Science.gov

Sample records for christopher mihkel genes

  1. Christopher Jencks in Perspective.

    ERIC Educational Resources Information Center

    American Association of School Administrators, Washington, DC.

    This report contains the original article by Christopher Jencks and Mary Jo Bane on inequality, which was based on the book entitled, Inequality: A Reassessment of the Effect of Family and Schooling in America, by Christopher Jencks and others. To assist school administrators in assessing Jencks' findings, the American Association of School…

  2. Christopher Paul Curtis.

    ERIC Educational Resources Information Center

    Beck, Martha Davis

    2000-01-01

    This interview with Christopher Paul Curtis, an award-winning author of novels for young readers, discusses combining elements of the author's own family heritage with American history; writing about race that appeals to black and white readers; the history of race relations; the use of humor; and thinking about the audience. (LRW)

  3. Christopher Paul Curtis.

    ERIC Educational Resources Information Center

    Beck, Martha Davis

    2000-01-01

    This interview with Christopher Paul Curtis, an award-winning author of novels for young readers, discusses combining elements of the author's own family heritage with American history; writing about race that appeals to black and white readers; the history of race relations; the use of humor; and thinking about the audience. (LRW)

  4. Selective Forgetfulness: Christopher Columbus Reconsidered.

    ERIC Educational Resources Information Center

    Meltzer, Milton

    1992-01-01

    Reconsiders myths about Christopher Columbus. Discusses the importance of presenting students history in all its complexity. Suggests that students must see that the people who have occupied center stage at crucial moments are not without weakness and fears. Urges students to raise critical questions concerning historical figures. (MG)

  5. Christopher Benfey's Flight of Fancy

    ERIC Educational Resources Information Center

    Klein, Julia M.

    2008-01-01

    This article profiles Christopher Benfey, 53--an art critic for Slate, a poet, and a prolific literary essayist for such venues as "The New York Times Book Review, The New Republic," and "The New York Review of Books." His latest book, "A Summer of Hummingbirds: Love, Art, and Scandal in the Intersecting Worlds of Emily…

  6. Selective Forgetfulness: Christopher Columbus Reconsidered.

    ERIC Educational Resources Information Center

    Meltzer, Milton

    1992-01-01

    Reconsiders myths about Christopher Columbus. Discusses the importance of presenting students history in all its complexity. Suggests that students must see that the people who have occupied center stage at crucial moments are not without weakness and fears. Urges students to raise critical questions concerning historical figures. (MG)

  7. Christopher Benfey's Flight of Fancy

    ERIC Educational Resources Information Center

    Klein, Julia M.

    2008-01-01

    This article profiles Christopher Benfey, 53--an art critic for Slate, a poet, and a prolific literary essayist for such venues as "The New York Times Book Review, The New Republic," and "The New York Review of Books." His latest book, "A Summer of Hummingbirds: Love, Art, and Scandal in the Intersecting Worlds of Emily…

  8. Christopher Lasch and Prairie Populism

    ERIC Educational Resources Information Center

    Lauck, Jon K.

    2012-01-01

    Christopher Lasch was born in Omaha in 1932. By the end of his life, cut short at age sixty-one, he had become one of the most famous intellectuals in the world. During his life of active writing from the time of the early Cold War until the fall of the Soviet Union, Lasch's distinctive voice pierced through the din of the nation's noisy political…

  9. Christopher Lasch and Prairie Populism

    ERIC Educational Resources Information Center

    Lauck, Jon K.

    2012-01-01

    Christopher Lasch was born in Omaha in 1932. By the end of his life, cut short at age sixty-one, he had become one of the most famous intellectuals in the world. During his life of active writing from the time of the early Cold War until the fall of the Soviet Union, Lasch's distinctive voice pierced through the din of the nation's noisy political…

  10. Cyberspace Explorer: Getting To Know Christopher Columbus.

    ERIC Educational Resources Information Center

    Woolley, Jill

    This lesson supports third- through fifth-grade students' exploration of multiple online sources to gather information about the life of a well-known explorer, Christopher Columbus. During the two 50- to 60-minute sessions, students will: use prewriting (a K-W-L chart) to prepare for research; use prior knowledge to extend the depth of inquiry;…

  11. Christopher Columbus and Early Americans Booklist.

    ERIC Educational Resources Information Center

    Misheff, Sue

    1992-01-01

    Presents brief descriptions of 31 books (published between 1962 and 1991) concerning the commemoration of the discovery of the Americas. Divides the books into those about Christopher Columbus, those that shed light on the world in which he lived, and those that look at the Americas before he landed. (RS)

  12. An Interdisciplinary Approach to Teaching Christopher Columbus.

    ERIC Educational Resources Information Center

    Enedy, Joseph D.; And Others

    1994-01-01

    Contends that instruction in schools from elementary through university levels is a seamless web in which numerous elements of subjects converge with elements from other subjects. Asserts that a variety of disciplines can be taught through a study of Christopher Columbus and the Columbus voyages. (CFR)

  13. Christoph Scheiner and the camera obscura (German Title: Christoph Scheiner und die Camera obscura )

    NASA Astrophysics Data System (ADS)

    Daxecker, Franz

    A hitherto not noted portable camera obscura developed by Christoph Scheiner is documented with drawings. Furthermore a walkable camera obscura and the proof of the intersection of light rays caused by a pinhole are described, as well as the comparison between the camera obscura and the eye.

  14. Johann Christoph Sturm (1635-1703)

    NASA Astrophysics Data System (ADS)

    Gaab, Hans; Leich, Pierre; Löffladt, Günter

    Johann Christoph Sturm, who was born in Hilpoltstein, belonged to the most important scientists in Germany in the second half of the 17th century. He was the author of important writings in astronomy, mathematics and physics, as well as on the methodology of scientific research. As a professor at Altdorf University, Storm initiated a "collegium experimentale", which made him to one of the founders of experimental natural philosophy. His German books helped to improve the teaching of mathematics at schools, as well as mathematical knowledge in all circles of the population. This book describes Sturm's life, the different sides of his scientific activity, and includes a bibliography of his writings. All papers are written in German, and have English abstracts.

  15. 2017 ISCB Overton Prize: Christoph Bock

    PubMed Central

    Fogg, Christiana N.; Kovats, Diane E.; Berger, Bonnie

    2017-01-01

    The International Society for Computational Biology (ISCB) each year recognizes the achievements of an early to mid-career scientist with the Overton Prize. This prize honors the untimely death of Dr. G. Christian Overton, an admired computational biologist and founding ISCB Board member. Winners of the Overton Prize are independent investigators who are in the early to middle phases of their careers and are selected because of their significant contributions to computational biology through research, teaching, and service. ISCB is pleased to recognize Dr. Christoph Bock, Principal Investigator at the CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences in Vienna, Austria, as the 2017 winner of the Overton Prize. Bock will be presenting a keynote presentation at the 2017 International Conference on Intelligent Systems for Molecular Biology/European Conference on Computational Biology (ISMB/ECCB) in Prague, Czech Republic being held during July 21-25, 2017. PMID:28713546

  16. 2017 ISCB Overton Prize: Christoph Bock.

    PubMed

    Fogg, Christiana N; Kovats, Diane E; Berger, Bonnie

    2017-01-01

    The International Society for Computational Biology (ISCB) each year recognizes the achievements of an early to mid-career scientist with the Overton Prize. This prize honors the untimely death of Dr. G. Christian Overton, an admired computational biologist and founding ISCB Board member. Winners of the Overton Prize are independent investigators who are in the early to middle phases of their careers and are selected because of their significant contributions to computational biology through research, teaching, and service. ISCB is pleased to recognize Dr. Christoph Bock, Principal Investigator at the CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences in Vienna, Austria, as the 2017 winner of the Overton Prize. Bock will be presenting a keynote presentation at the 2017 International Conference on Intelligent Systems for Molecular Biology/European Conference on Computational Biology (ISMB/ECCB) in Prague, Czech Republic being held during July 21-25, 2017.

  17. Christoph Rothmann and Copernicanism. (German Title: Christoph Rothmann und der Copernicanismus)

    NASA Astrophysics Data System (ADS)

    Granada, Miguel A.

    Christoph Rothmann belonged to the first convinced adherents of heliocentric cosmology. The contribution discusses Rothmann's relevant remarks, which are found in his paper of 1586 «Scriptum de cometa», dealing with the comet of the previous year. Rothmann also vehemently defended his concepts in a letter to Tycho Brahe dating from September, 1588, in which he rejected both the old geocentric and Brahe's geoheliocentric system.

  18. The disputation of the astronomer Christoph Scheiner (German Title: Die Disputatio des Astronomen Christoph Scheiner)

    NASA Astrophysics Data System (ADS)

    Daxecker, Franz

    The newly found print "Theses Theologicae" is Christoph Scheiner's disputation, which took place on June 30, 1609. The title page contains Scheiner's name, presenting him as the author who is responsible for (respondente) 50 theses. The theses deal with the Summa theologica of Saint Thomas Aquinas: Nature of God, Creation, Morality, Canon Law, Grace, Faith, Justice, Devotion to Godd and the Saints, Divine Word and Sacraments.

  19. Straight talk with...Christopher Murray.

    PubMed

    Schubert, Charlotte

    2009-10-01

    Hard numbers can be difficult to come by in the current debate about health care in the US. Even rarer are accurate assessments of health care systems in less developed countries. But policy makers are not completely groping in the dark when it comes to data-thanks in part to Christopher Murray. Two years ago, Murray, a physician and health economist with experience at the World Health Organization (WHO), took the helm of the newly created Institute for Health Metrics and Evaluation at the University of Washington. Since 2007, the institute, funded largely by the Bill & Melinda Gates Foundation and the state of Washington, has grown to a staff of 75 people and has begun churning out studies that that are shaping the debate on health care reform. For instance, Murray's group-along with colleagues at his former base, Harvard University in Cambridge, Massachusetts-have documented huge disparities in life expectancy and mortality in parts of the US. In some pockets of the country, life expectancy for women is even on the decline (PLoS Med. 27, e66; 2008). Murray spoke with Charlotte Schubert about how having accurate numbers can add up to progress in health care.

  20. Christoph Scheiner's life between 1633 and 1650. (German Title: Christoph Scheiners Lebensjahre zwischen 1633 und 1650)

    NASA Astrophysics Data System (ADS)

    Daxecker, Franz

    In 1636, Christoph Scheiner left Rome where the trial of Galilei had taken place, and went to Vienna. The financing of his main work ``Rosa Ursina'' had to be clarified. Until 1636, Scheiner was not in office From 1636 onward, he was alternatively living in Neiße -- today Nysa (Silesia, Poland) -- and Vienna, from 1637 onward, he took his permanent residence in Neiße. Here, Scheiner worked as an advisor of the rector and as father confessor, in addition he gave religious lectures and looked after the garden.

  1. Christopher Columbus: Bridge between the Old and New World.

    ERIC Educational Resources Information Center

    Schlene, Vickie J.

    1991-01-01

    Presents a partial bibliography of ERIC database entries concerning Christopher Columbus and the effects of his discoveries upon the world. Includes works on historiography, the ecological impact of the meeting of the two worlds, and history lesson plans. (DK)

  2. Christopher Columbus: Bridge between the Old and New World.

    ERIC Educational Resources Information Center

    Schlene, Vickie J.

    1991-01-01

    Presents a partial bibliography of ERIC database entries concerning Christopher Columbus and the effects of his discoveries upon the world. Includes works on historiography, the ecological impact of the meeting of the two worlds, and history lesson plans. (DK)

  3. Christoph Rothmann's compendium of astronomy of 1589. (German Title: Christoph Rothmanns Handbuch der Astronomie von 1589)

    NASA Astrophysics Data System (ADS)

    Granada, Miguel A.; Hamel, Jürgen; von Mackensen, Ludolf

    Around 1560, landgrave William IV. founded on his Cassel castle the first permanent observatory of modern times in Europe, and started to occupy himself with systematic sky observations. From the beginning, the main interest was focussed on the fixed stars, since William had recognized that exact position determinations were a prerequisite for further progress in astronomy. The observatory personnel was enlarged, in 1579, by the mathematician, clock-maker and instrument-maker Jost Bürgi, and in 1584 by the practical astronomer Christoph Rothmann. Since that time, intense work was carried out by creating a catalogue of fixed stars, based on own observations, which was completed in 1589. The accuracy of its stellar positions had not been reached in the past, and even superseded that of the almost contemporary catalogue by Tycho Brahe. Research in theoretical astronomy and cosmology at the landgrave's court in Cassel was also revolutionary: the acceptance of the heliocentric world system, investigations on refraction, the dismissal of the concept of solid planetary spheres and even that of a world ether, the nature of cometary tails, etc. Christoph Rothmann's work, edited here for the first time on the basis of the original manuscript, had been drafted as a commentary or introduction to his catalogue of fixed stars. He describes the construction and use of astronomical instruments, he unfolds his concepts of the system of the world on a heliocentric basis without solid planetary spheres to which he was lead by his research on refraction, he discusses the relation between astronomy and theology, and describes his revolutionary work on the Cassel star catalogue. This work constitutes a compendium of theoretical and practical astronomy of the late 16th century whose major scientific importance lies in the fact that it achieves scientific excellence in its time both because of the multitude of topics and because of the high level of discussion.

  4. 2000 Newbery Medal Winner: A Conversation with Christopher Paul Curtis.

    ERIC Educational Resources Information Center

    Johnson, Nancy J.; Giorgis, Cyndi

    2001-01-01

    Presents an interview with 2000 Newbery Medal winner Christopher Paul Curtis. Reveals the author's journey as a reader and a writer, offers glimpses into the humor and upbeat attitude of Bud (the main character in Curtis' s award-winning book "Bud, Not Buddy"), and gives a peek into what readers can expect next from this award-winning…

  5. Adrift in a Sargasso Sea: Recent Books on Christopher Columbus.

    ERIC Educational Resources Information Center

    Lunenfeld, Marvin

    1992-01-01

    Reviews more than 24 books recently published on the topic of Christopher Columbus and the voyages of discovery. Classifies the books as those designed for student use, for teachers and scholars, biographies, and "Columbus-Bashers." Maintains that the different viewpoints of Columbus the hero and Columbus the villain are barriers for…

  6. History as Social Criticism: Conversations with Christopher Lasch.

    ERIC Educational Resources Information Center

    Blake, Casey, Comp.; Phelps, Christopher, Comp.

    1994-01-01

    Maintains that, as a historian, social critic, and moralist, Christopher Lasch was a powerful presence in U.S. intellectual life. Presents an interview with Lasch prior to his death in February 1994. Reports that Lasch believed that optimism is a kind of investment in the future whereas hope is the rejection of envy and resentment. (CFR)

  7. Christopher Columbus in United States Historiography: Biography as Projection.

    ERIC Educational Resources Information Center

    Phillips, Carla Rahn; Phillips, William D.

    1992-01-01

    Presents an analysis of the portrayal of Christopher Columbus in writings about U.S. history. Suggests that most scholars would agree with Justin Winsor's 1892 portrayal of Columbus. Criticizes the controversy surrounding the explorer's first North American voyage. Concludes that current scholarship may give future generations a more accurate view…

  8. The Christopher Columbus Quincentennial: Beware the Ides of October.

    ERIC Educational Resources Information Center

    Ruff, Thomas P.

    1992-01-01

    Discusses the Columbus Quincentenary and its impact on the K-12 history and social studies curriculum. Reviews the differences of opinion about Christopher Columbus and the results of the voyages of discovery. Warns that teachers must be wary of instructional materials that are based on political and social ideologies. (CFR)

  9. You Are There: The Mock Trial of Christopher Columbus.

    ERIC Educational Resources Information Center

    Latman, Joel; Walter, Cathy

    The 500th anniversary of Christopher Columbus's voyage to the Americas has raised a debate over how historians and teachers should portray this moment in history. Some view Columbus as a hero whose courage helped to provide a foundation for modern civilization in the Americas, while others see him as a villain who exploited indigenous people and…

  10. Adrift in a Sargasso Sea: Recent Books on Christopher Columbus.

    ERIC Educational Resources Information Center

    Lunenfeld, Marvin

    1992-01-01

    Reviews more than 24 books recently published on the topic of Christopher Columbus and the voyages of discovery. Classifies the books as those designed for student use, for teachers and scholars, biographies, and "Columbus-Bashers." Maintains that the different viewpoints of Columbus the hero and Columbus the villain are barriers for…

  11. 2000 Newbery Medal Winner: A Conversation with Christopher Paul Curtis.

    ERIC Educational Resources Information Center

    Johnson, Nancy J.; Giorgis, Cyndi

    2001-01-01

    Presents an interview with 2000 Newbery Medal winner Christopher Paul Curtis. Reveals the author's journey as a reader and a writer, offers glimpses into the humor and upbeat attitude of Bud (the main character in Curtis' s award-winning book "Bud, Not Buddy"), and gives a peek into what readers can expect next from this award-winning…

  12. History as Social Criticism: Conversations with Christopher Lasch.

    ERIC Educational Resources Information Center

    Blake, Casey, Comp.; Phelps, Christopher, Comp.

    1994-01-01

    Maintains that, as a historian, social critic, and moralist, Christopher Lasch was a powerful presence in U.S. intellectual life. Presents an interview with Lasch prior to his death in February 1994. Reports that Lasch believed that optimism is a kind of investment in the future whereas hope is the rejection of envy and resentment. (CFR)

  13. Standing on lightpost and day beacon, haer architect Christopher Marston ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Standing on lightpost and day beacon, haer architect Christopher Marston points to stone retaining wall at site of old monongahela navigation company lock & dam no. 7. - Monongahela Navigation Company Lock & Dam No. 7, River Mile No. 82.5, Greensboro, Greene County, PA

  14. An obituary of Christoph Scheiner from the year 1650. (German Title: Ein Nachruf auf Christoph Scheiner aus dem Jahr 1650)

    NASA Astrophysics Data System (ADS)

    Daxecker, Franz; Schaffenrath, Florian

    An obituary of the astronomer and Jesuit Christoph Scheiner (1573-1650) was discovered in Cracow in the year 2001. This discovery makes it now possible to fix Scheiner's year of birth to 1573. Scheiner had a controversy with Galileo Galilei about the priority of the discovery of sunspots. Scheiner remained a supporter of the geocentric system until his death in 1650. The obituary gives new insights into Scheiner's personality and the last years of his life.

  15. Dr. Christopher Kraft looks over packaged 'parasol' in bldg 10

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Dr. Christopher C. Kraft J. (left), JSC Director, and George A Post, JSC Crew Systems Division, look over the packaged 'parasol' during fabrication and checkout of the umbrella-like mechanical device in the Technical Services shop in bldg 10 at JSC. The 'parasol' is designed to fit into the T027 experiment photometer canister. The canopy portion of the 'parasol' measures 24 feet by 22 feet. The 'parasol' is one of several sunscreen possibilities being considered for use in shading the overheated Skylab 1 Orbital Workshop.

  16. Dr. Christopher Kraft looks over packaged "parasol" in bldg 10

    NASA Image and Video Library

    1973-05-23

    S73-26394 (23 May 1973) --- Dr. Christopher C. Kraft Jr. (left), JSC Director, and George A. Post, JSC Crew Systems Division, look over the packaged "parasol" during fabrication and checkout of the umbrella-like mechanical device in the Technical Services shop in building 10 at Johnson Space Center. The "parasol" is designed to fit into the T027 experiment photometer canister. The canopy portion of the "parasol" measures 24 feet by 22 feet. The "parasol" is one of several sunscreen possibilities being considered for use in shading the overheated Skylab 1 Orbital Workshop. Photo credit: NASA

  17. Christoph Scheiner and the fluid sky; (German Title: Christoph Scheiner und der flüssige Himmel)

    NASA Astrophysics Data System (ADS)

    Daxecker, Franz

    Christoph Scheiner described - as Galileo, Kepler, Foscarini - the sunspots, the phases of Venus, the moons of Jupiter, and the surface of the Moon, and he found reasons for a fluid sky. In 1614 he was declared by Father General Claudio Aquaviva SJ to be a follower of the new doctrine. He was asked to return to the old doctrine. Scheiner obeyed. He did not mention the new doctrine in his following work. However, indications in letters of his contemporaries suggest that be still secretly believed in Copernicus's ideas.

  18. Meteorological Implications of the First Voyage of Christopher Columbus.

    NASA Astrophysics Data System (ADS)

    Cerveny, Randall S.; Hobgood, Jay S.

    1992-02-01

    The log of the first voyage of Christopher Columbus to the New World provides valuable information on the meteorological conditions of September 1492. Comparison and analysis of the descriptive accounts of weather made by Columbus and his pilots to other available Columbian and modern data leads to two distinct perspectives on the Columbian voyage: an examination of the frequency of "calm" events, and an analysis of the lack of tropical storm activity. The major conclusions of the first portion of the study include: 1) The Columbian pilots' descriptions of "cairns" related to travel slower than travel occurring during other portions of the voyage. That rate of travel compares favorably to calm winds and an oceanic current of 0.4 knots, a value close to modern-day values; 2) The frequency of "calm" events experienced by Christopher Columbus in 1492 is significantly higher than the most liberal estimates of calms in the North Atlantic over the last 100 years; and 3) The locations of the Columbian calms are generally in the same region currently experiencing the highest frequency of calms. The main finding of the second portion of the study is that, based on historical hurricane records from 1886 to 1989, the center of a hurricane would have passed within 100 km of Columbus only once in the past 104 years. Inclusion of tropical storms increases this number to four out of 104 years. Therefore, while Columbus may indeed have been fortunate to have avoided severe weather during his voyage, the odds decidedly were in his favor. This Columbian "weather luck" was due to a combination of 1) encountering abnormally strong anticyclonic flow over the eastern North Atlantic, 2) starting late enough in the hurricane season to significantly decrease the probability of experiencing a hurricane, and 3) taking a north and easterly voyage, thereby avoiding the area of maximum hurricane occurrence.

  19. Christopher Columbus--Bridge between the Old and New Worlds: An ERIC/ChESS Sample.

    ERIC Educational Resources Information Center

    Schlene, Vickie J.

    1992-01-01

    Presents a sampling of items from the ERIC database about Christopher Columbus. Includes items on Columbus' voyages, his contacts with the New World, ecological imperialism, and the explorer's experiences in Jamaica. Explains how to obtain ERIC documents. (SG)

  20. "About the Telescope" and other manuscripts of lectures by Christoph Scheiner. (German Title: "Über das Fernrohr" und weitere Mitschriften von Vorlesungen Christoph Scheiners)

    NASA Astrophysics Data System (ADS)

    Daxecker, Franz

    "About the Telescope" is a manuscript of a lecture which was held by Christoph Scheiner in Ingolstadt around 1615. It has been translated from Latin. The manuscript gives an account of the invention, the construction, the manufacture and the use of the telescope. There is also a reference to 3 more manuscripts (19 topics about astronomy and physics) of his lectures.

  1. Readings for the Christopher Columbus Quincentenary: Kindergarten through Grade Twelve. An Annotated List.

    ERIC Educational Resources Information Center

    California State Dept. of Education, Sacramento.

    The main purpose of this publication is to encourage educators in California to use this increasing interest in the quincentenary of the first voyage of Christopher Columbus to the New World to motivate students to read broadly and in depth in literature, history, and geography and to investigate controversial issues and think critically about…

  2. Young Christopher Langdell, 1826-1854: The Formation of an Educational Reformer.

    ERIC Educational Resources Information Center

    Kimball, Bruce A.

    2002-01-01

    Presents an evidenced account of Christopher Columbus Langdell, arguably the best-known and most influential figure in the history of U.S. legal education, from his birth in 1826 until his departure from law school in 1854. Attempts to explain the formation of his interest in education, as well as the origins of significant reforms in legal…

  3. Christopher Columbus: Bridge between Two Worlds. An ERIC/ChESS Sample.

    ERIC Educational Resources Information Center

    Schlene, Vickie J.

    1992-01-01

    Lists eight entries in the ERIC database that concern Christopher Columbus and the effects of his voyages on world history. Includes works on curriculum development, biological effects of the contact, and a bibliography of books for children. Explains how to find and obtain the materials. (DK)

  4. "Are We Almost There, Captain?" The Geographical Errors of Christopher Columbus.

    ERIC Educational Resources Information Center

    Edwards, Glenn M.

    1992-01-01

    Discusses the scientific knowledge available to Christopher Columbus and how it influenced his geographically flawed, yet historically significant, decision to sail west in order to travel east. Factors discussed include Aristotle's conclusion that the earth was round, early measurements of latitude and longitude, and early map-making attempts.…

  5. Christopher Hughes: an in vitro model for the study of angiogenesis (interview).

    PubMed

    Hughes, Christopher C W

    2007-01-01

    Christopher C.W. Hughes describes the utility of his culture system for studying angiogenesis in vitro. He explains the importance of fibroblasts that secrete a critical, yet unidentified, soluble factor that allow endothelial cells to form vessels in culture that branch, form proper lumens, and undergo anastamosis.

  6. Christopher Hughes: An in vitro model for the Study of Angiogenesis (Interview)

    PubMed Central

    Hughes, Christopher C.W.

    2007-01-01

    Christopher C.W. Hughes describes the utility of his culture system for studying angiogenesis in vitro. He explains the importance of fibroblasts that secrete a critical, yet unidentified, soluble factor that allow endothelial cells to form vessels in culture that branch, form proper lumens, and undergo anastamosis. PMID:18978990

  7. Autonomy, Critical Thinking and the Wittgensteinian Legacy: Reflections on Christopher Winch, "Education, Autonomy and Critical Thinking"

    ERIC Educational Resources Information Center

    Siegel, Harvey

    2008-01-01

    In this review of Christopher Winch's new book, "Education, Autonomy and Critical Thinking" (2006), I discuss its main theses, supporting some and criticising others. In particular, I take issue with several of Winch's claims and arguments concerning critical thinking and rationality, and deplore his reliance on what I suggest are problematic…

  8. "Are We Almost There, Captain?" The Geographical Errors of Christopher Columbus.

    ERIC Educational Resources Information Center

    Edwards, Glenn M.

    1992-01-01

    Discusses the scientific knowledge available to Christopher Columbus and how it influenced his geographically flawed, yet historically significant, decision to sail west in order to travel east. Factors discussed include Aristotle's conclusion that the earth was round, early measurements of latitude and longitude, and early map-making attempts.…

  9. Autonomy, Critical Thinking and the Wittgensteinian Legacy: Reflections on Christopher Winch, "Education, Autonomy and Critical Thinking"

    ERIC Educational Resources Information Center

    Siegel, Harvey

    2008-01-01

    In this review of Christopher Winch's new book, "Education, Autonomy and Critical Thinking" (2006), I discuss its main theses, supporting some and criticising others. In particular, I take issue with several of Winch's claims and arguments concerning critical thinking and rationality, and deplore his reliance on what I suggest are problematic…

  10. Christopher's Law

    THOMAS, 111th Congress

    Rep. Adler, John H. [D-NJ-3

    2010-05-28

    Senate - 09/29/2010 Received in the Senate and Read twice and referred to the Committee on Health, Education, Labor, and Pensions. (All Actions) Tracker: This bill has the status Passed HouseHere are the steps for Status of Legislation:

  11. Christopher's Law

    THOMAS, 111th Congress

    Sen. Lautenberg, Frank R. [D-NJ

    2010-12-01

    Senate - 12/01/2010 Read twice and referred to the Committee on Banking, Housing, and Urban Affairs. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  12. Christopher's Law

    THOMAS, 111th Congress

    Rep. Adler, John H. [D-NJ-3

    2010-05-28

    09/29/2010 Received in the Senate and Read twice and referred to the Committee on Health, Education, Labor, and Pensions. (All Actions) Tracker: This bill has the status Passed HouseHere are the steps for Status of Legislation:

  13. Christopher's Law

    THOMAS, 111th Congress

    Rep. Adler, John H. [D-NJ-3

    2010-05-28

    09/29/2010 Received in the Senate and Read twice and referred to the Committee on Health, Education, Labor, and Pensions. (All Actions) Tracker: This bill has the status Passed HouseHere are the steps for Status of Legislation:

  14. Richard Christopher Carrington: Briefly Among the Great Scientists of His Time

    NASA Astrophysics Data System (ADS)

    Cliver, Edward W.; Keer, Norman C.

    2012-09-01

    We recount the life and career of Richard Christopher Carrington (1826 - 1875) and explore his pivotal relationship with Astronomer Royal George Biddell Airy. Carrington was the pre-eminent solar astronomer of the 19th century. During a ten year span, he determined the position of the Sun's rotation axis and made the following discoveries: i) the latitude variation of sunspots over the solar cycle, ii) the Sun's differential rotation, and iii) the first solar flare (with Hodgson). Due to the combined effects of family responsibilities, failure to secure a funded position in astronomy (reflecting Airy's influence), and ill health, Carrington's productive period ended when he was at the peak of his powers.

  15. Christopher Wren, Thomas Willis and the depiction of the brain and nerves.

    PubMed

    Neher, Allister

    2009-09-01

    This paper is about Christopher Wren's engravings for Thomas Willis' The Anatomy of the Brain and Nerves of 1664. It is a study in the intersection of medicine and art in 17th century Britain. Willis, an eminent English physician and anatomist, was a major figure in the development of modern neurology, and The Anatomy of the Brain and Nerves was his most famous and influential book. Wren was Willis' assistant and medical artist. I discuss the visual strategies employed by Wren to present their research and frame it as genuine knowledge.

  16. Simulator-Based Air Medical Training Program Christoph Life: From Concept to Course.

    PubMed

    Winkelmann, Marcel; Friedrich, Lars; Schröter, Christian; Flemming, Andreas; Eismann, Hendrik; Sieg, Lion; Mommsen, Philipp; Krettek, Christian; Zeckey, Christian

    2016-01-01

    Christoph Life is a simulator-based air medical training program and a new and innovative educational concept. Participants pass different scenarios with a fully equipped and movable helicopter simulator. Main focuses of the program are crew resource management (CRM) elements and team training. Information about expectations end effectiveness of the training is sparse. During a 2-day training, participants learn CRM basics and complete various emergency medical scenarios. For evaluation, we used an anonymous questionnaire either with polar questions or a 6-coded psychometric Likert scale. The Wilcoxon test was used for statistical analysis. The significance level was set at P < .05. Thirteen teams of emergency physicians and specially trained paramedics underwent Christoph Life. It was evaluated largely positively and considered very helpful for daily work (5.7 ± 0.5) and avoiding mistakes (5.7 ± 0.5). The quality of participants' knowledge about CRM basics (3.5 ± 1.2 vs. 5.4 ± 0.7, P < .001), self-assessment of communication skills (4.2 ± 0.7 vs. 4.8 ± 0.8, P = .02), and active reflection of communication aspects (3.9 ± 0.9 vs. 5.5 ± 0.5, P < .001) could be strikingly increased. There is a considerable demand for intensified training on the part of the users. We were able to show that a simulator-based air medical training program is a helpful training tool with an obvious subjective benefit for the participants' nontechnical skills. Copyright © 2016 Air Medical Journal Associates. Published by Elsevier Inc. All rights reserved.

  17. Caught in a Narrow Kantian Perception of Prosocial Development: Reactions to Campbell and Christopher's Critique of Moral Development Theory.

    ERIC Educational Resources Information Center

    Eisenberg, Nancy

    1996-01-01

    Discusses the limitations of Campbell and Christopher's literature on moral development and altruism, claiming that the authors based some of their conclusions on questionable definitions, incorrect assumptions about others' assertions and beliefs, and reference to a limited portion of prosocial behavior. Suggests that Kantian presuppositions play…

  18. Christopher Columbus and His Voyages to America: A Guide to Selected Sources in the Kent State University Libraries.

    ERIC Educational Resources Information Center

    Kent State Univ., OH. Univ. Libraries.

    This annotated list of reference sources features materials about Christopher Columbus's voyages to the Americas. While the sources featured are to be found specifically in Kent State University (Ohio) Libraries, this guide may provide helpful suggestions to persons interested in materials on Columbus in general. The guide covers the following…

  19. Christopher Columbus, Hernando Cortes, and Francisco Pizzaro: A Qualitative Content Analysis Examining Cultural Bias in World History Textbooks

    ERIC Educational Resources Information Center

    Lillejord, Jebadiah Serril

    2013-01-01

    The purpose of this study is to investigate to what extent contemporary high school world history textbooks portray Christopher Columbus, Hernán Cortés, and Francisco Pizarro within the context of being "sacred," "profane," or someplace in between. To evaluate for existence of content bias this study employed qualitative…

  20. Situation Report--Burma, Chile, German Democratic Republic, Indonesia, Jamaica, Poland, Singapore, St. Christopher/Nevis, Trinidad & Tobago, Venezuela.

    ERIC Educational Resources Information Center

    International Planned Parenthood Federation, London (England).

    Data relating to population and family planning in ten foreign countries are presented in these situation reports. Countries included are Burma, Chile, German Democratic Republic, Indonesia, Jamaica, Poland, Singapore, St. Christopher/Nevis, Trinidad and Tobago, and Venezuela. Information is provided, where appropriate and available, under two…

  1. Salvaging "Academic Disaster Areas": The Black College Response to Christopher Jencks and David Riesman's 1967 Harvard Educational Review Article

    ERIC Educational Resources Information Center

    Gasman, Marybeth

    2006-01-01

    In 1967, the "Harvard Educational Review" published an article entitled "The American Negro College" by Christopher Jencks and David Riesman. The article dealt a stinging blow to Black colleges--labeling them "academic disaster areas." Using a historical methodology, I show the strategic ways in which Black college leaders and the United Negro…

  2. Salvaging "Academic Disaster Areas": The Black College Response to Christopher Jencks and David Riesman's 1967 Harvard Educational Review Article

    ERIC Educational Resources Information Center

    Gasman, Marybeth

    2006-01-01

    In 1967, the "Harvard Educational Review" published an article entitled "The American Negro College" by Christopher Jencks and David Riesman. The article dealt a stinging blow to Black colleges--labeling them "academic disaster areas." Using a historical methodology, I show the strategic ways in which Black college leaders and the United Negro…

  3. "Brilliant, Bright, Boiling Words": Literary Disability, Language and the Writing Body in the Work of Christopher Nolan

    ERIC Educational Resources Information Center

    Coogan, Tom

    2012-01-01

    This article uses theory on disability, embodiment and language to explore the production, context and presentation of two pieces of life-writing by Christopher Nolan. It examines Nolan's unusual use of language and form in his presentations of an experience of disability, and considers its literary and political significance. Consideration is…

  4. Christopher Columbus, Hernando Cortes, and Francisco Pizzaro: A Qualitative Content Analysis Examining Cultural Bias in World History Textbooks

    ERIC Educational Resources Information Center

    Lillejord, Jebadiah Serril

    2013-01-01

    The purpose of this study is to investigate to what extent contemporary high school world history textbooks portray Christopher Columbus, Hernán Cortés, and Francisco Pizarro within the context of being "sacred," "profane," or someplace in between. To evaluate for existence of content bias this study employed qualitative…

  5. "Brilliant, Bright, Boiling Words": Literary Disability, Language and the Writing Body in the Work of Christopher Nolan

    ERIC Educational Resources Information Center

    Coogan, Tom

    2012-01-01

    This article uses theory on disability, embodiment and language to explore the production, context and presentation of two pieces of life-writing by Christopher Nolan. It examines Nolan's unusual use of language and form in his presentations of an experience of disability, and considers its literary and political significance. Consideration is…

  6. The main work of astronomer Christoph Scheiner SJ "Rosa Ursina sive Sol" - a summary.

    NASA Astrophysics Data System (ADS)

    Daxecker, F.

    1996-10-01

    Christoph Scheiner was born on 25 July 1573 or 1575 in Markt Wald near Mindelheim in the Bavarian part of Swabia. He died on 18 July 1650. In Rome he wrote his main work Rosa Ursina sive Sol and had it printed with the help of a patron, Duke Paulus Jordanus II of Bracciano. The ducal family bore a rose, likened to the Sun in Scheiner's book, on its coat of arms. Rosa Ursina is divided into four volumes. In volume I Scheiner tackles the issue of who was first to discover the sunspots; he also proves that Galilei made errors of observation. Volume II shows illustrations of telescopes, projection methods and the helioscope and compares the optics of a telescope with that of the human eye. In volume III, observations on sunspots are illustrated by 70 copper engravings by David Widemann. Volume IV consists of two parts. The first part again deals with the phenomena of the Sun, such as sunspots and prominences, its period of revolution of 27 days, and the tilt of its axis; the second part is a collection of passages and quotations from the Scriptures, from Church Fathers and philosophers, all designed to prove that Scheiner's interpretation of the geocentric system conformed to Catholic doctrine.

  7. [The professor and his student. The correspondence between Lorenz Heister and Christoph Jacob Trew].

    PubMed

    Ruisinger, Marion Maria; Schnalke, Thomas

    2004-01-01

    Letters were the central medium of communication in the medical scientific community of the 18th century. Professional as well as personal relationships were established among the various correspondents. These relationships constituted the smallest units of communication which contributed to the regional and international scientific network of the Republic of Letters. A correspondence that grew out of a trusted teacher-student relationship could gain an especially intense character both intellectually and personally. This contribution offers an analysis of an example of just such a correspondence. Lorenz Heister (1683--1758), medical professor at the universities of Altdorf and Helmstedt, and his disciple, Christoph Jacob Trew (1695--1769), who became a renowned physician and natural scientist in Nuremberg, communicated in letters to one another over a span of almost forty years. Their correspondence started as a rather asymmetrical dialogue. Over time, however, Heister and Trew came to meet as equals in almost every field of their competence. Their letters reveal a broad spectrum of scientific, organisational, professional, medical and personal issues which formed the basis of a stable and lasting learned correspondence in the age of Enlightenment.

  8. Sunspot positions, areas, and group tilt angles for 1611-1631 from observations by Christoph Scheiner

    NASA Astrophysics Data System (ADS)

    Arlt, R.; Senthamizh Pavai, V.; Schmiel, C.; Spada, F.

    2016-11-01

    Aims: Digital images of observations printed in the books Rosa Ursina sive solis and Prodromus pro sole mobili by Christoph Scheiner, as well as the drawings from Scheiner's letters to Marcus Welser, are analysed to obtain information on the positions and sizes of sunspots that appeared before the Maunder minimum. Methods: In most cases, the given orientation of the ecliptic is used to set up the heliographic coordinate system for the drawings. Positions and sizes are measured manually on screen. Very early drawings have no indication of their orientation. A rotational matching using common spots of adjacent days is used in some cases, while in other cases, the assumption that images were aligned with a zenith-horizon coordinate system appeared to be the most probable. Results: In total, 8167 sunspots were measured. A distribution of sunspot latitudes versus time (butterfly diagram) is obtained for Scheiner's observations. The observations of 1611 are very inaccurate, the drawings of 1612 have at least an indication of their orientation, while the remaining part of the spot positions from 1618-1631 have good to very good accuracy. We also computed 697 tilt angles of apparently bipolar sunspot groups observed in the period 1618-1631. We find that the average tilt angle of nearly 4 degrees is not significantly different from 20th-century values. Data on the sunspot position and area are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/595/A104

  9. DEVELOPMENT OF A 950-GENE DNA ARRAY FOR EXAMINING GENE EXPRESSION PATTERNS IN MOUSE TESTIS

    EPA Science Inventory

    Development of a 950-gene DNA array for examining gene expression patterns in mouse testis.

    Rockett JC, Christopher Luft J, Brian Garges J, Krawetz SA, Hughes MR, Hee Kirn K, Oudes AJ, Dix DJ.

    Reproductive Toxicology Division, National Health and Environmental Effec...

  10. 500 Years after the Quest (A Directory of Organizations, Resources, and Activities Pertaining to the Quincentenary of the Historical Voyage of Christopher Columbus).

    ERIC Educational Resources Information Center

    Lambert, Jeanette

    This year, 1992, marks the 500th anniversary of Christopher Columbus's first voyage to the Americas. Much discussion, debate, and celebration of the historical significance of the quincentenary will occur. This directory of events, contacts, and activities pertaining to the quincentenary seeks to foster these various endeavors. Among the subjects…

  11. Christopher Columbus and the Great Voyage of Discovery. With a Message from President George Bush. Picture-book Biography Series, Volume 1.

    ERIC Educational Resources Information Center

    Weisman, JoAnne B.; Deitch, Kenneth M.

    An illustrated story for young children features Christopher Columbus's first voyage to the Americas in 1492. The story begins with Columbus's youth in Genoa, Italy, follows him to Portugal and then to Spain, where he finally received backing for a voyage west to reach the East Indies. The preparations for the voyage and the trip itself are…

  12. 'Over by Christmas': The First World War, Education Reform and the Economy. The Case of Christopher Addison and the Origins of the DSIR.

    ERIC Educational Resources Information Center

    Daglish, Neil

    1998-01-01

    Reviews the role of Christopher Addison, the Parliamentary Secretary to the Board of Education, in the reform of British educational policy during the early twentieth century. Explains that in 1914 Addison developed a scheme to resolve the problems facing the post-compulsory education sector in order to help the economy. (CMK)

  13. Renaissance Epyllions: A Comparative Reading of Christopher Marlowe's "Hero and Leander," Thomas Lodge's "Scylla's Metamorphosis" and Francis Beaumont's "Salmacis and Hermaphroditus"

    ERIC Educational Resources Information Center

    Mahmoudi, Yazdan

    2016-01-01

    The present paper is supposed to compare and contrast three of these masterpieces written the Renaissance period. The epyllions under study are Christopher Marlowe's "Hero and Leander," Thomas Lodge's "Scylla's Metamorphosis" and Francis Beaumont's "Salmacis and Hermaphroditus." Bush believes that "the influence…

  14. 'By merit raised to that bad eminence': Christopher Merrett, artisanal knowledge, and professional reform in restoration London.

    PubMed

    Mauck, Aaron

    2012-01-01

    This article examines the career and reform agenda of Christopher Merrett as a means of evaluating the changing conditions of medical knowledge production in late seventeenth-century London. This period was characterised by increasing competition between medical practitioners, resulting from the growing consumer demand for medical commodities and services, the reduced ability of elite physicians to control medical practice, and the appearance of alternative methods of producing medical knowledge - particularly experimental methods. This competition resulted in heated exchanges between physicians, apothecaries, and virtuosi, in which Merrett played an active part. As a prominent member of both the Royal Society and the Royal College of Physicians, Merrett sought to mediate between the two institutions by introducing professional reforms designed to alleviate competition and improve medical knowledge.These reforms entailed sweeping changes to medical regulation and education that integrated the traditional reliance on Galenic principles with knowledge derived from experiment and artisanal practices. The emphasis Merrett placed on the trades suggests the important role artisanal knowledge played in his efforts to reorganise medicine and improve knowledge of bodily processes.

  15. ‘By Merit Raised to That Bad Eminence’: Christopher Merrett, Artisanal Knowledge, and Professional Reform in Restoration London

    PubMed Central

    Mauck, Aaron

    2012-01-01

    This article examines the career and reform agenda of Christopher Merrett as a means of evaluating the changing conditions of medical knowledge production in late seventeenth-century London. This period was characterised by increasing competition between medical practitioners, resulting from the growing consumer demand for medical commodities and services, the reduced ability of elite physicians to control medical practice, and the appearance of alternative methods of producing medical knowledge – particularly experimental methods. This competition resulted in heated exchanges between physicians, apothecaries, and virtuosi, in which Merrett played an active part. As a prominent member of both the Royal Society and the Royal College of Physicians, Merrett sought to mediate between the two institutions by introducing professional reforms designed to alleviate competition and improve medical knowledge.These reforms entailed sweeping changes to medical regulation and education that integrated the traditional reliance on Galenic principles with knowledge derived from experiment and artisanal practices. The emphasis Merrett placed on the trades suggests the important role artisanal knowledge played in his efforts to reorganise medicine and improve knowledge of bodily processes. PMID:23752982

  16. High resolution carbon isotope stratigraphy and glendonite occurrences of the Christopher Formation, Sverdrup Basin (Axel Heiberg Island, Canada): implications for mid Cretaceous high latitude climate change

    NASA Astrophysics Data System (ADS)

    Herrle, Jens O.; Schröder-Adams, Claudia J.; Galloway, Jennifer M.; Pugh, Adam T.

    2013-04-01

    Understanding the evolution of Canada's Arctic region, as a crucial component of Earth's climate system, is fundamental to assess short and long-term climate, environmental, and paleogeographic change. However, the stratigraphy and paleoenvironmental evolution of the Cretaceous Arctic is poorly constrained and a detailed bio- and chemostratigraphic correlation of major mid-Cretaceous paleoceanographic turning points such as Oceanic Anoxic Events, cold snaps, and biotic turnovers with key locations of the high- and low latitudes is missing. Here we present for the first time a high resolution bio- and carbon isotope stratigraphy of the Arctic Albian Christopher Formation of the Sverdrup Basin at Glacier Fiord in the southern part of Axel Heiberg Island, Canadian High Arctic. By using these techniques we developed a high temporal framework to record major environmental changes as it is indicated by the occurrence of glendonites and sandstone intervals of our studied Albian succession. The Albian Christopher Formation is a shale dominated marine unit with a thickness of approximately 1200 m. Several transgressive/ regressive cycles can be recognized by prograding shoreface units that break up mudrock deposition. In addition, glendonites are mainly found in the lower part of the Christopher Formation. Glendonites are pseudomorphs of calcite, after the metastable mineral ikaite, and have been often described from high latitude Permian, Jurassic and Cretaceous marine environments from the Canadian Arctic, Spitsbergen and Australia. The formation of glendonites takes place in the uppermost layer of the sediment and requires near-freezing temperatures, high salinity, and orthophosphate-rich bottom water. Although the presence of glendonites implies a range of paleoenvironmental conditions there is a consensus in the scientific literature that they reflect cooler paleoenvironmental conditions. Preliminary bio- and carbon isotope stratigraphic results suggest that the

  17. THE EFFECTS OF HYPERTHERMIA ON SPERMATOGENESIS, APOPTOSIS, GENE EXPRESSION AND FERTILITY IN ADULT MALE MICE

    EPA Science Inventory

    The effects of hyperthermia on spermatogenesis, apoptosis, gene expression and fertility in adult male mice
    John C. Rockett1, Faye L. Mapp1, J. Brian Garges1, J. Christopher Luft1, Chisato Mori2 and David J. Dix1.
    1Reproductive Toxicology Division, National Health and Envir...

  18. USING DNA MICROARRAYS TO CHARACTERIZE GENE EXPRESSION IN TESTES OF FERTILE AND INFERTILE HUMANS AND MICE

    EPA Science Inventory

    USING DNA MICROARRAYS TO CHARACTERIZE GENE EXPRESSION
    IN TESTES OF FERTILE AND INFERTILE HUMANS AND MICE

    John C. Rockett1, J. Christopher Luft1, J. Brian Garges1, M. Stacey Ricci2, Pasquale Patrizio2, Norman B. Hecht2 and David J. Dix1
    Reproductive Toxicology Divisio...

  19. THE EFFECTS OF HYPERTHERMIA ON SPERMATOGENESIS, APOPTOSIS, GENE EXPRESSION AND FERTILITY IN ADULT MALE MICE

    EPA Science Inventory

    The effects of hyperthermia on spermatogenesis, apoptosis, gene expression and fertility in adult male mice
    John C. Rockett1, Faye L. Mapp1, J. Brian Garges1, J. Christopher Luft1, Chisato Mori2 and David J. Dix1.
    1Reproductive Toxicology Division, National Health and Envir...

  20. USING DNA MICROARRAYS TO CHARACTERIZE GENE EXPRESSION IN TESTES OF FERTILE AND INFERTILE HUMANS AND MICE

    EPA Science Inventory

    USING DNA MICROARRAYS TO CHARACTERIZE GENE EXPRESSION
    IN TESTES OF FERTILE AND INFERTILE HUMANS AND MICE

    John C. Rockett1, J. Christopher Luft1, J. Brian Garges1, M. Stacey Ricci2, Pasquale Patrizio2, Norman B. Hecht2 and David J. Dix1
    Reproductive Toxicology Divisio...

  1. The Biopolitics of Lifestyle: Foucault, Ethics and Healthy Choices : Christopher Mayes, 2016, Routledge (Oxford and New York, 978-1-138-93386-6, 156 pp.).

    PubMed

    Cooper, Andrew

    2017-03-01

    Unlike many recent studies on the notion of lifestyle, Christopher Mayes' The Biopolitics of Lifestyle balances theoretical rigour with empirical investigation to problematize the use of lifestyle in public health strategies. Not only does Mayes' book expose the unjustified emphasis on individual autonomy undergirding neoliberal strategies of governance and contemporary ethical theory, it also marks a significant step forward in enhancing our understanding of one of Foucault's most underappreciated concepts, the dispositif. In clearly framing the import of Foucaultian analysis and placing it against the backdrop of the obesity epidemic, Mayes continues his contributions towards a productive space wherein practitioners, social theorists, and ethicists can genuinely and self-reflectively exchange knowledges in order to respond to living issues of ethical import.

  2. A Danish provincial physician and his patients; the patient records from the practice of Christopher Detlev Hahn in Aarhus around 1800.

    PubMed

    Wulff, Henrik R; Jungersen, Kirsten

    2005-01-01

    The Danish physician Christopher Detlev Hahn (1744-1822) graduated in medicine from Halle and set up a medical practice in Aarhus in 1766. More than 2000 of his patient records, bound in twenty-seven volumes, are kept in the archives of the Medical Museum in Copenhagen. The records, which are written in Latin and resemble hospital records, contain entries from each visit to the patients. A sample of these records, especially those from 1806, have been analysed regarding diagnoses, alleged causes of disease, examination of patients and prescription of different treatments. It was noticeable to what extent Hahn, who belonged to the Hippocratic tradition, individualised both diagnosis and treatment. The introduction of variolation and later vaccination is discussed. This collection of records provides a unique insight into medical practice at that time outside the hospitals.

  3. A New Mountain to Climb: As the New Dean of UC-Berkeley's Law School, Christopher Edley Jr. Plans to Continue the Civil Rights and Social Justice Agenda Work for Which He Has Become Well Known

    ERIC Educational Resources Information Center

    Roach, Ronald

    2004-01-01

    On July 1, Christopher Edley Jr. became the dean of the University of California-Berkeley Boalt Hall School of Law. The first African American to hold the deanship of California's premier public law school, Edley brings to the job an array of accomplishments and experiences few American law school deans can match. This article describes his…

  4. The Influence of Therapist Variance on the Dependability of Therapists' Alliance Scores: A Brief Comment on "The Dependability of Alliance Assessments: The Alliance-Outcome Correlation Is Larger than You Think" (Crits-Christoph et al., 2011)

    ERIC Educational Resources Information Center

    Baldwin, Scott A.; Imel, Zac E.; Atkins, David C.

    2012-01-01

    Objective: Crits-Christoph, Connolly Gibbons, Hamilton, Ring-Kurtz, and Gallop (2011) used generalizability theory to critique the measurement of the therapeutic alliance in psychotherapy research, showing that the dependability of alliance scores may be quite low, which in turn can lead to attenuated alliance-outcome correlation estimates. Method…

  5. Situation Reports--Afghanistan, Bahrein, Brazil, Ecuador, Indonesia, Iraq, Morocco, Paraguay, People's Democratic Republic of Yemen, Peru, Qatar, Saudi Arabia, Sri Lanka, St. Christopher/Nevis, Sudan, United Arab Emirates, Yemen Arab Republic.

    ERIC Educational Resources Information Center

    International Planned Parenthood Federation, London (England).

    Data relating to population and family planning in 17 foreign countries are presented in these situation reports. Countries included are Afghanistan, Bahrein, Brazil, Ecuador, Indonesia, Iraq, Morocco, Paraguay, People's Democratic Republic of Yemen, Peru, Qatar, Saudi Arabia, Sri Lanka, St. Christopher/Nevis, Sudan, United Arab Emirates, and…

  6. The Influence of Therapist Variance on the Dependability of Therapists' Alliance Scores: A Brief Comment on "The Dependability of Alliance Assessments: The Alliance-Outcome Correlation Is Larger than You Think" (Crits-Christoph et al., 2011)

    ERIC Educational Resources Information Center

    Baldwin, Scott A.; Imel, Zac E.; Atkins, David C.

    2012-01-01

    Objective: Crits-Christoph, Connolly Gibbons, Hamilton, Ring-Kurtz, and Gallop (2011) used generalizability theory to critique the measurement of the therapeutic alliance in psychotherapy research, showing that the dependability of alliance scores may be quite low, which in turn can lead to attenuated alliance-outcome correlation estimates. Method…

  7. Genes

    MedlinePlus

    ... Search Search MedlinePlus GO GO About MedlinePlus Site Map FAQs Customer Support Health Topics Drugs & Supplements Videos & Tools Español You Are Here: Home → Medical Encyclopedia → Genes URL of this page: //medlineplus.gov/ency/article/ ...

  8. Christopher Columbus and Culicoides: was C. jamaicensis Edwards, 1922 introduced into the Mediterranean 500 years ago and later re-named C. paolae Boorman 1996?

    PubMed

    Meiswinkel, R; Labuschagne, K; Goffredo, M

    2004-01-01

    The biting midge, Culicoides paolae Boorman, described from specimens collected in the extreme south of Italy in 1996, belongs in the subgenus Drymodesmyia. This subgenus was erected by Vargas in 1960 for the so-called Copiosus species group, an assemblage of 22 species endemic to the tropical regions of the New World and, where known, breed in vegetative materials including the decaying leaves (cladodes) and fruits of Central American cacti. The Mexican peoples have utilised these cacti for over 9,000 years; one of these, Opuntia ficus-indica Linnaeus, was brought to Europe by Christopher Columbus following his voyages of discovery. As a taxon C. paolae is very similar to the Central American C. jamaicensis Edwards, 1922 raising the possibility that it (or a closely related species of Drymodesmyia) was introduced into the Mediterranean Region at the time of Columbus, but was (perplexingly) discovered only 500 years later and named C. paolae. The comparison of Sardinian specimens of C. paolae with Panamanian material of C. jamaicensis (housed in the Natural History Museum in London) confirmed the two species to be very similar but unusual differences were noted around the precise distribution of the sensilla coeloconica on the female flagellum. Until it is understood whether these differences represent either intra- or interspecific variation, the question of the possible synonymy of C. paolae must be held in abeyance.

  9. Scheiner, Christoph (1575-1650)

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Astronomer, born in Wald, near Mindelheim in Swabia (southwest Germany), became a Jesuit and professor of mathematics at the university at Ingolstadt. He made instruments, including sundials and a pantograph. On learning about GALILEO's discoveries, he obtained his own telescopes, with which he observed the Sun, and in 1611 independently discovered sunspots for himself. His publication on the sub...

  10. Clavius, Christoph (1538-1612)

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Mathematician, born in Bamberg, Germany. Became a Jesuit in Rome, and wrote a number of textbooks, including a version of Euclid's Elements, a commentary on the Sphere of Sacrobosco, and books on algebra, the astrolabe, and practical arithmetic and geometry. He participated in the commission for the reform of the calendar that led, in 1582, to the institution of the Gregorian calendar. In his ast...

  11. Memorial to Christopher Martin Scarfe

    NASA Astrophysics Data System (ADS)

    Dingwell, D. B.

    1990-09-01

    I first spoke with Chris Scarfe in the summer of 1980. I'd been flown out of the Newfoundland bush for a 4-day break from chopper camp, and I had to get moving on a graduate school decision for September. I contacted Scarfe by telephone and mentioned to him some of my vague proposals for graduate work. He told me about his research, and I responded by saying that I certainly didn't know very much about silicate melts. He say that was o.k., we could learn together. All I could think was what a decent guy he must be to say something like that to a novice like myself. I've met a large number of people in the field of experimental and igneous petrology since that time. I don't think any of them ever had a better attitude toward the subject than Chris.

  12. [The alphabet of nature and the alphabet of culture in the eighteenth century. botany, diplomatics, and ethno-linguistics according to Carl von Linné, Johann Christoph Gatterer, and Christian Wilhelm Büttner : Botany, Diplomatics, and ethno-linguistics according to Carl von Linné, Johann Christoph Gatterer, and Christian Wilhelm Büttner].

    PubMed

    Gierl, Martin

    2010-01-01

    In the middle of the eighteenth century, Carl von Linné, Johann Christoph Gatterer, and Christian Wilhelm Büttner attempted to realize the old idea of deciphering the alphabet of the world, which Francis Bacon had raised as a general postulate of science. This article describes these attempts and their interrelations. Linné used the model of the alphabet to classify plants according to the characters of this fruiting body. Gatterer, one of the leading German historians during the Enlightenment, adopted the botanical method of classification by genus and species to classify the history of scripts. He used the forms of the alphabetic characters to measure the age of manuscripts and to map the process of history as a genealogy of culture. Gatterer collaborated closely with Büttner, the first Göttingen professor of natural history. Büttner constructed a general alphabet of languages which connected the phonetics of language with the historically known alphabets. Early on, diplomatics and ethnography combined the natural order of natural history and the cultural order of the alphabet with the attempt to register development and to document development by the evolution of forms. Based on the shared model of the alphabet and on the common necessity to classify their empirical material, natural history and the description of culture were related attempts in the middle of the eighteenth century to comprehend the alphabetically organized nature and a naturally ordered culture.

