Camera processing with chromatic aberration.
Korneliussen, Jan Tore; Hirakawa, Keigo
2014-10-01
Since the refractive index of materials commonly used for lens depends on the wavelengths of light, practical camera optics fail to converge light to a single point on an image plane. Known as chromatic aberration, this phenomenon distorts image details by introducing magnification error, defocus blur, and color fringes. Though achromatic and apochromatic lens designs reduce chromatic aberration to a degree, they are complex and expensive and they do not offer a perfect correction. In this paper, we propose a new postcapture processing scheme designed to overcome these problems computationally. Specifically, the proposed solution is comprised of chromatic aberration-tolerant demosaicking algorithm and post-demosaicking chromatic aberration correction. Experiments with simulated and real sensor data verify that the chromatic aberration is effectively corrected.
Experimental validation of the Achromatic Telescopic Squeezing (ATS) scheme at the LHC
NASA Astrophysics Data System (ADS)
Fartoukh, S.; Bruce, R.; Carlier, F.; Coello De Portugal, J.; Garcia-Tabares, A.; Maclean, E.; Malina, L.; Mereghetti, A.; Mirarchi, D.; Persson, T.; Pojer, M.; Ponce, L.; Redaelli, S.; Salvachua, B.; Skowronski, P.; Solfaroli, M.; Tomas, R.; Valuch, D.; Wegscheider, A.; Wenninger, J.
2017-07-01
The Achromatic Telescopic Squeezing scheme offers new techniques to deliver unprecedentedly small beam spot size at the interaction points of the ATLAS and CMS experiments of the LHC, while perfectly controlling the chromatic properties of the corresponding optics (linear and non-linear chromaticities, off-momentum beta-beating, spurious dispersion induced by the crossing bumps). The first series of beam tests with ATS optics were achieved during the LHC Run I (2011/2012) for a first validation of the basics of the scheme at small intensity. In 2016, a new generation of more performing ATS optics was developed and more extensively tested in the machine, still with probe beams for optics measurement and correction at β* = 10 cm, but also with a few nominal bunches to establish first collisions at nominal β* (40 cm) and beyond (33 cm), and to analysis the robustness of these optics in terms of collimation and machine protection. The paper will highlight the most relevant and conclusive results which were obtained during this second series of ATS tests.
Dorrepaal, Stephen J; Markowitz, Samuel N
2013-06-01
To compare chromatic and achromatic potential visual acuity (PVA) in patients with bilateral low vision caused by age-related macular degeneration (AMD). Prospective, nonrandomized, observational case series. Fifty-five patients, representing a consecutive series of patients all presenting with bilateral AMD. Best-corrected visual acuity of each eye was measured using an Early Treatment in Diabetic Retinopathy Study (ETDRS) chart with appropriate near correction. Included were cases with visual acuity of 0.4 logMAR (20/50) or worse in both eyes. Achromatic and chromatic PVA were measured in each eye using white on black and red on yellow flooding E charts at 50 cm in controlled lighting conditions. One hundred and seven eyes from 55 patients were included in the analysis. Mean achromatic and chromatic PVA were 0.69 ± 0.26 and 0.65 ± 0.22 logMAR, respectively. Overall, patients had a significantly higher chromatic than achromatic PVA, with a median difference of 0.1 logMAR (p<0.05). Patients with ETDRS visual acuity worse than 0.9 logMAR also had a significantly higher chromatic than achromatic PVA, with a median difference of 0.1 logMAR (p<0.05). Patients with ETDRS visual acuity between 0.4 and 0.9 logMAR had a trend toward a higher chromatic than achromatic visual acuity that was not significant, with a median difference of 0.1 logMAR (p = 0.8539). Patients with low vision caused by AMD can discern smaller targets when a red on yellow colour scheme is used than when using achromatic white on black charts. Copyright © 2013 Canadian Ophthalmological Society. Published by Elsevier Inc. All rights reserved.
Matsuda, Atsushi; Schermelleh, Lothar; Hirano, Yasuhiro; Haraguchi, Tokuko; Hiraoka, Yasushi
2018-05-15
Correction of chromatic shift is necessary for precise registration of multicolor fluorescence images of biological specimens. New emerging technologies in fluorescence microscopy with increasing spatial resolution and penetration depth have prompted the need for more accurate methods to correct chromatic aberration. However, the amount of chromatic shift of the region of interest in biological samples often deviates from the theoretical prediction because of unknown dispersion in the biological samples. To measure and correct chromatic shift in biological samples, we developed a quadrisection phase correlation approach to computationally calculate translation, rotation, and magnification from reference images. Furthermore, to account for local chromatic shifts, images are split into smaller elements, for which the phase correlation between channels is measured individually and corrected accordingly. We implemented this method in an easy-to-use open-source software package, called Chromagnon, that is able to correct shifts with a 3D accuracy of approximately 15 nm. Applying this software, we quantified the level of uncertainty in chromatic shift correction, depending on the imaging modality used, and for different existing calibration methods, along with the proposed one. Finally, we provide guidelines to choose the optimal chromatic shift registration method for any given situation.
Design of beam optics for the future circular collider e + e - collider rings
Oide, Katsunobu; Aiba, M.; Aumon, S.; ...
2016-11-21
A beam optics scheme has been designed for the future circular collider- e +e - (FCC-ee). The main characteristics of the design are: beam energy 45 to 175 GeV, 100 km circumference with two interaction points (IPs) per ring, horizontal crossing angle of 30 mrad at the IP and the crab-waist scheme [P. Raimondi, D. Shatilov, and M. Zobov, arXiv:physics/0702033; P. Raimondi, M. Zobov, and D. Shatilov, in Proceedings of the 22nd Particle Accelerator Conference, PAC-2007, Albuquerque, NM (IEEE, New York, 2007), p. TUPAN037.] with local chromaticity correction. The crab-waist scheme is implemented within the local chromaticity correction system withoutmore » additional sextupoles, by reducing the strength of one of the two sextupoles for vertical chromatic correction at each side of the IP. So-called “tapering” of the magnets is applied, which scales all fields of the magnets according to the local beam energy to compensate for the effect of synchrotron radiation (SR) loss along the ring. An asymmetric layout near the interaction region reduces the critical energy of SR photons on the incoming side of the IP to values below 100 keV, while matching the geometry to the beam line of the FCC proton collider (FCC-hh) [A. Chancé et al., Proceedings of IPAC’16, 9–13 May 2016, Busan, Korea, TUPMW020 (2016).] as closely as possible. Sufficient transverse/longitudinal dynamic aperture (DA) has been obtained, including major dynamical effects, to assure an adequate beam lifetime in the presence of beamstrahlung and top-up injection. In particular, a momentum acceptance larger than ±2% has been obtained, which is better than the momentum acceptance of typical collider rings by about a factor of 2. The effects of the detector solenoids including their compensation elements are taken into account as well as synchrotron radiation in all magnets. The optics presented in this study is a step toward a full conceptual design for the collider. Finally, a number of issues have been identified for further study.« less
Design of beam optics for the future circular collider e + e - collider rings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oide, Katsunobu; Aiba, M.; Aumon, S.
A beam optics scheme has been designed for the future circular collider- e +e - (FCC-ee). The main characteristics of the design are: beam energy 45 to 175 GeV, 100 km circumference with two interaction points (IPs) per ring, horizontal crossing angle of 30 mrad at the IP and the crab-waist scheme [P. Raimondi, D. Shatilov, and M. Zobov, arXiv:physics/0702033; P. Raimondi, M. Zobov, and D. Shatilov, in Proceedings of the 22nd Particle Accelerator Conference, PAC-2007, Albuquerque, NM (IEEE, New York, 2007), p. TUPAN037.] with local chromaticity correction. The crab-waist scheme is implemented within the local chromaticity correction system withoutmore » additional sextupoles, by reducing the strength of one of the two sextupoles for vertical chromatic correction at each side of the IP. So-called “tapering” of the magnets is applied, which scales all fields of the magnets according to the local beam energy to compensate for the effect of synchrotron radiation (SR) loss along the ring. An asymmetric layout near the interaction region reduces the critical energy of SR photons on the incoming side of the IP to values below 100 keV, while matching the geometry to the beam line of the FCC proton collider (FCC-hh) [A. Chancé et al., Proceedings of IPAC’16, 9–13 May 2016, Busan, Korea, TUPMW020 (2016).] as closely as possible. Sufficient transverse/longitudinal dynamic aperture (DA) has been obtained, including major dynamical effects, to assure an adequate beam lifetime in the presence of beamstrahlung and top-up injection. In particular, a momentum acceptance larger than ±2% has been obtained, which is better than the momentum acceptance of typical collider rings by about a factor of 2. The effects of the detector solenoids including their compensation elements are taken into account as well as synchrotron radiation in all magnets. The optics presented in this study is a step toward a full conceptual design for the collider. Finally, a number of issues have been identified for further study.« less
Design of beam optics for the future circular collider e+e- collider rings
NASA Astrophysics Data System (ADS)
Oide, K.; Aiba, M.; Aumon, S.; Benedikt, M.; Blondel, A.; Bogomyagkov, A.; Boscolo, M.; Burkhardt, H.; Cai, Y.; Doblhammer, A.; Haerer, B.; Holzer, B.; Jowett, J. M.; Koop, I.; Koratzinos, M.; Levichev, E.; Medina, L.; Ohmi, K.; Papaphilippou, Y.; Piminov, P.; Shatilov, D.; Sinyatkin, S.; Sullivan, M.; Wenninger, J.; Wienands, U.; Zhou, D.; Zimmermann, F.
2016-11-01
A beam optics scheme has been designed for the future circular collider-e+e- (FCC-ee). The main characteristics of the design are: beam energy 45 to 175 GeV, 100 km circumference with two interaction points (IPs) per ring, horizontal crossing angle of 30 mrad at the IP and the crab-waist scheme [P. Raimondi, D. Shatilov, and M. Zobov, arXiv:physics/0702033; P. Raimondi, M. Zobov, and D. Shatilov, in Proceedings of the 22nd Particle Accelerator Conference, PAC-2007, Albuquerque, NM (IEEE, New York, 2007), p. TUPAN037.] with local chromaticity correction. The crab-waist scheme is implemented within the local chromaticity correction system without additional sextupoles, by reducing the strength of one of the two sextupoles for vertical chromatic correction at each side of the IP. So-called "tapering" of the magnets is applied, which scales all fields of the magnets according to the local beam energy to compensate for the effect of synchrotron radiation (SR) loss along the ring. An asymmetric layout near the interaction region reduces the critical energy of SR photons on the incoming side of the IP to values below 100 keV, while matching the geometry to the beam line of the FCC proton collider (FCC-hh) [A. Chancé et al., Proceedings of IPAC'16, 9-13 May 2016, Busan, Korea, TUPMW020 (2016).] as closely as possible. Sufficient transverse/longitudinal dynamic aperture (DA) has been obtained, including major dynamical effects, to assure an adequate beam lifetime in the presence of beamstrahlung and top-up injection. In particular, a momentum acceptance larger than ±2 % has been obtained, which is better than the momentum acceptance of typical collider rings by about a factor of 2. The effects of the detector solenoids including their compensation elements are taken into account as well as synchrotron radiation in all magnets. The optics presented in this paper is a step toward a full conceptual design for the collider. A number of issues have been identified for further study.
Bandwidth correction for LED chromaticity based on Levenberg-Marquardt algorithm
NASA Astrophysics Data System (ADS)
Huang, Chan; Jin, Shiqun; Xia, Guo
2017-10-01
Light emitting diode (LED) is widely employed in industrial applications and scientific researches. With a spectrometer, the chromaticity of LED can be measured. However, chromaticity shift will occur due to the broadening effects of the spectrometer. In this paper, an approach is put forward to bandwidth correction for LED chromaticity based on Levenberg-Marquardt algorithm. We compare chromaticity of simulated LED spectra by using the proposed method and differential operator method to bandwidth correction. The experimental results show that the proposed approach achieves an excellent performance in bandwidth correction which proves the effectiveness of the approach. The method has also been tested on true blue LED spectra.
Delays in using chromatic and luminance information to correct rapid reaches.
Kane, Adam; Wade, Alex; Ma-Wyatt, Anna
2011-09-07
People can use feedback to make online corrections to movements but only if there is sufficient time to integrate the new information and make the correction. A key variable in this process is therefore the speed at which the new information about the target location is coded. Conduction velocities for chromatic signals are lower than for achromatic signals so it may take longer to correct reaches to chromatic stimuli. In addition to this delay, the sensorimotor system may prefer achromatic information over the chromatic information as delayed information may be less valuable when movements are made under time pressure. A down-weighting of chromatic information may result in additional latencies for chromatically directed reaches. In our study, participants made online corrections to reaches to achromatic, (L-M)-cone, and S-cone stimuli. Our chromatic stimuli were carefully adjusted to minimize stimulation of achromatic pathways, and we equated stimuli both in terms of detection thresholds and also by their estimated neural responses. Similar stimuli were used throughout the subjective adjustments and final reaching experiment. Using this paradigm, we found that responses to achromatic stimuli were only slightly faster than responses to (L-M)-cone and S-cone stimuli. We conclude that the sensorimotor system treats chromatic and achromatic information similarly and that the delayed chromatic responses primarily reflect early conduction delays.
Harmening, Wolf M; Tiruveedhula, Pavan; Roorda, Austin; Sincich, Lawrence C
2012-09-01
A special challenge arises when pursuing multi-wavelength imaging of retinal tissue in vivo, because the eye's optics must be used as the main focusing elements, and they introduce significant chromatic dispersion. Here we present an image-based method to measure and correct for the eye's transverse chromatic aberrations rapidly, non-invasively, and with high precision. We validate the technique against hyperacute psychophysical performance and the standard chromatic human eye model. In vivo correction of chromatic dispersion will enable confocal multi-wavelength images of the living retina to be aligned, and allow targeted chromatic stimulation of the photoreceptor mosaic to be performed accurately with sub-cellular resolution.
Harmening, Wolf M.; Tiruveedhula, Pavan; Roorda, Austin; Sincich, Lawrence C.
2012-01-01
A special challenge arises when pursuing multi-wavelength imaging of retinal tissue in vivo, because the eye’s optics must be used as the main focusing elements, and they introduce significant chromatic dispersion. Here we present an image-based method to measure and correct for the eye’s transverse chromatic aberrations rapidly, non-invasively, and with high precision. We validate the technique against hyperacute psychophysical performance and the standard chromatic human eye model. In vivo correction of chromatic dispersion will enable confocal multi-wavelength images of the living retina to be aligned, and allow targeted chromatic stimulation of the photoreceptor mosaic to be performed accurately with sub-cellular resolution. PMID:23024901
Chromatic aberration correction: an enhancement to the calibration of low-cost digital dermoscopes.
Wighton, Paul; Lee, Tim K; Lui, Harvey; McLean, David; Atkins, M Stella
2011-08-01
We present a method for calibrating low-cost digital dermoscopes that corrects for color and inconsistent lighting and also corrects for chromatic aberration. Chromatic aberration is a form of radial distortion that often occurs in inexpensive digital dermoscopes and creates red and blue halo-like effects on edges. Being radial in nature, distortions due to chromatic aberration are not constant across the image, but rather vary in both magnitude and direction. As a result, distortions are not only visually distracting but could also mislead automated characterization techniques. Two low-cost dermoscopes, based on different consumer-grade cameras, were tested. Color is corrected by imaging a reference and applying singular value decomposition to determine the transformation required to ensure accurate color reproduction. Lighting is corrected by imaging a uniform surface and creating lighting correction maps. Chromatic aberration is corrected using a second-order radial distortion model. Our results for color and lighting calibration are consistent with previously published results, while distortions due to chromatic aberration can be reduced by 42-47% in the two systems considered. The disadvantages of inexpensive dermoscopy can be quickly substantially mitigated with a suitable calibration procedure. © 2011 John Wiley & Sons A/S.
Zhao, Huijie; Wang, Ziye; Jia, Guorui; Zhang, Ying; Xu, Zefu
2017-10-02
The acousto-optic tunable filter (AOTF) with wide wavelength range and high spectral resolution has long crystal and two transducers. A longer crystal length leads to a bigger chromatic focal shift and the double-transducer arrangement induces angular mutation in diffracted beam, which increase difficulty in longitudinal and lateral chromatic aberration correction respectively. In this study, the two chromatic aberrations are analyzed quantitatively based on an AOTF optical model and a novel catadioptric dual-path configuration is proposed to correct both the chromatic aberrations. The test results exhibit effectiveness of the optical configuration for this type of AOTF-based imaging spectrometer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bahk, Seung-Whan; Dorrer, Christophe; Bromage, Jake
Two-dimensional chromatic aberrations are characterized by a single-shot scheme based on a simultaneous measurement of chromatically diversified focal spots. The chromatic diversity is introduced by a 2-D grating with holographic defocus terms. The chromatic aberrations in the beam are either subtracted or added by the additional known chromatic aberrations in the grating, depending on the diffraction order. By analyzing the asymmetry in the size of diffracted focal spots, input beam chromatic aberrations can be deduced. Theoretical discussions and experimental results are also presented.
NASA Astrophysics Data System (ADS)
Wu, Fenxiang; Xu, Yi; Yu, Linpeng; Yang, Xiaojun; Li, Wenkai; Lu, Jun; Leng, Yuxin
2016-11-01
Pulse front distortion (PFD) is mainly induced by the chromatic aberration in femtosecond high-peak power laser systems, and it can temporally distort the pulse in the focus and therefore decrease the peak intensity. A novel measurement scheme is proposed to directly measure the PFD of ultra-intensity ultra-short laser pulses, which can work not only without any extra struggle for the desired reference pulse, but also largely reduce the size of the required optical elements in measurement. The measured PFD in an experimental 200TW/27fs laser system is in good agreement with the calculated result, which demonstrates the validity and feasibility of this method effectively. In addition, a simple compensation scheme based on the combination of concave lens and parabolic lens is also designed and proposed to correct the PFD. Based on the theoretical calculation, the PFD of above experimental laser system can almost be completely corrected by using this compensator with proper parameters.
Chromatic diversity: a new approach for characterizing spatiotemporal coupling of ultrashort pulses.
Bahk, Seung-Whan; Dorrer, Christophe; Bromage, Jake
2018-04-02
Two-dimensional chromatic aberrations are characterized by a single-shot scheme based on a simultaneous measurement of chromatically diversified focal spots. The chromatic diversity is introduced by a 2-D grating with holographic defocus terms. The chromatic aberrations in the beam are either subtracted or added by the additional known chromatic aberrations in the grating, depending on the diffraction order. By analyzing the asymmetry in the size of diffracted focal spots, input beam chromatic aberrations can be deduced. Theoretical discussions and experimental results are presented.
Chromatic diversity: a new approach for characterizing spatiotemporal coupling of ultrashort pulses
Bahk, Seung-Whan; Dorrer, Christophe; Bromage, Jake
2018-01-01
Two-dimensional chromatic aberrations are characterized by a single-shot scheme based on a simultaneous measurement of chromatically diversified focal spots. The chromatic diversity is introduced by a 2-D grating with holographic defocus terms. The chromatic aberrations in the beam are either subtracted or added by the additional known chromatic aberrations in the grating, depending on the diffraction order. By analyzing the asymmetry in the size of diffracted focal spots, input beam chromatic aberrations can be deduced. Theoretical discussions and experimental results are also presented.
Third-rank chromatic aberrations of electron lenses.
Liu, Zhixiong
2018-02-01
In this paper the third-rank chromatic aberration coefficients of round electron lenses are analytically derived and numerically calculated by Mathematica. Furthermore, the numerical results are cross-checked by the differential algebraic (DA) method, which verifies that all the formulas for the third-rank chromatic aberration coefficients are completely correct. It is hoped that this work would be helpful for further chromatic aberration correction in electron microscopy. Copyright © 2017 Elsevier B.V. All rights reserved.
Ohnuma, Kazuhiko; Kayanuma, Hiroyuki; Lawu, Tjundewo; Negishi, Kazuno; Yamaguchi, Takefumi; Noda, Toru
2011-01-01
Correcting spherical and chromatic aberrations in vitro in human eyes provides substantial visual acuity and contrast sensitivity improvements. We found the same improvement in the retinal images using a model eye with/without correction of longitudinal chromatic aberrations (LCAs) and spherical aberrations (SAs). The model eye included an intraocular lens (IOL) and artificial cornea with human ocular LCAs and average human SAs. The optotypes were illuminated using a D65 light source, and the images were obtained using two-dimensional luminance colorimeter. The contrast improvement from the SA correction was higher than the LCA correction, indicating the benefit of an aspheric achromatic IOL. PMID:21698008
Ocular Chromatic Aberrations and Their Effects on Polychromatic Retinal Image Quality
NASA Astrophysics Data System (ADS)
Zhang, Xiaoxiao
Previous studies of ocular chromatic aberrations have concentrated on chromatic difference of focus (CDF). Less is known about the chromatic difference of image position (CDP) in the peripheral retina and no experimental attempt has been made to measure the ocular chromatic difference of magnification (CDM). Consequently, theoretical modelling of human eyes is incomplete. The insufficient knowledge of ocular chromatic aberrations is partially responsible for two unsolved applied vision problems: (1) how to improve vision by correcting ocular chromatic aberration? (2) what is the impact of ocular chromatic aberration on the use of isoluminance gratings as a tool in spatial-color vision?. Using optical ray tracing methods, MTF analysis methods of image quality, and psychophysical methods, I have developed a more complete model of ocular chromatic aberrations and their effects on vision. The ocular CDM was determined psychophysically by measuring the tilt in the apparent frontal parallel plane (AFPP) induced by interocular difference in image wavelength. This experimental result was then used to verify a theoretical relationship between the ocular CDM, the ocular CDF and the entrance pupil of the eye. In the retinal image after correcting the ocular CDF with existing achromatizing methods, two forms of chromatic aberration (CDM and chromatic parallax) were examined. The CDM was predicted by theoretical ray tracing and measured with the same method used to determine ocular CDM. The chromatic parallax was predicted with a nodal ray model and measured with the two-color vernier alignment method. The influence of these two aberrations on polychromatic MTF were calculated. Using this improved model of ocular chromatic aberration, luminance artifacts in the images of isoluminance gratings were calculated. The predicted luminance artifacts were then compared with experimental data from previous investigators. The results show that: (1) A simple relationship exists between two major chromatic aberrations and the location of the pupil; (2) The ocular CDM is measurable and varies among individuals; (3) All existing methods to correct ocular chromatic aberration face another aberration, chromatic parallax, which is inherent in the methodology; (4) Ocular chromatic aberrations have the potential to contaminate psychophysical experimental results on human spatial-color vision.
Design of the large hadron electron collider interaction region
NASA Astrophysics Data System (ADS)
Cruz-Alaniz, E.; Newton, D.; Tomás, R.; Korostelev, M.
2015-11-01
The large hadron electron collider (LHeC) is a proposed upgrade of the Large Hadron Collider (LHC) within the high luminosity LHC (HL-LHC) project, to provide electron-nucleon collisions and explore a new regime of energy and luminosity for deep inelastic scattering. The design of an interaction region for any collider is always a challenging task given that the beams are brought into crossing with the smallest beam sizes in a region where there are tight detector constraints. In this case integrating the LHeC into the existing HL-LHC lattice, to allow simultaneous proton-proton and electron-proton collisions, increases the difficulty of the task. A nominal design was presented in the the LHeC conceptual design report in 2012 featuring an optical configuration that focuses one of the proton beams of the LHC to β*=10 cm in the LHeC interaction point to reach the desired luminosity of L =1033 cm-2 s-1 . This value is achieved with the aid of a new inner triplet of quadrupoles at a distance L*=10 m from the interaction point. However the chromatic beta beating was found intolerable regarding machine protection issues. An advanced chromatic correction scheme was required. This paper explores the feasibility of the extension of a novel optical technique called the achromatic telescopic squeezing scheme and the flexibility of the interaction region design, in order to find the optimal solution that would produce the highest luminosity while controlling the chromaticity, minimizing the synchrotron radiation power and maintaining the dynamic aperture required for stability.
Study on High Resolution Membrane-Based Diffractive Optical Imaging on Geostationary Orbit
NASA Astrophysics Data System (ADS)
Jiao, J.; Wang, B.; Wang, C.; Zhang, Y.; Jin, J.; Liu, Z.; Su, Y.; Ruan, N.
2017-05-01
Diffractive optical imaging technology provides a new way to realize high resolution earth observation on geostationary orbit. There are a lot of benefits to use the membrane-based diffractive optical element in ultra-large aperture optical imaging system, including loose tolerance, light weight, easy folding and unfolding, which make it easy to realize high resolution earth observation on geostationary orbit. The implementation of this technology also faces some challenges, including the configuration of the diffractive primary lens, the development of high diffraction efficiency membrane-based diffractive optical elements, and the correction of the chromatic aberration of the diffractive optical elements. Aiming at the configuration of the diffractive primary lens, the "6+1" petal-type unfold scheme is proposed, which consider the compression ratio, the blocking rate and the development complexity. For high diffraction efficiency membrane-based diffractive optical element, a self-collimating method is proposed. The diffraction efficiency is more than 90 % of the theoretical value. For the chromatic aberration correction problem, an optimization method based on schupmann is proposed to make the imaging spectral bandwidth in visible light band reach 100 nm. The above conclusions have reference significance for the development of ultra-large aperture diffractive optical imaging system.
NASA Astrophysics Data System (ADS)
Ramsey, J. L.; Walsh, K. F.; Smith, M.; Deegan, J.
2016-05-01
With the move to smaller pixel sizes in the longwave IR region there has been a push for shorter focal length lenses that are smaller, cheaper and lighter and that resolve lower spatial frequencies. As a result lenses must have better correction for both chromatic and monochromatic aberrations. This leads to the increased use of aspheres and diffractive optical elements (kinoforms). With recent developments in the molding of chalcogenide materials these aspheres and kinoforms are more cost effective to manufacture. Without kinoforms the axial color can be on the order of 15 μm which degrades the performance of the lens at the Nyquist frequency. The kinoforms are now on smaller elements and are correcting chromatic aberration which is on the order of the design wavelength. This leads to kinoform structures that do not require large phase changes and therefore have 1.5 to just over 2 zones. The question becomes how many zones are required to correct small amounts of chromatic aberration in the system and are they functioning as predicted by the lens design software? We investigate both the design performance and the as-built performance of two designs that incorporate kinoforms for the correction of axial chromatic aberration.
[Lateral chromatic aberrations correction for AOTF imaging spectrometer based on doublet prism].
Zhao, Hui-Jie; Zhou, Peng-Wei; Zhang, Ying; Li, Chong-Chong
2013-10-01
An user defined surface function method was proposed to model the acousto-optic interaction of AOTF based on wave-vector match principle. Assessment experiment result shows that this model can achieve accurate ray trace of AOTF diffracted beam. In addition, AOTF imaging spectrometer presents large residual lateral color when traditional chromatic aberrations correcting method is adopted. In order to reduce lateral chromatic aberrations, a method based on doublet prism is proposed. The optical material and angle of the prism are optimized automatically using global optimization with the help of user defined AOTF surface. Simulation result shows that the proposed method provides AOTF imaging spectrometer with great conveniences, which reduces the lateral chromatic aberration to less than 0.000 3 degrees and improves by one order of magnitude, with spectral image shift effectively corrected.
Improvements in Ross type astrometric objectives
NASA Technical Reports Server (NTRS)
Baker, J.
1971-01-01
It is shown that aspheric deformations of the first and fourth elements of the four element Ross objective can be introduced to permit one to obtain improved color corrections for astrometric purposes. The usual monochromatic aberrations are as well corrected as for the standard Ross lens. In addition, one can eliminate or reduce additional aberrations, such as secondary spectrum, chromatic spherical aberration, chromatic coma and chromatic distortion. The resulting objectives are suitable for use as intermediate and long focus astrometric objectives covering large angle fields.
Chromatic effect in a novel THz generation scheme
NASA Astrophysics Data System (ADS)
Li, Bin; Zhang, Wenyan; Liu, Xiaoqing; Deng, Haixiao; Lan, Taihe; Liu, Bo; Liu, Jia; Wang, Xingtao; Zeng, Zhinan; Zhang, Lijian
2017-11-01
Deriving single or few cycle terahertz (THz) pulse by an intense femtosecond laser through cascaded optical rectification is a crucial technique in cutting-edge time-resolved spectroscopy to characterize micro-scale structures and ultrafast dynamics. Due to the broadband nature of the ultrafast driving laser, the chromatic effect limits the THz conversion efficiency in optical rectification crystals, especially for those implementing the pulse-front tilt scheme, e.g. lithium niobate (LN) crystal, has been prevalently used in the past decade. In this research we developed a brand new type of LN crystal utilizing Brewster coupling, and conducted systematically experimental and simulative investigation for the chromatic effect and multi-dimensionally entangled parameters in THz generation, predicting that an extreme conversion efficiency of ˜10% would be potentially achievable at the THz absorption coefficient of ˜0.5 cm-1. Moreover, we first discovered that the chirp of the driving laser plays a decisive role in the pulse-front tilt scheme, and the THz generation efficiency could be enhanced tremendously by applying an appropriate chirp.
Colour image compression by grey to colour conversion
NASA Astrophysics Data System (ADS)
Drew, Mark S.; Finlayson, Graham D.; Jindal, Abhilash
2011-03-01
Instead of de-correlating image luminance from chrominance, some use has been made of using the correlation between the luminance component of an image and its chromatic components, or the correlation between colour components, for colour image compression. In one approach, the Green colour channel was taken as a base, and the other colour channels or their DCT subbands were approximated as polynomial functions of the base inside image windows. This paper points out that we can do better if we introduce an addressing scheme into the image description such that similar colours are grouped together spatially. With a Luminance component base, we test several colour spaces and rearrangement schemes, including segmentation. and settle on a log-geometric-mean colour space. Along with PSNR versus bits-per-pixel, we found that spatially-keyed s-CIELAB colour error better identifies problem regions. Instead of segmentation, we found that rearranging on sorted chromatic components has almost equal performance and better compression. Here, we sort on each of the chromatic components and separately encode windows of each. The result consists of the original greyscale plane plus the polynomial coefficients of windows of rearranged chromatic values, which are then quantized. The simplicity of the method produces a fast and simple scheme for colour image and video compression, with excellent results.
NASA Astrophysics Data System (ADS)
Abbasi, Madiha; Imran Baig, Mirza; Shafique Shaikh, Muhammad
2013-12-01
At present existence OTDR based techniques have become a standard practice for measuring chromatic dispersion distribution along an optical fiber transmission link. A constructive measurement technique has been offered in this paper, in which a four wavelength bidirectional optical time domain reflectometer (OTDR) has been used to compute the chromatic dispersion allocation beside an optical fiber transmission system. To improve the correction factor a novel formulation has been developed, which leads to an enhanced and defined measurement. The investigational outcomes obtained are in good harmony.
Impact of Atmospheric Chromatic Effects on Weak Lensing Measurements
NASA Astrophysics Data System (ADS)
Meyers, Joshua E.; Burchat, Patricia R.
2015-07-01
Current and future imaging surveys will measure cosmic shear with statistical precision that demands a deeper understanding of potential systematic biases in galaxy shape measurements than has been achieved to date. We use analytic and computational techniques to study the impact on shape measurements of two atmospheric chromatic effects for ground-based surveys such as the Dark Energy Survey and the Large Synoptic Survey Telescope (LSST): (1) atmospheric differential chromatic refraction and (2) wavelength dependence of seeing. We investigate the effects of using the point-spread function (PSF) measured with stars to determine the shapes of galaxies that have different spectral energy distributions than the stars. We find that both chromatic effects lead to significant biases in galaxy shape measurements for current and future surveys, if not corrected. Using simulated galaxy images, we find a form of chromatic “model bias” that arises when fitting a galaxy image with a model that has been convolved with a stellar, instead of galactic, PSF. We show that both forms of atmospheric chromatic biases can be predicted (and corrected) with minimal model bias by applying an ordered set of perturbative PSF-level corrections based on machine-learning techniques applied to six-band photometry. Catalog-level corrections do not address the model bias. We conclude that achieving the ultimate precision for weak lensing from current and future ground-based imaging surveys requires a detailed understanding of the wavelength dependence of the PSF from the atmosphere, and from other sources such as optics and sensors. The source code for this analysis is available at https://github.com/DarkEnergyScienceCollaboration/chroma.
Traverse Focusing of Intense Charged Particle Beams with Chromatic Effects for Heavy Ion Fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
James M. Mitrani, Igor D. Kaganovich, Ronald C. Davidson
A fi nal focusing scheme designed to minimize chromatic effects is discussed. The Neutralized Drift Compression Experiment-II (NDCX-II) will apply a velocity tilt for longitudinal bunch compression, and a fi nal focusing solenoid (FFS) for transverse bunch compression. In the beam frame, neutralized drift compression causes a suffi ciently large spread in axial momentum, pz , resulting in chromatic effects to the fi nal focal spot during transverse bunch compression. Placing a weaker solenoid upstream of a stronger fi nal focusing solenoid (FFS) mitigates chromatic effects and improves transverse focusing by a factor of approximately 2-4 for appropriate NDCX-II parameters.
Dalaudier, F; Kan, V; Gurvich, A S
2001-02-20
We describe refractive and chromatic effects, both regular and random, that occur during star occultations by the Earth's atmosphere. The scintillation that results from random density fluctuations, as well as the consequences of regular chromatic refraction, is qualitatively described. The resultant chromatic scintillation will produce random features on the Global Ozone Monitoring by Occultation of Stars (GOMOS) spectrometer, with an amplitude comparable with that of some of the real absorbing features that result from atmospheric constituents. A correction method that is based on the use of fast photometer signals is described, and its efficiency is discussed. We give a qualitative (although accurate) description of the phenomena, including numerical values when needed. Geometrical optics and the phase-screen approximation are used to keep the description simple.
Laser Cooling for Heavy-Ion Fusion (HIF)
NASA Astrophysics Data System (ADS)
Ho, D. D.-M.; Brandon, S.; Lee, Y.
1997-05-01
A critical requirement for HIF is the ability to focus space-charge dominated beams onto a millimeter-size spot. However, chromatic aberration can result in a substantial fraction of the beam ions falling outside the spot radius. Because of the space-charge force, correcting the chromatic aberration using sextupoles is impractical. Success in laser cooling of low-current ion beams in storage rings leads us to explore the application of laser cooling to HIF. Basic scheme: After the beams have been accelerated to the desired energy by the recirculating induction linac, we let the beams coast around at constant energy. For efficient interaction between the laser and the beam ions, we use Ba+ beams. We use two lasers to pump the transitions in the Ba+ for generating the laser force FL. There is also an auxiliary force Fa, which is in the opposition direction of FL, provided by the induction cores. The momentum spread along the beam can be compressed by FL and Fa. We will present preliminary PIC simulations using the PIC code CONDOR. Potential difficulties caused by velocity space instabilities will be discussed.
Linear optics measurements and corrections using an AC dipole in RHIC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, G.; Bai, M.; Yang, L.
2010-05-23
We report recent experimental results on linear optics measurements and corrections using ac dipole. In RHIC 2009 run, the concept of the SVD correction algorithm is tested at injection energy for both identifying the artificial gradient errors and correcting it using the trim quadrupoles. The measured phase beatings were reduced by 30% and 40% respectively for two dedicated experiments. In RHIC 2010 run, ac dipole is used to measure {beta}* and chromatic {beta} function. For the 0.65m {beta}* lattice, we observed a factor of 3 discrepancy between model and measured chromatic {beta} function in the yellow ring.
Chromatic Aberration Correction for Atomic Resolution TEM Imaging from 20 to 80 kV.
Linck, Martin; Hartel, Peter; Uhlemann, Stephan; Kahl, Frank; Müller, Heiko; Zach, Joachim; Haider, Max; Niestadt, Marcel; Bischoff, Maarten; Biskupek, Johannes; Lee, Zhongbo; Lehnert, Tibor; Börrnert, Felix; Rose, Harald; Kaiser, Ute
2016-08-12
Atomic resolution in transmission electron microscopy of thin and light-atom materials requires a rigorous reduction of the beam energy to reduce knockon damage. However, at the same time, the chromatic aberration deteriorates the resolution of the TEM image dramatically. Within the framework of the SALVE project, we introduce a newly developed C_{c}/C_{s} corrector that is capable of correcting both the chromatic and the spherical aberration in the range of accelerating voltages from 20 to 80 kV. The corrector allows correcting axial aberrations up to fifth order as well as the dominating off-axial aberrations. Over the entire voltage range, optimum phase-contrast imaging conditions for weak signals from light atoms can be adjusted for an optical aperture of at least 55 mrad. The information transfer within this aperture is no longer limited by chromatic aberrations. We demonstrate the performance of the microscope using the examples of 30 kV phase-contrast TEM images of graphene and molybdenum disulfide, showing unprecedented contrast and resolution that matches image calculations.
Mitigating chromatic effects for the transverse focusing of intense charged particle beams
NASA Astrophysics Data System (ADS)
Mitrani, James; Kaganovich, Igor; Davidson, Ronald
2013-09-01
A final focusing scheme designed to minimize chromatic effects is discussed. Solenoids are often used for transverse focusing in accelerator systems that require a charged particle beam with a small focal spot and/or large energy density A sufficiently large spread in axial momentum will reduce the effectiveness of transverse focusing, and result in chromatic effects on the final focal spot. Placing a weaker solenoid upstream of a stronger final focusing solenoid (FFS) mitigates chromatic effects on transverse beam focusing. J.M. Mitrani et al., Nucl. Inst. Meth. Phys. Res. A (2013) http://dx.doi.org/10.1016/j.nima.2013.05.09 This work was supported by DOE contract DE-AC02-09CH11466.
Dallaire, Xavier; Thibault, Simon
2017-04-01
Plenoptic imaging has been used in the past decade mainly for 3D reconstruction or digital refocusing. It was also shown that this technology has potential for correcting monochromatic aberrations in a standard optical system. In this paper, we present an algorithm for reconstructing images using a projection technique while correcting defects present in it that can apply to chromatic aberrations and wide-angle optical systems. We show that the impact of noise on the reconstruction procedure is minimal. Trade-offs between the sampling of the optical system needed for characterization and image quality are presented. Examples are shown for aberrations in a classic optical system and for chromatic aberrations. The technique is also applied to a wide-angle full field of view of 140° (FFOV 140°) optical system. This technique could be used in order to further simplify or minimize optical systems.
Hincapie, Diego; Velasquez, Daniel; Garcia-Sucerquia, Jorge
2017-12-15
In this Letter, we present a method for chromatic compensation in numerical reconstruction of digitally recorded holograms based on Fresnel-Bluestein propagation. The proposed technique is applied to correct the chromatic aberration that arises in the reconstruction of RGB holograms of both millimeter- and micrometer-sized objects. The results show the feasibility of this strategy to remove the wavelength dependence of the size of the numerically propagated wavefields.
Wise, Sandra S.; Holmes, Amie L.; Qin, Qin; Xie, Hong; Katsifis, Spiros P.; Thompson, W. Douglas; Wise, John Pierce
2010-01-01
Hexavalent chromium (Cr(VI)) compounds are well-established human lung carcinogens. Solubility plays an important role in their carcinogenicity with the particulate Cr(VI) compounds being the most carcinogenic. Epidemiology and animal studies suggest that zinc chromate is the most potent particulate Cr(VI) compound, however, there are few comparative data to support these observations. The purpose of this study was to compare the genotoxicity of zinc chromate with two other particulate Cr(VI) compounds, barium chromate and lead chromate, and one soluble Cr(VI) compound, sodium chromate. The clastogenic effects of barium chromate and zinc chromate were similar but lead chromate induced significantly less damage. The levels of DNA damage measured by gamma-H2A.X foci formation were similar for the three particulate chromium compounds. Corrected for chromium uptake differences, we found that zinc chromate and barium chromate were the most cytotoxic and lead chromate and sodium chromate were less cytotoxic. Zinc chromate was more clastogenic than all other chromium compounds and lead chromate was the least clastogenic. There was no significant difference between any of the compounds for the induction of DNA double strand breaks. All together, these data suggest that the difference in the carcinogenic potency of zinc chromate over the other chromium compounds is not due solely to a difference in chromium ion uptake and the zinc cation may in fact have an important role in its carcinogenicity. PMID:20000473
Experimental demonstration of PAM-DWMT for passive optical network
NASA Astrophysics Data System (ADS)
Lin, Bangjiang; Zhang, Kaiwei; Tang, Xuan; Ghassemlooy, Zabih; Lin, Chun; Zhou, Zhenlei
2018-07-01
We experimentally demonstrate a discrete wavelet multitone (DWMT) modulation scheme based on pulse amplitude modulation (PAM) for next generation passive optical network (PON), which offers high tolerance against chromatic dispersion, high spectral efficiency, low peak to average power ratio (PAPR) and low side lobes. The experimental results show the chromatic dispersion induced power penalties are negligible after 20km fiber transmission. Compared with orthogonal frequency division multiplexing (OFDM), DWMT offers a better receiver sensitivity.
Analytical approach to chromatic correction in the final focus system of circular colliders
Cai, Yunhai
2016-11-28
Here, a conventional final focus system in particle accelerators is systematically analyzed. We find simple relations between the parameters of two focus modules in the final telescope. Using the relations, we derive the chromatic Courant-Snyder parameters for the telescope. The parameters are scaled approximately according to (L*/βmore » $$*\\atop{y}$$)δ, where L* is the distance from the interaction point to the first quadrupole, β$$*\\atop{y}$$ the vertical beta function at the interaction point, and δ the relative momentum deviation. Most importantly, we show how to compensate its chromaticity order by order in δ by a traditional correction module flanked by an asymmetric pair of harmonic multipoles. The method enables a circular Higgs collider with 2% momentum aperture and illuminates a path forward to 4% in the future.« less
Measuring chromatic aberrations in imaging systems using plasmonic nanoparticles.
Gennaro, Sylvain D; Roschuk, Tyler R; Maier, Stefan A; Oulton, Rupert F
2016-04-01
We demonstrate a method to measure chromatic aberrations of microscope objectives with metallic nanoparticles using white light. Extinction spectra are recorded while scanning a single nanoparticle through a lens's focal plane. We show a direct correlation between the focal wavelength and the longitudinal chromatic focal shift through our analysis of the variations between the scanned extinction spectra at each scan position and the peak extinction over the entire scan. The method has been tested on achromat and apochromat objectives using aluminum disks varying in size from 260-520 nm. Our method is straightforward, robust, low cost, and broadband with a sensitivity suitable for assessing longitudinal chromatic aberrations in high-numerical-aperture apochromatic corrected lenses.
Error Correction for the JLEIC Ion Collider Ring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Guohui; Morozov, Vasiliy; Lin, Fanglei
2016-05-01
The sensitivity to misalignment, magnet strength error, and BPM noise is investigated in order to specify design tolerances for the ion collider ring of the Jefferson Lab Electron Ion Collider (JLEIC) project. Those errors, including horizontal, vertical, longitudinal displacement, roll error in transverse plane, strength error of main magnets (dipole, quadrupole, and sextupole), BPM noise, and strength jitter of correctors, cause closed orbit distortion, tune change, beta-beat, coupling, chromaticity problem, etc. These problems generally reduce the dynamic aperture at the Interaction Point (IP). According to real commissioning experiences in other machines, closed orbit correction, tune matching, beta-beat correction, decoupling, andmore » chromaticity correction have been done in the study. Finally, we find that the dynamic aperture at the IP is restored. This paper describes that work.« less
Direct design of achromatic lens for Lambertian sources in collimating illumination
NASA Astrophysics Data System (ADS)
Yin, Peng; Xu, Xiping; Jiang, Zhaoguo; Wang, Hongshu
2017-10-01
Illumination design used to redistribute the spatial energy distribution of light source is a key technique in lighting applications. However, there is still no effective illumination design method for the removing of the chromatic dispersion. What we present here is an achromatic lens design to enhance the efficiency and uniform illumination of white light-emitting diode (LED) with diffractive optical element (DOE). We employ the chromatic aberration value (deg) to measure the degree of chromatic dispersion in illumination systems. Monte Carlo ray tracing simulation results indicate that the chromatic dispersion of the modified achromatic collimator significantly decreases from 0.5 to 0.1 with LED chip size of 1.0mm×1.0mm and simulation efficiency of 90.73%, compared with the traditional collimator. Moreover, with different corrected wavelengths we compared different chromatic aberration values that followed with the changing pupil percent. The achromatic collimator provided an effective way to achieve white LED with low chromatic dispersion at high efficiency and uniform illumination.
Chromatic correction for a VIS-SWIR zoom lens using optical glasses
NASA Astrophysics Data System (ADS)
Zhao, Yang; Williams, Daniel J. L.; McCarthy, Peter; Visconti, Anthony J.; Bentley, Julie L.; Moore, Duncan T.
2015-09-01
With the advancement in sensors, hyperspectral imaging in short wave infrared (SWIR 0.9 μm to 1.7 μm) now has wide applications, including night vision, haze-penetrating imaging, etc. Most conventional optical glasses can be material candidates for designing in the SWIR as they transmit up to 2.2 μm. However, since SWIR is in the middle of the glasses' major absorption wavebands in UV and IR, the flint glasses in SWIR are less dispersive than in the visible spectrum. As a result, the glass map in the SWIR is highly compressed, with crowns and flints all clustering together. Thus correcting for chromatic aberration is more challenging in the SWIR, since the Abbé number ratio of the same glass combination is reduced. Conventionally, fluorides, such as CaF2 and BaF2, are widely used in designing SWIR system due to their unique dispersion properties, even though they are notorious for poor manufacturability or even high toxicity. For lens elements in a zoom system, the ray bundle samples different sections of the each lens aperture as the lens zooms. This creates extra uncertainty in correcting chromatic aberrations. This paper focuses on using only commercially available optical glasses to color-correct a 3X dual-band zoom lens system in the VIS-SWIR. The design tools and techniques are detailed in terms of material selections to minimize the chromatic aberrations in such a large spectrum band and all zoom positions. Examples are discussed for designs with different aperture stop locations, which considerably affect the material choices.
Design of general apochromatic drift-quadrupole beam lines
NASA Astrophysics Data System (ADS)
Lindstrøm, C. A.; Adli, E.
2016-07-01
Chromatic errors are normally corrected using sextupoles in regions of large dispersion. In low emittance linear accelerators, use of sextupoles can be challenging. Apochromatic focusing is a lesser-known alternative approach, whereby chromatic errors of Twiss parameters are corrected without the use of sextupoles, and has consequently been subject to renewed interest in advanced linear accelerator research. Proof of principle designs were first established by Montague and Ruggiero and developed more recently by Balandin et al. We describe a general method for designing drift-quadrupole beam lines of arbitrary order in apochromatic correction, including analytic expressions for emittance growth and other merit functions. Worked examples are shown for plasma wakefield accelerator staging optics and for a simple final focus system.
Chromatic confocal microscopy for multi-depth imaging of epithelial tissue
Olsovsky, Cory; Shelton, Ryan; Carrasco-Zevallos, Oscar; Applegate, Brian E.; Maitland, Kristen C.
2013-01-01
We present a novel chromatic confocal microscope capable of volumetric reflectance imaging of microstructure in non-transparent tissue. Our design takes advantage of the chromatic aberration of aspheric lenses that are otherwise well corrected. Strong chromatic aberration, generated by multiple aspheres, longitudinally disperses supercontinuum light onto the sample. The backscattered light detected with a spectrometer is therefore wavelength encoded and each spectrum corresponds to a line image. This approach obviates the need for traditional axial mechanical scanning techniques that are difficult to implement for endoscopy and susceptible to motion artifact. A wavelength range of 590-775 nm yielded a >150 µm imaging depth with ~3 µm axial resolution. The system was further demonstrated by capturing volumetric images of buccal mucosa. We believe these represent the first microstructural images in non-transparent biological tissue using chromatic confocal microscopy that exhibit long imaging depth while maintaining acceptable resolution for resolving cell morphology. Miniaturization of this optical system could bring enhanced speed and accuracy to endomicroscopic in vivo volumetric imaging of epithelial tissue. PMID:23667789
A color management system for multi-colored LED lighting
NASA Astrophysics Data System (ADS)
Chakrabarti, Maumita; Thorseth, Anders; Jepsen, Jørgen; Corell, Dennis D.; Dam-Hansen, Carsten
2015-09-01
A new color control system is described and implemented for a five-color LED light engine, covering a wide white gamut. The system combines a new way of using pre-calibrated lookup tables and a rule-based optimization of chromaticity distance from the Planckian locus with a calibrated color sensor. The color sensor monitors the chromaticity of the mixed light providing the correction factor for the current driver by using the generated lookup table. The long term stability and accuracy of the system will be experimentally investigated with target tolerance within a circle radius of 0.0013 in the uniform chromaticity diagram (CIE1976).
Applied optics. Multiwavelength achromatic metasurfaces by dispersive phase compensation.
Aieta, Francesco; Kats, Mikhail A; Genevet, Patrice; Capasso, Federico
2015-03-20
The replacement of bulk refractive optical elements with diffractive planar components enables the miniaturization of optical systems. However, diffractive optics suffers from large chromatic aberrations due to the dispersion of the phase accumulated by light during propagation. We show that this limitation can be overcome with an engineered wavelength-dependent phase shift imparted by a metasurface, and we demonstrate a design that deflects three wavelengths by the same angle. A planar lens without chromatic aberrations at three wavelengths is also presented. Our designs are based on low-loss dielectric resonators, which introduce a dense spectrum of optical modes to enable dispersive phase compensation. The suppression of chromatic aberrations in metasurface-based planar photonics will find applications in lightweight collimators for displays, as well as chromatically corrected imaging systems. Copyright © 2015, American Association for the Advancement of Science.
Simultaneous chromatic dispersion and PMD compensation by using coded-OFDM and girth-10 LDPC codes.
Djordjevic, Ivan B; Xu, Lei; Wang, Ting
2008-07-07
Low-density parity-check (LDPC)-coded orthogonal frequency division multiplexing (OFDM) is studied as an efficient coded modulation scheme suitable for simultaneous chromatic dispersion and polarization mode dispersion (PMD) compensation. We show that, for aggregate rate of 10 Gb/s, accumulated dispersion over 6500 km of SMF and differential group delay of 100 ps can be simultaneously compensated with penalty within 1.5 dB (with respect to the back-to-back configuration) when training sequence based channel estimation and girth-10 LDPC codes of rate 0.8 are employed.
Chromatic aberration and the roles of double-opponent and color-luminance neurons in color vision.
Vladusich, Tony
2007-03-01
How does the visual cortex encode color? I summarize a theory in which cortical double-opponent color neurons perform a role in color constancy and a complementary set of color-luminance neurons function to selectively correct for color fringes induced by chromatic aberration in the eye. The theory may help to resolve an ongoing debate concerning the functional properties of cortical receptive fields involved in color coding.
Color constancy by characterization of illumination chromaticity
NASA Astrophysics Data System (ADS)
Nikkanen, Jarno T.
2011-05-01
Computational color constancy algorithms play a key role in achieving desired color reproduction in digital cameras. Failure to estimate illumination chromaticity correctly will result in invalid overall colour cast in the image that will be easily detected by human observers. A new algorithm is presented for computational color constancy. Low computational complexity and low memory requirement make the algorithm suitable for resource-limited camera devices, such as consumer digital cameras and camera phones. Operation of the algorithm relies on characterization of the range of possible illumination chromaticities in terms of camera sensor response. The fact that only illumination chromaticity is characterized instead of the full color gamut, for example, increases robustness against variations in sensor characteristics and against failure of diagonal model of illumination change. Multiple databases are used in order to demonstrate the good performance of the algorithm in comparison to the state-of-the-art color constancy algorithms.
NASA Astrophysics Data System (ADS)
Simone, Gabriele; Cordone, Roberto; Serapioni, Raul Paolo; Lecca, Michela
2017-05-01
Retinex theory estimates the human color sensation at any observed point by correcting its color based on the spatial arrangement of the colors in proximate regions. We revise two recent path-based, edge-aware Retinex implementations: Termite Retinex (TR) and Energy-driven Termite Retinex (ETR). As the original Retinex implementation, TR and ETR scan the neighborhood of any image pixel by paths and rescale their chromatic intensities by intensity levels computed by reworking the colors of the pixels on the paths. Our interest in TR and ETR is due to their unique, content-based scanning scheme, which uses the image edges to define the paths and exploits a swarm intelligence model for guiding the spatial exploration of the image. The exploration scheme of ETR has been showed to be particularly effective: its paths are local minima of an energy functional, designed to favor the sampling of image pixels highly relevant to color sensation. Nevertheless, since its computational complexity makes ETR poorly practicable, here we present a light version of it, named Light Energy-driven TR, and obtained from ETR by implementing a modified, optimized minimization procedure and by exploiting parallel computing.
Yen, Chih-Ta; Chen, Wen-Bin
2016-01-01
Chromatic dispersion from optical fiber is the most important problem that produces temporal skews and destroys the rectangular structure of code patterns in the spectra-amplitude-coding-based optical code-division multiple-access (SAC-OCDMA) system. Thus, the balance detection scheme does not work perfectly to cancel multiple access interference (MAI) and the system performance will be degraded. Orthogonal frequency-division multiplexing (OFDM) is the fastest developing technology in the academic and industrial fields of wireless transmission. In this study, the radio-over-fiber system is realized by integrating OFDM and OCDMA via polarization multiplexing scheme. The electronic dispersion compensation (EDC) equalizer element of OFDM integrated with the dispersion compensation fiber (DCF) is used in the proposed radio-over-fiber (RoF) system, which can efficiently suppress the chromatic dispersion influence in long-haul transmitted distance. A set of length differences for 10 km-long single-mode fiber (SMF) and 4 km-long DCF is to verify the compensation scheme by relative equalizer algorithms and constellation diagrams. In the simulation result, the proposed dispersion mechanism successfully compensates the dispersion from SMF and the system performance with dispersion equalizer is highly improved. PMID:27618042
NASA Astrophysics Data System (ADS)
He, Jing; Dai, Min; Chen, Qinghui; Deng, Rui; Xiang, Changqing; Chen, Lin
2017-07-01
In this paper, an effective bit-loading combined with adaptive LDPC code rate algorithm is proposed and investigated in software reconfigurable multiband UWB over fiber system. To compensate the power fading and chromatic dispersion for the high frequency of multiband OFDM UWB signal transmission over standard single mode fiber (SSMF), a Mach-Zehnder modulator (MZM) with negative chirp parameter is utilized. In addition, the negative power penalty of -1 dB for 128 QAM multiband OFDM UWB signal are measured at the hard-decision forward error correction (HD-FEC) limitation of 3.8 × 10-3 after 50 km SSMF transmission. The experimental results show that, compared to the fixed coding scheme with the code rate of 75%, the signal-to-noise (SNR) is improved by 2.79 dB for 128 QAM multiband OFDM UWB system after 100 km SSMF transmission using ALCR algorithm. Moreover, by employing bit-loading combined with ALCR algorithm, the bit error rate (BER) performance of system can be further promoted effectively. The simulation results present that, at the HD-FEC limitation, the value of Q factor is improved by 3.93 dB at the SNR of 19.5 dB over 100 km SSMF transmission, compared to the fixed modulation with uncoded scheme at the same spectrum efficiency (SE).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, T. S.
Meeting the science goals for many current and future ground-based optical large-area sky surveys requires that the calibrated broadband photometry is stable in time and uniform over the sky to 1% precision or better. Past surveys have achieved photometric precision of 1-2% by calibrating the survey's stellar photometry with repeated measurements of a large number of stars observed in multiple epochs. The calibration techniques employed by these surveys only consider the relative frame-by-frame photometric zeropoint offset and the focal plane position-dependent illumination corrections, which are independent of the source color. However, variations in the wavelength dependence of the atmospheric transmissionmore » and the instrumental throughput induce source color-dependent systematic errors. These systematic errors must also be considered to achieve the most precise photometric measurements. In this paper, we examine such systematic chromatic errors using photometry from the Dark Energy Survey (DES) as an example. We define a natural magnitude system for DES and calculate the systematic errors on stellar magnitudes, when the atmospheric transmission and instrumental throughput deviate from the natural system. We conclude that the systematic chromatic errors caused by the change of airmass in each exposure, the change of the precipitable water vapor and aerosol in the atmosphere over time, and the non-uniformity of instrumental throughput over the focal plane, can be up to 2% in some bandpasses. We compare the calculated systematic chromatic errors with the observed DES data. For the test sample data, we correct these errors using measurements of the atmospheric transmission and instrumental throughput. The residual after correction is less than 0.3%. We also find that the errors for non-stellar objects are redshift-dependent and can be larger than those for stars at certain redshifts.« less
Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing
Wang, Peng; Mohammad, Nabil; Menon, Rajesh
2016-02-12
We exploit the inherent dispersion in diffractive optics to demonstrate planar chromatic-aberration-corrected lenses. Specifically, we designed, fabricated and characterized cylindrical diffractive lenses that efficiently focus the entire visible band (450 nm to 700 nm) onto a single line. These devices are essentially pixelated, multi-level microstructures. Experiments confirm an average optical efficiency of 25% for a three-wavelength apochromatic lens whose chromatic focus shift is only 1.3 μm and 25 μm in the lateral and axial directions, respectively. Super-achromatic performance over the continuous visible band is also demonstrated with averaged lateral and axial focus shifts of only 1.65 μm and 73.6 μm,more » respectively. These lenses are easy to fabricate using single-step grayscale lithography and can be inexpensively replicated. Furthermore, these devices are thin (<3 μm), error tolerant, has low aspect ratio (<1:1) and offer polarization-insensitive focusing, all significant advantages compared to alternatives that rely on metasurfaces. Lastly, our design methodology offers high design flexibility in numerical aperture and focal length, and is readily extended to 2D.« less
Status of NC Primer Demonstration & Transition
2014-11-20
Camo Paint Scheme H-53 • Six a/c selected for demonstration of Hentzen 17176KEP FRCE • Full non-chromate coating stack-up demo – Hentzen...CCC • BUNO #: #163076 #163080 #164859 11 NC Primer Demos: Camo Paint Scheme F/A-18A-D • 13 a/c selected for demonstration of PPG-Deft 02-GN... Strippability 5. Dry Time (-23377) 6. Fluid Resistance (Skydrol) 7. Solvent Resistance 8. Thickness Tolerance 9. Application Method 10. Packaging (1K
NASA Astrophysics Data System (ADS)
Zharinov, I. O.; Zharinov, O. O.
2017-12-01
The problem of the research is concerned with quantitative analysis of influence of technological variation of the screen color profile parameters on chromaticity coordinates of the displayed image. Some mathematical expressions which approximate the two-dimensional distribution of chromaticity coordinates of an image, which is displayed on the screen with a three-component color formation principle were proposed. Proposed mathematical expressions show the way to development of correction techniques to improve reproducibility of the colorimetric features of displays.
Broadband achromatic optical metasurface devices.
