme. Isoenzyme CM-2 is located in the cytosol since (i) the supernatant fractions were heavily enriched for the tyrosineinsensitive activity, and (ii) a relatively greater amount of tyrosine-insensitive enzyme was present in the supernatant fraction derived from organismal tissue.

  14. Guard cell-specific upregulation of sucrose synthase 3 reveals that the role of sucrose in stomatal function is primarily energetic.

    PubMed

    Daloso, Danilo M; Williams, Thomas C R; Antunes, Werner C; Pinheiro, Daniela P; Müller, Caroline; Loureiro, Marcelo E; Fernie, Alisdair R

    2016-03-01

    Isoform 3 of sucrose synthase (SUS3) is highly expressed in guard cells; however, the precise function of SUS3 in this cell type remains to be elucidated. Here, we characterized transgenic Nicotiana tabacum plants overexpressing SUS3 under the control of the stomatal-specific KST1 promoter, and investigated the changes in guard cell metabolism during the dark to light transition. Guard cell-specific SUS3 overexpression led to increased SUS activity, stomatal aperture, stomatal conductance, transpiration rate, net photosynthetic rate and growth. Although only minor changes were observed in the metabolite profile in whole leaves, an increased fructose level and decreased organic acid levels and sucrose to fructose ratio were observed in guard cells of transgenic lines. Furthermore, guard cell sucrose content was lower during light-induced stomatal opening. In a complementary approach, we incubated guard cell-enriched epidermal fragments in (13) C-NaHCO3 and followed the redistribution of label during dark to light transitions; this revealed increased labeling in metabolites of, or associated with, the tricarboxylic acid cycle. The results suggest that sucrose breakdown is a mechanism to provide substrate for the provision of organic acids for respiration, and imply that manipulation of guard cell metabolism may represent an effective strategy for plant growth improvement. PMID:26467445

  15. The crystal structure of an isopenicillin N synthase complex with an ethereal substrate analogue reveals water in the oxygen binding site.

    PubMed

    Clifton, Ian J; Ge, Wei; Adlington, Robert M; Baldwin, Jack E; Rutledge, Peter J

    2013-08-19

    Isopenicillin N synthase (IPNS) is a non-heme iron oxidase central to the biosynthesis of β-lactam antibiotics. IPNS converts the tripeptide δ-(L-α-aminoadipoyl)-L-cysteinyl-D-valine (ACV) to isopenicillin N while reducing molecular oxygen to water. The substrate analogue δ-(L-α-aminoadipoyl)-L-cysteinyl-O-methyl-D-threonine (ACmT) is not turned over by IPNS. Epimeric δ-(L-α-aminoadipoyl)-L-cysteinyl-O-methyl-D-allo-threonine (ACmaT) is converted to a bioactive penam product. ACmT and ACmaT differ from each other only in the stereochemistry at the β-carbon atom of their third residue. These substrates both contain a methyl ether in place of the isopropyl group of ACV. We report an X-ray crystal structure for the anaerobic IPNS:Fe(II):ACmT complex. This structure reveals an additional water molecule bound to the active site metal, held by hydrogen-bonding to the ether oxygen atom of the substrate analogue.

  16. Guard cell-specific upregulation of sucrose synthase 3 reveals that the role of sucrose in stomatal function is primarily energetic.

    PubMed

    Daloso, Danilo M; Williams, Thomas C R; Antunes, Werner C; Pinheiro, Daniela P; Müller, Caroline; Loureiro, Marcelo E; Fernie, Alisdair R

    2016-03-01

    Isoform 3 of sucrose synthase (SUS3) is highly expressed in guard cells; however, the precise function of SUS3 in this cell type remains to be elucidated. Here, we characterized transgenic Nicotiana tabacum plants overexpressing SUS3 under the control of the stomatal-specific KST1 promoter, and investigated the changes in guard cell metabolism during the dark to light transition. Guard cell-specific SUS3 overexpression led to increased SUS activity, stomatal aperture, stomatal conductance, transpiration rate, net photosynthetic rate and growth. Although only minor changes were observed in the metabolite profile in whole leaves, an increased fructose level and decreased organic acid levels and sucrose to fructose ratio were observed in guard cells of transgenic lines. Furthermore, guard cell sucrose content was lower during light-induced stomatal opening. In a complementary approach, we incubated guard cell-enriched epidermal fragments in (13) C-NaHCO3 and followed the redistribution of label during dark to light transitions; this revealed increased labeling in metabolites of, or associated with, the tricarboxylic acid cycle. The results suggest that sucrose breakdown is a mechanism to provide substrate for the provision of organic acids for respiration, and imply that manipulation of guard cell metabolism may represent an effective strategy for plant growth improvement.

  17. Purification and cDNA Cloning of Isochorismate Synthase from Elicited Cell Cultures of Catharanthus roseus

    PubMed Central

    van Tegelen, Léon J.P.; Moreno, Paolo R.H.; Croes, Anton F.; Verpoorte, Robert; Wullems, George J.

    1999-01-01

    Isochorismate is an important metabolite formed at the end of the shikimate pathway, which is involved in the synthesis of both primary and secondary metabolites. It is synthesized from chorismate in a reaction catalyzed by the enzyme isochorismate synthase (ICS; EC 5.4.99.6). We have purified ICS to homogeneity from elicited Catharanthus roseus cell cultures. Two isoforms with an apparent molecular mass of 64 kD were purified and characterized. The Km values for chorismate were 558 and 319 μm for isoforms I and II, respectively. The isoforms were not inhibited by aromatic amino acids and required Mg2+ for enzyme activity. Polymerase chain reaction on a cDNA library from elicited C. roseus cells with a degenerated primer based on the sequence of an internal peptide from isoform II resulted in an amplification product that was used to screen the cDNA library. This led to the first isolation, to our knowledge, of a plant ICS cDNA. The cDNA encodes a protein of 64 kD with an N-terminal chloroplast-targeting signal. The deduced amino acid sequence shares homology with bacterial ICS and also with anthranilate synthases from plants. Southern analysis indicates the existence of only one ICS gene in C. roseus. PMID:9952467

  18. Imaging Mass Spectrometry Reveals Acyl-Chain- and Region-Specific Sphingolipid Metabolism in the Kidneys of Sphingomyelin Synthase 2-Deficient Mice

    PubMed Central

    Sugimoto, Masayuki; Wakabayashi, Masato; Shimizu, Yoichi; Yoshioka, Takeshi; Higashino, Kenichi; Numata, Yoshito; Okuda, Tomohiko; Zhao, Songji; Sakai, Shota; Igarashi, Yasuyuki; Kuge, Yuji

    2016-01-01

    Obesity was reported to cause kidney injury by excessive accumulation of sphingolipids such as sphingomyelin and ceramide. Sphingomyelin synthase 2 (SMS2) is an important enzyme for hepatic sphingolipid homeostasis and its dysfunction is considered to result in fatty liver disease. The expression of SMS2 is also high in the kidneys. However, the contribution of SMS2 on renal sphingolipid metabolism remains unclear. Imaging mass spectrometry is a powerful tool to visualize the distribution and provide quantitative data on lipids in tissue sections. Thus, in this study, we analyzed the effects of SMS2 deficiency on the distribution and concentration of sphingomyelins in the liver and kidneys of mice fed with a normal-diet or a high-fat-diet using imaging mass spectrometry and liquid chromatography/electrospray ionization-tandem mass spectrometry. Our study revealed that high-fat-diet increased C18–C22 sphingomyelins, but decreased C24-sphingomyelins, in the liver and kidneys of wild-type mice. By contrast, SMS2 deficiency decreased C18–C24 sphingomyelins in the liver. Although a similar trend was observed in the whole-kidneys, the effects were minor. Interestingly, imaging mass spectrometry revealed that sphingomyelin localization was specific to each acyl-chain length in the kidneys. Further, SMS2 deficiency mainly decreased C22-sphingomyelin in the renal medulla and C24-sphingomyelins in the renal cortex. Thus, imaging mass spectrometry can provide visual assessment of the contribution of SMS2 on acyl-chain- and region-specific sphingomyelin metabolism in the kidneys. PMID:27010944

  19. Characterization of heme-deficient neuronal nitric-oxide synthase reveals a role for heme in subunit dimerization and binding of the amino acid substrate and tetrahydrobiopterin.

    PubMed

    Klatt, P; Pfeiffer, S; List, B M; Lehner, D; Glatter, O; Bächinger, H P; Werner, E R; Schmidt, K; Mayer, B

    1996-03-29

    Neuronal nitric-oxide (NO) synthase contains FAD, FMN, heme, and tetrahydrobiopterin as prosthetic groups and represents a multifunctional oxidoreductase catalyzing oxidation of L-arginine to L-citrulline and NO, reduction of molecular oxygen to superoxide, and electron transfer to cytochromes. To investigate how binding of the prosthetic heme moiety is related to enzyme activities, cofactor, and L-arginine binding, as well as to secondary and quaternary protein structure, we have purified and characterized heme-deficient neuronal NO synthase. The heme-deficient enzyme, which had preserved its cytochrome c reductase activity, contained FAD and FMN, but virtually no tetrahydrobiopterin, and exhibited only marginal NO synthase activity. By means of gel filtration and static light scattering, we demonstrate that the heme-deficient enzyme is a monomer and provide evidence that heme is the sole prosthetic group controlling the quaternary structure of neuronal NO synthase. CD spectroscopy showed that most of the structural elements found in the dimeric holoenzyme were conserved in heme-deficient monomeric NO synthase. However, in spite of being properly folded, the heme-deficient enzyme did bind neither tetrahydrobiopterin nor the substrate analog N(G)-nitro-L-arginine. Our results demonstrate that the prosthetic heme group of neuronal NO synthase is requisite for dimerization of enzyme subunits and for the binding of amino acid substrate and tetrahydrobiopterin.

  20. Pseudouridine synthases.

    PubMed

    Hamma, Tomoko; Ferré-D'Amaré, Adrian R

    2006-11-01

    Pseudouridine synthases are the enzymes responsible for the most abundant posttranscriptional modification of cellular RNAs. These enzymes catalyze the site-specific isomerization of uridine residues that are already part of an RNA chain, and appear to employ both sequence and structural information to achieve site specificity. Crystallographic analyses have demonstrated that all pseudouridine synthases share a common core fold and active site structure and that this core is modified by peripheral domains, accessory proteins, and guide RNAs to give rise to remarkable substrate versatility.

  1. Crystal structure of 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase from the ESKAPE pathogen Acinetobacter baumannii.

    PubMed

    Sutton, Kristin A; Breen, Jennifer; Russo, Thomas A; Schultz, L Wayne; Umland, Timothy C

    2016-03-01

    The enzyme 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase catalyzes the sixth step of the seven-step shikimate pathway. Chorismate, the product of the pathway, is a precursor for the biosynthesis of aromatic amino acids, siderophores and metabolites such as folate, ubiquinone and vitamin K. The shikimate pathway is present in bacteria, fungi, algae, plants and apicomplexan parasites, but is absent in humans. The EPSP synthase enzyme produces 5-enolpyruvylshikimate 3-phosphate and phosphate from phosphoenolpyruvate and shikimate 3-phosphate via a transferase reaction, and is the target of the herbicide glyphosate. The Acinetobacter baumannii gene encoding EPSP synthase, aroA, has previously been demonstrated to be essential during host infection for the growth and survival of this clinically important drug-resistant ESKAPE pathogen. Prephenate dehydrogenase is also encoded by the bifunctional A. baumannii aroA gene, but its activity is dependent upon EPSP synthase since it operates downstream of the shikimate pathway. As part of an effort to evaluate new antimicrobial targets, recombinant A. baumannii EPSP (AbEPSP) synthase, comprising residues Ala301-Gln756 of the aroA gene product, was overexpressed in Escherichia coli, purified and crystallized. The crystal structure, determined to 2.37 Å resolution, is described in the context of a potential antimicrobial target and in comparison to EPSP synthases that are resistant or sensitive to the herbicide glyphosate. PMID:26919521

  2. Identification and Functional Characterization of Monofunctional ent-Copalyl Diphosphate and ent-Kaurene Synthases in White Spruce Reveal Different Patterns for Diterpene Synthase Evolution for Primary and Secondary Metabolism in Gymnosperms1[W][OA

    PubMed Central

    Keeling, Christopher I.; Dullat, Harpreet K.; Yuen, Mack; Ralph, Steven G.; Jancsik, Sharon; Bohlmann, Jörg

    2010-01-01

    The biosynthesis of the tetracyclic diterpene ent-kaurene is a critical step in the general (primary) metabolism of gibberellin hormones. ent-Kaurene is formed by a two-step cyclization of geranylgeranyl diphosphate via the intermediate ent-copalyl diphosphate. In a lower land plant, the moss Physcomitrella patens, a single bifunctional diterpene synthase (diTPS) catalyzes both steps. In contrast, in angiosperms, the two consecutive cyclizations are catalyzed by two distinct monofunctional enzymes, ent-copalyl diphosphate synthase (CPS) and ent-kaurene synthase (KS). The enzyme, or enzymes, responsible for ent-kaurene biosynthesis in gymnosperms has been elusive. However, several bifunctional diTPS of specialized (secondary) metabolism have previously been characterized in gymnosperms, and all known diTPSs for resin acid biosynthesis in conifers are bifunctional. To further understand the evolution of ent-kaurene biosynthesis as well as the evolution of general and specialized diterpenoid metabolisms in gymnosperms, we set out to determine whether conifers use a single bifunctional diTPS or two monofunctional diTPSs in the ent-kaurene pathway. Using a combination of expressed sequence tag, full-length cDNA, genomic DNA, and targeted bacterial artificial chromosome sequencing, we identified two candidate CPS and KS genes from white spruce (Picea glauca) and their orthologs in Sitka spruce (Picea sitchensis). Functional characterization of the recombinant enzymes established that ent-kaurene biosynthesis in white spruce is catalyzed by two monofunctional diTPSs, PgCPS and PgKS. Comparative analysis of gene structures and enzyme functions highlights the molecular evolution of these diTPSs as conserved between gymnosperms and angiosperms. In contrast, diTPSs for specialized metabolism have evolved differently in angiosperms and gymnosperms. PMID:20044448

  3. Modes of Heme-Binding and Substrate Access for Cytochrome P450 CYP74A Revealed by Crystal Structures of Allene Oxide Synthase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cytochrome P450s exist ubiquitously in all organisms and are involved in many biological processes. Allene oxide synthase (AOS) is a P450 enzyme that plays a key role in the biosynthesis of oxylipin jasmonates which are involved in signal and defense reactions in higher plants. The crystal structure...

  4. Chorismate Pyruvate-Lyase and 4-Hydroxy-3-solanesylbenzoate Decarboxylase Are Required for Plastoquinone Biosynthesis in the Cyanobacterium Synechocystis sp. PCC6803

    PubMed Central

    Pfaff, Christian; Glindemann, Niels; Gruber, Jens; Frentzen, Margrit; Sadre, Radin

    2014-01-01

    Plastoquinone is a redox active lipid that serves as electron transporter in the bifunctional photosynthetic-respiratory transport chain of cyanobacteria. To examine the role of genes potentially involved in cyanobacterial plastoquinone biosynthesis, we have focused on three Synechocystis sp. PCC 6803 genes likely encoding a chorismate pyruvate-lyase (sll1797) and two 4-hydroxy-3-solanesylbenzoate decarboxylases (slr1099 and sll0936). The functions of the encoded proteins were investigated by complementation experiments with Escherichia coli mutants, by the in vitro enzyme assays with the recombinant proteins, and by the development of Synechocystis sp. single-gene knock-out mutants. Our results demonstrate that sll1797 encodes a chorismate pyruvate-lyase. In the respective knock-out mutant, plastoquinone was hardly detectable, and the mutant required 4-hydroxybenzoate for growth underlining the importance of chorismate pyruvate-lyase to initiate plastoquinone biosynthesis in cyanobacteria. The recombinant Slr1099 protein displayed decarboxylase activity and catalyzed in vitro the decarboxylation of 4-hydroxy-3-prenylbenzoate with different prenyl side chain lengths. In contrast to Slr1099, the recombinant Sll0936 protein did not show decarboxylase activity regardless of the conditions used. Inactivation of the sll0936 gene in Synechocystis sp., however, caused a drastic reduction in the plastoquinone content to levels very similar to those determined in the slr1099 knock-out mutant. This proves that not only slr1099 but also sll0936 is required for plastoquinone synthesis in the cyanobacterium. In summary, our data demonstrate that cyanobacteria produce plastoquinone exclusively via a pathway that is in the first reaction steps almost identical to ubiquinone biosynthesis in E. coli with conversion of chorismate to 4-hydroxybenzoate, which is then prenylated and decarboxylated. PMID:24337576

  5. Lysine221 is the general base residue of the isochorismate synthase from Pseudomonas aeruginosa (PchA) in a reaction that is diffusion limited.

    PubMed

    Meneely, Kathleen M; Luo, Qianyi; Dhar, Prajnaparamita; Lamb, Audrey L

    2013-10-01

    The isochorismate synthase from Pseudomonas aeruginosa (PchA) catalyzes the conversion of chorismate to isochorismate, which is subsequently converted by a second enzyme (PchB) to salicylate for incorporation into the salicylate-capped siderophore pyochelin. PchA is a member of the MST family of enzymes, which includes the structurally homologous isochorismate synthases from Escherichia coli (EntC and MenF) and salicylate synthases from Yersinia enterocolitica (Irp9) and Mycobacterium tuberculosis (MbtI). The latter enzymes generate isochorismate as an intermediate before generating salicylate and pyruvate. General acid-general base catalysis has been proposed for isochorismate synthesis in all five enzymes, but the residues required for the isomerization are a matter of debate, with both lysine221 and glutamate313 proposed as the general base (PchA numbering). This work includes a classical characterization of PchA with steady state kinetic analysis, solvent kinetic isotope effect analysis and by measuring the effect of viscosogens on catalysis. The results suggest that isochorismate production from chorismate by the MST enzymes is the result of general acid-general base catalysis with a lysine as the base and a glutamic acid as the acid, in reverse protonation states. Chemistry is determined to not be rate limiting, favoring the hypothesis of a conformational or binding step as the slow step. PMID:23942051

  6. Lysine221 is the general base residue of the isochorismate synthase from Pseudomonas aeruginosa (PchA) in a reaction that is diffusion limited

    PubMed Central

    Meneely, Kathleen M.; Luo, Qianyi; Dhar, Prajnaparamita; Lamb, Audrey L.

    2013-01-01

    The isochorismate synthase from Pseudomonas aeruginosa (PchA) catalyzes the conversion of chorismate to isochorismate, which is subsequently converted by a second enzyme (PchB) to salicylate for incorporation into the salicylate-capped siderophore pyochelin. PchA is a member of the MST family of enzymes, which includes the structurally homologous isochorismate synthases from E. coli (EntC and MenF) and salicylate synthases from Yersinia enterocolitica (Irp9) and Mycobacterium tuberculosis (MbtI). The latter enzymes generate isochorismate as an intermediate before generating salicylate and pyruvate. General acid – general base catalysis has been proposed for isochorismate synthesis in all five enzymes, but the residues required for the isomerization are a matter of debate, with both lysine221 and glutamate313 proposed as the general base (PchA numbering). This work includes a classical characterization of PchA with steady state kinetic analysis, solvent kinetic isotope effect analysis and by measuring the effect of viscosogens on catalysis. The results suggest that isochorismate production from chorismate by the MST enzymes is the result of general acid – general base catalysis with a lysine as the base and a glutamic acid as the acid, in reverse protonation states. Chemistry is determined to not be rate limiting, favoring the hypothesis of a conformational or binding step as the slow step. PMID:23942051

  7. Lysine221 is the general base residue of the isochorismate synthase from Pseudomonas aeruginosa (PchA) in a reaction that is diffusion limited.

    PubMed

    Meneely, Kathleen M; Luo, Qianyi; Dhar, Prajnaparamita; Lamb, Audrey L

    2013-10-01

    The isochorismate synthase from Pseudomonas aeruginosa (PchA) catalyzes the conversion of chorismate to isochorismate, which is subsequently converted by a second enzyme (PchB) to salicylate for incorporation into the salicylate-capped siderophore pyochelin. PchA is a member of the MST family of enzymes, which includes the structurally homologous isochorismate synthases from Escherichia coli (EntC and MenF) and salicylate synthases from Yersinia enterocolitica (Irp9) and Mycobacterium tuberculosis (MbtI). The latter enzymes generate isochorismate as an intermediate before generating salicylate and pyruvate. General acid-general base catalysis has been proposed for isochorismate synthesis in all five enzymes, but the residues required for the isomerization are a matter of debate, with both lysine221 and glutamate313 proposed as the general base (PchA numbering). This work includes a classical characterization of PchA with steady state kinetic analysis, solvent kinetic isotope effect analysis and by measuring the effect of viscosogens on catalysis. The results suggest that isochorismate production from chorismate by the MST enzymes is the result of general acid-general base catalysis with a lysine as the base and a glutamic acid as the acid, in reverse protonation states. Chemistry is determined to not be rate limiting, favoring the hypothesis of a conformational or binding step as the slow step.

  8. Targeted proteomics using selected reaction monitoring reveals the induction of specific terpene synthases in a multi-level study of methyl jasmonate-treated Norway spruce (Picea abies).

    PubMed

    Zulak, Katherine G; Lippert, Dustin N; Kuzyk, Michael A; Domanski, Dominik; Chou, Tina; Borchers, Christoph H; Bohlmann, Jörg

    2009-12-01

    Induction of terpene synthase (TPS) gene expression and enzyme activity is known to occur in response to various chemical and biological stimuli in several species of spruce (genus Picea). However, high sequence identity between TPS family members has made it difficult to determine the induction patterns of individual TPS at the protein and transcript levels and whether specific TPS enzymes respond differentially to treatment. In the present study we used a multi-level approach to measure the induction and activity of TPS enzymes in protein extracts of Norway spruce (Picea abies) bark tissue following treatment with methyl jasmonate (MeJA). Measurements were made on the transcript, protein, enzyme activity and metabolite levels. Using a relatively new proteomics application, selective reaction monitoring (SRM), it was possible to differentiate and quantitatively measure the abundance of several known TPS proteins and three 1-deoxy-D-xylulose 5-phosphate synthase (DXS) isoforms in Norway spruce. Protein levels of individual TPS and DXS enzymes were differentially induced upon MeJA treatment and good correlation was generally observed between induction of transcripts, proteins, and enzyme activities. Most of the mono- and diterpenoid metabolites accumulated with similar temporal patterns of induction as part of the coordinated multi-compound chemical defense response. Protein and enzyme activity levels of the monoTPS (+)-3-carene synthase and the corresponding accumulation of (+)-3-carene was induced to a higher fold change than any other TPS or metabolite measured, indicating an important role in the induced terpenoid defense response in Norway spruce.

  9. Analysis of an Arabidopsis heat-sensitive mutant reveals that chlorophyll synthase is involved in reutilization of chlorophyllide during chlorophyll turnover.

    PubMed

    Lin, Yao-Pin; Lee, Tsung-yuan; Tanaka, Ayumi; Charng, Yee-yung

    2014-10-01

    Chlorophylls, the most abundant pigments in the photosynthetic apparatus, are constantly turned over as a result of the degradation and replacement of the damage-prone reaction center D1 protein of photosystem II. Results from isotope labeling experiments suggest that chlorophylls are recycled by reutilization of chlorophyllide and phytol, but the underlying mechanism is unclear. In this study, by characterization of a heat-sensitive Arabidopsis mutant we provide evidence of a salvage pathway for chlorophyllide a. A missense mutation in CHLOROPHYLL SYNTHASE (CHLG) was identified and confirmed to be responsible for a light-dependent, heat-induced cotyledon bleaching phenotype. Following heat treatment, mutant (chlg-1) but not wild-type seedlings accumulated a substantial level of chlorophyllide a, which resulted in a surge of phototoxic singlet oxygen. Immunoblot analysis suggested that the mutation destabilized the chlorophyll synthase proteins and caused a conditional blockage of esterification of chlorophyllide a after heat stress. Accumulation of chlorophyllide a after heat treatment occurred during recovery in the dark in the light-grown but not the etiolated seedlings, suggesting that the accumulated chlorophyllides were not derived from de novo biosynthesis but from de-esterification of the existing chlorophylls. Further analysis of the triple mutant harboring the CHLG mutant allele and null mutations of CHLOROPHYLLASE1 (CLH1) and CLH2 indicated that the known chlorophyllases are not responsible for the accumulation of chlorophyllide a in chlg-1. Taken together, our results show that chlorophyll synthase acts in a salvage pathway for chlorophyll biosynthesis by re-esterifying the chlorophyllide a produced during chlorophyll turnover.

  10. RNA interference of a trehalose-6-phosphate synthase gene reveals its roles during larval-pupal metamorphosis in Bactrocera minax (Diptera: Tephritidae).

    PubMed

    Xiong, Ke-Cai; Wang, Jia; Li, Jia-Hao; Deng, Yu-Qing; Pu, Po; Fan, Huan; Liu, Ying-Hong

    2016-01-01

    Trehalose is the major blood sugar in insects, which plays a crucial role as an instant source of energy and the starting substrate for chitin biosynthesis. In insects, trehalose is synthesized by catalysis of an important enzyme, trehalose-6-phosphate synthase (TPS). In the present study, a trehalose-6-phosphate synthase gene from Bactrocera minax (BmTPS) was cloned and characterized. BmTPS contained an open reading frame of 2445 nucleotides encoding a protein of 814 amino acids with a predicted molecular weight of 92.05kDa. BmTPS was detectable in all developmental stages of Bactrocera minax and expressed higher in the final- (third-) instar larvae. Tissue-specific expression patterns of BmTPS showed that it was mainly expressed in the fat body. The 20-hydroxyecdysone (20E) induced the expression of BmTPS and three genes in the chitin biosynthesis pathway. Moreover, injection of double-stranded RNA into third-instar larvae successfully silenced the transcription of BmTPS in B. minax, and thereby decreased the activity of TPS and trehalose content. Additionally, silencing of BmTPS inhibited the expression of three key genes in the chitin biosynthesis pathway and exhibited 52% death and abnormal phenotypes. The findings demonstrate that BmTPS is indispensable for larval-pupal metamorphosis. Besides, the establishment of RNAi experimental system in B. minax would lay a solid foundation for further investigation of molecular biology and physiology of this pest. PMID:27405007

  11. X-ray crystal structures of D100E trichodiene synthase and its pyrophosphate complex reveal the basis for terpene product diversity.

    PubMed

    Rynkiewicz, Michael J; Cane, David E; Christianson, David W

    2002-02-12

    The 2.4 A resolution X-ray crystal structure of D100E trichodiene synthase and the 2.6 A resolution structure of its complex with inorganic pyrophosphate are reported. The D100E amino acid substitution in the so-called "aspartate-rich" motif does not result in large changes to the overall structure of the enzyme. In the pyrophosphate complex, however, pyrophosphate coordinates two Mg(2+) ions at the mouth of the active site without causing large changes in the structure of the enzyme. This contrasts with pyrophosphate binding in the wild-type enzyme, where pyrophosphate coordinates three Mg(2+) ions and triggers a significant conformational change that closes the mouth of the active site and optimizes packing density in the enzyme-substrate complex. The attenuation of active site closure in D100E trichodiene synthase compromises enzyme-substrate packing density and confers additional spatial and conformational degrees of freedom on the substrate and carbocation intermediates, which in turn results in the formation of five alternate sesquiterpene products in addition to trichodiene. By extension, then, the diversity of terpene cyclases in biology may have evolved in part by amino acid substitutions that fine-tune structural changes dependent on metal-diphosphate complexation that govern the formation of the active site template and enzyme-substrate packing density. PMID:11827517

  12. Transcriptome sequencing of three Pseudo-nitzschia species reveals comparable gene sets and the presence of Nitric Oxide Synthase genes in diatoms.

    PubMed

    Di Dato, Valeria; Musacchia, Francesco; Petrosino, Giuseppe; Patil, Shrikant; Montresor, Marina; Sanges, Remo; Ferrante, Maria Immacolata

    2015-01-01

    Diatoms are among the most diverse eukaryotic microorganisms on Earth, they are responsible for a large fraction of primary production in the oceans and can be found in different habitats. Pseudo-nitzschia are marine planktonic diatoms responsible for blooms in coastal and oceanic waters. We analyzed the transcriptome of three species, Pseudo-nitzschia arenysensis, Pseudo-nitzschia delicatissima and Pseudo-nitzschia multistriata, with different levels of genetic relatedness. These species have a worldwide distribution and the last one produces the neurotoxin domoic acid. We were able to annotate about 80% of the sequences in each transcriptome and the analysis of the relative functional annotations allowed comparison of the main metabolic pathways, pathways involved in the biosynthesis of isoprenoids (MAV and MEP pathways), and pathways putatively involved in domoic acid synthesis. The search for homologous transcripts among the target species and other congeneric species resulted in the discovery of a sequence annotated as Nitric Oxide Synthase (NOS), found uniquely in Pseudo-nitzschia multistriata. The predicted protein product contained all the domains of the canonical metazoan sequence. Putative NOS sequences were found in other available diatom datasets, supporting a role for nitric oxide as signaling molecule in this group of microalgae.

  13. Transcriptome sequencing of three Pseudo-nitzschia species reveals comparable gene sets and the presence of Nitric Oxide Synthase genes in diatoms

    PubMed Central

    Di Dato, Valeria; Musacchia, Francesco; Petrosino, Giuseppe; Patil, Shrikant; Montresor, Marina; Sanges, Remo; Ferrante, Maria Immacolata

    2015-01-01

    Diatoms are among the most diverse eukaryotic microorganisms on Earth, they are responsible for a large fraction of primary production in the oceans and can be found in different habitats. Pseudo-nitzschia are marine planktonic diatoms responsible for blooms in coastal and oceanic waters. We analyzed the transcriptome of three species, Pseudo-nitzschia arenysensis, Pseudo-nitzschia delicatissima and Pseudo-nitzschia multistriata, with different levels of genetic relatedness. These species have a worldwide distribution and the last one produces the neurotoxin domoic acid. We were able to annotate about 80% of the sequences in each transcriptome and the analysis of the relative functional annotations allowed comparison of the main metabolic pathways, pathways involved in the biosynthesis of isoprenoids (MAV and MEP pathways), and pathways putatively involved in domoic acid synthesis. The search for homologous transcripts among the target species and other congeneric species resulted in the discovery of a sequence annotated as Nitric Oxide Synthase (NOS), found uniquely in Pseudo-nitzschia multistriata. The predicted protein product contained all the domains of the canonical metazoan sequence. Putative NOS sequences were found in other available diatom datasets, supporting a role for nitric oxide as signaling molecule in this group of microalgae. PMID:26189990

  14. Structure/Function Analysis of a Type III Polyketide Synthase in the Brown Alga Ectocarpus siliculosus Reveals a Biochemical Pathway in Phlorotannin Monomer Biosynthesis[W

    PubMed Central

    Meslet-Cladière, Laurence; Delage, Ludovic; Leroux, Cédric J.-J.; Goulitquer, Sophie; Leblanc, Catherine; Creis, Emeline; Gall, Erwan Ar; Stiger-Pouvreau, Valérie; Czjzek, Mirjam; Potin, Philippe

    2013-01-01

    Brown algal phlorotannins are structural analogs of condensed tannins in terrestrial plants and, like plant phenols, they have numerous biological functions. Despite their importance in brown algae, phlorotannin biosynthetic pathways have been poorly characterized at the molecular level. We found that a predicted type III polyketide synthase in the genome of the brown alga Ectocarpus siliculosus, PKS1, catalyzes a major step in the biosynthetic pathway of phlorotannins (i.e., the synthesis of phloroglucinol monomers from malonyl-CoA). The crystal structure of PKS1 at 2.85-Å resolution provided a good quality electron density map showing a modified Cys residue, likely connected to a long chain acyl group. An additional pocket not found in other known type III PKSs contains a reaction product that might correspond to a phloroglucinol precursor. In vivo, we also found a positive correlation between the phloroglucinol content and the PKS III gene expression level in cells of a strain of Ectocarpus adapted to freshwater during its reacclimation to seawater. The evolution of the type III PKS gene family in Stramenopiles suggests a lateral gene transfer event from an actinobacterium. PMID:23983220

  15. Selective deletion of forebrain glycogen synthase kinase 3β reveals a central role in serotonin-sensitive anxiety and social behaviour

    PubMed Central

    Latapy, Camille; Rioux, Véronique; Guitton, Matthieu J.; Beaulieu, Jean-Martin

    2012-01-01

    Serotonin (5-HT) neurotransmission is thought to underlie mental illnesses, such as bipolar disorder, depression, autism and schizophrenia. Independent studies have indicated that 5-HT or drugs acting on 5-HT neurotransmission regulate the serine/threonine kinase glycogen synthase kinase 3β (GSK3β). Furthermore, GSK3β inhibition rescues behavioural abnormalities in 5-HT-deficient mice with a loss-of-function mutation equivalent to the human variant (R441H) of tryptophan hydroxylase 2. In an effort to define neuroanatomical correlates of GSK3β activity in the regulation of behaviour, we generated CamKIIcre-floxGSK3β mice in which the gsk3b gene is postnatally inactivated in forebrain pyramidal neurons. Behavioural characterization showed that suppression of GSK3β in these brain areas has anxiolytic and pro-social effects. However, while a global reduction of GSK2β expression reduced responsiveness to amphetamine and increased resilience to social defeat, these behavioural effects were not found in CamKIIcre-floxGSK3β mice. These findings demonstrate a dissociation of behavioural effects related to GSK3 inhibition, with forebrain GSK3β being involved in the regulation of anxiety and sociability while social preference, resilience and responsiveness to psychostimulants would involve a function of this kinase in subcortical areas such as the hippocampus and striatum. PMID:22826345

  16. A Comparative Biochemical and Structural Analysis of the Intracellular chorismate mutase (Rv0948c) from Mycobacterium tuberculosis H(37)R(v) and the Secreted chorismate mutase (y2828) from Yersinia pestis

    SciTech Connect

    S Kim; S Reddy; B Nelson; H Robinson; P Reddy; J Ladner

    2011-12-31

    The Rv0948c gene from Mycobacterium tuberculosis H{sub 37}R{sub v} encodes a 90 amino acid protein as the natural gene product with chorismate mutase (CM) activity. The protein, 90-MtCM, exhibits Michaelis-Menten kinetics with a k{sub cat} of 5.5 {+-} 0.2 s{sup -1} and a K{sub m} of 1500 {+-} 100 {micro}m at 37 C and pH 7.5. The 2.0 {angstrom} X-ray structure shows that 90-MtCM is an all {alpha}-helical homodimer (Protein Data Bank ID: 2QBV) with the topology of Escherichia coli CM (EcCM), and that both protomers contribute to each catalytic site. Superimposition onto the structure of EcCM and the sequence alignment shows that the C-terminus helix 3 is shortened. The absence of two residues in the active site of 90-MtCM corresponding to Ser84 and Gln88 of EcCM appears to be one reason for the low k{sub cat}. Hence, 90-MtCM belongs to a subfamily of {alpha}-helical AroQ CMs termed AroQ{delta}. The CM gene (y2828) from Yersinia pestis encodes a 186 amino acid protein with an N-terminal signal peptide that directs the protein to the periplasm. The mature protein, *YpCM, exhibits Michaelis-Menten kinetics with a k{sub cat} of 70 {+-} 5 s{sup -1} and Km of 500 {+-} 50 {micro}m at 37 C and pH 7.5. The 2.1 {angstrom} X-ray structure shows that *YpCM is an all {alpha}-helical protein, and functions as a homodimer, and that each protomer has an independent catalytic unit (Protein Data Bank ID: 2GBB). *YpCM belongs to the AroQ{gamma} class of CMs, and is similar to the secreted CM (Rv1885c, *MtCM) from M. tuberculosis.

  17. A comparative biochemical and structural analysis of the intracellular chorismate mutase (Rv0948c) from Mycobacterium tuberculosis H37Rv and the secreted chorismate mutase (y2828) from Yersinia pestis

    SciTech Connect

    Kim, S.K.; Robinson, H.; Reddy, S. K.; Nelson, B. C.; Reddy, P. T.; Ladner, J. E.

    2008-10-01

    The Rv0948c gene from Mycobacterium tuberculosis H{sub 37}R{sub v} encodes a 90 amino acid protein as the natural gene product with chorismate mutase (CM) activity. The protein, 90-MtCM, exhibits Michaelis-Menten kinetics with a k{sub cat} of 5.5 {+-} 0.2 s{sup -1} and a K{sub m} of 1500 {+-} 100 {mu}m at 37 C and pH 7.5. The 2.0 {angstrom} X-ray structure shows that 90-MtCM is an all {alpha}-helical homodimer (Protein Data Bank ID: 2QBV) with the topology of Escherichia coli CM (EcCM), and that both protomers contribute to each catalytic site. Superimposition onto the structure of EcCM and the sequence alignment shows that the C-terminus helix 3 is shortened. The absence of two residues in the active site of 90-MtCM corresponding to Ser84 and Gln88 of EcCM appears to be one reason for the low k{sub cat}. Hence, 90-MtCM belongs to a subfamily of {alpha}-helical AroQ CMs termed AroQ{sub {delta}}. The CM gene (y2828) from Yersinia pestis encodes a 186 amino acid protein with an N-terminal signal peptide that directs the protein to the periplasm. The mature protein, *YpCM, exhibits Michaelis-Menten kinetics with a k{sub cat} of 70 {+-} 5 s{sup -1} and K{sub m} of 500 {+-} 50 {mu}m at 37 C and pH 7.5. The 2.1 {angstrom} X-ray structure shows that *YpCM is an all {alpha}-helical protein, and functions as a homodimer, and that each protomer has an independent catalytic unit (Protein Data Bank ID: 2GBB). *YpCM belongs to the AroQ{sub {gamma}} class of CMs, and is similar to the secreted CM (Rv1885c, *MtCM) from M. tuberculosis.

  18. Tissue-specific transcriptome analysis within the maturing sugarcane stalk reveals spatial regulation in the expression of cellulose synthase and sucrose transporter gene families.

    PubMed

    Casu, Rosanne E; Rae, Anne L; Nielsen, Janine M; Perroux, Jai M; Bonnett, Graham D; Manners, John M

    2015-12-01

    Sugarcane (Saccharum spp. hybrids) accumulates high concentrations of sucrose in its mature stalk and a considerable portion of carbohydrate metabolism is also devoted to cell wall synthesis and fibre production. We examined tissue-specific expression patterns to explore the spatial deployment of pathways responsible for sucrose accumulation and fibre synthesis within the stalk. We performed expression profiling of storage parenchyma, vascular bundles and rind dissected from a maturing stalk internode of sugarcane, identifying ten cellulose synthase subunit genes and examining significant differences in the expression of their corresponding transcripts and those of several sugar transporters. These were correlated with differential expression patterns for transcripts of genes encoding COBRA-like proteins and other cell wall metabolism-related proteins. The sugar transporters genes ShPST2a, ShPST2b and ShSUT4 were significantly up-regulated in storage parenchyma while ShSUT1 was up-regulated in vascular bundles. Two co-ordinately expressed groups of cell wall related transcripts were also identified. One group, associated with primary cell wall synthesis (ShCesA1, ShCesA7, ShCesA9 and Shbk2l3), was up-regulated in parenchyma. The other group, associated with secondary cell wall synthesis (ShCesA10, ShCesA11, ShCesA12 and Shbk-2), was up-regulated in rind. In transformed sugarcane plants, the ShCesA7 promoter conferred stable expression of green fluorescent protein preferentially in the storage parenchyma of the maturing stalk internode. Our results indicate that there is spatial separation for elevated expression of these important targets in both sucrose accumulation and cell wall synthesis, allowing for increased clarity in our understanding of sucrose transport and fibre synthesis in sugarcane.

  19. A survey of plant and algal genomes and transcriptomes reveals new insights into the evolution and function of the cellulose synthase superfamily

    PubMed Central

    2014-01-01

    Background Enzymes of the cellulose synthase (CesA) family and CesA-like (Csl) families are responsible for the synthesis of celluloses and hemicelluloses, and thus are of great interest to bioenergy research. We studied the occurrences and phylogenies of CesA/Csl families in diverse plants and algae by comprehensive data mining of 82 genomes and transcriptomes. Results We found that 1) charophytic green algae (CGA) have orthologous genes in CesA, CslC and CslD families; 2) liverwort genes are found in the CesA, CslA, CslC and CslD families; 3) The fern Pteridium aquilinum not only has orthologs in these conserved families but also in the CslB, CslH and CslE families; 4) basal angiosperms, e.g. Aristolochia fimbriata, have orthologs in these families too; 5) gymnosperms have genes forming clusters ancestral to CslB/H and to CslE/J/G respectively; 6) CslG is found in switchgrass and basal angiosperms; 7) CslJ is widely present in dicots and monocots; 8) CesA subfamilies have already diversified in ferns. Conclusions We speculate that: (i) ferns and horsetails might both have CslH enzymes, responsible for the synthesis of mixed-linkage glucans and (ii) CslD and similar genes might be responsible for the synthesis of mannans in CGA. Our findings led to a more detailed model of cell wall evolution and suggested that gene loss played an important role in the evolution of Csl families. We also demonstrated the usefulness of transcriptome data in the study of plant cell wall evolution and diversity. PMID:24708035

  20. Intermediate partitioning kinetic isotope effects for the NIH shift of 4-hydroxyphenylpyruvate dioxygenase and the hydroxylation reaction of hydroxymandelate synthase reveal mechanistic complexity.

    PubMed

    Shah, Dhara D; Conrad, John A; Moran, Graham R

    2013-09-01

    4-Hydroxyphenylpyruvate dioxygenase (HPPD) and hydroxymandelate synthase (HMS) are similar enzymes that catalyze complex dioxygenation reactions using the substrates 4-hydroxyphenylpyruvate (HPP) and dioxygen. Both enzymes decarboxylate HPP and then hydroxylate the resulting hydroxyphenylacetate (HPA). The hydroxylation reaction catalyzed by HPPD displaces the aceto substituent of HPA in a 1,2-shift to form 2,5-dihydroxyphenylacetate (homogentisate, HG), whereas the hydroxylation reaction of HMS places a hydroxyl on the benzylic carbon forming 3'-hydroxyphenylacetate (S-hydroxymandelate, HMA) without ensuing chemistry. The wild-type form of HPPD and variants of both enzymes uncouple to form both native and non-native products. We have used intermediate partitioning to probe bifurcating steps that form these products by substituting deuteriums for protiums at the benzylic position of the HPP substrate. These substitutions result in altered ratios of products that can be used to calculate kinetic isotope effects (KIE) for the formation of a specific product. For HPPD, secondary normal KIEs indicate that cleavage of the bond in the displacement reaction prior to the shift occurs by a homolytic mechanism. NMR analysis of HG derived from HPPD reacting with enantiomerically pure R-3'-deutero-HPP indicates that no rotation about the bond to the radical occurs, suggesting that collapse of the biradical intermediate is rapid. The production of HMA was observed in HMS and HPPD variant reactions. HMS hydroxylates to form exclusively S-hydroxymandelate. When HMS is reacted with R-3'-deutero-HPP, the observed kinetic isotope effect represents geometry changes in the initial transition state for the nonabstracted proton. These data show evidence of sp(3) hybridization in a HPPD variant and sp(2) hybridization in HMS variants, suggesting that HMS stabilizes a more advanced transition state in order to catalyze H-atom abstraction.

  1. From scratch to value: engineering Escherichia coli wild type cells to the production of L-phenylalanine and other fine chemicals derived from chorismate.

    PubMed

    Sprenger, Georg A

    2007-06-01

    Recombinant strains of Escherichia coli K-12 for the production of the three aromatic amino acids (L-phenylalanine, L-tryptophan, L-tyrosine) have been constructed. The largest demand is for L-phenylalanine (L-Phe), as it can be used as a building block for the low-calorie sweetener, aspartame. Besides L-Phe, an increasing number of shikimic acid pathway intermediates can be produced from appropriate E. coli mutants with blocks in this pathway. The last common intermediate, chorismate, in E. coli not only serves for production of aromatic amino acids but can also be used for high-titer production of non-aromatic compounds, e.g., cyclohexadiene-transdiols. In an approach to diversity-oriented metabolic engineering (metabolic grafting), platform strains with increased flux through the general aromatic pathway were created by suitable gene deletions, additions, or rearrangements. Examples for rational strain constructions for L-phenylalanine and chorismate derivatives are given with emphasis on genetic engineering. As a result, L-phenylalanine producers are available, which were derived through several defined steps from E. coli K-12 wild type. These mutant strains showed L-phenylalanine titers of up to 38 g/l of L-phenylalanine (and up to 45.5 g/l using in situ product recovery). Likewise, two cyclohexadiene-transdiols could be recovered.

  2. A Genome-Wide Association Study for Culm Cellulose Content in Barley Reveals Candidate Genes Co-Expressed with Members of the CELLULOSE SYNTHASE A Gene Family

    PubMed Central

    Houston, Kelly; Burton, Rachel A.; Sznajder, Beata; Rafalski, Antoni J.; Dhugga, Kanwarpal S.; Mather, Diane E.; Taylor, Jillian; Steffenson, Brian J.; Waugh, Robbie; Fincher, Geoffrey B.

    2015-01-01

    Cellulose is a fundamentally important component of cell walls of higher plants. It provides a scaffold that allows the development and growth of the plant to occur in an ordered fashion. Cellulose also provides mechanical strength, which is crucial for both normal development and to enable the plant to withstand both abiotic and biotic stresses. We quantified the cellulose concentration in the culm of 288 two – rowed and 288 six – rowed spring type barley accessions that were part of the USDA funded barley Coordinated Agricultural Project (CAP) program in the USA. When the population structure of these accessions was analysed we identified six distinct populations, four of which we considered to be comprised of a sufficient number of accessions to be suitable for genome-wide association studies (GWAS). These lines had been genotyped with 3072 SNPs so we combined the trait and genetic data to carry out GWAS. The analysis allowed us to identify regions of the genome containing significant associations between molecular markers and cellulose concentration data, including one region cross-validated in multiple populations. To identify candidate genes we assembled the gene content of these regions and used these to query a comprehensive RNA-seq based gene expression atlas. This provided us with gene annotations and associated expression data across multiple tissues, which allowed us to formulate a supported list of candidate genes that regulate cellulose biosynthesis. Several regions identified by our analysis contain genes that are co-expressed with CELLULOSE SYNTHASE A (HvCesA) across a range of tissues and developmental stages. These genes are involved in both primary and secondary cell wall development. In addition, genes that have been previously linked with cellulose synthesis by biochemical methods, such as HvCOBRA, a gene of unknown function, were also associated with cellulose levels in the association panel. Our analyses provide new insights into the

  3. A Genome-Wide Association Study for Culm Cellulose Content in Barley Reveals Candidate Genes Co-Expressed with Members of the CELLULOSE SYNTHASE A Gene Family.

    PubMed

    Houston, Kelly; Burton, Rachel A; Sznajder, Beata; Rafalski, Antoni J; Dhugga, Kanwarpal S; Mather, Diane E; Taylor, Jillian; Steffenson, Brian J; Waugh, Robbie; Fincher, Geoffrey B

    2015-01-01

    Cellulose is a fundamentally important component of cell walls of higher plants. It provides a scaffold that allows the development and growth of the plant to occur in an ordered fashion. Cellulose also provides mechanical strength, which is crucial for both normal development and to enable the plant to withstand both abiotic and biotic stresses. We quantified the cellulose concentration in the culm of 288 two--rowed and 288 six--rowed spring type barley accessions that were part of the USDA funded barley Coordinated Agricultural Project (CAP) program in the USA. When the population structure of these accessions was analysed we identified six distinct populations, four of which we considered to be comprised of a sufficient number of accessions to be suitable for genome-wide association studies (GWAS). These lines had been genotyped with 3072 SNPs so we combined the trait and genetic data to carry out GWAS. The analysis allowed us to identify regions of the genome containing significant associations between molecular markers and cellulose concentration data, including one region cross-validated in multiple populations. To identify candidate genes we assembled the gene content of these regions and used these to query a comprehensive RNA-seq based gene expression atlas. This provided us with gene annotations and associated expression data across multiple tissues, which allowed us to formulate a supported list of candidate genes that regulate cellulose biosynthesis. Several regions identified by our analysis contain genes that are co-expressed with cellulose synthase A (HvCesA) across a range of tissues and developmental stages. These genes are involved in both primary and secondary cell wall development. In addition, genes that have been previously linked with cellulose synthesis by biochemical methods, such as HvCOBRA, a gene of unknown function, were also associated with cellulose levels in the association panel. Our analyses provide new insights into the genes that

  4. Stilbene Synthase and Chalcone Synthase 1

    PubMed Central

    Rolfs, Claus-Henning; Kindl, Helmut

    1984-01-01

    Cultured cells of Picea excelsa capable of forming stilbenes and flavanoids have been established. Unlike needles of intact plants containing piceatannol (3,3′,4′,5-tetrahydroxystilbene) and stilbene glycosides the cultured cells converted phenylalanine and p-coumaric acid primarily into resveratrol monomethyl ether (3,4′-dihydroxy-5-methoxystilbene) and naringenin. Partially purified enzyme preparations were assayed for chalcone synthase as well as for stilbene synthase activity converting malonyl-CoA plus p-coumaroyl-CoA into 3,4′,5-trihydroxystilbene (resveratrol). Although stilbene synthase and chalcone synthase use the same substrates and exhibit similar molecular properties, i.e. molecular weight and subunit molecular weight, they are two different proteins. This difference was demonstrated by gel electrophoresis and by means of monospecific antibodies. PMID:16663649

  5. Mycocerosic acid synthase exemplifies the architecture of reducing polyketide synthases.

    PubMed

    Herbst, Dominik A; Jakob, Roman P; Zähringer, Franziska; Maier, Timm

    2016-03-24

    Polyketide synthases (PKSs) are biosynthetic factories that produce natural products with important biological and pharmacological activities. Their exceptional product diversity is encoded in a modular architecture. Modular PKSs (modPKSs) catalyse reactions colinear to the order of modules in an assembly line, whereas iterative PKSs (iPKSs) use a single module iteratively as exemplified by fungal iPKSs (fiPKSs). However, in some cases non-colinear iterative action is also observed for modPKSs modules and is controlled by the assembly line environment. PKSs feature a structural and functional separation into a condensing and a modifying region as observed for fatty acid synthases. Despite the outstanding relevance of PKSs, the detailed organization of PKSs with complete fully reducing modifying regions remains elusive. Here we report a hybrid crystal structure of Mycobacterium smegmatis mycocerosic acid synthase based on structures of its condensing and modifying regions. Mycocerosic acid synthase is a fully reducing iPKS, closely related to modPKSs, and the prototype of mycobacterial mycocerosic acid synthase-like PKSs. It is involved in the biosynthesis of C20-C28 branched-chain fatty acids, which are important virulence factors of mycobacteria. Our structural data reveal a dimeric linker-based organization of the modifying region and visualize dynamics and conformational coupling in PKSs. On the basis of comparative small-angle X-ray scattering, the observed modifying region architecture may be common also in modPKSs. The linker-based organization provides a rationale for the characteristic variability of PKS modules as a main contributor to product diversity. The comprehensive architectural model enables functional dissection and re-engineering of PKSs.

  6. Characterization of multiple SPS knockout mutants reveals redundant functions of the four Arabidopsis sucrose phosphate synthase isoforms in plant viability, and strongly indicates that enhanced respiration and accelerated starch turnover can alleviate the blockage of sucrose biosynthesis.

    PubMed

    Bahaji, Abdellatif; Baroja-Fernández, Edurne; Ricarte-Bermejo, Adriana; Sánchez-López, Ángela María; Muñoz, Francisco José; Romero, Jose M; Ruiz, María Teresa; Baslam, Marouane; Almagro, Goizeder; Sesma, María Teresa; Pozueta-Romero, Javier

    2015-09-01

    We characterized multiple knock-out mutants of the four Arabidopsis sucrose phosphate synthase (SPSA1, SPSA2, SPSB and SPSC) isoforms. Despite their reduced SPS activity, spsa1/spsa2, spsa1/spsb, spsa2/spsb, spsa2/spsc, spsb/spsc, spsa1/spsa2/spsb and spsa2/spsb/spsc mutants displayed wild type (WT) vegetative and reproductive morphology, and showed WT photosynthetic capacity and respiration. In contrast, growth of rosettes, flowers and siliques of the spsa1/spsc and spsa1/spsa2/spsc mutants was reduced compared with WT plants. Furthermore, these plants displayed a high dark respiration phenotype. spsa1/spsb/spsc and spsa1/spsa2/spsb/spsc seeds poorly germinated and produced aberrant and sterile plants. Leaves of all viable sps mutants, except spsa1/spsc and spsa1/spsa2/spsc, accumulated WT levels of nonstructural carbohydrates. spsa1/spsc leaves possessed high levels of metabolic intermediates and activities of enzymes of the glycolytic and tricarboxylic acid cycle pathways, and accumulated high levels of metabolic intermediates of the nocturnal starch-to-sucrose conversion process, even under continuous light conditions. Results presented in this work show that SPS is essential for plant viability, reveal redundant functions of the four SPS isoforms in processes that are important for plant growth and nonstructural carbohydrate metabolism, and strongly indicate that accelerated starch turnover and enhanced respiration can alleviate the blockage of sucrose biosynthesis in spsa1/spsc leaves.

  7. Characterization of multiple SPS knockout mutants reveals redundant functions of the four Arabidopsis sucrose phosphate synthase isoforms in plant viability, and strongly indicates that enhanced respiration and accelerated starch turnover can alleviate the blockage of sucrose biosynthesis.

    PubMed

    Bahaji, Abdellatif; Baroja-Fernández, Edurne; Ricarte-Bermejo, Adriana; Sánchez-López, Ángela María; Muñoz, Francisco José; Romero, Jose M; Ruiz, María Teresa; Baslam, Marouane; Almagro, Goizeder; Sesma, María Teresa; Pozueta-Romero, Javier

    2015-09-01

    We characterized multiple knock-out mutants of the four Arabidopsis sucrose phosphate synthase (SPSA1, SPSA2, SPSB and SPSC) isoforms. Despite their reduced SPS activity, spsa1/spsa2, spsa1/spsb, spsa2/spsb, spsa2/spsc, spsb/spsc, spsa1/spsa2/spsb and spsa2/spsb/spsc mutants displayed wild type (WT) vegetative and reproductive morphology, and showed WT photosynthetic capacity and respiration. In contrast, growth of rosettes, flowers and siliques of the spsa1/spsc and spsa1/spsa2/spsc mutants was reduced compared with WT plants. Furthermore, these plants displayed a high dark respiration phenotype. spsa1/spsb/spsc and spsa1/spsa2/spsb/spsc seeds poorly germinated and produced aberrant and sterile plants. Leaves of all viable sps mutants, except spsa1/spsc and spsa1/spsa2/spsc, accumulated WT levels of nonstructural carbohydrates. spsa1/spsc leaves possessed high levels of metabolic intermediates and activities of enzymes of the glycolytic and tricarboxylic acid cycle pathways, and accumulated high levels of metabolic intermediates of the nocturnal starch-to-sucrose conversion process, even under continuous light conditions. Results presented in this work show that SPS is essential for plant viability, reveal redundant functions of the four SPS isoforms in processes that are important for plant growth and nonstructural carbohydrate metabolism, and strongly indicate that accelerated starch turnover and enhanced respiration can alleviate the blockage of sucrose biosynthesis in spsa1/spsc leaves. PMID:26259182

  8. BetaQ114N and betaT110V Mutations Reveal a Critically Important Role of the Substrate alpha-Carboxylte Site in the Reaction Specificity of Tryptophan Synthase

    SciTech Connect

    Blumenstein,L.; Domratcheva, T.; Niks, D.; Ngo, H.; Seidel, R.; Dunn, M.; Schlichting, I.

    2007-01-01

    constraints that prevent this reaction in the wild-type enzyme. This study reveals a new layer of structure-function interactions essential for reaction specificity in tryptophan synthase.

  9. CTP synthase forms cytoophidia in the cytoplasm and nucleus

    SciTech Connect

    Gou, Ke-Mian; Chang, Chia-Chun; Shen, Qing-Ji; Sung, Li-Ying; Liu, Ji-Long

    2014-04-15

    CTP synthase is an essential metabolic enzyme responsible for the de novo synthesis of CTP. Multiple studies have recently showed that CTP synthase protein molecules form filamentous structures termed cytoophidia or CTP synthase filaments in the cytoplasm of eukaryotic cells, as well as in bacteria. Here we report that CTP synthase can form cytoophidia not only in the cytoplasm, but also in the nucleus of eukaryotic cells. Both glutamine deprivation and glutamine analog treatment promote formation of cytoplasmic cytoophidia (C-cytoophidia) and nuclear cytoophidia (N-cytoophidia). N-cytoophidia are generally shorter and thinner than their cytoplasmic counterparts. In mammalian cells, both CTP synthase 1 and CTP synthase 2 can form cytoophidia. Using live imaging, we have observed that both C-cytoophidia and N-cytoophidia undergo multiple rounds of fusion upon glutamine analog treatment. Our study reveals the coexistence of cytoophidia in the cytoplasm and nucleus, therefore providing a good opportunity to investigate the intracellular compartmentation of CTP synthase. - Highlights: • CTP synthase forms cytoophidia not only in the cytoplasm but also in the nucleus. • Glutamine deprivation and Glutamine analogs promotes cytoophidium formation. • N-cytoophidia exhibit distinct morphology when compared to C-cytoophidia. • Both CTP synthase 1 and CTP synthase 2 form cytoophidia in mammalian cells. • Fusions of cytoophidia occur in the cytoplasm and nucleus.

  10. Monoterpene synthases from grand fir (Abies grandis). cDNA isolation, characterization, and functional expression of myrcene synthase, (-)-(4S)-limonene synthase, and (-)-(1S,5S)-pinene synthase.

    PubMed

    Bohlmann, J; Steele, C L; Croteau, R

    1997-08-29

    Grand fir (Abies grandis) has been developed as a model system for studying defensive oleoresin formation in conifers in response to insect attack or other injury. The turpentine fraction of the oleoresin is a complex mixture of monoterpene (C10) olefins in which (-)-limonene and (-)-alpha- and (-)-beta-pinene are prominent components; (-)-limonene and (-)-pinene synthase activities are also induced upon stem wounding. A similarity based cloning strategy yielded three new cDNA species from a wounded stem cDNA library that appeared to encode three distinct monoterpene synthases. After expression in Escherichia coli and enzyme assay with geranyl diphosphate as substrate, subsequent analysis of the terpene products by chiral phase gas chromatography and mass spectrometry showed that these sequences encoded a (-)-limonene synthase, a myrcene synthase, and a (-)-pinene synthase that produces both alpha-pinene and beta-pinene. In properties and reaction stereochemistry, the recombinant enzymes resemble the corresponding native monoterpene synthases of wound-induced grand fir stem. The deduced amino acid sequences indicated the limonene synthase to be 637 residues in length (73.5 kDa), the myrcene synthase to be 627 residues in length (72.5 kDa), and the pinene synthase to be 628 residues in length (71.5 kDa); all of these monoterpene synthases appear to be translated as preproteins bearing an amino-terminal plastid targeting sequence. Sequence comparison revealed that these monoterpene synthases from grand fir resemble sesquiterpene (C15) synthases and diterpene (C20) synthases from conifers more closely than other monoterpene synthases from angiosperm species. This similarity between extant monoterpene, sesquiterpene, and diterpene synthases of gymnosperms is surprising since functional diversification of this enzyme class is assumed to have occurred over 300 million years ago. Wound-induced accumulation of transcripts for monoterpene synthases was demonstrated by RNA

  11. Vitis vinifera terpenoid cyclases: functional identification of two sesquiterpene synthase cDNAs encoding (+)-valencene synthase and (-)-germacrene D synthase and expression of mono- and sesquiterpene synthases in grapevine flowers and berries.

    PubMed

    Lücker, Joost; Bowen, Pat; Bohlmann, Jörg

    2004-10-01

    Valencene is a volatile sesquiterpene emitted from flowers of grapevine, Vitis vinifera L. A full-length cDNA from the cultivar Gewürztraminer was functionally expressed in Escherichia coli and found to encode valencene synthase (VvVal). The two major products formed by recombinant VvVal enzyme activity with farnesyl diphosphate (FPP) as substrate are (+)-valencene and (-)-7-epi-alpha-selinene. Grapevine valencene synthase is closely related to a second sesquiterpene synthase from this species, (-)-germacrene D synthase (VvGerD). VvVal and VvGerD cDNA probes revealed strong signals in Northern hybridizations with RNA isolated from grapevine flower buds. Transcript levels were lower in open pre-anthesis flowers, flowers after anthesis, or at early onset of fruit development. Similar results were obtained using a third probe, (-)-alpha-terpineol synthase, a monoterpenol synthase. Sesquiterpene synthase and monoterpene synthase transcripts were not detected in the mesocarp and exocarp during early stages of fruit development, but transcripts hybridizing with VvVal appeared during late ripening of the berries. Sesquiterpene synthase transcripts were also detected in young seeds. PMID:15464152

  12. Terpene synthases are widely distributed in bacteria

    PubMed Central

    Yamada, Yuuki; Kuzuyama, Tomohisa; Komatsu, Mamoru; Shin-ya, Kazuo; Omura, Satoshi; Cane, David E.; Ikeda, Haruo

    2015-01-01

    Odoriferous terpene metabolites of bacterial origin have been known for many years. In genome-sequenced Streptomycetaceae microorganisms, the vast majority produces the degraded sesquiterpene alcohol geosmin. Two minor groups of bacteria do not produce geosmin, with one of these groups instead producing other sesquiterpene alcohols, whereas members of the remaining group do not produce any detectable terpenoid metabolites. Because bacterial terpene synthases typically show no significant overall sequence similarity to any other known fungal or plant terpene synthases and usually exhibit relatively low levels of mutual sequence similarity with other bacterial synthases, simple correlation of protein sequence data with the structure of the cyclized terpene product has been precluded. We have previously described a powerful search method based on the use of hidden Markov models (HMMs) and protein families database (Pfam) search that has allowed the discovery of monoterpene synthases of bacterial origin. Using an enhanced set of HMM parameters generated using a training set of 140 previously identified bacterial terpene synthase sequences, a Pfam search of 8,759,463 predicted bacterial proteins from public databases and in-house draft genome data has now revealed 262 presumptive terpene synthases. The biochemical function of a considerable number of these presumptive terpene synthase genes could be determined by expression in a specially engineered heterologous Streptomyces host and spectroscopic identification of the resulting terpene products. In addition to a wide variety of terpenes that had been previously reported from fungal or plant sources, we have isolated and determined the complete structures of 13 previously unidentified cyclic sesquiterpenes and diterpenes. PMID:25535391

  13. Comparative Characterization of the Lactimidomycin and iso-Migrastatin Biosynthetic Machineries Revealing Unusual Features for Acyltransferase-less Type I Polyketide Synthases and Providing an Opportunity To Engineer New Analogues

    PubMed Central

    2015-01-01

    Lactimidomycin (LTM, 1) and iso-migrastatin (iso-MGS, 2) belong to the glutarimide-containing polyketide family of natural products. We previously cloned and characterized the mgs biosynthetic gene cluster from Streptomyces platensis NRRL 18993. The iso-MGS biosynthetic machinery featured an acyltransferase (AT)-less type I polyketide synthase (PKS) and three tailoring enzymes (MgsIJK). We now report cloning and characterization of the ltm biosynthetic gene cluster from Streptomyces amphibiosporus ATCC 53964, which consists of nine genes that encode an AT-less type I PKS (LtmBCDEFGHL) and one tailoring enzyme (LtmK). Inactivation of ltmE or ltmH afforded the mutant strain SB15001 or SB15002, respectively, that abolished the production of 1, as well as the three cometabolites 8,9-dihydro-LTM (14), 8,9-dihydro-8S-hydroxy-LTM (15), and 8,9-dihydro-9R-hydroxy-LTM (13). Inactivation of ltmK yielded the mutant strain SB15003 that abolished the production of 1, 13, and 15 but led to the accumulation of 14. Complementation of the ΔltmK mutation in SB15003 by expressing ltmK in trans restored the production of 1, as well as that of 13 and 15. These results support the model for 1 biosynthesis, featuring an AT-less type I PKS that synthesizes 14 as the nascent polyketide intermediate and a cytochrome P450 desaturase that converts 14 to 1, with 13 and 15 as minor cometabolites. Comparative analysis of the LTM and iso-MGS AT-less type I PKSs revealed several unusual features that deviate from those of the collinear type I PKS model. Exploitation of the tailoring enzymes for 1 and 2 biosynthesis afforded two analogues, 8,9-dihydro-8R-hydroxy-LTM (16) and 8,9-dihydro-8R-methoxy-LTM (17), that provided new insights into the structure–activity relationship of 1 and 2. While 12-membered macrolides, featuring a combination of a hydroxyl group at C-17 and a double bond at C-8 and C-9 as found in 1, exhibit the most potent activity, analogues with a single hydroxyl or methoxy group

  14. Cloning, expression, and characterization of para-aminobenzoic acid (PABA) synthase from Agaricus bisporus 02, a thermotolerant mushroom strain.

    PubMed

    Deng, Li-Xin; Shen, Yue-Mao; Song, Si-Yang

    2015-01-01

    The pabS gene of Agaricus bisporus 02 encoding a putative PABA synthase was cloned, and then the recombinant protein was expressed in Escherichia coli BL21 under the control of the T7 promoter. The enzyme with an N-terminal GST tag or His tag, designated GST-AbADCS or His-AbADCS, was purified with glutathione Sepharose 4B or Ni Sepharose 6 Fast Flow. The enzyme was an aminodeoxychorismate synthase, and it was necessary to add with an aminodeoxychorismate lyase for synthesizing PABA. AbADCS has maximum activity at a temperature of approximately 25°C and pH 8.0. Magnesium or manganese ions were necessary for the enzymatic activity. The Michaelis-Menten constant for chorismate was 0.12 mM, and 2.55 mM for glutamine. H2O2 did distinct damage on the activity of the enzyme, which could be slightly recovered by Hsp20. Sulfydryl reagents could remarkably promote its activity, suggesting that cysteine residues are essential for catalytic function.

  15. Trinuclear Metal Clusters in Catalysis by Terpenoid Synthases.

    PubMed

    Aaron, Julie A; Christianson, David W

    2010-01-01

    Terpenoid synthases are ubiquitous enzymes that catalyze the formation of structurally and stereochemically diverse isoprenoid natural products. Many isoprenoid coupling enzymes and terpenoid cyclases from bacteria, fungi, protists, plants, and animals share the class I terpenoid synthase fold. Despite generally low amino acid sequence identity among these examples, class I terpenoid synthases contain conserved metal binding motifs that coordinate to a trinuclear metal cluster. This cluster not only serves to bind and orient the flexible isoprenoid substrate in the precatalytic Michaelis complex, but it also triggers the departure of the diphosphate leaving group to generate a carbocation that initiates catalysis. Additional conserved hydrogen bond donors assist the metal cluster in this function. Crystal structure analysis reveals that the constellation of three metal ions required for terpenoid synthase catalysis is generally identical among all class I terpenoid synthases of known structure.

  16. Geranyl diphosphate synthase from mint

    DOEpatents

    Croteau, Rodney Bruce; Wildung, Mark Raymond; Burke, Charles Cullen; Gershenzon, Jonathan

    1999-01-01

    A cDNA encoding geranyl diphosphate synthase from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID No:1) is provided which codes for the expression of geranyl diphosphate synthase (SEQ ID No:2) from peppermint (Mentha piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase or for a base sequence sufficiently complementary to at least a portion of the geranyl diphosphate synthase DNA or RNA to enable hybridization therewith (e.g., antisense geranyl diphosphate synthase RNA or fragments of complementary geranyl diphosphate synthase DNA which are useful as polymerase chain reaction primers or as probes for geranyl diphosphate synthase or related genes). In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase that may be used to facilitate the production, isolation and purification of significant quantities of recombinant geranyl diphosphate synthase for subsequent use, to obtain expression or enhanced expression of geranyl diphosphate synthase in plants in order to enhance the production of monoterpenoids, to produce geranyl diphosphate in cancerous cells as a precursor to monoterpenoids having anti-cancer properties or may be otherwise employed for the regulation or expression of geranyl diphosphate synthase or the production of geranyl diphosphate.

  17. Geranyl diphosphate synthase from mint

    DOEpatents

    Croteau, R.B.; Wildung, M.R.; Burke, C.C.; Gershenzon, J.