  13. ["Each medical practitioner and ordained physician commissioned by the city of Nuremberg shal vow ..." the structures of the public health system in Nuremberg at the beginning of the 18th century of Johann Christoph Götz].

    PubMed

    Splinter, Susan

    2011-01-01

    The medical institutions of Nuremberg were established quite early. The Collegium medicum were already founded in 1592. Though this board held responsibility for the supervision of pharmacies, the creation of Medizinalordnungen (medical legislations) and also had advisory functions, the physicians did not succeed in winning a prominent position. The spheres of competence between the different groups of medical practitioners were not yet clearly defined. Nevertheless the daily work of the practitioner Johann Christoph Götz (1688-1733) was going smoothly due to his cooperation with other doctors, surgeons, midwives and pharmacists.

  14. [Dr Ivan Christoph Nepomuk Daubach-Daubachy de Dolje Surgeon General of the Kingdom of Croatia in the MaŽuranić-Brlić-RuŽić memorial library and collection in Rijeka].

    PubMed

    de Canziani Jaksic, Theodor

    2010-01-01

    This study was preceded by one that brought together old and yet unpublished new information about the life and work of Ivan Daubachy (1766-1848), General Surgeon from Zagreb and his family that has left a distinguished mark in Croatian cultural history. German by origin, Dr Ivan Nepomuk Daubach (orig. Johann Christoph Nepomuk Daubach- Daubachy de Dolje), served in Zagreb as a military doctor on two occasions. There he soon got married, and settled for the rest of his life successfully pursuing private practice, public affairs, and the office of Croatian Surgeon General. For his merits, he received a hereditary title of nobility, and his daughters married into prominent families. The second part of this article describes the unknown legacy of Dr Daubachy and of his heirs that has been kept in the MaŽuranic-Brlić-RuŽić Memorial Library and Collection in Rijeka. It includes a number of objects and artefacts, but his manuscript with memoirs is of particular interest, and this is the first time these memoirs are being published bilingually in the original Latin and in Croatian translation.

  15. The Alphabet of Nature and the Alphabet of Culture in the Eighteenth Century. Botany, Diplomatics, and Ethno-Linguistics according to Carl von Linné, Johann Christoph Gatterer, and Christian Wilhelm Büttner

    PubMed Central

    2010-01-01

    In the middle of the eighteenth century, Carl von Linné, Johann Christoph Gatterer, and Christian Wilhelm Büttner attempted to realize the old idea of deciphering the alphabet of the world, which Francis Bacon had raised as a general postulate of science. This article describes these attempts and their interrelations. Linné used the model of the alphabet to classify plants according to the characters of this fruiting body. Gatterer, one of the leading German historians during the Enlightenment, adopted the botanical method of classification by genus and species to classify the history of scripts. He used the forms of the alphabetic characters to measure the age of manuscripts and to map the process of history as a genealogy of culture. Gatterer collaborated closely with Büttner, the first Göttingen professor of natural history. Büttner constructed a general alphabet of languages which connected the phonetics of language with the historically known alphabets. Early on, diplomatics and ethnography combined the natural order of natural history and the cultural order of the alphabet with the attempt to register development and to document development by the evolution of forms. Based on the shared model of the alphabet and on the common necessity to classify their empirical material, natural history and the description of culture were related attempts in the middle of the eighteenth century to comprehend the alphabetically organized nature and a naturally ordered culture. PMID:20665241

  16. Genes and Gene Therapy

    MedlinePlus

    ... correctly, a child can have a genetic disorder. Gene therapy is an experimental technique that uses genes to ... or prevent disease. The most common form of gene therapy involves inserting a normal gene to replace an ...

  17. A brief, standardized tool for measuring HIV-related stigma among health facility staff: results of field testing in China, Dominica, Egypt, Kenya, Puerto Rico and St. Christopher & Nevis.

    PubMed

    Nyblade, Laura; Jain, Aparna; Benkirane, Manal; Li, Li; Lohiniva, Anna-Leena; McLean, Roger; Turan, Janet M; Varas-Díaz, Nelson; Cintrón-Bou, Francheska; Guan, Jihui; Kwena, Zachary; Thomas, Wendell

    2013-11-13

    Within healthcare settings, HIV-related stigma is a recognized barrier to access of HIV prevention and treatment services and yet, few efforts have been made to scale-up stigma reduction programs in service delivery. This is in part due to the lack of a brief, simple, standardized tool for measuring stigma among all levels of health facility staff that works across diverse HIV prevalence, language and healthcare settings. In response, an international consortium led by the Health Policy Project, has developed and field tested a stigma measurement tool for use with health facility staff. Experts participated in a content-development workshop to review an item pool of existing measures, identify gaps and prioritize questions. The resulting questionnaire was field tested in six diverse sites (China, Dominica, Egypt, Kenya, Puerto Rico and St. Christopher & Nevis). Respondents included clinical and non-clinical staff. Questionnaires were self- or interviewer-administered. Analysis of item performance across sites examined both psychometric properties and contextual issues. The key outcome of the process was a substantially reduced questionnaire. Eighteen core questions measure three programmatically actionable drivers of stigma within health facilities (worry about HIV transmission, attitudes towards people living with HIV (PLHIV), and health facility environment, including policies), and enacted stigma. The questionnaire also includes one short scale for attitudes towards PLHIV (5-item scale, α=0.78). Stigma-reduction programmes in healthcare facilities are urgently needed to improve the quality of care provided, uphold the human right to healthcare, increase access to health services, and maximize investments in HIV prevention and treatment. This brief, standardized tool will facilitate inclusion of stigma measurement in research studies and in routine facility data collection, allowing for the monitoring of stigma within healthcare facilities and evaluation of

  18. Italian Students' Views of Christopher Columbus.

    ERIC Educational Resources Information Center

    Aucoin, Linda; Cangemi, JoAnn

    1992-01-01

    Describes a project where students in an Italian elementary school wrote letters about Columbus and his contributions. Finds that these students have not lost their view of Columbus as a great hero. Includes a list of organizations and resources for teaching about Italy and Columbus. (CFR)

  19. Christopher Columbus: The Hero and the Historians.

    ERIC Educational Resources Information Center

    Nader, Helen

    Social historians are taught that historical changes are caused by large social and economic forces, rather than great individuals; and so they study groups of people, broad economic movements, and underlying institutional structures that change slowly over time. But the general public demands information about the individual person told through…

  20. Christopher Columbus: Explorer and Geographer (1492).

    ERIC Educational Resources Information Center

    Casper, Donna Kay

    1992-01-01

    Presents a two-week lesson designed to begin a year-long world geography course. Provides background and information on the Age of Discovery and the study of geography. Includes maps, study guides, and student readings. (CFR)

  1. Christopher Bryski Student Loan Protection Act

    THOMAS, 112th Congress

    Sen. Lautenberg, Frank R. [D-NJ

    2011-10-20

    Senate - 10/20/2011 Read twice and referred to the Committee on Banking, Housing, and Urban Affairs. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  2. Carrington, Richard Christopher (1826-75)

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    English amateur astronomer, first person to observe (1859) a solar flare, `two patches of intensely bright and white light', confirmed by R Hodgson and by the correlated appearance of auroras, seen as far south as Cuba, and magnetic disturbances, observed at the Kew Observatory. Carrington noted the connections, but cautioned that `one swallow does not make a summer'. Only about 50 flares have be...

  3. Body, costume, and desire in Christopher Marlowe.

    PubMed

    Woods, G

    1992-01-01

    All the desired youths in Marlowe come clothed in favors, the tokens of older and richer men's yearning. These bribes and rewards, often feminine or effeminate ornaments, not only beautify the already gorgeous bodies of young men, but also label and augment their value and their power. The moment of virility's blooming, in adolescence, is seen as a time when boys can negotiate favorable terms of entry into the realms of manhood by the seductive use of their glamor. For their part, desirous men are distracted from the affairs and cares of state by their nostalgic encounters with girlish boys, at worst, to the extent that their own patriarchal power is compromised by sodomitic dalliance. Marlowe's involvement in these plots is iterative and committed.

  4. [The disease of admiral Christopher Columbus].

    PubMed

    Espinoza, R; González, C

    1997-06-01

    Based on diaries and relations, the fact that Admiral Cristobal Colon effectively suffered of gout is documented. This was a common disease in that times. The interpretations that gout as a disease has had in the course of medicine history, are also analyzed.

  5. Johann Christoph Sturm's universal mathematics and metaphysics (German Title: Universalmathematik und Metaphysik bei Johann Christoph Sturm)

    NASA Astrophysics Data System (ADS)

    Leinsle, Ulrich G.

    In order to understand Sturm's concept of a universal mathematics as a replacement or complement of metaphysics, one first has to examine the evolution of the idea of a mathesis universalis up to Sturm, and his concept of metaphysics. According to the understanding of those times, natural theology belongs to metaphysics. The last section is concerned with Sturm's statements on the existence of God and his assessments for a physico-theology.

  6. Hilpoltstein at Johann Christoph Sturm's times (German Title: Hilpoltstein zu Zeiten Johann Christoph Sturms)

    NASA Astrophysics Data System (ADS)

    Platz, Kai Thomas

    After an overview on the foundations of research, the conditions inside the town of Hilpoltstein in the first half of the 17th century are described. Since Hilpoltstein was situated at the road from Nuremberg to Munich, and thus at one of the most important north-south trading routes of medieval times, the town florished in economic terms at the beginning of the 17th century. Afterwards, however, the inhabitants had to suffer religious troubles, since the count palatine Wolfgang Wilhelm converted to catholicism. We collect the traces of the Sturm family in Hilpoltstein that still exist today, and complete the picture by giving an overview of the architectural, commercial and social conditions of those times.

  7. Molecular cloning of the 8000-base thyroglobulin structural gene.

    PubMed

    Christophe, D; Mercken, L; Brocas, H; Pohl, V; Vassart, G

    1982-03-01

    Bovine thyroglobulin mRNA was reverse-transcribed into full-length double-stranded cDNA. The existence of three HindIII restriction endonuclease sites in the 8000-base thyroglobulin structural gene had allowed the easy cloning of the two internal HindIII fragments [Christophe et al. (1980) Eur. J. Biochem. 111, 419-423]. In the present study, the central portion of the structural gene was cloned in Escherichia coli as two individual recombinant plasmids containing 2000-base-pair and 4700-base-pair segments located respectively 5' and 3' relative to the unique BamHI site of the cDNA. BamHI linkers were added to the double-stranded cDNA and, following restriction with HindIII, selective cloning of the 5' (2600-base-pair) and 3' (1000-base-pair) terminal HindIII fragments was achieved by inserting them between the HindIII and BamHI sites of the plasmid pBR322. Partial sequencing of the 1000-base-pair 3'-terminal fragment demonstrated the presence of an A-A-U-A-A-A sequence in the mRNA 14 bases upstream from a poly(A) tract corresponding to the 3' end of the mRNA. Together, the four clones represent about 99% of the thyroglobulin structural gene and provide the starting material for the determination of thyroglobulin primary structure.

  8. Immunoglobulin genes

    SciTech Connect

    Honjo, T. ); Alt, F.W. . Hudson Labs.); Rabbitts, T.H. )

    1989-01-01

    This book reports on the structure, function, and expression of the genes encoding antibodies in normal and neoplastic cells. Topics covered are: B Cells; Organization and rearrangement of immunoglobin genes; Immunoglobin genes in disease; Immunoglobin gene expression; and Immunoglobin-related genes.

  9. Studying Genes

    MedlinePlus

    ... Sheets What are genes? Genes are segments of DNA that contain instructions for building the molecules that ... proteins. Parents pass their genes to their offspring. DNA is shaped like a corkscrew-twisted ladder, called ...

  10. Gene Therapy

    MedlinePlus

    ... cells in an effort to treat or stop disease. Genes contain your DNA — the code that controls much of your body's form and function, from making you grow taller to regulating your body systems. Genes that don't work properly can cause disease. Gene therapy replaces a faulty gene or adds ...

  11. Gene Positioning

    PubMed Central

    Ferrai, Carmelo; de Castro, Inês Jesus; Lavitas, Liron; Chotalia, Mita; Pombo, Ana

    2010-01-01

    Eukaryotic gene expression is an intricate multistep process, regulated within the cell nucleus through the activation or repression of RNA synthesis, processing, cytoplasmic export, and translation into protein. The major regulators of gene expression are chromatin remodeling and transcription machineries that are locally recruited to genes. However, enzymatic activities that act on genes are not ubiquitously distributed throughout the nucleoplasm, but limited to specific and spatially defined foci that promote preferred higher-order chromatin arrangements. The positioning of genes within the nuclear landscape relative to specific functional landmarks plays an important role in gene regulation and disease. PMID:20484389

  12. Gene doping.

    PubMed

    Azzazy, Hassan M E

    2010-01-01

    Gene doping abuses the legitimate approach of gene therapy. While gene therapy aims to correct genetic disorders by introducing a foreign gene to replace an existing faulty one or by manipulating existing gene(s) to achieve a therapeutic benefit, gene doping employs the same concepts to bestow performance advantages on athletes over their competitors. Recent developments in genetic engineering have contributed significantly to the progress of gene therapy research and currently numerous clinical trials are underway. Some athletes and their staff are probably watching this progress closely. Any gene that plays a role in muscle development, oxygen delivery to tissues, neuromuscular coordination, or even pain control is considered a candidate for gene dopers. Unfortunately, detecting gene doping is technically very difficult because the transgenic proteins expressed by the introduced genes are similar to their endogenous counterparts. Researchers today are racing the clock because assuring the continued integrity of sports competition depends on their ability to develop effective detection strategies in preparation for the 2012 Olympics, which may mark the appearance of genetically modified athletes.

  13. Gene therapy.

    PubMed

    Williamson, B

    1982-07-29

    Gene therapy is not yet possible, but may become feasible soon, particularly for well understood gene defects. Although treatment of a patient raises no ethical problems once it can be done well, changing the genes of an early embryo is more difficult, controversial and unlikely to be required clinically.

  14. Gene Therapy

    PubMed Central

    Scheller, E.L.; Krebsbach, P.H.

    2009-01-01

    Gene therapy is defined as the treatment of disease by transfer of genetic material into cells. This review will explore methods available for gene transfer as well as current and potential applications for craniofacial regeneration, with emphasis on future development and design. Though non-viral gene delivery methods are limited by low gene transfer efficiency, they benefit from relative safety, low immunogenicity, ease of manufacture, and lack of DNA insert size limitation. In contrast, viral vectors are nature’s gene delivery machines that can be optimized to allow for tissue-specific targeting, site-specific chromosomal integration, and efficient long-term infection of dividing and non-dividing cells. In contrast to traditional replacement gene therapy, craniofacial regeneration seeks to use genetic vectors as supplemental building blocks for tissue growth and repair. Synergistic combination of viral gene therapy with craniofacial tissue engineering will significantly enhance our ability to repair and replace tissues in vivo. PMID:19641145

  15. Gene dispensability.

    PubMed

    Korona, Ryszard

    2011-08-01

    Genome-wide mutagenesis studies indicate that up to about 90% of genes in bacteria and 80% in eukaryotes can be inactivated individually leaving an organism viable, often seemingly unaffected. Several strategies are used to learn what these apparently dispensable genes contribute to fitness. Assays of growth under hundreds of physical and chemical stresses are among the most effective experimental approaches. Comparative studies of genomic DNA sequences continue to be valuable in discriminating between the core bacterial genome and the more variable niche-specific genes. The concept of the core genome appears currently unfeasible for eukaryotes but progress has been made in understanding why they contain numerous gene duplicates.

  16. Trichoderma genes

    DOEpatents

    Foreman, Pamela [Los Altos, CA; Goedegebuur, Frits [Vlaardingen, NL; Van Solingen, Pieter [Naaldwijk, NL; Ward, Michael [San Francisco, CA

    2012-06-19

    Described herein are novel gene sequences isolated from Trichoderma reesei. Two genes encoding proteins comprising a cellulose binding domain, one encoding an arabionfuranosidase and one encoding an acetylxylanesterase are described. The sequences, CIP1 and CIP2, contain a cellulose binding domain. These proteins are especially useful in the textile and detergent industry and in pulp and paper industry.

  17. Gene therapy.

    PubMed

    Drugan, A; Miller, O J; Evans, M I

    1987-01-01

    Severe genetic disorders are potentially correctable by the addition of a normal gene into tissues. Although the technical problems involving integration, stable expression, and insertional damage to the treated cell are not yet fully solved, enough scientific progress has already been made to consider somatic cell gene therapy acceptable from both the ethical and scientific viewpoints. The resolutions to problems evolving from somatic cell gene therapy will help to overcome the technical difficulties encountered presently with germ line gene manipulation. This procedure would then become morally permissible as it will cause, in time, a reduction in the pool of abnormal genes in the population. Enhancement genetic engineering is technically feasible but morally unacceptable. Eugenic genetic engineering is not technically possible or ethically permissible in the foreseeable future.

  18. [Gene and gene sequence patenting].

    PubMed

    Bergel, S D

    1998-01-01

    According to the author, the patenting of elements isolated or copied from the human body boils down to the issue of genes and gene sequences. He describes the current situation from the comparative law standpoint (U.S. and Spanish law mainly) and then esamines the biotechnology industry's position.

  19. [Sleep genes].

    PubMed

    Prospéro-García, O; Guzmán, K; Méndez-Diaz, M; Herrera-Solís, A; Ruiz-Contreras, A

    Sleep is a non-learned adaptive strategy that depends on the expression of several neurotransmitters and other molecules. The expression of some of these molecules depends on a number of different genes. Sleep disorders are associated with an inadequate expression of some molecules, which therefore indicates that these genes that code for these molecules participate in the regulation of normal sleep. To discuss the evidence on gene regulation over the occurrence of sleep and its architecture, as well as of sleep disorders, which supports the participation of specific genes. We describe the evidence on sleep in mammals, particularly in humans, in addition to studies with twins that demonstrate the influence of genes on sleep regulation. We also discuss several sleep disorders, which in this study only serves to emphasise how certain specific genes, under normal conditions, participate in the expression of sleep. Furthermore, evidence is also provided for other molecules, such as endocannibinoids, involved in sleep regulation. Lastly, we report on studies conducted with different strains of mice that show differences in the amount of sleep they express, possibly as an epiphenomenon of their different genetic loads. A number of different genes have been described as those responsible for making us sleep, although sleeping also depends on our interaction with the environment. This interaction is what makes us express sleep at times that are best suited to favouring our survival.

  20. Gene Therapy.

    PubMed

    Thorne, Barb; Takeya, Ryan; Vitelli, Francesca; Swanson, Xin

    2017-03-14

    Gene therapy refers to a rapidly growing field of medicine in which genes are introduced into the body to treat or prevent diseases. Although a variety of methods can be used to deliver the genetic materials into the target cells and tissues, modified viral vectors represent one of the more common delivery routes because of its transduction efficiency for therapeutic genes. Since the introduction of gene therapy concept in the 1970s, the field has advanced considerably with notable clinical successes being demonstrated in many clinical indications in which no standard treatment options are currently available. It is anticipated that the clinical success the field observed in recent years can drive requirements for more scalable, robust, cost effective, and regulatory-compliant manufacturing processes. This review provides a brief overview of the current manufacturing technologies for viral vectors production, drawing attention to the common upstream and downstream production process platform that is applicable across various classes of viral vectors and their unique manufacturing challenges as compared to other biologics. In addition, a case study of an industry-scale cGMP production of an AAV-based gene therapy product performed at 2,000 L-scale is presented. The experience and lessons learned from this largest viral gene therapy vector production run conducted to date as discussed and highlighted in this review should contribute to future development of commercial viable scalable processes for vial gene therapies.

  1. Expressing support for students to learn about Christopher Columbus.

    THOMAS, 111th Congress

    Rep. Thompson, Glenn [R-PA-5

    2009-10-13

    11/16/2009 Referred to the Subcommittee on Early Childhood, Elementary, and Secondary Education. (All Actions) Tracker: This bill has the status Agreed to in HouseHere are the steps for Status of Legislation:

  2. The Education Connection: Christopher Columbus to Sherman Alexie.

    ERIC Educational Resources Information Center

    Connell-Szasz, Margaret

    1999-01-01

    Educational exchange between American Indians and outsiders is examined in three periods. From first contact to the mid-1800s, knowledge was exchanged relatively equally. From the mid-1800s to the mid-1900s, acculturation was imposed upon American Indians. The political liberalism of the 1960s spawned renewed interest in Indian culture and rights,…

  3. Once upon a Genocide: Christopher Columbus in Children's Literature.

    ERIC Educational Resources Information Center

    Bigelow, William

    1992-01-01

    Reviews several children's biographies of Columbus and challenges the image of Columbus portrayed in these books. Calls upon educators to be more critical when having elementary school students read about Columbus. (MG)

  4. Listening to Children Think Critically about Christopher Columbus

    ERIC Educational Resources Information Center

    Henning, Mary Beth; Snow-Gerono, Jennifer L.; Reed, Diane; Warner, Amy

    2006-01-01

    This article describes a story of two fourth-grade teachers' journey to create lessons that would be developmentally appropriate, culturally sensitive, and historically accurate in teaching children about Columbus's encounter with Native Americans. The aim of this four-week unit of study was to have fourth-grade students look at multiple…

  5. Expressing support for students to learn about Christopher Columbus.

    THOMAS, 111th Congress

    Rep. Thompson, Glenn [R-PA-5

    2009-10-13

    House - 11/16/2009 Referred to the Subcommittee on Early Childhood, Elementary, and Secondary Education. (All Actions) Tracker: This bill has the status Agreed to in HouseHere are the steps for Status of Legislation:

  6. General Christopher C. Andrews: Leading the Minnesota Forestry Revolution

    ERIC Educational Resources Information Center

    Rice, Anna M.

    2002-01-01

    In the nineteenth century, America's burgeoning population certainly did grab all the timber it could. Vast pine forests stretched from Maine to Dakota, and the lumber industry voraciously consumed them from east to west. In 1800, the Minnesota territory was sparsely sprinkled with fur traders and American Indians. By 1850, its bounteous forests…

  7. Christoph Scheiner's Main Work "Rosa Ursina sive Sol"

    NASA Astrophysics Data System (ADS)

    Daxecker, Franz

    In volume I Scheiner tackles the issue of who was first to discover the sunspots, he also proves that Galilei made errors of observation. Volume II shows illustrations of telescopes, projection methods and compares the optics of a telescope with that of the human eye. In volume III, observations on sunspots are illustrated. Volume IV consists two parts. The first part again deals with the phenomena of the sun, the second part is a collection of quotations from the Scriptures, Church Fathers and philosophers, all designed to prove that Scheiner's interpretation of the fluid heavens conformed to Catholic doctrine.

  8. General Christopher C. Andrews: Leading the Minnesota Forestry Revolution

    ERIC Educational Resources Information Center

    Rice, Anna M.

    2002-01-01

    In the nineteenth century, America's burgeoning population certainly did grab all the timber it could. Vast pine forests stretched from Maine to Dakota, and the lumber industry voraciously consumed them from east to west. In 1800, the Minnesota territory was sparsely sprinkled with fur traders and American Indians. By 1850, its bounteous forests…

  9. For the relief of Mikael Adrian Christopher Figueroa Alvarez.

    THOMAS, 111th Congress

    Rep. Lofgren, Zoe [D-CA-16

    2009-02-13

    03/10/2009 Referred to the Subcommittee on Immigration, Citizenship, Refugees, Border Security, and International Law. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  10. Expressing support for students to learn about Christopher Columbus.

    THOMAS, 111th Congress

    Rep. Thompson, Glenn [R-PA-5

    2009-10-13

    11/16/2009 Referred to the Subcommittee on Early Childhood, Elementary, and Secondary Education. (All Actions) Tracker: This bill has the status Passed HouseHere are the steps for Status of Legislation:

  11. Genes V.

    SciTech Connect

    Lewin, B.

    1994-12-31

    This fifth edition book encompasses a wide range of topics covering 1,272 pages. The book is arranged into nine parts with a total of 36 chapters. These nine parts include Introduction; DNA as a Store of Information; Translation; Constructing Cells; Control of Prokaryotypic Gene Expression; Perpetuation of DNA; Organization of the Eukaryotypic Genome; Eukaryotypic Transcription and RNA Processing; The Dynamic Genome; and Genes in Development.

  12. Christoph Scheiner and the optics of the eye. (German Title: Christoph Scheiner und die Optik des Auges)

    NASA Astrophysics Data System (ADS)

    Daxecker, Franz

    Some of Scheiner's discoveries and experiments are taken from the books «Oculus», (Innsbruck 1619) and «Rosa Ursina sive Sol» (Rome 1626-1630): determination of the radius of curvature of the cornea, discovery of the nasal exit of the visual nerve, increase in the curvature of the lens in case of accommodation, anatomy of the eye, light reaction of the pupil, contraction of the pupil during accommodation, Scheiner's test (double images caused by ametropia), stenopeic effect, crossing rays in the eye, aperture, description of the cataract treatment, refractive indices of various parts of the eye, eye model, visual pivot angle of the eye, proof of crossing rays on the retina, comparison of the camera obscura and the optics of the eye.

  13. Attention Genes

    ERIC Educational Resources Information Center

    Posner, Michael I.; Rothbart, Mary K.; Sheese, Brad E.

    2007-01-01

    A major problem for developmental science is understanding how the cognitive and emotional networks important in carrying out mental processes can be related to individual differences. The last five years have seen major advances in establishing links between alleles of specific genes and the neural networks underlying aspects of attention. These…

  14. Designer Genes.

    ERIC Educational Resources Information Center

    Miller, Judith; Miller, Mark

    1983-01-01

    Genetic technologies may soon help fill some of the most important needs of humanity from food to energy to health care. The research of major designer genes companies and reasons why the initial mad rush for biotechnology has slowed are reviewed. (SR)

  15. Designer Genes.

    ERIC Educational Resources Information Center

    Miller, Judith; Miller, Mark

    1983-01-01

    Genetic technologies may soon help fill some of the most important needs of humanity from food to energy to health care. The research of major designer genes companies and reasons why the initial mad rush for biotechnology has slowed are reviewed. (SR)

  16. Attention Genes

    ERIC Educational Resources Information Center

    Posner, Michael I.; Rothbart, Mary K.; Sheese, Brad E.

    2007-01-01

    A major problem for developmental science is understanding how the cognitive and emotional networks important in carrying out mental processes can be related to individual differences. The last five years have seen major advances in establishing links between alleles of specific genes and the neural networks underlying aspects of attention. These…

  17. Endothelial Genes

    DTIC Science & Technology

    2005-06-01

    Suppression subtractive hybridization re- Cancer: principles and practice of oncology. Philadelphia: Lippincott- vealed an RNA sequence (GenBank accession...Lau YC, Campbell AP, et al. Suppression subtractive hybridization : A method for generating differentially regulated or tissue-tissues, EG-1 appears to...this gene, we investigated its interaction with Src and members of the called suppression subtractive hybridization (12). In human mitogen-activated

  18. Vulnerability genes or plasticity genes?

    PubMed Central

    Belsky, J; Jonassaint, C; Pluess, M; Stanton, M; Brummett, B; Williams, R

    2009-01-01

    The classic diathesis–stress framework, which views some individuals as particularly vulnerable to adversity, informs virtually all psychiatric research on behavior–gene–environment (G × E) interaction. An alternative framework of ‘differential susceptibility' is proposed, one which regards those most susceptible to adversity because of their genetic make up as simultaneously most likely to benefit from supportive or enriching experiences—or even just the absence of adversity. Recent G × E findings consistent with this perspective and involving monoamine oxidase-A, 5-HTTLPR (5-hydroxytryptamine-linked polymorphic region polymorphism) and dopamine receptor D4 (DRD4) are reviewed for illustrative purposes. Results considered suggest that putative ‘vulnerability genes' or ‘risk alleles' might, at times, be more appropriately conceptualized as ‘plasticity genes', because they seem to make individuals more susceptible to environmental influences—for better and for worse. PMID:19455150

  19. Compare Gene Profiles

    SciTech Connect

    2014-05-31

    Compare Gene Profiles (CGP) performs pairwise gene content comparisons among a relatively large set of related bacterial genomes. CGP performs pairwise BLAST among gene calls from a set of input genome and associated annotation files, and combines the results to generate lists of common genes, unique genes, homologs, and genes from each genome that differ substantially in length from corresponding genes in the other genomes. CGP is implemented in Python and runs in a Linux environment in serial or parallel mode.

  20. Compare Gene Profiles

    SciTech Connect

    2014-05-31

    Compare Gene Profiles (CGP) performs pairwise gene content comparisons among a relatively large set of related bacterial genomes. CGP performs pairwise BLAST among gene calls from a set of input genome and associated annotation files, and combines the results to generate lists of common genes, unique genes, homologs, and genes from each genome that differ substantially in length from corresponding genes in the other genomes. CGP is implemented in Python and runs in a Linux environment in serial or parallel mode.

  1. Gene and enhancer traps for gene discovery.

    PubMed

    Rojas-Pierce, Marcela; Springer, Patricia S

    2003-01-01

    Gene traps and enhancer traps provide a valuable tool for gene discovery. With this system, genes can be identified based solely on the expression pattern of an inserted reporter gene. The use of a reporter gene, such as beta-glucuoronidase (GUS), provides a very sensitive assay for the identification of tissue- and cell-type specific expression patterns. In this chapter, protocols for examining and documenting GUS reporter gene activity in individual lines are described. Methods for the amplification of sequences flanking transposant insertions and subsequent molecular and genetic characterization of individual insertions are provided.

  2. Gene gymnastics

    PubMed Central

    Vijayachandran, Lakshmi S; Thimiri Govinda Raj, Deepak B; Edelweiss, Evelina; Gupta, Kapil; Maier, Josef; Gordeliy, Valentin; Fitzgerald, Daniel J; Berger, Imre

    2013-01-01

    Most essential activities in eukaryotic cells are catalyzed by large multiprotein assemblies containing up to ten or more interlocking subunits. The vast majority of these protein complexes are not easily accessible for high resolution studies aimed at unlocking their mechanisms, due to their low cellular abundance and high heterogeneity. Recombinant overproduction can resolve this bottleneck and baculovirus expression vector systems (BEVS) have emerged as particularly powerful tools for the provision of eukaryotic multiprotein complexes in high quality and quantity. Recently, synthetic biology approaches have begun to make their mark in improving existing BEVS reagents by de novo design of streamlined transfer plasmids and by engineering the baculovirus genome. Here we present OmniBac, comprising new custom designed reagents that further facilitate the integration of heterologous genes into the baculovirus genome for multiprotein expression. Based on comparative genome analysis and data mining, we herein present a blueprint to custom design and engineer the entire baculovirus genome for optimized production properties using a bottom-up synthetic biology approach. PMID:23328086

  3. Gene doping: gene delivery for olympic victory.

    PubMed

    Gould, David

    2013-08-01

    With one recently recommended gene therapy in Europe and a number of other gene therapy treatments now proving effective in clinical trials it is feasible that the same technologies will soon be adopted in the world of sport by unscrupulous athletes and their trainers in so called 'gene doping'. In this article an overview of the successful gene therapy clinical trials is provided and the potential targets for gene doping are highlighted. Depending on whether a doping gene product is secreted from the engineered cells or is retained locally to, or inside engineered cells will, to some extent, determine the likelihood of detection. It is clear that effective gene delivery technologies now exist and it is important that detection and prevention plans are in place.

  4. Gene Cluster Statistics with Gene Families

    PubMed Central

    Durand, Dannie

    2009-01-01

    Identifying genomic regions that descended from a common ancestor is important for understanding the function and evolution of genomes. In distantly related genomes, clusters of homologous gene pairs are evidence of candidate homologous regions. Demonstrating the statistical significance of such “gene clusters” is an essential component of comparative genomic analyses. However, currently there are no practical statistical tests for gene clusters that model the influence of the number of homologs in each gene family on cluster significance. In this work, we demonstrate empirically that failure to incorporate gene family size in gene cluster statistics results in overestimation of significance, leading to incorrect conclusions. We further present novel analytical methods for estimating gene cluster significance that take gene family size into account. Our methods do not require complete genome data and are suitable for testing individual clusters found in local regions, such as contigs in an unfinished assembly. We consider pairs of regions drawn from the same genome (paralogous clusters), as well as regions drawn from two different genomes (orthologous clusters). Determining cluster significance under general models of gene family size is computationally intractable. By assuming that all gene families are of equal size, we obtain analytical expressions that allow fast approximation of cluster probabilities. We evaluate the accuracy of this approximation by comparing the resulting gene cluster probabilities with cluster probabilities obtained by simulating a realistic, power-law distributed model of gene family size, with parameters inferred from genomic data. Surprisingly, despite the simplicity of the underlying assumption, our method accurately approximates the true cluster probabilities. It slightly overestimates these probabilities, yielding a conservative test. We present additional simulation results indicating the best choice of parameter values for data

  5. Compare Gene Calls

    SciTech Connect

    Ecale Zhou, Carol L.

    2016-07-05

    Compare Gene Calls (CGC) is a Python code used for combining and comparing gene calls from any number of gene callers. A gene caller is a computer program that predicts the extends of open reading frames within genomes of biological organisms.

  6. Autism and Genes

    ERIC Educational Resources Information Center

    National Institutes of Health, 2005

    2005-01-01

    This document defines and discusses autism and how genes play a role in the condition. Answers to the following questions are covered: (1) What are genes? (2) What is autism? (3) What causes autism? (4) Why study genes to learn about autism? (5) How do researchers look for the genes involved in autism? (screen the whole genome; conduct cytogenetic…

  7. Epilepsy-associated genes.

    PubMed

    Wang, Jie; Lin, Zhi-Jian; Liu, Liu; Xu, Hai-Qing; Shi, Yi-Wu; Yi, Yong-Hong; He, Na; Liao, Wei-Ping

    2017-01-01

    Development in genetic technology has led to the identification of an increasing number of genes associated with epilepsy. These discoveries will both provide the basis for including genetic tests in clinical practice and improve diagnosis and treatment of epilepsy. By searching through several databases (OMIM, HGMD, and EpilepsyGene) and recent publications on PubMed, we found 977 genes that are associated with epilepsy. We classified these genes into 4 categories according to the manifestation of epilepsy in phenotypes. We found 84 genes that are considered as epilepsy genes: genes that cause epilepsies or syndromes with epilepsy as the core symptom. 73 genes were listed as neurodevelopment-associated genes: genes associated with both brain-development malformations and epilepsy. Several genes (536) were epilepsy-related: genes associated with both physical or other systemic abnormalities and epilepsy or seizures. We found 284 additional genes putatively associated with epilepsy; this requires further verification. These integrated data will provide new insights useful for both including genetic tests in the clinical practice and evaluating the results of genetic tests. We also summarized the epilepsy-associated genes according to their function, with the goal to better characterize the association between genes and epilepsies and to further understand the mechanisms underlying epilepsy.

  8. Speciation genes in plants

    PubMed Central

    Rieseberg, Loren H.; Blackman, Benjamin K.

    2010-01-01

    Background Analyses of speciation genesgenes that contribute to the cessation of gene flow between populations – can offer clues regarding the ecological settings, evolutionary forces and molecular mechanisms that drive the divergence of populations and species. This review discusses the identities and attributes of genes that contribute to reproductive isolation (RI) in plants, compares them with animal speciation genes and investigates what these genes can tell us about speciation. Scope Forty-one candidate speciation genes were identified in the plant literature. Of these, seven contributed to pre-pollination RI, one to post-pollination, prezygotic RI, eight to hybrid inviability, and 25 to hybrid sterility. Genes, gene families and genetic pathways that were frequently found to underlie the evolution of RI in different plant groups include the anthocyanin pathway and its regulators (pollinator isolation), S RNase-SI genes (unilateral incompatibility), disease resistance genes (hybrid necrosis), chimeric mitochondrial genes (cytoplasmic male sterility), and pentatricopeptide repeat family genes (cytoplasmic male sterility). Conclusions The most surprising conclusion from this review is that identities of genes underlying both prezygotic and postzygotic RI are often predictable in a broad sense from the phenotype of the reproductive barrier. Regulatory changes (both cis and trans) dominate the evolution of pre-pollination RI in plants, whereas a mix of regulatory mutations and changes in protein-coding genes underlie intrinsic postzygotic barriers. Also, loss-of-function mutations and copy number variation frequently contribute to RI. Although direct evidence of positive selection on speciation genes is surprisingly scarce in plants, analyses of gene family evolution, along with theoretical considerations, imply an important role for diversifying selection and genetic conflict in the evolution of RI. Unlike in animals, however, most candidate speciation

  9. Human Gene Therapy: Genes without Frontiers?

    ERIC Educational Resources Information Center

    Simon, Eric J.

    2002-01-01

    Describes the latest advancements and setbacks in human gene therapy to provide reference material for biology teachers to use in their science classes. Focuses on basic concepts such as recombinant DNA technology, and provides examples of human gene therapy such as severe combined immunodeficiency syndrome, familial hypercholesterolemia, and…

  10. Human Gene Therapy: Genes without Frontiers?

    ERIC Educational Resources Information Center

    Simon, Eric J.

    2002-01-01

    Describes the latest advancements and setbacks in human gene therapy to provide reference material for biology teachers to use in their science classes. Focuses on basic concepts such as recombinant DNA technology, and provides examples of human gene therapy such as severe combined immunodeficiency syndrome, familial hypercholesterolemia, and…

  11. Gene regulation in cancer gene therapy strategies.

    PubMed

    Scanlon, Ian; Lehouritis, Panos; Niculescu-Duvaz, Ion; Marais, Richard; Springer, Caroline J

    2003-10-01

    Regulation of expression in gene therapy is considered to be a very desirable goal, preventing toxic effects and improving biological efficacy. A variety of systems have been reported in an ever widening range of applications, this paper describes these systems with specific reference to cancer gene therapy.

  12. Evolution by gene loss.

    PubMed

    Albalat, Ricard; Cañestro, Cristian

    2016-07-01

    The recent increase in genomic data is revealing an unexpected perspective of gene loss as a pervasive source of genetic variation that can cause adaptive phenotypic diversity. This novel perspective of gene loss is raising new fundamental questions. How relevant has gene loss been in the divergence of phyla? How do genes change from being essential to dispensable and finally to being lost? Is gene loss mostly neutral, or can it be an effective way of adaptation? These questions are addressed, and insights are discussed from genomic studies of gene loss in populations and their relevance in evolutionary biology and biomedicine.

  13. Human gene therapy.

    PubMed

    Sandhu, J S; Keating, A; Hozumi, N

    1997-01-01

    Human gene therapy and its application for the treatment of human genetic disorders, such as cystic fibrosis, cancer, and other diseases, are discussed. Gene therapy is a technique in which a functioning gene is inserted into a human cell to correct a genetic error or to introduce a new function to the cell. Many methods, including retroviral vectors and non-viral vectors, have been developed for both ex vivo and in vivo gene transfer into cells. Vectors need to be developed that efficiently transfer genes to target cells, and promoter systems are required that regulate gene expression according to physiologic needs of the host cell. There are several safety and ethical issues related to manipulating the human genome that need to be resolved. Current gene therapy efforts focus on gene insertion into somatic cells only. Gene therapy has potential for the effective treatment of genetic disorders, and gene transfer techniques are being used for basic research, for example, in cancer, to examine the underlying mechanism of disease. There are still many technical obstacles to be overcome before human gene therapy can become a routine procedure. The current human genome project provides the sequences of a vast number of human genes, leading to the identification, characterization, and understanding of genes that are responsible for many human diseases.

  14. Gene therapy for blindness.

    PubMed

    Sahel, José-Alain; Roska, Botond

    2013-07-08

    Sight-restoring therapy for the visually impaired and blind is a major unmet medical need. Ocular gene therapy is a rational choice for restoring vision or preventing the loss of vision because most blinding diseases originate in cellular components of the eye, a compartment that is optimally suited for the delivery of genes, and many of these diseases have a genetic origin or genetic component. In recent years we have witnessed major advances in the field of ocular gene therapy, and proof-of-concept studies are under way to evaluate the safety and efficacy of human gene therapies. Here we discuss the concepts and recent advances in gene therapy in the retina. Our review discusses traditional approaches such as gene replacement and neuroprotection and also new avenues such as optogenetic therapies. We conjecture that advances in gene therapy in the retina will pave the way for gene therapies in other parts of the brain.

  15. Myocardial gene therapy

    NASA Astrophysics Data System (ADS)

    Isner, Jeffrey M.

    2002-01-01

    Gene therapy is proving likely to be a viable alternative to conventional therapies in coronary artery disease and heart failure. Phase 1 clinical trials indicate high levels of safety and clinical benefits with gene therapy using angiogenic growth factors in myocardial ischaemia. Although gene therapy for heart failure is still at the pre-clinical stage, experimental data indicate that therapeutic angiogenesis using short-term gene expression may elicit functional improvement in affected individuals.

  16. Evolution of Gene Expression after Gene Amplification

    PubMed Central

    Garcia, Nelson; Zhang, Wei; Wu, Yongrui; Messing, Joachim

    2015-01-01

    We took a rather unique approach to investigate the conservation of gene expression of prolamin storage protein genes across two different subfamilies of the Poaceae. We took advantage of oat plants carrying single maize chromosomes in different cultivars, called oat–maize addition (OMA) lines, which permitted us to determine whether regulation of gene expression was conserved between the two species. We found that γ-zeins are expressed in OMA7.06, which carries maize chromosome 7 even in the absence of the trans-acting maize prolamin-box-binding factor (PBF), which regulates their expression. This is likely because oat PBF can substitute for the function of maize PBF as shown in our transient expression data, using a γ-zein promoter fused to green fluorescent protein (GFP). Despite this conservation, the younger, recently amplified prolamin genes in maize, absent in oat, are not expressed in the corresponding OMAs. However, maize can express the oldest prolamin gene, the wheat high-molecular weight glutenin Dx5 gene, even when maize Pbf is knocked down (through PbfRNAi), and/or another maize transcription factor, Opaque-2 (O2) is knocked out (in maize o2 mutant). Therefore, older genes are conserved in their regulation, whereas younger ones diverged during evolution and eventually acquired a new repertoire of suitable transcriptional activators. PMID:25912045

  17. Reading and Generalist Genes

    ERIC Educational Resources Information Center

    Haworth, Claire M. A.; Meaburn, Emma L.; Harlaar, Nicole; Plomin, Robert

    2007-01-01

    Twin-study research suggests that many (but not all) of the same genes contribute to genetic influence on diverse learning abilities and disabilities, a hypothesis called "generalist genes". This generalist genes hypothesis was tested using a set of 10 DNA markers (single nucleotide polymorphisms [SNPs]) found to be associated with early reading…

  18. Reading and Generalist Genes

    ERIC Educational Resources Information Center

    Haworth, Claire M. A.; Meaburn, Emma L.; Harlaar, Nicole; Plomin, Robert

    2007-01-01

    Twin-study research suggests that many (but not all) of the same genes contribute to genetic influence on diverse learning abilities and disabilities, a hypothesis called "generalist genes". This generalist genes hypothesis was tested using a set of 10 DNA markers (single nucleotide polymorphisms [SNPs]) found to be associated with early reading…

  19. A Novel Approach to the Elucidation of the Mechanism of Development of Androgen-Independent Growth of Prostate Cancer

    DTIC Science & Technology

    2001-01-01

    Receiving Pay From Research Effort James L. Mohler, M.D. Christopher Gregory, Ph.D. Tammy Morris Conclusion In summary, we have identified candidate...Using Color Video Image Analysis Desok Kim,1 Christopher W. Gregory,2 GaryJ. Smith, 3,4 andJames L. Mohler1,3,4. ’Department of Surgery, Division of...Androgen-independent Prostate Cancer Is Associated with Increased Expression of Androgen-regulated GenesChristopher W. Gregory, Katherine G. Hamil

  20. Gene hunting in autoinflammation

    PubMed Central

    2013-01-01

    Steady progress in our understanding of the genetic basis of autoinflammatory diseases has been made over the past 16 years. Since the discovery of the familial Mediterranean fever gene MEFV (also known as marenostrin) in 1997, 18 other genes responsible for monogenic autoinflammatory diseases have been identified to date. The discovery of these genes was made through the utilisation of many genetic mapping techniques, including next generation sequencing platforms. This review article clearly describes the gene hunting approaches, methods of data analysis and the technological platforms used, which has relevance to all those working within the field of gene discovery for Mendelian disorders. PMID:24070009

  1. Gene therapy review.

    PubMed

    Moss, Joseph Anthony

    2014-01-01

    The use of genes to treat disease, more commonly known as gene therapy, is a valid and promising tool to manage and treat diseases that conventional drug therapies cannot cure. Gene therapy holds the potential to control a wide range of diseases, including cystic fibrosis, heart disease, diabetes, cancer, and blood diseases. This review assesses the current status of gene therapy, highlighting therapeutic methodologies and applications, terminology, and imaging strategies. This article presents an overview of roadblocks associated with each therapeutic methodology, along with some of the scientific, social, and ethical issues associated with gene therapy.

  2. Gene therapy in periodontics.

    PubMed

    Chatterjee, Anirban; Singh, Nidhi; Saluja, Mini

    2013-03-01

    GENES are made of DNA - the code of life. They are made up of two types of base pair from different number of hydrogen bonds AT, GC which can be turned into instruction. Everyone inherits genes from their parents and passes them on in turn to their children. Every person's genes are different, and the changes in sequence determine the inherited differences between each of us. Some changes, usually in a single gene, may cause serious diseases. Gene therapy is 'the use of genes as medicine'. It involves the transfer of a therapeutic or working gene copy into specific cells of an individual in order to repair a faulty gene copy. Thus it may be used to replace a faulty gene, or to introduce a new gene whose function is to cure or to favorably modify the clinical course of a condition. It has a promising era in the field of periodontics. Gene therapy has been used as a mode of tissue engineering in periodontics. The tissue engineering approach reconstructs the natural target tissue by combining four elements namely: Scaffold, signaling molecules, cells and blood supply and thus can help in the reconstruction of damaged periodontium including cementum, gingival, periodontal ligament and bone.

  3. Regulated Gene Therapy.

    PubMed

    Breger, Ludivine; Wettergren, Erika Elgstrand; Quintino, Luis; Lundberg, Cecilia

    2016-01-01

    Gene therapy represents a promising approach for the treatment of monogenic and multifactorial neurological disorders. It can be used to replace a missing gene and mutated gene or downregulate a causal gene. Despite the versatility of gene therapy, one of the main limitations lies in the irreversibility of the process: once delivered to target cells, the gene of interest is constitutively expressed and cannot be removed. Therefore, efficient, safe and long-term gene modification requires a system allowing fine control of transgene expression.Different systems have been developed over the past decades to regulate transgene expression after in vivo delivery, either at transcriptional or post-translational levels. The purpose of this chapter is to give an overview on current regulatory system used in the context of gene therapy for neurological disorders. Systems using external regulation of transgenes using antibiotics are commonly used to control either gene expression using tetracycline-controlled transcription or protein levels using destabilizing domain technology. Alternatively, specific promoters of genes that are regulated by disease mechanisms, increasing expression as the disease progresses or decreasing expression as disease regresses, are also examined. Overall, this chapter discusses advantages and drawbacks of current molecular methods for regulated gene therapy in the central nervous system.

  4. Conventional murine gene targeting.

    PubMed

    Zimmermann, Albert G; Sun, Yue

    2013-01-01

    Murine gene knockout models engineered over the last two decades have continued to demonstrate their potential as invaluable tools in understanding the role of gene function in the context of normal human development and disease. The more recent elucidation of the human and mouse genomes through sequencing has opened up the capability to elucidate the function of every human gene. State-of-the-art mouse model generation allows, through a multitude of experimental steps requiring careful standardization, gene function to be reliably and predictably ablated in a live model system. The application of these standardized methodologies to directly target gene function through murine gene knockout has to date provided comprehensive and verifiable genetic models that have contributed tremendously to our understanding of the cellular and molecular pathways underlying normal and disease states in humans. The ensuing chapter provides an overview of the latest steps and procedures required to ablate gene function in a murine model.

  5. Retrieval with gene queries.

    PubMed

    Sehgal, Aditya K; Srinivasan, Padmini

    2006-04-21

    Accuracy of document retrieval from MEDLINE for gene queries is crucially important for many applications in bioinformatics. We explore five information retrieval-based methods to rank documents retrieved by PubMed gene queries for the human genome. The aim is to rank relevant documents higher in the retrieved list. We address the special challenges faced due to ambiguity in gene nomenclature: gene terms that refer to multiple genes, gene terms that are also English words, and gene terms that have other biological meanings. Our two baseline ranking strategies are quite similar in performance. Two of our three LocusLink-based strategies offer significant improvements. These methods work very well even when there is ambiguity in the gene terms. Our best ranking strategy offers significant improvements on three different kinds of ambiguities over our two baseline strategies (improvements range from 15.9% to 17.7% and 11.7% to 13.3% depending on the baseline). For most genes the best ranking query is one that is built from the LocusLink (now Entrez Gene) summary and product information along with the gene names and aliases. For others, the gene names and aliases suffice. We also present an approach that successfully predicts, for a given gene, which of these two ranking queries is more appropriate. We explore the effect of different post-retrieval strategies on the ranking of documents returned by PubMed for human gene queries. We have successfully applied some of these strategies to improve the ranking of relevant documents in the retrieved sets. This holds true even when various kinds of ambiguity are encountered. We feel that it would be very useful to apply strategies like ours on PubMed search results as these are not ordered by relevance in any way. This is especially so for queries that retrieve a large number of documents.

  6. Human HOX gene disorders.

    PubMed

    Quinonez, Shane C; Innis, Jeffrey W

    2014-01-01

    The Hox genes are an evolutionarily conserved family of genes, which encode a class of important transcription factors that function in numerous developmental processes. Following their initial discovery, a substantial amount of information has been gained regarding the roles Hox genes play in various physiologic and pathologic processes. These processes range from a central role in anterior-posterior patterning of the developing embryo to roles in oncogenesis that are yet to be fully elucidated. In vertebrates there are a total of 39 Hox genes divided into 4 separate clusters. Of these, mutations in 10 Hox genes have been found to cause human disorders with significant variation in their inheritance patterns, penetrance, expressivity and mechanism of pathogenesis. This review aims to describe the various phenotypes caused by germline mutation in these 10 Hox genes that cause a human phenotype, with specific emphasis paid to the genotypic and phenotypic differences between allelic disorders. As clinical whole exome and genome sequencing is increasingly utilized in the future, we predict that additional Hox gene mutations will likely be identified to cause distinct human phenotypes. As the known human phenotypes closely resemble gene-specific murine models, we also review the homozygous loss-of-function mouse phenotypes for the 29 Hox genes without a known human disease. This review will aid clinicians in identifying and caring for patients affected with a known Hox gene disorder and help recognize the potential for novel mutations in patients with phenotypes informed by mouse knockout studies.

  7. Do Housekeeping Genes Exist?

    PubMed Central

    Sun, Bingyun

    2015-01-01

    The searching of human housekeeping (HK) genes has been a long quest since the emergence of transcriptomics, and is instrumental for us to understand the structure of genome and the fundamentals of biological processes. The resolved genes are frequently used in evolution studies and as normalization standards in quantitative gene-expression analysis. Within the past 20 years, more than a dozen HK-gene studies have been conducted, yet none of them sampled human tissues completely. We believe an integration of these results will help remove false positive genes owing to the inadequate sampling. Surprisingly, we only find one common gene across 15 examined HK-gene datasets comprising 187 different tissue and cell types. Our subsequent analyses suggest that it might not be appropriate to rigidly define HK genes as expressed in all tissue types that have diverse developmental, physiological, and pathological states. It might be beneficial to use more robustly identified HK functions for filtering criteria, in which the representing genes can be a subset of genome. These genes are not necessarily the same, and perhaps need not to be the same, everywhere in our body. PMID:25970694

  8. Primetime for Learning Genes

    PubMed Central

    Keifer, Joyce

    2017-01-01

    Learning genes in mature neurons are uniquely suited to respond rapidly to specific environmental stimuli. Expression of individual learning genes, therefore, requires regulatory mechanisms that have the flexibility to respond with transcriptional activation or repression to select appropriate physiological and behavioral responses. Among the mechanisms that equip genes to respond adaptively are bivalent domains. These are specific histone modifications localized to gene promoters that are characteristic of both gene activation and repression, and have been studied primarily for developmental genes in embryonic stem cells. In this review, studies of the epigenetic regulation of learning genes in neurons, particularly the brain-derived neurotrophic factor gene (BDNF), by methylation/demethylation and chromatin modifications in the context of learning and memory will be highlighted. Because of the unique function of learning genes in the mature brain, it is proposed that bivalent domains are a characteristic feature of the chromatin landscape surrounding their promoters. This allows them to be “poised” for rapid response to activate or repress gene expression depending on environmental stimuli. PMID:28208656

  9. Primetime for Learning Genes.

    PubMed

    Keifer, Joyce

    2017-02-11

    Learning genes in mature neurons are uniquely suited to respond rapidly to specific environmental stimuli. Expression of individual learning genes, therefore, requires regulatory mechanisms that have the flexibility to respond with transcriptional activation or repression to select appropriate physiological and behavioral responses. Among the mechanisms that equip genes to respond adaptively are bivalent domains. These are specific histone modifications localized to gene promoters that are characteristic of both gene activation and repression, and have been studied primarily for developmental genes in embryonic stem cells. In this review, studies of the epigenetic regulation of learning genes in neurons, particularly the brain-derived neurotrophic factor gene (BDNF), by methylation/demethylation and chromatin modifications in the context of learning and memory will be highlighted. Because of the unique function of learning genes in the mature brain, it is proposed that bivalent domains are a characteristic feature of the chromatin landscape surrounding their promoters. This allows them to be "poised" for rapid response to activate or repress gene expression depending on environmental stimuli.

  10. Parkinson's disease: gene therapies.

    PubMed

    Coune, Philippe G; Schneider, Bernard L; Aebischer, Patrick

    2012-04-01

    With the recent development of effective gene delivery systems, gene therapy for the central nervous system is finding novel applications. Here, we review existing viral vectors and discuss gene therapy strategies that have been proposed for Parkinson's disease. To date, most of the clinical trials were based on viral vectors to deliver therapeutic transgenes to neurons within the basal ganglia. Initial trials used genes to relieve the major motor symptoms caused by nigrostriatal degeneration. Although these new genetic approaches still need to prove more effective than existing symptomatic treatments, there is a need for disease-modifying strategies. The investigation of the genetic factors implicated in Parkinson's disease is providing precious insights in disease pathology that, combined with innovative gene delivery systems, will hopefully offer novel opportunities for gene therapy interventions to slow down, or even halt disease progression.

  11. Green genes gleaned.

    PubMed

    Beale, Samuel I

    2005-07-01

    A recent paper by Ayumi Tanaka and colleagues identifying an Arabidopsis thaliana gene for 3,8-divinyl(proto)chlorophyllide 8-vinyl reductase brings a satisfying conclusion to the hunt for genes encoding enzymes for the steps in the chlorophyll biosynthetic pathway. Now, at least in angiosperm plants represented by Arabidopsis, genes for all 15 steps in the pathway from glutamyl-tRNA to chlorophylls a and b have been identified.

  12. Cell and gene therapy.

    PubMed

    Rao, Rajesh C; Zacks, David N

    2014-01-01

    Replacement or repair of a dysfunctional gene combined with promoting cell survival is a two-pronged approach that addresses an unmet need in the therapy of retinal degenerative diseases. In this chapter, we discuss various strategies toward achieving both goals: transplantation of wild-type cells to replace degenerating cells and to rescue gene function, sequential gene and cell therapy, and in vivo reprogramming of rods to cones. These approaches highlight cutting-edge advances in cell and gene therapy, and cellular lineage conversion in order to devise new therapies for various retinal degenerative diseases.

  13. Gene-Category Analysis.

    PubMed

    Bauer, Sebastian

    2017-01-01

    Gene-category analysis is one important knowledge integration approach in biomedical sciences that combines knowledge bases such as Gene Ontology with lists of genes or their products, which are often the result of high-throughput experiments, gained from either wet-lab or synthetic experiments. In this chapter, we will motivate this class of analyses and describe an often used variant that is based on Fisher's exact test. We show that this approach has some problems in the context of Gene Ontology of which users should be aware. We then describe some more recent algorithms that try to address some of the shortcomings of the standard approach.

  14. Gene therapy for haemophilia.

    PubMed

    Sharma, Akshay; Easow Mathew, Manu; Sriganesh, Vasumathi; Neely, Jessica A; Kalipatnapu, Sasank

    2014-11-14

    Haemophilia is a genetic disorder which is characterized by spontaneous or provoked, often uncontrolled, bleeding into joints, muscles and other soft tissues. Current methods of treatment are expensive, challenging and involve regular administration of clotting factors. Gene therapy has recently been prompted as a curative treatment modality. To evaluate the safety and efficacy of gene therapy for treating people with haemophilia A or B. We searched the Cochrane Cystic Fibrosis & Genetic Disorders Group's Coagulopathies Trials Register, compiled from electronic database searches and handsearching of journals and conference abstract books. We also searched the reference lists of relevant articles and reviews.Date of last search: 06 November 2014. Eligible trials included randomised or quasi-randomised clinical trials, including controlled clinical trials comparing gene therapy (with or without standard treatment) with standard treatment (factor replacement) or other 'curative' treatment such as stem cell transplantation individuals with haemophilia A or B of all ages who do not have inhibitors to factor VIII or IX. No trials of gene therapy for haemophilia were found. No trials of gene therapy for haemophilia were identified. No randomised or quasi-randomised clinical trials of gene therapy for haemophilia were identified. Thus, we are unable to determine the effects of gene therapy for haemophilia. Gene therapy for haemophilia is still in its nascent stages and there is a need for well-designed clinical trials to assess the long-term feasibility, success and risks of gene therapy for people with haemophilia.