Wang, Shuming; Wu, Pin Chieh; Su, Vin-Cent; Lai, Yi-Chieh; Hung Chu, Cheng; Chen, Jia-Wern; Lu, Shen-Hung; Chen, Ji; Xu, Beibei; Kuan, Chieh-Hsiung; Li, Tao; Zhu, Shining; Tsai, Din Ping
2017-08-04
Among various flat optical devices, metasurfaces have presented their great ability in efficient manipulation of light fields and have been proposed for variety of devices with specific functionalities. However, due to the high phase dispersion of their building blocks, metasurfaces significantly suffer from large chromatic aberration. Here we propose a design principle to realize achromatic metasurface devices which successfully eliminate the chromatic aberration over a continuous wavelength region from 1200 to 1680 nm for circularly-polarized incidences in a reflection scheme. For this proof-of-concept, we demonstrate broadband achromatic metalenses (with the efficiency on the order of ∼12%) which are capable of focusing light with arbitrary wavelength at the same focal plane. A broadband achromatic gradient metasurface is also implemented, which is able to deflect wide-band light by the same angle. Through this approach, various flat achromatic devices that were previously impossible can be realized, which will allow innovation in full-color detection and imaging.Metasurfaces suffer from large chromatic aberration due to the high phase dispersion of their building blocks, limiting their applications. Here, Wang et al. design achromatic metasurface devices which eliminate the chromatic aberration over a continuous region from 1200 to 1680 nm in a reflection schleme.
Orbit correction in a linear nonscaling fixed field alternating gradient accelerator
Kelliher, D. J.; Machida, S.; Edmonds, C. S.; ...
2014-11-20
In a linear non-scaling FFAG the large natural chromaticity of the machine results in a betatron tune that varies by several integers over the momentum range. In addition, orbit correction is complicated by the consequent variation of the phase advance between lattice elements. Here we investigate how the correction of multiple closed orbit harmonics allows correction of both the COD and the accelerated orbit distortion over the momentum range.
Joint denoising, demosaicing, and chromatic aberration correction for UHD video
NASA Astrophysics Data System (ADS)
Jovanov, Ljubomir; Philips, Wilfried; Damstra, Klaas Jan; Ellenbroek, Frank
2017-09-01
High-resolution video capture is crucial for numerous applications such as surveillance, security, industrial inspection, medical imaging and digital entertainment. In the last two decades, we are witnessing a dramatic increase of the spatial resolution and the maximal frame rate of video capturing devices. In order to achieve further resolution increase, numerous challenges will be facing us. Due to the reduced size of the pixel, the amount of light also reduces, leading to the increased noise level. Moreover, the reduced pixel size makes the lens imprecisions more pronounced, which especially applies to chromatic aberrations. Even in the case when high quality lenses are used some chromatic aberration artefacts will remain. Next, noise level additionally increases due to the higher frame rates. To reduce the complexity and the price of the camera, one sensor captures all three colors, by relying on Color Filter Arrays. In order to obtain full resolution color image, missing color components have to be interpolated, i.e. demosaicked, which is more challenging than in the case of lower resolution, due to the increased noise and aberrations. In this paper, we propose a new method, which jointly performs chromatic aberration correction, denoising and demosaicking. By jointly performing the reduction of all artefacts, we are reducing the overall complexity of the system and the introduction of new artefacts. In order to reduce possible flicker we also perform temporal video enhancement. We evaluate the proposed method on a number of publicly available UHD sequences and on sequences recorded in our studio.
Chromatic confocal microscope using hybrid aspheric diffractive lenses
NASA Astrophysics Data System (ADS)
Rayer, Mathieu; Mansfield, Daniel
2014-05-01
A chromatic confocal microscope is a single point non-contact distance measurement sensor. For three decades the vast majority of the chromatic confocal microscope use refractive-based lenses to code the measurement axis chromatically. However, such an approach is limiting the range of applications. In this paper the performance of refractive, diffractive and Hybrid aspheric diffractive are compared. Hybrid aspheric diffractive lenses combine the low geometric aberration of a diffractive lens with the high optical power of an aspheric lens. Hybrid aspheric diffractive lenses can reduce the number of elements in an imaging system significantly or create large hyper- chromatic lenses for sensing applications. In addition, diffractive lenses can improve the resolution and the dynamic range of a chromatic confocal microscope. However, to be suitable for commercial applications, the diffractive optical power must be significant. Therefore, manufacturing such lenses is a challenge. We show in this paper how a theoretical manufacturing model can demonstrate that the hybrid aspheric diffractive configuration with the best performances is achieved by step diffractive surface. The high optical quality of step diffractive surface is then demonstrated experimentally. Publisher's Note: This paper, originally published on 5/10/14, was replaced with a corrected/revised version on 5/19/14. If you downloaded the original PDF but are unable to access the revision, please contact SPIE Digital Library Customer Service for assistance.
Kolusheva, S; Yossef, R; Kugel, A; Katz, M; Volinsky, R; Welt, M; Hadad, U; Drory, V; Kliger, M; Rubin, E; Porgador, A; Jelinek, R
2012-07-17
We demonstrate a novel array-based diagnostic platform comprising lipid/polydiacetylene (PDA) vesicles embedded within a transparent silica-gel matrix. The diagnostic scheme is based upon the unique chromatic properties of PDA, which undergoes blue-red transformations induced by interactions with amphiphilic or membrane-active analytes. We show that constructing a gel matrix array hosting PDA vesicles with different lipid compositions and applying to blood plasma obtained from healthy individuals and from patients suffering from disease, respectively, allow distinguishing among the disease conditions through application of a simple machine-learning algorithm, using the colorimetric response of the lipid/PDA/gel matrix as the input. Importantly, the new colorimetric diagnostic approach does not require a priori knowledge on the exact metabolite compositions of the blood plasma, since the concept relies only on identifying statistically significant changes in overall disease-induced chromatic response. The chromatic lipid/PDA/gel array-based "fingerprinting" concept is generic, easy to apply, and could be implemented for varied diagnostic and screening applications.
Bimurzaev, S B; Aldiyarov, N U; Yakushev, E M
2017-10-01
The paper describes the principle of operation of a relatively simple aberration corrector for the transmission electron microscope objective lens. The electron-optical system of the aberration corrector consists of the two main elements: an electrostatic mirror with rotational symmetry and a magnetic deflector formed by the round-shaped magnetic poles. The corrector operation is demonstrated by calculations on the example of correction of basic aberrations of the well-known objective lens with a bell-shaped distribution of the axial magnetic field. Two of the simplest versions of the corrector are considered: a corrector with a two-electrode electrostatic mirror and a corrector with a three-electrode electrostatic mirror. It is shown that using the two-electrode mirror one can eliminate either spherical or chromatic aberration of the objective lens, without changing the value of its linear magnification. Using a three-electrode mirror, it is possible to eliminate spherical and chromatic aberrations of the objective lens simultaneously, which is especially important in designing electron microscopes with extremely high resolution. © The Author 2017. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Optimum resonance control knobs for sextupoles
NASA Astrophysics Data System (ADS)
Ögren, J.; Ziemann, V.
2018-06-01
We discuss the placement of extra sextupoles in a magnet lattice that allows to correct third-order geometric resonances, driven by the chromaticity-compensating sextupoles, in a way that requires the least excitation of the correction sextupoles. We consider a simplified case, without momentum-dependent effects or other imperfections, where suitably chosen phase advances between the correction sextupoles leads to orthogonal knobs with equal treatment of the different resonance driving terms.
Staging optics considerations for a plasma wakefield acceleration linear collider
NASA Astrophysics Data System (ADS)
Lindstrøm, C. A.; Adli, E.; Allen, J. M.; Delahaye, J. P.; Hogan, M. J.; Joshi, C.; Muggli, P.; Raubenheimer, T. O.; Yakimenko, V.
2016-09-01
Plasma wakefield acceleration offers acceleration gradients of several GeV/m, ideal for a next-generation linear collider. The beam optics requirements between plasma cells include injection and extraction of drive beams, matching the main beam beta functions into the next cell, canceling dispersion as well as constraining bunch lengthening and chromaticity. To maintain a high effective acceleration gradient, this must be accomplished in the shortest distance possible. A working example is presented, using novel methods to correct chromaticity, as well as scaling laws for a high energy regime.
TRACKING SIMULATIONS NEAR HALF-INTEGER RESONANCE AT PEP-II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nosochkov, Yuri
2003-05-13
Beam-beam simulations predict that PEP-II luminosity can be increased by operating the horizontal betatron tune near and above a half-integer resonance. However, effects of the resonance and its synchrotron sidebands significantly enhance betatron and chromatic perturbations which tend to reduce dynamic aperture. In the study, chromatic variation of horizontal tune near the resonance was minimized by optimizing local sextupoles in the Interaction Region. Dynamic aperture was calculated using tracking simulations in LEGO code. Dependence of dynamic aperture on the residual orbit, dispersion and {beta} distortion after correction was investigated.
USDA-ARS?s Scientific Manuscript database
Residues of malachite green (MG), gentian violet (GV), and their leuco metabolites in catfish muscle were individually determined by HPLC using visible and fluorescence detectors. This detection scheme obviated a PbO2 column that converts leuco forms to chromatic forms for visible detection, thus el...
Beam control in the ETA-II linear induction accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yu-Jiuan
1992-08-21
Corkscrew beam motion is caused by chromatic aberration and misalignment of a focusing system. We have taken some measures to control the corkscrew motion on the ETA-11 induction accelerator. To minimize chromatic aberration, we have developed an energy compensation scheme which reduces energy sweep and differential phase advance within a beam pulse. To minimize the misalignment errors, we have developed a time-independent steering algorithm which minimizes the observed corkscrew amplitude averaged over the beam pulse. The steering algorithm can be used even if the monitor spacing is much greater than the system`s cyclotron wavelength and the corkscrew motion caused bymore » a given misaligned magnet is fully developed, i.e., the relative phase advance is greater than 27{pi}.« less
Beam control in the ETA-II linear induction accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yu-Jiuan.
1992-08-21
Corkscrew beam motion is caused by chromatic aberration and misalignment of a focusing system. We have taken some measures to control the corkscrew motion on the ETA-11 induction accelerator. To minimize chromatic aberration, we have developed an energy compensation scheme which reduces energy sweep and differential phase advance within a beam pulse. To minimize the misalignment errors, we have developed a time-independent steering algorithm which minimizes the observed corkscrew amplitude averaged over the beam pulse. The steering algorithm can be used even if the monitor spacing is much greater than the system's cyclotron wavelength and the corkscrew motion caused bymore » a given misaligned magnet is fully developed, i.e., the relative phase advance is greater than 27[pi].« less
Design of a One-Dimensional Sextupole Using Semi-Analytic Methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, L.; Nagaitsev, S.; Baturin, S. S.
Sextupole magnets provide position-dependent momentum kicks and are tuned to provide the correct kicks to parti- cles within a small acceptance region in phase space. Sextupoles are useful and even necessary in circular accelerators for chromaticity corrections. They are routinely used in most rings, i.e. CESR. Although sextupole magnets are necessary for particle energy corrections, they also have undesirable effects on dynamic aperture, especially because of their non- linear coupling term in the momentum kick. Studies of integrable systems suggest that there is an analytic way to create transport lattices with specific transfer matrices that limit the momentum kick tomore » one dimension. A one-dimension sex- tupole is needed for chromaticity corrections: a horizontal sextupole for horizontal bending magnets. We know how to make a “composite” horizontal sextupole using regular 2D sextupoles and linear transfer matrices in an ideal thin-lens approximation. Thus, one could create an accelerator lattice using linear elements, in series with sextupole magnets to create a “1D sextupole”. This paper describes progress to- wards realizing a realistic focusing lattice resulting in a 1D sextupole.« less
Multi-image encryption based on synchronization of chaotic lasers and iris authentication
NASA Astrophysics Data System (ADS)
Banerjee, Santo; Mukhopadhyay, Sumona; Rondoni, Lamberto
2012-07-01
A new technique of transmitting encrypted combinations of gray scaled and chromatic images using chaotic lasers derived from Maxwell-Bloch's equations has been proposed. This novel scheme utilizes the general method of solution of a set of linear equations to transmit similar sized heterogeneous images which are a combination of monochrome and chromatic images. The chaos encrypted gray scaled images are concatenated along the three color planes resulting in color images. These are then transmitted over a secure channel along with a cover image which is an iris scan. The entire cryptology is augmented with an iris-based authentication scheme. The secret messages are retrieved once the authentication is successful. The objective of our work is briefly outlined as (a) the biometric information is the iris which is encrypted before transmission, (b) the iris is used for personal identification and verifying for message integrity, (c) the information is transmitted securely which are colored images resulting from a combination of gray images, (d) each of the images transmitted are encrypted through chaos based cryptography, (e) these encrypted multiple images are then coupled with the iris through linear combination of images before being communicated over the network. The several layers of encryption together with the ergodicity and randomness of chaos render enough confusion and diffusion properties which guarantee a fool-proof approach in achieving secure communication as demonstrated by exhaustive statistical methods. The result is vital from the perspective of opening a fundamental new dimension in multiplexing and simultaneous transmission of several monochromatic and chromatic images along with biometry based authentication and cryptography.
An Experiment of GMPLS-Based Dispersion Compensation Control over In-Field Fibers
NASA Astrophysics Data System (ADS)
Seno, Shoichiro; Horiuchi, Eiichi; Yoshida, Sota; Sugihara, Takashi; Onohara, Kiyoshi; Kamei, Misato; Baba, Yoshimasa; Kubo, Kazuo; Mizuochi, Takashi
As ROADMs (Reconfigurable Optical Add/Drop Multiplexers) are becoming widely used in metro/core networks, distributed control of wavelength paths by extended GMPLS (Generalized MultiProtocol Label Switching) protocols has attracted much attention. For the automatic establishment of an arbitrary wavelength path satisfying dynamic traffic demands over a ROADM or WXC (Wavelength Cross Connect)-based network, precise determination of chromatic dispersion over the path and optimized assignment of dispersion compensation capabilities at related nodes are essential. This paper reports an experiment over in-field fibers where GMPLS-based control was applied for the automatic discovery of chromatic dispersion, path computation, and wavelength path establishment with dynamic adjustment of variable dispersion compensation. The GMPLS-based control scheme, which the authors called GMPLS-Plus, extended GMPLS's distributed control architecture with attributes for automatic discovery, advertisement, and signaling of chromatic dispersion. In this experiment, wavelength paths with distances of 24km and 360km were successfully established and error-free data transmission was verified. The experiment also confirmed path restoration with dynamic compensation adjustment upon fiber failure.
Estimation of chromatic errors from broadband images for high contrast imaging
NASA Astrophysics Data System (ADS)
Sirbu, Dan; Belikov, Ruslan
2015-09-01
Usage of an internal coronagraph with an adaptive optical system for wavefront correction for direct imaging of exoplanets is currently being considered for many mission concepts, including as an instrument addition to the WFIRST-AFTA mission to follow the James Web Space Telescope. The main technical challenge associated with direct imaging of exoplanets with an internal coronagraph is to effectively control both the diffraction and scattered light from the star so that the dim planetary companion can be seen. For the deformable mirror (DM) to recover a dark hole region with sufficiently high contrast in the image plane, wavefront errors are usually estimated using probes on the DM. To date, most broadband lab demonstrations use narrowband filters to estimate the chromaticity of the wavefront error, but this reduces the photon flux per filter and requires a filter system. Here, we propose a method to estimate the chromaticity of wavefront errors using only a broadband image. This is achieved by using special DM probes that have sufficient chromatic diversity. As a case example, we simulate the retrieval of the spectrum of the central wavelength from broadband images for a simple shaped- pupil coronagraph with a conjugate DM and compute the resulting estimation error.
Preliminary Experimental Investigation of Quasi Achromat scheme at Advanced Photon Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Yipeng; Shang, Hairong
Next generation storage rings require weaker dipolemagnets and stronger quadrupole focusing to achieve very low emittance. To suppress the geometric and chromatic optics aberrations introduced by the strong sextupoles, achromat and quasi achromat schemes are applied in the lattice design to improve the beam dynamics performance. In this paper, some preliminary experimental investigation of the quasi achromat scheme at the Advanced Photon Source (APS) are presented. Three different operation lattices are compared on their beam dynamics performance. Although none of these operation lattices achieve ideal quasi achromat condition, they have certain relevant features. It is observed that fewer resonances aremore » present in the nominal operation lattice which is most close to quasi achromat required conditions.« less
Optic for an endoscope/borescope having high resolution and narrow field of view
Stone, Gary F.; Trebes, James E.
2003-10-28
An optic having optimized high spatial resolution, minimal nonlinear magnification distortion while at the same time having a limited chromatic focal shift or chromatic aberrations. The optic located at the distal end of an endoscopic inspection tool permits a high resolution, narrow field of view image for medical diagnostic applications, compared to conventional optics for endoscopic instruments which provide a wide field of view, low resolution image. The image coverage is over a narrow (<20 degrees) field of view with very low optical distortion (<5% pin cushion or barrel distortion. The optic is also optimized for best color correction as well as to aid medical diagnostics.
Adaptive optics with a magnetic deformable mirror: applications in the human eye
NASA Astrophysics Data System (ADS)
Fernandez, Enrique J.; Vabre, Laurent; Hermann, Boris; Unterhuber, Angelika; Povazay, Boris; Drexler, Wolfgang
2006-10-01
A novel deformable mirror using 52 independent magnetic actuators (MIRAO 52, Imagine Eyes) is presented and characterized for ophthalmic applications. The capabilities of the device to reproduce different surfaces, in particular Zernike polynomials up to the fifth order, are investigated in detail. The study of the influence functions of the deformable mirror reveals a significant linear response with the applied voltage. The correcting device also presents a high fidelity in the generation of surfaces. The ranges of production of Zernike polynomials fully cover those typically found in the human eye, even for the cases of highly aberrated eyes. Data from keratoconic eyes are confronted with the obtained ranges, showing that the deformable mirror is able to compensate for these strong aberrations. Ocular aberration correction with polychromatic light, using a near Gaussian spectrum of 130 nm full width at half maximum centered at 800 nm, in five subjects is accomplished by simultaneously using the deformable mirror and an achromatizing lens, in order to compensate for the monochromatic and chromatic aberrations, respectively. Results from living eyes, including one exhibiting 4.66 D of myopia and a near pathologic cornea with notable high order aberrations, show a practically perfect aberration correction. Benefits and applications of simultaneous monochromatic and chromatic aberration correction are finally discussed in the context of retinal imaging and vision.
Fast spatial beam shaping by acousto-optic diffraction for 3D non-linear microscopy.
Akemann, Walther; Léger, Jean-François; Ventalon, Cathie; Mathieu, Benjamin; Dieudonné, Stéphane; Bourdieu, Laurent
2015-11-02
Acousto-optic deflection (AOD) devices offer unprecedented fast control of the entire spatial structure of light beams, most notably their phase. AOD light modulation of ultra-short laser pulses, however, is not straightforward to implement because of intrinsic chromatic dispersion and non-stationarity of acousto-optic diffraction. While schemes exist to compensate chromatic dispersion, non-stationarity remains an obstacle. In this work we demonstrate an efficient AOD light modulator for stable phase modulation using time-locked generation of frequency-modulated acoustic waves at the full repetition rate of a high power laser pulse amplifier of 80 kHz. We establish the non-local relationship between the optical phase and the generating acoustic frequency function and verify the system for temporal stability, phase accuracy and generation of non-linear two-dimensional phase functions.
Ultrahigh resolution retinal imaging by visible light OCT with longitudinal achromatization
Chong, Shau Poh; Zhang, Tingwei; Kho, Aaron; Bernucci, Marcel T.; Dubra, Alfredo; Srinivasan, Vivek J.
2018-01-01
Chromatic aberrations are an important design consideration in high resolution, high bandwidth, refractive imaging systems that use visible light. Here, we present a fiber-based spectral/Fourier domain, visible light OCT ophthalmoscope corrected for the average longitudinal chromatic aberration (LCA) of the human eye. Analysis of complex speckles from in vivo retinal images showed that achromatization resulted in a speckle autocorrelation function that was ~20% narrower in the axial direction, but unchanged in the transverse direction. In images from the improved, achromatized system, the separation between Bruch’s membrane (BM), the retinal pigment epithelium (RPE), and the outer segment tips clearly emerged across the entire 6.5 mm field-of-view, enabling segmentation and morphometry of BM and the RPE in a human subject. Finally, cross-sectional images depicted distinct inner retinal layers with high resolution. Thus, with chromatic aberration compensation, visible light OCT can achieve volume resolutions and retinal image quality that matches or exceeds ultrahigh resolution near-infrared OCT systems with no monochromatic aberration compensation. PMID:29675296
Achromatic diffractive lens written onto a liquid crystal display.
Márquez, A; Iemmi, C; Campos, J; Yzuel, M J
2006-02-01
We propose a programmable diffractive lens written onto a liquid crystal display (LCD) that is able to provide equal focal lengths for several wavelengths simultaneously. To achieve this goal it is necessary that the LCD operate in the phase-only regime simultaneously for the different wavelengths. We design the appropriate lens for each wavelength, and then the lenses are spatially multiplexed onto the LCD. Various multiplexing schemes have been analyzed, and the random scheme shows the best performance. We further show the possibility of finely tuning the chromaticity of the focal spot by changing the relative weights of the multiplexing among the various wavelengths.
Optics Corrections with LOCO in the Fermilab Booster
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Cheng-Yang; Prost, Lionel; Seiya, Kiyomi
2016-06-01
The optics of the Fermilab Booster has been corrected with LOCO (Linear Optics from Closed Orbits). However, the first corrections did not show any improvement in capture efficiency at injection. A detailed analysis of the results showed that the problem lay in the MADX optics file. Both the quadrupole and chromatic strengths were originally set as constants independent of beam energy. However, careful comparison between the measured and calculated tunes and chromatcity show that these strengths are energy dependent. After the MADX model was modified with these new energy dependent strengths, the LOCO corrected lattice has been applied to Booster.more » The effect of the corrected lattice will be discussed here.« less
Chromatic Properties of Index of Refraction Gradients in Glass.
NASA Astrophysics Data System (ADS)
Ryan-Howard, Danette Patrice
The chromatic properties of index of refraction gradients have been predicted theoretically and verified experimentally. The use of these materials in the design of color corrected optical systems has been investigated and confirmed by the evaluation of two fabricated lenses. A model for the chromatic properties of gradient index materials has been developed. The index of refraction is calculated based on the composition of the material. Since the index of refraction and the conventional Abbe number change as a function of the composition of the glass, a gradient Abbe number and a partial dispersion are defined. Analysis of combinations of ion exchange pairs and glasses result in a wide range of gradient Abbe numbers and partial dispersions. These ranges can be further extended by using glasses which contain more than one exchange ion or by using mixed salt baths. The chromatic properties were measured with a multiple wavelength A.C. interferometer. The gradient Abbe numbers and partial dispersions for a number of samples were calculated. Evaluation of the samples showed that the index and dispersion data correlated well with that predicted by the model. Thin lens formulae for the paraxial axial color and secondary spectrum of a radial gradient singlet with curves were examined. The design of a single element 10x microscope objective verified the applicability of these formulae. The design of a two element 40x microscope objective showed that a six element diffraction limited 40x objective can be replaced with a two element system composed of one homogeneous lens and one gradient lens without sacrificing either monochromatic performance or color correction. A previously fabricated axial gradient collimator and a fabricated Wood element were evaluated. Correlation of the directly measured quantities, paraxial axial color, secondary spectrum and spherochromatism with the values predicted by the model verified that the predicted superior performance of gradient-index lenses can be obtained.
The contributions of Otto Scherzer (1909-1982) to the development of the electron microscope.
Marko, Michael; Rose, Harald
2010-08-01
Otto Scherzer was one of the pioneers of theoretical electron optics. He was coauthor of the first comprehensive book on electron optics and was the first to understand that round electron lenses could not be combined to correct aberrations, as is the case in light optics. He subsequently was the first to describe several alternative means to correct spherical and chromatic aberration of electron lenses. These ideas were put into practice by his laboratory and students at Darmstadt and their successors, leading to the fully corrected electron microscopes now in operation.
Use of tannin anticorrosive reaction primer to improve traditional coating systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matamala, G.; Droguett, G.; Smeltzer, W.
1994-04-01
Different anticorrosive schemes applied over plain or previously shot-blasted surfaces of AISI 1010 (UNS G10100) steel plates were compared. Plates were painted with alkydic, vinylic, and epoxy anticorrosive schemes over metal treated previously with pine tannin reaction primer and over its own schemes without previous primer treatment. Anticorrosive tests were conducted in a salt fog chamber according to ASTM B 117-73. Rusting, blistering, and adhesion were assessed over time. The survey was complemented with potentiodynamic scanning tests in sodium chloride (NaCl) solution with a concentration equivalent to seawater. Corrosion currents were determined using Tafel and polarization resistance techniques. Results showedmore » the reaction primer inhibited corrosion by improving adherence. Advantages over traditional conversion primers formulated in a base of zinc chromate in phosphoric medium were evident.« less
Design of a 6 TeV muon collider
Wang, M-H.; Nosochkov, Y.; Cai, Y.; ...
2016-09-09
Here, a preliminary design of a muon collider ring with the center of mass (CM) energy of 6 TeV is presented. The ring circumference is 6.3 km, and themore » $$\\beta$$ functions at collision point are 1 cm in each plane. The ring linear optics, the non-linear chromaticity compensation in the Interaction Region (IR), and the additional non-linear orthogonal correcting knobs are described. Magnet specifications are based on the maximum pole-tip field of 20T in dipoles and 15T in quadrupoles. Careful compensation of the non-linear chromatic and amplitude dependent effects provide a sufficiently large dynamic aperture for the momentum range of up to $$\\pm$$0.5% without considering magnet errors.« less
Evaluation of chromatic cues for trapping Bactrocera tau.
Li, Lei; Ma, Huabo; Niu, Liming; Han, Dongyin; Zhang, Fangping; Chen, Junyu; Fu, Yueguan
2017-01-01
Trapping technology based on chromatic cues is an important strategy in controlling Tephritidae (fruit flies). The objectives of this present study were to evaluate the preference of Bactrocera tau for different chromatic cues, and to explore an easy method to print and reproduce coloured paper. Chromatic cues significantly affected the preference of adult B. tau. Wavelengths in the 515-604 nm range were the suitable wavelengths for trapping B. tau. Different-day-old B. tau had different colour preferences. Virtual wavelengths of 595 nm (yellow) and 568 nm (yellowish green) were the optimum wavelengths for trapping 5-7-day-old B. tau and 30-32-day-old B. tau respectively. The trap type and height significantly influenced B. tau attraction efficiency. The number of B. tau on coloured traps hung perpendicular to plant rows was not significantly higher than the number on traps hung parallel to plant rows. The quantisation of colour on the basis of Bruton's wavelength to RGB function can serve as an alternative method for printing and reproducing coloured paper, but a corrected equation should be established between the theoretical wavelength and actual wavelength of coloured paper. Results show that a compound paper coloured yellow (595 nm) and yellowish green (568 nm) installed at 60 and 90 cm above the ground shows the maximum effect for trapping B. tau. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Hexavalent Chromium Induces Chromosome Instability in Human Urothelial Cells
Wise, Sandra S.; Holmes, Amie L.; Liou, Louis; Adam, Rosalyn M.; Wise, John Pierce
2016-01-01
Numerous metals are well-known human bladder carcinogens. Despite the significant occupational and public health concern of metals and bladder cancer, the carcinogenic mechanisms remain largely unknown. Chromium, in particular, is a metal of concern as incidences of bladder cancer have been found elevated in chromate workers, and there is an increasing concern for patients with metal hip implants. However, the impact of Cr(VI) on bladder cells has not been studied. We compared chromate toxicity in two bladder cell lines; primary human urothelial cells and hTERT-immortalized human urothelial cells. Hexavalent chromium (Cr(VI)) induced a concentration- and time-dependent increase in chromosome damage in both cell lines, with the hTERT-immortalized cells exhibiting more chromosome damage than the primary cells. Chronic exposure to Cr(VI) also induced a concentration-dependent increase in aneuploid metaphases in both cell lines which was not observed after a 24 h exposure. Aneuploidy induction was higher in the hTERT-immortalized cells. When we correct for uptake, Cr(VI) induces a similar amount of chromosome damage and aneuploidy suggesting that the differences in Cr(VI) sensitivity between the two cells lines were due to differences in uptake. The increase in chromosome instability after chronic chromate treatment suggests this may be a mechanism for chromate-induced bladder cancer specifically and may be a mechanism for metal-induced bladder cancer in general. PMID:26908176
Shinomori, Keizo; Panorgias, Athanasios; Werner, John S.
2017-01-01
Age-related changes in chromatic discrimination along dichromatic confusion lines were measured with the Cambridge Colour Test (CCT). One hundred and sixty-two individuals (16 to 88 years old) with normal Rayleigh matches were the major focus of this paper. An additional 32 anomalous trichromats classified by their Rayleigh matches were also tested. All subjects were screened to rule out abnormalities of the anterior and posterior segments. Thresholds on all three chromatic vectors measured with the CCT showed age-related increases. Protan and deutan vector thresholds increased linearly with age while the tritan vector threshold was described with a bilinear model. Analysis and modeling demonstrated that the nominal vectors of the CCT are shifted by senescent changes in ocular media density, and a method for correcting the CCT vectors is demonstrated. A correction for these shifts indicates that classification among individuals of different ages is unaffected. New vector thresholds for elderly observers and for all age groups are suggested based on calculated tolerance limits. PMID:26974943
Li, T. S.; DePoy, D. L.; Marshall, J. L.; ...
2016-06-01
Here, we report that meeting the science goals for many current and future ground-based optical large-area sky surveys requires that the calibrated broadband photometry is both stable in time and uniform over the sky to 1% precision or better. Past and current surveys have achieved photometric precision of 1%–2% by calibrating the survey's stellar photometry with repeated measurements of a large number of stars observed in multiple epochs. The calibration techniques employed by these surveys only consider the relative frame-by-frame photometric zeropoint offset and the focal plane position-dependent illumination corrections, which are independent of the source color. However, variations inmore » the wavelength dependence of the atmospheric transmission and the instrumental throughput induce source color-dependent systematic errors. These systematic errors must also be considered to achieve the most precise photometric measurements. In this paper, we examine such systematic chromatic errors (SCEs) using photometry from the Dark Energy Survey (DES) as an example. We first define a natural magnitude system for DES and calculate the systematic errors on stellar magnitudes when the atmospheric transmission and instrumental throughput deviate from the natural system. We conclude that the SCEs caused by the change of airmass in each exposure, the change of the precipitable water vapor and aerosol in the atmosphere over time, and the non-uniformity of instrumental throughput over the focal plane can be up to 2% in some bandpasses. We then compare the calculated SCEs with the observed DES data. For the test sample data, we correct these errors using measurements of the atmospheric transmission and instrumental throughput from auxiliary calibration systems. In conclusion, the residual after correction is less than 0.3%. Moreover, we calculate such SCEs for Type Ia supernovae and elliptical galaxies and find that the chromatic errors for non-stellar objects are redshift-dependent and can be larger than those for stars at certain redshifts.« less
Design of tracking and detecting lens system by diffractive optical method
NASA Astrophysics Data System (ADS)
Yang, Jiang; Qi, Bo; Ren, Ge; Zhou, Jianwei
2016-10-01
Many target-tracking applications require an optical system to acquire the target for tracking and identification. This paper describes a new detecting optical system that can provide automatic flying object detecting, tracking and measuring in visible band. The main feature of the detecting lens system is the combination of diffractive optics with traditional lens design by a technique was invented by Schupmann. Diffractive lens has great potential for developing the larger aperture and lightweight lens. First, the optical system scheme was described. Then the Schupmann achromatic principle with diffractive lens and corrective optics is introduced. According to the technical features and requirements of the optical imaging system for detecting and tracking, we designed a lens system with flat surface Fresnel lens and cancels the optical system chromatic aberration by another flat surface Fresnel lens with effective focal length of 1980mm, an F-Number of F/9.9 and a field of view of 2ωω = 14.2', spatial resolution of 46 lp/mm and a working wavelength range of 0.6 0.85um. At last, the system is compact and easy to fabricate and assembly, the diffuse spot size and MTF function and other analysis provide good performance.
NASA Technical Reports Server (NTRS)
Minott, P. O.
1983-01-01
Beam splitter with curved entrance and exit surfaces introduces less chromatic aberration and Seidel aberrations in some optical systems than traditional plate or block beam splitters. Spherical-surface beam splitter is used in Schmidt-type mirror objective to split converging image-forming beam so two images are formed. Small aberrations introduced are corrected by compensator plate located at or near aperture stop.
Zhu, Huatao; Wang, Rong; Pu, Tao; Fang, Tao; Xiang, Peng; Zheng, Jilin; Chen, Dalei
2015-06-01
In this Letter, the optical stealth transmission carried by super-continuum spectrum optical pulses generated in highly nonlinear fiber is proposed and experimentally demonstrated. In the proposed transmission scheme, super-continuum signals are reshaped in the spectral domain through a wavelength-selective switch and are temporally spread by a chromatic dispersion device to achieve the same noise-like characteristic as the noise in optical networks, so that in both the time domain and the spectral domain, the stealth signals are hidden in public channel. Our experimental results show that compared with existing schemes where stealth channels are carried by amplified spontaneous emission noise, super-continuum signal can increase the transmission performance and robustness.
Novel xenon calibration scheme for two-photon absorption laser induced fluorescence of hydrogen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elliott, Drew; Scime, Earl; Short, Zachary, E-mail: zdshort@mix.wvu.edu
Two photon absorption laser induced fluorescence (TALIF) measurements of neutral hydrogen and its isotopes are typically calibrated by performing TALIF measurements on krypton with the same diagnostic system and using the known ratio of the absorption cross sections [K. Niemi et al., J. Phys. D 34, 2330 (2001)]. Here we present the measurements of a new calibration method based on a ground state xenon scheme for which the fluorescent emission wavelength is nearly identical to that of hydrogen, thereby eliminating chromatic effects in the collection optics and simplifying detector calibration. We determine that the ratio of the TALIF cross sectionsmore » of xenon and hydrogen is 0.024 ± 0.001.« less
a New Color Correction Method for Underwater Imaging
NASA Astrophysics Data System (ADS)
Bianco, G.; Muzzupappa, M.; Bruno, F.; Garcia, R.; Neumann, L.
2015-04-01
Recovering correct or at least realistic colors of underwater scenes is a very challenging issue for imaging techniques, since illumination conditions in a refractive and turbid medium as the sea are seriously altered. The need to correct colors of underwater images or videos is an important task required in all image-based applications like 3D imaging, navigation, documentation, etc. Many imaging enhancement methods have been proposed in literature for these purposes. The advantage of these methods is that they do not require the knowledge of the medium physical parameters while some image adjustments can be performed manually (as histogram stretching) or automatically by algorithms based on some criteria as suggested from computational color constancy methods. One of the most popular criterion is based on gray-world hypothesis, which assumes that the average of the captured image should be gray. An interesting application of this assumption is performed in the Ruderman opponent color space lαβ, used in a previous work for hue correction of images captured under colored light sources, which allows to separate the luminance component of the scene from its chromatic components. In this work, we present the first proposal for color correction of underwater images by using lαβ color space. In particular, the chromatic components are changed moving their distributions around the white point (white balancing) and histogram cutoff and stretching of the luminance component is performed to improve image contrast. The experimental results demonstrate the effectiveness of this method under gray-world assumption and supposing uniform illumination of the scene. Moreover, due to its low computational cost it is suitable for real-time implementation.
2011-07-01
10%. These results demonstrate that the IOP-based BRDF correction scheme (which is composed of the R„ model along with the IOP retrieval...distribution was averaged over 10 min 5. Validation of the lOP-Based BRDF Correction Scheme The IOP-based BRDF correction scheme is applied to both...oceanic and coastal waters were very consistent qualitatively and quantitatively and thus validate the IOP- based BRDF correction system, at least
Characteristics of the retinal images of the eye optical systems with implanted intraocular lenses
NASA Astrophysics Data System (ADS)
Siedlecki, Damian; Zając, Marek; Nowak, Jerzy
2007-04-01
Cataract, or opacity of crystalline lens in the human eye is one of the most frequent reasons of blindness nowadays. Removing the pathologically altered crystalline lens and replacing it with artificial implantable intraocular lens (IOL) is practically the only therapy in this illness. There exist a wide variety of artificial IOL types on the medical market, differing in their material and design (shape). In this paper six exemplary models of IOL's made of PMMA, acrylic and silicone are considered. The retinal image quality is analyzed numerically on the basis of Liou-Brennan eye model with these IOL's inserted. Chromatic aberration as well as polychromatic Point Spread Function and Modulation Transfer Function are calculated as most adequate image quality measures. The calculations made with Zemax TM software show the importance of chromatic aberration correction.
Optical design of f-theta lens for dual wavelength selective laser melting
NASA Astrophysics Data System (ADS)
Feng, Lianhua; Cao, Hongzhong; Zhang, Ning; Xu, Xiping; Duan, Xuanming
2016-10-01
F-theta lens is an important unit for selective laser melting (SLM) manufacture. The dual wavelength f-theta lens has not been used in SLM manufacture. Here, we present the design of the f-theta lens which satisfies SLM manufacture with coaxial 532 nm and 1030 nm 1080 nm laser beams. It is composed of three pieces of spherical lenses. The focal spots for 532 nm laser and 1030 nm 1080 nm laser are smaller than 35 μm and 70 μm, respectively. The results meet the demands of high precision SLM. The chromatic aberration could cause separation between two laser focal spots in the scanning plane, so chromatic aberration correction is very important to our design. The lateral color of the designed f-theta lens is less than 11 μm within the scan area of 150 mm x 150 mm, which meet the application requirements of dual wavelength selective laser melting.
NASA Astrophysics Data System (ADS)
Choudhury, Pallab K.
2018-05-01
Spectrally shaped orthogonal frequency division multiplexing (OFDM) signal for symmetric 10 Gb/s cross-wavelength reuse reflective semiconductor optical amplifier (RSOA) based colorless wavelength division multiplexed passive optical network (WDM-PON) is proposed and further analyzed to support broadband services of next generation high speed optical access networks. The generated OFDM signal has subcarriers in separate frequency ranges for downstream and upstream, such that the re-modulation noise can be effectively minimized in upstream data receiver. Moreover, the cross wavelength reuse approach improves the tolerance against Rayleigh backscattering noise due to the propagation of different wavelengths in the same feeder fiber. The proposed WDM-PON is successfully demonstrated for 25 km fiber with 16-QAM (quadrature amplitude modulation) OFDM signal having bandwidth of 2.5 GHz for 10 Gb/s operation and subcarrier frequencies in 3-5.5 GHz and DC-2.5 GHz for downstream (DS) and upstream (US) transmission respectively. The result shows that the proposed scheme maintains a good bit error rate (BER) performance below the forward error correction (FEC) limit of 3.8 × 10-3 at acceptable receiver sensitivity and provides a high resilience against re-modulation and Rayleigh backscattering noises as well as chromatic dispersion.
Chromatically corrected virtual image visual display. [reducing eye strain in flight simulators
NASA Technical Reports Server (NTRS)
Kahlbaum, W. M., Jr. (Inventor)
1980-01-01
An in-line, three element, large diameter, optical display lens is disclosed which has a front convex-convex element, a central convex-concave element, and a rear convex-convex element. The lens, used in flight simulators, magnifies an image presented on a television monitor and, by causing light rays leaving the lens to be in essentially parallel paths, reduces eye strain of the simulator operator.
Power corrections in the N -jettiness subtraction scheme
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boughezal, Radja; Liu, Xiaohui; Petriello, Frank
We discuss the leading-logarithmic power corrections in the N-jettiness subtraction scheme for higher-order perturbative QCD calculations. We compute the next-to-leading order power corrections for an arbitrary N-jet process, and we explicitly calculate the power correction through next-to-next-to-leading order for color-singlet production for bothmore » $$q\\bar{q}$$ and gg initiated processes. Our results are compact and simple to implement numerically. Including the leading power correction in the N-jettiness subtraction scheme substantially improves its numerical efficiency. Finally, we discuss what features of our techniques extend to processes containing final-state jets.« less
Power corrections in the N -jettiness subtraction scheme
Boughezal, Radja; Liu, Xiaohui; Petriello, Frank
2017-03-30
We discuss the leading-logarithmic power corrections in the N-jettiness subtraction scheme for higher-order perturbative QCD calculations. We compute the next-to-leading order power corrections for an arbitrary N-jet process, and we explicitly calculate the power correction through next-to-next-to-leading order for color-singlet production for bothmore » $$q\\bar{q}$$ and gg initiated processes. Our results are compact and simple to implement numerically. Including the leading power correction in the N-jettiness subtraction scheme substantially improves its numerical efficiency. Finally, we discuss what features of our techniques extend to processes containing final-state jets.« less
The influence of chromatic context on binocular color rivalry: Perception and neural representation
Hong, Sang Wook; Shevell, Steven K.
2008-01-01
The predominance of rivalrous targets is affected by surrounding context when stimuli rival in orientation, motion or color. This study investigated the influence of chromatic context on binocular color rivalry. The predominance of rivalrous chromatic targets was measured in various surrounding contexts. The first experiment showed that a chromatic surround's influence was stronger when the surround was uniform or a grating with luminance contrast (chromatic/black grating) compared to an equiluminant grating (chromatic/white). The second experiment revealed virtually no effect of the orientation of the surrounding chromatic context, using chromatically rivalrous vertical gratings. These results are consistent with a chromatic representation of the context by a non-oriented, chromatically selective and spatially antagonistic receptive field. Neither a double-opponent receptive field nor a receptive field without spatial antagonism accounts for the influence of context on binocular color rivalry. PMID:18331750
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koenenkamp, Rolf
We report on the design, assembly, operation and application of an aberration-corrected photoemission electron microscope. The instrument used novel hyperbolic mirror-correctors with two and three electrodes that allowed simultaneous correction of spherical and chromatic aberrations. A spatial resolution of 5.4nm was obtained with this instrument in 2009, and 4.7nm in subsequent years. New imaging methodology was introduced involving interferometric imaging of light diffraction. This methodology was applied in nano-photonics and in the characterization of surface-plasmon polaritons. Photonic crystals and waveguides, optical antennas and new plasmonic devices such as routers, localizers and filters were designed and demonstrated using the new capabilitiesmore » offered by the microscope.« less
A color-communication scheme for digital imagery
Acosta, Alex
1987-01-01
Color pictures generated from digital images are frequently used by geologists, foresters, range managers, and others. These color products are preferred over black and white pictures because the human eye is more sensitive to color differences than to various shades of gray. Color discrimination is a function of perception, and therefore colors in these color composites are generally described subjectively, which can lead to ambiguous color communication. Numerous color-coordinate systems are available that quantitively relate digital triplets representing amounts of red, free, and blue to the parameters of hue, saturation, and intensity perceived by the eye. Most of these systems implement a complex transformation of the primary colors to a color space that is hard to visualize, thus making it difficult to relate digital triplets to perception parameters. This paper presents a color-communcation scheme that relates colors on a color triangle to corresponding values of "hue" (H), "saturation" (S), and chromaticity coordinates (x,y,z). The scheme simplifies the relation between red, green, and blue (RGB) digital triplets and the color generated by these triplets. Some examples of the use of the color-communication scheme in digital image processing are presented.
Hexavalent chromium induces chromosome instability in human urothelial cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wise, Sandra S.; Holmes, Amie L.; Department of Radiation Oncology, Dana Farber Cancer Institute, 450 Brookline Ave., Boston, MA 02215
Numerous metals are well-known human bladder carcinogens. Despite the significant occupational and public health concern of metals and bladder cancer, the carcinogenic mechanisms remain largely unknown. Chromium, in particular, is a metal of concern as incidences of bladder cancer have been found elevated in chromate workers, and there is an increasing concern for patients with metal hip implants. However, the impact of hexavalent chromium (Cr(VI)) on bladder cells has not been studied. We compared chromate toxicity in two bladder cell lines; primary human urothelial cells and hTERT-immortalized human urothelial cells. Cr(VI) induced a concentration- and time-dependent increase in chromosome damagemore » in both cell lines, with the hTERT-immortalized cells exhibiting more chromosome damage than the primary cells. Chronic exposure to Cr(VI) also induced a concentration-dependent increase in aneuploid metaphases in both cell lines which was not observed after a 24 h exposure. Aneuploidy induction was higher in the hTERT-immortalized cells. When we correct for uptake, Cr(VI) induces a similar amount of chromosome damage and aneuploidy suggesting that the differences in Cr(VI) sensitivity between the two cells lines were due to differences in uptake. The increase in chromosome instability after chronic chromate treatment suggests this may be a mechanism for chromate-induced bladder cancer, specifically, and may be a mechanism for metal-induced bladder cancer, in general. - Highlights: • Hexavalent chromium is genotoxic to human urothelial cells. • Hexavalent chromium induces aneuploidy in human urothelial cells. • hTERT-immortalized human urothelial cells model the effects seen in primary urothelial cells. • Hexavalent chromium has a strong likelihood of being carcinogenic for bladder tissue.« less
Estimation of chromatic errors from broadband images for high contrast imaging: sensitivity analysis
NASA Astrophysics Data System (ADS)
Sirbu, Dan; Belikov, Ruslan
2016-01-01
Many concepts have been proposed to enable direct imaging of planets around nearby stars, and which would enable spectroscopic observations of their atmospheric observations and the potential discovery of biomarkers. The main technical challenge associated with direct imaging of exoplanets is to effectively control both the diffraction and scattered light from the star so that the dim planetary companion can be seen. Usage of an internal coronagraph with an adaptive optical system for wavefront correction is one of the most mature methods and is being developed as an instrument addition to the WFIRST-AFTA space mission. In addition, such instruments as GPI and SPHERE are already being used on the ground and are yielding spectra of giant planets. For the deformable mirror (DM) to recover a dark hole region with sufficiently high contrast in the image plane, mid-spatial frequency wavefront errors must be estimated. To date, most broadband lab demonstrations use narrowband filters to obtain an estimate of the the chromaticity of the wavefront error and this can result in usage of a large percentage of the total integration time. Previously, we have proposed a method to estimate the chromaticity of wavefront errors using only broadband images; we have demonstrated that under idealized conditions wavefront errors can be estimated from images composed of discrete wavelengths. This is achieved by using DM probes with sufficient spatially-localized chromatic diversity. Here we report on the results of a study of the performance of this method with respect to realistic broadband images including noise. Additionally, we study optimal probe patterns that enable reduction of the number of probes used and compare the integration time with narrowband and IFS estimation methods.
Practical scheme for error control using feedback
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarovar, Mohan; Milburn, Gerard J.; Ahn, Charlene
2004-05-01
We describe a scheme for quantum-error correction that employs feedback and weak measurement rather than the standard tools of projective measurement and fast controlled unitary gates. The advantage of this scheme over previous protocols [for example, Ahn et al. Phys. Rev. A 65, 042301 (2001)], is that it requires little side processing while remaining robust to measurement inefficiency, and is therefore considerably more practical. We evaluate the performance of our scheme by simulating the correction of bit flips. We also consider implementation in a solid-state quantum-computation architecture and estimate the maximal error rate that could be corrected with current technology.
Adaptive Packet Combining Scheme in Three State Channel Model
NASA Astrophysics Data System (ADS)
Saring, Yang; Bulo, Yaka; Bhunia, Chandan Tilak
2018-01-01
The two popular techniques of packet combining based error correction schemes are: Packet Combining (PC) scheme and Aggressive Packet Combining (APC) scheme. PC scheme and APC scheme have their own merits and demerits; PC scheme has better throughput than APC scheme, but suffers from higher packet error rate than APC scheme. The wireless channel state changes all the time. Because of this random and time varying nature of wireless channel, individual application of SR ARQ scheme, PC scheme and APC scheme can't give desired levels of throughput. Better throughput can be achieved if appropriate transmission scheme is used based on the condition of channel. Based on this approach, adaptive packet combining scheme has been proposed to achieve better throughput. The proposed scheme adapts to the channel condition to carry out transmission using PC scheme, APC scheme and SR ARQ scheme to achieve better throughput. Experimentally, it was observed that the error correction capability and throughput of the proposed scheme was significantly better than that of SR ARQ scheme, PC scheme and APC scheme.
Guide-star-based computational adaptive optics for broadband interferometric tomography
Adie, Steven G.; Shemonski, Nathan D.; Graf, Benedikt W.; Ahmad, Adeel; Scott Carney, P.; Boppart, Stephen A.
2012-01-01
We present a method for the numerical correction of optical aberrations based on indirect sensing of the scattered wavefront from point-like scatterers (“guide stars”) within a three-dimensional broadband interferometric tomogram. This method enables the correction of high-order monochromatic and chromatic aberrations utilizing guide stars that are revealed after numerical compensation of defocus and low-order aberrations of the optical system. Guide-star-based aberration correction in a silicone phantom with sparse sub-resolution-sized scatterers demonstrates improvement of resolution and signal-to-noise ratio over a large isotome. Results in highly scattering muscle tissue showed improved resolution of fine structure over an extended volume. Guide-star-based computational adaptive optics expands upon the use of image metrics for numerically optimizing the aberration correction in broadband interferometric tomography, and is analogous to phase-conjugation and time-reversal methods for focusing in turbid media. PMID:23284179
Kinetics of chromate reduction during naphthalene degradation in a mixed culture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, H.; Sewell, G.W.; Pritchard, P.H.
A mixed culture of Bacillus sp. K1 and Sphingomonas paucimobilis EPA 505 was exposed to chromate and naphthalene. Batch experiments showed that chromate was reduced and naphthalene was degraded by the mixed culture. Chromate reduction occurred initially at a high rate followed by a decrease in rate until chromate reduction ceased. Chromate reduction decreased in the mixed culture when a lower ratio of S. paucimobilis EPA 505 to Bacillus sp. K1 was utilized. A kinetic model incorporating a term for the cell density ratio is proposed to describe chromate reduction in the mixed culture under both chromate limited and electronmore » donor limited conditions. The validity of the model, and its parameter values, was verified by experimental data generated under a variety of initial population compositions and a broad range of chromate concentrations. The consistent result of experimental data with model predictions implies that the model is useful for evaluating the interactions and the use of mixed culture for chromate removal.« less
NASA Astrophysics Data System (ADS)
Satoh, Kotaro
1992-02-01
This paper summarizes the first phase of the TRISTAN, the energy upgrade for aiming at the energy frontier. Then it describes the present accelerator performance in the second phase where the objective is the luminosity accumulation. The asymmetric B factory is being planned as the third phase of the TRISTAN. This paper also outlines its design and points out some critical issues. These are the longitudinal coupled bunch instability, the chromaticity correction, the insertion design, and injectors.
Optical properties of the magnetic monopole field applied to electron microscopy and spectroscopy
NASA Astrophysics Data System (ADS)
Kruit, P.; Lenc, M.
1992-11-01
An analytical treatment of the electron's motion in a magnetic monopole field results in useful expressions for both the lens action and the mirror action of the field. Using an appropriate definition of the magnetic moment of the electron, it is shown that there is an exact conservation of this parameter in the monopole field, implying that the motion is perfectly adiabatic. This property is important when the field is used for directing Auger electrons from a target to a detector; that is, when it is used as a parallelizer in a through-the-lens detection scheme. Regarding the monopole field as an electron lens, the image position and magnification are derived for an arbitrary object position. Expressions for both the axial aberrations (chromatic and spherical) and the image aberrations (coma, field curvature, astigmatism, distortion, and transverse chromatic) are derived for an arbitrary number of intermediate images between object and final image. The chromatic aberration turns out to be independent of the number of intermediate images and the spherical aberration decreases slightly with this number. This property is important when an electron beam must be focused to a small probe in a strong magnetic field. It is shown that if a certain combination of deflectors is used in conjunction with the monopole field, an ideal swinging objective lens is obtained: All image aberrations except field curvature disappear. Designs are presented in which the monopole field is used in the objective lenses of a transmission electron microscope and a scanning electron microscope.
NASA Astrophysics Data System (ADS)
Zhang, Yibo; Wu, Yichen; Zhang, Yun; Ozcan, Aydogan
2016-06-01
Lens-free holographic microscopy can achieve wide-field imaging in a cost-effective and field-portable setup, making it a promising technique for point-of-care and telepathology applications. However, due to relatively narrow-band sources used in holographic microscopy, conventional colorization methods that use images reconstructed at discrete wavelengths, corresponding to e.g., red (R), green (G) and blue (B) channels, are subject to color artifacts. Furthermore, these existing RGB colorization methods do not match the chromatic perception of human vision. Here we present a high-color-fidelity and high-resolution imaging method, termed “digital color fusion microscopy” (DCFM), which fuses a holographic image acquired at a single wavelength with a color-calibrated image taken by a low-magnification lens-based microscope using a wavelet transform-based colorization method. We demonstrate accurate color reproduction of DCFM by imaging stained tissue sections. In particular we show that a lens-free holographic microscope in combination with a cost-effective mobile-phone-based microscope can generate color images of specimens, performing very close to a high numerical-aperture (NA) benchtop microscope that is corrected for color distortions and chromatic aberrations, also matching the chromatic response of human vision. This method can be useful for wide-field imaging needs in telepathology applications and in resource-limited settings, where whole-slide scanning microscopy systems are not available.
NASA Astrophysics Data System (ADS)
Zechmeister, M.; Reiners, A.; Amado, P. J.; Azzaro, M.; Bauer, F. F.; Béjar, V. J. S.; Caballero, J. A.; Guenther, E. W.; Hagen, H.-J.; Jeffers, S. V.; Kaminski, A.; Kürster, M.; Launhardt, R.; Montes, D.; Morales, J. C.; Quirrenbach, A.; Reffert, S.; Ribas, I.; Seifert, W.; Tal-Or, L.; Wolthoff, V.
2018-01-01
Context. The CARMENES survey is a high-precision radial velocity (RV) programme that aims to detect Earth-like planets orbiting low-mass stars. Aims: We develop least-squares fitting algorithms to derive the RVs and additional spectral diagnostics implemented in the SpEctrum Radial Velocity AnaLyser (SERVAL), a publicly available python code. Methods: We measured the RVs using high signal-to-noise templates created by coadding all available spectra of each star. We define the chromatic index as the RV gradient as a function of wavelength with the RVs measured in the echelle orders. Additionally, we computed the differential line width by correlating the fit residuals with the second derivative of the template to track variations in the stellar line width. Results: Using HARPS data, our SERVAL code achieves a RV precision at the level of 1 m/s. Applying the chromatic index to CARMENES data of the active star YZ CMi, we identify apparent RV variations induced by stellar activity. The differential line width is found to be an alternative indicator to the commonly used full width half maximum. Conclusions: We find that at the red optical wavelengths (700-900 nm) obtained by the visual channel of CARMENES, the chromatic index is an excellent tool to investigate stellar active regions and to identify and perhaps even correct for activity-induced RV variations.
Zhang, Yibo; Wu, Yichen; Zhang, Yun; Ozcan, Aydogan
2016-01-01
Lens-free holographic microscopy can achieve wide-field imaging in a cost-effective and field-portable setup, making it a promising technique for point-of-care and telepathology applications. However, due to relatively narrow-band sources used in holographic microscopy, conventional colorization methods that use images reconstructed at discrete wavelengths, corresponding to e.g., red (R), green (G) and blue (B) channels, are subject to color artifacts. Furthermore, these existing RGB colorization methods do not match the chromatic perception of human vision. Here we present a high-color-fidelity and high-resolution imaging method, termed “digital color fusion microscopy” (DCFM), which fuses a holographic image acquired at a single wavelength with a color-calibrated image taken by a low-magnification lens-based microscope using a wavelet transform-based colorization method. We demonstrate accurate color reproduction of DCFM by imaging stained tissue sections. In particular we show that a lens-free holographic microscope in combination with a cost-effective mobile-phone-based microscope can generate color images of specimens, performing very close to a high numerical-aperture (NA) benchtop microscope that is corrected for color distortions and chromatic aberrations, also matching the chromatic response of human vision. This method can be useful for wide-field imaging needs in telepathology applications and in resource-limited settings, where whole-slide scanning microscopy systems are not available. PMID:27283459
Zhang, Yibo; Wu, Yichen; Zhang, Yun; Ozcan, Aydogan
2016-06-10
Lens-free holographic microscopy can achieve wide-field imaging in a cost-effective and field-portable setup, making it a promising technique for point-of-care and telepathology applications. However, due to relatively narrow-band sources used in holographic microscopy, conventional colorization methods that use images reconstructed at discrete wavelengths, corresponding to e.g., red (R), green (G) and blue (B) channels, are subject to color artifacts. Furthermore, these existing RGB colorization methods do not match the chromatic perception of human vision. Here we present a high-color-fidelity and high-resolution imaging method, termed "digital color fusion microscopy" (DCFM), which fuses a holographic image acquired at a single wavelength with a color-calibrated image taken by a low-magnification lens-based microscope using a wavelet transform-based colorization method. We demonstrate accurate color reproduction of DCFM by imaging stained tissue sections. In particular we show that a lens-free holographic microscope in combination with a cost-effective mobile-phone-based microscope can generate color images of specimens, performing very close to a high numerical-aperture (NA) benchtop microscope that is corrected for color distortions and chromatic aberrations, also matching the chromatic response of human vision. This method can be useful for wide-field imaging needs in telepathology applications and in resource-limited settings, where whole-slide scanning microscopy systems are not available.
Joint Schemes for Physical Layer Security and Error Correction
ERIC Educational Resources Information Center
Adamo, Oluwayomi
2011-01-01
The major challenges facing resource constraint wireless devices are error resilience, security and speed. Three joint schemes are presented in this research which could be broadly divided into error correction based and cipher based. The error correction based ciphers take advantage of the properties of LDPC codes and Nordstrom Robinson code. A…
NASA Technical Reports Server (NTRS)
Merriam, Marshal L.
1987-01-01
The technique of obtaining second-order oscillation-free total -variation-diminishing (TVD), scalar difference schemes by adding a limited diffusive flux ('smoothing') to a second-order centered scheme is explored. It is shown that such schemes do not always converge to the correct physical answer. The approach presented here is to construct schemes that numerically satisfy the second law of thermodynamics on a cell-by-cell basis. Such schemes can only converge to the correct physical solution and in some cases can be shown to be TVD. An explicit scheme with this property and second-order spatial accuracy was found to have extremely restrictive time-step limitation. Switching to an implicit scheme removed the time-step limitation.
High-order flux correction/finite difference schemes for strand grids
NASA Astrophysics Data System (ADS)
Katz, Aaron; Work, Dalon
2015-02-01
A novel high-order method combining unstructured flux correction along body surfaces and high-order finite differences normal to surfaces is formulated for unsteady viscous flows on strand grids. The flux correction algorithm is applied in each unstructured layer of the strand grid, and the layers are then coupled together via a source term containing derivatives in the strand direction. Strand-direction derivatives are approximated to high-order via summation-by-parts operators for first derivatives and second derivatives with variable coefficients. We show how this procedure allows for the proper truncation error canceling properties required for the flux correction scheme. The resulting scheme possesses third-order design accuracy, but often exhibits fourth-order accuracy when higher-order derivatives are employed in the strand direction, especially for highly viscous flows. We prove discrete conservation for the new scheme and time stability in the absence of the flux correction terms. Results in two dimensions are presented that demonstrate improvements in accuracy with minimal computational and algorithmic overhead over traditional second-order algorithms.
The Charles F. Prentice Award Lecture 2005: optics of the human eye: progress and problems.
Charman, W Neil
2006-06-01
The history of measurements of ocular aberration is briefly reviewed and recent work using much-improved aberrometers and large samples of eyes is summarized. When on-axis, higher-order, monochromatic aberrations are averaged, undercorrected, positive, fourth-order spherical aberration dominates; other Zernike wavefront aberration coefficients have average values near zero. Individually, however, many eyes show substantial amounts of third-order and other fourth-order aberrations; the value of these varies idiosyncratically about zero. Most normal eyes show only small amounts of axial monochromatic aberration for photopic pupils up to around 3 mm; the limits to retinal image quality are then usually set by diffraction, uncorrected or imperfectly corrected spherocylindrical refractive error, accommodation error, and chromatic aberration. Longitudinal chromatic aberration varies very little across the population. With larger mesopic and scotopic pupils, monochromatic aberration plays a more important optical role, but overall visual performance is increasingly dominated by neural factors. Some remaining problems in measuring and modeling the eye's optical performance are discussed.