    1999-03-02

    A cDNA encoding geranyl diphosphate synthase from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID No:1) is provided which codes for the expression of geranyl diphosphate synthase (SEQ ID No:2) from peppermint (Mentha piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase or for a base sequence sufficiently complementary to at least a portion of the geranyl diphosphate synthase DNA or RNA to enable hybridization therewith (e.g., antisense geranyl diphosphate synthase RNA or fragments of complementary geranyl diphosphate synthase DNA which are useful as polymerase chain reaction primers or as probes for geranyl diphosphate synthase or related genes). In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase that may be used to facilitate the production, isolation and purification of significant quantities of recombinant geranyl diphosphate synthase for subsequent use, to obtain expression or enhanced expression of geranyl diphosphate synthase in plants in order to enhance the production of monoterpenoids, to produce geranyl diphosphate in cancerous cells as a precursor to monoterpenoids having anti-cancer properties or may be otherwise employed for the regulation or expression of geranyl diphosphate synthase or the production of geranyl diphosphate. 5 figs.

  18. All members in the sphingomyelin synthase gene family have ceramide phosphoethanolamine synthase activity[S

    PubMed Central

    Ding, Tingbo; Kabir, Inamul; Li, Yue; Lou, Caixia; Yazdanyar, Amirfarbod; Xu, Jiachen; Dong, Jibin; Zhou, Hongwen; Park, Taesik; Boutjdir, Mohamed; Li, Zhiqiang; Jiang, Xian-Cheng

    2015-01-01

    Sphingomyelin synthase-related protein (SMSr) synthesizes the sphingomyelin analog ceramide phosphoethanolamine (CPE) in cells. Previous cell studies indicated that SMSr is involved in ceramide homeostasis and is crucial for cell function. To further examine SMSr function in vivo, we generated Smsr KO mice that were fertile and had no obvious phenotypic alterations. Quantitative MS analyses of plasma, liver, and macrophages from the KO mice revealed only marginal changes in CPE and ceramide as well as other sphingolipid levels. Because SMS2 also has CPE synthase activity, we prepared Smsr/Sms2 double KO mice. We found that CPE levels were not significantly changed in macrophages, suggesting that CPE levels are not exclusively dependent on SMSr and SMS2 activities. We then measured CPE levels in Sms1 KO mice and found that Sms1 deficiency also reduced plasma CPE levels. Importantly, we found that expression of Sms1 or Sms2 in SF9 insect cells significantly increased not only SM but also CPE formation, indicating that SMS1 also has CPE synthase activity. Moreover, we measured CPE synthase Km and Vmax for SMS1, SMS2, and SMSr using different NBD ceramides. Our study reveals that all mouse SMS family members (SMSr, SMS1, and SMS2) have CPE synthase activity. However, neither CPE nor SMSr appears to be a critical regulator of ceramide levels in vivo. PMID:25605874

  19. Hybrid polyketide synthases

    DOEpatents

    Fortman, Jeffrey L.; Hagen, Andrew; Katz, Leonard; Keasling, Jay D.; Poust, Sean; Zhang, Jingwei; Zotchev, Sergey

    2016-05-10

    The present invention provides for a polyketide synthase (PKS) capable of synthesizing an even-chain or odd-chain diacid or lactam or diamine. The present invention also provides for a host cell comprising the PKS and when cultured produces the even-chain diacid, odd-chain diacid, or KAPA. The present invention also provides for a host cell comprising the PKS capable of synthesizing a pimelic acid or KAPA, and when cultured produces biotin.

  20. The diffusible factor synthase XanB2 is a bifunctional chorismatase that links the shikimate pathway to ubiquinone and xanthomonadins biosynthetic pathways.

    PubMed

    Zhou, Lian; Wang, Jia-Yuan; Wu, Ji'en; Wang, Jianhe; Poplawsky, Alan; Lin, Shuangjun; Zhu, Bangshang; Chang, Changqing; Zhou, Tielin; Zhang, Lian-Hui; He, Ya-Wen

    2013-01-01

    The diffusible factor synthase XanB2, originally identified in Xanthomonas campestris pv. campestris (Xcc), is highly conserved across a wide range of bacterial species, but its substrate and catalytic mechanism have not yet been investigated. Here, we show that XanB2 is a unique bifunctional chorismatase that hydrolyses chorismate, the end-product of the shikimate pathway, to produce 3-hydroxybenzoic acid (3-HBA) and 4-HBA. 3-HBA and 4-HBA are respectively associated with the yellow pigment xanthomonadin biosynthesis and antioxidant activity in Xcc. We further demonstrate that XanB2 is a structurally novel enzyme with three putative domains. It catalyses 3-HBA and 4-HBA biosynthesis via a unique mechanism with the C-terminal YjgF-like domain conferring activity for 3-HBA biosynthesis and the N-terminal FGFG motif-containing domain responsible for 4-HBA biosynthesis. Furthermore, we show that Xcc produces coenzyme Q8 (CoQ8) via a new biosynthetic pathway independent of the key chorismate-pyruvate lyase UbiC. XanB2 is the alternative source of 4-HBA for CoQ8 biosynthesis. The similar CoQ8 biosynthetic pathway, xanthomonadin biosynthetic gene cluster and XanB2 homologues are well conserved in the bacterial species within Xanthomonas, Xylella, Xylophilus, Pseudoxanthomonas, Rhodanobacter, Frateuria, Herminiimonas and Variovorax, suggesting that XanB2 may be a conserved metabolic link between the shikimate pathway, ubiquinone and xanthomonadin biosynthetic pathways in diverse bacteria. PMID:23113660

  1. Direct detection and kinetic analysis of covalent intermediate formation in the 4-amino-4-deoxychorismate synthase catalyzed reaction.

    PubMed

    He, Ze; Toney, Michael D

    2006-04-18

    Chorismate-utilizing enzymes catalyze diverse reactions, providing critical physiological functions unique to plants, bacteria, fungi, and some parasites. Their absence in animals makes them excellent targets for antimicrobials and herbicides. 4-Amino-4-deoxychorismate synthase (ADCS) catalyzes the first step in folate biosynthsis and shares a common core mechanism with isochorismate synthase (IS) and anthranilate synthase (AS), in which nucleophile addition at C2 initiates these reactions. Evidence was presented previously [He, Z., Stigers Lavoie, K. D., Bartlett, P. A., and Toney, M. D. (2004) J. Am. Chem. Soc. 126, 2378-2385] that K274 is the nucleophile in ADCS, implying formation of a covalent intermediate. Herein, we report the direct detection of this covalent intermediate formed in ADCS-catalyzed reactions by ESI-MS. Difference spectra show the covalent intermediate has an absorption maximum at 310 nm. This was used to study the pre-steady-state kinetics of covalent intermediate formation under various conditions. Additionally, E258 in ADCS was shown to be critical to formation of the covalent intermediate by acting as a general acid catalyst for loss of the C4 hydroxyl group. The E258A/D mutants both exhibit very low activity. Acetate is a poor chemical rescue agent for E258D but an excellent one for E258A, with a 20000-fold and 3000-fold rate increase for Gln-dependent and NH(4)(+)-dependent activities, respectively. Lastly, A213 in IS (structurally homologous to K274 in ADCS) was changed to lysine in an attempt to convert IS to an ADCS-like enzyme. HPLC studies support the formation of a covalent intermediate with this mutant. PMID:16605270

  2. Monoterpene synthases from common sage (Salvia officinalis)

    DOEpatents

    Croteau, Rodney Bruce; Wise, Mitchell Lynn; Katahira, Eva Joy; Savage, Thomas Jonathan

    1999-01-01

    cDNAs encoding (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase from common sage (Salvia officinalis) have been isolated and sequenced, and the corresponding amino acid sequences has been determined. Accordingly, isolated DNA sequences (SEQ ID No:1; SEQ ID No:3 and SEQ ID No:5) are provided which code for the expression of (+)-bornyl diphosphate synthase (SEQ ID No:2), 1,8-cineole synthase (SEQ ID No:4) and (+)-sabinene synthase SEQ ID No:6), respectively, from sage (Salvia officinalis). In other aspects, replicable recombinant cloning vehicles are provided which code for (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase, or for a base sequence sufficiently complementary to at least a portion of (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase. Thus, systems and methods are provided for the recombinant expression of the aforementioned recombinant monoterpene synthases that may be used to facilitate their production, isolation and purification in significant amounts. Recombinant (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase may be used to obtain expression or enhanced expression of (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase in plants in order to enhance the production of monoterpenoids, or may be otherwise employed for the regulation or expression of (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase, or the production of their products.

  3. Structure and Mechanism of the Diterpene Cyclase ent-Copalyl Diphosphate Synthase

    PubMed Central

    Köksal, Mustafa; Hu, Huayou; Coates, Robert M.; Peters, Reuben J.; Christianson, David W.

    2011-01-01

    The structure of ent-copalyl diphosphate synthase (CPS) reveals three α-helical domains (α, β, γ), as also observed in the related diterpene cyclase taxadiene synthase. However, active sites are located at the interface of the βγ domains in CPS but exclusively in the α domain of taxadiene synthase. Modular domain architecture in plant diterpene cyclases enables the evolution of alternative active sites and chemical strategies for catalyzing isoprenoid cyclization reactions. PMID:21602811

  4. Implications of binding mode and active site flexibility for inhibitor potency against the salicylate synthase from Mycobacterium tuberculosis.

    PubMed

    Chi, Gamma; Manos-Turvey, Alexandra; O'Connor, Patrick D; Johnston, Jodie M; Evans, Genevieve L; Baker, Edward N; Payne, Richard J; Lott, J Shaun; Bulloch, Esther M M

    2012-06-19

    MbtI is the salicylate synthase that catalyzes the first committed step in the synthesis of the iron chelating compound mycobactin in Mycobacterium tuberculosis. We previously developed a series of aromatic inhibitors against MbtI based on the reaction intermediate for this enzyme, isochorismate. The most potent of these inhibitors had hydrophobic substituents, ranging in size from a methyl to a phenyl group, appended to the terminal alkene of the enolpyruvyl group. These compounds exhibited low micromolar inhibition constants against MbtI and were at least an order of magnitude more potent than the parental compound for the series, which carries a native enolpyruvyl group. In this study, we sought to understand how the substituted enolpyruvyl group confers greater potency, by determining cocrystal structures of MbtI with six inhibitors from the series. A switch in binding mode at the MbtI active site is observed for inhibitors carrying a substituted enolpyruvyl group, relative to the parental compound. Computational studies suggest that the change in binding mode, and higher potency, is due to the effect of the substituents on the conformational landscape of the core inhibitor structure. The crystal structures and fluorescence-based thermal shift assays indicate that substituents larger than a methyl group are accommodated in the MbtI active site through significant but localized flexibility in the peptide backbone. These findings have implications for the design of improved inhibitors of MbtI, as well as other chorismate-utilizing enzymes from this family. PMID:22607697

  5. [BIOINFORMATIC SEARCH AND PHYLOGENETIC ANALYSIS OF THE CELLULOSE SYNTHASE GENES OF FLAX (LINUM USITATISSIMUM)].

    PubMed

    Pydiura, N A; Bayer, G Ya; Galinousky, D V; Yemets, A I; Pirko, Ya V; Podvitski, T A; Anisimova, N V; Khotyleva, L V; Kilchevsky, A V; Blume, Ya B

    2015-01-01

    A bioinformatic search of sequences encoding cellulose synthase genes in the flax genome, and their comparison to dicots orthologs was carried out. The analysis revealed 32 cellulose synthase gene candidates, 16 of which are highly likely to encode cellulose synthases, and the remaining 16--cellulose synthase-like proteins (Csl). Phylogenetic analysis of gene products of cellulose synthase genes allowed distinguishing 6 groups of cellulose synthase genes of different classes: CesA1/10, CesA3, CesA4, CesA5/6/2/9, CesA7 and CesA8. Paralogous sequences within classes CesA1/10 and CesA5/6/2/9 which are associated with the primary cell wall formation are characterized by a greater similarity within these classes than orthologous sequences. Whereas the genes controlling the biosynthesis of secondary cell wall cellulose form distinct clades: CesA4, CesA7, and CesA8. The analysis of 16 identified flax cellulose synthase gene candidates shows the presence of at least 12 different cellulose synthase gene variants in flax genome which are represented in all six clades of cellulose synthase genes. Thus, at this point genes of all ten known cellulose synthase classes are identify in flax genome, but their correct classification requires additional research. PMID:26638491

  6. [BIOINFORMATIC SEARCH AND PHYLOGENETIC ANALYSIS OF THE CELLULOSE SYNTHASE GENES OF FLAX (LINUM USITATISSIMUM)].

    PubMed

    Pydiura, N A; Bayer, G Ya; Galinousky, D V; Yemets, A I; Pirko, Ya V; Podvitski, T A; Anisimova, N V; Khotyleva, L V; Kilchevsky, A V; Blume, Ya B

    2015-01-01

    A bioinformatic search of sequences encoding cellulose synthase genes in the flax genome, and their comparison to dicots orthologs was carried out. The analysis revealed 32 cellulose synthase gene candidates, 16 of which are highly likely to encode cellulose synthases, and the remaining 16--cellulose synthase-like proteins (Csl). Phylogenetic analysis of gene products of cellulose synthase genes allowed distinguishing 6 groups of cellulose synthase genes of different classes: CesA1/10, CesA3, CesA4, CesA5/6/2/9, CesA7 and CesA8. Paralogous sequences within classes CesA1/10 and CesA5/6/2/9 which are associated with the primary cell wall formation are characterized by a greater similarity within these classes than orthologous sequences. Whereas the genes controlling the biosynthesis of secondary cell wall cellulose form distinct clades: CesA4, CesA7, and CesA8. The analysis of 16 identified flax cellulose synthase gene candidates shows the presence of at least 12 different cellulose synthase gene variants in flax genome which are represented in all six clades of cellulose synthase genes. Thus, at this point genes of all ten known cellulose synthase classes are identify in flax genome, but their correct classification requires additional research.

  7. Genome-wide identification of Drosophila Hb9 targets reveals a pivotal role in directing the transcriptome within eight neuronal lineages, including activation of Nitric Oxide Synthase and Fd59a/Fox-D

    PubMed Central

    Lacin, Haluk; Rusch, Jannette; Yeh, Raymond T.; Fujioka, Miki; Wilson, Beth A.; Zhu, Yi; Robie, Alice A.; Mistry, Hemlata; Wang, Ting; Jaynes, James B.; Skeath, James B.

    2014-01-01

    Hb9 is a homeodomain-containing transcription factor that acts in combination with Nkx6, Lim3, and Tail-up (Islet) to guide the stereotyped differentiation, connectivity, and function of a subset of neurons in Drosophila. The role of Hb9 in directing neuronal differentiation is well documented, but the lineage of Hb9+ neurons is only partly characterized, its regulation is poorly understood, and most of the downstream genes through which it acts remain at large. Here, we complete the lineage tracing of all embryonic Hb9+ neurons (to eight neuronal lineages) and provide evidence that hb9, lim3, and tail-up are coordinately regulated by a common set of upstream factors. Through the parallel use of micro-array gene expression profiling and the Dam-ID method, we searched for Hb9-regulated genes, uncovering transcription factors as the most over-represented class of genes regulated by Hb9 (and Nkx6) in the CNS. By a nearly ten-to-one ratio, Hb9 represses rather than activates transcription factors, highlighting transcriptional repression of other transcription factors as a core mechanism by which Hb9 governs neuronal determination. From the small set of genes activated by Hb9, we characterized the expression and function of two – fd59a/foxd, which encodes a transcription factor, and Nitric oxide synthase. Under standard lab conditions, both genes are dispensable for Drosophila development, but Nos appears to inhibit hyper-active behavior and fd59a appears to act in octopaminergic neurons to control egg-laying behavior. Together our data clarify the mechanisms through which Hb9 governs neuronal specification and differentiation and provide an initial characterization of the expression and function of Nos and fd59a in the Drosophila CNS. PMID:24512689

  8. Virus-Induced Gene Silencing-Based Functional Analyses Revealed the Involvement of Several Putative Trehalose-6-Phosphate Synthase/Phosphatase Genes in Disease Resistance against Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000 in Tomato

    PubMed Central

    Zhang, Huijuan; Hong, Yongbo; Huang, Lei; Liu, Shixia; Tian, Limei; Dai, Yi; Cao, Zhongye; Huang, Lihong; Li, Dayong; Song, Fengming

    2016-01-01

    Trehalose and its metabolism have been demonstrated to play important roles in control of plant growth, development, and stress responses. However, direct genetic evidence supporting the functions of trehalose and its metabolism in defense response against pathogens is lacking. In the present study, genome-wide characterization of putative trehalose-related genes identified 11 SlTPSs for trehalose-6-phosphate synthase, 8 SlTPPs for trehalose-6-phosphate phosphatase and one SlTRE1 for trehalase in tomato genome. Nine SlTPSs, 4 SlTPPs, and SlTRE1 were selected for functional analyses to explore their involvement in tomato disease resistance. Some selected SlTPSs, SlTPPs, and SlTRE1 responded with distinct expression induction patterns to Botrytis cinerea and Pseudomonas syringae pv. tomato (Pst) DC3000 as well as to defense signaling hormones (e.g., salicylic acid, jasmonic acid, and a precursor of ethylene). Virus-induced gene silencing-mediated silencing of SlTPS3, SlTPS4, or SlTPS7 led to deregulation of ROS accumulation and attenuated the expression of defense-related genes upon pathogen infection and thus deteriorated the resistance against B. cinerea or Pst DC3000. By contrast, silencing of SlTPS5 or SlTPP2 led to an increased expression of the defense-related genes upon pathogen infection and conferred an increased resistance against Pst DC3000. Silencing of SlTPS3, SlTPS4, SlTPS5, SlTPS7, or SlTPP2 affected trehalose level in tomato plants with or without infection of B. cinerea or Pst DC3000. These results demonstrate that SlTPS3, SlTPS4, SlTPS5, SlTPS7, and SlTPP2 play roles in resistance against B. cinerea and Pst DC3000, implying the importance of trehalose and tis metabolism in regulation of defense response against pathogens in tomato. PMID:27540389

  9. Virus-Induced Gene Silencing-Based Functional Analyses Revealed the Involvement of Several Putative Trehalose-6-Phosphate Synthase/Phosphatase Genes in Disease Resistance against Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000 in Tomato.

    PubMed

    Zhang, Huijuan; Hong, Yongbo; Huang, Lei; Liu, Shixia; Tian, Limei; Dai, Yi; Cao, Zhongye; Huang, Lihong; Li, Dayong; Song, Fengming

    2016-01-01

    Trehalose and its metabolism have been demonstrated to play important roles in control of plant growth, development, and stress responses. However, direct genetic evidence supporting the functions of trehalose and its metabolism in defense response against pathogens is lacking. In the present study, genome-wide characterization of putative trehalose-related genes identified 11 SlTPSs for trehalose-6-phosphate synthase, 8 SlTPPs for trehalose-6-phosphate phosphatase and one SlTRE1 for trehalase in tomato genome. Nine SlTPSs, 4 SlTPPs, and SlTRE1 were selected for functional analyses to explore their involvement in tomato disease resistance. Some selected SlTPSs, SlTPPs, and SlTRE1 responded with distinct expression induction patterns to Botrytis cinerea and Pseudomonas syringae pv. tomato (Pst) DC3000 as well as to defense signaling hormones (e.g., salicylic acid, jasmonic acid, and a precursor of ethylene). Virus-induced gene silencing-mediated silencing of SlTPS3, SlTPS4, or SlTPS7 led to deregulation of ROS accumulation and attenuated the expression of defense-related genes upon pathogen infection and thus deteriorated the resistance against B. cinerea or Pst DC3000. By contrast, silencing of SlTPS5 or SlTPP2 led to an increased expression of the defense-related genes upon pathogen infection and conferred an increased resistance against Pst DC3000. Silencing of SlTPS3, SlTPS4, SlTPS5, SlTPS7, or SlTPP2 affected trehalose level in tomato plants with or without infection of B. cinerea or Pst DC3000. These results demonstrate that SlTPS3, SlTPS4, SlTPS5, SlTPS7, and SlTPP2 play roles in resistance against B. cinerea and Pst DC3000, implying the importance of trehalose and tis metabolism in regulation of defense response against pathogens in tomato. PMID:27540389

  10. A novel 5-enolpyruvylshikimate-3-phosphate synthase from Rahnella aquatilis with significantly reduced glyphosate sensitivity.

    PubMed

    Peng, Ri-He; Tian, Yong-Sheng; Xiong, Ai-Sheng; Zhao, Wei; Fu, Xiao-Yan; Han, Hong-Juan; Chen, Chen; Jin, Xiao-Fen; Yao, Quan-Hong

    2012-01-01

    The 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS; EC 2.5.1.19) is a key enzyme in the shikimate pathway for the production of aromatic amino acids and chorismate-derived secondary metabolites in plants, fungi, and microorganisms. It is also the target of the broad-spectrum herbicide glyphosate. Natural glyphosate resistance is generally thought to occur within microorganisms in a strong selective pressure condition. Rahnella aquatilis strain GR20, an antagonist against pathogenic agrobacterial strains of grape crown gall, was isolated from the rhizosphere of grape in glyphosate-contaminated vineyards. A novel gene encoding EPSPS was identified from the isolated bacterium by complementation of an Escherichia coli auxotrophic aroA mutant. The EPSPS, named AroA(R. aquatilis), was expressed and purified from E. coli, and key kinetic values were determined. The full-length enzyme exhibited higher tolerance to glyphosate than the E. coli EPSPS (AroA(E. coli)), while retaining high affinity for the substrate phosphoenolpyruvate. Transgenic plants of AroA(R. aquatilis) were also observed to be more resistant to glyphosate at a concentration of 5 mM than that of AroA(E. coli). To probe the sites contributing to increased tolerance to glyphosate, mutant R. aquatilis EPSPS enzymes were produced with the c-strand of subdomain 3 and the f-strand of subdomain 5 (Thr38Lys, Arg40Val, Arg222Gln, Ser224Val, Ile225Val, and Gln226Lys) substituted by the corresponding region of the E. coli EPSPS. The mutant enzyme exhibited greater sensitivity to glyphosate than the wild type R. aquatilis EPSPS with little change of affinity for its first substrate, shikimate-3-phosphate (S3P) and phosphoenolpyruvate (PEP). The effect of the residues on subdomain 5 on glyphosate resistance was more obvious. PMID:22870190

  11. A novel 5-enolpyruvylshikimate-3-phosphate synthase from Rahnella aquatilis with significantly reduced glyphosate sensitivity.

    PubMed

    Peng, Ri-He; Tian, Yong-Sheng; Xiong, Ai-Sheng; Zhao, Wei; Fu, Xiao-Yan; Han, Hong-Juan; Chen, Chen; Jin, Xiao-Fen; Yao, Quan-Hong

    2012-01-01

    The 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS; EC 2.5.1.19) is a key enzyme in the shikimate pathway for the production of aromatic amino acids and chorismate-derived secondary metabolites in plants, fungi, and microorganisms. It is also the target of the broad-spectrum herbicide glyphosate. Natural glyphosate resistance is generally thought to occur within microorganisms in a strong selective pressure condition. Rahnella aquatilis strain GR20, an antagonist against pathogenic agrobacterial strains of grape crown gall, was isolated from the rhizosphere of grape in glyphosate-contaminated vineyards. A novel gene encoding EPSPS was identified from the isolated bacterium by complementation of an Escherichia coli auxotrophic aroA mutant. The EPSPS, named AroA(R. aquatilis), was expressed and purified from E. coli, and key kinetic values were determined. The full-length enzyme exhibited higher tolerance to glyphosate than the E. coli EPSPS (AroA(E. coli)), while retaining high affinity for the substrate phosphoenolpyruvate. Transgenic plants of AroA(R. aquatilis) were also observed to be more resistant to glyphosate at a concentration of 5 mM than that of AroA(E. coli). To probe the sites contributing to increased tolerance to glyphosate, mutant R. aquatilis EPSPS enzymes were produced with the c-strand of subdomain 3 and the f-strand of subdomain 5 (Thr38Lys, Arg40Val, Arg222Gln, Ser224Val, Ile225Val, and Gln226Lys) substituted by the corresponding region of the E. coli EPSPS. The mutant enzyme exhibited greater sensitivity to glyphosate than the wild type R. aquatilis EPSPS with little change of affinity for its first substrate, shikimate-3-phosphate (S3P) and phosphoenolpyruvate (PEP). The effect of the residues on subdomain 5 on glyphosate resistance was more obvious.

  12. Mutational analysis of the active site of indoleglycerol phosphate synthase from Escherichia coli.

    PubMed Central

    Darimont, B.; Stehlin, C.; Szadkowski, H.; Kirschner, K.

    1998-01-01

    Indoleglycerol phosphate synthase catalyzes the ring closure of 1-(2-carboxyphenylamino)-1-deoxyribulose 5'-phosphate to indoleglycerol phosphate, the fifth step in the pathway of tryptophan biosynthesis from chorismate. Because chemical synthesis of indole derivatives from arylamino ketones requires drastic solvent conditions, it is interesting by what mechanism the enzyme catalyzes the same condensation reaction. Seven invariant polar residues in the active site of the enzyme from Escherichia coli have been mutated directly or randomly, to identify the catalytically essential ones. A strain of E. coli suitable for selecting and classifying active mutants by functional complementation was constructed by precise deletion of the trpC gene from the genome. Judged by growth rates of transformants on selective media, mutants with either S58 or S60 replaced by alanine were indistinguishable from the wild-type, but R186 replaced by alanine was still partially active. Saturation random mutagenesis of individual codons showed that E53 was partially replaceable by aspartate and cysteine, whereas K114, E163, and N184 could not be replaced by any other residue. Partially active mutant proteins were purified and their steady-state kinetic and inhibitor binding constants determined. Their relative catalytic efficiencies paralleled their relative complementation efficiencies. These results are compatible with the location of the essential residues in the active site of the enzyme and support a chemically plausible catalytic mechanism. It involves two enzyme-bound intermediates and general acid-base catalysis by K114 and E163 with the support of E53 and N184. PMID:9605328

  13. Structural and functional organization of the animal fatty acid synthase.

    PubMed

    Smith, Stuart; Witkowski, Andrzej; Joshi, Anil K

    2003-07-01

    The entire pathway of palmitate synthesis from malonyl-CoA in mammals is catalyzed by a single, homodimeric, multifunctional protein, the fatty acid synthase. Each subunit contains three N-terminal domains, the beta-ketoacyl synthase, malonyl/acetyl transferase and dehydrase separated by a structural core from four C-terminal domains, the enoyl reductase, beta-ketoacyl reductase, acyl carrier protein and thiosterase. The kinetics and specificities of the substrate loading reaction catalyzed by the malonyl/acetyl transferase, the condensation reaction catalyzed by beta-ketoacyl synthase and chain-terminating reaction catalyzed by the thioesterase ensure that intermediates do not leak off the enzyme, saturated chains exclusively are elongated and palmitate is released as the major product. Only in the fatty acid synthase dimer do the subunits adopt conformations that facilitate productive coupling of the individual reactions for fatty acid synthesis at the two acyl carrier protein centers. Introduction of a double tagging and dual affinity chromatographic procedure has permitted the engineering and isolation of heterodimeric fatty acid synthases carrying different mutations on each subunit. Characterization of these heterodimers, by activity assays and chemical cross-linking, has been exploited to map the functional topology of the protein. The results reveal that the two acyl carrier protein domains engage in substrate loading and condensation reactions catalyzed by the malonyl/acetyl transferase and beta-ketoacyl synthase domains of either subunit. In contrast, the reactions involved in processing of the beta-carbon atom, following each chain elongation step, together with the release of palmitate, are catalyzed by the cooperation of the acyl carrier protein with catalytic domains of the same subunit. These findings suggest a revised model for the fatty acid synthase in which the two polypeptides are oriented such that head-to-tail contacts are formed both between

  14. SbnG, a Citrate Synthase in Staphylococcus aureus

    PubMed Central

    Kobylarz, Marek J.; Grigg, Jason C.; Sheldon, Jessica R.; Heinrichs, David E.; Murphy, Michael E. P.

    2014-01-01

    In response to iron deprivation, Staphylococcus aureus produces staphyloferrin B, a citrate-containing siderophore that delivers iron back to the cell. This bacterium also possesses a second citrate synthase, SbnG, that is necessary for supplying citrate to the staphyloferrin B biosynthetic pathway. We present the structure of SbnG bound to the inhibitor calcium and an active site variant in complex with oxaloacetate. The overall fold of SbnG is structurally distinct from TCA cycle citrate synthases yet similar to metal-dependent class II aldolases. Phylogenetic analyses revealed that SbnG forms a separate clade with homologs from other siderophore biosynthetic gene clusters and is representative of a metal-independent subgroup in the phosphoenolpyruvate/pyruvate domain superfamily. A structural superposition of the SbnG active site to TCA cycle citrate synthases and site-directed mutagenesis suggests a case for convergent evolution toward a conserved catalytic mechanism for citrate production. PMID:25336653

  15. ATP synthases: cellular nanomotors characterized by LILBID mass spectrometry

    PubMed Central

    Hoffmann, Jan; Sokolova, Lucie; Preiss, Laura; Hicks, David B.; Krulwich, Terry A.; Morgner, Nina; Wittig, Ilka; Schägger, Hermann; Meier, Thomas; Brutschy, Bernd

    2010-01-01

    Mass spectrometry of membrane protein complexes is still a methodological challenge due to hydrophobic and hydrophilic parts of the species and the fact that all subunits are bound non-covalently together. The present study with the novel laser induced liquid bead ion desorption mass spectrometry (LILBID-MS) reports on the determination of the subunit composition of the F1Fo-ATP synthase from Bacillus pseudofirmus OF4, that of both bovine heart and, for the first time, of human heart mitochondrial F1Fo-ATP synthases. Under selected buffer conditions the mass of the intact F1Fo-ATP synthase of B. pseudofirmus OF4 could be measured, allowing the analysis of complex subunit stoichiometry. The agreement with theoretical masses derived from sequence databases is very good. A comparison of the ATP synthase subunit composition of 5 different ATPases reveals differences in the complexity of eukaryotic and bacterial ATP synthases. However, whereas the overall construction of eukaryotic enzymes is more complex than the bacterial ones, functionally important subunits are conserved among all ATPases. PMID:20820587

  16. Benzophenone Synthase and Chalcone Synthase Accumulate in the Mesophyll of Hypericum perforatum Leaves at Different Developmental Stages

    PubMed Central

    Belkheir, Asma K.; Gaid, Mariam; Liu, Benye; Hänsch, Robert; Beerhues, Ludger

    2016-01-01

    The active medicinal constituents in Hypericum perforatum, used to treat depression and skin irritation, include flavonoids and xanthones. The carbon skeletons of these compounds are formed by chalcone synthase (CHS) and benzophenone synthase (BPS), respectively. Polyclonal antisera were raised against the polyketide synthases from Hypericum androsaemum and their IgG fractions were isolated. Immunoblotting and immunotitration were used to test the IgGs for crossreactivity and monospecificity in H. perforatum leaf protein extract. Immunofluorescence localization revealed that both CHS and BPS are located in the mesophyll. The maximum fluorescence levels were observed in approx. 0.5 and 1 cm long leaves, respectively. The fluorescence intensity observed for CHS significantly exceeded that for BPS. Using histochemical staining, flavonoids were detected in the mesophyll, indicating that the sites of biosynthesis and accumulation coincide. Our results help understand the biosynthesis and underlying regulation of active H. perforatum constituents. PMID:27446151

  17. Benzophenone Synthase and Chalcone Synthase Accumulate in the Mesophyll of Hypericum perforatum Leaves at Different Developmental Stages.

    PubMed

    Belkheir, Asma K; Gaid, Mariam; Liu, Benye; Hänsch, Robert; Beerhues, Ludger

    2016-01-01

    The active medicinal constituents in Hypericum perforatum, used to treat depression and skin irritation, include flavonoids and xanthones. The carbon skeletons of these compounds are formed by chalcone synthase (CHS) and benzophenone synthase (BPS), respectively. Polyclonal antisera were raised against the polyketide synthases from Hypericum androsaemum and their IgG fractions were isolated. Immunoblotting and immunotitration were used to test the IgGs for crossreactivity and monospecificity in H. perforatum leaf protein extract. Immunofluorescence localization revealed that both CHS and BPS are located in the mesophyll. The maximum fluorescence levels were observed in approx. 0.5 and 1 cm long leaves, respectively. The fluorescence intensity observed for CHS significantly exceeded that for BPS. Using histochemical staining, flavonoids were detected in the mesophyll, indicating that the sites of biosynthesis and accumulation coincide. Our results help understand the biosynthesis and underlying regulation of active H. perforatum constituents. PMID:27446151

  18. Structure and Function of Fusicoccadiene Synthase, a Hexameric Bifunctional Diterpene Synthase.

    PubMed

    Chen, Mengbin; Chou, Wayne K W; Toyomasu, Tomonobu; Cane, David E; Christianson, David W

    2016-04-15

    Fusicoccin A is a diterpene glucoside phytotoxin generated by the fungal pathogen Phomopsis amygdali that causes the plant disease constriction canker, first discovered in New Jersey peach orchards in the 1930s. Fusicoccin A is also an emerging new lead in cancer chemotherapy. The hydrocarbon precursor of fusicoccin A is the tricyclic diterpene fusicoccadiene, which is generated by a bifunctional terpenoid synthase. Here, we report X-ray crystal structures of the individual catalytic domains of fusicoccadiene synthase: the C-terminal domain is a chain elongation enzyme that generates geranylgeranyl diphosphate, and the N-terminal domain catalyzes the cyclization of geranylgeranyl diphosphate to form fusicoccadiene. Crystal structures of each domain complexed with bisphosphonate substrate analogues suggest that three metal ions and three positively charged amino acid side chains trigger substrate ionization in each active site. While in vitro incubations reveal that the cyclase domain can utilize farnesyl diphosphate and geranyl diphosphate as surrogate substrates, these shorter isoprenoid diphosphates are mainly converted into acyclic alcohol or hydrocarbon products. Gel filtration chromatography and analytical ultracentrifugation experiments indicate that full-length fusicoccadiene synthase adopts hexameric quaternary structure, and small-angle X-ray scattering data yield a well-defined molecular envelope illustrating a plausible model for hexamer assembly.

  19. Highly Divergent Mitochondrial ATP Synthase Complexes in Tetrahymena thermophila

    PubMed Central

    Balabaskaran Nina, Praveen; Dudkina, Natalya V.; Kane, Lesley A.; van Eyk, Jennifer E.; Boekema, Egbert J.; Mather, Michael W.; Vaidya, Akhil B.

    2010-01-01

    The F-type ATP synthase complex is a rotary nano-motor driven by proton motive force to synthesize ATP. Its F1 sector catalyzes ATP synthesis, whereas the Fo sector conducts the protons and provides a stator for the rotary action of the complex. Components of both F1 and Fo sectors are highly conserved across prokaryotes and eukaryotes. Therefore, it was a surprise that genes encoding the a and b subunits as well as other components of the Fo sector were undetectable in the sequenced genomes of a variety of apicomplexan parasites. While the parasitic existence of these organisms could explain the apparent incomplete nature of ATP synthase in Apicomplexa, genes for these essential components were absent even in Tetrahymena thermophila, a free-living ciliate belonging to a sister clade of Apicomplexa, which demonstrates robust oxidative phosphorylation. This observation raises the possibility that the entire clade of Alveolata may have invented novel means to operate ATP synthase complexes. To assess this remarkable possibility, we have carried out an investigation of the ATP synthase from T. thermophila. Blue native polyacrylamide gel electrophoresis (BN-PAGE) revealed the ATP synthase to be present as a large complex. Structural study based on single particle electron microscopy analysis suggested the complex to be a dimer with several unique structures including an unusually large domain on the intermembrane side of the ATP synthase and novel domains flanking the c subunit rings. The two monomers were in a parallel configuration rather than the angled configuration previously observed in other organisms. Proteomic analyses of well-resolved ATP synthase complexes from 2-D BN/BN-PAGE identified orthologs of seven canonical ATP synthase subunits, and at least 13 novel proteins that constitute subunits apparently limited to the ciliate lineage. A mitochondrially encoded protein, Ymf66, with predicted eight transmembrane domains could be a substitute for the subunit a

  20. Genetics Home Reference: GM3 synthase deficiency

    MedlinePlus

    ... GM3 synthase deficiency is characterized by recurrent seizures (epilepsy) and problems with brain development. Within the first ... diagnosis or management of GM3 synthase deficiency: American Epilepsy Society: Find a Doctor Clinic for Special Children ( ...

  1. Structure and conformational states of the bovine mitochondrial ATP synthase by cryo-EM.

    PubMed

    Zhou, Anna; Rohou, Alexis; Schep, Daniel G; Bason, John V; Montgomery, Martin G; Walker, John E; Grigorieff, Nikolaus; Rubinstein, John L

    2015-10-06

    Adenosine triphosphate (ATP), the chemical energy currency of biology, is synthesized in eukaryotic cells primarily by the mitochondrial ATP synthase. ATP synthases operate by a rotary catalytic mechanism where proton translocation through the membrane-inserted FO region is coupled to ATP synthesis in the catalytic F1 region via rotation of a central rotor subcomplex. We report here single particle electron cryomicroscopy (cryo-EM) analysis of the bovine mitochondrial ATP synthase. Combining cryo-EM data with bioinformatic analysis allowed us to determine the fold of the a subunit, suggesting a proton translocation path through the FO region that involves both the a and b subunits. 3D classification of images revealed seven distinct states of the enzyme that show different modes of bending and twisting in the intact ATP synthase. Rotational fluctuations of the c8-ring within the FO region support a Brownian ratchet mechanism for proton-translocation-driven rotation in ATP synthases.

  2. Human uroporphyrinogen III synthase: NMR-based mapping of the active site.

    PubMed

    Cunha, Luis; Kuti, Miklos; Bishop, David F; Mezei, Mihaly; Zeng, Lei; Zhou, Ming-Ming; Desnick, Robert J

    2008-05-01

    Uroporphyrinogen III synthase (URO-synthase) catalyzes the cyclization and D-ring isomerization of hydroxymethylbilane (HMB) to uroporphyrinogen (URO'gen) III, the cyclic tetrapyrrole and physiologic precursor of heme, chlorophyl, and corrin. The deficient activity of human URO-synthase results in the autosomal recessive cutaneous disorder, congenital erythropoietic porphyria. Mapping of the structural determinants that specify catalysis and, potentially, protein-protein interactions is lacking. To map the active site and assess the enzyme's possible interaction in a complex with hydroxymethylbilane-synthase (HMB-synthase) and/or uroporphyrinogen-decarboxylase (URO-decarboxylase) by NMR, an efficient expression and purification procedure was developed for these cytosolic enzymes of heme biosynthesis that enabled preparation of special isotopically-labeled protein samples for NMR characterization. Using an 800 MHz instrument, assignment of the URO-synthase backbone (13)C(alpha) (100%), (1)H(alpha) (99.6%), and nonproline (1)H(N) and (15)N resonances (94%) was achieved as well as 85% of the side-chain (13)C and (1)H resonances. NMR analyses of URO-synthase titrated with competitive inhibitors N(D)-methyl-1-formylbilane (NMF-bilane) or URO'gen III, revealed resonance perturbations of specific residues lining the cleft between the two major domains of URO synthase that mapped the enzyme's active site. In silico docking of the URO-synthase crystal structure with NMF-bilane and URO'gen III was consistent with the perturbation results and provided a 3D model of the enzyme-inhibitor complex. The absence of chemical shift changes in the (15)N spectrum of URO-synthase mixed with the homogeneous HMB-synthase holoenzyme or URO-decarboxylase precluded occurrence of a stable cytosolic enzyme complex. PMID:18004775

  3. Torque generation mechanism of ATP synthase

    NASA Astrophysics Data System (ADS)

    Miller, John; Maric, Sladjana; Scoppa, M.; Cheung, M.

    2010-03-01

    ATP synthase is a rotary motor that produces adenosine triphosphate (ATP), the chemical currency of life. Our proposed electric field driven torque (EFT) model of FoF1-ATP synthase describes how torque, which scales with the number of c-ring proton binding sites, is generated by the proton motive force (pmf) across the mitochondrial inner membrane. When Fo is coupled to F1, the model predicts a critical pmf to drive ATP production. In order to fully understand how the electric field resulting from the pmf drives the c-ring to rotate, it is important to examine the charge distributions in the protonated c-ring and a-subunit containing the proton channels. Our calculations use a self-consistent field approach based on a refinement of reported structural data. The results reveal changes in pKa for key residues on the a-subunit and c-ring, as well as titration curves and protonation state energy diagrams. Health implications will be briefly discussed.

  4. Direct interaction with ACR11 is necessary for post-transcriptional control of GLU1-encoded ferredoxin-dependent glutamate synthase in leaves.

    PubMed

    Takabayashi, Atsushi; Niwata, Akihiro; Tanaka, Ayumi

    2016-01-01

    Because it plays an essential role in nitrogen (N) assimilation and photorespiration, the glutamine synthetase (GS)/glutamate synthase (GOGAT) system is widely accepted as occupying a central position in leaf N metabolism. However, the regulation of GOGAT at the post-transcriptional level is poorly understood. Here, we show that ACR11, an ACT (acronym for aspartate kinase, chorismate mutase, and TyrA) domain-containing family protein, interacts with Glu1-encoded ferredoxin (Fd)-GOGAT in Arabidopsis chloroplasts. In addition, Arabidopsis acr11 mutants have lost the capability to control Fd-GOGAT levels in response to light/dark diurnal cycles, nitrogen inputs, and changes in photorespiratory activity. Considering that ACR11 has putative glutamine-binding domains, our results indicate that ACR11 is necessary for post-transcriptional control of leaf Glu1-encoded Fd-GOGAT. This regulation takes place through direct interaction of ACR11 and Fd-GOGAT, possibly in an allosteric manner. PMID:27411448

  5. Direct interaction with ACR11 is necessary for post-transcriptional control of GLU1-encoded ferredoxin-dependent glutamate synthase in leaves

    PubMed Central

    Takabayashi, Atsushi; Niwata, Akihiro; Tanaka, Ayumi

    2016-01-01

    Because it plays an essential role in nitrogen (N) assimilation and photorespiration, the glutamine synthetase (GS)/glutamate synthase (GOGAT) system is widely accepted as occupying a central position in leaf N metabolism. However, the regulation of GOGAT at the post-transcriptional level is poorly understood. Here, we show that ACR11, an ACT (acronym for aspartate kinase, chorismate mutase, and TyrA) domain-containing family protein, interacts with Glu1-encoded ferredoxin (Fd)-GOGAT in Arabidopsis chloroplasts. In addition, Arabidopsis acr11 mutants have lost the capability to control Fd-GOGAT levels in response to light/dark diurnal cycles, nitrogen inputs, and changes in photorespiratory activity. Considering that ACR11 has putative glutamine-binding domains, our results indicate that ACR11 is necessary for post-transcriptional control of leaf Glu1-encoded Fd-GOGAT. This regulation takes place through direct interaction of ACR11 and Fd-GOGAT, possibly in an allosteric manner. PMID:27411448

  6. Plasticity and Evolution of (+)-3-Carene Synthase and (−)-Sabinene Synthase Functions of a Sitka Spruce Monoterpene Synthase Gene Family Associated with Weevil Resistance*

    PubMed Central

    Roach, Christopher R.; Hall, Dawn E.; Zerbe, Philipp; Bohlmann, Jörg

    2014-01-01

    The monoterpene (+)-3-carene is associated with resistance of Sitka spruce against white pine weevil, a major North American forest insect pest of pine and spruce. High and low levels of (+)-3-carene in, respectively, resistant and susceptible Sitka spruce genotypes are due to variation of (+)-3-carene synthase gene copy number, transcript and protein expression levels, enzyme product profiles, and enzyme catalytic efficiency. A family of multiproduct (+)-3-carene synthase-like genes of Sitka spruce include the three (+)-3-carene synthases, PsTPS-3car1, PsTPS-3car2, PsTPS-3car3, and the (−)-sabinene synthase PsTPS-sab. Of these, PsTPS-3car2 is responsible for the relatively higher levels of (+)-3-carene in weevil-resistant trees. Here, we identified features of the PsTPS-3car1, PsTPS-3car2, PsTPS-3car3, and PsTPS-sab proteins that determine different product profiles. A series of domain swap and site-directed mutations, supported by structural comparisons, identified the amino acid in position 596 as critical for product profiles dominated by (+)-3-carene in PsTPS-3car1, PsTPS-3car2, and PsTPS-3car3, or (−)-sabinene in PsTPS-sab. A leucine in this position promotes formation of (+)-3-carene, whereas phenylalanine promotes (−)-sabinene. Homology modeling predicts that position 596 directs product profiles through differential stabilization of the reaction intermediate. Kinetic analysis revealed position 596 also plays a role in catalytic efficiency. Mutations of position 596 with different side chain properties resulted in a series of enzymes with different product profiles, further highlighting the inherent plasticity and potential for evolution of alternative product profiles of these monoterpene synthases of conifer defense against insects. PMID:25016016

  7. Crystal structure of TruD, a novel pseudouridine synthase with a new protein fold.

    PubMed

    Kaya, Yusuf; Del Campo, Mark; Ofengand, James; Malhotra, Arun

    2004-04-30

    TruD, a recently discovered novel pseudouridine synthase in Escherichia coli, is responsible for modifying uridine13 in tRNA(Glu) to pseudouridine. It has little sequence homology with the other 10 pseudouridine synthases in E. coli which themselves have been grouped into four related protein families. Crystal structure determination of TruD revealed a two domain structure consisting of a catalytic domain that differs in sequence but is structurally very similar to the catalytic domain of other pseudouridine synthases and a second large domain (149 amino acids, 43% of total) with a novel alpha/beta fold that up to now has not been found in any other protein.

  8. A particular phenotype in a girl with aldosterone synthase deficiency.

    PubMed

    Williams, Tracy A; Mulatero, Paolo; Bosio, Maurizio; Lewicka, Sabina; Palermo, Mario; Veglio, Franco; Armanini, Decio

    2004-07-01

    Aldosterone synthase deficiency (ASD) usually presents in infancy as a life-threatening electrolyte imbalance. A 4-wk-old child of unrelated parents was examined for failure to thrive and salt-wasting. Notable laboratory findings were hyperkalemia, high plasma renin, and low-normal aldosterone levels. Urinary metabolite ratios of corticosterone/18-hydroxycorticosterone and 18-hydroxycorticosterone/aldosterone were intermediate between ASD type I and type II. Sequence analysis of CYP11B2, the gene encoding aldosterone synthase (P450c11AS), revealed that the patient was a compound heterozygote carrying a previously described mutation located in exon 4 causing a premature stop codon (E255X) and a further, novel mutation in exon 5 that also causes a premature stop codon (Q272X). The patient's unaffected father was a heterozygous carrier of the E255X mutation, whereas the unaffected mother was a heterozygous carrier of the Q272X mutation. Therefore, the patient's CYP11B2 encodes two truncated forms of aldosterone synthase predicted to be inactive because they lack critical active site residues as well as the heme-binding site. This case of ASD is of particular interest because despite the apparent lack of aldosterone synthase activity, the patient displays low-normal aldosterone levels, thus raising the question of its source. PMID:15240589

  9. STRUCTURAL ENZYMOLOGY OF POLYKETIDE SYNTHASES

    PubMed Central

    Tsai, Shiou-Chuan (Sheryl); Ames, Brian Douglas

    2010-01-01

    This chapter describes structural and associated enzymological studies of polyketide synthases, including isolated single domains and multidomain fragments. The sequence–structure–function relationship of polyketide biosynthesis, compared with homologous fatty acid synthesis, is discussed in detail. Structural enzymology sheds light on sequence and structural motifs that are important for the precise timing, substrate recognition, enzyme catalysis, and protein–protein interactions leading to the extraordinary structural diversity of naturally occurring polyketides. PMID:19362634

  10. Cloned and expressed nitric oxide synthase structurally resembles cytochrome P-450 reductase

    NASA Astrophysics Data System (ADS)

    Bredt, David S.; Hwang, Paul M.; Glatt, Charles E.; Lowenstein, Charles; Reed, Randall R.; Snyder, Solomon H.

    1991-06-01

    Nitric oxide is a messenger molecule, mediating the effect of endothelium-derived relaxing factor in blood vessels and the cytotoxic actions of macrophages, and playing a part in neuronal communication in the brain. Cloning of a complementary DNA for brain nitric oxide synthase reveals recognition sites for NADPH, FAD, flavin mononucleotide and calmodulin as well as phosphorylation sites, indicating that the synthase is regulated by many different factors. The only known mammalian enzyme with close homology is cytochrome P-450 reductase.

  11. Acetohydroxyacid synthases: evolution, structure, and function.

    PubMed

    Liu, Yadi; Li, Yanyan; Wang, Xiaoyuan

    2016-10-01

    Acetohydroxyacid synthase, a thiamine diphosphate-dependent enzyme, can condense either two pyruvate molecules to form acetolactate for synthesizing L-valine and L-leucine or pyruvate with 2-ketobutyrate to form acetohydroxybutyrate for synthesizing L-isoleucine. Because the key reaction catalyzed by acetohydroxyacid synthase in the biosynthetic pathways of branched-chain amino acids exists in plants, fungi, archaea, and bacteria, but not in animals, acetohydroxyacid synthase becomes a potential target for developing novel herbicides and antimicrobial compounds. In this article, the evolution, structure, and catalytic mechanism of acetohydroxyacid synthase are summarized. PMID:27576495

  12. Producing biofuels using polyketide synthases

    SciTech Connect

    Katz, Leonard; Fortman, Jeffrey L; Keasling, Jay D

    2013-04-16

    The present invention provides for a non-naturally occurring polyketide synthase (PKS) capable of synthesizing a carboxylic acid or a lactone, and a composition such that a carboxylic acid or lactone is included. The carboxylic acid or lactone, or derivative thereof, is useful as a biofuel. The present invention also provides for a recombinant nucleic acid or vector that encodes such a PKS, and host cells which also have such a recombinant nucleic acid or vector. The present invention also provides for a method of producing such carboxylic acids or lactones using such a PKS.

  13. Characterization of Novel Sesquiterpenoid Biosynthesis in Tobacco Expressing a Fungal Sesquiterpene Synthase.

    PubMed

    Zook, M.; Hohn, T.; Bonnen, A.; Tsuji, J.; Hammerschmidt, R.

    1996-09-01

    The gene encoding trichodiene synthase (Tri5), a sesquiterpene synthase from the fungus Fusarium sporotrichioides, was used to transform tobacco (Nicotiana tabacum). Trichodiene was the sole sesquiterpene synthase product in enzyme reaction mixtures derived from unelicited transformant cell-suspension cultures, and both trichodiene and 5-epi-aristolochene were observed as reaction products following elicitor treatment. Immunoblot analysis of protein extracts revealed the presence of trichodiene synthase only in transformant cell lines producing trichodiene. In vivo labeling with [3H]mevalonate revealed the presence of a novel trichodiene metabolite, 15-hydroxytrichodiene, that accumulated in the transformant cell-suspension cultures. In a trichodiene-producing transformant, the level of 15-hydroxytrichodiene accumulation increased after elicitor treatment. In vivo labeling with [14C]acetate showed that the biosynthetic rate of trichodiene and 15-hydroxytrichodiene also increased after elicitor treatment. Incorporation of radioactivity from [14C]acetate into capsidiol was reduced following elicitor treatment of a trichodiene-producing transformant as compared with wild type. These results demonstrate that sesquiterpenoid accumulation resulting from the constitutive expression of a foreign sesquiterpene synthase is responsive to elicitation and that the farnesyl pyrophosphate present in elicited cells can be utilized by a foreign sesquiterpene synthase to produce high levels of novel sesquiterpenoids. PMID:12226394

  14. Architecture of the polyketide synthase module: surprises from electron cryo-microscopy

    PubMed Central

    Smith, Janet L; Skiniotis, Georgios; Sherman, David H

    2015-01-01

    Modular polyketide synthases produce a vast array of bioactive molecules that are the basis of many highly valued pharmaceuticals. The biosynthesis of these compounds is based on ordered assembly lines of multi-domain modules, each extending and modifying a specific chain-elongation intermediate before transfer to the next module for further processing. The first 3D structures of a full polyketide synthase module in different functional states were obtained recently by electron cryo-microscopy. The unexpected module architecture revealed a striking evolutionary divergence of the polyketide synthase compared to its metazoan fatty acid synthase homolog, as well as remarkable conformational rearrangements dependent on its biochemical state during the full catalytic cycle. The design and dynamics of the module are highly optimized for both catalysis and fidelity in the construction of complex, biologically active natural products. PMID:25791608

  15. A close look at a ketosynthase from a trans-acyltransferase modular polyketide synthase

    PubMed Central

    Gay, Darren C.; Gay, Glen; Axelrod, Abram J.; Jenner, Matthew; Kohlhaas, Christoph; Kampa, Annette; Oldham, Neil J.; Piel, Jörn; Keatinge-Clay, Adrian T.

    2014-01-01

    SUMMARY The recently discovered trans-acyltransferase modular polyketide synthases catalyze the biosynthesis of a wide range of bioactive natural products in bacteria. Here we report the structure of the second ketosynthase from the bacillaene trans-acyltransferase polyketide synthase. This 1.95 Å-resolution structure provides the highest resolution view available of a modular polyketide synthase ketosynthase and reveals a flanking subdomain that is homologous to an ordered linker in cis-acyltransferase modular polyketide synthases. The structure of the cysteine-to-serine mutant of the ketosynthase acylated by its natural substrate provides high-resolution details of how a native polyketide intermediate is bound and helps explain the basis of ketosynthase substrate specificity. The substrate range of the ketosynthase was further investigated by mass spectrometry. PMID:24508341

  16. Molecular evolution and sequence divergence of plant chalcone synthase and chalcone synthase-Like genes.

    PubMed

    Han, Yingying; Zhao, Wenwen; Wang, Zhicui; Zhu, Jingying; Liu, Qisong

    2014-06-01

    Plant chalcone synthase (CHS) and CHS-Like (CHSL) proteins are polyketide synthases. In this study, we evaluated the molecular evolution of this gene family using representative types of CHSL genes, including stilbene synthase (STS), 2-pyrone synthase (2-PS), bibenzyl synthase (BBS), acridone synthase (ACS), biphenyl synthase (BIS), benzalacetone synthase, coumaroyl triacetic acid synthase (CTAS), and benzophenone synthase (BPS), along with their CHS homologs from the same species of both angiosperms and gymnosperms. A cDNA-based phylogeny indicated that CHSLs had diverse evolutionary patterns. STS, ACS, and 2-PS clustered with CHSs from the same species (late diverged pattern), while CTAS, BBS, BPS, and BIS were distant from their CHS homologs (early diverged pattern). The amino-acid phylogeny suggested that CHS and CHSL proteins formed clades according to enzyme function. The CHSs and CHSLs from Polygonaceae and Arachis had unique evolutionary histories. Synonymous mutation rates were lower in late diverged CHSLs than in early diverged ones, indicating that gene duplications occurred more recently in late diverged CHSLs than in early diverged ones. Relative rate tests proved that late diverged CHSLs had unequal rates to CHSs from the same species when using fatty acid synthase, which evolved from the common ancestor with the CHS superfamily, as the outgroup, while the early diverged lineages had equal rates. This indicated that late diverged CHSLs experienced more frequent mutation than early diverged CHSLs after gene duplication, allowing obtaining new functions in relatively short period of time.

  17. Trichodiene synthase. Substrate specificity and inhibition.

    PubMed

    Cane, D E; Yang, G; Xue, Q; Shim, J H

    1995-02-28

    The substrate specificity of the sesquiterpene synthase trichodiene synthase was examined by determining the Vmax and Km parameters for the natural substrate, trans,trans-farnesyl diphosphate (1), its stereoisomer, cis,trans-farnesyl diphosphate, and the tertiary allylic isomer, (3R)-nerolidyl diphosphate (3), using both the native fungal and recombinant enzymes. A series of farnesyl diphosphate analogs, 15, 16, 20, 7, 8, and 9, was also tested as inhibitors of trichodiene synthase. 10-Fluorofarnesyl diphosphate (15) was the most effective competitive inhibitor, with a K1 of 16 nM compared to the Km for 1 of 87 nM, while the ether analog of farnesyl diphosphate, 8, an extremely potent inhibitor of squalene synthase, showed only modest inhibition of trichodiene synthase, with a K1/Km of 70. PMID:7873526

  18. Studies on tetrahydrocannabinolic acid synthase that produces the acidic precursor of tetrahydrocannabinol, the pharmacologically active cannabinoid in marijuana.

    PubMed

    Taura, F

    2009-06-01

    Tetrahydrocannabinol (THC), the psychoactive component of marijuana, is now regarded as a promising medicine because this cannabinoid has been shown to exert a variety of therapeutic activities. It has been demonstrated that THC is generated from the acidic precursor, tetrahydrocannabinolic acid (THCA) by nonenzymatic decarboxylation, and that THCA is biosynthesized by THCA synthase, which catalyzes a unique biosynthetic reaction, the stereospecific oxidative cyclization of the geranyl group of the substrate cannabigerolic acid. Molecular characterization of THCA synthase has revealed its structural characteristics and reaction mechanism. THCA synthase is the first cannabinoid synthase to be studied and is potentially attractive target for various biotechnological applications as it produces the direct precursor of THC. This review describes the research history of this enzyme, i.e., purification, molecular cloning, biochemical characterization, and possible biotechnological application of THCA synthase. PMID:22495534

  19. Mechanism of Germacradien-4-ol Synthase-Controlled Water Capture.

    PubMed

    Grundy, Daniel J; Chen, Mengbin; González, Verónica; Leoni, Stefano; Miller, David J; Christianson, David W; Allemann, Rudolf K

    2016-04-12

    The sesquiterpene synthase germacradiene-4-ol synthase (GdolS) from Streptomyces citricolor is one of only a few known high-fidelity terpene synthases that convert farnesyl diphosphate (FDP) into a single hydroxylated product. Crystals of unliganded GdolS-E248A diffracted to 1.50 Å and revealed a typical class 1 sesquiterpene synthase fold with the active site in an open conformation. The metal binding motifs were identified as D(80)DQFD and N(218)DVRSFAQE. Some bound water molecules were evident in the X-ray crystal structure, but none were obviously positioned to quench a putative final carbocation intermediate. Incubations in H2(18)O generated labeled product, confirming that the alcohol functionality arises from nucleophilic capture of the final carbocation by water originating from solution. Site-directed mutagenesis of amino acid residues from both within the metal binding motifs and without identified by sequence alignment with aristolochene synthase from Aspergillus terreus generated mostly functional germacradien-4-ol synthases. Only GdolS-N218Q generated radically different products (∼50% germacrene A), but no direct evidence of the mechanism of incorporation of water into the active site was obtained. Fluorinated FDP analogues 2F-FDP and 15,15,15-F3-FDP were potent noncompetitive inhibitors of GdolS. 12,13-DiF-FDP generated 12,13-(E)-β-farnesene upon being incubated with GdolS, suggesting stepwise formation of the germacryl cation during the catalytic cycle. Incubation of GdolS with [1-(2)H2]FDP and (R)-[1-(2)H]FDP demonstrated that following germacryl cation formation a [1,3]-hydride shift generates the final carbocation prior to nucleophilic capture. The stereochemistry of this shift is not defined, and the deuteron in the final product was scrambled. Because no clear candidate residue for binding of a nucleophilic water molecule in the active site and no significant perturbation of product distribution from the replacement of active site residues

  20. Mechanism of Germacradien-4-ol Synthase-Controlled Water Capture

    PubMed Central

    2016-01-01

    The sesquiterpene synthase germacradiene-4-ol synthase (GdolS) from Streptomyces citricolor is one of only a few known high-fidelity terpene synthases that convert farnesyl diphosphate (FDP) into a single hydroxylated product. Crystals of unliganded GdolS-E248A diffracted to 1.50 Å and revealed a typical class 1 sesquiterpene synthase fold with the active site in an open conformation. The metal binding motifs were identified as D80DQFD and N218DVRSFAQE. Some bound water molecules were evident in the X-ray crystal structure, but none were obviously positioned to quench a putative final carbocation intermediate. Incubations in H218O generated labeled product, confirming that the alcohol functionality arises from nucleophilic capture of the final carbocation by water originating from solution. Site-directed mutagenesis of amino acid residues from both within the metal binding motifs and without identified by sequence alignment with aristolochene synthase from Aspergillus terreus generated mostly functional germacradien-4-ol synthases. Only GdolS-N218Q generated radically different products (∼50% germacrene A), but no direct evidence of the mechanism of incorporation of water into the active site was obtained. Fluorinated FDP analogues 2F-FDP and 15,15,15-F3-FDP were potent noncompetitive inhibitors of GdolS. 12,13-DiF-FDP generated 12,13-(E)-β-farnesene upon being incubated with GdolS, suggesting stepwise formation of the germacryl cation during the catalytic cycle. Incubation of GdolS with [1-2H2]FDP and (R)-[1-2H]FDP demonstrated that following germacryl cation formation a [1,3]-hydride shift generates the final carbocation prior to nucleophilic capture. The stereochemistry of this shift is not defined, and the deuteron in the final product was scrambled. Because no clear candidate residue for binding of a nucleophilic water molecule in the active site and no significant perturbation of product distribution from the replacement of active site residues were

  1. Crystal structure of riboflavin synthase

    SciTech Connect

    Liao, D.-I.; Wawrzak, Z.; Calabrese, J.C.; Viitanen, P.V.; Jordan, D.B.

    2010-03-05

    Riboflavin synthase catalyzes the dismutation of two molecules of 6,7-dimethyl-8-(1'-D-ribityl)-lumazine to yield riboflavin and 4-ribitylamino-5-amino-2,6-dihydroxypyrimidine. The homotrimer of 23 kDa subunits has no cofactor requirements for catalysis. The enzyme is nonexistent in humans and is an attractive target for antimicrobial agents of organisms whose pathogenicity depends on their ability to biosynthesize riboflavin. The first three-dimensional structure of the enzyme was determined at 2.0 {angstrom} resolution using the multiwavelength anomalous diffraction (MAD) method on the Escherichia coli protein containing selenomethionine residues. The homotrimer consists of an asymmetric assembly of monomers, each of which comprises two similar {beta} barrels and a C-terminal {alpha} helix. The similar {beta} barrels within the monomer confirm a prediction of pseudo two-fold symmetry that is inferred from the sequence similarity between the two halves of the protein. The {beta} barrels closely resemble folds found in phthalate dioxygenase reductase and other flavoproteins. The three active sites of the trimer are proposed to lie between pairs of monomers in which residues conserved among species reside, including two Asp-His-Ser triads and dyads of Cys-Ser and His-Thr. The proposed active sites are located where FMN (an analog of riboflavin) is modeled from an overlay of the {beta} barrels of phthalate dioxygenase reductase and riboflavin synthase. In the trimer, one active site is formed, and the other two active sites are wide open and exposed to solvent. The nature of the trimer configuration suggests that only one active site can be formed and be catalytically competent at a time.

  2. Alcoholytic cleavage of polyhydroxyalkanoate chains by class IV synthases induced by endogenous and exogenous ethanol.

    PubMed

    Hyakutake, Manami; Tomizawa, Satoshi; Mizuno, Kouhei; Abe, Hideki; Tsuge, Takeharu

    2014-02-01

    Polyhydroxyalkanoate (PHA)-producing Bacillus strains express class IV PHA synthase, which is composed of the subunits PhaR and PhaC. Recombinant Escherichia coli expressing PHA synthase from Bacillus cereus strain YB-4 (PhaRCYB-4) showed an unusual reduction of the molecular weight of PHA produced during the stationary phase of growth. Nuclear magnetic resonance analysis of the low-molecular-weight PHA revealed that its carboxy end structure was capped by ethanol, suggesting that the molecular weight reduction was the result of alcoholytic cleavage of PHA chains by PhaRCYB-4 induced by endogenous ethanol. This scission reaction was also induced by exogenous ethanol in both in vivo and in vitro assays. In addition, PhaRCYB-4 was observed to have alcoholysis activity for PHA chains synthesized by other synthases. The PHA synthase from Bacillus megaterium (PhaRCBm) from another subgroup of class IV synthases was also assayed and was shown to have weak alcoholysis activity for PHA chains. These results suggest that class IV synthases may commonly share alcoholysis activity as an inherent feature.

  3. The human liver glycogen synthase isozyme gene is located on the short arm of chromosome 12

    SciTech Connect

    Nuttall, F.Q.; Gannon, M.C. ); Kubic, V.L.; Hoyt, K.J. )

    1994-01-15

    Glycogen synthase catalyzes the rate-limiting step in glycogen synthesis. Its activity is regulated by a complex phosphorylation-dephosphorylation mechanism and by allosteric stimulators and inhibitors. Two isozymes of synthase, a skeletal muscle type and liver type, have been identified in rabbit and rat tissues using specific polyclonal antibodies. The skeletal muscle type isozyme is present in several organs in addition to skeletal muscle; the liver isozyme has been identified only in liver. Recently, we have purified and characterized the human liver synthase isozyme. We also have cloned and sequenced the gene from a human liver cDNA library. Using the entire cDNA coding sequence as a probe, we report here the localization of the liver synthase isozyme gene to the short arm of chromosome 12. These studies revealed a centromeric signal on chromosome 12 together with signal to glycogen synthase on the short arm of this chromosome in the p11.2-p12.2 region. Measurements of the relative distance from the midpoint of the centromere to the signal corresponding to glycogen synthase suggests that the locus is in the p12.2 band rather than in the more centromeric location.

  4. Design, synthesis, and enzyme kinetics of novel benzimidazole and quinoxaline derivatives as methionine synthase inhibitors.

    PubMed

    Elshihawy, Hosam; Helal, Mohamed A; Said, Mohamed; Hammad, Mohamed A

    2014-01-01

    Methionine synthase catalyzes the transfer of a methyl group from 5-methyltetrahydrofolate to homocysteine, producing methionine and tetrahydrofolate. Benzimidazole and deazatetrahydrofolates derivatives have been shown to inhibit methionine synthase by competing with the substrate 5-methyltetrahydrofolate. In this study, a novel series of substituted benzimidazoles and quinoxalines were designed and assessed for inhibitory activity against purified rat liver methionine synthase using a radiometric enzyme assay. Compounds 3g, 3j, and 5c showed the highest activity against methionine synthase (IC₅₀: 20 μM, 18 μM, 9 μM, respectively). Kinetic analysis of these compounds using Lineweaver-Burk plots revealed characteristics of mixed inhibition for 3g and 5c; and uncompetitive inhibition for 3j. Docking study into a homology model of the rat methionine synthase gave insights into the molecular determinants of the activity of this class of compounds. The identification of these drug-like inhibitors could lead the design of the next generation modulators of methionine synthase.

  5. Valencene synthase from the heartwood of Nootka cypress (Callitropsis nootkatensis) for biotechnological production of valencene.

    PubMed

    Beekwilder, Jules; van Houwelingen, Adèle; Cankar, Katarina; van Dijk, Aalt D J; de Jong, René M; Stoopen, Geert; Bouwmeester, Harro; Achkar, Jihane; Sonke, Theo; Bosch, Dirk

    2014-02-01

    Nootkatone is one of the major terpenes in the heartwood of the Nootka cypress Callitropsis nootkatensis. It is an oxidized sesquiterpene, which has been postulated to be derived from valencene. Both valencene and nootkatone are used for flavouring citrus beverages and are considered among the most valuable terpenes used at commercial scale. Functional evaluation of putative terpene synthase genes sourced by large-scale EST sequencing from Nootka cypress wood revealed a valencene synthase gene (CnVS). CnVS expression in different tissues from the tree correlates well with nootkatone content, suggesting that CnVS represents the first dedicated gene in the nootkatone biosynthetic pathway in C. nootkatensis The gene belongs to the gymnosperm-specific TPS-d subfamily of terpenes synthases and its protein sequence has low similarity to known citrus valencene synthases. In vitro, CnVS displays high robustness under different pH and temperature regimes, potentially beneficial properties for application in different host and physiological conditions. Biotechnological production of sesquiterpenes has been shown to be feasible, but productivity of microbial strains expressing valencene synthase from Citrus is low, indicating that optimization of valencene synthase activity is needed. Indeed, expression of CnVS in Saccharomyces cerevisiae indicated potential for higher yields. In an optimized Rhodobacter sphaeroides strain, expression of CnVS increased valencene yields 14-fold to 352 mg/L, bringing production to levels with industrial potential. PMID:24112147

  6. Virus-Induced Silencing of a Plant Cellulose Synthase Gene

    PubMed Central

    Burton, Rachel A.; Gibeaut, David M.; Bacic, Antony; Findlay, Kim; Roberts, Keith; Hamilton, Andrew; Baulcombe, David C.; Fincher, Geoffrey B.