  15. Antiangiogenic Eye Gene Therapy.

    PubMed

    Corydon, Thomas J

    2015-08-01

    The idea of treating disease in humans with genetic material was conceived over two decades ago and with that a promising journey involving development and efficacy studies in cells and animals of a large number of novel therapeutic reagents unfolded. In the footsteps of this process, successful gene therapy treatment of genetic conditions in humans has shown clear signs of efficacy. Notably, significant advancements using gene supplementation and silencing strategies have been made in the field of ocular gene therapy, thereby pinpointing ocular gene therapy as one of the compelling "actors" bringing gene therapy to the clinic. Most of all, this success has been facilitated because of (1) the fact that the eye is an effortlessly accessible, exceedingly compartmentalized, and immune-privileged organ offering a unique advantage as a gene therapy target, and (2) significant progress toward efficient, sustained transduction of cells within the retina having been achieved using nonintegrating vectors based on recombinant adeno-associated virus and nonintegrating lentivirus vectors. The results from in vivo experiments and trials suggest that treatment of inherited retinal dystrophies, ocular angiogenesis, and inflammation with gene therapy can be both safe and effective. Here, the progress of ocular gene therapy is examined with special emphasis on the potential use of RNAi- and protein-based antiangiogenic gene therapy to treat exudative age-related macular degeneration.

  16. History of gene therapy.

    PubMed

    Wirth, Thomas; Parker, Nigel; Ylä-Herttuala, Seppo

    2013-08-10

    Two decades after the initial gene therapy trials and more than 1700 approved clinical trials worldwide we not only have gained much new information and knowledge regarding gene therapy in general, but also learned to understand the concern that has persisted in society. Despite the setbacks gene therapy has faced, success stories have increasingly emerged. Examples for these are the positive recommendation for a gene therapy product (Glybera) by the EMA for approval in the European Union and the positive trials for the treatment of ADA deficiency, SCID-X1 and adrenoleukodystrophy. Nevertheless, our knowledge continues to grow and during the course of time more safety data has become available that helps us to develop better gene therapy approaches. Also, with the increased understanding of molecular medicine, we have been able to develop more specific and efficient gene transfer vectors which are now producing clinical results. In this review, we will take a historical view and highlight some of the milestones that had an important impact on the development of gene therapy. We will also discuss briefly the safety and ethical aspects of gene therapy and address some concerns that have been connected with gene therapy as an important therapeutic modality.

  17. Towards Consensus Gene Ages

    PubMed Central

    Liebeskind, Benjamin J.; McWhite, Claire D.; Marcotte, Edward M.

    2016-01-01

    Correctly estimating the age of a gene or gene family is important for a variety of fields, including molecular evolution, comparative genomics, and phylogenetics, and increasingly for systems biology and disease genetics. However, most studies use only a point estimate of a gene’s age, neglecting the substantial uncertainty involved in this estimation. Here, we characterize this uncertainty by investigating the effect of algorithm choice on gene-age inference and calculate consensus gene ages with attendant error distributions for a variety of model eukaryotes. We use 13 orthology inference algorithms to create gene-age datasets and then characterize the error around each age-call on a per-gene and per-algorithm basis. Systematic error was found to be a large factor in estimating gene age, suggesting that simple consensus algorithms are not enough to give a reliable point estimate. We also found that different sources of error can affect downstream analyses, such as gene ontology enrichment. Our consensus gene-age datasets, with associated error terms, are made fully available at so that researchers can propagate this uncertainty through their analyses (geneages.org). PMID:27259914

  18. Cucumber gene list 2017

    USDA-ARS?s Scientific Manuscript database

    This is an update of the 2010 version of Cucumber Gene List. Since the release of the cucumber draft genome in 2009, significant progress has been made in developing cucumber genetic and genomics resources. A number of genes or QTLs have been tagged with molecular markers, which provides us a better...

  19. Smart Genes, Stupid Science.

    ERIC Educational Resources Information Center

    Randerson, Sherman; Mahadeva, Madhu N.

    1983-01-01

    Because many people still believe that specific, identifiable genes dictate the level of human intelligence and that the number/quality of these genes can be evaluated, presents evidence from human genetics (related to nervous system development) to counter this view. Also disputes erroneous assumptions made in "heritability studies" of human…

  20. A victory for genes.

    PubMed

    2013-07-01

    The ability to patent human genes has been costly to researchers and patients, and has restricted competition in the biotech marketplace. The recent US Supreme Court decision making isolated human genes unpatentable will bring freedom of choice to the patient, and level the playing field for research and development.

  1. Genes, genome and Gestalt.

    PubMed

    Grisolia, Cesar Koppe

    2005-03-31

    According to Gestalt thinking, biological systems cannot be viewed as the sum of their elements, but as processes of the whole. To understand organisms we must start from the whole, observing how the various parts are related. In genetics, we must observe the genome over and above the sum of its genes. Either loss or addition of one gene in a genome can change the function of the organism. Genomes are organized in networks of genes, which need to be well integrated. In the case of genetically modified organisms (GMOs), for example, soybeans, rats, Anopheles mosquitoes, and pigs, the insertion of an exogenous gene into a receptive organism generally causes disturbance in the networks, resulting in the breakdown of gene interactions. In these cases, genetic modification increased the genetic load of the GMO and consequently decreased its adaptability (fitness). Therefore, it is hard to claim that the production of such organisms with an increased genetic load does not have ethical implications.

  2. [Gene therapy and ethics].

    PubMed

    Müller, H; Rehmann-Sutter, C

    1995-01-10

    Gene therapy represents a new strategy to treat human disorders. It was originally conceived as a cure for severe monogenetic disorders. Since its conception, the spectrum of possible application for gene therapy has been to include the treatment of acquired diseases, such as various forms of cancer and some viral infections, most notably human immune deficiency virus (HIV) and hepatitis B virus. Since somatic gene therapy does not cause substantially new ethical problems, it has gained broad approval. This is by no means the case with germ-line gene therapy. Practically all bodies who were evaluating the related ethical aspects wanted to ban its medical application on grounds of fundamental and pragmatic considerations. In this review, practical and ethical views concerning gene therapy are summarized which were presented at the "Junitagung 1994" of the Swiss Society for Biomedical Ethics in Basle.

  3. GIPC gene family (Review).

    PubMed

    Katoh, Masaru

    2002-06-01

    GIPC1/GIPC/RGS19IP1, GIPC2, and GIPC3 genes constitute the human GIPC gene family. GIPC1 and GIPC2 show 62.0% total-amino-acid identity. GIPC1 and GIPC3 show 59.9% total-amino-acid identity. GIPC2 and GIPC3 show 55.3% total-amino-acid identity. GIPCs are proteins with central PDZ domain and GIPC homology (GH1 and GH2) domains. PDZ, GH1, and GH2 domains are conserved among human GIPCs, Xenopus GIPC/Kermit, and Drosophila GIPC/ LP09416. Bioinformatics revealed that GIPC genes are linked to prostanoid receptor genes and DNAJB genes in the human genome as follows: GIPC1 gene is linked to prostaglandin E receptor 1 (PTGER1) gene and DNAJB1 gene in human chromosome 19p13.2-p13.1 region; GIPC2 gene to prostaglandin F receptor (PTGFR) gene and DNAJB4 gene in human chromosome 1p31.1-p22.3 region; GIPC3 gene to thromboxane A2 receptor (TBXA2R) gene in human chromosome 19p13.3 region. GIPC1 and GIPC2 mRNAs are expressed together in OKAJIMA, TMK1, MKN45 and KATO-III cells derived from diffuse-type of gastric cancer, and are up-regulated in several cases of primary gastric cancer. PDZ domain of GIPC family proteins interact with Frizzled-3 (FZD3) class of WNT receptor, insulin-like growth factor-I (IGF1) receptor, receptor tyrosine kinase TrkA, TGF-beta type III receptor (TGF-beta RIII), integrin alpha6A subunit, transmembrane glycoprotein 5T4, and RGS19/RGS-GAIP. Because RGS19 is a member of the RGS family that regulate heterotrimeric G-protein signaling, GIPCs might be scaffold proteins linking heterotrimeric G-proteins to seven-transmembrane-type WNT receptor or to receptor tyrosine kinases. Therefore, GIPC1, GIPC2 and GIPC3 might play key roles in carcinogenesis and embryogenesis through modulation of growth factor signaling and cell adhesion.

  4. 4. AERIAL VIEW OF GENE WASH RESERVOIR AND GENE CAMP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. AERIAL VIEW OF GENE WASH RESERVOIR AND GENE CAMP LOOKING SOUTHWEST. DAM AND SPILLWAY VISIBLE IN BOTTOM OF PHOTO. - Gene Wash Reservoir & Dam, 2 miles west of Parker Dam, Parker Dam, San Bernardino County, CA

  5. Third party annotation gene data set of eutherian lysozyme genes.

    PubMed

    Premzl, Marko

    2014-12-01

    The eutherian comparative genomic analysis protocol annotated most comprehensive eutherian lysozyme gene data set. Among 209 potential coding sequences, the third party annotation gene data set of eutherian lysozyme genes included 116 complete coding sequences that first described seven major gene clusters. As one new framework of future experiments, the present integrated gene annotations, phylogenetic analysis and protein molecular evolution analysis proposed new classification and nomenclature of eutherian lysozyme genes.

  6. Gene therapy for hemophilia.

    PubMed

    Chuah, M K; Evens, H; VandenDriessche, T

    2013-06-01

    Hemophilia A and B are X-linked monogenic disorders resulting from deficiencies of factor VIII and FIX, respectively. Purified clotting factor concentrates are currently intravenously administered to treat hemophilia, but this treatment is non-curative. Therefore, gene-based therapies for hemophilia have been developed to achieve sustained high levels of clotting factor expression to correct the clinical phenotype. Over the past two decades, different types of viral and non-viral gene delivery systems have been explored for hemophilia gene therapy research with a variety of target cells, particularly hepatocytes, hematopoietic stem cells, skeletal muscle cells, and endothelial cells. Lentiviral and adeno-associated virus (AAV)-based vectors are among the most promising vectors for hemophilia gene therapy. In preclinical hemophilia A and B animal models, the bleeding phenotype was corrected with these vectors. Some of these promising preclinical results prompted clinical translation to patients suffering from a severe hemophilic phenotype. These patients receiving gene therapy with AAV vectors showed long-term expression of therapeutic FIX levels, which is a major step forwards in this field. Nevertheless, the levels were insufficient to prevent trauma or injury-induced bleeding episodes. Another challenge that remains is the possible immune destruction of gene-modified cells by effector T cells, which are directed against the AAV vector antigens. It is therefore important to continuously improve the current gene therapy approaches to ultimately establish a real cure for hemophilia.

  7. Fecundity genes in sheep.

    PubMed

    Davis, G H

    2004-07-01

    Since 1980 there has been increasing interest in the identification and utilisation of major genes for prolificacy in sheep. Mutations that increase ovulation rate have been discovered in the BMPR-1B, BMP15 and GDF9 genes, and others are known to exist from the expressed inheritance patterns although the mutations have not yet been located. In the case of BMP15, four different mutations have been discovered but each produces the same phenotype. The modes of inheritance of the different prolificacy genes include autosomal dominant genes with additive effects on ovulation rate (BMPR-1B; Lacaune), autosomal over-dominant genes with infertility in homozygous females (GDF9), X-linked over-dominant genes with infertility in homozygous females (BMP15), and X-linked maternally imprinted genes (FecX2). The size of the effect of one copy of a mutation on ovulation rate ranges from an extra 0.4 ovulations per oestrus for the FecX2 mutation to an extra 1.5 ovulations per oestrus for the BMPR-1B mutation. DNA tests enable some of these mutations to be used in genetic improvement programmes based on marker assisted selection.

  8. Gene therapy for haemophilia.

    PubMed

    Sharma, Akshay; Easow Mathew, Manu; Sriganesh, Vasumathi; Reiss, Ulrike M

    2016-12-20

    Haemophilia is a genetic disorder characterized by spontaneous or provoked, often uncontrolled, bleeding into joints, muscles and other soft tissues. Current methods of treatment are expensive, challenging and involve regular administration of clotting factors. Gene therapy has recently been prompted as a curative treatment modality. This is an update of a published Cochrane Review. To evaluate the safety and efficacy of gene therapy for treating people with haemophilia A or B. We searched the Cochrane Cystic Fibrosis & Genetic Disorders Group's Coagulopathies Trials Register, compiled from electronic database searches and handsearching of journals and conference abstract books. We also searched the reference lists of relevant articles and reviews.Date of last search: 18 August 2016. Eligible trials include randomised or quasi-randomised clinical trials, including controlled clinical trials comparing gene therapy (with or without standard treatment) with standard treatment (factor replacement) or other 'curative' treatment such as stem cell transplantation for individuals with haemophilia A or B of all ages who do not have inhibitors to factor VIII or IX. No trials of gene therapy for haemophilia were found. No trials of gene therapy for haemophilia were identified. No randomised or quasi-randomised clinical trials of gene therapy for haemophilia were identified. Thus, we are unable to determine the safety and efficacy of gene therapy for haemophilia. Gene therapy for haemophilia is still in its nascent stages and there is a need for well-designed clinical trials to assess the long-term feasibility, success and risks of gene therapy for people with haemophilia.

  9. FlyBase: genes and gene models

    PubMed Central

    Drysdale, Rachel A.; Crosby, Madeline A.

    2005-01-01

    FlyBase (http://flybase.org) is the primary repository of genetic and molecular data of the insect family Drosophilidae. For the most extensively studied species, Drosophila melanogaster, a wide range of data are presented in integrated formats. Data types include mutant phenotypes, molecular characterization of mutant alleles and aberrations, cytological maps, wild-type expression patterns, anatomical images, transgenic constructs and insertions, sequence-level gene models and molecular classification of gene product functions. There is a growing body of data for other Drosophila species; this is expected to increase dramatically over the next year, with the completion of draft-quality genomic sequences of an additional 11 Drosphila species. PMID:15608223

  10. Differentially Coexpressed Disease Gene Identification Based on Gene Coexpression Network.

    PubMed

    Jiang, Xue; Zhang, Han; Quan, Xiongwen

    2016-01-01

    Screening disease-related genes by analyzing gene expression data has become a popular theme. Traditional disease-related gene selection methods always focus on identifying differentially expressed gene between case samples and a control group. These traditional methods may not fully consider the changes of interactions between genes at different cell states and the dynamic processes of gene expression levels during the disease progression. However, in order to understand the mechanism of disease, it is important to explore the dynamic changes of interactions between genes in biological networks at different cell states. In this study, we designed a novel framework to identify disease-related genes and developed a differentially coexpressed disease-related gene identification method based on gene coexpression network (DCGN) to screen differentially coexpressed genes. We firstly constructed phase-specific gene coexpression network using time-series gene expression data and defined the conception of differential coexpression of genes in coexpression network. Then, we designed two metrics to measure the value of gene differential coexpression according to the change of local topological structures between different phase-specific networks. Finally, we conducted meta-analysis of gene differential coexpression based on the rank-product method. Experimental results demonstrated the feasibility and effectiveness of DCGN and the superior performance of DCGN over other popular disease-related gene selection methods through real-world gene expression data sets.

  11. Differentially Coexpressed Disease Gene Identification Based on Gene Coexpression Network

    PubMed Central

    Quan, Xiongwen

    2016-01-01

    Screening disease-related genes by analyzing gene expression data has become a popular theme. Traditional disease-related gene selection methods always focus on identifying differentially expressed gene between case samples and a control group. These traditional methods may not fully consider the changes of interactions between genes at different cell states and the dynamic processes of gene expression levels during the disease progression. However, in order to understand the mechanism of disease, it is important to explore the dynamic changes of interactions between genes in biological networks at different cell states. In this study, we designed a novel framework to identify disease-related genes and developed a differentially coexpressed disease-related gene identification method based on gene coexpression network (DCGN) to screen differentially coexpressed genes. We firstly constructed phase-specific gene coexpression network using time-series gene expression data and defined the conception of differential coexpression of genes in coexpression network. Then, we designed two metrics to measure the value of gene differential coexpression according to the change of local topological structures between different phase-specific networks. Finally, we conducted meta-analysis of gene differential coexpression based on the rank-product method. Experimental results demonstrated the feasibility and effectiveness of DCGN and the superior performance of DCGN over other popular disease-related gene selection methods through real-world gene expression data sets. PMID:28042568

  12. Genes and social behavior.

    PubMed

    Robinson, Gene E; Fernald, Russell D; Clayton, David F

    2008-11-07

    What genes and regulatory sequences contribute to the organization and functioning of neural circuits and molecular pathways in the brain that support social behavior? How does social experience interact with information in the genome to modulate brain activity? Here, we address these questions by highlighting progress that has been made in identifying and understanding two key "vectors of influence" that link genes, the brain, and social behavior: (i) Social information alters gene expression in the brain to influence behavior, and (ii) genetic variation influences brain function and social behavior. We also discuss how evolutionary changes in genomic elements influence social behavior and outline prospects for a systems biology of social behavior.

  13. Genes underlying altruism.

    PubMed

    Thompson, Graham J; Hurd, Peter L; Crespi, Bernard J

    2013-01-01

    William D. Hamilton postulated the existence of 'genes underlying altruism', under the rubric of inclusive fitness theory, a half-century ago. Such genes are now poised for discovery. In this article, we develop a set of intuitive criteria for the recognition and analysis of genes for altruism and describe the first candidate genes affecting altruism from social insects and humans. We also provide evidence from a human population for genetically based trade-offs, underlain by oxytocin-system polymorphisms, between alleles for altruism and alleles for non-social cognition. Such trade-offs between self-oriented and altruistic behaviour may influence the evolution of phenotypic diversity across all social animals.

  14. Genes underlying altruism

    PubMed Central

    Thompson, Graham J.; Hurd, Peter L.; Crespi, Bernard J.

    2013-01-01

    William D. Hamilton postulated the existence of ‘genes underlying altruism’, under the rubric of inclusive fitness theory, a half-century ago. Such genes are now poised for discovery. In this article, we develop a set of intuitive criteria for the recognition and analysis of genes for altruism and describe the first candidate genes affecting altruism from social insects and humans. We also provide evidence from a human population for genetically based trade-offs, underlain by oxytocin-system polymorphisms, between alleles for altruism and alleles for non-social cognition. Such trade-offs between self-oriented and altruistic behaviour may influence the evolution of phenotypic diversity across all social animals. PMID:24132092

  15. "Bad genes" & criminal responsibility.

    PubMed

    González-Tapia, María Isabel; Obsuth, Ingrid

    2015-01-01

    The genetics of the accused is trying to break into the courts. To date several candidate genes have been put forward and their links to antisocial behavior have been examined and documented with some consistency. In this paper, we focus on the so called "warrior gene", or the low-activity allele of the MAOA gene, which has been most consistently related to human behavior and specifically to violence and antisocial behavior. In preparing this paper we had two objectives. First, to summarize and analyze the current scientific evidence, in order to gain an in depth understanding of the state of the issue and determine whether a dominant line of generally accepted scientific knowledge in this field can be asserted. Second, to derive conclusions and put forward recommendations related to the use of genetic information, specifically the presence of the low-activity genotype of the MAOA gene, in modulation of criminal responsibility in European and US courts.

  16. Clock genes and sleep.

    PubMed

    Landgraf, Dominic; Shostak, Anton; Oster, Henrik

    2012-01-01

    In most species--from cyanobacteria to humans--endogenous clocks have evolved that drive 24-h rhythms of behavior and physiology. In mammals, these circadian rhythms are regulated by a hierarchical network of cellular oscillators controlled by a set of clock genes organized in a system of interlocked transcriptional feedback loops. One of the most prominent outputs of the circadian system is the synchronization of the sleep-wake cycle with external (day-) time. Clock genes also have a strong impact on many other biological functions, such as memory formation, energy metabolism, and immunity. Remarkably, large overlaps exist between clock gene and sleep (loss) mediated effects on these processes. This review summarizes sleep clock gene interactions for these three phenomena, highlighting potential mediators linking sleep and/or clock function to physiological output in an attempt to better understand the complexity of diurnal adaptation and its consequences for health and disease.

  17. GeneLab

    NASA Technical Reports Server (NTRS)

    Berrios, Daniel C.; Thompson, Terri G.

    2015-01-01

    NASA GeneLab is expected to capture and distribute omics data and experimental and process conditions most relevant to research community in their statistical and theoretical analysis of NASAs omics data.

  18. Cystic fibrosis modifier genes.

    PubMed Central

    Davies, Jane; Alton, Eric; Griesenbach, Uta

    2005-01-01

    Since the recognition that CFTR genotype was not a good predictor of pulmonary disease severity in CF, several candidate modifier genes have been identified. It is unlikely that a single modifier gene will be found, but more probable that several haplotypes in combination may contribute, which in itself presents a major methodological challenge. The aims of such studies are to increase our understanding of disease pathogenesis, to aid prognosis and ultimately to lead to the development of novel treatments. PMID:16025767

  19. Evolutionary Fingerprinting of Genes

    PubMed Central

    Kosakovsky Pond, Sergei L.; Scheffler, Konrad; Gravenor, Michael B.; Poon, Art F.Y.; Frost, Simon D.W.

    2010-01-01

    Over time, natural selection molds every gene into a unique mosaic of sites evolving rapidly or resisting change—an “evolutionary fingerprint” of the gene. Aspects of this evolutionary fingerprint, such as the site-specific ratio of nonsynonymous to synonymous substitution rates (dN/dS), are commonly used to identify genetic features of potential biological interest; however, no framework exists for comparing evolutionary fingerprints between genes. We hypothesize that protein-coding genes with similar protein structure and/or function tend to have similar evolutionary fingerprints and that comparing evolutionary fingerprints can be useful for discovering similarities between genes in a way that is analogous to, but independent of, discovery of similarity via sequence-based comparison tools such as Blast. To test this hypothesis, we develop a novel model of coding sequence evolution that uses a general bivariate discrete parameterization of the evolutionary rates. We show that this approach provides a better fit to the data using a smaller number of parameters than existing models. Next, we use the model to represent evolutionary fingerprints as probability distributions and present a methodology for comparing these distributions in a way that is robust against variations in data set size and divergence. Finally, using sequences of three rapidly evolving RNA viruses (HIV-1, hepatitis C virus, and influenza A virus), we demonstrate that genes within the same functional group tend to have similar evolutionary fingerprints. Our framework provides a sound statistical foundation for efficient inference and comparison of evolutionary rate patterns in arbitrary collections of gene alignments, clustering homologous and nonhomologous genes, and investigation of biological and functional correlates of evolutionary rates. PMID:19864470

  20. Interkingdom gene fusions.

    PubMed

    Wolf, Y I; Kondrashov, A S; Koonin, E V

    2000-01-01

    Genome comparisons have revealed major lateral gene transfer between the three primary kingdoms of life - Bacteria, Archaea, and Eukarya. Another important evolutionary phenomenon involves the evolutionary mobility of protein domains that form versatile multidomain architectures. We were interested in investigating the possibility of a combination of these phenomena, with an invading gene merging with a pre-existing gene in the recipient genome. Complete genomes of fifteen bacteria, four archaea and one eukaryote were searched for interkingdom gene fusions (IKFs); that is, genes coding for proteins that apparently consist of domains originating from different primary kingdoms. Phylogenetic analysis supported 37 cases of IKF, each of which includes a 'native' domain and a horizontally acquired 'alien' domain. IKFs could have evolved via lateral transfer of a gene coding for the alien domain (or a larger protein containing this domain) followed by recombination with a native gene. For several IKFs, this scenario is supported by the presence of a gene coding for a second, stand-alone version of the alien domain in the recipient genome. Among the genomes investigated, the greatest number of IKFs has been detected in Mycobacterium tuberculosis, where they are almost always accompanied by a stand-alone alien domain. For most of the IKF cases detected in other genomes, the stand-alone counterpart is missing. The results of comparative genome analysis show that IKF formation is a real, but relatively rare, evolutionary phenomenon. We hypothesize that IKFs are formed primarily via the proposed two-stage mechanism, but other than in the Actinomycetes, in which IKF generation seems to be an active, ongoing process, most of the stand-alone intermediates have been eliminated, perhaps because of functional redundancy.

  1. Gene therapy for hemophilia.

    PubMed

    Hortelano, G; Chang, P L

    2000-01-01

    Hemophilia A and B are X-linked genetic disorders caused by deficiency of the coagulation factors VIII and IX, respectively. Because of the health hazards and costs of current product replacement therapy, much effort is devoted to the development of gene therapy for these disorders. Approaches to gene therapy for the hemophilias include: ex vivo gene therapy in which cells from the intended recipients are explanted, genetically modified to secrete Factor VIII or IX, and reimplanted into the donor; in vivo gene therapy in which Factor VIII or IX encoding vectors are directly injected into the recipient; and non-autologous gene therapy in which universal cell lines engineered to secrete Factor VIII or IX are enclosed in immuno-protective devices before implantation into recipients. Research into these approaches is aided by the many murine and canine models available. While problems of achieving high and sustained levels of factor delivery, and issues related to efficacy, safety and cost are still to be resolved, progress in gene therapy for the hemophilias has been encouraging and is likely to reach human clinical trial in the foreseeable future.

  2. Gene therapy for newborns.

    PubMed

    Kohn, D B; Parkman, R

    1997-07-01

    Application of gene therapy to treat genetic and infectious diseases may have several advantages if performed in newborns. Because of the minimal adverse effect of the underlying disease on cells of the newborn, the relatively small size of infants, and the large amount of future growth, gene therapy may be more successful in newborns than in older children or adults. The presence of umbilical cord blood from newborns provides a unique and susceptible target for the genetic modification of hematopoietic stem cells. In our first trial of gene therapy in newborns, we inserted a normal adenosine deaminase gene into umbilical cord blood cells of three neonates with a congenital immune deficiency. The trial demonstrated the successful transduction and engraftment of stem cells, which continue to contribute to leukocyte production more than 3 years later. A similar approach may be taken to insert genes that inhibit replication of HIV-1 into umbilical cord blood cells of HIV-1-infected neonates. Many other metabolic and infectious disorders could be treated by gene therapy during the neonatal period if prenatal diagnoses are made and the appropriate technical and regulatory requirements have been met.

  3. Evidence for homosexuality gene

    SciTech Connect

    Pool, R.

    1993-07-16

    A genetic analysis of 40 pairs of homosexual brothers has uncovered a region on the X chromosome that appears to contain a gene or genes for homosexuality. When analyzing the pedigrees of homosexual males, the researcheres found evidence that the trait has a higher likelihood of being passed through maternal genes. This led them to search the X chromosome for genes predisposing to homosexuality. The researchers examined the X chromosomes of pairs of homosexual brothers for regions of DNA that most or all had in common. Of the 40 sets of brothers, 33 shared a set of five markers in the q28 region of the long arm of the X chromosome. The linkage has a LOD score of 4.0, which translates into a 99.5% certainty that there is a gene or genes in this area that predispose males to homosexuality. The chief researcher warns, however, that this one site cannot explain all instances of homosexuality, since there were some cases where the trait seemed to be passed paternally. And even among those brothers where there was no evidence that the trait was passed paternally, seven sets of brothers did not share the Xq28 markers. It seems likely that homosexuality arises from a variety of causes.

  4. GeneClinics

    PubMed Central

    Tarczy-Hornoch, Peter; Shannon, Paul; Baskin, Patty; Espeseth, Miriam; Pagon, Roberta A.

    2000-01-01

    GeneClinics is an online genetic information resource consisting of descriptions of specific inherited disorders (“disease profiles”) as well as information on the role of genetic testing in the diagnosis, management, and genetic counseling of patients with these inherited conditions. GeneClinics is intended to promote the use of genetic services in medical care and personal decision making by providing health care practitioners and patients with information on genetic testing for specific inherited disorders. GeneClinics is implemented as an object-oriented database containing a combination of data and semistructured text that is rendered as HTML for publishing a given “disease profile” on the Web. Content is acquired from authors via templates, converted to an XML document reflecting the underlying database schema (with tagging of embedded data), and then loaded into the database and subjected to peer review. The initial implementation of a production system and the first phase of population of the GeneClinics database content are complete. Further expansion of the content to cover more disease, significant scaling up of rate of content creation, and evaluation redesign are under way. The ultimate goal is to have an entry in GeneClinics for each entry in the GeneTests directory of medical genetics laboratories—that is, for each disease for which clinical genetic testing is available. PMID:10833163

  5. Transposons for gene therapy!

    PubMed

    Ivics, Zoltán; Izsvák, Zsuzsanna

    2006-10-01

    Gene therapy is a promising strategy for the treatment of several inherited and acquired human diseases. Several vector platforms exist for the delivery of therapeutic nucleic acids into cells. Vectors based on viruses are very efficient at introducing gene constructs into cells, but their use has been associated with genotoxic effects of vector integration or immunological complications due to repeated administration in vivo. Non-viral vectors are easier to engineer and manufacture, but their efficient delivery into cells is a major challenge, and the lack of their chromosomal integration precludes long-term therapeutic effects. Transposable elements are non-viral gene delivery vehicles found ubiquitously in nature. Transposon-based vectors have the capacity of stable genomic integration and long-lasting expression of transgene constructs in cells. Molecular reconstruction of Sleeping Beauty, an ancient transposon in fish, represents a cornerstone in applying transposition-mediated gene delivery in vertebrate species, including humans. This review summarizes the state-of-the-art in the application of transposable elements for therapeutic gene transfer, and identifies key targets for the development of transposon-based gene vectors with enhanced efficacy and safety for human applications.

  6. Gene indexing: characterization and analysis of NLM's GeneRIFs.

    PubMed

    Mitchell, Joyce A; Aronson, Alan R; Mork, James G; Folk, Lillian C; Humphrey, Susanne M; Ward, Janice M

    2003-01-01

    We present an initial analysis of the National Library of Medicine's (NLM) Gene Indexing initiative. Gene Indexing occurs at the time of indexing for all 4600 journals and over 500,000 articles added to PubMed/MEDLINE each year. Gene Indexing links articles about the basic biology of a gene or protein within eight model organisms to a specific record in the NLM's LocusLink database of gene products. The result is an entry called a Gene Reference Into Function (GeneRIF) within the LocusLink database. We analyzed the numbers of GeneRIFs produced in the first year of GeneRIF production. 27,645 GeneRIFs were produced, pertaining to 9126 loci over eight model organisms. 60% of these were associated with human genes and 27% with mouse genes. About 80% discuss genes with an established MeSH Heading or other MeSH term. We developed a prototype functional alerting system for researchers based on the GeneRIFs, and a strategy to find all of the literature related to genes. We conclude that the Gene Indexing initiative adds considerable value to the life sciences research community.

  7. Harnessing gene expression networks to prioritize candidate epileptic encephalopathy genes.

    PubMed

    Oliver, Karen L; Lukic, Vesna; Thorne, Natalie P; Berkovic, Samuel F; Scheffer, Ingrid E; Bahlo, Melanie

    2014-01-01

    We apply a novel gene expression network analysis to a cohort of 182 recently reported candidate Epileptic Encephalopathy genes to identify those most likely to be true Epileptic Encephalopathy genes. These candidate genes were identified as having single variants of likely pathogenic significance discovered in a large-scale massively parallel sequencing study. Candidate Epileptic Encephalopathy genes were prioritized according to their co-expression with 29 known Epileptic Encephalopathy genes. We utilized developing brain and adult brain gene expression data from the Allen Human Brain Atlas (AHBA) and compared this to data from Celsius: a large, heterogeneous gene expression data warehouse. We show replicable prioritization results using these three independent gene expression resources, two of which are brain-specific, with small sample size, and the third derived from a heterogeneous collection of tissues with large sample size. Of the nineteen genes that we predicted with the highest likelihood to be true Epileptic Encephalopathy genes, two (GNAO1 and GRIN2B) have recently been independently reported and confirmed. We compare our results to those produced by an established in silico prioritization approach called Endeavour, and finally present gene expression networks for the known and candidate Epileptic Encephalopathy genes. This highlights sub-networks of gene expression, particularly in the network derived from the adult AHBA gene expression dataset. These networks give clues to the likely biological interactions between Epileptic Encephalopathy genes, potentially highlighting underlying mechanisms and avenues for therapeutic targets.

  8. 5. OVERHEAD VIEW OF GENE CAMP LOOKING SOUTH. GENE PUMP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. OVERHEAD VIEW OF GENE CAMP LOOKING SOUTH. GENE PUMP PLANT IS AT CENTER WITH ADMINISTRATIVE COMPLEX IN FOREGROUND AND RESIDENTIAL AREA BEYOND PLANT. - Gene Pump Plant, South of Gene Wash Reservoir, 2 miles west of Whitsett Pump Plant, Parker Dam, San Bernardino County, CA

  9. Harnessing Gene Expression Networks to Prioritize Candidate Epileptic Encephalopathy Genes

    PubMed Central

    Oliver, Karen L.; Lukic, Vesna; Thorne, Natalie P.; Berkovic, Samuel F.; Scheffer, Ingrid E.; Bahlo, Melanie

    2014-01-01

    We apply a novel gene expression network analysis to a cohort of 182 recently reported candidate Epileptic Encephalopathy genes to identify those most likely to be true Epileptic Encephalopathy genes. These candidate genes were identified as having single variants of likely pathogenic significance discovered in a large-scale massively parallel sequencing study. Candidate Epileptic Encephalopathy genes were prioritized according to their co-expression with 29 known Epileptic Encephalopathy genes. We utilized developing brain and adult brain gene expression data from the Allen Human Brain Atlas (AHBA) and compared this to data from Celsius: a large, heterogeneous gene expression data warehouse. We show replicable prioritization results using these three independent gene expression resources, two of which are brain-specific, with small sample size, and the third derived from a heterogeneous collection of tissues with large sample size. Of the nineteen genes that we predicted with the highest likelihood to be true Epileptic Encephalopathy genes, two (GNAO1 and GRIN2B) have recently been independently reported and confirmed. We compare our results to those produced by an established in silico prioritization approach called Endeavour, and finally present gene expression networks for the known and candidate Epileptic Encephalopathy genes. This highlights sub-networks of gene expression, particularly in the network derived from the adult AHBA gene expression dataset. These networks give clues to the likely biological interactions between Epileptic Encephalopathy genes, potentially highlighting underlying mechanisms and avenues for therapeutic targets. PMID:25014031

  10. Hox genes and study of Hox genes in crustacean

    NASA Astrophysics Data System (ADS)

    Hou, Lin; Chen, Zhijuan; Xu, Mingyu; Lin, Shengguo; Wang, Lu

    2004-12-01

    Homeobox genes have been discovered in many species. These genes are known to play a major role in specifying regional identity along the anterior-posterior axis of animals from a wide range of phyla. The products of the homeotic genes are a set of evolutionarily conserved transcription factors that control elaborate developmental processes and specify cell fates in metazoans. Crustacean, presenting a variety of body plans not encountered in any other class or phylum of the Metazoa, has been shown to possess a single set of homologous Hox genes like insect. The ancestral crustacean Hox gene complex comprised ten genes: eight homologous to the hometic Hox genes and two related to nonhomeotic genes presented within the insect Hox complexes. The crustacean in particular exhibits an abundant diversity segment specialization and tagmosis. This morphological diversity relates to the Hox genes. In crustacean body plan, different Hox genes control different segments and tagmosis.

  11. Classification of genes based on gene expression analysis

    SciTech Connect

    Angelova, M. Myers, C. Faith, J.

    2008-05-15

    Systems biology and bioinformatics are now major fields for productive research. DNA microarrays and other array technologies and genome sequencing have advanced to the point that it is now possible to monitor gene expression on a genomic scale. Gene expression analysis is discussed and some important clustering techniques are considered. The patterns identified in the data suggest similarities in the gene behavior, which provides useful information for the gene functionalities. We discuss measures for investigating the homogeneity of gene expression data in order to optimize the clustering process. We contribute to the knowledge of functional roles and regulation of E. coli genes by proposing a classification of these genes based on consistently correlated genes in expression data and similarities of gene expression patterns. A new visualization tool for targeted projection pursuit and dimensionality reduction of gene expression data is demonstrated.

  12. GeneCards Version 3: the human gene integrator.

    PubMed

    Safran, Marilyn; Dalah, Irina; Alexander, Justin; Rosen, Naomi; Iny Stein, Tsippi; Shmoish, Michael; Nativ, Noam; Bahir, Iris; Doniger, Tirza; Krug, Hagit; Sirota-Madi, Alexandra; Olender, Tsviya; Golan, Yaron; Stelzer, Gil; Harel, Arye; Lancet, Doron

    2010-08-05

    GeneCards (www.genecards.org) is a comprehensive, authoritative compendium of annotative information about human genes, widely used for nearly 15 years. Its gene-centric content is automatically mined and integrated from over 80 digital sources, resulting in a web-based deep-linked card for each of >73,000 human gene entries, encompassing the following categories: protein coding, pseudogene, RNA gene, genetic locus, cluster and uncategorized. We now introduce GeneCards Version 3, featuring a speedy and sophisticated search engine and a revamped, technologically enabling infrastructure, catering to the expanding needs of biomedical researchers. A key focus is on gene-set analyses, which leverage GeneCards' unique wealth of combinatorial annotations. These include the GeneALaCart batch query facility, which tabulates user-selected annotations for multiple genes and GeneDecks, which identifies similar genes with shared annotations, and finds set-shared annotations by descriptor enrichment analysis. Such set-centric features address a host of applications, including microarray data analysis, cross-database annotation mapping and gene-disorder associations for drug targeting. We highlight the new Version 3 database architecture, its multi-faceted search engine, and its semi-automated quality assurance system. Data enhancements include an expanded visualization of gene expression patterns in normal and cancer tissues, an integrated alternative splicing pattern display, and augmented multi-source SNPs and pathways sections. GeneCards now provides direct links to gene-related research reagents such as antibodies, recombinant proteins, DNA clones and inhibitory RNAs and features gene-related drugs and compounds lists. We also portray the GeneCards Inferred Functionality Score annotation landscape tool for scoring a gene's functional information status. Finally, we delineate examples of applications and collaborations that have benefited from the GeneCards suite. Database

  13. Neighboring Genes Show Correlated Evolution in Gene Expression.

    PubMed

    Ghanbarian, Avazeh T; Hurst, Laurence D

    2015-07-01

    When considering the evolution of a gene's expression profile, we commonly assume that this is unaffected by its genomic neighborhood. This is, however, in contrast to what we know about the lack of autonomy between neighboring genes in gene expression profiles in extant taxa. Indeed, in all eukaryotic genomes genes of similar expression-profile tend to cluster, reflecting chromatin level dynamics. Does it follow that if a gene increases expression in a particular lineage then the genomic neighbors will also increase in their expression or is gene expression evolution autonomous? To address this here we consider evolution of human gene expression since the human-chimp common ancestor, allowing for both variation in estimation of current expression level and error in Bayesian estimation of the ancestral state. We find that in all tissues and both sexes, the change in gene expression of a focal gene on average predicts the change in gene expression of neighbors. The effect is highly pronounced in the immediate vicinity (<100 kb) but extends much further. Sex-specific expression change is also genomically clustered. As genes increasing their expression in humans tend to avoid nuclear lamina domains and be enriched for the gene activator 5-hydroxymethylcytosine, we conclude that, most probably owing to chromatin level control of gene expression, a change in gene expression of one gene likely affects the expression evolution of neighbors, what we term expression piggybacking, an analog of hitchhiking.

  14. Hox genes and evolution.

    PubMed

    Hrycaj, Steven M; Wellik, Deneen M

    2016-01-01

    Hox proteins are a deeply conserved group of transcription factors originally defined for their critical roles in governing segmental identity along the antero-posterior (AP) axis in Drosophila. Over the last 30 years, numerous data generated in evolutionarily diverse taxa have clearly shown that changes in the expression patterns of these genes are closely associated with the regionalization of the AP axis, suggesting that Hox genes have played a critical role in the evolution of novel body plans within Bilateria. Despite this deep functional conservation and the importance of these genes in AP patterning, key questions remain regarding many aspects of Hox biology. In this commentary, we highlight recent reports that have provided novel insight into the origins of the mammalian Hox cluster, the role of Hox genes in the generation of a limbless body plan, and a novel putative mechanism in which Hox genes may encode specificity along the AP axis. Although the data discussed here offer a fresh perspective, it is clear that there is still much to learn about Hox biology and the roles it has played in the evolution of the Bilaterian body plan.

  15. Engineered Gene Circuits

    NASA Astrophysics Data System (ADS)

    Hasty, Jeff

    2003-03-01

    Uncovering the structure and function of gene regulatory networks has become one of the central challenges of the post-genomic era. Theoretical models of protein-DNA feedback loops and gene regulatory networks have long been proposed, and recently, certain qualitative features of such models have been experimentally corroborated. This talk will focus on model and experimental results that demonstrate how a naturally occurring gene network can be used as a ``parts list'' for synthetic network design. The model formulation leads to computational and analytical approaches relevant to nonlinear dynamics and statistical physics, and the utility of such a formulation will be demonstrated through the consideration of specific design criteria for several novel genetic devices. Fluctuations originating from small molecule-number effects will be discussed in the context of model predictions, and the experimental validation of these stochastic effects underscores the importance of internal noise in gene expression. Potential biotech applications will be highlighted within the framework of cellular control schemes. Specifically, the coupling of an oscillating cellular process to a synthetic oscillator will be considered, and the resulting model behavior will be analyzed in the context of synchronization. The underlying methodology highlights the utility of engineering-based methods in the design of synthetic gene regulatory networks.

  16. Selenoprotein Gene Nomenclature.

    PubMed

    Gladyshev, Vadim N; Arnér, Elias S; Berry, Marla J; Brigelius-Flohé, Regina; Bruford, Elspeth A; Burk, Raymond F; Carlson, Bradley A; Castellano, Sergi; Chavatte, Laurent; Conrad, Marcus; Copeland, Paul R; Diamond, Alan M; Driscoll, Donna M; Ferreiro, Ana; Flohé, Leopold; Green, Fiona R; Guigó, Roderic; Handy, Diane E; Hatfield, Dolph L; Hesketh, John; Hoffmann, Peter R; Holmgren, Arne; Hondal, Robert J; Howard, Michael T; Huang, Kaixun; Kim, Hwa-Young; Kim, Ick Young; Köhrle, Josef; Krol, Alain; Kryukov, Gregory V; Lee, Byeong Jae; Lee, Byung Cheon; Lei, Xin Gen; Liu, Qiong; Lescure, Alain; Lobanov, Alexei V; Loscalzo, Joseph; Maiorino, Matilde; Mariotti, Marco; Sandeep Prabhu, K; Rayman, Margaret P; Rozovsky, Sharon; Salinas, Gustavo; Schmidt, Edward E; Schomburg, Lutz; Schweizer, Ulrich; Simonović, Miljan; Sunde, Roger A; Tsuji, Petra A; Tweedie, Susan; Ursini, Fulvio; Whanger, Philip D; Zhang, Yan

    2016-11-11

    The human genome contains 25 genes coding for selenocysteine-containing proteins (selenoproteins). These proteins are involved in a variety of functions, most notably redox homeostasis. Selenoprotein enzymes with known functions are designated according to these functions: TXNRD1, TXNRD2, and TXNRD3 (thioredoxin reductases), GPX1, GPX2, GPX3, GPX4, and GPX6 (glutathione peroxidases), DIO1, DIO2, and DIO3 (iodothyronine deiodinases), MSRB1 (methionine sulfoxide reductase B1), and SEPHS2 (selenophosphate synthetase 2). Selenoproteins without known functions have traditionally been denoted by SEL or SEP symbols. However, these symbols are sometimes ambiguous and conflict with the approved nomenclature for several other genes. Therefore, there is a need to implement a rational and coherent nomenclature system for selenoprotein-encoding genes. Our solution is to use the root symbol SELENO followed by a letter. This nomenclature applies to SELENOF (selenoprotein F, the 15-kDa selenoprotein, SEP15), SELENOH (selenoprotein H, SELH, C11orf31), SELENOI (selenoprotein I, SELI, EPT1), SELENOK (selenoprotein K, SELK), SELENOM (selenoprotein M, SELM), SELENON (selenoprotein N, SEPN1, SELN), SELENOO (selenoprotein O, SELO), SELENOP (selenoprotein P, SeP, SEPP1, SELP), SELENOS (selenoprotein S, SELS, SEPS1, VIMP), SELENOT (selenoprotein T, SELT), SELENOV (selenoprotein V, SELV), and SELENOW (selenoprotein W, SELW, SEPW1). This system, approved by the HUGO Gene Nomenclature Committee, also resolves conflicting, missing, and ambiguous designations for selenoprotein genes and is applicable to selenoproteins across vertebrates.

  17. On sports and genes.

    PubMed

    Zilberman-Schapira, Gili; Chen, Jieming; Gerstein, Mark

    2012-12-01

    Our genes influence our athletic ability. However, the causal genetic factors and mechanisms, and the extent of their effects, remain largely elusive. Many studies investigate this association between specific genes and athletic performance. Such studies have increased in number over the past few years, as recent developments and patents in DNA sequencing have made large amounts of sequencing data available for such analysis. In this paper, we consider four of the most intensively studied genes in relation to athletic ability: angiotensin I-converting enzyme, alpha-actinin 3, peroxismose proliferator-activator receptor alpha and nitric oxide synthase 3. We investigate the connection between genotype and athletic phenotype in the context of these four genes in various sport fields and across different ethnicities and genders. We do an extensive literature survey on these genes and the polymorphisms (single nucleotide polymorphisms or indels) found to be associated with athletic performance. We also present, for each of these polymorphisms, the allele frequencies in the different ethnicities reported in the pilot phase of the 1000 Genomes Project - arguably the largest human genome-sequencing endeavor to date. We discuss the considerable success, and significant drawbacks, of past research along these lines, and propose interesting directions for future research.

  18. Gene therapy for hemophilia.

    PubMed

    Ponder, Katherine P

    2006-09-01

    This review will highlight the progress achieved in the past 2 years on using gene therapy to treat hemophilia in animals and humans. There has been substantial progress in using gene therapy to treat animals with hemophilia. Novel approaches for hemophilia A in mice include expression of Factor VIII in blood cells or platelets derived from ex-vivo transduced hematopoietic stem cells, or in-vivo transfer of transposons expressing Factor VIII into endothelial cells or hepatocytes. Advances in large-animal models include the demonstration that neonatal administration of a retroviral vector expressing canine Factor VIII completely corrected hemophilia A in dogs, and that double-stranded adeno-associated virus vectors resulted in expression of Factor IX that is 28-fold that obtained using single-stranded adeno-associated virus vectors. In humans, one hemophilia B patient achieved 10% of normal activity after liver-directed gene therapy with a single-stranded adeno-associated virus vector expressing human Factor IX. Expression fell at 1 month, however, which was likely due to an immune response to the modified cells. Gene therapy has been successful in a patient with hemophilia B, but expression was unstable due to an immune response. Abrogating immune responses is the next major hurdle for achieving long-lasting gene therapy.

  19. The gene ontology categorizer.

    PubMed

    Joslyn, Cliff A; Mniszewski, Susan M; Fulmer, Andy; Heaton, Gary

    2004-08-04

    The Gene Ontology Categorizer, developed jointly by the Los Alamos National Laboratory and Procter & Gamble Corp., provides a capability for the categorization task in the Gene Ontology (GO): given a list of genes of interest, what are the best nodes of the GO to summarize or categorize that list? The motivating question is from a drug discovery process, where after some gene expression analysis experiment, we wish to understand the overall effect of some cell treatment or condition by identifying 'where' in the GO the differentially expressed genes fall: 'clustered' together in one place? in two places? uniformly spread throughout the GO? 'high', or 'low'? In order to address this need, we view bio-ontologies more as combinatorially structured databases than facilities for logical inference, and draw on the discrete mathematics of finite partially ordered sets (posets) to develop data representation and algorithms appropriate for the GO. In doing so, we have laid the foundations for a general set of methods to address not just the categorization task, but also other tasks (e.g. distances in ontologies and ontology merger and exchange) in both the GO and other bio-ontologies (such as the Enzyme Commission database or the MEdical Subject Headings) cast as hierarchically structured taxonomic knowledge systems.

  20. Hox genes and evolution

    PubMed Central

    Hrycaj, Steven M.; Wellik, Deneen M.

    2016-01-01

    Hox proteins are a deeply conserved group of transcription factors originally defined for their critical roles in governing segmental identity along the antero-posterior (AP) axis in Drosophila. Over the last 30 years, numerous data generated in evolutionarily diverse taxa have clearly shown that changes in the expression patterns of these genes are closely associated with the regionalization of the AP axis, suggesting that Hox genes have played a critical role in the evolution of novel body plans within Bilateria. Despite this deep functional conservation and the importance of these genes in AP patterning, key questions remain regarding many aspects of Hox biology. In this commentary, we highlight recent reports that have provided novel insight into the origins of the mammalian Hox cluster, the role of Hox genes in the generation of a limbless body plan, and a novel putative mechanism in which Hox genes may encode specificity along the AP axis. Although the data discussed here offer a fresh perspective, it is clear that there is still much to learn about Hox biology and the roles it has played in the evolution of the Bilaterian body plan. PMID:27239281

  1. [Gene studies and nobel prize].

    PubMed

    Guo, Jun-Ming; Xiao, Bing-Xiu

    2005-01-01

    Gene is a DNA sequence which can be expressed and produces gene products (protein or RNA). By 2003, there are 51 Nobel Prize owners related to gene studies. Among them, 44 persons are in physiology or medicine (account for 24.72% of total 178), 7 persons are in chemistry (account for 5.69% of total 123). The paper reviews them in following 6 aspects: Drosophlie melanogaster is a good material for gene study; the double helix model of DNA structure provides a hard foundation in gene study; the studies on gene regulation illuminate many functions of gene; genetic central dogma researches created 11 Noble Prize laureates; gene engineering technologies make possible to modify and use genes; and the thorough studies of gene characteristic made us easier to understand many life phenomena.

  2. GeneCards Version 3: the human gene integrator

    PubMed Central

    Safran, Marilyn; Dalah, Irina; Alexander, Justin; Rosen, Naomi; Iny Stein, Tsippi; Shmoish, Michael; Nativ, Noam; Bahir, Iris; Doniger, Tirza; Krug, Hagit; Sirota-Madi, Alexandra; Olender, Tsviya; Golan, Yaron; Stelzer, Gil; Harel, Arye; Lancet, Doron

    2010-01-01

    GeneCards (www.genecards.org) is a comprehensive, authoritative compendium of annotative information about human genes, widely used for nearly 15 years. Its gene-centric content is automatically mined and integrated from over 80 digital sources, resulting in a web-based deep-linked card for each of >73 000 human gene entries, encompassing the following categories: protein coding, pseudogene, RNA gene, genetic locus, cluster and uncategorized. We now introduce GeneCards Version 3, featuring a speedy and sophisticated search engine and a revamped, technologically enabling infrastructure, catering to the expanding needs of biomedical researchers. A key focus is on gene-set analyses, which leverage GeneCards’ unique wealth of combinatorial annotations. These include the GeneALaCart batch query facility, which tabulates user-selected annotations for multiple genes and GeneDecks, which identifies similar genes with shared annotations, and finds set-shared annotations by descriptor enrichment analysis. Such set-centric features address a host of applications, including microarray data analysis, cross-database annotation mapping and gene-disorder associations for drug targeting. We highlight the new Version 3 database architecture, its multi-faceted search engine, and its semi-automated quality assurance system. Data enhancements include an expanded visualization of gene expression patterns in normal and cancer tissues, an integrated alternative splicing pattern display, and augmented multi-source SNPs and pathways sections. GeneCards now provides direct links to gene-related research reagents such as antibodies, recombinant proteins, DNA clones and inhibitory RNAs and features gene-related drugs and compounds lists. We also portray the GeneCards Inferred Functionality Score annotation landscape tool for scoring a gene’s functional information status. Finally, we delineate examples of applications and collaborations that have benefited from the GeneCards suite

  3. FunGene: the functional gene pipeline and repository

    PubMed Central

    Fish, Jordan A.; Chai, Benli; Wang, Qiong; Sun, Yanni; Brown, C. Titus; Tiedje, James M.; Cole, James R.

    2013-01-01

    Ribosomal RNA genes have become the standard molecular markers for microbial community analysis for good reasons, including universal occurrence in cellular organisms, availability of large databases, and ease of rRNA gene region amplification and analysis. As markers, however, rRNA genes have some significant limitations. The rRNA genes are often present in multiple copies, unlike most protein-coding genes. The slow rate of change in rRNA genes means that multiple species sometimes share identical 16S rRNA gene sequences, while many more species share identical sequences in the short 16S rRNA regions commonly analyzed. In addition, the genes involved in many important processes are not distributed in a phylogenetically coherent manner, potentially due to gene loss or horizontal gene transfer. While rRNA genes remain the most commonly used markers, key genes in ecologically important pathways, e.g., those involved in carbon and nitrogen cycling, can provide important insights into community composition and function not obtainable through rRNA analysis. However, working with ecofunctional gene data requires some tools beyond those required for rRNA analysis. To address this, our Functional Gene Pipeline and Repository (FunGene; http://fungene.cme.msu.edu/) offers databases of many common ecofunctional genes and proteins, as well as integrated tools that allow researchers to browse these collections and choose subsets for further analysis, build phylogenetic trees, test primers and probes for coverage, and download aligned sequences. Additional FunGene tools are specialized to process coding gene amplicon data. For example, FrameBot produces frameshift-corrected protein and DNA sequences from raw reads while finding the most closely related protein reference sequence. These tools can help provide better insight into microbial communities by directly studying key genes involved in important ecological processes. PMID:24101916

  4. Gene therapy prospects--intranasal delivery of therapeutic genes.

    PubMed

    Podolska, Karolina; Stachurska, Anna; Hajdukiewicz, Karolina; Małecki, Maciej

    2012-01-01

    Gene therapy is recognized to be a novel method for the treatment of various disorders. Gene therapy strategies involve gene manipulation on broad biological processes responsible for the spreading of diseases. Cancer, monogenic diseases, vascular and infectious diseases are the main targets of gene therapy. In order to obtain valuable experimental and clinical results, sufficient gene transfer methods are required. Therapeutic genes can be administered into target tissues via gene carriers commonly defined as vectors. The retroviral, adenoviral and adeno-associated virus based vectors are most frequently used in the clinic. So far, gene preparations may be administered directly into target organs or by intravenous, intramuscular, intratumor or intranasal injections. It is common knowledge that the number of gene therapy clinical trials has rapidly increased. However, some limitations such as transfection efficiency and stable and long-term gene expression are still not resolved. Consequently, great effort is focused on the evaluation of new strategies of gene delivery. There are many expectations associated with intranasal delivery of gene preparations for the treatment of diseases. Intranasal delivery of therapeutic genes is regarded as one of the most promising forms of pulmonary gene therapy research. Gene therapy based on inhalation of gene preparations offers an alternative way for the treatment of patients suffering from such lung diseases as cystic fibrosis, alpha-1-antitrypsin defect, or cancer. Experimental and first clinical trials based on plasmid vectors or recombinant viruses have revealed that gene preparations can effectively deliver therapeutic or marker genes to the cells of the respiratory tract. The noninvasive intranasal delivery of gene preparations or conventional drugs seems to be very encouraging, although basic scientific research still has to continue.

  5. Down-weighting overlapping genes improves gene set analysis.

    PubMed

    Tarca, Adi Laurentiu; Draghici, Sorin; Bhatti, Gaurav; Romero, Roberto

    2012-06-19

    The identification of gene sets that are significantly impacted in a given condition based on microarray data is a crucial step in current life science research. Most gene set analysis methods treat genes equally, regardless how specific they are to a given gene set. In this work we propose a new gene set analysis method that computes a gene set score as the mean of absolute values of weighted moderated gene t-scores. The gene weights are designed to emphasize the genes appearing in few gene sets, versus genes that appear in many gene sets. We demonstrate the usefulness of the method when analyzing gene sets that correspond to the KEGG pathways, and hence we called our method Pathway Analysis with Down-weighting of Overlapping Genes (PADOG). Unlike most gene set analysis methods which are validated through the analysis of 2-3 data sets followed by a human interpretation of the results, the validation employed here uses 24 different data sets and a completely objective assessment scheme that makes minimal assumptions and eliminates the need for possibly biased human assessments of the analysis results. PADOG significantly improves gene set ranking and boosts sensitivity of analysis using information already available in the gene expression profiles and the collection of gene sets to be analyzed. The advantages of PADOG over other existing approaches are shown to be stable to changes in the database of gene sets to be analyzed. PADOG was implemented as an R package available at: http://bioinformaticsprb.med.wayne.edu/PADOG/or http://www.bioconductor.org.