Stimulus size dependence of hue changes induced by chromatic surrounds.
Kellner, Christian Johannes; Wachtler, Thomas
2016-03-01
A chromatic surround induces a change in the perceived hue of a stimulus. This shift in hue depends on the chromatic difference between the stimulus and the surround. We investigated how chromatic induction varies with stimulus size and whether the size dependence depends on the surround hue. Subjects performed asymmetric matching of color stimuli with different sizes in surrounds of different chromaticities. Generally, induced hue shifts decreased with increasing stimulus size. This decrease was quantitatively different for different surround hues. However, when size effects were normalized to an overall induction strength, the chromatic specificity was largely reduced. The separability of inducer chromaticity and stimulus size suggests that these effects are mediated by different neural mechanisms.
Dual Telecentric Lens System For Projection Onto Tilted Toroidal Screen
NASA Technical Reports Server (NTRS)
Gold, Ronald S.; Hudyma, Russell M.
1995-01-01
System of two optical assemblies for projecting image onto tilted toroidal screen. One projection lens optimized for red and green spectral region; other for blue. Dual-channel approach offers several advantages which include: simplified color filtering, simplified chromatic aberration corrections, less complex polarizing prism arrangement, and increased throughput of blue light energy. Used in conjunction with any source of imagery, designed especially to project images formed by reflection of light from liquid-crystal light valve (LCLV).
Krause, F F; Rosenauer, A; Barthel, J; Mayer, J; Urban, K; Dunin-Borkowski, R E; Brown, H G; Forbes, B D; Allen, L J
2017-10-01
This paper addresses a novel approach to atomic resolution elemental mapping, demonstrating a method that produces elemental maps with a similar resolution to the established method of electron energy-loss spectroscopy in scanning transmission electron microscopy. Dubbed energy-filtered imaging scanning transmission electron microscopy (EFISTEM) this mode of imaging is, by the quantum mechanical principle of reciprocity, equivalent to tilting the probe in energy-filtered transmission electron microscopy (EFTEM) through a cone and incoherently averaging the results. In this paper we present a proof-of-principle EFISTEM experimental study on strontium titanate. The present approach, made possible by chromatic aberration correction, has the advantage that it provides elemental maps which are immune to spatial incoherence in the electron source, coherent aberrations in the probe-forming lens and probe jitter. The veracity of the experiment is supported by quantum mechanical image simulations, which provide an insight into the image-forming process. Elemental maps obtained in EFTEM suffer from the effect known as preservation of elastic contrast, which, for example, can lead to a given atomic species appearing to be in atomic columns where it is not to be found. EFISTEM very substantially reduces the preservation of elastic contrast and yields images which show stability of contrast with changing thickness. The experimental application is demonstrated in a proof-of-principle study on strontium titanate. Copyright © 2017 Elsevier B.V. All rights reserved.
Does the chromatic Mach bands effect exist?
Tsofe, Avital; Spitzer, Hedva; Einav, Shmuel
2009-06-30
The achromatic Mach bands effect is a well-known visual illusion, discovered over a hundred years ago. This effect has been investigated thoroughly, mainly for its brightness aspect. The existence of Chromatic Mach bands, however, has been disputed. In recent years it has been reported that Chromatic Mach bands are not perceived under controlled iso-luminance conditions. However, here we show that a variety of Chromatic Mach bands, consisting of chromatic and achromatic regions, separated by a saturation ramp, can be clearly perceived under iso-luminance and iso-brightness conditions. In this study, observers' eye movements were recorded under iso-brightness conditions. Several observers were tested for their ability to perceive the Chromatic Mach bands effect and its magnitude, across different cardinal and non-cardinal Chromatic Mach bands stimuli. A computational model of color adaptation, which predicted color induction and color constancy, successfully predicts this variation of Chromatic Mach bands. This has been tested by measuring the distance of the data points from the "achromatic point" and by calculating the shift of the data points from predicted complementary lines. The results suggest that the Chromatic Mach bands effect is a specific chromatic induction effect.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zaluzec, Nestor J.
Aberration correction in scanning/transmission electron microscopy (S/TEM) owes much to the efforts of a small dedicated group of innovators. Leading that frontier has been Prof. Harald Rose. To date his leadership and dynamic personality has spearheaded our ability to leave behind many of the limitations imposed by spherical aberration (C s) in high resolution phase contrast imaging. Following shortly behind, has been the development of chromatic aberration correction (C c) which augments those accomplishments. In this study we will review and summarize how the combination of C s/C c technology enhances our ability to conduct hyperspectral imaging and spectroscopy inmore » today's and future computationally mediated experiments in both thin as well as realistic specimens in vacuo and during in-situ/environmental experiments.« less
Zaluzec, Nestor J.
2014-11-11
Aberration correction in scanning/transmission electron microscopy (S/TEM) owes much to the efforts of a small dedicated group of innovators. Leading that frontier has been Prof. Harald Rose. To date his leadership and dynamic personality has spearheaded our ability to leave behind many of the limitations imposed by spherical aberration (C s) in high resolution phase contrast imaging. Following shortly behind, has been the development of chromatic aberration correction (C c) which augments those accomplishments. In this study we will review and summarize how the combination of C s/C c technology enhances our ability to conduct hyperspectral imaging and spectroscopy inmore » today's and future computationally mediated experiments in both thin as well as realistic specimens in vacuo and during in-situ/environmental experiments.« less
Chromatic induction from surrounding stimuli under perceptual suppression.
Horiuchi, Koji; Kuriki, Ichiro; Tokunaga, Rumi; Matsumiya, Kazumichi; Shioiri, Satoshi
2014-11-01
The appearance of colors can be affected by their spatiotemporal context. The shift in color appearance according to the surrounding colors is called color induction or chromatic induction; in particular, the shift in opponent color of the surround is called chromatic contrast. To investigate whether chromatic induction occurs even when the chromatic surround is imperceptible, we measured chromatic induction during interocular suppression. A multicolor or uniform color field was presented as the surround stimulus, and a colored continuous flash suppression (CFS) stimulus was presented to the dominant eye of each subject. The subjects were asked to report the appearance of the test field only when the stationary surround stimulus is invisible by interocular suppression with CFS. The resulting shifts in color appearance due to chromatic induction were significant even under the conditions of interocular suppression for all surround stimuli. The magnitude of chromatic induction differed with the surround conditions, and this difference was preserved regardless of the viewing conditions. The chromatic induction effect was reduced by CFS, in proportion to the magnitude of chromatic induction under natural (i.e., no-CFS) viewing conditions. According to an analysis with linear model fitting, we revealed the presence of at least two kinds of subprocesses for chromatic induction that reside at higher and lower levels than the site of interocular suppression. One mechanism yields different degrees of chromatic induction based on the complexity of the surround, which is unaffected by interocular suppression, while the other mechanism changes its output with interocular suppression acting as a gain control. Our results imply that the total chromatic induction effect is achieved via a linear summation of outputs from mechanisms that reside at different levels of visual processing.
Three-dimensional shape perception from chromatic orientation flows
Zaidi, Qasim; Li, Andrea
2010-01-01
The role of chromatic information in 3-D shape perception is controversial. We resolve this controversy by showing that chromatic orientation flows are sufficient for accurate perception of 3-D shape. Chromatic flows required less cone contrast to convey shape than did achromatic flows, thus ruling out luminance artifacts as a problem. Luminance artifacts were also ruled out by a protanope’s inability to see 3-D shape from chromatic flows. Since chromatic orientation flows can only be extracted from retinal images by neurons that are responsive to color modulations and selective for orientation, the psychophysical results also resolve the controversy over the existence of such neurons. In addition, we show that identification of 3-D shapes from chromatic flows can be masked by luminance modulations, indicating that it is subserved by orientation-tuned neurons sensitive to both chromatic and luminance modulations. PMID:16961963
Thick lens chromatic effective focal length variation versus bending
NASA Astrophysics Data System (ADS)
Sparrold, Scott
2017-11-01
Longitudinal chromatic aberration (LCA) can limit the optical performance in refractive optical systems. Understanding a singlet's chromatic change of effective focal leads to insights and methods to control LCA. Long established, first order theory, shows the chromatic change in focal length for a zero thickness lens is proportional to it's focal length divided by the lens V number or inverse dispersion. This work presents the derivation of an equation for a thick singlet's chromatic change in effective focal length as a function of center thickness, t, dispersion, V, index of refraction, n, and the Coddington shape factor, K. A plot of bending versus chromatic focal length variation is presented. Lens thickness does not influence chromatic variation of effective focal length for a convex plano or plano convex lens. A lens's center thickness'influence on chromatic focal length variation is more pronounced for lower indices of refraction.
Chromatic induction in space and time.
Coia, Andrew J; Shevell, Steven K
2018-04-01
The color appearance of a light depends on variation in the complete visual field over both space and time. In the spatial domain, a chromatic stimulus within a patterned chromatic surround can appear a different hue than the same stimulus within a uniform surround. In the temporal domain, a stimulus presented as an element of a continuously changing chromaticity can appear a different color compared to the identical stimulus, presented simultaneously but viewed alone. This is the flash-lag effect for color, which has an analog in the domain of motion: a pulsed object seen alone can appear to lag behind an identical pulsed object that is an element of a motion sequence. Studies of the flash-lag effect for motion have considered whether it is mediated by a neural representation for the moving physical stimulus or, alternatively, for the perceived motion. The current study addresses this question for the flash-lag effect for color by testing whether the color flash lag depends on a representation of only the changing chromatic stimulus or, alternatively, its color percept, which can be altered by chromatic induction. baseline measurements for spatial chromatic induction determined the chromaticity of a flashed ring within a uniform surround that matched a flashed ring within a patterned surround. Baseline measurements for the color flash-lag effect determined the chromaticity of a pulsed ring presented alone (within a uniform surround) that matched a pulsed ring presented in a sequence of changing chromaticity over time (also within a uniform surround). Finally, the main experiments combined chromatic induction from a patterned surround and the flash-lag effect, in three conditions: (1) both the changing and pulsed rings were within a patterned chromatic surround; (2) the changing ring was within a patterned surround and the pulsed ring within a uniform surround; and (3) the changing ring was within a uniform surround and the pulsed ring within a patterned surround. the flash-lag measurements for a changing chromaticity were affected by perceptual changes induced by the surrounding chromatic pattern. Thus, the color shifts induced by a chromatic surround are incorporated in the neural representation mediating the flash-lag effect for color.
Replacement of chromates in paints and corrosion protection systems [Stage 1
DOT National Transportation Integrated Search
2004-05-01
This technical report presents the first stage results of a multi-year project to develop chromate-free paints and corrosion protection systems. Chromate coatings and chromate-containing paints are very effective in providing corrosion resistance and...
Wang, Xiaohua; Li, Xi; Rong, Mingzhe; Xie, Dingli; Ding, Dan; Wang, Zhixiang
2017-01-01
The ultra-high frequency (UHF) method is widely used in insulation condition assessment. However, UHF signal processing algorithms are complicated and the size of the result is large, which hinders extracting features and recognizing partial discharge (PD) patterns. This article investigated the chromatic methodology that is novel in PD detection. The principle of chromatic methodologies in color science are introduced. The chromatic processing represents UHF signals sparsely. The UHF signals obtained from PD experiments were processed using chromatic methodology and characterized by three parameters in chromatic space (H, L, and S representing dominant wavelength, signal strength, and saturation, respectively). The features of the UHF signals were studied hierarchically. The results showed that the chromatic parameters were consistent with conventional frequency domain parameters. The global chromatic parameters can be used to distinguish UHF signals acquired by different sensors, and they reveal the propagation properties of the UHF signal in the L-shaped gas-insulated switchgear (GIS). Finally, typical PD defect patterns had been recognized by using novel chromatic parameters in an actual GIS tank and good performance of recognition was achieved. PMID:28106806
Wang, Xiaohua; Li, Xi; Rong, Mingzhe; Xie, Dingli; Ding, Dan; Wang, Zhixiang
2017-01-18
The ultra-high frequency (UHF) method is widely used in insulation condition assessment. However, UHF signal processing algorithms are complicated and the size of the result is large, which hinders extracting features and recognizing partial discharge (PD) patterns. This article investigated the chromatic methodology that is novel in PD detection. The principle of chromatic methodologies in color science are introduced. The chromatic processing represents UHF signals sparsely. The UHF signals obtained from PD experiments were processed using chromatic methodology and characterized by three parameters in chromatic space ( H , L , and S representing dominant wavelength, signal strength, and saturation, respectively). The features of the UHF signals were studied hierarchically. The results showed that the chromatic parameters were consistent with conventional frequency domain parameters. The global chromatic parameters can be used to distinguish UHF signals acquired by different sensors, and they reveal the propagation properties of the UHF signal in the L-shaped gas-insulated switchgear (GIS). Finally, typical PD defect patterns had been recognized by using novel chromatic parameters in an actual GIS tank and good performance of recognition was achieved.
Removal characteristics of anionic metals by micellar-enhanced ultrafiltration.
Baek, Kitae; Kim, Bo-Kyong; Cho, Hyun-Jeong; Yang, Ji-Won
2003-05-30
Surfactant-based separation of Fe(CN)(6)(3-) and CrO(4)(2-) using regenerated cellulose membrane was studied in order to assess the potential of micellar-enhanced ultrafiltration for the remediation of wastewater or groundwater polluted with ferriccyanide and chromate. In the ferriccyanide/octadecylamine acetate (ODA) and chromate/ODA systems, removal of ferriccyanide increased from 73 to 92% and to 98%, and that of chromate from 64 to 97% and to >99.9% as the molar ratio of ODA to ferriccyanide and to chromate increased from 1 to 2 and to 3, respectively. In the ferriccyanide/chromate/ODA system, while the removal of ferriccyanide increased from 62 to 72% and to 93%, the removal of chromate from 20 to 38% and to 68% as the molar ratio of ferriccyanide:chromate:ODA increased from 1:1:1 to 1:1:2 and to 1:1:4, respectively. With the molar ratio of 1:1:6, the removal was >99.9 and 98% for chromate and ferriccyanide, respectively. Ferriccyanide ions were more easily bound to ODA micelles because the binding power of ferriccyanide was greater than that of chromate.
NASA Technical Reports Server (NTRS)
Merriam, Marshal L.
1986-01-01
The technique of obtaining second order, oscillation free, total variation diminishing (TVD), scalar difference schemes by adding a limited diffusion flux (smoothing) to a second order centered scheme is explored. It is shown that such schemes do not always converge to the correct physical answer. The approach presented here is to construct schemes that numerically satisfy the second law of thermodynamics on a cell by cell basis. Such schemes can only converge to the correct physical solution and in some cases can be shown to be TVD. An explicit scheme with this property and second order spatial accuracy was found to have an extremely restrictive time step limitation (Delta t less than Delta x squared). Switching to an implicit scheme removed the time step limitation.
MacDonald, M. Ethan; Forkert, Nils D.; Pike, G. Bruce; Frayne, Richard
2016-01-01
Purpose Volume flow rate (VFR) measurements based on phase contrast (PC)-magnetic resonance (MR) imaging datasets have spatially varying bias due to eddy current induced phase errors. The purpose of this study was to assess the impact of phase errors in time averaged PC-MR imaging of the cerebral vasculature and explore the effects of three common correction schemes (local bias correction (LBC), local polynomial correction (LPC), and whole brain polynomial correction (WBPC)). Methods Measurements of the eddy current induced phase error from a static phantom were first obtained. In thirty healthy human subjects, the methods were then assessed in background tissue to determine if local phase offsets could be removed. Finally, the techniques were used to correct VFR measurements in cerebral vessels and compared statistically. Results In the phantom, phase error was measured to be <2.1 ml/s per pixel and the bias was reduced with the correction schemes. In background tissue, the bias was significantly reduced, by 65.6% (LBC), 58.4% (LPC) and 47.7% (WBPC) (p < 0.001 across all schemes). Correction did not lead to significantly different VFR measurements in the vessels (p = 0.997). In the vessel measurements, the three correction schemes led to flow measurement differences of -0.04 ± 0.05 ml/s, 0.09 ± 0.16 ml/s, and -0.02 ± 0.06 ml/s. Although there was an improvement in background measurements with correction, there was no statistical difference between the three correction schemes (p = 0.242 in background and p = 0.738 in vessels). Conclusions While eddy current induced phase errors can vary between hardware and sequence configurations, our results showed that the impact is small in a typical brain PC-MR protocol and does not have a significant effect on VFR measurements in cerebral vessels. PMID:26910600
Performance analysis of a cascaded coding scheme with interleaved outer code
NASA Technical Reports Server (NTRS)
Lin, S.
1986-01-01
A cascaded coding scheme for a random error channel with a bit-error rate is analyzed. In this scheme, the inner code C sub 1 is an (n sub 1, m sub 1l) binary linear block code which is designed for simultaneous error correction and detection. The outer code C sub 2 is a linear block code with symbols from the Galois field GF (2 sup l) which is designed for correcting both symbol errors and erasures, and is interleaved with a degree m sub 1. A procedure for computing the probability of a correct decoding is presented and an upper bound on the probability of a decoding error is derived. The bound provides much better results than the previous bound for a cascaded coding scheme with an interleaved outer code. Example schemes with inner codes ranging from high rates to very low rates are evaluated. Several schemes provide extremely high reliability even for very high bit-error rates say 10 to the -1 to 10 to the -2 power.
Study of chromatic adaptation via neutral white matches on different viewing media.
Zhai, Qiyan; Luo, Ming R
2018-03-19
Two experiments were carried out to study the neutral white and the chromatic adaptation in human vision and color science. After matching neutral whites under different illuminants using both surface and self-luminous colors, the result were used to verify the previous study about the chromatic adaptation. Not all the white illuminants were found neutral even the adaptation time is long. The baseline illuminant of the two-step chromatic adaptation transform was found as the illuminant with the same chromaticity of the neutral white under it and depended on viewing medium in the present study. The results were also used as corresponding colors to derive models of the effective degree of chromatic adaptation, which were found highly associated with the chromaticity of the adapting illuminant.
An analog gamma correction scheme for high dynamic range CMOS logarithmic image sensors.
Cao, Yuan; Pan, Xiaofang; Zhao, Xiaojin; Wu, Huisi
2014-12-15
In this paper, a novel analog gamma correction scheme with a logarithmic image sensor dedicated to minimize the quantization noise of the high dynamic applications is presented. The proposed implementation exploits a non-linear voltage-controlled-oscillator (VCO) based analog-to-digital converter (ADC) to perform the gamma correction during the analog-to-digital conversion. As a result, the quantization noise does not increase while the same high dynamic range of logarithmic image sensor is preserved. Moreover, by combining the gamma correction with the analog-to-digital conversion, the silicon area and overall power consumption can be greatly reduced. The proposed gamma correction scheme is validated by the reported simulation results and the experimental results measured for our designed test structure, which is fabricated with 0.35 μm standard complementary-metal-oxide-semiconductor (CMOS) process.
Autonomous Quantum Error Correction with Application to Quantum Metrology
NASA Astrophysics Data System (ADS)
Reiter, Florentin; Sorensen, Anders S.; Zoller, Peter; Muschik, Christine A.
2017-04-01
We present a quantum error correction scheme that stabilizes a qubit by coupling it to an engineered environment which protects it against spin- or phase flips. Our scheme uses always-on couplings that run continuously in time and operates in a fully autonomous fashion without the need to perform measurements or feedback operations on the system. The correction of errors takes place entirely at the microscopic level through a build-in feedback mechanism. Our dissipative error correction scheme can be implemented in a system of trapped ions and can be used for improving high precision sensing. We show that the enhanced coherence time that results from the coupling to the engineered environment translates into a significantly enhanced precision for measuring weak fields. In a broader context, this work constitutes a stepping stone towards the paradigm of self-correcting quantum information processing.
An Analog Gamma Correction Scheme for High Dynamic Range CMOS Logarithmic Image Sensors
Cao, Yuan; Pan, Xiaofang; Zhao, Xiaojin; Wu, Huisi
2014-01-01
In this paper, a novel analog gamma correction scheme with a logarithmic image sensor dedicated to minimize the quantization noise of the high dynamic applications is presented. The proposed implementation exploits a non-linear voltage-controlled-oscillator (VCO) based analog-to-digital converter (ADC) to perform the gamma correction during the analog-to-digital conversion. As a result, the quantization noise does not increase while the same high dynamic range of logarithmic image sensor is preserved. Moreover, by combining the gamma correction with the analog-to-digital conversion, the silicon area and overall power consumption can be greatly reduced. The proposed gamma correction scheme is validated by the reported simulation results and the experimental results measured for our designed test structure, which is fabricated with 0.35 μm standard complementary-metal-oxide-semiconductor (CMOS) process. PMID:25517692
Holmes, Amie L.; Wise, Sandra S.; Pelsue, Stephen C.; Aboueissa, AbouEl-Makarim; Lingle, Wilma; Salisbury, Jeffery; Gallagher, Jamie; Wise, John Pierce
2010-01-01
Hexavalent chromium (Cr(VI)) compounds are known human lung carcinogens. Solubility plays an important role in its carcinogenicity with the particulate or insoluble form being the most potent. Of the particulate Cr(VI) compounds, zinc chromate appears to be the most potent carcinogen, however, very few studies have investigated its carcinogenic mechanism. In this study, we investigated the ability of chronic exposure to zinc chromate to induce numerical chromosome instability. We found no increase in aneuploidy after a 24 hour exposure to zinc chromate, but with more chronic exposures, zinc chromate induced concentration- and time-dependent increases in aneuploidy in the form of hypodiploidy, hyperdiploidy and tetraploidy. Zinc chromate also induced centrosome amplification in a concentration- and time-dependent manner in both interphase and mitotic cells after chronic exposure, producing cells with centriolar defects. Further, chronic exposure to zinc chromate induced concentration- and time-dependent increases in spindle assembly checkpoint bypass with increases in centromere spreading, premature centromere division and premature anaphase. Lastly, we found that chronic exposure to zinc chromate induced a G2 arrest. All together, these data indicate that zinc chromate can induce chromosome instability after prolonged exposures. PMID:20030412
KINETICS OF CHROMATE REDUCTION DURING NAPHTHALENE DEGRADATION IN A MIXED CULTURE
A mixed culture of Bacillus sp. K1 and Sphingomonas paucimobilis EPA 505 was exposed to chromate and naphthalene. Batch experiments showed that chromate was reduced and naphthalene was degraded by the mixed culture. Chromate reduction occurred initially at a high rate followed by...
Accounting for Chromatic Atmospheric Effects on Barycentric Corrections
NASA Astrophysics Data System (ADS)
Blackman, Ryan T.; Szymkowiak, Andrew E.; Fischer, Debra A.; Jurgenson, Colby A.
2017-03-01
Atmospheric effects on stellar radial velocity measurements for exoplanet discovery and characterization have not yet been fully investigated for extreme precision levels. We carry out calculations to determine the wavelength dependence of barycentric corrections across optical wavelengths, due to the ubiquitous variations in air mass during observations. We demonstrate that radial velocity errors of at least several cm s-1 can be incurred if the wavelength dependence is not included in the photon-weighted barycentric corrections. A minimum of four wavelength channels across optical spectra (380-680 nm) are required to account for this effect at the 10 cm s-1 level, with polynomial fits of the barycentric corrections applied to cover all wavelengths. Additional channels may be required in poor observing conditions or to avoid strong telluric absorption features. Furthermore, consistent flux sampling on the order of seconds throughout the observation is necessary to ensure that accurate photon weights are obtained. Finally, we describe how a multiple-channel exposure meter will be implemented in the EXtreme PREcision Spectrograph (EXPRES).
Yamada, Haruyasu; Abe, Osamu; Shizukuishi, Takashi; Kikuta, Junko; Shinozaki, Takahiro; Dezawa, Ko; Nagano, Akira; Matsuda, Masayuki; Haradome, Hiroki; Imamura, Yoshiki
2014-01-01
Diffusion imaging is a unique noninvasive tool to detect brain white matter trajectory and integrity in vivo. However, this technique suffers from spatial distortion and signal pileup or dropout originating from local susceptibility gradients and eddy currents. Although there are several methods to mitigate these problems, most techniques can be applicable either to susceptibility or eddy-current induced distortion alone with a few exceptions. The present study compared the correction efficiency of FSL tools, "eddy_correct" and the combination of "eddy" and "topup" in terms of diffusion-derived fractional anisotropy (FA). The brain diffusion images were acquired from 10 healthy subjects using 30 and 60 directions encoding schemes based on the electrostatic repulsive forces. For the 30 directions encoding, 2 sets of diffusion images were acquired with the same parameters, except for the phase-encode blips which had opposing polarities along the anteroposterior direction. For the 60 directions encoding, non-diffusion-weighted and diffusion-weighted images were obtained with forward phase-encoding blips and non-diffusion-weighted images with the same parameter, except for the phase-encode blips, which had opposing polarities. FA images without and with distortion correction were compared in a voxel-wise manner with tract-based spatial statistics. We showed that images corrected with eddy and topup possessed higher FA values than images uncorrected and corrected with eddy_correct with trilinear (FSL default setting) or spline interpolation in most white matter skeletons, using both encoding schemes. Furthermore, the 60 directions encoding scheme was superior as measured by increased FA values to the 30 directions encoding scheme, despite comparable acquisition time. This study supports the combination of eddy and topup as a superior correction tool in diffusion imaging rather than the eddy_correct tool, especially with trilinear interpolation, using 60 directions encoding scheme.
Focal plane wavefront sensor achromatization: The multireference self-coherent camera
NASA Astrophysics Data System (ADS)
Delorme, J. R.; Galicher, R.; Baudoz, P.; Rousset, G.; Mazoyer, J.; Dupuis, O.
2016-04-01
Context. High contrast imaging and spectroscopy provide unique constraints for exoplanet formation models as well as for planetary atmosphere models. But this can be challenging because of the planet-to-star small angular separation (<1 arcsec) and high flux ratio (>105). Recently, optimized instruments like VLT/SPHERE and Gemini/GPI were installed on 8m-class telescopes. These will probe young gazeous exoplanets at large separations (≳1 au) but, because of uncalibrated phase and amplitude aberrations that induce speckles in the coronagraphic images, they are not able to detect older and fainter planets. Aims: There are always aberrations that are slowly evolving in time. They create quasi-static speckles that cannot be calibrated a posteriori with sufficient accuracy. An active correction of these speckles is thus needed to reach very high contrast levels (>106-107). This requires a focal plane wavefront sensor. Our team proposed a self coherent camera, the performance of which was demonstrated in the laboratory. As for all focal plane wavefront sensors, these are sensitive to chromatism and we propose an upgrade that mitigates the chromatism effects. Methods: First, we recall the principle of the self-coherent camera and we explain its limitations in polychromatic light. Then, we present and numerically study two upgrades to mitigate chromatism effects: the optical path difference method and the multireference self-coherent camera. Finally, we present laboratory tests of the latter solution. Results: We demonstrate in the laboratory that the multireference self-coherent camera can be used as a focal plane wavefront sensor in polychromatic light using an 80 nm bandwidth at 640 nm (bandwidth of 12.5%). We reach a performance that is close to the chromatic limitations of our bench: 1σ contrast of 4.5 × 10-8 between 5 and 17 λ0/D. Conclusions: The performance of the MRSCC is promising for future high-contrast imaging instruments that aim to actively minimize the speckle intensity so as to detect and spectrally characterize faint old or light gaseous planets.
Color-motion feature-binding errors are mediated by a higher-order chromatic representation
Shevell, Steven K.; Wang, Wei
2017-01-01
Peripheral and central moving objects of the same color may be perceived to move in the same direction even though peripheral objects have a different true direction of motion [Nature 429, 262 (2004)]. The perceived, illusory direction of peripheral motion is a color-motion feature-binding error. Recent work shows that such binding errors occur even without an exact color match between central and peripheral objects, and, moreover, the frequency of the binding errors in the periphery declines as the chromatic difference increases between the central and peripheral objects [J. Opt. Soc. Am. A 31, A60 (2014)]. This change in the frequency of binding errors with the chromatic difference raises the general question of the chromatic representation from which the difference is determined. Here, basic properties of the chromatic representation are tested to discover whether it depends on independent chromatic differences on the l and the s cardinal axes or, alternatively, on a more specific higher-order chromatic representation. Experimental tests compared the rate of feature-binding errors when the central and peripheral colors had the identical s chromaticity (so zero difference in s) and a fixed magnitude of l difference, while varying the identical s level in center and periphery (thus always keeping the s difference at zero). A chromatic representation based on independent l and s differences would result in the same frequency of color-motion binding errors at every s level. The results are contrary to this prediction, thus showing that the chromatic representation at the level of color-motion feature binding depends on a higherorder chromatic mechanism. PMID:26974945
Miniature hybrid optical imaging lens
Sitter, Jr., David N.; Simpson, Marc L.
1997-01-01
A miniature lens system that corrects for imaging and chromatic aberrations, the lens system being fabricated from primarily commercially-available components. A first element at the input to a lens housing is an aperture stop. A second optical element is a refractive element with a diffractive element closely coupled to, or formed a part of, the rear surface of the refractive element. Spaced closely to the diffractive element is a baffle to limit the area of the image, and this is closely followed by a second refractive lens element to provide the final correction. The image, corrected for aberrations exits the last lens element to impinge upon a detector plane were is positioned any desired detector array. The diffractive element is fabricated according to an equation that includes, as variables, the design wavelength, the index of refraction and the radius from an optical axis of the lens system components.
Miniature hybrid optical imaging lens
Sitter, D.N. Jr.; Simpson, M.L.
1997-10-21
A miniature lens system that corrects for imaging and chromatic aberrations is disclosed, the lens system being fabricated from primarily commercially-available components. A first element at the input to a lens housing is an aperture stop. A second optical element is a refractive element with a diffractive element closely coupled to, or formed a part of, the rear surface of the refractive element. Spaced closely to the diffractive element is a baffle to limit the area of the image, and this is closely followed by a second refractive lens element to provide the final correction. The image, corrected for aberrations exits the last lens element to impinge upon a detector plane were is positioned any desired detector array. The diffractive element is fabricated according to an equation that includes, as variables, the design wavelength, the index of refraction and the radius from an optical axis of the lens system components. 2 figs.
A reference tristimulus colorimeter
NASA Astrophysics Data System (ADS)
Eppeldauer, George P.
2002-06-01
A reference tristimulus colorimeter has been developed at NIST with a transmission-type silicon trap detector (1) and four temperature-controlled filter packages to realize the Commission Internationale de l'Eclairage (CIE) x(λ), y(λ) and z(λ) color matching functions (2). Instead of lamp standards, high accuracy detector standards are used for the colorimeter calibration. A detector-based calibration procedure is being suggested for tristimulus colorimeters wehre the absolute spectral responsivity of the tristimulus channels is determined. Then, color (spectral) correct and peak (amplitude) normalization are applied to minimize uncertainties caused by the imperfect realizations of the CIE functions. As a result of the corrections, the chromaticity coordinates of stable light sources with different spectral power distributions can be measured with uncertainties less than 0.0005 (k=1).
Comparing multilayer brain networks between groups: Introducing graph metrics and recommendations.
Mandke, Kanad; Meier, Jil; Brookes, Matthew J; O'Dea, Reuben D; Van Mieghem, Piet; Stam, Cornelis J; Hillebrand, Arjan; Tewarie, Prejaas
2018-02-01
There is an increasing awareness of the advantages of multi-modal neuroimaging. Networks obtained from different modalities are usually treated in isolation, which is however contradictory to accumulating evidence that these networks show non-trivial interdependencies. Even networks obtained from a single modality, such as frequency-band specific functional networks measured from magnetoencephalography (MEG) are often treated independently. Here, we discuss how a multilayer network framework allows for integration of multiple networks into a single network description and how graph metrics can be applied to quantify multilayer network organisation for group comparison. We analyse how well-known biases for single layer networks, such as effects of group differences in link density and/or average connectivity, influence multilayer networks, and we compare four schemes that aim to correct for such biases: the minimum spanning tree (MST), effective graph resistance cost minimisation, efficiency cost optimisation (ECO) and a normalisation scheme based on singular value decomposition (SVD). These schemes can be applied to the layers independently or to the multilayer network as a whole. For correction applied to whole multilayer networks, only the SVD showed sufficient bias correction. For correction applied to individual layers, three schemes (ECO, MST, SVD) could correct for biases. By using generative models as well as empirical MEG and functional magnetic resonance imaging (fMRI) data, we further demonstrated that all schemes were sensitive to identify network topology when the original networks were perturbed. In conclusion, uncorrected multilayer network analysis leads to biases. These biases may differ between centres and studies and could consequently lead to unreproducible results in a similar manner as for single layer networks. We therefore recommend using correction schemes prior to multilayer network analysis for group comparisons. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Chao, Luo
2015-11-01
In this paper, a novel digital secure communication scheme is firstly proposed. Different from the usual secure communication schemes based on chaotic synchronization, the proposed scheme employs asynchronous communication which avoids the weakness of synchronous systems and is susceptible to environmental interference. Moreover, as to the transmission errors and data loss in the process of communication, the proposed scheme has the ability to be error-checking and error-correcting in real time. In order to guarantee security, the fractional-order complex chaotic system with the shifting of order is utilized to modulate the transmitted signal, which has high nonlinearity and complexity in both frequency and time domains. The corresponding numerical simulations demonstrate the effectiveness and feasibility of the scheme.
2001-02-01
yield chromaticities typical of the blues observed in clear daytime skies. Thus none of our measurements re- flect the far wider chromaticity gamut ...y 5 20.24770 1 2.72203x 2 2.77935x2. (1) The chromaticity gamut of our experimental clear-sky measurements is broader than earlier ones,15–28 despite...chromaticity curves in Figs. 4–7 are typical of those measured on many other days. Not surprisingly, as h0 decreases, the chromaticity gamut measured
Cooper, Bonnie; Lee, Barry B
2014-04-01
Here we test interactions of luminance and chromatic input to spatial hyperacuity mechanisms. First, we tested alignment of luminance and chromatic gratings matched or mismatched in contrast polarity or grating type. Thresholds with matched gratings were low while all mismatched pairs were elevated. Second, we determined alignment acuity as a function of luminance or chromatic contrast alone or in the presence of constant contrast components of the other type. For in-phase components, performance followed the envelope of the more sensitive mechanism. However, polarity reversals revealed an asymmetric effect for luminance and chromatic conditions, which suggested that luminance can override chromatic mechanisms in hyperacuity; we interpret these findings in the context of spatial mechanisms.
NASA Astrophysics Data System (ADS)
Zhu, Zihang; Zhao, Shanghong; Yao, Zhoushi; Tan, Qinggui; Li, Yongjun; Chu, Xingchun; Shi, Lei; Hou, Rui
2012-11-01
We propose a novel optical carrier suppression (OCS) millimeter-wave generation scheme with data carried only by one sideband using a dual-drive Mach-Zehnder modulator (MZM) in radio-over-fiber system, and the transmission performance is also investigated. As the signal is transmitted along the fiber, there is no time shifting of the codes caused by chromatic dispersion. Simulation results show that the eye diagram keeps open and clear even when the optical millimeter-waves are transmitted over 110 km and the power penalty is about 1.9 dB after fiber transmission distance of 60 km. Furthermore, due to the +1 order sideband carrying no data, a full duplex radio-over-fiber link based on wavelength reuse is also built to simplify the base station. The bidirectional 2.5 Gbit/s data is successfully transmitted over a 40 km standard single mode fiber with less than 0.8 dB power penalty in the simulation. Both theoretical analysis and simulation results show that our scheme is feasible and we can obtain a simple cost-efficient configuration and good performance over long-distance transmission.
NASA Astrophysics Data System (ADS)
Elliott, Drew; Scime, Earl; Short, Zachary
2016-10-01
A two-photon absorption laser induced fluorescence diagnostic has been developed for measuring neutrals in fusion plasmas. Implementation of this diagnostic on the HIT-SI3 spheromak has demonstrated the sensitivity of the diagnostic and shown that measurements taken over several plasma pulses are possible. These measurements yielded an unexpected loss of signal when complex collection optics were utilized. Simulations show that this loss of signal can be explained by chromatic aberrations caused by the disparate Kr and D emission. This loss of signal has been addressed with the development of a new calibration scheme involving xenon gas. The Xe calibration scheme emission occurs at 656.00 nm while the deuterium emission is 656.09 nm. This nearly identical emission allows for advanced optical techniques such as confocal collection/injection and spatial filtering to be employed without loss of signal. Spatial filtering has been demonstrated to decrease noise while improving measurement localization, while confocal collection/injection allows for probing and measuring to occur through one viewport. The Xe scheme also allows for a Doppler-free hydrogen measurement. Doppler-free measurements eliminate the need to scan the laser spectrally thus greatly increasing the rate of measurement.
The Verriest Lecture: Color lessons from space, time, and motion
Shevell, Steven K.
2012-01-01
The appearance of a chromatic stimulus depends on more than the wavelengths composing it. The scientific literature has countless examples showing that spatial and temporal features of light influence the colors we see. Studying chromatic stimuli that vary over space, time or direction of motion has a further benefit beyond predicting color appearance: the unveiling of otherwise concealed neural processes of color vision. Spatial or temporal stimulus variation uncovers multiple mechanisms of brightness and color perception at distinct levels of the visual pathway. Spatial variation in chromaticity and luminance can change perceived three-dimensional shape, an example of chromatic signals that affect a percept other than color. Chromatic objects in motion expose the surprisingly weak link between the chromaticity of objects and their physical direction of motion, and the role of color in inducing an illusory motion direction. Space, time and motion – color’s colleagues – reveal the richness of chromatic neural processing. PMID:22330398
Cement-Induced Chromate Occupational Allergic Contact Dermatitis.
Kridin, Khalaf; Bergman, Reuven; Khamaisi, Mogher; Zelber-Sagi, Shira; Weltfriend, Sara
2016-01-01
Hexavalent chromium in cement is a common cause of occupational allergic contact dermatitis (OACD). Analysis of patch test data during 1999 to 2013 was done. Patients with cement-induced chromate OACD filled the Dermatology Life Quality Index, graded 1 to 5. Of 4846 consecutive patients who were patch tested, 146 (3%) were chromate-sensitive. Of 46 (31.5%) who presented with chromate OACD, 27 (59%) had cement-induced chromate OACD. The proportion of chromate-sensitive patients with clinically relevant cement exposure increased from 7.7% in 2002 to 2004 to 28.7% in 2011 to 2013 (P = 0.04). The median age of presentation was younger than for other chromate-sensitive patients (32 vs 42 years). Hand eczema (88.9%) was the most frequent clinical presentation. Of the 27 with cement-induced chromate OACD, 21 (77.8%) had ongoing dermatitis at the time of the review. Although 14/27 (51.9%) changed their occupation to avoid exposure to cement, symptoms persisted in 9/14 (64.3%). Prolonged exposure to cement before development of symptoms was associated with chronicity. All the symptomatic patients experienced at least a moderate effect on their quality of life (grade 3 or higher on the Dermatology Life Quality Index). We recommend the adoption of the European legislation in Israel, to reduce the prevalence of chromate OACD from cement.
The effect of chromatic and luminance information on reaction times.
O'Donell, Beatriz M; Barraza, Jose F; Colombo, Elisa M
2010-07-01
We present a series of experiments exploring the effect of chromaticity on reaction time (RT) for a variety of stimulus conditions, including chromatic and luminance contrast, luminance, and size. The chromaticity of these stimuli was varied along a series of vectors in color space that included the two chromatic-opponent-cone axes, a red-green (L-M) axis and a blue-yellow [S - (L + M)] axis, and intermediate noncardinal orientations, as well as the luminance axis (L + M). For Weber luminance contrasts above 10-20%, RTs tend to the same asymptote, irrespective of chromatic direction. At lower luminance contrast, the addition of chromatic information shortens the RT. RTs are strongly influenced by stimulus size when the chromatic stimulus is modulated along the [S - (L + M)] pathway and by stimulus size and adaptation luminance for the (L-M) pathway. RTs are independent of stimulus size for stimuli larger than 0.5 deg. Data are modeled with a modified version of Pieron's formula with an exponent close to 2, in which the stimulus intensity term is replaced by a factor that considers the relative effects of chromatic and achromatic information, as indexed by the RMS (square-root of the cone contrast) value at isoluminance and the Weber luminance contrast, respectively. The parameters of the model reveal how RT is linked to stimulus size, chromatic channels, and adaptation luminance and how they can be interpreted in terms of two chromatic mechanisms. This equation predicts that, for isoluminance, RTs for a stimulus lying on the S-cone pathway are higher than those for a stimulus lying on the L-M-cone pathway, for a given RMS cone contrast. The equation also predicts an asymptotic trend to the RT for an achromatic stimulus when the luminance contrast is sufficiently large.
Color-motion feature-binding errors are mediated by a higher-order chromatic representation.
Shevell, Steven K; Wang, Wei
2016-03-01
Peripheral and central moving objects of the same color may be perceived to move in the same direction even though peripheral objects have a different true direction of motion [Nature429, 262 (2004)10.1038/429262a]. The perceived, illusory direction of peripheral motion is a color-motion feature-binding error. Recent work shows that such binding errors occur even without an exact color match between central and peripheral objects, and, moreover, the frequency of the binding errors in the periphery declines as the chromatic difference increases between the central and peripheral objects [J. Opt. Soc. Am. A31, A60 (2014)JOAOD60740-323210.1364/JOSAA.31.000A60]. This change in the frequency of binding errors with the chromatic difference raises the general question of the chromatic representation from which the difference is determined. Here, basic properties of the chromatic representation are tested to discover whether it depends on independent chromatic differences on the l and the s cardinal axes or, alternatively, on a more specific higher-order chromatic representation. Experimental tests compared the rate of feature-binding errors when the central and peripheral colors had the identical s chromaticity (so zero difference in s) and a fixed magnitude of l difference, while varying the identical s level in center and periphery (thus always keeping the s difference at zero). A chromatic representation based on independent l and s differences would result in the same frequency of color-motion binding errors at everyslevel. The results are contrary to this prediction, thus showing that the chromatic representation at the level of color-motion feature binding depends on a higher-order chromatic mechanism.
Krawic, Casey; Luczak, Michal W; Zhitkovich, Anatoly
2017-09-18
Inhalation of soluble chromium(VI) is firmly linked with higher risks of lung cancer in humans. However, comparative studies in rats have found a high lung tumorigenicity for moderately soluble chromates but no tumors for highly soluble chromates. These major species differences remain unexplained. We investigated the impact of extracellular reducers on responses of human and rat lung epithelial cells to different Cr(VI) forms. Extracellular reduction of Cr(VI) is a detoxification process, and rat and human lung lining fluids contain different concentrations of ascorbate and glutathione. We found that reduction of chromate anions in simulated lung fluids was principally driven by ascorbate with only minimal contribution from glutathione. The addition of 500 μM ascorbate (∼rat lung fluid concentration) to culture media strongly inhibited cellular uptake of chromate anions and completely prevented their cytotoxicity even at otherwise lethal doses. While proportionally less effective, 50 μM extracellular ascorbate (∼human lung fluid concentration) also decreased uptake of chromate anions and their cytotoxicity. In comparison to chromate anions, uptake and cytotoxicity of respirable particles of moderately soluble CaCrO 4 and SrCrO 4 were much less sensitive to suppression by extracellular ascorbate, especially during early exposure times and in primary bronchial cells. In the absence of extracellular ascorbate, chromate anions and CaCrO 4 /SrCrO 4 particles produced overall similar levels of DNA double-stranded breaks, with less soluble particles exhibiting a slower rate of breakage. Our results indicate that a gradual extracellular dissolution and a rapid internalization of calcium chromate and strontium chromate particles makes them resistant to detoxification outside the cells, which is extremely effective for chromate anions in the rat lung fluid. The detoxification potential of the human lung fluid is significant but much lower and insufficient to provide a threshold-type dose dependence for soluble chromates.
APC-PC Combined Scheme in Gilbert Two State Model: Proposal and Study
NASA Astrophysics Data System (ADS)
Bulo, Yaka; Saring, Yang; Bhunia, Chandan Tilak
2017-04-01
In an automatic repeat request (ARQ) scheme, a packet is retransmitted if it gets corrupted due to transmission errors caused by the channel. However, an erroneous packet may contain both erroneous bits and correct bits and hence it may still contain useful information. The receiver may be able to combine this information from multiple erroneous copies to recover the correct packet. Packet combining (PC) is a simple and elegant scheme of error correction in transmitted packet, in which two received copies are XORed to obtain the bit location of erroneous bits. Thereafter, the packet is corrected by bit inversion of bit located as erroneous. Aggressive packet combining (APC) is a logic extension of PC primarily designed for wireless communication with objective of correcting error with low latency. PC offers higher throughput than APC, but PC does not correct double bit errors if occur in same bit location of erroneous copies of the packet. A hybrid technique is proposed to utilize the advantages of both APC and PC while attempting to remove the limitation of both. In the proposed technique, applications of APC-PC on Gilbert two state model has been studied. The simulation results show that the proposed technique offers better throughput than the conventional APC and lesser packet error rate than PC scheme.
Yamada, Haruyasu; Abe, Osamu; Shizukuishi, Takashi; Kikuta, Junko; Shinozaki, Takahiro; Dezawa, Ko; Nagano, Akira; Matsuda, Masayuki; Haradome, Hiroki; Imamura, Yoshiki
2014-01-01
Diffusion imaging is a unique noninvasive tool to detect brain white matter trajectory and integrity in vivo. However, this technique suffers from spatial distortion and signal pileup or dropout originating from local susceptibility gradients and eddy currents. Although there are several methods to mitigate these problems, most techniques can be applicable either to susceptibility or eddy-current induced distortion alone with a few exceptions. The present study compared the correction efficiency of FSL tools, “eddy_correct” and the combination of “eddy” and “topup” in terms of diffusion-derived fractional anisotropy (FA). The brain diffusion images were acquired from 10 healthy subjects using 30 and 60 directions encoding schemes based on the electrostatic repulsive forces. For the 30 directions encoding, 2 sets of diffusion images were acquired with the same parameters, except for the phase-encode blips which had opposing polarities along the anteroposterior direction. For the 60 directions encoding, non–diffusion-weighted and diffusion-weighted images were obtained with forward phase-encoding blips and non–diffusion-weighted images with the same parameter, except for the phase-encode blips, which had opposing polarities. FA images without and with distortion correction were compared in a voxel-wise manner with tract-based spatial statistics. We showed that images corrected with eddy and topup possessed higher FA values than images uncorrected and corrected with eddy_correct with trilinear (FSL default setting) or spline interpolation in most white matter skeletons, using both encoding schemes. Furthermore, the 60 directions encoding scheme was superior as measured by increased FA values to the 30 directions encoding scheme, despite comparable acquisition time. This study supports the combination of eddy and topup as a superior correction tool in diffusion imaging rather than the eddy_correct tool, especially with trilinear interpolation, using 60 directions encoding scheme. PMID:25405472
NASA Astrophysics Data System (ADS)
Zwanenburg, Philip; Nadarajah, Siva
2016-02-01
The aim of this paper is to demonstrate the equivalence between filtered Discontinuous Galerkin (DG) schemes and the Energy Stable Flux Reconstruction (ESFR) schemes, expanding on previous demonstrations in 1D [1] and for straight-sided elements in 3D [2]. We first derive the DG and ESFR schemes in strong form and compare the respective flux penalization terms while highlighting the implications of the fundamental assumptions for stability in the ESFR formulations, notably that all ESFR scheme correction fields can be interpreted as modally filtered DG correction fields. We present the result in the general context of all higher dimensional curvilinear element formulations. Through a demonstration that there exists a weak form of the ESFR schemes which is both discretely and analytically equivalent to the strong form, we then extend the results obtained for the strong formulations to demonstrate that ESFR schemes can be interpreted as a DG scheme in weak form where discontinuous edge flux is substituted for numerical edge flux correction. Theoretical derivations are then verified with numerical results obtained from a 2D Euler testcase with curved boundaries. Given the current choice of high-order DG-type schemes and the question as to which might be best to use for a specific application, the main significance of this work is the bridge that it provides between them. Clearly outlining the similarities between the schemes results in the important conclusion that it is always less efficient to use ESFR schemes, as opposed to the weak DG scheme, when solving problems implicitly.
Background colour matching by a crab spider in the field: a community sensory ecology perspective.
Defrize, Jérémy; Théry, Marc; Casas, Jérôme
2010-05-01
The question of whether a species matches the colour of its natural background in the perspective of the correct receiver is complex to address for several reasons; however, the answer to this question may provide invaluable support for functional interpretations of colour. In most cases, little is known about the identity and visual sensory abilities of the correct receiver and the precise location at which interactions take place in the field, in particular for mimetic systems. In this study, we focused on Misumena vatia, a crab spider meeting the criteria for assessing crypsis better than many other models, and claimed to use colour changes for both aggressive and protective crypsis. We carried out a systematic field survey to quantitatively assess the exactness of background colour matching in M. vatia with respect to the visual system of many of its receivers within the community. We applied physiological models of bird, bee and blowfly colour vision, using flower and spider spectral reflectances measured with a spectroradiometer. We observed that crypsis at long distance is systematically achieved, exclusively through achromatic contrast, in both bee and bird visions. At short distance, M. vatia is mostly chromatically detectable, whatever the substrate, for bees and birds. However, spiders can be either poorly discriminable or quite visible depending on the substrate for bees. Spiders are always chromatically undetectable for blowflies. We discuss the biological relevance of these results in both defensive and aggressive contexts of crypsis within a community sensory perspective.
Korzynska, Anna; Roszkowiak, Lukasz; Pijanowska, Dorota; Kozlowski, Wojciech; Markiewicz, Tomasz
2014-01-01
The aim of this study is to compare the digital images of the tissue biopsy captured with optical microscope using bright field technique under various light conditions. The range of colour's variation in immunohistochemically stained with 3,3'-Diaminobenzidine and Haematoxylin tissue samples is immense and coming from various sources. One of them is inadequate setting of camera's white balance to microscope's light colour temperature. Although this type of error can be easily handled during the stage of image acquisition, it can be eliminated with use of colour adjustment algorithms. The examination of the dependence of colour variation from microscope's light temperature and settings of the camera is done as an introductory research to the process of automatic colour standardization. Six fields of view with empty space among the tissue samples have been selected for analysis. Each field of view has been acquired 225 times with various microscope light temperature and camera white balance settings. The fourteen randomly chosen images have been corrected and compared, with the reference image, by the following methods: Mean Square Error, Structural SIMilarity and visual assessment of viewer. For two types of backgrounds and two types of objects, the statistical image descriptors: range, median, mean and its standard deviation of chromaticity on a and b channels from CIELab colour space, and luminance L, and local colour variability for objects' specific area have been calculated. The results have been averaged for 6 images acquired in the same light conditions and camera settings for each sample. The analysis of the results leads to the following conclusions: (1) the images collected with white balance setting adjusted to light colour temperature clusters in certain area of chromatic space, (2) the process of white balance correction for images collected with white balance camera settings not matched to the light temperature moves image descriptors into proper chromatic space but simultaneously the value of luminance changes. So the process of the image unification in a sense of colour fidelity can be solved in separate introductory stage before the automatic image analysis.
On the locating-chromatic number for graphs with two homogenous components
NASA Astrophysics Data System (ADS)
Welyyanti, Des; Baskoro, Edy Tri; Simajuntak, Rinovia; Uttunggadewa, Saladin
2017-10-01
The locating-chromatic number of a graph was introduced by Chartrand et al. in 2002. The concept of the locating-chromatic number is a marriage between graph coloring and the notion of graph partition dimension. This concept is only for connected graphs. In [8], we extended this concept also for disconnected graphs. In this paper, we determine the locating- chromatic number of a graph with two components. In particular, we determine such values if the components are homogeneous and each component has locating-chromatic number 3.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vermeul, Vince R.; Szecsody, Jim E.; Truex, Michael J.
This treatability study was conducted by Pacific Northwest National Laboratory (PNNL), at the request of the U. S. Environmental Protection Agency (EPA) Region 2, to evaluate the feasibility of using in situ treatment technologies for chromate reduction and immobilization at the Puchack Well Field Superfund Site in Pennsauken Township, New Jersey. In addition to in situ reductive treatments, which included the evaluation of both abiotic and biotic reduction of Puchack aquifer sediments, natural attenuation mechanisms were evaluated (i.e., chromate adsorption and reduction). Chromate exhibited typical anionic adsorption behavior, with greater adsorption at lower pH, at lower chromate concentration, and atmore » lower concentrations of other competing anions. In particular, sulfate (at 50 mg/L) suppressed chromate adsorption by up to 50%. Chromate adsorption was not influenced by inorganic colloids.« less
Psychophysical chromatic mechanisms in macaque monkey.
Stoughton, Cleo M; Lafer-Sousa, Rosa; Gagin, Galina; Conway, Bevil R
2012-10-24
Chromatic mechanisms have been studied extensively with psychophysical techniques in humans, but the number and nature of the mechanisms are still controversial. Appeals to monkey neurophysiology are often used to sort out the competing claims and to test hypotheses arising from the experiments in humans, but psychophysical chromatic mechanisms have never been assessed in monkeys. Here we address this issue by measuring color-detection thresholds in monkeys before and after chromatic adaptation, employing a standard approach used to determine chromatic mechanisms in humans. We conducted separate experiments using adaptation configured as either flickering full-field colors or heterochromatic gratings. Full-field colors would favor activity within the visual system at or before the arrival of retinal signals to V1, before the spatial transformation of color signals by the cortex. Conversely, gratings would favor activity within the cortex where neurons are often sensitive to spatial chromatic structure. Detection thresholds were selectively elevated for the colors of full-field adaptation when it modulated along either of the two cardinal chromatic axes that define cone-opponent color space [L vs M or S vs (L + M)], providing evidence for two privileged cardinal chromatic mechanisms implemented early in the visual-processing hierarchy. Adaptation with gratings produced elevated thresholds for colors of the adaptation regardless of its chromatic makeup, suggesting a cortical representation comprised of multiple higher-order mechanisms each selective for a different direction in color space. The results suggest that color is represented by two cardinal channels early in the processing hierarchy and many chromatic channels in brain regions closer to perceptual readout.
Reduced chromatic discrimination in children with autism spectrum disorders.
Franklin, Anna; Sowden, Paul; Notman, Leslie; Gonzalez-Dixon, Melissa; West, Dorotea; Alexander, Iona; Loveday, Stephen; White, Alex
2010-01-01
Atypical perception in Autism Spectrum Disorders (ASD) is well documented (Dakin & Frith, 2005). However, relatively little is known about colour perception in ASD. Less accurate performance on certain colour tasks has led some to argue that chromatic discrimination is reduced in ASD relative to typical development (Franklin, Sowden, Burley, Notman & Alder, 2008). The current investigation assessed chromatic discrimination in children with high-functioning autism (HFA) and typically developing (TD) children matched on age and non-verbal cognitive ability, using the Farnsworth-Munsell 100 hue test (Experiment 1) and a threshold discrimination task (Experiment 2). In Experiment 1, more errors on the chromatic discrimination task were made by the HFA than the TD group. Comparison with test norms revealed that performance for the HFA group was at a similar level to typically developing children around 3 years younger. In Experiment 2, chromatic thresholds were elevated for the HFA group relative to the TD group. For both experiments, reduced chromatic discrimination in ASD was due to a general reduction in chromatic sensitivity rather than a specific difficulty with either red-green or blue-yellow subsystems of colour vision. The absence of group differences on control tasks ruled out an explanation in terms of general task ability rather than chromatic sensitivity. Theories to account for the reduction in chromatic discrimination in HFA are discussed, and findings are related to cortical models of perceptual processing in ASD.
A distributed code for color in natural scenes derived from center-surround filtered cone signals
Kellner, Christian J.; Wachtler, Thomas
2013-01-01
In the retina of trichromatic primates, chromatic information is encoded in an opponent fashion and transmitted to the lateral geniculate nucleus (LGN) and visual cortex via parallel pathways. Chromatic selectivities of neurons in the LGN form two separate clusters, corresponding to two classes of cone opponency. In the visual cortex, however, the chromatic selectivities are more distributed, which is in accordance with a population code for color. Previous studies of cone signals in natural scenes typically found opponent codes with chromatic selectivities corresponding to two directions in color space. Here we investigated how the non-linear spatio-chromatic filtering in the retina influences the encoding of color signals. Cone signals were derived from hyper-spectral images of natural scenes and preprocessed by center-surround filtering and rectification, resulting in parallel ON and OFF channels. Independent Component Analysis (ICA) on these signals yielded a highly sparse code with basis functions that showed spatio-chromatic selectivities. In contrast to previous analyses of linear transformations of cone signals, chromatic selectivities were not restricted to two main chromatic axes, but were more continuously distributed in color space, similar to the population code of color in the early visual cortex. Our results indicate that spatio-chromatic processing in the retina leads to a more distributed and more efficient code for natural scenes. PMID:24098289
Simple wavefront correction framework for two-photon microscopy of in-vivo brain
Galwaduge, P. T.; Kim, S. H.; Grosberg, L. E.; Hillman, E. M. C.
2015-01-01
We present an easily implemented wavefront correction scheme that has been specifically designed for in-vivo brain imaging. The system can be implemented with a single liquid crystal spatial light modulator (LCSLM), which makes it compatible with existing patterned illumination setups, and provides measurable signal improvements even after a few seconds of optimization. The optimization scheme is signal-based and does not require exogenous guide-stars, repeated image acquisition or beam constraint. The unconstrained beam approach allows the use of Zernike functions for aberration correction and Hadamard functions for scattering correction. Low order corrections performed in mouse brain were found to be valid up to hundreds of microns away from the correction location. PMID:26309763
Study of Chromatic parameters of Line, Total, Middle graphs and Graph operators of Bipartite graph
NASA Astrophysics Data System (ADS)
Nagarathinam, R.; Parvathi, N.
2018-04-01
Chromatic parameters have been explored on the basis of graph coloring process in which a couple of adjacent nodes receives different colors. But the Grundy and b-coloring executes maximum colors under certain restrictions. In this paper, Chromatic, b-chromatic and Grundy number of some graph operators of bipartite graph has been investigat
Saikia, Jiban; Saha, Bedabrata; Das, Gopal
2011-02-15
Malachite nanoparticles of 100-150 nm have been efficiently and for the first time used as an adsorbent for the removal of toxic arsenate and chromate. We report a high adsorption capacity for chromate and arsenate on malachite nanoparticle from both individual and mixed solution in pH ∼4-5. However, the adsorption efficiency decreases with the increase of solution pH. Batch studies revealed that initial pH, temperature, malachite nanoparticles dose and initial concentration of chromate and arsenate were important parameters for the adsorption process. Thermodynamic analysis showed that adsorption of chromate and arsenate on malachite nanoparticles is endothermic and spontaneous. The adsorption of these anions has also been investigated quantitatively with the help of adsorption kinetics, isotherm, and selectivity coefficient (K) analysis. The adsorption data for both chromate and arsenate were fitted well in Langmuir isotherm and preferentially followed the second order kinetics. The binding affinity of chromate is found to be slightly higher than arsenate in a competitive adsorption process which leads to the comparatively higher adsorption of chromate on malachite nanoparticles surface. Copyright © 2010 Elsevier B.V. All rights reserved.