    2000-01-01

    Specific cDNA fragments corresponding to putative cellulose synthase genes (CesA) were inserted into potato virus X vectors for functional analysis in Nicotiana benthamiana by using virus-induced gene silencing. Plants infected with one group of cDNAs had much shorter internode lengths, small leaves, and a “dwarf” phenotype. Consistent with a loss of cell wall cellulose, abnormally large and in many cases spherical cells ballooned from the undersurfaces of leaves, particularly in regions adjacent to vascular tissues. Linkage analyses of wall polysaccharides prepared from infected leaves revealed a 25% decrease in cellulose content. Transcript levels for at least one member of the CesA cellulose synthase gene family were lower in infected plants. The decrease in cellulose content in cell walls was offset by an increase in homogalacturonan, in which the degree of esterification of carboxyl groups decreased from ∼50 to ∼33%. The results suggest that feedback loops interconnect the cellular machinery controlling cellulose and pectin biosynthesis. On the basis of the phenotypic features of the infected plants, changes in wall composition, and the reduced abundance of CesA mRNA, we concluded that the cDNA fragments silenced one or more cellulose synthase genes. PMID:10810144

  7. The structural basis of Erwinia rhapontici isomaltulose synthase.

    PubMed

    Xu, Zheng; Li, Sha; Li, Jie; Li, Yan; Feng, Xiaohai; Wang, Renxiao; Xu, Hong; Zhou, Jiahai

    2013-01-01

    Sucrose isomerase NX-5 from Erwiniarhapontici efficiently catalyzes the isomerization of sucrose to isomaltulose (main product) and trehalulose (by-product). To investigate the molecular mechanism controlling sucrose isomer formation, we determined the crystal structures of native NX-5 and its mutant complexes E295Q/sucrose and D241A/glucose at 1.70 Å, 1.70 Å and 2.00 Å, respectively. The overall structure and active site architecture of NX-5 resemble those of other reported sucrose isomerases. Strikingly, the substrate binding mode of NX-5 is also similar to that of trehalulose synthase from Pseudomonasmesoacidophila MX-45 (MutB). Detailed structural analysis revealed the catalytic RXDRX motif and the adjacent 10-residue loop of NX-5 and isomaltulose synthase PalI from Klebsiella sp. LX3 adopt a distinct orientation from those of trehalulose synthases. Mutations of the loop region of NX-5 resulted in significant changes of the product ratio between isomaltulose and trehalulose. The molecular dynamics simulation data supported the product specificity of NX-5 towards isomaltulose and the role of the loop(330-339) in NX-5 catalysis. This work should prove useful for the engineering of sucrose isomerase for industrial carbohydrate biotransformations.

  8. Nitric Oxide Synthases in Heart Failure

    PubMed Central

    Carnicer, Ricardo; Crabtree, Mark J.; Sivakumaran, Vidhya

    2013-01-01

    Abstract Significance: The regulation of myocardial function by constitutive nitric oxide synthases (NOS) is important for the maintenance of myocardial Ca2+ homeostasis, relaxation and distensibility, and protection from arrhythmia and abnormal stress stimuli. However, sustained insults such as diabetes, hypertension, hemodynamic overload, and atrial fibrillation lead to dysfunctional NOS activity with superoxide produced instead of NO and worse pathophysiology. Recent Advances: Major strides in understanding the role of normal and abnormal constitutive NOS in the heart have revealed molecular targets by which NO modulates myocyte function and morphology, the role and nature of post-translational modifications of NOS, and factors controlling nitroso-redox balance. Localized and differential signaling from NOS1 (neuronal) versus NOS3 (endothelial) isoforms are being identified, as are methods to restore NOS function in heart disease. Critical Issues: Abnormal NOS signaling plays a key role in many cardiac disorders, while targeted modulation may potentially reverse this pathogenic source of oxidative stress. Future Directions: Improvements in the clinical translation of potent modulators of NOS function/dysfunction may ultimately provide a powerful new treatment for many hearts diseases that are fueled by nitroso-redox imbalance. Antioxid. Redox Signal. 18, 1078–1099. PMID:22871241

  9. Studies on identifying the binding sites of folate and its derivatives in Lactobacillus casei thymidylate synthase

    SciTech Connect

    Maley, F.; Maley, G.F.

    1983-01-01

    It was shown that folate and its derivatives have a profound effect on stabilizing thymidylate synthase in vitro and in vivo, as a consequence of ternary formation between the folate, dUMP, or FdUMP, and the synthase. The degree to which complex formation is affected can be revealed qualitatively by circular dichroism and quantitatively by equilibrium dialysis using the Lactobacillus casei synthase. In contrast to the pteroylmonoglutamates, the pteroylpolyglutamates bind to thymidylate synthase in the absence of dUMP, but even their binding affinity is increased greatly by this nucleotide or its analogues. Similarly, treatment of the synthase with carboxypeptidase A prevents the binding of the pteroylmonoglutamates and reduces the binding of the polyglutamates without affecting dUMP binding. The latter does not protect against carboxypeptidase inactivation but does potentiate the protective effect of the pteroylpolyglutamates. To determine the region of the synthase involved in the binding of the glutamate residues, Pte(/sup 14/C)GluGlu6 was activated by a water soluble carbodiimide in the presence and absence of dUMP. This folate derivative behaved as a competitive inhibitor of 5,10-CH/sub 2/H/sub 4/PteGlu, in contrast to methotrexate which was non-competitive. Separation of the five cyanogen bromide peptides from the L. casei synthase revealed 80% of the radioactivity to be associated with CNBr-2 and about 15% with CNBr-4. Chymotrypsin treatment of CNBr-2 yielded two /sup 14/C-labeled peaks on high performance liquid chromatography, with the slower migrating one being separated further into two peaks by Bio-gel P2 chromatography. All three peptides came from the same region of CNBr-2, encompassing residues 47-61 of the enzyme. From these studies it would appear that the residues most probably involved in the fixation of PteGlu7 are lysines 50 and 58. In contrast, methotrexate appeared to bind to another region of CNBr-2.

  10. Studies on identifying the binding sites of folate and its derivatives in Lactobacillus casei thymidylate synthase.

    PubMed

    Maley, F; Maley, G F

    1983-01-01

    It was shown that folate and its derivatives have a profound effect on stabilizing thymidylate synthase in vitro and in vivo, as a consequence of ternary formation between the folate, dUMP, or FdUMP, and the synthase. The degree to which complex formation is affected can be revealed qualitatively by circular dichroism and quantitatively by equilibrium dialysis using the Lactobacillus casei synthase. In contrast to the pteroylmonoglutamates, the pteroylpolyglutamates bind to thymidylate synthase in the absence of dUMP, but even their binding affinity is increased greatly by this nucleotide or its analogues. Similarly, treatment of the synthase with carboxypeptidase A prevents the binding of the pteroylmonoglutamates and reduces the binding of the polyglutamates without affecting dUMP binding. The latter does not protect against carboxypeptidase inactivation but does potentiate the protective effect of the pteroylpolyglutamates. To determine the region of the synthase involved in the binding of the glutamate residues, Pte[14C]GluGlu6 was activated by a water soluble carbodiimide in the presence and absence of dUMP. This folate derivative behaved as a competitive inhibitor of 5,10-CH2H4PteGlu, in contrast to methotrexate which was non-competitive. Separation of the five cyanogen bromide peptides from the L. casei synthase revealed 80% of the radioactivity to be associated with CNBr-2 and about 15% with CNBr-4. Chymotrypsin treatment of CNBr-2 yielded two 14C-labeled peaks on high performance liquid chromatography, with the slower migrating one being separated further into two peaks by Bio-gel P2 chromatography. All three peptides came from the same region of CNBr-2, encompassing residues 47-61 of the enzyme. From these studies it would appear that the residues most probably involved in the fixation of PteGlu7 are lysines 50 and 58. In contrast, methotrexate appeared to bind to another region of CNBr-2.

  11. The lumazine synthase/riboflavin synthase complex: shapes and functions of a highly variable enzyme system.

    PubMed

    Ladenstein, Rudolf; Fischer, Markus; Bacher, Adelbert

    2013-06-01

    The xylene ring of riboflavin (vitamin B2 ) is assembled from two molecules of 3,4-dihydroxy-2-butanone 4-phosphate by a mechanistically complex process that is jointly catalyzed by lumazine synthase and riboflavin synthase. In Bacillaceae, these enzymes form a structurally unique complex comprising an icosahedral shell of 60 lumazine synthase subunits and a core of three riboflavin synthase subunits, whereas many other bacteria have empty lumazine synthase capsids, fungi, Archaea and some eubacteria have pentameric lumazine synthases, and the riboflavin synthases of Archaea are paralogs of lumazine synthase. The structures of the molecular ensembles have been studied in considerable detail by X-ray crystallography, X-ray small-angle scattering and electron microscopy. However, certain mechanistic aspects remain unknown. Surprisingly, the quaternary structure of the icosahedral β subunit capsids undergoes drastic changes, resulting in formation of large, quasi-spherical capsids; this process is modulated by sequence mutations. The occurrence of large shells consisting of 180 or more lumazine synthase subunits has recently generated interest for protein engineering topics, particularly the construction of encapsulation systems.

  12. Unique animal prenyltransferase with monoterpene synthase activity

    NASA Astrophysics Data System (ADS)

    Gilg, Anna B.; Tittiger, Claus; Blomquist, Gary J.

    2009-06-01

    Monoterpenes are structurally diverse natural compounds that play an essential role in the chemical ecology of a wide array of organisms. A key enzyme in monoterpene biosynthesis is geranyl diphosphate synthase (GPPS). GPPS is an isoprenyl diphosphate synthase that catalyzes a single electrophilic condensation reaction between dimethylallyl diphosphate (C5) and isopentenyl diphosphate (C5) to produce geranyl diphosphate (GDP; C10). GDP is the universal precursor to all monoterpenes. Subsequently, monoterpene synthases are responsible for the transformation of GDP to a variety of acyclic, monocyclic, and bicyclic monoterpene products. In pheromone-producing male Ips pini bark beetles (Coleoptera: Scolytidae), the acyclic monoterpene myrcene is required for the production of the major aggregation pheromone component, ipsdienol. Here, we report monoterpene synthase activity associated with GPPS of I. pini. Enzyme assays were performed on recombinant GPPS to determine the presence of monoterpene synthase activity, and the reaction products were analyzed by coupled gas chromatography-mass spectrometry. The functionally expressed recombinant enzyme produced both GDP and myrcene, making GPPS of I. pini a bifunctional enzyme. This unique insect isoprenyl diphosphate synthase possesses the functional plasticity that is characteristic of terpene biosynthetic enzymes of plants, contributing toward the current understanding of product specificity of the isoprenoid pathway.

  13. Nitric oxide synthases in pregnant rat uterus.

    PubMed

    Farina, M; Ribeiro, M L; Franchi, A

    2001-03-01

    The conversion of [14C]arginine into [14C]citrulline as an indicator of nitric oxide synthesis was studied in uteri isolated from rats on different days of gestation, after labour and during dioestrus. Nitric oxide synthesis was present in uterine tissues isolated at each stage of gestation and also in tissues collected during dioestrus and after labour. Expression of neuronal nitric oxide synthase was not detectable at any of the stages studied. Endothelial nitric oxide synthase was present at all the stages studied, but there was a significant increase on day 13 of gestation and a decrease thereafter, with the lowest expression recorded on the day after labour. Inducible nitric oxide synthase expression in rat uteri increased substantially during pregnancy, with the highest expression on day 13 of gestation; expression decreased at term and after labour. The changes in expression of inducible nitric oxide synthase were coincident with the changes in nitric oxide synthase activity in uteri treated with aminoguanidine. Thus, these findings indicate that an increase in expression of inducible nitric oxide synthase in the uterus may be important for maintenance of uterine quiescence during pregnancy and its decrease near the time of labour could have an effect on the start of uterine contractility. PMID:11226066

  14. Malate synthase a membrane protein

    SciTech Connect

    Chapman, K.D.; Turley, R.B.; Hermerath, C.A.; Carrapico, F.; Trelease, R.N.

    1987-04-01

    Malate synthase (MS) is generally regarded as a peripheral membrane protein, and believed by some to be ontogenetically associated with ER. However, immuno- and cyto-chemical in situ localizations show MS throughout the matrix of cotton (and cucumber) glyoxysomes, not specifically near their boundary membranes, nor in ER. Only a maximum of 50% MS can be solubilized from cotton glyoxysomes with 1% Triton X-100, 2mM Zwittergen 14, or 10mM DOC +/- salts. Cotton MS does not incorporate /sup 3/H-glucosamine in vivo, nor does it react with Con A on columns or blots. Cotton MS banded with ER in sucrose gradients (20-40%) in Tricine after 3h, but not after 22h in Tricine or Hepes, or after 3h in Hepes or K-phosphate. Collectively the authors data are inconsistent with physiologically meaningful MS-membrane associations in ER or glyoxysomes. It appears that experimentally-induced aggregates of MS migrate in ER gradients and occur in isolated glyoxysomes. These data indicate that ER is not involved in synthesis or modification of cottonseed MS prior to its import into the glyoxysomal matrix.

  15. Dihydrodipicolinate synthase from Thermotoga maritima.

    PubMed

    Pearce, F Grant; Perugini, Matthew A; McKerchar, Hannah J; Gerrard, Juliet A

    2006-12-01

    DHDPS (dihydrodipicolinate synthase) catalyses the branch point in lysine biosynthesis in bacteria and plants and is feedback inhibited by lysine. DHDPS from the thermophilic bacterium Thermotoga maritima shows a high level of heat and chemical stability. When incubated at 90 degrees C or in 8 M urea, the enzyme showed little or no loss of activity, unlike the Escherichia coli enzyme. The active site is very similar to that of the E. coli enzyme, and at mesophilic temperatures the two enzymes have similar kinetic constants. Like other forms of the enzyme, T. maritima DHDPS is a tetramer in solution, with a sedimentation coefficient of 7.2 S and molar mass of 133 kDa. However, the residues involved in the interface between different subunits in the tetramer differ from those of E. coli and include two cysteine residues poised to form a disulfide bond. Thus the increased heat and chemical stability of the T. maritima DHDPS enzyme is, at least in part, explained by an increased number of inter-subunit contacts. Unlike the plant or E. coli enzyme, the thermophilic DHDPS enzyme is not inhibited by (S)-lysine, suggesting that feedback control of the lysine biosynthetic pathway evolved later in the bacterial lineage. PMID:16872276

  16. Identification of avian wax synthases

    PubMed Central

    2012-01-01

    Background Bird species show a high degree of variation in the composition of their preen gland waxes. For instance, galliform birds like chicken contain fatty acid esters of 2,3-alkanediols, while Anseriformes like goose or Strigiformes like barn owl contain wax monoesters in their preen gland secretions. The final biosynthetic step is catalyzed by wax synthases (WS) which have been identified in pro- and eukaryotic organisms. Results Sequence similarities enabled us to identify six cDNAs encoding putative wax synthesizing proteins in chicken and two from barn owl and goose. Expression studies in yeast under in vivo and in vitro conditions showed that three proteins from chicken performed WS activity while a sequence from chicken, goose and barn owl encoded a bifunctional enzyme catalyzing both wax ester and triacylglycerol synthesis. Mono- and bifunctional WS were found to differ in their substrate specificities especially with regard to branched-chain alcohols and acyl-CoA thioesters. According to the expression patterns of their transcripts and the properties of the enzymes, avian WS proteins might not be confined to preen glands. Conclusions We provide direct evidence that avian preen glands possess both monofunctional and bifunctional WS proteins which have different expression patterns and WS activities with different substrate specificities. PMID:22305293

  17. Energy transduction in ATP synthase

    NASA Astrophysics Data System (ADS)

    Elston, Timothy; Wang, Hongyun; Oster, George

    1998-01-01

    Mitochondria, bacteria and chloroplasts use the free energy stored in transmembrane ion gradients to manufacture ATP by the action of ATP synthase. This enzyme consists of two principal domains. The asymmetric membrane-spanning Fo portion contains the proton channel, and the soluble F1 portion contains three catalytic sites which cooperate in the synthetic reactions. The flow of protons through Fo is thought to generate a torque which is transmitted to F1 by an asymmetric shaft, the coiled-coil γ-subunit. This acts as a rotating `cam' within F1, sequentially releasing ATPs from the three active sites. The free-energy difference across the inner membrane of mitochondria and bacteria is sufficient to produce three ATPs per twelve protons passing through the motor. It has been suggested that this protonmotive force biases the rotor's diffusion so that Fo constitutes a rotary motor turning the γ shaft. Here we show that biased diffusion, augmented by electrostatic forces, does indeed generate sufficient torque to account for ATP production. Moreover, the motor's reversibility - supplying torque from ATP hydrolysis in F1 converts the motor into an efficient proton pump - can also be explained by our model.

  18. Identification of a Fungal 1,8-Cineole Synthase from Hypoxylon sp. with Specificity Determinants in Common with the Plant Synthases*

    PubMed Central

    Shaw, Jeffrey J.; Berbasova, Tetyana; Sasaki, Tomoaki; Jefferson-George, Kyra; Spakowicz, Daniel J.; Dunican, Brian F.; Portero, Carolina E.; Narváez-Trujillo, Alexandra; Strobel, Scott A.

    2015-01-01

    Terpenes are an important and diverse class of secondary metabolites widely produced by fungi. Volatile compound screening of a fungal endophyte collection revealed a number of isolates in the family Xylariaceae, producing a series of terpene molecules, including 1,8-cineole. This compound is a commercially important component of eucalyptus oil used in pharmaceutical applications and has been explored as a potential biofuel additive. The genes that produce terpene molecules, such as 1,8-cineole, have been little explored in fungi, providing an opportunity to explore the biosynthetic origin of these compounds. Through genome sequencing of cineole-producing isolate E7406B, we were able to identify 11 new terpene synthase genes. Expressing a subset of these genes in Escherichia coli allowed identification of the hyp3 gene, responsible for 1,8-cineole biosynthesis, the first monoterpene synthase discovered in fungi. In a striking example of convergent evolution, mutational analysis of this terpene synthase revealed an active site asparagine critical for water capture and specificity during cineole synthesis, the same mechanism used in an unrelated plant homologue. These studies have provided insight into the evolutionary relationship of fungal terpene synthases to those in plants and bacteria and further established fungi as a relatively untapped source of this important and diverse class of compounds. PMID:25648891

  19. Identification of a fungal 1,8-cineole synthase from Hypoxylon sp. with specificity determinants in common with the plant synthases.

    PubMed

    Shaw, Jeffrey J; Berbasova, Tetyana; Sasaki, Tomoaki; Jefferson-George, Kyra; Spakowicz, Daniel J; Dunican, Brian F; Portero, Carolina E; Narváez-Trujillo, Alexandra; Strobel, Scott A

    2015-03-27

    Terpenes are an important and diverse class of secondary metabolites widely produced by fungi. Volatile compound screening of a fungal endophyte collection revealed a number of isolates in the family Xylariaceae, producing a series of terpene molecules, including 1,8-cineole. This compound is a commercially important component of eucalyptus oil used in pharmaceutical applications and has been explored as a potential biofuel additive. The genes that produce terpene molecules, such as 1,8-cineole, have been little explored in fungi, providing an opportunity to explore the biosynthetic origin of these compounds. Through genome sequencing of cineole-producing isolate E7406B, we were able to identify 11 new terpene synthase genes. Expressing a subset of these genes in Escherichia coli allowed identification of the hyp3 gene, responsible for 1,8-cineole biosynthesis, the first monoterpene synthase discovered in fungi. In a striking example of convergent evolution, mutational analysis of this terpene synthase revealed an active site asparagine critical for water capture and specificity during cineole synthesis, the same mechanism used in an unrelated plant homologue. These studies have provided insight into the evolutionary relationship of fungal terpene synthases to those in plants and bacteria and further established fungi as a relatively untapped source of this important and diverse class of compounds. PMID:25648891

  20. Identification of a fungal 1,8-cineole synthase from Hypoxylon sp. with specificity determinants in common with the plant synthases.

    PubMed

    Shaw, Jeffrey J; Berbasova, Tetyana; Sasaki, Tomoaki; Jefferson-George, Kyra; Spakowicz, Daniel J; Dunican, Brian F; Portero, Carolina E; Narváez-Trujillo, Alexandra; Strobel, Scott A

    2015-03-27

    Terpenes are an important and diverse class of secondary metabolites widely produced by fungi. Volatile compound screening of a fungal endophyte collection revealed a number of isolates in the family Xylariaceae, producing a series of terpene molecules, including 1,8-cineole. This compound is a commercially important component of eucalyptus oil used in pharmaceutical applications and has been explored as a potential biofuel additive. The genes that produce terpene molecules, such as 1,8-cineole, have been little explored in fungi, providing an opportunity to explore the biosynthetic origin of these compounds. Through genome sequencing of cineole-producing isolate E7406B, we were able to identify 11 new terpene synthase genes. Expressing a subset of these genes in Escherichia coli allowed identification of the hyp3 gene, responsible for 1,8-cineole biosynthesis, the first monoterpene synthase discovered in fungi. In a striking example of convergent evolution, mutational analysis of this terpene synthase revealed an active site asparagine critical for water capture and specificity during cineole synthesis, the same mechanism used in an unrelated plant homologue. These studies have provided insight into the evolutionary relationship of fungal terpene synthases to those in plants and bacteria and further established fungi as a relatively untapped source of this important and diverse class of compounds.

  1. Characterization of α-humulene synthases responsible for the production of sesquiterpenes induced by methyl jasmonate in Aquilaria cell culture.

    PubMed

    Kumeta, Yukie; Ito, Michiho

    2016-07-01

    The resinous portions of Aquilaria and Gyrinops plants are known as 'agarwood' and have a distinctive fragrance. To examine the biosynthesis of these fragrant compounds, we previously established cell cultures of Aquilaria crassna in which the production of three sesquiterpenes (α-guaiene, α-humulene, and δ-guaiene) could be induced by methyl jasmonate (MJ), and showed that cloned δ-guaiene synthase from MJ-treated cells is involved in the synthesis of these three compounds, although only very small amounts of α-humulene are produced. In the present study, cDNAs encoding α-humulene synthases were also isolated. Three putative sesquiterpene synthase clones (AcHS1-3) isolated from the MJ-treated cells had very similar amino acid sequences and shared 52 % identity with δ-guaiene synthases. The recombinant enzymes catalyzed the formation of α-humulene as a major product. Expression of transcripts of the α-humulene synthase and δ-guaiene synthase genes in cultured cells increased after treatment with MJ. These results revealed that these α-humulene and δ-guaiene synthases are involved in the synthesis of three sesquiterpenes induced by MJ treatment. PMID:27180085

  2. Identification of a novel gene coding for neoxanthin synthase from Solanum tuberosum.

    PubMed

    Al-Babili, S; Hugueney, P; Schledz, M; Welsch, R; Frohnmeyer, H; Laule, O; Beyer, P

    2000-11-24

    The polymerase chain reaction analysis of potato plants, transformed with capsanthin capsorubin synthase ccs, revealed the presence of a highly related gene. The cloned cDNA showed at the protein level 89.6% identity to CCS. This suggested that the novel enzyme catalyzes a mechanistically similar reaction. Such a reaction is represented by neoxanthin synthase (NXS), forming the xanthophyll neoxanthin, a direct substrate for abscisic acid formation. The function of the novel enzyme could be proven by transient expression in plant protoplasts and high performance liquid chromatography analysis. The cloned NXS was imported in vitro into plastids, the compartment of carotenoid biosynthesis.

  3. Structural basis for cyclic terpene biosynthesis by tobacco 5-epi-aristolochene synthase

    SciTech Connect

    Starks, C.M.; Noel, J.P. |; Back, K.; Chappell, J.

    1997-09-19

    Terpene cyclases catalyze the synthesis of cyclic terpenes with 10-, 15-, and 20-carbon acyclic isoprenoid diphosphates as substrates. Plants have been a source of there natural products by providing a homologous set of terpene synthases. The crystal structures of 5-epi-aristolochene synthase, a sesquiterpene cyclase from tobacco, alone and complexed separately with two farnesyl diposphate analogs were analyzed. These structures reveal an unexpected enzymatic mechanism for the synthesis of the bicyclic product, 5-epi-aristolochene, and provide a basis for understanding the stereochemical selectivity displayed by other cyclases in the biosynthesis of pharmacologically important cyclic terpenes. As such, these structures provide templates for the engineering of novel terpene cyclases.

  4. Critical aspartic acid residues in pseudouridine synthases.

    PubMed

    Ramamurthy, V; Swann, S L; Paulson, J L; Spedaliere, C J; Mueller, E G

    1999-08-01

    The pseudouridine synthases catalyze the isomerization of uridine to pseudouridine at particular positions in certain RNA molecules. Genomic data base searches and sequence alignments using the first four identified pseudouridine synthases led Koonin (Koonin, E. V. (1996) Nucleic Acids Res. 24, 2411-2415) and, independently, Santi and co-workers (Gustafsson, C., Reid, R., Greene, P. J., and Santi, D. V. (1996) Nucleic Acids Res. 24, 3756-3762) to group this class of enzyme into four families, which display no statistically significant global sequence similarity to each other. Upon further scrutiny (Huang, H. L., Pookanjanatavip, M., Gu, X. G., and Santi, D. V. (1998) Biochemistry 37, 344-351), the Santi group discovered that a single aspartic acid residue is the only amino acid present in all of the aligned sequences; they then demonstrated that this aspartic acid residue is catalytically essential in one pseudouridine synthase. To test the functional significance of the sequence alignments in light of the global dissimilarity between the pseudouridine synthase families, we changed the aspartic acid residue in representatives of two additional families to both alanine and cysteine: the mutant enzymes are catalytically inactive but retain the ability to bind tRNA substrate. We have also verified that the mutant enzymes do not release uracil from the substrate at a rate significant relative to turnover by the wild-type pseudouridine synthases. Our results clearly show that the aligned aspartic acid residue is critical for the catalytic activity of pseudouridine synthases from two additional families of these enzymes, supporting the predictive power of the sequence alignments and suggesting that the sequence motif containing the aligned aspartic acid residue might be a prerequisite for pseudouridine synthase function.

  5. Properties of phosphorylated thymidylate synthase.

    PubMed

    Frączyk, Tomasz; Ruman, Tomasz; Wilk, Piotr; Palmowski, Paweł; Rogowska-Wrzesinska, Adelina; Cieśla, Joanna; Zieliński, Zbigniew; Nizioł, Joanna; Jarmuła, Adam; Maj, Piotr; Gołos, Barbara; Wińska, Patrycja; Ostafil, Sylwia; Wałajtys-Rode, Elżbieta; Shugar, David; Rode, Wojciech

    2015-12-01

    Thymidylate synthase (TS) may undergo phosphorylation endogenously in mammalian cells, and as a recombinant protein expressed in bacterial cells, as indicated by the reaction of purified enzyme protein with Pro-Q® Diamond Phosphoprotein Gel Stain (PGS). With recombinant human, mouse, rat, Trichinella spiralis and Caenorhabditis elegans TSs, expressed in Escherichia coli, the phosphorylated, compared to non-phosphorylated recombinant enzyme forms, showed a decrease in Vmax(app), bound their cognate mRNA (only rat enzyme studied), and repressed translation of their own and several heterologous mRNAs (human, rat and mouse enzymes studied). However, attempts to determine the modification site(s), whether endogenously expressed in mammalian cells, or recombinant proteins, did not lead to unequivocal results. Comparative ESI-MS/analysis of IEF fractions of TS preparations from parental and FdUrd-resistant mouse leukemia L1210 cells, differing in sensitivity to inactivation by FdUMP, demonstrated phosphorylation of Ser(10) and Ser(16) in the resistant enzyme only, although PGS staining pointed to the modification of both L1210 TS proteins. The TS proteins phosphorylated in bacterial cells were shown by (31)P NMR to be modified only on histidine residues, like potassium phosphoramidate (KPA)-phosphorylated TS proteins. NanoLC-MS/MS, enabling the use of CID and ETD peptide fragmentation methods, identified several phosphohistidine residues, but certain phosphoserine and phosphothreonine residues were also implicated. Molecular dynamics studies, based on the mouse TS crystal structure, allowed one to assess potential of several phosphorylated histidine residues to affect catalytic activity, the effect being phosphorylation site dependent.

  6. Tertiary model of a plant cellulose synthase

    PubMed Central

    Sethaphong, Latsavongsakda; Haigler, Candace H.; Kubicki, James D.; Zimmer, Jochen; Bonetta, Dario; DeBolt, Seth; Yingling, Yaroslava G.

    2013-01-01

    A 3D atomistic model of a plant cellulose synthase (CESA) has remained elusive despite over forty years of experimental effort. Here, we report a computationally predicted 3D structure of 506 amino acids of cotton CESA within the cytosolic region. Comparison of the predicted plant CESA structure with the solved structure of a bacterial cellulose-synthesizing protein validates the overall fold of the modeled glycosyltransferase (GT) domain. The coaligned plant and bacterial GT domains share a six-stranded β-sheet, five α-helices, and conserved motifs similar to those required for catalysis in other GT-2 glycosyltransferases. Extending beyond the cross-kingdom similarities related to cellulose polymerization, the predicted structure of cotton CESA reveals that plant-specific modules (plant-conserved region and class-specific region) fold into distinct subdomains on the periphery of the catalytic region. Computational results support the importance of the plant-conserved region and/or class-specific region in CESA oligomerization to form the multimeric cellulose–synthesis complexes that are characteristic of plants. Relatively high sequence conservation between plant CESAs allowed mapping of known mutations and two previously undescribed mutations that perturb cellulose synthesis in Arabidopsis thaliana to their analogous positions in the modeled structure. Most of these mutation sites are near the predicted catalytic region, and the confluence of other mutation sites supports the existence of previously undefined functional nodes within the catalytic core of CESA. Overall, the predicted tertiary structure provides a platform for the biochemical engineering of plant CESAs. PMID:23592721

  7. Down-regulation of cellulose synthase inhibits the formation of endocysts in Acanthamoeba.

    PubMed

    Moon, Eun-Kyung; Hong, Yeonchul; Chung, Dong-Il; Goo, Youn-Kyoung; Kong, Hyun-Hee

    2014-04-01

    Acanthamoeba cysts are resistant to unfavorable physiological conditions and various disinfectants. Acanthamoeba cysts have 2 walls containing various sugar moieties, and in particular, one third of the inner wall is composed of cellulose. In this study, it has been shown that down-regulation of cellulose synthase by small interfering RNA (siRNA) significantly inhibits the formation of mature Acanthamoeba castellanii cysts. Calcofluor white staining and transmission electron microscopy revealed that siRNA transfected amoeba failed to form an inner wall during encystation and thus are likely to be more vulnerable. In addition, the expression of xylose isomerase, which is involved in cyst wall formation, was not altered in cellulose synthase down-regulated amoeba, indicating that cellulose synthase is a crucial factor for inner wall formation by Acanthamoeba during encystation.

  8. Transmembrane myosin chitin synthase involved in mollusc shell formation produced in Dictyostelium is active.

    PubMed

    Schönitzer, Veronika; Eichner, Norbert; Clausen-Schaumann, Hauke; Weiss, Ingrid M

    2011-12-01

    Several mollusc shells contain chitin, which is formed by a transmembrane myosin motor enzyme. This protein could be involved in sensing mechanical and structural changes of the forming, mineralizing extracellular matrix. Here we report the heterologous expression of the transmembrane myosin chitin synthase Ar-CS1 of the bivalve mollusc Atrina rigida (2286 amino acid residues, M.W. 264 kDa/monomer) in Dictyostelium discoideum, a model organism for myosin motor proteins. Confocal laser scanning immunofluorescence microscopy (CLSM), chitin binding GFP detection of chitin on cells and released to the cell culture medium, and a radiochemical activity assay of membrane extracts revealed expression and enzymatic activity of the mollusc chitin synthase in transgenic slime mold cells. First high-resolution atomic force microscopy (AFM) images of Ar-CS1 transformed cellulose synthase deficient D. discoideumdcsA(-) cell lines are shown.

  9. Structure of trichodiene synthase from Fusarium sporotrichioides provides mechanistic inferences on the terpene cyclization cascade.

    PubMed

    Rynkiewicz, M J; Cane, D E; Christianson, D W

    2001-11-20

    The x-ray crystal structure of recombinant trichodiene synthase from Fusarium sporotrichioides has been determined to 2.5-A resolution, both unliganded and complexed with inorganic pyrophosphate. This reaction product coordinates to three Mg(2+) ions near the mouth of the active site cleft. A comparison of the liganded and unliganded structures reveals a ligand-induced conformational change that closes the mouth of the active site cleft. Binding of the substrate farnesyl diphosphate similarly may trigger this conformational change, which would facilitate catalysis by protecting reactive carbocationic intermediates in the cyclization cascade. Trichodiene synthase also shares significant structural similarity with other sesquiterpene synthases despite a lack of significant sequence identity. This similarity indicates divergence from a common ancestor early in the evolution of terpene biosynthesis. PMID:11698643

  10. SbnG, a citrate synthase in Staphylococcus aureus: a new fold on an old enzyme.

    PubMed

    Kobylarz, Marek J; Grigg, Jason C; Sheldon, Jessica R; Heinrichs, David E; Murphy, Michael E P

    2014-12-01

    In response to iron deprivation, Staphylococcus aureus produces staphyloferrin B, a citrate-containing siderophore that delivers iron back to the cell. This bacterium also possesses a second citrate synthase, SbnG, that is necessary for supplying citrate to the staphyloferrin B biosynthetic pathway. We present the structure of SbnG bound to the inhibitor calcium and an active site variant in complex with oxaloacetate. The overall fold of SbnG is structurally distinct from TCA cycle citrate synthases yet similar to metal-dependent class II aldolases. Phylogenetic analyses revealed that SbnG forms a separate clade with homologs from other siderophore biosynthetic gene clusters and is representative of a metal-independent subgroup in the phosphoenolpyruvate/pyruvate domain superfamily. A structural superposition of the SbnG active site to TCA cycle citrate synthases and site-directed mutagenesis suggests a case for convergent evolution toward a conserved catalytic mechanism for citrate production.

  11. UVB-irradiated keratinocytes induce melanoma-associated ganglioside GD3 synthase gene in melanocytes via secretion of tumor necrosis factor α and interleukin 6.

    PubMed

    Miyata, Maiko; Ichihara, Masatoshi; Tajima, Orie; Sobue, Sayaka; Kambe, Mariko; Sugiura, Kazumitsu; Furukawa, Koichi; Furukawa, Keiko

    2014-03-01

    Although expression of gangliosides and their synthetic enzyme genes in malignant melanomas has been well studied, that in normal melanocytes has been scarcely analyzed. In particular, changes in expression levels of glycosyltransferase genes responsible for ganglioside synthesis during evolution of melanomas from melanocytes are very important to understand roles of gangliosides in melanomas. Here, expression of glycosyltransferase genes related to the ganglioside synthesis was analyzed using RNAs from cultured melanocytes and melanoma cell lines. Quantitative RT-PCR revealed that melanomas expressed high levels of mRNA of GD3 synthase and GM2/GD2 synthase genes and low levels of GM1/GD1b synthase genes compared with melanocytes. As a representative exogenous stimulation, effects of ultraviolet B (UVB) on the expression levels of 3 major ganglioside synthase genes in melanocytes were analyzed. Although direct UVB irradiation of melanocytes caused no marked changes, culture supernatants of UVB-irradiated keratinocytes (HaCaT cells) induced definite up-regulation of GD3 synthase and GM2/GD2 synthase genes. Detailed examination of the supernatants revealed that inflammatory cytokines such as TNFα and IL-6 enhanced GD3 synthase gene expression. These results suggest that inflammatory cytokines secreted from UVB-irradiated keratinocytes induced melanoma-associated ganglioside synthase genes, proposing roles of skin microenvironment in the promotion of melanoma-like ganglioside profiles in melanocytes. PMID:24548412

  12. UVB-irradiated keratinocytes induce melanoma-associated ganglioside GD3 synthase gene in melanocytes via secretion of tumor necrosis factor α and interleukin 6.

    PubMed

    Miyata, Maiko; Ichihara, Masatoshi; Tajima, Orie; Sobue, Sayaka; Kambe, Mariko; Sugiura, Kazumitsu; Furukawa, Koichi; Furukawa, Keiko

    2014-03-01

    Although expression of gangliosides and their synthetic enzyme genes in malignant melanomas has been well studied, that in normal melanocytes has been scarcely analyzed. In particular, changes in expression levels of glycosyltransferase genes responsible for ganglioside synthesis during evolution of melanomas from melanocytes are very important to understand roles of gangliosides in melanomas. Here, expression of glycosyltransferase genes related to the ganglioside synthesis was analyzed using RNAs from cultured melanocytes and melanoma cell lines. Quantitative RT-PCR revealed that melanomas expressed high levels of mRNA of GD3 synthase and GM2/GD2 synthase genes and low levels of GM1/GD1b synthase genes compared with melanocytes. As a representative exogenous stimulation, effects of ultraviolet B (UVB) on the expression levels of 3 major ganglioside synthase genes in melanocytes were analyzed. Although direct UVB irradiation of melanocytes caused no marked changes, culture supernatants of UVB-irradiated keratinocytes (HaCaT cells) induced definite up-regulation of GD3 synthase and GM2/GD2 synthase genes. Detailed examination of the supernatants revealed that inflammatory cytokines such as TNFα and IL-6 enhanced GD3 synthase gene expression. These results suggest that inflammatory cytokines secreted from UVB-irradiated keratinocytes induced melanoma-associated ganglioside synthase genes, proposing roles of skin microenvironment in the promotion of melanoma-like ganglioside profiles in melanocytes.

  13. Nuclear genetic defects of mitochondrial ATP synthase.

    PubMed

    Hejzlarová, K; Mráček, T; Vrbacký, M; Kaplanová, V; Karbanová, V; Nůsková, H; Pecina, P; Houštěk, J

    2014-01-01

    Disorders of ATP synthase, the key enzyme of mitochondrial energy provision belong to the most severe metabolic diseases presenting as early-onset mitochondrial encephalo-cardiomyopathies. Up to now, mutations in four nuclear genes were associated with isolated deficiency of ATP synthase. Two of them, ATP5A1 and ATP5E encode enzyme's structural subunits alpha and epsilon, respectively, while the other two ATPAF2 and TMEM70 encode specific ancillary factors that facilitate the biogenesis of ATP synthase. All these defects share a similar biochemical phenotype with pronounced decrease in the content of fully assembled and functional ATP synthase complex. However, substantial differences can be found in their frequency, molecular mechanism of pathogenesis, clinical manifestation as well as the course of the disease progression. While for TMEM70 the number of reported patients as well as spectrum of the mutations is steadily increasing, mutations in ATP5A1, ATP5E and ATPAF2 genes are very rare. Apparently, TMEM70 gene is highly prone to mutagenesis and this type of a rare mitochondrial disease has a rather frequent incidence. Here we present overview of individual reported cases of nuclear mutations in ATP synthase and discuss, how their analysis can improve our understanding of the enzyme biogenesis.

  14. An investigation into eukaryotic pseudouridine synthases.

    PubMed

    King, Ross D; Lu, Chuan

    2014-08-01

    A common post-transcriptional modification of RNA is the conversion of uridine to its isomer pseudouridine. We investigated the biological significance of eukaryotic pseudouridine synthases using the yeast Saccharomyces cerevisiae. We conducted a comprehensive statistical analysis on growth data from automated perturbation (gene deletion) experiments, and used bi-logistic curve analysis to characterise the yeast phenotypes. The deletant strains displayed different alteration in growth properties, including in some cases enhanced growth and/or biphasic growth curves not seen in wild-type strains under matched conditions. These results demonstrate that disrupting pseudouridine synthases can have a significant qualitative effect on growth. We further investigated the significance of post-transcriptional pseudouridine modification through investigation of the scientific literature. We found that (1) In Toxoplasma gondii, a pseudouridine synthase gene is critical in cellular differentiation between the two asexual forms: Tachyzoites and bradyzoites; (2) Mutation of pseudouridine synthase genes has also been implicated in human diseases (mitochondrial myopathy and sideroblastic anemia (MLASA); dyskeratosis congenita). Taken together, these results are consistent with pseudouridine synthases having a Gene Ontology function of "biological regulation".

  15. Functional characterization of terpene synthases and chemotypic variation in three lavender species of section Stoechas.

    PubMed

    Benabdelkader, Tarek; Guitton, Yann; Pasquier, Bernard; Magnard, Jean Louis; Jullien, Frédéric; Kameli, Abdelkrim; Legendre, Laurent

    2015-01-01

    Lavandula pedunculata (Mill.) Cav. subsp. lusitanica, Lavandula stoechas L. subsp. stoechas and Lavandula viridis l'Hér. are three lavender taxa that belong to the botanical section Stoechas and are widely used as aromatherapy, culinary herb or folk medicine in many Mediterranean regions. The analysis of their bioactive volatile constituents revealed the presence of 124 substances, the most abundant being the bicyclic monoterpenes fenchone, camphor and 1,8-cineole that give these three species their respective chemotypes. Most noteworthy was fenchone which, with its reduced form fenchol, made 48% of the total volatile constituents of L. pedunculata while present at 2.9% in L. stoechas and undetectable in L. viridis. In order to provide a molecular explanation to the differences in volatile compounds of these three species, two monoterpene synthases (monoTPS) and one sesquiterpene synthase (sesquiTPS) were cloned in L. pedunculata and functionally characterized as fenchol synthase (LpFENS), α-pinene synthase (LpPINS) and germacrene A synthase (LpGEAS). The two other lavender species contained a single orthologous gene for each of these three classes of TPS with similar enzyme product specificities. Expression profiles of FENS and PINS genes matched the accumulation profile of the enzyme products unlike GEAS. This study provides one of the rare documented cases of chemotype modification during plant speciation via changes in the level of plant TPS gene expression, and not functionality. PMID:24943828

  16. Transmembrane myosin chitin synthase involved in mollusc shell formation produced in Dictyostelium is active

    SciTech Connect

    Schoenitzer, Veronika; Eichner, Norbert; Clausen-Schaumann, Hauke; Weiss, Ingrid M.

    2011-12-02

    Highlights: Black-Right-Pointing-Pointer Dictyostelium produces the 264 kDa myosin chitin synthase of bivalve mollusc Atrina. Black-Right-Pointing-Pointer Chitin synthase activity releases chitin, partly associated with the cell surface. Black-Right-Pointing-Pointer Membrane extracts of transgenic slime molds produce radiolabeled chitin in vitro. Black-Right-Pointing-Pointer Chitin producing Dictyostelium cells can be characterized by atomic force microscopy. Black-Right-Pointing-Pointer This model system enables us to study initial processes of chitin biomineralization. -- Abstract: Several mollusc shells contain chitin, which is formed by a transmembrane myosin motor enzyme. This protein could be involved in sensing mechanical and structural changes of the forming, mineralizing extracellular matrix. Here we report the heterologous expression of the transmembrane myosin chitin synthase Ar-CS1 of the bivalve mollusc Atrina rigida (2286 amino acid residues, M.W. 264 kDa/monomer) in Dictyostelium discoideum, a model organism for myosin motor proteins. Confocal laser scanning immunofluorescence microscopy (CLSM), chitin binding GFP detection of chitin on cells and released to the cell culture medium, and a radiochemical activity assay of membrane extracts revealed expression and enzymatic activity of the mollusc chitin synthase in transgenic slime mold cells. First high-resolution atomic force microscopy (AFM) images of Ar-CS1 transformed cellulose synthase deficient D. discoideumdcsA{sup -} cell lines are shown.

  17. Molecular evolution and functional divergence of soluble starch synthase genes in cassava (manihot esculenta crantz).

    PubMed

    Yang, Zefeng; Wang, Yifan; Xu, Shuhui; Xu, Chenwu; Yan, Changjie

    2013-01-01

    Soluble starch synthases (SSs) are major enzymes involved in starch biosynthesis in plants. Cassava starch has many remarkable characteristics, which should be influenced by the evolution of SS genes in this starchy root crop. In this work, we performed a comprehensive phylogenetic and evolutionary analysis of the soluble starch synthases in cassava. Genome-wide identification showed that there are 9 genes encoding soluble starch synthases in cassava. All of the soluble starch synthases encoded by these genes contain both Glyco_transf_5 and Glycos_transf_1 domains, and a correlation analysis showed evidence of coevolution between these 2 domains in cassava SS genes. The SS genes in land plants can be divided into 6 subfamilies that were formed before the origin of seed plants, and species-specific expansion has contributed to the evolution of this family in cassava. A functional divergence analysis for this family provided statistical evidence for shifted evolutionary rates between the subfamilies of land plant soluble starch synthases. Although the main selective pressure acting on land plant SS genes was purifying selection, our results also revealed that point mutation with positive selection contributed to the evolution of 2 SS genes in cassava. The remarkable cassava starch characteristics might be the result of both the duplication and adaptive selection of SS genes.

  18. Functional characterization of terpene synthases and chemotypic variation in three lavender species of section Stoechas.

    PubMed

    Benabdelkader, Tarek; Guitton, Yann; Pasquier, Bernard; Magnard, Jean Louis; Jullien, Frédéric; Kameli, Abdelkrim; Legendre, Laurent

    2015-01-01

    Lavandula pedunculata (Mill.) Cav. subsp. lusitanica, Lavandula stoechas L. subsp. stoechas and Lavandula viridis l'Hér. are three lavender taxa that belong to the botanical section Stoechas and are widely used as aromatherapy, culinary herb or folk medicine in many Mediterranean regions. The analysis of their bioactive volatile constituents revealed the presence of 124 substances, the most abundant being the bicyclic monoterpenes fenchone, camphor and 1,8-cineole that give these three species their respective chemotypes. Most noteworthy was fenchone which, with its reduced form fenchol, made 48% of the total volatile constituents of L. pedunculata while present at 2.9% in L. stoechas and undetectable in L. viridis. In order to provide a molecular explanation to the differences in volatile compounds of these three species, two monoterpene synthases (monoTPS) and one sesquiterpene synthase (sesquiTPS) were cloned in L. pedunculata and functionally characterized as fenchol synthase (LpFENS), α-pinene synthase (LpPINS) and germacrene A synthase (LpGEAS). The two other lavender species contained a single orthologous gene for each of these three classes of TPS with similar enzyme product specificities. Expression profiles of FENS and PINS genes matched the accumulation profile of the enzyme products unlike GEAS. This study provides one of the rare documented cases of chemotype modification during plant speciation via changes in the level of plant TPS gene expression, and not functionality.

  19. Catalytic residues are shared between two pseudosubunits of the dehydratase domain of the animal fatty acid synthase.

    PubMed

    Pasta, Saloni; Witkowski, Andrzej; Joshi, Anil K; Smith, Stuart

    2007-12-01

    Expression, characterization, and mutagenesis of a series of N-terminal fragments of an animal fatty acid synthase, containing the beta-ketoacyl synthase, acyl transferase, and dehydratase domains, demonstrate that the dehydratase domain consists of two pseudosubunits, derived from contiguous regions of the same polypeptide, in which a single active site is formed by the cooperation of the catalytic histidine 878 residue of the first pseudosubunit with aspartate 1032 of the second pseudosubunit. Mutagenesis and modeling studies revealed an essential role for glutamine 1036 in anchoring the position of the catalytic aspartate. These findings establish that sequence elements previously assigned to a central structural core region of the type I fatty acid synthases and some modular polyketide synthase counterparts play an essential catalytic role as part of the dehydratase domain.

  20. Exploring biosynthetic diversity with trichodiene synthase.

    PubMed

    Vedula, L Sangeetha; Zhao, Yuxin; Coates, Robert M; Koyama, Tanetoshi; Cane, David E; Christianson, David W

    2007-10-15

    Trichodiene synthase is a terpenoid cyclase that catalyzes the cyclization of farnesyl diphosphate (FPP) to form the bicyclic sesquiterpene hydrocarbon trichodiene (89%), at least five sesquiterpene side products (11%), and inorganic pyrophosphate (PP(i)). Incubation of trichodiene synthase with 2-fluorofarnesyl diphosphate or 4-methylfarnesyl diphosphate similarly yields sesquiterpene mixtures despite the electronic effects or steric bulk introduced by substrate derivatization. The versatility of the enzyme is also demonstrated in the 2.85A resolution X-ray crystal structure of the complex with Mg(2+) (3)-PP(i) and the benzyl triethylammonium cation, which is a bulkier mimic of the bisabolyl carbocation intermediate in catalysis. Taken together, these findings show that the active site of trichodiene synthase is sufficiently flexible to accommodate bulkier and electronically-diverse substrates and intermediates, which could indicate additional potential for the biosynthetic utility of this terpenoid cyclase. PMID:17678871

  1. Cellulose Synthase Complexes: Composition and Regulation

    PubMed Central

    Lei, Lei; Li, Shundai; Gu, Ying

    2012-01-01

    Live cell imaging has greatly advanced our knowledge on the molecular mechanism by which cellulose is deposited. Both the actin and microtubule cytoskeleton are involved in assuring the proper distribution, organization, and dynamics of cellulose synthase complexes (CSCs). This review is an update on the most recent progress on the characterization of the composition, regulation, and trafficking of CSCs. With the newly identified cellulose synthase interactive protein 1 (CSI1) on hand, we begin to unveil the mystery of an intimate relationship between cellulose microfibrils and microtubules. PMID:22639663

  2. Homology study of two polyhydroxyalkanoate (PHA) synthases from Pseudomonas aureofaciens.

    PubMed

    Umeda, F; Nishikawa, T; Miyasaka, H; Maeda, I; Kawase, M; Yagi, K

    2001-11-01

    Recently, we have cloned and analyzed two polyhydroxyalkanoate (PHA) synthase genes (phaC1 and phaC2 in the pha cluster) from Pseudomonas aureofaciens. In this report, the deduced amino acid (AA) sequences of PHA synthase 1 and PHA synthase 2 from P. aureofaciens are compared with those from three other bacterial strains (Pseudomonas sp. 61-3, P. oleovorans and P. aeruginosa) containing the homologous pha cluster. The level of homology of either PHA synthase 1 or PHA synthase 2 was high with each enzyme from these three bacterial strains. Furthermore, multialignment of PHA synthase AA sequences implied that both enzymes of PHA synthase 1 and PHA synthase 2 were highly conserved in the four strains including P. aureofaciens. PMID:11916262

  3. Identification of novel sesterterpene/triterpene synthase from Bacillus clausii.

    PubMed

    Sato, Tsutomu; Yamaga, Hiroaki; Kashima, Shoji; Murata, Yusuke; Shinada, Tetsuro; Nakano, Chiaki; Hoshino, Tsutomu

    2013-05-10

    Basic enzyme: The tetraprenyl-β-curcumene synthase homologue from the alkalophilic Bacillus clausii catalyses conversions of a geranylfarnesyl diphosphate and a hexaprenyl diphosphate into novel head-to-tail acyclic sesterterpene and triterpene. Tetraprenyl-β-curcumene synthase homologues represent a new family of terpene synthases that form not only sesquarterpene but also sesterterpene and triterpene. PMID:23554321

  4. Tryptophan synthase: a multienzyme complex with an intramolecular tunnel.

    PubMed

    Miles, E W

    2001-01-01

    Tryptophan synthase is a classic enzyme that channels a metabolic intermediate, indole. The crystal structure of the tryptophan synthase alpha2beta2 complex from Salmonella typhimurium revealed for the first time the architecture of a multienzyme complex and the presence of an intramolecular tunnel. This remarkable hydrophobic tunnel provides a likely passageway for indole from the active site of the alpha subunit, where it is produced, to the active site of the beta subunit, where it reacts with L-serine to form L-tryptophan in a pyridoxal phosphate-dependent reaction. Rapid kinetic studies of the wild type enzyme and of channel-impaired mutant enzymes provide strong evidence for the proposed channeling mechanism. Structures of a series of enzyme-substrate intermediates at the alpha and beta active sites are elucidating enzyme mechanisms and dynamics. These structural results are providing a fascinating picture of loops opening and closing, of domain movements, and of conformational changes in the indole tunnel. Solution studies provide further evidence for ligand-induced conformational changes that send signals between the alpha and beta subunits. The combined results show that the switching of the enzyme between open and closed conformations couples the catalytic reactions at the alpha and beta active sites and prevents the escape of indole.

  5. Inhibitors to Polyhydroxyalkanoate (PHA) Synthases: Synthesis, Molecular Docking, and Implications

    PubMed Central

    Cao, Ruikai; Maurmann, Leila; Li, Ping

    2015-01-01

    Polyhydroxyalkanoate (PHA) synthases (PhaCs) catalyze the formation of biodegradable PHAs that are considered as an ideal alternative to nonbiodegradable synthetic plastics. However, study of PhaC has been challenging because the rate of PHA chain elongation is much faster than that of initiation. This difficulty along with lack of a structure has become the main hurdle to understand and engineer PhaCs for economical PHA production. Here we reported the synthesis of two carbadethia CoA analogs, sT-CH2-CoA 26a and sTet-CH2-CoA 26b as well as sT-aldehyde 29 as new PhaC inhibitors. Study of these analogs with PhaECAv revealed that 26a/b and 29 are competitive and mixed inhibitors, respectively. It was observed that CoA moiety and PHA chain extension can increase binding affinity, which is consistent with the docking study. Estimation from Kic of 26a/b predicts that a CoA analog attached with an octameric-HB chain may facilitate the formation of a kinetically well-behaved synthase. PMID:25394180

  6. GAPDH regulates cellular heme insertion into inducible nitric oxide synthase

    PubMed Central

    Chakravarti, Ritu; Aulak, Kulwant S.; Fox, Paul L.; Stuehr, Dennis J.

    2010-01-01

    Heme proteins play essential roles in biology, but little is known about heme transport inside mammalian cells or how heme is inserted into soluble proteins. We recently found that nitric oxide (NO) blocks cells from inserting heme into several proteins, including cytochrome P450s, hemoglobin, NO synthases, and catalase. This finding led us to explore the basis for NO inhibition and to identify cytosolic proteins that may be involved, using inducible NO synthase (iNOS) as a model target. Surprisingly, we found that GAPDH plays a key role. GAPDH was associated with iNOS in cells. Pure GAPDH bound tightly to heme or to iNOS in an NO-sensitive manner. GAPDH knockdown inhibited heme insertion into iNOS and a GAPDH mutant with defective heme binding acted as a dominant negative inhibitor of iNOS heme insertion. Exposing cells to NO either from a chemical donor or by iNOS induction caused GAPDH to become S-nitrosylated at Cys152. Expressing a GAPDH C152S mutant in cells or providing a drug to selectively block GAPDH S-nitrosylation both made heme insertion into iNOS resistant to the NO inhibition. We propose that GAPDH delivers heme to iNOS through a process that is regulated by its S-nitrosylation. Our findings may uncover a fundamental step in intracellular heme trafficking, and reveal a mechanism whereby NO can govern the process. PMID:20921417

  7. Phytochelatin synthase activity as a marker of metal pollution.

    PubMed

    Zitka, Ondrej; Krystofova, Olga; Sobrova, Pavlina; Adam, Vojtech; Zehnalek, Josef; Beklova, Miroslava; Kizek, Rene

    2011-08-30

    The synthesis of phytochelatins is catalyzed by γ-Glu-Cys dipeptidyl transpeptidase called phytochelatin synthase (PCS). Aim of this study was to suggest a new tool for determination of phytochelatin synthase activity in the tobacco BY-2 cells treated with different concentrations of the Cd(II). After the optimization steps, an experiment on BY-2 cells exposed to different concentrations of Cd(NO(3))(2) for 3 days was performed. At the end of the experiment, cells were harvested and homogenized. Reduced glutathione and cadmium (II) ions were added to the cell suspension supernatant. These mixtures were incubated at 35°C for 30min and analysed using high performance liquid chromatography coupled with electrochemical detector (HPLC-ED). The results revealed that PCS activity rises markedly with increasing concentration of cadmium (II) ions. The lowest concentration of the toxic metal ions caused almost three fold increase in PCS activity as compared to control samples. The activity of PCS (270fkat) in treated cells was more than seven times higher in comparison to control ones. K(m) for PCS was estimated as 2.3mM. PMID:21715087

  8. Inhibitors of polyhydroxyalkanoate (PHA) synthases: synthesis, molecular docking, and implications.

    PubMed

    Zhang, Wei; Chen, Chao; Cao, Ruikai; Maurmann, Leila; Li, Ping

    2015-01-01

    Polyhydroxyalkanoate (PHA) synthases (PhaCs) catalyze the formation of biodegradable PHAs that are considered to be ideal alternatives to non-biodegradable synthetic plastics. However, study of PhaCs has been challenging because the rate of PHA chain elongation is much faster than that of initiation. This difficulty, along with lack of a crystal structure, has become the main hurdle to understanding and engineering PhaCs for economical PHA production. Here we report the synthesis of two carbadethia CoA analogues--sT-CH2-CoA (26 a) and sTet-CH2-CoA (26 b)--as well as sT-aldehyde (saturated trimer aldehyde, 29), as new PhaC inhibitors. Study of these analogues with PhaECAv revealed that 26 a/b and 29 are competitive and mixed inhibitors, respectively. Both the CoA moiety and extension of PHA chain will increase binding affinity; this is consistent with our docking study. Estimation of the Kic values of 26 a and 26 b predicts that a CoA analogue incorporating an octameric hydroxybutanoate (HB) chain might facilitate the formation of a kinetically well-behaved synthase.

  9. Preliminary crystallographic analysis of sugar cane phosphoribosylpyrophosphate synthase

    SciTech Connect

    Napolitano, H. B.; Sculaccio, S. A.; Thiemann, O. H.; Oliva, G.

    2005-01-01

    X-ray diffraction data have been collected from crystals of recombinant sugar cane phosphoribosylpyrophosphate synthase (PRS) and analysis has revealed its quaternary structure, localizing this PRS into the class of enzymes forming an hexameric oligomer of 223 kDa. Phosphoribosylpyrophosphate synthases (PRS; EC 2.7.6.1) are enzymes that are of central importance in several metabolic pathways in all cells. The sugar cane PRS enzyme contains 328 amino acids with a molecular weight of 36.6 kDa and represents the first plant PRS to be crystallized, as well as the first phosphate-independent PRS to be studied in molecular detail. Sugar cane PRS was overexpressed in Escherichia coli, purified and crystallized using the hanging-drop vapour-diffusion method. Using X-ray diffraction experiments it was determined that the crystals belong to the orthorhombic system, with space group P2{sub 1}2{sub 1}2 and unit-cell parameters a = 213.2, b = 152.6, c = 149.3 Å. The crystals diffract to a maximum resolution of 3.3 Å and a complete data set to 3.5 Å resolution was collected and analysed.

  10. The crystal structure of human GDP-L-fucose synthase.

    PubMed

    Zhou, Huan; Sun, Lihua; Li, Jian; Xu, Chunyan; Yu, Feng; Liu, Yahui; Ji, Chaoneng; He, Jianhua

    2013-09-01

    Human GDP-l-fucose synthase, also known as FX protein, synthesizes GDP-l-fucose from its substrate GDP-4-keto-6-deoxy-d-mannose. The reaction involves epimerization at both C-3 and C-5 followed by an NADPH-dependent reduction of the carbonyl at C-4. In this paper, the first crystal structure of human FX protein was determined at 2.37 Å resolution. The asymmetric unit of the crystal structure contains four molecules which form two homodimers. Each molecule consists of two domains, a Rossmann-fold NADPH-binding motif and a carboxyl terminal domain. Compared with the Escherichia coli GDP-l-fucose synthase, the overall structures of these two enzymes have four major differences. There are four loops in the structure of human FX protein corresponding to two α-helices and two β-sheets in that of the E. coli enzyme. Besides, there are seven different amino acid residues binding with NAPDH comparing human FX protein with that from E. coli. The structure of human FX reveals the key catalytic residues and could be useful for the design of drugs for the treatment of inflammation, auto-immune diseases, and possibly certain types of cancer.

  11. Metabolic engineering of Pseudomonas putida for production of docosahexaenoic acid based on a myxobacterial PUFA synthase.

    PubMed

    Gemperlein, Katja; Zipf, Gregor; Bernauer, Hubert S; Müller, Rolf; Wenzel, Silke C

    2016-01-01

    Long-chain polyunsaturated fatty acids (LC-PUFAs) can be produced de novo via polyketide synthase-like enzymes known as PUFA synthases, which are encoded by pfa biosynthetic gene clusters originally discovered from marine microorganisms. Recently similar gene clusters were detected and characterized in terrestrial myxobacteria revealing several striking differences. As the identified myxobacterial producers are difficult to handle genetically and grow very slowly we aimed to establish heterologous expression platforms for myxobacterial PUFA synthases. Here we report the heterologous expression of the pfa gene cluster from Aetherobacter fasciculatus (SBSr002) in the phylogenetically distant model host bacteria Escherichia coli and Pseudomonas putida. The latter host turned out to be the more promising PUFA producer revealing higher production rates of n-6 docosapentaenoic acid (DPA) and docosahexaenoic acid (DHA). After several rounds of genetic engineering of expression plasmids combined with metabolic engineering of P. putida, DHA production yields were eventually increased more than threefold. Additionally, we applied synthetic biology approaches to redesign and construct artificial versions of the A. fasciculatus pfa gene cluster, which to the best of our knowledge represents the first example of a polyketide-like biosynthetic gene cluster modulated and synthesized for P. putida. Combination with the engineering efforts described above led to a further increase in LC-PUFA production yields. The established production platform based on synthetic DNA now sets the stage for flexible engineering of the complex PUFA synthase. PMID:26617065

  12. Cell wall protection by the Candida albicans class I chitin synthases

    PubMed Central

    Preechasuth, Kanya; Anderson, Jeffrey C.; Peck, Scott C.; Brown, Alistair J.P.; Gow, Neil A.R.; Lenardon, Megan D.

    2015-01-01

    Candida albicans has four chitin synthases from three different enzyme classes which deposit chitin in the cell wall, including at the polarized tips of growing buds and hyphae, and sites of septation. The two class I enzymes, Chs2 and Chs8, are responsible for most of the measurable chitin synthase activity in vitro, but their precise biological functions in vivo remain obscure. In this work, detailed phenotypic analyses of a chs2Δchs8Δ mutant have shown that C. albicans class I chitin synthases promote cell integrity during early polarized growth in yeast and hyphal cells. This was supported by live cell imaging of YFP-tagged versions of the class I chitin synthases which revealed that Chs2-YFP was localized at sites of polarized growth. Furthermore, a unique and dynamic pattern of localization of the class I enzymes at septa of yeast and hyphae was revealed. Phosphorylation of Chs2 on the serine at position 222 was shown to regulate the amount of Chs2 that is localized to sites of polarized growth and septation. Independently from this post-translational modification, specific cell wall stresses were also shown to regulate the amount of Chs2 that localizes to specific sites in cells, and this was linked to the ability of the class I enzymes to reinforce cell wall integrity during early polarized growth in the presence of these stresses. PMID:26257018

  13. Lessons from 455 Fusarium polyketide synthases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In fungi, polyketide synthases (PKSs) synthesize a structurally diverse array of secondary metabolites (SMs) with a range of biological activities. The most studied SMs are toxic to animals and/or plants, alter plant growth, have beneficial pharmaceutical activities, and/or are brightly colored pigm...

  14. Producing dicarboxylic acids using polyketide synthases

    SciTech Connect

    Katz, Leonard; Fortman, Jeffrey L; Keasling, Jay D

    2013-10-29

    The present invention provides for a polyketide synthase (PKS) capable of synthesizing a dicarboxylic acid (diacid). Such diacids include diketide-diacids and triketide-diacids. The invention includes recombinant nucleic acid encoding the PKS, and host cells comprising the PKS. The invention also includes methods for producing the diacids.

  15. Producing dicarboxylic acids using polyketide synthases

    SciTech Connect

    Katz, Leonard; Fortman, Jeffrey L.; Keasling, Jay D.

    2015-05-26

    The present invention provides for a polyketide synthase (PKS) capable of synthesizing a dicarboxylic acid (diacid). Such diacids include diketide-diacids and triketide-diacids. The invention includes recombinant nucleic acid encoding the PKS, and host cells comprising the PKS. The invention also includes methods for producing the diacids.

  16. Identification and characterization of a second isogene encoding γ-terpinene synthase in Thymus caespititius.

    PubMed

    Mendes, Marta D; Barroso, José G; Oliveira, M Margarida; Trindade, Helena

    2014-07-15

    Thymus caespititius Brot. is an Iberian endemic species, whose essential oils possess high polymorphism. They consist mostly of mono- and sesquiterpene, some of them with interest for the pharmaceutical and food industries. The search for terpene synthase genes was performed in three in vitro T. caespititius genotypes. For these plants, the expression of a previously described γ-terpinene synthase gene, Tctps2, was confirmed, occurring concomitantly with a new gene encoding an enzyme with similar activity, named Thymus caespititius terpene synthase 4 (Tctps4). The two isogenes were isolated and functionally characterized in the three plant genotypes. Alignment of the two Tctps revealed a transit peptide much shorter in Tctps4 than in Tctps2 (3-4 amino acids instead of 47). The Tctps4 open reading frame is shorter than Tctps2 (1665 bp versus 1794 bp). The amino acid sequence of both γ-terpinene synthases shared an 88% pairwise identity. The fact that T. caespititius carries two isogenes for γ-terpinene synthases, suggests gene duplication along the evolutionary process, followed by mutations leading to the differentiation of both genes. These mutations didn't compromise protein activity. A high accumulation of transcripts from both genes was found in shoots of in vitro plantlets, while in roots they could not be detected. Still, γ-terpinene levels in aerial parts were reduced, probably due to fast conversion into carvacrol and thymol, the main components from T. caespititius essential oils. This study is a contribution to the identification of terpene synthase genes in Lamiaceae.

  17. Modulation of Alternaria infectoria Cell Wall Chitin and Glucan Synthesis by Cell Wall Synthase Inhibitors

    PubMed Central

    Fernandes, Chantal; Anjos, Jorge; Walker, Louise A.; Silva, Branca M. A.; Cortes, Luísa; Mota, Marta; Munro, Carol A.; Gow, Neil A. R.

    2014-01-01

    The present work reports the effects of caspofungin, a β-1,3-glucan synthase inhibitor, and nikkomycin Z, an inhibitor of chitin synthases, on two strains of Alternaria infectoria, a melanized fungus involved in opportunistic human infections and respiratory allergies. One of the strains tested, IMF006, bore phenotypic traits that conferred advantages in resisting antifungal treatment. First, the resting cell wall chitin content was higher and in response to caspofungin, the chitin level remained constant. In the other strain, IMF001, the chitin content increased upon caspofungin treatment to values similar to basal IMF006 levels. Moreover, upon caspofungin treatment, the FKS1 gene was upregulated in IMF006 and downregulated in IMF001. In addition, the resting β-glucan content was also different in both strains, with higher levels in IMF001 than in IMF006. However, this did not provide any advantage with respect to echinocandin resistance. We identified eight different chitin synthase genes and studied relative gene expression when the fungus was exposed to the antifungals under study. In both strains, exposure to caspofungin and nikkomycin Z led to modulation of the expression of class V and VII chitin synthase genes, suggesting its importance in the robustness of A. infectoria. The pattern of A. infectoria phagocytosis and activation of murine macrophages by spores was not affected by caspofungin. Monotherapy with nikkomycin Z and caspofungin provided only fungistatic inhibition, while a combination of both led to fungal cell lysis, revealing a strong synergistic action between the chitin synthase inhibitor and the β-glucan synthase inhibitor against this fungus. PMID:24614372

  18. Structure of 3-oxoacyl-(acyl-carrier protein) synthase II from Thermus thermophilus HB8

    SciTech Connect

    Bagautdinov, Bagautdin Ukita, Yoko; Miyano, Masashi; Kunishima, Naoki

    2008-05-01

    The crystal structure of 3-oxoacyl-(acyl-carrier protein) synthase II from T. thermophilus HB8 has been determined at 2.0 Å resolution and compared with the structures of β-keto-ACP synthases from other sources. The β-ketoacyl-(acyl carrier protein) synthases (β-keto-ACP synthases; KAS) catalyse the addition of two-carbon units to the growing acyl chain during the elongation phase of fatty-acid synthesis. As key regulators of bacterial fatty-acid synthesis, they are promising targets for the development of new antibacterial agents. The crystal structure of 3-oxoacyl-ACP synthase II from Thermus thermophilus HB8 (TtKAS II) has been solved by molecular replacement and refined at 2.0 Å resolution. The crystal is orthorhombic, space group P2{sub 1}2{sub 1}2, with unit-cell parameters a = 72.07, b = 185.57, c = 62.52 Å, and contains one homodimer in the asymmetric unit. The subunits adopt the well known α-β-α-β-α thiolase fold that is common to ACP synthases. The structural and sequence similarities of TtKAS II to KAS I and KAS II enzymes of known structure from other sources support the hypothesis of comparable enzymatic activity. The dimeric state of TtKAS II is important to create each fatty-acid-binding pocket. Closer examination of KAS structures reveals that compared with other KAS structures in the apo form, the active site of TtKAS II is more accessible because of the ‘open’ conformation of the Phe396 side chain.