  6. Down-weighting overlapping genes improves gene set analysis

    PubMed Central

    2012-01-01

    Background The identification of gene sets that are significantly impacted in a given condition based on microarray data is a crucial step in current life science research. Most gene set analysis methods treat genes equally, regardless how specific they are to a given gene set. Results In this work we propose a new gene set analysis method that computes a gene set score as the mean of absolute values of weighted moderated gene t-scores. The gene weights are designed to emphasize the genes appearing in few gene sets, versus genes that appear in many gene sets. We demonstrate the usefulness of the method when analyzing gene sets that correspond to the KEGG pathways, and hence we called our method Pathway Analysis with Down-weighting of Overlapping Genes (PADOG). Unlike most gene set analysis methods which are validated through the analysis of 2-3 data sets followed by a human interpretation of the results, the validation employed here uses 24 different data sets and a completely objective assessment scheme that makes minimal assumptions and eliminates the need for possibly biased human assessments of the analysis results. Conclusions PADOG significantly improves gene set ranking and boosts sensitivity of analysis using information already available in the gene expression profiles and the collection of gene sets to be analyzed. The advantages of PADOG over other existing approaches are shown to be stable to changes in the database of gene sets to be analyzed. PADOG was implemented as an R package available at: http://bioinformaticsprb.med.wayne.edu/PADOG/or http://www.bioconductor.org. PMID:22713124

  7. Targeting Ochratoxin Biosynthetic Genes.

    PubMed

    Gallo, Antonia; Perrone, Giancarlo

    2017-01-01

    The pathway of ochratoxin A (OTA) biosynthesis has not yet been completely elucidated. Essentially, two kind of genes have been demonstrated to be involved in the biosynthesis of OTA. One of them is the nrps gene encoding a non-ribosomal peptide synthetase (NRPS) which catalyzes the ligation between the isocoumarin group, constituting the polyketide group of OTA molecule, and the amino acid phenylalanine.Here we describe a conventional PCR method developed for the detection of OTA-producing molds belonging to Penicillium and Aspergillus genera by Luque et al. (Food Control 29:270-278, 2013). This method is based on the OTA nrps gene of Penicillium nordicum. It produces a specific amplicon of 459 bp and its functionality in naturally infected samples was also demonstrated.

  8. Characterizing gene family evolution

    PubMed Central

    Liberles, David A.

    2008-01-01

    Gene families are widely used in comparative genomics, molecular evolution, and in systematics. However, they are constructed in different manners, their data analyzed and interpreted differently, with different underlying assumptions, leading to sometimes divergent conclusions. In systematics, concepts like monophyly and the dichotomy between homoplasy and homology have been central to the analysis of phylogenies. We critique the traditional use of such concepts as applied to gene families and give examples of incorrect inferences they may lead to. Operational definitions that have emerged within functional genomics are contrasted with the common formal definitions derived from systematics. Lastly, we question the utility of layers of homology and the meaning of homology at the character state level in the context of sequence evolution. From this, we move forward to present an idealized strategy for characterizing gene family evolution for both systematic and functional purposes, including recent methodological improvements. PMID:19461954

  9. Alphaviruses in Gene Therapy

    PubMed Central

    Lundstrom, Kenneth

    2015-01-01

    Alphavirus vectors present an attractive approach for gene therapy applications due to the rapid and simple recombinant virus particle production and their broad range of mammalian host cell transduction. Mainly three types of alphavirus vectors, namely naked RNA, recombinant particles and DNA/RNA layered vectors, have been subjected to preclinical studies with the goal of achieving prophylactic or therapeutic efficacy, particularly in oncology. In this context, immunization with alphavirus vectors has provided protection against challenges with tumor cells. Moreover, alphavirus intratumoral and systemic delivery has demonstrated substantial tumor regression and significant prolonged survival rates in various animal tumor models. Recent discoveries of the strong association of RNA interference and disease have accelerated gene therapy based approaches, where alphavirus-based gene delivery can play an important role. PMID:25961488

  10. Gene Therapy for Skin Diseases

    PubMed Central

    Gorell, Emily; Nguyen, Ngon; Lane, Alfred; Siprashvili, Zurab

    2014-01-01

    The skin possesses qualities that make it desirable for gene therapy, and studies have focused on gene therapy for multiple cutaneous diseases. Gene therapy uses a vector to introduce genetic material into cells to alter gene expression, negating a pathological process. This can be accomplished with a variety of viral vectors or nonviral administrations. Although results are promising, there are several potential pitfalls that must be addressed to improve the safety profile to make gene therapy widely available clinically. PMID:24692191

  11. Virus induced gene silencing of Arabidopsis gene homologues in wheat identify genes conferring improved drought tolerance

    USDA-ARS?s Scientific Manuscript database

    In a non-model staple crop like wheat, functional validation of potential drought stress responsive genes identified in Arabidopsis could provide gene targets for wheat breeding. Virus induced gene silencing (VIGS) of genes of interest can overcome the inherent problems of polyploidy and limited tra...

  12. GeneTIER: prioritization of candidate disease genes using tissue-specific gene expression profiles.

    PubMed

    Antanaviciute, Agne; Daly, Catherine; Crinnion, Laura A; Markham, Alexander F; Watson, Christopher M; Bonthron, David T; Carr, Ian M

    2015-08-15

    In attempts to determine the genetic causes of human disease, researchers are often faced with a large number of candidate genes. Linkage studies can point to a genomic region containing hundreds of genes, while the high-throughput sequencing approach will often identify a great number of non-synonymous genetic variants. Since systematic experimental verification of each such candidate gene is not feasible, a method is needed to decide which genes are worth investigating further. Computational gene prioritization presents itself as a solution to this problem, systematically analyzing and sorting each gene from the most to least likely to be the disease-causing gene, in a fraction of the time it would take a researcher to perform such queries manually. Here, we present Gene TIssue Expression Ranker (GeneTIER), a new web-based application for candidate gene prioritization. GeneTIER replaces knowledge-based inference traditionally used in candidate disease gene prioritization applications with experimental data from tissue-specific gene expression datasets and thus largely overcomes the bias toward the better characterized genes/diseases that commonly afflict other methods. We show that our approach is capable of accurate candidate gene prioritization and illustrate its strengths and weaknesses using case study examples. Freely available on the web at http://dna.leeds.ac.uk/GeneTIER/. umaan@leeds.ac.uk Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press.

  13. GeneTIER: prioritization of candidate disease genes using tissue-specific gene expression profiles

    PubMed Central

    Antanaviciute, Agne; Daly, Catherine; Crinnion, Laura A.; Markham, Alexander F.; Watson, Christopher M.; Bonthron, David T.; Carr, Ian M.

    2015-01-01

    Motivation: In attempts to determine the genetic causes of human disease, researchers are often faced with a large number of candidate genes. Linkage studies can point to a genomic region containing hundreds of genes, while the high-throughput sequencing approach will often identify a great number of non-synonymous genetic variants. Since systematic experimental verification of each such candidate gene is not feasible, a method is needed to decide which genes are worth investigating further. Computational gene prioritization presents itself as a solution to this problem, systematically analyzing and sorting each gene from the most to least likely to be the disease-causing gene, in a fraction of the time it would take a researcher to perform such queries manually. Results: Here, we present Gene TIssue Expression Ranker (GeneTIER), a new web-based application for candidate gene prioritization. GeneTIER replaces knowledge-based inference traditionally used in candidate disease gene prioritization applications with experimental data from tissue-specific gene expression datasets and thus largely overcomes the bias toward the better characterized genes/diseases that commonly afflict other methods. We show that our approach is capable of accurate candidate gene prioritization and illustrate its strengths and weaknesses using case study examples. Availability and Implementation: Freely available on the web at http://dna.leeds.ac.uk/GeneTIER/. Contact: umaan@leeds.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25861967

  14. Genes and Vocal Learning

    PubMed Central

    White, Stephanie A.

    2009-01-01

    Could a mutation in a single gene be the evolutionary lynchpin supporting the development of human language? A rare mutation in the molecule known as FOXP2 discovered in a human family seemed to suggest so, and its sequence phylogeny reinforced a Chomskian view that language emerged wholesale in humans. Spurred by this discovery, research in primates, rodents and birds suggests that FoxP2 and other language-related genes are interactors in the neuromolecular networks that underlie subsystems of language, such symbolic understanding, vocal learning and theory of mind. The whole picture will only come together through comparative and integrative study into how the human language singularity evolved. PMID:19913899

  15. The gene tree delusion.

    PubMed

    Springer, Mark S; Gatesy, John

    2016-01-01

    Higher-level relationships among placental mammals are mostly resolved, but several polytomies remain contentious. Song et al. (2012) claimed to have resolved three of these using shortcut coalescence methods (MP-EST, STAR) and further concluded that these methods, which assume no within-locus recombination, are required to unravel deep-level phylogenetic problems that have stymied concatenation. Here, we reanalyze Song et al.'s (2012) data and leverage these re-analyses to explore key issues in systematics including the recombination ratchet, gene tree stoichiometry, the proportion of gene tree incongruence that results from deep coalescence versus other factors, and simulations that compare the performance of coalescence and concatenation methods in species tree estimation. Song et al. (2012) reported an average locus length of 3.1 kb for the 447 protein-coding genes in their phylogenomic dataset, but the true mean length of these loci (start codon to stop codon) is 139.6 kb. Empirical estimates of recombination breakpoints in primates, coupled with consideration of the recombination ratchet, suggest that individual coalescence genes (c-genes) approach ∼12 bp or less for Song et al.'s (2012) dataset, three to four orders of magnitude shorter than the c-genes reported by these authors. This result has general implications for the application of coalescence methods in species tree estimation. We contend that it is illogical to apply coalescence methods to complete protein-coding sequences. Such analyses amalgamate c-genes with different evolutionary histories (i.e., exons separated by >100,000 bp), distort true gene tree stoichiometry that is required for accurate species tree inference, and contradict the central rationale for applying coalescence methods to difficult phylogenetic problems. In addition, Song et al.'s (2012) dataset of 447 genes includes 21 loci with switched taxonomic names, eight duplicated loci, 26 loci with non-homologous sequences that are

  16. XLMR genes: Update 1994

    SciTech Connect

    Neri, G.; Chiurazzi, P.; Arena, J.F.; Lubs, H.A.

    1994-07-15

    We provide a comprehensive list of all known forms of X-linked mental retardation. It comprises 127 entries, subdivided into 5 categories (syndromes, dominant disorders, and nonspecific mental retardation). Map location of 69 putative loci demonstrates several overlaps, which will only be resolved by more refined mapping or cloning of the respective genes. The ultimate goal of identifying all the genes on the X chromosome whose mutations cause mental retardation will require a concerted effort between clinical and molecular investigators. 74 refs., 2 figs., 5 tabs.

  17. Genes and functions controlled by floral organ identity genes.

    PubMed

    Sablowski, Robert

    2010-02-01

    Floral organ identity genes specify the identity of floral organs in a manner analogous to the specification of body segments by Hox genes in animals. Different combinations of organ identity genes co-ordinate the expression of genes required for the development of each type of floral organ, from organ initiation until final differentiation. Here, I review what is known about the genes and functions subordinate to the organ identity genes. The sets of target genes change as organ development progresses and ultimately organ identity genes modify the expression of thousands of genes with a multitude of predicted functions, particularly in reproductive organs. However, genes involved in transcriptional control and hormone functions feature prominently among the early and direct targets. Functional analysis showed that control of organ-specific tissues and structures can be delegated to specialised intermediate regulators, but organ identity genes also fine-tune genes with general roles in shoot organ development, consistent with the notion that organ identity genes modify a core leaf-like developmental program. Future challenges include obtaining data with cellular resolution, predictive modelling of the regulatory network, and quantitative analysis of how organ identity genes and their targets control cell behaviour and ultimately organ shape.

  18. Neighboring Genes Show Correlated Evolution in Gene Expression

    PubMed Central

    Ghanbarian, Avazeh T.; Hurst, Laurence D.

    2015-01-01

    When considering the evolution of a gene’s expression profile, we commonly assume that this is unaffected by its genomic neighborhood. This is, however, in contrast to what we know about the lack of autonomy between neighboring genes in gene expression profiles in extant taxa. Indeed, in all eukaryotic genomes genes of similar expression-profile tend to cluster, reflecting chromatin level dynamics. Does it follow that if a gene increases expression in a particular lineage then the genomic neighbors will also increase in their expression or is gene expression evolution autonomous? To address this here we consider evolution of human gene expression since the human-chimp common ancestor, allowing for both variation in estimation of current expression level and error in Bayesian estimation of the ancestral state. We find that in all tissues and both sexes, the change in gene expression of a focal gene on average predicts the change in gene expression of neighbors. The effect is highly pronounced in the immediate vicinity (<100 kb) but extends much further. Sex-specific expression change is also genomically clustered. As genes increasing their expression in humans tend to avoid nuclear lamina domains and be enriched for the gene activator 5-hydroxymethylcytosine, we conclude that, most probably owing to chromatin level control of gene expression, a change in gene expression of one gene likely affects the expression evolution of neighbors, what we term expression piggybacking, an analog of hitchhiking. PMID:25743543

  19. Gene Therapy and Children (For Parents)

    MedlinePlus

    ... Old Feeding Your 1- to 2-Year-Old Gene Therapy and Children KidsHealth > For Parents > Gene Therapy and ... by a "bad" gene. continue Two Types of Gene Therapy The two forms of gene therapy are: Somatic ...

  20. Simulating the Interactions of Genes, Proteins, and Metabolities in Cell-Like Entities

    DTIC Science & Technology

    2005-09-01

    Distribution Unlimited 20051005 114 * Personnel Involved: o Dr . John Frazier, Senior Scientist, WPAFB. o Dr . Marvin Thrash, Scientist, WPAFB. o Dr . Tatiana...Karpinets, Postdoctoral Scientist, Wright State University. o Christopher Geib , WPAFB. o Dinu Stoicovici, Masters Student, Physics Dept, Wright State...meetings at Wright Patterson AFB and was engaged in additional discussions with Dr . John Frazier about CLE modeling Transitions The toxicogenomic database

  1. Retraction: "An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus".

    PubMed

    2015-11-01

    Retracted: An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus Volume 33, Issue 5, 949–956, Article first published online: 28 February 2003. The above article, first published online on 28 February 2003 in Wiley Online Library (wileyonlinelibrary.com), and in volume 33, pp. 949–956, has been retracted by agreement between the authors, the journal Editor in Chief, Christoph Benning, and John Wiley & Sons Ltd.This notice updates and replaces a recent correction notice, published on 8 June 2015.In the above article, it has recently been noted that the original Figure 3b in this paper was assembled incorrectly and included image duplications. As the original data are no longer available for assembly of a corrected figure, the experiment was repeated, in agreement with the editors, by co-author S. Rivas. The data from the repeated experiment, presented below together with the original figure legend, lead to the same interpretation and conclusions as in the original paper.Since publication of the above notice the corresponding author has become aware of additional image duplications involving the loading control lanes of Figures 2g, 3a, 4e and 4f. The authors accept that integrity of the scientific literature is compromised by the data manipulation and, for that reason, they wish to retract the article. However, researchers wishing to use the method described in this paper can still obtain the necessary clones from the corresponding author (dcb40@cam.ac.uk). The authors apologise for having allowed this flawed article to be published.

  2. Gene stacking by recombinases

    USDA-ARS?s Scientific Manuscript database

    Efficient methods of stacking genes into plant genomes are needed to expedite transfer of multigenic traits into diverse crops grown in a variety of environments. Over two decades of research has identified several site-specific recombinases that carry out efficient cis and trans recombination betw...

  3. Rhabdovirus accessory genes.

    PubMed

    Walker, Peter J; Dietzgen, Ralf G; Joubert, D Albert; Blasdell, Kim R

    2011-12-01

    The Rhabdoviridae is one of the most ecologically diverse families of RNA viruses with members infecting a wide range of organisms including placental mammals, marsupials, birds, reptiles, fish, insects and plants. The availability of complete nucleotide sequences for an increasing number of rhabdoviruses has revealed that their ecological diversity is reflected in the diversity and complexity of their genomes. The five canonical rhabdovirus structural protein genes (N, P, M, G and L) that are shared by all rhabdoviruses are overprinted, overlapped and interspersed with a multitude of novel and diverse accessory genes. Although not essential for replication in cell culture, several of these genes have been shown to have roles associated with pathogenesis and apoptosis in animals, and cell-to-cell movement in plants. Others appear to be secreted or have the characteristics of membrane-anchored glycoproteins or viroporins. However, most encode proteins of unknown function that are unrelated to any other known proteins. Understanding the roles of these accessory genes and the strategies by which rhabdoviruses use them to engage, divert and re-direct cellular processes will not only present opportunities to develop new anti-viral therapies but may also reveal aspects of cellar function that have broader significance in biology, agriculture and medicine. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  4. Genes in mammalian reproduction

    SciTech Connect

    Gwatkin, R.B.L.

    1996-11-01

    This is an informative book which deals mainly with genomic imprinting, the role of steroid hormones in development, the expression of a variety of genes during development and the link to hereditary diseases. It is an up-to-date review in a field that is quickly changing and provides valuable basic information and current research trends.

  5. Gene-Environment Interdependence

    ERIC Educational Resources Information Center

    Rutter, Michael

    2007-01-01

    Behavioural genetics was initially concerned with partitioning population variance into that due to genetics and that due to environmental influences. The implication was that the two were separate and it was assumed that gene-environment interactions were usually of so little importance that they could safely be ignored. Theoretical…

  6. Genes and Hearing Loss

    MedlinePlus

    ... a rare allele of a gene by a single heterozygous parent is sufficient to generate an affected child. A heterozygous parent has two types of the ... help them determine their risk of having a child with hearing problems. Patient Health Home Copyright © 2017 ... Development Practice Management ENT Careers Marketplace Privacy Policy Terms ...

  7. Gene-Environment Interdependence

    ERIC Educational Resources Information Center

    Rutter, Michael

    2007-01-01

    Behavioural genetics was initially concerned with partitioning population variance into that due to genetics and that due to environmental influences. The implication was that the two were separate and it was assumed that gene-environment interactions were usually of so little importance that they could safely be ignored. Theoretical…

  8. Genes and Vocal Learning

    ERIC Educational Resources Information Center

    White, Stephanie A.

    2010-01-01

    Could a mutation in a single gene be the evolutionary lynchpin supporting the development of human language? A rare mutation in the molecule known as FOXP2 discovered in a human family seemed to suggest so, and its sequence phylogeny reinforced a Chomskian view that language emerged wholesale in humans. Spurred by this discovery, research in…

  9. Gene Manipulation In Cereals

    USDA-ARS?s Scientific Manuscript database

    Aluminum, the most abundant metal on earth, is detrimental to plant growth and agricultural production. There are about 2.5 billion hectares of acid soils high in aluminum around the world. Molecular markers linked to aluminum tolerance gene complexes in rye would be of value in marker-mediated ge...

  10. Naming genes beyond Caenorhabditis

    USDA-ARS?s Scientific Manuscript database

    The nomenclature of genes in Caenorhabditis elegans is based on long-standing, successful guidelines established in the late 1970s. Over time these guidelines have matured into a comprehensive, systematic nomenclature that is easy to apply, descriptive and therefore highly informative. Recently, a f...

  11. Genes and Vocal Learning

    ERIC Educational Resources Information Center

    White, Stephanie A.

    2010-01-01

    Could a mutation in a single gene be the evolutionary lynchpin supporting the development of human language? A rare mutation in the molecule known as FOXP2 discovered in a human family seemed to suggest so, and its sequence phylogeny reinforced a Chomskian view that language emerged wholesale in humans. Spurred by this discovery, research in…

  12. Inferring Horizontal Gene Transfer

    PubMed Central

    Lassalle, Florent; Dessimoz, Christophe

    2015-01-01

    Horizontal or Lateral Gene Transfer (HGT or LGT) is the transmission of portions of genomic DNA between organisms through a process decoupled from vertical inheritance. In the presence of HGT events, different fragments of the genome are the result of different evolutionary histories. This can therefore complicate the investigations of evolutionary relatedness of lineages and species. Also, as HGT can bring into genomes radically different genotypes from distant lineages, or even new genes bearing new functions, it is a major source of phenotypic innovation and a mechanism of niche adaptation. For example, of particular relevance to human health is the lateral transfer of antibiotic resistance and pathogenicity determinants, leading to the emergence of pathogenic lineages [1]. Computational identification of HGT events relies upon the investigation of sequence composition or evolutionary history of genes. Sequence composition-based ("parametric") methods search for deviations from the genomic average, whereas evolutionary history-based ("phylogenetic") approaches identify genes whose evolutionary history significantly differs from that of the host species. The evaluation and benchmarking of HGT inference methods typically rely upon simulated genomes, for which the true history is known. On real data, different methods tend to infer different HGT events, and as a result it can be difficult to ascertain all but simple and clear-cut HGT events. PMID:26020646

  13. Gene therapy: progress and predictions.

    PubMed

    Collins, Mary; Thrasher, Adrian

    2015-12-22

    The first clinical gene delivery, which involved insertion of a marker gene into lymphocytes from cancer patients, was published 25 years ago. In this review, we describe progress since then in gene therapy. Patients with some inherited single-gene defects can now be treated with their own bone marrow stem cells that have been engineered with a viral vector carrying the missing gene. Patients with inherited retinopathies and haemophilia B can also be treated by local or systemic injection of viral vectors. There are also a number of promising gene therapy approaches for cancer and infectious disease. We predict that the next 25 years will see improvements in safety, efficacy and manufacture of gene delivery vectors and introduction of gene-editing technologies to the clinic. Gene delivery may also prove a cost-effective method for the delivery of biological medicines. © 2015 The Authors.

  14. [Gene therapy. Methods and applications].

    PubMed

    Jonassen, T O; Grinde, B; Orstavik, I

    1994-04-10

    Modern techniques in molecular biology and cell biology will probably make gene therapy, i.e. therapeutic transfer of genes to the patient's cells, available for treatment of many genetic diseases, cancer, cardiovascular diseases and infectious diseases. For genetic diseases the treatment will involve the transfer of a functional copy of the defect gene. The strategy for treatment of cancer may include the transfer of genes that induce the death of cancer cells via toxic molecules, and genes that enhance the immune response to tumour cells. After several years of preclinical studies, the National Institutes of Health in the USA has, up to February 1994, approved 56 protocols for clinical trials in human gene therapy. Most of the protocols include use of viruses to aid gene delivery. This paper briefly reviews the scientific basis for gene therapy, and discusses some clinical applications of somatic gene therapy in humans.

  15. Gene network biological validity based on gene-gene interaction relevance.

    PubMed

    Gómez-Vela, Francisco; Díaz-Díaz, Norberto

    2014-01-01

    In recent years, gene networks have become one of the most useful tools for modeling biological processes. Many inference gene network algorithms have been developed as techniques for extracting knowledge from gene expression data. Ensuring the reliability of the inferred gene relationships is a crucial task in any study in order to prove that the algorithms used are precise. Usually, this validation process can be carried out using prior biological knowledge. The metabolic pathways stored in KEGG are one of the most widely used knowledgeable sources for analyzing relationships between genes. This paper introduces a new methodology, GeneNetVal, to assess the biological validity of gene networks based on the relevance of the gene-gene interactions stored in KEGG metabolic pathways. Hence, a complete KEGG pathway conversion into a gene association network and a new matching distance based on gene-gene interaction relevance are proposed. The performance of GeneNetVal was established with three different experiments. Firstly, our proposal is tested in a comparative ROC analysis. Secondly, a randomness study is presented to show the behavior of GeneNetVal when the noise is increased in the input network. Finally, the ability of GeneNetVal to detect biological functionality of the network is shown.

  16. Painting and Christopher Columbus: A Story about Metaphors for School Change.

    ERIC Educational Resources Information Center

    Sakofs, Mitch

    1998-01-01

    Uses metaphors of the preparation necessary for painting and for Columbus's journey into the unknown to suggest a model for planning and promoting school reform. Steps include definition of preexisting conditions, assessment of the situation, immersion (communication and trust building among stakeholders), and coordinated strategic and tactical…

  17. The Columbus Myth: Power and Ideology in Picturebooks about Christopher Columbus

    ERIC Educational Resources Information Center

    Desai, Christina M.

    2013-01-01

    In 1992, the 500th anniversary of Columbus's landing in the Bahamas was simultaneously celebrated and denounced in the US. Damaging facts about Columbus and the impact of his voyages were aired along with demands for truth and change. This study analyzes the power relationships and political ideology of picturebooks about Columbus published…

  18. 78 FR 71022 - Culturally Significant Objects Imported for Exhibition Determinations: “Christopher Williams: The...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-27

    ... Line of Happiness'' SUMMARY: Notice is hereby given of the following determinations: Pursuant to the... Product Line of Happiness,'' imported from abroad for temporary exhibition within the United States,...

  19. 75 FR 28068 - Christopher Henry Lister, P.A.; Revocation of Registration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-19

    ... prescription requirement * * * ensures patients use controlled substances under the supervision of a doctor so... practitioner must establish and maintain a bonafide doctor-patient relationship in order to act ``in the usual... law to determine whether a doctor and patient have established a bona fide doctor-patient...

  20. Christoph Buchel v. Mass MoCA: A "Tilted Arc" for the Twenty-First Century

    ERIC Educational Resources Information Center

    Gover, K. E.

    2012-01-01

    The tension among the different models for understanding the relation between the artist and the artwork is brought most explosively to light when legal battles erupt between artists and institutions. This can be found in both the "Tilted Arc" controversy of the 1980s and in a recent dispute involving the Swiss installation artist…

  1. An evaluation of the St Christopher's Hospice rehabilitation gym circuits classes: Patient uptake, outcomes, and feedback.

    PubMed

    Talbot Rice, Helena; Malcolm, Lorna; Norman, Kate; Jones, Alison; Lee, Katherine; Preston, Gail; McKenzie, David; Maddocks, Matthew

    2014-12-01

    Evidence suggests exercise may benefit patients with advanced progressive illness and some hospice day services now provide dedicated gym space. However, supporting data for such a service development are limited. We describe patient referrals, interventions, feedback, and potential impact of a nine-session, outpatient, hospice-based, circuit exercise programme. Consecutive referrals to physiotherapy over a 6-month period commencing March 2013 were followed prospectively. Physical function (short physical performance battery (SPPB), grip strength), fatigue (Functional Assessment of Chronic Illness Therapy), psychological well-being (General Health Questionnaire), and patient satisfaction (FACIT-PS) were assessed pre- and post-programme. Of 212 referrals, 61 (29%) with a range of cancer and non-cancer diagnoses (median [inter-quartile range] survival 67 [50-137] days) were considered appropriate for the circuits of whom 54 (89%) started. There were no statistical differences between those completing and not-completing with regards to age, diagnosis, social status, or survival. In completers (n = 28), 4-m gait speed (mean Δ [95% confidence intervals] 0.23 [0.03, 0.44] m/seconds), five sit-to-stand time (mean Δ -5.44 [-10.43, -0.46] seconds) and overall SPPB score changed statistically, while grip strength did not (mean Δ 0.65 [-1.39, 2.96] kg). Psychological well-being, quality of life, and fatigue remained unchanged. Patients felt the physiotherapists gave clear explanations, understood their needs, and would recommend the service to others. A hospice-based programme is one way to offer exercise to a range of patients with advanced progressive illness. Despite excellent feedback, only half of patients completed the nine-session programme in full and evidence of benefit was limited. Future work should explore the broader benefits of participation and whether delivering programmes or elements of them in shorter time frames is more beneficial.

  2. An evaluation of the St Christopher's Hospice rehabilitation gym circuits classes: Patient uptake, outcomes, and feedback

    PubMed Central

    Talbot Rice, Helena; Malcolm, Lorna; Norman, Kate; Jones, Alison; Lee, Katherine; Preston, Gail; McKenzie, David; Maddocks, Matthew

    2014-01-01

    Background Evidence suggests exercise may benefit patients with advanced progressive illness and some hospice day services now provide dedicated gym space. However, supporting data for such a service development are limited. We describe patient referrals, interventions, feedback, and potential impact of a nine-session, outpatient, hospice-based, circuit exercise programme. Methods Consecutive referrals to physiotherapy over a 6-month period commencing March 2013 were followed prospectively. Physical function (short physical performance battery (SPPB), grip strength), fatigue (Functional Assessment of Chronic Illness Therapy), psychological well-being (General Health Questionnaire), and patient satisfaction (FACIT-PS) were assessed pre- and post-programme. Results Of 212 referrals, 61 (29%) with a range of cancer and non-cancer diagnoses (median [inter-quartile range] survival 67 [50–137] days) were considered appropriate for the circuits of whom 54 (89%) started. There were no statistical differences between those completing and not-completing with regards to age, diagnosis, social status, or survival. In completers (n = 28), 4-m gait speed (mean Δ [95% confidence intervals] 0.23 [0.03, 0.44] m/seconds), five sit-to-stand time (mean Δ −5.44 [−10.43, −0.46] seconds) and overall SPPB score changed statistically, while grip strength did not (mean Δ 0.65 [−1.39, 2.96] kg). Psychological well-being, quality of life, and fatigue remained unchanged. Patients felt the physiotherapists gave clear explanations, understood their needs, and would recommend the service to others. Conclusion A hospice-based programme is one way to offer exercise to a range of patients with advanced progressive illness. Despite excellent feedback, only half of patients completed the nine-session programme in full and evidence of benefit was limited. Future work should explore the broader benefits of participation and whether delivering programmes or elements of them in shorter time frames is more beneficial. PMID:25414550

  3. Review of Matters Related to the Death of Hospitalman (HN) Christopher Purcell, U.S. Navy

    DTIC Science & Technology

    2010-10-27

    including thoroughly documenting and supporting findings of facts, investigating the command’s response to suicide warning signs displayed by Hospitalman...managers; numerous NASB police officers, the two active duty sailors (MA’s), the two IOs; the CO, NASB; the supporting Navy Judge Advocates; Navy...longstanding mental illness.” The IO’s final report contained 22 findings of fact. Per the JAGMAN, each finding must be supported by fact, recorded

  4. Jersey-Style Neoliberalism: Governor Christopher Christie, Crony Capitalism, and the Politics of K-12 Education

    ERIC Educational Resources Information Center

    Murphy, Jason P.; Strothers, Atiya S.; Lugg, Catherine A.

    2017-01-01

    In this article, Murphy, Strothers, and Lugg, focus on one urban center, Newark, as an illustrative case study of how New Jersey's brand of neoliberal politics has shaped the political agency of those who live in the communities served by New Jersey's public schools. The city, like other New Jersey locales, has had a long history of political…

  5. The Columbus Myth: Power and Ideology in Picturebooks about Christopher Columbus

    ERIC Educational Resources Information Center

    Desai, Christina M.

    2013-01-01

    In 1992, the 500th anniversary of Columbus's landing in the Bahamas was simultaneously celebrated and denounced in the US. Damaging facts about Columbus and the impact of his voyages were aired along with demands for truth and change. This study analyzes the power relationships and political ideology of picturebooks about Columbus published…

  6. Waking up to Complexity: Using Christopher Clark's the Sleepwalkers to Challenge Over-Determined Causal Explanations

    ERIC Educational Resources Information Center

    Holliss, Claire

    2014-01-01

    Teaching student to construct causal argument is a staple of history teaching and, in this year, questions about the causes of the First World War are particularly pertinent and once again the public eye. Claire Holliss, however, became dissatisfied with existing approaches to teaching students about the causes of the First World War. In…

  7. Jersey-Style Neoliberalism: Governor Christopher Christie, Crony Capitalism, and the Politics of K-12 Education

    ERIC Educational Resources Information Center

    Murphy, Jason P.; Strothers, Atiya S.; Lugg, Catherine A.

    2017-01-01

    In this article, Murphy, Strothers, and Lugg, focus on one urban center, Newark, as an illustrative case study of how New Jersey's brand of neoliberal politics has shaped the political agency of those who live in the communities served by New Jersey's public schools. The city, like other New Jersey locales, has had a long history of political…

  8. Christoph Buchel v. Mass MoCA: A "Tilted Arc" for the Twenty-First Century

    ERIC Educational Resources Information Center

    Gover, K. E.

    2012-01-01

    The tension among the different models for understanding the relation between the artist and the artwork is brought most explosively to light when legal battles erupt between artists and institutions. This can be found in both the "Tilted Arc" controversy of the 1980s and in a recent dispute involving the Swiss installation artist…

  9. 78 FR 50411 - Christopher M. Anthony; Notice of Termination of Exemption by Implied Surrender and Soliciting...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-19

    ... operating fish passage facilities at the project. The exemptee completed installation of facilities for upstream and downstream passage of fish, including Atlantic salmon, pursuant to Article 2 in 1986; however... the exemptee to correct ongoing problems with the fish passage facilities. To date, the exemptee has...

  10. Gene therapy in pancreatic cancer.

    PubMed

    Liu, Si-Xue; Xia, Zhong-Sheng; Zhong, Ying-Qiang

    2014-10-07

    Pancreatic cancer (PC) is a highly lethal disease and notoriously difficult to treat. Only a small proportion of PC patients are eligible for surgical resection, whilst conventional chemoradiotherapy only has a modest effect with substantial toxicity. Gene therapy has become a new widely investigated therapeutic approach for PC. This article reviews the basic rationale, gene delivery methods, therapeutic targets and developments of laboratory research and clinical trials in gene therapy of PC by searching the literature published in English using the PubMed database and analyzing clinical trials registered on the Gene Therapy Clinical Trials Worldwide website (http://www. wiley.co.uk/genmed/ clinical). Viral vectors are main gene delivery tools in gene therapy of cancer, and especially, oncolytic virus shows brighter prospect due to its tumor-targeting property. Efficient therapeutic targets for gene therapy include tumor suppressor gene p53, mutant oncogene K-ras, anti-angiogenesis gene VEGFR, suicide gene HSK-TK, cytosine deaminase and cytochrome p450, multiple cytokine genes and so on. Combining different targets or combination strategies with traditional chemoradiotherapy may be a more effective approach to improve the efficacy of cancer gene therapy. Cancer gene therapy is not yet applied in clinical practice, but basic and clinical studies have demonstrated its safety and clinical benefits. Gene therapy will be a new and promising field for the treatment of PC.

  11. Gene therapy in pancreatic cancer

    PubMed Central

    Liu, Si-Xue; Xia, Zhong-Sheng; Zhong, Ying-Qiang

    2014-01-01

    Pancreatic cancer (PC) is a highly lethal disease and notoriously difficult to treat. Only a small proportion of PC patients are eligible for surgical resection, whilst conventional chemoradiotherapy only has a modest effect with substantial toxicity. Gene therapy has become a new widely investigated therapeutic approach for PC. This article reviews the basic rationale, gene delivery methods, therapeutic targets and developments of laboratory research and clinical trials in gene therapy of PC by searching the literature published in English using the PubMed database and analyzing clinical trials registered on the Gene Therapy Clinical Trials Worldwide website (http://www. wiley.co.uk/genmed/ clinical). Viral vectors are main gene delivery tools in gene therapy of cancer, and especially, oncolytic virus shows brighter prospect due to its tumor-targeting property. Efficient therapeutic targets for gene therapy include tumor suppressor gene p53, mutant oncogene K-ras, anti-angiogenesis gene VEGFR, suicide gene HSK-TK, cytosine deaminase and cytochrome p450, multiple cytokine genes and so on. Combining different targets or combination strategies with traditional chemoradiotherapy may be a more effective approach to improve the efficacy of cancer gene therapy. Cancer gene therapy is not yet applied in clinical practice, but basic and clinical studies have demonstrated its safety and clinical benefits. Gene therapy will be a new and promising field for the treatment of PC. PMID:25309069

  12. Multidimensional gene search with Genehopper

    PubMed Central

    Munz, Matthias; Tönnies, Sascha; Balke, Wolf-Tilo; Simon, Eric

    2015-01-01

    The high abundance of genetic information enables researchers to gain new insights from the comparison of human genes according to their similarities. However, existing tools that allow the exploration of such gene-to-gene relationships, apply each similarity independently. To make use of multidimensional scoring, we developed a new search engine named Genehopper. It can handle two query types: (i) the typical use case starts with a term-to-gene search, i.e. an optimized full-text search for an anchor gene of interest. The web-interface can handle one or more terms including gene symbols and identifiers of Ensembl, UniProt, EntrezGene and RefSeq. (ii) When the anchor gene is defined, the user can explore its neighborhood by a gene-to-gene search as the weighted sum of nine normalized gene similarities based on sequence homology, protein domains, mRNA expression profiles, Gene Ontology Annotation, gene symbols and other features. Each weight can be adjusted by the user, allowing flexible customization of the gene search. All implemented similarities have a low pairwise correlation (max r2 = 0.4) implying a low linear dependency, i.e. any change in a single weight has an effect on the ranking. Thus, we treated them as separate dimensions in the search space. Genehopper is freely available at http://genehopper.ifis.cs.tu-bs.de. PMID:25990726

  13. Lateral gene transfer, rearrangement, reconciliation

    PubMed Central

    2013-01-01

    Background Models of ancestral gene order reconstruction have progressively integrated different evolutionary patterns and processes such as unequal gene content, gene duplications, and implicitly sequence evolution via reconciled gene trees. These models have so far ignored lateral gene transfer, even though in unicellular organisms it can have an important confounding effect, and can be a rich source of information on the function of genes through the detection of transfers of clusters of genes. Result We report an algorithm together with its implementation, DeCoLT, that reconstructs ancestral genome organization based on reconciled gene trees which summarize information on sequence evolution, gene origination, duplication, loss, and lateral transfer. DeCoLT optimizes in polynomial time on the number of rearrangements, computed as the number of gains and breakages of adjacencies between pairs of genes. We apply DeCoLT to 1099 gene families from 36 cyanobacteria genomes. Conclusion DeCoLT is able to reconstruct adjacencies in 35 ancestral bacterial genomes with a thousand gene families in a few hours, and detects clusters of co-transferred genes. DeCoLT may also be used with any relationship between genes instead of adjacencies, to reconstruct ancestral interactions, functions or complexes. Availability http://pbil.univ-lyon1.fr/software/DeCoLT/ PMID:24564205

  14. Multidimensional gene search with Genehopper.

    PubMed

    Munz, Matthias; Tönnies, Sascha; Balke, Wolf-Tilo; Simon, Eric

    2015-07-01

    The high abundance of genetic information enables researchers to gain new insights from the comparison of human genes according to their similarities. However, existing tools that allow the exploration of such gene-to-gene relationships, apply each similarity independently. To make use of multidimensional scoring, we developed a new search engine named Genehopper. It can handle two query types: (i) the typical use case starts with a term-to-gene search, i.e. an optimized full-text search for an anchor gene of interest. The web-interface can handle one or more terms including gene symbols and identifiers of Ensembl, UniProt, EntrezGene and RefSeq. (ii) When the anchor gene is defined, the user can explore its neighborhood by a gene-to-gene search as the weighted sum of nine normalized gene similarities based on sequence homology, protein domains, mRNA expression profiles, Gene Ontology Annotation, gene symbols and other features. Each weight can be adjusted by the user, allowing flexible customization of the gene search. All implemented similarities have a low pairwise correlation (max r(2) = 0.4) implying a low linear dependency, i.e. any change in a single weight has an effect on the ranking. Thus, we treated them as separate dimensions in the search space. Genehopper is freely available at http://genehopper.ifis.cs.tu-bs.de. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. Gene Characterization Index: Assessing the Depth of Gene Annotation

    PubMed Central

    Yusuf, Dimas; Brumm, Jochen; Cheung, Warren; Wahlestedt, Claes; Lenhard, Boris; Wasserman, Wyeth W.

    2008-01-01

    Background We introduce the Gene Characterization Index, a bioinformatics method for scoring the extent to which a protein-encoding gene is functionally described. Inherently a reflection of human perception, the Gene Characterization Index is applied for assessing the characterization status of individual genes, thus serving the advancement of both genome annotation and applied genomics research by rapid and unbiased identification of groups of uncharacterized genes for diverse applications such as directed functional studies and delineation of novel drug targets. Methodology/Principal Findings The scoring procedure is based on a global survey of researchers, who assigned characterization scores from 1 (poor) to 10 (extensive) for a sample of genes based on major online resources. By evaluating the survey as training data, we developed a bioinformatics procedure to assign gene characterization scores to all genes in the human genome. We analyzed snapshots of functional genome annotation over a period of 6 years to assess temporal changes reflected by the increase of the average Gene Characterization Index. Applying the Gene Characterization Index to genes within pharmaceutically relevant classes, we confirmed known drug targets as high-scoring genes and revealed potentially interesting novel targets with low characterization indexes. Removing known drug targets and genes linked to sequence-related patent filings from the entirety of indexed genes, we identified sets of low-scoring genes particularly suited for further experimental investigation. Conclusions/Significance The Gene Characterization Index is intended to serve as a tool to the scientific community and granting agencies for focusing resources and efforts on unexplored areas of the genome. The Gene Characterization Index is available from http://cisreg.ca/gci/. PMID:18213364

  16. Old genes experience stronger translational selection than young genes.

    PubMed

    Yin, Hongyan; Ma, Lina; Wang, Guangyu; Li, Mengwei; Zhang, Zhang

    2016-09-15

    Selection on synonymous codon usage for translation efficiency and/or accuracy has been identified as a widespread mechanism in many living organisms. However, it remains unknown whether translational selection associates closely with gene age and acts differentially on genes with different evolutionary ages. To address this issue, here we investigate the strength of translational selection acting on different aged genes in human. Our results show that old genes present stronger translational selection than young genes, demonstrating that translational selection correlates positively with gene age. We further explore the difference of translational selection in duplicates vs. singletons and in housekeeping vs. tissue-specific genes. We find that translational selection acts comparably in old singletons and old duplicates and stronger translational selection in old genes is contributed primarily by housekeeping genes. For young genes, contrastingly, singletons experience stronger translational selection than duplicates, presumably due to redundant function of duplicated genes during their early evolutionary stage. Taken together, our results indicate that translational selection acting on a gene would not be constant during all stages of evolution, associating closely with gene age. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Endovascular Gene Delivery from a Stent Platform: Gene- Eluting Stents

    PubMed Central

    Fishbein, Ilia; Chorny, Michael; Adamo, Richard F; Forbes, Scott P; Corrales, Ricardo A; Alferiev, Ivan S; Levy, Robert J

    2015-01-01

    A synergistic impact of research in the fields of post-angioplasty restenosis, drug-eluting stents and vascular gene therapy over the past 15 years has shaped the concept of gene-eluting stents. Gene-eluting stents hold promise of overcoming some biological and technical problems inherent to drug-eluting stent technology. As the field of gene-eluting stents matures it becomes evident that all three main design modules of a gene-eluting stent: a therapeutic transgene, a vector and a delivery system are equally important for accomplishing sustained inhibition of neointimal formation in arteries treated with gene delivery stents. This review summarizes prior work on stent-based gene delivery and discusses the main optimization strategies required to move the field of gene-eluting stents to clinical translation. PMID:26225356

  18. Endovascular Gene Delivery from a Stent Platform: Gene- Eluting Stents.

    PubMed

    Fishbein, Ilia; Chorny, Michael; Adamo, Richard F; Forbes, Scott P; Corrales, Ricardo A; Alferiev, Ivan S; Levy, Robert J

    A synergistic impact of research in the fields of post-angioplasty restenosis, drug-eluting stents and vascular gene therapy over the past 15 years has shaped the concept of gene-eluting stents. Gene-eluting stents hold promise of overcoming some biological and technical problems inherent to drug-eluting stent technology. As the field of gene-eluting stents matures it becomes evident that all three main design modules of a gene-eluting stent: a therapeutic transgene, a vector and a delivery system are equally important for accomplishing sustained inhibition of neointimal formation in arteries treated with gene delivery stents. This review summarizes prior work on stent-based gene delivery and discusses the main optimization strategies required to move the field of gene-eluting stents to clinical translation.

  19. Entrez Gene: gene-centered information at NCBI

    PubMed Central

    Maglott, Donna; Ostell, Jim; Pruitt, Kim D.; Tatusova, Tatiana

    2011-01-01

    Entrez Gene (http://www.ncbi.nlm.nih.gov/gene) is National Center for Biotechnology Information (NCBI)’s database for gene-specific information. Entrez Gene maintains records from genomes which have been completely sequenced, which have an active research community to submit gene-specific information, or which are scheduled for intense sequence analysis. The content represents the integration of curation and automated processing from NCBI’s Reference Sequence project (RefSeq), collaborating model organism databases, consortia such as Gene Ontology and other databases within NCBI. Records in Entrez Gene are assigned unique, stable and tracked integers as identifiers. The content (nomenclature, genomic location, gene products and their attributes, markers, phenotypes and links to citations, sequences, variation details, maps, expression, homologs, protein domains and external databases) is available via interactive browsing through NCBI’s Entrez system, via NCBI’s Entrez programming utilities (E-Utilities) and for bulk transfer by FTP. PMID:21115458

  20. Entrez Gene: gene-centered information at NCBI.

    PubMed

    Maglott, Donna; Ostell, Jim; Pruitt, Kim D; Tatusova, Tatiana

    2007-01-01

    Entrez Gene (www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene) is NCBI's database for gene-specific information. Entrez Gene includes records from genomes that have been completely sequenced, that have an active research community to contribute gene-specific information or that are scheduled for intense sequence analysis. The content of Entrez Gene represents the result of both curation and automated integration of data from NCBI's Reference Sequence project (RefSeq), from collaborating model organism databases and from other databases within NCBI. Records in Entrez Gene are assigned unique, stable and tracked integers as identifiers. The content (nomenclature, map location, gene products and their attributes, markers, phenotypes and links to citations, sequences, variation details, maps, expression, homologs, protein domains and external databases) is provided via interactive browsing through NCBI's Entrez system, via NCBI's Entrez programing utilities (E-Utilities), and for bulk transfer by ftp.

  1. Entrez Gene: gene-centered information at NCBI.

    PubMed

    Maglott, Donna; Ostell, Jim; Pruitt, Kim D; Tatusova, Tatiana

    2011-01-01

    Entrez Gene (http://www.ncbi.nlm.nih.gov/gene) is National Center for Biotechnology Information (NCBI)'s database for gene-specific information. Entrez Gene maintains records from genomes which have been completely sequenced, which have an active research community to submit gene-specific information, or which are scheduled for intense sequence analysis. The content represents the integration of curation and automated processing from NCBI's Reference Sequence project (RefSeq), collaborating model organism databases, consortia such as Gene Ontology and other databases within NCBI. Records in Entrez Gene are assigned unique, stable and tracked integers as identifiers. The content (nomenclature, genomic location, gene products and their attributes, markers, phenotypes and links to citations, sequences, variation details, maps, expression, homologs, protein domains and external databases) is available via interactive browsing through NCBI's Entrez system, via NCBI's Entrez programming utilities (E-Utilities) and for bulk transfer by FTP.

  2. Gene set analysis for longitudinal gene expression data

    PubMed Central

    2011-01-01

    Background Gene set analysis (GSA) has become a successful tool to interpret gene expression profiles in terms of biological functions, molecular pathways, or genomic locations. GSA performs statistical tests for independent microarray samples at the level of gene sets rather than individual genes. Nowadays, an increasing number of microarray studies are conducted to explore the dynamic changes of gene expression in a variety of species and biological scenarios. In these longitudinal studies, gene expression is repeatedly measured over time such that a GSA needs to take into account the within-gene correlations in addition to possible between-gene correlations. Results We provide a robust nonparametric approach to compare the expressions of longitudinally measured sets of genes under multiple treatments or experimental conditions. The limiting distributions of our statistics are derived when the number of genes goes to infinity while the number of replications can be small. When the number of genes in a gene set is small, we recommend permutation tests based on our nonparametric test statistics to achieve reliable type I error and better power while incorporating unknown correlations between and within-genes. Simulation results demonstrate that the proposed method has a greater power than other methods for various data distributions and heteroscedastic correlation structures. This method was used for an IL-2 stimulation study and significantly altered gene sets were identified. Conclusions The simulation study and the real data application showed that the proposed gene set analysis provides a promising tool for longitudinal microarray analysis. R scripts for simulating longitudinal data and calculating the nonparametric statistics are posted on the North Dakota INBRE website http://ndinbre.org/programs/bioinformatics.php. Raw microarray data is available in Gene Expression Omnibus (National Center for Biotechnology Information) with accession number GSE6085. PMID

  3. Magnetic nanoparticles: Applications in gene delivery and gene therapy.

    PubMed

    Majidi, Sima; Zeinali Sehrig, Fatemeh; Samiei, Mohammad; Milani, Morteza; Abbasi, Elham; Dadashzadeh, Kianoosh; Akbarzadeh, Abolfazl

    2016-06-01

    Gene therapy is defined as the direct transfer of genetic material to tissues or cells for the treatment of inherited disorders and acquired diseases. For gene delivery, magnetic nanoparticles (MNPs) are typically combined with a delivery platform to encapsulate the gene, and promote cell uptake. Delivery technologies that have been used with MNPs contain polymeric, viral, as well as non-viral platforms. In this review, we focus on targeted gene delivery using MNPs.

  4. Optimal Reference Genes for Gene Expression Normalization in Trichomonas vaginalis

    PubMed Central

    dos Santos, Odelta; de Vargas Rigo, Graziela; Frasson, Amanda Piccoli; Macedo, Alexandre José; Tasca, Tiana

    2015-01-01

    Trichomonas vaginalis is the etiologic agent of trichomonosis, the most common non-viral sexually transmitted disease worldwide. This infection is associated with several health consequences, including cervical and prostate cancers and HIV acquisition. Gene expression analysis has been facilitated because of available genome sequences and large-scale transcriptomes in T. vaginalis, particularly using quantitative real-time polymerase chain reaction (qRT-PCR), one of the most used methods for molecular studies. Reference genes for normalization are crucial to ensure the accuracy of this method. However, to the best of our knowledge, a systematic validation of reference genes has not been performed for T. vaginalis. In this study, the transcripts of nine candidate reference genes were quantified using qRT-PCR under different cultivation conditions, and the stability of these genes was compared using the geNorm and NormFinder algorithms. The most stable reference genes were α-tubulin, actin and DNATopII, and, conversely, the widely used T. vaginalis reference genes GAPDH and β-tubulin were less stable. The PFOR gene was used to validate the reliability of the use of these candidate reference genes. As expected, the PFOR gene was upregulated when the trophozoites were cultivated with ferrous ammonium sulfate when the DNATopII, α-tubulin and actin genes were used as normalizing gene. By contrast, the PFOR gene was downregulated when the GAPDH gene was used as an internal control, leading to misinterpretation of the data. These results provide an important starting point for reference gene selection and gene expression analysis with qRT-PCR studies of T. vaginalis. PMID:26393928

  5. Optimal Reference Genes for Gene Expression Normalization in Trichomonas vaginalis.

    PubMed

    dos Santos, Odelta; de Vargas Rigo, Graziela; Frasson, Amanda Piccoli; Macedo, Alexandre José; Tasca, Tiana

    2015-01-01

    Trichomonas vaginalis is the etiologic agent of trichomonosis, the most common non-viral sexually transmitted disease worldwide. This infection is associated with several health consequences, including cervical and prostate cancers and HIV acquisition. Gene expression analysis has been facilitated because of available genome sequences and large-scale transcriptomes in T. vaginalis, particularly using quantitative real-time polymerase chain reaction (qRT-PCR), one of the most used methods for molecular studies. Reference genes for normalization are crucial to ensure the accuracy of this method. However, to the best of our knowledge, a systematic validation of reference genes has not been performed for T. vaginalis. In this study, the transcripts of nine candidate reference genes were quantified using qRT-PCR under different cultivation conditions, and the stability of these genes was compared using the geNorm and NormFinder algorithms. The most stable reference genes were α-tubulin, actin and DNATopII, and, conversely, the widely used T. vaginalis reference genes GAPDH and β-tubulin were less stable. The PFOR gene was used to validate the reliability of the use of these candidate reference genes. As expected, the PFOR gene was upregulated when the trophozoites were cultivated with ferrous ammonium sulfate when the DNATopII, α-tubulin and actin genes were used as normalizing gene. By contrast, the PFOR gene was downregulated when the GAPDH gene was used as an internal control, leading to misinterpretation of the data. These results provide an important starting point for reference gene selection and gene expression analysis with qRT-PCR studies of T. vaginalis.

  6. Dominance from the perspective of gene-gene and gene-chemical interactions.

    PubMed

    Gladki, Arkadiusz; Zielenkiewicz, Piotr; Kaczanowski, Szymon

    2016-02-01

    In this study, we used genetic interaction (GI) and gene-chemical interaction (GCI) data to compare mutations with different dominance phenotypes. Our analysis focused primarily on Saccharomyces cerevisiae, where haploinsufficient genes (HI; genes with dominant loss-of-function mutations) were found to be participating in gene expression processes, namely, the translation and regulation of gene transcription. Non-ribosomal HI genes (mainly regulators of gene transcription) were found to have more GIs and GCIs than haplosufficient (HS) genes. Several properties seem to lead to the enrichment of interactions, most notably, the following: importance, pleiotropy, gene expression level and gene expression variation. Importantly, after these properties were appropriately considered in the analysis, the correlation between dominance and GI/GCI degrees was still observed. Strikingly, for the GCIs of heterozygous strains, haploinsufficiency was the only property significantly correlated with the number of GCIs. We found ribosomal HI genes to be depleted in GIs/GCIs. This finding can be explained by their high variation in gene expression under different genetic backgrounds and environmental conditions. We observed the same distributions of GIs among non-ribosomal HI, ribosomal HI and HS genes in three other species: Schizosaccharomyces pombe, Drosophila melanogaster and Homo sapiens. One potentially interesting exception was the lack of significant differences in the degree of GIs between non-ribosomal HI and HS genes in Schizosaccharomyces pombe.

  7. Immunotherapy and gene therapy.

    PubMed

    Simpson, Elizabeth

    2004-02-01

    The Immunotherapy and Gene Therapy meeting of the Academy of Medical Sciences reviewed the state-of-the-art and translational prospects for therapeutic interventions aimed at killing tumor cells, correcting genetic defects and developing vaccines for chronic infections. Crucial basic science concepts and information about dendritic cells, the structure and function of T-cell receptors, and manipulation of the immune response by cytokine antagonists and peptides were presented. This information underpins vaccine design and delivery, as well as attempts to immunomodulate autoimmune disease. Results from studies using anticancer DNA vaccines, which include appropriate signals for both the innate and adaptive immune response, were presented in several talks. The vaccines incorporated helper epitopes and cancer target epitopes such as immunoglobulin idiotypes (for lymphomas and myelomas), melanoma-associated antigens (for melanoma and other solid tumors) and minor histocompatibility antigens (for leukemia). The results of using vaccines employing similar principles and designed to reduce viral load in HIV/AIDS patients were also presented. The introduction of suicide genes incorporating the bacterial enzyme nitroreductase gene (ntr) targeted at tumor cells prior to administration of the prodrug CB-1954, converted by ntr into a toxic alkylating agent, was discussed against the background of clinical trials and improved suicide gene design. The introduction into hematopoietic stem cells of missing genes for the common gamma-chain, deficiency of which causes severe combined immunodeficiency (SCID), used similar retroviral transduction. The outcome of treating six SCID patients in the UK, and ten in France was successful immune reconstitution in the majority of patients, but in two of the French cases a complication of lymphoproliferative disease due to insertional mutagenesis was observed. The adoptive transfer of T-cells specific for minor histocompatibility antigens (for

  8. GeneHancer: genome-wide integration of enhancers and target genes in GeneCards

    PubMed Central

    Rappaport, Noa; Hadar, Rotem; Plaschkes, Inbar; Iny Stein, Tsippi; Rosen, Naomi; Kohn, Asher; Twik, Michal; Safran, Marilyn

    2017-01-01

    Abstract A major challenge in understanding gene regulation is the unequivocal identification of enhancer elements and uncovering their connections to genes. We present GeneHancer, a novel database of human enhancers and their inferred target genes, in the framework of GeneCards. First, we integrated a total of 434 000 reported enhancers from four different genome-wide databases: the Encyclopedia of DNA Elements (ENCODE), the Ensembl regulatory build, the functional annotation of the mammalian genome (FANTOM) project and the VISTA Enhancer Browser. Employing an integration algorithm that aims to remove redundancy, GeneHancer portrays 285 000 integrated candidate enhancers (covering 12.4% of the genome), 94 000 of which are derived from more than one source, and each assigned an annotation-derived confidence score. GeneHancer subsequently links enhancers to genes, using: tissue co-expression correlation between genes and enhancer RNAs, as well as enhancer-targeted transcription factor genes; expression quantitative trait loci for variants within enhancers; and capture Hi-C, a promoter-specific genome conformation assay. The individual scores based on each of these four methods, along with gene–enhancer genomic distances, form the basis for GeneHancer’s combinatorial likelihood-based scores for enhancer–gene pairing. Finally, we define ‘elite’ enhancer–gene relations reflecting both a high-likelihood enhancer definition and a strong enhancer–gene association. GeneHancer predictions are fully integrated in the widely used GeneCards Suite, whereby candidate enhancers and their annotations are displayed on every relevant GeneCard. This assists in the mapping of non-coding variants to enhancers, and via the linked genes, forms a basis for variant–phenotype interpretation of whole-genome sequences in health and disease. Database URL: http://www.genecards.org/ PMID:28605766

  9. SOX genes: architects of development.

    PubMed

    Prior, H M; Walter, M A

    1996-07-01

    Development in higher organisms involves complex genetic regulation at the molecular level. The emerging picture of development control includes several families of master regulatory genes which can affect the expression of down-stream target genes in developmental cascade pathways. One new family of such development regulators is the SOX gene family. The SOX genes are named for a shared motif called the SRY box a region homologous to the DNA-binding domain of SRY, the mammalian sex determining gene. Like SRY, SOX genes play important roles in chordate development. At least a dozen human SOX genes have been identified and partially characterized (Tables 1 and 2). Mutations in SOX9 have recently been linked to campomelic dysplasia and autosomal sex reversal, and other SOX genes may also be associated with human disease.