Cooper, Bonnie; Sun, Hao; Lee, Barry B
2012-02-01
Gratings that contain luminance and chromatic components of different spatial frequencies were used to study the segregation of signals in luminance and chromatic pathways. Psychophysical detection and discrimination thresholds to these compound gratings, with luminance and chromatic components of the one either half or double the spatial frequency of the other, were measured in human observers. Spatial frequency tuning curves for detection of compound gratings followed the envelope of those for luminance and chromatic gratings. Different grating types were discriminable at detection threshold. Fourier analysis of physiological responses of macaque retinal ganglion cells to compound waveforms showed chromatic information to be restricted to the parvocellular pathway and luminance information to the magnocellular pathway. Taken together, the human psychophysical and macaque physiological data support the strict segregation of luminance and chromatic information in independent channels, with the magnocellular and parvocellular pathways, respectively, serving as likely the physiological substrates. © 2012 Optical Society of America
Allen, J.L.; Meinertz, J.R.
1991-01-01
The chromatic and leuco forms of malachite green and crystal violet were readily separated and detected by a sensitive and selective high-performance liquid chromatographic procedure. The chromatic and leuco forms of the dyes were separated within 11 min on a C18 column with a mobile phase of 0.05 M sodium acetate and 0.05 M acetic acid in water (19%) and methanol (81%). A reaction chamber, containing 10% PbO2 in Celite 545, was placed between the column and the spectrophotometric detector to oxidize the leuco forms of the dyes to their chromatic forms. Chromatic and leuco malachite green were quantified by their absorbance at 618 nm; and chromatic and leuco Crystal Violet by their absorbance at 588 nm. Detection limits for chromatic and leuco forms of both dyes ranged from 0.12 to 0.28 ng. A linear range of 1 to 100 ng was established for both forms of the dyes.
Chromatic assimilation unaffected by perceived depth of inducing light.
Shevell, Steven K; Cao, Dingcai
2004-01-01
Chromatic assimilation is a shift toward the color of nearby light. Several studies conclude that a neural process contributes to assimilation but the neural locus remains in question. Some studies posit a peripheral process, such as retinal receptive-field organization, while others claim the neural mechanism follows depth perception, figure/ground segregation, or perceptual grouping. The experiments here tested whether assimilation depends on a neural process that follows stereoscopic depth perception. By introducing binocular disparity, the test field judged in color was made to appear in a different depth plane than the light that induced assimilation. The chromaticity and spatial frequency of the inducing light, and the chromaticity of the test light, were varied. Chromatic assimilation was found with all inducing-light sizes and chromaticities, but the magnitude of assimilation did not depend on the perceived relative depth planes of the test and inducing fields. We found no evidence to support the view that chromatic assimilation depends on a neural process that follows binocular combination of the two eyes' signals.
Luminance cues constrain chromatic blur discrimination in natural scene stimuli.
Sharman, Rebecca J; McGraw, Paul V; Peirce, Jonathan W
2013-03-22
Introducing blur into the color components of a natural scene has very little effect on its percept, whereas blur introduced into the luminance component is very noticeable. Here we quantify the dominance of luminance information in blur detection and examine a number of potential causes. We show that the interaction between chromatic and luminance information is not explained by reduced acuity or spatial resolution limitations for chromatic cues, the effective contrast of the luminance cue, or chromatic and achromatic statistical regularities in the images. Regardless of the quality of chromatic information, the visual system gives primacy to luminance signals when determining edge location. In natural viewing, luminance information appears to be specialized for detecting object boundaries while chromatic information may be used to determine surface properties.
Hernández-Andrés, J; Lee, R L; Romero, J
1999-09-20
Natural outdoor illumination daily undergoes large changes in its correlated color temperature (CCT), yet existing equations for calculating CCT from chromaticity coordinates span only part of this range. To improve both the gamut and accuracy of these CCT calculations, we use chromaticities calculated from our measurements of nearly 7000 daylight and skylight spectra to test an equation that accurately maps CIE 1931 chromaticities x and y into CCT. We extend the work of McCamy [Color Res. Appl. 12, 285-287 (1992)] by using a chromaticity epicenter for CCT and the inverse slope of the line that connects it to x and y. With two epicenters for different CCT ranges, our simple equation is accurate across wide chromaticity and CCT ranges (3000-10(6) K) spanned by daylight and skylight.
Dynamics of chromatic visual system processing differ in complexity between children and adults.
Boon, Mei Ying; Suttle, Catherine M; Henry, Bruce I; Dain, Stephen J
2009-06-30
Measures of chromatic contrast sensitivity in children are lower than those of adults. This may be related to immaturities in signal processing at or near threshold. We have found that children's VEPs in response to low contrast supra-threshold chromatic stimuli are more intra-individually variable than those recorded from adults. Here, we report on linear and nonlinear analyses of chromatic VEPs recorded from children and adults. Two measures of signal-to-noise ratio are similar between the adults and children, suggesting that relatively high noise is unlikely to account for the poor clarity of negative and positive peak components in the children's VEPs. Nonlinear analysis indicates higher complexity of adults' than children's chromatic VEPs, at levels of chromatic contrast around and well above threshold.
Chromatic characterization of a three-channel colorimeter using back-propagation neural networks
NASA Astrophysics Data System (ADS)
Pardo, P. J.; Pérez, A. L.; Suero, M. I.
2004-09-01
This work describes a method for the chromatic characterization of a three-channel colorimeter of recent design and construction dedicated to color vision research. The colorimeter consists of two fixed monochromators and a third monochromator interchangeable with a cathode ray tube or any other external light source. Back-propagation neural networks were used for the chromatic characterization to establish the relationship between each monochromator's input parameters and the tristimulus values of each chromatic stimulus generated. The results showed the effectiveness of this type of neural-network-based system for the chromatic characterization of the stimuli produced by any monochromator.
Douglas, David R; Tennant, Christopher
2015-11-10
A modulated-bending recirculating system that avoids CSR-driven breakdown in emittance compensation by redistributing the bending along the beamline. The modulated-bending recirculating system includes a) larger angles of bending in initial FODO cells, thereby enhancing the impact of CSR early on in the beam line while the bunch is long, and 2) a decreased bending angle in the final FODO cells, reducing the effect of CSR while the bunch is short. The invention describes a method for controlling the effects of CSR during recirculation and bunch compression including a) correcting chromatic aberrations, b) correcting lattice and CSR-induced curvature in the longitudinal phase space by compensating T.sub.566, and c) using lattice perturbations to compensate obvious linear correlations x-dp/p and x'-dp/p.
Integrable RCS as a Proposed Replacement for Fermilab Booster
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eldred, Jeffrey; Valishev, Alexander
2017-03-07
Integrable optics is an innovation in particle accelerator design that potentially enables a greater betatron tune spread and damps collective instabilities. An integrable rapid-cycling synchrotron (RCS) would be an effective replacement for the Fermilab Booster, as part of a plan to reach multi-MW beam power at 120 GeV for the Fermilab high-energy neutrino program. We provide an example integrable lattice with features of a modern RCS - dispersion-free drifts, low momentum compaction factor, superperiodicity, chromaticity correction, bounded beta functions, and separate-function magnets.
Heuristic pattern correction scheme using adaptively trained generalized regression neural networks.
Hoya, T; Chambers, J A
2001-01-01
In many pattern classification problems, an intelligent neural system is required which can learn the newly encountered but misclassified patterns incrementally, while keeping a good classification performance over the past patterns stored in the network. In the paper, an heuristic pattern correction scheme is proposed using adaptively trained generalized regression neural networks (GRNNs). The scheme is based upon both network growing and dual-stage shrinking mechanisms. In the network growing phase, a subset of the misclassified patterns in each incoming data set is iteratively added into the network until all the patterns in the incoming data set are classified correctly. Then, the redundancy in the growing phase is removed in the dual-stage network shrinking. Both long- and short-term memory models are considered in the network shrinking, which are motivated from biological study of the brain. The learning capability of the proposed scheme is investigated through extensive simulation studies.
Corrections to the General (2,4) and (4,4) FDTD Schemes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meierbachtol, Collin S.; Smith, William S.; Shao, Xuan-Min
The sampling weights associated with two general higher order FDTD schemes were derived by Smith, et al. and published in a IEEE Transactions on Antennas and Propagation article in 2012. Inconsistencies between governing equations and their resulting solutions were discovered within the article. In an effort to track down the root cause of these inconsistencies, the full three-dimensional, higher order FDTD dispersion relation was re-derived using Mathematica TM. During this process, two errors were identi ed in the article. Both errors are highlighted in this document. The corrected sampling weights are also provided. Finally, the original stability limits provided formore » both schemes are corrected, and presented in a more precise form. It is recommended any future implementations of the two general higher order schemes provided in the Smith, et al. 2012 article should instead use the sampling weights and stability conditions listed in this document.« less
Effects of chromatic image statistics on illumination induced color differences.
Lucassen, Marcel P; Gevers, Theo; Gijsenij, Arjan; Dekker, Niels
2013-09-01
We measure the color fidelity of visual scenes that are rendered under different (simulated) illuminants and shown on a calibrated LCD display. Observers make triad illuminant comparisons involving the renderings from two chromatic test illuminants and one achromatic reference illuminant shown simultaneously. Four chromatic test illuminants are used: two along the daylight locus (yellow and blue), and two perpendicular to it (red and green). The observers select the rendering having the best color fidelity, thereby indirectly judging which of the two test illuminants induces the smallest color differences compared to the reference. Both multicolor test scenes and natural scenes are studied. The multicolor scenes are synthesized and represent ellipsoidal distributions in CIELAB chromaticity space having the same mean chromaticity but different chromatic orientations. We show that, for those distributions, color fidelity is best when the vector of the illuminant change (pointing from neutral to chromatic) is parallel to the major axis of the scene's chromatic distribution. For our selection of natural scenes, which generally have much broader chromatic distributions, we measure a higher color fidelity for the yellow and blue illuminants than for red and green. Scrambled versions of the natural images are also studied to exclude possible semantic effects. We quantitatively predict the average observer response (i.e., the illuminant probability) with four types of models, differing in the extent to which they incorporate information processing by the visual system. Results show different levels of performance for the models, and different levels for the multicolor scenes and the natural scenes. Overall, models based on the scene averaged color difference have the best performance. We discuss how color constancy algorithms may be improved by exploiting knowledge of the chromatic distribution of the visual scene.
Loss Tolerance in One-Way Quantum Computation via Counterfactual Error Correction
NASA Astrophysics Data System (ADS)
Varnava, Michael; Browne, Daniel E.; Rudolph, Terry
2006-09-01
We introduce a scheme for fault tolerantly dealing with losses (or other “leakage” errors) in cluster state computation that can tolerate up to 50% qubit loss. This is achieved passively using an adaptive strategy of measurement—no coherent measurements or coherent correction is required. Since the scheme relies on inferring information about what would have been the outcome of a measurement had one been able to carry it out, we call this counterfactual error correction.
NASA Technical Reports Server (NTRS)
Smith, D. R.; Leslie, F. W.
1984-01-01
The Purdue Regional Objective Analysis of the Mesoscale (PROAM) is a successive correction type scheme for the analysis of surface meteorological data. The scheme is subjected to a series of experiments to evaluate its performance under a variety of analysis conditions. The tests include use of a known analytic temperature distribution to quantify error bounds for the scheme. Similar experiments were conducted using actual atmospheric data. Results indicate that the multiple pass technique increases the accuracy of the analysis. Furthermore, the tests suggest appropriate values for the analysis parameters in resolving disturbances for the data set used in this investigation.
Spatio-Chromatic Adaptation via Higher-Order Canonical Correlation Analysis of Natural Images
Gutmann, Michael U.; Laparra, Valero; Hyvärinen, Aapo; Malo, Jesús
2014-01-01
Independent component and canonical correlation analysis are two general-purpose statistical methods with wide applicability. In neuroscience, independent component analysis of chromatic natural images explains the spatio-chromatic structure of primary cortical receptive fields in terms of properties of the visual environment. Canonical correlation analysis explains similarly chromatic adaptation to different illuminations. But, as we show in this paper, neither of the two methods generalizes well to explain both spatio-chromatic processing and adaptation at the same time. We propose a statistical method which combines the desirable properties of independent component and canonical correlation analysis: It finds independent components in each data set which, across the two data sets, are related to each other via linear or higher-order correlations. The new method is as widely applicable as canonical correlation analysis, and also to more than two data sets. We call it higher-order canonical correlation analysis. When applied to chromatic natural images, we found that it provides a single (unified) statistical framework which accounts for both spatio-chromatic processing and adaptation. Filters with spatio-chromatic tuning properties as in the primary visual cortex emerged and corresponding-colors psychophysics was reproduced reasonably well. We used the new method to make a theory-driven testable prediction on how the neural response to colored patterns should change when the illumination changes. We predict shifts in the responses which are comparable to the shifts reported for chromatic contrast habituation. PMID:24533049
Spatio-chromatic adaptation via higher-order canonical correlation analysis of natural images.
Gutmann, Michael U; Laparra, Valero; Hyvärinen, Aapo; Malo, Jesús
2014-01-01
Independent component and canonical correlation analysis are two general-purpose statistical methods with wide applicability. In neuroscience, independent component analysis of chromatic natural images explains the spatio-chromatic structure of primary cortical receptive fields in terms of properties of the visual environment. Canonical correlation analysis explains similarly chromatic adaptation to different illuminations. But, as we show in this paper, neither of the two methods generalizes well to explain both spatio-chromatic processing and adaptation at the same time. We propose a statistical method which combines the desirable properties of independent component and canonical correlation analysis: It finds independent components in each data set which, across the two data sets, are related to each other via linear or higher-order correlations. The new method is as widely applicable as canonical correlation analysis, and also to more than two data sets. We call it higher-order canonical correlation analysis. When applied to chromatic natural images, we found that it provides a single (unified) statistical framework which accounts for both spatio-chromatic processing and adaptation. Filters with spatio-chromatic tuning properties as in the primary visual cortex emerged and corresponding-colors psychophysics was reproduced reasonably well. We used the new method to make a theory-driven testable prediction on how the neural response to colored patterns should change when the illumination changes. We predict shifts in the responses which are comparable to the shifts reported for chromatic contrast habituation.
Understanding and controlling chromaticity shift in LED devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, Lynn; Mills, Karmann; Lamvik, Michael
Chromaticity shift in light-emitting diode (LED) devices arises from multiple mechanisms, and at least five different chromaticity shift modes (CSMs) have been identified to date. This paper focuses on the impacts of irreversible phosphor degradation as a cause of chromaticity shifts in LED devices. The nitride phosphors used to produce warm white LEDs are especially vulnerable to degradation due to thermal and chemical effects such as reactions with oxygen and water. As a result, LED devices utilizing these phosphors were found to undergo either a green shift or, less commonly, a red shift depending on the phosphor mix in themore » LED devices. These types of chromaticity shifts are classified as CSM-2 (green shift) and CSM-5 (red shift). This paper provides an overview of the kinetic processes responsible for green and red chromaticity shifts along with examples from accelerated stress testing of 6” downlights. Both CSMs appear to proceed through analogous mechanisms that are initiated at the surface of the phosphor. A green shift is produced by the surface oxidation of the nitride phosphor that changes the emission profile to lower wavelengths. As the surface oxidation reaction proceeds, reactant limitations slow the rate and bulk oxidation processes become more prevalent. We found that a red chromaticity shift arises from quenching of the green phosphor, also possibly due to surface reactions of oxygen, which shift the emission chromaticity in the red direction. In conclusion, we discuss the implications of these findings on projecting chromaticity.« less
Chromate Reduction by a Pseudomonad Isolated from a Site Contaminated with Chromated Copper Arsenate
McLean, Jeff; Beveridge, Terry J.
2001-01-01
A pseudomonad (CRB5) isolated from a decommissioned wood preservation site reduced toxic chromate [Cr(VI)] to an insoluble Cr(III) precipitate under aerobic and anaerobic conditions. CRB5 tolerated up to 520 mg of Cr(VI) liter−1 and reduced chromate in the presence of copper and arsenate. Under anaerobic conditions it also reduced Co(III) and U(VI), partially internalizing each metal. Metal precipitates were also found on the surface of the outer membrane and (sometimes) on a capsule. The results showed that chromate reduction by CRB5 was mediated by a soluble enzyme that was largely contained in the cytoplasm but also found outside of the cells. The crude reductase activity in the soluble fraction showed a Km of 23 mg liter−1 (437 μM) and a Vmax of 0.98 mg of Cr h−1 mg of protein−1 (317 nmol min−1 mg of protein−1). Minor membrane-associated Cr(VI) reduction under anaerobiosis may account for anaerobic reduction of chromate under nongrowth conditions with an organic electron donor present. Chromate reduction under both aerobic and anaerobic conditions may be a detoxification strategy for the bacterium which could be exploited to bioremediate chromate-contaminated or other toxic heavy metal-contaminated environments. PMID:11229894
Influence of Spatial and Chromatic Noise on Luminance Discrimination.
Miquilini, Leticia; Walker, Natalie A; Odigie, Erika A; Guimarães, Diego Leite; Salomão, Railson Cruz; Lacerda, Eliza Maria Costa Brito; Cortes, Maria Izabel Tentes; de Lima Silveira, Luiz Carlos; Fitzgerald, Malinda E C; Ventura, Dora Fix; Souza, Givago Silva
2017-12-05
Pseudoisochromatic figures are designed to base discrimination of a chromatic target from a background solely on the chromatic differences. This is accomplished by the introduction of luminance and spatial noise thereby eliminating these two dimensions as cues. The inverse rationale could also be applied to luminance discrimination, if spatial and chromatic noise are used to mask those cues. In this current study estimate of luminance contrast thresholds were conducted using a novel stimulus, based on the use of chromatic and spatial noise to mask the use of these cues in a luminance discrimination task. This was accomplished by presenting stimuli composed of a mosaic of circles colored randomly. A Landolt-C target differed from the background only by the luminance. The luminance contrast thresholds were estimated for different chromatic noise saturation conditions and compared to luminance contrast thresholds estimated using the same target in a non-mosaic stimulus. Moreover, the influence of the chromatic content in the noise on the luminance contrast threshold was also investigated. Luminance contrast threshold was dependent on the chromaticity noise strength. It was 10-fold higher than thresholds estimated from non-mosaic stimulus, but they were independent of colour space location in which the noise was modulated. The present study introduces a new method to investigate luminance vision intended for both basic science and clinical applications.
Interactions between chromatic- and luminance-contrast-sensitive stereopsis mechanisms.
Simmons, David R; Kingdom, Frederick A A
2002-06-01
It is well known that chromatic information can assist in solving the stereo correspondence problem. It has also been suggested that there are two independent first-order stereopsis mechanisms, one sensitive to chromatic contrast and the other sensitive to luminance contrast (Vision Research 37 (1997) 1271). Could the effect of chromatic information on stereo correspondence be subserved by interactions between these mechanisms? To address this question, disparity thresholds (1/stereoacuity) were measured using 0.5 cpd Gabor patches. The stimuli possessed different relative amounts of chromatic and luminance contrast which could be correlated or anti-correlated between the eyes. Stereoscopic performance with these compound stimuli was compared to that with purely isoluminant and isochromatic stimuli at different contrasts. It was found that anti-correlated chromatic contrast severely disrupted stereopsis with achromatic stimuli and that anti-correlated luminance contrast severely disrupted stereopsis with chromatic stimuli. Less dramatic, but still significant, was the improvement in stereoacuity obtained using correlated colour and luminance contrast. These data are consistent with there being positive and negative interactions between chromatic and achromatic stereopsis mechanisms that take place after the initial encoding of disparity information, but before the extraction of stereoscopic depth. These interactions can be modelled satisfactorily assuming probability summation of depth sign information between independent mechanisms.
Swindle, Andrew L.; Cozzarelli, Isabelle M.; Elwood Madden, Andrew S.
2015-01-01
Chromate was used as a chemical probe to investigate the size-dependent influence of organics on nanoparticle surface reactivity. Magnetite–chromate sorption experiments were conducted with ∼90 and ∼6 nm magnetite nanoparticles in the presence and absence of fulvic acid (FA), natural organic matter (NOM), and isolated landfill leachate (LL). Results indicated that low concentrations (1 mg/L) of organics had no noticeable impact on chromate sorption, whereas concentrations of 50 mg/L or more resulted in decreased amounts of chromate sorption. The adsorption of organics onto the magnetite surfaces interfered equally with the ability of the 6 and 90 nm particles to sorb chromate from solution, despite the greater surface area of the smaller particles. Results indicate the presence of organics did not impact the redox chemistry of the magnetite–chromate system over the duration of the experiments (8 h), nor did the organics interact with the chromate in solution. Brunauer–Emmett–Teller (BET) and scanning electron microscopy (SEM) results indicate that the organics blocked the surface reactivity by occupying surface sites on the particles. The similarity of results with FA and NOM suggests that coverage of the reactive mineral surface is the main factor behind the inhibition of surface reactivity in the presence of organics.
Wachtler, T; Albright, T D; Sejnowski, T J
2001-05-01
The perceived color of an object depends on the chromaticity of its immediate background. But color appearance is also influenced by remote chromaticities. To quantify these influences, the effects of remote color fields on the appearance of a fixated 2 degrees test field were measured using a forced-choice method. Changes in the appearance of the test field were induced by chromaticity changes of the background and of 2 degrees color fields not adjacent to the test field. The appearance changes induced by the color of the background corresponded to a fraction of between 0.5 and 0.95 of the cone contrast of the background change, depending on the observer. The magnitude of induction by the background color was modulated on average by 7.6% by chromaticity changes in the remote color fields. Chromaticity changes in the remote fields had virtually no inducing effect when they occurred without a change in background color. The spatial range of these chromatic interactions extended over at least 10 degrees from the fovea. They were established within the first few hundred milliseconds after the change of background color and depended only weakly on the number of inducing fields. These results may be interpreted as reflecting rapid chromatic interactions that support robustness of color vision under changing viewing conditions.
Angular spectral framework to test full corrections of paraxial solutions.
Mahillo-Isla, R; González-Morales, M J
2015-07-01
Different correction methods for paraxial solutions have been used when such solutions extend out of the paraxial regime. The authors have used correction methods guided by either their experience or some educated hypothesis pertinent to the particular problem that they were tackling. This article provides a framework so as to classify full wave correction schemes. Thus, for a given solution of the paraxial wave equation, we can select the best correction scheme of those available. Some common correction methods are considered and evaluated under the proposed scope. Another remarkable contribution is obtained by giving the necessary conditions that two solutions of the Helmholtz equation must accomplish to accept a common solution of the parabolic wave equation as a paraxial approximation of both solutions.
Ahn, Jae-Hyun; Park, Young-Je; Kim, Wonkook; Lee, Boram
2016-12-26
An estimation of the aerosol multiple-scattering reflectance is an important part of the atmospheric correction procedure in satellite ocean color data processing. Most commonly, the utilization of two near-infrared (NIR) bands to estimate the aerosol optical properties has been adopted for the estimation of the effects of aerosols. Previously, the operational Geostationary Color Ocean Imager (GOCI) atmospheric correction scheme relies on a single-scattering reflectance ratio (SSE), which was developed for the processing of the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) data to determine the appropriate aerosol models and their aerosol optical thicknesses. The scheme computes reflectance contributions (weighting factor) of candidate aerosol models in a single scattering domain then spectrally extrapolates the single-scattering aerosol reflectance from NIR to visible (VIS) bands using the SSE. However, it directly applies the weight value to all wavelengths in a multiple-scattering domain although the multiple-scattering aerosol reflectance has a non-linear relationship with the single-scattering reflectance and inter-band relationship of multiple scattering aerosol reflectances is non-linear. To avoid these issues, we propose an alternative scheme for estimating the aerosol reflectance that uses the spectral relationships in the aerosol multiple-scattering reflectance between different wavelengths (called SRAMS). The process directly calculates the multiple-scattering reflectance contributions in NIR with no residual errors for selected aerosol models. Then it spectrally extrapolates the reflectance contribution from NIR to visible bands for each selected model using the SRAMS. To assess the performance of the algorithm regarding the errors in the water reflectance at the surface or remote-sensing reflectance retrieval, we compared the SRAMS atmospheric correction results with the SSE atmospheric correction using both simulations and in situ match-ups with the GOCI data. From simulations, the mean errors for bands from 412 to 555 nm were 5.2% for the SRAMS scheme and 11.5% for SSE scheme in case-I waters. From in situ match-ups, 16.5% for the SRAMS scheme and 17.6% scheme for the SSE scheme in both case-I and case-II waters. Although we applied the SRAMS algorithm to the GOCI, it can be applied to other ocean color sensors which have two NIR wavelengths.
Simulation of the injection damping and resonance correction systems for the HEB of the SSC
NASA Astrophysics Data System (ADS)
Li, M.; Zhang, P.; Machida, S.
1993-12-01
An injection damping and resonance correction system for the High Energy Booster (HEB) of the Superconducting Super Collider (SSC) was investigated by means of multiparticle tracking. For an injection damping study, the code Simpsons is modified to utilize two Beam Position Monitors (BPM) and two dampers. The particles of 200 Gev/c, numbered 1024 or more, with Gaussian distribution in 6-D phase space are injected into the HEB with certain injection offsets. The whole bunch of particles is then kicked in proportion to the BPM signals with some upper limit. Tracking these particles up to several hundred turns while the damping system is acting shows the turn-by-turn emittance growth, which is caused by the tune spread due to nonlinearity of the lattice and residual chromaticity with synchrotron oscillations. For a resonance correction study, the operating tune is scanned as a function of time so that a bunch goes through a resonance. The performance of the resonance correction system is demonstrated. We optimize the system parameters which satisfy the emittance budget of the HEB, taking into account the realistic hardware requirement.
Accounting for Chromatic Atmospheric Effects on Barycentric Corrections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blackman, Ryan T.; Szymkowiak, Andrew E.; Fischer, Debra A.
2017-03-01
Atmospheric effects on stellar radial velocity measurements for exoplanet discovery and characterization have not yet been fully investigated for extreme precision levels. We carry out calculations to determine the wavelength dependence of barycentric corrections across optical wavelengths, due to the ubiquitous variations in air mass during observations. We demonstrate that radial velocity errors of at least several cm s{sup −1} can be incurred if the wavelength dependence is not included in the photon-weighted barycentric corrections. A minimum of four wavelength channels across optical spectra (380–680 nm) are required to account for this effect at the 10 cm s{sup −1} level,more » with polynomial fits of the barycentric corrections applied to cover all wavelengths. Additional channels may be required in poor observing conditions or to avoid strong telluric absorption features. Furthermore, consistent flux sampling on the order of seconds throughout the observation is necessary to ensure that accurate photon weights are obtained. Finally, we describe how a multiple-channel exposure meter will be implemented in the EXtreme PREcision Spectrograph (EXPRES).« less
Twilight and Daytime Colors of the Clear Sky
1994-07-20
greatly, with some surprising consequences for their calorimetric gamuts . Key words: Atmospheric optics, clear-sky chromaticities, blue sky, twilight...First we calculate a chromaticity curve’s unnormal- ized clorimetric gamut g by finding the curve’s average chromaticity [here, its mean CIE (Commis...calorimetric gamut , g. Taking the spectrum locus as an upper limit on color gamut , we use its gamut to normalize any other chromaticity 20 July 1994 / Vol
Effect of Chromate and Chromate-Free Organic Coatings on Corrosion Fatigue of an Aluminum Alloy
2012-02-20
Investigations of alloy AA7075 corrosion in acid rain solution, inhibited by chromate-free blends of zinc phosphate with bentonite, zeolite and calcium...with solution components. Single use of zinc phosphate and these ion exchanged pigments for corrosion inhibition do not provide desired effect...primer performance against corrosion fatigue cracking under a commercial polyurethane topcoat. As a control , they used samples of chromated AA2024
Zhai, Yi; Wang, Yan; Wang, Zhaoqi; Liu, Yongji; Zhang, Lin; He, Yuanqing; Chang, Shengjiang
2014-01-01
An achromatic element eliminating only longitudinal chromatic aberration (LCA) while maintaining transverse chromatic aberration (TCA) is established for the eye model, which involves the angle formed by the visual and optical axis. To investigate the impacts of higher-order aberrations on vision, the actual data of higher-order aberrations of human eyes with three typical levels are introduced into the eye model along visual axis. Moreover, three kinds of individual eye models are established to investigate the impacts of higher-order aberrations, chromatic aberration (LCA+TCA), LCA and TCA on vision under the photopic condition, respectively. Results show that for most human eyes, the impact of chromatic aberration on vision is much stronger than that of higher-order aberrations, and the impact of LCA in chromatic aberration dominates. The impact of TCA is approximately equal to that of normal level higher-order aberrations and it can be ignored when LCA exists.
Chromatic-achromatic perimetry in four clinic cases: Glaucoma and diabetes.
Cabezos, Inmaculada; Luque, Maria Jos; de Fez, Dolores; Moncho, Vicenta; Camps, Vicente
2015-02-01
Some diseases that affect the visual system may show loss of chromatic-achromatic sensitivity before obvious physical signs appear in the usual examination of the eye's posterior segment. A perimetric study has been conducted with four typical patients with glaucoma and diabetes, at different stages of the disease. In addition to the standard white-on-white (standard automated perimetry [SAP]), a test battery has been used to study patient's contrast sensitivity, using stimuli with different chromatic, spatial, and temporal content (multichannel perimetry). The choice of stimuli tries to maximize the response of different visual mechanisms: Achromatic (parvocellular and magnocellular origin); chromatic red-green (parvocellular origin); and chromatic blue-yellow (koniocellular origin). The results seem to indicate losses in the achromatic-parvocellular perimetry and both chromatic perimetry tests, undetected by conventional SAP. Our results illustrate that our patients without visible retinal alterations show signs of suspicion in multichannel perimetry.
Wise, John Pierce; Wise, Sandra S.; Holmes, Amie L.; LaCerte, Carolyne; Shaffiey, Fariba; Aboueissa, AbouEl-Makarim
2010-01-01
In this study we directly compared soluble and particulate chromate cytotoxicity and genotoxicity in human (Homo sapiens) and sea lion (Eumetopias jubatus) lung fibroblasts. Our results show that hexavalent chromium induces increased cell death and chromosome damage in both human and sea lion cells with increasing intracellular chromium ion levels. The data further indicate that both sodium chromate and lead chromate are less cytotoxic and genotoxic to sea lion cells than human cells, based on administered dose. Differences in chromium ion uptake explained some but not all of the reduced amounts of sodium chromate-induced cell death. By contrast, uptake differences could explain the differences in sodium chromate-induced chromosome damage and particulate chromate-induced toxicity. Altogether they indicate that while hexavalent chromium induces similar toxic effects in sea lion and human cells, there are different mechanisms underlying the toxic outcomes. PMID:20211760
Using concatenated quantum codes for universal fault-tolerant quantum gates.
Jochym-O'Connor, Tomas; Laflamme, Raymond
2014-01-10
We propose a method for universal fault-tolerant quantum computation using concatenated quantum error correcting codes. The concatenation scheme exploits the transversal properties of two different codes, combining them to provide a means to protect against low-weight arbitrary errors. We give the required properties of the error correcting codes to ensure universal fault tolerance and discuss a particular example using the 7-qubit Steane and 15-qubit Reed-Muller codes. Namely, other than computational basis state preparation as required by the DiVincenzo criteria, our scheme requires no special ancillary state preparation to achieve universality, as opposed to schemes such as magic state distillation. We believe that optimizing the codes used in such a scheme could provide a useful alternative to state distillation schemes that exhibit high overhead costs.
Redefining White Light Chromaticity Boundaries for Aviation
DOT National Transportation Integrated Search
2009-10-05
Several aspects are involved in the recognition of an aviation signal light's color, including its chromaticity, layout on the airfield, and the chromaticity of other light sources in view. The LRC conducted a human factors investigation of the bound...
NASA Astrophysics Data System (ADS)
Gloe, Thomas; Borowka, Karsten; Winkler, Antje
2010-01-01
The analysis of lateral chromatic aberration forms another ingredient for a well equipped toolbox of an image forensic investigator. Previous work proposed its application to forgery detection1 and image source identification.2 This paper takes a closer look on the current state-of-the-art method to analyse lateral chromatic aberration and presents a new approach to estimate lateral chromatic aberration in a runtime-efficient way. Employing a set of 11 different camera models including 43 devices, the characteristic of lateral chromatic aberration is investigated in a large-scale. The reported results point to general difficulties that have to be considered in real world investigations.
Compression of digital images over local area networks. Appendix 1: Item 3. M.S. Thesis
NASA Technical Reports Server (NTRS)
Gorjala, Bhargavi
1991-01-01
Differential Pulse Code Modulation (DPCM) has been used with speech for many years. It has not been as successful for images because of poor edge performance. The only corruption in DPC is quantizer error but this corruption becomes quite large in the region of an edge because of the abrupt changes in the statistics of the signal. We introduce two improved DPCM schemes; Edge correcting DPCM and Edge Preservation Differential Coding. These two coding schemes will detect the edges and take action to correct them. In an Edge Correcting scheme, the quantizer error for an edge is encoded using a recursive quantizer with entropy coding and sent to the receiver as side information. In an Edge Preserving scheme, when the quantizer input falls in the overload region, the quantizer error is encoded and sent to the receiver repeatedly until the quantizer input falls in the inner levels. Therefore these coding schemes increase the bit rate in the region of an edge and require variable rate channels. We implement these two variable rate coding schemes on a token wing network. Timed token protocol supports two classes of messages; asynchronous and synchronous. The synchronous class provides a pre-allocated bandwidth and guaranteed response time. The remaining bandwidth is dynamically allocated to the asynchronous class. The Edge Correcting DPCM is simulated by considering the edge information under the asynchronous class. For the simulation of the Edge Preserving scheme, the amount of information sent each time is fixed, but the length of the packet or the bit rate for that packet is chosen depending on the availability capacity. The performance of the network, and the performance of the image coding algorithms, is studied.
Sun, Hao; Cooper, Bonnie; Lee, Barry B.
2012-01-01
Vernier thresholds are known to be elevated when a target pair has opposite contrast polarity. Polarity reversal is used to assess the role of luminance and chromatic pathways in hyperacuity performance. Psychophysical hyperacuity thresholds were measured for pairs of gratings of various combinations of luminance (Lum) and chromatic (Chr) contrast polarities, at different ratios of luminance to chromatic contrast. With two red-green gratings of matched luminance and chromatic polarity (+Lum+Chr), there was an elevation of threshold at isoluminance. When both luminance and chromatic polarity were mismatched (−Lum−Chr), thresholds were substantially elevated under all conditions. With the same luminance contrast polarity and opposite chromatic polarity (+Lum−Chr) thresholds were only elevated close to isoluminance; in the reverse condition (−Lum+Chr), thresholds were elevated as in the −Lum−Chr condition except close to equiluminance. Similar data were obtained for gratings isolating the short-wavelength cone mechanism. Further psychophysical measurements assessed the role of target separation with matched or mismatched contrast polarity; similar results were found for luminance and chromatic gratings. Comparison physiological data were collected from parafoveal ganglion cells of the macaque retina. Positional precision of ganglion cell signals was assessed under conditions related to the psychophysical measurements. On the basis of these combined observations, it is argued that both magnocellular, parvocellular, and koniocellular pathways have access to cortical positional mechanisms associated with vernier acuity. PMID:22306680
Dual-beam laser autofocusing system based on liquid lens
NASA Astrophysics Data System (ADS)
Zhang, Fumin; Yao, Yannan; Qu, Xinghua; Zhang, Tong; Pei, Bing
2017-02-01
A dual-beam laser autofocusing system is designed in this paper. The autofocusing system is based on a liquid lens with less moving parts and fast response time, which makes the system simple, reliable, compact and fast. A novel scheme ;Time-sharing focus, fast conversion; is innovatively proposed. The scheme effectively solves the problem that the guiding laser and the working laser cannot focus at the same target point because of the existence of chromatic aberration. This scheme not only makes both guiding laser and working laser achieve optimal focusing in guiding stage and working stage respectively, but also greatly reduces the system complexity and simplifies the focusing process as well as makes autofocusing time of the working laser reduce to about 10 ms. In the distance range of 1 m to 30 m, the autofocusing spot size is kept under 4.3 mm at 30 m and just 0.18 mm at 1 m. The spot size is much less influenced by the target distance compared with the collimated laser with a micro divergence angle for its self-adaptivity. The dual-beam laser autofocusing system based on liquid lens is fully automatic, compact and efficient. It is fully meet the need of dynamicity and adaptivity and it will play an important role in a number of long-range control applications.
NASA Astrophysics Data System (ADS)
Tian, Bo; Zhang, Qi; Ma, Jianxin; Tao, Ying; Shen, Yufei; Wang, Yang; Zhang, Geng; Zhou, Wenmao; Zhao, Yi; Pan, Xiaolong
2018-07-01
A polarization division multiplexed (PDM) microwave photonic link for the millimeter (MM)-wave signal with hybrid modulation scheme is proposed in this paper, which is based on the combination of quadrature amplitude modulation, multi-pulse pulse-position modulation and return to zero modulation (QAM-MPPM-RZ). In this scheme, the two orthogonal polarization states enable simultaneous transmission of four data flows, which can provide different services for users according to the data rate requirement. To generate hybrid QAM-MPPM-RZ mm-wave signal, the QAM mm-wave signal is directly modulated by MPPM-RZ signal without using digital signal processing (DSP) devices, which reduces the overhead of the encoding process. Then, the generated QAM-MPPM-RZ mm-wave signal is transmitted in PDM microwave photonic link based on SSB modulation. The sparsity characteristic of QAM-MPPM-RZ not only improves the power efficiency, but also decreases the degradation caused by the fiber chromatic dispersion. The simulation results show that, under the constraint of the same transmitted data rate, the PDM microwave photonic link with 50 GHz QAM-MPPM-RZ mm-wave signal achieves much lower levels of bit-error rate than ordinary 32-QAM. In addition, the increase of laser linewidth brings no additional impact to the proposed scheme.
Progress on PEEM3 -- An Aberration Corrected X-Ray Photoemission Electron Microscope at the ALS
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacDowell, A. A.; Feng, J.; DeMello, A.
2007-01-19
A new ultrahigh-resolution photoemission electron microscope called PEEM3 is being developed and built at the Advanced Light Source (ALS). An electron mirror combined with a much-simplified magnetic dipole separator is to be used to provide simultaneous correction of spherical and chromatic aberrations. It is installed on an elliptically polarized undulator (EPU) beamline, and will be operated with very high spatial resolution and high flux to study the composition, structure, electric and magnetic properties of complex materials. The instrument has been designed and is described. The instrumental hardware is being deployed in 2 phases. The first phase is the deployment ofmore » a standard PEEM type microscope consisting of the standard linear array of electrostatic electron lenses. The second phase will be the installation of the aberration corrected upgrade to improve resolution and throughput. This paper describes progress as the instrument enters the commissioning part of the first phase.« less
Progress on PEEM3 - An Aberration Corrected X-Ray PhotoemissionElectron Microscope at the ALS
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacDowell, Alastair A.; Feng, J.; DeMello, A.
2006-05-20
A new ultrahigh-resolution photoemission electron microscope called PEEM3 is being developed and built at the Advanced Light Source (ALS). An electron mirror combined with a much-simplified magnetic dipole separator is to be used to provide simultaneous correction of spherical and chromatic aberrations. It is installed on an elliptically polarized undulator (EPU) beamline, and will be operated with very high spatial resolution and high flux to study the composition, structure, electric and magnetic properties of complex materials. The instrument has been designed and is described. The instrumental hardware is being deployed in 2 phases. The first phase is the deployment ofmore » a standard PEEM type microscope consisting of the standard linear array of electrostatic electron lenses. The second phase will be the installation of the aberration corrected upgrade to improve resolution and throughput. This paper describes progress as the instrument enters the commissioning part of the first phase.« less
NASA Astrophysics Data System (ADS)
Odhner, Jefferson E.
2016-07-01
Holographic optical elements (HOEs) work on the principal of diffraction and can in some cases replace conventional optical elements that work on the principal of refraction. An HOE can be thinner, lighter, can have more functionality, and can be lower cost than conventional optics. An HOE can serve as a beam splitter, spectral filter, mirror, and lens all at the same time. For a single wavelength system, an HOE can be an ideal solution but they have not been widely accepted for multispectral systems because they suffer from severe chromatic aberration. A refractive optical system also suffers from chromatic aberration but it is generally not as severe. To color correct a conventional refractive optical system, a flint glass and a crown glass are placed together such that the color dispersion of the flint and the crown cancel each other out making an achromatic lens (achromat) and the wavelengths all focus to the same point. The color dispersion of refractive lenses and holographic lenses are opposite from each other. In a diffractive optical system, long wavelengths focus closer (remember for HOEs: RBM "red bends more") than nominal focus while shorter wavelengths focus further out. In a refractive optical system, it is just the opposite. For this reason, diffractives can be incorporated into a refractive system to do the color correction and often cut down on the number of optical elements used [1.]. Color correction can also be achieved with an all-diffractive system by combining a holographic optical element with its conjugate. In this way the color dispersion of the first holographic optical element can be cancelled by the color dispersion of the second holographic optic. It is this technique that will be exploited in this paper to design a telescope made entirely of holographic optical elements. This telescope could be more portable (for field operations) the same technique could be used to make optics light enough for incorporation into a UAV.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, T. S.; DePoy, D. L.; Marshall, J. L.
Here, we report that meeting the science goals for many current and future ground-based optical large-area sky surveys requires that the calibrated broadband photometry is both stable in time and uniform over the sky to 1% precision or better. Past and current surveys have achieved photometric precision of 1%–2% by calibrating the survey's stellar photometry with repeated measurements of a large number of stars observed in multiple epochs. The calibration techniques employed by these surveys only consider the relative frame-by-frame photometric zeropoint offset and the focal plane position-dependent illumination corrections, which are independent of the source color. However, variations inmore » the wavelength dependence of the atmospheric transmission and the instrumental throughput induce source color-dependent systematic errors. These systematic errors must also be considered to achieve the most precise photometric measurements. In this paper, we examine such systematic chromatic errors (SCEs) using photometry from the Dark Energy Survey (DES) as an example. We first define a natural magnitude system for DES and calculate the systematic errors on stellar magnitudes when the atmospheric transmission and instrumental throughput deviate from the natural system. We conclude that the SCEs caused by the change of airmass in each exposure, the change of the precipitable water vapor and aerosol in the atmosphere over time, and the non-uniformity of instrumental throughput over the focal plane can be up to 2% in some bandpasses. We then compare the calculated SCEs with the observed DES data. For the test sample data, we correct these errors using measurements of the atmospheric transmission and instrumental throughput from auxiliary calibration systems. In conclusion, the residual after correction is less than 0.3%. Moreover, we calculate such SCEs for Type Ia supernovae and elliptical galaxies and find that the chromatic errors for non-stellar objects are redshift-dependent and can be larger than those for stars at certain redshifts.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, T. S.; DePoy, D. L.; Marshall, J. L.
Meeting the science goals for many current and future ground-based optical large-area sky surveys requires that the calibrated broadband photometry is both stable in time and uniform over the sky to 1% precision or better. Past and current surveys have achieved photometric precision of 1%–2% by calibrating the survey’s stellar photometry with repeated measurements of a large number of stars observed in multiple epochs. The calibration techniques employed by these surveys only consider the relative frame-by-frame photometric zeropoint offset and the focal plane position-dependent illumination corrections, which are independent of the source color. However, variations in the wavelength dependence ofmore » the atmospheric transmission and the instrumental throughput induce source color-dependent systematic errors. These systematic errors must also be considered to achieve the most precise photometric measurements. In this paper, we examine such systematic chromatic errors (SCEs) using photometry from the Dark Energy Survey (DES) as an example. We first define a natural magnitude system for DES and calculate the systematic errors on stellar magnitudes when the atmospheric transmission and instrumental throughput deviate from the natural system. We conclude that the SCEs caused by the change of airmass in each exposure, the change of the precipitable water vapor and aerosol in the atmosphere over time, and the non-uniformity of instrumental throughput over the focal plane can be up to 2% in some bandpasses. We then compare the calculated SCEs with the observed DES data. For the test sample data, we correct these errors using measurements of the atmospheric transmission and instrumental throughput from auxiliary calibration systems. The residual after correction is less than 0.3%. Moreover, we calculate such SCEs for Type Ia supernovae and elliptical galaxies and find that the chromatic errors for non-stellar objects are redshift-dependent and can be larger than those for stars at certain redshifts.« less
Replacement of chromates in paints and corrosion protection systems [Stage 2
DOT National Transportation Integrated Search
2004-05-01
This technical report presents the second stage results of a multi-year project to develop chromate-free paints and corrosion protection systems. Chromate-containing coatings and paints are very effective in providing corrosion resistance and are wid...
Ruschke, Stefan; Eggers, Holger; Kooijman, Hendrik; Diefenbach, Maximilian N; Baum, Thomas; Haase, Axel; Rummeny, Ernst J; Hu, Houchun H; Karampinos, Dimitrios C
2017-09-01
To propose a phase error correction scheme for monopolar time-interleaved multi-echo gradient echo water-fat imaging that allows accurate and robust complex-based quantification of the proton density fat fraction (PDFF). A three-step phase correction scheme is proposed to address a) a phase term induced by echo misalignments that can be measured with a reference scan using reversed readout polarity, b) a phase term induced by the concomitant gradient field that can be predicted from the gradient waveforms, and c) a phase offset between time-interleaved echo trains. Simulations were carried out to characterize the concomitant gradient field-induced PDFF bias and the performance estimating the phase offset between time-interleaved echo trains. Phantom experiments and in vivo liver and thigh imaging were performed to study the relevance of each of the three phase correction steps on PDFF accuracy and robustness. The simulation, phantom, and in vivo results showed in agreement with the theory an echo time-dependent PDFF bias introduced by the three phase error sources. The proposed phase correction scheme was found to provide accurate PDFF estimation independent of the employed echo time combination. Complex-based time-interleaved water-fat imaging was found to give accurate and robust PDFF measurements after applying the proposed phase error correction scheme. Magn Reson Med 78:984-996, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Vinas, Maria; Dorronsoro, Carlos; Garzón, Nuria; Poyales, Francisco; Marcos, Susana
2015-10-01
To measure the longitudinal chromatic aberration in vivo using psychophysical and wavefront-sensing methods in patients with bilateral implantation of monofocal intraocular lenses (IOLs) of similar aspheric design but different materials (hydrophobic Podeye and hydrophilic Poday). Instituto de Optica, Consejo Superior de Investigaciones Cientificas, Madrid, Spain. Prospective observational study. Measurements were performed with the use of psychophysical (480 to 700 nm) and wavefront-sensing (480 to 950 nm) methods using a custom-developed adaptive optics system. Chromatic difference-of-focus curves were obtained from best-focus data at each wavelength, and the longitudinal chromatic aberration was obtained from the slope of linear regressions to those curves. The longitudinal chromatic aberration from psychophysical measurements was 1.37 diopters (D) ± 0.08 (SD) (hydrophobic) and 1.21 ± 0.08 D (hydrophilic). From wavefront-sensing, the longitudinal chromatic aberration was 0.88 ± 0.07 D and 0.73 ± 0.09 D, respectively. At 480 to 950 nm, the longitudinal chromatic aberration was 1.27 ± 0.09 D (hydrophobic) and 1.02 ± 0.13 D (hydrophilic). The longitudinal chromatic aberration was consistently higher in eyes with the hydrophobic IOL than in eyes with the hydrophilic IOL (a difference of 0.16 D and 0.15 D, respectively). Similar to findings in young phakic eyes, the longitudinal chromatic aberration from the psychophysical method was consistently higher than from wavefront-sensing, by 0.48 D (35.41%) for the hydrophobic IOL and 0.48 D (39.43%) for the hydrophilic IOL. Longitudinal chromatic aberrations were smaller with hydrophilic IOLs than with hydrophobic IOLs of the same design. No author has a financial or proprietary interest in any material or method mentioned. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
2017-04-30
Defense, “Chemical Agent Resistant Coating (CARC) System Application Procedures and Quality Control Inspection”, Washington, DC, June 2003. 4. Non ...WP-200906) Non -Chromate, ZVOC Coatings for Steel Substrates on Army and Navy Aircraft and Ground Vehicles Non -Chromate Sealers for Zinc...comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE
[Analysis of chromatic value of gingival porcelain].
Wang, Min; Sun, Jun; Chao, Yong-Lie
2005-08-01
To study the distribution of the chromatic value of gingival porcelains. The color change of Shofu VINTAGE and Vita VMK95 gingival porcelains on the black and white backings was determined with a spectrophotometer (PR-650). The results showed that the chromatic value of gingival porcelains was different on varying backings. The color space of gingival porcelain was L*: 41.85 - 50.64, a*: 12.46 - 19.46, b*: 1.33 - 4.62. The chromatic value distribution cannot cover the color region of natural gingiva.
NASA Astrophysics Data System (ADS)
Suponitskiy, Yu. L.; Zolotova, E. S.; Dyunin, A. G.; Liashenko, S. E.
2018-03-01
The phase transition temperatures of chromates and molybdates of certain alkali metals, and the melting temperature and enthalpy of polymorphic transformations for tungstates, are determined by means of thermal analysis. Enthalpies of dissolution of rubidium and cesium chromates in water and enthalpies of dissolution of alkali metal tungstates in a melt at 923 K are measured via calorimetry. Standard enthalpies of formation of sought chromates are calculated. The linear correlations between the enthalpies of formation of sulfates, selenates, chromates, tungstates, and molybdates are established, and a linear correlation within - (Δ G o ox)-1-(Δ MV)ox)-1 coordinates is found for isopolymolybdates.
NASA Astrophysics Data System (ADS)
Zhao, Shengmei; Wang, Le; Zou, Li; Gong, Longyan; Cheng, Weiwen; Zheng, Baoyu; Chen, Hanwu
2016-10-01
A free-space optical (FSO) communication link with multiplexed orbital angular momentum (OAM) modes has been demonstrated to largely enhance the system capacity without a corresponding increase in spectral bandwidth, but the performance of the link is unavoidably degraded by atmospheric turbulence (AT). In this paper, we propose a turbulence mitigation scheme to improve AT tolerance of the OAM-multiplexed FSO communication link using both channel coding and wavefront correction. In the scheme, we utilize a wavefront correction method to mitigate the phase distortion first, and then we use a channel code to further correct the errors in each OAM mode. The improvement of AT tolerance is discussed over the performance of the link with or without channel coding/wavefront correction. The results show that the bit error rate performance has been improved greatly. The detrimental effect of AT on the OAM-multiplexed FSO communication link could be removed by the proposed scheme even in the relatively strong turbulence regime, such as Cn2 = 3.6 ×10-14m - 2 / 3.
Computational technique for stepwise quantitative assessment of equation correctness
NASA Astrophysics Data System (ADS)
Othman, Nuru'l Izzah; Bakar, Zainab Abu
2017-04-01
Many of the computer-aided mathematics assessment systems that are available today possess the capability to implement stepwise correctness checking of a working scheme for solving equations. The computational technique for assessing the correctness of each response in the scheme mainly involves checking the mathematical equivalence and providing qualitative feedback. This paper presents a technique, known as the Stepwise Correctness Checking and Scoring (SCCS) technique that checks the correctness of each equation in terms of structural equivalence and provides quantitative feedback. The technique, which is based on the Multiset framework, adapts certain techniques from textual information retrieval involving tokenization, document modelling and similarity evaluation. The performance of the SCCS technique was tested using worked solutions on solving linear algebraic equations in one variable. 350 working schemes comprising of 1385 responses were collected using a marking engine prototype, which has been developed based on the technique. The results show that both the automated analytical scores and the automated overall scores generated by the marking engine exhibit high percent agreement, high correlation and high degree of agreement with manual scores with small average absolute and mixed errors.
NASA Astrophysics Data System (ADS)
Lach, Zbigniew T.
2017-08-01
A possibility is shown of a non-disruptive estimation of chromatic dispersion in a fiber of an intensity modulation communication line under work conditions. Uncertainty of the chromatic dispersion estimates is analyzed and quantified with the use of confidence intervals.
Zinc Chromate Induces Chromosome Instability and DNA Double Strand Breaks in Human Lung Cells
Xie, Hong; Holmes, Amie L.; Young, Jamie L.; Qin, Qin; Joyce, Kellie; Pelsue, Stephen C.; Peng, Cheng; Wise, Sandra S.; Jeevarajan, Antony S.; Wallace, William T.; Hammond, Dianne; Wise, John Pierce
2014-01-01
Hexavalent chromium Cr(VI) is a respiratory toxicant and carcinogen, with solubility playing an important role in its carcinogenic potential. Zinc chromate, a water insoluble or ‘particulate’ Cr(VI) compound, has been shown to be carcinogenic in epidemiology studies and to induce tumors in experimental animals, but its genotoxicity is poorly understood. Our study shows that zinc chromate induced concentration-dependent increases in cytotoxicity, chromosome damage and DNA double strand breaks in human lung cells. In response to zinc chromate-induced breaks, MRE11 expression was increased and ATM and ATR were phosphorylated, indicating that the DNA double strand break repair system was initiated in the cells. In addition, our data show that zinc chromate-induced double strand breaks were only observed in the G2/M phase population, with no significant amount of double strand breaks observed in G1 and S phase cells. These data will aid in understanding the mechanisms of zinc chromate toxicity and carcinogenesis. PMID:19027772
NASA Astrophysics Data System (ADS)
Jimenezdel Barco, L.; Jimenez, J. R.; Rubino, M.; Diaz, J. A.
1996-09-01
The results obtained by different authors show that when a color stimulus changes in both luminance and chromaticity, the visual reaction time (VRT) of an observer in detecting this chromatic change depends on nothing more than the luminance change and is regulated by Pieron's law. In the present work, we evaluate the VRT needed by an observer to detect the chromaticity difference between an adapting and variable stimulus. For this, we have used the experimental method of hue substitution, which allows us to maintain the luminance channel constant and thereby study the temporal response to changes only in chromaticity. The experiments were carried out with a CRT color monitor and the experimental results are expressed in different color-representation systems. The systems UCS-CIE 1964 (U*, V*, W*) and CIELUV show good correlations between the VRT and the chromaticity difference expressed in these systems, adjusting the VRT to an expression following Pieron's law: VRT-VRTon=k( Delta E)- beta .
On the Difference Between Additive and Subtractive QM/MM Calculations
Cao, Lili; Ryde, Ulf
2018-01-01
The combined quantum mechanical (QM) and molecular mechanical (MM) approach (QM/MM) is a popular method to study reactions in biochemical macromolecules. Even if the general procedure of using QM for a small, but interesting part of the system and MM for the rest is common to all approaches, the details of the implementations vary extensively, especially the treatment of the interface between the two systems. For example, QM/MM can use either additive or subtractive schemes, of which the former is often said to be preferable, although the two schemes are often mixed up with mechanical and electrostatic embedding. In this article, we clarify the similarities and differences of the two approaches. We show that inherently, the two approaches should be identical and in practice require the same sets of parameters. However, the subtractive scheme provides an opportunity to correct errors introduced by the truncation of the QM system, i.e., the link atoms, but such corrections require additional MM parameters for the QM system. We describe and test three types of link-atom correction, viz. for van der Waals, electrostatic, and bonded interactions. The calculations show that electrostatic and bonded link-atom corrections often give rise to problems in the geometries and energies. The van der Waals link-atom corrections are quite small and give results similar to a pure additive QM/MM scheme. Therefore, both approaches can be recommended. PMID:29666794
NASA Astrophysics Data System (ADS)
Saturno, Jorge; Pöhlker, Christopher; Massabò, Dario; Brito, Joel; Carbone, Samara; Cheng, Yafang; Chi, Xuguang; Ditas, Florian; Hrabě de Angelis, Isabella; Morán-Zuloaga, Daniel; Pöhlker, Mira L.; Rizzo, Luciana V.; Walter, David; Wang, Qiaoqiao; Artaxo, Paulo; Prati, Paolo; Andreae, Meinrat O.
2017-08-01
Deriving absorption coefficients from Aethalometer attenuation data requires different corrections to compensate for artifacts related to filter-loading effects, scattering by filter fibers, and scattering by aerosol particles. In this study, two different correction schemes were applied to seven-wavelength Aethalometer data, using multi-angle absorption photometer (MAAP) data as a reference absorption measurement at 637 nm. The compensation algorithms were compared to five-wavelength offline absorption measurements obtained with a multi-wavelength absorbance analyzer (MWAA), which serves as a multiple-wavelength reference measurement. The online measurements took place in the Amazon rainforest, from the wet-to-dry transition season to the dry season (June-September 2014). The mean absorption coefficient (at 637 nm) during this period was 1.8 ± 2.1 Mm-1, with a maximum of 15.9 Mm-1. Under these conditions, the filter-loading compensation was negligible. One of the correction schemes was found to artificially increase the short-wavelength absorption coefficients. It was found that accounting for the aerosol optical properties in the scattering compensation significantly affects the absorption Ångström exponent (åABS) retrievals. Proper Aethalometer data compensation schemes are crucial to retrieve the correct åABS, which is commonly implemented in brown carbon contribution calculations. Additionally, we found that the wavelength dependence of uncompensated Aethalometer attenuation data significantly correlates with the åABS retrieved from offline MWAA measurements.
On the difference between additive and subtractive QM/MM calculations
NASA Astrophysics Data System (ADS)
Cao, Lili; Ryde, Ulf
2018-04-01
The combined quantum mechanical (QM) and molecular mechanical (MM) approach (QM/MM) is a popular method to study reactions in biochemical macromolecules. Even if the general procedure of using QM for a small, but interesting part of the system and MM for the rest is common to all approaches, the details of the implementations vary extensively, especially the treatment of the interface between the two systems. For example, QM/MM can use either additive or subtractive schemes, of which the former is often said to be preferable, although the two schemes are often mixed up with mechanical and electrostatic embedding. In this article, we clarify the similarities and differences of the two approaches. We show that inherently, the two approaches should be identical and in practice require the same sets of parameters. However, the subtractive scheme provides an opportunity to correct errors introduced by the truncation of the QM system, i.e. the link atoms, but such corrections require additional MM parameters for the QM system. We describe and test three types of link-atom correction, viz. for van der Waals, electrostatic and bonded interactions. The calculations show that electrostatic and bonded link-atom corrections often give rise to problems in the geometries and energies. The van der Waals link-atom corrections are quite small and give results similar to a pure additive QM/MM scheme. Therefore, both approaches can be recommended.
Pluto: improved astrometry from 19 years of observations
NASA Astrophysics Data System (ADS)
Benedetti-Rossi, G.; Vieira Martins, R.; Camargo, J. I. B.; Assafin, M.; Braga-Ribas, F.
2014-10-01
Context. We present astrometric positions of Pluto, consistent with the International Celestial Reference System, from 4412 CCD frames observed over 120 nights with three telescopes at the Observatório do Pico dos Dias in Brazil, covering a time span from 1995 to 2013, and also 145 frames observed over 11 nights in 2007 and 2009 with the ESO/MPG 2.2m telescope equipped with the Wide Field Imager (WFI). Aims: Our aim is to contribute to the study and improvement of the orbit of Pluto with new astrometric methods and positions. Methods: All astrometric positions of Pluto were reduced with the Platform for Reduction of Astronomical Images Automatically (PRAIA), using the USNO CCD Astrograph Catalogue 4 (UCAC4) as the reference catalog. We also used the planetary ephemeris DE421+plu021 for comparisons. The positions were corrected for differential chromatic refraction. The (x, y) center of Pluto was determined from corrections to the measured photocenter, which was contaminated by Charon. The corrections were obtained with an original procedure based on analytical expressions derived from a two-dimensional Gaussian function i.e. the point spread function PSF fitted to the images to derive the (x, y) measurements. Results: We obtained mean values of 4 mas and 37 mas for right ascension and declination, and standard deviations of σα = 45 mas and σδ = 49 mas, for the offsets in the sense observed minus ephemeris position, after the corrections. We confirm the presence of a linear drift in the ephemeris declinations from 2005 on, also obtained from stellar occultations. Conclusions: We present astrometric positions of Pluto for 19 years of observations in Brazil. The positions, corrected for differential chromatic refraction and Pluto/Charon photocenter effects, presented the same behavior as obtained from stellar occultations, with a drift in declinations of about 100 mas since 2005. The results indicate that the DE421 Pluto ephemeris used in this work need to be corrected. Full Table 4 is only available in electronic form at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/570/A86Based on observations made at Laboratório Nacional de Astrofísica (LNA), Itajubá-MG, Brazil.Partially based on observations through the ESO runs 079.A-9202(A), 075.C-0154, 077.C-0283, and 079.C-0345.