  19. Expression of nitric oxide synthase in rat glomerular mesangial cells mediated by cyclic AMP.

    PubMed Central

    Mühl, H.; Kunz, D.; Pfeilschifter, J.

    1994-01-01

    1. Treatment of rat mesangial cells with interleukin 1 beta (IL-1 beta) or tumour necrosis factor alpha (TNF alpha) has been shown to induce a macrophage-type of nitric oxide (NO) synthase. Here we report that adenosine 3':5'-cyclic monophosphate (cyclic AMP) is another mediator that triggers induction of NO synthase in mesangial cells. 2. Incubation of mesangial cells with the beta-adrenoceptor agonist, salbutamol, forskolin or cholera toxin, which all activate adenylate cyclase and increase intracellular cyclic AMP concentration, increased nitrite formation in a dose-dependent manner. Likewise, the addition of the membrane-permeable cyclic AMP analogue, N6, 0-2'-dibutyryladenosine 3',5'-phosphate (Bt2 cyclic AMP) or the phosphodiesterase inhibitor, 3-isobutyl-1-methylxanthine enhanced NO synthase activity in a dose-dependent manner. 3. There was a lag period of about 8 h before a significantly enhanced secretion of nitrite could be detected upon exposure of cells to forskolin and for maximal stimulation, forskolin had to be present during the whole incubation period. 4. Treatment of mesangial cells with actinomycin D, cycloheximide or dexamethasone completely suppressed forskolin-stimulated NO-synthase activity, thus demonstrating that transcription and protein synthesis are necessary for nitrite formation. 5. Bt2 cyclic AMP, the most potent inducer of nitrite production, increased NO synthase mRNA levels in mesangial cells in a time- and dose-dependent fashion. Dexamethasone completely inhibited the increase of NO synthase mRNA in response to Bt2 cyclic AMP. 6. Combination of Bt2 cyclic AMP and IL-1 beta or TNF alpha revealed a strong synergy in terms of nitrite formation.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 7 Figure 8 Figure 9 PMID:7518300

  20. Re-Citrate Synthase from Clostridium kluyveri Is Phylogenetically Related to Homocitrate Synthase and Isopropylmalate Synthase Rather Than to Si-Citrate Synthase† ▿

    PubMed Central

    Li, Fuli; Hagemeier, Christoph H.; Seedorf, Henning; Gottschalk, Gerhard; Thauer, Rudolf K.

    2007-01-01

    The synthesis of citrate from acetyl-coenzyme A and oxaloacetate is catalyzed in most organisms by a Si-citrate synthase, which is Si-face stereospecific with respect to C-2 of oxaloacetate. However, in Clostridium kluyveri and some other strictly anaerobic bacteria, the reaction is catalyzed by a Re-citrate synthase, whose primary structure has remained elusive. We report here that Re-citrate synthase from C. kluyveri is the product of a gene predicted to encode isopropylmalate synthase. C. kluyveri is also shown to contain a gene for Si-citrate synthase, which explains why cell extracts of the organism always exhibit some Si-citrate synthase activity. PMID:17400742

  1. Geranyl diphosphate synthase large subunit, and methods of use

    DOEpatents

    Croteau, Rodney B.; Burke, Charles C.; Wildung, Mark R.

    2001-10-16

    A cDNA encoding geranyl diphosphate synthase large subunit from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase large subunit). In another aspect, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase large subunit. In yet another aspect, the present invention provides isolated, recombinant geranyl diphosphate synthase protein comprising an isolated, recombinant geranyl diphosphate synthase large subunit protein and an isolated, recombinant geranyl diphosphate synthase small subunit protein. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase.

  2. Sphingomyelin Synthase 1 Is Essential for Male Fertility in Mice

    PubMed Central

    Scherthan, Harry; Horsch, Marion; Beckers, Johannes; Fuchs, Helmut; Gailus-Durner, Valerie; Hrabě de Angelis, Martin; Ford, Steven J.; Burton, Neal C.; Razansky, Daniel; Trümbach, Dietrich; Aichler, Michaela; Walch, Axel Karl; Calzada-Wack, Julia; Neff, Frauke; Wurst, Wolfgang; Hartmann, Tobias; Floss, Thomas

    2016-01-01

    Sphingolipids and the derived gangliosides have critical functions in spermatogenesis, thus mutations in genes involved in sphingolipid biogenesis are often associated with male infertility. We have generated a transgenic mouse line carrying an insertion in the sphingomyelin synthase gene Sms1, the enzyme which generates sphingomyelin species in the Golgi apparatus. We describe the spermatogenesis defect of Sms1-/- mice, which is characterized by sloughing of spermatocytes and spermatids, causing progressive infertility of male homozygotes. Lipid profiling revealed a reduction in several long chain unsaturated phosphatidylcholins, lysophosphatidylcholins and sphingolipids in the testes of mutants. Multi-Spectral Optoacoustic Tomography indicated blood-testis barrier dysfunction. A supplementary diet of the essential omega-3 docosahexaenoic acid and eicosapentaenoic acid diminished germ cell sloughing from the seminiferous epithelium and restored spermatogenesis and fertility in 50% of previously infertile mutants. Our findings indicate that SMS1 has a wider than anticipated role in testis polyunsaturated fatty acid homeostasis and for male fertility. PMID:27788151

  3. Catalysis and Sulfa Drug Resistance in Dihydropteroate Synthase

    SciTech Connect

    Yun, Mi-Kyung; Wu, Yinan; Li, Zhenmei; Zhao, Ying; Waddell, M. Brett; Ferreira, Antonio M.; Lee, Richard E.; Bashford, Donald; White, Stephen W.

    2013-04-08

    The sulfonamide antibiotics inhibit dihydropteroate synthase (DHPS), a key enzyme in the folate pathway of bacteria and primitive eukaryotes. However, resistance mutations have severely compromised the usefulness of these drugs. We report structural, computational, and mutagenesis studies on the catalytic and resistance mechanisms of DHPS. By performing the enzyme-catalyzed reaction in crystalline DHPS, we have structurally characterized key intermediates along the reaction pathway. Results support an S{sub N}1 reaction mechanism via formation of a novel cationic pterin intermediate. We also show that two conserved loops generate a substructure during catalysis that creates a specific binding pocket for p-aminobenzoic acid, one of the two DHPS substrates. This substructure, together with the pterin-binding pocket, explains the roles of the conserved active-site residues and reveals how sulfonamide resistance arises.

  4. Catalysis and sulfa drug resistance in dihydropteroate synthase.

    PubMed

    Yun, Mi-Kyung; Wu, Yinan; Li, Zhenmei; Zhao, Ying; Waddell, M Brett; Ferreira, Antonio M; Lee, Richard E; Bashford, Donald; White, Stephen W

    2012-03-01

    The sulfonamide antibiotics inhibit dihydropteroate synthase (DHPS), a key enzyme in the folate pathway of bacteria and primitive eukaryotes. However, resistance mutations have severely compromised the usefulness of these drugs. We report structural, computational, and mutagenesis studies on the catalytic and resistance mechanisms of DHPS. By performing the enzyme-catalyzed reaction in crystalline DHPS, we have structurally characterized key intermediates along the reaction pathway. Results support an S(N)1 reaction mechanism via formation of a novel cationic pterin intermediate. We also show that two conserved loops generate a substructure during catalysis that creates a specific binding pocket for p-aminobenzoic acid, one of the two DHPS substrates. This substructure, together with the pterin-binding pocket, explains the roles of the conserved active-site residues and reveals how sulfonamide resistance arises.

  5. Structural similarity of bovine lung prostaglandin F synthase to lens epsilon-crystallin of the European common frog.

    PubMed Central

    Watanabe, K; Fujii, Y; Nakayama, K; Ohkubo, H; Kuramitsu, S; Kagamiyama, H; Nakanishi, S; Hayaishi, O

    1988-01-01

    Cloned cDNA sequences specific for prostaglandin F (PGF) synthase have been isolated from a cDNA library of bovine lung mRNA sequences. Nucleotide-sequence analyses of cloned cDNA inserts have revealed that PGF synthase consists of a 969-base pair open reading frame coding for a 323-amino acid polypeptide with a Mr of 36,666. The sequence analysis indicates that bovine lung PGF synthase shows 62% identical plus conservative substitutions compared with human liver aldehyde reductase [Wermuth, B., Omar, A., Forster, A., Francesco, C., Wolf, M., Wartburg, J.P., Bullock, B. & Gabbay, K.H. (1987) in Enzymology and Molecular Biology of Carbonyl Metabolism: Aldehyde Dehydrogenase, Aldo-Keto Reductase, and Alcohol Dehydrogenase, eds. Weiner, H. & Flynn, T.G. (Liss, New York), pp. 297-307], which is similar to PGF synthase in molecular weight and substrate specificity. However, comparison of the amino acid sequence of PGF synthase with the National Biomedical Research Foundation protein data base reveals that the sequences of 225 amino acids from C termini of epsilon-crystallin of the European common frog (Rana temporaria) [Tomarev, S.I., Zinovieva, R.D., Dolgilevich, S.M., Luchin, S.V., Krayev, A.S., Skryabin, K.G. & Gause, G.G. (1984) FEBS Lett. 171, 297-302] and of PGF synthase show 77% identical and conservative substitutions without deletions/additions. The result suggests that European common frog lens epsilon-crystallin is identical to bovine lung PGF synthase. Images PMID:2829166

  6. Molecular Docking Analysis of Selected Clinacanthus nutans Constituents as Xanthine Oxidase, Nitric Oxide Synthase, Human Neutrophil Elastase, Matrix Metalloproteinase 2, Matrix Metalloproteinase 9 and Squalene Synthase Inhibitors

    PubMed Central

    Narayanaswamy, Radhakrishnan; Isha, Azizul; Wai, Lam Kok; Ismail, Intan Safinar

    2016-01-01

    Background: Clinacanthus nutans (Burm. f.) Lindau has gained popularity among Malaysians as a traditional plant for anti-inflammatory activity. Objective: This prompted us to carry out the present study on a selected 11 constituents of C. nutans which are clinacoside A–C, cycloclinacoside A1, shaftoside, vitexin, orientin, isovitexin, isoorientin, lupeol and β-sitosterol. Materials and Methods: Selected 11 constituents of C. nutans were evaluated on the docking behavior of xanthine oxidase (XO), nitric oxide synthase (NOS), human neutrophil elastase (HNE), matrix metalloproteinase (MMP 2 and 9), and squalene synthase (SQS) using Discovery Studio Version 3.1. Also, molecular physicochemical, bioactivity, absorption, distribution, metabolism, excretion, and toxicity (ADMET), and toxicity prediction by computer assisted technology analyzes were also carried out. Results: The molecular physicochemical analysis revealed that four ligands, namely clinacoside A–C and cycloclinacoside A1 showed nil violations and complied with Lipinski's rule of five. As for the analysis of bioactivity, all the 11 selected constituents of C. nutans exhibited active score (>0) toward enzyme inhibitors descriptor. ADMET analysis showed that the ligands except orientin and isoorientin were predicted to have Cytochrome P4502D6 inhibition effect. Docking studies and binding free energy calculations revealed that clinacoside B exhibited the least binding energy for the target enzymes except for XO and SQS. Isovitexin and isoorientin showed the potentials in the docking and binding with all of the six targeted enzymes, whereas vitexin and orientin docked and bound with only NOS and HNE. Conclusion: This present study has paved a new insight in understanding these 11 C. nutans ligands as potential inhibitors against XO, NOS, HNE, MMP 2, MMP 9, and SQS. SUMMARY Isovitexin and isoorientin (Clinacanthus nutans constituent) showed potentials in the docking and binding with all of the six targeted

  7. Identification and characterization of the Populus sucrose synthase gene family.

    PubMed

    An, Xinmin; Chen, Zhong; Wang, Jingcheng; Ye, Meixia; Ji, Lexiang; Wang, Jia; Liao, Weihua; Ma, Huandi

    2014-04-10

    In this study, we indentified 15 sucrose synthase (SS) genes in Populus and the results of RT-qPCR revealed that their expression patterns were constitutive and partially overlapping but diverse. The release of the most recent Populus genomic data in Phytozome v9.1 has revealed the largest SS gene family described to date, comprising 15 distinct members. This information will now enable the analysis of transcript expression profiles for those that have not been previously reported. Here, we performed a comprehensive analysis of SS genes in Populus by describing the gene structure, chromosomal location and phylogenetic relationship of each family member. A total of 15 putative SS gene members were identified in the Populus trichocarpa (Torr. & Gray) genome using the SS domain and amino acid sequences from Arabidopsis thaliana as a probe. A phylogenetic analysis indicated that the 15 members could be classified into four groups that fall into three major categories: dicots, monocots & dicots 1 (M & D 1), and monocots & dicots 2 (M & D 2). In addition, the 15 SS genes were found to be unevenly distributed on seven chromosomes. The two conserved domains (sucrose synthase and glycosyl transferase) were found in this family. Meanwhile, the expression profiles of all 15 gene members in seven different organs were investigated in Populus tomentosa (Carr.) by using RT-qPCR. Additional analysis indicated that the poplar SS gene family is also involved in response to water-deficit. The current study provides basic information that will assist in elucidating the functions of poplar SS family. PMID:24508272

  8. Phasin proteins activate Aeromonas caviae polyhydroxyalkanoate (PHA) synthase but not Ralstonia eutropha PHA synthase.

    PubMed

    Ushimaru, Kazunori; Motoda, Yoko; Numata, Keiji; Tsuge, Takeharu

    2014-05-01

    In this study, we performed in vitro and in vivo activity assays of polyhydroxyalkanoate (PHA) synthases (PhaCs) in the presence of phasin proteins (PhaPs), which revealed that PhaPs are activators of PhaC derived from Aeromonas caviae (PhaCAc). In in vitro assays, among the three PhaCs tested, PhaCAc was significantly activated when PhaPs were added at the beginning of polymerization (prepolymerization PhaCAc), whereas the prepolymerization PhaCRe (derived from Ralstonia eutropha) and PhaCDa (Delftia acidovorans) showed reduced activity with PhaPs. The PhaP-activated PhaCAc showed a slight shift of substrate preference toward 3-hydroxyhexanoyl-CoA (C6). PhaPAc also activated PhaCAc when it was added during polymerization (polymer-elongating PhaCAc), while this effect was not observed for PhaCRe. In an in vivo assay using Escherichia coli TOP10 as the host strain, the effect of PhaPAc expression on PHA synthesis by PhaCAc or PhaCRe was examined. As PhaPAc expression increased, PHA production was increased by up to 2.3-fold in the PhaCAc-expressing strain, whereas it was slightly increased in the PhaCRe-expressing strain. Taken together, this study provides evidence that PhaPs function as activators for PhaCAc both in vitro and in vivo but do not activate PhaCRe. This activating effect may be attributed to the new role of PhaPs in the polymerization reaction by PhaCAc.

  9. POM-POM2/CELLULOSE SYNTHASE INTERACTING1 Is Essential for the Functional Association of Cellulose Synthase and Microtubules in Arabidopsis[W][OA

    PubMed Central

    Bringmann, Martin; Li, Eryang; Sampathkumar, Arun; Kocabek, Tomas; Hauser, Marie-Theres; Persson, Staffan

    2012-01-01

    In plants, regulation of cellulose synthesis is fundamental for morphogenesis and plant growth. Cellulose is synthesized at the plasma membrane, and the orientation of synthesis is guided by cortical microtubules; however, the guiding mechanism is currently unknown. We show that the conditional root elongation pom2 mutants are impaired in cell elongation, fertility, and microtubule-related functions. Map-based cloning of the POM-POM2 locus revealed that it is allelic to CELLULOSE SYNTHASE INTERACTING1 (CSI1). Fluorescently tagged POM2/CSI1s associated with both plasma membrane–located cellulose synthases (CESAs) and post-Golgi CESA-containing compartments. Interestingly, while CESA insertions coincided with cortical microtubules in the pom2/csi1 mutants, the microtubule-defined movement of the CESAs was significantly reduced in the mutant. We propose that POM2/CSI1 provides a scaffold between the CESAs and cortical microtubules that guide cellulose synthesis. PMID:22294619

  10. POM-POM2/cellulose synthase interacting1 is essential for the functional association of cellulose synthase and microtubules in Arabidopsis.

    PubMed

    Bringmann, Martin; Li, Eryang; Sampathkumar, Arun; Kocabek, Tomas; Hauser, Marie-Theres; Persson, Staffan

    2012-01-01

    In plants, regulation of cellulose synthesis is fundamental for morphogenesis and plant growth. Cellulose is synthesized at the plasma membrane, and the orientation of synthesis is guided by cortical microtubules; however, the guiding mechanism is currently unknown. We show that the conditional root elongation pom2 mutants are impaired in cell elongation, fertility, and microtubule-related functions. Map-based cloning of the POM-POM2 locus revealed that it is allelic to CELLULOSE SYNTHASE INTERACTING1 (CSI1). Fluorescently tagged POM2/CSI1s associated with both plasma membrane-located cellulose synthases (CESAs) and post-Golgi CESA-containing compartments. Interestingly, while CESA insertions coincided with cortical microtubules in the pom2/csi1 mutants, the microtubule-defined movement of the CESAs was significantly reduced in the mutant. We propose that POM2/CSI1 provides a scaffold between the CESAs and cortical microtubules that guide cellulose synthesis. PMID:22294619

  11. Benzophenone synthase from Garcinia mangostana L. pericarps.

    PubMed

    Nualkaew, Natsajee; Morita, Hiroyuki; Shimokawa, Yoshihiko; Kinjo, Keishi; Kushiro, Tetsuo; De-Eknamkul, Wanchai; Ebizuka, Yutaka; Abe, Ikuro

    2012-05-01

    The cDNA of a benzophenone synthase (BPS), a type III polyketide synthase (PKS), was cloned and the recombinant protein expressed from the fruit pericarps of Garcinia mangostana L., which contains mainly prenylated xanthones. The obtained GmBPS showed an amino acid sequence identity of 77-78% with other plant BPSs belonging to the same family (Clusiaceae). The recombinant enzyme produced 2,4,6-trihydroxybenzophenone as the predominant product with benzoyl CoA as substrate. It also accepted other substrates, such as other plant PKSs, and used 1-3 molecules of malonyl CoA to form various phloroglucinol-type and polyketide lactone-type compounds. Thus, providing GmBPS with various substrates in vivo might redirect the xanthone biosynthetic pathway.

  12. Bovine F1Fo ATP synthase monomers bend the lipid bilayer in 2D membrane crystals

    PubMed Central

    Jiko, Chimari; Davies, Karen M; Shinzawa-Itoh, Kyoko; Tani, Kazutoshi; Maeda, Shintaro; Mills, Deryck J; Tsukihara, Tomitake; Fujiyoshi, Yoshinori; Kühlbrandt, Werner; Gerle, Christoph

    2015-01-01

    We have used a combination of electron cryo-tomography, subtomogram averaging, and electron crystallographic image processing to analyse the structure of intact bovine F1Fo ATP synthase in 2D membrane crystals. ATPase assays and mass spectrometry analysis of the 2D crystals confirmed that the enzyme complex was complete and active. The structure of the matrix-exposed region was determined at 24 Å resolution by subtomogram averaging and repositioned into the tomographic volume to reveal the crystal packing. F1Fo ATP synthase complexes are inclined by 16° relative to the crystal plane, resulting in a zigzag topology of the membrane and indicating that monomeric bovine heart F1Fo ATP synthase by itself is sufficient to deform lipid bilayers. This local membrane curvature is likely to be instrumental in the formation of ATP synthase dimers and dimer rows, and thus for the shaping of mitochondrial cristae. DOI: http://dx.doi.org/10.7554/eLife.06119.001 PMID:25815585

  13. Characterisation of a Recombinant Patchoulol Synthase Variant for Biocatalytic Production of Terpenes.

    PubMed

    Frister, Thore; Hartwig, Steffen; Alemdar, Semra; Schnatz, Katharina; Thöns, Laura; Scheper, Thomas; Beutel, Sascha

    2015-08-01

    The patchoulol synthase (PTS) is a multi-product sesquiterpene synthases which is the central enzyme for biosynthesis of patchouli essential oil in the patchouli plant. Sesquiterpene synthases catalyse the formation of various complex carbon backbones difficult to approach by organic synthesis. Here, we report the characterisation of a recombinant patchoulol synthase complementary DNA (cDNA) variant (PTS var. 1), exhibiting significant amino acid exchanges compared to the native PTS. The product spectrum using the natural substrate E,E-farnesyl diphosphate (FDP) as well as terpenoid products resulting from conversions employing alternative substrates was analysed by GC-MS. In respect to a potential use as a biocatalyst, important enzymatic parameters such as the optimal reaction conditions, kinetic behaviour and the product selectivity were studied as well. Adjusting the reaction conditions, an increased patchoulol ratio in the recombinant essential oil was achieved. Nevertheless, the ratio remained lower than in plant-derived patchouli oil. As alternative substrates, several prenyl diposphates were accepted and converted in numerous compounds by the PTS var. 1, revealing its great biocatalytic potential. PMID:26100386

  14. Common regulatory control of CTP synthase enzyme activity and filament formation

    PubMed Central

    Noree, Chalongrat; Monfort, Elena; Shiau, Andrew K.; Wilhelm, James E.

    2014-01-01

    The ability of enzymes to assemble into visible supramolecular complexes is a widespread phenomenon. Such complexes have been hypothesized to play a number of roles; however, little is known about how the regulation of enzyme activity is coupled to the assembly/disassembly of these cellular structures. CTP synthase is an ideal model system for addressing this question because its activity is regulated via multiple mechanisms and its filament-forming ability is evolutionarily conserved. Our structure–function studies of CTP synthase in Saccharomyces cerevisiae reveal that destabilization of the active tetrameric form of the enzyme increases filament formation, suggesting that the filaments comprise inactive CTP synthase dimers. Furthermore, the sites responsible for feedback inhibition and allosteric activation control filament length, implying that multiple regions of the enzyme can influence filament structure. In contrast, blocking catalysis without disrupting the regulatory sites of the enzyme does not affect filament formation or length. Together our results argue that the regulatory sites that control CTP synthase function, but not enzymatic activity per se, are critical for controlling filament assembly. We predict that the ability of enzymes to form supramolecular structures in general is closely coupled to the mechanisms that regulate their activity. PMID:24920825

  15. Phenolic lipid synthesis by type III polyketide synthases is essential for cyst formation in Azotobacter vinelandii.

    PubMed

    Funa, Nobutaka; Ozawa, Hiroki; Hirata, Aiko; Horinouchi, Sueharu

    2006-04-18

    Cysts of Azotobacter vinelandii are resting cells that are surrounded by a protective coat, conferring resistance to various chemical and physical agents. The major chemical components of the cyst coat are alkylresorcinols, which are amphiphilic molecules possessing an aromatic ring with a long aliphatic carbon chain. Although alkylresorcinols are widely distributed in bacteria, fungi, plants, and animals, no enzyme systems for their biosynthesis are known. We report here an ars operon in A. vinelandii that is responsible for the biosynthesis of the alkylresorcinols in the cysts. The ars operon consisted of four genes, two of which encoded a type III polyketide synthase, ArsB and ArsC. In vitro experiments revealed that ArsB and ArsC, sharing 71% amino acid sequence identity, were an alkylresorcinol synthase and an alkylpyrone synthase, respectively, indicating that ArsB and ArsC are not isozymes but enzymatically distinct polyketide synthases. In addition, ArsB and ArsC accepted several acyl-CoAs with various lengths of the side chain as a starter substrate and gave corresponding alkylresorcinols and alkylpyrones, respectively, which suggests that the mode of the ring folding is uninfluenced by the structure of the starter substrates. The importance of the alkylresorcinols for encystment was confirmed by gene inactivation experiments; the lack of alkylresorcinols synthesis caused by ars mutations resulted in the formation of severely impaired cysts, as observed by electron microscopy.

  16. Computational-guided discovery and characterization of a sesquiterpene synthase from Streptomyces clavuligerus

    PubMed Central

    Chow, Jeng-Yeong; Tian, Bo-Xue; Ramamoorthy, Gurusankar; Hillerich, Brandan S.; Seidel, Ronald D.; Almo, Steven C.; Jacobson, Matthew P.; Poulter, C. Dale

    2015-01-01

    Terpenoids are a large structurally diverse group of natural products with an array of functions in their hosts. The large amount of genomic information from recent sequencing efforts provides opportunities and challenges for the functional assignment of terpene synthases that construct the carbon skeletons of these compounds. Inferring function from the sequence and/or structure of these enzymes is not trivial because of the large number of possible reaction channels and products. We tackle this problem by developing an algorithm to enumerate possible carbocations derived from the farnesyl cation, the first reactive intermediate of the substrate, and evaluating their steric and electrostatic compatibility with the active site. The homology model of a putative pentalenene synthase (Uniprot: B5GLM7) from Streptomyces clavuligerus was used in an automated computational workflow for product prediction. Surprisingly, the workflow predicted a linear triquinane scaffold as the top product skeleton for B5GLM7. Biochemical characterization of B5GLM7 reveals the major product as (5S,7S,10R,11S)-cucumene, a sesquiterpene with a linear triquinane scaffold. To our knowledge, this is the first documentation of a terpene synthase involved in the synthesis of a linear triquinane. The success of our prediction for B5GLM7 suggests that this approach can be used to facilitate the functional assignment of novel terpene synthases. PMID:25901324

  17. Biochemical and Structural Study of the Atypical Acyltransferase Domain from the Mycobacterial Polyketide Synthase Pks13*

    PubMed Central

    Bergeret, Fabien; Gavalda, Sabine; Chalut, Christian; Malaga, Wladimir; Quémard, Annaïk; Pedelacq, Jean-Denis; Daffé, Mamadou; Guilhot, Christophe; Mourey, Lionel; Bon, Cécile

    2012-01-01

    Pks13 is a type I polyketide synthase involved in the final biosynthesis step of mycolic acids, virulence factors, and essential components of the Mycobacterium tuberculosis envelope. Here, we report the biochemical and structural characterization of a 52-kDa fragment containing the acyltransferase domain of Pks13. This fragment retains the ability to load atypical extender units, unusually long chain acyl-CoA with a predilection for carboxylated substrates. High resolution crystal structures were determined for the apo, palmitoylated, and carboxypalmitoylated forms. Structural conservation with type I polyketide synthases and related fatty-acid synthases also extends to the interdomain connections. Subtle changes could be identified both in the active site and in the upstream and downstream linkers in line with the organization displayed by this singular polyketide synthase. More importantly, the crystallographic analysis illustrated for the first time how a long saturated chain can fit in the core structure of an acyltransferase domain through a dedicated channel. The structures also revealed the unexpected binding of a 12-mer peptide that might provide insight into domain-domain interaction. PMID:22825853

  18. Human fatty acid synthase: Structure and substrate selectivity of the thioesterase domain

    PubMed Central

    Chakravarty, Bornali; Gu, Ziwei; Chirala, Subrahmanyam S.; Wakil, Salih J.; Quiocho, Florante A.

    2004-01-01

    Human fatty acid synthase is a large homodimeric multifunctional enzyme that synthesizes palmitic acid. The unique carboxyl terminal thioesterase domain of fatty acid synthase hydrolyzes the growing fatty acid chain and plays a critical role in regulating the chain length of fatty acid released. Also, the up-regulation of human fatty acid synthase in a variety of cancer makes the thioesterase a candidate target for therapeutic treatment. The 2.6-Å resolution structure of human fatty acid synthase thioesterase domain reported here is comprised of two dissimilar subdomains, A and B. The smaller subdomain B is composed entirely of α-helices arranged in an atypical fold, whereas the A subdomain is a variation of the α/β hydrolase fold. The structure revealed the presence of a hydrophobic groove with a distal pocket at the interface of the two subdomains, which constitutes the candidate substrate binding site. The length and largely hydrophobic nature of the groove and pocket are consistent with the high selectivity of the thioesterase for palmitoyl acyl substrate. The structure also set the identity of the Asp residue of the catalytic triad of Ser, His, and Asp located in subdomain A at the proximal end of the groove. PMID:15507492

  19. Multi-Site Prenylation of 4-Substituted Tryptophans by Dimethylallyltryptophan Synthase

    PubMed Central

    Rudolf, Jeffrey D.; Wang, Hong; Poulter, C. Dale

    2013-01-01

    The aromatic prenyltransferase dimethylallyltryptophan synthase in Claviceps purpurea catalyzes the normal prenylation of tryptophan at C4 of the indole nucleus in the first committed step of ergot alkaloid biosynthesis. 4-Methyltryptophan is a competitive inhibitor of the enzyme that has been used in kinetic studies. Upon investigation of background activity during incubations of 4-methyltryptophan with dimethylallyl diphosphate, we found that the analogue was an alternate substrate, which gave four products. The structures of three of these compounds were established by 1H NMR and 2D NMR studies and revealed that dimethylallyltryptophan synthase catalyzed both normal and reverse prenylation at C3 of the indole ring and normal prenylation of N1. Similarly, 4-methoxytryptophan was an alternate substrate, giving normal prenylation at C5 as the major product. 4-Aminotryptophan, another alternate substrate, gave normal prenylation at C5 and C7. The ability of dimethylallyltryptophan synthase to prenylate at five different sites on the indole nucleus, with normal and reverse prenylation at one of the sites, is consistent with a dissociative electrophilic alkylation of the indole ring where orientation of the substrates within the active site and substituent electronic effects determine the position and type of prenylation. These results suggest a common mechanism for prenylation of tryptophan by all of the members of the structurally related dimethylallyltryptophan synthase family. PMID:23301871

  20. Antisense repression of sucrose phosphate synthase in transgenic muskmelon alters plant growth and fruit development

    SciTech Connect

    Tian, Hongmei; Ma, Leyuan; Zhao, Cong; Hao, Hui; Gong, Biao; Yu, Xiyan; Wang, Xiufeng

    2010-03-12

    To unravel the roles of sucrose phosphate synthase (SPS) in muskmelon (Cucumis melo L.), we reduced its activity in transgenic muskmelon plants by an antisense approach. For this purpose, an 830 bp cDNA fragment of muskmelon sucrose phosphate synthase was expressed in antisense orientation behind the 35S promoter of the cauliflower mosaic virus. The phenotype of the antisense plants clearly differed from that of control plants. The transgenic plant leaves were markedly smaller, and the plant height and stem diameter were obviously shorter and thinner. Transmission electron microscope observation revealed that the membrane degradation of chloroplast happened in transgenic leaves and the numbers of grana and grana lamella in the chloroplast were significantly less, suggesting that the slow growth and weaker phenotype of transgenic plants may be due to the damage of the chloroplast ultrastructure, which in turn results in the decrease of the net photosynthetic rate. The sucrose concentration and levels of sucrose phosphate synthase decreased in transgenic mature fruit, and the fruit size was smaller than the control fruit. Together, our results suggest that sucrose phosphate synthase may play an important role in regulating the muskmelon plant growth and fruit development.

  1. Building-block selectivity of polyketide synthases.

    PubMed

    Liou, Grace F; Khosla, Chaitan

    2003-04-01

    For the past decade, polyketide synthases have presented an exciting paradigm for the controlled manipulation of complex natural product structure. These multifunctional enzymes catalyze the biosynthesis of polyketide natural products by stepwise condensation and modification of metabolically derived building blocks. In particular, regioselective modification of polyketide structure is possible by alterations in either intracellular acyl-CoA pools or, more commonly, by manipulation of acyl transferases that act as the primary gatekeepers for building blocks.

  2. Chrysanthemyl diphosphate synthase operates in planta as a bifunctional enzyme with chrysanthemol synthase activity.

    PubMed

    Yang, Ting; Gao, Liping; Hu, Hao; Stoopen, Geert; Wang, Caiyun; Jongsma, Maarten A

    2014-12-26

    Chrysanthemyl diphosphate synthase (CDS) is the first pathway-specific enzyme in the biosynthesis of pyrethrins, the most widely used plant-derived pesticide. CDS catalyzes c1'-2-3 cyclopropanation reactions of two molecules of dimethylallyl diphosphate (DMAPP) to yield chrysanthemyl diphosphate (CPP). Three proteins are known to catalyze this cyclopropanation reaction of terpene precursors. Two of them, phytoene and squalene synthase, are bifunctional enzymes with both prenyltransferase and terpene synthase activity. CDS, the other member, has been reported to perform only the prenyltransferase step. Here we show that the NDXXD catalytic motif of CDS, under the lower substrate conditions prevalent in plants, also catalyzes the next step, converting CPP into chrysanthemol by hydrolyzing the diphosphate moiety. The enzymatic hydrolysis reaction followed conventional Michaelis-Menten kinetics, with a Km value for CPP of 196 μm. For the chrysanthemol synthase activity, DMAPP competed with CPP as substrate. The DMAPP concentration required for half-maximal activity to produce chrysanthemol was ∼100 μm, and significant substrate inhibition was observed at elevated DMAPP concentrations. The N-terminal peptide of CDS was identified as a plastid-targeting peptide. Transgenic tobacco plants overexpressing CDS emitted chrysanthemol at a rate of 0.12-0.16 μg h(-1) g(-1) fresh weight. We propose that CDS should be renamed a chrysanthemol synthase utilizing DMAPP as substrate.

  3. Chrysanthemyl Diphosphate Synthase Operates in Planta as a Bifunctional Enzyme with Chrysanthemol Synthase Activity*

    PubMed Central

    Yang, Ting; Gao, Liping; Hu, Hao; Stoopen, Geert; Wang, Caiyun; Jongsma, Maarten A.

    2014-01-01

    Chrysanthemyl diphosphate synthase (CDS) is the first pathway-specific enzyme in the biosynthesis of pyrethrins, the most widely used plant-derived pesticide. CDS catalyzes c1′-2-3 cyclopropanation reactions of two molecules of dimethylallyl diphosphate (DMAPP) to yield chrysanthemyl diphosphate (CPP). Three proteins are known to catalyze this cyclopropanation reaction of terpene precursors. Two of them, phytoene and squalene synthase, are bifunctional enzymes with both prenyltransferase and terpene synthase activity. CDS, the other member, has been reported to perform only the prenyltransferase step. Here we show that the NDXXD catalytic motif of CDS, under the lower substrate conditions prevalent in plants, also catalyzes the next step, converting CPP into chrysanthemol by hydrolyzing the diphosphate moiety. The enzymatic hydrolysis reaction followed conventional Michaelis-Menten kinetics, with a Km value for CPP of 196 μm. For the chrysanthemol synthase activity, DMAPP competed with CPP as substrate. The DMAPP concentration required for half-maximal activity to produce chrysanthemol was ∼100 μm, and significant substrate inhibition was observed at elevated DMAPP concentrations. The N-terminal peptide of CDS was identified as a plastid-targeting peptide. Transgenic tobacco plants overexpressing CDS emitted chrysanthemol at a rate of 0.12–0.16 μg h−1 g−1 fresh weight. We propose that CDS should be renamed a chrysanthemol synthase utilizing DMAPP as substrate. PMID:25378387

  4. Oligosaccharide Binding in Escherichia coli Glycogen Synthase

    SciTech Connect

    Sheng, Fang; Yep, Alejandra; Feng, Lei; Preiss, Jack; Geiger, James H.

    2010-11-17

    Glycogen/starch synthase elongates glucan chains and is the key enzyme in the synthesis of glycogen in bacteria and starch in plants. Cocrystallization of Escherichia coli wild-type glycogen synthase (GS) with substrate ADPGlc and the glucan acceptor mimic HEPPSO produced a closed form of GS and suggests that domain-domain closure accompanies glycogen synthesis. Cocrystallization of the inactive GS mutant E377A with substrate ADPGlc and oligosaccharide results in the first oligosaccharide-bound glycogen synthase structure. Four bound oligosaccharides are observed, one in the interdomain cleft (G6a) and three on the N-terminal domain surface (G6b, G6c, and G6d). Extending from the center of the enzyme to the interdomain cleft opening, G6a mostly interacts with the highly conserved N-terminal domain residues lining the cleft of GS. The surface-bound oligosaccharides G6c and G6d have less interaction with enzyme and exhibit a more curled, helixlike structural arrangement. The observation that oligosaccharides bind only to the N-terminal domain of GS suggests that glycogen in vivo probably binds to only one side of the enzyme to ensure unencumbered interdomain movement, which is required for efficient, continuous glucan-chain synthesis.

  5. UVB-irradiated keratinocytes induce melanoma-associated ganglioside GD3 synthase gene in melanocytes via secretion of tumor necrosis factor α and interleukin 6

    SciTech Connect

    Miyata, Maiko; Ichihara, Masatoshi; Tajima, Orie; Sobue, Sayaka; Kambe, Mariko; Sugiura, Kazumitsu; Furukawa, Koichi; Furukawa, Keiko

    2014-03-07

    Highlights: • Melanocytes showed low ST8SIA1 and high B3GALT4 levels in contrast with melanomas. • Direct UVB irradiation of melanocytes did not induce ganglioside synthase genes. • Culture supernatants of UVB-irradiated keratinocytes induced ST8SIA1 in melanocytes. • TNFα and IL-6 secreted from keratinocytes enhanced ST8SIA1 expression in melanocytes. • Inflammatory cytokines induced melanoma-related ST8SIA1 in melanocytes. - Abstract: Although expression of gangliosides and their synthetic enzyme genes in malignant melanomas has been well studied, that in normal melanocytes has been scarcely analyzed. In particular, changes in expression levels of glycosyltransferase genes responsible for ganglioside synthesis during evolution of melanomas from melanocytes are very important to understand roles of gangliosides in melanomas. Here, expression of glycosyltransferase genes related to the ganglioside synthesis was analyzed using RNAs from cultured melanocytes and melanoma cell lines. Quantitative RT-PCR revealed that melanomas expressed high levels of mRNA of GD3 synthase and GM2/GD2 synthase genes and low levels of GM1/GD1b synthase genes compared with melanocytes. As a representative exogenous stimulation, effects of ultraviolet B (UVB) on the expression levels of 3 major ganglioside synthase genes in melanocytes were analyzed. Although direct UVB irradiation of melanocytes caused no marked changes, culture supernatants of UVB-irradiated keratinocytes (HaCaT cells) induced definite up-regulation of GD3 synthase and GM2/GD2 synthase genes. Detailed examination of the supernatants revealed that inflammatory cytokines such as TNFα and IL-6 enhanced GD3 synthase gene expression. These results suggest that inflammatory cytokines secreted from UVB-irradiated keratinocytes induced melanoma-associated ganglioside synthase genes, proposing roles of skin microenvironment in the promotion of melanoma-like ganglioside profiles in melanocytes.

  6. Modes of inactivation of trichodiene synthase by a cyclopropane-containing farnesyldiphosphate analog.

    PubMed

    Hong, Young J; Tantillo, Dean J

    2009-10-01

    We describe quantum chemical calculations on the rearrangement of carbocations derived from a cyclopropane-containing analog of farnesyl diphosphate (FPP). These calculations reveal significant differences between the energetics for rearrangement of this analog and FPP itself, suggesting that the behavior of this substrate analog likely does not mirror that of the natural substrate. In addition, our results point to new mechanisms by which this FPP analog inactivates trichodiene synthase. PMID:19763318

  7. Critical role of glycogen synthase kinase-3ß in regulating the avian heterophil response to Salmonella enterica serovar Enteritidis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A microarray-assisted gene expression screen of chicken heterophils revealed glycogen synthase kinase-3ß (GSK-3ß), a multifunctional Ser/Thr kinase, to be consistently up-regulated 30-180 min following stimulation with Salmonella enterica serovar Enteritidis (S. Enteritidis). The present study was ...

  8. Mutational analysis of a monoterpene synthase reaction: altered catalysis through directed mutagenesis of (-)-pinene synthase from Abies grandis.

    PubMed

    Hyatt, David C; Croteau, Rodney

    2005-07-15

    Two monoterpene synthases, (-)-pinene synthase and (-)-camphene synthase, from grand fir (Abies grandis) produce different product mixtures despite having highly homologous amino acid sequences and, presumably, very similar three-dimensional structures. The major product of (-)-camphene synthase, (-)-camphene, and the major products of (-)-pinene synthase, (-)-alpha-pinene, and (-)-beta-pinene, arise through distinct mechanistic variations of the electrophilic reaction cascade that is common to terpenoid synthases. Structural modeling followed by directed mutagenesis in (-)-pinene synthase was used to replace selected amino acid residues with the corresponding residues from (-)-camphene synthase in an effort to identify the amino acids responsible for the catalytic differences. This approach produced an enzyme in which more than half of the product was channeled through an alternative pathway. It was also shown that several (-)-pinene synthase to (-)-camphene synthase amino acid substitutions were necessary before catalysis was significantly altered. The data support a model in which the collective action of many key amino acids, located both in and distant from the active site pocket, regulate the course of the electrophilic reaction cascade.

  9. Differences in Substrate Specificities of Five Bacterial Wax Ester Synthases

    PubMed Central

    Wahlen, Bradley D.; Garner, EmmaLee; Wei, Jiashi; Seefeldt, Lance C.

    2012-01-01

    Wax esters are produced in certain bacteria as a potential carbon and energy storage compound. The final enzyme in the biosynthetic pathway responsible for wax ester production is the bifunctional wax ester synthase/acyl-coenzyme A (acyl-CoA):diacylglycerol acyltransferase (WS/DGAT), which utilizes a range of fatty alcohols and fatty acyl-CoAs to synthesize the corresponding wax ester. We report here the isolation and substrate range characterization for five WS/DGAT enzymes from four different bacteria: Marinobacter aquaeolei VT8, Acinetobacter baylyi, Rhodococcus jostii RHA1, and Psychrobacter cryohalolentis K5. The results from kinetic studies of isolated enzymes reveal a differential activity based on the order of substrate addition and reveal subtle differences between the substrate selectivity of the different enzymes. These in vitro results are compared to the wax ester and triacylglyceride product profiles obtained from each organism grown under neutral lipid accumulating conditions, providing potential insights into the role that the WS/DGAT enzyme plays in determining the final wax ester products that are produced under conditions of nutrient stress in each of these bacteria. Further, the analysis revealed that one enzyme in particular from M. aquaeolei VT8 showed the greatest potential for future study based on rapid purification and significantly higher activity than was found for the other isolated WS/DGAT enzymes. The results provide a framework to test prospective differences between these enzymes for potential biotechnological applications such as high-value petrochemicals and biofuel production. PMID:22685145

  10. Inhibition of nitric oxide synthase does not impair spatial learning.

    PubMed

    Bannerman, D M; Chapman, P F; Kelly, P A; Butcher, S P; Morris, R G

    1994-12-01

    Nitric oxide (NO), a putative intercellular messenger in the CNS, may be involved in certain forms of synaptic plasticity and learning. This article reports a series of experiments investigating the effects of N omega-nitro-L-arginine methyl ester (L-NAME) upon various forms of learning and memory in the watermaze. L-NAME (75 mg/kg, i.p., sufficient to bring about > 90% inhibition of NO synthesis in brain) produced an apparent impairment in spatial learning when given to naive rats during acquisition (3 d, six training trials per day). This impairment was dose related, stereoselective, and attenuated by coadministration of L-arginine. A second study showed that L-NAME did not affect the retention of a previously learned spatial task. In addition, in a visual discrimination task, the rate at which criterion levels of performance were reached was unaffected by L-NAME. Thus, inhibition of NO synthase may cause a selective impairment of spatial learning without effect upon retention. However, analysis of the early training trials of the visual discrimination task revealed significantly elevated escape latencies in the L-NAME-treated rats, suggesting that inhibition of NO synthase may have more general effects. As normal rats learn the spatial task very rapidly, the possibility arises that the apparent deficit in learning is due to a disruption of some process other than learning per se. A further series of experiments investigated this possibility. L-NAME was found not to impair the learning of a new platform position in the same spatial environment. Surprisingly, L-NAME also had no effect on spatial learning in a second watermaze located in a novel spatial environment by rats well practiced with all aspects of watermaze training. Finally, L-NAME had no effect on spatial learning in naive rats trained with just one trial per day. Thus, systemic injection of an NO synthase inhibitor impairs behavioral performance in two tasks during their initial acquisition, but the

  11. Regulation of mitochondrial ATP synthase in cardiac pathophysiology.

    PubMed

    Long, Qinqiang; Yang, Kevin; Yang, Qinglin

    2015-01-01

    Mitochondrial function is paramount to energy homeostasis, metabolism, signaling, and apoptosis in cells. Mitochondrial complex V (ATP synthase), a molecular motor, is the ultimate ATP generator and a key determinant of mitochondrial function. ATP synthase catalyzes the final coupling step of oxidative phosphorylation to supply energy in the form of ATP. Alterations at this step will crucially impact mitochondrial respiration and hence cardiac performance. It is well established that cardiac contractility is strongly dependent on the mitochondria, and that myocardial ATP depletion is a key feature of heart failure. ATP synthase dysfunction can cause and exacerbate human diseases, such as cardiomyopathy and heart failure. While ATP synthase has been extensively studied, essential questions related to how the regulation of ATP synthase determines energy metabolism in the heart linger and therapies targeting this important mechanism remain scarce. This review will visit the main findings, identify unsolved issues and provide insights into potential future perspectives related to the regulation of ATP synthase and cardiac pathophysiology.

  12. Surrogate splicing for functional analysis of sesquiterpene synthase genes.

    PubMed

    Wu, Shuiqin; Schoenbeck, Mark A; Greenhagen, Bryan T; Takahashi, Shunji; Lee, Sungbeom; Coates, Robert M; Chappell, Joseph

    2005-07-01

    A method for the recovery of full-length cDNAs from predicted terpene synthase genes containing introns is described. The approach utilizes Agrobacterium-mediated transient expression coupled with a reverse transcription-polydeoxyribonucleotide chain reaction assay to facilitate expression cloning of processed transcripts. Subsequent expression of intronless cDNAs in a suitable prokaryotic host provides for direct functional testing of the encoded gene product. The method was optimized by examining the expression of an intron-containing beta-glucuronidase gene agroinfiltrated into petunia (Petunia hybrida) leaves, and its utility was demonstrated by defining the function of two previously uncharacterized terpene synthases. A tobacco (Nicotiana tabacum) terpene synthase-like gene containing six predicted introns was characterized as having 5-epi-aristolochene synthase activity, while an Arabidopsis (Arabidopsis thaliana) gene previously annotated as a terpene synthase was shown to possess a novel sesquiterpene synthase activity for alpha-barbatene, thujopsene, and beta-chamigrene biosynthesis. PMID:15965019

  13. Geranyl diphosphate synthase molecules, and nucleic acid molecules encoding same

    DOEpatents

    Croteau, Rodney Bruce; Burke, Charles Cullen

    2008-06-24

    In one aspect, the present invention provides isolated nucleic acid molecules that each encode a geranyl diphosphate synthase protein, wherein each isolated nucleic acid molecule hybridizes to a nucleic acid molecule consisting of the sequence set forth in SEQ ID NO:1 under conditions of 5.times.SSC at 45.degree. C. for one hour. The present invention also provides isolated geranyl diphosphate synthase proteins, and methods for altering the level of expression of geranyl diphosphate synthase protein in a host cell.

  14. Synthesis and biological evaluation of several dephosphonated analogues of CMP-Neu5Ac as inhibitors of GM3-synthase.

    PubMed

    Rota, Paola; Cirillo, Federica; Piccoli, Marco; Gregorio, Antonio; Tettamanti, Guido; Allevi, Pietro; Anastasia, Luigi

    2015-10-01

    Previous studies demonstrated that reducing the GM3 content in myoblasts increased the cell resistance to hypoxic stress, suggesting that a pharmacological inhibition of the GM3 synthesis could be instrumental for the development of new treatments for ischemic diseases. Herein, the synthesis of several dephosphonated CMP-Neu5Ac congeners and their anti-GM3-synthase activity is reported. Biological activity testes revealed that some inhibitors almost completely blocked the GM3-synthase activity in vitro and reduced the GM3 content in living embryonic kidney 293A cells, eventually activating the epidermal growth factor receptor (EGFR) signaling cascade.

  15. Pre-steady-state kinetic analysis of the trichodiene synthase reaction pathway.

    PubMed

    Cane, D E; Chiu, H T; Liang, P H; Anderson, K S

    1997-07-01

    The pre-steady-state kinetics of the trichodiene synthase reaction were investigated by rapid chemical quench methods. The single-turnover rate was found to be 3.5-3.8 s-1, a rate 40 times faster than the steady-state catalytic rate (kcat = 0.09 s-1) for trichodiene synthase-catalyzed conversion of farnesyl diphosphate (FPP) to trichodiene at 15 degrees C. In a multiturnover experiment, a burst phase (kb = 4.2 s-1) corresponding to the accumulation of trichodiene on the surface of the enzyme was followed by a slower, steady-state release of products (klin = 0.086 s-1) which corresponds to kcat. These results strongly suggest that the release of trichodiene from the enzyme active site is the rate-limiting step in the overall reaction, while the consumption of FPP is the step which limits chemical catalysis at the active site. Single-turnover experiments with trichodiene synthase mutant D101E, for which the steady-state rate constant kcat is 1/3 of that of wild type, revealed that the mutation actually depresses the rate of FPP consumption by a factor of 100. The deuterium isotope effect on the consumption of [1-2H,1,2-14C]FPP was found to be 1.11 +/- 0.06. Single turnover reactions of [1,2-14C]FPP catalyzed by trichodiene synthase were carried out at 4, 15, or 30 degrees C in an effort to provide direct observation of the proposed intermediate nerolidyl diphosphate (NPP). However, no NPP was detected, indicating that the conversion of NPP must be too fast to be observed within the detection limits of the assay. Taken together, these observations suggest that the isomerization of FPP to NPP is the step which limits the rate of chemical catalysis in the trichodiene synthase reaction pathway. PMID:9204880

  16. Glycogen Synthase in Sertoli Cells: More Than Glycogenesis?

    PubMed

    Maldonado, Rodrigo; Mancilla, Héctor; Villarroel-Espíndola, Franz; Slebe, Felipe; Slebe, Juan Carlos; Méndez, Raúl; Guinovart, Joan J; Concha, Ilona I

    2016-11-01

    Sertoli cell metabolism actively maintains the nutritional needs of germ cells. It has been described that after glucose incorporation in Sertoli cells, less than 1% is converted to glycogen suggesting low levels of glycogen synthase activity. Phosphorylation of muscle glycogen synthase (MGS) at serine 640 (pS640MGS) decreases its activity, and this form of the enzyme was discovered as a non-ribosomal protein that modulates the translation of a subset of transcripts in HeLa cells. The aim of our study was to functionally characterize MGS in cultured Sertoli cells, as well as to explore this new feature related to RNA molecules. We detected MGS in the cytoplasm of Sertoli cells as well as in the nuclei. The activity rates of the enzyme were extremely low indicating that MGS is expressed but almost inactive. Protein targeting to glycogen (PTG) overexpression was performed to activate MGS by dephosphorylation. PTG induced glycogen synthesis massively, confirming that this enzyme is present but inactive. This finding correlates with high levels of pS640MGS, which were assayed by phosphatase treatment. To explore a putative new function for MGS in Sertoli cells, we performed RNA immunoprecipitation coupled to microarray studies. The results revealed that MGS co-immunoprecipitated with the several mRNAs and also rRNAs. These findings indicate that MGS is expressed Sertoli cells but in an inactive form, and also support a possibly novel feature of this metabolic enzyme associated with RNA-related molecules. J. Cell. Biochem. 117: 2597-2607, 2016. © 2016 Wiley Periodicals, Inc. PMID:27017955

  17. Glycogen Synthase in Sertoli Cells: More Than Glycogenesis?

    PubMed

    Maldonado, Rodrigo; Mancilla, Héctor; Villarroel-Espíndola, Franz; Slebe, Felipe; Slebe, Juan Carlos; Méndez, Raúl; Guinovart, Joan J; Concha, Ilona I

    2016-11-01

    Sertoli cell metabolism actively maintains the nutritional needs of germ cells. It has been described that after glucose incorporation in Sertoli cells, less than 1% is converted to glycogen suggesting low levels of glycogen synthase activity. Phosphorylation of muscle glycogen synthase (MGS) at serine 640 (pS640MGS) decreases its activity, and this form of the enzyme was discovered as a non-ribosomal protein that modulates the translation of a subset of transcripts in HeLa cells. The aim of our study was to functionally characterize MGS in cultured Sertoli cells, as well as to explore this new feature related to RNA molecules. We detected MGS in the cytoplasm of Sertoli cells as well as in the nuclei. The activity rates of the enzyme were extremely low indicating that MGS is expressed but almost inactive. Protein targeting to glycogen (PTG) overexpression was performed to activate MGS by dephosphorylation. PTG induced glycogen synthesis massively, confirming that this enzyme is present but inactive. This finding correlates with high levels of pS640MGS, which were assayed by phosphatase treatment. To explore a putative new function for MGS in Sertoli cells, we performed RNA immunoprecipitation coupled to microarray studies. The results revealed that MGS co-immunoprecipitated with the several mRNAs and also rRNAs. These findings indicate that MGS is expressed Sertoli cells but in an inactive form, and also support a possibly novel feature of this metabolic enzyme associated with RNA-related molecules. J. Cell. Biochem. 117: 2597-2607, 2016. © 2016 Wiley Periodicals, Inc.

  18. Nucleotide sequence variation of chitin synthase genes among ectomycorrhizal fungi and its potential use in taxonomy.

    PubMed Central

    Mehmann, B; Brunner, I; Braus, G H

    1994-01-01

    DNA sequences of single-copy genes coding for chitin synthases (UDP-N-acetyl-D-glucosamine:chitin 4-beta-N-acetylglucosaminyltransferase; EC 2.4.1.16) were used to characterize ectomycorrhizal fungi. Degenerate primers deduced from short, completely conserved amino acid stretches flanking a region of about 200 amino acids of zymogenic chitin synthases allowed the amplification of DNA fragments of several members of this gene family. Different DNA band patterns were obtained from basidiomycetes because of variation in the number and length of amplified fragments. Cloning and sequencing of the most prominent DNA fragments revealed that these differences were due to various introns at conserved positions. The presence of introns in basidiomycetous fungi therefore has a potential use in identification of genera by analyzing PCR-generated DNA fragment patterns. Analyses of the nucleotide sequences of cloned fragments revealed variations in nucleotide sequences from 4 to 45%. By comparison of the deduced amino acid sequences, the majority of the DNA fragments were identified as members of genes for chitin synthase class II. The deduced amino acid sequences from species of the same genus differed only in one amino acid residue, whereas identity between the amino acid sequences of ascomycetous and basidiomycetous fungi within the same taxonomic class was found to be approximately 43 to 66%. Phylogenetic analysis of the amino acid sequence of class II chitin synthase-encoding gene fragments by using parsimony confirmed the current taxonomic groupings. In addition, our data revealed a fourth class of putative zymogenic chitin synthesis. Images PMID:7944356

  19. A cyanobacterial protein with similarity to phytochelatin synthases catalyzes the conversion of glutathione to gamma-glutamylcysteine and lacks phytochelatin synthase activity.

    PubMed

    Harada, Emiko; von Roepenack-Lahaye, Edda; Clemens, Stephan

    2004-12-01

    Phytochelatins are glutathione-derived, non-translationally synthesized peptides essential for cadmium and arsenic detoxification in plant, fungal and nematode model systems. Recent sequencing programs have revealed the existence of phytochelatin synthase-related genes in a wide range of organisms that have not been reported yet to produce phytochelatins. Among those are several cyanobacteria. We have studied one of the encoded proteins (alr0975 from Nostoc sp. strain PCC 7120) and demonstrate here that it does not possess phytochelatin synthase activity. Instead, this protein catalyzes the conversion of glutathione to gamma-glutamylcysteine. The thiol spectrum of yeast cells expressing alr0975 shows the disappearance of glutathione and the formation of a compound that by LC-MSMS analysis was unequivocally identified as gamma-glutamylcysteine. Purified recombinant protein catalyzes the respective reaction. Unlike phytochelatin synthesis, the conversion of glutathione to gamma-glutamylcysteine is not dependent on activation by metal cations. No evidence was found for the accumulation of phytochelatins in cyanobacteria even after prolonged exposure to toxic Cd2+ concentrations. Expression of alr0975 was detected in Nostoc sp. cells with an antiserum raised against the protein. No indication for a responsiveness of expression to toxic metal exposure was found. Taken together, these data provide further evidence for possible additional functions of phytochelatin synthase-related proteins in glutathione metabolism and provide a lead as to the evolutionary history of phytochelatin synthesis.

  20. Differentially expressed galactinol synthase(s) in chickpea are implicated in seed vigor and longevity by limiting the age induced ROS accumulation

    PubMed Central

    Salvi, Prafull; Saxena, Saurabh Chandra; Petla, Bhanu Prakash; Kamble, Nitin Uttam; Kaur, Harmeet; Verma, Pooja; Rao, Venkateswara; Ghosh, Shraboni; Majee, Manoj

    2016-01-01

    Galactinol synthase (GolS) catalyzes the first and rate limiting step of Raffinose Family Oligosaccharide (RFO) biosynthetic pathway, which is a highly specialized metabolic event in plants. Increased accumulation of galactinol and RFOs in seeds have been reported in few plant species, however their precise role in seed vigor and longevity remain elusive. In present study, we have shown that galactinol synthase activity as well as galactinol and raffinose content progressively increase as seed development proceeds and become highly abundant in pod and mature dry seeds, which gradually decline as seed germination progresses in chickpea (Cicer arietinum). Furthermore, artificial aging also stimulates galactinol synthase activity and consequent galactinol and raffinose accumulation in seed. Molecular analysis revealed that GolS in chickpea are encoded by two divergent genes (CaGolS1 and CaGolS2) which potentially encode five CaGolS isoforms through alternative splicing. Biochemical analysis showed that only two isoforms (CaGolS1 and CaGolS2) are biochemically active with similar yet distinct biochemical properties. CaGolS1 and CaGolS2 are differentially regulated in different organs, during seed development and germination however exhibit similar subcellular localization. Furthermore, seed-specific overexpression of CaGolS1 and CaGolS2 in Arabidopsis results improved seed vigor and longevity through limiting the age induced excess ROS and consequent lipid peroxidation. PMID:27725707

  1. Biochemical and Structural Characterization of Germicidin Synthase: Analysis of a Type III Polyketide Synthase That Employs Acyl-ACP as a Starter Unit Donor

    SciTech Connect

    Chemler, Joseph A.; Buchholz, Tonia J.; Geders, Todd W.; Akey, David L.; Rath, Christopher M.; Chlipala, George E.; Smith, Janet L.; Sherman, David H.

    2012-08-10

    Germicidin synthase (Gcs) from Streptomyces coelicolor is a type III polyketide synthase (PKS) with broad substrate flexibility for acyl groups linked through a thioester bond to either coenzyme A (CoA) or acyl carrier protein (ACP). Germicidin synthesis was reconstituted in vitro by coupling Gcs with fatty acid biosynthesis. Since Gcs has broad substrate flexibility, we directly compared the kinetic properties of Gcs with both acyl-ACP and acyl-CoA. The catalytic efficiency of Gcs for acyl-ACP was 10-fold higher than for acyl-CoA, suggesting a strong preference toward carrier protein starter unit transfer. The 2.9 {angstrom} germicidin synthase crystal structure revealed canonical type III PKS architecture along with an unusual helical bundle of unknown function that appears to extend the dimerization interface. A pair of arginine residues adjacent to the active site affect catalytic activity but not ACP binding. This investigation provides new and surprising information about the interactions between type III PKSs and ACPs that will facilitate the construction of engineered systems for production of novel polyketides.

  2. Divinyl ether synthase gene, and protein and uses thereof

    DOEpatents

    Howe, Gregg A.; Itoh, Aya

    2006-12-26

    The present invention relates to divinyl ether synthase genes, proteins, and methods of their use. The present invention encompasses both native and recombinant wild-type forms of the synthase, as well as mutants and variant forms, some of which possess altered characteristics relative to the wild-type synthase. The present invention also relates to methods of using divinyl ether synthase genes and proteins, including in their expression in transgenic organisms and in the production of divinyl ether fatty acids, and to methods of suing divinyl ether fatty acids, including in the protection of plants from pathogens.

  3. Divinyl ether synthase gene and protein, and uses thereof

    DOEpatents

    Howe, Gregg A.; Itoh, Aya

    2011-09-13

    The present invention relates to divinyl ether synthase genes, proteins, and methods of their use. The present invention encompasses both native and recombinant wild-type forms of the synthase, as well as mutants and variant forms, some of which possess altered characteristics relative to the wild-type synthase. The present invention also relates to methods of using divinyl ether synthase genes and proteins, including in their expression in transgenic organisms and in the production of divinyl ether fatty acids, and to methods of suing divinyl ether fatty acids, including in the protection of plants from pathogens.

  4. Isolation of the GFA1 gene encoding glucosamine-6-phosphate synthase of Sporothrix schenckii and its expression in Saccharomyces cerevisiae.

    PubMed

    Sánchez-López, Juan Francisco; González-Ibarra, Joaquín; Álvarez-Vargas, Aurelio; Milewski, Slawomir; Villagómez-Castro, Julio César; Cano-Canchola, Carmen; López-Romero, Everardo

    2015-06-01

    Glucosamine-6-phosphate synthase (GlcN-6-P synthase) is an essential enzyme involved in cell wall biogenesis that has been proposed as a strategic target for antifungal chemotherapy. Here we describe the cloning and functional characterization of Sporothrix schenckii GFA1 gene which was isolated from a genomic library of the fungus. The gene encodes a predicted protein of 708 amino acids that is homologous to GlcN-6-P synthases from other sources. The recombinant enzyme restored glucosamine prototrophy of the Saccharomyces cerevisiae gfa1 null mutant. Purification and biochemical analysis of the recombinant enzyme revealed some differences from the wild type enzyme, such as improved stability and less sensitivity to UDP-GlcNAc. The sensitivity of the recombinant enzyme to the selective inhibitor FMDP [N(3)-(4-methoxyfumaroyl)-l-2,3-diaminopropanoic acid] and other properties were similar to those previously reported for the wild type enzyme.

  5. Insights into the phosphatase and the synthase activities of human bisphosphoglycerate mutase: a quantum mechanics/molecular mechanics simulation.

    PubMed

    Chu, Wen-Ting; Zheng, Qing-Chuan; Zhang, Hong-Xing

    2014-03-01

    Bisphosphoglycerate mutase (BPGM) is a multi-activity enzyme. Its main function is to synthesize the 2,3-bisphosphoglycerate, the allosteric effector of hemoglobin. This enzyme can also catalyze the 2,3-bisphosphoglycerate to the 3-phosphoglycerate. In this study, the reaction mechanisms of both the phosphatase and the synthase activities of human bisphosphoglycerate mutase were theoretically calculated by using the quantum mechanics/molecular mechanics method based on the metadynamics and umbrella sampling simulations. The simulation results not only show the free energy curve of the phosphatase and the synthase reactions, but also reveal the important role of some residues in the active site. Additionally, the energy barriers of the two reactions indicate that the activity of the synthase in human bisphosphoglycerate mutase is much higher than that of the phosphatase. The estimated reaction barriers are consistent with the experimental data. Therefore, our work can give important information to understand the catalytic mechanism of the bisphosphoglycerate mutase family.

  6. The Dual Function of Reactive Oxygen/Nitrogen Species in Bioenergetics and Cell Death: The Role of ATP Synthase

    PubMed Central

    Kaludercic, Nina

    2016-01-01

    Reactive oxygen species (ROS) and reactive nitrogen species (RNS) targeting mitochondria are major causative factors in disease pathogenesis. The mitochondrial permeability transition pore (PTP) is a mega-channel modulated by calcium and ROS/RNS modifications and it has been described to play a crucial role in many pathophysiological events since prolonged channel opening causes cell death. The recent identification that dimers of ATP synthase form the PTP and the fact that posttranslational modifications caused by ROS/RNS also affect cellular bioenergetics through the modulation of ATP synthase catalysis reveal a dual function of these modifications in the cells. Here, we describe mitochondria as a major site of production and as a target of ROS/RNS and discuss the pathophysiological conditions in which oxidative and nitrosative modifications modulate the catalytic and pore-forming activities of ATP synthase. PMID:27034734

  7. Primary structure of a cerulenin-binding. beta. -ketoacyl-(acyl carrier protein) synthase from barley chloroplasts

    SciTech Connect

    Siggaard-Andersen, M.; Kauppinen, S. ); von Wettstein-Knowles, P. Univ. of Copenhagen )

    1991-05-15

    The radioactively labeled {beta}-ketoacyl thioester synthase inhibitor ({sup 3}H)cerulenin was used to tag three dimeric barley chloroplast proteins ({alpha}{alpha}, {alpha}{beta}, and {beta}{beta}) from the stromal fraction. Oligonucleotides corresponding to amino acid sequences obtained from the purified proteins were used to generate with the polymerase chain reaction a probe for cDNAs encoding the {beta} subunit. cDNA sequencing revealed an open reading frame for 462 residues comprising the mature protein and a 35-amino acid transit peptide. The deduced amino acid sequence of the mature protein is homologous to the {beta}-ketoacyl-(acyl carrier protein) (ACP) synthase I (3-oxoacyl-ACP synthase; acyl-ACP:malonyl-ACP C-acyltransferase (decarboxylating), EC 2.3.1.41) of Escherichia coli. Under analogous experimental conditions ({sup 3}H)cerulenin tagged a single dimeric protein from spinach chloroplasts.

  8. Improvement of drought tolerance and grain yield in common bean by overexpressing trehalose-6-phosphate synthase in rhizobia.

    PubMed

    Suárez, Ramón; Wong, Arnoldo; Ramírez, Mario; Barraza, Aarón; Orozco, María Del Carmen; Cevallos, Miguel A; Lara, Miguel; Hernández, Georgina; Iturriaga, Gabriel

    2008-07-01

    Improving stress tolerance and yield in crops are major goals for agriculture. Here, we show a new strategy to increase drought tolerance and yield in legumes by overexpressing trehalose-6-phosphate synthase in the symbiotic bacterium Rhizobium etli. Phaseolus vulgaris (common beans) plants inoculated with R. etli overexpressing trehalose-6-phosphate synthase gene had more nodules with increased nitrogenase activity and higher biomass compared with plants inoculated with wild-type R. etli. In contrast, plants inoculated with an R. etli mutant in trehalose-6-phosphate synthase gene had fewer nodules and less nitrogenase activity and biomass. Three-week-old plants subjected to drought stress fully recovered whereas plants inoculated with a wild-type or mutant strain wilted and died. The yield of bean plants inoculated with R. etli overexpressing trehalose-6-phosphate synthase gene and grown with constant irrigation increased more than 50%. Macroarray analysis of 7,200 expressed sequence tags from nodules of plants inoculated with the strain overexpressing trehalose-6-phosphate synthase gene revealed upregulation of genes involved in stress tolerance and carbon and nitrogen metabolism, suggesting a signaling mechanism for trehalose. Thus, trehalose metabolism in rhizobia is key for signaling plant growth, yield, and adaptation to abiotic stress, and its manipulation has a major agronomical impact on leguminous plants.

  9. Molecular characterization of the homo-phytochelatin synthase of soybean Glycine max: relation to phytochelatin synthase.