  10. Evolutionary genomics: transdomain gene transfers.

    PubMed

    Bordenstein, Seth R

    2007-11-06

    Biologists have until now conceded that bacterial gene transfer to multicellular animals is relatively uncommon in Nature. A new study showing promiscuous insertions of bacterial endosymbiont genes into invertebrate genomes ushers in a shift in this paradigm.

  11. Using Genes to Guide Prescriptions

    MedlinePlus

    ... role in how your body responds to medicines. Credit: Stock image. Your genes determine the color of ... of them, and genes might make the difference. Credit: Stock image. For people who have had a ...

  12. Chapter 15: Disease Gene Prioritization

    PubMed Central

    Bromberg, Yana

    2013-01-01

    Disease-causing aberrations in the normal function of a gene define that gene as a disease gene. Proving a causal link between a gene and a disease experimentally is expensive and time-consuming. Comprehensive prioritization of candidate genes prior to experimental testing drastically reduces the associated costs. Computational gene prioritization is based on various pieces of correlative evidence that associate each gene with the given disease and suggest possible causal links. A fair amount of this evidence comes from high-throughput experimentation. Thus, well-developed methods are necessary to reliably deal with the quantity of information at hand. Existing gene prioritization techniques already significantly improve the outcomes of targeted experimental studies. Faster and more reliable techniques that account for novel data types are necessary for the development of new diagnostics, treatments, and cure for many diseases. PMID:23633938

  13. Genes and nerves.

    PubMed

    Dieu, Tam; Johnstone, Bruce R; Newgreen, Don F

    2005-04-01

    The unpredictability of a brachial plexus graft, a median nerve repair, or a facial-nerve reconstruction is well known. No matter how precise the technical skills, a perfect recovery from a peripheral-nerve lesion is elusive. To resolve this problem, understanding of the normal development of the peripheral nervous system is needed. Presently, the development of the innervation in the upper limb is complex and not fully understood. However, many of the genes involved in this process are now known, and the link between anatomy and genetics is becoming clearer. This short review aims to acquaint the clinical surgeon with some of the main genes. The principal steps in the establishment of neural circuits will be summarized, in particular, the specification and development of neurons and glia, the pathfinding of cells and axons towards their target, and the downstream molecules that control the circuitry of these neurons.

  14. Beyond the Gene

    PubMed Central

    Fox Keller, Evelyn; Harel, David

    2007-01-01

    This paper is a response to the increasing difficulty biologists find in agreeing upon a definition of the gene, and indeed, the increasing disarray in which that concept finds itself. After briefly reviewing these problems, we propose an alternative to both the concept and the word gene—an alternative that, like the gene, is intended to capture the essence of inheritance, but which is both richer and more expressive. It is also clearer in its separation of what the organism statically is (what it tangibly inherits) and what it dynamically does (its functionality and behavior). Our proposal of a genetic functor, or genitor, is a sweeping extension of the classical genotype/phenotype paradigm, yet it appears to be faithful to the findings of contemporary biology, encompassing many of the recently emerging—and surprisingly complex—links between structure and functionality. PMID:18043738

  15. Gene therapy in keratoconus

    PubMed Central

    Farjadnia, Mahgol; Naderan, Mohammad; Mohammadpour, Mehrdad

    2015-01-01

    Keratoconus (KC) is the most common ectasia of the cornea and is a common reason for corneal transplant. Therapeutic strategies that can arrest the progression of this disease and modify the underlying pathogenesis are getting more and more popularity among scientists. Cumulating data represent strong evidence of a genetic role in the pathogenesis of KC. Different loci have been identified, and certain mutations have also been mapped for this disease. Moreover, Biophysical properties of the cornea create an appropriate candidate of this tissue for gene therapy. Immune privilege, transparency and ex vivo stability are among these properties. Recent advantage in vectors, besides the ability to modulate the corneal milieu for accepting the target gene for a longer period and fruitful translation, make a big hope for stupendous results reasonable. PMID:25709266

  16. Graphene based gene transfection

    NASA Astrophysics Data System (ADS)

    Feng, Liangzhu; Zhang, Shuai; Liu, Zhuang

    2011-03-01

    Graphene as a star in materials research has been attracting tremendous attentions in the past few years in various fields including biomedicine. In this work, for the first time we successfully use graphene as a non-toxic nano-vehicle for efficient gene transfection. Graphene oxide (GO) is bound with cationic polymers, polyethyleneimine (PEI) with two different molecular weights at 1.2 kDa and 10 kDa, forming GO-PEI-1.2k and GO-PEG-10k complexes, respectively, both of which are stable in physiological solutions. Cellular toxicity tests reveal that our GO-PEI-10k complex exhibits significantly reduced toxicity to the treated cells compared to the bare PEI-10k polymer. The positively charged GO-PEI complexes are able to further bind with plasmid DNA (pDNA) for intracellular transfection of the enhanced green fluorescence protein (EGFP) gene in HeLa cells. While EGFP transfection with PEI-1.2k appears to be ineffective, high EGFP expression is observed using the corresponding GO-PEI-1.2k as the transfection agent. On the other hand, GO-PEI-10k shows similar EGFP transfection efficiency but lower toxicity compared with PEI-10k. Our results suggest graphene to be a novel gene delivery nano-vector with low cytotoxicity and high transfection efficiency, promising for future applications in non-viral based gene therapy.Graphene as a star in materials research has been attracting tremendous attentions in the past few years in various fields including biomedicine. In this work, for the first time we successfully use graphene as a non-toxic nano-vehicle for efficient gene transfection. Graphene oxide (GO) is bound with cationic polymers, polyethyleneimine (PEI) with two different molecular weights at 1.2 kDa and 10 kDa, forming GO-PEI-1.2k and GO-PEG-10k complexes, respectively, both of which are stable in physiological solutions. Cellular toxicity tests reveal that our GO-PEI-10k complex exhibits significantly reduced toxicity to the treated cells compared to the bare PEI

  17. Gene therapy for mucopolysaccharidosis

    PubMed Central

    Ponder, Katherine P; Haskins, Mark E

    2012-01-01

    Mucopolysaccharidoses (MPS) are due to deficiencies in activities of lysosomal enzymes that degrade glycosaminoglycans. Some attempts at gene therapy for MPS in animal models have involved intravenous injection of vectors derived from an adeno-associated virus (AAV), adenovirus, retrovirus or a plasmid, which primarily results in expression in liver and secretion of the relevant enzyme into blood. Most vectors can correct disease in liver and spleen, although correction in other organs including the brain requires high enzyme activity in the blood. Alternative approaches are to transduce hematopoietic stem cells, or to inject a vector locally into difficult-to-reach sites such as the brain. Gene therapy holds great promise for providing a long-lasting therapeutic effect for MPS if safety issues can be resolved. PMID:17727324

  18. Brains, Genes and Primates

    PubMed Central

    Belmonte, Juan Carlos Izpisua; Callaway, Edward M.; Churchland, Patricia; Caddick, Sarah J.; Feng, Guoping; Homanics, Gregg E.; Lee, Kuo-Fen; Leopold, David A.; Miller, Cory T.; Mitchell, Jude F.; Mitalipov, Shoukhrat; Moutri, Alysson R.; Movshon, J. Anthony; Okano, Hideyuki; Reynolds, John H.; Ringach, Dario; Sejnowski, Terrence J.; Silva, Afonso C.; Strick, Peter L.; Wu, Jun; Zhang, Feng

    2015-01-01

    One of the great strengths of the mouse model is the wide array of genetic tools that have been developed. Striking examples include methods for directed modification of the genome, and for regulated expression or inactivation of genes. Within neuroscience, it is now routine to express reporter genes, neuronal activity indicators and opsins in specific neuronal types in the mouse. However, there are considerable anatomical, physiological, cognitive and behavioral differences between the mouse and the human that, in some areas of inquiry, limit the degree to which insights derived from the mouse can be applied to understanding human neurobiology. Several recent advances have now brought into reach the goal of applying these tools to understanding the primate brain. Here we describe these advances, consider their potential to advance our understanding of the human brain and brain disorders, discuss bioethical considerations, and describe what will be needed to move forward. PMID:25950631

  19. Gene expression technology

    SciTech Connect

    Goeddel, D.V. )

    1990-01-01

    The articles in this volume were assemble to enable the reader to design effective strategies for the expression of cloned genes and cDNAs. More than a compilation of papers describing the multitude of techniques now available for expressing cloned genes, this volume provides a manual that should prove useful for solving the majority of expression problems one likely to encounter. The four major expression systems commonly available to most investigators are stressed: Escherichia coli, Bacillus subtilis, yeast, and mammalian cells. Each of these system has its advantages and disadvantages, details of which are found in Chapter 1 and the strategic overviews for the four major sections of the volume. The papers in each of these sections provide many suggestions on how to proceed if initial expression levels are not sufficient.

  20. Brains, genes, and primates.

    PubMed

    Izpisua Belmonte, Juan Carlos; Callaway, Edward M; Caddick, Sarah J; Churchland, Patricia; Feng, Guoping; Homanics, Gregg E; Lee, Kuo-Fen; Leopold, David A; Miller, Cory T; Mitchell, Jude F; Mitalipov, Shoukhrat; Moutri, Alysson R; Movshon, J Anthony; Okano, Hideyuki; Reynolds, John H; Ringach, Dario; Sejnowski, Terrence J; Silva, Afonso C; Strick, Peter L; Wu, Jun; Zhang, Feng

    2015-05-06

    One of the great strengths of the mouse model is the wide array of genetic tools that have been developed. Striking examples include methods for directed modification of the genome, and for regulated expression or inactivation of genes. Within neuroscience, it is now routine to express reporter genes, neuronal activity indicators, and opsins in specific neuronal types in the mouse. However, there are considerable anatomical, physiological, cognitive, and behavioral differences between the mouse and the human that, in some areas of inquiry, limit the degree to which insights derived from the mouse can be applied to understanding human neurobiology. Several recent advances have now brought into reach the goal of applying these tools to understanding the primate brain. Here we describe these advances, consider their potential to advance our understanding of the human brain and brain disorders, discuss bioethical considerations, and describe what will be needed to move forward. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. The sulfatase gene family.

    PubMed

    Parenti, G; Meroni, G; Ballabio, A

    1997-06-01

    During the past few years, molecular analyses have provided important insights into the biochemistry and genetics of the sulfatase family of enzymes, identifying the molecular bases of inherited diseases caused by sulfatase deficiencies. New members of the sulfatase gene family have been identified in man and other species using a genomic approach. These include the gene encoding arylsulfatase E, which is involved in X-linked recessive chondrodysplasia punctata, a disorder of cartilage and bone development. Another important breakthrough has been the discovery of the biochemical basis of multiple sulfatase deficiency, an autosomal recessive disorder characterized by a severe of all sulfatase activities. These discoveries, together with the resolution of the crystallographic structure of sulfatases, have improved our understanding of the function and evolution of this fascinating family of enzymes.

  2. Pure genes, pure genius.

    PubMed

    McKnight, Steven L

    2012-09-14

    The 2012 Albert Lasker Special Achievement Award in Medical Science will be shared by Donald Brown and Tom Maniatis for their scientific work leading to the purification and study of single genes by physical and molecular biological methodologies. Brown and Maniatis are also recognized for their extraordinary commitment and generosity in promoting the careers of young scientists. The impact of these accomplishments has transformed biological and medical science over the past four decades.

  3. Gene Porter Bridwell

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Gene Porter Bridwell served as the director of the Marshall Space Flight Center from January 6, 1994 until February 3, 1996, when he retired from NASA after thirty-four years service. Bridwell, a Marshall employee since 1962, had been Marshall's Space Shuttle Projects Office Director and Space Station Redesign Team deputy manager. Under Bridwell, Marshall worked to develop its role as a Center of Excellence for propulsion and for providing access to space.

  4. [Patenting human genes].

    PubMed

    Brdicka, R

    2002-05-10

    The problem of patenting of human genes, which was discussed at the Workshop organized by OECD, has become very actual due to granted patents that concern testing of genetic disposition for breast cancer. Companies that had made large investments into this research clearly support patenting of their discoveries. But such patents can reduce general accessibility of genetic testing. Existing laws, and namely the Directive of the European Council unfortunately are not unambiguous and allow rather free explanation.

  5. Gene Porter Bridwell

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Gene Porter Bridwell served as the director of the Marshall Space Flight Center from January 6, 1994 until February 3, 1996, when he retired from NASA after thirty-four years service. Bridwell, a Marshall employee since 1962, had been Marshall's Space Shuttle Projects Office Director and Space Station Redesign Team deputy manager. Under Bridwell, Marshall worked to develop its role as a Center of Excellence for propulsion and for providing access to space.

  6. RNA-mediated gene activation

    PubMed Central

    Jiao, Alan L; Slack, Frank J

    2014-01-01

    The regulation of gene expression by non-coding RNAs (ncRNAs) has become a new paradigm in biology. RNA-mediated gene silencing pathways have been studied extensively, revealing diverse epigenetic and posttranscriptional mechanisms. In contrast, the roles of ncRNAs in activating gene expression remains poorly understood. In this review, we summarize the current knowledge of gene activation by small RNAs, long non-coding RNAs, and enhancer-derived RNAs, with an emphasis on epigenetic mechanisms. PMID:24185374

  7. nanosheets for gene therapy

    NASA Astrophysics Data System (ADS)

    Kou, Zhongyang; Wang, Xin; Yuan, Renshun; Chen, Huabin; Zhi, Qiaoming; Gao, Ling; Wang, Bin; Guo, Zhaoji; Xue, Xiaofeng; Cao, Wei; Guo, Liang

    2014-10-01

    A new class of two-dimensional (2D) nanomaterial, transition metal dichalcogenides (TMDCs) such as MoS2, MoSe2, WS2, and WSe2 which have fantastic physical and chemical properties, has drawn tremendous attention in different fields recently. Herein, we for the first time take advantage of the great potential of MoS2 with well-engineered surface as a novel type of 2D nanocarriers for gene delivery and therapy of cancer. In our system, positively charged MoS2-PEG-PEI is synthesized with lipoic acid-modified polyethylene glycol (LA-PEG) and branched polyethylenimine (PEI). The amino end of positively charged nanomaterials can bind to the negatively charged small interfering RNA (siRNA). After detection of physical and chemical characteristics of the nanomaterial, cell toxicity was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Polo-like kinase 1 (PLK1) was investigated as a well-known oncogene, which was a critical regulator of cell cycle transmission at multiple levels. Through knockdown of PLK1 with siRNA carried by novel nanovector, qPCR and Western blot were used to measure the interfering efficiency; apoptosis assay was used to detect the transfection effect of PLK1. All results showed that the novel nanocarrier revealed good biocompatibility, reduced cytotoxicity, as well as high gene-carrying ability without serum interference, thus would have great potential for gene delivery and therapy.

  8. Genealogy and gene trees.

    PubMed

    Rasmuson, Marianne

    2008-02-01

    Heredity can be followed in persons or in genes. Persons can be identified only a few generations back, but simplified models indicate that universal ancestors to all now living persons have occurred in the past. Genetic variability can be characterized as variants of DNA sequences. Data are available only from living persons, but from the pattern of variation gene trees can be inferred by means of coalescence models. The merging of lines backwards in time leads to a MRCA (most recent common ancestor). The time and place of living for this inferred person can give insights in human evolutionary history. Demographic processes are incorporated in the model, but since culture and customs are known to influence demography the models used ought to be tested against available genealogy. The Icelandic data base offers a possibility to do so and points to some discrepancies. Mitochondrial DNA and Y chromosome patterns give a rather consistent view of human evolutionary history during the latest 100 000 years but the earlier epochs of human evolution demand gene trees with longer branches. The results of such studies reveal as yet unsolved problems about the sources of our genome.

  9. Nonviral gene delivery.

    PubMed

    Akita, Hidetaka; Harashima, Hideyoshi

    2008-01-01

    Gene and RNA interference therapies are promising cures for intractable renal failure. However, low delivery efficiency of the therapeutic nucleic acid into the nucleus of the target cell is a significant obstacle in the clinical application of nonviral gene therapy. Various mechanical techniques (hydrodynamic injection, electroporation and ultrasound-microbubble) and topically applied preparations (HVJ liposome and cationic liposome/polymer), which introduce transgenes into specific renal compartments depending on the administration route, have been reported. Additional improvements in renal application of nonviral gene vectors must address the important issue of how to control intracellular trafficking. Therefore, novel vectors based on the 'programmed packaging' concept are desirable in which all functional devices are integrated into a single system so that each function occurs at the appropriate time and correct place. In parallel with development of the carrier, quantitative evaluation of intracellular trafficking is essential to determine the efficacy of the modified devices in the cellular environment. In particular, comparison of the intracellular trafficking of the engineered devices with that of viruses (i.e. adenovirus) is useful in identifying the rate-limiting intracellular processes of the vectors during development.

  10. Prediction of disease genes using tissue-specified gene-gene network

    PubMed Central

    2014-01-01

    Background Tissue specificity is an important aspect of many genetic diseases in the context of genetic disorders as the disorder affects only few tissues. Therefore tissue specificity is important in identifying disease-gene associations. Hence this paper seeks to discuss the impact of using tissue specificity in predicting new disease-gene associations and how to use tissue specificity along with phenotype information for a particular disease. Methods In order to find out the impact of using tissue specificity for predicting new disease-gene associations, this study proposes a novel method called tissue-specified genes to construct tissues-specific gene-gene networks for different tissue samples. Subsequently, these networks are used with phenotype details to predict disease genes by using Katz method. The proposed method was compared with three other tissue-specific network construction methods in order to check its effectiveness. Furthermore, to check the possibility of using tissue-specific gene-gene network instead of generic protein-protein network at all time, the results are compared with three other methods. Results In terms of leave-one-out cross validation, calculation of the mean enrichment and ROC curves indicate that the proposed approach outperforms existing network construction methods. Furthermore tissues-specific gene-gene networks make a more positive impact on predicting disease-gene associations than generic protein-protein interaction networks. Conclusions In conclusion by integrating tissue-specific data it enabled prediction of known and unknown disease-gene associations for a particular disease more effectively. Hence it is better to use tissue-specific gene-gene network whenever possible. In addition the proposed method is a better way of constructing tissue-specific gene-gene networks. PMID:25350876

  11. Prediction of disease genes using tissue-specified gene-gene network.

    PubMed

    Ganegoda, Gamage; Wang, JianXin; Wu, Fang-Xiang; Li, Min

    2014-01-01

    Tissue specificity is an important aspect of many genetic diseases in the context of genetic disorders as the disorder affects only few tissues. Therefore tissue specificity is important in identifying disease-gene associations. Hence this paper seeks to discuss the impact of using tissue specificity in predicting new disease-gene associations and how to use tissue specificity along with phenotype information for a particular disease. In order to find out the impact of using tissue specificity for predicting new disease-gene associations, this study proposes a novel method called tissue-specified genes to construct tissues-specific gene-gene networks for different tissue samples. Subsequently, these networks are used with phenotype details to predict disease genes by using Katz method. The proposed method was compared with three other tissue-specific network construction methods in order to check its effectiveness. Furthermore, to check the possibility of using tissue-specific gene-gene network instead of generic protein-protein network at all time, the results are compared with three other methods. In terms of leave-one-out cross validation, calculation of the mean enrichment and ROC curves indicate that the proposed approach outperforms existing network construction methods. Furthermore tissues-specific gene-gene networks make a more positive impact on predicting disease-gene associations than generic protein-protein interaction networks. In conclusion by integrating tissue-specific data it enabled prediction of known and unknown disease-gene associations for a particular disease more effectively. Hence it is better to use tissue-specific gene-gene network whenever possible. In addition the proposed method is a better way of constructing tissue-specific gene-gene networks.

  12. Gene therapy for Down syndrome.

    PubMed

    Fillat, Cristina; Altafaj, Xavier

    2012-01-01

    The presence of an additional copy of HSA21 chromosome in Down syndrome (DS) individuals leads to the overexpression of 30-50% of HSA21 genes. This upregulation can, in turn, trigger a deregulation on the expression of non-HSA21 genes. Moreover, the overdose of HSA21 microRNAs (miRNAs) may result in the downregulation of its target genes. Additional complexity can also arise from epigenetic changes modulating gene expression. Thus, a myriad of transcriptional and posttranscriptional alterations participate to produce abnormal phenotypes in almost all tissues and organs of DS individuals. The study of the physiological roles of genes dysregulated in DS, as well as their characterization in murine models with gene(s) dosage imbalance, pointed out several genes, and functional noncoding elements to be particularly critical in the etiology of DS. Recent findings indicate that gene therapy strategies-based on the introduction of genetic elements by means of delivery vectors-toward the correction of phenotypic abnormalities in DS are also very promising tool to identify HSA21 and non-HSA21 gene candidates, contributing to DS phenotype. In this chapter, we focus on the impact of normalizing the expression levels of up or downregulated genes to rescue particular phenotypes of DS. Attempts toward gene-based treatment approaches in mouse models will be discussed as new opportunities to ameliorate DS alterations.

  13. Independent Gene Discovery and Testing

    ERIC Educational Resources Information Center

    Palsule, Vrushalee; Coric, Dijana; Delancy, Russell; Dunham, Heather; Melancon, Caleb; Thompson, Dennis; Toms, Jamie; White, Ashley; Shultz, Jeffry

    2010-01-01

    A clear understanding of basic gene structure is critical when teaching molecular genetics, the central dogma and the biological sciences. We sought to create a gene-based teaching project to improve students' understanding of gene structure and to integrate this into a research project that can be implemented by instructors at the secondary level…

  14. [Basic principles of gene therapy].

    PubMed

    Vieweg, J

    1996-09-01

    The rapid development of recombinant DNA technology and our enhanced understanding of the genetic basis of human disease has facilitated the development of new molecular therapeutic modalities, termed gene therapy. Gene therapy involves the transfer of functional genes into somatic cells and their expression in target tissues in order to replace absent genes, correct defective genes, or induce antitumoral activity in the tumor-bearing host. Currently, an increasing number of gene therapy strategies are being investigated in experimental and clinical trials. Despite substantial progress, a number of technical and logistical hurdles must still be overcome before gene therapy can be safety and effectively applied in the human patient. Since gene therapy involves complex cell processing and can be time consuming and costly, simplifications or even alternative approaches will be necessary in order to establish this therapy as suitable for clinical use. This report reviews various gene therapy strategies and gene delivery techniques currently under clinical or experimental investigation. Special emphasis is given to cytokine gene therapy using gene-modified tumor vaccines for cancer treatment.

  15. Optimal gene partition into operons correlates with gene functional order

    NASA Astrophysics Data System (ADS)

    Zaslaver, Alon; Mayo, Avi; Ronen, Michal; Alon, Uri

    2006-09-01

    Gene arrangement into operons varies between bacterial species. Genes in a given system can be on one operon in some organisms and on several operons in other organisms. Existing theories explain why genes that work together should be on the same operon, since this allows for advantageous lateral gene transfer and accurate stoichiometry. But what causes the frequent separation into multiple operons of co-regulated genes that act together in a pathway? Here we suggest that separation is due to benefits made possible by differential regulation of each operon. We present a simple mathematical model for the optimal distribution of genes into operons based on a balance of the cost of operons and the benefit of regulation that provides 'just-when-needed' temporal order. The analysis predicts that genes are arranged such that genes on the same operon do not skip functional steps in the pathway. This prediction is supported by genomic data from 137 bacterial genomes. Our work suggests that gene arrangement is not only the result of random historical drift, genome re-arrangement and gene transfer, but has elements that are solutions of an evolutionary optimization problem. Thus gene functional order may be inferred by analyzing the operon structure across different genomes.

  16. Entrez Gene: gene-centered information at NCBI

    PubMed Central

    Maglott, Donna; Ostell, Jim; Pruitt, Kim D.; Tatusova, Tatiana

    2007-01-01

    Entrez Gene () is NCBI's database for gene-specific information. Entrez Gene includes records from genomes that have been completely sequenced, that have an active research community to contribute gene-specific information or that are scheduled for intense sequence analysis. The content of Entrez Gene represents the result of both curation and automated integration of data from NCBI's Reference Sequence project (RefSeq), from collaborating model organism databases and from other databases within NCBI. Records in Entrez Gene are assigned unique, stable and tracked integers as identifiers. The content (nomenclature, map location, gene products and their attributes, markers, phenotypes and links to citations, sequences, variation details, maps, expression, homologs, protein domains and external databases) is provided via interactive browsing through NCBI's Entrez system, via NCBI's Entrez programing utilities (E-Utilities), and for bulk transfer by ftp. PMID:17148475

  17. Gene Therapy for Metabolic Diseases

    PubMed Central

    Chandler, Randy J.; Venditti, Charles P.

    2016-01-01

    SUMMARY Gene therapy has recently shown great promise as an effective treatment for a number of metabolic diseases caused by genetic defects in both animal models and human clinical trials. Most of the current success has been achieved using a viral mediated gene addition approach, but gene-editing technology has progressed rapidly and gene modification is being actively pursued in clinical trials. This review focuses on viral mediated gene addition approaches, because most of the current clinical trials utilize this approach to treat metabolic diseases. PMID:27853673

  18. The ethics of gene therapy.

    PubMed

    Chan, Sarah; Harris, John

    2006-10-01

    Recent developments have progressed in areas of science that pertain to gene therapy and its ethical implications. This review discusses the current state of therapeutic gene technologies, including stem cell therapies and genetic modification, and identifies ethical issues of concern in relation to the science of gene therapy and its application, including the ethics of embryonic stem cell research and therapeutic cloning, the risks associated with gene therapy, and the ethics of clinical research in developing new therapeutic technologies. Additionally, ethical issues relating to genetic modification itself are considered: the significance of the human genome, the distinction between therapy and enhancement, and concerns regarding gene therapy as a eugenic practice.

  19. Gene Therapy for Autoimmune Disease.

    PubMed

    Shu, Shang-An; Wang, Jinjun; Tao, Mi-Hua; Leung, Patrick S C

    2015-10-01

    Advances in understanding the immunological and molecular basis of autoimmune diseases have made gene therapy a promising approach to treat the affected patients. Gene therapy for autoimmune diseases aims to regulate the levels of proinflammatory cytokines or molecules and the infiltration of lymphocytes to the effected sites through successful delivery and expression of therapeutic genes in appropriate cells. The ultimate goal of gene therapy is to restore and maintain the immune tolerance to the relevant autoantigens and improve clinical outcomes for patients. Here, we summarize the recent progress in identifying genes responsible for autoimmune diseases and present examples where gene therapy has been applied as treatments or prevention in autoimmune diseases both in animal models and the clinical trials. Discussion on the advantages and pitfalls of gene therapy strategies employed is provided. The intent of this review is to inspire further studies toward the development of new strategies for successful treatment of autoimmune diseases.

  20. Diseases originate and terminate by genes: unraveling nonviral gene delivery.

    PubMed

    Swami, Rajan; Singh, Indu; Khan, Wahid; Ramakrishna, Sistla

    2013-12-01

    The world is driving in to the era of transformation of chemical therapeutic molecules to biological genetic material therapeutics, and that is where the biological drugs especially "genes" come into existence. These genes worked as "magical bullets" to specifically silence faulty genes responsible for progression of diseases. Viral gene delivery research is far ahead of nonviral gene delivery technique. However, with more advancement in polymer science, new ways are opening for better and efficient nonviral gene delivery. But efficient delivery method is always considered as a bottleneck for gene delivery as success of which will decide the fate of gene in cells. During the past decade, it became evident that extracellular as well as intracellular barriers compromise the transfection efficiency of nonviral vectors. The challenge for gene therapy research is to pinpoint the rate-limiting steps in this complex process and implement strategies to overcome the biological physiochemical and metabolic barriers encountered during targeting. The synergy between studies that investigate the mechanism of breaking in and breaking out of nonviral gene delivery carrier through various extracellular and intracellular barriers with desired characteristics will enable the rational design of vehicles and revolutionize the treatment of various diseases.

  1. Integrating phenotype and gene expression data for predicting gene function.

    PubMed

    Malone, Brandon M; Perkins, Andy D; Bridges, Susan M

    2009-10-08

    This paper presents a framework for integrating disparate data sets to predict gene function. The algorithm constructs a graph, called an integrated similarity graph, by computing similarities based upon both gene expression and textual phenotype data. This integrated graph is then used to make predictions about whether individual genes should be assigned a particular annotation from the Gene Ontology. A combined graph was generated from publicly-available gene expression data and phenotypic information from Saccharomyces cerevisiae. This graph was used to assign annotations to genes, as were graphs constructed from gene expression data and textual phenotype information alone. While the F-measure appeared similar for all three methods, annotations based upon the integrated similarity graph exhibited a better overall precision than gene expression or phenotype information alone can generate. The integrated approach was also able to assign almost as many annotations as the gene expression method alone, and generated significantly more total and correct assignments than the phenotype information could provide. These results suggest that augmenting standard gene expression data sets with publicly-available textual phenotype data can help generate more precise functional annotation predictions while mitigating the weaknesses of a standard textual phenotype approach.

  2. RANGE: Gene Transfer of Reversibly Controlled Polycistronic Genes

    PubMed Central

    Chen, Yiwei; Cao, Liji; Luo, Chonglin; Ditzel, Désirée AW; Peter, Jörg; Sprengel, Rolf

    2013-01-01

    We developed a single vector recombinant adeno-associated viral (rAAV) expression system for spatial and reversible control of polycistronic gene expression. Our approach (i) integrates the advantages of the tetracycline (Tet)-controlled transcriptional silencer tTSKid and the self-cleaving 2A peptide bridge, (ii) combines essential regulatory components as an autoregulatory loop, (iii) simplifies the gene delivery scheme, and (iv) regulates multiple genes in a synchronized manner. Controlled by an upstream Tet-responsive element (TRE), both the ubiquitous chicken β-actin promoter (CAG) and the neuron-specific synapsin-1 promoter (Syn) could regulate expression of tTSKid together with two 2A-linked reporter genes. Transduction in vitro exhibited maximally 50-fold regulation by doxycycline (Dox). Determined by gene delivery method as well as promoter, highly specific tissues were transduced in vivo. Bioluminescence imaging (BLI) visualized reversible “ON/OFF” gene switches over repeated “Doxy-Cycling” in living mice. Thus, the reversible rAAV-mediated N-cistronic gene expression system, termed RANGE, may serve as a versatile tool to achieve reversible polycistronic gene regulation for the study of gene function as well as gene therapy. PMID:23571608

  3. Progress in gene targeting and gene therapy for retinitis pigmentosa

    SciTech Connect

    Farrar, G.J.; Humphries, M.M.; Erven, A.

    1994-09-01

    Previously, we localized disease genes involved in retinitis pigmentosa (RP), an inherited retinal degeneration, close to the rhodopsin and peripherin genes on 3q and 6p. Subsequently, we and others identified mutations in these genes in RP patients. Currently animal models for human retinopathies are being generated using gene targeting by homologous recombination in embryonic stem (ES) cells. Genomic clones for retinal genes including rhodopsin and peripherin have been obtained from a phage library carrying mouse DNA isogenic with the ES cell line (CC1.2). The peripherin clone has been sequenced to establish the genomic structure of the mouse gene. Targeting vectors for rhodopsin and peripherin including a neomycin cassette for positive selection and thymidine kinase genes enabling selection against random intergrants are under construction. Progress in vector construction will be presented. Simultaneously we are developing systems for delivery of gene therapies to retinal tissues utilizing replication-deficient adenovirus (Ad5). Efficacy of infection subsequent to various methods of intraocular injection and with varying viral titers is being assayed using an adenovirus construct containing a CMV promoter LacZ fusion as reporter and the range of tissues infected and the level of duration of LacZ expression monitored. Viral constructs with the LacZ reporter gene under the control of retinal specific promoters such as rhodopsin and IRBP cloned into pXCJL.1 are under construction. An update on developments in photoreceptor cell-directed expression of virally delivered genes will be presented.

  4. Network analysis reveals crosstalk between autophagy genes and disease genes

    PubMed Central

    Wang, Ji-Ye; Yao, Wei-Xuan; Wang, Yun; Fan, Yi-lei; Wu, Jian-Bing

    2017-01-01

    Autophagy is a protective and life-sustaining process in which cytoplasmic components are packaged into double-membrane vesicles and targeted to lysosomes for degradation. Accumulating evidence supports that autophagy is associated with several pathological conditions. However, research on the functional cross-links between autophagy and disease genes remains in its early stages. In this study, we constructed a disease-autophagy network (DAN) by integrating known disease genes, known autophagy genes and protein-protein interactions (PPI). Dissecting the topological properties of the DAN suggested that nodes that both autophagy and disease genes (inter-genes), are topologically important in the DAN structure. Next, a core network from the DAN was extracted to analyze the functional links between disease and autophagy genes. The genes in the core network were significantly enriched in multiple disease-related pathways, suggesting that autophagy genes may function in various disease processes. Of 17 disease classes, 11 significantly overlapped with autophagy genes, including cancer diseases, metabolic diseases and hematological diseases, a finding that is supported by the literatures. We also found that autophagy genes have a bridging role in the connections between pairs of disease classes. Altogether, our study provides a better understanding of the molecular mechanisms underlying human diseases and the autophagy process. PMID:28295050

  5. Identification of genes and gene products necessary for bacterial bioluminescence.

    PubMed

    Engebrecht, J; Silverman, M

    1984-07-01

    Expression of luminescence in Escherichia coli was recently achieved by cloning genes from the marine bacterium Vibrio fischeri. One DNA fragment on a hybrid plasmid encoded regulatory functions and enzymatic activities necessary for light production. We report the results of a genetic analysis to identify the luminescence genes (lux) that reside on this recombinant plasmid. lux gene mutations were generated by hydroxylamine treatment, and these mutations were ordered on a linear map by complementation in trans with a series of polar transposon insertions on other plasmids. lux genes were defined by complementation of lux gene defects on pairs of plasmids in trans in E. coli. Hybrid plasmids were also used to direct the synthesis of polypeptides in the E. coli minicell system. Seven lux genes and the corresponding gene products were identified from the complementation analysis and the minicell programing experiments. These genes, in the order of their position on a linear map, and the apparent molecular weights of the gene products are luxR (27,000), luxI (25,000), luxC (53,000), luxD (33,000), luxA (40,000), luxB (38,000), and luxE (42,000). From the luminescence phenotypes of E. coli containing mutant plasmids, functions were assigned to these genes: luxA, luxB, luxC, luxD, and luxE encode enzymes for light production and luxR and luxI encode regulatory functions.

  6. Gene Circuit Analysis of the Terminal Gap Gene huckebein

    PubMed Central

    Ashyraliyev, Maksat; Siggens, Ken; Janssens, Hilde; Blom, Joke; Akam, Michael; Jaeger, Johannes

    2009-01-01

    The early embryo of Drosophila melanogaster provides a powerful model system to study the role of genes in pattern formation. The gap gene network constitutes the first zygotic regulatory tier in the hierarchy of the segmentation genes involved in specifying the position of body segments. Here, we use an integrative, systems-level approach to investigate the regulatory effect of the terminal gap gene huckebein (hkb) on gap gene expression. We present quantitative expression data for the Hkb protein, which enable us to include hkb in gap gene circuit models. Gap gene circuits are mathematical models of gene networks used as computational tools to extract regulatory information from spatial expression data. This is achieved by fitting the model to gap gene expression patterns, in order to obtain estimates for regulatory parameters which predict a specific network topology. We show how considering variability in the data combined with analysis of parameter determinability significantly improves the biological relevance and consistency of the approach. Our models are in agreement with earlier results, which they extend in two important respects: First, we show that Hkb is involved in the regulation of the posterior hunchback (hb) domain, but does not have any other essential function. Specifically, Hkb is required for the anterior shift in the posterior border of this domain, which is now reproduced correctly in our models. Second, gap gene circuits presented here are able to reproduce mutants of terminal gap genes, while previously published models were unable to reproduce any null mutants correctly. As a consequence, our models now capture the expression dynamics of all posterior gap genes and some variational properties of the system correctly. This is an important step towards a better, quantitative understanding of the developmental and evolutionary dynamics of the gap gene network. PMID:19876378

  7. Genes and cognition.

    PubMed

    Pietropaolo, Susanna; Crusio, Wim E

    2011-05-01

    Explaining individual differences in human cognition has been a prominent goal of psychological research during the last century. Converging lines of evidence from human and animal research have shown that these differences are under the influence of genetic factors. However, identifying the specific genes involved is not an easy task. The complexities of the human genome and of the definition of the concept of cognition itself are obvious reasons why understanding the genetics of cognitive abilities is so complicated. About 20,000 genes are thought to have an impact on the development and functionality of the brain and each and every one of these may in fact have an effect on information processing, and therefore on cognition. In addition, the concept of cognition itself is very broad and has often been the subject of intense debate. It is therefore important to provide a precise definition of the cognitive phenotype before analyzing the genetic influences acting on it. Furthermore, the genetics of cognition can be investigated by multiple approaches that can be applied not only to human, but also to animal research. An overview of these methods and some of the results obtained is provided in an attempt to highlight the multidisciplinary complexity of studying the genetic bases of human cognition. Furthermore, some directions for future studies are suggested, highlighting the importance of analyzing gene-environment interactions and avoiding deterministic approaches. WIREs Cogni Sci 2011 2 345-352 DOI: 10.1002/wcs.135 For further resources related to this article, please visit the WIREs website. Copyright © 2010 John Wiley & Sons, Ltd.

  8. Mining for survival genes.

    PubMed

    Dawson, V L; Dawson, T M

    2006-12-01

    Many stressful, but not lethal, stimuli activate endogenous protective mechanisms that significantly decrease the degree of injury to subsequent injurious stimuli. This protective mechanism is termed preconditioning and tolerance. It occurs across organ systems including the brain and nervous system. Preconditioning has been investigated in cell and animal models and recently been shown to potentially occur in human brain. Learning more about these powerful endogenous neuroprotective mechanisms could help identify new approaches to treat patients with stroke and other central nervous system disorders or injury. Cell and animal models are helping us to better understand the network response of gene and protein expression that activates the neuroprotective response.

  9. Gene Discoveries Offer New Height Insights

    MedlinePlus

    ... Health and Human Services. More Health News on: Child Development Genes and Gene Therapy Recent Health News Related MedlinePlus Health Topics Child Development Genes and Gene Therapy About MedlinePlus Site Map ...

  10. Gene Therapy and Children (For Parents)

    MedlinePlus

    ... Old Feeding Your 1- to 2-Year-Old Gene Therapy and Children KidsHealth > For Parents > Gene Therapy ... that don't respond to conventional therapies. About Genes Our genes help make us unique. Inherited from ...

  11. Human AZU-1 gene, variants thereof and expressed gene products

    DOEpatents

    Chen, Huei-Mei; Bissell, Mina

    2004-06-22

    A human AZU-1 gene, mutants, variants and fragments thereof. Protein products encoded by the AZU-1 gene and homologs encoded by the variants of AZU-1 gene acting as tumor suppressors or markers of malignancy progression and tumorigenicity reversion. Identification, isolation and characterization of AZU-1 and AZU-2 genes localized to a tumor suppressive locus at chromosome 10q26, highly expressed in nonmalignant and premalignant cells derived from a human breast tumor progression model. A recombinant full length protein sequences encoded by the AZU-1 gene and nucleotide sequences of AZU-1 and AZU-2 genes and variant and fragments thereof. Monoclonal or polyclonal antibodies specific to AZU-1, AZU-2 encoded protein and to AZU-1, or AZU-2 encoded protein homologs.

  12. Cardiac gene therapy: optimization of gene delivery techniques in vivo.

    PubMed

    Katz, Michael G; Swain, JaBaris D; White, Jennifer D; Low, David; Stedman, Hansell; Bridges, Charles R

    2010-04-01

    Vector-mediated cardiac gene therapy holds tremendous promise as a translatable platform technology for treating many cardiovascular diseases. The ideal technique is one that is efficient and practical, allowing for global cardiac gene expression, while minimizing collateral expression in other organs. Here we survey the available in vivo vector-mediated cardiac gene delivery methods--including transcutaneous, intravascular, intramuscular, and cardiopulmonary bypass techniques--with consideration of the relative merits and deficiencies of each. Review of available techniques suggests that an optimal method for vector-mediated gene delivery to the large animal myocardium would ideally employ retrograde and/or anterograde transcoronary gene delivery,extended vector residence time in the coronary circulation, an increased myocardial transcapillary gradient using physical methods, increased endothelial permeability with pharmacological agents, minimal collateral gene expression by isolation of the cardiac circulation from the systemic, and have low immunogenicity.

  13. Cardiac Gene Therapy: Optimization of Gene Delivery Techniques In Vivo

    PubMed Central

    Katz, Michael G.; Swain, JaBaris D.; White, Jennifer D.; Low, David; Stedman, Hansell

    2010-01-01

    Abstract Vector-mediated cardiac gene therapy holds tremendous promise as a translatable platform technology for treating many cardiovascular diseases. The ideal technique is one that is efficient and practical, allowing for global cardiac gene expression, while minimizing collateral expression in other organs. Here we survey the available in vivo vector-mediated cardiac gene delivery methods—including transcutaneous, intravascular, intramuscular, and cardiopulmonary bypass techniques—with consideration of the relative merits and deficiencies of each. Review of available techniques suggests that an optimal method for vector-mediated gene delivery to the large animal myocardium would ideally employ retrograde and/or anterograde transcoronary gene delivery,extended vector residence time in the coronary circulation, an increased myocardial transcapillary gradient using physical methods, increased endothelial permeability with pharmacological agents, minimal collateral gene expression by isolation of the cardiac circulation from the systemic, and have low immunogenicity. PMID:19947886

  14. XLMR genes: Update 1996

    SciTech Connect

    Lubs, H.A.; Tranebjaerg, L.; Arena, J.F.

    1996-07-12

    A current list of all known forms of X-linked mental retardation (XLMR) and a slightly revised classification are presented. The number of known disorders has not increased because 6 disorders have been combined based on new molecular data or on clinical grounds and only 6 newly described XLMR disorders have been reported. Of the current 105 XLMR disorders, 34 have been mapped, and 18 disorders and 1 non-specific XLMR (FRAXE) have been cloned. The number of families with nonspecific XLMR with a LOD score of {ge}2.0 has more than doubled, with 42 (including FRAXE) now being known. A summary of the localization of presumed nonspecific mental retardation (MR) genes from well-studied X-chromosomal translocations and deletions is also included. Only 10-12 nonoverlapping loci are required to explain all localizations of non-specific MR from both approaches. These new trends mark the beginning of a significantly improved understanding of the role of genes on the X chromosome in producing MR. Continued close collaboration between clinical and molecular investigators will be required to complete the process. 105 refs., 2 figs., 6 tabs.

  15. Conotoxin gene superfamilies.

    PubMed

    Robinson, Samuel D; Norton, Raymond S

    2014-12-17

    Conotoxins are the peptidic components of the venoms of marine cone snails (genus Conus). They are remarkably diverse in terms of structure and function. Unique potency and selectivity profiles for a range of neuronal targets have made several conotoxins valuable as research tools, drug leads and even therapeutics, and has resulted in a concerted and increasing drive to identify and characterise new conotoxins. Conotoxins are translated from mRNA as peptide precursors, and cDNA sequencing is now the primary method for identification of new conotoxin sequences. As a result, gene superfamily, a classification based on precursor signal peptide identity, has become the most convenient method of conotoxin classification. Here we review each of the described conotoxin gene superfamilies, with a focus on the structural and functional diversity present in each. This review is intended to serve as a practical guide to conotoxin superfamilies and to facilitate interpretation of the increasing number of conotoxin precursor sequences being identified by targeted-cDNA sequencing and more recently high-throughput transcriptome sequencing.

  16. Conotoxin Gene Superfamilies

    PubMed Central

    Robinson, Samuel D.; Norton, Raymond S.

    2014-01-01

    Conotoxins are the peptidic components of the venoms of marine cone snails (genus Conus). They are remarkably diverse in terms of structure and function. Unique potency and selectivity profiles for a range of neuronal targets have made several conotoxins valuable as research tools, drug leads and even therapeutics, and has resulted in a concerted and increasing drive to identify and characterise new conotoxins. Conotoxins are translated from mRNA as peptide precursors, and cDNA sequencing is now the primary method for identification of new conotoxin sequences. As a result, gene superfamily, a classification based on precursor signal peptide identity, has become the most convenient method of conotoxin classification. Here we review each of the described conotoxin gene superfamilies, with a focus on the structural and functional diversity present in each. This review is intended to serve as a practical guide to conotoxin superfamilies and to facilitate interpretation of the increasing number of conotoxin precursor sequences being identified by targeted-cDNA sequencing and more recently high-throughput transcriptome sequencing. PMID:25522317

  17. Genes and causation.

    PubMed

    Noble, Denis

    2008-09-13

    Relating genotypes to phenotypes is problematic not only owing to the extreme complexity of the interactions between genes, proteins and high-level physiological functions but also because the paradigms for genetic causality in biological systems are seriously confused. This paper examines some of the misconceptions, starting with the changing definitions of a gene, from the cause of phenotype characters to the stretches of DNA. I then assess whether the 'digital' nature of DNA sequences guarantees primacy in causation compared to non-DNA inheritance, whether it is meaningful or useful to refer to genetic programs, and the role of high-level (downward) causation. The metaphors that served us well during the molecular biological phase of recent decades have limited or even misleading impacts in the multilevel world of systems biology. New paradigms are needed if we are to succeed in unravelling multifactorial genetic causation at higher levels of physiological function and so to explain the phenomena that genetics was originally about. Because it can solve the 'genetic differential effect problem', modelling of biological function has an essential role to play in unravelling genetic causation.

  18. Alcoholism: genes and mechanisms.

    PubMed

    Oroszi, Gabor; Goldman, David

    2004-12-01

    Alcoholism is a chronic relapsing/remitting disease that is frequently unrecognized and untreated, in part because of the partial efficacy of treatment. Only approximately one-third of patients remain abstinent and one-third have fully relapsed 1 year after withdrawal from alcohol, with treated patients doing substantially better than untreated [1]. The partial effectiveness of strategies for prevention and treatment, and variation in clinical course and side effects, represent a challenge and an opportunity to better understand the neurobiology of addiction. The strong heritability of alcoholism suggests the existence of inherited functional variants of genes that alter the metabolism of alcohol and variants of other genes that alter the neurobiologies of reward, executive cognitive function, anxiety/dysphoria, and neuronal plasticity. Each of these neurobiologies has been identified as a critical domain in the addictions. Functional alleles that alter alcoholism-related intermediate phenotypes include common alcohol dehydrogenase 1B and aldehyde dehydrogenase 2 variants that cause the aversive flushing reaction; catechol-O-methyltransferase (COMT) Val158Met leading to differences in three aspects of neurobiology: executive cognitive function, stress/anxiety response, and opioid function; opioid receptor micro1 (OPRM1) Asn40Asp, which may serve as a gatekeeper molecule in the action of naltrexone, a drug used in alcoholism treatment; and HTTLPR, which alters serotonin transporter function and appears to affect stress response and anxiety/dysphoria, which are factors relevant to initial vulnerability, the process of addiction, and relapse.

  19. Improvements to cardiovascular gene ontology.

    PubMed

    Lovering, Ruth C; Dimmer, Emily C; Talmud, Philippa J

    2009-07-01

    Gene Ontology (GO) provides a controlled vocabulary to describe the attributes of genes and gene products in any organism. Although one might initially wonder what relevance a 'controlled vocabulary' might have for cardiovascular science, such a resource is proving highly useful for researchers investigating complex cardiovascular disease phenotypes as well as those interpreting results from high-throughput methodologies. GO enables the current functional knowledge of individual genes to be used to annotate genomic or proteomic datasets. In this way, the GO data provides a very effective way of linking biological knowledge with the analysis of the large datasets of post-genomics research. Consequently, users of high-throughput methodologies such as expression arrays or proteomics will be the main beneficiaries of such annotation sets. However, as GO annotations increase in quality and quantity, groups using small-scale approaches will gradually begin to benefit too. For example, genome wide association scans for coronary heart disease are identifying novel genes, with previously unknown connections to cardiovascular processes, and the comprehensive annotation of these novel genes might provide clues to their cardiovascular link. At least 4000 genes, to date, have been implicated in cardiovascular processes and an initiative is underway to focus on annotating these genes for the benefit of the cardiovascular community. In this article we review the current uses of Gene Ontology annotation to highlight why Gene Ontology should be of interest to all those involved in cardiovascular research.

  20. Vectors for cancer gene therapy.

    PubMed

    Zhang, J; Russell, S J

    1996-09-01

    Many viral and non-viral vector systems have now been developed for gene therapy applications. In this article, the pros and cons of these vector systems are discussed in relation to the different cancer gene therapy strategies. The protocols used in cancer gene therapy can be broadly divided into six categories including gene transfer to explanted cells for use as cell-based cancer vaccines; gene transfer to a small number of tumour cells in situ to achieve a vaccine effect; gene transfer to vascular endothelial cells (VECs) lining the blood vessels of the tumour to interfere with tumour angiogenesis; gene transfer to T lymphocytes to enhance their antitumour effector capability; gene transfer to haemopoietic stem cells (HSCs) to enhance their resistance to cytotoxic drugs and gene transfer to a large number of tumour cells in situ to achieve nonimmune tumour reduction with or without bystander effect. Each of the six strategies makes unique demands on the vector system and these are discussed with reference to currently available vectors. Aspects of vector biology that are in need of further development are discussed in some detail. The final section points to the potential use of replicating viruses as delivery vehicles for efficient in vivo gene transfer to disseminated cancers.

  1. Broker Genes in Human Disease

    PubMed Central

    Cai, James J.; Borenstein, Elhanan; Petrov, Dmitri A.

    2010-01-01

    Genes that underlie human disease are important subjects of systems biology research. In the present study, we demonstrate that Mendelian and complex disease genes have distinct and consistent protein–protein interaction (PPI) properties. We show that five different network properties can be reduced to two independent metrics when applied to the human PPI network. These two metrics largely coincide with the degree (number of connections) and the clustering coefficient (the number of connections among the neighbors of a particular protein). We demonstrate that disease genes have simultaneously unusually high degree and unusually low clustering coefficient. Such genes can be described as brokers in that they connect many proteins that would not be connected otherwise. We show that these results are robust to the effect of gene age and inspection bias variation. Notably, genes identified in genome-wide association study (GWAS) have network patterns that are almost indistinguishable from the network patterns of nondisease genes and significantly different from the network patterns of complex disease genes identified through non-GWAS means. This suggests either that GWAS focused on a distinct set of diseases associated with an unusual set of genes or that mapping of GWAS-identified single nucleotide polymorphisms onto the causally affected neighboring genes is error prone. PMID:20937604

  2. Reverse engineering transcriptional gene networks.

    PubMed

    Belcastro, Vincenzo; di Bernardo, Diego

    2014-01-01

    The aim of this chapter is a step-by-step guide on how to infer gene networks from gene expression profiles. The definition of a gene network is given in Subheading 1, where the different types of networks are discussed. The chapter then guides the readers through a data-gathering process in order to build a compendium of gene expression profiles from a public repository. Gene expression profiles are then discretized and a statistical relationship between genes, called mutual information (MI), is computed. Gene pairs with insignificant MI scores are then discarded by applying one of the described pruning steps. The retained relationships are then used to build up a Boolean adjacency matrix used as input for a clustering algorithm to divide the network into modules (or communities). The gene network can then be used as a hypothesis generator for discovering gene function and analyzing gene signatures. Some case studies are presented, and an online web-tool called Netview is described.

  3. Gene-Ontology-based clustering of gene expression data.

    PubMed

    Adryan, Boris; Schuh, Reinhard

    2004-11-01

    The expected correlation between genetic co-regulation and affiliation to a common biological process is not necessarily the case when numerical cluster algorithms are applied to gene expression data. GO-Cluster uses the tree structure of the Gene Ontology database as a framework for numerical clustering, and thus allowing a simple visualization of gene expression data at various levels of the ontology tree. The 32-bit Windows application is freely available at http://www.mpibpc.mpg.de/go-cluster/

  4. Spectral gene set enrichment (SGSE).

    PubMed

    Frost, H Robert; Li, Zhigang; Moore, Jason H

    2015-03-03

    Gene set testing is typically performed in a supervised context to quantify the association between groups of genes and a clinical phenotype. In many cases, however, a gene set-based interpretation of genomic data is desired in the absence of a phenotype variable. Although methods exist for unsupervised gene set testing, they predominantly compute enrichment relative to clusters of the genomic variables with performance strongly dependent on the clustering algorithm and number of clusters. We propose a novel method, spectral gene set enrichment (SGSE), for unsupervised competitive testing of the association between gene sets and empirical data sources. SGSE first computes the statistical association between gene sets and principal components (PCs) using our principal component gene set enrichment (PCGSE) method. The overall statistical association between each gene set and the spectral structure of the data is then computed by combining the PC-level p-values using the weighted Z-method with weights set to the PC variance scaled by Tracy-Widom test p-values. Using simulated data, we show that the SGSE algorithm can accurately recover spectral features from noisy data. To illustrate the utility of our method on real data, we demonstrate the superior performance of the SGSE method relative to standard cluster-based techniques for testing the association between MSigDB gene sets and the variance structure of microarray gene expression data. Unsupervised gene set testing can provide important information about the biological signal held in high-dimensional genomic data sets. Because it uses the association between gene sets and samples PCs to generate a measure of unsupervised enrichment, the SGSE method is independent of cluster or network creation algorithms and, most importantly, is able to utilize the statistical significance of PC eigenvalues to ignore elements of the data most likely to represent noise.

  5. Ancient origins of axial patterning genes: Hox genes and ParaHox genes in the Cnidaria.

    PubMed

    Finnerty, J R; Martindale, M Q

    1999-01-01

    Among the bilaterally symmetrical, triploblastic animals (the Bilateria), a conserved set of developmental regulatory genes are known to function in patterning the anterior-posterior (AP) axis. This set includes the well-studied Hox cluster genes, and the recently described genes of the ParaHox cluster, which is believed to be the evolutionary sister of the Hox cluster (Brooke et al. 1998). The conserved role of these axial patterning genes in animals as diverse as frogs and flies is believed to reflect an underlying homology (i.e., all bilaterians derive from a common ancestor which possessed an AP axis and the developmental mechanisms responsible for patterning the axis). However, the origin and early evolution of Hox genes and ParaHox genes remain obscure. Repeated attempts have been made to reconstruct the early evolution of Hox genes by analyzing data from the triphoblastic animals, the Bilateria (Schubert et al. 1993; Zhang and Nei 1996). A more precise dating of Hox origins has been elusive due to a lack of sufficient information from outgroup taxa such as the phylum Cnidaria (corals, hydras, jellyfishes, and sea anemones). In combination with outgroup taxa, another potential source of information about Hox origins is outgroup genes (e.g., the genes of the ParaHox cluster). In this article, we present cDNA sequences of two Hox-like genes (anthox2 and anthox6) from the sea anemone, Nematostella vectensis. Phylogenetic analysis indicates that anthox2 (= Cnox2) is homologous to the GSX class of ParaHox genes, and anthox6 is homologous to the anterior class of Hox genes. Therefore, the origin of Hox genes and ParaHox genes occurred prior to the evolutionary split between the Cnidaria and the Bilateria and predated the evolution of the anterior-posterior axis of bilaterian animals. Our analysis also suggests that the central Hox class was invented in the bilaterian lineage, subsequent to their split from the Cnidaria.

  6. Identifying driver genes in cancer by triangulating gene expression, gene location, and survival data.

    PubMed

    Rouam, Sigrid; Miller, Lance D; Karuturi, R Krishna Murthy

    2014-01-01

    Driver genes are directly responsible for oncogenesis and identifying them is essential in order to fully understand the mechanisms of cancer. However, it is difficult to delineate them from the larger pool of genes that are deregulated in cancer (ie, passenger genes). In order to address this problem, we developed an approach called TRIAngulating Gene Expression (TRIAGE through clinico-genomic intersects). Here, we present a refinement of this approach incorporating a new scoring methodology to identify putative driver genes that are deregulated in cancer. TRIAGE triangulates - or integrates - three levels of information: gene expression, gene location, and patient survival. First, TRIAGE identifies regions of deregulated expression (ie, expression footprints) by deriving a newly established measure called the Local Singular Value Decomposition (LSVD) score for each locus. Driver genes are then distinguished from passenger genes using dual survival analyses. Incorporating measurements of gene expression and weighting them according to the LSVD weight of each tumor, these analyses are performed using the genes located in significant expression footprints. Here, we first use simulated data to characterize the newly established LSVD score. We then present the results of our application of this refined version of TRIAGE to gene expression data from five cancer types. This refined version of TRIAGE not only allowed us to identify known prominent driver genes, such as MMP1, IL8, and COL1A2, but it also led us to identify several novel ones. These results illustrate that TRIAGE complements existing tools, allows for the identification of genes that drive cancer and could perhaps elucidate potential future targets of novel anticancer therapeutics.