Convergence of generalized MUSCL schemes
NASA Technical Reports Server (NTRS)
Osher, S.
1984-01-01
Semi-discrete generalizations of the second order extension of Godunov's scheme, known as the MUSCL scheme, are constructed, starting with any three point E scheme. They are used to approximate scalar conservation laws in one space dimension. For convex conservation laws, each member of a wide class is proven to be a convergent approximation to the correct physical solution. Comparison with another class of high resolution convergent schemes is made.
Braun, Doris I; Schütz, Alexander C; Gegenfurtner, Karl R
2017-07-01
Visual sensitivity is dynamically modulated by eye movements. During saccadic eye movements, sensitivity is reduced selectively for low-spatial frequency luminance stimuli and largely unaffected for high-spatial frequency luminance and chromatic stimuli (Nature 371 (1994), 511-513). During smooth pursuit eye movements, sensitivity for low-spatial frequency luminance stimuli is moderately reduced while sensitivity for chromatic and high-spatial frequency luminance stimuli is even increased (Nature Neuroscience, 11 (2008), 1211-1216). Since these effects are at least partly of different polarity, we investigated the combined effects of saccades and smooth pursuit on visual sensitivity. For the time course of chromatic sensitivity, we found that detection rates increased slightly around pursuit onset. During saccades to static and moving targets, detection rates dropped briefly before the saccade and reached a minimum at saccade onset. This reduction of chromatic sensitivity was present whenever a saccade was executed and it was not modified by subsequent pursuit. We also measured contrast sensitivity for flashed high- and low-spatial frequency luminance and chromatic stimuli during saccades and pursuit. During saccades, the reduction of contrast sensitivity was strongest for low-spatial frequency luminance stimuli (about 90%). However, a significant reduction was also present for chromatic stimuli (about 58%). Chromatic sensitivity was increased during smooth pursuit (about 12%). These results suggest that the modulation of visual sensitivity during saccades and smooth pursuit is more complex than previously assumed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sun, Hao; Cooper, Bonnie; Lee, Barry B
2012-03-01
Vernier thresholds are known to be elevated when a target pair has opposite contrast polarity. Polarity reversal is used to assess the role of luminance and chromatic pathways in hyperacuity performance. Psychophysical hyperacuity thresholds were measured for pairs of gratings of various combinations of luminance (Lum) and chromatic (Chr) contrast polarities, at different ratios of luminance to chromatic contrast. With two red-green gratings of matched luminance and chromatic polarity (+Lum+Chr), there was an elevation of threshold at isoluminance. When both luminance and chromatic polarity were mismatched (-Lum-Chr), thresholds were substantially elevated under all conditions. With the same luminance contrast polarity and opposite chromatic polarity (+Lum-Chr) thresholds were only elevated close to isoluminance; in the reverse condition (-Lum+Chr), thresholds were elevated as in the -Lum-Chr condition except close to equiluminance. Similar data were obtained for gratings isolating the short-wavelength cone mechanism. Further psychophysical measurements assessed the role of target separation with matched or mismatched contrast polarity; similar results were found for luminance and chromatic gratings. Comparison physiological data were collected from parafoveal ganglion cells of the macaque retina. Positional precision of ganglion cell signals was assessed under conditions related to the psychophysical measurements. On the basis of these combined observations, it is argued that both magnocellular, parvocellular, and koniocellular pathways have access to cortical positional mechanisms associated with vernier acuity. Copyright © 2012 Elsevier Ltd. All rights reserved.
Detection of chromatic and luminance distortions in natural scenes.
Jennings, Ben J; Wang, Karen; Menzies, Samantha; Kingdom, Frederick A A
2015-09-01
A number of studies have measured visual thresholds for detecting spatial distortions applied to images of natural scenes. In one study, Bex [J. Vis.10(2), 1 (2010)10.1167/10.2.231534-7362] measured sensitivity to sinusoidal spatial modulations of image scale. Here, we measure sensitivity to sinusoidal scale distortions applied to the chromatic, luminance, or both layers of natural scene images. We first established that sensitivity does not depend on whether the undistorted comparison image was of the same or of a different scene. Next, we found that, when the luminance but not chromatic layer was distorted, performance was the same regardless of whether the chromatic layer was present, absent, or phase-scrambled; in other words, the chromatic layer, in whatever form, did not affect sensitivity to the luminance layer distortion. However, when the chromatic layer was distorted, sensitivity was higher when the luminance layer was intact compared to when absent or phase-scrambled. These detection threshold results complement the appearance of periodic distortions of the image scale: when the luminance layer is distorted visibly, the scene appears distorted, but when the chromatic layer is distorted visibly, there is little apparent scene distortion. We conclude that (a) observers have a built-in sense of how a normal image of a natural scene should appear, and (b) the detection of distortion in, as well as the apparent distortion of, natural scene images is mediated predominantly by the luminance layer and not chromatic layer.
Huang, Junhui; Xue, Qi; Wang, Zhao; Gao, Jianmin
2016-09-03
While color-coding methods have improved the measuring efficiency of a structured light three-dimensional (3D) measurement system, they decreased the measuring accuracy significantly due to lateral chromatic aberration (LCA). In this study, the LCA in a structured light measurement system is analyzed, and a method is proposed to compensate the error caused by the LCA. Firstly, based on the projective transformation, a 3D error map of LCA is constructed in the projector images by using a flat board and comparing the image coordinates of red, green and blue circles with the coordinates of white circles at preselected sample points within the measurement volume. The 3D map consists of the errors, which are the equivalent errors caused by LCA of the camera and projector. Then in measurements, error values of LCA are calculated and compensated to correct the projector image coordinates through the 3D error map and a tri-linear interpolation method. Eventually, 3D coordinates with higher accuracy are re-calculated according to the compensated image coordinates. The effectiveness of the proposed method is verified in the following experiments.
Huang, Junhui; Xue, Qi; Wang, Zhao; Gao, Jianmin
2016-01-01
While color-coding methods have improved the measuring efficiency of a structured light three-dimensional (3D) measurement system, they decreased the measuring accuracy significantly due to lateral chromatic aberration (LCA). In this study, the LCA in a structured light measurement system is analyzed, and a method is proposed to compensate the error caused by the LCA. Firstly, based on the projective transformation, a 3D error map of LCA is constructed in the projector images by using a flat board and comparing the image coordinates of red, green and blue circles with the coordinates of white circles at preselected sample points within the measurement volume. The 3D map consists of the errors, which are the equivalent errors caused by LCA of the camera and projector. Then in measurements, error values of LCA are calculated and compensated to correct the projector image coordinates through the 3D error map and a tri-linear interpolation method. Eventually, 3D coordinates with higher accuracy are re-calculated according to the compensated image coordinates. The effectiveness of the proposed method is verified in the following experiments. PMID:27598174
de Jonge, Niels
2018-04-01
The sample dependent spatial resolution was calculated for transmission electron microscopy (TEM) and scanning TEM (STEM) of objects (e.g., nanoparticles, proteins) embedded in a layer of liquid water or amorphous ice. The theoretical model includes elastic- and inelastic scattering, beam broadening, and chromatic aberration. Different contrast mechanisms were evaluated as function of the electron dose, the detection angle, and the sample configuration. It was found that the spatial resolution scales with the electron dose to the -1/4th power. Gold- and carbon nanoparticles were examined in the middle of water layers ranging from 0.01--10 µm thickness representing relevant classes of experiments in both materials science and biology. The optimal microscope settings differ between experimental configurations. STEM performs the best for gold nanoparticles for all layer thicknesses, while carbon is best imaged with phase-contrast TEM for thin layers but bright field STEM is preferred for thicker layers. The resolution was also calculated for a water layer enclosed between thin membranes. The influence of chromatic aberration correction for TEM was examined as well. The theory is broadly applicable to other types of materials and sample configurations. Copyright © 2018 Elsevier B.V. All rights reserved.
Coloring geographical threshold graphs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bradonjic, Milan; Percus, Allon; Muller, Tobias
We propose a coloring algorithm for sparse random graphs generated by the geographical threshold graph (GTG) model, a generalization of random geometric graphs (RGG). In a GTG, nodes are distributed in a Euclidean space, and edges are assigned according to a threshold function involving the distance between nodes as well as randomly chosen node weights. The motivation for analyzing this model is that many real networks (e.g., wireless networks, the Internet, etc.) need to be studied by using a 'richer' stochastic model (which in this case includes both a distance between nodes and weights on the nodes). Here, we analyzemore » the GTG coloring algorithm together with the graph's clique number, showing formally that in spite of the differences in structure between GTG and RGG, the asymptotic behavior of the chromatic number is identical: {chi}1n 1n n / 1n n (1 + {omicron}(1)). Finally, we consider the leading corrections to this expression, again using the coloring algorithm and clique number to provide bounds on the chromatic number. We show that the gap between the lower and upper bound is within C 1n n / (1n 1n n){sup 2}, and specify the constant C.« less
Potential of Silanes for Chromate Replacement in Metal Finishing Industries
2002-09-16
POTENTIAL OF SILANES FOR CHROMATE REPLACEMENT IN METAL FINISHING INDUSTRIES Wim J. van Ooij*, Danqing Zhu, Vignesh Palanivel, J. Anna Lamar...18 2 POTENTIAL OF SILANES FOR CHROMATE REPLACEMENT IN METAL FINISHING INDUSTRIES Wim J. van Ooij, Danqing Zhu, Vignesh Palanivel, J. Anna Lamar
chroma: Chromatic effects for LSST weak lensing
NASA Astrophysics Data System (ADS)
Meyers, Joshua E.; Burchat, Patricia R.
2018-04-01
Chroma investigates biases originating from two chromatic effects in the atmosphere: differential chromatic refraction (DCR), and wavelength dependence of seeing. These biases arise when using the point spread function (PSF) measured with stars to estimate the shapes of galaxies with different spectral energy distributions (SEDs) than the stars.
High-precision two-way optic-fiber time transfer using an improved time code.
Wu, Guiling; Hu, Liang; Zhang, Hao; Chen, Jianping
2014-11-01
We present a novel high-precision two-way optic-fiber time transfer scheme. The Inter-Range Instrumentation Group (IRIG-B) time code is modified by increasing bit rate and defining new fields. The modified time code can be transmitted directly using commercial optical transceivers and is able to efficiently suppress the effect of the Rayleigh backscattering in the optical fiber. A dedicated codec (encoder and decoder) with low delay fluctuation is developed. The synchronization issue is addressed by adopting a mask technique and combinational logic circuit. Its delay fluctuation is less than 27 ps in terms of the standard deviation. The two-way optic-fiber time transfer using the improved codec scheme is verified experimentally over 2 m to100 km fiber links. The results show that the stability over 100 km fiber link is always less than 35 ps with the minimum value of about 2 ps at the averaging time around 1000 s. The uncertainty of time difference induced by the chromatic dispersion over 100 km is less than 22 ps.
Joint polarization tracking and channel equalization based on radius-directed linear Kalman filter
NASA Astrophysics Data System (ADS)
Zhang, Qun; Yang, Yanfu; Zhong, Kangping; Liu, Jie; Wu, Xiong; Yao, Yong
2018-01-01
We propose a joint polarization tracking and channel equalization scheme based on radius-directed linear Kalman filter (RD-LKF) by introducing the butterfly finite-impulse-response (FIR) filter in our previously proposed RD-LKF method. Along with the fast polarization tracking, it can also simultaneously compensate the inter-symbol interference (ISI) effects including residual chromatic dispersion and polarization mode dispersion. Compared with the conventional radius-directed equalizer (RDE) algorithm, it is demonstrated experimentally that three times faster convergence speed, one order of magnitude better tracking capability, and better BER performance is obtained in polarization division multiplexing 16 quadrature amplitude modulation system. Besides, the influences of the algorithm parameters on the convergence and the tracking performance are investigated by numerical simulation.
Wavefront control performance modeling with WFIRST shaped pupil coronagraph testbed
NASA Astrophysics Data System (ADS)
Zhou, Hanying; Nemati, Bijian; Krist, John; Cady, Eric; Kern, Brian; Poberezhskiy, Ilya
2017-09-01
NASA's WFIRST mission includes a coronagraph instrument (CGI) for direct imaging of exoplanets. Significant improvement in CGI model fidelity has been made recently, alongside a testbed high contrast demonstration in a simulated dynamic environment at JPL. We present our modeling method and results of comparisons to testbed's high order wavefront correction performance for the shaped pupil coronagraph. Agreement between model prediction and testbed result at better than a factor of 2 has been consistently achieved in raw contrast (contrast floor, chromaticity, and convergence), and with that comes good agreement in contrast sensitivity to wavefront perturbations and mask lateral shear.
Compact Storage Ring for an X-Ray Source
NASA Astrophysics Data System (ADS)
Ovchinnikova, L.; Shvedunov, V.; Ivanov, K.
2017-12-01
We propose a new design of a compact storage ring for a source of X-ray radiation on the basis of reverse Thomson scattering of laser radiation by electrons with the energy of 35-50 MeV, which has small number of optical elements and a significant clear space for the placement of a beam injection-extraction system and a RF cavity. The original laser cavity layout has been considered. The ring dynamic aperture after correction of chromaticity and a second-order dispersion function is sufficient for the injection and stable circulation of an electron bunch in the ring.
A numerical study of the steady scalar convective diffusion equation for small viscosity
NASA Technical Reports Server (NTRS)
Giles, M. B.; Rose, M. E.
1983-01-01
A time-independent convection diffusion equation is studied by means of a compact finite difference scheme and numerical solutions are compared to the analytic inviscid solutions. The correct internal and external boundary layer behavior is observed, due to an inherent feature of the scheme which automatically produces upwind differencing in inviscid regions and the correct viscous behavior in viscous regions.
Li, Ping; Zhou, Yong; Li, Haijin; Xu, Qinfeng; Meng, Xianguang; Wang, Xiaoyong; Xiao, Min; Zou, Zhigang
2015-01-31
Correction for 'All-solid-state Z-scheme system arrays of Fe2V4O13/RGO/CdS for visible light-driving photocatalytic CO2 reduction into renewable hydrocarbon fuel' by Ping Li et al., Chem. Commun., 2015, 51, 800-803.
Robot-Arm Dynamic Control by Computer
NASA Technical Reports Server (NTRS)
Bejczy, Antal K.; Tarn, Tzyh J.; Chen, Yilong J.
1987-01-01
Feedforward and feedback schemes linearize responses to control inputs. Method for control of robot arm based on computed nonlinear feedback and state tranformations to linearize system and decouple robot end-effector motions along each of cartesian axes augmented with optimal scheme for correction of errors in workspace. Major new feature of control method is: optimal error-correction loop directly operates on task level and not on joint-servocontrol level.
Measurement-free implementations of small-scale surface codes for quantum-dot qubits
NASA Astrophysics Data System (ADS)
Ercan, H. Ekmel; Ghosh, Joydip; Crow, Daniel; Premakumar, Vickram N.; Joynt, Robert; Friesen, Mark; Coppersmith, S. N.
2018-01-01
The performance of quantum-error-correction schemes depends sensitively on the physical realizations of the qubits and the implementations of various operations. For example, in quantum-dot spin qubits, readout is typically much slower than gate operations, and conventional surface-code implementations that rely heavily on syndrome measurements could therefore be challenging. However, fast and accurate reset of quantum-dot qubits, without readout, can be achieved via tunneling to a reservoir. Here we propose small-scale surface-code implementations for which syndrome measurements are replaced by a combination of Toffoli gates and qubit reset. For quantum-dot qubits, this enables much faster error correction than measurement-based schemes, but requires additional ancilla qubits and non-nearest-neighbor interactions. We have performed numerical simulations of two different coding schemes, obtaining error thresholds on the orders of 10-2 for a one-dimensional architecture that only corrects bit-flip errors and 10-4 for a two-dimensional architecture that corrects bit- and phase-flip errors.
Application Of Multi-grid Method On China Seas' Temperature Forecast
NASA Astrophysics Data System (ADS)
Li, W.; Xie, Y.; He, Z.; Liu, K.; Han, G.; Ma, J.; Li, D.
2006-12-01
Correlation scales have been used in traditional scheme of 3-dimensional variational (3D-Var) data assimilation to estimate the background error covariance for the numerical forecast and reanalysis of atmosphere and ocean for decades. However there are still some drawbacks of this scheme. First, the correlation scales are difficult to be determined accurately. Second, the positive definition of the first-guess error covariance matrix cannot be guaranteed unless the correlation scales are sufficiently small. Xie et al. (2005) indicated that a traditional 3D-Var only corrects some certain wavelength errors and its accuracy depends on the accuracy of the first-guess covariance. And in general, short wavelength error can not be well corrected until long one is corrected and then inaccurate first-guess covariance may mistakenly take long wave error as short wave ones and result in erroneous analysis. For the purpose of quickly minimizing the errors of long and short waves successively, a new 3D-Var data assimilation scheme, called multi-grid data assimilation scheme, is proposed in this paper. By assimilating the shipboard SST and temperature profiles data into a numerical model of China Seas, we applied this scheme in two-month data assimilation and forecast experiment which ended in a favorable result. Comparing with the traditional scheme of 3D-Var, the new scheme has higher forecast accuracy and a lower forecast Root-Mean-Square (RMS) error. Furthermore, this scheme was applied to assimilate the SST of shipboard, AVHRR Pathfinder Version 5.0 SST and temperature profiles at the same time, and a ten-month forecast experiment on sea temperature of China Seas was carried out, in which a successful forecast result was obtained. Particularly, the new scheme is demonstrated a great numerical efficiency in these analyses.
REDUCTIVE DETOXIFICATION AND IMMOBILIZATION OF CHROMATE PRESENT IN SOILS
The in-situ permeable reactive barrier at the U.S. Coast Guard Air Support Center at Elizabeth City, North Carolina is very effective in remediating the contaminant plumes of TCE and chromate in the ground water, but it has limited effectiveness to attenuate chromate present as s...
NASA Astrophysics Data System (ADS)
Ning, G.; Shum, P.; Aditya, S.; Gong, Yandong
2006-09-01
We use the expression relating the output state of polarization and PMD vector. Based on this expression we get the power fading including first-order PMD and chromatic dispersion, which is dependent on the angle of precession of output state of polarization around the PMD vector. From the expression for power fading, we get the average power penalty for chromatic dispersion and PMD. We propose a novel and fast PMD and chromatic dispersion monitoring technology. Measured results agree well with theoretical analysis.
Symplectic maps and chromatic optics in particle accelerators
Cai, Yunhai
2015-07-06
Here, we have applied the nonlinear map method to comprehensively characterize the chromatic optics in particle accelerators. Our approach is built on the foundation of symplectic transfer maps of magnetic elements. The chromatic lattice parameters can be transported from one element to another by the maps. We also introduce a Jacobian operator that provides an intrinsic linkage between the maps and the matrix with parameter dependence. The link allows us to directly apply the formulation of the linear optics to compute the chromatic lattice parameters. As an illustration, we analyze an alternating-gradient cell with nonlinear sextupoles, octupoles, and decapoles andmore » derive analytically their settings for the local chromatic compensation. Finally, the cell becomes nearly perfect up to the third-order of the momentum deviation.« less
The effects of luminance contribution from large fields to chromatic visual evoked potentials.
Skiba, Rafal M; Duncan, Chad S; Crognale, Michael A
2014-02-01
Though useful from a clinical and practical standpoint uniform, large-field chromatic stimuli are likely to contain luminance contributions from retinal inhomogeneities. Such contribution can significantly influence psychophysical thresholds. However, the degree to which small luminance artifacts influence the chromatic VEP has been debated. In particular, claims have been made that band-pass tuning observed in chromatic VEPs result from luminance intrusion. However, there has been no direct evidence presented to support these claims. Recently, large-field isoluminant stimuli have been developed to control for intrusion from retinal inhomogeneities with particular regard to the influence of macular pigment. We report here the application of an improved version of these full-field stimuli to directly test the influence of luminance intrusion on the temporal tuning of the chromatic VEP. Our results show that band-pass tuning persists even when isoluminance is achieved throughout the extent of the stimulus. In addition, small amounts of luminance intrusion affect neither the shape of the temporal tuning function nor the major components of the VEP. These results support the conclusion that the chromatic VEP can depart substantially from threshold psychophysics with regard to temporal tuning and that obtaining a low-pass function is not requisite evidence of selective chromatic activation in the VEP. Copyright © 2013 Elsevier Ltd. All rights reserved.
Very-long-term and short-term chromatic adaptation: are their influences cumulative?
Belmore, Suzanne C; Shevell, Steven K
2011-02-09
Very-long-term (VLT) chromatic adaptation results from exposure to an altered chromatic environment for days or weeks. Color shifts from VLT adaptation are observed hours or days after leaving the altered environment. Short-term chromatic adaptation, on the other hand, results from exposure for a few minutes or less, with color shifts measured within seconds or a few minutes after the adapting light is extinguished; recovery to the pre-adapted state is complete in less than an hour. Here, both types of adaptation were combined. All adaptation was to reddish-appearing long-wavelength light. Shifts in unique yellow were measured following adaptation. Previous studies demonstrate shifts in unique yellow due to VLT chromatic adaptation, but shifts from short-term chromatic adaptation to comparable adapting light can be far greater than from VLT adaptation. The question considered here is whether the color shifts from VLT adaptation are cumulative with large shifts from short-term adaptation or, alternatively, does simultaneous short-term adaptation eliminate color shifts caused by VLT adaptation. The results show the color shifts from VLT and short-term adaptation together are cumulative, which indicates that both short-term and very-long-term chromatic adaptation affect color perception during natural viewing. Copyright © 2010 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Diskin, Boris; Thomas, James L.
2010-01-01
Cell-centered and node-centered approaches have been compared for unstructured finite-volume discretization of inviscid fluxes. The grids range from regular grids to irregular grids, including mixed-element grids and grids with random perturbations of nodes. Accuracy, complexity, and convergence rates of defect-correction iterations are studied for eight nominally second-order accurate schemes: two node-centered schemes with weighted and unweighted least-squares (LSQ) methods for gradient reconstruction and six cell-centered schemes two node-averaging with and without clipping and four schemes that employ different stencils for LSQ gradient reconstruction. The cell-centered nearest-neighbor (CC-NN) scheme has the lowest complexity; a version of the scheme that involves smart augmentation of the LSQ stencil (CC-SA) has only marginal complexity increase. All other schemes have larger complexity; complexity of node-centered (NC) schemes are somewhat lower than complexity of cell-centered node-averaging (CC-NA) and full-augmentation (CC-FA) schemes. On highly anisotropic grids typical of those encountered in grid adaptation, discretization errors of five of the six cell-centered schemes converge with second order on all tested grids; the CC-NA scheme with clipping degrades solution accuracy to first order. The NC schemes converge with second order on regular and/or triangular grids and with first order on perturbed quadrilaterals and mixed-element grids. All schemes may produce large relative errors in gradient reconstruction on grids with perturbed nodes. Defect-correction iterations for schemes employing weighted least-square gradient reconstruction diverge on perturbed stretched grids. Overall, the CC-NN and CC-SA schemes offer the best options of the lowest complexity and secondorder discretization errors. On anisotropic grids over a curved body typical of turbulent flow simulations, the discretization errors converge with second order and are small for the CC-NN, CC-SA, and CC-FA schemes on all grids and for NC schemes on triangular grids; the discretization errors of the CC-NA scheme without clipping do not converge on irregular grids. Accurate gradient reconstruction can be achieved by introducing a local approximate mapping; without approximate mapping, only the NC scheme with weighted LSQ method provides accurate gradients. Defect correction iterations for the CC-NA scheme without clipping diverge; for the NC scheme with weighted LSQ method, the iterations either diverge or converge very slowly. The best option in curved geometries is the CC-SA scheme that offers low complexity, second-order discretization errors, and fast convergence.
NASA Astrophysics Data System (ADS)
Morrow, Andrew N.; Matthews, Kenneth L., II; Bujenovic, Steven
2008-03-01
Positron emission tomography (PET) and computed tomography (CT) together are a powerful diagnostic tool, but imperfect image quality allows false positive and false negative diagnoses to be made by any observer despite experience and training. This work investigates PET acquisition mode, reconstruction method and a standard uptake value (SUV) correction scheme on the classification of lesions as benign or malignant in PET/CT images, in an anthropomorphic phantom. The scheme accounts for partial volume effect (PVE) and PET resolution. The observer draws a region of interest (ROI) around the lesion using the CT dataset. A simulated homogenous PET lesion of the same shape as the drawn ROI is blurred with the point spread function (PSF) of the PET scanner to estimate the PVE, providing a scaling factor to produce a corrected SUV. Computer simulations showed that the accuracy of the corrected PET values depends on variations in the CT-drawn boundary and the position of the lesion with respect to the PET image matrix, especially for smaller lesions. Correction accuracy was affected slightly by mismatch of the simulation PSF and the actual scanner PSF. The receiver operating characteristic (ROC) study resulted in several observations. Using observer drawn ROIs, scaled tumor-background ratios (TBRs) more accurately represented actual TBRs than unscaled TBRs. For the PET images, 3D OSEM outperformed 2D OSEM, 3D OSEM outperformed 3D FBP, and 2D OSEM outperformed 2D FBP. The correction scheme significantly increased sensitivity and slightly increased accuracy for all acquisition and reconstruction modes at the cost of a small decrease in specificity.
Bian, Tianjian; Gao, Jie; Zhang, Chuang; ...
2017-12-10
In September 2012, Chinese scientists proposed a Circular Electron Positron Collider (CEPC) in China at 240 GeV center-of-mass energy for Higgs studies. The booster provides 120 GeV electron and positron beams to the CEPC collider for top-up injection at 0.1 Hz. The design of the full energy booster ring of the CEPC is a challenge. The ejected beam energy is 120 GeV and the injected beam energy is 6 GeV. Here in this paper we describe two alternative schemes, the wiggler bend scheme and the normal bend scheme. For the wiggler bend scheme, we propose to operate the booster ringmore » as a large wiggler at low energy and as a normal ring at high energy to avoid the problem of very low dipole magnet fields. Finally, for the normal bend scheme, we implement the orbit correction to correct the earth field.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bian, Tianjian; Gao, Jie; Zhang, Chuang
In September 2012, Chinese scientists proposed a Circular Electron Positron Collider (CEPC) in China at 240 GeV center-of-mass energy for Higgs studies. The booster provides 120 GeV electron and positron beams to the CEPC collider for top-up injection at 0.1 Hz. The design of the full energy booster ring of the CEPC is a challenge. The ejected beam energy is 120 GeV and the injected beam energy is 6 GeV. Here in this paper we describe two alternative schemes, the wiggler bend scheme and the normal bend scheme. For the wiggler bend scheme, we propose to operate the booster ringmore » as a large wiggler at low energy and as a normal ring at high energy to avoid the problem of very low dipole magnet fields. Finally, for the normal bend scheme, we implement the orbit correction to correct the earth field.« less
On basis set superposition error corrected stabilization energies for large n-body clusters.
Walczak, Katarzyna; Friedrich, Joachim; Dolg, Michael
2011-10-07
In this contribution, we propose an approximate basis set superposition error (BSSE) correction scheme for the site-site function counterpoise and for the Valiron-Mayer function counterpoise correction of second order to account for the basis set superposition error in clusters with a large number of subunits. The accuracy of the proposed scheme has been investigated for a water cluster series at the CCSD(T), CCSD, MP2, and self-consistent field levels of theory using Dunning's correlation consistent basis sets. The BSSE corrected stabilization energies for a series of water clusters are presented. A study regarding the possible savings with respect to computational resources has been carried out as well as a monitoring of the basis set dependence of the approximate BSSE corrections. © 2011 American Institute of Physics
Robson, Anthony G; Kulikowski, Janus J
2012-11-01
The aim was to investigate the temporal response properties of magnocellular, parvocellular, and koniocellular visual pathways using increment/decrement changes in contrast to elicit visual evoked potentials (VEPs). Static achromatic and isoluminant chromatic gratings were generated on a monitor. Chromatic gratings were modulated along red/green (R/G) or subject-specific tritanopic confusion axes, established using a minimum distinct border criterion. Isoluminance was determined using minimum flicker photometry. Achromatic and chromatic VEPs were recorded to contrast increments and decrements of 0.1 or 0.2 superimposed on the static gratings (masking contrast 0-0.6). Achromatic increment/decrement changes in contrast evoked a percept of apparent motion when the spatial frequency was low; VEPs to such stimuli were positive in polarity and largely unaffected by high levels of static contrast, consistent with transient response mechanisms. VEPs to finer achromatic gratings showed marked attenuation as static contrast was increased. Chromatic VEPs to R/G or tritan chromatic contrast increments were of negative polarity and showed progressive attenuation as static contrast was increased, in keeping with increasing desensitization of the sustained responses of the color-opponent visual pathways. Chromatic contrast decrement VEPs were of positive polarity and less sensitive to pattern adaptation. The relative contribution of sustained/transient mechanisms to achromatic processing is spatial frequency dependent. Chromatic contrast increment VEPs reflect the sustained temporal response properties of parvocellular and koniocellular pathways. Cortical VEPs can provide an objective measure of pattern adaptation and can be used to probe the temporal response characteristics of different visual pathways.
Dees, Elise W; Gilson, Stuart J; Neitz, Maureen; Baraas, Rigmor C
2015-11-01
Chromatic contrast sensitivity may be a more sensitive measure of an individual's visual function than achromatic contrast sensitivity. Here, the first aim was to quantify individual- and age-related variations in chromatic contrast sensitivity to a range of spatial frequencies for stimuli along two complementary directions in color space. The second aim was to examine whether polymorphisms at specific amino acid residues of the L- and M-opsin genes (OPN1LW and OPN1MW) known to affect spectral tuning of the photoreceptors could influence spatio-chromatic contrast sensitivity. Chromatic contrast sensitivity functions were measured in 50 healthy individuals (20-71 years) employing a novel pseudo-isochromatic grating stimulus. The spatio-chromatic contrast sensitivity functions were found to be low pass for all subjects, independent of age and color vision. The results revealed a senescent decline in spatio-chromatic contrast sensitivity. There were considerable between-individual differences in sensitivity within each age decade for individuals 49 years old or younger, and age did not predict sensitivity for these age decades alone. Forty-six subjects (including a color deficient male and eight female carriers) were genotyped for L- and M-opsin genes. The Ser180Ala polymorphisms on the L-opsin gene were found to influence the subject's color discrimination and their sensitivity to spatio-chromatic patterns. The results expose the significant role of neural and genetic factors in the deterioration of visual function with increasing age. Copyright © 2015 Elsevier Ltd. All rights reserved.
Fluctuations in the prevalence of chromate allergy in Denmark and exposure to chrome-tanned leather.
Carøe, Caroline; Andersen, Klaus E; Thyssen, Jacob P; Mortz, Charlotte G
2010-12-01
A recent Danish study showed a significant increase in the prevalence of chromate contact allergy after the mid-1990s, probably as a result of exposure to leather products. To reproduce the results by analysing data from the period 1992-2009 at Odense University Hospital, Denmark. The temporal development in the occurrence of chromate contact allergy and assumed causative exposures were investigated. A retrospective analysis of patch test data was performed (n = 8483), and medical charts from patients with chromate allergy (n = 231) were reviewed. Comparisons were made using the χ(2) -test. A test of the reproducibility of the TRUE Test® was also performed. Logistic regression analyses were used to test for associations. No significant changes in the prevalence or exposure sources of chromate allergy during 1992-2009 were identified. Leather shoes (24.4%) were the most frequent exposure sources in chromate allergy, and were mainly registered in women, although the difference between men and women was not significant (P = 0.07). Cement and leather glove exposure occurred significantly more often in men than in women (P = 0.002). Foot dermatitis (40.3%) was the most frequent anatomical location, apart from hand eczema (60.6%). The reproducibility of the TRUE Test® was 93.3%. Apart from hand eczema, the most frequent clinical picture of chromate allergy was foot dermatitis caused by leather shoe exposure. A tendency for an increasing prevalence of chromate contact allergy from 1997 was shown, but no significant change was detectable. © 2010 John Wiley & Sons A/S.
Cr-Free Metallic-Ceramic Coatings
2014-11-01
Comparable to Aluminum-Chromate/ Phosphate Humidity Resistance Galvanic Corrosion Resistance Nov. 2014 ASETSDefense 2014, Fort Myer, VA...Aluminum-Silicate Comparable to Aluminum-Chromate/ Phosphate Humidity, Galvanic Corrosion , Heat/Salt Resistance Adhesion & Compatibility...WP-TR-2007-4069, Sept. 2006 Sealed Aluminum-Silicate Not Comparable to Sealed Aluminum-Chromate/ Phosphate in PEWG Evaluation Corrosion
Changes in unique hues induced by chromatic surrounds.
Klauke, Susanne; Wachtler, Thomas
2016-03-01
A chromatic surround can have a strong influence on the perceived hue of a stimulus. We investigated whether chromatic induction has similar effects on the perception of colors that appear pure and unmixed (unique red, green, blue, and yellow) as on other colors. Subjects performed unique hue settings of stimuli in isoluminant surrounds of different chromaticities. Compared with the settings in a neutral gray surround, unique hue settings altered systematically with chromatic surrounds. The amount of induced hue shift depended on the difference between stimulus and surround hues, and was similar for unique hue settings as for settings of nonunique hues. Intraindividual variability in unique hue settings was roughly twice as high as for settings obtained in asymmetric matching experiments, which may reflect the presence of a reference stimulus in the matching task. Variabilities were also larger with chromatic surrounds than with neutral gray surrounds, for both unique hue settings and matching of nonunique hues. The results suggest that the neural representations underlying unique hue percepts are influenced by the same neural processing mechanisms as the percepts of other colors.
Tchabo, William; Ma, Yongkun; Kwaw, Emmanuel; Zhang, Haining; Xiao, Lulu; Apaliya, Maurice T
2018-01-15
The four different methods of color measurement of wine proposed by Boulton, Giusti, Glories and Commission International de l'Eclairage (CIE) were applied to assess the statistical relationship between the phytochemical profile and chromatic characteristics of sulfur dioxide-free mulberry (Morus nigra) wine submitted to non-thermal maturation processes. The alteration in chromatic properties and phenolic composition of non-thermal aged mulberry wine were examined, aided by the used of Pearson correlation, cluster and principal component analysis. The results revealed a positive effect of non-thermal processes on phytochemical families of wines. From Pearson correlation analysis relationships between chromatic indexes and flavonols as well as anthocyanins were established. Cluster analysis highlighted similarities between Boulton and Giusti parameters, as well as Glories and CIE parameters in the assessment of chromatic properties of wines. Finally, principal component analysis was able to discriminate wines subjected to different maturation techniques on the basis of their chromatic and phenolics characteristics. Copyright © 2017. Published by Elsevier Ltd.
Boore, D.M.; Stephens, C.D.; Joyner, W.B.
2002-01-01
Residual displacements for large earthquakes can sometimes be determined from recordings on modern digital instruments, but baseline offsets of unknown origin make it difficult in many cases to do so. To recover the residual displacement, we suggest tailoring a correction scheme by studying the character of the velocity obtained by integration of zeroth-order-corrected acceleration and then seeing if the residual displacements are stable when the various parameters in the particular correction scheme are varied. For many seismological and engineering purposes, however, the residual displacement are of lesser importance than ground motions at periods less than about 20 sec. These ground motions are often recoverable with simple baseline correction and low-cut filtering. In this largely empirical study, we illustrate the consequences of various correction schemes, drawing primarily from digital recordings of the 1999 Hector Mine, California, earthquake. We show that with simple processing the displacement waveforms for this event are very similar for stations separated by as much as 20 km. We also show that a strong pulse on the transverse component was radiated from the Hector Mine earthquake and propagated with little distortion to distances exceeding 170 km; this pulse leads to large response spectral amplitudes around 10 sec.
In vivo chromatic aberration in eyes implanted with intraocular lenses.
Pérez-Merino, Pablo; Dorronsoro, Carlos; Llorente, Lourdes; Durán, Sonia; Jiménez-Alfaro, Ignacio; Marcos, Susana
2013-04-12
To measure in vivo and objectively the monochromatic aberrations at different wavelengths, and the chromatic difference of focus between green and infrared wavelengths in eyes implanted with two models of intraocular lenses (IOL). EIGHTEEN EYES PARTICIPATED IN THIS STUDY: nine implanted with Tecnis ZB99 1-Piece acrylic IOL and nine implanted with AcrySof SN60WF IOL. A custom-developed laser ray tracing (LRT) aberrometer was used to measure the optical aberrations, at 532 nm and 785 nm wavelengths. The monochromatic wave aberrations were described using a fifth-order Zernike polynomial expansion. The chromatic difference of focus was estimated as the difference between the equivalent spherical errors corresponding to each wavelength. Wave aberration measurements were highly reproducible. Except for the defocus term, no significant differences in high order aberrations (HOA) were found between wavelengths. The average chromatic difference of focus was 0.46 ± 0.15 diopters (D) in the Tecnis group, and 0.75 ± 0.12 D in the AcrySof group, and the difference was statistically significant (P < 0.05). Chromatic difference of focus in the AcrySof group was not statistically significantly different from the Longitudinal chromatic aberration (LCA) previously reported in a phakic population (0.78 ± 0.16 D). The impact of LCA on retinal image quality (measured in terms of Strehl ratio) was drastically reduced when considering HOA and astigmatism in comparison with a diffraction-limited eye, yielding the differences in retinal image quality between Tecnis and AcrySof IOLs not significant. LRT aberrometry at different wavelengths is a reproducible technique to evaluate the chromatic difference of focus objectively in eyes implanted with IOLs. Replacement of the crystalline lens by the IOL did not increase chromatic difference of focus above that of phakic eyes in any of the groups. The AcrySof group showed chromatic difference of focus values very similar to physiological values in young eyes.
Neural network decoder for quantum error correcting codes
NASA Astrophysics Data System (ADS)
Krastanov, Stefan; Jiang, Liang
Artificial neural networks form a family of extremely powerful - albeit still poorly understood - tools used in anything from image and sound recognition through text generation to, in our case, decoding. We present a straightforward Recurrent Neural Network architecture capable of deducing the correcting procedure for a quantum error-correcting code from a set of repeated stabilizer measurements. We discuss the fault-tolerance of our scheme and the cost of training the neural network for a system of a realistic size. Such decoders are especially interesting when applied to codes, like the quantum LDPC codes, that lack known efficient decoding schemes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, Z.; Ching, W.Y.
Based on the Sterne-Inkson model for the self-energy correction to the single-particle energy in the local-density approximation (LDA), we have implemented an approximate energy-dependent and [bold k]-dependent [ital GW] correction scheme to the orthogonalized linear combination of atomic orbital-based local-density calculation for insulators. In contrast to the approach of Jenkins, Srivastava, and Inkson, we evaluate the on-site exchange integrals using the LDA Bloch functions throughout the Brillouin zone. By using a [bold k]-weighted band gap [ital E][sub [ital g
Dissipative quantum error correction and application to quantum sensing with trapped ions.
Reiter, F; Sørensen, A S; Zoller, P; Muschik, C A
2017-11-28
Quantum-enhanced measurements hold the promise to improve high-precision sensing ranging from the definition of time standards to the determination of fundamental constants of nature. However, quantum sensors lose their sensitivity in the presence of noise. To protect them, the use of quantum error-correcting codes has been proposed. Trapped ions are an excellent technological platform for both quantum sensing and quantum error correction. Here we present a quantum error correction scheme that harnesses dissipation to stabilize a trapped-ion qubit. In our approach, always-on couplings to an engineered environment protect the qubit against spin-flips or phase-flips. Our dissipative error correction scheme operates in a continuous manner without the need to perform measurements or feedback operations. We show that the resulting enhanced coherence time translates into a significantly enhanced precision for quantum measurements. Our work constitutes a stepping stone towards the paradigm of self-correcting quantum information processing.
Identification of polymer stabilized blue-phase liquid crystal display by chromaticity diagram
NASA Astrophysics Data System (ADS)
Lan, Yi-Fen; Tsai, Cheng-Yeh; Wang, Ling-Yung; Ku, Po-Jen; Huang, Tai-Hsiang; Liu, Chu-Yu; Sugiura, Norio
2012-04-01
We reported an identification method of blue phase liquid crystal (BPLC) display status by using Commission International de l'Éclairage (CIE) chromaticity diagram. The BPLC was injected into in-plane-switch (IPS) cell, polymer stabilized (PS) by ultraviolet cured process and analyzed by luminance colorimeter. The results of CIE chromaticity diagram showed a remarkable turning point when polymer stabilized blue phase liquid crystal II (PSBPLC-II) formed in the IPS cell. A mechanism of CIE chromaticity diagram identify PSBPLC display status was proposed, and we believe this finding will be useful to application and production of PSBPLC display.
Binocular interactions in random chromatic changes at isoluminance
NASA Astrophysics Data System (ADS)
Medina, José M.
2006-02-01
To examine the type of chromatic interactions at isoluminance in the phenomenon of binocular vision, I have determined simple visual reaction times (VRT) under three observational conditions (monocular left, monocular right, and binocular) for different chromatic stimuli along random color axes at isoluminance (simultaneous L-, M-, and S-cone variations). Upper and lower boundaries of probability summation as well as the binocular capacity coefficient were estimated with observed distributions of reaction times. The results were not consistent with the notion of independent chromatic channels between eyes, suggesting the existence of excitatory and inhibitory binocular interactions at suprathreshold isoluminance conditions.
NASA Technical Reports Server (NTRS)
Schlesinger, R. E.
1985-01-01
The impact of upstream-biased corrections for third-order spatial truncation error on the stability and phase error of the two-dimensional Crowley combined advective scheme with the cross-space term included is analyzed, putting primary emphasis on phase error reduction. The various versions of the Crowley scheme are formally defined, and their stability and phase error characteristics are intercompared using a linear Fourier component analysis patterned after Fromm (1968, 1969). The performances of the schemes under prototype simulation conditions are tested using time-dependent numerical experiments which advect an initially cone-shaped passive scalar distribution in each of three steady nondivergent flows. One such flow is solid rotation, while the other two are diagonal uniform flow and a strongly deformational vortex.
Using a two-lens afocal compensator for thermal defocus correction of catadioptric system
NASA Astrophysics Data System (ADS)
Ivanov, S. E.; Romanova, G. E.; Bakholdin, A. V.
2017-08-01
The work associates with the catadioptric systems with two-component afocal achromatic compensator. The most catadioptric systems with afocal compensator have the power mirror part and the correctional lens part. The correctional lens part can be in parallel, in convergent beam or in both. One of the problems of such systems design is the thermal defocus by reason of the thermal aberration and the housing thermal expansion. We introduce the technique of thermal defocus compensation by choosing the optical material of the afocal compensator components. The components should be made from the optical materials with thermo-optical characteristics so after temperature changing the compensator should become non-afocal with the optical power enough to compensate the image plane thermal shift. Abbe numbers of the components should also have certain values for correction chromatic aberrations that reduces essentially the applicable optical materials quantity. The catalogues of the most vendors of optical materials in visible spectral range are studied for the purpose of finding the suitable couples for the technique. As a result, the advantages and possibilities of the plastic materials application in combination with optical glasses are shown. The examples of the optical design are given.
Chromatic interocular-switch rivalry.
Christiansen, Jens H; D'Antona, Anthony D; Shevell, Steven K
2017-05-01
Interocular-switch rivalry (also known as stimulus rivalry) is a kind of binocular rivalry in which two rivalrous images are swapped between the eyes several times a second. The result is stable periods of one image and then the other, with stable intervals that span many eye swaps (Logothetis, Leopold, & Sheinberg, 1996). Previous work used this close kin of binocular rivalry with rivalrous forms. Experiments here test whether chromatic interocular-switch rivalry, in which the swapped stimuli differ in only chromaticity, results in slow alternation between two colors. Swapping equiluminant rivalrous chromaticities at 3.75 Hz resulted in slow perceptual color alternation, with one or the other color often continuously visible for two seconds or longer (during which there were 15+ eye swaps). A well-known theory for sustained percepts from interocular-switch rivalry with form is inhibitory competition between binocular neurons driven by monocular neurons with matched orientation tuning in each eye; such binocular neurons would produce a stable response when a given orientation is swapped between the eyes. A similar model can account for the percepts here from chromatic interocular-switch rivalry and is underpinned by the neurophysiological finding that color-preferring binocular neurons are driven by monocular neurons from each eye with well-matched chromatic selectivity (Peirce, Solomon, Forte, & Lennie, 2008). In contrast to chromatic interocular-switch rivalry, luminance interocular-switch rivalry with swapped stimuli that differ in only luminance did not result in slowly alternating percepts of different brightnesses.
NASA Astrophysics Data System (ADS)
Pathak, P.; Guyon, O.; Jovanovic, N.; Lozi, J.; Martinache, F.; Minowa, Y.; Kudo, T.; Kotani, T.; Takami, H.
2018-02-01
Adaptive optic (AO) systems delivering high levels of wavefront correction are now common at observatories. One of the main limitations to image quality after wavefront correction comes from atmospheric refraction. An atmospheric dispersion compensator (ADC) is employed to correct for atmospheric refraction. The correction is applied based on a look-up table consisting of dispersion values as a function of telescope elevation angle. The look-up table-based correction of atmospheric dispersion results in imperfect compensation leading to the presence of residual dispersion in the point spread function (PSF) and is insufficient when sub-milliarcsecond precision is required. The presence of residual dispersion can limit the achievable contrast while employing high-performance coronagraphs or can compromise high-precision astrometric measurements. In this paper, we present the first on-sky closed-loop correction of atmospheric dispersion by directly using science path images. The concept behind the measurement of dispersion utilizes the chromatic scaling of focal plane speckles. An adaptive speckle grid generated with a deformable mirror (DM) that has a sufficiently large number of actuators is used to accurately measure the residual dispersion and subsequently correct it by driving the ADC. We have demonstrated with the Subaru Coronagraphic Extreme AO (SCExAO) system on-sky closed-loop correction of residual dispersion to <1 mas across H-band. This work will aid in the direct detection of habitable exoplanets with upcoming extremely large telescopes (ELTs) and also provide a diagnostic tool to test the performance of instruments which require sub-milliarcsecond correction.
The Visual Effects of Intraocular Colored Filters
Hammond, Billy R.
2012-01-01
Modern life is associated with a myriad of visual problems, most notably refractive conditions such as myopia. Human ingenuity has addressed such problems using strategies such as spectacle lenses or surgical correction. There are other visual problems, however, that have been present throughout our evolutionary history and are not as easily solved by simply correcting refractive error. These problems include issues like glare disability and discomfort arising from intraocular scatter, photostress with the associated transient loss in vision that arises from short intense light exposures, or the ability to see objects in the distance through a veil of atmospheric haze. One likely biological solution to these more long-standing problems has been the use of colored intraocular filters. Many species, especially diurnal, incorporate chromophores from numerous sources (e.g., often plant pigments called carotenoids) into ocular tissues to improve visual performance outdoors. This review summarizes information on the utility of such filters focusing on chromatic filtering by humans. PMID:24278692
Huang, Ai-Mei; Nguyen, Truong
2009-04-01
In this paper, we address the problems of unreliable motion vectors that cause visual artifacts but cannot be detected by high residual energy or bidirectional prediction difference in motion-compensated frame interpolation. A correlation-based motion vector processing method is proposed to detect and correct those unreliable motion vectors by explicitly considering motion vector correlation in the motion vector reliability classification, motion vector correction, and frame interpolation stages. Since our method gradually corrects unreliable motion vectors based on their reliability, we can effectively discover the areas where no motion is reliable to be used, such as occlusions and deformed structures. We also propose an adaptive frame interpolation scheme for the occlusion areas based on the analysis of their surrounding motion distribution. As a result, the interpolated frames using the proposed scheme have clearer structure edges and ghost artifacts are also greatly reduced. Experimental results show that our interpolated results have better visual quality than other methods. In addition, the proposed scheme is robust even for those video sequences that contain multiple and fast motions.
Numerical experiments on the accuracy of ENO and modified ENO schemes
NASA Technical Reports Server (NTRS)
Shu, Chi-Wang
1990-01-01
Further numerical experiments are made assessing an accuracy degeneracy phenomena. A modified essentially non-oscillatory (ENO) scheme is proposed, which recovers the correct order of accuracy for all the test problems with smooth initial conditions and gives comparable results with the original ENO schemes for discontinuous problems.
LDPC-PPM Coding Scheme for Optical Communication
NASA Technical Reports Server (NTRS)
Barsoum, Maged; Moision, Bruce; Divsalar, Dariush; Fitz, Michael
2009-01-01
In a proposed coding-and-modulation/demodulation-and-decoding scheme for a free-space optical communication system, an error-correcting code of the low-density parity-check (LDPC) type would be concatenated with a modulation code that consists of a mapping of bits to pulse-position-modulation (PPM) symbols. Hence, the scheme is denoted LDPC-PPM. This scheme could be considered a competitor of a related prior scheme in which an outer convolutional error-correcting code is concatenated with an interleaving operation, a bit-accumulation operation, and a PPM inner code. Both the prior and present schemes can be characterized as serially concatenated pulse-position modulation (SCPPM) coding schemes. Figure 1 represents a free-space optical communication system based on either the present LDPC-PPM scheme or the prior SCPPM scheme. At the transmitting terminal, the original data (u) are processed by an encoder into blocks of bits (a), and the encoded data are mapped to PPM of an optical signal (c). For the purpose of design and analysis, the optical channel in which the PPM signal propagates is modeled as a Poisson point process. At the receiving terminal, the arriving optical signal (y) is demodulated to obtain an estimate (a^) of the coded data, which is then processed by a decoder to obtain an estimate (u^) of the original data.
NASA Astrophysics Data System (ADS)
Agueh, Max; Diouris, Jean-François; Diop, Magaye; Devaux, François-Olivier; De Vleeschouwer, Christophe; Macq, Benoit
2008-12-01
Based on the analysis of real mobile ad hoc network (MANET) traces, we derive in this paper an optimal wireless JPEG 2000 compliant forward error correction (FEC) rate allocation scheme for a robust streaming of images and videos over MANET. The packet-based proposed scheme has a low complexity and is compliant to JPWL, the 11th part of the JPEG 2000 standard. The effectiveness of the proposed method is evaluated using a wireless Motion JPEG 2000 client/server application; and the ability of the optimal scheme to guarantee quality of service (QoS) to wireless clients is demonstrated.
Chromatic blur perception in the presence of luminance contrast.
Jennings, Ben J; Kingdom, Frederick A A
2017-06-01
Hel-Or showed that blurring the chromatic but not the luminance layer of an image of a natural scene failed to elicit any impression of blur. Subsequent studies have suggested that this effect is due either to chromatic blur being masked by spatially contiguous luminance edges in the scene (Journal of Vision 13 (2013) 14), or to a relatively compressed transducer function for chromatic blur (Journal of Vision 15 (2015) 6). To test between the two explanations we conducted experiments using as stimuli both images of natural scenes as well as simple edges. First, we found that in color-and-luminance images of natural scenes more chromatic blur was needed to perceptually match a given level of blur in an isoluminant, i.e. colour-only scene. However, when the luminance layer in the scene was rotated relative to the chromatic layer, thus removing the colour-luminance edge correlations, the matched blur levels were near equal. Both results are consistent with Sharman et al.'s explanation. Second, when observers matched the blurs of luminance-only with isoluminant scenes, the matched blurs were equal, against Kingdom et al.'s prediction. Third, we measured the perceived blur in a square-wave as a function of (i) contrast (ii) number of luminance edges and (iii) the relative spatial phase between the colour and luminance edges. We found that the perceived chromatic blur was dependent on both relative phase and the number of luminance edges, or dependent on the luminance contrast if only a single edge is present. We conclude that this Hel-Or effect is largely due to masking of chromatic blur by spatially contiguous luminance edges. Copyright © 2017 Elsevier Ltd. All rights reserved.
In vivo longitudinal chromatic aberration of pseudophakic eyes.
Siedlecki, Damian; Jóźwik, Agnieszka; Zając, Marek; Hill-Bator, Aneta; Turno-Kręcicka, Anna
2014-02-01
To present the results of longitudinal chromatic aberration measurements on two groups of pseudophakic eyes in comparison to healthy eyes. The longitudinal chromatic aberration of the eye, defined as chromatic difference of refraction with disabled accommodation, was measured with the use of a visual refractometer with a custom-designed target illuminator consisting of a narrow-band RGB diode (blue λb = 470 ± 15 nm; green λg = 525 ± 18 nm; red λr = 660 ± 10 nm). The measurements were performed on nine eyes implanted with AcrySof IQ SN60WF, 14 eyes implanted with AcrySof SA60AT, and 10 phakic eyes under cycloplegia. The mean values of the longitudinal chromatic aberration between 470 and 660 nm for the control group was 1.12 ± 0.14 D. For SA60AT group, it was 1.45 ± 0.42 D whereas for SN60WF it was 1.17 ± 0.52 D. The statistical test showed significant difference between SA60AT and the control group (p < 0.05) and no significant difference between SN60WF and the control groups (p = 0.64). The study showed that the longitudinal chromatic aberration in vivo can be easily and reliably estimated with an adapted visual refractometer. The two groups of pseudophakic eyes measured in this study showed different values of chromatic aberration. Its magnitude for SA60AT group was significantly larger than for the control group whereas for SN60WF the difference was not significant. The optical material used for intraocular lens design may have significant influence on the magnitude of the chromatic aberration of the pseudophakic eye, and therefore on its optical and visual performance in polychromatic light.
Skaat, Alon; Sher, Ifat; Kolker, Andrew; Elyasiv, Sivan; Rosenfeld, Elkana; Mhajna, Mohamad; Melamed, Shlomo; Belkin, Michael; Rotenstreich, Ygal
2013-04-17
To evaluate a novel objective perimetry using multifocal chromatic pupil light reflex in normal participants and patients with photoreceptor dysfunction, and to relate this new technique with subjective dark-adapted chromatic Goldmann perimetry. Thirty-two eyes of 17 retinitis pigmentosa (RP) or cone-rod dystrophy patients and 20 eyes of 12 healthy individuals were tested. A computerized infrared video pupillometer was used to record changes in pupil diameter in response to short- and long-wavelength stimuli (peak 485 and 640 nm, respectively; light intensity 40 cd/m(2)) at 13 different points of the 30° visual field (VF), under background illumination of 2.7 cd/m(2). The pupillary response (PR) of patients was compared with PR obtained from normal control participants. In 11 patients, the pupillary responses were also compared with their findings on dark-adapted chromatic Goldmann perimetry. Significantly reduced pupillary responses were obtained in RP patients in response to the short-wavelength stimulus in nearly all perimetric locations (P < 0.03). By contrast, in response to the long-wavelength stimulus, RP patients demonstrated significantly reduced PR mostly in peripheral locations (P ≤ 0.02). In a cone-rod dystrophy patient, the PR to both long- and short-wavelength stimuli was significantly lower in the scotoma area identified by the dark-adapted chromatic Goldmann perimetry. In all patients that were tested by the chromatic Goldmann, minimal PR was recorded in areas that were nondetected in the chromatic Goldmann perimetry. This study demonstrates the potential feasibility of using pupillometer-based chromatic perimetry for objectively assessing VF defects and retinal function in patients with retinal dystrophies. (ClinicalTrials.gov number, NCT01021982.).
On the r-dynamic chromatic number of the corronation by complete graph
NASA Astrophysics Data System (ADS)
Indah Kristiana, Arika; Imam Utoyo, M.; Dafik
2018-04-01
In this paper we will study the r-dynamic chromatic number of the coronation by complete graph. A proper k-coloring of graph G such that the neighbors of any vertex v receive at least min{r, d(v)} different colors. The r-dynamic chromatic number, χ r (G) is the minimum k such that graph G has an r-dynamic k-coloring. We will obtain lower bound of the r-dynamic chromatic number of {χ }r({K}nȯ H), and {χ }r(Hȯ {K}m) We also study the exact value of the r-dynamic chromatic number of {χ }r({K}nȯ {S}m),{χ }r({K}nȯ {F}m),{χ }r({S}nȯ {K}m),{χ }r({F}nȯ {K}m) and {χ }r({K}nȯ {K}m) for m, n > 3.
Anti-forensics of chromatic aberration
NASA Astrophysics Data System (ADS)
Mayer, Owen; Stamm, Matthew C.
2015-03-01
Over the past decade, a number of information forensic techniques have been developed to identify digital image manipulation and falsification. Recent research has shown, however, that an intelligent forger can use anti-forensic countermeasures to disguise their forgeries. In this paper, an anti-forensic technique is proposed to falsify the lateral chromatic aberration present in a digital image. Lateral chromatic aberration corresponds to the relative contraction or expansion between an image's color channels that occurs due to a lens's inability to focus all wavelengths of light on the same point. Previous work has used localized inconsistencies in an image's chromatic aberration to expose cut-and-paste image forgeries. The anti-forensic technique presented in this paper operates by estimating the expected lateral chromatic aberration at an image location, then removing deviations from this estimate caused by tampering or falsification. Experimental results are presented that demonstrate that our anti-forensic technique can be used to effectively disguise evidence of an image forgery.
NASA Astrophysics Data System (ADS)
Lan, Guoqiang; Liu, Shugang; Wang, Yuxiao; Zhang, Xueru; Song, Yinglin
2015-10-01
In this work, we use the liquid-prism SPR sensing configuration to determine the chromatic dispersion of different liquids, since the condition of SPR is sensitive to the refractive index of the liquid prism. We use the glass slide coated with 50 nm Au film as the sensing chip, and use AvaLight - HAL (360 nm - 2500 nm) light source as the broaden band light source in our experiments. We adopt the deionized water as the standard sample to determine the chromatic dispersion of different liquid samples (ethanol and n-hexane), and we implement the experiment through the SPR sensing configuration in angular and spectral interrogations. According to the experimental data, the chromatic dispersions of ethanol and n-hexane are obtained. The proposed technique provides a new high sensitive method for the determination of chromatic dispersion of liquids.
Bias correction of daily satellite precipitation data using genetic algorithm
NASA Astrophysics Data System (ADS)
Pratama, A. W.; Buono, A.; Hidayat, R.; Harsa, H.
2018-05-01
Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS) was producted by blending Satellite-only Climate Hazards Group InfraRed Precipitation (CHIRP) with Stasion observations data. The blending process was aimed to reduce bias of CHIRP. However, Biases of CHIRPS on statistical moment and quantil values were high during wet season over Java Island. This paper presented a bias correction scheme to adjust statistical moment of CHIRP using observation precipitation data. The scheme combined Genetic Algorithm and Nonlinear Power Transformation, the results was evaluated based on different season and different elevation level. The experiment results revealed that the scheme robustly reduced bias on variance around 100% reduction and leaded to reduction of first, and second quantile biases. However, bias on third quantile only reduced during dry months. Based on different level of elevation, the performance of bias correction process is only significantly different on skewness indicators.