    PubMed

    Oven, Matjaz; Page, Jonathan E; Zenk, Meinhart H; Kutchan, Toni M

    2002-02-15

    The phytochelatin homologs homo-phytochelatins are heavy metal-binding peptides present in many legumes. To study the biosynthesis of these compounds, we have isolated and functionally expressed a cDNA GmhPCS1 encoding homo-phytochelatin synthase from Glycine max, a plant known to accumulate homo-phytochelatins rather than phytochelatins upon the exposure to heavy metals. The catalytic properties of GmhPCS1 were compared with the phytochelatin synthase AtPCS1 from Arabidopsis thaliana. When assayed only in the presence of glutathione, both enzymes catalyzed phytochelatin formation. GmhPCS1 accepted homoglutathione as the sole substrate for the synthesis of homo-phytochelatins whereas AtPCS1 did not. Homo-phytochelatin synthesis activity of both recombinant enzymes was significantly higher when glutathione was included in the reaction mixture. The incorporation of both glutathione and homoglutathione into homo-phytochelatin, n = 2, was demonstrated using GmhPCS1 and AtPCS1. In addition to bis(glutathionato)-metal complexes, various other metal-thiolates were shown to contribute to the activation of phytochelatin synthase. These complexes were not accepted as substrates by the enzyme, thereby suggesting that a recently proposed model of activation cannot fully explain the catalytic mechanism of phytochelatin synthase (Vatamaniuk, O. K., Mari, S., Lu, Y. P., and Rea, P. A. (2000) J. Biol. Chem. 275, 31451-31459). PMID:11706029

  10. Engineering of chimeric class II polyhydroxyalkanoate synthases.

    PubMed

    Niamsiri, Nuttawee; Delamarre, Soazig C; Kim, Young-Rok; Batt, Carl A

    2004-11-01

    PHA synthase is a key enzyme involved in the biosynthesis of polyhydroxyalkanoates (PHAs). Using a combinatorial genetic strategy to create unique chimeric class II PHA synthases, we have obtained a number of novel chimeras which display improved catalytic properties. To engineer the chimeric PHA synthases, we constructed a synthetic phaC gene from Pseudomonas oleovorans (phaC1Po) that was devoid of an internal 540-bp fragment. Randomly amplified PCR products (created with primers based on conserved phaC sequences flanking the deleted internal fragment) were generated using genomic DNA isolated from soil and were substituted for the 540-bp internal region. The chimeric genes were expressed in a PHA-negative strain of Ralstonia eutropha, PHB(-)4 (DSM 541). Out of 1,478 recombinant clones screened for PHA production, we obtained five different chimeric phaC1Po genes that produced more PHA than the native phaC1Po. Chimeras S1-71, S4-8, S5-58, S3-69, and S3-44 exhibited 1.3-, 1.4-, 2.0-, 2.1-, and 3.0-fold-increased levels of in vivo activity, respectively. All of the mutants mediated the synthesis of PHAs with a slightly increased molar fraction of 3-hydroxyoctanoate; however, the weight-average molecular weights (Mw) of the PHAs in all cases remained almost the same. Based upon DNA sequence analyses, the various phaC fragments appear to have originated from Pseudomonas fluorescens and Pseudomonas aureofaciens. The amino acid sequence analyses showed that the chimeric proteins had 17 to 20 amino acid differences from the wild-type phaC1Po, and these differences were clustered in the same positions in the five chimeric clones. A threading model of PhaC1Po, developed based on homology of the enzyme to the Burkholderia glumae lipase, suggested that the amino acid substitutions found in the active chimeras were located mostly on the protein model surface. Thus, our combinatorial genetic engineering strategy proved to be broadly useful for improving the catalytic

  11. Investigating sesquiterpene biosynthesis in Ginkgo biloba: molecular cloning and functional characterization of (E,E)-farnesol and α-bisabolene synthases.

    PubMed

    Parveen, Iffat; Wang, Mei; Zhao, Jianping; Chittiboyina, Amar G; Tabanca, Nurhayat; Ali, Abbas; Baerson, Scott R; Techen, Natascha; Chappell, Joe; Khan, Ikhlas A; Pan, Zhiqiang

    2015-11-01

    Ginkgo biloba is one of the oldest living tree species and has been extensively investigated as a source of bioactive natural compounds, including bioactive flavonoids, diterpene lactones, terpenoids and polysaccharides which accumulate in foliar tissues. Despite this chemical diversity, relatively few enzymes associated with any biosynthetic pathway from ginkgo have been characterized to date. In the present work, predicted transcripts potentially encoding enzymes associated with the biosynthesis of diterpenoid and terpenoid compounds, including putative terpene synthases, were first identified by mining publicly-available G. biloba RNA-seq data sets. Recombinant enzyme studies with two of the TPS-like sequences led to the identification of GbTPS1 and GbTPS2, encoding farnesol and bisabolene synthases, respectively. Additionally, the phylogenetic analysis revealed the two terpene synthase genes as primitive genes that might have evolved from an ancestral diterpene synthase.

  12. Novel family of terpene synthases evolved from trans-isoprenyl diphosphate synthases in a flea beetle.

    PubMed

    Beran, Franziska; Rahfeld, Peter; Luck, Katrin; Nagel, Raimund; Vogel, Heiko; Wielsch, Natalie; Irmisch, Sandra; Ramasamy, Srinivasan; Gershenzon, Jonathan; Heckel, David G; Köllner, Tobias G

    2016-03-15

    Sesquiterpenes play important roles in insect communication, for example as pheromones. However, no sesquiterpene synthases, the enzymes involved in construction of the basic carbon skeleton, have been identified in insects to date. We investigated the biosynthesis of the sesquiterpene (6R,7S)-himachala-9,11-diene in the crucifer flea beetle Phyllotreta striolata, a compound previously identified as a male-produced aggregation pheromone in several Phyllotreta species. A (6R,7S)-himachala-9,11-diene-producing sesquiterpene synthase activity was detected in crude beetle protein extracts, but only when (Z,E)-farnesyl diphosphate [(Z,E)-FPP] was offered as a substrate. No sequences resembling sesquiterpene synthases from plants, fungi, or bacteria were found in the P. striolata transcriptome, but we identified nine divergent putative trans-isoprenyl diphosphate synthase (trans-IDS) transcripts. Four of these putative trans-IDSs exhibited terpene synthase (TPS) activity when heterologously expressed. Recombinant PsTPS1 converted (Z,E)-FPP to (6R,7S)-himachala-9,11-diene and other sesquiterpenes observed in beetle extracts. RNAi-mediated knockdown of PsTPS1 mRNA in P. striolata males led to reduced emission of aggregation pheromone, confirming a significant role of PsTPS1 in pheromone biosynthesis. Two expressed enzymes showed genuine IDS activity, with PsIDS1 synthesizing (E,E)-FPP, whereas PsIDS3 produced neryl diphosphate, (Z,Z)-FPP, and (Z,E)-FPP. In a phylogenetic analysis, the PsTPS enzymes and PsIDS3 were clearly separated from a clade of known coleopteran trans-IDS enzymes including PsIDS1 and PsIDS2. However, the exon-intron structures of IDS and TPS genes in P. striolata are conserved, suggesting that this TPS gene family evolved from trans-IDS ancestors. PMID:26936952

  13. Novel family of terpene synthases evolved from trans-isoprenyl diphosphate synthases in a flea beetle.

    PubMed

    Beran, Franziska; Rahfeld, Peter; Luck, Katrin; Nagel, Raimund; Vogel, Heiko; Wielsch, Natalie; Irmisch, Sandra; Ramasamy, Srinivasan; Gershenzon, Jonathan; Heckel, David G; Köllner, Tobias G

    2016-03-15

    Sesquiterpenes play important roles in insect communication, for example as pheromones. However, no sesquiterpene synthases, the enzymes involved in construction of the basic carbon skeleton, have been identified in insects to date. We investigated the biosynthesis of the sesquiterpene (6R,7S)-himachala-9,11-diene in the crucifer flea beetle Phyllotreta striolata, a compound previously identified as a male-produced aggregation pheromone in several Phyllotreta species. A (6R,7S)-himachala-9,11-diene-producing sesquiterpene synthase activity was detected in crude beetle protein extracts, but only when (Z,E)-farnesyl diphosphate [(Z,E)-FPP] was offered as a substrate. No sequences resembling sesquiterpene synthases from plants, fungi, or bacteria were found in the P. striolata transcriptome, but we identified nine divergent putative trans-isoprenyl diphosphate synthase (trans-IDS) transcripts. Four of these putative trans-IDSs exhibited terpene synthase (TPS) activity when heterologously expressed. Recombinant PsTPS1 converted (Z,E)-FPP to (6R,7S)-himachala-9,11-diene and other sesquiterpenes observed in beetle extracts. RNAi-mediated knockdown of PsTPS1 mRNA in P. striolata males led to reduced emission of aggregation pheromone, confirming a significant role of PsTPS1 in pheromone biosynthesis. Two expressed enzymes showed genuine IDS activity, with PsIDS1 synthesizing (E,E)-FPP, whereas PsIDS3 produced neryl diphosphate, (Z,Z)-FPP, and (Z,E)-FPP. In a phylogenetic analysis, the PsTPS enzymes and PsIDS3 were clearly separated from a clade of known coleopteran trans-IDS enzymes including PsIDS1 and PsIDS2. However, the exon-intron structures of IDS and TPS genes in P. striolata are conserved, suggesting that this TPS gene family evolved from trans-IDS ancestors.

  14. Novel family of terpene synthases evolved from trans-isoprenyl diphosphate synthases in a flea beetle

    PubMed Central

    Beran, Franziska; Rahfeld, Peter; Luck, Katrin; Nagel, Raimund; Vogel, Heiko; Wielsch, Natalie; Irmisch, Sandra; Ramasamy, Srinivasan; Gershenzon, Jonathan; Heckel, David G.; Köllner, Tobias G.

    2016-01-01

    Sesquiterpenes play important roles in insect communication, for example as pheromones. However, no sesquiterpene synthases, the enzymes involved in construction of the basic carbon skeleton, have been identified in insects to date. We investigated the biosynthesis of the sesquiterpene (6R,7S)-himachala-9,11-diene in the crucifer flea beetle Phyllotreta striolata, a compound previously identified as a male-produced aggregation pheromone in several Phyllotreta species. A (6R,7S)-himachala-9,11-diene–producing sesquiterpene synthase activity was detected in crude beetle protein extracts, but only when (Z,E)-farnesyl diphosphate [(Z,E)-FPP] was offered as a substrate. No sequences resembling sesquiterpene synthases from plants, fungi, or bacteria were found in the P. striolata transcriptome, but we identified nine divergent putative trans-isoprenyl diphosphate synthase (trans-IDS) transcripts. Four of these putative trans-IDSs exhibited terpene synthase (TPS) activity when heterologously expressed. Recombinant PsTPS1 converted (Z,E)-FPP to (6R,7S)-himachala-9,11-diene and other sesquiterpenes observed in beetle extracts. RNAi-mediated knockdown of PsTPS1 mRNA in P. striolata males led to reduced emission of aggregation pheromone, confirming a significant role of PsTPS1 in pheromone biosynthesis. Two expressed enzymes showed genuine IDS activity, with PsIDS1 synthesizing (E,E)-FPP, whereas PsIDS3 produced neryl diphosphate, (Z,Z)-FPP, and (Z,E)-FPP. In a phylogenetic analysis, the PsTPS enzymes and PsIDS3 were clearly separated from a clade of known coleopteran trans-IDS enzymes including PsIDS1 and PsIDS2. However, the exon–intron structures of IDS and TPS genes in P. striolata are conserved, suggesting that this TPS gene family evolved from trans-IDS ancestors. PMID:26936952

  15. S-Acylation of the cellulose synthase complex is essential for its plasma membrane localization.

    PubMed

    Kumar, Manoj; Wightman, Raymond; Atanassov, Ivan; Gupta, Anjali; Hurst, Charlotte H; Hemsley, Piers A; Turner, Simon

    2016-07-01

    Plant cellulose microfibrils are synthesized by a process that propels the cellulose synthase complex (CSC) through the plane of the plasma membrane. How interactions between membranes and the CSC are regulated is currently unknown. Here, we demonstrate that all catalytic subunits of the CSC, known as cellulose synthase A (CESA) proteins, are S-acylated. Analysis of Arabidopsis CESA7 reveals four cysteines in variable region 2 (VR2) and two cysteines at the carboxy terminus (CT) as S-acylation sites. Mutating both the VR2 and CT cysteines permits CSC assembly and trafficking to the Golgi but prevents localization to the plasma membrane. Estimates suggest that a single CSC contains more than 100 S-acyl groups, which greatly increase the hydrophobic nature of the CSC and likely influence its immediate membrane environment. PMID:27387950

  16. Structure of the ATP Synthase Catalytic Complex (F1) from Escherichia coli in an Autoinhibited conformation

    SciTech Connect

    G Cingolani; T Duncan

    2011-12-31

    ATP synthase is a membrane-bound rotary motor enzyme that is critical for cellular energy metabolism in all kingdoms of life. Despite conservation of its basic structure and function, autoinhibition by one of its rotary stalk subunits occurs in bacteria and chloroplasts but not in mitochondria. The crystal structure of the ATP synthase catalytic complex (F{sub 1}) from Escherichia coli described here reveals the structural basis for this inhibition. The C-terminal domain of subunit {var_epsilon} adopts a heretofore unknown, highly extended conformation that inserts deeply into the central cavity of the enzyme and engages both rotor and stator subunits in extensive contacts that are incompatible with functional rotation. As a result, the three catalytic subunits are stabilized in a set of conformations and rotational positions distinct from previous F{sub 1} structures.

  17. A conserved amino acid residue critical for product and substrate specificity in plant triterpene synthases.

    PubMed

    Salmon, Melissa; Thimmappa, Ramesha B; Minto, Robert E; Melton, Rachel E; Hughes, Richard K; O'Maille, Paul E; Hemmings, Andrew M; Osbourn, Anne

    2016-07-26

    Triterpenes are structurally complex plant natural products with numerous medicinal applications. They are synthesized through an origami-like process that involves cyclization of the linear 30 carbon precursor 2,3-oxidosqualene into different triterpene scaffolds. Here, through a forward genetic screen in planta, we identify a conserved amino acid residue that determines product specificity in triterpene synthases from diverse plant species. Mutation of this residue results in a major change in triterpene cyclization, with production of tetracyclic rather than pentacyclic products. The mutated enzymes also use the more highly oxygenated substrate dioxidosqualene in preference to 2,3-oxidosqualene when expressed in yeast. Our discoveries provide new insights into triterpene cyclization, revealing hidden functional diversity within triterpene synthases. They further open up opportunities to engineer novel oxygenated triterpene scaffolds by manipulating the precursor supply. PMID:27412861

  18. Conformational change of pseudouridine 55 synthase upon its association with RNA substrate.

    PubMed

    Phannachet, Kulwadee; Huang, Raven H

    2004-01-01

    Pseudouridine 55 synthase (Psi55S) catalyzes isomerization of uridine (U) to pseudouridine (Psi) at position 55 in transfer RNA. The crystal structures of Thermotoga maritima Psi55S, and its complex with RNA, have been determined at 2.9 and 3.0 A resolutions, respectively. Structural comparisons with other families of pseudouridine synthases (PsiS) indicate that Psi55S may acquire its ability to recognize a stem-loop RNA substrate by two insertions of polypeptides into the PsiS core. The structure of apo-Psi55S reveals that these two insertions interact with each other. However, association with RNA substrate induces substantial conformational change in one of the insertions, resulting in disruption of interaction between insertions and association of both insertions with the RNA substrate. Specific interactions between two insertions, as well as between the insertions and the RNA substrate, account for the molecular basis of the conformational change.

  19. A conserved amino acid residue critical for product and substrate specificity in plant triterpene synthases

    PubMed Central

    Salmon, Melissa; Thimmappa, Ramesha B.; Minto, Robert E.; Melton, Rachel E.; O’Maille, Paul E.; Hemmings, Andrew M.; Osbourn, Anne

    2016-01-01

    Triterpenes are structurally complex plant natural products with numerous medicinal applications. They are synthesized through an origami-like process that involves cyclization of the linear 30 carbon precursor 2,3-oxidosqualene into different triterpene scaffolds. Here, through a forward genetic screen in planta, we identify a conserved amino acid residue that determines product specificity in triterpene synthases from diverse plant species. Mutation of this residue results in a major change in triterpene cyclization, with production of tetracyclic rather than pentacyclic products. The mutated enzymes also use the more highly oxygenated substrate dioxidosqualene in preference to 2,3-oxidosqualene when expressed in yeast. Our discoveries provide new insights into triterpene cyclization, revealing hidden functional diversity within triterpene synthases. They further open up opportunities to engineer novel oxygenated triterpene scaffolds by manipulating the precursor supply. PMID:27412861

  20. Redirection of the Reaction Specificity of a Thermophilic Acetolactate Synthase toward Acetaldehyde Formation

    PubMed Central

    Cheng, Maria; Yoshiyasu, Hayato; Okano, Kenji; Ohtake, Hisao; Honda, Kohsuke

    2016-01-01

    Acetolactate synthase and pyruvate decarboxylase are thiamine pyrophosphate-dependent enzymes that convert pyruvate into acetolactate and acetaldehyde, respectively. Although the former are encoded in the genomes of many thermophiles and hyperthermophiles, the latter has been found only in mesophilic organisms. In this study, the reaction specificity of acetolactate synthase from Thermus thermophilus was redirected to catalyze acetaldehyde formation to develop a thermophilic pyruvate decarboxylase. Error-prone PCR and mutant library screening led to the identification of a quadruple mutant with 3.1-fold higher acetaldehyde-forming activity than the wild-type. Site-directed mutagenesis experiments revealed that the increased activity of the mutant was due to H474R amino acid substitution, which likely generated two new hydrogen bonds near the thiamine pyrophosphate-binding site. These hydrogen bonds might result in the better accessibility of H+ to the substrate-cofactor-enzyme intermediate and a shift in the reaction specificity of the enzyme. PMID:26731734

  1. Decreased Expression of Cystathionine β-Synthase Promotes Glioma Tumorigenesis

    PubMed Central

    Takano, Naoharu; Sarfraz, Yasmeen; Gilkes, Daniele M.; Chaturvedi, Pallavi; Xiang, Lisha; Suematsu, Makoto; Zagzag, David; Semenza, Gregg L.

    2014-01-01

    Cystathionine β-synthase (CBS) catalyzes metabolic reactions that convert homocysteine to cystathionine. To assess the role of CBS in human glioma, cells were stably transfected with lentiviral vectors encoding short hairpin RNA (shRNA) targeting CBS or a non-targeting control shRNA and subclones were injected into immunodeficient mice. Interestingly, decreased CBS expression did not affect proliferation in vitro but decreased the latency period prior to rapid tumor xenograft growth after subcutaneous injection and increased tumor incidence and volume following orthotopic implantation into the caudate-putamen. In soft agar colony formation assays, CBS knockdown subclones displayed increased anchorage-independent growth. Molecular analysis revealed that CBS knockdown subclones expressed higher basal levels of the transcriptional activator hypoxia-inducible factor 2α (HIF-2α/EPAS1). HIF-2α knockdown counteracted the effect of CBS knockdown on anchorage-independent growth. Bioinformatic analysis of mRNA expression data from human glioma specimens revealed a significant association between low expression of CBS mRNA and high expression of angiopoietin-like 4 (ANGPTL4) and vascular endothelial growth factor (VEGF) transcripts, which are HIF-2 target gene products that were also increased in CBS knockdown subclones. These results suggest that decreased CBS expression in glioma increases HIF-2α protein levels and HIF-2 target gene expression, which promotes glioma tumor formation. Implications CBS loss of function promotes glioma growth. PMID:24994751

  2. Evolution and function of phytochelatin synthases.

    PubMed

    Clemens, Stephan

    2006-02-01

    Both essential and non-essential transition metal ions can easily be toxic to cells. The physiological range for essential metals between deficiency and toxicity is therefore extremely narrow and a tightly controlled metal homeostasis network to adjust to fluctuations in micronutrient availability is a necessity for all organisms. One protective strategy against metal excess is the expression of high-affinity binding sites to suppress uncontrolled binding of metal ions to physiologically important functional groups. The synthesis of phytochelatins, glutathione-derived metal binding peptides, represents the major detoxification mechanism for cadmium and arsenic in plants and an unknown range of other organisms. A few years ago genes encoding phytochelatin synthases (PCS) were cloned from plants, fungi and nematodes. Since then it has become apparent that PCS genes are far more widespread than ever anticipated. Searches in sequence databases indicate PCS expression in representatives of all eukaryotic kingdoms and the presence of PCS-like proteins in several prokaryotes. The almost ubiquitous presence in the plant kingdom and beyond as well as the constitutive expression of PCS genes and PCS activity in all major plant tissues are still mysterious. It is unclear, how the extremely rare need to cope with an excess of cadmium or arsenic ions could explain the evolution and distribution of PCS genes. Possible answers to this question are discussed. Also, the molecular characterization of phytochelatin synthases and our current knowledge about the enzymology of phytochelatin synthesis are reviewed.

  3. Activities and regulation of peptidoglycan synthases

    PubMed Central

    Egan, Alexander J. F.; Biboy, Jacob; van't Veer, Inge; Breukink, Eefjan; Vollmer, Waldemar

    2015-01-01

    Peptidoglycan (PG) is an essential component in the cell wall of nearly all bacteria, forming a continuous, mesh-like structure, called the sacculus, around the cytoplasmic membrane to protect the cell from bursting by its turgor. Although PG synthases, the penicillin-binding proteins (PBPs), have been studied for 70 years, useful in vitro assays for measuring their activities were established only recently, and these provided the first insights into the regulation of these enzymes. Here, we review the current knowledge on the glycosyltransferase and transpeptidase activities of PG synthases. We provide new data showing that the bifunctional PBP1A and PBP1B from Escherichia coli are active upon reconstitution into the membrane environment of proteoliposomes, and that these enzymes also exhibit DD-carboxypeptidase activity in certain conditions. Both novel features are relevant for their functioning within the cell. We also review recent data on the impact of protein–protein interactions and other factors on the activities of PBPs. As an example, we demonstrate a synergistic effect of multiple protein–protein interactions on the glycosyltransferase activity of PBP1B, by its cognate lipoprotein activator LpoB and the essential cell division protein FtsN. PMID:26370943

  4. ATP synthase: a tentative structural model.

    PubMed

    Engelbrecht, S; Junge, W

    1997-09-15

    Adenosine triphosphate (ATP) synthase produces ATP from ADP and inorganic phosphate at the expense of proton- or sodium-motive force across the respective coupling membrane in Archaea, Bacteria and Eucarya. Cation flow through the intrinsic membrane portion of this enzyme (Fo, subunits ab2c9-12) and substrate turnover in the headpiece (F1, subunits alpha3beta3 gammadeltaepsilon) are mechanically coupled by the rotation of subunit gamma in the center of the catalytic hexagon of subunits (alphabeta)3 in F1. ATP synthase is the smallest rotatory engine in nature. With respect to the headpiece alone, it probably operates with three steps. Partial structures of six out of its at least eight different subunits have been published and a 3-dimensional structure is available for the assembly (alphabeta)3gamma. In this article, we review the available structural data and build a tentative topological model of the holoenzyme. The rotor portion is proposed to consist of a wheel of at least nine copies of subunits c, epsilon and a portion of gamma as a spoke, and another portion of gamma as a crankshaft. The stator is made up from a, the transmembrane portion of b2, delta and the catalytic hexagon of (alphabeta)3. As an educated guess, the model may be of heuristic value for ongoing studies on this fascinating electrochemical-to-mechanical-to-chemical transducer. PMID:9323021

  5. ATP synthases from archaea: the beauty of a molecular motor.

    PubMed

    Grüber, Gerhard; Manimekalai, Malathy Sony Subramanian; Mayer, Florian; Müller, Volker

    2014-06-01

    Archaea live under different environmental conditions, such as high salinity, extreme pHs and cold or hot temperatures. How energy is conserved under such harsh environmental conditions is a major question in cellular bioenergetics of archaea. The key enzymes in energy conservation are the archaeal A1AO ATP synthases, a class of ATP synthases distinct from the F1FO ATP synthase ATP synthase found in bacteria, mitochondria and chloroplasts and the V1VO ATPases of eukaryotes. A1AO ATP synthases have distinct structural features such as a collar-like structure, an extended central stalk, and two peripheral stalks possibly stabilizing the A1AO ATP synthase during rotation in ATP synthesis/hydrolysis at high temperatures as well as to provide the storage of transient elastic energy during ion-pumping and ATP synthesis/-hydrolysis. High resolution structures of individual subunits and subcomplexes have been obtained in recent years that shed new light on the function and mechanism of this unique class of ATP synthases. An outstanding feature of archaeal A1AO ATP synthases is their diversity in size of rotor subunits and the coupling ion used for ATP synthesis with H(+), Na(+) or even H(+) and Na(+) using enzymes. The evolution of the H(+) binding site to a Na(+) binding site and its implications for the energy metabolism and physiology of the cell are discussed.

  6. [Four cases of aldosterone synthase deficiency in childhood].

    PubMed

    Collinet, E; Pelissier, P; Richard, O; Gay, C; Pugeat, M; Morel, Y; Stephan, J-L

    2012-11-01

    Neonatal salt-wasting syndromes are rare but potentially serious conditions. Isolated hypoaldosteronism is an autosomal recessive inherited disorder of terminal aldosterone synthesis, leading to selective aldosterone deficiency. Two different biochemical forms of this disease have been described, called aldosterone synthase deficiency or corticosterone methyl oxydase, types I and II. In type I, there is no aldosterone synthase activity and the 18 hydroxycorticosterone (18 OHB) level is low, whereas in type II, a residual activity of aldosterone synthase persists and 18 OHB is overproduced. We report on four patients with isolated hypoaldosteronism. In 2 of them, who were recently diagnosed with aldosterone synthase deficit, we discuss the symptoms and treatment. The 2 other patients are now adults. We discuss the long-term outcome, the quality of adult life, aldosterone synthase deficits, as well as the pathophysiology and molecular analysis.

  7. Ubiquitination and filamentous structure of cytidine triphosphate synthase

    PubMed Central

    Pai, Li-Mei; Wang, Pei-Yu; Lin, Wei-Cheng; Chakraborty, Archan; Yeh, Chau-Ting; Lin, Yu-Hung

    2016-01-01

    ABSTRACT Living organisms respond to nutrient availability by regulating the activity of metabolic enzymes. Therefore, the reversible post-translational modification of an enzyme is a common regulatory mechanism for energy conservation. Recently, cytidine-5′-triphosphate (CTP) synthase was discovered to form a filamentous structure that is evolutionarily conserved from flies to humans. Interestingly, induction of the formation of CTP synthase filament is responsive to starvation or glutamine depletion. However, the biological roles of this structure remain elusive. We have recently shown that ubiquitination regulates CTP synthase activity by promoting filament formation in Drosophila ovaries during endocycles. Intriguingly, although the ubiquitination process was required for filament formation induced by glutamine depletion, CTP synthase ubiquitination was found to be inversely correlated with filament formation in Drosophila and human cell lines. In this article, we discuss the putative dual roles of ubiquitination, as well as its physiological implications, in the regulation of CTP synthase structure. PMID:27116391

  8. A Comparison of the Effects of Neuronal Nitric Oxide Synthase and Inducible Nitric Oxide Synthase Inhibition on Cartilage Damage

    PubMed Central

    Gokay, Nevzat Selim; Yilmaz, Ibrahim; Demiroz, Ahu Senem; Gokce, Alper; Dervisoglu, Sergülen; Gokay, Banu Vural

    2016-01-01

    The objective of this study was to investigate the effects of selective inducible nitric oxide synthase and neuronal nitric oxide synthase inhibitors on cartilage regeneration. The study involved 27 Wistar rats that were divided into five groups. On Day 1, both knees of 3 rats were resected and placed in a formalin solution as a control group. The remaining 24 rats were separated into 4 groups, and their right knees were surgically damaged. Depending on the groups, the rats were injected with intra-articular normal saline solution, neuronal nitric oxide synthase inhibitor 7-nitroindazole (50 mg/kg), inducible nitric oxide synthase inhibitor amino-guanidine (30 mg/kg), or nitric oxide precursor L-arginine (200 mg/kg). After 21 days, the right and left knees of the rats were resected and placed in formalin solution. The samples were histopathologically examined by a blinded evaluator and scored on 8 parameters. Although selective neuronal nitric oxide synthase inhibition exhibited significant (P = 0.044) positive effects on cartilage regeneration following cartilage damage, it was determined that inducible nitric oxide synthase inhibition had no statistically significant effect on cartilage regeneration. It was observed that the nitric oxide synthase activation triggered advanced arthrosis symptoms, such as osteophyte formation. The fact that selective neuronal nitric oxide synthase inhibitors were observed to have mitigating effects on the severity of the damage may, in the future, influence the development of new agents to be used in the treatment of cartilage disorders. PMID:27382570

  9. Pseudouridines and pseudouridine synthases of the ribosome.

    PubMed

    Ofengand, J; Malhotra, A; Remme, J; Gutgsell, N S; Del Campo, M; Jean-Charles, S; Peil, L; Kaya, Y

    2001-01-01

    psi are ubiquitous in ribosomal RNA. Eubacteria, Archaea, and eukaryotes all contain psi, although their number varies widely, with eukaryotes having the most. The small ribosomal subunit can apparently do without psi in some organisms, even though others have as many as 40 or more. Large subunits appear to need at least one psi but can have up to 50-60. psi is made by a set of site-specific enzymes in eubacteria, and in eukaryotes by a single enzyme complexed with auxiliary proteins and specificity-conferring guide RNAs. The mechanism is not known in Archaea, but based on an analysis of the kinds of psi synthases found in sequenced archaeal genomes, it is likely to involve use of guide RNAs. All psi synthases can be classified into one of four related groups, virtually all of which have a conserved aspartate residue in a conserved sequence motif. The aspartate is essential for psi formation in all twelve synthases examined so far. When the need for psi in E. coli was examined, the only synthase whose absence caused a major decrease in growth rate under normal conditions was RluD, the synthase that makes psi 1911, psi 1915, and psi 1917 in the helix 69 end-loop. This growth defect was the result of a major failure in assembly of the large ribosomal subunit. The defect could be prevented by supplying the rluD structural gene in trans, and also by providing a point mutant gene that made a synthase unable to make psi. Therefore, the RluD synthase protein appears to be directly involved in 50S subunit assembly, possibly as an RNA chaperone, and this activity is independent of its ability to form psi. This result is not without precedent. Depletion of PET56, a 2'-O-methyltransferase specific for G2251 (E. coli numbering) in yeast mitochondria virtually blocks 50S subunit assembly and mitochondrial function (Sirum-Connolly et al. 1995), but the methylation activity of the enzyme is not required (T. Mason, pers. comm.). The absence of FtsJ, a heat shock protein that makes

  10. Hyaluronan synthases and hyaluronidases in nasal polyps.

    PubMed

    Panogeorgou, T; Tserbini, E; Filou, S; Vynios, D H; Naxakis, S S; Papadas, T A; Goumas, P D; Mastronikolis, N S

    2016-07-01

    Nasal polyps (NPs) are benign lesions of nasal and paranasal sinuses mucosa affecting 1-4 % of all adults. Nasal polyposis affects the quality of patient's life as it causes nasal obstruction, postnasal drainage, purulent nasal discharge, hyposmia or anosmia, chronic sinusitis, facial pain and snoring. Without treatment, the disease can alter the craniofacial skeleton in cases of extended growth of polyps. The development of NPs is caused by the hyperplasia of nasal or paranasal sinuses mucosa, and edema of extracellular matrix. This is usually the result of high concentration of high molecular mass hyaluronan (HA) which is either overproduced or accumulated from blood supply. The size of HA presents high diversity and, especially in pathologic conditions, chains of low molecular mass can be observed. In NPs, chains of about 200 kDa have been identified and considered to be responsible for the inflammation. The purpose of the present study was the investigation, in NPs and normal nasal mucosa (NM), of the expression of the wild-type and alternatively spliced forms of hyaluronidases, their immunolocalization, and the expression of HA synthases to examine the isoform(s) responsible for the increased amounts of HA in NPs. Hyaluronidases' presence was examined on mRNA (RT-PCR analysis) and protein (immunohistochemistry) levels. Hyaluronan synthases' presence was examined on mRNA levels. Hyaluronidases were localized in the cytoplasm of epithelial and inflammatory cells, as well as in the matrix. On mRNA level, it was found that hyal-1-wt was decreased in NPs compared to NM and hyal-1-v3, -v4 and -v5 were substantially increased. Moreover, HAS2 and HAS3 were the only hyaluronan synthases detected, the expression of which was almost similar in NPs and NM. Overall, the results of the present study support that hyaluronidases are the main enzymes responsible for the decreased size of hyaluronan observed in NPs; thus they behave as inflammatory agents. Therefore, they

  11. Identification of cystathionine γ-synthase and threonine synthase from Cicer arietinum and Lens culinaris.

    PubMed

    Morneau, Dominique J K; Jaworski, Allison F; Aitken, Susan M

    2013-04-01

    In plants, cystathionine γ-synthase (CGS) and threonine synthase (TS) compete for the branch-point metabolite O-phospho-L-homoserine. These enzymes are potential targets for metabolic engineering studies, aiming to alter the flux through the competing methionine and threonine biosynthetic pathways, with the goal of increasing methionine production. Although CGS and TS have been characterized in the model organisms Escherichia coli and Arabidopsis thaliana, little information is available on these enzymes in other, particularly plant, species. The functional CGS and TS coding sequences from the grain legumes Cicer arietinum (chickpea) and Lens culinaris (lentil) identified in this study share approximately 80% amino acid sequence identity with the corresponding sequences from Glycine max. At least 7 active-site residues of grain legume CGS and TS are conserved in the model bacterial enzymes, including the catalytic base. Putative processing sites that remove the targeting sequence and result in functional TS were identified in the target species.

  12. Molecular cloning of AtRS4, a seed specific multifunctional RFO synthase/galactosylhydrolase in Arabidopsis thaliana.

    PubMed

    Gangl, Roman; Behmüller, Robert; Tenhaken, Raimund

    2015-01-01

    Stachyose is among the raffinose family oligosaccharides (RFOs) one of the major water-soluble carbohydrates next to sucrose in seeds of a number of plant species. Especially in leguminous seeds, e.g. chickpea, stachyose is reported as the major component. In contrast to their ambiguous potential as essential source of carbon for germination, RFOs are indigestible for humans and can contribute to diverse abdominal disorders. In the genome of Arabidopsis thaliana, six putative raffinose synthase genes are reported, whereas little is known about these putative raffinose synthases and their biochemical characteristics or their contribution to the RFO physiology in A. thaliana. In this paper, we report on the molecular cloning, functional expression in Escherichia coli and purification of recombinant AtRS4 from A. thaliana and the biochemical characterisation of the putative stachyose synthase (AtSTS, At4g01970) as a raffinose and high affinity stachyose synthase (Km for raffinose 259.2 ± 21.15 μM) as well as stachyose and galactinol specific galactosylhydrolase. A T-DNA insertional mutant in the AtRS4 gene was isolated. Only semi-quantitative PCR from WT siliques showed a specific transcriptional AtRS4 PCR product. Metabolite measurements in seeds of ΔAtRS4 mutant plants revealed a total loss of stachyose in ΔAtRS4 mutant seeds. We conclude that AtRS4 is the only stachyose synthase in the genome of A. thaliana that AtRS4 represents a key regulation mechanism in the RFO physiology of A. thaliana due to its multifunctional enzyme activity and that AtRS4 is possibly the second seed specific raffinose synthase beside AtRS5, which is responsible for Raf accumulation under abiotic stress. PMID:26483807

  13. Molecular cloning of AtRS4, a seed specific multifunctional RFO synthase/galactosylhydrolase in Arabidopsis thaliana

    PubMed Central

    Gangl, Roman; Behmüller, Robert; Tenhaken, Raimund

    2015-01-01

    Stachyose is among the raffinose family oligosaccharides (RFOs) one of the major water-soluble carbohydrates next to sucrose in seeds of a number of plant species. Especially in leguminous seeds, e.g. chickpea, stachyose is reported as the major component. In contrast to their ambiguous potential as essential source of carbon for germination, RFOs are indigestible for humans and can contribute to diverse abdominal disorders. In the genome of Arabidopsis thaliana, six putative raffinose synthase genes are reported, whereas little is known about these putative raffinose synthases and their biochemical characteristics or their contribution to the RFO physiology in A. thaliana. In this paper, we report on the molecular cloning, functional expression in Escherichia coli and purification of recombinant AtRS4 from A. thaliana and the biochemical characterisation of the putative stachyose synthase (AtSTS, At4g01970) as a raffinose and high affinity stachyose synthase (Km for raffinose 259.2 ± 21.15 μM) as well as stachyose and galactinol specific galactosylhydrolase. A T-DNA insertional mutant in the AtRS4 gene was isolated. Only semi-quantitative PCR from WT siliques showed a specific transcriptional AtRS4 PCR product. Metabolite measurements in seeds of ΔAtRS4 mutant plants revealed a total loss of stachyose in ΔAtRS4 mutant seeds. We conclude that AtRS4 is the only stachyose synthase in the genome of A. thaliana that AtRS4 represents a key regulation mechanism in the RFO physiology of A. thaliana due to its multifunctional enzyme activity and that AtRS4 is possibly the second seed specific raffinose synthase beside AtRS5, which is responsible for Raf accumulation under abiotic stress. PMID:26483807

  14. Two small (p)ppGpp synthases in Staphylococcus aureus mediate tolerance against cell envelope stress conditions.

    PubMed

    Geiger, Tobias; Kästle, Benjamin; Gratani, Fabio Lino; Goerke, Christiane; Wolz, Christiane

    2014-02-01

    The stringent response is a conserved global regulatory mechanism that is related to the synthesis of (p)ppGpp nucleotides. Gram-positive bacteria, such as Staphylococcus aureus, possess three (p)ppGpp synthases: the bifunctional RSH (RelA/SpoT homolog) protein, which consists of a (p)ppGpp synthase and a (p)ppGpp hydrolase domain, and two truncated (p)ppGpp synthases, designated RelP and RelQ. Here, we characterized these two small (p)ppGpp synthases. Biochemical analyses of purified proteins and in vivo studies revealed a stronger synthetic activity for RelP than for RelQ. However, both enzymes prefer GDP over GTP as the pyrophosphate recipient to synthesize ppGpp. Each of the enzymes was shown to be responsible for the essentiality of the (p)ppGpp hydrolase domain of the RSH protein. The staphylococcal RSH-hydrolase is an efficient enzyme that prevents the toxic accumulation of (p)ppGpp. Expression of (p)ppGpp synthases in a hydrolase-negative background leads not only to growth arrest but also to cell death. Transcriptional analyses showed that relP and relQ are strongly induced upon vancomycin and ampicillin treatments. Accordingly, mutants lacking relP and relQ showed a significantly reduced survival rate upon treatments with cell wall-active antibiotics. Thus, RelP and RelQ are active (p)ppGpp synthases in S. aureus that are induced under cell envelope stress to mediate tolerance against these conditions.

  15. Endothelial nitric oxide synthase in the microcirculation.

    PubMed

    Shu, Xiaohong; Keller, T C Stevenson; Begandt, Daniela; Butcher, Joshua T; Biwer, Lauren; Keller, Alexander S; Columbus, Linda; Isakson, Brant E

    2015-12-01

    Endothelial nitric oxide synthase (eNOS, NOS3) is responsible for producing nitric oxide (NO)--a key molecule that can directly (or indirectly) act as a vasodilator and anti-inflammatory mediator. In this review, we examine the structural effects of regulation of the eNOS enzyme, including post-translational modifications and subcellular localization. After production, NO diffuses to surrounding cells with a variety of effects. We focus on the physiological role of NO and NO-derived molecules, including microvascular effects on vessel tone and immune response. Regulation of eNOS and NO action is complicated; we address endogenous and exogenous mechanisms of NO regulation with a discussion of pharmacological agents used in clinical and laboratory settings and a proposed role for eNOS in circulating red blood cells.

  16. The Rotary Mechanism of the ATP Synthase

    PubMed Central

    Nakamoto, Robert K.; Scanlon, Joanne A. Baylis; Al-Shawi, Marwan K.

    2008-01-01

    The FOF1 ATP synthase is a large complex of at least 22 subunits, more than half of which are in the membranous FO sector. This nearly ubiquitous transporter is responsible for the majority of ATP synthesis in oxidative and photo-phosphorylation, and its overall structure and mechanism have remained conserved throughout evolution. Most examples utilize the proton motive force to drive ATP synthesis except for a few bacteria, which use a sodium motive force. A remarkable feature of the complex is the rotary movement of an assembly of subunits that plays essential roles in both transport and catalytic mechanisms. This review addresses the role of rotation in catalysis of ATP synthesis/hydrolysis and the transport of protons or sodium. PMID:18515057

  17. Transfer RNA pseudouridine synthases in Saccharomyces cerevisiae.

    PubMed

    Samuelsson, T; Olsson, M

    1990-05-25

    A transfer RNA lacking modified nucleosides was produced by transcription in vitro of a cloned gene that encodes a Saccharomyces cerevisiae glycine tRNA. At least three different uridines (in nucleotide positions 13, 32, and 55) of this transcript tRNA are modified to pseudouridine by an extract of S. cerevisiae. Variants of the RNA substrate were also constructed that each had only one of these sites, thus allowing specific monitoring of pseudouridylation at different nucleotide positions. Using such RNAs to assay pseudouridine synthesis, enzymes producing this nucleoside were purified from an extract of S. cerevisiae. The activities corresponding to positions 13, 32, and 55 in the tRNA substrate could all be separated chromatographically, indicating that there is a separate enzyme for each of these sites. The enzyme specific for position 55 (denoted pseudouridine synthase 55) was purified approximately 4000-fold using a combination of DEAE-Sepharose, heparin-Sepharose, and hydroxylapatite.

  18. Prenyltransferases of the dimethylallyltryptophan synthase superfamily.

    PubMed

    Yu, Xia; Li, Shu-Ming

    2012-01-01

    Prenylated natural products often have interesting biological and pharmacological activities clearly distinct from their nonprenylated precursors. Prenyltransferases are responsible for the attachment of prenyl moieties to a number of acceptors and contribute significantly to structural and biological diversity of these compounds in nature. In the past 8 years, significant progress has been achieved in the molecular biological, biochemical, and structural biological investigation of the prenyltransferases of the dimethylallyltryptophan synthase (DMATS) superfamily. These soluble enzymes are involved in the biosynthesis of fungal secondary metabolites and mainly catalyze prenylation of diverse indole derivatives, including tryptophan and tryptophan-containing cyclic dipeptides. The members of the DMATS superfamily show promising flexibility toward their aromatic substrates and catalyze highly regio- and stereoselective prenyltransfer reactions. These features were successfully used for chemoenzymatic synthesis, not only for production of prenylated simple indoles and cyclic dipeptides but also for prenylated hydroxynaphthalenes and flavonoids, which are usually found in bacteria and plants, respectively.

  19. CLYBL is a polymorphic human enzyme with malate synthase and β-methylmalate synthase activity

    PubMed Central

    Strittmatter, Laura; Li, Yang; Nakatsuka, Nathan J.; Calvo, Sarah E.; Grabarek, Zenon; Mootha, Vamsi K.

    2014-01-01

    CLYBL is a human mitochondrial enzyme of unknown function that is found in multiple eukaryotic taxa and conserved to bacteria. The protein is expressed in the mitochondria of all mammalian organs, with highest expression in brown fat and kidney. Approximately 5% of all humans harbor a premature stop polymorphism in CLYBL that has been associated with reduced levels of circulating vitamin B12. Using comparative genomics, we now show that CLYBL is strongly co-expressed with and co-evolved specifically with other components of the mitochondrial B12 pathway. We confirm that the premature stop polymorphism in CLYBL leads to a loss of protein expression. To elucidate the molecular function of CLYBL, we used comparative operon analysis, structural modeling and enzyme kinetics. We report that CLYBL encodes a malate/β-methylmalate synthase, converting glyoxylate and acetyl-CoA to malate, or glyoxylate and propionyl-CoA to β-methylmalate. Malate synthases are best known for their established role in the glyoxylate shunt of plants and lower organisms and are traditionally described as not occurring in humans. The broader role of a malate/β-methylmalate synthase in human physiology and its mechanistic link to vitamin B12 metabolism remain unknown. PMID:24334609

  20. Enzymatic and regulatory properties of the trehalose-6-phosphate synthase from the thermoacidophilic archaeon Thermoplasma acidophilum.

    PubMed

    Gao, Yanyan; Jiang, Ying; Liu, Qiulei; Wang, Ruiming; Liu, Xinli; Liu, Bo

    2014-06-01

    Trehalose-6-phosphate synthase plays an important role in trehalose metabolism. It catalyzes the transfer of glucose from UDP-glucose (UDPG) to glucose 6-phosphate to produce trehalose-6-phosphate. Herein we describe the characterization of a trehalose-6-phosphate synthase from the thermoacidophilic archaeon Thermoplasma acidophilum. The dimeric enzyme could utilize UDPG, ADP-Glucose (ADPG) and GDP-Glucose (GDPG) as glycosyl donors and various phosphorylated monosaccharides as glycosyl acceptors. The optimal temperature and pH were found to be 60 °C and pH 6, and the enzyme exhibited notable pH and thermal stability. The enzymatic activity could be stimulated by divalent metal ions and polyanions heparin and chondroitin sulfate. Moreover, the protein was considerably resistant to additives ethanol, EDTA, urea, DTT, SDS, β-mercaptoethanol, methanol, isopropanol and n-butanol. Molecular modeling and mutagenesis analysis revealed that the N-loop region was important for the catalytic efficiency of the enzyme, indicating different roles of N-loop sequences in different trehalose-6-phosphate synthases. PMID:24508535

  1. Pullulanase and Starch Synthase III Are Associated with Formation of Vitreous Endosperm in Quality Protein Maize

    PubMed Central

    Wu, Hao; Clay, Kasi; Thompson, Stephanie S.; Hennen-Bierwagen, Tracie A.; Andrews, Bethany J.; Zechmann, Bernd; Gibbon, Bryan C.

    2015-01-01

    The opaque-2 (o2) mutation of maize increases lysine content, but the low seed density and soft texture of this type of mutant are undesirable. Lines with modifiers of the soft kernel phenotype (mo2) called “Quality Protein Maize” (QPM) have high lysine and kernel phenotypes similar to normal maize. Prior research indicated that the formation of vitreous endosperm in QPM might involve changes in starch granule structure. In this study, we focused on analysis of two starch biosynthetic enzymes that may influence kernel vitreousness. Analysis of recombinant inbred lines derived from a cross of W64Ao2 and K0326Y revealed that pullulanase activity had significant positive correlation with kernel vitreousness. We also found that decreased Starch Synthase III abundance may decrease the pullulanase activity and average glucan chain length given the same Zpu1 genotype. Therefore, Starch Synthase III could indirectly influence the kernel vitreousness by affecting pullulanase activity and coordinating with pullulanase to alter the glucan chain length distribution of amylopectin, resulting in different starch structural properties. The glucan chain length distribution had strong positive correlation with the polydispersity index of glucan chains, which was positively associated with the kernel vitreousness based on nonlinear regression analysis. Therefore, we propose that pullulanase and Starch Synthase III are two important factors responsible for the formation of the vitreous phenotype of QPM endosperms. PMID:26115014

  2. Spatially controlled expression of the Drosophila pseudouridine synthase RluA-1.

    PubMed

    Wang, Chung-Chi; Lo, Jun-Chih; Chien, Cheng-Ting; Huang, Min-Lang

    2011-01-01

    Pseudouridine (Ψ) synthases function in the formation of Ψ, the most abundant of the modified RNA residues. All Ψ synthases in E. coli are classified into one of five families according to their sequences. Among them, members of the RluA Ψ synthase family catalyze certain Ψ formations in ribosomal RNA. RluA family members are required for ribosomal assembly and bacterial growth. None of the RluA in multicellular organisms has been studied. In the Drosophila peripheral nervous system, multiple dendritic (MD) neurons are recognized by their dendritic arbors. MD neurons can also be identified by using the enhancer trap line E7-2-36, which expresses the lacZ gene in MD neurons. Here, we show that the P-element of E7-2-36 inserts into the Drosophila RluA-1 gene. RluA-1 is homologous to E. coli RluA family members and is evolutionarily conserved in multicellular organisms. In situ hybridization and immunocytochemistry revealed that RluA-1 is expressed in MD neurons. We investigated the RluA-1 enhancer responsible for MD expression and found that the membrane-tethered green fluorescent protein driven by RluA-1-GAL4 was expressed in the dendritic arbors of MD neurons, confirming that RluA-1 is indeed expressed in MD neurons. Thus, the expression of RluA-1 is spatially controlled during development.

  3. Identification and characterization of two chitin synthase genes in African malaria mosquito, Anopheles gambiae

    PubMed Central

    Zhang, Xin; Zhang, Jianzhen; Park, Yoonseong; Zhu, Kun Yan

    2012-01-01

    Chitin synthase (CHS) represents an attractive target site for combating insect pests as insect growth and development are strictly dependent on precisely tuned chitin biosynthesis and this pathway is absent in humans and other vertebrates. Current knowledge on CHS in insects, especially their structures, functions, and regulations is still very limited. We report the identification and characterization of two chitin synthase genes, AgCHS1 and AgCHS2, in African malaria mosquito, Anopheles gambiae. AgCHS1 and AgCHS2 were predicted to encode proteins of 1,578 and 1,586 amino acid residues, respectively. Their deduced amino acid sequences show high similarities to other insect chitin synthases. Transcriptional analysis indicated that AgCHS1 was expressed in egg, larval, pupal and adult stages whereas AgCHS2 appeared to be expressed at relatively low levels, particularly during the larval stages as examined by reverse transcription (RT)-PCR and real-time quantitative PCR. Relatively high expression was detected in the carcass followed by the foregut and hindgut for AgCHS1, and the foregut (cardia included) followed by the midgut for AgCHS2. Fluorescence in situ hybridization (FISH) and immunohistochemical analysis revealed new information including the localization of the two enzymes in the ommatidia of the compound eyes, and AgCHS2 in the thoracic and abdominal inter-segmental regions of pupal integument. PMID:22683441

  4. Crystallization and preliminary crystallographic analysis of mannosyl-3-phosphoglycerate synthase from Rubrobacter xylanophilus

    SciTech Connect

    Sá-Moura, Bebiana; Albuquerque, Luciana; Empadinhas, Nuno; Costa, Milton S. da; Pereira, Pedro José Barbosa; Macedo-Ribeiro, Sandra

    2008-08-01

    The enzyme mannosyl-3-phosphoglycerate synthase from R. xylanophilus has been expressed, purified and crystallized. The crystals belong to the hexagonal space group P6{sub 5}22 and diffract to 2.2 Å resolution. Rubrobacter xylanophilus is the only Gram-positive bacterium known to synthesize the compatible solute mannosylglycerate (MG), which is commonly found in hyperthermophilic archaea and some thermophilic bacteria. Unlike the salt-dependent pattern of accumulation observed in (hyper)thermophiles, in R. xylanophilus MG accumulates constitutively. The synthesis of MG in R. xylanophilus was tracked from GDP-mannose and 3-phosphoglycerate, but the genome sequence of the organism failed to reveal any of the genes known to be involved in this pathway. The native enzyme was purified and its N-terminal sequence was used to identify the corresponding gene (mpgS) in the genome of R. xylanophilus. The gene encodes a highly divergent mannosyl-3-phosphoglycerate synthase (MpgS) without relevant sequence homology to known mannosylphosphoglycerate synthases. In order to understand the specificity and enzymatic mechanism of this novel enzyme, it was expressed in Escherichia coli, purified and crystallized. The crystals thus obtained belonged to the hexagonal space group P6{sub 5}22 and contained two protein molecules per asymmetric unit. The structure was solved by SIRAS using a mercury derivative.

  5. Role of cysteine residues in pseudouridine synthases of different families.

    PubMed

    Ramamurthy, V; Swann, S L; Spedaliere, C J; Mueller, E G

    1999-10-01

    The pseudouridine synthases catalyze the isomerization of uridine to pseudouridine in RNA molecules. An attractive mechanism was proposed based on that of thymidylate synthase, in which the thiol(ate) group of a cysteine side chain serves as the nucleophile in a Michael addition to C6 of the isomerized uridine. Such a role for cysteine in the pseudouridine synthase TruA (also named Psi synthase I) has been discredited by site-directed mutagenesis, but sequence alignments have led to the conclusion that there are four distinct "families" of pseudouridine synthases that share no statistically significant global sequence similarity. It was, therefore, necessary to probe the role of cysteine residues in pseudouridine synthases of the families that do not include TruA. We examined the enzymes RluA and TruB, which are members of different families than TruA and each other. Substitution of cysteine for amino acids with nonnucleophilic side chains did not significantly alter the catalytic activity of either pseudouridine synthase. We conclude, therefore, that neither TruB nor RluA require thiol(ate) groups to effect catalysis, excluding their participation in a Michael addition to C6 of uridine, although not eliminating that mechanism (with an alternate nucleophile) from future consideration.

  6. Cloning and functional characterisation of a cis-muuroladiene synthase from black peppermint (Menthaxpiperita) and direct evidence for a chemotype unable to synthesise farnesene.

    PubMed

    Prosser, Ian M; Adams, Racheal J; Beale, Michael H; Hawkins, Nathan D; Phillips, Andrew L; Pickett, John A; Field, Linda M

    2006-08-01

    Using oligonucleotide primers designed to the known gene sequence of an (E)-beta-farnesene (EbetaF) synthase, two cDNA sequences (MxpSS1 and MxpSS2) were cloned from a black peppermint (Menthaxpiperita) plant. MxpSS1 encoded a protein with 96% overall amino acid sequence identity with the EbetaF synthase. Recombinant MxpSS1 produced in Escherichia coli, after removal of an N-terminal thioredoxin fusion, had a K(m) for FPP of 1.91+/-0.1 microM and k(cat) of 0.18 s(-1), and converted farnesyl diphosphate (FPP) into four products, the major two being cis-muurola-3,5-diene (45%) and cis-muurola-4(14),5-diene (43%). This is the first cis-muuroladiene synthase, to be characterised. MxpSS2 encoded a protein with only two amino acids differing from EbetaF synthase. Recombinant MxpSS2 protein showed no activity towards FPP. One of the two mutations, at position 531 (leucine in MxpSS2 and serine in EbetaF synthase) was shown, by structural modelling to occur in the J-K loop, an element of the structure of sesquiterpene synthases known to be important in the reaction mechanism. Reintroduction of the serine at position 531 into MxpSS2 by site-directed mutagenesis restored EbetaF synthase activity (K(m) for FPP 0.98+/-0.12 microM, k(cat) 0.1 s(-1)), demonstrating the crucial role of this residue in the enzyme activity. Analysis, by GC-MS, of the sesquiterpene profile of the plant used for the cloning, revealed that EbetaF was not present, confirming that this particular mint chemotype had lost EbetaF synthase activity due to the observed mutations. PMID:16083926

  7. Effect of modification of the length and flexibility of the acyl carrier protein-thioesterase interdomain linker on functionality of the animal fatty acid synthase.

    PubMed

    Joshi, Anil K; Witkowski, Andrzej; Berman, Harvey A; Zhang, Lei; Smith, Stuart

    2005-03-15

    A natural linker of approximately 20 residues connects the acyl carrier protein with the carboxy-terminal thioesterase domain of the animal fatty acid synthase. This study examines the effects of changes in the length and amino acid composition of this linker on catalytic activity, product composition, and segmental motion of the thioesterase domain. Deletion of 10 residues, almost half of the interdomain linker, had no effect on either mobility of the thioesterase domain, estimated from fluorescence polarization of a pyrenebutyl methylphosphono moiety bound covalently to the active site serine residue, or functionality of the fatty acid synthase; further shortening of the linker limited mobility of the thioesterase domain and resulted in reduced fatty acid synthase activity and an increase in product chain length from 16 to 18 and 20 carbon atoms. Surprisingly, however, even when the entire linker region was deleted, the fatty acid synthase retained 28% activity. Lengthening of the linker, by insertion of an unusually long acyl carrier protein-thioesterase linker from a modular polyketide synthase, increased mobility of the thioesterase domain without having any significant effect on catalytic properties of the complex. Interdomain linkers could also be used to tether, to the acyl carrier protein domain of the fatty acid synthase, a thioesterase active toward shorter chain length acyl thioesters generating novel short-chain fatty acid synthases. These studies reveal that although truncation of the interdomain linker partially impacts the ability of the thioesterase domain to terminate growth of the acyl chain, the overall integrity of the fatty acid synthase is quite tolerant to moderate changes in linker length and flexibility. The retention of fatty acid synthesizing activity on deletion of the entire linker region implies that the inherent flexibility of the phosphopantetheine "swinging arm" also contributes significantly to the successful docking of the long

  8. Mechanics of Cellulose Synthase Complexes in Living Plant Cells

    NASA Astrophysics Data System (ADS)

    Zehfroosh, Nina; Liu, Derui; Ramos, Kieran P.; Yang, Xiaoli; Goldner, Lori S.; Baskin, Tobias I.

    The polymer cellulose is one of the major components of the world's biomass with unique and fascinating characteristics such as its high tensile strength, renewability, biodegradability, and biocompatibility. Because of these distinctive aspects, cellulose has been the subject of enormous scientific and industrial interest, yet there are still fundamental open questions about cellulose biosynthesis. Cellulose is synthesized by a complex of transmembrane proteins called ``Cellulose Synthase A'' (CESA) in the plasma membrane. Studying the dynamics and kinematics of the CESA complex will help reveal the mechanism of cellulose synthesis and permit the development and validation of models of CESA motility. To understand what drives these complexes through the cell membrane, we used total internal reflection fluorescence microscopy (TIRFM) and variable angle epi-fluorescence microscopy to track individual, fluorescently-labeled CESA complexes as they move in the hypocotyl and root of living plants. A mean square displacement analysis will be applied to distinguish ballistic, diffusional, and other forms of motion. We report on the results of these tracking experiments. This work was funded by NSF/PHY-1205989.

  9. A functional isopenicillin N synthase in an animal genome.

    PubMed

    Roelofs, Dick; Timmermans, Martijn J T N; Hensbergen, Paul; van Leeuwen, Hans; Koopman, Jessica; Faddeeva, Anna; Suring, Wouter; de Boer, Tjalf E; Mariën, Janine; Boer, Remon; Bovenberg, Roel; van Straalen, Nico M

    2013-03-01

    Horizontal transfer of genes is widespread among prokaryotes, but is less common between microorganisms and animals. Here, we present evidence for the presence of a gene encoding functional isopenicillin N synthase, an enzyme in the β-lactam antibiotics biosynthesis pathway, in the genome of the soil-living collembolan species, Folsomia candida (FcIPNS). At present, this gene is only known from bacteria and fungi, as is the capacity to produce β-lactam antibiotics. The FcIPNS gene was located on two genomic contigs, was physically linked to a predicted insect ATP-binding cassette transporter gene, and contained three introns each flanked by eukaryotic splicing recognition sites (GT/AG). Homology searches revealed no similarity between these introns and the FcIPNS regions of bacteria or fungi. All amino acids conserved across bacteria and fungi were also conserved in F. candida. Recombinant FcIPNS was able to convert its substrate amino δ-(l-α-aminoadipyl)-l-cysteinyl-d-valine into isopenicillin N, providing strong evidence that FcIPNS is functional. Phylogenetic analysis clustered FcIPNS outside the bacterial IPNS clade, and also outside the fungal IPNS clade, suggesting an ancient gene transfer followed by divergence in the F. candida genome. In conclusion, the data suggest that the soil-living collembolan F. candida has assimilated the capacity for antibacterial activity by horizontal gene transfer, which may be an important adaptive trait in the microbe-dominated soil ecosystem. PMID:23204388

  10. Anthocyanidin synthase in non-anthocyanin-producing Caryophyllales species.

    PubMed

    Shimada, Setsuko; Inoue, Yoriko T; Sakuta, Masaaki

    2005-12-01

    Red colors in flowers are mainly produced by two types of pigments: anthocyanins and betacyanins. Although anthocyanins are widely distributed in higher plants, betacyanins have replaced anthocyanins in the Caryophyllales. There has been no report so far to find anthocyanins and betacyanins existing together within the same plant. This curious phenomenon has been examined from genetic and evolutionary perspectives, however nothing is known at the molecular level about the mutual exclusion of anthocyanins and betacyanins in higher plants. Here, we show that spinach (Spinacia oleracea) and pokeweed (Phytolacca americana), which are both members of the Caryophyllales, have functional anthocyanidin synthases (ANSs). The ability of ANSs of the Caryophyllales to oxidize trans-leucocyanidin to cyanidin is comparable to that of ANSs in anthocyanin-producing plants. Expression profiles reveal that, in spinach, dihydroflavonol 4-reductase (DFR) and ANS are not expressed in most tissues and organs, except seeds, in which ANS may contribute to proanthocyanidin synthesis. One possible explanation for the lack of anthocyanins in the Caryophyllales is the suppression or limited expression of the DFR and ANS.

  11. Substrate specificity of Arabidopsis 3-ketoacyl-CoA synthases

    SciTech Connect

    Blacklock, Brenda J. . E-mail: blacklock@chem.iupui.edu; Jaworski, Jan G.

    2006-07-28

    The very long chain fatty acids (VLCFA) incorporated into plant lipids are derived from the iterative addition of C2 units provided by malonyl-CoA to an acyl-CoA by the 3-ketoacyl-CoA synthase (KCS) component of a fatty acid elongase (FAE) complex. Mining of the Arabidopsis genome sequence database revealed 20 genes with homology to seed-specific FAE1 KCS. Eight of the 20 putative KCSs were cloned, expressed in yeast, and isolated as (His){sub 6} fusion proteins. Five of the eight (At1g71160, At1g19440, At1g07720, At5g04530, and At4g34250) had little or no activity with C16 to C20 substrates while three demonstrated activity with C16, C18, and C20 saturated acyl-CoA substrates. At1g01120 KCS (KCS1) and At2g26640 KCS had broad substrate specificities when assayed with saturated and mono-unsaturated C16 to C24 acyl-CoAs while At4g34510 KCS was specific for saturated fatty acyl-CoA substrates.

  12. Hydroxymethylbilane synthase: Complete genomic sequence and amplifiable polymorphisms in the human gene

    SciTech Connect

    Yoo, Hanwook; Warner, C.A.; Chen, Chiahsiang; Desnick, R.J. )

    1993-01-01

    Acute intermittent porphyria (AIP), an autosomal dominant inborn error of heme biosynthesis, results from the half-normal activity of the heme biosynthetic enzyme hydroxymethylbilane synthase (HMB-synthase). Heterozygous individuals are prone to life-threatening acute neurologic attacks, which are precipitated by certain drugs and other metabolic, hormonal, and nutritional factors. Since the biochemical diagnosis of heterozygous individuals has been problematic, recent efforts have focused on the identification of mutations and diagnostically useful restriction fragment length polymorphisms (RFLPS) in the HMB-synthase gene. To facilitate these endeavors, the human HMB-synthase gene, including 1.1 kb of the 5[prime] flanking region, was isolated and completely sequenced in both orientations. The 10,024-bp gene contained 15 exons ranging in size from 39 to 438 bp and 14 introns ranging from 87 to 2913 bp. All intron/exon boundaries conformed to the GT/AG consensus rule. There were six Alu repetitive elements, one of the J and five of the Sa subfamilies. Analysis of the 1. I -kb 5[prime]flanking region revealed putative regulatory elements for the housekeeping promoter including AP1, AP4, SP1, TRE, ENH, and CAC. This region contained 10 HpaII sites and had an overall GC content of 54%. Three new polymorphic sites were identified by the single-strand conformation polymorphism (SSCP) technique, a common BsmAI site in intron 3 (3581 A/G), a common HinfI RFLP in intron 10 (7064 C/A), and a rare MnlI site in intron 14 (7998G/A). The allele frequencies of five previously known and the new polymorphic sites in a normal Caucasian population indicated that the intron 1 and intron 3 RFLPs were in linkage disequilibrium; however, the Hint I site segregated independently. 54 refs., 6 figs., 3 tabs.

  13. Plant oxidosqualene metabolism: cycloartenol synthase-dependent sterol biosynthesis in Nicotiana benthamiana.

    PubMed

    Gas-Pascual, Elisabet; Berna, Anne; Bach, Thomas J; Schaller, Hubert

    2014-01-01

    The plant sterol pathway exhibits a major biosynthetic difference as compared with that of metazoans. The committed sterol precursor is the pentacyclic cycloartenol (9β,19-cyclolanost-24-en-3β-ol) and not lanosterol (lanosta-8,24-dien-3β-ol), as it was shown in the late sixties. However, plant genome mining over the last years revealed the general presence of lanosterol synthases encoding sequences (LAS1) in the oxidosqualene cyclase repertoire, in addition to cycloartenol synthases (CAS1) and to non-steroidal triterpene synthases that contribute to the metabolic diversity of C30H50O compounds on earth. Furthermore, plant LAS1 proteins have been unambiguously identified by peptidic signatures and by their capacity to complement the yeast lanosterol synthase deficiency. A dual pathway for the synthesis of sterols through lanosterol and cycloartenol was reported in the model Arabidopsis thaliana, though the contribution of a lanosterol pathway to the production of 24-alkyl-Δ(5)-sterols was quite marginal (Ohyama et al. (2009) PNAS 106, 725). To investigate further the physiological relevance of CAS1 and LAS1 genes in plants, we have silenced their expression in Nicotiana benthamiana. We used virus induced gene silencing (VIGS) based on gene specific sequences from a Nicotiana tabacum CAS1 or derived from the solgenomics initiative (http://solgenomics.net/) to challenge the respective roles of CAS1 and LAS1. In this report, we show a CAS1-specific functional sterol pathway in engineered yeast, and a strict dependence on CAS1 of tobacco sterol biosynthesis.

  14. Reduced activity of ATP synthase in mitochondria causes cytoplasmic male sterility in chili pepper.

    PubMed

    Li, Jinjie; Pandeya, Devendra; Jo, Yeong Deuk; Liu, Wing Yee; Kang, Byoung-Cheorl

    2013-04-01

    Cytoplasmic male sterility (CMS) is a maternally inherited trait characterized by the inability to produce functional pollen. The CMS-associated protein Orf507 (reported as Orf456 in previous researches) was previously identified as a candidate gene for mediating male sterility in pepper. Here, we performed yeast two-hybrid analysis to screen for interacting proteins, and found that the ATP synthase 6 kDa subunit containing a mitochondrial signal peptide (MtATP6) specifically interacted with Orf507. In addition, the two proteins were found to be interacted in vivo using bimolecular fluorescence complementation (BiFC) and co-immunoprecipitation (Co-IP) assays. Further functional characterization of Orf507 revealed that the encoded protein is toxic to bacterial cells. Analysis of tissue-specific expression of ATP synthase 6 kDa showed that the transcription level was much lower in anthers of the CMS line than in their wild type counterparts. In CMS plants, ATP synthase activity and content were reduced by more than half compared to that of the normal plants. Taken together, it can be concluded that reduced ATP synthase activity and ATP content might have affected pollen development in CMS plants. Here, we hypothesize that Orf507 might cause MtATP6 to be nonfunctional by changing the latter's conformation or producing an inhibitor that prevents the normal functioning of MtATP6. Thus, further functional analysis of mitochondrial Orf507 will provide insights into the mechanisms underlying CMS in plants. PMID:23274393

  15. Delineation of the arginine- and tetrahydrobiopterin-binding sites of neuronal nitric oxide synthase.

    PubMed Central

    Boyhan, A; Smith, D; Charles, I G; Saqi, M; Lowe, P N

    1997-01-01

    Nitric oxide synthase (EC 1.14.13.39) catalyses the conversion of arginine, NADPH and oxygen to nitric oxide and citrulline, using haem, (6R)-5,6,7,8-tetrahydro-l-biopterin (tetrahydrobiopterin), calmodulin, FAD and FMN as cofactors. The enzyme consists of a central calmodulin-binding sequence flanked on the N-terminal side by a haem-binding region that contains the arginine and tetrahydrobiopterin sites and on the C-terminal side by a region homologous with NADPH:cytochrome P-450 reductase. By using domain boundaries defined by limited proteolysis of full-length enzyme, recombinant haem-binding regions of rat brain neuronal nitric oxide synthase were expressed and purified. Two proteins were made in high yield: one, corresponding to residues 221-724, contained bound haem and tetrahydrobiopterin and was able to bind Nomega-nitro-l-arginine (nitroarginine) or arginine; the other, containing residues 350-724, contained bound haem but was unable to bind tetrahydrobiopterin, nitroarginine or arginine. These results showed that rat brain neuronal nitric oxide synthase contains a critical determinant for arginine/tetrahydrobiopterin binding between residues 221 and 350. Limited proteolysis with chymotrypsin of the former protein resulted in a new species with an N-terminal residue 275 that retained the ability to bind nitroarginine, further defining the critical region for arginine binding as being between 275 and 350. Comparison of the sequences of nitric oxide synthase and the tetrahydrobiopterin-requiring amino acid hydroxylases revealed a similarity in the region between residues 470 and 600, suggesting that this might represent the core region of the pterin-binding site. The stoichiometries of binding of substrate and cofactors to the recombinant domains were not more than 0.5 mol/mol of monomer, suggesting that there might be a single high-affinity site per dimer. PMID:9173872

  16. The Pseudouridine Synthases Proceed through a Glycal Intermediate

    PubMed Central

    2016-01-01

    The pseudouridine synthases isomerize (U) in RNA to pseudouridine (Ψ), and the mechanism that they follow has long been a question of interest. The recent elucidation of a product of the mechanistic probe 5-fluorouridine that had been epimerized to the arabino isomer suggested that the Ψ synthases might operate through a glycal intermediate formed by deprotonation of C2′. When that position in substrate U is deuterated, a primary kinetic isotope effect is observed, which indisputably indicates that the proposed deprotonation occurs during the isomerization of U to Ψ and establishes the mechanism followed by the Ψ synthases. PMID:27292228

  17. Colorimetric Coupled Enzyme Assay for Cystathionine β-Synthase.

    PubMed

    Rocchiccioli, Marco; Moschini, Roberta; Cappiello, Laura; Balestri, Francesco; Cappiello, Mario; Mura, Umberto; Del-Corso, Antonella

    2016-01-01

    A colorimetric coupled enzyme assay for the determination of cystathionine β-synthase activity is described. The method exploits cystathionine γ-lyase as an ancillary enzyme capable of transforming cystathionine, produced by cystathionine β-synthase, into cysteine. The cysteine is then spectrophotometrically detected at 560 nm, after its specific complexation with ninhydrin. This method was used to detect cystathionine β-synthase in crude extracts, and for the kinetic characterization of the enzyme partially purified from bovine kidney. A rapid two-step protocol is described for the partial purification of cystathionine γ-lyase from bovine kidney, aimed at a suitable and stable ancillary enzyme preparation. PMID:27506718

  18. Computational design and selections for an engineered, thermostable terpene synthase

    PubMed Central

    Diaz, Juan E; Lin, Chun-Shi; Kunishiro, Kazuyoshi; Feld, Birte K; Avrantinis, Sara K; Bronson, Jonathan; Greaves, John; Saven, Jeffery G; Weiss, Gregory A

    2011-01-01

    Terpenoids include structurally diverse antibiotics, flavorings, and fragrances. Engineering terpene synthases for control over the synthesis of such compounds represents a long sought goal. We report computational design, selections, and assays of a thermostable mutant of tobacco 5-epi-aristolochene synthase (TEAS) for the catalysis of carbocation cyclization reactions at elevated temperatures. Selection for thermostability included proteolytic digestion followed by capture of intact proteins. Unlike the wild-type enzyme, the mutant TEAS retains enzymatic activity at 65°C. The thermostable terpene synthase variant denatures above 80°C, approximately twice the temperature of the wild-type enzyme. PMID:21739507

  19. The Pseudouridine Synthases Proceed through a Glycal Intermediate.

    PubMed

    Veerareddygari, Govardhan Reddy; Singh, Sanjay K; Mueller, Eugene G

    2016-06-29

    The pseudouridine synthases isomerize (U) in RNA to pseudouridine (Ψ), and the mechanism that they follow has long been a question of interest. The recent elucidation of a product of the mechanistic probe 5-fluorouridine that had been epimerized to the arabino isomer suggested that the Ψ synthases might operate through a glycal intermediate formed by deprotonation of C2'. When that position in substrate U is deuterated, a primary kinetic isotope effect is observed, which indisputably indicates that the proposed deprotonation occurs during the isomerization of U to Ψ and establishes the mechanism followed by the Ψ synthases.