  7. Gene-gene interaction between tuberculosis candidate genes in a South African population.

    PubMed

    de Wit, Erika; van der Merwe, Lize; van Helden, Paul D; Hoal, Eileen G

    2011-02-01

    In a complex disease such as tuberculosis (TB) it is increasingly evident that gene-gene interactions play a far more important role in an individual's susceptibility to develop the disease than single polymorphisms on their own, as one gene can enhance or hinder the expression of another gene. Gene-gene interaction analysis is a new approach to elucidate susceptibility to TB. The possibility of gene-gene interactions was assessed, focusing on 11 polymorphisms in nine genes (DC-SIGN, IFN-γ, IFNGR1, IL-8, IL-1Ra, MBL, NRAMP1, RANTES, and SP-D) that have been associated with TB, some repeatedly. An optimal model, which best describes and predicts TB case-control status, was constructed. Significant interactions were detected between eight pairs of variants. The models fitted the observed data extremely well, with p < 0.0001 for all eight models. A highly significant interaction was detected between INFGR1 and NRAMP1, which is not surprising because macrophage activation is greatly enhanced by IFN-γ and IFN-γ response elements that are present in the human NRAMP1 promoter region, providing further evidence for their interaction. This study enabled us to test the theory that disease outcome may be due to interaction of several gene effects. With eight instances of statistically significant gene-gene interactions, the importance of epistasis is clearly identifiable in this study. Methods for studying gene-gene interactions are based on a multilocus and multigene approach, consistent with the nature of complex-trait diseases, and may provide the paradigm for future genetic studies of TB.

  8. Regulation of gene expression by Goodwin's loop with many genes

    NASA Astrophysics Data System (ADS)

    Sielewiesiuk, Jan; Łopaciuk, Agata

    2012-01-01

    The paper presents a simple analysis of a long Goodwin's loop containing many genes. The genes form a closed series. The rate of transcription of any gene is up or down regulated by theprotein product of the preceding gene. We describe the loop with a system of ordinary differential equations of order s. Oscillatory solutions of the system are possible at the odd number of repressions and any number of inductions if the product of all Hill's coefficients, related to both repressions and inductions, is larger than:

  9. Stratified gene expression analysis identifies major amyotrophic lateral sclerosis genes.

    PubMed

    Jones, Ashley R; Troakes, Claire; King, Andrew; Sahni, Vibhu; De Jong, Simone; Bossers, Koen; Papouli, Efterpi; Mirza, Muddassar; Al-Sarraj, Safa; Shaw, Christopher E; Shaw, Pamela J; Kirby, Janine; Veldink, Jan H; Macklis, Jeffrey D; Powell, John F; Al-Chalabi, Ammar

    2015-05-01

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease of motor neurons resulting in progressive paralysis. Gene expression studies of ALS only rarely identify the same gene pathways as gene association studies. We hypothesized that analyzing tissues by matching on degree of disease severity would identify different patterns of gene expression from a traditional case-control comparison. We analyzed gene expression changes in 4 postmortem central nervous system regions, stratified by severity of motor neuron loss. An overall comparison of cases (n = 6) and controls (n = 3) identified known ALS gene, SOX5, as showing differential expression (log2 fold change = 0.09, p = 5.5 × 10(-5)). Analyses stratified by disease severity identified expression changes in C9orf72 (p = 2.77 × 10(-3)), MATR3 (p = 3.46 × 10(-3)), and VEGFA (p = 8.21 × 10(-4)), all implicated in ALS through genetic studies, and changes in other genes in pathways involving RNA processing and immune response. These findings suggest that analysis of gene expression stratified by disease severity can identify major ALS genes and may be more efficient than traditional case-control comparison. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Gene repair and transposon-mediated gene therapy.

    PubMed

    Richardson, Paul D; Augustin, Lance B; Kren, Betsy T; Steer, Clifford J

    2002-01-01

    The main strategy of gene therapy has traditionally been focused on gene augmentation. This approach typically involves the introduction of an expression system designed to express a specific protein in the transfected cell. Both the basic and clinical sciences have generated enough information to suggest that gene therapy would eventually alter the fundamental practice of modern medicine. However, despite progress in the field, widespread clinical applications and success have not been achieved. The myriad deficiencies associated with gene augmentation have resulted in the development of alternative approaches to treat inherited and acquired genetic disorders. One, derived primarily from the pioneering work of homologous recombination, is gene repair. Simply stated, the process involves targeting the mutation in situ for gene correction and a return to normal gene function. Site-specific genetic repair has many advantages over augmentation although it too is associated with significant limitations. This review outlines the advantages and disadvantages of gene correction. In particular, we discuss technologies based on chimeric RNA/DNA oligonucleotides, single-stranded and triplex-forming oligonucleotides, and small fragment homologous replacement. While each of these approaches is different, they all share a number of common characteristics, including the need for efficient delivery of nucleic acids to the nucleus. In addition, we review the potential application of a novel and exciting nonviral gene augmentation strategy--the Sleeping Beauty transposon system.

  11. Entrez Gene: gene-centered information at NCBI.

    PubMed

    Maglott, Donna; Ostell, Jim; Pruitt, Kim D; Tatusova, Tatiana

    2005-01-01

    Entrez Gene (www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene) is NCBI's database for gene-specific information. It does not include all known or predicted genes; instead Entrez Gene focuses on the genomes that have been completely sequenced, that have an active research community to contribute gene-specific information, or that are scheduled for intense sequence analysis. The content of Entrez Gene represents the result of curation and automated integration of data from NCBI's Reference Sequence project (RefSeq), from collaborating model organism databases, and from many other databases available from NCBI. Records are assigned unique, stable and tracked integers as identifiers. The content (nomenclature, map location, gene products and their attributes, markers, phenotypes, and links to citations, sequences, variation details, maps, expression, homologs, protein domains and external databases) is updated as new information becomes available. Entrez Gene is a step forward from NCBI's LocusLink, with both a major increase in taxonomic scope and improved access through the many tools associated with NCBI Entrez.

  12. Gene: a gene-centered information resource at NCBI

    PubMed Central

    Brown, Garth R.; Hem, Vichet; Katz, Kenneth S.; Ovetsky, Michael; Wallin, Craig; Ermolaeva, Olga; Tolstoy, Igor; Tatusova, Tatiana; Pruitt, Kim D.; Maglott, Donna R.; Murphy, Terence D.

    2015-01-01

    The National Center for Biotechnology Information's (NCBI) Gene database (www.ncbi.nlm.nih.gov/gene) integrates gene-specific information from multiple data sources. NCBI Reference Sequence (RefSeq) genomes for viruses, prokaryotes and eukaryotes are the primary foundation for Gene records in that they form the critical association between sequence and a tracked gene upon which additional functional and descriptive content is anchored. Additional content is integrated based on the genomic location and RefSeq transcript and protein sequence data. The content of a Gene record represents the integration of curation and automated processing from RefSeq, collaborating model organism databases, consortia such as Gene Ontology, and other databases within NCBI. Records in Gene are assigned unique, tracked integers as identifiers. The content (citations, nomenclature, genomic location, gene products and their attributes, phenotypes, sequences, interactions, variation details, maps, expression, homologs, protein domains and external databases) is available via interactive browsing through NCBI's Entrez system, via NCBI's Entrez programming utilities (E-Utilities and Entrez Direct) and for bulk transfer by FTP. PMID:25355515

  13. Gene: a gene-centered information resource at NCBI.

    PubMed

    Brown, Garth R; Hem, Vichet; Katz, Kenneth S; Ovetsky, Michael; Wallin, Craig; Ermolaeva, Olga; Tolstoy, Igor; Tatusova, Tatiana; Pruitt, Kim D; Maglott, Donna R; Murphy, Terence D

    2015-01-01

    The National Center for Biotechnology Information's (NCBI) Gene database (www.ncbi.nlm.nih.gov/gene) integrates gene-specific information from multiple data sources. NCBI Reference Sequence (RefSeq) genomes for viruses, prokaryotes and eukaryotes are the primary foundation for Gene records in that they form the critical association between sequence and a tracked gene upon which additional functional and descriptive content is anchored. Additional content is integrated based on the genomic location and RefSeq transcript and protein sequence data. The content of a Gene record represents the integration of curation and automated processing from RefSeq, collaborating model organism databases, consortia such as Gene Ontology, and other databases within NCBI. Records in Gene are assigned unique, tracked integers as identifiers. The content (citations, nomenclature, genomic location, gene products and their attributes, phenotypes, sequences, interactions, variation details, maps, expression, homologs, protein domains and external databases) is available via interactive browsing through NCBI's Entrez system, via NCBI's Entrez programming utilities (E-Utilities and Entrez Direct) and for bulk transfer by FTP. Published by Oxford University Press on behalf of Nucleic Acids Research 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  14. Gene therapy for psychiatric disorders.

    PubMed

    Gelfand, Yaroslav; Kaplitt, Michael G

    2013-01-01

    Gene therapy has become of increasing interest in clinical neurosurgery with the completion of numerous clinical trials for Parkinson disease, Alzheimer disease, and pediatric genetic disorders. With improved understanding of the dysfunctional circuitry mediating various psychiatric disorders, deep brain stimulation for refractory psychiatric diseases is being increasingly explored in human patients. These factors are likely to facilitate development of gene therapy for psychiatric diseases. Because delivery of gene therapy agents would require the same surgical techniques currently being employed for deep brain stimulation, neurosurgeons are likely to lead the development of this field, as has occurred in other areas of clinical gene therapy for neurologic disorders. We review the current state of gene therapy for psychiatric disorders and focus specifically on particular areas of promising research that may translate into human trials for depression, drug addiction, obsessive-compulsive disorder, and schizophrenia. Issues that are relatively unique to psychiatric gene therapy are also discussed.

  15. The promise of gene therapy.

    PubMed

    Pergament, Eugene

    2016-04-01

    The promise of gene therapy performed in the preimplantation and prenatal periods of pregnancy is rapidly becoming a reality. New technologies capable of making designed changes in single nucleotides make germline gene therapy possible. The article reviews the ethical and technical challenges of germline gene therapy. Clustered regularly interspaced short palindromic repeats and related technologies are capable of deleting and inserting specific DNA sequences in mutated genes so as to correct the targeted DNA. The ability to target specific gene mutations will offer unique opportunities to at risk families, particularly those whose genotypes prevent any chance of a normal pregnancy outcome. Other applications of gene-modifying technologies on gametes, zygotes, and embryos are likely in the near future. There will be renewed debates on the potentially controversial applications of these technologies because of their capability to genetically alter the human germline and thereby future generations.

  16. Interspecies homology of nitrogenase genes.

    PubMed Central

    Ruvkun, G B; Ausubel, F M

    1980-01-01

    Cloned nitrogen fixation (nif) genes from Klebsiella pneumoniae hybridize to DNA from 19 out of 19 widely divergent nitrogen-fixing bacterial strains but do not hybridize to DNA from 10 different non-nitrogen-fixing species. K. pneumoniae nif DNA fragments that hybridize to DNA from other species contain part of the three structural genes that code for nitrogenase polypeptides. We have utilized this homology to clone an EcoRI restriction endonuclease fragment from Rhizobium meliloti that hybridizes to the K. pneumoniae nif structural genes. Some of the species whose DNA hybridizes with K. pneumoniae nif DNA have been postulated to have diverged from K. pneumoniae 3 x 10(9) years ago. Nitrogenase genes are the only known example of such highly conserved prokaryotic translated genes. Nitrogenase genes are either extraordinarily conserved in evolution or have been exchanged between different nitrogen-fixing species relatively recently in evolutionary time. Images PMID:6987649

  17. Gene therapy research in Asia.

    PubMed

    Deng, H-X; Wang, Y; Ding, Q-R; Li, D-L; Wei, Yu-Quan

    2017-09-07

    Gene therapy has shown great potential for the treatment of diseases that previously were either untreatable or treatable but not curable with conventional schemes. Recent progress in clinical gene therapy trials has emerged in various severe diseases, including primary immunodeficiencies, leukodystrophies, Leber's congenital amaurosis, haemophilia, as well as retinal dystrophy. The clinical transformation and industrialization of gene therapy in Asia have been remarkable and continue making steady progress. A total of six gene therapy-based products have been approved worldwide, including two drugs from Asia. This review aims to highlight recent progress in gene therapy clinical trials and discuss the prospects for the future in China and wider Asia.Gene Therapy advance online publication, 7 September 2017; doi:10.1038/gt.2017.62.

  18. Gene replacement in Lactobacillus helveticus.

    PubMed Central

    Bhowmik, T; Fernández, L; Steele, J L

    1993-01-01

    An efficient method for gene replacement in Lactobacillus helveticus CNRZ32 was developed by utilizing pSA3 as an integration vector. This plasmid is stably maintained in CNRZ32 at 37 degrees C but is unstable at 45 degrees C. This method consisted of a two-step gene-targeting technique: (i) chromosomal integration of a plasmid carrying an internal deletion in the gene of interest via homologous recombination and (ii) excision of the vector and the wild-type gene via homologous recombination, resulting in gene replacement. By using this procedure, the chromosomal X-prolyl dipeptidyl aminopeptidase gene (pepXP) of CNRZ32 was successfully inactivated. Images PMID:8104928

  19. Gene therapy in metachromatic leukodystrophy.

    PubMed

    Sevin, C; Cartier-Lacave, N; Aubourg, P

    2009-01-01

    Metachromatic leukodystrophy (MLD) is a lysosomal storage disease caused by deficiency of the lysosomal enzyme arylsulfatase A. Deficiency of this enzyme results in intralysosomal storage of sphingolipid cerebroside 3-sulfates (sulfatides), which are abundant in myelin and neurons. A pathological hallmark of MLD is demyelination and neurodegeneration, causing various and ultimately lethal neurological symptoms. This review discusses the potential therapeutic application of hematopoietic stem cell gene therapy and intracerebral gene transfer (brain gene therapy) in patients with MLD.

  20. Gene therapy for malignant glioma.

    PubMed

    Okura, Hidehiro; Smith, Christian A; Rutka, James T

    2014-01-01

    Glioblastoma multiforme (GBM) is the most frequent and devastating primary brain tumor in adults. Despite current treatment modalities, such as surgical resection followed by chemotherapy and radiotherapy, only modest improvements in median survival have been achieved. Frequent recurrence and invasiveness of GBM are likely due to the resistance of glioma stem cells to conventional treatments; therefore, novel alternative treatment strategies are desperately needed. Recent advancements in molecular biology and gene technology have provided attractive novel treatment possibilities for patients with GBM. Gene therapy is defined as a technology that aims to modify the genetic complement of cells to obtain therapeutic benefit. To date, gene therapy for the treatment of GBM has demonstrated anti-tumor efficacy in pre-clinical studies and promising safety profiles in clinical studies. However, while this approach is obviously promising, concerns still exist regarding issues associated with transduction efficiency, viral delivery, the pathologic response of the brain, and treatment efficacy. Tumor development and progression involve alterations in a wide spectrum of genes, therefore a variety of gene therapy approaches for GBM have been proposed. Improved viral vectors are being evaluated, and the potential use of gene therapy alone or in synergy with other treatments against GBM are being studied. In this review, we will discuss the most commonly studied gene therapy approaches for the treatment of GBM in preclinical and clinical studies including: prodrug/suicide gene therapy; oncolytic gene therapy; cytokine mediated gene therapy; and tumor suppressor gene therapy. In addition, we review the principles and mechanisms of current gene therapy strategies as well as advantages and disadvantages of each.

  1. Gene Expression in Leishmania Is Regulated Predominantly by Gene Dosage.

    PubMed

    Iantorno, Stefano A; Durrant, Caroline; Khan, Asis; Sanders, Mandy J; Beverley, Stephen M; Warren, Wesley C; Berriman, Matthew; Sacks, David L; Cotton, James A; Grigg, Michael E

    2017-09-12

    Leishmania tropica, a unicellular eukaryotic parasite present in North and East Africa, the Middle East, and the Indian subcontinent, has been linked to large outbreaks of cutaneous leishmaniasis in displaced populations in Iraq, Jordan, and Syria. Here, we report the genome sequence of this pathogen and 7,863 identified protein-coding genes, and we show that the majority of clinical isolates possess high levels of allelic diversity, genetic admixture, heterozygosity, and extensive aneuploidy. By utilizing paired genome-wide high-throughput DNA sequencing (DNA-seq) with RNA-seq, we found that gene dosage, at the level of individual genes or chromosomal "somy" (a general term covering disomy, trisomy, tetrasomy, etc.), accounted for greater than 85% of total gene expression variation in genes with a 2-fold or greater change in expression. High gene copy number variation (CNV) among membrane-bound transporters, a class of proteins previously implicated in drug resistance, was found for the most highly differentially expressed genes. Our results suggest that gene dosage is an adaptive trait that confers phenotypic plasticity among natural Leishmania populations by rapid down- or upregulation of transporter proteins to limit the effects of environmental stresses, such as drug selection.IMPORTANCELeishmania is a genus of unicellular eukaryotic parasites that is responsible for a spectrum of human diseases that range from cutaneous leishmaniasis (CL) and mucocutaneous leishmaniasis (MCL) to life-threatening visceral leishmaniasis (VL). Developmental and strain-specific gene expression is largely thought to be due to mRNA message stability or posttranscriptional regulatory networks for this species, whose genome is organized into polycistronic gene clusters in the absence of promoter-mediated regulation of transcription initiation of nuclear genes. Genetic hybridization has been demonstrated to yield dramatic structural genomic variation, but whether such changes in gene

  2. A genetic ensemble approach for gene-gene interaction identification

    PubMed Central

    2010-01-01

    Background It has now become clear that gene-gene interactions and gene-environment interactions are ubiquitous and fundamental mechanisms for the development of complex diseases. Though a considerable effort has been put into developing statistical models and algorithmic strategies for identifying such interactions, the accurate identification of those genetic interactions has been proven to be very challenging. Methods In this paper, we propose a new approach for identifying such gene-gene and gene-environment interactions underlying complex diseases. This is a hybrid algorithm and it combines genetic algorithm (GA) and an ensemble of classifiers (called genetic ensemble). Using this approach, the original problem of SNP interaction identification is converted into a data mining problem of combinatorial feature selection. By collecting various single nucleotide polymorphisms (SNP) subsets as well as environmental factors generated in multiple GA runs, patterns of gene-gene and gene-environment interactions can be extracted using a simple combinatorial ranking method. Also considered in this study is the idea of combining identification results obtained from multiple algorithms. A novel formula based on pairwise double fault is designed to quantify the degree of complementarity. Conclusions Our simulation study demonstrates that the proposed genetic ensemble algorithm has comparable identification power to Multifactor Dimensionality Reduction (MDR) and is slightly better than Polymorphism Interaction Analysis (PIA), which are the two most popular methods for gene-gene interaction identification. More importantly, the identification results generated by using our genetic ensemble algorithm are highly complementary to those obtained by PIA and MDR. Experimental results from our simulation studies and real world data application also confirm the effectiveness of the proposed genetic ensemble algorithm, as well as the potential benefits of combining identification

  3. Genes, evolution and intelligence.

    PubMed

    Bouchard, Thomas J

    2014-11-01

    I argue that the g factor meets the fundamental criteria of a scientific construct more fully than any other conception of intelligence. I briefly discuss the evidence regarding the relationship of brain size to intelligence. A review of a large body of evidence demonstrates that there is a g factor in a wide range of species and that, in the species studied, it relates to brain size and is heritable. These findings suggest that many species have evolved a general-purpose mechanism (a general biological intelligence) for dealing with the environments in which they evolved. In spite of numerous studies with considerable statistical power, we know of very few genes that influence g and the effects are very small. Nevertheless, g appears to be highly polygenic. Given the complexity of the human brain, it is not surprising that that one of its primary faculties-intelligence-is best explained by the near infinitesimal model of quantitative genetics.

  4. Gene therapy for hemophilia.

    PubMed

    Rogers, Geoffrey L; Herzog, Roland W

    2015-01-01

    Hemophilia is an X-linked inherited bleeding disorder consisting of two classifications, hemophilia A and hemophilia B, depending on the underlying mutation. Although the disease is currently treatable with intravenous delivery of replacement recombinant clotting factor, this approach represents a significant cost both monetarily and in terms of quality of life. Gene therapy is an attractive alternative approach to the treatment of hemophilia that would ideally provide life-long correction of clotting activity with a single injection. In this review, we will discuss the multitude of approaches that have been explored for the treatment of both hemophilia A and B, including both in vivo and ex vivo approaches with viral and nonviral delivery vectors.

  5. Gene therapy for hemophilia

    PubMed Central

    Rogers, Geoffrey L.; Herzog, Roland W.

    2015-01-01

    Hemophilia is an X-linked inherited bleeding disorder consisting of two classifications, hemophilia A and hemophilia B, depending on the underlying mutation. Although the disease is currently treatable with intravenous delivery of replacement recombinant clotting factor, this approach represents a significant cost both monetarily and in terms of quality of life. Gene therapy is an attractive alternative approach to the treatment of hemophilia that would ideally provide life-long correction of clotting activity with a single injection. In this review, we will discuss the multitude of approaches that have been explored for the treatment of both hemophilia A and B, including both in vivo and ex vivo approaches with viral and nonviral delivery vectors. PMID:25553466

  6. Cardiac Gene Therapy

    PubMed Central

    Chaanine, Antoine H.; Kalman, Jill; Hajjar, Roger J.

    2010-01-01

    Heart failure is a chronic progressive disorder where frequent and recurrent hospitalizations are associated with high mortality and morbidity. The incidence and the prevalence of this disease will increase with the increase in the number of the aging population of the United States. Understanding the molecular pathology and pathophysiology of this disease will uncover novel targets and therapies that can restore the function or attenuate the damage of malfunctioning cardiomyocytes by gene therapy that becomes an interesting and a promising field for the treatment of heart failure as well as other diseases in the future. Of equal importance is developing vectors and delivery methods that can efficiently transduce the majority of the cardiomyocytes, that can offer a long term expression and that can escape the host immune response. Recombinant adeno-associated virus vectors have the potential to become a promising novel therapeutic vehicles for molecular medicine in the future. PMID:21092890

  7. New genes for boys

    SciTech Connect

    Sinclair, A.H.

    1995-11-01

    Sex is a fascinating topic, particularly at the level of molecular genetics, since it represents a wonderful paradigm for mammalian organ development. Recently, interest in the molecular basis for mammalian sex determination has been heating up as new pieces are added to the jigsaw puzzle of testis development. In mammals, the Y chromosome is male determining and encodes a gene referred to as TDF (testis-determining factor), which induces the indifferent embryonic gonad to develop as a testis. Subsequent male sexual differentiation is largely a consequence of hormonal secretion from the testis. In the absence of the Y chromosome, the testis-determining pathway fails to be initiated, and the embryonic gonad develops as an ovary, resulting in female development. 32 refs.

  8. Copyright and gene technology.

    PubMed

    Coke, Sue

    2002-08-01

    The rapid growth of gene technology and its commercialisation raises concerns for scientific researchers and research institutions wishing to place information in the public domain. This article examines whether copyright laws in the United States, United Kingdom and Australia provide any protection for genetically modified DNA, proteins, and genetically modified organisms, in contrast with any copyright protection extending to a record of the lettering of a sequence representing a series of nucleotides of modified DNA or the amino acids comprising a protein. Whilst it is arguable that protection may be available in the United States and the United Kingdom, it is submitted that it would be difficult to persuade a court in Australia that genetically modified DNA and genetically modified organisms directly constitute "literary" or "artistic" works.

  9. Taste Receptor Genes

    PubMed Central

    Bachmanov, Alexander A.; Beauchamp, Gary K.

    2009-01-01

    In the past several years, tremendous progress has been achieved with the discovery and characterization of vertebrate taste receptors from the T1R and T2R families, which are involved in recognition of bitter, sweet, and umami taste stimuli. Individual differences in taste, at least in some cases, can be attributed to allelic variants of the T1R and T2R genes. Progress with understanding how T1R and T2R receptors interact with taste stimuli and with identifying their patterns of expression in taste cells sheds light on coding of taste information by the nervous system. Candidate mechanisms for detection of salts, acids, fat, complex carbohydrates, and water have also been proposed, but further studies are needed to prove their identity. PMID:17444812

  10. Gene therapy for deafness.

    PubMed

    Kohrman, D C; Raphael, Y

    2013-12-01

    Hearing loss is the most common sensory deficit in humans and can result from genetic, environmental or combined etiologies that prevent normal function of the cochlea, the peripheral sensory organ. Recent advances in understanding the genetic pathways that are critical for the development and maintenance of cochlear function, as well as the molecular mechanisms that underlie cell trauma and death, have provided exciting opportunities for modulating these pathways to correct genetic mutations, to enhance the endogenous protective pathways for hearing preservation and to regenerate lost sensory cells with the possibility of ameliorating hearing loss. A number of recent animal studies have used gene-based therapies in innovative ways toward realizing these goals. With further refinement, some of the protective and regenerative approaches reviewed here may become clinically applicable.

  11. Introduction: Cancer Gene Networks.

    PubMed

    Clarke, Robert

    2017-01-01

    Constructing, evaluating, and interpreting gene networks generally sits within the broader field of systems biology, which continues to emerge rapidly, particular with respect to its application to understanding the complexity of signaling in the context of cancer biology. For the purposes of this volume, we take a broad definition of systems biology. Considering an organism or disease within an organism as a system, systems biology is the study of the integrated and coordinated interactions of the network(s) of genes, their variants both natural and mutated (e.g., polymorphisms, rearrangements, alternate splicing, mutations), their proteins and isoforms, and the organic and inorganic molecules with which they interact, to execute the biochemical reactions (e.g., as enzymes, substrates, products) that reflect the function of that system. Central to systems biology, and perhaps the only approach that can effectively manage the complexity of such systems, is the building of quantitative multiscale predictive models. The predictions of the models can vary substantially depending on the nature of the model and its inputoutput relationships. For example, a model may predict the outcome of a specific molecular reaction(s), a cellular phenotype (e.g., alive, dead, growth arrest, proliferation, and motility), a change in the respective prevalence of cell or subpopulations, a patient or patient subgroup outcome(s). Such models necessarily require computers. Computational modeling can be thought of as using machine learning and related tools to integrate the very high dimensional data generated from modern, high throughput omics technologies including genomics (next generation sequencing), transcriptomics (gene expression microarrays; RNAseq), metabolomics and proteomics (ultra high performance liquid chromatography, mass spectrometry), and "subomic" technologies to study the kinome, methylome, and others. Mathematical modeling can be thought of as the use of ordinary

  12. Discovering modulators of gene expression

    PubMed Central

    Babur, Özgün; Demir, Emek; Gönen, Mithat; Sander, Chris; Dogrusoz, Ugur

    2010-01-01

    Proteins that modulate the activity of transcription factors, often called modulators, play a critical role in creating tissue- and context-specific gene expression responses to the signals cells receive. GEM (Gene Expression Modulation) is a probabilistic framework that predicts modulators, their affected targets and mode of action by combining gene expression profiles, protein–protein interactions and transcription factor–target relationships. Using GEM, we correctly predicted a significant number of androgen receptor modulators and observed that most modulators can both act as co-activators and co-repressors for different target genes. PMID:20466809

  13. Gene therapy in the cornea.

    PubMed

    Mohan, Rajiv R; Sharma, Ajay; Netto, Marcelo V; Sinha, Sunilima; Wilson, Steven E

    2005-09-01

    Technological advances in the field of gene therapy has prompted more than three hundred phase I and phase II gene-based clinical trials for the treatment of cancer, AIDS, macular degeneration, cardiovascular, and other monogenic diseases. Besides treating diseases, gene transfer technology has been utilized for the development of preventive and therapeutic vaccines for malaria, tuberculosis, hepatitis A, B and C viruses, AIDS, and influenza. The potential therapeutic applications of gene transfer technology are enormous. The cornea is an excellent candidate for gene therapy because of its accessibility and immune-privileged nature. In the last two decades, various viral vectors, such as adeno, adeno-associated, retro, lenti, and herpes simplex, as well as non-viral methods, were examined for introducing DNA into corneal cells in vitro, in vivo and ex vivo. Most of these studies used fluorescent or non-fluorescent marker genes to track the level and duration of transgene expression in corneal cells. However, limited studies were directed to evaluate prospects of gene-based interventions for corneal diseases or disorders such as allograft rejection, laser-induced post-operative haze, herpes simplex keratitis, and wound healing in animal models. We will review the successes and obstacles impeding gene therapy approaches used for delivering genes into the cornea.

  14. The search for essential genes.

    PubMed

    Reich, K A

    2000-06-01

    The bacterial genomic era began with the publication of the chromosomal sequence of Haemophilus influenzae. As few of the observed genes had been examined experimentally, functional assignments were made by comparative analysis and for many genes no annotation could be made. This mini-review briefly describes the genomic-scale experimental approaches being used to identify genes required for the growth of microorganisms. Identifying 'essential genes', the simplest possible annotation for the unknown open reading frames, is important for antibacterial and antifungal research and is a first step to defining the minimum functional requirement for autonomous growth.

  15. MEIS homeobox genes in neuroblastoma.

    PubMed

    Geerts, Dirk; Revet, Ingrid; Jorritsma, Gerda; Schilderink, Nathalie; Versteeg, Rogier

    2005-10-18

    The common pediatric tumor neuroblastoma originates from primitive neural crest-derived precursor cells of the peripheral nervous system. Neuroblastoma especially affects very young children, and can already be present at birth. Its early onset and cellular origin predict the involvement of developmental control genes in neuroblastoma etiology. These genes are indispensable for the tight regulation of normal embryonic development but as a consequence cause cancer and congenital diseases upon mutation or aberrant expression. To date however, the connotation of these genes in neuroblastoma pathogenesis is scant. This review recapitulates data on the MEIS homeobox control genes in cancer and focuses on neuroblastoma.

  16. Gene Express Inc.

    PubMed

    Saccomanno, Colette F

    2006-07-01

    Gene Express, Inc. is a technology-licensing company and provider of Standardized Reverse Transcription Polymerase Chain Reaction (StaRT-PCR) services. Designed by and for clinical researchers involved in pharmaceutical, biomarker and molecular diagnostic product development, StaRT-PCR is a unique quantitative and standardized multigene expression measurement platform. StaRT-PCR meets all of the performance characteristics defined by the US FDA as required to support regulatory submissions [101,102] , and by the Clinical Laboratory Improvement Act of 1988 (CLIA) as necessary to support diagnostic testing [1] . A standardized mixture of internal standards (SMIS), manufactured in bulk, provides integrated quality control wherein each native template target gene is measured relative to a competitive template internal standard. Bulk production enables the compilation of a comprehensive standardized database from across multiple experiments, across collaborating laboratories and across the entire clinical development lifecycle of a given compound or diagnostic product. For the first time, all these data are able to be directly compared. Access to such a database can dramatically shorten the time from investigational new drug (IND) to new drug application (NDA), or save time and money by hastening a substantiated 'no-go' decision. High-throughput StaRT-PCR is conducted at the company's automated Standardized Expression Measurement (SEM) Center. Currently optimized for detection on a microcapillary electrophoretic platform, StaRT-PCR products also may be analyzed on microarray, high-performance liquid chromatography (HPLC), or matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) platforms. SEM Center services deliver standardized genomic data--data that will accelerate the application of pharmacogenomic technology to new drug and diagnostic test development and facilitate personalized medicine.

  17. Gene Expression in Leishmania Is Regulated Predominantly by Gene Dosage

    PubMed Central

    Iantorno, Stefano A.; Durrant, Caroline; Khan, Asis; Sanders, Mandy J.; Warren, Wesley C.; Berriman, Matthew; Sacks, David L.

    2017-01-01

    ABSTRACT Leishmania tropica, a unicellular eukaryotic parasite present in North and East Africa, the Middle East, and the Indian subcontinent, has been linked to large outbreaks of cutaneous leishmaniasis in displaced populations in Iraq, Jordan, and Syria. Here, we report the genome sequence of this pathogen and 7,863 identified protein-coding genes, and we show that the majority of clinical isolates possess high levels of allelic diversity, genetic admixture, heterozygosity, and extensive aneuploidy. By utilizing paired genome-wide high-throughput DNA sequencing (DNA-seq) with RNA-seq, we found that gene dosage, at the level of individual genes or chromosomal “somy” (a general term covering disomy, trisomy, tetrasomy, etc.), accounted for greater than 85% of total gene expression variation in genes with a 2-fold or greater change in expression. High gene copy number variation (CNV) among membrane-bound transporters, a class of proteins previously implicated in drug resistance, was found for the most highly differentially expressed genes. Our results suggest that gene dosage is an adaptive trait that confers phenotypic plasticity among natural Leishmania populations by rapid down- or upregulation of transporter proteins to limit the effects of environmental stresses, such as drug selection. PMID:28900023

  18. Why are essential genes essential? - The essentiality of Saccharomyces genes

    PubMed Central

    Zhang, Zhaojie; Ren, Qun

    2015-01-01

    Essential genes are defined as required for the survival of an organism or a cell. They are of particular interests, not only for their essential biological functions, but also in practical applications, such as identifying effective drug targets to pathogenic bacteria and fungi. The budding yeast Saccharomyces cerevisiae has approximately 6,000 open reading frames, 15 to 20% of which are deemed as essential. Some of the essential genes, however, appear to perform non-essential functions, such as aging and cell death, while many of the non-essential genes play critical roles in cell survival. In this paper, we reviewed and analyzed the levels of essentiality of the Saccharomyces cerevisiae genes and have grouped the genes into four categories: (1) Conditional essential: essential only under certain circumstances or growth conditions; (2) Essential: required for survival under optimal growth conditions; (3) Redundant essential: synthetic lethal due to redundant pathways or gene duplication; and (4) Absolute essential: the minimal genes required for maintaining a cellular life under a stress-free environment. The essential and non-essential functions of the essential genes were further analyzed. PMID:28357303

  19. Gene-gene Interaction Analyses for Atrial Fibrillation

    PubMed Central

    Lin, Honghuang; Mueller-Nurasyid, Martina; Smith, Albert V.; Arking, Dan E.; Barnard, John; Bartz, Traci M.; Lunetta, Kathryn L.; Lohman, Kurt; Kleber, Marcus E.; Lubitz, Steven A.; Geelhoed, Bastiaan; Trompet, Stella; Niemeijer, Maartje N.; Kacprowski, Tim; Chasman, Daniel I.; Klarin, Derek; Sinner, Moritz F.; Waldenberger, Melanie; Meitinger, Thomas; Harris, Tamara B.; Launer, Lenore J.; Soliman, Elsayed Z.; Chen, Lin Y.; Smith, Jonathan D.; Van Wagoner, David R.; Rotter, Jerome I.; Psaty, Bruce M.; Xie, Zhijun; Hendricks, Audrey E.; Ding, Jingzhong; Delgado, Graciela E.; Verweij, Niek; van der Harst, Pim; Macfarlane, Peter W.; Ford, Ian; Hofman, Albert; Uitterlinden, André; Heeringa, Jan; Franco, Oscar H.; Kors, Jan A.; Weiss, Stefan; Völzke, Henry; Rose, Lynda M.; Natarajan, Pradeep; Kathiresan, Sekar; Kääb, Stefan; Gudnason, Vilmundur; Alonso, Alvaro; Chung, Mina K.; Heckbert, Susan R.; Benjamin, Emelia J.; Liu, Yongmei; März, Winfried; Rienstra, Michiel; Jukema, J. Wouter; Stricker, Bruno H.; Dörr, Marcus; Albert, Christine M.; Ellinor, Patrick T.

    2016-01-01

    Atrial fibrillation (AF) is a heritable disease that affects more than thirty million individuals worldwide. Extensive efforts have been devoted to the study of genetic determinants of AF. The objective of our study is to examine the effect of gene-gene interaction on AF susceptibility. We performed a large-scale association analysis of gene-gene interactions with AF in 8,173 AF cases, and 65,237 AF-free referents collected from 15 studies for discovery. We examined putative interactions between genome-wide SNPs and 17 known AF-related SNPs. The top interactions were then tested for association in an independent cohort for replication, which included more than 2,363 AF cases and 114,746 AF-free referents. One interaction, between rs7164883 at the HCN4 locus and rs4980345 at the SLC28A1 locus, was found to be significantly associated with AF in the discovery cohorts (interaction OR = 1.44, 95% CI: 1.27–1.65, P = 4.3 × 10–8). Eight additional gene-gene interactions were also marginally significant (P < 5 × 10–7). However, none of the top interactions were replicated. In summary, we did not find significant interactions that were associated with AF susceptibility. Future increases in sample size and denser genotyping might facilitate the identification of gene-gene interactions associated with AF. PMID:27824142

  20. Classifying genes to the correct Gene Ontology Slim term in Saccharomyces cerevisiae using neighbouring genes with classification learning

    PubMed Central

    2010-01-01

    Background There is increasing evidence that gene location and surrounding genes influence the functionality of genes in the eukaryotic genome. Knowing the Gene Ontology Slim terms associated with a gene gives us insight into a gene's functionality by informing us how its gene product behaves in a cellular context using three different ontologies: molecular function, biological process, and cellular component. In this study, we analyzed if we could classify a gene in Saccharomyces cerevisiae to its correct Gene Ontology Slim term using information about its location in the genome and information from its nearest-neighbouring genes using classification learning. Results We performed experiments to establish that the MultiBoostAB algorithm using the J48 classifier could correctly classify Gene Ontology Slim terms of a gene given information regarding the gene's location and information from its nearest-neighbouring genes for training. Different neighbourhood sizes were examined to determine how many nearest neighbours should be included around each gene to provide better classification rules. Our results show that by just incorporating neighbour information from each gene's two-nearest neighbours, the percentage of correctly classified genes to their correct Gene Ontology Slim term for each ontology reaches over 80% with high accuracy (reflected in F-measures over 0.80) of the classification rules produced. Conclusions We confirmed that in classifying genes to their correct Gene Ontology Slim term, the inclusion of neighbour information from those genes is beneficial. Knowing the location of a gene and the Gene Ontology Slim information from neighbouring genes gives us insight into that gene's functionality. This benefit is seen by just including information from a gene's two-nearest neighbouring genes. PMID:20509921

  1. Classifying genes to the correct Gene Ontology Slim term in Saccharomyces cerevisiae using neighbouring genes with classification learning.

    PubMed

    Amthauer, Heather A; Tsatsoulis, Costas

    2010-05-28

    There is increasing evidence that gene location and surrounding genes influence the functionality of genes in the eukaryotic genome. Knowing the Gene Ontology Slim terms associated with a gene gives us insight into a gene's functionality by informing us how its gene product behaves in a cellular context using three different ontologies: molecular function, biological process, and cellular component. In this study, we analyzed if we could classify a gene in Saccharomyces cerevisiae to its correct Gene Ontology Slim term using information about its location in the genome and information from its nearest-neighbouring genes using classification learning. We performed experiments to establish that the MultiBoostAB algorithm using the J48 classifier could correctly classify Gene Ontology Slim terms of a gene given information regarding the gene's location and information from its nearest-neighbouring genes for training. Different neighbourhood sizes were examined to determine how many nearest neighbours should be included around each gene to provide better classification rules. Our results show that by just incorporating neighbour information from each gene's two-nearest neighbours, the percentage of correctly classified genes to their correct Gene Ontology Slim term for each ontology reaches over 80% with high accuracy (reflected in F-measures over 0.80) of the classification rules produced. We confirmed that in classifying genes to their correct Gene Ontology Slim term, the inclusion of neighbour information from those genes is beneficial. Knowing the location of a gene and the Gene Ontology Slim information from neighbouring genes gives us insight into that gene's functionality. This benefit is seen by just including information from a gene's two-nearest neighbouring genes.

  2. Apoptotic genes in cancer therapy.

    PubMed

    Opalka, Bertram; Dickopp, Alexandra; Kirch, Hans-Christoph

    2002-01-01

    Induction of apoptosis in malignant cells is a major goal of cancer therapy in general and of certain cancer gene therapy strategies in particular. Numerous apoptosis-regulating genes have been evaluated for this purpose. Besides the most prominent p53 gene others include p16, p21, p27, E2F genes, FHIT, PTEN and CASPASE genes. Recently, the potential for therapy of an adenoviral gene, E1A, known for a long time for its apoptosis-inducing activity, has been discovered. In experimental settings, these genes have proven their tumor-suppressive and apoptosis-inducing activity. Clinical trials are currently being performed with selected genes. By far the most studies transfer the p53 gene using retro- or adenoviral vectors. Disease stabilization or other benefits were observed in a limited number of patients when p53 was applied alone or in combination with cytotoxic drugs. A second proapoptotic gene that has entered clinical trials is adenovirus E1A. Here, too, disease stabilization as well as/or local regression in one case have been demonstrated in selected patients. In all cases, side effects were tolerable. To further improve E1A as a therapeutic transgene, we have deleted transforming domains from the adenovirus 5 and 12 13S cDNAs. Mutants were derived which had completely lost their transforming activity in combination with the E1B oncogene but retained a pronounced tumor-suppressive activity. Cells transduced with these constructs showed a highly reduced ability to grow in soft agar, and tumor growth in nude mice could be substantially suppressed. Outgrowing tumors had lost E1A expression when analyzed in Western blots. These E1A constructs may represent valuable tools for cancer gene therapy in the future.

  3. Moment based gene set tests.

    PubMed

    Larson, Jessica L; Owen, Art B

    2015-04-28

    Permutation-based gene set tests are standard approaches for testing relationships between collections of related genes and an outcome of interest in high throughput expression analyses. Using M random permutations, one can attain p-values as small as 1/(M+1). When many gene sets are tested, we need smaller p-values, hence larger M, to achieve significance while accounting for the number of simultaneous tests being made. As a result, the number of permutations to be done rises along with the cost per permutation. To reduce this cost, we seek parametric approximations to the permutation distributions for gene set tests. We study two gene set methods based on sums and sums of squared correlations. The statistics we study are among the best performers in the extensive simulation of 261 gene set methods by Ackermann and Strimmer in 2009. Our approach calculates exact relevant moments of these statistics and uses them to fit parametric distributions. The computational cost of our algorithm for the linear case is on the order of doing |G| permutations, where |G| is the number of genes in set G. For the quadratic statistics, the cost is on the order of |G|(2) permutations which can still be orders of magnitude faster than plain permutation sampling. We applied the permutation approximation method to three public Parkinson's Disease expression datasets and discovered enriched gene sets not previously discussed. We found that the moment-based gene set enrichment p-values closely approximate the permutation method p-values at a tiny fraction of their cost. They also gave nearly identical rankings to the gene sets being compared. We have developed a moment based approximation to linear and quadratic gene set test statistics' permutation distribution. This allows approximate testing to be done orders of magnitude faster than one could do by sampling permutations. We have implemented our method as a publicly available Bioconductor package, npGSEA (www.bioconductor.org) .

  4. HOX genes in ovarian cancer.

    PubMed

    Kelly, Zoë L; Michael, Agnieszka; Butler-Manuel, Simon; Pandha, Hardev S; Morgan, Richard Gl

    2011-09-09

    The HOX genes are a family of homeodomain-containing transcription factors that determine cellular identity during development. Here we review a number of recent studies showing that HOX genes are strongly expressed in ovarian cancer, and that in some cases the expression of specific HOX genes is sufficient to confer a particular identity and phenotype upon cancer cells. We also review the recent advances in elucidating the different functions of HOX genes in ovarian cancer. A literature search was performed using the search terms HOX genes (including specific HOX genes), ovarian cancer and oncogenesis. Articles were accessed through searches performed in ISI Web of Knowledge, PubMed and ScienceDirect. Taken together, these studies have shown that HOX genes play a role in the oncogenesis of ovarian cancer and function in the inhibition of apoptosis, DNA repair and enhanced cell motility. The function of HOX genes in ovarian cancer oncogenesis supports their potential role as prognostic and diagnostic markers, and as therapeutic targets in this disease.

  5. On meme--gene coevolution.

    PubMed

    Bull, L; Holland, O; Blackmore, S

    2000-01-01

    In this article we examine the effects of the emergence of a new replicator, memes, on the evolution of a pre-existing replicator, genes. Using a version of the NKCS model we examine the effects of increasing the rate of meme evolution in relation to the rate of gene evolution, for various degrees of interdependence between the two replicators. That is, the effects of memes' (suggested) more rapid rate of evolution in comparison to that of genes is investigated using a tunable model of coevolution. It is found that, for almost any degree of interdependence between the two replicators, as the rate of meme evolution increases, a phase transition-like dynamic occurs under which memes have a significantly detrimental effect on the evolution of genes, quickly resulting in the cessation of effective gene evolution. Conversely, the memes experience a sharp increase in benefit from increasing their rate of evolution. We then examine the effects of enabling genes to reduce the percentage of gene-detrimental evolutionary steps taken by memes. Here a critical region emerges as the comparative rate of meme evolution increases, such that if genes cannot effectively select memes a high percentage of the time, they suffer from meme evolution as if they had almost no selective capability.

  6. Method of controlling gene expression

    DOEpatents

    Peters, Norman K.; Frost, John W.; Long, Sharon R.

    1991-12-03

    A method of controlling expression of a DNA segment under the control of a nod gene promoter which comprises administering to a host containing a nod gene promoter an amount sufficient to control expression of the DNA segment of a compound of the formula: ##STR1## in which each R is independently H or OH, is described.

  7. Gene therapy on the move

    PubMed Central

    Kaufmann, Kerstin B; Büning, Hildegard; Galy, Anne; Schambach, Axel; Grez, Manuel

    2013-01-01

    The first gene therapy clinical trials were initiated more than two decades ago. In the early days, gene therapy shared the fate of many experimental medicine approaches and was impeded by the occurrence of severe side effects in a few treated patients. The understanding of the molecular and cellular mechanisms leading to treatment- and/or vector-associated setbacks has resulted in the development of highly sophisticated gene transfer tools with improved safety and therapeutic efficacy. Employing these advanced tools, a series of Phase I/II trials were started in the past few years with excellent clinical results and no side effects reported so far. Moreover, highly efficient gene targeting strategies and site-directed gene editing technologies have been developed and applied clinically. With more than 1900 clinical trials to date, gene therapy has moved from a vision to clinical reality. This review focuses on the application of gene therapy for the correction of inherited diseases, the limitations and drawbacks encountered in some of the early clinical trials and the revival of gene therapy as a powerful treatment option for the correction of monogenic disorders. PMID:24106209

  8. Gene doping: possibilities and practicalities.

    PubMed

    Wells, Dominic J

    2009-01-01

    Our ever-increasing understanding of the genetic control of cardiovascular and musculoskeletal function together with recent technical improvements in genetic manipulation generates mounting concern over the possibility of such technology being abused by athletes in their quest for improved performance. Genetic manipulation in the context of athletic performance is commonly referred to as gene doping. A review of the literature was performed to identify the genes and methodologies most likely to be used for gene doping and the technologies that might be used to identify such doping. A large number of candidate performance-enhancing genes have been identified from animal studies, many of them using transgenic mice. Only a limited number have been shown to be effective following gene transfer into adults. Those that seem most likely to be abused are genes that exert their effects locally and leave little, if any, trace in blood or urine. There is currently no evidence that gene doping has yet been undertaken in competitive athletes but the anti-doping authorities will need to remain vigilant in reviewing this rapidly emerging technology. The detection of gene doping involves some different challenges from other agents and a number of promising approaches are currently being explored. 2009 S. Karger AG, Basel

  9. Determining Semantically Related Significant Genes.

    PubMed

    Taha, Kamal

    2014-01-01

    GO relation embodies some aspects of existence dependency. If GO term xis existence-dependent on GO term y, the presence of y implies the presence of x. Therefore, the genes annotated with the function of the GO term y are usually functionally and semantically related to the genes annotated with the function of the GO term x. A large number of gene set enrichment analysis methods have been developed in recent years for analyzing gene sets enrichment. However, most of these methods overlook the structural dependencies between GO terms in GO graph by not considering the concept of existence dependency. We propose in this paper a biological search engine called RSGSearch that identifies enriched sets of genes annotated with different functions using the concept of existence dependency. We observe that GO term xcannot be existence-dependent on GO term y, if x- and y- have the same specificity (biological characteristics). After encoding into a numeric format the contributions of GO terms annotating target genes to the semantics of their lowest common ancestors (LCAs), RSGSearch uses microarray experiment to identify the most significant LCA that annotates the result genes. We evaluated RSGSearch experimentally and compared it with five gene set enrichment systems. Results showed marked improvement.

  10. The flow of gene expression.

    PubMed

    Misteli, Tom

    2004-03-01

    Gene expression is a highly interconnected multistep process. A recent meeting in Iguazu Falls, Argentina, highlighted the need to uncover both the molecular details of each single step as well as the mechanisms of coordination among processes in order to fully understand the expression of genes.

  11. Generalist Genes and Learning Disabilities

    ERIC Educational Resources Information Center

    Plomin, Robert; Kovas, Yulia

    2005-01-01

    The authors reviewed recent quantitative genetic research on learning disabilities that led to the conclusion that genetic diagnoses differ from traditional diagnoses in that the effects of relevant genes are largely general rather than specific. This research suggests that most genes associated with common learning disabilities--language…

  12. Susceptibility Genes in Thyroid Autoimmunity

    PubMed Central

    Ban, Yoshiyuki; Tomer, Yaron

    2005-01-01

    The autoimmune thyroid diseases (AITD) are complex diseases which are caused by an interaction between susceptibility genes and environmental triggers. Genetic susceptibility in combination with external factors (e.g. dietary iodine) is believed to initiate the autoimmune response to thyroid antigens. Abundant epidemiological data, including family and twin studies, point to a strong genetic influence on the development of AITD. Various techniques have been employed to identify the genes contributing to the etiology of AITD, including candidate gene analysis and whole genome screening. These studies have enabled the identification of several loci (genetic regions) that are linked with AITD, and in some of these loci, putative AITD susceptibility genes have been identified. Some of these genes/loci are unique to Graves' disease (GD) and Hashimoto's thyroiditis (HT) and some are common to both the diseases, indicating that there is a shared genetic susceptibility to GD and HT. The putative GD and HT susceptibility genes include both immune modifying genes (e.g. HLA, CTLA-4) and thyroid specific genes (e.g. TSHR, Tg). Most likely, these loci interact and their interactions may influence disease phenotype and severity. PMID:15712599

  13. Candidate gene prioritization with Endeavour.

    PubMed

    Tranchevent, Léon-Charles; Ardeshirdavani, Amin; ElShal, Sarah; Alcaide, Daniel; Aerts, Jan; Auboeuf, Didier; Moreau, Yves

    2016-07-08

    Genomic studies and high-throughput experiments often produce large lists of candidate genes among which only a small fraction are truly relevant to the disease, phenotype or biological process of interest. Gene prioritization tackles this problem by ranking candidate genes by profiling candidates across multiple genomic data sources and integrating this heterogeneous information into a global ranking. We describe an extended version of our gene prioritization method, Endeavour, now available for six species and integrating 75 data sources. The performance (Area Under the Curve) of Endeavour on cross-validation benchmarks using 'gold standard' gene sets varies from 88% (for human phenotypes) to 95% (for worm gene function). In addition, we have also validated our approach using a time-stamped benchmark derived from the Human Phenotype Ontology, which provides a setting close to prospective validation. With this benchmark, using 3854 novel gene-phenotype associations, we observe a performance of 82%. Altogether, our results indicate that this extended version of Endeavour efficiently prioritizes candidate genes. The Endeavour web server is freely available at https://endeavour.esat.kuleuven.be/.

  14. Multifunctional nanorods for gene delivery

    NASA Astrophysics Data System (ADS)

    Salem, Aliasger K.; Searson, Peter C.; Leong, Kam W.

    2003-10-01

    The goal of gene therapy is to introduce foreign genes into somatic cells to supplement defective genes or provide additional biological functions, and can be achieved using either viral or synthetic non-viral delivery systems. Compared with viral vectors, synthetic gene-delivery systems, such as liposomes and polymers, offer several advantages including ease of production and reduced risk of cytotoxicity and immunogenicity, but their use has been limited by the relatively low transfection efficiency. This problem mainly stems from the difficulty in controlling their properties at the nanoscale. Synthetic inorganic gene carriers have received limited attention in the gene-therapy community, the only notable example being gold nanoparticles with surface-immobilized DNA applied to intradermal genetic immunization by particle bombardment. Here we present a non-viral gene-delivery system based on multisegment bimetallic nanorods that can simultaneously bind compacted DNA plasmids and targeting ligands in a spatially defined manner. This approach allows precise control of composition, size and multifunctionality of the gene-delivery system. Transfection experiments performed in vitro and in vivo provide promising results that suggest potential in genetic vaccination applications.

  15. Nonviral Vectors for Gene Delivery

    NASA Astrophysics Data System (ADS)

    Baoum, Abdulgader Ahmed

    2011-12-01

    The development of nonviral vectors for safe and efficient gene delivery has been gaining considerable attention recently. An ideal nonviral vector must protect the gene against degradation by nuclease in the extracellular matrix, internalize the plasma membrane, escape from the endosomal compartment, unpackage the gene at some point and have no detrimental effects. In comparison to viruses, nonviral vectors are relatively easy to synthesize, less immunogenic, low in cost, and have no limitation in the size of a gene that can be delivered. Significant progress has been made in the basic science and applications of various nonviral gene delivery vectors; however, the majority of nonviral approaches are still inefficient and often toxic. To this end, two nonviral gene delivery systems using either biodegradable poly(D,L-lactide- co-glycolide) (PLG) nanoparticles or cell penetrating peptide (CPP) complexes have been designed and studied using A549 human lung epithelial cells. PLG nanoparticles were optimized for gene delivery by varying particle surface chemistry using different coating materials that adsorb to the particle surface during formation. A variety of cationic coating materials were studied and compared to more conventional surfactants used for PLG nanoparticle fabrication. Nanoparticles (˜200 nm) efficiently encapsulated plasmids encoding for luciferase (80-90%) and slowly released the same for two weeks. After a delay, moderate levels of gene expression appeared at day 5 for certain positively charged PLG particles and gene expression was maintained for at least two weeks. In contrast, gene expression mediated by polyethyleneimine (PEI) ended at day 5. PLG particles were also significantly less cytotoxic than PEI suggesting the use of these vehicles for localized, sustained gene delivery to the pulmonary epithelium. On the other hand, a more simple method to synthesize 50-200 nm complexes capable of high transfection efficiency or high gene knockdown was

  16. Nanoparticles for Retinal Gene Therapy

    PubMed Central

    Conley, Shannon M.; Naash, Muna I.

    2010-01-01

    Ocular gene therapy is becoming a well-established field. Viral gene therapies for the treatment of Leber’s congentinal amaurosis (LCA) are in clinical trials, and many other gene therapy approaches are being rapidly developed for application to diverse ophthalmic pathologies. Of late, development of non-viral gene therapies has been an area of intense focus and one technology, polymer-compacted DNA nanoparticles, is especially promising. However, development of pharmaceutically and clinically viable therapeutics depends not only on having an effective and safe vector but also on a practical treatment strategy. Inherited retinal pathologies are caused by mutations in over 220 genes, some of which contain over 200 individual disease-causing mutations, which are individually very rare. This review will focus on both the progress and future of nanoparticles and also on what will be required to make them relevant ocular pharmaceutics. PMID:20452457

  17. Delivery systems for gene therapy.

    PubMed

    Mali, Shrikant

    2013-01-01

    The structure of DNA was unraveled by Watson and Crick in 1953, and two decades later Arber, Nathans and Smith discovered DNA restriction enzymes, which led to the rapid growth in the field of recombinant DNA technology. From expressing cloned genes in bacteria to expressing foreign DNA in transgenic animals, DNA is now slated to be used as a therapeutic agent to replace defective genes in patients suffering from genetic disorders or to kill tumor cells in cancer patients. Gene therapy provides modern medicine with new perspectives that were unthinkable two decades ago. Progress in molecular biology and especially, molecular medicine is now changing the basics of clinical medicine. A variety of viral and non-viral possibilities are available for basic and clinical research. This review summarizes the delivery routes and methods for gene transfer used in gene therapy.

  18. Promoter Analyses of CCN Genes.

    PubMed

    Eguchi, Takanori; Kubota, Satoshi; Takigawa, Masaharu

    2017-01-01

    Promoter analysis is the most basics in the analysis of gene regulation. Luciferase gene is the most commonly used reporter gene in promoter analysis. Luciferase is an enzyme that is used when firefly and Renilla reniformis (sea pansy) emit light. The first experimental step in this reporter gene assay is to connect a particular DNA segment to a luciferase gene. The second step is to transfect the reporter construct into the cells. Thereafter, stable luciferase will be produced with the help of transcriptional machinery, mRNA transporters, and translational machinery in the cells. Luciferase assay measures the quantity of light that is emitted by luciferin-luciferase reaction. Consistent with the fact that CCN2 expression has been shown to be altered by a variety of stimuli, the CCN2 promoter region also haa been shown to be bound and regulated by multiple transcription factors such as Smad, MMP3, NF-κB, AP1, TCF/LEF, and Sox9.