Chromate Dissociation from Primer Paint in Simulated Lung Fluid.
2000-03-01
not done properly. Chromium is found naturally in the earth’s crust; trivalent chromium is a necessary dietary mineral. Other oxidative states such...exposures to chromium can include welding , leather tanning, electroplating, textile manufacturing, photoengraving, copier servicing and paints/pigments...production, production of chromates and chromate pigments, leather tanning, chromium plating and welding . Unfortunately, no detailed health studies have
Abnormal pupillary light reflex with chromatic pupillometry in Gaucher disease
Narita, Aya; Shirai, Kentarou; Kubota, Norika; Takayama, Rumiko; Takahashi, Yukitoshi; Onuki, Takanori; Numakura, Chikahiko; Kato, Mitsuhiro; Hamada, Yusuke; Sakai, Norio; Ohno, Atsuko; Asami, Maya; Matsushita, Shoko; Hayashi, Anri; Kumada, Tomohiro; Fujii, Tatsuya; Horino, Asako; Inoue, Takeshi; Kuki, Ichiro; Asakawa, Ken; Ishikawa, Hitoshi; Ohno, Koyo; Nishimura, Yoko; Tamasaki, Akiko; Maegaki, Yoshihiro; Ohno, Kousaku
2014-01-01
The hallmark of neuronopathic Gaucher disease (GD) is oculomotor abnormalities, but ophthalmological assessment is difficult in uncooperative patients. Chromatic pupillometry is a quantitative method to assess the pupillary light reflex (PLR) with minimal patient cooperation. Thus, we investigated whether chromatic pupillometry could be useful for neurological evaluations in GD. In our neuronopathic GD patients, red light-induced PLR was markedly impaired, whereas blue light-induced PLR was relatively spared. In addition, patients with non-neuronopathic GD showed no abnormalities. These novel findings show that chromatic pupillometry is a convenient method to detect neurological signs and monitor the course of disease in neuronopathic GD. PMID:25356393
Abnormal pupillary light reflex with chromatic pupillometry in Gaucher disease.
Narita, Aya; Shirai, Kentarou; Kubota, Norika; Takayama, Rumiko; Takahashi, Yukitoshi; Onuki, Takanori; Numakura, Chikahiko; Kato, Mitsuhiro; Hamada, Yusuke; Sakai, Norio; Ohno, Atsuko; Asami, Maya; Matsushita, Shoko; Hayashi, Anri; Kumada, Tomohiro; Fujii, Tatsuya; Horino, Asako; Inoue, Takeshi; Kuki, Ichiro; Asakawa, Ken; Ishikawa, Hitoshi; Ohno, Koyo; Nishimura, Yoko; Tamasaki, Akiko; Maegaki, Yoshihiro; Ohno, Kousaku
2014-02-01
The hallmark of neuronopathic Gaucher disease (GD) is oculomotor abnormalities, but ophthalmological assessment is difficult in uncooperative patients. Chromatic pupillometry is a quantitative method to assess the pupillary light reflex (PLR) with minimal patient cooperation. Thus, we investigated whether chromatic pupillometry could be useful for neurological evaluations in GD. In our neuronopathic GD patients, red light-induced PLR was markedly impaired, whereas blue light-induced PLR was relatively spared. In addition, patients with non-neuronopathic GD showed no abnormalities. These novel findings show that chromatic pupillometry is a convenient method to detect neurological signs and monitor the course of disease in neuronopathic GD.
Effect of Kombucha tea on chromate(VI)-induced oxidative stress in albino rats.
Sai Ram, M; Anju, B; Pauline, T; Dipti, P; Kain, A K; Mongia, S S; Sharma, S K; Singh, B; Singh, R; Ilavazhagan, G; Kumar, D; Selvamurthy, W
2000-07-01
The effect of Kombucha tea (KT) on oxidative stress induced changes in rats subjected to chromate treatment are reported. KT feeding alone did not show any significant change in malondialdehyde (MDA) and reduced glutathione (GSH) levels, but did enhance humoral response and delayed type of hypersensitivity (DTH) response appreciably over control animals. Chromate treatment significantly enhanced plasma and tissue MDA levels, decreased DTH response considerably, enhanced glutathione peroxidase and catalase activities; however, no change in GSH, superoxide dismutase and antibody titres was noticed. KT feeding completely reversed the chromate-induced changes. These results show that Kombucha tea has potent anti-oxidant and immunopotentiating activities.
da Fonseca, María; Samengo, Inés
2016-12-01
The accuracy with which humans detect chromatic differences varies throughout color space. For example, we are far more precise when discriminating two similar orange stimuli than two similar green stimuli. In order for two colors to be perceived as different, the neurons representing chromatic information must respond differently, and the difference must be larger than the trial-to-trial variability of the response to each separate color. Photoreceptors constitute the first stage in the processing of color information; many more stages are required before humans can consciously report whether two stimuli are perceived as chromatically distinguishable. Therefore, although photoreceptor absorption curves are expected to influence the accuracy of conscious discriminability, there is no reason to believe that they should suffice to explain it. Here we develop information-theoretical tools based on the Fisher metric that demonstrate that photoreceptor absorption properties explain about 87% of the variance of human color discrimination ability, as tested by previous behavioral experiments. In the context of this theory, the bottleneck in chromatic information processing is determined by photoreceptor absorption characteristics. Subsequent encoding stages modify only marginally the chromatic discriminability at the photoreceptor level.
NASA Astrophysics Data System (ADS)
Chen, Liang-Chia; Chang, Yi-Wei; Li, Hau-Wei
2012-08-01
Full-field chromatic confocal surface profilometry employing a digital micromirror device (DMD) for spatial correspondence is proposed to minimize lateral cross-talks between individual detection sensors. Although full-field chromatic confocal profilometry is capable of enhancing measurement efficiency by completely removing time-consuming vertical scanning operation, its vertical measurement resolution and accuracy are still severely affected by the potential sensor lateral cross-talk problem. To overcome this critical bottleneck, a DMD-based chromatic confocal method is developed by employing a specially-designed objective for chromatic light dispersion, and a DMD for lateral pixel correspondence and scanning, thereby reducing the lateral cross-talk influence. Using the chromatic objective, the incident light is dispersed according to a pre-designed detection range of several hundred micrometers, and a full-field reflected light is captured by a three-chip color camera for multi color detection. Using this method, the full width half maximum of the depth response curve can be significantly sharpened, thus improving the vertical measurement resolution and repeatability of the depth detection. From our preliminary experimental evaluation, it is verified that the ±3σ repeatability of the height measurement can be kept within 2% of the overall measurement range.
Precision calculations for h → WW/ZZ → 4 fermions in the Two-Higgs-Doublet Model with Prophecy4f
NASA Astrophysics Data System (ADS)
Altenkamp, Lukas; Dittmaier, Stefan; Rzehak, Heidi
2018-03-01
We have calculated the next-to-leading-order electroweak and QCD corrections to the decay processes h → WW/ZZ → 4 fermions of the light CP-even Higgs boson h of various types of Two-Higgs-Doublet Models (Types I and II, "lepton-specific" and "flipped" models). The input parameters are defined in four different renormalization schemes, where parameters that are not directly accessible by experiments are defined in the \\overline{MS} scheme. Numerical results are presented for the corrections to partial decay widths for various benchmark scenarios previously motivated in the literature, where we investigate the dependence on the \\overline{MS} renormalization scale and on the choice of the renormalization scheme in detail. We find that it is crucial to be precise with these issues in parameter analyses, since parameter conversions between different schemes can involve sizeable or large corrections, especially in scenarios that are close to experimental exclusion limits or theoretical bounds. It even turns out that some renormalization schemes are not applicable in specific regions of parameter space. Our investigation of differential distributions shows that corrections beyond the Standard Model are mostly constant offsets induced by the mixing between the light and heavy CP-even Higgs bosons, so that differential analyses of h→4 f decay observables do not help to identify Two-Higgs-Doublet Models. Moreover, the decay widths do not significantly depend on the specific type of those models. The calculations are implemented in the public Monte Carlo generator Prophecy4f and ready for application.
Pennycook, Timothy J.; Lupini, Andrew R.; Yang, Hao; ...
2014-10-15
In this paper, we demonstrate a method to achieve high efficiency phase contrast imaging in aberration corrected scanning transmission electron microscopy (STEM) with a pixelated detector. The pixelated detector is used to record the Ronchigram as a function of probe position which is then analyzed with ptychography. Ptychography has previously been used to provide super-resolution beyond the diffraction limit of the optics, alongside numerically correcting for spherical aberration. Here we rely on a hardware aberration corrector to eliminate aberrations, but use the pixelated detector data set to utilize the largest possible volume of Fourier space to create high efficiency phasemore » contrast images. The use of ptychography to diagnose the effects of chromatic aberration is also demonstrated. In conclusion, the four dimensional dataset is used to compare different bright field detector configurations from the same scan for a sample of bilayer graphene. Our method of high efficiency ptychography produces the clearest images, while annular bright field produces almost no contrast for an in-focus aberration-corrected probe.« less
Raman Amplification with a Flying Focus
NASA Astrophysics Data System (ADS)
Turnbull, D.; Bucht, S.; Davies, A.; Haberberger, D.; Kessler, T.; Shaw, J. L.; Froula, D. H.
2018-01-01
We propose a new laser amplifier scheme utilizing stimulated Raman scattering in plasma in conjunction with a "flying focus"—a chromatic focusing system combined with a chirped pump beam that provides spatiotemporal control over the pump's focal spot. Pump intensity isosurfaces are made to propagate at v =-c so as to be in sync with the injected counterpropagating seed pulse. By setting the pump intensity in the interaction region to be just above the ionization threshold of the background gas, an ionization wave is produced that travels at a fixed distance ahead of the seed. Simulations show that this will make it possible to optimize the plasma temperature and mitigate many of the issues that are known to have impacted previous Raman amplification experiments, in particular, the growth of precursors.
Raman Amplification with a Flying Focus
Turnbull, D.; Bucht, S.; Davies, A.; ...
2018-01-12
Here, we propose a new laser amplifier scheme utilizing stimulated Raman scattering in plasma in conjunction with a "flying focus" - a chromatic focusing system combined with a chirped pump beam that provides spatiotemporal control over the pump's focal spot. Pump intensity isosurfaces are made to propagate at v=-c so as to be in sync with the injected counterpropagating seed pulse. By setting the pump intensity in the interaction region to be just about the ionization threshold of the background gas, an ionization wave is produced that travels at a fixed distance ahead of the seed. Simulations show that thismore » will make it possible to optimize the plasma temperature and mitigate many of the issues that are known to have impacted previous Raman amplification experiments, in particular, the growth of precursors.« less
Chromatic Perceptual Learning but No Category Effects without Linguistic Input.
Grandison, Alexandra; Sowden, Paul T; Drivonikou, Vicky G; Notman, Leslie A; Alexander, Iona; Davies, Ian R L
2016-01-01
Perceptual learning involves an improvement in perceptual judgment with practice, which is often specific to stimulus or task factors. Perceptual learning has been shown on a range of visual tasks but very little research has explored chromatic perceptual learning. Here, we use two low level perceptual threshold tasks and a supra-threshold target detection task to assess chromatic perceptual learning and category effects. Experiment 1 investigates whether chromatic thresholds reduce as a result of training and at what level of analysis learning effects occur. Experiment 2 explores the effect of category training on chromatic thresholds, whether training of this nature is category specific and whether it can induce categorical responding. Experiment 3 investigates the effect of category training on a higher level, lateralized target detection task, previously found to be sensitive to category effects. The findings indicate that performance on a perceptual threshold task improves following training but improvements do not transfer across retinal location or hue. Therefore, chromatic perceptual learning is category specific and can occur at relatively early stages of visual analysis. Additionally, category training does not induce category effects on a low level perceptual threshold task, as indicated by comparable discrimination thresholds at the newly learned hue boundary and adjacent test points. However, category training does induce emerging category effects on a supra-threshold target detection task. Whilst chromatic perceptual learning is possible, learnt category effects appear to be a product of left hemisphere processing, and may require the input of higher level linguistic coding processes in order to manifest.
Chromatic interocular-switch rivalry
Christiansen, Jens H.; D'Antona, Anthony D.; Shevell, Steven K.
2017-01-01
Interocular-switch rivalry (also known as stimulus rivalry) is a kind of binocular rivalry in which two rivalrous images are swapped between the eyes several times a second. The result is stable periods of one image and then the other, with stable intervals that span many eye swaps (Logothetis, Leopold, & Sheinberg, 1996). Previous work used this close kin of binocular rivalry with rivalrous forms. Experiments here test whether chromatic interocular-switch rivalry, in which the swapped stimuli differ in only chromaticity, results in slow alternation between two colors. Swapping equiluminant rivalrous chromaticities at 3.75 Hz resulted in slow perceptual color alternation, with one or the other color often continuously visible for two seconds or longer (during which there were 15+ eye swaps). A well-known theory for sustained percepts from interocular-switch rivalry with form is inhibitory competition between binocular neurons driven by monocular neurons with matched orientation tuning in each eye; such binocular neurons would produce a stable response when a given orientation is swapped between the eyes. A similar model can account for the percepts here from chromatic interocular-switch rivalry and is underpinned by the neurophysiological finding that color-preferring binocular neurons are driven by monocular neurons from each eye with well-matched chromatic selectivity (Peirce, Solomon, Forte, & Lennie, 2008). In contrast to chromatic interocular-switch rivalry, luminance interocular-switch rivalry with swapped stimuli that differ in only luminance did not result in slowly alternating percepts of different brightnesses. PMID:28510624
LUNG INJURY, INFLAMMATION AND AKT SIGNALING FOLLOWING INHALATION OF PARTICULATE HEXAVALENT CHROMIUM
Beaver, Laura M.; Stemmy, Erik J.; Constant, Stephanie L.; Schwartz, Arnold; Little, Laura G.; Gigley, Jason P.; Chun, Gina; Sugden, Kent D.; Ceryak, Susan M.; Patierno, Steven R.
2013-01-01
Certain particulate hexavalent chromium [Cr(VI)] compounds are human respiratory carcinogens that release genotoxic soluble chromate, and are associated with fibrosis, fibrosarcomas, adenocarcinomas and squamous cell carcinomas of the lung. We postulate that inflammatory processes and mediators may contribute to the etiology of Cr(VI) carcinogenesis, however the immediate (0–24 hours) pathologic injury and immune responses after exposure to particulate chromates have not been adequately investigated. Our aim was to determine the nature of the lung injury, inflammatory response, and survival signaling responses following intranasal exposure of BALB/c mice to particulate basic zinc chromate. Factors associated with lung injury, inflammation and survival signaling were measured in airway lavage fluid and in lung tissue. A single chromate exposure induced an acute immune response in the lung, characterized by a rapid and significant increase in IL-6 and GRO-α levels, an influx of neutrophils, and a decline in macrophages in lung airways. Histological examination of lung tissue in animals challenged with a single chromate exposure revealed an increase in bronchiolar cell apoptosis and mucosal injury. Furthermore, chromate exposure induced injury and inflammation that progressed to alveolar and interstitial pneumonitis. Finally, a single Cr(VI) challenge resulted in a rapid and persistent increase in the number of airways immunoreactive for phosphorylation of the survival signaling protein Akt, on serine 473. These data illustrate that chromate induces both survival signaling and an inflammatory response in the lung, which we postulate may contribute to early oncogenesis. PMID:19109987
Chromium-induced kidney disease.
Wedeen, R P; Qian, L F
1991-05-01
Kidney disease is often cited as one of the adverse effects of chromium, yet chronic renal disease due to occupational or environmental exposure to chromium has not yet been reported. Occasional cases of acute tubular necrosis (ATN) following massive absorption of chromate have been described. Chromate-induced ATN has been extensively studied in experimental animals following parenteral administration of large doses of potassium chromate (hexavalent) (15 mg/kg body weight). The chromate is selectively accumulated in the convoluted proximal tubule where necrosis occurs. An adverse long-term effect of low-dose chromium exposure on the kidneys is suggested by reports of low molecular weight (LMW) proteinuria in chromium workers. Excessive urinary excretion of beta 2-microglobulin, a specific proximal tubule brush border protein, and retinol-binding protein has been reported among chrome platers and welders. However, LMW proteinuria occurs after a variety of physiologic stresses, is usually reversible, and cannot by itself be considered evidence of chronic renal disease. Chromate-induced ATN and LMW proteinuria in chromium workers, nevertheless, raise the possibility that low-level, long-term exposure may produce persistent renal injury. The absence of evidence of chromate-induced exposure may produce persistent renal injury. The absence of evidence of chromate-induced chronic renal disease cannot be interpreted as evidence of the absence of such injury. Rather, it must be recognized that no prospective cohort or case-control study of the delayed renal effects of low-level, long-term exposure to chromium has been published.
Fuzzy-based simulation of real color blindness.
Lee, Jinmi; dos Santos, Wellington P
2010-01-01
About 8% of men are affected by color blindness. That population is at a disadvantage since they cannot perceive a substantial amount of the visual information. This work presents two computational tools developed to assist color blind people. The first one tests color blindness and assess its severity. The second tool is based on Fuzzy Logic, and implements a method proposed to simulate real red and green color blindness in order to generate synthetic cases of color vision disturbance in a statistically significant amount. Our purpose is to develop correction tools and obtain a deeper understanding of the accessibility problems faced by people with chromatic visual impairment.
Astigmatism correction in x-ray scanning photoemission microscope with use of elliptical zone plate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ade, H.; Ko, C.; Anderson, E.
1992-03-02
We report the impact of an elliptical, high resolution zone plate on the performance of an initially astigmatic soft x-ray scanning photoemission microscope. A zone plate with carefully calibrated eccentricity has been used to eliminate astigmatism arising from transport optics, and an improvement of about a factor of 3 in spatial resolution was achieved. The resolution is still dominated by the source size and chromatic aberrations rather than by diffraction and coma, and a further gain of about a factor of 2 in resolution is possible. Sub 100 nm photoemission microscopy with primary photoelectrons is now within reach.
NASA Astrophysics Data System (ADS)
Gao, Cheng-Yan; Wang, Guan-Yu; Zhang, Hao; Deng, Fu-Guo
2017-01-01
We present a self-error-correction spatial-polarization hyperentanglement distribution scheme for N-photon systems in a hyperentangled Greenberger-Horne-Zeilinger state over arbitrary collective-noise channels. In our scheme, the errors of spatial entanglement can be first averted by encoding the spatial-polarization hyperentanglement into the time-bin entanglement with identical polarization and defined spatial modes before it is transmitted over the fiber channels. After transmission over the noisy channels, the polarization errors introduced by the depolarizing noise can be corrected resorting to the time-bin entanglement. Finally, the parties in quantum communication can in principle share maximally hyperentangled states with a success probability of 100%.
Analytical and numerical analysis of frictional damage in quasi brittle materials
NASA Astrophysics Data System (ADS)
Zhu, Q. Z.; Zhao, L. Y.; Shao, J. F.
2016-07-01
Frictional sliding and crack growth are two main dissipation processes in quasi brittle materials. The frictional sliding along closed cracks is the origin of macroscopic plastic deformation while the crack growth induces a material damage. The main difficulty of modeling is to consider the inherent coupling between these two processes. Various models and associated numerical algorithms have been proposed. But there are so far no analytical solutions even for simple loading paths for the validation of such algorithms. In this paper, we first present a micro-mechanical model taking into account the damage-friction coupling for a large class of quasi brittle materials. The model is formulated by combining a linear homogenization procedure with the Mori-Tanaka scheme and the irreversible thermodynamics framework. As an original contribution, a series of analytical solutions of stress-strain relations are developed for various loading paths. Based on the micro-mechanical model, two numerical integration algorithms are exploited. The first one involves a coupled friction/damage correction scheme, which is consistent with the coupling nature of the constitutive model. The second one contains a friction/damage decoupling scheme with two consecutive steps: the friction correction followed by the damage correction. With the analytical solutions as reference results, the two algorithms are assessed through a series of numerical tests. It is found that the decoupling correction scheme is efficient to guarantee a systematic numerical convergence.
NASA Astrophysics Data System (ADS)
Li, Xiaosong; Li, Huafeng; Yu, Zhengtao; Kong, Yingchun
2015-07-01
An efficient multifocus image fusion scheme in nonsubsampled contourlet transform (NSCT) domain is proposed. Based on the property of optical imaging and the theory of defocused image, we present a selection principle for lowpass frequency coefficients and also investigate the connection between a low-frequency image and the defocused image. Generally, the NSCT algorithm decomposes detail image information indwells in different scales and different directions in the bandpass subband coefficient. In order to correctly pick out the prefused bandpass directional coefficients, we introduce multiscale curvature, which not only inherits the advantages of windows with different sizes, but also correctly recognizes the focused pixels from source images, and then develop a new fusion scheme of the bandpass subband coefficients. The fused image can be obtained by inverse NSCT with the different fused coefficients. Several multifocus image fusion methods are compared with the proposed scheme. The experimental results clearly indicate the validity and superiority of the proposed scheme in terms of both the visual qualities and the quantitative evaluation.
Things That Go Boom!: Noise and Toxic Exposures Associated with Weapon Systems
2010-06-17
Munitions Pyrotechnics Tracers Spot ing Charges Oxidizers Delay Elements Propellatl s Fuses De· onators Pr~n1ers Constituent of Concern BariL ...r11 chromate Potassium perchlorate lead oxide BariL m chromate P a tass ~L m perch I o r,ate l e ad chromate An1n1onil tll perch lara e P a
Chromate dermatitis from a boiler lining.
Rycroft, R J; Calnan, C D
1977-08-01
Chromate dermatitis is described in a mechanical fitter working inside boiler combustion chambers. A source of hexavalent chromate is traced to the action of the heat and alkaline fuel ash on trivalent chrome ore in parts of the refractory lining. Removal of the patient from this contact has resulted in almost complete clearing of his dermatitis, without any relapse, during a 9-month follow-up period.
Security and Correctness Analysis on Privacy-Preserving k-Means Clustering Schemes
NASA Astrophysics Data System (ADS)
Su, Chunhua; Bao, Feng; Zhou, Jianying; Takagi, Tsuyoshi; Sakurai, Kouichi
Due to the fast development of Internet and the related IT technologies, it becomes more and more easier to access a large amount of data. k-means clustering is a powerful and frequently used technique in data mining. Many research papers about privacy-preserving k-means clustering were published. In this paper, we analyze the existing privacy-preserving k-means clustering schemes based on the cryptographic techniques. We show those schemes will cause the privacy breach and cannot output the correct results due to the faults in the protocol construction. Furthermore, we analyze our proposal as an option to improve such problems but with intermediate information breach during the computation.
Full-Field Calibration of Color Camera Chromatic Aberration using Absolute Phase Maps.
Liu, Xiaohong; Huang, Shujun; Zhang, Zonghua; Gao, Feng; Jiang, Xiangqian
2017-05-06
The refractive index of a lens varies for different wavelengths of light, and thus the same incident light with different wavelengths has different outgoing light. This characteristic of lenses causes images captured by a color camera to display chromatic aberration (CA), which seriously reduces image quality. Based on an analysis of the distribution of CA, a full-field calibration method based on absolute phase maps is proposed in this paper. Red, green, and blue closed sinusoidal fringe patterns are generated, consecutively displayed on an LCD (liquid crystal display), and captured by a color camera from the front viewpoint. The phase information of each color fringe is obtained using a four-step phase-shifting algorithm and optimum fringe number selection method. CA causes the unwrapped phase of the three channels to differ. These pixel deviations can be computed by comparing the unwrapped phase data of the red, blue, and green channels in polar coordinates. CA calibration is accomplished in Cartesian coordinates. The systematic errors introduced by the LCD are analyzed and corrected. Simulated results show the validity of the proposed method and experimental results demonstrate that the proposed full-field calibration method based on absolute phase maps will be useful for practical software-based CA calibration.
Rocklin, Gabriel J.; Mobley, David L.; Dill, Ken A.; Hünenberger, Philippe H.
2013-01-01
The calculation of a protein-ligand binding free energy based on molecular dynamics (MD) simulations generally relies on a thermodynamic cycle in which the ligand is alchemically inserted into the system, both in the solvated protein and free in solution. The corresponding ligand-insertion free energies are typically calculated in nanoscale computational boxes simulated under periodic boundary conditions and considering electrostatic interactions defined by a periodic lattice-sum. This is distinct from the ideal bulk situation of a system of macroscopic size simulated under non-periodic boundary conditions with Coulombic electrostatic interactions. This discrepancy results in finite-size effects, which affect primarily the charging component of the insertion free energy, are dependent on the box size, and can be large when the ligand bears a net charge, especially if the protein is charged as well. This article investigates finite-size effects on calculated charging free energies using as a test case the binding of the ligand 2-amino-5-methylthiazole (net charge +1 e) to a mutant form of yeast cytochrome c peroxidase in water. Considering different charge isoforms of the protein (net charges −5, 0, +3, or +9 e), either in the absence or the presence of neutralizing counter-ions, and sizes of the cubic computational box (edges ranging from 7.42 to 11.02 nm), the potentially large magnitude of finite-size effects on the raw charging free energies (up to 17.1 kJ mol−1) is demonstrated. Two correction schemes are then proposed to eliminate these effects, a numerical and an analytical one. Both schemes are based on a continuum-electrostatics analysis and require performing Poisson-Boltzmann (PB) calculations on the protein-ligand system. While the numerical scheme requires PB calculations under both non-periodic and periodic boundary conditions, the latter at the box size considered in the MD simulations, the analytical scheme only requires three non-periodic PB calculations for a given system, its dependence on the box size being analytical. The latter scheme also provides insight into the physical origin of the finite-size effects. These two schemes also encompass a correction for discrete solvent effects that persists even in the limit of infinite box sizes. Application of either scheme essentially eliminates the size dependence of the corrected charging free energies (maximal deviation of 1.5 kJ mol−1). Because it is simple to apply, the analytical correction scheme offers a general solution to the problem of finite-size effects in free-energy calculations involving charged solutes, as encountered in calculations concerning, e.g., protein-ligand binding, biomolecular association, residue mutation, pKa and redox potential estimation, substrate transformation, solvation, and solvent-solvent partitioning. PMID:24320250
Rocklin, Gabriel J; Mobley, David L; Dill, Ken A; Hünenberger, Philippe H
2013-11-14
The calculation of a protein-ligand binding free energy based on molecular dynamics (MD) simulations generally relies on a thermodynamic cycle in which the ligand is alchemically inserted into the system, both in the solvated protein and free in solution. The corresponding ligand-insertion free energies are typically calculated in nanoscale computational boxes simulated under periodic boundary conditions and considering electrostatic interactions defined by a periodic lattice-sum. This is distinct from the ideal bulk situation of a system of macroscopic size simulated under non-periodic boundary conditions with Coulombic electrostatic interactions. This discrepancy results in finite-size effects, which affect primarily the charging component of the insertion free energy, are dependent on the box size, and can be large when the ligand bears a net charge, especially if the protein is charged as well. This article investigates finite-size effects on calculated charging free energies using as a test case the binding of the ligand 2-amino-5-methylthiazole (net charge +1 e) to a mutant form of yeast cytochrome c peroxidase in water. Considering different charge isoforms of the protein (net charges -5, 0, +3, or +9 e), either in the absence or the presence of neutralizing counter-ions, and sizes of the cubic computational box (edges ranging from 7.42 to 11.02 nm), the potentially large magnitude of finite-size effects on the raw charging free energies (up to 17.1 kJ mol(-1)) is demonstrated. Two correction schemes are then proposed to eliminate these effects, a numerical and an analytical one. Both schemes are based on a continuum-electrostatics analysis and require performing Poisson-Boltzmann (PB) calculations on the protein-ligand system. While the numerical scheme requires PB calculations under both non-periodic and periodic boundary conditions, the latter at the box size considered in the MD simulations, the analytical scheme only requires three non-periodic PB calculations for a given system, its dependence on the box size being analytical. The latter scheme also provides insight into the physical origin of the finite-size effects. These two schemes also encompass a correction for discrete solvent effects that persists even in the limit of infinite box sizes. Application of either scheme essentially eliminates the size dependence of the corrected charging free energies (maximal deviation of 1.5 kJ mol(-1)). Because it is simple to apply, the analytical correction scheme offers a general solution to the problem of finite-size effects in free-energy calculations involving charged solutes, as encountered in calculations concerning, e.g., protein-ligand binding, biomolecular association, residue mutation, pKa and redox potential estimation, substrate transformation, solvation, and solvent-solvent partitioning.
NASA Astrophysics Data System (ADS)
Rocklin, Gabriel J.; Mobley, David L.; Dill, Ken A.; Hünenberger, Philippe H.
2013-11-01
The calculation of a protein-ligand binding free energy based on molecular dynamics (MD) simulations generally relies on a thermodynamic cycle in which the ligand is alchemically inserted into the system, both in the solvated protein and free in solution. The corresponding ligand-insertion free energies are typically calculated in nanoscale computational boxes simulated under periodic boundary conditions and considering electrostatic interactions defined by a periodic lattice-sum. This is distinct from the ideal bulk situation of a system of macroscopic size simulated under non-periodic boundary conditions with Coulombic electrostatic interactions. This discrepancy results in finite-size effects, which affect primarily the charging component of the insertion free energy, are dependent on the box size, and can be large when the ligand bears a net charge, especially if the protein is charged as well. This article investigates finite-size effects on calculated charging free energies using as a test case the binding of the ligand 2-amino-5-methylthiazole (net charge +1 e) to a mutant form of yeast cytochrome c peroxidase in water. Considering different charge isoforms of the protein (net charges -5, 0, +3, or +9 e), either in the absence or the presence of neutralizing counter-ions, and sizes of the cubic computational box (edges ranging from 7.42 to 11.02 nm), the potentially large magnitude of finite-size effects on the raw charging free energies (up to 17.1 kJ mol-1) is demonstrated. Two correction schemes are then proposed to eliminate these effects, a numerical and an analytical one. Both schemes are based on a continuum-electrostatics analysis and require performing Poisson-Boltzmann (PB) calculations on the protein-ligand system. While the numerical scheme requires PB calculations under both non-periodic and periodic boundary conditions, the latter at the box size considered in the MD simulations, the analytical scheme only requires three non-periodic PB calculations for a given system, its dependence on the box size being analytical. The latter scheme also provides insight into the physical origin of the finite-size effects. These two schemes also encompass a correction for discrete solvent effects that persists even in the limit of infinite box sizes. Application of either scheme essentially eliminates the size dependence of the corrected charging free energies (maximal deviation of 1.5 kJ mol-1). Because it is simple to apply, the analytical correction scheme offers a general solution to the problem of finite-size effects in free-energy calculations involving charged solutes, as encountered in calculations concerning, e.g., protein-ligand binding, biomolecular association, residue mutation, pKa and redox potential estimation, substrate transformation, solvation, and solvent-solvent partitioning.
Rate-distortion optimized tree-structured compression algorithms for piecewise polynomial images.
Shukla, Rahul; Dragotti, Pier Luigi; Do, Minh N; Vetterli, Martin
2005-03-01
This paper presents novel coding algorithms based on tree-structured segmentation, which achieve the correct asymptotic rate-distortion (R-D) behavior for a simple class of signals, known as piecewise polynomials, by using an R-D based prune and join scheme. For the one-dimensional case, our scheme is based on binary-tree segmentation of the signal. This scheme approximates the signal segments using polynomial models and utilizes an R-D optimal bit allocation strategy among the different signal segments. The scheme further encodes similar neighbors jointly to achieve the correct exponentially decaying R-D behavior (D(R) - c(o)2(-c1R)), thus improving over classic wavelet schemes. We also prove that the computational complexity of the scheme is of O(N log N). We then show the extension of this scheme to the two-dimensional case using a quadtree. This quadtree-coding scheme also achieves an exponentially decaying R-D behavior, for the polygonal image model composed of a white polygon-shaped object against a uniform black background, with low computational cost of O(N log N). Again, the key is an R-D optimized prune and join strategy. Finally, we conclude with numerical results, which show that the proposed quadtree-coding scheme outperforms JPEG2000 by about 1 dB for real images, like cameraman, at low rates of around 0.15 bpp.
NASA Astrophysics Data System (ADS)
Ning, G.; Shum, P.
2007-06-01
We derive the expressions for the power fading including first-order polarization mode dispersion (PMD), chromatic dispersion, chirp parameter as well as polarization-dependent chromatic dispersion (PCD), which is dependent on the angle of precession of output state of polarization around the PMD vector. From the expression for radio frequency (RF) signals power fading, we get the average power fading for chromatic dispersion, chirp parameter, first-order PMD and PCD for both double sideband (DSB) modulation and single sideband (SSB) modulation. We also demonstrate a fast PMD and chromatic dispersion monitoring technology with reduced polarization-dependent gain. The measured results agree well with theoretical analysis.
Chromate Dermatitis from Paint
Engel, H. O.; Calnan, C. D.
1963-01-01
Among 250 workers engaged on wet sandpapering of primer paint on car bodies 65 developed a contact dermatitis. The average latent period before dermatitis developed was 4·6 months: only 60% of the patients made a completely satisfactory recovery. The average duration of dermatitis was 5·3 months. Two thirds of the men used one of two barrier creams supplied, while one third used none. Routine patch testing showed that the majority was allergic to chromate. It was found that a primer paint contained zinc chromate, which had been introduced into the paint by the manufacturers shortly before the first cases occurred. Removal of chromate from the paint resulted in a prompt cessation of new cases of dermatitis. Images PMID:14046155
Du, Yu; Zhuang, Ziwei; He, Jiexing; Liu, Hongji; Qiu, Ping; Wang, Ke
2018-05-16
With tunable excitation light, multiphoton microscopy (MPM) is widely used for imaging biological structures at subcellular resolution. Axial chromatic dispersion, present in virtually every transmissive optical system including the multiphoton microscope, leads to focal (and the resultant image) plane separation. Here we demonstrate experimentally a technique to measure the axial chromatic dispersion in a multiphoton microscope, using simultaneous 2-color third-harmonic generation (THG) imaging excited by a 2-color soliton source with tunable wavelength separation. Our technique is self-referenced, eliminating potential measurement error when 1-color tunable excitation light is used which necessitates reciprocating motion of the mechanical translation stage. Using this technique, we demonstrate measured axial chromatic dispersion with 2 different objective lenses in a multiphoton microscope. Further measurement in a biological sample also indicates that this axial chromatic dispersion, in combination with 2-color imaging, may open up opportunity for simultaneous imaging of two different axial planes. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Photographic simulation of off-axis blurring due to chromatic aberration in spectacle lenses.
Doroslovački, Pavle; Guyton, David L
2015-02-01
Spectacle lens materials of high refractive index (nd) tend to have high chromatic dispersion (low Abbé number [V]), which may contribute to visual blurring with oblique viewing. A patient who noted off-axis blurring with new high-refractive-index spectacle lenses prompted us to do a photographic simulation of the off-axis aberrations in 3 readily available spectacle lens materials, CR-39 (nd = 1.50), polyurethane (nd = 1.60), and polycarbonate (nd = 1.59). Both chromatic and monochromatic aberrations were found to cause off-axis image degradation. Chromatic aberration was more prominent in the higher-index materials (especially polycarbonate), whereas the lower-index CR-39 had more astigmatism of oblique incidence. It is important to consider off-axis aberrations when a patient complains of otherwise unexplained blurred vision with a new pair of spectacle lenses, especially given the increasing promotion of high-refractive-index materials with high chromatic dispersion. Copyright © 2015 American Association for Pediatric Ophthalmology and Strabismus. Published by Elsevier Inc. All rights reserved.
Achromatic-chromatic colorimetric sensors for on-off type detection of analytes.
Heo, Jun Hyuk; Cho, Hui Hun; Lee, Jin Woong; Lee, Jung Heon
2014-12-21
We report the development of achromatic colorimetric sensors; sensors changing their colors from achromatic black to other chromatic colors. An achromatic colorimetric sensor was prepared by mixing a general colorimetric indicator, whose color changes between chromatic colors, and a complementary colored dye with no reaction to the targeted analyte. As the color of an achromatic colorimetric sensor changes from black to a chromatic color, the color change could be much easily recognized than general colorimetric sensors with naked eyes. More importantly, the achromatic colorimetric sensors enable on-off type recognition of the presence of analytes, which have not been achieved from most colorimetric sensors. In addition, the color changes from some achromatic colorimetric sensors (achromatic Eriochrome Black T and achromatic Benedict's solution) could be recognized with naked eyes at much lower concentration ranges than normal chromatic colorimetric sensors. These results provide new opportunities in the use of colorimetric sensors for diverse applications, such as harsh industrial, environmental, and biological detection.
Quantitative measurement of binocular color fusion limit for non-spectral colors.
Jung, Yong Ju; Sohn, Hosik; Lee, Seong-il; Ro, Yong Man; Park, Hyun Wook
2011-04-11
Human perception becomes difficult in the event of binocular color fusion when the color difference presented for the left and right eyes exceeds a certain threshold value, known as the binocular color fusion limit. This paper discusses the binocular color fusion limit for non-spectral colors within the color gamut of a conventional LCD 3DTV. We performed experiments to measure the color fusion limit for eight chromaticity points sampled from the CIE 1976 chromaticity diagram. A total of 2480 trials were recorded for a single observer. By analyzing the results, the color fusion limit was quantified by ellipses in the chromaticity diagram. The semi-minor axis of the ellipses ranges from 0.0415 to 0.0923 in terms of the Euclidean distance in the u'v´ chromaticity diagram and the semi-major axis ranges from 0.0640 to 0.1560. These eight ellipses are drawn on the chromaticity diagram. © 2011 Optical Society of America
Cr6+-containing phases in the system CaO-Al2O3-
NASA Astrophysics Data System (ADS)
Pöllmann, Herbert; Auer, Stephan
2012-01-01
Synthesis and investigation of lamellar calcium aluminium hydroxy salts was performed to study the incorporation of chromate ions in the interlayer of lamellar calcium aluminium hydroxy salts. Different AFm-phases (calcium aluminate hydrate with alumina, ferric oxide, mono-anion phase) containing chromate were synthesized. These AFm-phases belong to the group of layered double hydroxides (LDHs). 3CaO·Al2O3·CaCrO4·nH2O and C3A·1/2Ca(OH)2·1/2CaCrO4·12H2O were obtained as pure phases and their different distinct interlayer water contents and properties determined. Solid solution of chromate-containing phases and tetracalcium-aluminate-hydrate (TCAH) were studied. The uptake of chromate into TCAH from solutions was proven. Chromate contents in solution decrease to <0.2 mg/l.
Reliable Channel-Adapted Error Correction: Bacon-Shor Code Recovery from Amplitude Damping
NASA Astrophysics Data System (ADS)
Piedrafita, Álvaro; Renes, Joseph M.
2017-12-01
We construct two simple error correction schemes adapted to amplitude damping noise for Bacon-Shor codes and investigate their prospects for fault-tolerant implementation. Both consist solely of Clifford gates and require far fewer qubits, relative to the standard method, to achieve exact correction to a desired order in the damping rate. The first, employing one-bit teleportation and single-qubit measurements, needs only one-fourth as many physical qubits, while the second, using just stabilizer measurements and Pauli corrections, needs only half. The improvements stem from the fact that damping events need only be detected, not corrected, and that effective phase errors arising due to undamped qubits occur at a lower rate than damping errors. For error correction that is itself subject to damping noise, we show that existing fault-tolerance methods can be employed for the latter scheme, while the former can be made to avoid potential catastrophic errors and can easily cope with damping faults in ancilla qubits.
NASA Technical Reports Server (NTRS)
Vermote, E.; Elsaleous, N.; Kaufman, Y. J.; Dutton, E.
1994-01-01
An operational stratospheric correction scheme used after the Mount Pinatubo (Phillipines) eruption (Jun. 1991) is presented. The stratospheric aerosol distribution is assumed to be only variable with latitude. Each 9 days the latitudinal distribution of the optical thickness is computed by inverting radiances observed in the NOAA AVHRR channel 1 (0.63 micrometers) and channel 2 (0.83 micrometers) over the Pacific Ocean. This radiance data set is used to check the validity of model used for inversion by checking consistency of the optical thickness deduced from each channel as well as optical thickness deduced from different scattering angles. Using the optical thickness profile previously computed and radiative transfer code assuming Lambertian boundary condition, each pixel of channel 1 and 2 are corrected prior to computation of NDVI (Normalized Difference Vegetation Index). Comparison between corrected, non corrected, and years prior to Pinatubo eruption (1989 to 1990) NDVI composite, shows the necessity and the accuracy of the operational correction scheme.
Design for an aberration corrected scanning electron microscope using miniature electron mirrors.
Dohi, Hideto; Kruit, Pieter
2018-06-01
Resolution of scanning electron microscopes (SEMs) is determined by aberrations of the objective lens. It is well known that both spherical and chromatic aberrations can be compensated by placing a 90-degree bending magnet and an electron mirror in the beam path before the objective lens. Nevertheless, this approach has not led to wide use of these aberration correctors, partly because aberrations of the bending magnet can be a serious problem. A mirror corrector with two mirrors placed perpendicularly to the optic axis of an SEM and facing each other is proposed. As a result, only small-angle magnetic deflection is necessary to guide the electron beam around the top mirror to the bottom mirror and around the bottom mirror to the objective lens. The deflection angle, in the order of 50 mrad, is sufficiently small to avoid deflection aberrations. In addition, lateral dispersion at the sample plane can be avoided by making the deflection fields symmetric. Such a corrector system is only possible if the incoming beam can pass the top mirror at a distance in the order of millimeters, without being disturbed by the electric fields of electrodes of the mirror. It is proposed that condition can be satisfied with micro-scale electron optical elements fabricated by using MEMS technology. In the proposed corrector system, the micro-mirrors have to provide the exact negative spherical and chromatic aberrations for correcting the aberration of the objective lens. This exact tuning is accomplished by variable magnification between the micro-mirrors and the objective lens using an additional transfer lens. Extensive optical calculations are reported. Aberrations of the micro-mirrors were analyzed by numerical calculation. Dispersion and aberrations of the deflectors were calculated by using an analytical field model. Combination aberrations caused by the off-axis position of dispersive rays in the mirrors and objective lens were also analyzed. It is concluded that the proposed corrector system will be a promising candidate for simple and low-cost aberration correction in low-voltage SEMs. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Vila, Daniel; deGoncalves, Luis Gustavo; Toll, David L.; Rozante, Jose Roberto
2008-01-01
This paper describes a comprehensive assessment of a new high-resolution, high-quality gauge-satellite based analysis of daily precipitation over continental South America during 2004. This methodology is based on a combination of additive and multiplicative bias correction schemes in order to get the lowest bias when compared with the observed values. Inter-comparisons and cross-validations tests have been carried out for the control algorithm (TMPA real-time algorithm) and different merging schemes: additive bias correction (ADD), ratio bias correction (RAT) and TMPA research version, for different months belonging to different seasons and for different network densities. All compared merging schemes produce better results than the control algorithm, but when finer temporal (daily) and spatial scale (regional networks) gauge datasets is included in the analysis, the improvement is remarkable. The Combined Scheme (CoSch) presents consistently the best performance among the five techniques. This is also true when a degraded daily gauge network is used instead of full dataset. This technique appears a suitable tool to produce real-time, high-resolution, high-quality gauge-satellite based analyses of daily precipitation over land in regional domains.
2016-01-05
2015, Abstract #1092. The Role of Chromium (III) in the Corrosion Inhibition of AA2024-T3 By Trivalent Chromium Process Coatings by Greg Swain...to replace chromate conversion coatings and primers with more environmentally-friendly, non-chromated coatings. The Trivalent Chromium Process (TCP...coatings and primers with more environmentally-friendly, non-chromated coatings. The Trivalent Chromium Process (TCP) coating, originally developed
Modeling and Simulation of the Visual Effects of Colored Filters
2015-02-01
chromaticity coordinates on the MCC under illuminant C. Measurements were taken with and without filters in front of the colorimeter . Note, for the actual...to measure the chromaticity and luminance values of the different components displayed on the calibrated monitor using a spot colorimeter (Minolta CS...of Illuminant C and the chromaticity values for each of the colored squares were measured using a spot colorimeter (Minolta CS-100). Three
A linear chromatic mechanism drives the pupillary response.
Tsujimura, S.; Wolffsohn, J. S.; Gilmartin, B.
2001-01-01
Previous studies have shown that a chromatic mechanism can drive pupil responses. The aim of this research was to clarify whether a linear or nonlinear chromatic mechanism drives pupillary responses by using test stimuli of various colours that are defined in cone contrast space. The pupil and accommodation responses evoked by these test stimuli were continuously and simultaneously objectively measured by photorefraction. The results with isochromatic and isoluminant stimuli showed that the accommodative level remained approximately constant (< 0.25 D change in mean level) even when the concurrent pupillary response was large (ca. 0.30 mm). The pupillary response to an isoluminant grating was sustained, delayed (by ca. 60 ms) and larger in amplitude than that for a isochromatic uniform stimulus, which supports previous work suggesting that the chromatic mechanism contributes to the pupillary response. In a second experiment, selected chromatic test gratings were used and isoresponse contours in cone contrast space were obtained. The results showed that the isoresponse contour in cone contrast space is well described (r(2) = 0.99) by a straight line with a positive slope. The results indicate that a /L - M/ linear chromatic mechanism, whereby a signal from the long wavelength cone is subtracted from that of the middle wavelength cone and vice versa, drives pupillary responses. PMID:11674867
Simultaneous chromatic and luminance human electroretinogram responses.
Parry, Neil R A; Murray, Ian J; Panorgias, Athanasios; McKeefry, Declan J; Lee, Barry B; Kremers, Jan
2012-07-01
The parallel processing of information forms an important organisational principle of the primate visual system. Here we describe experiments which use a novel chromatic–achromatic temporal compound stimulus to simultaneously identify colour and luminance specific signals in the human electroretinogram (ERG). Luminance and chromatic components are separated in the stimulus; the luminance modulation has twice the temporal frequency of the chromatic modulation. ERGs were recorded from four trichromatic and two dichromatic subjects (1 deuteranope and 1 protanope). At isoluminance, the fundamental (first harmonic) response was elicited by the chromatic component in the stimulus. The trichromatic ERGs possessed low-pass temporal tuning characteristics, reflecting the activity of parvocellular post-receptoral mechanisms. There was very little first harmonic response in the dichromats' ERGs. The second harmonic response was elicited by the luminance modulation in the compound stimulus and showed, in all subjects, band-pass temporal tuning characteristic of magnocellular activity. Thus it is possible to concurrently elicit ERG responses from the human retina which reflect processing in both chromatic and luminance pathways. As well as providing a clear demonstration of the parallel nature of chromatic and luminance processing in the human retina, the differences that exist between ERGs from trichromatic and dichromatic subjects point to the existence of interactions between afferent post-receptoral pathways that are in operation from the earliest stages of visual processing.
Mixing of Chromatic and Luminance Retinal Signals in Primate Area V1
Li, Xiaobing; Chen, Yao; Lashgari, Reza; Bereshpolova, Yulia; Swadlow, Harvey A.; Lee, Barry B.; Alonso, Jose Manuel
2015-01-01
Vision emerges from activation of chromatic and achromatic retinal channels whose interaction in visual cortex is still poorly understood. To investigate this interaction, we recorded neuronal activity from retinal ganglion cells and V1 cortical cells in macaques and measured their visual responses to grating stimuli that had either luminance contrast (luminance grating), chromatic contrast (chromatic grating), or a combination of the two (compound grating). As with parvocellular or koniocellular retinal ganglion cells, some V1 cells responded mostly to the chromatic contrast of the compound grating. As with magnocellular retinal ganglion cells, other V1 cells responded mostly to the luminance contrast and generated a frequency-doubled response to equiluminant chromatic gratings. Unlike magnocellular and parvocellular retinal ganglion cells, V1 cells formed a unimodal distribution for luminance/color preference with a 2- to 4-fold bias toward luminance. V1 cells associated with positive local field potentials in deep layers showed the strongest combined responses to color and luminance and, as a population, V1 cells encoded a diverse combination of luminance/color edges that matched edge distributions of natural scenes. Taken together, these results suggest that the primary visual cortex combines magnocellular and parvocellular retinal inputs to increase cortical receptive field diversity and to optimize visual processing of our natural environment. PMID:24464943
Spectral discrimination in color blind animals via chromatic aberration and pupil shape.
Stubbs, Alexander L; Stubbs, Christopher W
2016-07-19
We present a mechanism by which organisms with only a single photoreceptor, which have a monochromatic view of the world, can achieve color discrimination. An off-axis pupil and the principle of chromatic aberration (where different wavelengths come to focus at different distances behind a lens) can combine to provide "color-blind" animals with a way to distinguish colors. As a specific example, we constructed a computer model of the visual system of cephalopods (octopus, squid, and cuttlefish) that have a single unfiltered photoreceptor type. We compute a quantitative image quality budget for this visual system and show how chromatic blurring dominates the visual acuity in these animals in shallow water. We quantitatively show, through numerical simulations, how chromatic aberration can be exploited to obtain spectral information, especially through nonaxial pupils that are characteristic of coleoid cephalopods. We have also assessed the inherent ambiguity between range and color that is a consequence of the chromatic variation of best focus with wavelength. This proposed mechanism is consistent with the extensive suite of visual/behavioral and physiological data that has been obtained from cephalopod studies and offers a possible solution to the apparent paradox of vivid chromatic behaviors in color blind animals. Moreover, this proposed mechanism has potential applicability in organisms with limited photoreceptor complements, such as spiders and dolphins.
Xie, Hong; Wise, Sandra S.; Wise, John. P.
2008-01-01
Hexavalent chromium (Cr(VI)) is a potent respiratory toxicant and carcinogen. The most carcinogenic forms of Cr(VI) are the particulate salts such as lead chromate, which deposit and persist in the respiratory tract after inhalation. We demonstrate here that particulate chromate induces DNA double strand breaks in human lung cells with 0.1, 0.5, and 1 ug/cm2 lead chromate inducing 1.5, 2 and 5 relative increases in the percent of DNA in the comet tail, respectively. These lesions are repaired within 24 h and require Mre11 expression for their repair. Particulate chromate also caused Mre11 to co-localize with gamma-H2A.X and ATM. Failure to repair these breaks with Mre11 induced neoplastic transformation including loss of cell contact inhibition and anchorage independent growth. A 5-day exposure to lead chromate induced loss of cell contact inhibition in a concentration-dependent manner with 0, 0.1, 0.5 and 1 ug/cm2 lead chromate inducing 1, 78 and 103 foci in 20 dishes, respectively. These data indicate that Mre11 is critical to repairing particulate Cr(VI)-induced double strand breaks and preventing Cr(VI)-induced neoplastic transformation. PMID:18023605
Primary chromatic aberration elimination via optimization work with genetic algorithm
NASA Astrophysics Data System (ADS)
Wu, Bo-Wen; Liu, Tung-Kuan; Fang, Yi-Chin; Chou, Jyh-Horng; Tsai, Hsien-Lin; Chang, En-Hao
2008-09-01
Chromatic Aberration plays a part in modern optical systems, especially in digitalized and smart optical systems. Much effort has been devoted to eliminating specific chromatic aberration in order to match the demand for advanced digitalized optical products. Basically, the elimination of axial chromatic and lateral color aberration of an optical lens and system depends on the selection of optical glass. According to reports from glass companies all over the world, the number of various newly developed optical glasses in the market exceeds three hundred. However, due to the complexity of a practical optical system, optical designers have so far had difficulty in finding the right solution to eliminate small axial and lateral chromatic aberration except by the Damped Least Squares (DLS) method, which is limited in so far as the DLS method has not yet managed to find a better optical system configuration. In the present research, genetic algorithms are used to replace traditional DLS so as to eliminate axial and lateral chromatic, by combining the theories of geometric optics in Tessar type lenses and a technique involving Binary/Real Encoding, Multiple Dynamic Crossover and Random Gene Mutation to find a much better configuration for optical glasses. By implementing the algorithms outlined in this paper, satisfactory results can be achieved in eliminating axial and lateral color aberration.
Lim, Min Yee; Huang, Jian; Zhao, Bai-xiao; Zou, Hui-qin; Yan, Yong-hong
2016-01-01
Moxibustion is an important traditional Chinese medicine therapy using heat from ignited moxa floss for disease treatment. The purpose of the present study is to establish a reproducible method to assess the color of moxa floss, discriminate the samples based on chromatic coordinates and explore the relationship between chromatic coordinates and total flavonoid content (TFC). Moxa floss samples of different storage years and production ratios were obtained from a moxa production factory in Henan Province, China. Chromatic coordinates (L*, a* and b*) were analyzed with an ultraviolet-visible spectrophotometer and the chroma (C*) and hue angle (h°) values were calculated. TFC was determined by a colorimetric method. Data were analyzed with correlation, principal component analysis (PCA). Significant differences in the chromatic values and TFC were observed among samples of different storage years and production ratios. Samples of higher production ratio displayed higher chromatic characteristics and lower TFC. Samples of longer storage years contained higher TFC. Preliminary separation of moxa floss production ratio was obtained by means of color feature maps developed using L*-a* or L*-b* as coordinates. PCA allowed the separation of the samples from their storage years and production ratios based on their chromatic characteristics and TFC. The use of a colorimetric technique and CIELAB coordinates coupled with chemometrics can be practical and objective for discriminating moxa floss of different storage years and production ratios. The development of color feature maps could be used as a model for classifying the color grading of moxa floss.
Mapping chromatic pathways in the Drosophila visual system.
Lin, Tzu-Yang; Luo, Jiangnan; Shinomiya, Kazunori; Ting, Chun-Yuan; Lu, Zhiyuan; Meinertzhagen, Ian A; Lee, Chi-Hon
2016-02-01
In Drosophila, color vision and wavelength-selective behaviors are mediated by the compound eye's narrow-spectrum photoreceptors R7 and R8 and their downstream medulla projection (Tm) neurons Tm5a, Tm5b, Tm5c, and Tm20 in the second optic neuropil or medulla. These chromatic Tm neurons project axons to a deeper optic neuropil, the lobula, which in insects has been implicated in processing and relaying color information to the central brain. The synaptic targets of the chromatic Tm neurons in the lobula are not known, however. Using a modified GFP reconstitution across synaptic partners (GRASP) method to probe connections between the chromatic Tm neurons and 28 known and novel types of lobula neurons, we identify anatomically the visual projection neurons LT11 and LC14 and the lobula intrinsic neurons Li3 and Li4 as synaptic targets of the chromatic Tm neurons. Single-cell GRASP analyses reveal that Li4 receives synaptic contacts from over 90% of all four types of chromatic Tm neurons, whereas LT11 is postsynaptic to the chromatic Tm neurons, with only modest selectivity and at a lower frequency and density. To visualize synaptic contacts at the ultrastructural level, we develop and apply a "two-tag" double-labeling method to label LT11's dendrites and the mitochondria in Tm5c's presynaptic terminals. Serial electron microscopic reconstruction confirms that LT11 receives direct contacts from Tm5c. This method would be generally applicable to map the connections of large complex neurons in Drosophila and other animals. © 2015 Wiley Periodicals, Inc.
Chromatic Perceptual Learning but No Category Effects without Linguistic Input
Grandison, Alexandra; Sowden, Paul T.; Drivonikou, Vicky G.; Notman, Leslie A.; Alexander, Iona; Davies, Ian R. L.
2016-01-01
Perceptual learning involves an improvement in perceptual judgment with practice, which is often specific to stimulus or task factors. Perceptual learning has been shown on a range of visual tasks but very little research has explored chromatic perceptual learning. Here, we use two low level perceptual threshold tasks and a supra-threshold target detection task to assess chromatic perceptual learning and category effects. Experiment 1 investigates whether chromatic thresholds reduce as a result of training and at what level of analysis learning effects occur. Experiment 2 explores the effect of category training on chromatic thresholds, whether training of this nature is category specific and whether it can induce categorical responding. Experiment 3 investigates the effect of category training on a higher level, lateralized target detection task, previously found to be sensitive to category effects. The findings indicate that performance on a perceptual threshold task improves following training but improvements do not transfer across retinal location or hue. Therefore, chromatic perceptual learning is category specific and can occur at relatively early stages of visual analysis. Additionally, category training does not induce category effects on a low level perceptual threshold task, as indicated by comparable discrimination thresholds at the newly learned hue boundary and adjacent test points. However, category training does induce emerging category effects on a supra-threshold target detection task. Whilst chromatic perceptual learning is possible, learnt category effects appear to be a product of left hemisphere processing, and may require the input of higher level linguistic coding processes in order to manifest. PMID:27252669
Kim, Yeon Jin; Reynaud, Alexandre; Hess, Robert F; Mullen, Kathy T
2017-07-01
The measurement of achromatic sensitivity has been an important tool for monitoring subtle changes in vision as the result of disease or response to therapy. In this study, we aimed to provide a normative data set for achromatic and chromatic contrast sensitivity functions within a common cone contrast space using an abbreviated measurement approach suitable for clinical practice. In addition, we aimed to provide comparisons of achromatic and chromatic binocular summation across spatial frequency. We estimated monocular cone contrast sensitivity functions (CCSFs) using a quick Contrast Sensitivity Function (qCSF) approach for achromatic as well as isoluminant, L/M cone opponent, and S cone opponent stimuli in a healthy population of 51 subjects. We determined the binocular CCSFs for achromatic and chromatic vision to evaluate the degree of binocular summation across spatial frequency for these three different mechanisms in a subset of 20 subjects. Each data set shows consistent contrast sensitivity across the population. They highlight the extremely high cone contrast sensitivity of L/M cone opponency compared with the S-cone and achromatic responses. We also find that the two chromatic sensitivities are correlated across the healthy population. In addition, binocular summation for all mechanisms depends strongly on stimulus spatial frequency. This study, using an approach well suited to the clinic, is the first to provide a comparative normative data set for the chromatic and achromatic contrast sensitivity functions, yielding quantitative comparisons of achromatic, L/M cone opponent, and S cone opponent chromatic sensitivities as a function of spatial frequency.
NASA Astrophysics Data System (ADS)
Somogyi, Gábor; Trócsányi, Zoltán
2008-08-01
In previous articles we outlined a subtraction scheme for regularizing doubly-real emission and real-virtual emission in next-to-next-to-leading order (NNLO) calculations of jet cross sections in electron-positron annihilation. In order to find the NNLO correction these subtraction terms have to be integrated over the factorized unresolved phase space and combined with the two-loop corrections. In this paper we perform the integration of all one-parton unresolved subtraction terms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thachuk, M.; McCourt, F.R.W.