  20. Generation and Functional Evaluation of Designer Monoterpene Synthases.

    PubMed

    Srividya, N; Lange, I; Lange, B M

    2016-01-01

    Monoterpene synthases are highly versatile enzymes that catalyze the first committed step in the pathways toward terpenoids, the structurally most diverse class of plant natural products. Recent advancements in our understanding of the reaction mechanism have enabled engineering approaches to develop mutant monoterpene synthases that produce specific monoterpenes. In this chapter, we are describing protocols to introduce targeted mutations, express mutant enzyme catalysts in heterologous hosts, and assess their catalytic properties. Mutant monoterpene synthases have the potential to contribute significantly to synthetic biology efforts aimed at producing larger amounts of commercially attractive monoterpenes. PMID:27480686

  1. Peroxisomal and mitochondrial citrate synthase in CAM plants.

    PubMed

    Zafra, M F; Segovia, J L; Alejandre, M J; García-Peregrín, E

    1981-12-01

    Citrate synthase wa studied for the first time in peroxisomes and mitochondria of crassulacean acid metabolism plants. Cellular organelles were isolated from Agave americana leaves by sucrose density gradient centrifugation and characterized by the use of catalase and cytochrome oxidase as marker enzymes, respectively. 48,000 X g centrifugation caused the breakdown of the cellular organelles. The presence of a glyoxylate cycle enzyme (citrate synthase) and a glycollate pathway enzyme (catalase) in the same organelles, besides the absence of another glyoxalate cycle enzyme (malate synthase) is reported for the first time, suggesting that peroxisomal and glyoxysomal proteins are synthesized at the same time and housed in he same organelle.

  2. Evolution of metamorphism in thymidylate synthases within the primate lineages.

    PubMed

    Luo, BeiBei; Johnson, Saphronia R; Lebioda, Lukasz; Berger, Sondra H

    2011-03-01

    Crystal structures of human thymidylate synthase (hTS) revealed that the protein exists in active and inactive conformations, defined by the position of a loop containing the active site nucleophile. TS is highly homologous among diverse species; however, the residue at position 163 (hTS) differs among species. Arginine at this position is predicted by structural modeling to enable conformational switching. Arginine or lysine is reported at this position in all mammals in the GenBank and Ensembl databases, with arginine reported in only primates. Sequence analysis of the TS gene of representative primates revealed that arginine occurs at this relative position in all primates except a representative of prosimians. Mutant human proteins were created with residues at position 163 that occur in TSs from prokaryotes and eukaryotes. Catalytic constants (k(cat)) of mutant enzymes were 45-149% of hTS, with the lysine mutant (R163K) exhibiting the highest k(cat). The effect of lysine substitution on solution structure and on ligand binding was investigated. R163K exhibited higher intrinsic fluorescence, a more negative molar ellipticity, and higher dissociation constants (K(d)) for ligands that modulate protein conformation than hTS. Temperature effects on intrinsic fluorescence and catalytic activity of hTS and R163K are consistent with proteins populating different conformational states. The data indicate that the enzyme with arginine at the position corresponding to 163 (hTS) evolved after the divergence of prosimians and simians and that substitution of lysine by arginine confers unique structural and functional properties to the enzyme expressed in simian primates.

  3. Evolution of metamorphism in thymidylate synthases within the primate lineages.

    PubMed

    Luo, BeiBei; Johnson, Saphronia R; Lebioda, Lukasz; Berger, Sondra H

    2011-03-01

    Crystal structures of human thymidylate synthase (hTS) revealed that the protein exists in active and inactive conformations, defined by the position of a loop containing the active site nucleophile. TS is highly homologous among diverse species; however, the residue at position 163 (hTS) differs among species. Arginine at this position is predicted by structural modeling to enable conformational switching. Arginine or lysine is reported at this position in all mammals in the GenBank and Ensembl databases, with arginine reported in only primates. Sequence analysis of the TS gene of representative primates revealed that arginine occurs at this relative position in all primates except a representative of prosimians. Mutant human proteins were created with residues at position 163 that occur in TSs from prokaryotes and eukaryotes. Catalytic constants (k(cat)) of mutant enzymes were 45-149% of hTS, with the lysine mutant (R163K) exhibiting the highest k(cat). The effect of lysine substitution on solution structure and on ligand binding was investigated. R163K exhibited higher intrinsic fluorescence, a more negative molar ellipticity, and higher dissociation constants (K(d)) for ligands that modulate protein conformation than hTS. Temperature effects on intrinsic fluorescence and catalytic activity of hTS and R163K are consistent with proteins populating different conformational states. The data indicate that the enzyme with arginine at the position corresponding to 163 (hTS) evolved after the divergence of prosimians and simians and that substitution of lysine by arginine confers unique structural and functional properties to the enzyme expressed in simian primates. PMID:21318388

  4. Salinipyrone and Pacificanone Are Biosynthetic By-products of the Rosamicin Polyketide Synthase.

    PubMed

    Awakawa, Takayoshi; Crüsemann, Max; Munguia, Jason; Ziemert, Nadine; Nizet, Victor; Fenical, William; Moore, Bradley S

    2015-07-01

    Salinipyrones and pacificanones are structurally related polyketides from Salinispora pacifica CNS-237 that are proposed to arise from the same modular polyketide synthase (PKS) assembly line. Genome sequencing revealed a large macrolide PKS gene cluster that codes for the biosynthesis of rosamicin A and a series of new macrolide antibiotics. Mutagenesis experiments unexpectedly correlated salinipyrone and pacificanone biosynthesis to the rosamicin octamodule Spr PKS. Remarkably, this bifurcated polyketide pathway illuminates a series of enzymatic domain- and module-skipping reactions that give rise to natural polyketide product diversity. Our findings enlarge the growing knowledge of polyketide biochemistry and illuminate potential challenges in PKS bioengineering.

  5. Rare structural variants of human and murine uroporphyrinogen I synthase.

    PubMed Central

    Meisler, M H; Carter, M L

    1980-01-01

    An isoelectric focusing method for detection of structural variants of the enzyme uroporphyrinogen I synthase [porphobilinogen ammonia-lyase (polymerizing), EC 4.3.1.8] in mammalian tissues has been developed. Mouse and human erythrocytes contain one or two major isozymes of uroporphyrinogen I synthase, respectively. Other tissues contain a set of more acidic isozymes that are encoded by the same structural gene as the erythrocyte isozymes. Mouse populations studied with this method were monomorphic for uroporphyrinogen I synthase, with the exception of one feral mouse population. The pedigree of a human family with a rare structural variant is consistent with autosomal linkage of the structural gene. This system provides a convenient isozyme marker for genetic studies and will facilitate determination of the chromosomal location of the uroporphyrinogen I synthase locus. Images PMID:6930671

  6. Thymoquinone Inhibits Escherichia coli ATP Synthase and Cell Growth

    PubMed Central

    Ahmad, Zulfiqar; Laughlin, Thomas F.; Kady, Ismail O.

    2015-01-01

    We examined the thymoquinone induced inhibition of purified F1 or membrane bound F1FO E. coli ATP synthase. Both purified F1 and membrane bound F1FO were completely inhibited by thymoquinone with no residual ATPase activity. The process of inhibition was fully reversible and identical in both membrane bound F1Fo and purified F1 preparations. Moreover, thymoquinone induced inhibition of ATP synthase expressing wild-type E. coli cell growth and non-inhibition of ATPase gene deleted null control cells demonstrates that ATP synthase is a molecular target for thymoquinone. This also links the beneficial dietary based antimicrobial and anticancer effects of thymoquinone to its inhibitory action on ATP synthase. PMID:25996607

  7. Human uroporphyrinogen III synthase: Molecular cloning, nucleotide sequence, and expression of a full-length cDNA

    SciTech Connect

    Tsai, Shihfeng; Bishop, D.F.; Desnick, R.J. )

    1988-10-01

    Uroporphyrinogen III synthase, the fourth enzyme in the heme biosynthetic pathway, is responsible for conversion of the linear tetrapyrrole, hydroxymethylbilane, to the cyclic tetrapyrrole, uroporphyrinogen III. The deficient activity of URO-synthase is the enzymatic defect in the autosomal recessive disorder congenital erythropoietic porphyria. To facilitate the isolation of a full-length cDNA for human URO-synthase, the human erythrocyte enzyme was purified to homogeneity and 81 nonoverlapping amino acids were determined by microsequencing the N terminus and four tryptic peptides. Two synthetic oligonucleotide mixtures were used to screen 1.2 {times} 10{sup 6} recombinants from a human adult liver cDNA library. Eight clones were positive with both oligonucleotide mixtures. Of these, dideoxy sequencing of the 1.3 kilobase insert from clone pUROS-2 revealed 5' and 3' untranslated sequences of 196 and 284 base pairs, respectively, and an open reading frame of 798 base pairs encoding a protein of 265 amino acids with a predicted molecular mass of 28,607 Da. The isolation and expression of this full-length cDNA for human URO-synthase should facilitate studies of the structure, organization, and chromosomal localization of this heme biosynthetic gene as well as the characterization of the molecular lesions causing congenital erythropoietic porphyria.

  8. Production and characterization of polyclonal antibodies in rabbits to 4S-limonene synthase from spearmint (Mentha spicata).

    PubMed

    Alonso, W R; Crock, J E; Croteau, R

    1993-02-15

    Limonene synthase, a monoterpene cyclase from the oil glands of spearmint (Mentha spicata) leaves that catalyzes the conversion of geranyl pyrophosphate to (-)-4S-limonene, was purified, and polyclonal antibodies were generated in rabbits against the sodium dodecyl sulfate-denatured protein. Immunoblotting analysis revealed that the antibodies were very specific for denatured limonene synthase from all Mentha species tested. However, no immunological cross-reactivity was observed with denatured limonene synthases from Valencia oranges (Citrus sinensis, Rutaceae) or wormseed (Chenopodium ambrosioides, Chenopodiaceae). Furthermore, the antibody preparation did not detectably cross-react with other monoterpene cyclases from related angiosperm species of the Lamiaceae, Asteraceae, and Umbellifereae, or from conifer species, and no cross-reactivity was demonstrated toward several sesquiterpene cyclases of higher plant and fungal origin. Although the antibody preparation was highly selective for denatured limonene cyclase from Mentha, the antibodies did not recognize the native protein in several different types of experiments. Nevertheless, specificity for the target enzyme was unambiguously demonstrated when the antibody preparation was shown to cross-react with the cyclase protein expressed in Escherichia coli that harbored the corresponding limonene synthase cDNA gene from M. spicata.

  9. Regulation of synthase phosphatase and phosphorylase phosphatase in rat liver.

    PubMed

    Tan, A W; Nuttall, F Q

    1976-08-12

    Using substrates purified from liver, the apparent Km values of synthase phosphatase ([UDPglucose--glycogen glucosyltransferase-D]phosphohydrolase, EC 3.1.3.42) and phosphorylase phosphatase (phosphorylase a phosphohydrolase, EC 3.1.3.17) were found to be 0.7 and 60 units/ml respectively. The maximal velocity of phosphorylase phosphatase was more than a 100 times that of synthase phosphatase. In adrenalectomized, fasted animals there was a complete loss of synthase phosphatase but only a slight decrease in phosphorylase phosphatase when activity was measured using endogenous substrates in a concentrated liver extract. When assayed under optimal conditions with purified substrates, both activities were present but had decreased to very low levels. Mixing experiments indicated that synthase D present in the extract of adrenalectomized fasted animals was altered such that it was no longer a substrate for synthase phosphatase from normal rats. Phosphorylase a substrate on the other hand was unaltered and readily converted. When glucose was given in vivo, no change in percent of synthase in the I form was seen in adrenalectomized rats but the percent of phosphorylase in the a form was reduced. Precipitation of protein from an extract of normal fed rats with ethanol produced a large activation of phosphorylase phosphatase activity with no corresponding increase in synthase phosphatase activity. Despite the low phosphorylase phosphatase present in extracts of adrenalectomized fasted animals, ethanol precipitation increased activity to the same high level as obtained in the normal fed rats. Synthase phosphatase and phosphorylase phosphatase activities were also decreased in normal fasted, diabetic fed and fasted, and adrenalectomized fed rats. Both enzymes recovered in the same manner temporally after oral glucose administration to adrenalectomized, fasted rats. These results suggest an integrated regulatory mechanism for the two phosphatase.

  10. Biosynthesis of riboflavin: an unusual riboflavin synthase of Methanobacterium thermoautotrophicum.

    PubMed Central

    Eberhardt, S; Korn, S; Lottspeich, F; Bacher, A

    1997-01-01

    Riboflavin synthase was purified by a factor of about 1,500 from cell extract of Methanobacterium thermoautotrophicum. The enzyme had a specific activity of about 2,700 nmol mg(-1) h(-1) at 65 degrees C, which is relatively low compared to those of riboflavin synthases of eubacteria and yeast. Amino acid sequences obtained after proteolytic cleavage had no similarity with known riboflavin synthases. The gene coding for riboflavin synthase (designated ribC) was subsequently cloned by marker rescue with a ribC mutant of Escherichia coli. The ribC gene of M. thermoautotrophicum specifies a protein of 153 amino acid residues. The predicted amino acid sequence agrees with the information gleaned from Edman degradation of the isolated protein and shows 67% identity with the sequence predicted for the unannotated reading frame MJ1184 of Methanococcus jannaschii. The ribC gene is adjacent to a cluster of four genes with similarity to the genes cbiMNQO of Salmonella typhimurium, which form part of the cob operon (this operon contains most of the genes involved in the biosynthesis of vitamin B12). The amino acid sequence predicted by the ribC gene of M. thermoautotrophicum shows no similarity whatsoever to the sequences of riboflavin synthases of eubacteria and yeast. Most notably, the M. thermoautotrophicum protein does not show the internal sequence homology characteristic of eubacterial and yeast riboflavin synthases. The protein of M. thermoautotrophicum can be expressed efficiently in a recombinant E. coli strain. The specific activity of the purified, recombinant protein is 1,900 nmol mg(-1) h(-1) at 65 degrees C. In contrast to riboflavin synthases from eubacteria and fungi, the methanobacterial enzyme has an absolute requirement for magnesium ions. The 5' phosphate of 6,7-dimethyl-8-ribityllumazine does not act as a substrate. The findings suggest that riboflavin synthase has evolved independently in eubacteria and methanobacteria. PMID:9139911

  11. Understanding structure, function, and mutations in the mitochondrial ATP synthase

    PubMed Central

    Xu, Ting; Pagadala, Vijayakanth; Mueller, David M.

    2015-01-01

    The mitochondrial ATP synthase is a multimeric enzyme complex with an overall molecular weight of about 600,000 Da. The ATP synthase is a molecular motor composed of two separable parts: F1 and Fo. The F1 portion contains the catalytic sites for ATP synthesis and protrudes into the mitochondrial matrix. Fo forms a proton turbine that is embedded in the inner membrane and connected to the rotor of F1. The flux of protons flowing down a potential gradient powers the rotation of the rotor driving the synthesis of ATP. Thus, the flow of protons though Fo is coupled to the synthesis of ATP. This review will discuss the structure/function relationship in the ATP synthase as determined by biochemical, crystallographic, and genetic studies. An emphasis will be placed on linking the structure/function relationship with understanding how disease causing mutations or putative single nucleotide polymorphisms (SNPs) in genes encoding the subunits of the ATP synthase, will affect the function of the enzyme and the health of the individual. The review will start by summarizing the current understanding of the subunit composition of the enzyme and the role of the subunits followed by a discussion on known mutations and their effect on the activity of the ATP synthase. The review will conclude with a summary of mutations in genes encoding subunits of the ATP synthase that are known to be responsible for human disease, and a brief discussion on SNPs. PMID:25938092

  12. Linking pseudouridine synthases to growth, development and cell competition.

    PubMed

    Tortoriello, Giuseppe; de Celis, José F; Furia, Maria

    2010-08-01

    Eukaryotic pseudouridine synthases direct RNA pseudouridylation and bind H/ACA small nucleolar RNA (snoRNAs), which, in turn, may act as precursors of microRNA-like molecules. In humans, loss of pseudouridine synthase activity causes dyskeratosis congenita (DC), a complex systemic disorder characterized by cancer susceptibility, failures in ribosome biogenesis and telomere stability, and defects in stem cell formation. Considering the significant interest in deciphering the various molecular consequences of pseudouridine synthase failure, we performed a loss of function analysis of minifly (mfl), the pseudouridine synthase gene of Drosophila, in the wing disc, an advantageous model system for studies of cell growth and differentiation. In this organ, depletion of the mfl-encoded pseudouridine synthase causes a severe reduction in size by decreasing both the number and the size of wing cells. Reduction of cell number was mainly attributable to cell death rather than reduced proliferation, establishing that apoptosis plays a key role in the development of the loss of function mutant phenotype. Depletion of Mfl also causes a proliferative disadvantage in mosaic tissues that leads to the elimination of mutant cells by cell competition. Intriguingly, mfl silencing also triggered unexpected effects on wing patterning and cell differentiation, including deviations from normal lineage boundaries, mingling of cells of different compartments, and defects in the formation of the wing margin that closely mimic the phenotype of reduced Notch activity. These results suggest that a component of the pseudouridine synthase loss of function phenotype is caused by defects in Notch signalling.

  13. Citrate synthase from the liver fluke Fasciola hepatica.

    PubMed

    Zinsser, Veronika L; Moore, Catherine M; Hoey, Elizabeth M; Trudgett, Alan; Timson, David J

    2013-06-01

    Citrate synthase catalyses the first step of the Krebs' tricarboxylic acid cycle. A sequence encoding citrate synthase from the common liver fluke, Fasciola hepatica, has been cloned. The encoded protein sequence is predicted to fold into a largely α-helical protein with high structural similarity to mammalian citrate synthases. Although a hexahistidine-tagged version of the protein could be expressed in Escherichia coli, it was not possible to purify it by nickel-affinity chromatography. Similar results were obtained with a version of the protein which lacks the putative mitochondrial targeting sequence (residues 1 to 29). However, extracts from bacterial cells expressing this version had additional citrate synthase activity after correcting for the endogenous, bacterial activity. The apparent K m for oxaloacetate was found to be 0.22 mM, which is higher than that observed in mammalian citrate synthases. Overall, the sequence and structure of F. hepatica citrate synthase are similar to ones from other eukaryotes, but there are enzymological differences which merit further investigation.

  14. Membrane localization and topology of leukotriene C4 synthase.

    PubMed

    Christmas, Peter; Weber, Brittany M; McKee, Mary; Brown, Dennis; Soberman, Roy J

    2002-08-01

    Leukotriene C(4) (LTC(4)) synthase conjugates LTA(4) with GSH to form LTC(4). Determining the site of LTC(4) synthesis and the topology of LTC(4) synthase may uncover unappreciated intracellular roles for LTC(4), as well as how LTC(4) is transferred to its export carrier, the multidrug resistance protein-1. We have determined the membrane localization of LTC(4) synthase by immunoelectron microscopy. In contrast to the closely related five-lipoxygenase-activating protein, LTC(4) synthase is distributed in the outer nuclear membrane and peripheral endoplasmic reticulum but is excluded from the inner nuclear membrane. We have combined immunofluorescence with differential membrane permeabilization to determine the topology of LTC(4) synthase. The active site of LTC(4) synthase is localized in the lumen of the nuclear envelope and endoplasmic reticulum. These results indicate that the synthesis of LTB(4) and LTC(4) occurs in different subcellular locations and suggests that LTC(4) must be returned to the cytoplasmic side of the membrane for export by multidrug resistance protein-1. The differential localization of two very similar integral membrane proteins suggests that mechanisms other than size-dependent exclusion regulate their passage to the inner nuclear membrane.

  15. Electric field driven torque in ATP synthase.

    PubMed

    Miller, John H; Rajapakshe, Kimal I; Infante, Hans L; Claycomb, James R

    2013-01-01

    FO-ATP synthase (FO) is a rotary motor that converts potential energy from ions, usually protons, moving from high- to low-potential sides of a membrane into torque and rotary motion. Here we propose a mechanism whereby electric fields emanating from the proton entry and exit channels act on asymmetric charge distributions in the c-ring, due to protonated and deprotonated sites, and drive it to rotate. The model predicts a scaling between time-averaged torque and proton motive force, which can be hindered by mutations that adversely affect the channels. The torque created by the c-ring of FO drives the γ-subunit to rotate within the ATP-producing complex (F1) overcoming, with the aid of thermal fluctuations, an opposing torque that rises and falls with angular position. Using the analogy with thermal Brownian motion of a particle in a tilted washboard potential, we compute ATP production rates vs. proton motive force. The latter shows a minimum, needed to drive ATP production, which scales inversely with the number of proton binding sites on the c-ring. PMID:24040370

  16. Electric Field Driven Torque in ATP Synthase

    PubMed Central

    Miller, John H.; Rajapakshe, Kimal I.; Infante, Hans L.; Claycomb, James R.

    2013-01-01

    FO-ATP synthase (FO) is a rotary motor that converts potential energy from ions, usually protons, moving from high- to low-potential sides of a membrane into torque and rotary motion. Here we propose a mechanism whereby electric fields emanating from the proton entry and exit channels act on asymmetric charge distributions in the c-ring, due to protonated and deprotonated sites, and drive it to rotate. The model predicts a scaling between time-averaged torque and proton motive force, which can be hindered by mutations that adversely affect the channels. The torque created by the c-ring of FO drives the γ-subunit to rotate within the ATP-producing complex (F1) overcoming, with the aid of thermal fluctuations, an opposing torque that rises and falls with angular position. Using the analogy with thermal Brownian motion of a particle in a tilted washboard potential, we compute ATP production rates vs. proton motive force. The latter shows a minimum, needed to drive ATP production, which scales inversely with the number of proton binding sites on the c-ring. PMID:24040370

  17. Human Isoprenoid Synthase Enzymes as Therapeutic Targets

    NASA Astrophysics Data System (ADS)

    Park, Jaeok; Matralis, Alexios; Berghuis, Albert; Tsantrizos, Youla

    2014-07-01

    The complex biochemical network known as the mevalonate pathway is responsible for the biosynthesis of all isoprenoids in the human body, which consists of a vast array of metabolites that are vital for proper cellular functions. Two key isoprenoids, farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP) are responsible for the post-translational prenylation of small GTP-binding proteins, and serve as the biosynthetic precursors to numerous other biomolecules. The down-stream metabolite of FPP and GGPP is squalene, the precursor to steroids, bile acids, lipoproteins and vitamin D. In the past, interest in prenyl synthase inhibitors focused mainly on the role of the FPP in lytic bone diseases. More recently, pre-clinical and clinical studies have strongly implicated high levels of protein prenylation in a plethora of human diseases, including non-skeletal cancers, the progression of neurodegenerative diseases and cardiovascular diseases. In this review, we focus mainly on the potential therapeutic value of down-regulating the biosynthesis of FPP, GGPP and squalene. We summarize the most recent drug discovery efforts and the structural data available that support the current on-going studies.

  18. Electric field driven torque in ATP synthase.

    PubMed

    Miller, John H; Rajapakshe, Kimal I; Infante, Hans L; Claycomb, James R

    2013-01-01

    FO-ATP synthase (FO) is a rotary motor that converts potential energy from ions, usually protons, moving from high- to low-potential sides of a membrane into torque and rotary motion. Here we propose a mechanism whereby electric fields emanating from the proton entry and exit channels act on asymmetric charge distributions in the c-ring, due to protonated and deprotonated sites, and drive it to rotate. The model predicts a scaling between time-averaged torque and proton motive force, which can be hindered by mutations that adversely affect the channels. The torque created by the c-ring of FO drives the γ-subunit to rotate within the ATP-producing complex (F1) overcoming, with the aid of thermal fluctuations, an opposing torque that rises and falls with angular position. Using the analogy with thermal Brownian motion of a particle in a tilted washboard potential, we compute ATP production rates vs. proton motive force. The latter shows a minimum, needed to drive ATP production, which scales inversely with the number of proton binding sites on the c-ring.

  19. Human isoprenoid synthase enzymes as therapeutic targets

    PubMed Central

    Park, Jaeok; Matralis, Alexios N.; Berghuis, Albert M.; Tsantrizos, Youla S.

    2014-01-01

    In the human body, the complex biochemical network known as the mevalonate pathway is responsible for the biosynthesis of all isoprenoids, which consists of a vast array of metabolites that are vital for proper cellular functions. Two key isoprenoids, farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP) are responsible for the post-translational prenylation of small GTP-binding proteins, and serve as the biosynthetic precursors to numerous other biomolecules. The down-stream metabolite of FPP and GGPP is squalene, the precursor to steroids, bile acids, lipoproteins, and vitamin D. In the past, interest in prenyl synthase inhibitors focused mainly on the role of the FPP in lytic bone diseases. More recently pre-clinical and clinical studies have strongly implicated high levels of protein prenylation in a plethora of human diseases, including non-skeletal cancers, the progression of neurodegenerative diseases and cardiovascular diseases. In this review, we focus mainly on the potential therapeutic value of down-regulating the biosynthesis of FPP, GGPP, and squalene. We summarize the most recent drug discovery efforts and the structural data available that support the current on-going studies. PMID:25101260

  20. Undecaprenyl diphosphate synthase inhibitors: antibacterial drug leads.

    PubMed

    Sinko, William; Wang, Yang; Zhu, Wei; Zhang, Yonghui; Feixas, Ferran; Cox, Courtney L; Mitchell, Douglas A; Oldfield, Eric; McCammon, J Andrew

    2014-07-10

    There is a significant need for new antibiotics due to the rise in drug resistance. Drugs such as methicillin and vancomycin target bacterial cell wall biosynthesis, but methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococci (VRE) have now arisen and are of major concern. Inhibitors acting on new targets in cell wall biosynthesis are thus of particular interest since they might also restore sensitivity to existing drugs, and the cis-prenyl transferase undecaprenyl diphosphate synthase (UPPS), essential for lipid I, lipid II, and thus, peptidoglycan biosynthesis, is one such target. We used 12 UPPS crystal structures to validate virtual screening models and then assayed 100 virtual hits (from 450,000 compounds) against UPPS from S. aureus and Escherichia coli. The most promising inhibitors (IC50 ∼2 μM, Ki ∼300 nM) had activity against MRSA, Listeria monocytogenes, Bacillus anthracis, and a vancomycin-resistant Enterococcus sp. with MIC or IC50 values in the 0.25-4 μg/mL range. Moreover, one compound (1), a rhodanine with close structural similarity to the commercial diabetes drug epalrestat, exhibited good activity as well as a fractional inhibitory concentration index (FICI) of 0.1 with methicillin against the community-acquired MRSA USA300 strain, indicating strong synergism. PMID:24827744

  1. Reconstitution of Diphthine Synthase Activity In Vitro

    PubMed Central

    Zhu, Xuling; Kim, Jungwoo; Su, Xiaoyang; Lin, Hening

    2010-01-01

    Diphthamide, the target of diphtheria toxin, is a unique posttranslational modification on eukaryotic and archaeal translation elongation factor 2 (EF2). Although diphthamide modification was discovered three decades ago, in vitro reconstitution of diphthamide biosynthesis using purified proteins has not been reported. The proposed biosynthesis pathway of diphthamide involves three steps. Our laboratory has recently showed that in Pyrococcus horikoshii (P. horikoshii), the first step uses an [4Fe-4S] enzyme PhDph2 to generate a 3-amino-3-carboxypropyl radical from S-adenosyl-L-methionine (SAM) to form a C-C bond. The second step is the trimethylation of an amino group to form the diphthine intermediate. This step is catalyzed by a methyltransferase called diphthine synthase or Dph5. Here we report the in vitro reconstitution of the second step using P. horikoshii Dph5 (PhDph5). Our results demonstrate that PhDph5 is sufficient to catalyze the mono-, di-, and trimethylation of P. horikoshii EF2 (PhEF2). Interestingly, the trimethylated product from PhDph5-catalyzed reaction can easily eliminate the trimethylamino group. The potential implication of this unexpected finding on the diphthamide biosynthesis pathway is discussed. PMID:20873788

  2. Protein preparation, crystallization and preliminary X-ray analysis of Polygonum cuspidatum bifunctional chalcone synthase/benzalacetone synthase.

    PubMed

    Lu, Heshu; Yang, Mingfeng; Liu, Chunmei; Lu, Ping; Cang, Huaixing; Ma, Lanqing

    2013-08-01

    The chalcone synthase (CHS) superfamily of type III polyketide synthases (PKSs) generate the backbones of a variety of plant secondary metabolites. An active bifunctional chalcone synthase/benzalacetone synthase (CHS/BAS) from Polygonum cuspidatum was overexpressed in Escherichia coli as a C-terminally polyhistidine-tagged fusion protein, purified to homogeneity and crystallized using polyethylene glycol 4000 as a precipitant. The production of well shaped crystals of the complex between PcPKS1 and benzalacetone was dependent on the presence of sorbitol and barium chloride as additives. The crystals belonged to the orthorhombic space group P2₁2₁2₁, with unit-cell parameters a = 80.23, b = 81.01, c = 122.89 Å, and diffracted X-rays to at least 2.0 Å resolution. PMID:23908031

  3. Accommodation of GDP-Linked Sugars in the Active Site of GDP-Perosamine Synthase

    SciTech Connect

    Cook, Paul D.; Carney, Amanda E.; Holden, Hazel M.

    2009-01-12

    Perosamine (4-amino-4,6-dideoxy-d-mannose), or its N-acetylated form, is one of several dideoxy sugars found in the O-antigens of such infamous Gram-negative bacteria as Vibrio cholerae O1 and Escherichia coli O157:H7. It is added to the bacterial O-antigen via a nucleotide-linked version, namely GDP-perosamine. Three enzymes are required for the biosynthesis of GDP-perosamine starting from mannose 1-phosphate. The focus of this investigation is GDP-perosamine synthase from Caulobacter crescentus, which catalyzes the final step in GDP-perosamine synthesis, the conversion of GDP-4-keto-6-deoxymannose to GDP-perosamine. The enzyme is PLP-dependent and belongs to the aspartate aminotransferase superfamily. It contains the typically conserved active site lysine residue, which forms a Schiff base with the PLP cofactor. Two crystal structures were determined for this investigation: a site-directed mutant protein (K186A) complexed with GDP-perosamine and the wild-type enzyme complexed with an unnatural ligand, GDP-3-deoxyperosamine. These structures, determined to 1.6 and 1.7 {angstrom} resolution, respectively, revealed the manner in which products, and presumably substrates, are accommodated within the active site pocket of GDP-perosamine synthase. Additional kinetic analyses using both the natural and unnatural substrates revealed that the K{sub m} for the unnatural substrate was unperturbed relative to that of the natural substrate, but the k{sub cat} was lowered by a factor of approximately 200. Taken together, these studies shed light on why GDP-perosamine synthase functions as an aminotransferase whereas another very similar PLP-dependent enzyme, GDP-4-keto-6-deoxy-d-mannose 3-dehydratase or ColD, catalyzes a dehydration reaction using the same substrate.

  4. Characterization and sequencing of the active site of 1-aminocyclopropane-1-carboxylate synthase

    SciTech Connect

    Yip, Wing-Kin; Dong, Jian-Guo; Yang, S.F. ); Kenny, J.W.; Thompson, G.A. )

    1990-10-01

    The pyridoxal phosphate (PLP)-dependent 1-aminocyclopropane-1-carboxylic acid (ACC) synthase the key enzyme in ethylene biosynthesis, is inactivated by its substrate S-adenosylmethionine (AdoMet). Apple ACC synthase was purified with an immunoaffinity gel, and its active site was probed with NaB{sup 3}H{sub 4} or Ado({sup 14}C)Met. Peptide sequencing of both {sup 3}H- and {sup 14}C-labeled peptides revealed a common dodecapeptide of Ser-Leu-Ser-Xaa-Asp-Leu-Gly-Leu-Pro-Gly-Phe-Arg, where Xaa was the modified, radioactive residue in each case. Acid hydrolysis of the {sup 3}H-labeled enzyme released radioactive N-pyridoxyllysine, indicating that the active-site peptide contained lysine at position 4. Mass spectrometry of the {sup 14}C-labeled peptide indicated a protonated molecular ion at m/z 1390.6, from which the mass of Xaa was calculated to be 229, a number that is equivalent to the mass of a lysine residue alkylated by the 2-aminobutyrate portion of AdoMet, as we previously proposed. These results indicate that the same active-site lysine binds the PLP and convalently links to the 2-aminobutyrate portion of AdoMet during inactivation. The active site of tomato ACC synthase was probed in the same manner with Ado ({sup 14}C)Met. Sequencing of the tomato active-site peptide revealed two highly conserved dodecapeptides; the minor peptide possessed a sequence identical to that of the apple enzyme, whereas the major peptide differed from the minor peptide in that methionine replaced leucine at position 6.

  5. Expression patterns, activities and carbohydrate-metabolizing regulation of sucrose phosphate synthase, sucrose synthase and neutral invertase in pineapple fruit during development and ripening.

    PubMed

    Zhang, Xiu-Mei; Wang, Wei; Du, Li-Qing; Xie, Jiang-Hui; Yao, Yan-Li; Sun, Guang-Ming

    2012-01-01

    Differences in carbohydrate contents and metabolizing-enzyme activities were monitored in apical, medial, basal and core sections of pineapple (Ananas comosus cv. Comte de paris) during fruit development and ripening. Fructose and glucose of various sections in nearly equal amounts were the predominant sugars in the fruitlets, and had obvious differences until the fruit matured. The large rise of sucrose/hexose was accompanied by dramatic changes in sucrose phosphate synthase (SPS) and sucrose synthase (SuSy) activities. By contrast, neutral invertase (NI) activity may provide a mechanism to increase fruit sink strength by increasing hexose concentrations. Furthermore, two cDNAs of Ac-sps (accession no. GQ996582) and Ac-ni (accession no. GQ996581) were first isolated from pineapple fruits utilizing conserved amino-acid sequences. Homology alignment reveals that the amino acid sequences contain some conserved function domains. Transcription expression analysis of Ac-sps, Ac-susy and Ac-ni also indicated distinct patterns related to sugar accumulation and composition of pineapple fruits. It suggests that differential expressions of multiple gene families are necessary for sugar metabolism in various parts and developmental stages of pineapple fruit. A cycle of sucrose breakdown in the cytosol of sink tissues could be mediated through both Ac-SuSy and Ac-NI, and Ac-NI could be involved in regulating crucial steps by generating sugar signals to the cells in a temporally and spatially restricted fashion.

  6. Identification and characterization of (E)-β-caryophyllene synthase and α/β-pinene synthase potentially involved in constitutive and herbivore-induced terpene formation in cotton.

    PubMed

    Huang, Xinzheng; Xiao, Yutao; Köllner, Tobias G; Zhang, Wanna; Wu, Junxiang; Wu, Juan; Guo, Yuyuan; Zhang, Yongjun

    2013-12-01

    Cotton (Gossypium hirsutum L.) plants damaged by insects emit a blend of volatiles, including monoterpenes and sesquiterpenes, which can directly repel herbivores and/or indirectly protect the plant by attracting natural enemies of the herbivores. To understand the molecular basis of terpene biosynthesis and regulation in cotton, two terpene synthase genes, GhTPS1 and GhTPS2, were heterologously expressed and characterized. Recombinant GhTPS1 accepted farnesyl pyrophosphate as substrate and produced (E)-β-caryophyllene and α-humulene. GhTPS2 was characterized as a monoterpene synthase which formed α-pinene and β-pinene using geranyl pyrophosphate as substrate. Quantitative real-time PCR analysis revealed that GhTPS1 and GhTPS2 gene expression was elevated after methyl jasmonate (MeJA) treatment in cotton leaves. Moreover, feeding of the green plant bug Apolygus lucorum, a major cotton pest in northern China, resulted in increased GhTPS2 expression in young leaves, suggesting that GhTPS2 might be involved in plant defense in cotton.

  7. Functional analysis of sucrose phosphate synthase (SPS) and sucrose synthase (SS) in sugarcane (Saccharum) cultivars.

    PubMed

    Verma, A K; Upadhyay, S K; Verma, P C; Solomon, S; Singh, S B

    2011-03-01

    Sucrose phosphate synthase (SPS; EC 2.4.1.14) and sucrose synthase (SS; EC 2.4.1.13) are key enzymes in the synthesis and breakdown of sucrose in sugarcane. The activities of internodal SPS and SS, as well as transcript expression were determined using semi-quantitative RT-PCR at different developmental stages of high and low sucrose accumulating sugarcane cultivars. SPS activity and transcript expression was higher in mature internodes compared with immature internodes in all the studied cultivars. However, high sugar cultivars showed increased transcript expression and enzyme activity of SPS compared to low sugar cultivars at all developmental stages. SS activity was higher in immature internodes than in mature internodes in all cultivars; SS transcript expression showed a similar pattern. Our studies demonstrate that SPS activity was positively correlated with sucrose and negatively correlated with hexose sugars. However, SS activity was negatively correlated with sucrose and positively correlated with hexose sugars. The present study opens the possibility for improvement of sugarcane cultivars by increasing expression of the respective enzymes using transgene technology.

  8. Dehydration induces expression of GALACTINOL SYNTHASE and RAFFINOSE SYNTHASE in seedlings of pea (Pisum sativum L.).

    PubMed

    Lahuta, Lesław B; Pluskota, Wioletta E; Stelmaszewska, Joanna; Szablińska, Joanna

    2014-09-01

    The exposition of 7-day-old pea seedlings to dehydration induced sudden changes in the concentration of monosaccharides and sucrose in epicotyl and roots tissues. During 24h of dehydration, the concentration of glucose and, to a lesser extent, fructose in seedling tissues decreased. The accumulation of sucrose was observed in roots after 4h and in epicotyls after 8h of stress. Epicotyls and roots also began to accumulate galactinol and raffinose after 8h of stress, when small changes in the water content of tissues occurred. The accumulation of galactinol and raffinose progressed parallel to water withdrawal from tissues, but after seedling rehydration both galactosides disappeared. The synthesis of galactinol and raffinose by an early induction (during the first hour of treatment) of galactinol synthase (PsGolS) and raffinose synthase (PsRS) gene expression as well as a later increase in the activity of both enzymes was noted. Signals possibly triggering the induction of PsGolS and PsRS gene expression and accumulation of galactinol and raffinose in seedlings are discussed.

  9. Expression of terpene synthase genes associated with the formation of volatiles in different organs of Vitis vinifera.

    PubMed

    Matarese, Fabiola; Cuzzola, Angela; Scalabrelli, Giancarlo; D'Onofrio, Claudio

    2014-09-01

    Plants produce a plethora of volatile organic compounds (VOCs) which are important in determining the quality and nutraceutical properties of horticultural food products, including the taste and aroma of wine. Given that some of the most prevalent grape aroma constituents are terpenoids, we investigated the possible variations in the relative expression of terpene synthase (TPS) genes that depend on the organ. We thus analysed mature leaves, young leaves, stems, young stems, roots, rachis, tendrils, peduncles, bud flowers, flowers and berries of cv Moscato bianco in terms of their VOC content and the expression of 23 TPS genes. In terms of the volatile characterization of the organs by SPME/GC-MS analysis, flower buds and open flowers appeared to be clearly distinct from all the other organs analysed in terms of their high VOC concentration. Qualitatively detected VOCs clearly separated all the vegetative organs from flowers and berries, then the roots and rachis from other vegetative organs and flowers from berries, which confirms the specialization in volatile production among different organs. Our real-time RT-PCR results revealed that the majority of TPS genes analysed exhibited detectable transcripts in all the organs investigated, while only some were found to be expressed specifically in one or just a few organs. In most cases, we found that the known products of the in vitro assay of VvTPS enzymes corresponded well to the terpenes found in the organs in which the encoding gene was expressed, as in the case of (E)-β-caryophyllene synthases, α-terpineol synthase and α-farnesene synthase. In addition, we found groups of homologous TPS genes, such as (E)-β-caryophyllene and β-ocimene synthases, expressed distinctively in the various tissues. This thus confirmed the subfunctionalization events and a specialization on the basis of the organs in which they are mostly expressed.

  10. Methylcitrate synthase from Aspergillus fumigatus. Propionyl-CoA affects polyketide synthesis, growth and morphology of conidia.

    PubMed

    Maerker, Claudia; Rohde, Manfred; Brakhage, Axel A; Brock, Matthias

    2005-07-01

    Methylcitrate synthase is a key enzyme of the methylcitrate cycle and required for fungal propionate degradation. Propionate not only serves as a carbon source, but also acts as a food preservative (E280-283) and possesses a negative effect on polyketide synthesis. To investigate propionate metabolism from the opportunistic human pathogenic fungus Aspergillus fumigatus, methylcitrate synthase was purified to homogeneity and characterized. The purified enzyme displayed both, citrate and methylcitrate synthase activity and showed similar characteristics to the corresponding enzyme from Aspergillus nidulans. The coding region of the A. fumigatus enzyme was identified and a deletion strain was constructed for phenotypic analysis. The deletion resulted in an inability to grow on propionate as the sole carbon source. A strong reduction of growth rate and spore colour formation on media containing both, glucose and propionate was observed, which was coincident with an accumulation of propionyl-CoA. Similarly, the use of valine, isoleucine and methionine as nitrogen sources, which yield propionyl-CoA upon degradation, inhibited growth and polyketide production. These effects are due to a direct inhibition of the pyruvate dehydrogenase complex and blockage of polyketide synthesis by propionyl-CoA. The surface of conidia was studied by electron scanning microscopy and revealed a correlation between spore colour and ornamentation of the conidial surface. In addition, a methylcitrate synthase deletion led to an attenuation of virulence, when tested in an insect infection model and attenuation was even more pronounced, when whitish conidia from glucose/propionate medium were applied. Therefore, an impact of methylcitrate synthase in the infection process is discussed.

  11. Expression of terpene synthase genes associated with the formation of volatiles in different organs of Vitis vinifera.

    PubMed

    Matarese, Fabiola; Cuzzola, Angela; Scalabrelli, Giancarlo; D'Onofrio, Claudio

    2014-09-01

    Plants produce a plethora of volatile organic compounds (VOCs) which are important in determining the quality and nutraceutical properties of horticultural food products, including the taste and aroma of wine. Given that some of the most prevalent grape aroma constituents are terpenoids, we investigated the possible variations in the relative expression of terpene synthase (TPS) genes that depend on the organ. We thus analysed mature leaves, young leaves, stems, young stems, roots, rachis, tendrils, peduncles, bud flowers, flowers and berries of cv Moscato bianco in terms of their VOC content and the expression of 23 TPS genes. In terms of the volatile characterization of the organs by SPME/GC-MS analysis, flower buds and open flowers appeared to be clearly distinct from all the other organs analysed in terms of their high VOC concentration. Qualitatively detected VOCs clearly separated all the vegetative organs from flowers and berries, then the roots and rachis from other vegetative organs and flowers from berries, which confirms the specialization in volatile production among different organs. Our real-time RT-PCR results revealed that the majority of TPS genes analysed exhibited detectable transcripts in all the organs investigated, while only some were found to be expressed specifically in one or just a few organs. In most cases, we found that the known products of the in vitro assay of VvTPS enzymes corresponded well to the terpenes found in the organs in which the encoding gene was expressed, as in the case of (E)-β-caryophyllene synthases, α-terpineol synthase and α-farnesene synthase. In addition, we found groups of homologous TPS genes, such as (E)-β-caryophyllene and β-ocimene synthases, expressed distinctively in the various tissues. This thus confirmed the subfunctionalization events and a specialization on the basis of the organs in which they are mostly expressed. PMID:25014656

  12. Characterization of the beta-carbon processing reactions of the mammalian cytosolic fatty acid synthase: role of the central core.

    PubMed

    Witkowski, Andrzej; Joshi, Anil K; Smith, Stuart

    2004-08-17

    The properties of the beta-ketoacyl reductase, dehydrase, and enoyl reductase components of the animal fatty acid synthase responsible for the reduction of the beta-ketoacyl moiety formed at each round of chain elongation have been studied by engineering and characterizing mutants defective in each of these three catalytic domains. These "beta-carbon processing" mutants leak the stalled four-carbon intermediates by direct transfer to CoA. However, enoyl reductase mutants leak beta-ketobutyryl, beta-hydroxybutyryl, and crotonyl moieties, a finding explained, at least in part, by the observation that the equilibrium and rate constant for the dehydrase reaction favor the formation of beta-hydroxy rather than enoyl moieties. In this regard, the type I animal fatty acid synthase resembles its type II counterpart in Escherichia coli in that both systems rely on the enoyl reductase to pull the beta-carbon processing reactions to completion. Kinetic and nucleotide binding measurements on fatty acid synthases mutated in either of the two nucleotide binding domains revealed that the NADPH binding sites are nonidentical, the enoyl reductase exhibiting higher affinity. Surprisingly, NADPH binding is also completely compromised by certain deletions and mutations in the central core region distant from the nucleotide binding sites. Comparable central core sequences are present in the structurally related modular polyketide synthases, except in those modules that lack all three beta-carbon processing enzymes. These findings suggest that the central core region of fatty acid and polyketide synthases plays an important role in facilitating the beta-carbon processing reactions.

  13. Nitric oxide synthases: structure, function and inhibition.

    PubMed Central

    Alderton, W K; Cooper, C E; Knowles, R G

    2001-01-01

    This review concentrates on advances in nitric oxide synthase (NOS) structure, function and inhibition made in the last seven years, during which time substantial advances have been made in our understanding of this enzyme family. There is now information on the enzyme structure at all levels from primary (amino acid sequence) to quaternary (dimerization, association with other proteins) structure. The crystal structures of the oxygenase domains of inducible NOS (iNOS) and vascular endothelial NOS (eNOS) allow us to interpret other information in the context of this important part of the enzyme, with its binding sites for iron protoporphyrin IX (haem), biopterin, L-arginine, and the many inhibitors which interact with them. The exact nature of the NOS reaction, its mechanism and its products continue to be sources of controversy. The role of the biopterin cofactor is now becoming clearer, with emerging data implicating one-electron redox cycling as well as the multiple allosteric effects on enzyme activity. Regulation of the NOSs has been described at all levels from gene transcription to covalent modification and allosteric regulation of the enzyme itself. A wide range of NOS inhibitors have been discussed, interacting with the enzyme in diverse ways in terms of site and mechanism of inhibition, time-dependence and selectivity for individual isoforms, although there are many pitfalls and misunderstandings of these aspects. Highly selective inhibitors of iNOS versus eNOS and neuronal NOS have been identified and some of these have potential in the treatment of a range of inflammatory and other conditions in which iNOS has been implicated. PMID:11463332

  14. Over-expression of a grape stilbene synthase gene in tomato induces parthenocarpy and causes abnormal pollen development.

    PubMed

    Ingrosso, Ilaria; Bonsegna, Stefania; De Domenico, Stefania; Laddomada, Barbara; Blando, Federica; Santino, Angelo; Giovinazzo, Giovanna

    2011-10-01

    A novel strategy to induce parthenocarpy in tomato fruits by the induction of resveratrol biosynthesis in flower tissues was exploited. Two transgenic tomato lines were considered: a higher resveratrol-producing (35SS) line, constitutively expressing a grape stilbene synthase cDNA, and a lower resveratrol-producing (LoxS) line, expressing stilbene synthase under a fruit-specific promoter. The expression of the stilbene synthase gene affected flavonoid metabolism in a different manner in the transgenic lines, and in one of these, the 35SS line, resulted in complete male sterility. Resveratrol was synthesised either in 35SS or LoxS tomato flowers, at an even higher extent (about 8-10 times) in the former line. We further investigated whether stilbene synthase expression may have resulted in impaired naringenin accumulation during flower development. In the 35SS flowers, naringenin was significantly impaired by about 50%, probably due to metabolic competition. Conversely, the amount of glycosylated flavonols increased in transgenic flowers, thereby excluding the diminished production of flavonols as a reason for parthenocarpy in tomato. We further investigated whether resveratrol synthesis may have resulted changes to pollen structure. Microscopic observations revealed the presence of few and abnormal flake-like pollen grains in 35SS flowers with no germination capability. Finally, the analysis of coumaric and ferulic acids, the precursors of lignin and sporopollenin biosynthesis, revealed significant depletion of these compounds, therefore suggesting an impairment in structural compounds as a reason for pollen ablation. These overall outcomes, to the best of our knowledge, reveal for the first time the major role displayed by resveratrol synthesis on parthenocarpy in tomato fruits. PMID:21843947

  15. Hyaluronan Synthase 1: A Mysterious Enzyme with Unexpected Functions

    PubMed Central

    Siiskonen, Hanna; Oikari, Sanna; Pasonen-Seppänen, Sanna; Rilla, Kirsi

    2015-01-01

    Hyaluronan synthase 1 (HAS1) is one of three isoenzymes responsible for cellular hyaluronan synthesis. Interest in HAS1 has been limited because its role in hyaluronan production seems to be insignificant compared to the two other isoenzymes, HAS2 and HAS3, which have higher enzymatic activity. Furthermore, in most cell types studied so far, the expression of its gene is low and the enzyme requires high concentrations of sugar precursors for hyaluronan synthesis, even when overexpressed in cell cultures. Both expression and activity of HAS1 are induced by pro-inflammatory factors like interleukins and cytokines, suggesting its involvement in inflammatory conditions. Has1 is upregulated in states associated with inflammation, like atherosclerosis, osteoarthritis, and infectious lung disease. In addition, both full length and splice variants of HAS1 are expressed in malignancies like bladder and prostate cancers, multiple myeloma, and malignant mesothelioma. Interestingly, immunostainings of tissue sections have demonstrated the role of HAS1 as a poor predictor in breast cancer, and is correlated with high relapse rate and short overall survival. Utilization of fluorescently tagged proteins has revealed the intracellular distribution pattern of HAS1, distinct from other isoenzymes. In all cell types studied so far, a high proportion of HAS1 is accumulated intracellularly, with a faint signal detected on the plasma membrane and its protrusions. Furthermore, the pericellular hyaluronan coat produced by HAS1 is usually thin without induction by inflammatory agents or glycemic stress and depends on CD44–HA interactions. These specific interactions regulate the organization of hyaluronan into a leukocyte recruiting matrix during inflammatory responses. Despite the apparently minor enzymatic activity of HAS1 under normal conditions, it may be an important factor under conditions associated with glycemic stress like metabolic syndrome, inflammation, and cancer. PMID

  16. On the function of chitin synthase extracellular domains in biomineralization.

    PubMed

    Weiss, Ingrid M; Lüke, Florian; Eichner, Norbert; Guth, Christina; Clausen-Schaumann, Hauke

    2013-08-01

    Molluscs with various shell architectures evolved around 542-525 million years ago, as part of a larger phenomenon related to the diversification of metazoan phyla. Molluscs deposit minerals in a chitin matrix. The mollusc chitin is synthesized by transmembrane enzymes that contain several unique extracellular domains. Here we investigate the assembly mechanism of the chitin synthase Ar-CS1 via its extracellular domain ArCS1_E22. The corresponding transmembrane protein ArCS1_E22TM accumulates in membrane fractions of the expression host Dictyostelium discoideum. Soluble recombinant ArCS1_E22 proteins can be purified as monomers only at basic pH. According to confocal fluorescence microscopy experiments, immunolabeled ArCS1_E22 proteins adsorb preferably to aragonitic nacre platelets at pH 7.75. At pH 8.2 or pH 9.0 the fluorescence signal is less intense, indicating that protein-mineral interaction is reduced with increasing pH. Furthermore, ArCS1_E22 forms regular nanostructures on cationic substrates as revealed by atomic force microscopy (AFM) experiments on modified mica cleavage planes. These experiments suggest that the extracellular domain ArCS1_E22 is involved in regulating the multiple enzyme activities of Ar-CS1 such as chitin synthesis and myosin movements by interaction with mineral surfaces and eventually by protein assembly. The protein complexes could locally probe the status of mineralization according to pH unless ions and pCO2 are balanced with suitable buffer substances. Taking into account that the intact enzyme could act as a force sensor, the results presented here provide further evidence that shell formation is coordinated physiologically with precise adjustment of cellular activities to the structure, topography and stiffness at the mineralizing interface. PMID:23643908

  17. The Phylogenetic Signature Underlying ATP Synthase c-Ring Compliance.

    PubMed

    Pandini, Alessandro; Kleinjung, Jens; Taylor, Willie R; Junge, Wolfgang; Khan, Shahid

    2015-09-01

    The proton-driven ATP synthase (FOF1) is comprised of two rotary, stepping motors (FO and F1) coupled by an elastic power transmission. The elastic compliance resides in the rotor module that includes the membrane-embedded FO c-ring. Proton transport by FO is firmly coupled to the rotation of the c-ring relative to other FO subunits (ab2). It drives ATP synthesis. We used a computational method to investigate the contribution of the c-ring to the total elastic compliance. We performed principal component analysis of conformational ensembles built using distance constraints from the bovine mitochondrial c-ring x-ray structure. Angular rotary twist, the dominant ring motion, was estimated to show that the c-ring accounted in part for the measured compliance. Ring rotation was entrained to rotation of the external helix within each hairpin-shaped c-subunit in the ring. Ensembles of monomer and dimers extracted from complete c-rings showed that the coupling between collective ring and the individual subunit motions was independent of the size of the c-ring, which varies between organisms. Molecular determinants were identified by covariance analysis of residue coevolution and structural-alphabet-based local dynamics correlations. The residue coevolution gave a readout of subunit architecture. The dynamic couplings revealed that the hinge for both ring and subunit helix rotations was constructed from the proton-binding site and the adjacent glycine motif (IB-GGGG) in the midmembrane plane. IB-GGGG motifs were linked by long-range couplings across the ring, while intrasubunit couplings connected the motif to the conserved cytoplasmic loop and adjacent segments. The correlation with principal collective motions shows that the couplings underlie both ring rotary and bending motions. Noncontact couplings between IB-GGGG motifs matched the coevolution signal as well as contact couplings. The residue coevolution reflects the physiological importance of the dynamics that may

  18. Insights into the reactivation of cobalamin-dependent methionine synthase

    SciTech Connect

    Koutmos, Markos; Datta, Supratim; Pattridge, Katherine A.; Smith, Janet L.; Matthews, Rowena G.

    2009-12-10

    Cobalamin-dependent methionine synthase (MetH) is a modular protein that catalyzes the transfer of a methyl group from methyltetrahydrofolate to homocysteine to produce methionine and tetrahydrofolate. The cobalamin cofactor, which serves as both acceptor and donor of the methyl group, is oxidized once every {approx}2,000 catalytic cycles and must be reactivated by the uptake of an electron from reduced flavodoxin and a methyl group from S-adenosyl-L-methionine (AdoMet). Previous structures of a C-terminal fragment of MetH (MetH{sup CT}) revealed a reactivation conformation that juxtaposes the cobalamin- and AdoMet-binding domains. Here we describe 2 structures of a disulfide stabilized MetH{sup CT} ({sub s-s}MetH{sup CT}) that offer further insight into the reactivation of MetH. The structure of {sub s-s}MetH{sup CT} with cob(II)alamin and S-adenosyl-L-homocysteine represents the enzyme in the reactivation step preceding electron transfer from flavodoxin. The structure supports earlier suggestions that the enzyme acts to lower the reduction potential of the Co(II)/Co(I) couple by elongating the bond between the cobalt and its upper axial water ligand, effectively making the cobalt 4-coordinate, and illuminates the role of Tyr-1139 in the stabilization of this 4-coordinate state. The structure of {sub s-s}MetH{sub CT} with aquocobalamin may represent a transient state at the end of reactivation as the newly remethylated 5-coordinate methylcobalamin returns to the 6-coordinate state, triggering the rearrangement to a catalytic conformation.

  19. Phosphorylated neuronal nitric oxide synthase in neuropathic pain in rats

    PubMed Central

    Zhou, Zhidong; Liang, Yingping; Deng, Fumou; Cheng, Yong; Sun, Jing; Guo, Lian; Xu, Guohai

    2015-01-01

    Neuropathic pain caused by nervous system damage or system dysfunction. The pathogenesis and the mechanism underlying neuropathic pain remains unclear. The only known neurobiological component involved in the neuropathic pain is nitric oxide (NO). NO is synthesized by nitric oxide synthase (nNOS) from L-arginine and oxygen. nNOS is involved in the inflammatory pain and neuropathic pain. In this study, we aimed to identify whether KN93 reduced the pain in the rats. Sixty adult male SD rat were randomly divided into 4 groups. Sham group and model group were not received treatment. Experimental group received intrathecal injection of KN93, and negative control group received DMSO injection 30 min before pain test. After last test of pain threshold, the rats were sacrificed and lumbar spinal tissues were sampled for analysis of the expression of pnNOS and pCaMK II by quantitative PCR and Western blotting. Pain threshold was increased in the rats received KN93 treatment (P<0.01), and the expression levels of pnNOS was increased (P<0.05) in experimental group and accompanied with decrease of CaMK II expression (P<0.05). By administration of KN93, the interaction of nNOS and the adaptor protein CAPON was reduced through inhibition of CaMK II by KN93. In conclusion, this study reveals that KN93 can reduce neuropathic pain via inhibiting the activity of CaMK II, and then increase the level of phosphorylated nNOS, to reduce the interaction with CAPON. PMID:26722464

  20. Phosphorylated neuronal nitric oxide synthase in neuropathic pain in rats.

    PubMed

    Zhou, Zhidong; Liang, Yingping; Deng, Fumou; Cheng, Yong; Sun, Jing; Guo, Lian; Xu, Guohai

    2015-01-01

    Neuropathic pain caused by nervous system damage or system dysfunction. The pathogenesis and the mechanism underlying neuropathic pain remains unclear. The only known neurobiological component involved in the neuropathic pain is nitric oxide (NO). NO is synthesized by nitric oxide synthase (nNOS) from L-arginine and oxygen. nNOS is involved in the inflammatory pain and neuropathic pain. In this study, we aimed to identify whether KN93 reduced the pain in the rats. Sixty adult male SD rat were randomly divided into 4 groups. Sham group and model group were not received treatment. Experimental group received intrathecal injection of KN93, and negative control group received DMSO injection 30 min before pain test. After last test of pain threshold, the rats were sacrificed and lumbar spinal tissues were sampled for analysis of the expression of pnNOS and pCaMK II by quantitative PCR and Western blotting. Pain threshold was increased in the rats received KN93 treatment (P<0.01), and the expression levels of pnNOS was increased (P<0.05) in experimental group and accompanied with decrease of CaMK II expression (P<0.05). By administration of KN93, the interaction of nNOS and the adaptor protein CAPON was reduced through inhibition of CaMK II by KN93. In conclusion, this study reveals that KN93 can reduce neuropathic pain via inhibiting the activity of CaMK II, and then increase the level of phosphorylated nNOS, to reduce the interaction with CAPON.

  1. C-S bond cleavage by a polyketide synthase domain.

    PubMed

    Ma, Ming; Lohman, Jeremy R; Liu, Tao; Shen, Ben

    2015-08-18

    Leinamycin (LNM) is a sulfur-containing antitumor antibiotic featuring an unusual 1,3-dioxo-1,2-dithiolane moiety that is spiro-fused to a thiazole-containing 18-membered lactam ring. The 1,3-dioxo-1,2-dithiolane moiety is essential for LNM's antitumor activity, by virtue of its ability to generate an episulfonium ion intermediate capable of alkylating DNA. We have previously cloned and sequenced the lnm gene cluster from Streptomyces atroolivaceus S-140. In vivo and in vitro characterizations of the LNM biosynthetic machinery have since established that: (i) the 18-membered macrolactam backbone is synthesized by LnmP, LnmQ, LnmJ, LnmI, and LnmG, (ii) the alkyl branch at C-3 of LNM is installed by LnmK, LnmL, LnmM, and LnmF, and (iii) leinamycin E1 (LNM E1), bearing a thiol moiety at C-3, is the nascent product of the LNM hybrid nonribosomal peptide synthetase (NRPS)-acyltransferase (AT)-less type I polyketide synthase (PKS). Sulfur incorporation at C-3 of LNM E1, however, has not been addressed. Here we report that: (i) the bioinformatics analysis reveals a pyridoxal phosphate (PLP)-dependent domain, we termed cysteine lyase (SH) domain (LnmJ-SH), within PKS module-8 of LnmJ; (ii) the LnmJ-SH domain catalyzes C-S bond cleavage by using l-cysteine and l-cysteine S-modified analogs as substrates through a PLP-dependent β-elimination reaction, establishing l-cysteine as the origin of sulfur at C-3 of LNM; and (iii) the LnmJ-SH domain, sharing no sequence homology with any other enzymes catalyzing C-S bond cleavage, represents a new family of PKS domains that expands the chemistry and enzymology of PKSs and might be exploited to incorporate sulfur into polyketide natural products by PKS engineering.

  2. Revealing Mercury

    NASA Astrophysics Data System (ADS)

    Prockter, L. M.; Solomon, S. C.; Head, J. W.; Watters, T. R.; Murchie, S. L.; Robinson, M. S.; Chapman, C. R.; McNutt, R. L.

    2009-04-01

    The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, developed under NASA's Discovery Program, launched in August 2004. En route to insertion into orbit about Mercury in 2011, MESSENGER flies by Mercury three times. The first and second of these encounters were accomplished in January and October of 2008. These flybys viewed portions of Mercury's surface that were not observed by Mariner 10 during its reconnaissance of somewhat less than half of the planet in 1974-1975. All MESSENGER instruments operated during each flyby and returned a wealth of new data. Many of the new observations were focused on the planet's geology, including monochrome imaging at resolutions as high as 100 m/pixel, multispectral imaging in 11 filters at resolutions as high as 500 m/pixel, laser altimetry tracks extending over several thousands of kilometers, and high-resolution spectral measurements of several types of terrain. Here we present an overview of the first inferences on the global geology of Mercury from the MESSENGER observations. Whereas evidence for volcanism was equivocal from Mariner 10 data, the new MESSENGER images and altimetry provide compelling evidence that volcanism was widespread and protracted on Mercury. Color imaging reveals three common spectral units on the surface: a higher-reflectance, relatively red material occurring as a distinct class of smooth plains, typically with distinct embayment relationships interpreted to indicate volcanic emplacement; a lower-reflectance, relatively blue material typically excavated by impact craters and therefore inferred to be more common at depth; and a spectrally intermediate terrain that constitutes much of the uppermost crust. Three more minor spectral units are also seen: fresh crater ejecta, reddish material associated with rimless depressions interpreted to be volcanic centers, and high-reflectance deposits seen in some crater floors. Preliminary measurements of crater size

  3. Molecular and functional characterization of glycogen synthase in the porcine satellite cells under insulin treatment.

    PubMed

    Wang, Linjie; Xiong, Yuanzhu; Zuo, Bo; Lei, Minggang; Ren, Zhuqing; Xu, Dequan

    2012-01-01

    Glycogen synthase (GS) catalyzes the key step of glycogen synthesis and plays an important role in glycogen metabolism in liver and muscle. In this study, we cloned the cDNA and promoter sequences of porcine glycogen synthesis genes (GYS1 and GYS2). Expression analysis revealed that porcine GYS1 was highly expressed in the skeletal muscle and heart. GYS2 was expressed specifically in liver and subcutaneous adipose tissue. The expression level of GYS1 was up-regulated from proliferation to differentiation in the porcine satellite cells, and insulin did not significantly affect the transcription of GYS1. Insulin stimulated 72-h-differentiated satellite cells as indicated by decrease in phosphorylation of GS, but did not affect GYS1 transcription and total GS protein level, suggesting that the effect of insulin is primarily mediated via posttranscriptional control rather than regulated at the transcriptional level. Four single-nucleotide polymorphisms (SNPs) were detected in the promoter and cDNA sequences of porcine GYS1. Association analyses revealed that the GYS1 Hin6I and MvaI polymorphisms both had significant associations (P < 0.05) with pH of M. longissimus dorsi (pHLD), M. biceps femoris (pHBF) and M. semipinalis capitis (pHSC) at 45 min postmortem. These results provide useful information for further investigation on the function of glycogen synthase in porcine skeletal muscle.

  4. Molecular cloning and characterization of a trehalose-6-phosphate synthase/phosphatase from Dunaliella viridis.

    PubMed

    Zhang, Nan; Wang, Fei; Meng, Xiangzong; Luo, Saifan; Li, Qiyun; Dong, Hongyun; Xu, Zhengkai; Song, Rentao

    2011-04-01

    Dunaliella is a group of green algae with exceptional stress tolerance capability, and is considered as an important model organism for stress tolerance study. Here we cloned a TPS (trehalose-6-phosphate synthase) gene from Dunaliella viridis and designated it as DvTPS (D. viridis trehalose-6-phosphate synthase/phosphatase).The DvTPS cDNA contained an ORF of 2793 bp encoding 930 aa. DvTPS had both TPS and TPP domain and belonged to the Group II TPS/TPP fusion gene family. Southern blots showed it has a single copy in the genome. Genome sequence analysis revealed that it has 18 exons and 17 introns. DvTPS had a constitutive high expression level under various NaCl culture conditions, however, could be induced by salt shock. Promoter analysis indicated there were ten STREs (stress response element) in its promoter region, giving a possible explanation of its inducible expression pattern upon salt shock. Yeast functional complementation analysis showed that DvTPS had neither TPS nor TPP activity. However, DvTPS could improve the salt tolerance of yeast salt sensitive mutant G19. Our results indicated that despite DvTPS showed significant similarity with TPS/TPP, its real biological function is still remained to be revealed. PMID:20878239

  5. Bifunctional effects of fucoidan on the expression of inducible nitric oxide synthase

    SciTech Connect

    Yang, Jin Won; Yoon, Se Young; Oh, Soo Jin; Kim, Sang Kyum; Kang, Keon Wook . E-mail: kwkang@chosun.ac.kr

    2006-07-21

    Algal fucoidan is a marine sulfated polysaccharide with a wide variety of biological activities including anti-thrombotic and anti-inflammatory effects. This study evaluated the effect of fucoidan on the expression of inducible nitric oxide synthase (iNOS) in a macrophage cell line, RAW264.7. Low concentration range of fucoidan (10 {mu}g/ml) increased the basal expression level of iNOS in quiescent macrophages. However, we found for the first time that fucoidan inhibited the release of nitric oxide (NO) in RAW264.7 cells stimulated with lipopolysaccharide (LPS). Western blot analysis revealed that fucoidan suppressed the LPS-induced expression of the inducible nitric oxide synthase (iNOS) gene. Moreover, the activation of both nuclear factor-{kappa}B (NF-{kappa}B) and activator protein 1 (AP-1) are key steps in the transcriptional activation of the iNOS gene. Here, it was revealed that fucoidan selectively suppressed AP-1 activation, and that the activation of AP-1 appears to be essential for the induction of iNOS in activated macrophages. This inhibitory effect on AP-1 activation by fucoidan might be associated with its NO blocking and anti-inflammatory effects.