  19. Nanoparticle-Mediated Gene Delivery

    NASA Astrophysics Data System (ADS)

    Jin, Sha; Leach, John C.; Ye, Kaiming

    Nonviral gene delivery has been gaining considerable attention recently. Although the efficacy of DNA transfection, which is a major concern, is low in nonviral vector-mediated gene transfer compared with viral ones, nonviral vectors are relatively easy to prepare, less immunogenic and oncogenic, and have no potential of virus recombination and no limitation on the size of a transferred gene. The ability to incorporate genetic materials such as plasmid DNA, RNA, and siRNA into functionalized nanoparticles with little toxicity demonstrates a new era in pharmacotherapy for delivering genes selectively to tissues and cells. In this chapter, we highlight the basic concepts and applications of nonviral gene delivery using super paramagnetic iron oxide nanoparticles and functionalized silica nanoparticles. The experimental protocols related to these topics are described in the chapter.

  20. The Gene Network Underlying Hypodontia.

    PubMed

    Yin, W; Bian, Z

    2015-07-01

    Mammalian tooth development is a precise and complicated procedure. Several signaling pathways, such as nuclear factor (NF)-κB and WNT, are key regulators of tooth development. Any disturbance of these signaling pathways can potentially affect or block normal tooth development, and presently, there are more than 150 syndromes and 80 genes known to be related to tooth agenesis. Clarifying the interaction and crosstalk among these genes will provide important information regarding the mechanisms underlying missing teeth. In the current review, we summarize recently published findings on genes related to isolated and syndromic tooth agenesis; most of these genes function as positive regulators of cell proliferation or negative regulators of cell differentiation and apoptosis. Furthermore, we explore the corresponding networks involving these genes in addition to their implications for the clinical management of tooth agenesis. We conclude that this requires further study to improve patients' quality of life in the future. © International & American Associations for Dental Research 2015.

  1. Brief isoflurane anaesthesia affects differential gene expression, gene ontology and gene networks in rat brain.

    PubMed

    Lowes, Damon A; Galley, Helen F; Moura, Alessandro P S; Webster, Nigel R

    2017-01-15

    Much is still unknown about the mechanisms of effects of even brief anaesthesia on the brain and previous studies have simply compared differential expression profiles with and without anaesthesia. We hypothesised that network analysis, in addition to the traditional differential gene expression and ontology analysis, would enable identification of the effects of anaesthesia on interactions between genes. Rats (n=10 per group) were randomised to anaesthesia with isoflurane in oxygen or oxygen only for 15min, and 6h later brains were removed. Differential gene expression and gene ontology analysis of microarray data was performed. Standard clustering techniques and principal component analysis with Bayesian rules were used along with social network analysis methods, to quantitatively model and describe the gene networks. Anaesthesia had marked effects on genes in the brain with differential regulation of 416 probe sets by at least 2 fold. Gene ontology analysis showed 23 genes were functionally related to the anaesthesia and of these, 12 were involved with neurotransmitter release, transport and secretion. Gene network analysis revealed much greater connectivity in genes from brains from anaesthetised rats compared to controls. Other importance measures were also altered after anaesthesia; median [range] closeness centrality (shortest path) was lower in anaesthetized animals (0.07 [0-0.30]) than controls (0.39 [0.30-0.53], p<0.0001) and betweenness centrality was higher (53.85 [32.56-70.00]% compared to 5.93 [0-30.65]%, p<0.0001). Simply studying the actions of individual components does not fully describe dynamic and complex systems. Network analysis allows insight into the interactions between genes after anaesthesia and suggests future targets for investigation. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Gene-gene interactions in gastrointestinal cancer susceptibility

    PubMed Central

    Kang, Changwon; Kang, Suk-Jo

    2016-01-01

    Cancer arises from complex, multi-layer interactions between diverse genetic and environmental factors. Genetic studies have identified multiple loci associated with tumor susceptibility. However, little is known about how germline polymorphisms interact with one another and with somatic mutations within a tumor to mediate acquisition of cancer traits. Here, we survey recent studies showing gene-gene interactions, also known as epistases, affecting genetic susceptibility in colorectal, gastric and esophageal cancers. We also catalog epistasis types and cancer hallmarks with respect to the interacting genes. A total of 22 gene variation pairs displayed all levels of statistical epistasis, including synergistic, redundant, suppressive and co-suppressive interactions. Five genes primarily involved in base excision repair formed a linear topology in the interaction network, MUTYH-OGG1-XRCC1-PARP1-MMP2, and three genes in mTOR cell-proliferation pathway formed another linear network, PRKAG2-RPS6KB1-PIK3CA. Discrete pairwise epistasis was also found in nucleotide excision repair, detoxification, proliferation, TP53, TGF-β and other pathways. We propose that three modes of biological interaction underlie the molecular mechanisms for statistical epistasis. The direct binding, linear pathway and convergence modes can exhibit any level of statistical epistasis in susceptibility to gastrointestinal cancers, and this is likely true for other complex diseases as well. This review highlights the link between cancer hallmarks and susceptibility genes. PMID:27588484

  3. Immunoglobulin λ Gene Rearrangement Can Precede κ Gene Rearrangement

    DOE PAGES

    Berg, Jörg; Mcdowell, Mindy; Jäck, Hans-Martin; ...

    1990-01-01

    Imore » mmunoglobulin genes are generated during differentiation of B lymphocytes by joining gene segments. A mouse pre-B cell contains a functional immunoglobulin heavy-chain gene, but no light-chain gene. Although there is only one heavy-chain locus, there are two lightchain loci: κ and λ .It has been reported that κ loci in the germ-line configuration are never (in man) or very rarely (in the mouse) present in cells with functionally rearranged λ -chain genes. Two explanations have been proposed to explain this: (a) the ordered rearrangement theory, which postulates that light-chain gene rearrangement in the pre-B cell is first attempted at the κ locus, and that only upon failure to produce a functional κ chain is there an attempt to rearrange the λ locus; and (b) the stochastic theory, which postulates that rearrangement at the λ locus proceeds at a rate that is intrinsically much slower than that at the κ locus. We show here that λ -chain genes are generated whether or not the κ locus has lost its germ-line arrangement, a result that is compatible only with the stochastic theory.« less

  4. Quantitative set analysis for gene expression: a method to quantify gene set differential expression including gene-gene correlations.

    PubMed

    Yaari, Gur; Bolen, Christopher R; Thakar, Juilee; Kleinstein, Steven H

    2013-10-01

    Enrichment analysis of gene sets is a popular approach that provides a functional interpretation of genome-wide expression data. Existing tests are affected by inter-gene correlations, resulting in a high Type I error. The most widely used test, Gene Set Enrichment Analysis, relies on computationally intensive permutations of sample labels to generate a null distribution that preserves gene-gene correlations. A more recent approach, CAMERA, attempts to correct for these correlations by estimating a variance inflation factor directly from the data. Although these methods generate P-values for detecting gene set activity, they are unable to produce confidence intervals or allow for post hoc comparisons. We have developed a new computational framework for Quantitative Set Analysis of Gene Expression (QuSAGE). QuSAGE accounts for inter-gene correlations, improves the estimation of the variance inflation factor and, rather than evaluating the deviation from a null hypothesis with a P-value, it quantifies gene-set activity with a complete probability density function. From this probability density function, P-values and confidence intervals can be extracted and post hoc analysis can be carried out while maintaining statistical traceability. Compared with Gene Set Enrichment Analysis and CAMERA, QuSAGE exhibits better sensitivity and specificity on real data profiling the response to interferon therapy (in chronic Hepatitis C virus patients) and Influenza A virus infection. QuSAGE is available as an R package, which includes the core functions for the method as well as functions to plot and visualize the results.

  5. Simulating gene-gene and gene-environment interactions in complex diseases: Gene-Environment iNteraction Simulator 2

    PubMed Central

    2012-01-01

    Background The analysis of complex diseases is an important problem in human genetics. Because multifactoriality is expected to play a pivotal role, many studies are currently focused on collecting information on the genetic and environmental factors that potentially influence these diseases. However, there is still a lack of efficient and thoroughly tested statistical models that can be used to identify implicated features and their interactions. Simulations using large biologically realistic data sets with known gene-gene and gene-environment interactions that influence the risk of a complex disease are a convenient and useful way to assess the performance of statistical methods. Results The Gene-Environment iNteraction Simulator 2 (GENS2) simulates interactions among two genetic and one environmental factor and also allows for epistatic interactions. GENS2 is based on data with realistic patterns of linkage disequilibrium, and imposes no limitations either on the number of individuals to be simulated or on number of non-predisposing genetic/environmental factors to be considered. The GENS2 tool is able to simulate gene-environment and gene-gene interactions. To make the Simulator more intuitive, the input parameters are expressed as standard epidemiological quantities. GENS2 is written in Python language and takes advantage of operators and modules provided by the simuPOP simulation environment. It can be used through a graphical or a command-line interface and is freely available from http://sourceforge.net/projects/gensim. The software is released under the GNU General Public License version 3.0. Conclusions Data produced by GENS2 can be used as a benchmark for evaluating statistical tools designed for the identification of gene-gene and gene-environment interactions. PMID:22698142

  6. Simulating gene-gene and gene-environment interactions in complex diseases: Gene-Environment iNteraction Simulator 2.

    PubMed

    Pinelli, Michele; Scala, Giovanni; Amato, Roberto; Cocozza, Sergio; Miele, Gennaro

    2012-06-14

    The analysis of complex diseases is an important problem in human genetics. Because multifactoriality is expected to play a pivotal role, many studies are currently focused on collecting information on the genetic and environmental factors that potentially influence these diseases. However, there is still a lack of efficient and thoroughly tested statistical models that can be used to identify implicated features and their interactions. Simulations using large biologically realistic data sets with known gene-gene and gene-environment interactions that influence the risk of a complex disease are a convenient and useful way to assess the performance of statistical methods. The Gene-Environment iNteraction Simulator 2 (GENS2) simulates interactions among two genetic and one environmental factor and also allows for epistatic interactions. GENS2 is based on data with realistic patterns of linkage disequilibrium, and imposes no limitations either on the number of individuals to be simulated or on number of non-predisposing genetic/environmental factors to be considered. The GENS2 tool is able to simulate gene-environment and gene-gene interactions. To make the Simulator more intuitive, the input parameters are expressed as standard epidemiological quantities. GENS2 is written in Python language and takes advantage of operators and modules provided by the simuPOP simulation environment. It can be used through a graphical or a command-line interface and is freely available from http://sourceforge.net/projects/gensim. The software is released under the GNU General Public License version 3.0. Data produced by GENS2 can be used as a benchmark for evaluating statistical tools designed for the identification of gene-gene and gene-environment interactions.

  7. Environment, genes, and cancer

    SciTech Connect

    Manuel, J.

    1996-03-01

    In January, comedian George Burns turned 100 years old. In recent appearances in the media, he still seems sharp as a tack, and is still seen smoking his trademark cigars. Others of us, however, were never very funny, and would die of cancer at age 60 if we continuously smoked cigars or cigarettes. Burns presents a common but perplexing paradox; some people are able to tolerate at least moderate exposure to toxins such as cigarette smoke with little adverse affect, while others develop cancer, emphysema, or heart disease. New studies support the idea that there is an interaction between genes and the environment, and that this interaction may be an important determinant of cancer risk. To understand such risks, it is essential to look at both an individual`s genetic makeup and environmental exposures. Such studies require the collaboration of molecular epidemiologists and molecular biologists. At the NIEHS, Jack A. Taylor, a lead clinical investigator in the Epidemiology Branch, and Douglas A. Bell, an investigator with the Genetic Risk Group of the Laboratory of Biochemical Risk Analysis, have worked together and with other scientists to uncover new information in this area.

  8. Genes, Economics, and Happiness *

    PubMed Central

    De Neve, Jan-Emmanuel; Christakis, Nicholas A.; Fowler, James H.; Frey, Bruno S.

    2012-01-01

    We explore the influence of genetic variation on subjective well-being by employing a twin design and genetic association study. In a nationally-representative twin sample, we first show that about 33% of the variation in life satisfaction is explained by genetic variation. Although previous studies have shown that baseline happiness is significantly heritable, little research has considered molecular genetic associations with subjective well-being. We study the relationship between a functional polymorphism on the serotonin transporter gene (5-HTTLPR) and life satisfaction. We initially find that individuals with the longer, transcriptionally more efficient variant of this genotype report greater life satisfaction (n=2,545, p=0.012). However, our replication attempts on independent samples produce mixed results indicating that more work needs to be done to better understand the relationship between this genotype and subjective well-being. This work has implications for how economists think about the determinants of utility, and the extent to which exogenous shocks might affect individual well-being. PMID:24349601

  9. Genes, Economics, and Happiness.

    PubMed

    De Neve, Jan-Emmanuel; Christakis, Nicholas A; Fowler, James H; Frey, Bruno S

    2012-11-01

    We explore the influence of genetic variation on subjective well-being by employing a twin design and genetic association study. In a nationally-representative twin sample, we first show that about 33% of the variation in life satisfaction is explained by genetic variation. Although previous studies have shown that baseline happiness is significantly heritable, little research has considered molecular genetic associations with subjective well-being. We study the relationship between a functional polymorphism on the serotonin transporter gene (5-HTTLPR) and life satisfaction. We initially find that individuals with the longer, transcriptionally more efficient variant of this genotype report greater life satisfaction (n=2,545, p=0.012). However, our replication attempts on independent samples produce mixed results indicating that more work needs to be done to better understand the relationship between this genotype and subjective well-being. This work has implications for how economists think about the determinants of utility, and the extent to which exogenous shocks might affect individual well-being.

  10. Melanoma-restricted genes

    PubMed Central

    Wang, Ena; Panelli, Monica C; Zavaglia, Katia; Mandruzzato, Susanna; Hu, Nan; Taylor, Phil R; Seliger, Barbara; Zanovello, Paola; Freedman, Ralph S; Marincola, Francesco M

    2004-01-01

    Human metastatic cutaneous melanoma has gained a well deserved reputation for its immune responsiveness. The reason(s) remain(s) unknown. We attempted previously to characterize several variables that may affect the relationship between tumor and host immune cells but, taken one at the time, none yielded a convincing explanation. With explorative purposes, high-throughput technology was applied here to portray transcriptional characteristics unique to metastatic cutaneous melanoma that may or may not be relevant to its immunogenic potential. Several functional signatures could be identified descriptive of immune or other biological functions. In addition, the transcriptional profile of metastatic melanoma was compared with that of primary renal cell cancers (RCC) identifying several genes co-coordinately expressed by the two tumor types. Since RCC is another immune responsive tumor, commonalities between RCC and melanoma may help untangle the enigma of their potential immune responsiveness. This purely descriptive study provides, therefore, a map for the investigation of metastatic melanoma in future clinical trials and at the same time may invite consideration of novel therapeutic targets. PMID:15488140

  11. Therapeutic genes for anti-HIV/AIDS gene therapy.

    PubMed

    Bovolenta, Chiara; Porcellini, Simona; Alberici, Luca

    2013-01-01

    The multiple therapeutic approaches developed so far to cope HIV-1 infection, such as anti-retroviral drugs, germicides and several attempts of therapeutic vaccination have provided significant amelioration in terms of life-quality and survival rate of AIDS patients. Nevertheless, no approach has demonstrated efficacy in eradicating this lethal, if untreated, infection. The curative power of gene therapy has been proven for the treatment of monogenic immunodeficiensies, where permanent gene modification of host cells is sufficient to correct the defect for life-time. No doubt, a similar concept is not applicable for gene therapy of infectious immunodeficiensies as AIDS, where there is not a single gene to be corrected; rather engineered cells must gain immunotherapeutic or antiviral features to grant either short- or long-term efficacy mostly by acquisition of antiviral genes or payloads. Anti-HIV/AIDS gene therapy is one of the most promising strategy, although challenging, to eradicate HIV-1 infection. In fact, genetic modification of hematopoietic stem cells with one or multiple therapeutic genes is expected to originate blood cell progenies resistant to viral infection and thereby able to prevail on infected unprotected cells. Ultimately, protected cells will re-establish a functional immune system able to control HIV-1 replication. More than hundred gene therapy clinical trials against AIDS employing different viral vectors and transgenes have been approved or are currently ongoing worldwide. This review will overview anti-HIV-1 infection gene therapy field evaluating strength and weakness of the transgenes and payloads used in the past and of those potentially exploitable in the future.

  12. Genetic ancestry modifies pharmacogenetic gene-gene interaction for asthma.

    PubMed

    Corvol, Harriet; De Giacomo, Anthony; Eng, Celeste; Seibold, Max; Ziv, Elad; Chapela, Rocio; Rodriguez-Santana, Jose R; Rodriguez-Cintron, William; Thyne, Shannon; Watson, H Geoffrey; Meade, Kelley; LeNoir, Michael; Avila, Pedro C; Choudhry, Shweta; Burchard, Esteban González

    2009-07-01

    A recent admixture mapping analysis identified interleukin 6 (IL6) and IL6 receptor (IL6R) as candidate genes for inflammatory diseases. In the airways during allergic inflammation, IL6 signaling controls the production of proinflammatory and anti-inflammatory factors. In addition, albuterol, a commonly prescribed asthma therapy, has been shown to influence IL6 gene expression. Therefore, we reasoned that interactions between the IL6 and IL6R genes might be associated with bronchodilator drug responsiveness to albuterol in asthmatic patients. Four functional IL6 single nucleotide polymorphisms (SNPs) and a nonsynonymous IL6R SNP were genotyped in 700 Mexican and Puerto Rican asthma families and in 443 African-American asthma cases and controls. Both family-based association tests and linear regression models were used to assess the association between individual SNPs and haplotypes with bronchodilator response. Gene-gene interactions were tested by using multiple linear regression analyses. No single SNP was consistently associated with drug response in all the three populations. However, on the gene level, we found a consistent IL6 and IL6R pharmacogenetic interaction in the three populations. This pharmacogenetic gene-gene interaction was contextual and dependent upon ancestry (racial background). This interaction resulted in higher drug response to albuterol in Latinos, but lower drug response in African-Americans. Herein, we show that there is an effect modification by ancestry on bronchodilator responsiveness to albuterol. Genetic variants in the IL6 and IL6R genes act synergistically to modify the bronchodilator drug responsiveness in asthma and this pharmacogenetic interaction is modified by the genetic ancestry.

  13. Identifying gene-environment and gene-gene interactions using a progressive penalization approach.

    PubMed

    Zhu, Ruoqing; Zhao, Hongyu; Ma, Shuangge

    2014-05-01

    In genomic studies, identifying important gene-environment and gene-gene interactions is a challenging problem. In this study, we adopt the statistical modeling approach, where interactions are represented by product terms in regression models. For the identification of important interactions, we adopt penalization, which has been used in many genomic studies. Straightforward application of penalization does not respect the "main effect, interaction" hierarchical structure. A few recently proposed methods respect this structure by applying constrained penalization. However, they demand very complicated computational algorithms and can only accommodate a small number of genomic measurements. We propose a computationally fast penalization method that can identify important gene-environment and gene-gene interactions and respect a strong hierarchical structure. The method takes a stagewise approach and progressively expands its optimization domain to account for possible hierarchical interactions. It is applicable to multiple data types and models. A coordinate descent method is utilized to produce the entire regularized solution path. Simulation study demonstrates the superior performance of the proposed method. We analyze a lung cancer prognosis study with gene expression measurements and identify important gene-environment interactions.

  14. Gene-Gene interaction among WNT genes for oral cleft in trios

    PubMed Central

    Li, Q; Kim, Y; Suktitipat, B; Hetmanski, JB; Marazita, ML; Duggal, P

    2015-01-01

    Genome-wide association studies (GWAS) for non-syndromic cleft lip with or without cleft palate (CL/P) have identified multiple genes as important in the etiology of this common birth defect. We performed a candidate gene/pathway analysis explicitly considering gene-gene (G×G) interaction to further explore the etiology of CL/P. Animal models have shown the WNT signaling pathway plays an important role in mid-facial development, and various genes in this pathway have been associated with non-syndromic CL/P in previous studies. We propose a combined approach to search for possible G×G interactions using machine learning and regression-based methods to test for interactions between genes in the WNT family, and between these genes and other genes identified by genome-wide association studies (GWAS) in case-parent trios. Using this combined approach of regression-based and machine learning methods in CL/P case-parent trios, we found robust evidence of G×G interaction between markers in WNT5B and MAFB (empiric p-values =0.0076 among Asian trios and =0.018 among European trios). Additional evidence for epistatic interaction between markers in WNT5A, IRF6 and C1orf107 was seen among Asian trios, and markers in the 8q24 region and WNT5B among European trios. PMID:25663376

  15. Identifying gene-environment and gene-gene interactions using a progressive penalization approach

    PubMed Central

    Zhu, Ruoqing; Zhao, Hongyu; Ma, Shuangge

    2015-01-01

    In genomic studies, identifying important gene-environment and gene-gene interactions is a challenging problem. In this study, we adopt the statistical modeling approach, where interactions are represented by product terms in regression models. For the identification of important interactions, we adopt penalization, which has been used in many genomic studies. Straightforward application of penalization does not respect the “main effect, interaction” hierarchical structure. A few recently proposed methods respect this structure by applying constrained penalization. However, they demand very complicated computational algorithms and can only accommodate a small number of genomic measurements. We propose a computationally fast penalization method that can identify important gene-environment and gene-gene interactions and respect a strong hierarchical structure. The method takes a stagewise approach and progressively expands its optimization domain to account for possible hierarchical interactions. It is applicable to multiple data types and models. A coordinate descent method is utilized to produce the entire regularized solution path. Simulation study demonstrates the superior performance of the proposed method. We analyze a lung cancer prognosis study with gene expression measurements and identify important gene-environment interactions. PMID:24723356

  16. Gene-Gene Interaction Among WNT Genes for Oral Cleft in Trios.

    PubMed

    Li, Qing; Kim, Yoonhee; Suktitipat, Bhoom; Hetmanski, Jacqueline B; Marazita, Mary L; Duggal, Priya; Beaty, Terri H; Bailey-Wilson, Joan E

    2015-07-01

    Genome-wide association studies (GWAS) for nonsyndromic cleft lip with or without cleft palate (CL/P) have identified multiple genes as important in the etiology of this common birth defect. We performed a candidate gene/pathway analysis explicitly considering gene-gene (G × G) interaction to further explore the etiology of CL/P. Animal models have shown the WNT signaling pathway plays an important role in mid-facial development, and various genes in this pathway have been associated with nonsyndromic CL/P in previous studies. We propose a combined approach to search for possible G × G interactions using machine learning and regression-based methods to test for interactions between genes in the WNT family, and between these genes and other genes identified by GWAS in case-parent trios. Using this combined approach of regression-based and machine learning methods in CL/P case-parent trios, we found robust evidence of G × G interaction between markers in WNT5B and MAFB (empiric P-values = 0.0076 among Asian trios and P-values = 0.018 among European trios). Additional evidence for epistatic interaction between markers in WNT5A, IRF6, and C1orf107 was seen among Asian trios, and markers in the 8q24 region and WNT5B among European trios. © 2015 WILEY PERIODICALS, INC.

  17. A pilot study of gene/gene and gene/environment interactions in Alzheimer disease.

    PubMed

    Ghebranious, Nader; Mukesh, Bickol; Giampietro, Philip F; Glurich, Ingrid; Mickel, Susan F; Waring, Stephen C; McCarty, Catherine A

    2011-03-01

    Although some genes associated with increased risk of Alzheimer Disease (AD) have been identified, few data exist related to gene/gene and gene/environment risk of AD. The purpose of this pilot study was to explore gene/gene and gene/environment associations in AD and to obtain data for sample size estimates for larger, more definitive studies of AD. The effect of gene/gene and gene/environment interaction related to late onset Alzheimer Disease (LOAD) was investigated in 153 subjects with LOAD and 302 gender matched controls enrolled in the Personalized Medicine Research Project, a population-based bio-repository. Genetic risk factors examined included APOE, ACE, OLR1,and CYP46 genes, and environmental factors included smoking, total cholesterol, LDL, HDL, triglycerides, C-reactive protein, blood pressure, statin use, and body mass index. The mean age of the cases was 78.2 years and the mean age of the controls was 87.2 years. APOE4 was significantly associated with LOAD (OR=3.55, 95%CL=1.70, 7.45). Cases were significantly more likely to have ever smoked cigarettes during their life (49.3% versus 38.4%, p=0.03). The highest recorded blood pressure and pulse pressure measurements were significantly higher in the controls than the cases (all P<0.005). Although not statistically significant in this pilot study, the relationship of the following factors was associated in opposite directions with LOAD based on the presence of an APOE4 allele: obesity at the age of 50, ACE, OLR1, and CYP46. These pilot data suggest that gene/gene and gene/environment interactions may be important in LOAD, with APOE, a known risk factor for LOAD, affecting the relationship of ACE and OLR1 to LOAD. Replication with a larger sample size and in other racial/ethnic groups is warranted and the allele and risk factor frequencies will assist in choosing an appropriate sample size for a definitive study.

  18. Genome position and gene amplification.

    PubMed

    Gajduskova, Pavla; Snijders, Antoine M; Kwek, Serena; Roydasgupta, Ritu; Fridlyand, Jane; Tokuyasu, Taku; Pinkel, Daniel; Albertson, Donna G

    2007-01-01

    Amplifications, regions of focal high-level copy number change, lead to overexpression of oncogenes or drug resistance genes in tumors. Their presence is often associated with poor prognosis; however, the use of amplification as a mechanism for overexpression of a particular gene in tumors varies. To investigate the influence of genome position on propensity to amplify, we integrated a mutant form of the gene encoding dihydrofolate reductase into different positions in the human genome, challenged cells with methotrexate and then studied the genomic alterations arising in drug resistant cells. We observed site-specific differences in methotrexate sensitivity, amplicon organization and amplification frequency. One site was uniquely associated with a significantly enhanced propensity to amplify and recurrent amplicon boundaries, possibly implicating a rare folate-sensitive fragile site in initiating amplification. Hierarchical clustering of gene expression patterns and subsequent gene enrichment analysis revealed two clusters differing significantly in expression of MYC target genes independent of integration site. These studies suggest that genome context together with the particular challenges to genome stability experienced during the progression to cancer contribute to the propensity to amplify a specific oncogene or drug resistance gene, whereas the overall functional response to drug (or other) challenge may be independent of the genomic location of an oncogene.

  19. Genes, the Environment, and Cigarettes

    PubMed Central

    Do, Elizabeth; Maes, Hermine

    2016-01-01

    Tobacco use remains the leading cause of preventable death in the United States, emphasizing the need to understand what genes and environments are involved in the establishment of cigarette use behaviors. However, to date, no comprehensive review of the influence of genes, the environment, and their interaction on cigarette use exists. This narrative review provides a description of gene variants and environmental factors associated with cigarette use, as well as an overview of studies investigating gene-environment interaction (GxE) in cigarette use. GxE studies of cigarette use have been useful in demonstrating that the influence of genes changes as a function of both the phenotype being measured and the environment. However, it is difficult to determine how the effect of genes contributing to different phenotypes of cigarette use changes as a function of the environment. This suggests the need for more studies of GxE, to parse out the effects of genes and the environment across the development of cigarette use phenotypes, which may help to inform potential prevention and intervention efforts aimed at reducing the prevalence of cigarette use. PMID:27124093

  20. Gene Therapy in Heart Failure.

    PubMed

    Fargnoli, Anthony S; Katz, Michael G; Bridges, Charles R; Hajjar, Roger J

    2016-10-28

    Heart failure is a significant burden to the global healthcare system and represents an underserved market for new pharmacologic strategies, especially therapies which can address root cause myocyte dysfunction. Modern drugs, surgeries, and state-of-the-art interventions are costly and do not improve survival outcome measures. Gene therapy is an attractive strategy, whereby selected gene targets and their associated regulatory mechanisms can be permanently managed therapeutically in a single treatment. This in theory could be sustainable for the patient's life. Despite the promise, however, gene therapy has numerous challenges that must be addressed together as a treatment plan comprising these key elements: myocyte physiologic target validation, gene target manipulation strategy, vector selection for the correct level of manipulation, and carefully utilizing an efficient delivery route that can be implemented in the clinic to efficiently transfer the therapy within safety limits. This chapter summarizes the key developments in cardiac gene therapy from the perspective of understanding each of these components of the treatment plan. The latest pharmacologic gene targets, gene therapy vectors, delivery routes, and strategies are reviewed.

  1. Immunology of neonatal gene transfer.

    PubMed

    Ponder, Katherine P

    2007-10-01

    Gene therapy could result in the permanent correction or amelioration of the clinical manifestations of many genetic diseases. However, immune responses to the therapeutic protein pose a significant hurdle for successful gene therapy. Problematic immune responses can include the development of a cytotoxic T lymphocyte (CTL) response that results in the destruction of genetically-modified cells and/or the formation of antibodies directed against the therapeutic protein. One approach to avoid an immune response is to perform gene therapy in newborns, which takes advantage of the fact that the immune system is relatively immature at birth. This approach has been highly effective in mice, and has resulted in stable expression without antibody formation for proteins that are highly immunogenic after transfer to adults. High levels of expression after neonatal gene therapy were more effective at inducing tolerance than low levels of expression in mice, which suggests that high antigen levels are more efficient at inducing tolerance. A criticism of this approach is that the murine immune system is less mature at birth than the immune systems of larger animals. Indeed, neonatal gene therapy to cats with mucopolysaccharidosis I resulted in a CTL response that destroyed expressing cells. Nevertheless, the immune system was still relatively immature, as transient administration of a single immunosuppressive agent at the time of neonatal gene therapy resulted in stable expression. Neonatal administration can reduce, but not eliminate, immune responses after gene therapy.

  2. Mining gene-chip data

    NASA Astrophysics Data System (ADS)

    Kloster, Morten

    2005-03-01

    DNA microarray (``gene chip'') technology has enabled a rapid accumulation of gene-expression data for model organisms such as S. cerevisiae and C. elegans, as well as for H. sapiens, raising the issue of how best to extract information about the gene regulatory networks of these organisms from this data. While basic clustering algorithms have been successful at finding genes that are coregulated for a small, specific set of experimental conditions, these algorithms are less effective when applied to large, varied data sets. One of the major challenges in analyzing the data is the diversity in both size and signal strength of the various transcriptional modules, i.e. sets of coregulated genes along with the sets of conditions for which the genes are strongly coregulated. One method that has proven successful at identifying large and/or strong modules is the Iterative Signature Algorithm (ISA) [1]. A modified version of the ISA algorithm, the Progressive Iterative Signature Algorithm (PISA), is also able to identify smaller, weaker modules by sequentially eliminating transcriptional modules as they are identified. Applying these algorithms to a large set of yeast gene expression data illustrates the strengths and weaknesses of each approach. [1] Bergmann, S., Ihmels, J., and Barkai, N., Phys. Rev. E 67, 031902 (2002).

  3. Gene Electrotransfer: A Mechanistic Perspective

    PubMed Central

    Rosazza, Christelle; Meglic, Sasa Haberl; Zumbusch, Andreas; Rols, Marie-Pierre; Miklavcic, Damijan

    2016-01-01

    Gene electrotransfer is a powerful method of DNA delivery offering several medical applications, among the most promising of which are DNA vaccination and gene therapy for cancer treatment. Electroporation entails the application of electric fields to cells which then experience a local and transient change of membrane permeability. Although gene electrotransfer has been extensively studied in in vitro and in vivo environments, the mechanisms by which DNA enters and navigates through cells are not fully understood. Here we present a comprehensive review of the body of knowledge concerning gene electrotransfer that has been accumulated over the last three decades. For that purpose, after briefly reviewing the medical applications that gene electrotransfer can provide, we outline membrane electropermeabilization, a key process for the delivery of DNA and smaller molecules. Since gene electrotransfer is a multipart process, we proceed our review in describing step by step our current understanding, with particular emphasis on DNA internalization and intracellular trafficking. Finally, we turn our attention to in vivo testing and methodology for gene electrotransfer. PMID:27029943

  4. Human Lacrimal Gland Gene Expression

    PubMed Central

    Aakalu, Vinay Kumar; Parameswaran, Sowmya; Maienschein-Cline, Mark; Bahroos, Neil; Shah, Dhara; Ali, Marwan; Krishnakumar, Subramanian

    2017-01-01

    Background The study of human lacrimal gland biology and development is limited. Lacrimal gland tissue is damaged or poorly functional in a number of disease states including dry eye disease. Development of cell based therapies for lacrimal gland diseases requires a better understanding of the gene expression and signaling pathways in lacrimal gland. Differential gene expression analysis between lacrimal gland and other embryologically similar tissues may be helpful in furthering our understanding of lacrimal gland development. Methods We performed global gene expression analysis of human lacrimal gland tissue using Affymetrix ® gene expression arrays. Primary data from our laboratory was compared with datasets available in the NLM GEO database for other surface ectodermal tissues including salivary gland, skin, conjunctiva and corneal epithelium. Results The analysis revealed statistically significant difference in the gene expression of lacrimal gland tissue compared to other ectodermal tissues. The lacrimal gland specific, cell surface secretory protein encoding genes and critical signaling pathways which distinguish lacrimal gland from other ectodermal tissues are described. Conclusions Differential gene expression in human lacrimal gland compared with other ectodermal tissue types revealed interesting patterns which may serve as the basis for future studies in directed differentiation among other areas. PMID:28081151

  5. GENES IN SPORT AND DOPING

    PubMed Central

    Kaliszewski, P.; Majorczyk, E.; Zembroń-Łacny, A.

    2013-01-01

    Genes control biological processes such as muscle production of energy, mitochondria biogenesis, bone formation, erythropoiesis, angiogenesis, vasodilation, neurogenesis, etc. DNA profiling for athletes reveals genetic variations that may be associated with endurance ability, muscle performance and power exercise, tendon susceptibility to injuries and psychological aptitude. Already, over 200 genes relating to physical performance have been identified by several research groups. Athletes’ genotyping is developing as a tool for the formulation of personalized training and nutritional programmes to optimize sport training as well as for the prediction of exercise-related injuries. On the other hand, development of molecular technology and gene therapy creates a risk of non-therapeutic use of cells, genes and genetic elements to improve athletic performance. Therefore, the World Anti-Doping Agency decided to include prohibition of gene doping within their World Anti-Doping Code in 2003. In this review article, we will provide a current overview of genes for use in athletes’ genotyping and gene doping possibilities, including their development and detection techniques. PMID:24744482

  6. Genes in sport and doping.

    PubMed

    Pokrywka, A; Kaliszewski, P; Majorczyk, E; Zembroń-Łacny, A

    2013-09-01

    Genes control biological processes such as muscle production of energy, mitochondria biogenesis, bone formation, erythropoiesis, angiogenesis, vasodilation, neurogenesis, etc. DNA profiling for athletes reveals genetic variations that may be associated with endurance ability, muscle performance and power exercise, tendon susceptibility to injuries and psychological aptitude. Already, over 200 genes relating to physical performance have been identified by several research groups. Athletes' genotyping is developing as a tool for the formulation of personalized training and nutritional programmes to optimize sport training as well as for the prediction of exercise-related injuries. On the other hand, development of molecular technology and gene therapy creates a risk of non-therapeutic use of cells, genes and genetic elements to improve athletic performance. Therefore, the World Anti-Doping Agency decided to include prohibition of gene doping within their World Anti-Doping Code in 2003. In this review article, we will provide a current overview of genes for use in athletes' genotyping and gene doping possibilities, including their development and detection techniques.

  7. Nonadditive gene expression in polyploids.

    PubMed

    Yoo, Mi-Jeong; Liu, Xiaoxian; Pires, J Chris; Soltis, Pamela S; Soltis, Douglas E

    2014-01-01

    Allopolyploidy involves hybridization and duplication of divergent parental genomes and provides new avenues for gene expression. The expression levels of duplicated genes in polyploids can show deviation from parental additivity (the arithmetic average of the parental expression levels). Nonadditive expression has been widely observed in diverse polyploids and comprises at least three possible scenarios: (a) The total gene expression level in a polyploid is similar to that of one of its parents (expression-level dominance); (b) total gene expression is lower or higher than in both parents (transgressive expression); and (c) the relative contribution of the parental copies (homeologs) to the total gene expression is unequal (homeolog expression bias). Several factors may result in expression nonadditivity in polyploids, including maternal-paternal influence, gene dosage balance, cis- and/or trans-regulatory networks, and epigenetic regulation. As our understanding of nonadditive gene expression in polyploids remains limited, a new generation of investigators should explore additional phenomena (i.e., alternative splicing) and use other high-throughput "omics" technologies to measure the impact of nonadditive expression on phenotype, proteome, and metabolome.

  8. Hodgkin disease risk: role of genetic polymorphisms and gene-gene interactions in inflammation pathway genes.

    PubMed

    Monroy, Claudia M; Cortes, Andrea C; Lopez, Mirtha S; D'Amelio, Anthony M; Etzel, Carol J; Younes, Anas; Strom, Sara S; El-Zein, Randa A

    2011-01-01

    Inflammation is a critical component of cancer development. The clinical and pathological features of Hodgkin disease (HD) reflect an abnormal immunity that results from cytokines secreted by Reed-Sternberg cells and the surrounding tumor. Numerous studies have reported the association between genetic polymorphisms in cytokine genes and the susceptibility to different hematologic cancers. However, the effects of such SNPs on modulating HD risk have not yet been investigated. We hypothesized that gene-gene interactions between candidate genes in the anti- and pro-inflammatory pathways carrying suspicious polymorphisms may contribute to susceptibility to HD. To test this hypothesis, we conducted a study on 200 HD cases and 220 controls to assess associations between HD risk and 38 functional SNPs in inflammatory genes. We evaluated potential gene-gene interactions using a multi-analytic strategy combining logistic regression, multi-factor dimensionality reduction, and classification and regression tree (CART) approaches. We observed that, in combination, allelic variants in the COX2, IL18, ILR4, and IL10 genes modify the risk for developing HD. Moreover, the cumulative genetic risk score (CGRS) revealed a significant trend where the risk for developing HD increases as the number of adverse alleles in the cytokine genes increase. These findings support the notion that epigenetic-interactions between these cytokines may influence pathogenesis of HD modulating the proliferation of regulatory T cells. In this way, the innate and adaptative immune responses may be altered and defy their usual functions in the host anti-tumor response. Our study is the first to report the association between polymorphisms in inflammation genes and HD susceptibility risk. © 2010 Wiley-Liss, Inc.

  9. The human RHOX gene cluster: target genes and functional analysis of gene variants in infertile men.

    PubMed

    Borgmann, Jennifer; Tüttelmann, Frank; Dworniczak, Bernd; Röpke, Albrecht; Song, Hye-Won; Kliesch, Sabine; Wilkinson, Miles F; Laurentino, Sandra; Gromoll, Jörg

    2016-09-15

    The X-linked reproductive homeobox (RHOX) gene cluster encodes transcription factors preferentially expressed in reproductive tissues. This gene cluster has important roles in male fertility based on phenotypic defects of Rhox-mutant mice and the finding that aberrant RHOX promoter methylation is strongly associated with abnormal human sperm parameters. However, little is known about the molecular mechanism of RHOX function in humans. Using gene expression profiling, we identified genes regulated by members of the human RHOX gene cluster. Some genes were uniquely regulated by RHOXF1 or RHOXF2/2B, while others were regulated by both of these transcription factors. Several of these regulated genes encode proteins involved in processes relevant to spermatogenesis; e.g. stress protection and cell survival. One of the target genes of RHOXF2/2B is RHOXF1, suggesting cross-regulation to enhance transcriptional responses. The potential role of RHOX in human infertility was addressed by sequencing all RHOX exons in a group of 250 patients with severe oligozoospermia. This revealed two mutations in RHOXF1 (c.515G > A and c.522C > T) and four in RHOXF2/2B (-73C > G, c.202G > A, c.411C > T and c.679G > A), of which only one (c.202G > A) was found in a control group of men with normal sperm concentration. Functional analysis demonstrated that c.202G > A and c.679G > A significantly impaired the ability of RHOXF2/2B to regulate downstream genes. Molecular modelling suggested that these mutations alter RHOXF2/F2B protein conformation. By combining clinical data with in vitro functional analysis, we demonstrate how the X-linked RHOX gene cluster may function in normal human spermatogenesis and we provide evidence that it is impaired in human male fertility.

  10. Linking Genes to Cardiovascular Diseases: Gene Action and Gene-Environment Interactions.

    PubMed

    Pasipoularides, Ares

    2015-12-01

    A unique myocardial characteristic is its ability to grow/remodel in order to adapt; this is determined partly by genes and partly by the environment and the milieu intérieur. In the "post-genomic" era, a need is emerging to elucidate the physiologic functions of myocardial genes, as well as potential adaptive and maladaptive modulations induced by environmental/epigenetic factors. Genome sequencing and analysis advances have become exponential lately, with escalation of our knowledge concerning sometimes controversial genetic underpinnings of cardiovascular diseases. Current technologies can identify candidate genes variously involved in diverse normal/abnormal morphomechanical phenotypes, and offer insights into multiple genetic factors implicated in complex cardiovascular syndromes. The expression profiles of thousands of genes are regularly ascertained under diverse conditions. Global analyses of gene expression levels are useful for cataloging genes and correlated phenotypes, and for elucidating the role of genes in maladies. Comparative expression of gene networks coupled to complex disorders can contribute insights as to how "modifier genes" influence the expressed phenotypes. Increasingly, a more comprehensive and detailed systematic understanding of genetic abnormalities underlying, for example, various genetic cardiomyopathies is emerging. Implementing genomic findings in cardiology practice may well lead directly to better diagnosing and therapeutics. There is currently evolving a strong appreciation for the value of studying gene anomalies, and doing so in a non-disjointed, cohesive manner. However, it is challenging for many-practitioners and investigators-to comprehend, interpret, and utilize the clinically increasingly accessible and affordable cardiovascular genomics studies. This survey addresses the need for fundamental understanding in this vital area.

  11. Gene therapy for bone regeneration.

    PubMed

    Luo, Jeffrey; Sun, Michael H; Kang, Quan; Peng, Ying; Jiang, Wei; Luu, Hue H; Luo, Qing; Park, Jae Yoon; Li, Yien; Haydon, Rex C; He, Tong-Chuan

    2005-04-01

    Efficacious bone regeneration could revolutionize the clinical management of many bone and musculoskeletal disorders. Bone has the unique ability to regenerate and continuously remodel itself throughout life. However, clinical situations arise when bone is unable to heal itself, as with segmental bone loss, fracture non-union, and failed spinal fusion. This leads to significant morbidity and mortality. Current attempts at improved bone healing have been met with limited success, fueling the development of improved techniques. Gene therapy in many ways represents an ideal approach for augmenting bone regeneration. Gene therapy allows specific gene products to be delivered to a precise anatomic location. In addition, the level of transgene expression as well as the duration of expression can be regulated with current techniques. For bone regeneration, the gene of interest should be delivered to the fracture site, expressed at appropriate levels, and then deactivated once the fracture has healed. Delivery of biological factors, mostly bone morphogenetic proteins (BMPs), has yielded promising results both in animal and clinical studies. There has also been tremendous work on discovering new growth factors and exploring previously defined ones. Finally, significant advances are being made in the delivery systems of the genes, ranging from viral and non-viral vectors to tissue engineering scaffolds. Despite some public hesitation to gene therapy, its use has great potential to expand our ability to treat a variety of human bone and musculoskeletal disorders. It is conceivable that in the near future gene therapy can be utilized to induce bone formation in virtually any region of the body in a minimally invasive manner. As bone biology and gene therapy research progresses, the goal of successful human gene transfer for augmentation of bone regeneration draws nearer.

  12. [Gene doping: gene transfer and possible molecular detection].

    PubMed

    Argüelles, Carlos Francisco; Hernández-Zamora, Edgar

    2007-01-01

    The use of illegal substances in sports to enhance athletic performance during competition has caused international sports organizations such as the COI and WADA to take anti doping measures. A new doping method know as gene doping is defined as "the non-therapeutic use of genes, genetic elements and/or cells that have the capacity to enhance athletic performance". However, gene doping in sports is not easily identified and can cause serious consequences. Molecular biology techniques are needed in order to distinguish the difference between a "normal" and an "altered" genome. Further, we need to develop new analytic methods and biological molecular techniques in anti-doping laboratories, and design programs that avoid the non therapeutic use of genes.

  13. Viral vectors for gene transfer: current status of gene therapeutics.

    PubMed

    Heilbronn, Regine; Weger, Stefan

    2010-01-01

    Gene therapy for the correction of inherited or acquired disease has gained increasing importance in recent years. Successful treatment of children suffering from severe combined immunodeficiency (SCID) was achieved using retrovirus vectors for gene transfer. Encouraging improvements of vision were reported in a genetic eye disorder (LCA) leading to early childhood blindness. Adeno-associated virus (AAV) vectors were used for gene transfer in these trials. This chapter gives an overview of the design and delivery of viral vectors for the transport of a therapeutic gene into a target cell or tissue. The construction and production of retrovirus, lentivirus, and AAV vectors are covered. The focus is on production methods suitable for biopharmaceutical upscaling and for downstream processing. Quality control measures and biological safety considerations for the use of vectors in clinical trials are discussed.

  14. Gene Insertion Into Genomic Safe Harbors for Human Gene Therapy

    PubMed Central

    Papapetrou, Eirini P; Schambach, Axel

    2016-01-01

    Genomic safe harbors (GSHs) are sites in the genome able to accommodate the integration of new genetic material in a manner that ensures that the newly inserted genetic elements: (i) function predictably and (ii) do not cause alterations of the host genome posing a risk to the host cell or organism. GSHs are thus ideal sites for transgene insertion whose use can empower functional genetics studies in basic research and therapeutic applications in human gene therapy. Currently, no fully validated GSHs exist in the human genome. Here, we review our formerly proposed GSH criteria and discuss additional considerations on extending these criteria, on strategies for the identification and validation of GSHs, as well as future prospects on GSH targeting for therapeutic applications. In view of recent advances in genome biology, gene targeting technologies, and regenerative medicine, gene insertion into GSHs can potentially catalyze nearly all applications in human gene therapy. PMID:26867951

  15. Comparing the evolutionary conservation between human essential genes, human orthologs of mouse essential genes and human housekeeping genes.

    PubMed

    Lv, Wenhua; Zheng, Jiajia; Luan, Meiwei; Shi, Miao; Zhu, Hongjie; Zhang, Mingming; Lv, Hongchao; Shang, Zhenwei; Duan, Lian; Zhang, Ruijie; Jiang, Yongshuai

    2015-11-01

    Human housekeeping genes are often confused with essential human genes, and several studies regard both types of genes as having the same level of evolutionary conservation. However, this is not necessarily the case. To clarify this, we compared the differences between human housekeeping genes and essential human genes with respect to four aspects: the evolutionary rate (dN/dS), protein sequence identity, single-nucleotide polymorphism (SNP) density and level of linkage disequilibrium (LD). The results showed that housekeeping genes had lower evolutionary rates, higher sequence identities, lower SNP densities and higher levels of LD compared with essential genes. Together, these findings indicate that housekeeping and essential genes are two distinct types of genes, and that housekeeping genes have a higher level of evolutionary conservation. Therefore, we suggest that researchers should pay careful attention to the distinctions between housekeeping genes and essential genes. Moreover, it is still controversial whether we should substitute human orthologs of mouse essential genes for human essential genes. Therefore, we compared the evolutionary features between human orthologs of mouse essential genes and human housekeeping genes and we got inconsistent results in long-term and short-term evolutionary characteristics implying the irrationality of simply replacing human essential genes with human orthologs of mouse essential genes.

  16. GeneMachine: gene prediction and sequence annotation.

    PubMed

    Makalowska, I; Ryan, J F; Baxevanis, A D

    2001-09-01

    A number of free-standing programs have been developed in order to help researchers find potential coding regions and deduce gene structure for long stretches of what is essentially 'anonymous DNA'. As these programs apply inherently different criteria to the question of what is and is not a coding region, multiple algorithms should be used in the course of positional cloning and positional candidate projects to assure that all potential coding regions within a previously-identified critical region are identified. We have developed a gene identification tool called GeneMachine which allows users to query multiple exon and gene prediction programs in an automated fashion. BLAST searches are also performed in order to see whether a previously-characterized coding region corresponds to a region in the query sequence. A suite of Perl programs and modules are used to run MZEF, GENSCAN, GRAIL 2, FGENES, RepeatMasker, Sputnik, and BLAST. The results of these runs are then parsed and written into ASN.1 format. Output files can be opened using NCBI Sequin, in essence using Sequin as both a workbench and as a graphical viewer. The main feature of GeneMachine is that the process is fully automated; the user is only required to launch GeneMachine and then open the resulting file with Sequin. Annotations can then be made to these results prior to submission to GenBank, thereby increasing the intrinsic value of these data. GeneMachine is freely-available for download at http://genome.nhgri.nih.gov/genemachine. A public Web interface to the GeneMachine server for academic and not-for-profit users is available at http://genemachine.nhgri.nih.gov. The Web supplement to this paper may be found at http://genome.nhgri.nih.gov/genemachine/supplement/.

  17. Identification of key player genes in gene regulatory networks.

    PubMed

    Nazarieh, Maryam; Wiese, Andreas; Will, Thorsten; Hamed, Mohamed; Helms, Volkhard

    2016-09-06

    Identifying the gene regulatory networks governing the workings and identity of cells is one of the main challenges in understanding processes such as cellular differentiation, reprogramming or cancerogenesis. One particular challenge is to identify the main drivers and master regulatory genes that control such cell fate transitions. In this work, we reformulate this problem as the optimization problems of computing a Minimum Dominating Set and a Minimum Connected Dominating Set for directed graphs. Both MDS and MCDS are applied to the well-studied gene regulatory networks of the model organisms E. coli and S. cerevisiae and to a pluripotency network for mouse embryonic stem cells. The results show that MCDS can capture most of the known key player genes identified so far in the model organisms. Moreover, this method suggests an additional small set of transcription factors as novel key players for governing the cell-specific gene regulatory network which can also be investigated with regard to diseases. To this aim, we investigated the ability of MCDS to define key drivers in breast cancer. The method identified many known drug targets as members of the MDS and MCDS. This paper proposes a new method to identify key player genes in gene regulatory networks. The Java implementation of the heuristic algorithm explained in this paper is available as a Cytoscape plugin at http://apps.cytoscape.org/apps/mcds . The SageMath programs for solving integer linear programming formulations used in the paper are available at https://github.com/maryamNazarieh/KeyRegulatoryGenes and as supplementary material.

  18. Panspermia and horizontal gene transfer

    NASA Astrophysics Data System (ADS)

    Klyce, Brig

    2009-08-01

    Evidence that extremophiles are hardy and ubiquitous is helping to make panspermia a respectable theory. But even if life on Earth originally came from space, biologists assume that the subsequent evolution of life is still governed by the darwinian paradigm. In this review we show how panspermia could amend darwinism and point to a cosmic source for, not only extremophiles but, all of life. This version of panspermia can be called "strong panspermia." To support this theory we will discuss recent evidence pertaining to horizontal gene transfer, viruses, genes apparently older than the Earthly evolution of the features they encode, and primate-specific genes without identifiable precursors.

  19. Gene Delivery to the Airway

    PubMed Central

    Keiser, Nicholas W.; Engelhardt, John F.

    2013-01-01

    This unit describes generation of and gene transfer to several commonly used airway models. Isolation and transduction of primary airway epithelial cells are first described. Next, the preparation of polarized airway epithelial monolayers is outlined. Transduction of these polarized cells is also described. Methods are presented for generation of tracheal xenografts as well as both ex vivo and in vivo gene transfer to these xenografts. Finally, a method for in vivo gene delivery to the lungs of rodents is included. Methods for evaluating transgene expression are given in the support protocols. PMID:23853081

  20. Gene Therapy for Infectious Diseases

    PubMed Central

    Bunnell, Bruce A.; Morgan, Richard A.

    1998-01-01

    Gene therapy is being investigated as an alternative treatment for a wide range of infectious diseases that are not amenable to standard clinical management. Approaches to gene therapy for infectious diseases can be divided into three broad categories: (i) gene therapies based on nucleic acid moieties, including antisense DNA or RNA, RNA decoys, and catalytic RNA moieties (ribozymes); (ii) protein approaches such as transdominant negative proteins and single-chain antibodies; and (iii) immunotherapeutic approaches involving genetic vaccines or pathogen-specific lymphocytes. It is further possible that combinations of the aforementioned approaches will be used simultaneously to inhibit multiple stages of the life cycle of the infectious agent. PMID:9457428

  1. Gene therapy: proceed with caution.

    PubMed

    Grobstein, C; Flower, M

    1984-04-01

    On 6 February 1984 the Recombinant DNA Advisory Committee of the National Institutes of Health approved a recommendation that the committee provide prior review of research protocols involving human gene therapy. Grobstein and Flower trace the development of public policy in response to concerns about the dangers of gene therapy, especially as it applies to germ line alteration. They offer guidelines and propose principles for an oversight body to confront the immediate and long term technical, social, and ethical implications of human genetic modification. An accompanying article presents a plea for the development of gene therapy by the mother of three children who have sickle cell anemia.

  2. The Ensembl gene annotation system

    PubMed Central

    Aken, Bronwen L.; Ayling, Sarah; Barrell, Daniel; Clarke, Laura; Curwen, Valery; Fairley, Susan; Fernandez Banet, Julio; Billis, Konstantinos; García Girón, Carlos; Hourlier, Thibaut; Howe, Kevin; Kähäri, Andreas; Kokocinski, Felix; Martin, Fergal J.; Murphy, Daniel N.; Nag, Rishi; Ruffier, Magali; Schuster, Michael; Tang, Y. Amy; Vogel, Jan-Hinnerk; White, Simon; Zadissa, Amonida; Flicek, Paul

    2016-01-01

    The Ensembl gene annotation system has been used to annotate over 70 different vertebrate species across a wide range of genome projects. Furthermore, it generates the automatic alignment-based annotation for the human and mouse GENCODE gene sets. The system is based on the alignment of biological sequences, including cDNAs, proteins and RNA-seq reads, to the target genome in order to construct candidate transcript models. Careful assessment and filtering of these candidate transcripts ultimately leads to the final gene set, which is made available on the Ensembl website. Here, we describe the annotation process in detail. Database URL: http://www.ensembl.org/index.html PMID:27337980

  3. Genomics screens for metastasis genes

    PubMed Central

    Yan, Jinchun; Huang, Qihong

    2014-01-01

    Metastasis is responsible for most cancer mortality. The process of metastasis is complex, requiring the coordinated expression and fine regulation of many genes in multiple pathways in both the tumor and host tissues. Identification and characterization of the genetic programs that regulate metastasis is critical to understanding the metastatic process and discovering molecular targets for the prevention and treatment of metastasis. Genomic approaches and functional genomic analyses can systemically discover metastasis genes. In this review, we summarize the genetic tools and methods that have been used to identify and characterize the genes that play critical roles in metastasis. PMID:22684367

  4. Gene networks controlling petal organogenesis.

    PubMed

    Huang, Tengbo; Irish, Vivian F

    2016-01-01

    One of the biggest unanswered questions in developmental biology is how growth is controlled. Petals are an excellent organ system for investigating growth control in plants: petals are dispensable, have a simple structure, and are largely refractory to environmental perturbations that can alter their size and shape. In recent studies, a number of genes controlling petal growth have been identified. The overall picture of how such genes function in petal organogenesis is beginning to be elucidated. This review will focus on studies using petals as a model system to explore the underlying gene networks that control organ initiation, growth, and final organ morphology.

  5. GenePRIMP: A GENE PRediction IMprovement Pipeline for Prokaryotic genomes

    SciTech Connect

    Pati, Amrita; Ivanova, Natalia N.; Mikhailova, Natalia; Ovchinnikova, Galina; Hooper, Sean D.; Lykidis, Athanasios; Kyrpides, Nikos C.

    2010-04-01

    We present 'gene prediction improvement pipeline' (GenePRIMP; http://geneprimp.jgi-psf.org/), a computational process that performs evidence-based evaluation of gene models in prokaryotic genomes and reports anomalies including inconsistent start sites, missed genes and split genes. We found that manual curation of gene models using the anomaly reports generated by GenePRIMP improved their quality, and demonstrate the applicability of GenePRIMP in improving finishing quality and comparing different genome-sequencing and annotation technologies.

  6. BRCA1 and BRCA2 gene testing

    MedlinePlus

    ... east ca ncer. What is the BRCA Gene Mutation? BRCA1 and BRCA2 are genes that suppress malignant ... should. So people with BRCA1 and BRCA2 gene mutations are at a higher risk of getting cancer. ...

  7. Basics on Genes and Genetic Disorders

    MedlinePlus

    ... Healthy Breakfasts Shyness The Basics on Genes and Genetic Disorders KidsHealth > For Teens > The Basics on Genes ... repair" the gene change. previous continue What Are Genetic Disorders? Researchers have identified more than 4,000 ...