1991-09-15
A series of centrifugal sudden (CS) and infinite-order sudden (IOS) approximations together with their corrected versions, respectively, the corrected centrifugal sudden (CCS) and corrected infinite-order sudden (CIOS) approximations, originally introduced by McLenithan and Secrest (J. Chem. Phys. {bold 80}, 2480 (1987)), have been compared with the close-coupled (CC) method for the N{sub 2}--He interaction. This extends previous work using the H{sub 2}--He system (J. Chem. Phys. {bold 93}, 3931 (1990)) to an interaction which is more anisotropic and more classical in nature. A set of eleven energy dependent cross sections, including both relaxation and production types, has been calculated usingmore » the {ital LF}- and {ital LA}-labeling schemes for the CS approximation, as well as the {ital KI}-, {ital KF}-, {ital KA}-, and {ital KM}-labeling schemes for the IOS approximation. The latter scheme is defined as {ital KM}={ital K}=max({ital k}{sub {ital j}},{ital k}{sub {ital j}{sub {ital I}}}). Further, a number of temperature dependent cross sections formed from thermal averages of the above set have also been compared at 100 and 200 K. These comparisons have shown that the CS approximation produced accurate results for relaxation type cross sections regardless of the {ital L}-labeling scheme chosen, but inaccurate results for production type cross sections. Further, except for one particular cross section, the CCS approximation did not generally improve the accuracy of the CS results using either the {ital LF}- or {ital LA}-labeling schemes. The accuracy of the IOS results vary greatly between the cross sections with the most accurate values given by the {ital KM}-labeling scheme. The CIOS approximation generally increases the accuracy of the corresponding IOS results but does not completely eliminate the errors associated with them.« less
Random access to mobile networks with advanced error correction
NASA Technical Reports Server (NTRS)
Dippold, Michael
1990-01-01
A random access scheme for unreliable data channels is investigated in conjunction with an adaptive Hybrid-II Automatic Repeat Request (ARQ) scheme using Rate Compatible Punctured Codes (RCPC) Forward Error Correction (FEC). A simple scheme with fixed frame length and equal slot sizes is chosen and reservation is implicit by the first packet transmitted randomly in a free slot, similar to Reservation Aloha. This allows the further transmission of redundancy if the last decoding attempt failed. Results show that a high channel utilization and superior throughput can be achieved with this scheme that shows a quite low implementation complexity. For the example of an interleaved Rayleigh channel and soft decision utilization and mean delay are calculated. A utilization of 40 percent may be achieved for a frame with the number of slots being equal to half the station number under high traffic load. The effects of feedback channel errors and some countermeasures are discussed.
Asian dust aerosol: Optical effect on satellite ocean color signal and a scheme of its correction
NASA Astrophysics Data System (ADS)
Fukushima, H.; Toratani, M.
1997-07-01
The paper first exhibits the influence of the Asian dust aerosol (KOSA) on a coastal zone color scanner (CZCS) image which records erroneously low or negative satellite-derived water-leaving radiance especially in a shorter wavelength region. This suggests the presence of spectrally dependent absorption which was disregarded in the past atmospheric correction algorithms. On the basis of the analysis of the scene, a semiempirical optical model of the Asian dust aerosol that relates aerosol single scattering albedo (ωA) to the spectral ratio of aerosol optical thickness between 550 nm and 670 nm is developed. Then, as a modification to a standard CZCS atmospheric correction algorithm (NASA standard algorithm), a scheme which estimates pixel-wise aerosol optical thickness, and in turn ωA, is proposed. The assumption of constant normalized water-leaving radiance at 550 nm is adopted together with a model of aerosol scattering phase function. The scheme is combined to the standard algorithm, performing atmospheric correction just the same as the standard version with a fixed Angstrom coefficient except in the case where the presence of Asian dust aerosol is detected by the lowered satellite-derived Angstrom exponent. Some of the model parameter values are determined so that the scheme does not produce any spatial discontinuity with the standard scheme. The algorithm was tested against the Japanese Asian dust CZCS scene with parameter values of the spectral dependency of ωA, first statistically determined and second optimized for selected pixels. Analysis suggests that the parameter values depend on the assumed Angstrom coefficient for standard algorithm, at the same time defining the spatial extent of the area to apply the Asian dust scheme. The algorithm was also tested for a Saharan dust scene, showing the relevance of the scheme but with different parameter setting. Finally, the algorithm was applied to a data set of 25 CZCS scenes to produce a monthly composite of pigment concentration for April 1981. Through these analyses, the modified algorithm is considered robust in the sense that it operates most compatibly with the standard algorithm yet performs adaptively in response to the magnitude of the dust effect.
2010-09-01
400 and 300 h in neutral salt spray. 5 Similarly plated samples post treated with trivalent chromium rinse lasted 450 and 200 h in neutral salt...Accelerated Corrosion Results for Zinc/Nickel-Plated Automotive Parts Posttreated With Trivalent Chromate Rinse by Chris E. Miller, Brian E...Posttreated With Trivalent Chromate Rinse Chris E. Miller and Brian E. Placzankis Weapons and Materials Research Directorate, ARL I. Carl Handsy
2010-08-01
Corrosion resistant coatings containing non-chromate inhibitors and no volatile organic compounds were developed and evaluated for DoD applications...Transmission Electron Microscopy TRI – Toxic Release Inventory UV – Ultraviolet UVAs – Ultraviolet Absorbers VOCs – Volatile Organic Compounds XPS – X...containing non-chromate inhibitors and no volatile organic compounds were developed and evaluated for DoD applications. The technical effort
NASA Technical Reports Server (NTRS)
Troccoli, Alberto; Rienecker, Michele M.; Keppenne, Christian L.; Johnson, Gregory C.
2003-01-01
The NASA Seasonal-to-Interannual Prediction Project (NSIPP) has developed an Ocean data assimilation system to initialize the quasi-isopycnal ocean model used in our experimental coupled-model forecast system. Initial tests of the system have focused on the assimilation of temperature profiles in an optimal interpolation framework. It is now recognized that correction of temperature only often introduces spurious water masses. The resulting density distribution can be statically unstable and also have a detrimental impact on the velocity distribution. Several simple schemes have been developed to try to correct these deficiencies. Here the salinity field is corrected by using a scheme which assumes that the temperature-salinity relationship of the model background is preserved during the assimilation. The scheme was first introduced for a zlevel model by Troccoli and Haines (1999). A large set of subsurface observations of salinity and temperature is used to cross-validate two data assimilation experiments run for the 6-year period 1993-1998. In these two experiments only subsurface temperature observations are used, but in one case the salinity field is also updated whenever temperature observations are available.
Revised Chapman-Enskog analysis for a class of forcing schemes in the lattice Boltzmann method
NASA Astrophysics Data System (ADS)
Li, Q.; Zhou, P.; Yan, H. J.
2016-10-01
In the lattice Boltzmann (LB) method, the forcing scheme, which is used to incorporate an external or internal force into the LB equation, plays an important role. It determines whether the force of the system is correctly implemented in an LB model and affects the numerical accuracy. In this paper we aim to clarify a critical issue about the Chapman-Enskog analysis for a class of forcing schemes in the LB method in which the velocity in the equilibrium density distribution function is given by u =∑αeαfα / ρ , while the actual fluid velocity is defined as u ̂=u +δtF / (2 ρ ) . It is shown that the usual Chapman-Enskog analysis for this class of forcing schemes should be revised so as to derive the actual macroscopic equations recovered from these forcing schemes. Three forcing schemes belonging to the above class are analyzed, among which Wagner's forcing scheme [A. J. Wagner, Phys. Rev. E 74, 056703 (2006), 10.1103/PhysRevE.74.056703] is shown to be capable of reproducing the correct macroscopic equations. The theoretical analyses are examined and demonstrated with two numerical tests, including the simulation of Womersley flow and the modeling of flat and circular interfaces by the pseudopotential multiphase LB model.
A Note on Multigrid Theory for Non-nested Grids and/or Quadrature
NASA Technical Reports Server (NTRS)
Douglas, C. C.; Douglas, J., Jr.; Fyfe, D. E.
1996-01-01
We provide a unified theory for multilevel and multigrid methods when the usual assumptions are not present. For example, we do not assume that the solution spaces or the grids are nested. Further, we do not assume that there is an algebraic relationship between the linear algebra problems on different levels. What we provide is a computationally useful theory for adaptively changing levels. Theory is provided for multilevel correction schemes, nested iteration schemes, and one way (i.e., coarse to fine grid with no correction iterations) schemes. We include examples showing the applicability of this theory: finite element examples using quadrature in the matrix assembly and finite volume examples with non-nested grids. Our theory applies directly to other discretizations as well.
Shang, Zhehai; Lee, Zhongping; Dong, Qiang; Wei, Jianwei
2017-09-01
Self-shading associated with a skylight-blocked approach (SBA) system for the measurement of water-leaving radiance (L w ) and its correction [Appl. Opt.52, 1693 (2013)APOPAI0003-693510.1364/AO.52.001693] is characterized by Monte Carlo simulations, and it is found that this error is in a range of ∼1%-20% under most water properties and solar positions. A model for estimating this shading error is further developed, and eventually a scheme to correct this error based on the shaded measurements is proposed and evaluated. It is found that the shade-corrected value in the visible domain is within 3% of the true value, which thus indicates that we can obtain not only high precision but also high accuracy L w in the field with the SBA scheme.
An Orbit And Dispersion Correction Scheme for the PEP II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Y.; Donald, M.; Shoaee, H.
2011-09-01
To achieve optimum luminosity in a storage ring it is vital to control the residual vertical dispersion. In the original PEP storage ring, a scheme to control the residual dispersion function was implemented using the ring orbit as the controlling element. The 'best' orbit not necessarily giving the lowest vertical dispersion. A similar scheme has been implemented in both the on-line control code and in the simulation code LEGO. The method involves finding the response matrices (sensitivity of orbit/dispersion at each Beam-Position-Monitor (BPM) to each orbit corrector) and solving in a least squares sense for minimum orbit, dispersion function ormore » both. The optimum solution is usually a subset of the full least squares solution. A scheme of simultaneously correcting the orbits and dispersion has been implemented in the simulation code and on-line control system for PEP-II. The scheme is based on the eigenvector decomposition method. An important ingredient of the scheme is to choose the optimum eigenvectors that minimize the orbit, dispersion and corrector strength. Simulations indicate this to be a very effective way to control the vertical residual dispersion.« less
Goyret, Joaquín; Kelber, Almut
2012-01-01
Most visual systems are more sensitive to luminance than to colour signals. Animals resolve finer spatial detail and temporal changes through achromatic signals than through chromatic ones. Probably, this explains that detection of small, distant, or moving objects is typically mediated through achromatic signals. Macroglossum stellatarum are fast flying nectarivorous hawkmoths that inspect flowers with their long proboscis while hovering. They can visually control this behaviour using floral markings known as nectar guides. Here, we investigate whether this is mediated by chromatic or achromatic cues. We evaluated proboscis placement, foraging efficiency, and inspection learning of naïve moths foraging on flower models with coloured markings that offered either chromatic, achromatic or both contrasts. Hummingbird hawkmoths could use either achromatic or chromatic signals to inspect models while hovering. We identified three, apparently independent, components controlling proboscis placement: After initial contact, 1) moths directed their probing towards the yellow colour irrespectively of luminance signals, suggesting a dominant role of chromatic signals; and 2) moths tended to probe mainly on the brighter areas of models that offered only achromatic signals. 3) During the establishment of the first contact, naïve moths showed a tendency to direct their proboscis towards the small floral marks independent of their colour or luminance. Moths learned to find nectar faster, but their foraging efficiency depended on the flower model they foraged on. Our results imply that M. stellatarum can perceive small patterns through colour vision. We discuss how the different informational contents of chromatic and luminance signals can be significant for the control of flower inspection, and visually guided behaviours in general.
Stereo chromatic contrast sensitivity model to blue-yellow gratings.
Yang, Jiachen; Lin, Yancong; Liu, Yun
2016-03-07
As a fundamental metric of human visual system (HVS), contrast sensitivity function (CSF) is typically measured by sinusoidal gratings at the detection of thresholds for psychophysically defined cardinal channels: luminance, red-green, and blue-yellow. Chromatic CSF, which is a quick and valid index to measure human visual performance and various retinal diseases in two-dimensional (2D) space, can not be directly applied into the measurement of human stereo visual performance. And no existing perception model considers the influence of chromatic CSF of inclined planes on depth perception in three-dimensional (3D) space. The main aim of this research is to extend traditional chromatic contrast sensitivity characteristics to 3D space and build a model applicable in 3D space, for example, strengthening stereo quality of 3D images. This research also attempts to build a vision model or method to check human visual characteristics of stereo blindness. In this paper, CRT screen was clockwise and anti-clockwise rotated respectively to form the inclined planes. Four inclined planes were selected to investigate human chromatic vision in 3D space and contrast threshold of each inclined plane was measured with 18 observers. Stimuli were isoluminant blue-yellow sinusoidal gratings. Horizontal spatial frequencies ranged from 0.05 to 5 c/d. Contrast sensitivity was calculated as the inverse function of the pooled cone contrast threshold. According to the relationship between spatial frequency of inclined plane and horizontal spatial frequency, the chromatic contrast sensitivity characteristics in 3D space have been modeled based on the experimental data. The results show that the proposed model can well predicted human chromatic contrast sensitivity characteristics in 3D space.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bortolaz de Oliveira, Henrique; Wypych, Fernando, E-mail: wypych@ufpr.br
Layered zinc hydroxide nitrate (ZnHN) and Zn/Ni layered double hydroxide salts were synthesized and used to remove chromate ions from solutions at pH 8.0. The materials were characterized by many instrumental techniques before and after chromate ion removal. ZnHN decomposed after contact with the chromate solution, whereas the layered structure of Zn/Ni hydroxide nitrate (Zn/NiHN) and Zn/Ni hydroxide acetate (Zn/NiHA) remained their layers intact after the topotactic anionic exchange reaction, only changing the basal distances. ZnHN, Zn/NiHN, and Zn/NiHA removed 210.1, 144.8, and 170.1 mg of CrO{sub 4}{sup 2−}/g of material, respectively. Although the removal values obtained for Zn/NiHN andmore » Zn/NiHA were smaller than the values predicted for the ideal formulas of the solids (194.3 and 192.4 mg of CrO{sub 4}{sup 2−}/g of material, respectively), the measured capacities were higher than the values achieved with many materials reported in the literature. Kinetic experiments showed the removal reaction was fast. To facilitate the solid/liquid separation process after chromium removal, Zn/Ni layered double hydroxide salts with magnetic supports were also synthesized, and their ability to remove chromate was evaluated. - Highlights: • Zinc hydroxide nitrate and Zn/Ni hydroxide nitrate or acetate were synthesized. • The interlayer anions were replaced by chromate anions at pH=8.0. • Only Zn/Ni hydroxide nitrate or acetate have the structure preserved after exchange. • Fast exchange reaction and high capacity of chromate removal were observed. • Magnetic materials were obtained to facilitate the solids removal the from solutions.« less
Hexavalent chromium exposures during full-aircraft corrosion control.
Carlton, Gary N
2003-01-01
Aluminum alloys used in the construction of modern aircraft are subject to corrosion. The principal means of controlling this corrosion in the U.S. Air Force are organic coatings. The organic coating system consists of a chromate conversion coat, epoxy resin primer, and polyurethane enamel topcoat. Hexavalent chromium (CrVI) is present in the conversion coat in the form of chromic acid and in the primer in the form of strontium chromate. CrVI inhalation exposures can occur when workers spray conversion coat onto bare metal and apply primer to the treated metal surface. In addition, mechanical abrasion of aircraft surfaces can generate particulates that contain chromates from previously applied primers and conversion coats. This study measured CrVI exposures during these corrosion control procedures. Mean time-weighted average (TWA) exposure to chromic acid during conversion coat treatment was 0.48 microg/m(3), below the current American Conference of Governmental Industrial Hygienists (ACGIH) threshold limit value (TLV(R)) TWA of 50 microg/m(3) for water-soluble CrVI compounds. Mean TWA exposures to strontium chromate were 5.33 microg/m(3) during mechanical abrasion and 83.8 microg/m(3) during primer application. These levels are in excess of the current ACGIH TLV-TWA of 0.5 microg/m(3) for strontium chromate. In the absence of a change from chromated to nonchromated conversion coats and primers, additional control measures are needed to reduce these exposures.
Mixing of Chromatic and Luminance Retinal Signals in Primate Area V1.
Li, Xiaobing; Chen, Yao; Lashgari, Reza; Bereshpolova, Yulia; Swadlow, Harvey A; Lee, Barry B; Alonso, Jose Manuel
2015-07-01
Vision emerges from activation of chromatic and achromatic retinal channels whose interaction in visual cortex is still poorly understood. To investigate this interaction, we recorded neuronal activity from retinal ganglion cells and V1 cortical cells in macaques and measured their visual responses to grating stimuli that had either luminance contrast (luminance grating), chromatic contrast (chromatic grating), or a combination of the two (compound grating). As with parvocellular or koniocellular retinal ganglion cells, some V1 cells responded mostly to the chromatic contrast of the compound grating. As with magnocellular retinal ganglion cells, other V1 cells responded mostly to the luminance contrast and generated a frequency-doubled response to equiluminant chromatic gratings. Unlike magnocellular and parvocellular retinal ganglion cells, V1 cells formed a unimodal distribution for luminance/color preference with a 2- to 4-fold bias toward luminance. V1 cells associated with positive local field potentials in deep layers showed the strongest combined responses to color and luminance and, as a population, V1 cells encoded a diverse combination of luminance/color edges that matched edge distributions of natural scenes. Taken together, these results suggest that the primary visual cortex combines magnocellular and parvocellular retinal inputs to increase cortical receptive field diversity and to optimize visual processing of our natural environment. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Pitzalis, Sabrina; Strappini, Francesca; Bultrini, Alessandro; Di Russo, Francesco
2018-03-13
Neuroimaging studies have identified so far, several color-sensitive visual areas in the human brain, and the temporal dynamics of these activities have been separately investigated using the visual-evoked potentials (VEPs). In the present study, we combined electrophysiological and neuroimaging methods to determine a detailed spatiotemporal profile of chromatic VEP and to localize its neural generators. The accuracy of the present co-registration study was obtained by combining standard fMRI data with retinotopic and motion mapping data at the individual level. We found a sequence of occipito activities more complex than that typically reported for chromatic VEPs, including feed-forward and reentrant feedback. Results showed that chromatic human perception arises by the combined activity of at the least five parieto-occipital areas including V1, LOC, V8/VO, and the motion-sensitive dorsal region MT+. However, the contribution of V1 and V8/VO seems dominant because the re-entrant activity in these areas was present more than once (twice in V8/VO and thrice in V1). This feedforward and feedback chromatic processing appears delayed compared with the luminance processing. Associating VEPs and neuroimaging measures, we showed for the first time a complex spatiotemporal pattern of activity, confirming that chromatic stimuli produce intricate interactions of many different brain dorsal and ventral areas. © 2018 Wiley Periodicals, Inc.
Simultaneous chromatic and luminance human electroretinogram responses
Parry, Neil R A; Murray, Ian J; Panorgias, Athanasios; McKeefry, Declan J; Lee, Barry B; Kremers, Jan
2012-01-01
The parallel processing of information forms an important organisational principle of the primate visual system. Here we describe experiments which use a novel chromatic–achromatic temporal compound stimulus to simultaneously identify colour and luminance specific signals in the human electroretinogram (ERG). Luminance and chromatic components are separated in the stimulus; the luminance modulation has twice the temporal frequency of the chromatic modulation. ERGs were recorded from four trichromatic and two dichromatic subjects (1 deuteranope and 1 protanope). At isoluminance, the fundamental (first harmonic) response was elicited by the chromatic component in the stimulus. The trichromatic ERGs possessed low-pass temporal tuning characteristics, reflecting the activity of parvocellular post-receptoral mechanisms. There was very little first harmonic response in the dichromats’ ERGs. The second harmonic response was elicited by the luminance modulation in the compound stimulus and showed, in all subjects, band-pass temporal tuning characteristic of magnocellular activity. Thus it is possible to concurrently elicit ERG responses from the human retina which reflect processing in both chromatic and luminance pathways. As well as providing a clear demonstration of the parallel nature of chromatic and luminance processing in the human retina, the differences that exist between ERGs from trichromatic and dichromatic subjects point to the existence of interactions between afferent post-receptoral pathways that are in operation from the earliest stages of visual processing. PMID:22586211
Spectral discrimination in color blind animals via chromatic aberration and pupil shape
Stubbs, Alexander L.; Stubbs, Christopher W.
2016-01-01
We present a mechanism by which organisms with only a single photoreceptor, which have a monochromatic view of the world, can achieve color discrimination. An off-axis pupil and the principle of chromatic aberration (where different wavelengths come to focus at different distances behind a lens) can combine to provide “color-blind” animals with a way to distinguish colors. As a specific example, we constructed a computer model of the visual system of cephalopods (octopus, squid, and cuttlefish) that have a single unfiltered photoreceptor type. We compute a quantitative image quality budget for this visual system and show how chromatic blurring dominates the visual acuity in these animals in shallow water. We quantitatively show, through numerical simulations, how chromatic aberration can be exploited to obtain spectral information, especially through nonaxial pupils that are characteristic of coleoid cephalopods. We have also assessed the inherent ambiguity between range and color that is a consequence of the chromatic variation of best focus with wavelength. This proposed mechanism is consistent with the extensive suite of visual/behavioral and physiological data that has been obtained from cephalopod studies and offers a possible solution to the apparent paradox of vivid chromatic behaviors in color blind animals. Moreover, this proposed mechanism has potential applicability in organisms with limited photoreceptor complements, such as spiders and dolphins. PMID:27382180
NASA Astrophysics Data System (ADS)
Chen, Liang-Chia; Chen, Yi-Shiuan; Chang, Yi-Wei; Lin, Shyh-Tsong; Yeh, Sheng Lih
2013-01-01
In this research, new nano-scale measurement methodology based on spectrally-resolved chromatic confocal interferometry (SRCCI) was successfully developed by employing integration of chromatic confocal sectioning and spectrally-resolve white light interferometry (SRWLI) for microscopic three dimensional surface profilometry. The proposed chromatic confocal method (CCM) using a broad band while light in combination with a specially designed chromatic dispersion objective is capable of simultaneously acquiring multiple images at a large range of object depths to perform surface 3-D reconstruction by single image shot without vertical scanning and correspondingly achieving a high measurement depth range up to hundreds of micrometers. A Linnik-type interferometric configuration based on spectrally resolved white light interferometry is developed and integrated with the CCM to simultaneously achieve nanoscale axis resolution for the detection point. The white-light interferograms acquired at the exit plane of the spectrometer possess a continuous variation of wavelength along the chromaticity axis, in which the light intensity reaches to its peak when the optical path difference equals to zero between two optical arms. To examine the measurement accuracy of the developed system, a pre-calibrated accurate step height target with a total step height of 10.10 μm was measured. The experimental result shows that the maximum measurement error was verified to be less than 0.3% of the overall measuring height.
Levy, L S; Martin, P A; Bidstrup, P L
1986-01-01
Twenty one chromium containing materials were examined for carcinogenic activity in a two year study using an intrabronchial pellet implantation system whereby pellets loaded with test material were surgically implanted into the lower left bronchus of rats. The principal aim of the study was to extend our knowledge of the carcinogenic potential of chromium compounds and, in particular, chromates (Cr6+). A statistically significant incidence of treatment related lung tumours was found with some sparingly soluble chromate materials. All tumours were large keratinizing squamous carcinomas of the left lung, except for a single left lung adenocarcinoma and two left lung anaplastic carcinomas. No bronchial carcinomas (0/100) were seen in the negative control group (blank pellet loaded with cholesterol), whereas bronchial carcinomas (22/48 and 25/100) occurred in the two positive control groups which received pellets loaded with 20-methylcholanthrene and calcium chromate respectively. Among the 20 test materials, only three groups gave statistically significant numbers of bronchial carcinomas. Two of these were groups receiving different samples of strontium chromate which gave 43/99 and 62/99 tumours. The third group, zinc chromate (low solubility), gave 5/100 bronchial carcinomas. A further zinc chromate group (Norge composition) produced 3/100 bronchial carcinomas which was not statistically significant. A few lung tumours were observed in other test groups. Images PMID:3964573
Pigment tests evaluated by a model of chromatic discrimination.
Smith, V C; Pokorny, J; Yeh, T
1993-08-01
Clinical color-vision tests are evaluated within the framework of a model of chromatic discrimination in terms of cone excitation. The motivation for this study was to derive a method for evaluation of test design, test sensitivity, and observer performance. The discrimination model is based on the assumption that chromatic discrimination is mediated in two independent channels, one for short-wavelength cones and one for long- and middle-wavelength cones. Luminance-dependent templates are derived for each channel, and they describe chromatic-discrimination behavior of the young color-normal observer. The templates incorporate receptor- and opponent-level gain controls. We show how the chromaticities of clinical tests can be calculated in cone-excitation units and how discrimination behavior on the tests can be plotted on the templates. The tests include the Farnsworth-Munsell 100-hue, the Farnsworth Panel D-15, the Farnsworth Panel D-15 desaturated, the American Optical Hardy-Rand-Rittler, the Farnsworth F2 plate, the Standard Pseudoisochromatic Plates, Part II, the Ishihara, and the Minimalist tests. Clinical-test data collected on young color-normal observers at different illumination levels show the validity of the techniques.
Contrast gain control: a bilinear model for chromatic selectivity.
Singer, B; D'Zmura, M
1995-04-01
We report the results of psychophysical experiments on color contrast induction. In earlier work [Vision Res. 34, 3111 (1994)], we showed that modulating the spatial contrast of an annulus in time induces an apparent modulation of the contrast of a central disk, at isoluminance. Here we vary the chromatic properties of disk and annulus systematically in a study of the interactions among the luminance and the color-opponent channels. Results show that induced contrast depends linearly on both disk and annulus contrast, at low and moderate contrast levels. This dependence leads us to propose a bilinear model for color contrast gain control. The model predicts the magnitude and the chromatic properties of induced contrast. In agreement with experimental results, the model displays chromatic selectivity in contrast gain control and a negligible effect of contrast modulation at isoluminance on the appearance of achromatic contrast. We show that the bilinear model for chromatic selectivity may be realized as a feed-forward multiplicative gain control. Data collected at high contrast levels are fit by embellishing the model with saturating nonlinearities in the contrast gain control of each color channel.
Chromatic and Achromatic Spatial Resolution of Local Field Potentials in Awake Cortex
Jansen, Michael; Li, Xiaobing; Lashgari, Reza; Kremkow, Jens; Bereshpolova, Yulia; Swadlow, Harvey A.; Zaidi, Qasim; Alonso, Jose-Manuel
2015-01-01
Local field potentials (LFPs) have become an important measure of neuronal population activity in the brain and could provide robust signals to guide the implant of visual cortical prosthesis in the future. However, it remains unclear whether LFPs can detect weak cortical responses (e.g., cortical responses to equiluminant color) and whether they have enough visual spatial resolution to distinguish different chromatic and achromatic stimulus patterns. By recording from awake behaving macaques in primary visual cortex, here we demonstrate that LFPs respond robustly to pure chromatic stimuli and exhibit ∼2.5 times lower spatial resolution for chromatic than achromatic stimulus patterns, a value that resembles the ratio of achromatic/chromatic resolution measured with psychophysical experiments in humans. We also show that, although the spatial resolution of LFP decays with visual eccentricity as is also the case for single neurons, LFPs have higher spatial resolution and show weaker response suppression to low spatial frequencies than spiking multiunit activity. These results indicate that LFP recordings are an excellent approach to measure spatial resolution from local populations of neurons in visual cortex including those responsive to color. PMID:25416722
Reversible Chromatic Response of Polydiacetylene Derivative Vesicles in D2O Solvent.
Shin, Min Jae; Kim, Jong-Duk
2016-01-26
The thermal chromatic sensitivity of polydiacetylenes (PDAs) with 10,12-pentacosadiynoic acid (PCDA) derivatives, which have a hydroxyl group (HEEPCDA) and an amine group (APPCDA), were investigated using D2O and H2O as solvents. The vesicle solution with polymerized HEEPCDA exhibited a reversible chromatic response during the heating and cooling cycle in D2O, but not in H2O. On the other hand, the vesicle solution with the polymerized APPCDA exhibited a reversible chromatic response in H2O during the heating and cooling cycle, but the color of the solution did not change much in D2O. The critical vesicle concentration of HEEPCDA was lower in D2O than in H2O, and the chromatic sensitivity of the polymerized vesicles to temperature was slower in D2O than in H2O. We think that it is due to D2O being a more highly structured solvent than H2O with the hydrogen bonding in D2O stronger than that in H2O.
Chromatic Dimensions Earthy, Watery, Airy, and Fiery.
Albertazzi, Liliana; Koenderink, Jan J; van Doorn, Andrea
2015-01-01
In our study, for a small number of antonyms, we investigate whether they are cross-modally or ideaesthetically related to the space of colors. We analyze the affinities of seven antonyms (cold-hot, dull-radiant, dead-vivid, soft-hard, transparent-chalky, dry-wet, and acid-treacly) and their intermediate connotations (cool-warm, matt-shiny, numb-lively, mellow-firm, semi-transparent-opaque, semi-dry-moist, and sour-sweet) as a function of color. We find that some antonyms relate to chromatic dimensions, others to achromatic ones. The cold-hot antonym proves to be the most salient dimension. The dry-wet dimension coincides with the cold-hot dimension, with dry corresponding to hot and wet to cold. The acid-treacly dimension proves to be transversal to the cold-hot dimension; hence, the pairs mutually span the chromatic domain. The cold-hot and acid-treacly antonyms perhaps recall Hering's opponent color system. The dull-radiant, transparent-chalky, and dead-vivid pairs depend little upon chromaticity. Of all seven antonyms, only the soft-hard one turns out to be independent of the chromatic structure. © The Author(s) 2015.
Location verification algorithm of wearable sensors for wireless body area networks.
Wang, Hua; Wen, Yingyou; Zhao, Dazhe
2018-01-01
Knowledge of the location of sensor devices is crucial for many medical applications of wireless body area networks, as wearable sensors are designed to monitor vital signs of a patient while the wearer still has the freedom of movement. However, clinicians or patients can misplace the wearable sensors, thereby causing a mismatch between their physical locations and their correct target positions. An error of more than a few centimeters raises the risk of mistreating patients. The present study aims to develop a scheme to calculate and detect the position of wearable sensors without beacon nodes. A new scheme was proposed to verify the location of wearable sensors mounted on the patient's body by inferring differences in atmospheric air pressure and received signal strength indication measurements from wearable sensors. Extensive two-sample t tests were performed to validate the proposed scheme. The proposed scheme could easily recognize a 30-cm horizontal body range and a 65-cm vertical body range to correctly perform sensor localization and limb identification. All experiments indicate that the scheme is suitable for identifying wearable sensor positions in an indoor environment.
Liquid Crystal on Silicon Wavefront Corrector
NASA Technical Reports Server (NTRS)
Pouch, John; Miranda, Felix; Wang, Xinghua; Bos, Philip, J.
2004-01-01
A low cost, high resolution, liquid crystal on silicon, spatial light modulator has been developed for the correction of huge aberrations in an optical system where the polarization dependence and the chromatic nature are tolerated. However, the overall system performance suggests that this device is also suitable for real time correction of aberration in human eyes. This device has a resolution of 1024 x 768, and is driven by an XGA display driver. The effective stroke length of the device is 700 nm and 2000 nm for the visible and IR regions of the device, respectively. The response speeds are 50 Hz and 5 Hz, respectively, which are fast enough for real time adaptive optics for aberrations in human eyes. By modulating a wavefront of 2 pi, this device can correct for arbitrary high order wavefront aberrations since the 2-D pixel array is independently controlled by the driver. The high resolution and high accuracy of the device allow for diffraction limited correction of the tip and tilt or defocus without an additional correction loop. We have shown that for every wave of aberration, an 8 step blazed grating is required to achieve high diffraction efficiency around 80%. In light of this, up to 125 waves peak to valley of tip and tilt can be corrected if we choose the simplest aberration. Corrections of 34 waves of aberration, including high order Zernicke terms in a high magnification telescope, to diffraction limited performance (residual wavefront aberration less than 1/30 lambda at 632.8 nm) have been observed at high efficiency.
Cone signals for spectacle-lens compensation: differential responses to short and long wavelengths.
Rucker, Frances J; Wallman, Josh
2008-09-01
Chick eyes compensate for defocus imposed by spectacle lenses by making compensatory changes in eye length and choroidal thickness, a laboratory model of emmetropization. To investigate the roles of longitudinal chromatic aberration and of chromatic mechanisms in emmetropization, we examined the participation of different cone classes, and we compared the efficacy of lens compensation under monochromatic illumination with that under white light of the same illuminance to the chick eye. Chicks wore positive or negative 6D or 8D lenses on one eye for 3 days, under either blue (460 nm) or red (620 nm) light at 0.67 lux or under white light at 0.67 or 0.2 lux (all measures are corrected for chick photopic sensitivity). The illumination conditions were chosen to differentially stimulate either the short-wavelength and ultraviolet cones or the long-wavelength and double cones. Measurements are expressed as the relative change: the inter-ocular difference in the amount of change over the 3 days of lens wear. We find that under this low illumination the two components of lens compensation were differentially affected by the monochromatic illumination: in blue light lens compensation was mainly due to changes in eye length, whereas in red light lens compensation was mainly due to changes in choroidal thickness. In general, white light produced better lens compensation than monochromatic illumination. NEGATIVE LENSES: Under white light negative lenses caused an increase in eye length (60 microm) together with a decrease in choroidal thickness (-51 microm) relative to the fellow eye. Under blue light, although there was an increase in eye length (32 microm), there was no change in choroidal thickness (5 microm). In contrast, under red light there was a decrease in choroidal thickness (-62 microm) but no increase in eye length (8 microm). Relative ocular elongation was the same in white and monochromatic light. POSITIVE LENSES: Under white light positive lenses caused a decrease in eye length (-142 microm) together with an increase in choroidal thickness (68 microm) relative to the fellow eye. Under blue light, there was a decrease in eye length (-64 microm), but no change in choroidal thickness (2 microm). In contrast, under red light there was an increase (90 microm) in choroidal thickness but less of a decrease (-36 microm) in eye length. Lens compensation by inhibition of ocular elongation was less effective under monochromatic illumination than under white light (white v red: p=0.003; white v blue p=.014). The differential effects of red and blue light on the choroidal and ocular length compensatory responses suggest that they are driven by different proportions of the cone-types, implying that, although chromatic contrast is not essential for lens compensation and presumably for emmetropization as well, the retinal substrates exist for utilizing chromatic contrast in these compensatory responses. The generally better lens compensation in white than monochromatic illumination suggests that longitudinal chromatic aberration may be used in lens compensation.
Chromated copper arsenate (CCA) is a wood preservative pesticide containing chromium, copper, and arsenic that protects wood against termites, fungi, mites and other pests that can degrade or threaten the integrity of wood products.
A Study of Convergence of the PMARC Matrices Applicable to WICS Calculations
NASA Technical Reports Server (NTRS)
Ghosh, Amitabha
1997-01-01
This report discusses some analytical procedures to enhance the real time solutions of PMARC matrices applicable to the Wall Interference Correction Scheme (WICS) currently being implemented at the 12 foot Pressure Tunnel. WICS calculations involve solving large linear systems in a reasonably speedy manner necessitating exploring further improvement in solution time. This paper therefore presents some of the associated theory of the solution of linear systems. Then it discusses a geometrical interpretation of the residual correction schemes. Finally some results of the current investigation are presented.
A Study of Convergence of the PMARC Matrices Applicable to WICS Calculations
NASA Technical Reports Server (NTRS)
Ghosh, Amitabha
1997-01-01
This report discusses some analytical procedures to enhance the real time solutions of PMARC matrices applicable to the Wall Interference Correction Scheme (WICS) currently being implemented at the 12 foot Pressure Tunell. WICS calculations involve solving large linear systems in a reasonably speedy manner necessitating exploring further improvement in solution time. This paper therefore presents some of the associated theory of the solution of linear systems. Then it discusses a geometrical interpretation of the residual correction schemes. Finally, some results of the current investigation are presented.
Local bounds preserving stabilization for continuous Galerkin discretization of hyperbolic systems
NASA Astrophysics Data System (ADS)
Mabuza, Sibusiso; Shadid, John N.; Kuzmin, Dmitri
2018-05-01
The objective of this paper is to present a local bounds preserving stabilized finite element scheme for hyperbolic systems on unstructured meshes based on continuous Galerkin (CG) discretization in space. A CG semi-discrete scheme with low order artificial dissipation that satisfies the local extremum diminishing (LED) condition for systems is used to discretize a system of conservation equations in space. The low order artificial diffusion is based on approximate Riemann solvers for hyperbolic conservation laws. In this case we consider both Rusanov and Roe artificial diffusion operators. In the Rusanov case, two designs are considered, a nodal based diffusion operator and a local projection stabilization operator. The result is a discretization that is LED and has first order convergence behavior. To achieve high resolution, limited antidiffusion is added back to the semi-discrete form where the limiter is constructed from a linearity preserving local projection stabilization operator. The procedure follows the algebraic flux correction procedure usually used in flux corrected transport algorithms. To further deal with phase errors (or terracing) common in FCT type methods, high order background dissipation is added to the antidiffusive correction. The resulting stabilized semi-discrete scheme can be discretized in time using a wide variety of time integrators. Numerical examples involving nonlinear scalar Burgers equation, and several shock hydrodynamics simulations for the Euler system are considered to demonstrate the performance of the method. For time discretization, Crank-Nicolson scheme and backward Euler scheme are utilized.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silva, Goncalo, E-mail: goncalo.nuno.silva@gmail.com; Talon, Laurent, E-mail: talon@fast.u-psud.fr; Ginzburg, Irina, E-mail: irina.ginzburg@irstea.fr
The present contribution focuses on the accuracy of reflection-type boundary conditions in the Stokes–Brinkman–Darcy modeling of porous flows solved with the lattice Boltzmann method (LBM), which we operate with the two-relaxation-time (TRT) collision and the Brinkman-force based scheme (BF), called BF-TRT scheme. In parallel, we compare it with the Stokes–Brinkman–Darcy linear finite element method (FEM) where the Dirichlet boundary conditions are enforced on grid vertices. In bulk, both BF-TRT and FEM share the same defect: in their discretization a correction to the modeled Brinkman equation appears, given by the discrete Laplacian of the velocity-proportional resistance force. This correction modifies themore » effective Brinkman viscosity, playing a crucial role in the triggering of spurious oscillations in the bulk solution. While the exact form of this defect is available in lattice-aligned, straight or diagonal, flows; in arbitrary flow/lattice orientations its approximation is constructed. At boundaries, we verify that such a Brinkman viscosity correction has an even more harmful impact. Already at the first order, it shifts the location of the no-slip wall condition supported by traditional LBM boundary schemes, such as the bounce-back rule. For that reason, this work develops a new class of boundary schemes to prescribe the Dirichlet velocity condition at an arbitrary wall/boundary-node distance and that supports a higher order accuracy in the accommodation of the TRT-Brinkman solutions. For their modeling, we consider the standard BF scheme and its improved version, called IBF; this latter is generalized in this work to suppress or to reduce the viscosity correction in arbitrarily oriented flows. Our framework extends the one- and two-point families of linear and parabolic link-wise boundary schemes, respectively called B-LI and B-MLI, which avoid the interference of the Brinkman viscosity correction in their closure relations. The performance of LBM and FEM is thoroughly evaluated in three benchmark tests, which are run throughout three distinctive permeability regimes. The first configuration is a horizontal porous channel, studied with a symbolic approach, where we construct the exact solutions of FEM and BF/IBF with different boundary schemes. The second problem refers to an inclined porous channel flow, which brings in as new challenge the formation of spurious boundary layers in LBM; that is, numerical artefacts that arise due to a deficient accommodation of the bulk solution by the low-accurate boundary scheme. The third problem considers a porous flow past a periodic square array of solid cylinders, which intensifies the previous two tests with the simulation of a more complex flow pattern. The ensemble of numerical tests provides guidelines on the effect of grid resolution and the TRT free collision parameter over the accuracy and the quality of the velocity field, spanning from Stokes to Darcy permeability regimes. It is shown that, with the use of the high-order accurate boundary schemes, the simple, uniform-mesh-based TRT-LBM formulation can even surpass the accuracy of FEM employing hardworking body-fitted meshes.« less
NASA Astrophysics Data System (ADS)
Silva, Goncalo; Talon, Laurent; Ginzburg, Irina
2017-04-01
The present contribution focuses on the accuracy of reflection-type boundary conditions in the Stokes-Brinkman-Darcy modeling of porous flows solved with the lattice Boltzmann method (LBM), which we operate with the two-relaxation-time (TRT) collision and the Brinkman-force based scheme (BF), called BF-TRT scheme. In parallel, we compare it with the Stokes-Brinkman-Darcy linear finite element method (FEM) where the Dirichlet boundary conditions are enforced on grid vertices. In bulk, both BF-TRT and FEM share the same defect: in their discretization a correction to the modeled Brinkman equation appears, given by the discrete Laplacian of the velocity-proportional resistance force. This correction modifies the effective Brinkman viscosity, playing a crucial role in the triggering of spurious oscillations in the bulk solution. While the exact form of this defect is available in lattice-aligned, straight or diagonal, flows; in arbitrary flow/lattice orientations its approximation is constructed. At boundaries, we verify that such a Brinkman viscosity correction has an even more harmful impact. Already at the first order, it shifts the location of the no-slip wall condition supported by traditional LBM boundary schemes, such as the bounce-back rule. For that reason, this work develops a new class of boundary schemes to prescribe the Dirichlet velocity condition at an arbitrary wall/boundary-node distance and that supports a higher order accuracy in the accommodation of the TRT-Brinkman solutions. For their modeling, we consider the standard BF scheme and its improved version, called IBF; this latter is generalized in this work to suppress or to reduce the viscosity correction in arbitrarily oriented flows. Our framework extends the one- and two-point families of linear and parabolic link-wise boundary schemes, respectively called B-LI and B-MLI, which avoid the interference of the Brinkman viscosity correction in their closure relations. The performance of LBM and FEM is thoroughly evaluated in three benchmark tests, which are run throughout three distinctive permeability regimes. The first configuration is a horizontal porous channel, studied with a symbolic approach, where we construct the exact solutions of FEM and BF/IBF with different boundary schemes. The second problem refers to an inclined porous channel flow, which brings in as new challenge the formation of spurious boundary layers in LBM; that is, numerical artefacts that arise due to a deficient accommodation of the bulk solution by the low-accurate boundary scheme. The third problem considers a porous flow past a periodic square array of solid cylinders, which intensifies the previous two tests with the simulation of a more complex flow pattern. The ensemble of numerical tests provides guidelines on the effect of grid resolution and the TRT free collision parameter over the accuracy and the quality of the velocity field, spanning from Stokes to Darcy permeability regimes. It is shown that, with the use of the high-order accurate boundary schemes, the simple, uniform-mesh-based TRT-LBM formulation can even surpass the accuracy of FEM employing hardworking body-fitted meshes.
1999-09-20
c o i b f t c c c c w n c s p t s Calculating correlated color temperatures across the entire gamut of daylight and skylight chromaticities Javier...temperature ~CCT!, yet existing equations for calculating CCT from chromaticity coordinates span only part of this range. To improve both the gamut and accuracy...00-1999 to 00-00-1999 4. TITLE AND SUBTITLE Calculating correlated color temperatures across the entire gamut of daylight and skylight
Behari, J R; Tandon, S K
1980-03-01
Some polyaminocarboxylic acids were examined for their ability to mobilize chromium from certain vital organs, their subcellular fractions, and blood cells of potassium chromate administered rats. Hexamethylene 1,6-diamino tetraacetic acid (TDTA), triethylene tetramine hexaacetic acid (TTHA), and ethylene diamine di (O-hydroxylphenyl acetic acid) (EDDHA) may be useful in preventing or reducing chromate toxicity. No definite relationship could be observed between the structure of the chelating agents and their chromium-removing capacity.
Atomic scale imaging of magnetic circular dichroism by achromatic electron microscopy.
Wang, Zechao; Tavabi, Amir H; Jin, Lei; Rusz, Ján; Tyutyunnikov, Dmitry; Jiang, Hanbo; Moritomo, Yutaka; Mayer, Joachim; Dunin-Borkowski, Rafal E; Yu, Rong; Zhu, Jing; Zhong, Xiaoyan
2018-03-01
In order to obtain a fundamental understanding of the interplay between charge, spin, orbital and lattice degrees of freedom in magnetic materials and to predict and control their physical properties 1-3 , experimental techniques are required that are capable of accessing local magnetic information with atomic-scale spatial resolution. Here, we show that a combination of electron energy-loss magnetic chiral dichroism 4 and chromatic-aberration-corrected transmission electron microscopy, which reduces the focal spread of inelastically scattered electrons by orders of magnitude when compared with the use of spherical aberration correction alone, can achieve atomic-scale imaging of magnetic circular dichroism and provide element-selective orbital and spin magnetic moments atomic plane by atomic plane. This unique capability, which we demonstrate for Sr 2 FeMoO 6 , opens the door to local atomic-level studies of spin configurations in a multitude of materials that exhibit different types of magnetic coupling, thereby contributing to a detailed understanding of the physical origins of magnetic properties of materials at the highest spatial resolution.
Chromaticity of gravitational microlensing events
NASA Astrophysics Data System (ADS)
Han, Cheongho; Park, Seong-Hong; Jeong, Jang-Hae
2000-07-01
In this paper, we investigate the colour changes of gravitational microlensing events caused by the two different mechanisms of differential amplification for a limb-darkened extended source and blending. From this investigation, we find that the colour changes of limb-darkened extended source events (colour curves) have dramatically different characteristics depending on whether the lens transits the source star or not. We show that for a source transit event, the lens proper motion can be determined by simply measuring the turning time of the colour curve instead of fitting the overall colour or light curves. We also find that even for a very small fraction of blended light, the colour changes induced by blending are equivalent to those induced by limb darkening, causing serious distortion in the observed colour curve. Therefore, to obtain useful information about the lens and source star from the colour curve of an event, it will be essential to correct for blending. We discuss various methods of blending correction.
NASA Astrophysics Data System (ADS)
Zhuge, Qunbi; Chen, Xi
2018-02-01
Global IP traffic is predicted to increase nearly threefold over the next 5 years, driven by emerging high-bandwidth-demanding applications, such as cloud computing, 5G wireless, high-definition video streaming, and virtual reality. This results in a continuously increasing demand on the capacity of backbone optical networks. During the past decade, advanced digital signal processing (DSP), modulation formats, and forward error correction (FEC) were commercially realized to exploit the capacity potential of long-haul fiber channels, and have increased per channel data rate from 10 Gb/s to 400 Gb/s. DSP has played a crucial role in coherent transceivers to accommodate channel impairments including chromatic dispersion (CD), polarization mode dispersion (PMD), laser phase noise, fiber nonlinearities, clock jitter, and so forth. The advance of DSP has also enabled innovations in modulation formats to increase spectral efficiency, improve linear/nonlinear noise tolerance, and realize flexible bandwidth. Moving forward to next generation 1 Tb/s systems on conventional single mode fiber (SMF) platform, more innovations in DSP techniques are needed to further reduce cost per bit, increase network efficiency, and close the gap to the Shannon limit. To further increase capacity per fiber, spatial-division multiplexing (SDM) systems can be used. DSP techniques such as advanced channel equalization methods and distortion compensation can help SDM systems to achieve higher system capacity. In the area of short-reach transmission, the rapid increase of data center network traffic has driven the development of optical technologies for both intra- and inter-data center interconnects (DCI). In particular, DSP has been exploited in intensity-modulation direct detection (IM/DD) systems to realize 400 Gb/s pluggable optical transceivers. In addition, multi-dimensional direct detection modulation schemes are being investigated to increase the data rate per wavelength targeting 1 Tb/s interface.
Short-range second order screened exchange correction to RPA correlation energies
NASA Astrophysics Data System (ADS)
Beuerle, Matthias; Ochsenfeld, Christian
2017-11-01
Direct random phase approximation (RPA) correlation energies have become increasingly popular as a post-Kohn-Sham correction, due to significant improvements over DFT calculations for properties such as long-range dispersion effects, which are problematic in conventional density functional theory. On the other hand, RPA still has various weaknesses, such as unsatisfactory results for non-isogyric processes. This can in parts be attributed to the self-correlation present in RPA correlation energies, leading to significant self-interaction errors. Therefore a variety of schemes have been devised to include exchange in the calculation of RPA correlation energies in order to correct this shortcoming. One of the most popular RPA plus exchange schemes is the second order screened exchange (SOSEX) correction. RPA + SOSEX delivers more accurate absolute correlation energies and also improves upon RPA for non-isogyric processes. On the other hand, RPA + SOSEX barrier heights are worse than those obtained from plain RPA calculations. To combine the benefits of RPA correlation energies and the SOSEX correction, we introduce a short-range RPA + SOSEX correction. Proof of concept calculations and benchmarks showing the advantages of our method are presented.
Short-range second order screened exchange correction to RPA correlation energies.
Beuerle, Matthias; Ochsenfeld, Christian
2017-11-28
Direct random phase approximation (RPA) correlation energies have become increasingly popular as a post-Kohn-Sham correction, due to significant improvements over DFT calculations for properties such as long-range dispersion effects, which are problematic in conventional density functional theory. On the other hand, RPA still has various weaknesses, such as unsatisfactory results for non-isogyric processes. This can in parts be attributed to the self-correlation present in RPA correlation energies, leading to significant self-interaction errors. Therefore a variety of schemes have been devised to include exchange in the calculation of RPA correlation energies in order to correct this shortcoming. One of the most popular RPA plus exchange schemes is the second order screened exchange (SOSEX) correction. RPA + SOSEX delivers more accurate absolute correlation energies and also improves upon RPA for non-isogyric processes. On the other hand, RPA + SOSEX barrier heights are worse than those obtained from plain RPA calculations. To combine the benefits of RPA correlation energies and the SOSEX correction, we introduce a short-range RPA + SOSEX correction. Proof of concept calculations and benchmarks showing the advantages of our method are presented.
Lee, Tian-Fu; Liu, Chuan-Ming
2013-06-01
A smart-card based authentication scheme for telecare medicine information systems enables patients, doctors, nurses, health visitors and the medicine information systems to establish a secure communication platform through public networks. Zhu recently presented an improved authentication scheme in order to solve the weakness of the authentication scheme of Wei et al., where the off-line password guessing attacks cannot be resisted. This investigation indicates that the improved scheme of Zhu has some faults such that the authentication scheme cannot execute correctly and is vulnerable to the attack of parallel sessions. Additionally, an enhanced authentication scheme based on the scheme of Zhu is proposed. The enhanced scheme not only avoids the weakness in the original scheme, but also provides users' anonymity and authenticated key agreements for secure data communications.
Investigation of corrosion protection performance of sol-gel surface treatments on AA2024-T3
NASA Astrophysics Data System (ADS)
Voevodin, Natalia Nikolajevna
The dissertation research project addresses the technologically important problem of replacement of chromate based coatings for corrosion protection of aircraft. A review of corrosion processes in high-strength aluminum alloys indicated that the strengthening intermetallic precipitates provide local cathodic areas, which may initiate surface pitting. The mechanisms of chromate inhibition in these localized corrosion processes were identified. The environmental hazard of chromates was also highlighted, serves as the impetus for chromate coating replacement. Sol-gel coatings are shown as an excellent alternative, based on environment compliance, flexibility in the composition control, and reasonable costs. Several sol-gel coatings were formulated and applied to the surface of an AA2024-T3 alloy. The coating composition and bonding were analyzed with XPS and FTIR, surface morphology was studied with SEM and AFM, and corrosion protection properties were tested with EIS, PDS, salt water immersion, and salt-fog exposure. The results demonstrated that epoxy-zirconate sol-gel coatings can provide excellent barrier properties. A novel SVET technique was applied for studies of local electrochemical processes in the pitting formation. This technique was further refined in model studies of aluminum surfaces with artificially created local cathodic regions, experimental studies of chromate inhibition with pit formation, and pitting development studies in sol-gel coatings with artificially introduced defects. Mechanisms of pitting development and inhibition with the pit initiation and growth kinetics were established. The Zr-epoxy coatings are subjected to the pit development and undercutting in the absence of the corrosion inhibitors. Several organic and non-organic inhibitors were evaluated in the sol-gel coating composition. Organic inhibitors had a better compliance with sol-gel chemistry and were identified for future studies. Experiments were performed to verify that sol-gel coatings can be used as barrier layers in complex coating systems. The results clearly demonstrated that Zr-epoxy sol-gel coatings are a viable replacement for the currently used chromate-based surface treatments. This work expands the fundamental knowledge of chromate coating replacement with chromate-free sol-gel coatings and identifies possible ways to implement this goal.
NASA Technical Reports Server (NTRS)
Ream, Allen
2011-01-01
A pair of conjugated multiple bandpass filters (CMBF) can be used to create spatially separated pupils in a traditional lens and imaging sensor system allowing for the passive capture of stereo video. This method is especially useful for surgical endoscopy where smaller cameras are needed to provide ample room for manipulating tools while also granting improved visualizations of scene depth. The significant issue in this process is that, due to the complimentary nature of the filters, the colors seen through each filter do not match each other, and also differ from colors as seen under a white illumination source. A color correction model was implemented that included optimized filter selection, such that the degree of necessary post-processing correction was minimized, and a chromatic adaptation transformation that attempted to fix the imaged colors tristimulus indices based on the principle of color constancy. Due to fabrication constraints, only dual bandpass filters were feasible. The theoretical average color error after correction between these filters was still above the fusion limit meaning that rivalry conditions are possible during viewing. This error can be minimized further by designing the filters for a subset of colors corresponding to specific working environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shadid, John Nicolas; Fish, Jacob; Waisman, Haim
Two heuristic strategies intended to enhance the performance of the generalized global basis (GGB) method [H. Waisman, J. Fish, R.S. Tuminaro, J. Shadid, The Generalized Global Basis (GGB) method, International Journal for Numerical Methods in Engineering 61(8), 1243-1269] applied to nonlinear systems are presented. The standard GGB accelerates a multigrid scheme by an additional coarse grid correction that filters out slowly converging modes. This correction requires a potentially costly eigen calculation. This paper considers reusing previously computed eigenspace information. The GGB? scheme enriches the prolongation operator with new eigenvectors while the modified method (MGGB) selectively reuses the same prolongation. Bothmore » methods use the criteria of principal angles between subspaces spanned between the previous and current prolongation operators. Numerical examples clearly indicate significant time savings in particular for the MGGB scheme.« less
Mishra, Dheerendra; Mukhopadhyay, Sourav; Chaturvedi, Ankita; Kumari, Saru; Khan, Muhammad Khurram
2014-06-01
Remote user authentication is desirable for a Telecare Medicine Information System (TMIS) for the safety, security and integrity of transmitted data over the public channel. In 2013, Tan presented a biometric based remote user authentication scheme and claimed that his scheme is secure. Recently, Yan et al. demonstrated some drawbacks in Tan's scheme and proposed an improved scheme to erase the drawbacks of Tan's scheme. We analyze Yan et al.'s scheme and identify that their scheme is vulnerable to off-line password guessing attack, and does not protect anonymity. Moreover, in their scheme, login and password change phases are inefficient to identify the correctness of input where inefficiency in password change phase can cause denial of service attack. Further, we design an improved scheme for TMIS with the aim to eliminate the drawbacks of Yan et al.'s scheme.
Zhang, Guangzhi; Cai, Shaobin; Xiong, Naixue
2018-01-01
One of the remarkable challenges about Wireless Sensor Networks (WSN) is how to transfer the collected data efficiently due to energy limitation of sensor nodes. Network coding will increase network throughput of WSN dramatically due to the broadcast nature of WSN. However, the network coding usually propagates a single original error over the whole network. Due to the special property of error propagation in network coding, most of error correction methods cannot correct more than C/2 corrupted errors where C is the max flow min cut of the network. To maximize the effectiveness of network coding applied in WSN, a new error-correcting mechanism to confront the propagated error is urgently needed. Based on the social network characteristic inherent in WSN and L1 optimization, we propose a novel scheme which successfully corrects more than C/2 corrupted errors. What is more, even if the error occurs on all the links of the network, our scheme also can correct errors successfully. With introducing a secret channel and a specially designed matrix which can trap some errors, we improve John and Yi’s model so that it can correct the propagated errors in network coding which usually pollute exactly 100% of the received messages. Taking advantage of the social characteristic inherent in WSN, we propose a new distributed approach that establishes reputation-based trust among sensor nodes in order to identify the informative upstream sensor nodes. With referred theory of social networks, the informative relay nodes are selected and marked with high trust value. The two methods of L1 optimization and utilizing social characteristic coordinate with each other, and can correct the propagated error whose fraction is even exactly 100% in WSN where network coding is performed. The effectiveness of the error correction scheme is validated through simulation experiments. PMID:29401668
Zhang, Guangzhi; Cai, Shaobin; Xiong, Naixue
2018-02-03
One of the remarkable challenges about Wireless Sensor Networks (WSN) is how to transfer the collected data efficiently due to energy limitation of sensor nodes. Network coding will increase network throughput of WSN dramatically due to the broadcast nature of WSN. However, the network coding usually propagates a single original error over the whole network. Due to the special property of error propagation in network coding, most of error correction methods cannot correct more than C /2 corrupted errors where C is the max flow min cut of the network. To maximize the effectiveness of network coding applied in WSN, a new error-correcting mechanism to confront the propagated error is urgently needed. Based on the social network characteristic inherent in WSN and L1 optimization, we propose a novel scheme which successfully corrects more than C /2 corrupted errors. What is more, even if the error occurs on all the links of the network, our scheme also can correct errors successfully. With introducing a secret channel and a specially designed matrix which can trap some errors, we improve John and Yi's model so that it can correct the propagated errors in network coding which usually pollute exactly 100% of the received messages. Taking advantage of the social characteristic inherent in WSN, we propose a new distributed approach that establishes reputation-based trust among sensor nodes in order to identify the informative upstream sensor nodes. With referred theory of social networks, the informative relay nodes are selected and marked with high trust value. The two methods of L1 optimization and utilizing social characteristic coordinate with each other, and can correct the propagated error whose fraction is even exactly 100% in WSN where network coding is performed. The effectiveness of the error correction scheme is validated through simulation experiments.
Newborns' Discrimination of Chromatic from Achromatic Stimuli.
ERIC Educational Resources Information Center
Adams, Russell J.; And Others
1986-01-01
Two experiments assessed the extent of newborns' ability to discriminate color. Results imply that newborns have some, albeit limited, capacity to discriminate chromatic from achromatic stimuli, and hence, are at least dichromats. (Author/DR)
Spectrally-balanced chromatic approach-lighting system
NASA Technical Reports Server (NTRS)
Chase, W. D.
1977-01-01
Approach lighting system employing combinations of red and blue lights reduces problem of color-based optical illusions. System exploits inherent chromatic aberration of eye to create three-dimensional effect, giving pilot visual clues of position.
NASA Technical Reports Server (NTRS)
Mcdonald, G. E.; Curtis, H. B.; Gianelos, L.
1975-01-01
The spectral reflectance properties of electroplated and chemically converted zinc were measured for both chromate and chloride conversion coatings. The reflectance properties were measured for various times of conversion and for conversion at various chromate concentrations. The values of absorptance, integrated over the solar spectrum, and of infrared emittance, integrated over black body radiation at 250 F were then calculated from the measured reflectance values. The interdependent variations of absorptance and infrared emittance were plotted. The results indicate that the optimum combination of the highest absorptance in the solar spectrum and the lowest emittance in the infrared of the converted electroplated zinc is produced by chromate conversion at 1/2 concentration of the standard NEOSTAR chromate black solution for 0.50 minute or by chloride conversion for 0.50 minute.
NASA Technical Reports Server (NTRS)
Mcdonald, G. E.; Curtis, H. B.; Gianelos, L.
1975-01-01
The spectral reflectance properties of electroplated and chemically converted zinc were measured for both chromate and chloride conversion coatings. The reflectance properties were measured for various times of conversion and for conversion at various chromate concentrations. The values of absorptance, alpha, integrated over the solar spectrum, and of infrared emittance, epsilon, integrated over black body radiation at 250 F were then calculated from the measured reflectance values. The interdependent variations of alpha and epsilon were plotted. The results indicate that the optimum combination of the highest absorptance in the solar spectrum and the lowest emittance in the infrared of the converted electroplated zinc is produced by chromate conversion at 1/2 concentration of the standard NEOSTAR chromate black solution for 0.50 minute or by chloride conversion for 0.50 minute.