  6. Primary structure of the dihydrofolate reductase-thymidylate synthase gene from Toxoplasma gondii.

    PubMed

    Roos, D S

    1993-03-25

    We have determined the primary genomic and cDNA sequences encoding the bifunctional dihydrofolate reductase-thymidylate synthase (DHFR-TS) enzyme of the protozoan parasite Toxoplasma gondii (dihydrofolate reductase, EC 1.5.1.3; thymidylate synthase EC 2.1.1.45). The DHFR-TS gene of T. gondii (strain RH) spans more than 6 kilobases of genomic DNA. Unlike the DHFR-TS genes of other protists, sequences encoding the Toxoplasma protein are interrupted by numerous intervening sequences. Analysis of processed T. gondii DHFR-TS cDNAs reveals a single open reading frame of 1830 nucleotides, predicting a 610-amino acid protein of molecular mass of 69 kilodaltons. Because its nucleotide composition and codon usage are roughly comparable to those observed in "higher" eukaryotes, the Toxoplasma DHFR-TS sequence is particularly useful for assessing evolutionary relationships between eukaryotic species. The predicted amino acid sequence for the DHFR-TS protein shows conservation of the major structural features identified in other DHFR and TS enzymes, while revealing certain differences which may be exploited for the design of novel antifolates for treatment of toxoplasmosis associated with AIDS.

  7. Expression and characterization of glycogen synthase kinase-3 mutants and their effect on glycogen synthase activity in intact cells.

    PubMed Central

    Eldar-Finkelman, H; Argast, G M; Foord, O; Fischer, E H; Krebs, E G

    1996-01-01

    In these studies we expressed and characterized wild-type (WT) GSK-3 (glycogen synthase kinase-3) and its mutants, and examined their physiological effect on glycogen synthase activity. The GSK-3 mutants included mutation at serine-9 either to alanine (S9A) or glutamic acid (S9E) and an inactive mutant, K85,86MA. Expression of WT and the various mutants in a cell-free system indicated that S9A and S9E exhibit increased kinase activity as compared with WT. Subsequently, 293 cells were transiently transfected with WT GSK-3 and mutants. Cells expressing the S9A mutant exhibited higher kinase activity (2.6-fold of control cells) as compared with cells expressing WT and S9E (1.8- and 2.0-fold, respectively, of control cells). Combined, these results suggest serine-9 as a key regulatory site of GSK-3 inactivation, and indicate that glutamic acid cannot mimic the function of the phosphorylated residue. The GSK-3-expressing cell system enabled us to examine whether GSK-3 can induce changes in the endogenous glycogen synthase activity. A decrease in glycogen synthase activity (50%) was observed in cells expressing the S9A mutant. Similarly, glycogen synthase activity was suppressed in cells expressing WT and the S9E mutant (20-30%, respectively). These studies indicate that activation of GSK-3 is sufficient to inhibit glycogen synthase in intact cells, and provide evidence supporting a physiological role for GSK-3 in regulating glycogen synthase and glycogen metabolism. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8816781

  8. Dimers of mitochondrial ATP synthase form the permeability transition pore

    PubMed Central

    Giorgio, Valentina; von Stockum, Sophia; Antoniel, Manuela; Fabbro, Astrid; Fogolari, Federico; Forte, Michael; Glick, Gary D.; Petronilli, Valeria; Zoratti, Mario; Szabó, Ildikó; Lippe, Giovanna; Bernardi, Paolo

    2013-01-01

    Here we define the molecular nature of the mitochondrial permeability transition pore (PTP), a key effector of cell death. The PTP is regulated by matrix cyclophilin D (CyPD), which also binds the lateral stalk of the FOF1 ATP synthase. We show that CyPD binds the oligomycin sensitivity-conferring protein subunit of the enzyme at the same site as the ATP synthase inhibitor benzodiazepine 423 (Bz-423), that Bz-423 sensitizes the PTP to Ca2+ like CyPD itself, and that decreasing oligomycin sensitivity-conferring protein expression by RNAi increases the sensitivity of the PTP to Ca2+. Purified dimers of the ATP synthase, which did not contain voltage-dependent anion channel or adenine nucleotide translocator, were reconstituted into lipid bilayers. In the presence of Ca2+, addition of Bz-423 triggered opening of a channel with currents that were typical of the mitochondrial megachannel, which is the PTP electrophysiological equivalent. Channel openings were inhibited by the ATP synthase inhibitor AMP-PNP (γ-imino ATP, a nonhydrolyzable ATP analog) and Mg2+/ADP. These results indicate that the PTP forms from dimers of the ATP synthase. PMID:23530243

  9. The ATP synthase: the understood, the uncertain and the unknown.

    PubMed

    Walker, John E

    2013-02-01

    The ATP synthases are multiprotein complexes found in the energy-transducing membranes of bacteria, chloroplasts and mitochondria. They employ a transmembrane protonmotive force, Δp, as a source of energy to drive a mechanical rotary mechanism that leads to the chemical synthesis of ATP from ADP and Pi. Their overall architecture, organization and mechanistic principles are mostly well established, but other features are less well understood. For example, ATP synthases from bacteria, mitochondria and chloroplasts differ in the mechanisms of regulation of their activity, and the molecular bases of these different mechanisms and their physiological roles are only just beginning to emerge. Another crucial feature lacking a molecular description is how rotation driven by Δp is generated, and how rotation transmits energy into the catalytic sites of the enzyme to produce the stepping action during rotation. One surprising and incompletely explained deduction based on the symmetries of c-rings in the rotor of the enzyme is that the amount of energy required by the ATP synthase to make an ATP molecule does not have a universal value. ATP synthases from multicellular organisms require the least energy, whereas the energy required to make an ATP molecule in unicellular organisms and chloroplasts is higher, and a range of values has been calculated. Finally, evidence is growing for other roles of ATP synthases in the inner membranes of mitochondria. Here the enzymes form supermolecular complexes, possibly with specific lipids, and these complexes probably contribute to, or even determine, the formation of the cristae.

  10. Diversity of sesquiterpene synthases in the basidiomycete Coprinus cinereus.

    PubMed

    Agger, Sean; Lopez-Gallego, Fernando; Schmidt-Dannert, Claudia

    2009-06-01

    Fungi are a rich source of bioactive secondary metabolites, and mushroom-forming fungi (Agaricomycetes) are especially known for the synthesis of numerous bioactive and often cytotoxic sesquiterpenoid secondary metabolites. Compared with the large number of sesquiterpene synthases identified in plants, less than a handful of unique sesquiterpene synthases have been described from fungi. Here we describe the functional characterization of six sesquiterpene synthases (Cop1 to Cop6) and two terpene-oxidizing cytochrome P450 monooxygenases (Cox1 and Cox2) from Coprinus cinereus. The genes were cloned and, except for cop5, functionally expressed in Escherichia coli and/or Saccharomyces cerevisiae. Cop1 and Cop2 each synthesize germacrene A as the major product. Cop3 was identified as an alpha-muurolene synthase, an enzyme that has not been described previously, while Cop4 synthesizes delta-cadinene as its major product. Cop6 was originally annotated as a trichodiene synthase homologue but instead was found to catalyse the highly specific synthesis of alpha-cuprenene. Coexpression of cop6 and the two monooxygenase genes next to it yields oxygenated alpha-cuprenene derivatives, including cuparophenol, suggesting that these genes encode the enzymes for the biosynthesis of antimicrobial quinone sesquiterpenoids (known as lagopodins) that were previously isolated from C. cinereus and other Coprinus species. PMID:19400802

  11. The Structure of the L-myo-inositol-1-phosphate Synthase-NAD[superscript +]-2-deoxy-D-glucitol 6-(E)-Vinylhomophosphonate Complex Demands a Revision of the Enzyme Mechanism

    SciTech Connect

    Jin, Xiangshu; Foley, Kathleen M.; Geiger, James H.

    2010-11-16

    1l-myo-inositol 1-phosphate (MIP) synthase catalyzes the conversion of D-glucose 6-phosphate to 1l-myo-inositol 1-phosphate, the first and rate-limiting step in the biosynthesis of all inositol-containing compounds. It involves an oxidation, enolization, intramolecular aldol cyclization, and reduction. Here we present the structure of MIP synthase in complex with NAD{sup +} and a high-affinity inhibitor, 2-deoxy-D-glucitol 6-(E)-vinylhomophosphonate. This structure reveals interactions between the enzyme active site residues and the inhibitor that are significantly different from that proposed for 2-deoxy-D-glucitol 6-phosphate in the previously published structure of MIP synthase-NAD{sup +}-2-deoxy-D-glucitol 6-phosphate. There are several other conformational changes in NAD{sup +} and the enzyme active site as well. Based on the new structural data, we propose a new and completely different mechanism for MIP synthase.

  12. X-ray Crystal Structure of Aristolochene Synthase from Aspergillus terreus and Evolution of Templates for the Cyclization of Farnesyl Diphosphate

    SciTech Connect

    Shishova,E.; Di Costanzo, L.; Cane, D.; Christianson, D.

    2007-01-01

    Aristolochene synthase from Aspergillus terreus catalyzes the cyclization of the universal sesquiterpene precursor, farnesyl diphosphate, to form the bicyclic hydrocarbon aristolochene. The 2.2 {angstrom} resolution X-ray crystal structure of aristolochene synthase reveals a tetrameric quaternary structure in which each subunit adopts the {alpha}-helical class I terpene synthase fold with the active site in the 'open', solvent-exposed conformation. Intriguingly, the 2.15 {angstrom} resolution crystal structure of the complex with Mg{sup 2+}{sub 3}-pyrophosphate reveals ligand binding only to tetramer subunit D, which is stabilized in the 'closed' conformation required for catalysis. Tetramer assembly may hinder conformational changes required for the transition from the inactive open conformation to the active closed conformation, thereby accounting for the attenuation of catalytic activity with an increase in enzyme concentration. In both conformations, but especially in the closed conformation, the active site contour is highly complementary in shape to that of aristolochene, and a catalytic function is proposed for the pyrophosphate anion based on its orientation with regard to the presumed binding mode of aristolochene. A similar active site contour is conserved in aristolochene synthase from Penicillium roqueforti despite the substantial divergent evolution of these two enzymes, while strikingly different active site contours are found in the sesquiterpene cyclases 5-epi-aristolochene synthase and trichodiene synthase. Thus, the terpenoid cyclase active site plays a critical role as a template in binding the flexible polyisoprenoid substrate in the proper conformation for catalysis. Across the greater family of terpenoid cyclases, this template is highly evolvable within a conserved {alpha}-helical fold for the synthesis of terpene natural products of diverse structure and stereochemistry.

  13. X-ray crystal structure of aristolochene synthase from Aspergillus terreus and evolution of templates for the cyclization of farnesyl diphosphate.

    PubMed

    Shishova, Ekaterina Y; Di Costanzo, Luigi; Cane, David E; Christianson, David W

    2007-02-20

    Aristolochene synthase from Aspergillus terreus catalyzes the cyclization of the universal sesquiterpene precursor, farnesyl diphosphate, to form the bicyclic hydrocarbon aristolochene. The 2.2 A resolution X-ray crystal structure of aristolochene synthase reveals a tetrameric quaternary structure in which each subunit adopts the alpha-helical class I terpene synthase fold with the active site in the "open", solvent-exposed conformation. Intriguingly, the 2.15 A resolution crystal structure of the complex with Mg2+3-pyrophosphate reveals ligand binding only to tetramer subunit D, which is stabilized in the "closed" conformation required for catalysis. Tetramer assembly may hinder conformational changes required for the transition from the inactive open conformation to the active closed conformation, thereby accounting for the attenuation of catalytic activity with an increase in enzyme concentration. In both conformations, but especially in the closed conformation, the active site contour is highly complementary in shape to that of aristolochene, and a catalytic function is proposed for the pyrophosphate anion based on its orientation with regard to the presumed binding mode of aristolochene. A similar active site contour is conserved in aristolochene synthase from Penicillium roqueforti despite the substantial divergent evolution of these two enzymes, while strikingly different active site contours are found in the sesquiterpene cyclases 5-epi-aristolochene synthase and trichodiene synthase. Thus, the terpenoid cyclase active site plays a critical role as a template in binding the flexible polyisoprenoid substrate in the proper conformation for catalysis. Across the greater family of terpenoid cyclases, this template is highly evolvable within a conserved alpha-helical fold for the synthesis of terpene natural products of diverse structure and stereochemistry. PMID:17261032

  14. Understanding Plant Cellulose Synthases through a Comprehensive Investigation of the Cellulose Synthase Family Sequences

    PubMed Central

    Carroll, Andrew; Specht, Chelsea D.

    2011-01-01

    The development of cellulose as an organizing structure in the plant cell wall was a key event in both the initial colonization and the subsequent domination of the terrestrial ecosystem by vascular plants. A wealth of experimental data has demonstrated the complicated genetic interactions required to form the large synthetic complex that synthesizes cellulose. However, these results are lacking an extensive analysis of the evolution, specialization, and regulation of the proteins that compose this complex. Here we perform an in-depth analysis of the sequences in the cellulose synthase (CesA) family. We investigate the phylogeny of the CesA family, with emphasis on evolutionary specialization. We define specialized clades and identify the class-specific regions within the CesA sequence that may explain this specialization. We investigate changes in regulation of CesAs by looking at the conservation of proposed phosphorylation sites. We investigate the conservation of sites where mutations have been documented that impair CesA function, and compare these sites to those observed in the closest cellulose synthase-like (Csl) families to better understand what regions may separate the CesAs from other Csls. Finally we identify two positions with strong conservation of the aromatic trait, but lacking conservation of amino acid identity, which may represent residues important for positioning the sugar substrate for catalysis. These analyses provide useful tools for understanding characterized mutations and post-translational modifications, and for informing further experiments to probe CesA assembly, regulation, and function through site-directed mutagenesis or domain swapping experiments. PMID:22629257

  15. Structure Conservation and Differential Expression of Farnesyl Diphosphate Synthase Genes in Euphorbiaceous Plants

    PubMed Central

    Guo, Dong; Li, Hui-Liang; Peng, Shi-Qing

    2015-01-01

    Farnesyl diphosphate synthase (FPS) is a key enzyme of isoprenoids biosynthesis. However, knowledge of the FPSs of euphorbiaceous species is limited. In this study, ten FPSs were identified in four euphorbiaceous plants. These FPSs exhibited similar exon/intron structure. The deduced FPS proteins showed close identities and exhibited the typical structure of plant FPS. The members of the FPS family exhibit tissue expression patterns that vary among several euphorbiaceous plant species under normal growth conditions. The expression profiles reveal spatial and temporal variations in the expression of FPSs of different tissues from Euphorbiaceous plants. Our results revealed wide conservation of FPSs and diverse expression in euphorbiaceous plants during growth and development. PMID:26389894

  16. Evolutionary history of the chitin synthases of eukaryotes.

    PubMed

    Morozov, Alexey A; Likhoshway, Yelena V

    2016-06-01

    Chitin synthases are widespread among eukaryotes and known to have a complex evolutionary history in some of the groups. We have reconstructed the chitin synthase phylogeny using the most taxonomically comprehensive dataset currently available and have shown the presence of independently formed paralogous groups in oomycetes, ciliates, fungi, and all diatoms except raphid pennates. There were also two cases of horizontal gene transfer (HGT): transfer from fungus to early diatoms gave rise to diatom paralogous group, while transfer from raphid pennate diatom to Acantamoeba ancestor is, to our knowledge, restricted to a single gene in amoeba. Early evolution of chitin synthases is heavily obscured by paralogy, and further sequencing effort is necessary. PMID:26887391

  17. A functional map of the nopaline synthase promoter.

    PubMed Central

    Shaw, C H; Carter, G H; Watson, M D; Shaw, C H

    1984-01-01

    This paper describes the first functional map of a promoter expressed from the plant chromosome. We have constructed a series of overlapping deletion mutants within the region upstream of the Ti-plasmid encoded nopaline synthase (nos) gene. By monitoring nos expression in tumour tissue we have inferred a functional map of the nos promoter. The maximum length of sequence upstream of the transcription initiation point required to express wild type levels of nopaline synthase is 88 bp. Within this region, the "CAAT" box is essential for maximal activity; deletion of this sequence reduced apparent nos expression by over 80%. Presence of an intact or partial "TATA" box in the absence of the "CAAT" box supports a barely detectable level of nopaline synthase. Removal of all sequences upstream of the nos coding sequence results in no detectable activity. PMID:6493982

  18. Properties of peroxisomal and mitochondrial citrate synthase from Agave americana.

    PubMed

    Segovia, J L; Zafra, M F; Alejandre, M J; García-Peregrín, E

    1982-09-01

    Adenine nucleotides were tested as effectors of peroxisomal and mitochondrial citrate synthase from Agave americana leaves in the presence of different concentrations of acetyl-CoA and oxalacetate substrates. ATP inhibited both enzyme activities but with a different inhibition profile. 1.0-7.5 mM ADP did not inhibit the peroxisomal citrate synthase in the presence of high substrate concentrations, while the mitochondrial enzyme was strongly inhibited by 1.0 mM ADP in the same conditions. Likewise, a different pattern was obtained with AMP on both peroxisomal and mitochondrial activities. The rate of citrate formation as function of acetyl-CoA and oxalacetate concentration was also studied in both fractions. Maximal velocity was highest in the peroxisomal fraction, whether acetyl-CoA or oxalacetate were the variable substrates. These differences indicate that peroxisomal and mitochondrial citrate synthases seem to be two different isoenzymes.

  19. Crystal Structure of the Acyltransferase Domain of the Iterative Polyketide Synthase in Enediyne Biosynthesis*

    PubMed Central

    Liew, Chong Wai; Nilsson, Martina; Chen, Ming Wei; Sun, Huihua; Cornvik, Tobias; Liang, Zhao-Xun; Lescar, Julien

    2012-01-01

    Biosynthesis of the enediyne natural product dynemicin in Micromonospora chersina is initiated by DynE8, a highly reducing iterative type I polyketide synthase that assembles polyketide intermediates from the acetate units derived solely from malonyl-CoA. To understand the substrate specificity and the evolutionary relationship between the acyltransferase (AT) domains of DynE8, fatty acid synthase, and modular polyketide synthases, we overexpressed a 44-kDa fragment of DynE8 (hereafter named ATDYN10) encompassing its entire AT domain and the adjacent linker domain. The crystal structure at 1.4 Å resolution unveils a α/β hydrolase and a ferredoxin-like subdomain with the Ser-His catalytic dyad located in the cleft between the two subdomains. The linker domain also adopts a α/β fold abutting the AT catalytic domain. Co-crystallization with malonyl-CoA yielded a malonyl-enzyme covalent complex that most likely represents the acyl-enzyme intermediate. The structure explains the preference for malonyl-CoA with a conserved arginine orienting the carboxylate group of malonate and several nonpolar residues that preclude α-alkyl malonyl-CoA binding. Co-crystallization with acetyl-CoA revealed two noncovalently bound acetates generated by the enzymatic hydrolysis of acetyl-CoA that acts as an inhibitor for DynE8. This suggests that the AT domain can upload the acyl groups from either malonyl-CoA or acetyl-CoA onto the catalytic Ser651 residue. However, although the malonyl group can be transferred to the acyl carrier protein domain, transfer of the acetyl group to the acyl carrier protein domain is suppressed. Local structural differences may account for the different stability of the acyl-enzyme intermediates. PMID:22589546

  20. Mapping a kingdom-specific functional domain of squalene synthase.

    PubMed

    Linscott, Kristin B; Niehaus, Thomas D; Zhuang, Xun; Bell, Stephen A; Chappell, Joe

    2016-09-01

    Squalene synthase catalyzes the first committed step in sterol biosynthesis and consists of both an amino-terminal catalytic domain and a carboxy-terminal domain tethering the enzyme to the ER membrane. While the overall architecture of this enzyme is identical in eukaryotes, it was previously shown that plant and animal genes cannot complement a squalene synthase knockout mutation in yeast unless the carboxy-terminal domain is swapped for one of fungal origin. This implied a unique component of the fungal carboxy-terminal domain was responsible for the complementation phenotype. To identify this motif, we used Saccharomyces cerevisiae with a squalene synthase knockout mutation, and expressed intact and chimeric squalene synthases originating from fungi, plants, and animals. In contrast to previous observations, all enzymes tested could partially complement the knockout mutation when the genes were weakly expressed. However, when highly expressed, non-fungal squalene synthases could not complement the yeast mutation and instead led to the accumulation of a toxic intermediate(s) as defined by mutations of genes downstream in the ergosterol pathway. Restoration of the complete complementation phenotype was mapped to a 26-amino acid hinge region linking the catalytic and membrane-spanning domains specific to fungal squalene synthases. Over-expression of the C-terminal domain containing a hinge domain from fungi, not from animals or plants, led to growth inhibition of wild-type yeast. Because this hinge region is unique to and highly conserved within each kingdom of life, the data suggests that the hinge domain plays an essential functional role, such as assembly of ergosterol multi-enzyme complexes in fungi.

  1. Exploiting the Biosynthetic Potential of Type III Polyketide Synthases.

    PubMed

    Lim, Yan Ping; Go, Maybelle K; Yew, Wen Shan

    2016-01-01

    Polyketides are structurally and functionally diverse secondary metabolites that are biosynthesized by polyketide synthases (PKSs) using acyl-CoA precursors. Recent studies in the engineering and structural characterization of PKSs have facilitated the use of target enzymes as biocatalysts to produce novel functionally optimized polyketides. These compounds may serve as potential drug leads. This review summarizes the insights gained from research on type III PKSs, from the discovery of chalcone synthase in plants to novel PKSs in bacteria and fungi. To date, at least 15 families of type III PKSs have been characterized, highlighting the utility of PKSs in the development of natural product libraries for therapeutic development. PMID:27338328

  2. An Unusual Chimeric Diterpene Synthase from Emericella variecolor and Its Functional Conversion into a Sesterterpene Synthase by Domain Swapping.

    PubMed

    Qin, Bin; Matsuda, Yudai; Mori, Takahiro; Okada, Masahiro; Quan, Zhiyang; Mitsuhashi, Takaaki; Wakimoto, Toshiyuki; Abe, Ikuro

    2016-01-26

    Di- and sesterterpene synthases produce C20 and C25 isoprenoid scaffolds from geranylgeranyl pyrophosphate (GGPP) and geranylfarnesyl pyrophosphate (GFPP), respectively. By genome mining of the fungus Emericella variecolor, we identified a multitasking chimeric terpene synthase, EvVS, which has terpene cyclase (TC) and prenyltransferase (PT) domains. Heterologous gene expression in Aspergillus oryzae led to the isolation of variediene (1), a novel tricyclic diterpene hydrocarbon. Intriguingly, in vitro reaction with the enzyme afforded the new macrocyclic sesterterpene 2 as a minor product from dimethylallyl pyrophosphate (DMAPP) and isopentenyl pyrophosphate (IPP). The TC domain thus produces the diterpene 1 and the sesterterpene 2 from GGPP and GFPP, respectively. Notably, a domain swap of the PT domain of EvVS with that of another chimeric sesterterpene synthase, EvSS, successfully resulted in the production of 2 in vivo as well. Cyclization mechanisms for the production of these two compounds are proposed.

  3. Identification of a cryptic type III polyketide synthase (1,3,6,8-tetrahydroxynaphthalene synthase) from Streptomyces peucetius ATCC 27952.

    PubMed

    Ghimire, Gopal Prasad; Oh, Tae-Jin; Liou, Kwangkyoung; Sohng, Jae Kyung

    2008-10-31

    We identified a 1,134-bp putative type III polyketide synthase from the sequence analysis of Streptomyces peucetius ATCC 27952, named Sp-RppA, which is characterized as 1,3,6,8-tetrahydroxynaphthalene synthase and shares 33% identity with SCO1206 from S. coelicolor A3(2) and 32% identity with RppA from S. griseus. The 1,3,6,8-tetrahydroxynaphthalene synthase is known to catalyze the sequential decarboxylative condensation, intramolecular cyclization, and aromatization of an oligoketide derived from five units of malonyl-CoA to give 1,3,6,8-tetrahydroxynaphthalene, which spontaneously oxidizes to form 2,5,7-trihydroxy-1,4-naphthoquinone (flaviolin). In this study, we report the in vivo expression and in vitro synthesis of flaviolin from purified gene product (Sp-RppA). PMID:18612244

  4. Functional Mapping of Protein-Protein Interactions in an Enzyme Complex by Directed Evolution

    PubMed Central

    Roderer, Kathrin; Neuenschwander, Martin; Codoni, Giosiana; Sasso, Severin; Gamper, Marianne; Kast, Peter

    2014-01-01

    The shikimate pathway enzyme chorismate mutase converts chorismate into prephenate, a precursor of Tyr and Phe. The intracellular chorismate mutase (MtCM) of Mycobacterium tuberculosis is poorly active on its own, but becomes >100-fold more efficient upon formation of a complex with the first enzyme of the shikimate pathway, 3-deoxy-d-arabino-heptulosonate-7-phosphate synthase (MtDS). The crystal structure of the enzyme complex revealed involvement of C-terminal MtCM residues with the MtDS interface. Here we employed evolutionary strategies to probe the tolerance to substitution of the C-terminal MtCM residues from positions 84–90. Variants with randomized positions were subjected to stringent selection in vivo requiring productive interactions with MtDS for survival. Sequence patterns identified in active library members coincide with residue conservation in natural chorismate mutases of the AroQδ subclass to which MtCM belongs. An Arg-Gly dyad at positions 85 and 86, invariant in AroQδ sequences, was intolerant to mutation, whereas Leu88 and Gly89 exhibited a preference for small and hydrophobic residues in functional MtCM-MtDS complexes. In the absence of MtDS, selection under relaxed conditions identifies positions 84–86 as MtCM integrity determinants, suggesting that the more C-terminal residues function in the activation by MtDS. Several MtCM variants, purified using a novel plasmid-based T7 RNA polymerase gene expression system, showed that a diminished ability to physically interact with MtDS correlates with reduced activatability and feedback regulatory control by Tyr and Phe. Mapping critical protein-protein interaction sites by evolutionary strategies may pinpoint promising targets for drugs that interfere with the activity of protein complexes. PMID:25551646

  5. Novel protein–protein interaction between spermidine synthase and S-adenosylmethionine decarboxylase from Leishmania donovani

    SciTech Connect

    Mishra, Arjun K.; Agnihotri, Pragati; Srivastava, Vijay Kumar; Pratap, J. Venkatesh

    2015-01-09

    Highlights: • L. donovani spermidine synthase and S-adenosylmethionine decarboxylase have been cloned and purified. • S-adenosylmethionine decarboxylase has autocatalytic property. • GST pull down assay shows the two proteins to form a metabolon. • Isothermal titration calorimetry shows that binding was exothermic having K{sub d} value of 0.4 μM. • Interaction confirmed by fluorescence spectroscopy and size exclusion chromatography. - Abstract: Polyamine biosynthesis pathway has long been considered an essential drug target for trypanosomatids including Leishmania. S-adenosylmethionine decarboxylase (AdoMetDc) and spermidine synthase (SpdSyn) are enzymes of this pathway that catalyze successive steps, with the product of the former, decarboxylated S-adenosylmethionine (dcSAM), acting as an aminopropyl donor for the latter enzyme. Here we have explored the possibility of and identified the protein–protein interaction between SpdSyn and AdoMetDc. The protein–protein interaction has been identified using GST pull down assay. Isothermal titration calorimetry reveals that the interaction is thermodynamically favorable. Fluorescence spectroscopy studies also confirms the interaction, with SpdSyn exhibiting a change in tertiary structure with increasing concentrations of AdoMetDc. Size exclusion chromatography suggests the presence of the complex as a hetero-oligomer. Taken together, these results suggest that the enzymes indeed form a heteromer. Computational analyses suggest that this complex differs significantly from the corresponding human complex, implying that this complex could be a better therapeutic target than the individual enzymes.

  6. Active intermediates of polyhydroxyalkanoate synthase from Aeromonas caviae in polymerization reaction.

    PubMed

    Numata, Keiji; Motoda, Yoko; Watanabe, Satoru; Tochio, Naoya; Kigawa, Takanori; Doi, Yoshiharu

    2012-11-12

    Polyhydroxyalkanoate (PHA) synthase from Aeromonas caviae FA440 (PhaC(Ac), BAA21815) is one of the most valuable PHA synthase, because of its function to synthesize a practical bioplastic, poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate] [P(3HB-co-3HHx)]. However, biochemical activity and active intermediates of PhaC(Ac) have not been clarified until now. In the present study, a gene of PhaC(Ac) was cloned and overexpressed by a cell-free protein expression system. Both the polymerization activity and oligomerization behavior of the purified PhaC(Ac) were characterized in order to clarify the active intermediates of PhaC(Ac) based on the hydrodynamic diameters and specific activities of PhaC(Ac). The influences of a substrate, (R)-3-hydroxybutyryl-CoA (3HB-CoA), on the oligomerization of PhaC(Ac) (7.5 μM) were also investigated, and then the Hill coefficient (n = 2.6 ± 0.4) and the microscopic dissociation constant (K(m) = 77 ± 5 μM) were determined. Based on the results, the active intermediate of PhaC(Ac) was concluded to be the dimeric PhaC(Ac) containing 3HB-CoA as an activator for its dimerization. This information is critical for revealing the relationships between its dimerization and function in PHA synthesis.

  7. Zinc Affects Differently Growth, Photosynthesis, Antioxidant Enzyme Activities and Phytochelatin Synthase Expression of Four Marine Diatoms

    PubMed Central

    Nguyen-Deroche, Thi Le Nhung; Caruso, Aurore; Le, Thi Trung; Bui, Trang Viet; Schoefs, Benoît; Tremblin, Gérard; Morant-Manceau, Annick

    2012-01-01

    Zinc-supplementation (20 μM) effects on growth, photosynthesis, antioxidant enzyme activities (superoxide dismutase, ascorbate peroxidase, catalase), and the expression of phytochelatin synthase gene were investigated in four marine diatoms (Amphora acutiuscula, Nitzschia palea, Amphora coffeaeformis and Entomoneis paludosa). Zn-supplementation reduced the maximum cell density. A linear relationship was found between the evolution of gross photosynthesis and total chlorophyll content. The Zn treatment decreased the electron transport rate except in A. coffeaeformis and in E. paludosa at high irradiance. A linear relationship was found between the efficiency of light to evolve oxygen and the size of the light-harvesting antenna. The external carbonic anhydrase activity was stimulated in Zn-supplemented E. paludosa but was not correlated with an increase of photosynthesis. The total activity of the antioxidant enzymes did not display any clear increase except in ascorbate peroxidase activity in N. palea. The phytochelatin synthase gene was identified in the four diatoms, but its expression was only revealed in N. palea, without a clear difference between control and Zn-supplemented cells. Among the four species, A. paludosa was the most sensitive and A. coffeaeformis, the most tolerant. A. acutiuscula seemed to be under metal starvation, whereas, to survive, only N. palea developed several stress responses. PMID:22645501

  8. Identification and molecular characterization of nitric oxide synthase (NOS) gene in the intertidal copepod Tigriopus japonicus.

    PubMed

    Jeong, Chang-Bum; Kang, Hye-Min; Seo, Jung Soo; Park, Heum Gi; Rhee, Jae-Sung; Lee, Jae-Seong

    2016-02-10

    In copepods, no information has been reported on the structure or molecular characterization of the nitric oxide synthase (NOS) gene. In the intertidal copepod Tigriopus japonicus, we identified a NOS gene that is involved in immune responses of vertebrates and invertebrates. In silico analyses revealed that nitric oxide (NO) synthase domains, such as the oxygenase and reductase domains, are highly conserved in the T. japonicus NOS gene. The T. japonicus NOS gene was highly transcribed in the nauplii stages, implying that it plays a role in protecting the host during the early developmental stages. To examine the involvement of the T. japonicus NOS gene in the innate immune response, the copepods were exposed to lipopolysaccharide (LPS) and two Vibrio sp. After exposure to different concentrations of LPS and Vibrio sp., T. japonicus NOS transcription was significantly increased over time in a dose-dependent manner, and the NO/nitrite concentration increased as well. Taken together, our findings suggest that T. japonicus NOS transcription is induced in response to an immune challenge as part of the conserved innate immunity.

  9. Substrate geometry controls the cyclization cascade in multiproduct terpene synthases from Zea mays.

    PubMed

    Vattekkatte, Abith; Gatto, Nathalie; Köllner, Tobias G; Degenhardt, Jörg; Gershenzon, Jonathan; Boland, Wilhelm

    2015-06-01

    Multiproduct terpene synthases TPS4-B73 and TPS5-Delprim from maize (Zea mays) catalyze the conversion of farnesyl diphosphate (FDP) and geranyl diphosphate (GDP) into a complex mixture of sesquiterpenes and monoterpenes, respectively. Various isotopic and geometric isomers of natural substrates like (2Z)-[2-(2)H]- and [2,4,4,9,9,9-(2)H6]-(GDP) and (2Z,6E)-[2-(2)H]- and [2,4,4,13,13,13-(2)H6]-(FDP) were synthesized analogous to presumptive reaction intermediates. On incubation with labeled (2Z) substrates, TPS4 and TPS5 showed much lower kinetic isotope effects than the labeled (2E) substrates. Interestingly, the products arising from the deuterated (2Z)-precursors revealed a distinct preference for cyclic products and exhibited an enhanced turnover on comparison with natural (2E)-substrates. This increase in the efficiency due to (2Z) configuration emphasizes the rate limiting effect of the initial (2E) → (2Z) isomerization step in the reaction cascade of the multiproduct terpene synthases. Apart from turnover advantages, these results suggest that substrate geometry can be used as a tool to optimize the biosynthetic reaction cascade towards valuable cyclic terpenoids.

  10. Comprehensive Structural Characterization of the Bacterial Homospermidine Synthase-an Essential Enzyme of the Polyamine Metabolism.

    PubMed

    Krossa, Sebastian; Faust, Annette; Ober, Dietrich; Scheidig, Axel J

    2016-01-01

    The highly conserved bacterial homospermidine synthase (HSS) is a key enzyme of the polyamine metabolism of many proteobacteria including pathogenic strains such as Legionella pneumophila and Pseudomonas aeruginosa; The unique usage of NAD(H) as a prosthetic group is a common feature of bacterial HSS, eukaryotic HSS and deoxyhypusine synthase (DHS). The structure of the bacterial enzyme does not possess a lysine residue in the active center and thus does not form an enzyme-substrate Schiff base intermediate as observed for the DHS. In contrast to the DHS the active site is not formed by the interface of two subunits but resides within one subunit of the bacterial HSS. Crystal structures of Blastochloris viridis HSS (BvHSS) reveal two distinct substrate binding sites, one of which is highly specific for putrescine. BvHSS features a side pocket in the direct vicinity of the active site formed by conserved amino acids and a potential substrate discrimination, guiding, and sensing mechanism. The proposed reaction steps for the catalysis of BvHSS emphasize cation-π interaction through a conserved Trp residue as a key stabilizer of high energetic transition states. PMID:26776105

  11. Distinct Structural Elements Dictate the Specificity of the Type III Pentaketide Synthase from Neurospora crassa

    SciTech Connect

    Rubin-Pitel, Sheryl B.; Zhang, Houjin; Vu, Trang; Brunzelle, Joseph S.; Zhao, Huimin; Nair, Satish K.

    2009-01-15

    The fungal type III polyketide synthase 2'-oxoalkylresorcyclic acid synthase (ORAS) primes with a range of acyl-Coenzyme A thioesters (C{sub 4}--C{sub 20}) and extends using malonyl-Coenzyme A to produce pyrones, resorcinols, and resorcylic acids. To gain insight into this unusual substrate specificity and product profile, we have determined the crystal structures of ORAS to 1.75 {angstrom} resolution, the Phe-252{yields}Gly site-directed mutant to 2.1 {angstrom} resolution, and a binary conplex of ORAS with eicosanoic acid to 2.0 {angstrom} resolution. The structures reveal a distinct rearrangement of structural elements near the active site that allows accomodation of long-chain fatty acid esters and a reorientation of the gating mechanism that controls cyclization and polyketide chain length. The roles of these structural elements are further elucidated by characterization of various structure-based site-directed variants. These studies establish an unexpected plasticity to the PKS fold, unanticipated from structural studies of other members of this enzyme family.

  12. Structure of soybean [beta]-cyanoalanine synthase and the molecular basis for cyanide detoxification in plants

    SciTech Connect

    Yi, Hankuil; Juergens, Matthew; Jez, Joseph M.

    2012-09-07

    Plants produce cyanide (CN{sup -}) during ethylene biosynthesis in the mitochondria and require {beta}-cyanoalanine synthase (CAS) for CN{sup -} detoxification. Recent studies show that CAS is a member of the {beta}-substituted alanine synthase (BSAS) family, which also includes the Cys biosynthesis enzyme O-acetylserine sulfhydrylase (OASS), but how the BSAS evolved distinct metabolic functions is not understood. Here we show that soybean (Glycine max) CAS and OASS form {alpha}-aminoacrylate reaction intermediates from Cys and O-acetylserine, respectively. To understand the molecular evolution of CAS and OASS in the BSAS enzyme family, the crystal structures of Gm-CAS and the Gm-CAS K95A mutant with a linked pyridoxal phosphate (PLP)-Cys molecule in the active site were determined. These structures establish a common fold for the plant BSAS family and reveal a substrate-induced conformational change that encloses the active site for catalysis. Comparison of CAS and OASS identified residues that covary in the PLP binding site. The Gm-OASS T81M, S181M, and T185S mutants altered the ratio of OASS:CAS activity but did not convert substrate preference to that of a CAS. Generation of a triple mutant Gm-OASS successfully switched reaction chemistry to that of a CAS. This study provides new molecular insight into the evolution of diverse enzyme functions across the BSAS family in plants.

  13. Crystal Structures of Two Isozymes of Citrate Synthase from Sulfolobus tokodaii Strain 7

    PubMed Central

    Kouyama, Tsutomu

    2016-01-01

    Thermoacidophilic archaeon Sulfolobus tokodaii strain 7 has two citrate synthase genes (ST1805-CS and ST0587-CS) in the genome with 45% sequence identity. Because they exhibit similar optimal temperatures of catalytic activity and thermal inactivation profiles, we performed structural comparisons between these isozymes to elucidate adaptation mechanisms to high temperatures in thermophilic CSs. The crystal structures of ST1805-CS and ST0587-CS were determined at 2.0 Å and 2.7 Å resolutions, respectively. Structural comparison reveals that both of them are dimeric enzymes composed of two identical subunits, and these dimeric structures are quite similar to those of citrate synthases from archaea and eubacteria. ST0587-CS has, however, 55 ion pairs within whole dimer structure, while having only 36 in ST1805-CS. Although the number and distributions of ion pairs are distinct from each other, intersubunit ion pairs between two domains of each isozyme are identical especially in interterminal region. Because the location and number of ion pairs are in a trend with other CSs from thermophilic microorganisms, the factors responsible for thermal adaptation of ST-CS isozymes are characterized by ion pairs in interterminal region.

  14. Time-dependent FRET with single enzymes: domain motions and catalysis in H(+)-ATP synthases.

    PubMed

    Bienert, Roland; Zimmermann, Boris; Rombach-Riegraf, Verena; Gräber, Peter

    2011-02-25

    H(+)-ATP synthases are molecular machines which couple transmembrane proton transport with ATP synthesis from ADP and inorganic phosphate by a rotational mechanism. Single-pair fluorescence resonance energy transfer (spFRET) in single molecules is a powerful tool to analyse conformational changes. It is used to investigate subunit movements in H(+)-ATP synthases from E. coli (EF(0)F(1)) and from spinach chloroplasts (CF(0)F(1)) during catalysis. The enzymes are incorporated into liposome membranes, and this allows the generation of a transmembrane pH difference, which is necessary for ATP synthesis. After labelling of appropriate sites on different subunits with fluorescence donor and acceptor, the kinetics of spFRET are measured. Analysis of the E(FRET) traces reveals rotational movement of the ε and γ subunits in 120° steps with opposite directions during ATP synthesis and ATP hydrolysis. The stepped movement is characterized by a 120° step faster than 1 ms followed by a rest period with an average dwell time of 15 ms, which is in accordance with the turnover time of the enzyme. In addition to the three conformational states during catalysis, also an inactive conformation is found, which is observed after catalysis.

  15. Structure of a functional ribonucleoprotein pseudouridine synthase bound to a substrate RNA

    SciTech Connect

    Liang, Bo; Zhou, Jing; Kahen, Elliot; Terns, Rebecca M.; Terns, Michael P.; Li, Hong

    2009-09-29

    Box H/ACA small nucleolar and Cajal body ribonucleoprotein particles comprise the most complex pseudouridine synthases and are essential for ribosome and spliceosome maturation. The multistep and multicomponent-mediated enzyme mechanism remains only partially understood. Here we report a crystal structure at 2.35 {angstrom} of a substrate-bound functional archaeal enzyme containing three of the four proteins, Cbf5, Nop10 and L7Ae, and a box H/ACA RNA that reveals detailed information about the protein-only active site. The substrate RNA, containing 5-fluorouridine at the modification position, is fully docked and catalytically rearranged by the enzyme in a manner similar to that seen in two stand-alone pseudouridine synthases. Structural analysis provides a mechanism for plasticity in the diversity of guide RNA sequences used and identifies a substrate-anchoring loop of Cbf5 that also interacts with Gar1 in unliganded structures. Activity analyses of mutated proteins and RNAs support the structural findings and further suggest a role of the Cbf5 loop in regulation of enzyme activity.

  16. Active intermediates of polyhydroxyalkanoate synthase from Aeromonas caviae in polymerization reaction.

    PubMed

    Numata, Keiji; Motoda, Yoko; Watanabe, Satoru; Tochio, Naoya; Kigawa, Takanori; Doi, Yoshiharu

    2012-11-12

    Polyhydroxyalkanoate (PHA) synthase from Aeromonas caviae FA440 (PhaC(Ac), BAA21815) is one of the most valuable PHA synthase, because of its function to synthesize a practical bioplastic, poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate] [P(3HB-co-3HHx)]. However, biochemical activity and active intermediates of PhaC(Ac) have not been clarified until now. In the present study, a gene of PhaC(Ac) was cloned and overexpressed by a cell-free protein expression system. Both the polymerization activity and oligomerization behavior of the purified PhaC(Ac) were characterized in order to clarify the active intermediates of PhaC(Ac) based on the hydrodynamic diameters and specific activities of PhaC(Ac). The influences of a substrate, (R)-3-hydroxybutyryl-CoA (3HB-CoA), on the oligomerization of PhaC(Ac) (7.5 μM) were also investigated, and then the Hill coefficient (n = 2.6 ± 0.4) and the microscopic dissociation constant (K(m) = 77 ± 5 μM) were determined. Based on the results, the active intermediate of PhaC(Ac) was concluded to be the dimeric PhaC(Ac) containing 3HB-CoA as an activator for its dimerization. This information is critical for revealing the relationships between its dimerization and function in PHA synthesis. PMID:23043466

  17. Elevated activity of dolichyl phosphate mannose synthase enhances biocontrol abilities of Trichoderma atroviride.

    PubMed

    Zembek, Patrycja; Perlinska-Lenart, Urszula; Brunner, Kurt; Reithner, Barbara; Palamarczyk, Grazyna; Mach, Robert L; Kruszewska, Joanna S

    2011-12-01

    Antagonism of Trichoderma spp. against phytopathogenic fungi is widely exploited for biocontrol of plant diseases. A crucial role in the biocontrol mechanism is attributed to cell-wall-degrading enzymes secreted by Trichoderma spp. Therefore, more efficient production and secretion of the enzymes should elevate the biocontrol abilities of Trichoderma spp. Because the majority of secretory hydrolases are glycoproteins, it has been postulated that the posttranslational modification of these proteins could constitute a bottleneck in their production and secretion. Our previous study showed that improvement of O-glycosylation elevated protein secretion by Trichoderma reesei. In this study, we enhanced the biocontrol abilities of T. atroviride P1 against plant pathogens by overexpressing the Saccharomyces cerevisiae DPM1 gene coding for dolichyl phosphate mannose (DPM) synthase, a key enzyme in the O-glycosylation pathway. The transformants we obtained showed doubled DPM synthase activity and, at the same time, significantly elevated cellulolytic activity. They also revealed an improved antifungal activity against the plant pathogen Pythium ultimum.

  18. The Crystal Structures of the Open and Catalytically Competent Closed Conformation of Escherichia coli Glycogen Synthase

    SciTech Connect

    Sheng, Fang; Jia, Xiaofei; Yep, Alejandra; Preiss, Jack; Geiger, James H.

    2009-07-06

    Escherichia coli glycogen synthase (EcGS, EC 2.4.1.21) is a retaining glycosyltransferase (GT) that transfers glucose from adenosine diphosphate glucose to a glucan chain acceptor with retention of configuration at the anomeric carbon. EcGS belongs to the GT-B structural superfamily. Here we report several EcGS x-ray structures that together shed considerable light on the structure and function of these enzymes. The structure of the wild-type enzyme bound to ADP and glucose revealed a 15.2 degrees overall domain-domain closure and provided for the first time the structure of the catalytically active, closed conformation of a glycogen synthase. The main chain carbonyl group of His-161, Arg-300, and Lys-305 are suggested by the structure to act as critical catalytic residues in the transglycosylation. Glu-377, previously thought to be catalytic is found on the alpha-face of the glucose and plays an electrostatic role in the active site and as a glucose ring locator. This is also consistent with the structure of the EcGS(E377A)-ADP-HEPPSO complex where the glucose moiety is either absent or disordered in the active site

  19. Structure of a functional ribonucleoprotein pseudouridine synthase bound to a substrate RNA.

    PubMed

    Liang, Bo; Zhou, Jing; Kahen, Elliot; Terns, Rebecca M; Terns, Michael P; Li, Hong

    2009-07-01

    Box H/ACA small nucleolar and Cajal body ribonucleoprotein particles comprise the most complex pseudouridine synthases and are essential for ribosome and spliceosome maturation. The multistep and multicomponent-mediated enzyme mechanism remains only partially understood. Here we report a crystal structure at 2.35 A of a substrate-bound functional archaeal enzyme containing three of the four proteins, Cbf5, Nop10 and L7Ae, and a box H/ACA RNA that reveals detailed information about the protein-only active site. The substrate RNA, containing 5-fluorouridine at the modification position, is fully docked and catalytically rearranged by the enzyme in a manner similar to that seen in two stand-alone pseudouridine synthases. Structural analysis provides a mechanism for plasticity in the diversity of guide RNA sequences used and identifies a substrate-anchoring loop of Cbf5 that also interacts with Gar1 in unliganded structures. Activity analyses of mutated proteins and RNAs support the structural findings and further suggest a role of the Cbf5 loop in regulation of enzyme activity.

  20. Crystal Structures of Two Isozymes of Citrate Synthase from Sulfolobus tokodaii Strain 7.

    PubMed

    Murakami, Midori; Kouyama, Tsutomu

    2016-01-01

    Thermoacidophilic archaeon Sulfolobus tokodaii strain 7 has two citrate synthase genes (ST1805-CS and ST0587-CS) in the genome with 45% sequence identity. Because they exhibit similar optimal temperatures of catalytic activity and thermal inactivation profiles, we performed structural comparisons between these isozymes to elucidate adaptation mechanisms to high temperatures in thermophilic CSs. The crystal structures of ST1805-CS and ST0587-CS were determined at 2.0 Å and 2.7 Å resolutions, respectively. Structural comparison reveals that both of them are dimeric enzymes composed of two identical subunits, and these dimeric structures are quite similar to those of citrate synthases from archaea and eubacteria. ST0587-CS has, however, 55 ion pairs within whole dimer structure, while having only 36 in ST1805-CS. Although the number and distributions of ion pairs are distinct from each other, intersubunit ion pairs between two domains of each isozyme are identical especially in interterminal region. Because the location and number of ion pairs are in a trend with other CSs from thermophilic microorganisms, the factors responsible for thermal adaptation of ST-CS isozymes are characterized by ion pairs in interterminal region. PMID:27656296

  1. Structure and Mechanism of the Farnesyl Diphosphate Synthase from Trypanosoma cruzi: Implications for Drug Design

    SciTech Connect

    Gabelli,S.; McLellan, J.; Montalvetti, A.; Oldfield, E.; Docampo, R.; Amzel, L.

    2006-01-01

    Typanosoma cruzi, the causative agent of Chagas disease, has recently been shown to be sensitive to the action of the bisphosphonates currently used in bone resorption therapy. These compounds target the mevalonate pathway by inhibiting farnesyl diphosphate synthase (farnesyl pyrophosphate synthase, FPPS), the enzyme that condenses the diphosphates of C{sub 5} alcohols (isopentenyl and dimethylallyl) to form C{sub 10} and C{sub 15} diphosphates (geranyl and farnesyl). The structures of the T. cruzi FPPS (TcFPPS) alone and in two complexes with substrates and inhibitors reveal that following binding of the two substrates and three Mg2+ ions, the enzyme undergoes a conformational change consisting of a hinge-like closure of the binding site. In this conformation, it would be possible for the enzyme to bind a bisphosphonate inhibitor that spans the sites usually occupied by dimethylallyl diphosphate (DMAPP) and the homoallyl moiety of isopentenyl diphosphate. This observation may lead to the design of new, more potent anti-trypanosomal bisphosphonates, because existing FPPS inhibitors occupy only the DMAPP site. In addition, the structures provide an important mechanistic insight: after its formation, geranyl diphosphate can swing without leaving the enzyme, from the product site to the substrate site to participate in the synthesis of farnesyl diphosphate.

  2. Expression of the inducible nitric oxide synthase gene in diaphragm and skeletal muscle.

    PubMed

    Thompson, M; Becker, L; Bryant, D; Williams, G; Levin, D; Margraf, L; Giroir, B P

    1996-12-01

    Nitric oxide (NO) is a pluripotent molecule that can be secreted by skeletal muscle through the activity of the neuronal constitutive isoform of NO synthase. To determine whether skeletal muscle and diaphragm might also express the macrophage-inducible form of NO synthase (iNOS) during provocative states, we examined tissue from mice at serial times after intravenous administration of Escherichia coli endotoxin. In these studies, iNOS mRNA was strongly expressed in the diaphragm and skeletal muscle of mice 4 h after intravenous endotoxin and was significantly diminished by 8 h after challenge. Induction of iNOS mRNA was followed by expression of iNOS immunoreactive protein on Western immunoblots. Increased iNOS activity was demonstrated by conversion of arginine to citrulline. Immunochemical analysis of diaphragmatic explants exposed to endotoxin in vitro revealed specific iNOS staining in myocytes, in addition to macrophages and endothelium. These results may be important in understanding the pathogenesis of respiratory pump failure during septic shock, as well as skeletal muscle injury during inflammation or metabolic stress.

  3. Enzymatic Properties and Mutational Studies of Chalcone Synthase from Physcomitrella patens

    PubMed Central

    Rahman, Raja Noor Zaliha Raja Abdul; Zakaria, Iffah Izzati; Salleh, Abu Bakar; Basri, Mahiran

    2012-01-01

    PpCHS is a member of the type III polyketide synthase family and catalyses the synthesis of the flavonoid precursor naringenin chalcone from p-coumaroyl-CoA. Recent research reports the production of pyrone derivatives using either hexanoyl-CoA or butyryl-CoA as starter molecule. The Cys-His-Asn catalytic triad found in other plant chalcone synthase predicted polypeptides is conserved in PpCHS. Site directed mutagenesis involving these amino acids residing in the active-site cavity revealed that the cavity volume of the active-site plays a significant role in the selection of starter molecules as well as product formation. Substitutions of Cys 170 with Arg and Ser amino acids decreased the ability of the PpCHS to utilize hexanoyl-CoA as a starter molecule, which directly effected the production of pyrone derivatives (products). These substitutions are believed to have a restricted number of elongations of the growing polypeptide chain due to the smaller cavity volume of the mutant’s active site. PMID:22949824

  4. Leveraging structure determination with fragment screening for infectious disease drug targets: MECP synthase from Burkholderia pseudomallei

    SciTech Connect

    Begley, Darren W.; Hartley, Robert C.; Davies, Douglas R.; Edwards, Thomas E.; Leonard, Jess T.; Abendroth, Jan; Burris, Courtney A.; Bhandari, Janhavi; Myler, Peter J.; Staker, Bart L.; Stewart, Lance J.

    2011-09-28

    As part of the Seattle Structural Genomics Center for Infectious Disease, we seek to enhance structural genomics with ligand-bound structure data which can serve as a blueprint for structure-based drug design. We have adapted fragment-based screening methods to our structural genomics pipeline to generate multiple ligand-bound structures of high priority drug targets from pathogenic organisms. In this study, we report fragment screening methods and structure determination results for 2C-methyl-D-erythritol-2,4-cyclo-diphosphate (MECP) synthase from Burkholderia pseudomallei, the gram-negative bacterium which causes melioidosis. Screening by nuclear magnetic resonance spectroscopy as well as crystal soaking followed by X-ray diffraction led to the identification of several small molecules which bind this enzyme in a critical metabolic pathway. A series of complex structures obtained with screening hits reveal distinct binding pockets and a range of small molecules which form complexes with the target. Additional soaks with these compounds further demonstrate a subset of fragments to only bind the protein when present in specific combinations. This ensemble of fragment-bound complexes illuminates several characteristics of MECP synthase, including a previously unknown binding surface external to the catalytic active site. These ligand-bound structures now serve to guide medicinal chemists and structural biologists in rational design of novel inhibitors for this enzyme.

  5. Crystal Structures of Two Isozymes of Citrate Synthase from Sulfolobus tokodaii Strain 7

    PubMed Central

    Kouyama, Tsutomu

    2016-01-01

    Thermoacidophilic archaeon Sulfolobus tokodaii strain 7 has two citrate synthase genes (ST1805-CS and ST0587-CS) in the genome with 45% sequence identity. Because they exhibit similar optimal temperatures of catalytic activity and thermal inactivation profiles, we performed structural comparisons between these isozymes to elucidate adaptation mechanisms to high temperatures in thermophilic CSs. The crystal structures of ST1805-CS and ST0587-CS were determined at 2.0 Å and 2.7 Å resolutions, respectively. Structural comparison reveals that both of them are dimeric enzymes composed of two identical subunits, and these dimeric structures are quite similar to those of citrate synthases from archaea and eubacteria. ST0587-CS has, however, 55 ion pairs within whole dimer structure, while having only 36 in ST1805-CS. Although the number and distributions of ion pairs are distinct from each other, intersubunit ion pairs between two domains of each isozyme are identical especially in interterminal region. Because the location and number of ion pairs are in a trend with other CSs from thermophilic microorganisms, the factors responsible for thermal adaptation of ST-CS isozymes are characterized by ion pairs in interterminal region. PMID:27656296

  6. Cloning and Characterization of a Squalene Synthase Gene from the Chaga Medicinal Mushroom, Inonotus obliquus (Agaricomycetes).

    PubMed

    Zhang, Panpan; Cao, Xiaoying; Li, Changgen; Zheng, Zhujun; Yong, Sun; Jiang, Ji-Hong

    2016-01-01

    Squalene synthase catalyzes the condensation of 2 molecules of farnesyl diphosphate to produce squalene, the first committed precursor for sterol, brassinosteroid, and triterpene biosynthesis. A squalene synthase gene, designated IoSQS, was isolated from Inonotus obliquus, a medicinal mushroom that produces a plethora of bioactive triterpenes. IoSQS complementary DNA was found to contain an open reading frame of 1476 bp, encoding a protein of 491 amino acids with a calculated molecular mass of 55.85 kDa. The IoSQS genomic DNA sequence consisted of 1813 bp and contained 4 exons and 3 introns. The restriction fragment polymorphisms revealed by Southern blot analysis suggested that IoSQS was a single-copy gene. Promoter analysis indicated that the 5' upstream region of IoSQS possessed various potential elements associated with physiological and environmental factors. The expression pattern of IoSQS in different stages and under methyl jasmonate treatment correlated with the accumulation of total triterpenoids and was consistent with the predicted results of the IoSQS promoter region. The N-terminal 466 residues of the hydrophilic sequence were expressed as a His-tagged protein in Escherichia coli, and the resultant bacterial crude extract was incubated with farnesyl diphosphate and NADPH. Squalene was detected in vitro in reaction mixture by high-performance liquid chromatography analysis. These results suggest that the IoSQS enzyme is involved in squalene production in I. obliquus. PMID:27649606

  7. Genetics Home Reference: N-acetylglutamate synthase deficiency

    MedlinePlus

    ... of reactions that occurs in liver cells. This cycle processes excess nitrogen, generated when protein is used by the body, to make a compound called urea that is excreted by the kidneys. The ... cycle. In people with N-acetylglutamate synthase deficiency , N- ...

  8. Incremental truncation of PHA synthases results in altered product specificity.

    PubMed

    Wang, Qian; Xia, Yongzhen; Chen, Quan; Qi, Qingsheng

    2012-05-10

    PHA synthase is the key enzyme involved in the biosynthesis of microbial polymers, polyhydroxyalkanoates (PHA). In this study, we created a hybrid library of PHA synthase gene with different crossover points by an incremental truncation method between the C-terminal fragments of the phaC(Cn) (phaC from Cupriavidus necator) and the N-terminal fragments of the phaC1(Pa) (phaC from Pseudomonas aeruginosa). As the truncation of the hybrid enzyme increased, the in vivo PHB synthesis ability of the hybrids declined gradually. PHA synthase PhaC(Cn) with a deletion on N-terminal up to 83 amino acid residues showed no synthase activity. While with the removal of up to 270 amino acids from the N-terminus, the activity of the truncated PhaC(Cn) could be complemented by the N-terminus of PhaC1(Pa). Three of the hybrid enzymes W188, W235 and W272 (named by the deleted nucleic acid number) were found to have altered product specificities. PMID:22500895

  9. Absence of Pneumocystis dihydropteroate synthase mutants in Brittany, France.

    PubMed

    Le Gal, Solène; Robert-Gangneux, Florence; Perrot, Maëla; Rouillé, Amélie; Virmaux, Michèle; Damiani, Céline; Totet, Anne; Gangneux, Jean-Pierre; Nevez, Gilles

    2013-05-01

    Archival Pneumocystis jirovecii specimens from 84 patients monitored at Rennes University Hospital (Rennes, France) were assayed at the dihydropteroate synthase (DHPS) locus. No patient was infected with mutants. The results provide additional data showing that P. jirovecii infections involving DHPS mutants do not represent a public health issue in Brittany, western France.

  10. Insight into Biochemical Characterization of Plant Sesquiterpene Synthases

    PubMed Central

    Manczak, Tom; Simonsen, Henrik Toft

    2016-01-01

    A fast and reproducible protocol was established for enzymatic characterization of plant sesquiterpene synthases that can incorporate radioactivity in their products. The method utilizes the 96-well format in conjunction with cluster tubes and enables processing of >200 samples a day. Along with reduced reagent usage, it allows further reduction in the use of radioactive isotopes and flammable organic solvents. The sesquiterpene synthases previously characterized were expressed in yeast, and the plant-derived Thapsia garganica kunzeaol synthase TgTPS2 was tested in this method. KM for TgTPS2 was found to be 0.55 μM; the turnover number, kcat, was found to be 0.29 s−1, kcat for TgTPS2 is in agreement with that of terpene synthases of other plants, and kcat/KM was found to be 0.53 s−1 μM−1 for TgTPS2. The kinetic parameters were in agreement with previously published data. PMID:27721652

  11. Lipoxin synthase activity of human platelet 12-lipoxygenase.

    PubMed Central

    Romano, M; Chen, X S; Takahashi, Y; Yamamoto, S; Funk, C D; Serhan, C N

    1993-01-01

    Human platelets and megacaryocytes generate lipoxins from exogenous leukotriene A4 (LTA4). We examined the role of human 12-lipoxygenase (12-LO) in lipoxin generation with recombinant histidine-tagged human platelet enzyme (6His-12-LO), partially purified 12-LO from human platelets (HPL 12-LO) and, for the purposes of direct comparison, permeabilized platelets. Recombinant and HPL 12-LO catalysed the conversion of intact LTA4 into both lipoxin A4 (LXA4) and lipoxin B4 (LXB4). In contrast, only negligible quantities of LXA4 were generated when recombinant 12-LO was incubated with the non-enzymic hydrolysis products of LTA4.6His-12-LO also converted a non-allylic epoxide, 5(6)-epoxy-(8Z,11Z,14Z)-eicosatrienoic acid. The apparent Km and Vmax. for lipoxin synthase activity of 6His-12-LO were estimated to be 7.9 +/- 0.8 microM and 24.5 +/- 2.5 nmol/min per mg respectively, and the LXB4 synthase activity of this enzyme was selectively regulated by suicide inactivation. Aspirin gave a 2-fold increase in lipoxin formation by platelets but did not enhance the conversion of LTA4 by the recombinant 12-LO. These results provide direct evidence for LXA4 and LXB4 synthase activity of human platelet 12-LO. Moreover, they suggest that 12-LO is a dual-function enzyme that carries both oxygenase and lipoxin synthase activity. Images Figure 1 PMID:8250832

  12. Polyhydroyxalkanoate synthase fusions as a strategy for oriented enzyme immobilisation.

    PubMed

    Hooks, David O; Venning-Slater, Mark; Du, Jinping; Rehm, Bernd H A

    2014-01-01

    Polyhydroxyalkanoate (PHA) is a carbon storage polymer produced by certain bacteria in unbalanced nutrient conditions. The PHA forms spherical inclusions surrounded by granule associate proteins including the PHA synthase (PhaC). Recently, the intracellular formation of PHA granules with covalently attached synthase from Ralstonia eutropha has been exploited as a novel strategy for oriented enzyme immobilisation. Fusing the enzyme of interest to PHA synthase results in a bifunctional protein able to produce PHA granules and immobilise the active enzyme of choice to the granule surface. Functionalised PHA granules can be isolated from the bacterial hosts, such as Escherichia coli, and maintain enzymatic activity in a wide variety of assay conditions. This approach to oriented enzyme immobilisation has produced higher enzyme activities and product levels than non-oriented immobilisation techniques such as protein inclusion based particles. Here, enzyme immobilisation via PHA synthase fusion is reviewed in terms of the genetic designs, the choices of enzymes, the control of enzyme orientations, as well as their current and potential applications. PMID:24962396

  13. Isoelectric focusing of wound-induced tomato ACC synthase

    SciTech Connect

    White, J.A.; Kende, H. )

    1990-05-01

    Several techniques of electrofocusing have been used to determine whether 1-aminocyclopropane-1-carboxylate (ACC) synthase isolated from wounded tomato pericarp tissue exists in different isoforms, each with its characteristic isoelectric point (pI). The pI of the native enzyme was found to be 6.0 {plus minus} 0.2. When radiolabeled, denatured ACC synthase was electrofocused by non-equilibrium pH gradient electrophoresis (NEpHGE), the enzyme separated into four discernible spots which, upon reaching equilibrium, ranged in pI from 6.6 to 6.9. Immunopurified ACC synthase from four tomato cultivars (Duke, Cornell, Mountain Pride and Pik Red) migrated in each case as a 50-kDa protein on sodium dodecyl sulfate polyacrylamide gels (SDS-PAGE). We propose that native ACC synthase in extracts of tomato pericarp tissue exists in one single form and that the charge heterogeneities observed upon electrofocusing of denatured enzyme result from modifications of preexisting protein.