  8. Gene function prediction based on the Gene Ontology hierarchical structure.

    PubMed

    Cheng, Liangxi; Lin, Hongfei; Hu, Yuncui; Wang, Jian; Yang, Zhihao

    2014-01-01

    The information of the Gene Ontology annotation is helpful in the explanation of life science phenomena, and can provide great support for the research of the biomedical field. The use of the Gene Ontology is gradually affecting the way people store and understand bioinformatic data. To facilitate the prediction of gene functions with the aid of text mining methods and existing resources, we transform it into a multi-label top-down classification problem and develop a method that uses the hierarchical relationships in the Gene Ontology structure to relieve the quantitative imbalance of positive and negative training samples. Meanwhile the method enhances the discriminating ability of classifiers by retaining and highlighting the key training samples. Additionally, the top-down classifier based on a tree structure takes the relationship of target classes into consideration and thus solves the incompatibility between the classification results and the Gene Ontology structure. Our experiment on the Gene Ontology annotation corpus achieves an F-value performance of 50.7% (precision: 52.7% recall: 48.9%). The experimental results demonstrate that when the size of training set is small, it can be expanded via topological propagation of associated documents between the parent and child nodes in the tree structure. The top-down classification model applies to the set of texts in an ontology structure or with a hierarchical relationship.

  9. Antivirulence genes: insights into pathogen evolution through gene loss.

    PubMed

    Bliven, Kimberly A; Maurelli, Anthony T

    2012-12-01

    The emergence of new pathogens and the exploitation of novel pathogenic niches by bacteria typically require the horizontal transfer of virulence factors and subsequent adaptation--a "fine-tuning" process--for the successful incorporation of these factors into the microbe's genome. The function of newly acquired virulence factors may be hindered by the expression of genes already present in the bacterium. Occasionally, certain genes must be inactivated or deleted for full expression of the pathogen phenotype to occur. These genes are known as antivirulence genes (AVGs). Originally identified in Shigella, AVGs have improved our understanding of pathogen evolution and provided a novel approach to drug and vaccine development. In this review, we revisit the AVG definition and update the list of known AVGs, which now includes genes from pathogens such as Salmonella, Yersinia pestis, and the virulent Francisella tularensis subspecies. AVGs encompass a wide variety of different roles within the microbe, including genes involved in metabolism, biofilm synthesis, lipopolysaccharide modification, and host vasoconstriction. More recently, the use of one of these AVGs (lpxL) as a potential vaccine candidate highlights the practical application of studying AVG inactivation in microbial pathogens.

  10. Identifying genes of gene regulatory networks using formal concept analysis.

    PubMed

    Gebert, Jutta; Motameny, Susanne; Faigle, Ulrich; Forst, Christian V; Schrader, Rainer

    2008-03-01

    In order to understand the behavior of a gene regulatory network, it is essential to know the genes that belong to it. Identifying the correct members (e.g., in order to build a model) is a difficult task even for small subnetworks. Usually only few members of a network are known and one needs to guess the missing members based on experience or informed speculation. It is beneficial if one can additionally rely on experimental data to support this guess. In this work we present a new method based on formal concept analysis to detect unknown members of a gene regulatory network from gene expression time series data. We show that formal concept analysis is able to find a list of candidate genes for inclusion into a partially known basic network. This list can then be reduced by a statistical analysis so that the resulting genes interact strongly with the basic network and therefore should be included when modeling the network. The method has been applied to the DNA repair system of Mycobacterium tuberculosis. In this application, our method produces comparable results to an already existing method of component selection while it is applicable to a broader range of problems.

  11. Hox genes regulation in vertebrates.

    PubMed

    Soshnikova, Natalia

    2014-01-01

    Hox genes encode transcription factors defining cellular identities along the major and secondary body axes. Their coordinated expression in both space and time is critical for embryonic patterning. Accordingly, Hox genes transcription is tightly controlled at multiple levels, and involves an intricate combination of local and long-range cis-regulatory elements. Recent studies revealed that in addition to transcription factors, dynamic patterns of histone marks and higher-order chromatin structure are important determinants of Hox gene regulation. Furthermore, the emerging picture suggests an involvement of various species of non-coding RNA in targeting activating and repressive complexes to Hox clusters. I review these recent developments and discuss their relevance to the control of Hox gene expression in vivo, as well as to our understanding of transcriptional regulatory mechanisms.

  12. Molecular biology of epilepsy genes.

    PubMed

    Williams, Charles A; Battaglia, Agatino

    2013-06-01

    Multifactorial inheritance is the most important model accounting for the genetic behavior of the common epilepsies. Important to this model is the concept that many cumulative or synergistic risk genes ultimately lead to a threshold effect. Sophisticated molecular testing indicates that the common epilepsies are very polygenic without evidence of any single gene having even a mild-to-modest risk effect. However, enrichment of copy number variants in cohorts of individuals with epilepsy indicates that certain structural changes in the genome can confer significant risk for epilepsy. The mechanisms whereby copy number variants confer this effect are not yet known. The study of epilepsy due to single gene defects however has helped clarify certain seizure mechanisms. For example, discoveries using animal models of SCN1A or ARX mutations implicate a predominant role for interneurons due to disturbed GABAergic function. It is hoped that future genetic and neurobiological studies will provide better insight into how multiple genes contribute to the common epilepsies.

  13. Regulation of ABO gene expression.

    PubMed

    Kominato, Yoshihiko; Hata, Yukiko; Matsui, Kazuhiro; Takizawa, Hisao

    2005-07-01

    The ABO blood group system is important in blood transfusions and in identifying individuals during criminal investigations. Two carbohydrate antigens, the A and B antigens, and their antibodies constitute this system. Although biochemical and molecular genetic studies have demonstrated the molecular basis of the histo-blood group ABO system, some aspects remain to be elucidated. To explain the molecular basis of how the ABO genes are controlled in cell type-specific expression, during normal cell differentiation, and in cancer cells with invasive and metastatic potential that lack A/B antigens, it is essential to understand the regulatory mechanism of ABO gene transcription. We review the transcriptional regulation of the ABO gene, including positive and negative elements in the upstream region of the gene, and draw some inferences that help to explain the phenomena described above.

  14. How eukaryotic genes are transcribed.

    PubMed

    Venters, Bryan J; Pugh, B Franklin

    2009-06-01

    Regulation of eukaryotic gene expression is far more complex than one might have imagined 30 years ago. However, progress towards understanding gene regulatory mechanisms has been rapid and comprehensive, which has made the integration of detailed observations into broadly connected concepts a challenge. This review attempts to integrate the following concepts: (1) a well-defined organization of nucleosomes and modification states at most genes; (2) regulatory networks of sequence-specific transcription factors; (3) chromatin remodeling coupled to promoter assembly of the general transcription factors and RNA polymerase II; and (4) phosphorylation states of RNA polymerase II coupled to chromatin modification states during transcription. The wealth of new insights arising from the tools of biochemistry, genomics, cell biology, and genetics is providing a remarkable view into the mechanics of gene regulation.

  15. How eukaryotic genes are transcribed

    PubMed Central

    Venters, Bryan J.; Pugh, B. Franklin

    2009-01-01

    Summary Regulation of eukaryotic gene expression is far more complex than one might have imagined thirty years ago. However, progress towards understanding gene regulatory mechanisms has been rapid and comprehensive, which has made the integration of detailed observations into broadly connected concepts a challenge. This review attempts to integrate the following concepts: 1) a well-defined organization of nucleosomes and modification states at most genes, 2) regulatory networks of sequence-specific transcription factors, 3) chromatin remodeling coupled to promoter assembly of the general transcription factors and RNA polymerase II, and 4) phosphorylation states of RNA polymerase II coupled to chromatin modification states during transcription. The wealth of new insights arising from the tools of biochemistry, genomics, cell biology, and genetics is providing a remarkable view into the mechanics of gene regulation. PMID:19514890

  16. Gene Cernan on Apollo 17

    NASA Image and Video Library

    Apollo 17 Commander Gene Cernan recalls fixing a lunar rover problem with duct tape during his December 1972 mission. Cernan's interview was part of the commemoration of NASA's 50th anniversary in ...

  17. A Gene Recommender Algorithm to Identify Coexpressed Genes in C. elegans

    PubMed Central

    Owen, Art B.; Stuart, Josh; Mach, Kathy; Villeneuve, Anne M.; Kim, Stuart

    2003-01-01

    One of the most important uses of whole-genome expression data is for the discovery of new genes with similar function to a given list of genes (the query) already known to have closely related function. We have developed an algorithm, called the gene recommender, that ranks genes according to how strongly they correlate with a set of query genes in those experiments for which the query genes are most strongly coregulated. We used the gene recommender to find other genes coexpressed with several sets of query genes, including genes known to function in the retinoblastoma complex. Genetic experiments confirmed that one gene (JC8.6) identified by the gene recommender acts with lin-35 Rb to regulate vulval cell fates, and that another gene (wrm-1) acts antagonistically. We find that the gene recommender returns lists of genes with better precision, for fixed levels of recall, than lists generated using the C. elegans expression topomap. PMID:12902378

  18. Transgenic Arabidopsis Gene Expression System

    NASA Technical Reports Server (NTRS)

    Ferl, Robert; Paul, Anna-Lisa

    2009-01-01

    The Transgenic Arabidopsis Gene Expression System (TAGES) investigation is one in a pair of investigations that use the Advanced Biological Research System (ABRS) facility. TAGES uses Arabidopsis thaliana, thale cress, with sensor promoter-reporter gene constructs that render the plants as biomonitors (an organism used to determine the quality of the surrounding environment) of their environment using real-time nondestructive Green Fluorescent Protein (GFP) imagery and traditional postflight analyses.

  19. Gene Therapy for Childhood Neurofibromatosis

    DTIC Science & Technology

    2014-05-01

    AD_________________ Award Number: W81XWH-13-1-0101 TITLE: Gene Therapy for Childhood ...May 2014 4. TITLE AND SUBTITLE Gene Therapy for Childhood Neurofibromatosis 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-13-1-0101 5c...technology. This approach still represents a plausible and very different way to treat childhood neurofibromatosis, as well as other solid tumors

  20. [Genes for extreme violent behaviour?].

    PubMed

    Jordan, Bertrand

    2015-01-01

    A new genetic study focussing on the degree of violence in criminals and using both candidate gene and GWAS approaches finds statistically significant associations of extreme violent behaviour with low activity alleles of monoamine oxydase A (MAOA) and with the CD13 gene. However, the alleles implicated are common in the general population, thus they cannot be causal, and only represent potential indicators of increased risk.

  1. Gene-culture shock waves

    NASA Astrophysics Data System (ADS)

    Straughan, B.

    2013-11-01

    A hyperbolic model is presented which generalises Aoki's parabolic system for the combined propagation of a mutant gene together with a cultural innovation. It is shown that this model allows for the propagation of a shock wave and the shock amplitude is calculated numerically. Particular attention is paid to the case where the shock moves into a region where the frequencies of the mutant gene and of the individuals adopting the innovation are zero.

  2. Cationic Bolaamphiphiles for Gene Delivery

    NASA Astrophysics Data System (ADS)

    Tan, Amelia Li Min; Lim, Alisa Xue Ling; Zhu, Yiting; Yang, Yi Yan; Khan, Majad

    2014-05-01

    Advances in medical research have shed light on the genetic cause of many human diseases. Gene therapy is a promising approach which can be used to deliver therapeutic genes to treat genetic diseases at its most fundamental level. In general, nonviral vectors are preferred due to reduced risk of immune response, but they are also commonly associated with low transfection efficiency and high cytotoxicity. In contrast to viral vectors, nonviral vectors do not have a natural mechanism to overcome extra- and intracellular barriers when delivering the therapeutic gene into cell. Hence, its design has been increasingly complex to meet challenges faced in targeting of, penetration of and expression in a specific host cell in achieving more satisfactory transfection efficiency. Flexibility in design of the vector is desirable, to enable a careful and controlled manipulation of its properties and functions. This can be met by the use of bolaamphiphile, a special class of lipid. Unlike conventional lipids, bolaamphiphiles can form asymmetric complexes with the therapeutic gene. The advantage of having an asymmetric complex lies in the different purposes served by the interior and exterior of the complex. More effective gene encapsulation within the interior of the complex can be achieved without triggering greater aggregation of serum proteins with the exterior, potentially overcoming one of the great hurdles faced by conventional single-head cationic lipids. In this review, we will look into the physiochemical considerations as well as the biological aspects of a bolaamphiphile-based gene delivery system.

  3. PET genes of Saccharomyces cerevisiae.

    PubMed Central

    Tzagoloff, A; Dieckmann, C L

    1990-01-01

    We describe a collection of nuclear respiratory-defective mutants (pet mutants) of Saccharomyces cerevisiae consisting of 215 complementation groups. This set of mutants probably represents a substantial fraction of the total genetic information of the nucleus required for the maintenance of functional mitochondria in S. cerevisiae. The biochemical lesions of mutants in approximately 50 complementation groups have been related to single enzymes or biosynthetic pathways, and the corresponding wild-type genes have been cloned and their structures have been determined. The genes defined by an additional 20 complementation groups were identified by allelism tests with mutants characterized in other laboratories. Mutants representative of the remaining complementation groups have been assigned to one of the following five phenotypic classes: (i) deficiency in cytochrome oxidase, (ii) deficiency in coenzyme QH2-cytochrome c reductase, (iii) deficiency in mitochondrial ATPase, (iv) absence of mitochondrial protein synthesis, and (v) normal composition of respiratory-chain complexes and of oligomycin-sensitive ATPase. In addition to the genes identified through biochemical and genetic analyses of the pet mutants, we have cataloged PET genes not matched to complementation groups in the mutant collection and other genes whose products function in the mitochondria but are not necessary for respiration. Together, this information provides an up-to-date list of the known genes coding for mitochondrial constituents and for proteins whose expression is vital for the respiratory competence of S. cerevisiae. PMID:2215420

  4. Immunoglobulin genes of the turtles.

    PubMed

    Magadán-Mompó, Susana; Sánchez-Espinel, Christian; Gambón-Deza, Francisco

    2013-03-01

    The availability of reptile genomes for the use of the scientific community is an exceptional opportunity to study the evolution of immunoglobulin genes. The genome of Chrysemys picta bellii and Pelodiscus sinensis is the first one that has been reported for turtles. The scanning for immunoglobulin genes resulted in the presence of a complex locus for the immunoglobulin heavy chain (IGH). This IGH locus in both turtles contains genes for 13 isotypes in C. picta bellii and 17 in P. sinensis. These correspond with one immunoglobulin M, one immunoglobulin D, several immunoglobulins Y (six in C. picta bellii and eight in P. sinensis), and several immunoglobulins that are similar to immunoglobulin D2 (five in C. picta belli and seven in P. sinensis) that was previously described in Eublepharis macularius. It is worthy to note that IGHD2 are placed in an inverted transcriptional orientation and present sequences for two immunoglobulin domains that are similar to bird IgA domains. Furthermore, its phylogenetic analysis allows us to consider about the presence of IGHA gene in a primitive reptile, so we would be dealing with the memory of the gene that originated from the bird IGHA. In summary, we provide a clear picture of the immunoglobulins present in a turtle, whose analysis supports the idea that turtles emerged from the evolutionary line from the differentiation of birds and the presence of the IGHA gene present in a common ancestor.

  5. Gene Polymorphisms in Chronic Periodontitis

    PubMed Central

    Laine, Marja L.; Loos, Bruno G.; Crielaard, W.

    2010-01-01

    We aimed to conduct a review of the literature for gene polymorphisms associated with chronic periodontitis (CP) susceptibility. A comprehensive search of the literature in English was performed using the keywords: periodontitis, periodontal disease, combined with the words genes, mutation, or polymorphism. Candidate gene polymorphism studies with a case-control design and reported genotype frequencies in CP patients were searched and reviewed. There is growing evidence that polymorphisms in the IL1, IL6, IL10, vitamin D receptor, and CD14 genes may be associated with CP in certain populations. However, carriage rates of the rare (R)-allele of any polymorphism varied considerably among studies and most of the studies appeared under-powered and did not correct for other risk factors. Larger cohorts, well-defined phenotypes, control for other risk factors, and analysis of multiple genes and polymorphisms within the same pathway are needed to get a more comprehensive insight into the contribution of gene polymorphisms in CP. PMID:20339487

  6. Gene Therapy in Heart Failure

    PubMed Central

    Vinge, Leif Erik; Raake, Philip W.; Koch, Walter J.

    2008-01-01

    With increasing knowledge of basic molecular mechanisms governing the development of heart failure (HF), the possibility of specifically targeting key pathological players is evolving. Technology allowing for efficient in vivo transduction of myocardial tissue with long-term expression of a transgene enables translation of basic mechanistic knowledge into potential gene therapy approaches. Gene therapy in HF is in its infancy clinically with the predominant amount of experience being from animal models. Nevertheless, this challenging and promising field is gaining momentum as recent preclinical studies in larger animals have been carried out and, importantly, there are 2 newly initiated phase I clinical trials for HF gene therapy. To put it simply, 2 parameters are needed for achieving success with HF gene therapy: (1) clearly identified detrimental/beneficial molecular targets; and (2) the means to manipulate these targets at a molecular level in a sufficient number of cardiac cells. However, several obstacles do exist on our way to efficient and safe gene transfer to human myocardium. Some of these obstacles are discussed in this review; however, it primarily focuses on the molecular target systems that have been subjected to intense investigation over the last decade in an attempt to make gene therapy for human HF a reality. PMID:18566312

  7. Transcriptional gene silencing in humans

    PubMed Central

    Weinberg, Marc S.; Morris, Kevin V.

    2016-01-01

    It has been over a decade since the first observation that small non-coding RNAs can functionally modulate epigenetic states in human cells to achieve functional transcriptional gene silencing (TGS). TGS is mechanistically distinct from the RNA interference (RNAi) gene-silencing pathway. TGS can result in long-term stable epigenetic modifications to gene expression that can be passed on to daughter cells during cell division, whereas RNAi does not. Early studies of TGS have been largely overlooked, overshadowed by subsequent discoveries of small RNA-directed post-TGS and RNAi. A reappraisal of early work has been brought about by recent findings in human cells where endogenous long non-coding RNAs function to regulate the epigenome. There are distinct and common overlaps between the proteins involved in small and long non-coding RNA transcriptional regulatory mechanisms, suggesting that the early studies using small non-coding RNAs to modulate transcription were making use of a previously unrecognized endogenous mechanism of RNA-directed gene regulation. Here we review how non-coding RNA plays a role in regulation of transcription and epigenetic gene silencing in human cells by revisiting these earlier studies and the mechanistic insights gained to date. We also provide a list of mammalian genes that have been shown to be transcriptionally regulated by non-coding RNAs. Lastly, we explore how TGS may serve as the basis for development of future therapeutic agents. PMID:27060137

  8. Homology-dependent Gene Silencing in Paramecium

    PubMed Central

    Ruiz, Françoise; Vayssié, Laurence; Klotz, Catherine; Sperling, Linda; Madeddu, Luisa

    1998-01-01

    Microinjection at high copy number of plasmids containing only the coding region of a gene into the Paramecium somatic macronucleus led to a marked reduction in the expression of the corresponding endogenous gene(s). The silencing effect, which is stably maintained throughout vegetative growth, has been observed for all Paramecium genes examined so far: a single-copy gene (ND7), as well as members of multigene families (centrin genes and trichocyst matrix protein genes) in which all closely related paralogous genes appeared to be affected. This phenomenon may be related to posttranscriptional gene silencing in transgenic plants and quelling in Neurospora and allows the efficient creation of specific mutant phenotypes thus providing a potentially powerful tool to study gene function in Paramecium. For the two multigene families that encode proteins that coassemble to build up complex subcellular structures the analysis presented herein provides the first experimental evidence that the members of these gene families are not functionally redundant. PMID:9529389

  9. New Gene Evolution: Little Did We Know

    PubMed Central

    Long, Manyuan; VanKuren, Nicholas W.; Chen, Sidi; Vibranovski, Maria D.

    2014-01-01

    Genes are perpetually added to and deleted from genomes during evolution. Thus, it is important to understand how new genes are formed and evolve as critical components of the genetic systems determining the biological diversity of life. Two decades of effort have shed light on the process of new gene origination, and have contributed to an emerging comprehensive picture of how new genes are added to genomes, ranging from the mechanisms that generate new gene structures to the presence of new genes in different organisms to the rates and patterns of new gene origination and the roles of new genes in phenotypic evolution. We review each of these aspects of new gene evolution, summarizing the main evidence for the origination and importance of new genes in evolution. We highlight findings showing that new genes rapidly change existing genetic systems that govern various molecular, cellular and phenotypic functions. PMID:24050177

  10. Novel gene transfer systems: intelligent gene transfer vectors for gene medicines.

    PubMed

    Nakajima, Toshihiro

    2012-01-01

    Drug delivery systems for gene transfer are called 'vectors'. These systems were originally invented as a delivery system for the transfection in vitro or in vivo. Several vectors are then developed for clinical use of gene medicines and currently some of them are approved as animal drugs. Conventional drug delivery system generally consists of approved (existing) materials to avoid additional pre-clinical or clinical studies. However, current vectors contain novel materials to improve an efficacy of gene medicines. Thus, these vectors have functions more than a mere delivery of active ingredients. For example some vectors have immunological functions such as adjuvants in vaccines. These new types of vectors are called 'intelligent' or 'innovative' vector system', since the concept or strategy for the development is completely different from conventional drug delivery systems. In this article, we described a current status of 'intelligent gene transfer vectors and discussed on the potentials of them.

  11. The biology of novel animal genes: Mouse APEX gene knockout

    SciTech Connect

    MacInnes, M.; Altherr, M.R.; Ludwig, D.; Pedersen, R.; Mold, C.

    1997-07-01

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The controlled breeding of novel genes into mice, including the gene knockout (KO), or conversely by adding back transgenes provide powerful genetic technologies that together suffice to determine in large part the biological role(s) of novel genes. Inbred mouse remains the best understood and most useful mammalian experimental system available for tackling the biology of novel genes. The major mammalian apurinic/apyrimidinic (AP) endonuclease (APE), is involved in a key step in the repair of spontaneous and induced AP sites in DNA. Efficient repair of these lesions is imperative to prevent the stable incorporation of mutations into the cellular genome which may lead to cell death or transformation. Loss or modulation of base excison repair activity in vivo may elevate the spontaneous mutation rate in cells, and may lead to a substantial increase in the incidence of cancer. Despite extensive biochemical analysis, however, the significance of these individual APE functions in vivo has not been elucidated. Mouse embryonic stem (ES) cells heterozygous for a deletion mutation in APE have been generated and whole animals containing the APE mutation have been derived from these ES cells. Animals homozygous for the APE null mutation die early in gestation, underscoring the biological significance of this DNA repair gene.

  12. Noninvasive tracking of gene transcript and neuroprotection after gene therapy.

    PubMed

    Ren, J; Chen, Y I; Liu, C H; Chen, P-C; Prentice, H; Wu, J-Y; Liu, P K

    2016-01-01

    Gene therapy holds exceptional potential for translational medicine by improving the products of defective genes in diseases and/or providing necessary biologics from endogenous sources during recovery processes. However, validating methods for the delivery, distribution and expression of the exogenous genes from such therapy can generally not be applicable to monitor effects over the long term because they are invasive. We report here that human granulocyte colony-stimulating factor (hG-CSF) complimentary DNA (cDNA) encoded in self-complementary adeno-associated virus-type 2 adeno-associated virus, as delivered through eye drops at multiple time points after cerebral ischemia using bilateral carotid occlusion for 60 min (BCAO-60) led to significant reduction in mortality rates, cerebral atrophy and neurological deficits in C57black6 mice. Most importantly, we validated hG-CSF cDNA expression using translatable magnetic resonance imaging (MRI) in living brains. This noninvasive approach for monitoring exogenous gene expression in the brains has potential for great impact in the area of experimental gene therapy in animal models of heart attack, stroke, Alzheimer's dementia, Parkinson's disorder and amyotrophic lateral sclerosis, and the translation of such techniques to emergency medicine.

  13. Fetal muscle gene therapy/gene delivery in large animals.

    PubMed

    Abi-Nader, Khalil N; David, Anna L

    2011-01-01

    Gene delivery to the fetal muscles is a potential strategy for the early treatment of muscular dystrophies. In utero muscle gene therapy can also be used to treat other genetic disorders such as hemophilia, where the missing clotting proteins may be secreted from the treated muscle. In the past few years, studies in small animal models have raised the hopes that a phenotypic cure can be obtained after fetal application of gene therapy. Studies of efficacy and safety in large animals are, however, essential before clinical application can be considered in the human fetus. For this reason, the development of clinically applicable strategies for the delivery of gene therapy to the fetal muscles is of prime importance. In this chapter, we describe the protocols for in utero ultrasound-guided gene delivery to the ovine fetal muscle in early gestation. In particular, procedures to inject skeletal muscle groups such as the thigh and thoracic musculature and targeting the diaphragm in the fetus are described in detail.

  14. Newer gene editing technologies toward HIV gene therapy.

    PubMed

    Manjunath, N; Yi, Guohua; Dang, Ying; Shankar, Premlata

    2013-11-14

    Despite the great success of highly active antiretroviral therapy (HAART) in ameliorating the course of HIV infection, alternative therapeutic approaches are being pursued because of practical problems associated with life-long therapy. The eradication of HIV in the so-called "Berlin patient" who received a bone marrow transplant from a CCR5-negative donor has rekindled interest in genome engineering strategies to achieve the same effect. Precise gene editing within the cells is now a realistic possibility with recent advances in understanding the DNA repair mechanisms, DNA interaction with transcription factors and bacterial defense mechanisms. Within the past few years, four novel technologies have emerged that can be engineered for recognition of specific DNA target sequences to enable site-specific gene editing: Homing Endonuclease, ZFN, TALEN, and CRISPR/Cas9 system. The most recent CRISPR/Cas9 system uses a short stretch of complementary RNA bound to Cas9 nuclease to recognize and cleave target DNA, as opposed to the previous technologies that use DNA binding motifs of either zinc finger proteins or transcription activator-like effector molecules fused to an endonuclease to mediate sequence-specific DNA cleavage. Unlike RNA interference, which requires the continued presence of effector moieties to maintain gene silencing, the newer technologies allow permanent disruption of the targeted gene after a single treatment. Here, we review the applications, limitations and future prospects of novel gene-editing strategies for use as HIV therapy.

  15. [Developments in gene delivery vectors for ocular gene therapy].

    PubMed

    Khabou, Hanen; Dalkara, Deniz

    2015-05-01

    Gene therapy is quickly becoming a reality applicable in the clinic for inherited retinal diseases. Its remarkable success in safety and efficacy, in clinical trials for Leber's congenital amaurosis (LCA) type II generated significant interest and opened up possibilities for a new era of retinal gene therapies. Success in these clinical trials was mainly due to the favorable characteristics of the retina as a target organ. The eye offers several advantages as it is readily accessible and has some degree of immune privilege making it suitable for application of viral vectors. The viral vectors most frequently used for retinal gene delivery are lentivirus, adenovirus and adeno-associated virus (AAV). Here we will discuss the use of these viral vectors in retinal gene delivery with a strong focus on favorable properties of AAV. Thanks to its small size, AAV diffuses well in the inter-neural matrix making it suitable for applications in neural retina. Building on this initial clinical success with LCA II, we have now many opportunities to extend this proof-of-concept to other retinal diseases using AAV as a vector. This article will discuss what are some of the most imminent cellular targets for such therapies and the AAV toolkit that has been built to target these cells successfully. We will also discuss some of the challenges that we face in translating AAV-based gene therapies to the clinic.

  16. Characterizing gene-gene interactions in a statistical epistasis network of twelve candidate genes for obesity.

    PubMed

    De, Rishika; Hu, Ting; Moore, Jason H; Gilbert-Diamond, Diane

    2015-01-01

    Recent findings have reemphasized the importance of epistasis, or gene-gene interactions, as a contributing factor to the unexplained heritability of obesity. Network-based methods such as statistical epistasis networks (SEN), present an intuitive framework to address the computational challenge of studying pairwise interactions between thousands of genetic variants. In this study, we aimed to analyze pairwise interactions that are associated with Body Mass Index (BMI) between SNPs from twelve genes robustly associated with obesity (BDNF, ETV5, FAIM2, FTO, GNPDA2, KCTD15, MC4R, MTCH2, NEGR1, SEC16B, SH2B1, and TMEM18). We used information gain measures to identify all SNP-SNP interactions among and between these genes that were related to obesity (BMI > 30 kg/m(2)) within the Framingham Heart Study Cohort; interactions exceeding a certain threshold were used to build an SEN. We also quantified whether interactions tend to occur more between SNPs from the same gene (dyadicity) or between SNPs from different genes (heterophilicity). We identified a highly connected SEN of 709 SNPs and 1241 SNP-SNP interactions. Combining the SEN framework with dyadicity and heterophilicity analyses, we found 1 dyadic gene (TMEM18, P-value = 0.047) and 3 heterophilic genes (KCTD15, P-value = 0.045; SH2B1, P-value = 0.003; and TMEM18, P-value = 0.001). We also identified a lncRNA SNP (rs4358154) as a key node within the SEN using multiple network measures. This study presents an analytical framework to characterize the global landscape of genetic interactions from genome-wide arrays and also to discover nodes of potential biological significance within the identified network.

  17. GenePANDA—a novel network-based gene prioritizing tool for complex diseases

    PubMed Central

    Yin, Tianshu; Chen, Shu; Wu, Xiaohui; Tian, Weidong

    2017-01-01

    Here we describe GenePANDA, a novel network-based tool for prioritizing candidate disease genes. GenePANDA assesses whether a gene is likely a candidate disease gene based on its relative distance to known disease genes in a functional association network. A unique feature of GenePANDA is the introduction of adjusted network distance derived by normalizing the raw network distance between two genes with their respective mean raw network distance to all other genes in the network. The use of adjusted network distance significantly improves GenePANDA’s performance on prioritizing complex disease genes. GenePANDA achieves superior performance over five previously published algorithms for prioritizing disease genes. Finally, GenePANDA can assist in prioritizing functionally important SNPs identified by GWAS. PMID:28252032

  18. [Polymeric nanoparticles with therapeutic gene for gene therapy: I. Preparation and in vivo gene transfer study].

    PubMed

    Yang, Jing; Song, Cunxian; Sun, Hongfan; Wu, Li; Tang, Lina; Leng, Xigang; Wang, Pengyan; Xu, Yiyao; Li, Yongjun; Guan, Heng

    2005-06-01

    VEGF nanoparticle (VEGF-NP) was prepared by a multi-emulsification technique using a biodegradable poly-dl-lactic-co-glycolic (PLGA) as matrix material. The nanoparticles were characterized for size, VEGF loading capacity, and in vitro release. VEGF-NP and naked VEGF plasmid were intramuscularly injected into the ischemia site of the rabbit chronic hindlimb ischemia model and the efficiency of VEGF-NP as gene delivery carrier for gene therapy in animal model was evaluated. Gene therapuetic effect was assessed evaluated by RT-PCR, immunohistochemistry and angiography assay. The average size of VEGF-NP was around 300 nm. The encapsulation efficiency of VEGF was above 96%. Loading amount of VEGF in the nanoparticles was about 4%. In vitro, nanoparticles maintained sustained-release of VEGF for two weeks. Two weeks post gene injection the capillary density in VEGF-NP group (81.22 per mm2) was significantly higher than that in control group (29.54 mm2). RT-PCR results showed greatly higher VEGF expression in VEGF-NP group (31.79au * mm) than that in naked VEGF group (9.15 au * mm). As a carrier system for gene therapy in animal model, VEGF-NP is much better than naked DNA plasmid. The results demonstrate great possibility of using NP carrier in human gene therapy.

  19. RCDB: Renal Cancer Gene Database.

    PubMed

    Ramana, Jayashree

    2012-05-18

    Renal cell carcinoma or RCC is one of the common and most lethal urological cancers, with 40% of the patients succumbing to death because of metastatic progression of the disease. Treatment of metastatic RCC remains highly challenging because of its resistance to chemotherapy as well as radiotherapy, besides surgical resection. Whereas RCC comprises tumors with differing histological types, clear cell RCC remains the most common. A major problem in the clinical management of patients presenting with localized ccRCC is the inability to determine tumor aggressiveness and accurately predict the risk of metastasis following surgery. As a measure to improve the diagnosis and prognosis of RCC, researchers have identified several molecular markers through a number of techniques. However the wealth of information available is scattered in literature and not easily amenable to data-mining. To reduce this gap, this work describes a comprehensive repository called Renal Cancer Gene Database, as an integrated gateway to study renal cancer related data. Renal Cancer Gene Database is a manually curated compendium of 240 protein-coding and 269 miRNA genes contributing to the etiology and pathogenesis of various forms of renal cell carcinomas. The protein coding genes have been classified according to the kind of gene alteration observed in RCC. RCDB also includes the miRNAsdysregulated in RCC, along with the corresponding information regarding the type of RCC and/or metastatic or prognostic significance. While some of the miRNA genes showed an association with other types of cancers few were unique to RCC. Users can query the database using keywords, category and chromosomal location of the genes. The knowledgebase can be freely accessed via a user-friendly web interface at http://www.juit.ac.in/attachments/jsr/rcdb/homenew.html. It is hoped that this database would serve as a useful complement to the existing public resources and as a good starting point for researchers and

  20. Genes and Abdominal Aortic Aneurysm

    PubMed Central

    Hinterseher, Irene; Tromp, Gerard; Kuivaniemi, Helena

    2010-01-01

    Abdominal aortic aneurysm (AAA) is a multifactorial disease with a strong genetic component. Since first candidate gene studies were published 20 years ago, nearly 100 genetic association studies using single nucleotide polymorphisms (SNPs) in biologically relevant genes have been reported on AAA. The studies investigated SNPs in genes of the extracellular matrix, the cardiovascular system, the immune system, and signaling pathways. Very few studies were large enough to draw firm conclusions and very few results could be replicated in another sample set. The more recent unbiased approaches are family-based DNA linkage studies and genome-wide genetic association studies, which have the potential of identifying the genetic basis for AAA, if appropriately powered and well-characterized large AAA cohorts are used. SNPs associated with AAA have already been identified in these large multicenter studies. One significant association was of a variant in a gene called CNTN3 which is located on chromosome 3p12.3. Two follow-up studies, however, could not replicate the association. Two other SNPs, which are located on chromosome 9p21 and 9q33 were replicated in other samples. The two genes with the strongest supporting evidence of contribution to the genetic risk for AAA are the CDKN2BAS gene, also known as ANRIL, which encodes an antisense RNA that regulates expression of the cyclin-dependent kinase inhibitors CDKN2A and CDKN2B, and DAB2IP, which encodes an inhibitor of cell growth and survival. Functional studies are now needed to establish the mechanisms by which these genes contribute to AAA pathogenesis. PMID:21146954

  1. Combining Hierarchical and Associative Gene Ontology Relations with Textual Evidence in Estimating Gene and Gene Product Similarity

    SciTech Connect

    Sanfilippo, Antonio P.; Posse, Christian; Gopalan, Banu; Riensche, Roderick M.; Beagley, Nathaniel; Baddeley, Bob L.; Tratz, Stephen C.; Gregory, Michelle L.

    2007-03-01

    Gene and gene product similarity is a fundamental diagnostic measure in analyzing biological data and constructing predictive models for functional genomics. With the rising influence of the Gene Ontology, two complementary approaches have emerged where the similarity between two genes or gene products is obtained by comparing Gene Ontology (GO) annotations associated with the genes or gene products. One approach captures GO-based similarity in terms of hierarchical relations within each gene subontology. The other approach identifies GO-based similarity in terms of associative relations across the three gene subontologies. We propose a novel methodology where the two approaches can be merged with ensuing benefits in coverage and accuracy, and demonstrate that further improvements can be obtained by integrating textual evidence extracted from relevant biomedical literature.

  2. COGNATE: comparative gene annotation characterizer.

    PubMed

    Wilbrandt, Jeanne; Misof, Bernhard; Niehuis, Oliver

    2017-07-17

    The comparison of gene and genome structures across species has the potential to reveal major trends of genome evolution. However, such a comparative approach is currently hampered by a lack of standardization (e.g., Elliott TA, Gregory TR, Philos Trans Royal Soc B: Biol Sci 370:20140331, 2015). For example, testing the hypothesis that the total amount of coding sequences is a reliable measure of potential proteome diversity (Wang M, Kurland CG, Caetano-Anollés G, PNAS 108:11954, 2011) requires the application of standardized definitions of coding sequence and genes to create both comparable and comprehensive data sets and corresponding summary statistics. However, such standard definitions either do not exist or are not consistently applied. These circumstances call for a standard at the descriptive level using a minimum of parameters as well as an undeviating use of standardized terms, and for software that infers the required data under these strict definitions. The acquisition of a comprehensive, descriptive, and standardized set of parameters and summary statistics for genome publications and further analyses can thus greatly benefit from the availability of an easy to use standard tool. We developed a new open-source command-line tool, COGNATE (Comparative Gene Annotation Characterizer), which uses a given genome assembly and its annotation of protein-coding genes for a detailed description of the respective gene and genome structure parameters. Additionally, we revised the standard definitions of gene and genome structures and provide the definitions used by COGNATE as a working draft suggestion for further reference. Complete parameter lists and summary statistics are inferred using this set of definitions to allow down-stream analyses and to provide an overview of the genome and gene repertoire characteristics. COGNATE is written in Perl and freely available at the ZFMK homepage ( https://www.zfmk.de/en/COGNATE ) and on github ( https

  3. A Gene Ontology Tutorial in Python.

    PubMed

    Vesztrocy, Alex Warwick; Dessimoz, Christophe

    2017-01-01

    This chapter is a tutorial on using Gene Ontology resources in the Python programming language. This entails querying the Gene Ontology graph, retrieving Gene Ontology annotations, performing gene enrichment analyses, and computing basic semantic similarity between GO terms. An interactive version of the tutorial, including solutions, is available at http://gohandbook.org .

  4. Familial aggregation analysis of gene expressions

    PubMed Central

    Rao, Shao-Qi; Xu, Liang-De; Zhang, Guang-Mei; Li, Xia; Li, Lin; Shen, Gong-Qing; Jiang, Yang; Yang, Yue-Ying; Gong, Bin-Sheng; Jiang, Wei; Zhang, Fan; Xiao, Yun; Wang, Qing K

    2007-01-01

    Traditional studies of familial aggregation are aimed at defining the genetic (and non-genetic) causes of a disease from physiological or clinical traits. However, there has been little attempt to use genome-wide gene expressions, the direct phenotypic measures of genes, as the traits to investigate several extended issues regarding the distributions of familially aggregated genes on chromosomes or in functions. In this study we conducted a genome-wide familial aggregation analysis by using the in vitro cell gene expressions of 3300 human autosome genes (Problem 1 data provided to Genetic Analysis Workshop 15) in order to answer three basic genetics questions. First, we investigated how gene expressions aggregate among different types (degrees) of relative pairs. Second, we conducted a bioinformatics analysis of highly familially aggregated genes to see how they are distributed on chromosomes. Third, we performed a gene ontology enrichment test of familially aggregated genes to find evidence to support their functional consensus. The results indicated that 1) gene expressions did aggregate in families, especially between sibs. Of 3300 human genes analyzed, there were a total of 1105 genes with one or more significant (empirical p < 0.05) familial correlation; 2) there were several genomic hot spots where highly familially aggregated genes (e.g., the chromosome 6 HLA genes cluster) were clustered; 3) as we expected, gene ontology enrichment tests revealed that the 1105 genes were aggregating not only in families but also in functional categories. PMID:18466548

  5. 'Uncombable' Hair? Maybe Genes Are to Blame

    MedlinePlus

    ... Health, or the U.S. Department of Health and Human Services. More Health News on: Genes and Gene Therapy Recent Health News Related MedlinePlus Health Topics Genes and Gene Therapy Hair Problems About MedlinePlus Site Map FAQs Customer Support ...

  6. Gene Ontology Consortium: going forward.

    PubMed

    2015-01-01

    The Gene Ontology (GO; http://www.geneontology.org) is a community-based bioinformatics resource that supplies information about gene product function using ontologies to represent biological knowledge. Here we describe improvements and expansions to several branches of the ontology, as well as updates that have allowed us to more efficiently disseminate the GO and capture feedback from the research community. The Gene Ontology Consortium (GOC) has expanded areas of the ontology such as cilia-related terms, cell-cycle terms and multicellular organism processes. We have also implemented new tools for generating ontology terms based on a set of logical rules making use of templates, and we have made efforts to increase our use of logical definitions. The GOC has a new and improved web site summarizing new developments and documentation, serving as a portal to GO data. Users can perform GO enrichment analysis, and search the GO for terms, annotations to gene products, and associated metadata across multiple species using the all-new AmiGO 2 browser. We encourage and welcome the input of the research community in all biological areas in our continued effort to improve the Gene Ontology. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. Gene Ontology Consortium: going forward

    PubMed Central

    2015-01-01

    The Gene Ontology (GO; http://www.geneontology.org) is a community-based bioinformatics resource that supplies information about gene product function using ontologies to represent biological knowledge. Here we describe improvements and expansions to several branches of the ontology, as well as updates that have allowed us to more efficiently disseminate the GO and capture feedback from the research community. The Gene Ontology Consortium (GOC) has expanded areas of the ontology such as cilia-related terms, cell-cycle terms and multicellular organism processes. We have also implemented new tools for generating ontology terms based on a set of logical rules making use of templates, and we have made efforts to increase our use of logical definitions. The GOC has a new and improved web site summarizing new developments and documentation, serving as a portal to GO data. Users can perform GO enrichment analysis, and search the GO for terms, annotations to gene products, and associated metadata across multiple species using the all-new AmiGO 2 browser. We encourage and welcome the input of the research community in all biological areas in our continued effort to improve the Gene Ontology. PMID:25428369

  8. Combinatorial methods for gene recognition

    SciTech Connect

    Pevzner, P.A.

    1997-10-29

    The major result of the project is the development of a new approach to gene recognition called spliced alignment algorithm. They have developed an algorithm and implemented a software tool (for both IBM PC and UNIX platforms) which explores all possible exon assemblies in polynomial time and finds the multi-exon structure with the best fit to a related protein. Unlike other existing methods, the algorithm successfully performs exons assemblies even in the case of short exons or exons with unusual codon usage; they also report correct assemblies for the genes with more than 10 exons provided a homologous protein is already known. On a test sample of human genes with known mammalian relatives the average overlap between the predicted and the actual genes was 99%, which is remarkably well as compared to other existing methods. At that, the algorithm absolute correctly reconstructed 87% of genes. The rare discrepancies between the predicted and real axon-intron structures were restricted either to extremely short initial or terminal exons or proved to be results of alternative splicing. Moreover, the algorithm performs reasonably well with non-vertebrate and even prokaryote targets. The spliced alignment software PROCRUSTES has been in extensive use by the academic community since its announcement in August, 1996 via the WWW server (www-hto.usc.edu/software/procrustes) and by biotech companies via the in-house UNIX version.

  9. Metazoan Gene Families from Metazome

    DOE Data Explorer

    Metazome is a joint project of the Department of Energy's Joint Genome Institute and the Center for Integrative Genomics to facilitate comparative genomic studies amongst metazoans. Clusters of orthologous and paralogous genes that represent the modern descendents of ancestral gene sets are constructed at key phylogenetic nodes. These clusters allow easy access to clade specific orthology/paralogy relationships as well as clade specific genes and gene expansions. As of version 2.0.4, Metazome provides access to twenty-four sequenced and annotated metazoan genomes, clustered at nine evolutionarily significant nodes. Where possible, each gene has been annotated with PFAM, KOG, KEGG, and PANTHER assignments, and publicly available annotations from RefSeq, UniProt, Ensembl, and JGI are hyper-linked and searchable. The included organisms (by common name) are: Human, Mouse, Rat, Dog, Opossum, Chicken, Frog, Stickleback, Medaka, Fugu pufferfish; Zebrafish, Seasquirt - savignyi, Seasquirt - intestinalis, Amphioxus, Sea Urchin, Fruitfly, Mosquite, Yellow Fever Mosquito, Silkworm, Red Flour Beetle, Worm, Briggsae Worm, Owl limpet (snail), and Sea anemone. [Copied from Metazome Overview at http://www.metazome.net/Metazome_info.php

  10. Clock Genes in Glia Cells

    PubMed Central

    Chi-Castañeda, Donají

    2016-01-01

    Circadian rhythms are periodic patterns in biological processes that allow the organisms to anticipate changes in the environment. These rhythms are driven by the suprachiasmatic nucleus (SCN), the master circadian clock in vertebrates. At a molecular level, circadian rhythms are regulated by the so-called clock genes, which oscillate in a periodic manner. The protein products of clock genes are transcription factors that control their own and other genes’ transcription, collectively known as “clock-controlled genes.” Several brain regions other than the SCN express circadian rhythms of clock genes, including the amygdala, the olfactory bulb, the retina, and the cerebellum. Glia cells in these structures are expected to participate in rhythmicity. However, only certain types of glia cells may be called “glial clocks,” since they express PER-based circadian oscillators, which depend of the SCN for their synchronization. This contribution summarizes the current information about clock genes in glia cells, their plausible role as oscillators and their medical implications. PMID:27666286

  11. Stem cell directed gene therapy.

    PubMed

    Engel, B C; Kohn, D B

    1999-05-01

    A potential therapeutic approach to HIV-1 infection is the genetic modification of cells of a patient to make them resistant to HIV-1. Hematopoietic stem cells are an attractive target for gene therapy of AIDS because of their ability to generate a broad repertoire of mature T lymphocytes, as well as the monocytic cells (macrophages, dendritic cells and microglia) which are also involved in HIV-1 pathogenesis. A number of synthetic "anti-HIV-1 genes" have been developed which inhibit HIV-1 replication. However, current methods for gene transfer into human hematopoietic stem cells, using retroviral vectors derived from the Moloney murine leukemia virus, have been minimally effective. Clinical trials performed to date in which hematopoietic cells from HIV-1-positive patients have been transduced with retroviral vectors and then reinfused have produced low to undetectable levels of gene-containing peripheral blood leukocytes. New vector delivery systems, such as lentiviral vectors, need to be developed to ensure efficient gene transfer and persistent transgene expression to provide life-long resistance to the cells targeted by HIV-1.

  12. Gene Chips and Functional Genomics

    NASA Astrophysics Data System (ADS)

    Hamadeh, Hisham; Afshari, Cynthia

    2000-11-01

    These past few years of scientific discovery will undoubtedly be remembered as the "genomics era," the period in which biologists succeeded in enumerating the sequence of nucleotides making up all, or at least most, of human DNA. And while this achievement has been heralded as a technological feat equal to the moon landing, it is only the first of many advances in DNA technology. Scientists are now faced with the task of understanding the meaning of the DNA sequence. Specifically, they want to learn how the DNA code relates to protein function. An important tool in the study of "functional genomics," is the cDNA microarray—also known as the gene chip. Inspired by computer microchips, gene chips allow scientists to monitor the expression of hundreds, even thousands, of genes in a fraction of the time it used to take to monitor the expression of a single one. By altering the conditions under which a particular tissue expresses genes—say, by exposing it to toxins or growth factors—scientists can determine the suite of genes expressed in different situations and hence start to get a handle on the function of these genes. The authors discuss this important new technology and some of its practical applications.

  13. Gene methylation in gastric cancer.

    PubMed

    Qu, Yiping; Dang, Siwen; Hou, Peng

    2013-09-23

    Gastric cancer is one of the most common malignancies and remains the second leading cause of cancer-related death worldwide. Over 70% of new cases and deaths occur in developing countries. In the early years of the molecular biology revolution, cancer research mainly focuses on genetic alterations, including gastric cancer. Epigenetic mechanisms are essential for normal development and maintenance of tissue-specific gene expression patterns in mammals. Disruption of epigenetic processes can lead to altered gene function and malignant cellular transformation. Recent advancements in the rapidly evolving field of cancer epigenetics have shown extensive reprogramming of every component of the epigenetic machinery in cancer, including DNA methylation, histone modifications, nucleosome positioning, noncoding RNAs, and microRNAs. Aberrant DNA methylation in the promoter regions of gene, which leads to inactivation of tumor suppressor and other cancer-related genes in cancer cells, is the most well-defined epigenetic hallmark in gastric cancer. The advantages of gene methylation as a target for detection and diagnosis of cancer in biopsy specimens and non-invasive body fluids such as serum and gastric washes have led to many studies of application in gastric cancer. This review focuses on the most common and important phenomenon of epigenetics, DNA methylation, in gastric cancer and illustrates the impact epigenetics has had on this field. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Stochastic Mechanisms in Gene Expression

    NASA Astrophysics Data System (ADS)

    McAdams, Harley H.; Arkin, Adam

    1997-02-01

    In cellular regulatory networks, genetic activity is controlled by molecular signals that determine when and how often a given gene is transcribed. In genetically controlled pathways, the protein product encoded by one gene often regulates expression of other genes. The time delay, after activation of the first promoter, to reach an effective level to control the next promoter depends on the rate of protein accumulation. We have analyzed the chemical reactions controlling transcript initiation and translation termination in a single such ``genetically coupled'' link as a precursor to modeling networks constructed from many such links. Simulation of the processes of gene expression shows that proteins are produced from an activated promoter in short bursts of variable numbers of proteins that occur at random time intervals. As a result, there can be large differences in the time between successive events in regulatory cascades across a cell population. In addition, the random pattern of expression of competitive effectors can produce probabilistic outcomes in switching mechanisms that select between alternative regulatory paths. The result can be a partitioning of the cell population into different phenotypes as the cells follow different paths. There are numerous unexplained examples of phenotypic variations in isogenic populations of both prokaryotic and eukaryotic cells that may be the result of these stochastic gene expression mechanisms.

  15. Gene Therapy for Pituitary Tumors

    PubMed Central

    Seilicovich, Adriana; Pisera, Daniel; Sciascia, Sandra A.; Candolfi, Marianela; Puntel, Mariana; Xiong, Weidong; Jaita, Gabriela; Castro, Maria G.

    2009-01-01

    Pituitary tumors are the most common primary intracranial neoplasms. Although most pituitary tumors are considered typically benign, others can cause severe and progressive disease. The principal aims of pituitary tumor treatment are the elimination or reduction of the tumor mass, normalization of hormone secretion and preservation of remaining pituitary function. In spite of major advances in the therapy of pituitary tumors, for some of the most difficult tumors, current therapies that include medical, surgical and radiotherapeutic methods are often unsatisfactory and there is a need to develop new treatment strategies. Gene therapy, which uses nucleic acids as drugs, has emerged as an attractive therapeutic option for the treatment of pituitary tumors that do not respond to classical treatment strategies if the patients become intolerant to the therapy. The development of animal models for pituitary tumors and hormone hypersecretion has proven to be critical for the implementation of novel treatment strategies and gene therapy approaches. Preclinical trials using several gene therapy approaches for the treatment of anterior pituitary diseases have been successfully implemented. Several issues need to be addressed before clinical implementation becomes a reality, including the development of more effective and safer viral vectors, uncovering novel therapeutic targets and development of targeted expression of therapeutic transgenes. With the development of efficient gene delivery vectors allowing long-term transgene expression with minimal toxicity, gene therapy will become one of the most promising approaches for treating pituitary adenomas. PMID:16457646

  16. Decationized polyplexes for gene delivery.

    PubMed

    Novo, Luís; Mastrobattista, Enrico; van Nostrum, Cornelus F; Lammers, Twan; Hennink, Wim E

    2015-04-01

    Gene therapy has received much attention in the field of drug delivery. Synthetic, nonviral gene delivery systems have gained increasing attention as vectors for gene therapy mainly due to a favorable immunogenicity profile and ease of manufacturing as compared to viral vectors. The great majority of these formulations are based on polycationic structures, due to their ability to interact with negatively charged nucleic acids to spontaneously form nanoparticles. In recent years, several polycationic systems have demonstrated high transfection in vitro. However, progress toward clinical applications has been slow, mainly because the cationic nature of these systems leads to intolerable toxicity levels, inappropriate biodistribution and unsatisfactory efficiency in vivo, particularly after systemic administration. Decationized polyplexes are a new class of gene delivery systems that have been developed as an alternative for conventional polycation-based systems. The major innovation introduced by decationized polyplexes is that these systems are based on neutral polymers, without any detrimental effect on the physicochemical stability or encapsulation ability, due to the transient presence of cationic charge and disulfide cross-links between the polymer chains by which the nucleic acids are physically entrapped in the particles. This editorial summarizes the most important features of decationized polyplexes and discusses potential implications for the development of new safe and efficient gene delivery systems.

  17. A hybrid approach of gene sets and single genes for the prediction of survival risks with gene expression data.

    PubMed

    Seok, Junhee; Davis, Ronald W; Xiao, Wenzhong

    2015-01-01

    Accumulated biological knowledge is often encoded as gene sets, collections of genes associated with similar biological functions or pathways. The use of gene sets in the analyses of high-throughput gene expression data has been intensively studied and applied in clinical research. However, the main interest remains in finding modules of biological knowledge, or corresponding gene sets, significantly associated with disease conditions. Risk prediction from censored survival times using gene sets hasn't been well studied. In this work, we propose a hybrid method that uses both single gene and gene set information together to predict patient survival risks from gene expression profiles. In the proposed method, gene sets provide context-level information that is poorly reflected by single genes. Complementarily, single genes help to supplement incomplete information of gene sets due to our imperfect biomedical knowledge. Through the tests over multiple data sets of cancer and trauma injury, the proposed method showed robust and improved performance compared with the conventional approaches with only single genes or gene sets solely. Additionally, we examined the prediction result in the trauma injury data, and showed that the modules of biological knowledge used in the prediction by the proposed method were highly interpretable in biology. A wide range of survival prediction problems in clinical genomics is expected to benefit from the use of biological knowledge.

  18. A Hybrid Approach of Gene Sets and Single Genes for the Prediction of Survival Risks with Gene Expression Data

    PubMed Central

    Seok, Junhee; Davis, Ronald W.; Xiao, Wenzhong

    2015-01-01

    Accumulated biological knowledge is often encoded as gene sets, collections of genes associated with similar biological functions or pathways. The use of gene sets in the analyses of high-throughput gene expression data has been intensively studied and applied in clinical research. However, the main interest remains in finding modules of biological knowledge, or corresponding gene sets, significantly associated with disease conditions. Risk prediction from censored survival times using gene sets hasn’t been well studied. In this work, we propose a hybrid method that uses both single gene and gene set information together to predict patient survival risks from gene expression profiles. In the proposed method, gene sets provide context-level information that is poorly reflected by single genes. Complementarily, single genes help to supplement incomplete information of gene sets due to our imperfect biomedical knowledge. Through the tests over multiple data sets of cancer and trauma injury, the proposed method showed robust and improved performance compared with the conventional approaches with only single genes or gene sets solely. Additionally, we examined the prediction result in the trauma injury data, and showed that the modules of biological knowledge used in the prediction by the proposed method were highly interpretable in biology. A wide range of survival prediction problems in clinical genomics is expected to benefit from the use of biological knowledge. PMID:25933378

  19. Analysis of human disease genes in the context of gene essentiality.

    PubMed

    Park, Donghyun; Park, Jungsun; Park, Seung Gu; Park, Taesung; Choi, Sun Shim

    2008-12-01

    The characteristics of human disease genes were investigated through a comparative analysis with mouse mutant phenotype data. Mouse orthologs with mutations that resulted in discernible phenotypes were separated from mutations with no phenotypic defect, listing 'phenotype' and 'no phenotype' genes. First, we showed that phenotype genes are more likely to be disease genes compared to no phenotype genes. Phenotype genes were further divided into 'embryonic lethal', 'postnatal lethal', and 'non-lethal phenotype' groups. Interestingly, embryonic lethal genes, the most essential genes in mouse, were less likely to be disease genes than postnatal lethal genes. These findings indicate that some extremely essential genes are less likely to be disease genes, although human disease genes tend to display characteristics of essential genes. We also showed that, in lethal groups, non-disease genes tend to evolve slower than disease genes indicating a strong purifying selection on non-disease genes in this group. In addition, phenotype and no phenotype groups showed differing types of disease mutations. Disease genes in the no phenotype group displayed a higher frequency of regulatory mutations while those in the phenotype group had more frequent coding mutations, indicating that the types of disease mutations vary depending on gene essentiality. Furthermore, missense disease mutations in no phenotype genes were found to be more radical amino acid substitutions than those in phenotype genes.

  20. Hox gene dysregulation in acute myeloid leukemia.

    PubMed

    De Braekeleer, Etienne; Douet-Guilbert, Nathalie; Basinko, Audrey; Le Bris, Marie-Josée; Morel, Frédéric; De Braekeleer, Marc

    2014-02-01

    In humans, class I homeobox genes (HOX genes) are distributed in four clusters. Upstream regulators include transcriptional activators and members of the CDX family of transcription factors. HOX genes encode proteins and need cofactor interactions, to increase their specificity and selectivity. HOX genes contribute to the organization and regulation of hematopoiesis by controlling the balance between proliferation and differentiation. Changes in HOX gene expression can be associated with chromosomal rearrangements generating fusion genes, such as those involving MLL and NUP98, or molecular defects, such as mutations in NPM1 and CEBPA for example. Several miRNAs are involved in the control of HOX gene expression and their expression correlates with HOX gene dysregulation. HOX genes dysregulation is a dominant mechanism of leukemic transformation. A better knowledge of their target genes and the mechanisms by which their dysregulated expression contributes to leukemogenesis could lead to the development of new drugs.