  14. Mechanism of the beta-ketoacyl synthase reaction catalyzed by the animal fatty acid synthase.

    PubMed

    Witkowski, Andrzej; Joshi, Anil K; Smith, Stuart

    2002-09-01

    The catalytic mechanism of the beta-ketoacyl synthase domain of the multifunctional fatty acid synthase has been investigated by a combination of mutagenesis, active-site titration, product analysis, and product inhibition. Neither the reactivity of the active-site Cys161 residue toward iodoacetamide nor the rate of unidirectional transfer of acyl moieties to Cys161 was significantly decreased by replacement of any of the conserved residues, His293, His331, or Lys326, with Ala. Decarboxylation of malonyl moieties in the fully-active Cys161Gln background generated equimolar amounts of acetyl-CoA and bicarbonate, rather than carbon dioxide, and was seriously compromised by replacement of any of the conserved basic residues. The ability of bicarbonate to inhibit decarboxylation of malonyl moieties in the Cys161Gln background was significantly reduced by replacement of His293 but less so by replacement of His331. The data are consistent with a reaction mechanism, in which the initial primer transfer reaction is promoted largely through a lowering of the pKa of the Cys161 thiol by a helix dipole effect and activation of the substrate thioester carbon atom by binding of the keto group in an oxyanion hole. The data also indicate that an activated water molecule is present at the active site that is required either for the rapid hydration of carbon dioxide, prior its release as bicarbonate or, alternatively, for an initial attack on the malonyl C3. In the alternative mechanism, a negatively-charged tetrahedral transition state could be generated, stabilized in part by interaction of His293 with the negatively charged oxygen at C3 and interaction of His331 with the negatively charged thioester carbonyl oxygen, that breaks down to generate bicarbonate directly. Finally, the carbanion at C2, attacks the electrophilic C1 of the primer, generating a second tetrahedral transition state, also stabilized through contacts with the oxyanion hole and His331, that breaks down to form

  15. Chemistry with an Artificial Primer of Polyhydroxybutyrate Synthase Suggests a Mechanism for Chain Termination

    PubMed Central

    2015-01-01

    Polyhydroxybutyrate (PHB) synthases (PhaCs) catalyze the conversion of 3-(R)-hydroxybutyryl CoA (HBCoA) to PHB, which is deposited as granules in the cytoplasm of microorganisms. The class I PhaC from Caulobacter crescentus (PhaCCc) is a highly soluble protein with a turnover number of 75 s–1 and no lag phase in coenzyme A (CoA) release. Studies with [1-14C]HBCoA and PhaCCc monitored by sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE) and autoradiography reveal that the rate of elongation is much faster than the rate of initiation. Priming with the artificial primer [3H]sTCoA and monitoring for CoA release reveal a single CoA/PhaC, suggesting that the protein is uniformly loaded and that the elongation process could be studied. Reaction of sT-PhaCCc with [1-14C]HBCoA revealed that priming with sTCoA increased the uniformity of elongation, allowing distinct polymerization species to be observed by SDS–PAGE and autoradiography. However, in the absence of HBCoA, [3H]sT-PhaC unexpectedly generates [3H]sDCoA with a rate constant of 0.017 s–1. We propose that the [3H]sDCoA forms via attack of CoA on the oxoester of the [3H]sT-PhaC chain, leaving the synthase attached to a single HB unit. Comparison of the relative rate constants of thiolysis by CoA and elongation by PhaCCc, and the size of the PHB polymer generated in vivo, suggests a mechanism for chain termination and reinitiation. PMID:25741756

  16. Molecular cloning and bacterial expression of cDNA encoding a plant cysteine synthase.

    PubMed Central

    Saito, K; Miura, N; Yamazaki, M; Hirano, H; Murakoshi, I

    1992-01-01

    Cysteine synthase (CSase) [O-acetyl-L-serine acetate-lyase (adding hydrogen sulfide), EC 4.2.99.8] catalyzes the formation of L-cysteine, the key step in sulfur assimilation in plants, from O-acetyl-L-serine and hydrogen sulfide. We report here the isolation and characterization of cDNA clones encoding cysteine synthase from spinach (Spinacia oleracea L.). Internal peptide sequences were obtained from V8 protease-digested fragments of purified CSase. A lambda gt10 cDNA library was constructed from poly(A)+ RNA of young green leaves of spinach. Screening with two synthetic mixed nucleotides encoding the partial peptide sequences revealed 19 positively hybridized clones among 2 x 10(5) clones. Nucleotide sequence analysis of two independent cDNA clones revealed a continuous open reading frame encoding a polypeptide of 325 amino acids with a calculated molecular mass of 34,185 Da. Sequence comparison of the deduced amino acids revealed 53% identity with CSases of Escherichia coli and Salmonella typhimurium. Sequence homology was also observed with other metabolic enzymes for amino acids in bacteria and yeast and with rat hemoprotein H-450. A bacterial expression vector was constructed and could genetically complement an E. coli auxotroph that lacks CSases. The accumulation of functionally active spinach CSase in E. coli was also demonstrated by immunoblotting and assaying enzymatic activity. Southern hybridization analysis showed the presence of two to three copies of the cDNA sequence in the genome of spinach. RNA blot hybridization suggested constitutive expression in leaves and roots of spinach. Images PMID:1518833

  17. Transcriptome resources and functional characterization of monoterpene synthases for two host species of the mountain pine beetle, lodgepole pine (Pinus contorta) and jack pine (Pinus banksiana)

    PubMed Central

    2013-01-01

    Background The mountain pine beetle (MPB, Dendroctonus ponderosae) epidemic has affected lodgepole pine (Pinus contorta) across an area of more than 18 million hectares of pine forests in western Canada, and is a threat to the boreal jack pine (Pinus banksiana) forest. Defence of pines against MPB and associated fungal pathogens, as well as other pests, involves oleoresin monoterpenes, which are biosynthesized by families of terpene synthases (TPSs). Volatile monoterpenes also serve as host recognition cues for MPB and as precursors for MPB pheromones. The genes responsible for terpene biosynthesis in jack pine and lodgepole pine were previously unknown. Results We report the generation and quality assessment of assembled transcriptome resources for lodgepole pine and jack pine using Sanger, Roche 454, and Illumina sequencing technologies. Assemblies revealed transcripts for approximately 20,000 - 30,000 genes from each species and assembly analyses led to the identification of candidate full-length prenyl transferase, TPS, and P450 genes of oleoresin biosynthesis. We cloned and functionally characterized, via expression of recombinant proteins in E. coli, nine different jack pine and eight different lodgepole pine mono-TPSs. The newly identified lodgepole pine and jack pine mono-TPSs include (+)-α-pinene synthases, (-)-α-pinene synthases, (-)-β-pinene synthases, (+)-3-carene synthases, and (-)-β-phellandrene synthases from each of the two species. Conclusion In the absence of genome sequences, transcriptome assemblies are important for defence gene discovery in lodgepole pine and jack pine, as demonstrated here for the terpenoid pathway genes. The product profiles of the functionally annotated mono-TPSs described here can account for the major monoterpene metabolites identified in lodgepole pine and jack pine. PMID:23679205

  18. The Phylogenetic Signature Underlying ATP Synthase c-Ring Compliance

    DOE PAGES

    Pandini, Alessandro; Kleinjung, Jens; Taylor, Willie R.; Junge, Wolfgang; Khan, Shahid

    2015-09-01

    The proton-driven ATP synthase (FOF1) is comprised of two rotary, stepping motors (FO and F1) coupled by an elastic power transmission. The elastic compliance resides in the rotor module that includes the membrane-embedded FO c-ring. Proton transport by FO is firmly coupled to the rotation of the c-ring relative to other FO subunits (ab2). It drives ATP synthesis. We used a computational method to investigate the contribution of the c-ring to the total elastic compliance. We performed principal component analysis of conformational ensembles built using distance constraints from the bovine mitochondrial c-ring x-ray structure. Angular rotary twist, the dominant ringmore » motion, was estimated to show that the c-ring accounted in part for the measured compliance. Ring rotation was entrained to rotation of the external helix within each hairpin-shaped c-subunit in the ring. Ensembles of monomer and dimers extracted from complete c-rings showed that the coupling between collective ring and the individual subunit motions was independent of the size of the c-ring, which varies between organisms. Molecular determinants were identified by covariance analysis of residue coevolution and structural-alphabet-based local dynamics correlations. The residue coevolution gave a readout of subunit architecture. The dynamic couplings revealed that the hinge for both ring and subunit helix rotations was constructed from the proton-binding site and the adjacent glycine motif (IB-GGGG) in the midmembrane plane. IB-GGGG motifs were linked by long-range couplings across the ring, while intrasubunit couplings connected the motif to the conserved cytoplasmic loop and adjacent segments. The correlation with principal collective motions shows that the couplings underlie both ring rotary and bending motions. Noncontact couplings between IB-GGGG motifs matched the coevolution signal as well as contact couplings. The residue coevolution reflects the physiological importance of the dynamics

  19. The Phylogenetic Signature Underlying ATP Synthase c-Ring Compliance

    SciTech Connect

    Pandini, Alessandro; Kleinjung, Jens; Taylor, Willie R.; Junge, Wolfgang; Khan, Shahid

    2015-09-01

    The proton-driven ATP synthase (FOF1) is comprised of two rotary, stepping motors (FO and F1) coupled by an elastic power transmission. The elastic compliance resides in the rotor module that includes the membrane-embedded FO c-ring. Proton transport by FO is firmly coupled to the rotation of the c-ring relative to other FO subunits (ab2). It drives ATP synthesis. We used a computational method to investigate the contribution of the c-ring to the total elastic compliance. We performed principal component analysis of conformational ensembles built using distance constraints from the bovine mitochondrial c-ring x-ray structure. Angular rotary twist, the dominant ring motion, was estimated to show that the c-ring accounted in part for the measured compliance. Ring rotation was entrained to rotation of the external helix within each hairpin-shaped c-subunit in the ring. Ensembles of monomer and dimers extracted from complete c-rings showed that the coupling between collective ring and the individual subunit motions was independent of the size of the c-ring, which varies between organisms. Molecular determinants were identified by covariance analysis of residue coevolution and structural-alphabet-based local dynamics correlations. The residue coevolution gave a readout of subunit architecture. The dynamic couplings revealed that the hinge for both ring and subunit helix rotations was constructed from the proton-binding site and the adjacent glycine motif (IB-GGGG) in the midmembrane plane. IB-GGGG motifs were linked by long-range couplings across the ring, while intrasubunit couplings connected the motif to the conserved cytoplasmic loop and adjacent segments. The correlation with principal collective motions shows that the couplings underlie both ring rotary and bending motions. Noncontact couplings between IB-GGGG motifs matched the coevolution signal as well as contact couplings

  20. C-S bond cleavage by a polyketide synthase domain

    PubMed Central

    Ma, Ming; Lohman, Jeremy R.; Liu, Tao; Shen, Ben

    2015-01-01

    Leinamycin (LNM) is a sulfur-containing antitumor antibiotic featuring an unusual 1,3-dioxo-1,2-dithiolane moiety that is spiro-fused to a thiazole-containing 18-membered lactam ring. The 1,3-dioxo-1,2-dithiolane moiety is essential for LNM’s antitumor activity, by virtue of its ability to generate an episulfonium ion intermediate capable of alkylating DNA. We have previously cloned and sequenced the lnm gene cluster from Streptomyces atroolivaceus S-140. In vivo and in vitro characterizations of the LNM biosynthetic machinery have since established that: (i) the 18-membered macrolactam backbone is synthesized by LnmP, LnmQ, LnmJ, LnmI, and LnmG, (ii) the alkyl branch at C-3 of LNM is installed by LnmK, LnmL, LnmM, and LnmF, and (iii) leinamycin E1 (LNM E1), bearing a thiol moiety at C-3, is the nascent product of the LNM hybrid nonribosomal peptide synthetase (NRPS)-acyltransferase (AT)-less type I polyketide synthase (PKS). Sulfur incorporation at C-3 of LNM E1, however, has not been addressed. Here we report that: (i) the bioinformatics analysis reveals a pyridoxal phosphate (PLP)-dependent domain, we termed cysteine lyase (SH) domain (LnmJ-SH), within PKS module-8 of LnmJ; (ii) the LnmJ-SH domain catalyzes C-S bond cleavage by using l-cysteine and l-cysteine S-modified analogs as substrates through a PLP-dependent β-elimination reaction, establishing l-cysteine as the origin of sulfur at C-3 of LNM; and (iii) the LnmJ-SH domain, sharing no sequence homology with any other enzymes catalyzing C-S bond cleavage, represents a new family of PKS domains that expands the chemistry and enzymology of PKSs and might be exploited to incorporate sulfur into polyketide natural products by PKS engineering. PMID:26240335

  1. Functional Inducible Nitric Oxide Synthase Gene Variants Associate With Hypertension

    PubMed Central

    Nikkari, Seppo T.; Määttä, Kirsi M.; Kunnas, Tarja A.

    2015-01-01

    Abstract Increased inducible nitric oxide synthase (iNOS) activity and expression has been associated with hypertension, but less is known whether the 2 known functional polymorphic sites in the iNOS gene (g.–1026 C/A (rs2779249), g.2087 G/A (rs2297518)) affect susceptibility to hypertension. The objective of this study was to investigate the association between the genetic variants of iNOS and diagnosed hypertension in a Finnish cohort. This study included 320 hypertensive cases and 439 healthy controls. All participants were 50-year-old men and women and the data were collected from the Tampere adult population cardiovascular risk study (TAMRISK). DNA was extracted from buccal swabs and iNOS single nucleotide polymorphisms (SNPs) were analyzed using KASP genotyping PCR. Data analysis was done by logistic regression. At the age of 50 years, the SNP rs2779249 (C/A) associated significantly with hypertension (P = 0.009); specifically, subjects carrying the A-allele had higher risk of hypertension compared to those carrying the CC genotype (OR = 1.47; CI = 1.08–2.01; P = 0.015). In addition, a 15-year follow-up period (35, 40, and 45 years) of the same individuals showed that carriers of the A-allele had more often hypertension in all of the studied age-groups. The highest risk for developing hypertension was obtained among 35-year-old subjects (odds ratio [OR] 3.83; confidence interval [CI] = 1.20–12.27; P = 0.024). Those carrying variant A had also significantly higher readings of both systolic (P = 0.047) and diastolic (P = 0.048) blood pressure during the follow-up. No significant associations between rs2297518 (G/A) variants alone and hypertension were found. However, haplotype analysis of rs2779249 and rs2297518 revealed that individuals having haplotype H3 which combines both A alleles (CA–GA, 19.7% of individuals) was more commonly found in the hypertensive group than in the normotensive group (OR = 2.01; CI = 1

  2. Detailed characterization of the substrate specificity of mouse wax synthase.

    PubMed

    Miklaszewska, Magdalena; Kawiński, Adam; Banaś, Antoni

    2013-01-01

    Wax synthases are membrane-associated enzymes catalysing the esterification reaction between fatty acyl-CoA and a long chain fatty alcohol. In living organisms, wax esters function as storage materials or provide protection against harmful environmental influences. In industry, they are used as ingredients for the production of lubricants, pharmaceuticals, and cosmetics. Currently the biological sources of wax esters are limited to jojoba oil. In order to establish a large-scale production of desired wax esters in transgenic high-yielding oilseed plants, enzymes involved in wax esters synthesis from different biological resources should be characterized in detail taking into consideration their substrate specificity. Therefore, this study aims at determining the substrate specificity of one of such enzymes -- the mouse wax synthase. The gene encoding this enzyme was expressed heterologously in Saccharomyces cerevisiae. In the in vitro assays (using microsomal fraction from transgenic yeast), we evaluated the preferences of mouse wax synthase towards a set of combinations of 11 acyl-CoAs with 17 fatty alcohols. The highest activity was observed for 14:0-CoA, 12:0-CoA, and 16:0-CoA in combination with medium chain alcohols (up to 5.2, 3.4, and 3.3 nmol wax esters/min/mg microsomal protein, respectively). Unsaturated alcohols longer than 18°C were better utilized by the enzyme in comparison to the saturated ones. Combinations of all tested alcohols with 20:0-CoA, 22:1-CoA, or Ric-CoA were poorly utilized by the enzyme, and conjugated acyl-CoAs were not utilized at all. Apart from the wax synthase activity, mouse wax synthase also exhibited a very low acyl-CoA:diacylglycerol acyltransferase activity. However, it displayed neither acyl-CoA:monoacylglycerol acyltransferase, nor acyl-CoA:sterol acyltransferase activity.

  3. Phytochelatin synthase: of a protease a peptide polymerase made.

    PubMed

    Rea, Philip A

    2012-05-01

    Of the mechanisms known to protect vascular plants and some algae, fungi and invertebrates from the toxic effects of non-essential heavy metals such as As, Cd or Hg, one of the most sophisticated is the enzyme-catalyzed synthesis of phytochelatins (PCs). PCs, (γ-Glu-Cys)(n) Gly polymers, which serve as high-affinity, thiol-rich cellular chelators and contribute to the detoxification of heavy metal ions, are derived from glutathione (GSH; γ-Glu-Cys-Gly) and related thiols in a reaction catalyzed by phytochelatin synthases (PC synthases, EC 2.3.2.15). Using the enzyme from Arabidopsis thaliana (AtPCS1) as a model, the reasoning and experiments behind the conclusion that PC synthases are novel papain-like Cys protease superfamily members are presented. The status of S-substituted GSH derivatives as generic PC synthase substrates and the sufficiency of the N-terminal domain of the enzyme from eukaryotic and its half-size equivalents from prokaryotic sources, for net PC synthesis and deglycylation of GSH and its derivatives, respectively, are emphasized. The question of the common need or needs met by PC synthases and their homologs is discussed. Of the schemes proposed to account for the combined protease and peptide polymerase capabilities of the eukaryotic enzymes vs the limited protease capabilities of the prokaryotic enzymes, two that will be considered are the storage and homeostasis of essential heavy metals in eukaryotes and the metabolism of S-substituted GSH derivatives in both eukaryotes and prokaryotes.

  4. The rluC gene of Escherichia coli codes for a pseudouridine synthase that is solely responsible for synthesis of pseudouridine at positions 955, 2504, and 2580 in 23 S ribosomal RNA.

    PubMed

    Conrad, J; Sun, D; Englund, N; Ofengand, J

    1998-07-17

    Escherichia coli ribosomal RNA contains 10 pseudouridines, one in the 16 S RNA and nine in the 23 S RNA. Previously, the gene for the synthase responsible for the 16 S RNA pseudouridine was identified and cloned, as was a gene for a synthase that makes a single pseudouridine in 23 S RNA. The yceC open reading frame of E. coli is one of a set of genes homologous to these previously identified ribosomal RNA pseudouridine synthases. In this work, the gene was cloned, overexpressed, and shown to code for a pseudouridine synthase able to react with in vitro transcripts of 23 S ribosomal RNA. Deletion of the gene and analysis of the 23 S RNA from the deletion strain for the presence of pseudouridine at its nine known sites revealed that this synthase is solely responsible in vivo for the synthesis of three of the nine pseudouridine residues, at positions 955, 2504, and 2580. Therefore, this gene has been renamed rluC. Despite the absence of one-third of the normal complement of pseudouridines, there was no change in the exponential growth rate in either LB or M-9 medium at temperatures ranging from 24 to 42 degrees C. From this work and our previous studies, we have now identified three synthases that account for 50% of the pseudouridines in the E. coli ribosome.

  5. Suppressors of trp1 fluorescence identify a new arabidopsis gene, TRP4, encoding the anthranilate synthase beta subunit.

    PubMed Central

    Niyogi, K K; Last, R L; Fink, G R; Keith, B

    1993-01-01

    Suppressors of the blue fluorescence phenotype of the Arabidopsis trp1-100 mutant can be used to identify mutations in genes involved in plant tryptophan biosynthesis. Two recessive suppressor mutations define a new gene, TRP4. The trp4 mutant and the trp1-100 mutant are morphologically normal and grow without tryptophan, whereas the trp4; trp1-100 double mutant requires tryptophan for growth. The trp4; trp1-100 double mutant does not segregate at expected frequencies in genetic crosses because of a female-specific defect in transmission of the double mutant genotype, suggesting a role for the tryptophan pathway in female gametophyte development. Genetic and biochemical evidence shows that trp4 mutants are defective in a gene encoding the beta subunit of anthranilate synthase (AS). Arabidopsis AS beta subunit genes were isolated by complementation of an Escherichia coli anthranilate synthase mutation. The trp4 mutation cosegregates with one of the genes, ASB1, located on chromosome 1. Sequence analysis of the ASB1 gene from trp4-1 and trp4-2 plants revealed different single base pair substitutions relative to the wild type. Anthranilate synthase alpha and beta subunit genes are regulated coordinately in response to bacterial pathogen infiltration. PMID:8400875

  6. RNA interference-based gene silencing of phytoene synthase impairs growth, carotenoids, and plastid phenotype in Oncidium hybrid orchid.

    PubMed

    Liu, Jian-Xin; Chiou, Chung-Yi; Shen, Chin-Hui; Chen, Peng-Jen; Liu, Yao-Chung; Jian, Chin-Der; Shen, Xiao-Lan; Shen, Fu-Quan; Yeh, Kai-Wun

    2014-01-01

    Phytoene synthase (PSY) is the first rate-limiting regulatory enzyme in the carotenoid biosynthesis pathway. In order to modify the floral color pattern by reducing carotenoid contents, a phytoene synthase-RNAi construct was delivered into protocorm-like body (PLB) of Oncidium hybrid orchid. The transgenic orchids show down-regulated level of PSY and geranyl synthase gene. They displayed semi-dwarf phenotype and brilliant green leaves. The microscopic anatomy revealed development-arrested plastids with rare grana. The total carotenoid content was decreased and the efficiency of the photosynthetic electron transport was declined. The chlorophyll level and the expression of chlorophyll biosynthetic genes, such as OgGLUTR and OgCS were dramatically reduced. HPLC analysis showed that the endogenous level of gibberellic acid and abscisic acid in the dwarf transformants are 4-fold lower than in wild type plants. In addition, chilling tolerance of the transgenic Oncidium plants was reduced. The data showed that down-regulation of PSY resulted in alterations of gene expression in enzymes involved in many metabolic pathways, such as carotenoid, gibberellic acid, abscisic acid and chlorophyll biosynthetic pathway as well as causes predominant defects in plant growth and development. PMID:25221736

  7. The c-ring stoichiometry of ATP synthase is adapted to cell physiological requirements of alkaliphilic Bacillus pseudofirmus OF4.

    PubMed

    Preiss, Laura; Klyszejko, Adriana L; Hicks, David B; Liu, Jun; Fackelmayer, Oliver J; Yildiz, Özkan; Krulwich, Terry A; Meier, Thomas

    2013-05-01

    The c-rings of ATP synthases consist of individual c-subunits, all of which harbor a conserved motif of repetitive glycine residues (GxGxGxG) important for tight transmembrane α-helix packing. The c-ring stoichiometry determines the number of ions transferred during enzyme operation and has a direct impact on the ion-to-ATP ratio, a cornerstone parameter of cell bioenergetics. In the extreme alkaliphile Bacillus pseudofirmus OF4, the glycine motif is replaced by AxAxAxA. We performed a structural study on two mutants with alanine-to-glycine changes using atomic force microscopy and X-ray crystallography, and found that mutants form smaller c12 rings compared with the WT c13. The molar growth yields of B. pseudofirmus OF4 cells on malate further revealed that the c12 mutants have a considerably reduced capacity to grow on limiting malate at high pH. Our results demonstrate that the mutant ATP synthases with either c12 or c13 can support ATP synthesis, and also underscore the critical importance of an alanine motif with c13 ring stoichiometry for optimal growth at pH >10. The data indicate a direct connection between the precisely adapted ATP synthase c-ring stoichiometry and its ion-to-ATP ratio on cell physiology, and also demonstrate the bioenergetic challenges and evolutionary adaptation strategies of extremophiles.

  8. Four terpene synthases produce major compounds of the gypsy moth feeding-induced volatile blend of Populus trichocarpa.

    PubMed

    Danner, Holger; Boeckler, G Andreas; Irmisch, Sandra; Yuan, Joshua S; Chen, Feng; Gershenzon, Jonathan; Unsicker, Sybille B; Köllner, Tobias G

    2011-06-01

    After herbivore damage, many plants increase their emission of volatile compounds, with terpenes usually comprising the major group of induced volatiles. Populus trichocarpa is the first woody species with a fully sequenced genome, enabling rapid molecular approaches towards characterization of volatile terpene biosynthesis in this and other poplar species. We identified and characterized four terpene synthases (PtTPS1-4) from P. trichocarpa which form major terpene compounds of the volatile blend induced by gypsy moth (Lymantria dispar) feeding. The enzymes were heterologously expressed and assayed with potential prenyl diphosphate substrates. PtTPS1 and PtTPS2 accepted only farnesyl diphosphate and produced (-)-germacrene D and (E,E)-α-farnesene as their major products, respectively. In contrast, PtTPS3 and PtTPS4 showed both mono- and sesquiterpene synthase activity. They produce the acyclic terpene alcohols linalool and nerolidol but exhibited opposite stereospecificity. qRT-PCR analysis revealed that the expression of the respective terpene synthase genes was induced after feeding of gypsy moth caterpillars. The TPS enzyme products may play important roles in indirect defense of poplar to herbivores and in mediating intra- and inter-plant signaling.

  9. Identifying the catalytic components of cellulose synthase and the maize mixed-linkage beta-glucan synthase

    SciTech Connect

    Nicholas C Carpita

    2009-04-20

    Five specific objectives of this project are to develop strategies to identify the genes that encode the catalytic components of "mixed-linkage" (1→3),(1→4)-beta-D-glucans in grasses, to determine the protein components of the synthase complex, and determine the biochemical mechanism of synthesis. We have used proteomic approaches to define intrinsic and extrinsic polypeptides of Golgi membranes that are associated with polysaccharide synthesis and trafficking. We were successful in producing recombinant catalytic domains of cellulose synthase genes and discovered that they dimerize upon concentration, indicating that two CesA proteins form the catalytic unit. We characterized a brittle stalk2 mutant as a defect in a COBRA-like protein that results in compromised lignin-cellulose interactions that decrease tissue flexibility. We used virus-induced gene silencing of barley cell wall polysaccharide synthesis by BSMV in an attempt to silence specific members of the cellulose synthase-like gene family. However, we unexpectedly found that regardless of the specificity of the target gene, whole gene interaction networks were silenced. We discovered the cause to be an antisense transcript of the cellulose synthase gene initiated small interfering RNAs that spread silencing to related genes.

  10. Isolation and functional characterization of a τ-cadinol synthase, a new sesquiterpene synthase from Lavandula angustifolia.

    PubMed

    Jullien, Frédéric; Moja, Sandrine; Bony, Aurélie; Legrand, Sylvain; Petit, Cécile; Benabdelkader, Tarek; Poirot, Kévin; Fiorucci, Sébastien; Guitton, Yann; Nicolè, Florence; Baudino, Sylvie; Magnard, Jean-Louis

    2014-01-01

    In this paper we characterize three sTPSs: a germacrene D (LaGERDS), a (E)-β-caryophyllene (LaCARS) and a τ-cadinol synthase (LaCADS). τ-cadinol synthase is reported here for the first time and its activity was studied in several biological models including transiently or stably transformed tobacco species. Three dimensional structure models of LaCADS and Ocimum basilicum γ-cadinene synthase were built by homology modeling using the template structure of Gossypium arboreum δ-cadinene synthase. The depiction of their active site organization provides evidence of the global influence of the enzymes on the formation of τ-cadinol: instead of a unique amino-acid, the electrostatic properties and solvent accessibility of the whole active site in LaCADS may explain the stabilization of the cadinyl cation intermediate. Quantitative PCR performed from leaves and inflorescences showed two patterns of expression. LaGERDS and LaCARS were mainly expressed during early stages of flower development and, at these stages, transcript levels paralleled the accumulation of the corresponding terpene products (germacrene D and (E)-β-caryophyllene). By contrast, the expression level of LaCADS was constant in leaves and flowers. Phylogenetic analysis provided informative results on potential duplication process leading to sTPS diversification in lavender. PMID:24078339

  11. Transgene silencing of sucrose synthase in alfalfa stem vascular tissue by a truncated phosphoenolpyruvate carboxylase: sucrose synthase construct

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An important role of sucrose synthase (SUS, EC 2.4.1.13) in plants is to provide UDP-glucose needed for cellulose synthesis in cell walls. We examined if over-expressing SUS in alfalfa (Medicago sativa L.) would increase cellulose content of stem cell walls. Alfalfa plants were transformed with two ...

  12. A previously unidentified activity of yeast and mouse RNA:pseudouridine synthases 1 (Pus1p) on tRNAs.

    PubMed

    Behm-Ansmant, Isabelle; Massenet, Séverine; Immel, Françoise; Patton, Jeffrey R; Motorin, Yuri; Branlant, Christiane

    2006-08-01

    Mouse pseudouridine synthase 1 (mPus1p) was the first vertebrate RNA:pseudouridine synthase that was cloned and characterized biochemically. The mPus1p was previously found to catalyze Psi formation at positions 27, 28, 34, and 36 in in vitro produced yeast and human tRNAs. On the other hand, the homologous Saccharomyces cerevisiae scPus1p protein was shown to modify seven uridine residues in tRNAs (26, 27, 28, 34, 36, 65, and 67) and U44 in U2 snRNA. In this work, we expressed mPus1p in yeast cells lacking scPus1p and studied modification of U2 snRNA and several yeast tRNAs. Our data showed that, in these in vivo conditions, the mouse enzyme efficiently modifies yeast U2 snRNA at position 44 and tRNAs at positions 27, 28, 34, and 36. However, a tRNA:Psi26-synthase activity of mPus1p was not observed. Furthermore, we found that both scPus1p and mPus1p, in vivo and in vitro, have a previously unidentified activity at position 1 in cytoplasmic tRNAArg(ACG). This modification can take place in mature tRNA, as well as in pre-tRNAs with 5' and/or 3' extensions. Thus, we identified the protein carrying one of the last missing yeast tRNA:Psi synthase activities. In addition, our results reveal an additional activity of mPus1p at position 30 in tRNA that scPus1p does not possess.

  13. Evolutionary and mechanistic insights from the reconstruction of α-humulene synthases from a modern (+)-germacrene A synthase.

    PubMed

    Gonzalez, Veronica; Touchet, Sabrina; Grundy, Daniel J; Faraldos, Juan A; Allemann, Rudolf K

    2014-10-15

    Germacrene A synthase (GAS) from Solidago canadensis catalyzes the conversion of farnesyl diphosphate (FDP) to the plant sesquiterpene (+)-germacrene A. After diphosphate expulsion, farnesyl cation reacts with the distal 10,11-double bond to afford germacrene A (>96%) and <2% α-humulene, which arises from 1,11-cyclization of FDP. The origin of the 1,11-activity of GAS was investigated by amino acid sequence alignments of 1,10- and 1,11-synthases and comparisons of X-ray crystal structures with the homology model of GAS; a triad [Thr 401-Gly 402-Gly 403] that might be responsible for the predominant 1,10-cyclization activity of GAS was identified. Replacement of Gly 402 with residues of increasing size led to a progressive increase of 1,11-cyclization. The catalytic robustness of these 1,10- /1,11-GAS variants point to Gly 402 as a functional switch of evolutionary significance and suggests that enzymes with strict functionalities have evolved from less specific ancestors through a small number of substitutions. Similar results were obtained with germacrene D synthase (GDS) upon replacement of the homologous active-site residue Gly 404: GDS-G404V generated approximately 20% bicyclogermacrene, a hydrocarbon with a cyclopropane ring that underlines the dual 1,10-/1,11-cyclization activity of this mutant. This suggests that the reaction pathways to germacrenes and humulenes might be connected through a bridged 1,10,11-carbocation intermediate or transition state that resembles bicyclogermacrene. Mechanistic studies using [1-(3)H1]-10-fluorofarnesyl diphosphate and deuterium-labeling experiments with [12,13-(2)H6]-FDP support a germacrene-humulene rearrangement linking 1,10- and 1,11-pathways. These results support the bioinformatics proposal that modern 1,10-synthases could have evolved from promiscuous 1,11-sesquiterpene synthases. PMID:25230152

  14. Characterization and crystal structure of lysine insensitive Corynebacterium glutamicum dihydrodipicolinate synthase (cDHDPS) protein

    SciTech Connect

    Rice, E.A.; Bannon, G.A.; Glenn, K.C.; Jeong, S.S.; Sturman, E.J.; Rydel, T.J.

    2008-11-21

    The lysine insensitive Corynebacterium glutamicum dihydrodipicolinate synthase enzyme (cDHDPS) was recently successfully introduced into maize plants to enhance the level of lysine in the grain. To better understand lysine insensitivity of the cDHDPS, we expressed, purified, kinetically characterized the protein, and solved its X-ray crystal structure. The cDHDPS enzyme has a fold and overall structure that is highly similar to other DHDPS proteins. A noteworthy feature of the active site is the evidence that the catalytic lysine residue forms a Schiff base adduct with pyruvate. Analyses of the cDHDPS structure in the vicinity of the putative binding site for S-lysine revealed that the allosteric binding site in the Escherichia coli DHDPS protein does not exist in cDHDPS due to three non-conservative amino acids substitutions, and this is likely why cDHDPS is not feedback inhibited by lysine.

  15. Structural Basis for Binding Specificity between Subclasses of Modular Polyketide Synthase Docking Domains

    SciTech Connect

    Buchholz, Tonia J.; Geders, Todd W.; Bartley, III, Frank E.; Reynolds, Kevin A.; Smith, Janet L.; Sherman, David H.

    2009-04-02

    Bacterial type I polyketide synthases (PKSs) assemble structurally diverse natural products of significant clinical value from simple metabolic building blocks. The synthesis of these compounds occurs in a processive fashion along a large multiprotein complex. Transfer of the acyl intermediate across interpolypeptide junctions is mediated, at least in large part, by N- and C-terminal docking domains. We report here a comprehensive analysis of the binding affinity and selectivity for the complete set of discrete docking domain pairs in the pikromycin and erythromycin PKS systems. Despite disconnection from their parent module, each cognate pair of docking domains retained exquisite binding selectivity. Further insights were obtained by X-ray crystallographic analysis of the PikAIII/PikAIV docking domain interface. This new information revealed a series of key interacting residues that enabled development of a structural model for the recently proposed H2-T2 class of polypeptides involved in PKS intermodular molecular recognition.

  16. Crystal structure of the thioesterase domain of human fatty acid synthase inhibited by orlistat

    SciTech Connect

    Pemble,C.; Johnson, L.; Kridel, S.; Lowther, W.

    2007-01-01

    Human fatty acid synthase (FAS) is uniquely expressed at high levels in many tumor types. Pharmacological inhibition of FAS therefore represents an important therapeutic opportunity. The drug Orlistat, which has been approved by the US Food and Drug Administration, inhibits FAS, induces tumor cell-specific apoptosis and inhibits the growth of prostate tumor xenografts. We determined the 2.3-{angstrom}-resolution crystal structure of the thioesterase domain of FAS inhibited by Orlistat. Orlistat was captured in the active sites of two thioesterase molecules as a stable acyl-enzyme intermediate and as the hydrolyzed product. The details of these interactions reveal the molecular basis for inhibition and suggest a mechanism for acyl-chain length discrimination during the FAS catalytic cycle. Our findings provide a foundation for the development of new cancer drugs that target FAS.

  17. Isolation of the Inositol Phosphoceramide Synthase Gene (AUR1) from Stress-Tolerant Yeast Pichia kudriavzevii.

    PubMed

    Yoo, Boung-Hyuk; Kim, Myoung-Dong

    2015-11-01

    This study is the first report of the entire nucleotide sequence of an inositol phosphoceramide synthase gene from the stress-tolerant yeast Pichia kudriavzevii (PkAUR1). Sequence analysis revealed an open reading frame that spans 1,443 bp and encodes a 480-amino-acid-residue protein with the highest sequence similarity (41.7%) to Aur1 from Spathaspora passalidarum. A phenotypic assay with transformed S. cerevisiae and P. kudriavzevii indicated that two amino acid residues, Phe166 and Gly249, play crucial roles in the resistance to aureobasidin A, which is consistent with previous reports for other fungal Aur1s. The GenBank Accession No. for PkAUR1 is KP729614. PMID:26323269

  18. Visualizing inducible nitric-oxide synthase in living cells with a heme-binding fluorescent inhibitor.

    PubMed

    Panda, Koustubh; Chawla-Sarkar, Mamta; Santos, Cecile; Koeck, Thomas; Erzurum, Serpil C; Parkinson, John F; Stuehr, Dennis J

    2005-07-19

    The study of nitric-oxide synthase (NOS) physiology is constrained by the lack of suitable probes to detect NOS in living cells or animals. Here, we characterized a fluorescent inducible NOS (iNOS) inhibitor called PIF (pyrimidine imidazole FITC) and examined its utility for microscopic imaging of iNOS in living cells. PIF binding to iNOS displayed high affinity, isoform selectivity, and heme specificity, and was essentially irreversible. PIF was used to successfully image iNOS expressed in RAW264.7 cells, HEK293T cells, human A549 epithelial cells, and freshly obtained human lung epithelium. PIF was used to estimate a half-life for iNOS of 1.8 h in HEK293T cells. Our work reveals that fluorescent probes like PIF will be valuable for studying iNOS cell biology and in understanding the pathophysiology of diseases that involve dysfunctional iNOS expression.

  19. Mitochondrial oxidant stress in locus coeruleus is regulated by activity and nitric oxide synthase

    PubMed Central

    Sanchez–Padilla, J.; Guzman, J.N.; Ilijic, E.; Kondapalli, J.; Galtieri, D.J.; Yang, B.; Schieber, S.; Oertel, W.; Wokosin, D.; Schumacker, P. T.; Surmeier, D. J.

    2014-01-01

    Summary Loss of noradrenergic locus coeruleus (LC) neurons is a prominent feature of aging–related neurodegenerative diseases, like Parkinson’s disease (PD). The basis of this vulnerability is not understood. To explore possible physiological determinants, LC neurons were studied using electrophysiological and optical approaches in ex vivo mouse brain slices. These studies revealed that autonomous activity in LC neurons was accompanied by oscillations in dendritic Ca2+ concentration attributable to opening of L–type Ca2+ channels. This oscillation elevated mitochondrial oxidant stress and was attenuated by inhibition of nitric oxide synthase. The relationship between activity and stress was malleable, as arousal and carbon dioxide, each increased the spike rate, but differentially affected mitochondrial oxidant stress. Oxidant stress also was increased in an animal model of PD. Thus, our results point to activity–dependent Ca2+ entry and a resulting mitochondrial oxidant stress as factors contributing to the vulnerability of LC neurons. PMID:24816140

  20. Quinic acids from Aster caucasicus and from transgenic callus expressing a beta-amyrin synthase.

    PubMed

    Pecchia, Paola; Cammareri, Maria; Malafronte, Nicola; Consiglio, M Federica; Gualtieri, Maria Josefina; Conicella, Clara

    2011-11-01

    Several different classes of secondary metabolites, including flavonoids, triterpenoid saponins and quinic acid derivatives, are found in Aster spp. (Fam. Asteraceae). Several Aster compounds revealed biological as well as pharmacological activities. In this work, a phytochemical investigation of A. caucasicus evidenced the presence of quinic acid derivatives, as well as the absence of triterpene saponins. To combine in one species the production of different phytochemicals, including triterpenes, an Agrobacterium-mediated transformation of A. caucasicus was set up to introduce A. sedifolius beta-amyrin synthase (AsOXA1)-encoding gene under the control of the constitutive promoter CaMV35S. The quali-quantitative analysis of transgenic calli with ectopic expression of AsOXA1 showed, in one sample, a negligible amount of triterpene saponins combined with higher amount of quinic acid derivatives as compared with the wild type callus.

  1. Isolation and gene disruption of the Tox5 gene encoding trichodiene synthase in Gibberella pulicaris.

    PubMed

    Hohn, T M; Desjardins, A E

    1992-01-01

    The trichodiene synthase gene (Tox5) was isolated from Gibberella pulicaris, and its nucleotide sequence was determined. Tox5 was disrupted through transformation with a plasmid carrying a doubly truncated copy of the coding region and a selectable marker for resistance to hygromycin B (Hygr). Analysis of 82 transformants for their ability to produce the trichothecene, 4,15-diacetoxyscirpenol (DAS), resulted in the identification of five DAS- strains. Southern hybridization analysis of DAS- Hygr transformants indicated that the plasmid integrated at the Tox5 locus. The disrupted Tox5 gene was shown to be mitotically stable. Analysis of nine tetrads revealed either the cosegregation of the disrupter plasmid and the DAS- phenotype or the loss of the disrupter plasmid. These results demonstrate the feasibility of using gene disruption in G. pulicaris and suggest a general method for obtaining Tox5- mutants in other trichothecene-producing fungi. PMID:1421511

  2. Suppression of inducible nitric oxide synthase pathway by 7-deacetylgedunin, a limonoid from Xylocarpus sp.

    PubMed

    Sarigaputi, Chanin; Sangpech, Nuanpan; Palaga, Tanapat; Pudhom, Khanitha

    2015-03-01

    In this study, limonoids isolated from Xylocarpus plants were tested for their in vitro anti-inflammatory effects. The results demonstrated that only 7-deacetylgedunin (1), a gedunin-type limonoid, significantly inhibited lipopolysaccharide- and interferon-γ-stimulated production of nitric oxide in murine macrophage RAW 264.7 cells. The suppression of nitric oxide production by 1 was correlated with the downregulation of mRNA and protein expression of inducible nitric oxide synthase. Mechanistic studies revealed that the transcriptional activity of nuclear factor-κB, IκBα degradation, and the activation of mitogen-activated protein kinases, stimulated with lipopolysaccharide and interferon-γ, were suppressed by 1. PMID:25714725

  3. Enzymatic characterization and mutational studies of TruD--the fifth family of pseudouridine synthases.

    PubMed

    Chan, Chio Mui; Huang, Raven H

    2009-09-01

    Pseudouridine (Psi) is formed through isomerization of uridine (U) catalyzed by a class of enzymes called pseudouridine synthases (PsiS). TruD is the fifth family of PsiS. Studies of the first four families (TruA, TruB, RsuA, and RluA) of PsiS reveal a conserved Asp and Tyr are critical for catalysis. However, in TruD family, the tyrosine is not conserved. In this study, we measured the enzymatic parameters for TruD in Escherichia coli, and carried out enzymatic assays for a series of single, double, and triple TruD mutants. Our studies indicate that a Glu, strictly conserved in only TruD family is likely to be the general base in TruD. We also proposed a possible distinct mechanism of TruD-catalyzed Psi formation compared to the first four families.

  4. The structure of nitric oxide synthase oxygenase domain and inhibitor complexes.

    PubMed

    Crane, B R; Arvai, A S; Gachhui, R; Wu, C; Ghosh, D K; Getzoff, E D; Stuehr, D J; Tainer, J A

    1997-10-17

    The nitric oxide synthase oxygenase domain (NOSox) oxidizes arginine to synthesize the cellular signal and defensive cytotoxin nitric oxide (NO). Crystal structures determined for cytokine-inducible NOSox reveal an unusual fold and heme environment for stabilization of activated oxygen intermediates key for catalysis. A winged beta sheet engenders a curved alpha-beta domain resembling a baseball catcher's mitt with heme clasped in the palm. The location of exposed hydrophobic residues and the results of mutational analysis place the dimer interface adjacent to the heme-binding pocket. Juxtaposed hydrophobic O2- and polar L-arginine-binding sites occupied by imidazole and aminoguanidine, respectively, provide a template for designing dual-function inhibitors and imply substrate-assisted catalysis.

  5. Thiolactomycin-based β-Ketoacyl-AcpM Synthase A (KasA) Inhibitors

    PubMed Central

    Kapilashrami, Kanishk; Bommineni, Gopal R.; Machutta, Carl A.; Kim, Pilho; Lai, Cheng-Tsung; Simmerling, Carlos; Picart, Francis; Tonge, Peter J.

    2013-01-01

    Thiolactomycin (TLM) is a natural product inhibitor of KasA, the β-ketoacyl synthase A from Mycobacterium tuberculosis. To improve the affinity of TLM for KasA, a series of TLM analogs have been synthesized based on interligand NOEs between TLM and a pantetheine analog when both are bound simultaneously to the enzyme. Kinetic binding data reveal that position 3 of the thiolactone ring is a suitable position for elaboration of the TLM scaffold, and the structure-activity relationship studies provide information on the molecular features that govern time-dependent inhibition in this enzyme system. These experiments also exemplify the utility of transient one-dimensional NOE spectroscopy for obtaining interligand NOEs compared with traditional steady state two-dimensional NOESY spectroscopy. PMID:23306195

  6. Biochemical and structural characterisation of dehydroquinate synthase from the New Zealand kiwifruit Actinidia chinensis.

    PubMed

    Mittelstädt, Gerd; Negron, Leonardo; Schofield, Linley R; Marsh, Ken; Parker, Emily J

    2013-09-15

    One of the novel aspects of kiwifruit is the presence of a high level of quinic acid which contributes to the flavour of the fruit. Quinic acid metabolism intersects with the shikimate pathway, which is responsible for the de novo biosynthesis of primary and secondary aromatic metabolites. The gene encoding the enzyme which catalyses the second step of the shikimate pathway, dehydroquinate synthase (DHQS), from the New Zealand kiwifruit Actinidia chinensis was identified, cloned and expressed. A. chinensis DHQS was activated by divalent metal ions, and was found to require NAD(+) for catalysis. The protein was crystallised and the structure was solved, revealing a homodimeric protein. Each monomer has a NAD(+) binding site nestled between the distinct N- and C-terminal domains. In contrast to other microbial DHQSs, which show an open conformation in the absence of active site ligands, A. chinensis DHQS adopts a closed conformation. This is the first report of the structure of a DHQS from a plant source.

  7. Cloning and characterization of a cDNA encoding a cobalamin-independent methionine synthase from potato (Solanum tuberosum L.).

    PubMed

    Zeh, Michaela; Leggewie, Georg; Hoefgen, Rainer; Hesse, Holger

    2002-02-01

    A potato cDNA clone, StMS1, that encodes a methionine synthase was isolated. This protein was identified on the basis of both structural and functional evidence. The predicted sequence of the protein encoded by StMS1 shows a high degree of similarity to methionine synthases from other organisms and the expression of StMS1 in bacterial mutant strains restored the mutant's ability to synthesize methionine. Genomic organization and expression analyses suggest that StMS1 is a low-copy gene and is differentially expressed in potato organs. StMS1 expression was found in all tissues, but at elevated levels in flowers, basal levels in sink and source leaves, roots and stolons, and low levels in stems and tubers. RNA expression data were confirmed by western blot analysis except that the protein content in leaves was less than expected from the RNA data. Western blot analysis of subcellular fractions revealed that the protein is located in the cytosol. However, the changing pattern of gene expression during the day/night period implied a light-dependent control of MS transcription normally seen for enzymes localized in plastids. The expression of MS was shown to be light-inducible with its highest expression at midday. These RNA data were not confirmed at the protein level since protein content levels remained constant over the whole day. Feeding experiments of detached leaves revealed that sucrose or sucrose-derived products are responsible for StMS1 induction. This induction can be blocked by treatment with DCMU during the light period. Western analysis revealed that the amount of StMS1 is not affected by either treatment. This experiment confirmed the presence of a day/night rhythm. Methionine synthase expression is regulated by photoassimilates but this seems not to detectably alter protein levels. PMID:11855727

  8. Structure of the Cellulose Synthase Complex of Gluconacetobacter hansenii at 23.4 Å Resolution.

    PubMed

    Du, Juan; Vepachedu, Venkata; Cho, Sung Hyun; Kumar, Manish; Nixon, B Tracy

    2016-01-01

    Bacterial crystalline cellulose is used in biomedical and industrial applications, but the molecular mechanisms of synthesis are unclear. Unlike most bacteria, which make non-crystalline cellulose, Gluconacetobacter hansenii extrudes profuse amounts of crystalline cellulose. Its cellulose synthase (AcsA) exists as a complex with accessory protein AcsB, forming a 'terminal complex' (TC) that has been visualized by freeze-fracture TEM at the base of ribbons of crystalline cellulose. The catalytic AcsAB complex is embedded in the cytoplasmic membrane. The C-terminal portion of AcsC is predicted to form a translocation channel in the outer membrane, with the rest of AcsC possibly interacting with AcsD in the periplasm. It is thus believed that synthesis from an organized array of TCs coordinated with extrusion by AcsC and AcsD enable this bacterium to make crystalline cellulose. The only structural data that exist for this system are the above mentioned freeze-fracture TEM images, fluorescence microscopy images revealing that TCs align in a row, a crystal structure of AcsD bound to cellopentaose, and a crystal structure of PilZ domain of AcsA. Here we advance our understanding of the structural basis for crystalline cellulose production by bacterial cellulose synthase by determining a negative stain structure resolved to 23.4 Å for highly purified AcsAB complex that catalyzed incorporation of UDP-glucose into β-1,4-glucan chains, and responded to the presence of allosteric activator cyclic diguanylate. Although the AcsAB complex was functional in vitro, the synthesized cellulose was not visible in TEM. The negative stain structure revealed that AcsAB is very similar to that of the BcsAB synthase of Rhodobacter sphaeroides, a non-crystalline cellulose producing bacterium. The results indicate that the crystalline cellulose producing and non-crystalline cellulose producing bacteria share conserved catalytic and membrane translocation components, and support the

  9. Structure of the cellulose synthase complex of Gluconacetobacter hansenii at 23.4 Å resolution

    DOE PAGES

    Du, Juan; Vepachedu, Venkata; Cho, Sung Hyun; Kumar, Manish; Nixon, B. Tracy; Lai, Hsin -Chih

    2016-05-23

    Bacterial crystalline cellulose is used in biomedical and industrial applications, but the molecular mechanisms of synthesis are unclear. Unlike most bacteria, which make non-crystalline cellulose, Gluconacetobacter hansenii extrudes profuse amounts of crystalline cellulose. Its cellulose synthase (AcsA) exists as a complex with accessory protein AcsB, forming a 'terminal complex' (TC) that has been visualized by freeze-fracture TEM at the base of ribbons of crystalline cellulose. The catalytic AcsAB complex is embedded in the cytoplasmic membrane. The C-terminal portion of AcsC is predicted to form a translocation channel in the outer membrane, with the rest of AcsC possibly interacting with AcsDmore » in the periplasm. It is thus believed that synthesis from an organized array of TCs coordinated with extrusion by AcsC and AcsD enable this bacterium to make crystalline cellulose. The only structural data that exist for this system are the above mentioned freeze-fracture TEM images, fluorescence microscopy images revealing that TCs align in a row, a crystal structure of AcsD bound to cellopentaose, and a crystal structure of PilZ domain of AcsA. Here we advance our understanding of the structural basis for crystalline cellulose production by bacterial cellulose synthase by determining a negative stain structure resolved to 23.4 angstrom for highly purified AcsAB complex that catalyzed incorporation of UDP-glucose into β-1,4-glucan chains, and responded to the presence of allosteric activator cyclic diguanylate. Although the AcsAB complex was functional in vitro, the synthesized cellulose was not visible in TEM. The negative stain structure revealed that AcsAB is very similar to that of the BcsAB synthase of Rhodobacter sphaeroides, a non-crystalline cellulose producing bacterium. Furthermore, the results indicate that the crystalline cellulose producing and non-crystalline cellulose producing bacteria share conserved catalytic and membrane translocation

  10. Structure of the Cellulose Synthase Complex of Gluconacetobacter hansenii at 23.4 Å Resolution

    PubMed Central

    Du, Juan; Vepachedu, Venkata; Cho, Sung Hyun; Kumar, Manish; Nixon, B. Tracy

    2016-01-01

    Bacterial crystalline cellulose is used in biomedical and industrial applications, but the molecular mechanisms of synthesis are unclear. Unlike most bacteria, which make non-crystalline cellulose, Gluconacetobacter hansenii extrudes profuse amounts of crystalline cellulose. Its cellulose synthase (AcsA) exists as a complex with accessory protein AcsB, forming a 'terminal complex' (TC) that has been visualized by freeze-fracture TEM at the base of ribbons of crystalline cellulose. The catalytic AcsAB complex is embedded in the cytoplasmic membrane. The C-terminal portion of AcsC is predicted to form a translocation channel in the outer membrane, with the rest of AcsC possibly interacting with AcsD in the periplasm. It is thus believed that synthesis from an organized array of TCs coordinated with extrusion by AcsC and AcsD enable this bacterium to make crystalline cellulose. The only structural data that exist for this system are the above mentioned freeze-fracture TEM images, fluorescence microscopy images revealing that TCs align in a row, a crystal structure of AcsD bound to cellopentaose, and a crystal structure of PilZ domain of AcsA. Here we advance our understanding of the structural basis for crystalline cellulose production by bacterial cellulose synthase by determining a negative stain structure resolved to 23.4 Å for highly purified AcsAB complex that catalyzed incorporation of UDP-glucose into β-1,4-glucan chains, and responded to the presence of allosteric activator cyclic diguanylate. Although the AcsAB complex was functional in vitro, the synthesized cellulose was not visible in TEM. The negative stain structure revealed that AcsAB is very similar to that of the BcsAB synthase of Rhodobacter sphaeroides, a non-crystalline cellulose producing bacterium. The results indicate that the crystalline cellulose producing and non-crystalline cellulose producing bacteria share conserved catalytic and membrane translocation components, and support the

  11. Mycobacterium tuberculosis acyl carrier protein synthase adopts two different pH-dependent structural conformations

    SciTech Connect

    Gokulan, Kuppan; Aggarwal, Anup; Shipman, Lance; Besra, Gurdyal S.; Sacchettini, James C.

    2011-07-01

    Bacterial acyl carrier protein synthase plays an essential role in the synthesis of fatty acids, nonribosomal peptides and polyketides. In Mycobacterium tuberculosis, AcpS or group I phosphopentatheine transferase exhibits two different structural conformations depending upon the pH. The crystal structures of acyl carrier protein synthase (AcpS) from Mycobacterium tuberculosis (Mtb) and Corynebacterium ammoniagenes determined at pH 5.3 and pH 6.5, respectively, are reported. Comparison of the Mtb apo-AcpS structure with the recently reported structure of the Mtb AcpS–ADP complex revealed that AcpS adopts two different conformations: the orthorhombic and trigonal space-group structures show structural differences in the α2 helix and in the conformation of the α3–α4 connecting loop, which is in a closed conformation. The apo-AcpS structure shows electron density for the entire model and was obtained at lower pH values (4.4–6.0). In contrast, at a higher pH value (6.5) AcpS undergoes significant conformational changes, resulting in disordered regions that show no electron density in the AcpS model. The solved structures also reveal that C. ammoniagenes AcpS undergoes structural rearrangement in two regions, similar to the recently reported Mtb AcpS–ADP complex structure. In vitro reconstitution experiments show that AcpS has a higher post-translational modification activity between pH 4.4 and 6.0 than at pH values above 6.5, where the activity drops owing to the change in conformation. The results show that apo-AcpS and AcpS–ADP adopt different conformations depending upon the pH conditions of the crystallization solution.

  12. Characterization of maize spermine synthase 1 (ZmSPMS1): Evidence for dimerization and intracellular location.

    PubMed

    Maruri-López, Israel; Hernández-Sánchez, Itzell E; Ferrando, Alejandro; Carbonell, Juan; Jiménez-Bremont, Juan Francisco

    2015-12-01

    Polyamines are ubiquitous positively charged metabolites that play an important role in wide fundamental cellular processes; because of their importance, the homeostasis of these amines is tightly regulated. Spermine synthase catalyzes the formation of polyamine spermine, which is necessary for growth and development in higher eukaryotes. Previously, we reported a stress inducible spermine synthase 1 (ZmSPMS1) gene from maize. The ZmSPMS1 enzyme differs from their dicot orthologous by a C-terminal extension, which contains a degradation PEST sequence involved in its turnover. Herein, we demonstrate that ZmSPMS1 protein interacts with itself in split yeast two-hybrid (Y2H) assays. A Bimolecular Fluorescence Complementation (BiFC) assay revealed that ZmSPMS1 homodimer has a cytoplasmic localization. In order to gain a better understanding about ZmSPMS1 interaction, two deletion constructs of ZmSPMS1 protein were obtained. The ΔN-ZmSPMS1 version, where the first 74 N-terminal amino acids were eliminated, showed reduced capability of dimer formation, whereas the ΔC-ZmSPMS1 version, lacking the last 40 C-terminal residues, dramatically abated the ZmSPMS1-ZmSPMS1 protein interaction. Recombinant protein expression in Escherichia coli of ZmSPMS1 derived versions revealed that deletion of its N-terminal domain affected the spermine biosynthesis, whereas C-terminal ZmSPMS1 truncated version fail to generate this polyamine. These data suggest that N- and C-terminal domains of ZmSPMS1 play a role in a functional homodimer. PMID:26500203

  13. The function of chitin synthases 2 and 3 in the Saccharomyces cerevisiae cell cycle

    PubMed Central

    1991-01-01

    The morphology of three Saccharomyces cerevisiae strains, all lacking chitin synthase 1 (Chs1) and two of them deficient in either Chs3 (calR1 mutation) or Chs2 was observed by light and electron microscopy. Cells deficient in Chs2 showed clumpy growth and aberrant shape and size. Their septa were very thick; the primary septum was absent. Staining with WGA-gold complexes revealed a diffuse distribution of chitin in the septum, whereas chitin was normally located at the neck between mother cell and bud and in the wall of mother cells. Strains deficient in Chs3 exhibited minor abnormalities in budding pattern and shape. Their septa were thin and trilaminar. Staining for chitin revealed a thin line of the polysaccharide along the primary septum; no chitin was present elsewhere in the wall. Therefore, Chs2 is specific for primary septum formation, whereas Chs3 is responsible for chitin in the ring at bud emergence and in the cell wall. Chs3 is also required for chitin synthesized in the presence of alpha-pheromone or deposited in the cell wall of cdc mutants at nonpermissive temperature, and for chitosan in spore walls. Genetic evidence indicated that a mutant lacking all three chitin synthases was inviable; this was confirmed by constructing a triple mutant rescued by a plasmid carrying a CHS2 gene under control of a GAL1 promoter. Transfer of the mutant from galactose to glucose resulted in cell division arrest followed by cell death. We conclude that some chitin synthesis is essential for viability of yeast cells. PMID:2050738

  14. S-sulfocysteine synthase function in sensing chloroplast redox status

    PubMed Central

    Gotor, Cecilia; Romero, Luis C.

    2013-01-01

    The minor chloroplastic O-acetylserine(thiol)lyase isoform encoded by the CS26 gene in Arabidopsis thaliana has been described as an S-sulfocysteine synthase enzyme that plays an important role in chloroplast function. This enzyme is located in the thylakoid lumen, and its S-sulfocysteine activity is essential for the proper photosynthetic performance of the chloroplast under long-day growth conditions. Based on the present knowledge of this enzyme, we suggest that S-sulfocysteine synthase functions as a protein sensor to detect the accumulation of thiosulfate as a result of the inadequate detoxification of reactive oxygen species generated under conditions of excess light to produce the S-sulfocysteine molecule that triggers protection mechanisms of the photosynthetic apparatus. PMID:23333972

  15. Visualization of cellulose synthases in Arabidopsis secondary cell walls.

    PubMed

    Watanabe, Y; Meents, M J; McDonnell, L M; Barkwill, S; Sampathkumar, A; Cartwright, H N; Demura, T; Ehrhardt, D W; Samuels, A L; Mansfield, S D

    2015-10-01

    Cellulose biosynthesis in plant secondary cell walls forms the basis of vascular development in land plants, with xylem tissues constituting the vast majority of terrestrial biomass. We used plant lines that contained an inducible master transcription factor controlling xylem cell fate to quantitatively image fluorescently tagged cellulose synthase enzymes during cellulose deposition in living protoxylem cells. The formation of secondary cell wall thickenings was associated with a redistribution and enrichment of CESA7-containing cellulose synthase complexes (CSCs) into narrow membrane domains. The velocities of secondary cell wall-specific CSCs were faster than those of primary cell wall CSCs during abundant cellulose production. Dynamic intracellular of endomembranes, in combination with increased velocity and high density of CSCs, enables cellulose to be synthesized rapidly in secondary cell walls. PMID:26450210

  16. Defining the Product Chemical Space of Monoterpenoid Synthases

    PubMed Central

    Tian, Boxue; Poulter, C. Dale; Jacobson, Matthew P.

    2016-01-01

    Terpenoid synthases create diverse carbon skeletons by catalyzing complex carbocation rearrangements, making them particularly challenging for enzyme function prediction. To begin to address this challenge, we have developed a computational approach for the systematic enumeration of terpenoid carbocations. Application of this approach allows us to systematically define a nearly complete chemical space for the potential carbon skeletons of products from monoterpenoid synthases. Specifically, 18758 carbocations were generated, which we cluster into 74 cyclic skeletons. Five of the 74 skeletons are found in known natural products; some of the others are plausible for new functions, either in nature or engineered. This work systematizes the description of function for this class of enzymes, and provides a basis for predicting functions of uncharacterized enzymes. To our knowledge, this is the first computational study to explore the complete product chemical space of this important class of enzymes. PMID:27517297

  17. S-sulfocysteine synthase function in sensing chloroplast redox status.

    PubMed

    Gotor, Cecilia; Romero, Luis C

    2013-03-01

    The minor chloroplastic O-acetylserine(thiol)lyase isoform encoded by the CS26 gene in Arabidopsis thaliana has been described as an S-sulfocysteine synthase enzyme that plays an important role in chloroplast function. This enzyme is located in the thylakoid lumen, and its S-sulfocysteine activity is essential for the proper photosynthetic performance of the chloroplast under long-day growth conditions. Based on the present knowledge of this enzyme, we suggest that S-sulfocysteine synthase functions as a protein sensor to detect the accumulation of thiosulfate as a result of the inadequate detoxification of reactive oxygen species generated under conditions of excess light to produce the S-sulfocysteine molecule that triggers protection mechanisms of the photosynthetic apparatus.

  18. Visualization of cellulose synthases in Arabidopsis secondary cell walls.

    PubMed

    Watanabe, Y; Meents, M J; McDonnell, L M; Barkwill, S; Sampathkumar, A; Cartwright, H N; Demura, T; Ehrhardt, D W; Samuels, A L; Mansfield, S D

    2015-10-01

    Cellulose biosynthesis in plant secondary cell walls forms the basis of vascular development in land plants, with xylem tissues constituting the vast majority of terrestrial biomass. We used plant lines that contained an inducible master transcription factor controlling xylem cell fate to quantitatively image fluorescently tagged cellulose synthase enzymes during cellulose deposition in living protoxylem cells. The formation of secondary cell wall thickenings was associated with a redistribution and enrichment of CESA7-containing cellulose synthase complexes (CSCs) into narrow membrane domains. The velocities of secondary cell wall-specific CSCs were faster than those of primary cell wall CSCs during abundant cellulose production. Dynamic intracellular of endomembranes, in combination with increased velocity and high density of CSCs, enables cellulose to be synthesized rapidly in secondary cell walls.

  19. Characterization of maize roothairless6 which encodes a D-type cellulose synthase and controls the switch from bulge formation to tip growth

    PubMed Central

    Li, Li; Hey, Stefan; Liu, Sanzhen; Liu, Qiang; McNinch, Colton; Hu, Heng-Cheng; Wen, Tsui-Jung; Marcon, Caroline; Paschold, Anja; Bruce, Wesley; Schnable, Patrick S.; Hochholdinger, Frank

    2016-01-01

    Root hairs are tubular extensions of the epidermis. Root hairs of the monogenic recessive maize mutant roothairless 6 (rth6) are arrested after bulge formation during the transition to tip growth and display a rough cell surface. BSR-Seq in combination with Seq-walking and subsequent analyses of four independently generated mutant alleles established that rth6 encodes CSLD5 a plasma membrane localized 129 kD D-type cellulose synthase with eight transmembrane domains. Cellulose synthases are required for the biosynthesis of cellulose, the most abundant biopolymer of plant cell walls. Phylogenetic analyses revealed that RTH6 is part of a monocot specific clade of D-type cellulose synthases. D-type cellulose synthases are highly conserved in the plant kingdom with five gene family members in maize and homologs even among early land plants such as the moss Physcomitrella patens or the clubmoss Selaginella moellendorffii. Expression profiling demonstrated that rth6 transcripts are highly enriched in root hairs as compared to all other root tissues. Moreover, in addition to the strong knock down of rth6 expression in young primary roots of the mutant rth6, the gene is also significantly down-regulated in rth3 and rth5 mutants, while it is up-regulated in rth2 mutants, suggesting that these genes interact in cell wall biosynthesis. PMID:27708345

  20. Silencing of the ACC synthase gene ACACS2 causes delayed flowering in pineapple [Ananas comosus (L.) Merr.].

    PubMed

    Trusov, Yuri; Botella, José Ramón

    2006-01-01

    Flowering is a crucial developmental stage in the plant life cycle. A number of different factors, from environmental to chemical, can trigger flowering. In pineapple, and other bromeliads, it has been proposed that flowering is triggered by a small burst of ethylene production in the meristem in response to environmental cues. A 1-amino-cyclopropane-1-carboxylate synthase (ACC synthase) gene has been cloned from pineapple (ACACS2), which is induced in the meristem under the same environmental conditions that induce flowering. Two transgenic pineapple lines have been produced containing co-suppression constructs designed to down-regulate the expression of the ACACS2 gene. Northern analysis revealed that the ACACS2 gene was silenced in a number of transgenic plants in both lines. Southern hybridization revealed clear differences in the methylation status of silenced versus non-silenced plants by the inability of a methylation-sensitive enzyme to digest within the ACACS2 DNA extracted from silenced plants, indicating that methylation is the cause of the observed co-suppression of the ACACS2 gene. Flowering characteristics of the transgenic plants were studied under field conditions in South East Queensland, Australia. Flowering dynamics studies revealed significant differences in flowering behaviour, with transgenic plants exhibiting silencing showing a marked delay in flowering when compared with non-silenced transgenic plants and control non-transformed plants. It is argued that the ACACS2 gene is one of the key contributors towards triggering 'natural flowering' in mature pineapples under commercial field conditions.

  1. Use of linalool synthase in genetic engineering of scent production

    DOEpatents

    Pichersky, E.

    1998-12-15

    A purified S-linalool synthase polypeptide from Clarkia breweri is disclosed as is the recombinant polypeptide and nucleic acid sequences encoding the polypeptide. Also disclosed are antibodies immunoreactive with the purified peptide and with recombinant versions of the polypeptide. Methods of using the nucleic acid sequences, as well as methods of enhancing the smell and the flavor of plants expressing the nucleic acid sequences are also disclosed. 5 figs.

  2. Structural organization of the multifunctional animal fatty-acid synthase.

    PubMed

    Witkowski, A; Rangan, V S; Randhawa, Z I; Amy, C M; Smith, S

    1991-06-15

    The amino acid sequence of the multifunctional fatty-acid synthase has been examined to investigate the exact location of the seven functional domains. Good agreement in predicting the location of interdomain boundaries was obtained using three independent methods. First, the sites of limited proteolytic attack that give rise to relatively stable, large polypeptide fragments were identified; cryptic sites for protease attack at the subunit interface were unmasked by first dissociating the dimer into its component subunits. Second, polypeptide regions exhibiting higher-than-average rates of non-conservative mutation were identified. Third, the sizes of putative functional domains were compared with those of related monofunctional proteins that exhibit similar primary or secondary structure. Residues 1-406 were assigned to the oxoacyl synthase, residues 430-802 to the malonyl/acetyl transferase, residues 1630-1850 to the enoyl reductase, residues 1870-2100 to the oxyreductase, residues 2114-2190 to the acyl-carrier protein and residues 2200-2505 to the thioesterase. The 47-kDa transferase and 8-kDa acyl-carrier-protein domains, which are situated at opposite ends of the multifunctional subunit, were nevertheless isolated from tryptic digests as a non-covalently associated complex. Furthermore, a centrally located domain encompassing residues 1160-1545 was isolated as a nicked dimer. These findings, indicating that interactions between the head-to-tail juxtaposed subunits occur in both the polar and equatorial regions, are consistent with previously derived electron-micrograph images that show subunit contacts in these areas. The data permit refinement of the model for the fatty-acid synthase dimer and suggest that the malonyl/acetyl transferase and oxoacyl synthase of one subunit cooperate with the reductases, acyl carrier protein and thioesterase of the companion subunit in the formation of a center for fatty-acid synthesis.

  3. Structure and Mechanistic Implications of a Tryptophan Synthase Quinonoid Intermediate

    SciTech Connect

    Barends,T.; Domratcheva, T.; Kulik, V.; Blumenstein, L.; Niks, D.; Dunn, M.; Schlichting, I.

    2008-01-01

    Quinonoid intermediates play a key role in the catalytic mechanism of pyridoxal 5'-phosphate (PLP)-dependent enzymes. Whereas structures of other PLP-bound reaction intermediates have been determined, a high-quality structure of a quinonoid species has not been reported. We present the crystal structure of the indoline quinonoid intermediate of tryptophan synthase (see figure) and discuss its implications for the enzymatic mechanism and allosteric regulation.

  4. Isolation and characterization of terpene synthases in cotton (Gossypium hirsutum).

    PubMed

    Yang, Chang-Qing; Wu, Xiu-Ming; Ruan, Ju-Xin; Hu, Wen-Li; Mao, Yin-Bo; Chen, Xiao-Ya; Wang, Ling-Jian

    2013-12-01

    Cotton plants accumulate gossypol and related sesquiterpene aldehydes, which function as phytoalexins against pathogens and feeding deterrents to herbivorous insects. However, to date little is known about the biosynthesis of volatile terpenes in this crop. Herein is reported that 5 monoterpenes and 11 sesquiterpenes from extracts of a glanded cotton cultivar, Gossypium hirsutum cv. CCRI12, were detected by gas chromatography-mass spectrometry (GC-MS). By EST data mining combined with Rapid Amplification of cDNA Ends (RACE), full-length cDNAs of three terpene synthases (TPSs), GhTPS1, GhTPS2 and GhTPS3 were isolated. By in vitro assays of the recombinant proteins, it was found that GhTPS1 and GhTPS2 are sesquiterpene synthases: the former converted farnesyl pyrophosphate (FPP) into β-caryophyllene and α-humulene in a ratio of 2:1, whereas the latter produced several sesquiterpenes with guaia-1(10),11-diene as the major product. By contrast, GhTPS3 is a monoterpene synthase, which produced α-pinene, β-pinene, β-phellandrene and trace amounts of other monoterpenes from geranyl pyrophosphate (GPP). The TPS activities were also supported by Virus Induced Gene Silencing (VIGS) in the cotton plant. GhTPS1 and GhTPS3 were highly expressed in the cotton plant overall, whereas GhTPS2 was expressed only in leaves. When stimulated by mechanical wounding, Verticillium dahliae (Vde) elicitor or methyl jasmonate (MeJA), production of terpenes and expression of the corresponding synthase genes were induced. These data demonstrate that the three genes account for the biosynthesis of volatile terpenes of cotton, at least of this Upland cotton.

  5. The cellulose synthase superfamily in fully sequenced plants and algae

    PubMed Central

    2009-01-01

    Background The cellulose synthase superfamily has been classified into nine cellulose synthase-like (Csl) families and one cellulose synthase (CesA) family. The Csl families have been proposed to be involved in the synthesis of the backbones of hemicelluloses of plant cell walls. With 17 plant and algal genomes fully sequenced, we sought to conduct a genome-wide and systematic investigation of this superfamily through in-depth phylogenetic analyses. Results A single-copy gene is found in the six chlorophyte green algae, which is most closely related to the CslA and CslC families that are present in the seven land plants investigated in our analyses. Six proteins from poplar, grape and sorghum form a distinct family (CslJ), providing further support for the conclusions from two recent studies. CslB/E/G/H/J families have evolved significantly more rapidly than their widely distributed relatives, and tend to have intragenomic duplications, in particular in the grape genome. Conclusion Our data suggest that the CslA and CslC families originated through an ancient gene duplication event in land plants. We speculate that the single-copy Csl gene in green algae may encode a mannan synthase. We confirm that the rest of the Csl families have a different evolutionary origin than CslA and CslC, and have proposed a model for the divergence order among them. Our study provides new insights about the evolution of this important gene family in plants. PMID:19646250

  6. QSAR modeling of the inhibition of glycogen synthase kinase-3.

    PubMed

    Katritzky, Alan R; Pacureanu, Liliana M; Dobchev, Dimitar A; Fara, Dan C; Duchowicz, Pablo R; Karelson, Mati

    2006-07-15

    Quantitative structure-activity relationship (QSAR) models of the biological activity (pIC50) of 277 inhibitors of Glycogen Synthase Kinase-3 (GSK-3) are developed using geometrical, topological, quantum mechanical, and electronic descriptors calculated by CODESSA PRO. The linear (multilinear regression) and nonlinear (artificial neural network) models obtained link the structures to their reported activity pIC50. The results are discussed in the light of the main factors that influence the inhibitory activity of the GSK-3 enzyme.

  7. Trichodiene synthase: mechanism-based inhibition of a sesquiterpene cyclase.

    PubMed

    Cane, D E; Bowser, T E

    1999-04-19

    The 10-cyclopropylidene analog of farnesyl diphosphate was shown to be a mechanism-based inhibitor of trichodiene synthase with an inactivation rate (k(inact)) of 0.010 +/- 0.0003 min(-1) and an apparent Ki of 663 +/- 75 nM. The presence of three anomalous sesquiterpene products detected in incubation mixtures indicate that the compound also serves as a substrate of the enzyme. PMID:10328298

  8. Use of linalool synthase in genetic engineering of scent production

    DOEpatents

    Pichersky, Eran

    1998-01-01

    A purified S-linalool synthase polypeptide from Clarkia breweri is disclosed as is the recombinant polypeptide and nucleic acid sequences encoding the polypeptide. Also disclosed are antibodies immunoreactive with the purified peptide and with recombinant versions of the polypeptide. Methods of using the nucleic acid sequences, as well as methods of enhancing the smell an