Design of measurement system of 3D surface profile based on chromatic confocal technology
NASA Astrophysics Data System (ADS)
Wang, An-su; Xie, Bin; Liu, Zi-wei
2018-01-01
Chromatic confocal 3D profilometer has widely used in science investigation and industry fields recently for its high precision, great measuring range and numerical surface characteristic. It can provide exact and omnidirectional solution for manufacture and research by 3D non-contact surface analysis technique. The article analyzes the principle of surface measurement with chromatic confocal technology, and provides the designing indicators and requirements of the confocal system. As the key component, the dispersive objective used to achieve longitudinal focus vibration with wavelength was designed. The objective disperses the focus of wavelength between 400 700 nm to 15 mm longitudinal range. With selected spectrometer, the resolution of chromatic confocal 3D profilometer is no more than 5 μm, which can meet needs for the high precision non-contact surface profile measurement.
Ultra-low power high-dynamic range color pixel embedding RGB to r-g chromaticity transformation
NASA Astrophysics Data System (ADS)
Lecca, Michela; Gasparini, Leonardo; Gottardi, Massimo
2014-05-01
This work describes a novel color pixel topology that converts the three chromatic components from the standard RGB space into the normalized r-g chromaticity space. This conversion is implemented with high-dynamic range and with no dc power consumption, and the auto-exposure capability of the sensor ensures to capture a high quality chromatic signal, even in presence of very bright illuminants or in the darkness. The pixel is intended to become the basic building block of a CMOS color vision sensor, targeted to ultra-low power applications for mobile devices, such as human machine interfaces, gesture recognition, face detection. The experiments show that significant improvements of the proposed pixel with respect to standard cameras in terms of energy saving and accuracy on data acquisition. An application to skin color-based description is presented.
Guo, Kai; Liu, Jianlong; Zhang, Yan; Liu, Shutian
2012-12-17
The dispersion of a hyperbolic anisotropic metamaterial (HAM) and the chromatic aberration of light focusing in this kind of HAM are studied. The HAM is formed by alternately stacking metal and dielectric layers. The rules of materials and filling factors affecting the optical property of HAM are given. The chromatic aberration of light focusing is demonstrated both theoretically and numerically. By comparing the theory with the simulation results, the factors influencing the focal length, including the heat loss of material and low spatial frequency modes, are discussed. The investigation emphasizes the anomalous properties, such as chromatic aberration and low spatial frequency modes influencing focus position, of HAM compared with that in conventional lens. Based on the analysis, the possibility of using HAM to focus light with two different wavelengths at the same point is studied.
Separating monocular and binocular neural mechanisms mediating chromatic contextual interactions.
D'Antona, Anthony D; Christiansen, Jens H; Shevell, Steven K
2014-04-17
When seen in isolation, a light that varies in chromaticity over time is perceived to oscillate in color. Perception of that same time-varying light may be altered by a surrounding light that is also temporally varying in chromaticity. The neural mechanisms that mediate these contextual interactions are the focus of this article. Observers viewed a central test stimulus that varied in chromaticity over time within a larger surround that also varied in chromaticity at the same temporal frequency. Center and surround were presented either to the same eye (monocular condition) or to opposite eyes (dichoptic condition) at the same frequency (3.125, 6.25, or 9.375 Hz). Relative phase between center and surround modulation was varied. In both the monocular and dichoptic conditions, the perceived modulation depth of the central light depended on the relative phase of the surround. A simple model implementing a linear combination of center and surround modulation fit the measurements well. At the lowest temporal frequency (3.125 Hz), the surround's influence was virtually identical for monocular and dichoptic conditions, suggesting that at this frequency, the surround's influence is mediated primarily by a binocular neural mechanism. At higher frequencies, the surround's influence was greater for the monocular condition than for the dichoptic condition, and this difference increased with temporal frequency. Our findings show that two separate neural mechanisms mediate chromatic contextual interactions: one binocular and dominant at lower temporal frequencies and the other monocular and dominant at higher frequencies (6-10 Hz).
Quantum annealing correction with minor embedding
NASA Astrophysics Data System (ADS)
Vinci, Walter; Albash, Tameem; Paz-Silva, Gerardo; Hen, Itay; Lidar, Daniel A.
2015-10-01
Quantum annealing provides a promising route for the development of quantum optimization devices, but the usefulness of such devices will be limited in part by the range of implementable problems as dictated by hardware constraints. To overcome constraints imposed by restricted connectivity between qubits, a larger set of interactions can be approximated using minor embedding techniques whereby several physical qubits are used to represent a single logical qubit. However, minor embedding introduces new types of errors due to its approximate nature. We introduce and study quantum annealing correction schemes designed to improve the performance of quantum annealers in conjunction with minor embedding, thus leading to a hybrid scheme defined over an encoded graph. We argue that this scheme can be efficiently decoded using an energy minimization technique provided the density of errors does not exceed the per-site percolation threshold of the encoded graph. We test the hybrid scheme using a D-Wave Two processor on problems for which the encoded graph is a two-level grid and the Ising model is known to be NP-hard. The problems we consider are frustrated Ising model problem instances with "planted" (a priori known) solutions. Applied in conjunction with optimized energy penalties and decoding techniques, we find that this approach enables the quantum annealer to solve minor embedded instances with significantly higher success probability than it would without error correction. Our work demonstrates that quantum annealing correction can and should be used to improve the robustness of quantum annealing not only for natively embeddable problems but also when minor embedding is used to extend the connectivity of physical devices.
Jiang, Liqin; Zhang, Sen; Schaeffel, Frank; Xiong, Shibo; Zheng, Yibo; Zhou, Xiangtian; Lu, Fan; Qu, Jia
2014-01-01
It was recently demonstrated that chromaticity could affect eye growth and refractive development in guinea pigs but it remained unclear whether correction with spectacle lenses could balance these effects and how retinal responses change with different spectral compositions of light. Three illumination conditions were tested: blue, red and white light. Animals were raised without or with monocular spectacle lenses from three to seven weeks of age. Luminance electroretinograms (ERGs) were recorded to explore retinal responses with the different spectral compositions. In our special colony of pigmented guinea pigs, characterized by residual hyperopia, spontaneous myopia and poor emmetropization, red light induced early thinning of the choroid and relative myopia, compared to white light. Effects of red light could not be suppressed if positive spectacle lenses were worn. ERGs showed that red light failed to elicit robust retinal responses. Blue light inhibited axial eye growth, even when animals were reared with negative lenses. Intensity-matched blue and white light elicited similar a-waves but different b-waves, suggesting that the wavelength of light affects visual control of eye growth through different processing in the inner retina. We hypothesize that blue light might stimulate preferentially the ON pathway to inhibit myopia induced by negative lenses, at least in guinea pigs. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Fantoni, Frédéric; Hervé, Lionel; Poher, Vincent; Gioux, Sylvain; Mars, Jérôme I; Dinten, Jean-Marc
2015-10-01
Intraoperative fluorescence imaging in reflectance geometry is an attractive imaging modality as it allows to noninvasively monitor the fluorescence targeted tumors located below the tissue surface. Some drawbacks of this technique are the background fluorescence decreasing the contrast and absorption heterogeneities leading to misinterpretations concerning fluorescence concentrations. We propose a correction technique based on a laser line scanning illumination scheme. We scan the medium with the laser line and acquire, at each position of the line, both fluorescence and excitation images. We then use the finding that there is a relationship between the excitation intensity profile and the background fluorescence one to predict the amount of signal to subtract from the fluorescence images to get a better contrast. As the light absorption information is contained both in fluorescence and excitation images, this method also permits us to correct the effects of absorption heterogeneities. This technique has been validated on simulations and experimentally. Fluorescent inclusions are observed in several configurations at depths ranging from 1 mm to 1 cm. Results obtained with this technique are compared with those obtained with a classical wide-field detection scheme for contrast enhancement and with the fluorescence by an excitation ratio approach for absorption correction.
NASA Astrophysics Data System (ADS)
Pont, Grégoire; Brenner, Pierre; Cinnella, Paola; Maugars, Bruno; Robinet, Jean-Christophe
2017-12-01
A Godunov's type unstructured finite volume method suitable for highly compressible turbulent scale-resolving simulations around complex geometries is constructed by using a successive correction technique. First, a family of k-exact Godunov schemes is developed by recursively correcting the truncation error of the piecewise polynomial representation of the primitive variables. The keystone of the proposed approach is a quasi-Green gradient operator which ensures consistency on general meshes. In addition, a high-order single-point quadrature formula, based on high-order approximations of the successive derivatives of the solution, is developed for flux integration along cell faces. The proposed family of schemes is compact in the algorithmic sense, since it only involves communications between direct neighbors of the mesh cells. The numerical properties of the schemes up to fifth-order are investigated, with focus on their resolvability in terms of number of mesh points required to resolve a given wavelength accurately. Afterwards, in the aim of achieving the best possible trade-off between accuracy, computational cost and robustness in view of industrial flow computations, we focus more specifically on the third-order accurate scheme of the family, and modify locally its numerical flux in order to reduce the amount of numerical dissipation in vortex-dominated regions. This is achieved by switching from the upwind scheme, mostly applied in highly compressible regions, to a fourth-order centered one in vortex-dominated regions. An analytical switch function based on the local grid Reynolds number is adopted in order to warrant numerical stability of the recentering process. Numerical applications demonstrate the accuracy and robustness of the proposed methodology for compressible scale-resolving computations. In particular, supersonic RANS/LES computations of the flow over a cavity are presented to show the capability of the scheme to predict flows with shocks, vortical structures and complex geometries.
Yamagishi, N; Melara, R D
2001-07-01
Three experiments were conducted to examine the distinct contributions of two visual dimensions to figure-ground segregation. In each experiment, pattern identification was assessed by asking observers to judge whether a near-threshold test pattern was the same or different in shape to a high-contrast comparison pattern. A test pattern could differ from its background along one dimension, either luminance (luminance tasks) or chromaticity (chromaticity tasks). In each task, performance in a baseline condition, in which the test pattern was intact, was compared with performance in each of several degradation conditions, in which either the contour or the surface of the figure was degraded, using either partial occlusion (Experiment 1) or ramping (Experiments 2 and 3) of figure-ground differences. In each experiment, performance in luminance tasks was worst when the contour was degraded, whereas performance in chromaticity tasks was worst when the surface was degraded. This interaction was found even when spatial frequencies were fixed across test patterns by low-pass filtering. The results are consistent with a late (postfiltering) dual-mechanism system that processes luminance information to extract boundary representations and chromaticity information to extract surface representations.
Neurochemical responses to chromatic and achromatic stimuli in the human visual cortex.
Bednařík, Petr; Tkáč, Ivan; Giove, Federico; Eberly, Lynn E; Deelchand, Dinesh K; Barreto, Felipe R; Mangia, Silvia
2018-02-01
In the present study, we aimed at determining the metabolic responses of the human visual cortex during the presentation of chromatic and achromatic stimuli, known to preferentially activate two separate clusters of neuronal populations (called "blobs" and "interblobs") with distinct sensitivity to color or luminance features. Since blobs and interblobs have different cytochrome-oxidase (COX) content and micro-vascularization level (i.e., different capacities for glucose oxidation), different functional metabolic responses during chromatic vs. achromatic stimuli may be expected. The stimuli were optimized to evoke a similar load of neuronal activation as measured by the bold oxygenation level dependent (BOLD) contrast. Metabolic responses were assessed using functional 1 H MRS at 7 T in 12 subjects. During both chromatic and achromatic stimuli, we observed the typical increases in glutamate and lactate concentration, and decreases in aspartate and glucose concentration, that are indicative of increased glucose oxidation. However, within the detection sensitivity limits, we did not observe any difference between metabolic responses elicited by chromatic and achromatic stimuli. We conclude that the higher energy demands of activated blobs and interblobs are supported by similar increases in oxidative metabolism despite the different capacities of these neuronal populations.
Chromatic and Achromatic Spatial Resolution of Local Field Potentials in Awake Cortex.
Jansen, Michael; Li, Xiaobing; Lashgari, Reza; Kremkow, Jens; Bereshpolova, Yulia; Swadlow, Harvey A; Zaidi, Qasim; Alonso, Jose-Manuel
2015-10-01
Local field potentials (LFPs) have become an important measure of neuronal population activity in the brain and could provide robust signals to guide the implant of visual cortical prosthesis in the future. However, it remains unclear whether LFPs can detect weak cortical responses (e.g., cortical responses to equiluminant color) and whether they have enough visual spatial resolution to distinguish different chromatic and achromatic stimulus patterns. By recording from awake behaving macaques in primary visual cortex, here we demonstrate that LFPs respond robustly to pure chromatic stimuli and exhibit ∼2.5 times lower spatial resolution for chromatic than achromatic stimulus patterns, a value that resembles the ratio of achromatic/chromatic resolution measured with psychophysical experiments in humans. We also show that, although the spatial resolution of LFP decays with visual eccentricity as is also the case for single neurons, LFPs have higher spatial resolution and show weaker response suppression to low spatial frequencies than spiking multiunit activity. These results indicate that LFP recordings are an excellent approach to measure spatial resolution from local populations of neurons in visual cortex including those responsive to color. © The Author 2014. Published by Oxford University Press.
Simultaneous determination of zinc and chromate in cooling water by differential pulse polarography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jindal, V.K.; Kham, M.A.; Bhatnagar, R.M.
1985-01-01
The use of differential pulse polarography (DPP) for the simultaneous determination of zinc and chromate in cooling water is reported where zinc (5 ppm), chromate (20 ppm), and polyphosphate (50 ppm) formulation is used as a corrosion inhibitor. This will help in effective control of cooling tower performance. The DPP method has been applied for the simultaneous determination of zinc and chromate ions in process and cooling water samples from fertilizer plants in India. The method is based on the reduction of Cr and Zn on SMDE in 1 M NH3-0.1 M NH/sub 4/Cl and 0.005% gelatine supporting electrolyte. Duemore » to interference it is essential to complex calcium ions by adding polyphosphate and to destroy NO/sub 2//sup -//NO/sub 3//sup -/ by adding sulfamic acid along with hydrochloric acid before the actual recording of DP polarograms. The present DP polarographic method for the simultaneous determination of zinc and chromate is comparable in its utility and applicability with spectrophotometric methods. The method has a better accuracy and higher sensitivity and is quick, as both of the ions can be determined in a single scan. 10 references, 4 figures, 5 tables.« less
Dying for Good: Virus-Bacterium Biofilm Co-evolution Enhances Environmental Fitness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Hongjun; Squier, Thomas C.; Long, Philip E.
Commonly used in biotechnology applications, filamentous M13 phage are non-lytic viruses that infect E. coli and other bacteria, with the potential to promote horizontal gene transfer in natural populations with synthetic biology implications for engineering community systems. Using the E. coli strain TG1, we have investigated how a selective pressure involving elevated levels of toxic chromate, mimicking that found in some superfund sites, alters population dynamics following infection with either wild-type M13 phage or an M13-phage encoding a chromate reductase (Gh-ChrR) capable of the reductive immobilization of chromate (ie, M13-phageGh-ChrR). In the absence of a selective pressure, M13-phage infection resultsmore » in a reduction in bacterial growth rate; in comparison, in the presence of chromate there are substantial increases in both cellular killing and biomass formation following infection of E. coli strain TG1with M13-phageGh-ChrR that is dependent on chromate-reductase activity. These results are discussed in terms of community structures that facilitate lateral gene transfer of beneficial traits that enhance phage replication, infectivity, and stability against environmental change.« less
Hue distinctiveness overrides category in determining performance in multiple object tracking.
Sun, Mengdan; Zhang, Xuemin; Fan, Lingxia; Hu, Luming
2018-02-01
The visual distinctiveness between targets and distractors can significantly facilitate performance in multiple object tracking (MOT), in which color is a feature that has been commonly used. However, the processing of color can be more than "visual." Color is continuous in chromaticity, while it is commonly grouped into discrete categories (e.g., red, green). Evidence from color perception suggested that color categories may have a unique role in visual tasks independent of its chromatic appearance. Previous MOT studies have not examined the effect of chromatic and categorical distinctiveness on tracking separately. The current study aimed to reveal how chromatic (hue) and categorical distinctiveness of color between the targets and distractors affects tracking performance. With four experiments, we showed that tracking performance was largely facilitated by the increasing hue distance between the target set and the distractor set, suggesting that perceptual grouping was formed based on hue distinctiveness to aid tracking. However, we found no color categorical effect, because tracking performance was not significantly different when the targets and distractors were from the same or different categories. It was concluded that the chromatic distinctiveness of color overrides category in determining tracking performance, suggesting a dominant role of perceptual feature in MOT.
NASA Astrophysics Data System (ADS)
Cheng, Wood-Hi; Tsai, Chun-Chin; Wang, Jimmy
2011-10-01
The lumen degradation and chromaticity shift in glass and silicone based high-power phosphor-converted white-emitting diodes (PC-WLEDs) under accelerated thermal tests at 150°C, 200°C, and 250°C are presented and compared. The glass based PC-WLEDs exhibited better thermal stability than the silicone by 4.8 time reductions in lumen loss 6.8 time reductions in chromaticity shift at 250°C, respectively. The mean-time-to-failure (MTTF) evaluation of glass and silicone based high-power PC-WLEDs in accelerated thermal tests is also presented and compared. The results showed that the glass based PC-WLEDs exhibited higher MTTF than the silicone by 7.53 times in lumen loss and 14.4 times in chromaticity shift at 250°C, respectively. The thermal performance of lumen, chromaticity, and MTTF investigations demonstrated that the thermal stability of the glass based PC-WLEDs were better than the silicone. A better thermal stability phosphor layer of glass as encapsulation material may be beneficial to the many applications where the LED modules with high power and high reliability are demanded.
NASA Technical Reports Server (NTRS)
Dobrzynski, W.
1984-01-01
Amiet's correction scheme for sound wave transmission through shear-layers is extended to incorporate the additional effects of different temperatures in the flow-field in the surrounding medium at rest. Within a parameter-regime typical for acoustic measurements in wind tunnels amplitude- and angle-correction is calculated and plotted systematically to provide a data base for the test engineer.
Identification of Unexpressed Premises and Argumentation Schemes by Students in Secondary School.
ERIC Educational Resources Information Center
van Eemeren, Frans H.; And Others
1995-01-01
Reports on exploratory empirical investigations on the performances of Dutch secondary education students in identifying unexpressed premises and argumentation schemes. Finds that, in the absence of any disambiguating contextual information, unexpressed major premises and non-syllogistic premises are more often correctly identified that…
Hovis, V.M. Jr.; Pullen, W.C.; Kollie, T.G.; Bell, R.T.
1981-10-21
The present invention is directed to the protecting of uranium and uranium alloy articles from corrosion by providing the surfaces of the articles with a layer of an ion-plated metal selected from aluminum and zinc to a thickness of at least 60 microinches and then converting at least the outer surface of the ion-plated layer of aluminum or zinc to aluminum chromate or zinc chromate. This conversion of the aluminum or zinc to the chromate form considerably enhances the corrosion resistance of the ion plating so as to effectively protect the coated article from corrosion.
2017-09-12
and Hazardous Air Pollutants (HAPs)-Free, non -chromate low temperature powder coating (LTPC) system for United States Air Force use PHASE II PR...required to support and successfully complete this effort. 1.1 Objective(s). The Contractor shall be required to demonstrate a non -chromate...5.0 General Information 5.1 Continuation of Mission-Essential Services During a Crisis. The Functional Commander (FC) or civilian equivalent has
Hovis, Jr., Victor M.; Pullen, William C.; Kollie, Thomas G.; Bell, Richard T.
1983-01-01
The present invention is directed to the protecting of uranium and uranium alloy articles from corrosion by providing the surfaces of the articles with a layer of an ion-plated metal selected from aluminum and zinc to a thickness of at least 60 microinches and then converting at least the outer surface of the ion-plated layer of aluminum or zinc to aluminum chromate or zinc chromate. This conversion of the aluminum or zinc to the chromate form considerably enhances the corrosion resistance of the ion plating so as to effectively protect the coated article from corrosion.
Development of a three-dimensional high-order strand-grids approach
NASA Astrophysics Data System (ADS)
Tong, Oisin
Development of a novel high-order flux correction method on strand grids is presented. The method uses a combination of flux correction in the unstructured plane and summation-by-parts operators in the strand direction to achieve high-fidelity solutions. Low-order truncation errors are cancelled with accurate flux and solution gradients in the flux correction method, thereby achieving a formal order of accuracy of 3, although higher orders are often obtained, especially for highly viscous flows. In this work, the scheme is extended to high-Reynolds number computations in both two and three dimensions. Turbulence closure is achieved with a robust version of the Spalart-Allmaras turbulence model that accommodates negative values of the turbulence working variable, and the Menter SST turbulence model, which blends the k-epsilon and k-o turbulence models for better accuracy. A major advantage of this high-order formulation is the ability to implement traditional finite volume-like limiters to cleanly capture shocked and discontinuous flows. In this work, this approach is explored via a symmetric limited positive (SLIP) limiter. Extensive verification and validation is conducted in two and three dimensions to determine the accuracy and fidelity of the scheme for a number of different cases. Verification studies show that the scheme achieves better than third order accuracy for low and high-Reynolds number flows. Cost studies show that in three-dimensions, the third-order flux correction scheme requires only 30% more walltime than a traditional second-order scheme on strand grids to achieve the same level of convergence. In order to overcome meshing issues at sharp corners and other small-scale features, a unique approach to traditional geometry, coined "asymptotic geometry," is explored. Asymptotic geometry is achieved by filtering out small-scale features in a level set domain through min/max flow. This approach is combined with a curvature based strand shortening strategy in order to qualitatively improve strand grid mesh quality.
Analysis of an ABE Scheme with Verifiable Outsourced Decryption.
Liao, Yongjian; He, Yichuan; Li, Fagen; Jiang, Shaoquan; Zhou, Shijie
2018-01-10
Attribute-based encryption (ABE) is a popular cryptographic technology to protect the security of users' data in cloud computing. In order to reduce its decryption cost, outsourcing the decryption of ciphertexts is an available method, which enables users to outsource a large number of decryption operations to the cloud service provider. To guarantee the correctness of transformed ciphertexts computed by the cloud server via the outsourced decryption, it is necessary to check the correctness of the outsourced decryption to ensure security for the data of users. Recently, Li et al. proposed a full verifiability of the outsourced decryption of ABE scheme (ABE-VOD) for the authorized users and unauthorized users, which can simultaneously check the correctness of the transformed ciphertext for both them. However, in this paper we show that their ABE-VOD scheme cannot obtain the results which they had shown, such as finding out all invalid ciphertexts, and checking the correctness of the transformed ciphertext for the authorized user via checking it for the unauthorized user. We first construct some invalid ciphertexts which can pass the validity checking in the decryption algorithm. That means their "verify-then-decrypt" skill is unavailable. Next, we show that the method to check the validity of the outsourced decryption for the authorized users via checking it for the unauthorized users is not always correct. That is to say, there exist some invalid ciphertexts which can pass the validity checking for the unauthorized user, but cannot pass the validity checking for the authorized user.
Analysis of an ABE Scheme with Verifiable Outsourced Decryption
He, Yichuan; Li, Fagen; Jiang, Shaoquan; Zhou, Shijie
2018-01-01
Attribute-based encryption (ABE) is a popular cryptographic technology to protect the security of users’ data in cloud computing. In order to reduce its decryption cost, outsourcing the decryption of ciphertexts is an available method, which enables users to outsource a large number of decryption operations to the cloud service provider. To guarantee the correctness of transformed ciphertexts computed by the cloud server via the outsourced decryption, it is necessary to check the correctness of the outsourced decryption to ensure security for the data of users. Recently, Li et al. proposed a full verifiability of the outsourced decryption of ABE scheme (ABE-VOD) for the authorized users and unauthorized users, which can simultaneously check the correctness of the transformed ciphertext for both them. However, in this paper we show that their ABE-VOD scheme cannot obtain the results which they had shown, such as finding out all invalid ciphertexts, and checking the correctness of the transformed ciphertext for the authorized user via checking it for the unauthorized user. We first construct some invalid ciphertexts which can pass the validity checking in the decryption algorithm. That means their “verify-then-decrypt” skill is unavailable. Next, we show that the method to check the validity of the outsourced decryption for the authorized users via checking it for the unauthorized users is not always correct. That is to say, there exist some invalid ciphertexts which can pass the validity checking for the unauthorized user, but cannot pass the validity checking for the authorized user. PMID:29320418
Wise, Sandra S; Holmes, Amie L; Xie, Hong; Thompson, W Douglas; Wise, John Pierce
2006-11-01
One of the hallmarks of lung cancer is chromosome instability (CIN), particularly a tetraploid phenotype, which is normally prevented by the spindle assembly checkpoint. Hexavalent chromium Cr(VI) is an established human lung carcinogen, and Cr(VI) induces tumors at lung bifurcation sites where Cr(VI) particles impact and persist. However, the effects of Cr(VI) on the spindle assembly checkpoint are unknown and little is known about prolonged exposure to particulate Cr(VI). Accordingly, we investigated particulate Cr(VI)-induced bypass of the spindle assembly checkpoint after several days of exposure in WHTBF-6 cells. We found that lead chromate indeed induces spindle assembly checkpoint bypass in human lung cells, as 72, 96, and 120 h treatments with 0.5 or 1 microg/cm2 lead chromate induced significant increases in the percentage of cells with aberrant mitotic figures. For example, treatment with 1 microg/cm2 lead chromate for 96 h induced 11, 12.3, and 14% of cells with premature anaphase, centromere spreading and premature centromere division, respectively. In addition, we found a disruption of mitosis with more cells accumulating in anaphase; cells treated for 96 h increased from 18% in controls to 31% in cells treated with lead chromate. To confirm involvement of the spindle assembly checkpoint, Mad2 expression was used as a marker. Mad2 expression was decreased in cells exposed to chronic treatments of lead chromate, consistent with disruption of the checkpoint. We also found concentration- and time-dependent increases in tetraploid cells, which continued to grow and form colonies. When cells were treated with chronic lead alone there was no increase in aberrant mitotic cells or polyploidy; however, chronic exposure to a soluble Cr(VI) showed an increase in aberrant mitotic cells and polyploidy. These data suggest that lead chromate does induce CIN and may be one mechanism in the development of Cr(VI)-induced lung cancer.
Mausfeld, Rainer; Andres, Johannes
2002-01-01
We argue, from an ethology-inspired perspective, that the internal concepts 'surface colours' and 'illumination colours' are part of the data format of two different representational primitives. Thus, the internal concept of 'colour' is not a unitary one but rather refers to two different types of 'data structure', each with its own proprietary types of parameters and relations. The relation of these representational structures is modulated by a class of parameterised transformations whose effects are mirrored in the idealised computational achievements of illumination invariance of colour codes, on the one hand, and scene invariance, on the other hand. Because the same characteristics of a light array reaching the eye can be physically produced in many different ways, the visual system, then, has to make an 'inference' whether a chromatic deviation of the space-averaged colour codes from the neutral point is due to a 'non-normal', ie chromatic, illumination or due to an imbalanced spectral reflectance composition. We provide evidence that the visual system uses second-order statistics of chromatic codes of a single view of a scene in order to modulate corresponding transformations. In our experiments we used centre surround configurations with inhomogeneous surrounds given by a random structure of overlapping circles, referred to as Seurat configurations. Each family of surrounds has a fixed space-average of colour codes, but differs with respect to the covariance matrix of colour codes of pixels that defines the chromatic variance along some chromatic axis and the covariance between luminance and chromatic channels. We found that dominant wavelengths of red-green equilibrium settings of the infield exhibited a stable and strong dependence on the chromatic variance of the surround. High variances resulted in a tendency towards 'scene invariance', low variances in a tendency towards 'illumination invariance' of the infield.
An alternate to chromate conversion coatings for the corrosion protection of aluminum 2024-T3
NASA Astrophysics Data System (ADS)
Guo, Ruiguang
Corrosion of high-strength aluminum alloys used for airspace application is an expensive and serious problem. The most significant environmental factor contributing to the corrosion of these alloys is water condensed from humid air and contaminated with soluble chloride salts. The Al 2024 series used for aircraft are particularly susceptible to corrosion in aqueous chloride solutions due to alloying constituents such as copper and other impurities. Chromates are efficient inhibitors of corrosion of aluminum in near neutral aqueous environments containing aggressive anions such as chlorides. Usually, aluminum alloys are initially protected by chromate conversion coatings. Additional polymer coatings are sometimes added during exposure to corrosive atmospheres such as marine environments. Although chromate coatings are widely used, they require the use of noxious solutions, so they have always presented effluent disposal problems. There are health and safety concerns over the use of chromates due to their toxicity and carcinogenic nature and, as a consequence, the environmental and health risks associated with the use of such coatings will be restricted in the future. It was these health and safety concerns that led to the development of alternative non-toxic coating processes with comparable adhesion properties and corrosion protection. A variety of process technologies are under development and are vying for acceptance in industrial markets. As an alternate conversion coating, a new titanate conversion coating was systematically researched and developed. Research concentrated on producing passive surfaces from a simple titanate solution using an immersion process. The corrosion resistance of the treated surface has been evaluated using simple, rapid electrochemical techniques as well as a more long-term salt spray test. Passivation by titanate conversion treatment exhibits many similarities to chromate conversion treatment. Based on this study of corrosion protection of the titanate coating formed at different conditions, a possible formation mechanism of a titanate coating is proposed. A conclusion may be drawn that titanate coating seems to be a viable alternative to chromate coatings.
Barrenechea, Gabriel R; Burman, Erik; Karakatsani, Fotini
2017-01-01
For the case of approximation of convection-diffusion equations using piecewise affine continuous finite elements a new edge-based nonlinear diffusion operator is proposed that makes the scheme satisfy a discrete maximum principle. The diffusion operator is shown to be Lipschitz continuous and linearity preserving. Using these properties we provide a full stability and error analysis, which, in the diffusion dominated regime, shows existence, uniqueness and optimal convergence. Then the algebraic flux correction method is recalled and we show that the present method can be interpreted as an algebraic flux correction method for a particular definition of the flux limiters. The performance of the method is illustrated on some numerical test cases in two space dimensions.
S-cone discrimination in the presence of two adapting fields: data and model
Cao, Dingcai
2014-01-01
This study investigated S-cone discrimination using a test annulus surrounded by an inner and outer adapting field with systematic manipulation of the adapting l = L/(L + M) or s = S/(L + M) chromaticities. The results showed that different adapting l chromaticities altered S-cone discrimination for a high adapting s chromaticity due to parvocellular input to the koniocellular pathway. In addition, S-cone discrimination was determined by the combined spectral signals arising from both adapting fields. The “white” adapting field or an adapting field with a different l chromaticity from the other fields was more likely to have a stronger influence on discrimination thresholds. These results indicated that the two cardinal axes are not independent in S-cone discrimination, and the two adapting fields jointly contribute to S-cone discrimination through a cortical summation mechanism. PMID:24695204
The MOF+ Technique: A Significant Synergic Effect Enables High Performance Chromate Removal.
Luo, Ming Biao; Xiong, Yang Yang; Wu, Hui Qiong; Feng, Xue Feng; Li, Jian Qiang; Luo, Feng
2017-12-18
A significant synergic effect between a metal-organic framework (MOF) and Fe 2 SO 4 , the so-called MOF + technique, is exploited for the first time to remove toxic chromate from aqueous solutions. The results show that relative to the pristine MOF samples (no detectable chromate removal), the MOF + method enables super performance, giving a 796 Cr mg g -1 adsorption capacity. The value is almost eight-fold higher than the best value of established MOF adsorbents, and the highest value of all reported porous adsorbents for such use. The adsorption mechanism, unlike the anion-exchange process that dominates chromate removal in all other MOF adsorbents, as unveiled by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM), is due to the surface formation of Fe 0.75 Cr 0.25 (OH) 3 nanospheres on the MOF samples. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Oyama, Takuro; Ikabata, Yasuhiro; Seino, Junji; Nakai, Hiromi
2017-07-01
This Letter proposes a density functional treatment based on the two-component relativistic scheme at the infinite-order Douglas-Kroll-Hess (IODKH) level. The exchange-correlation energy and potential are calculated using the electron density based on the picture-change corrected density operator transformed by the IODKH method. Numerical assessments indicated that the picture-change uncorrected density functional terms generate significant errors, on the order of hartree for heavy atoms. The present scheme was found to reproduce the energetics in the four-component treatment with high accuracy.
Coding for reliable satellite communications
NASA Technical Reports Server (NTRS)
Gaarder, N. T.; Lin, S.
1986-01-01
This research project was set up to study various kinds of coding techniques for error control in satellite and space communications for NASA Goddard Space Flight Center. During the project period, researchers investigated the following areas: (1) decoding of Reed-Solomon codes in terms of dual basis; (2) concatenated and cascaded error control coding schemes for satellite and space communications; (3) use of hybrid coding schemes (error correction and detection incorporated with retransmission) to improve system reliability and throughput in satellite communications; (4) good codes for simultaneous error correction and error detection, and (5) error control techniques for ring and star networks.
Leading-Color Fully Differential Two-Loop Soft Corrections to QCD Dipole Showers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dulat, Falko; Höche, Stefan; Prestel, Stefan
We compute the next-to-leading order corrections to soft-gluon radiation differentially in the one-emission phase space. We show that their contribution to the evolution of color dipoles can be obtained in a modified subtraction scheme, such that both one- and two-emission terms are amenable to Monte-Carlo integration. The two-loop cusp anomalous dimension is recovered naturally upon integration over the full phase space. We present two independent implementations of the new algorithm in the two event generators Pythia and Sherpa, and we compare the resulting fully differential simulation to the CMW scheme.
BPSK optical mm-wave signal generation by septupling frequency via a single optical phase modulator
NASA Astrophysics Data System (ADS)
Wu, Peng; Ma, Jianxin
2016-09-01
In this paper, we have proposed a novel and simple scheme to generate the BPSK optical millimeter wave (MMW) signal with frequency septupling by using an optical phase modulator (PM) and a wavelength selective switch (WSS). In this scheme, the PM is driven by a radio frequency (RF) BPSK signal at the optimized modulation index of 4.89 to assure the 4th and 3rd-order sidebands have equal amplitudes. An wavelength selective switch (WSS) is used to abstract the -4th and +3rd-order sidebands from the spectrum generated by RF BPSK signal modulating the lightwave to form the BPSK optical MMW signal with frequency septupling the driving RF signal. In these two tones, only the +3rd-order sideband bears the BPSK signal while the -4th-order sideband is unmodulated since the phase information is canceled by the even times multiplication of the phase of BPSK signal. The MMW signal can avoid the pulse walk-off effect and the amplitude fading effect caused by the fiber chromatic dispersion. By adjusting the modulation index to assure the two tones have equal amplitude, the generated optical MMW signal has the maximal opto-electrical conversion efficiency and good transmission performance.
Stable fiber-optic time transfer by active radio frequency phase locking.
Yin, Feifei; Wu, Zhongle; Dai, Yitang; Ren, Tianpeng; Xu, Kun; Lin, Jintong; Tang, Geshi
2014-05-15
In this Letter we demonstrate a fiber link capable of stable time signal transfer utilizing our active long-distance radio frequency (RF) stabilization technology. Taking advantage of the chromatic dispersion in optical fiber, our scheme compensates dynamically the link delay variation by tuning the optical carrier wavelength to phase lock a round-trip RF reference. Since the time signal and the RF reference are carried by the same optical carrier, a highly stable time transfer is achieved at the same time. Experimentally, we demonstrate a stability of the time signal transfer over 50-km fiber with a time deviation of 40 ps at 1-s average and 2.3 ps at 1000-s average. The performance of the RF reference delivery is also tested, with an Allan deviation of 2×10(-15) at 1000-s average. According to our proposal, a simultaneous stable time and frequency transfer is expected.
Spatiotemporal control of laser intensity
NASA Astrophysics Data System (ADS)
Froula, Dustin H.; Turnbull, David; Davies, Andrew S.; Kessler, Terrance J.; Haberberger, Dan; Palastro, John P.; Bahk, Seung-Whan; Begishev, Ildar A.; Boni, Robert; Bucht, Sara; Katz, Joseph; Shaw, Jessica L.
2018-05-01
The controlled coupling of a laser to plasma has the potential to address grand scientific challenges1-6, but many applications have limited flexibility and poor control over the laser focal volume. Here, we present an advanced focusing scheme called a `flying focus', where a chromatic focusing system combined with chirped laser pulses enables a small-diameter laser focus to propagate nearly 100 times its Rayleigh length. Furthermore, the speed at which the focus moves (and hence the peak intensity) is decoupled from the group velocity of the laser. It can co- or counter-propagate along the laser axis at any velocity. Experiments validating the concept measured subluminal (-0.09c) to superluminal (39c) focal-spot velocities, generating a nearly constant peak intensity over 4.5 mm. Among possible applications, the flying focus could be applied to a photon accelerator7 to mitigate dephasing, facilitating the production of tunable XUV sources.
NASA Astrophysics Data System (ADS)
Wu, Tonggen; Ma, Jianxin
2017-12-01
This paper proposes an original scheme to generate the photonic dual-tone optical millimeter wave (MMW) carrying the 16-star quadrature-amplitude-modulation (QAM) signal via an optical phase modulator (PM) and an interleaver with adaptive photonic frequency-nonupling without phase precoding. To enable the generated optical vector MMW signal to resist the power fading effect caused by the fiber chromatic dispersion, the modulated -5th- and +4th-order sidebands are selected from the output of the PM, which is driven by the precoding 16-star QAM signal. The modulation index of the PM is optimized to gain the maximum opto-electrical conversion efficiency. A radio over fiber link is built by simulation, and the simulated constellations and the bit error rate graph demonstrate that the frequency-nonupling 16-star QAM MMW signal has good transmission performance. The simulation results agree well with our theoretical results.
Flying Focus: Spatiotemporal Control of the Laser Beam Intensity
NASA Astrophysics Data System (ADS)
Froula, D. H.; Turnbull, D.; Kessler, T. J.; Haberberger, D.; Bahk, S.-W.; Begishev, I. A.; Boni, R.; Bucht, S.; Davies, A.; Katz, J.; Sefkow, A. B.; Shaw, J. L.
2017-10-01
A ``flying focus'' is presented: this advanced focusing scheme provides unprecedented spatiotemporal control over the laser focal volume. A chromatic focusing system combined with chirped laser pulses enabled the speed of a small-diameter laser focus to propagate over nearly 100 × its Rayleigh length. Furthermore, the flying focus decouples the speed at which the peak intensity propagates from the group velocity of the laser pulse, allowing the laser focus to co- or counter-propagate along its axis at any velocity. Experiments have demonstrated a nearly constant intensity over 4.5 mm while the velocity of the focus ranged from subluminal (0.01 c) to superluminal (15 c) . These properties could provide the opportunity to overcome current fundamental limitations in laser-plasma amplifiers, laser-wakefield accelerators, photon accelerators, ion accelerators, and high-order frequency conversion. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.
NASA Astrophysics Data System (ADS)
Yunguo, Gao
1996-12-01
This scheme structure is for positioning 4000 optical fibres of LAMOST telescope. It adopts the swing rods adjusted parallel and simultaneously by many small tables. The problems, for example, positioning accuracy of the optical fibers, the time to readjust all the 4000 optical fibres and error correction, etc. have been considered in the scheme. The structure has no blind area.
Permanence analysis of a concatenated coding scheme for error control
NASA Technical Reports Server (NTRS)
Costello, D. J., Jr.; Lin, S.; Kasami, T.
1983-01-01
A concatenated coding scheme for error control in data communications is analyzed. In this scheme, the inner code is used for both error correction and detection, however, the outer code is used only for error detection. A retransmission is requested if the outer code detects the presence of errors after the inner code decoding. Probability of undetected error is derived and bounded. A particular example, proposed for the planetary program, is analyzed.
Probability of undetected error after decoding for a concatenated coding scheme
NASA Technical Reports Server (NTRS)
Costello, D. J., Jr.; Lin, S.
1984-01-01
A concatenated coding scheme for error control in data communications is analyzed. In this scheme, the inner code is used for both error correction and detection, however the outer code is used only for error detection. A retransmission is requested if the outer code detects the presence of errors after the inner code decoding. Probability of undetected error is derived and bounded. A particular example, proposed for NASA telecommand system is analyzed.
Chromatic detection from cone photoreceptors to V1 neurons to behavior in rhesus monkeys
Hass, Charles A.; Angueyra, Juan M.; Lindbloom-Brown, Zachary; Rieke, Fred; Horwitz, Gregory D.
2015-01-01
Chromatic sensitivity cannot exceed limits set by noise in the cone photoreceptors. To determine how close neurophysiological and psychophysical chromatic sensitivity come to these limits, we developed a parameter-free model of stimulus encoding in the cone outer segments, and we compared the sensitivity of the model to the psychophysical sensitivity of monkeys performing a detection task and to the sensitivity of individual V1 neurons. Modeled cones had a temporal impulse response and a noise power spectrum that were derived from in vitro recordings of macaque cones, and V1 recordings were made during performance of the detection task. The sensitivity of the simulated cone mosaic, the V1 neurons, and the monkeys were tightly yoked for low-spatiotemporal-frequency isoluminant modulations, indicating high-fidelity signal transmission for this class of stimuli. Under the conditions of our experiments and the assumptions for our model, the signal-to-noise ratio for these stimuli dropped by a factor of ∼3 between the cones and perception. Populations of weakly correlated V1 neurons narrowly exceeded the monkeys' chromatic sensitivity but fell well short of the cones' chromatic sensitivity, suggesting that most of the behavior-limiting noise lies between the cone outer segments and the output of V1. The sensitivity gap between the cones and behavior for achromatic stimuli was larger than for chromatic stimuli, indicating greater postreceptoral noise. The cone mosaic model provides a means to compare visual sensitivity across disparate stimuli and to identify sources of noise that limit visual sensitivity. PMID:26523737
Chromatic detection from cone photoreceptors to V1 neurons to behavior in rhesus monkeys.
Hass, Charles A; Angueyra, Juan M; Lindbloom-Brown, Zachary; Rieke, Fred; Horwitz, Gregory D
2015-01-01
Chromatic sensitivity cannot exceed limits set by noise in the cone photoreceptors. To determine how close neurophysiological and psychophysical chromatic sensitivity come to these limits, we developed a parameter-free model of stimulus encoding in the cone outer segments, and we compared the sensitivity of the model to the psychophysical sensitivity of monkeys performing a detection task and to the sensitivity of individual V1 neurons. Modeled cones had a temporal impulse response and a noise power spectrum that were derived from in vitro recordings of macaque cones, and V1 recordings were made during performance of the detection task. The sensitivity of the simulated cone mosaic, the V1 neurons, and the monkeys were tightly yoked for low-spatiotemporal-frequency isoluminant modulations, indicating high-fidelity signal transmission for this class of stimuli. Under the conditions of our experiments and the assumptions for our model, the signal-to-noise ratio for these stimuli dropped by a factor of ∼3 between the cones and perception. Populations of weakly correlated V1 neurons narrowly exceeded the monkeys' chromatic sensitivity but fell well short of the cones' chromatic sensitivity, suggesting that most of the behavior-limiting noise lies between the cone outer segments and the output of V1. The sensitivity gap between the cones and behavior for achromatic stimuli was larger than for chromatic stimuli, indicating greater postreceptoral noise. The cone mosaic model provides a means to compare visual sensitivity across disparate stimuli and to identify sources of noise that limit visual sensitivity.
Effects of intraocular lenses with different diopters on chromatic aberrations in human eye models.
Song, Hui; Yuan, Xiaoyong; Tang, Xin
2016-01-11
In this study, the effects of intraocular lenses (IOLs) with different diopters (D) on chromatic aberration were investigated in human eye models, and the influences of the central thickness of IOLs on chromatic aberration were compared. A Liou-Brennan-based IOL eye model was constructed using ZEMAX optical design software. Spherical IOLs with different diopters (AR40e, AMO Company, USA) were implanted; modulation transfer function (MTF) values at 3 mm of pupil diameter and from 0 to out-of-focus blur were collected and graphed. MTF values, measured at 555 nm of monochromatic light under each spatial frequency, were significantly higher than the values measured at 470 to 650 nm of polychromatic light. The influences of chromatic aberration on MTF values decreased with the increase in IOL diopter when the spatial frequency was ≤12 c/d, while increased effects were observed when the spatial frequency was ≥15 c/d. The MTF values of each IOL eye model were significantly lower than the MTF values of the Liou-Brennan eye models when measured at 555 nm of monochromatic light and at 470 to 650 nm of polychromatic light. The MTF values were also found to be increased with the increase in IOL diopter. With higher diopters of IOLs, the central thickness increased accordingly, which could have created increased chromatic aberration and decreased the retinal image quality. To improve the postoperative visual quality, IOLs with lower chromatic aberration should be selected for patients with short axial lengths.
Beaver, Laura M.; Stemmy, Erik J.; Schwartz, Arnold M.; Damsker, Jesse M.; Constant, Stephanie L.; Ceryak, Susan M.; Patierno, Steven R.
2009-01-01
Background Chronic inflammation is implicated in the development of several human cancers, including lung cancer. Certain particulate hexavalent chromium [Cr(VI)] compounds are well-documented human respiratory carcinogens that release genotoxic soluble chromate and are associated with fibrosis, fibrosarcomas, adenocarcinomas, and squamous cell carcinomas of the lung. Despite this, little is known about the pathologic injury and immune responses after repetitive exposure to particulate chromates. Objectives In this study we investigated the lung injury, inflammation, proliferation, and survival signaling responses after repetitive exposure to particulate chromate. Methods BALB/c mice were repetitively treated with particulate basic zinc chromate or saline using an intranasal exposure regimen. We assessed lungs for Cr(VI)-induced changes by bronchoalveolar lavage, histologic examination, and immunohistochemistry. Results Single exposure to Cr(VI) resulted in inflammation of lung tissue that persists for up to 21 days. Repetitive Cr(VI) exposure induced a neutrophilic inflammatory airway response 24 hr after each treatment. Neutrophils were subsequently replaced by increasing numbers of macrophages by 5 days after treatment. Repetitive Cr(VI) exposure induced chronic peribronchial inflammation with alveolar and interstitial pneumonitis dominated by lymphocytes and macrophages. Moreover, chronic toxic mucosal injury was observed and accompanied by increased airway pro-matrix metalloprotease-9. Injury and inflammation correlated with airways becoming immunoreactive for phosphorylation of the survival signaling protein Akt and the proliferation marker Ki-67. We observed a reactive proliferative response in epithelial cells lining airways of chromate-exposed animals. Conclusions These data illustrate that repetitive exposure to particulate chromate induces chronic injury and an inflammatory microenvironment that may promote Cr(VI) carcinogenesis. PMID:20049209
Optimal correction and design parameter search by modern methods of rigorous global optimization
NASA Astrophysics Data System (ADS)
Makino, K.; Berz, M.
2011-07-01
Frequently the design of schemes for correction of aberrations or the determination of possible operating ranges for beamlines and cells in synchrotrons exhibit multitudes of possibilities for their correction, usually appearing in disconnected regions of parameter space which cannot be directly qualified by analytical means. In such cases, frequently an abundance of optimization runs are carried out, each of which determines a local minimum depending on the specific chosen initial conditions. Practical solutions are then obtained through an often extended interplay of experienced manual adjustment of certain suitable parameters and local searches by varying other parameters. However, in a formal sense this problem can be viewed as a global optimization problem, i.e. the determination of all solutions within a certain range of parameters that lead to a specific optimum. For example, it may be of interest to find all possible settings of multiple quadrupoles that can achieve imaging; or to find ahead of time all possible settings that achieve a particular tune; or to find all possible manners to adjust nonlinear parameters to achieve correction of high order aberrations. These tasks can easily be phrased in terms of such an optimization problem; but while mathematically this formulation is often straightforward, it has been common belief that it is of limited practical value since the resulting optimization problem cannot usually be solved. However, recent significant advances in modern methods of rigorous global optimization make these methods feasible for optics design for the first time. The key ideas of the method lie in an interplay of rigorous local underestimators of the objective functions, and by using the underestimators to rigorously iteratively eliminate regions that lie above already known upper bounds of the minima, in what is commonly known as a branch-and-bound approach. Recent enhancements of the Differential Algebraic methods used in particle optics for the computation of aberrations allow the determination of particularly sharp underestimators for large regions. As a consequence, the subsequent progressive pruning of the allowed search space as part of the optimization progresses is carried out particularly effectively. The end result is the rigorous determination of the single or multiple optimal solutions of the parameter optimization, regardless of their location, their number, and the starting values of optimization. The methods are particularly powerful if executed in interplay with genetic optimizers generating their new populations within the currently active unpruned space. Their current best guess provides rigorous upper bounds of the minima, which can then beneficially be used for better pruning. Examples of the method and its performance will be presented, including the determination of all operating points of desired tunes or chromaticities, etc. in storage ring lattices.
2016-01-01
A recent paper by Oh and Sakata investigates the “incompletely solved mystery” of how the three cone responses map onto perceived hue, and particularly the S cone’s well-known problematic contribution to blueness and redness. Citing previous workers, they argue the twentieth century traditional multistage model does not satisfactorily account for color appearance. In their experiment, increasing S cone excitation with shortening wavelength from about 480–460 nm increased perceived blueness up to the unique Blue point at 470 nm, when (a) it began decreasing and (b) redness perception began increasing. The authors asked, What mechanism can be responsible for such functions? I demonstrate a solution. First, it is shown the problem does not lie in the traditional opponent color chromatic responses yellow-blue, red-green (y-b, r-g, which accurately predict the above functions), but in the traditional multistage model of mapping cone responses to chromatic response functions. Arguably, this is due to the S cone’s hypothetically signaling both blueness and redness by the same mechanism rather than by different, independent, mechanisms. Hence a new distinction or mechanism is proposed for a more accurate model, that introduces the new terms primary and secondary cone outputs. However, this distinction requires that the cones S, M, L each directly produce one of the three spectral chromatic responses b, g, y. Such a model was recently published, based on extremely high correlation of SML cone responsivities with the three spectral (bgy) chromatic responses. This model encodes the former directly onto the latter one-to-one as cone primary outputs, whilst S and L cones have a further or secondary function where each produces one of the two spectral lobes of r chromatic response. The proposed distinction between primary and secondary cone outputs is a new concept and useful tool in detailing cone outputs to chromatic channels, and provides a solution to the above “incompletely solved mystery.” Thus the S cone has a primary output producing the total b chromatic response and a secondary output that shares with the L cone the production of r chromatic response, thus aligning with Oh and Sokata’s results. The model similarly maps L cone to yellowness as primary output and to redness as secondary output. PMID:27110938
Xu, Ying; Zeng, Chang-chun; Cai, Xiu-yu; Guo, Rong-ping; Nie, Guang; Jin, Ying
2012-11-01
In this study, the optical data of tongue color of different syndromes in primary hepatic carcinoma (PHC) were detected by optical spectrum colorimetry, and the chromaticity of tongue color was compared and analyzed. The tongue color characteristics of different syndromes in PHC and the relationship between different syndromes and tongue color were also investigated. Tongue color data from 133 eligible PHC patients were collected by optical spectrum colorimetry and the patients were divided into 4 syndrome groups according to their clinical features. The syndrome groups were liver depression and spleen deficiency (LDSD), accumulation of damp-heat (ADH), deficiency of liver and kidney yin (DLKY), and qi stagnation and blood stasis (QSBS). The variation characteristics of chromaticity coordinates, dominant wavelength, excitation purity and the distribution in the International Commission on Illumination (CIE) LAB uniform color space were measured. At the same time, the differences of overall chromatism, clarity, chroma, saturation and hue were also calculated and analyzed. PHC patients in different syndrome groups exhibited differences in chromaticity coordinates. The dominant wavelength of QSBS was distinctly different from that of the other 3 syndromes. Excitation purity in the syndromes of LDSD, ADH and DLKY showed gradual increases (P<0.01). Different syndromes in the CIE LAB color three-dimensional space showed differences in tongue color distribution areas. The CIE hue-angle value of QSBS was negative, and different from that of the other 3 syndromes (P<0.01). CIE chroma in the syndromes of LDSD, ADH and DLKY showed gradual increases (P<0.01), the same as excitation purity. In the comparison of chromatism, tongue color variations in different syndromes were quantified by human observation. This study shows that tongue color diagnosis according to the syndrome classifications of traditional Chinese medicine can be quantified with optical spectrum colorimetry technology. Different syndromes in PHC exhibit distinct chromatisms of tongue color through the calculation and analysis of chromaticity parameters of CIE, combined with colorimetric system and CIE LAB color space, and these are consistent with the characteristics of clinical tongue color. Applying optical spectrum colorimetry technology to tongue color differentiation has the potential to serve as a reference point in standardizing traditional Chinese medicine syndrome classification in PHC.
Long distance quantum communication using quantum error correction
NASA Technical Reports Server (NTRS)
Gingrich, R. M.; Lee, H.; Dowling, J. P.
2004-01-01
We describe a quantum error correction scheme that can increase the effective absorption length of the communication channel. This device can play the role of a quantum transponder when placed in series, or a cyclic quantum memory when inserted in an optical loop.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Potts, C.; Faber, M.; Gunderson, G.
The as-built lattice of the Rapid Cycling Synchrotron (RCS) had two sets of correction sextupoles and two sets of quadrupoles energized by dc power supplies to control the tune and the tune tilt. With this method of powering these magnets, adjustment of tune conditions during the accelerating cycle as needed was not possible. A set of dynamically programmable power supplies has been built and operated to provide the required chromaticity adjustment. The short accelerating time (16.7 ms) of the RCS and the inductance of the magnets dictated large transistor amplifier power supplies. The required time resolution and waveform flexibility indicatedmore » the desirability of computer control. Both the amplifiers and controls are described, along with resulting improvements in the beam performance. 5 refs.« less
Landsat test of diffuse reflectance models for aquatic suspended solids measurement
NASA Technical Reports Server (NTRS)
Munday, J. C., Jr.; Alfoldi, T. T.
1979-01-01
Landsat radiance data were used to test mathematical models relating diffuse reflectance to aquatic suspended solids concentration. Digital CCT data for Landsat passes over the Bay of Fundy, Nova Scotia were analyzed on a General Electric Co. Image 100 multispectral analysis system. Three data sets were studied separately and together in all combinations with and without solar angle correction. Statistical analysis and chromaticity analysis show that a nonlinear relationship between Landsat radiance and suspended solids concentration is better at curve-fitting than a linear relationship. In particular, the quasi-single-scattering diffuse reflectance model developed by Gordon and coworkers is corroborated. The Gordon model applied to 33 points of MSS 5 data combined from three dates produced r = 0.98.
Yao, Qian; Cao, Xiao-Mei; Zong, Wen-Gang; Sun, Xiao-Hui; Li, Ze-Rong; Li, Xiang-Yuan
2018-05-31
The isodesmic reaction method is applied to calculate the potential energy surface (PES) along the reaction coordinates and the rate constants of the barrierless reactions for unimolecular dissociation reactions of alkanes to form two alkyl radicals and their reverse recombination reactions. The reaction class is divided into 10 subclasses depending upon the type of carbon atoms in the reaction centers. A correction scheme based on isodesmic reaction theory is proposed to correct the PESs at UB3LYP/6-31+G(d,p) level. To validate the accuracy of this scheme, a comparison of the PESs at B3LYP level and the corrected PESs with the PESs at CASPT2/aug-cc-pVTZ level is performed for 13 representative reactions, and it is found that the deviations of the PESs at B3LYP level are up to 35.18 kcal/mol and are reduced to within 2 kcal/mol after correction, indicating that the PESs for barrierless reactions in a subclass can be calculated meaningfully accurately at a low level of ab initio method using our correction scheme. High-pressure limit rate constants and pressure dependent rate constants of these reactions are calculated based on their corrected PESs and the results show the pressure dependence of the rate constants cannot be ignored, especially at high temperatures. Furthermore, the impact of molecular size on the pressure-dependent rate constants of decomposition reactions of alkanes and their reverse reactions has been studied. The present work provides an effective method to generate meaningfully accurate PESs for large molecular system.
NASA Astrophysics Data System (ADS)
Sippel, S.; Otto, F. E. L.; Forkel, M.; Allen, M. R.; Guillod, B. P.; Heimann, M.; Reichstein, M.; Seneviratne, S. I.; Kirsten, T.; Mahecha, M. D.
2015-12-01
Understanding, quantifying and attributing the impacts of climatic extreme events and variability is crucial for societal adaptation in a changing climate. However, climate model simulations generated for this purpose typically exhibit pronounced biases in their output that hinders any straightforward assessment of impacts. To overcome this issue, various bias correction strategies are routinely used to alleviate climate model deficiencies most of which have been criticized for physical inconsistency and the non-preservation of the multivariate correlation structure. We assess how biases and their correction affect the quantification and attribution of simulated extremes and variability in i) climatological variables and ii) impacts on ecosystem functioning as simulated by a terrestrial biosphere model. Our study demonstrates that assessments of simulated climatic extreme events and impacts in the terrestrial biosphere are highly sensitive to bias correction schemes with major implications for the detection and attribution of these events. We introduce a novel ensemble-based resampling scheme based on a large regional climate model ensemble generated by the distributed weather@home setup[1], which fully preserves the physical consistency and multivariate correlation structure of the model output. We use extreme value statistics to show that this procedure considerably improves the representation of climatic extremes and variability. Subsequently, biosphere-atmosphere carbon fluxes are simulated using a terrestrial ecosystem model (LPJ-GSI) to further demonstrate the sensitivity of ecosystem impacts to the methodology of bias correcting climate model output. We find that uncertainties arising from bias correction schemes are comparable in magnitude to model structural and parameter uncertainties. The present study consists of a first attempt to alleviate climate model biases in a physically consistent way and demonstrates that this yields improved simulations of climate extremes and associated impacts. [1] http://www.climateprediction.net/weatherathome/
NASA Astrophysics Data System (ADS)
Yu, Tianxu; Rose, William I.; Prata, A. J.
2002-08-01
Volcanic ash in volcanic clouds can be mapped in two dimensions using two-band thermal infrared data available from meteorological satellites. Wen and Rose [1994] developed an algorithm that allows retrieval of the effective particle size, the optical depth of the volcanic cloud, and the mass of fine ash in the cloud. Both the mapping and the retrieval scheme are less accurate in the humid tropical atmosphere. In this study we devised and tested a scheme for atmospheric correction of volcanic ash mapping and retrievals. The scheme utilizes infrared (IR) brightness temperature (BT) information in two infrared channels (both between 10 and 12.5 μm) and the brightness temperature differences (BTD) to estimate the amount of BTD shift caused by lower tropospheric water vapor. It is supported by the moderate resolution transmission (MODTRAN) analysis. The discrimination of volcanic clouds in the new scheme also uses both BT and BTD data but corrects for the effects of the water vapor. The new scheme is demonstrated and compared with the old scheme using two well-documented examples: (1) the 18 August 1992 volcanic cloud of Crater Peak, Mount Spurr, Alaska, and (2) the 26 December 1997 volcanic cloud from Soufriere Hills, Montserrat. The Spurr example represents a relatively ``dry'' subarctic atmospheric condition. The new scheme sees a volcanic cloud that is about 50% larger than the old. The mean optical depth and effective radii of cloud particles are lower by 22% and 9%, and the fine ash mass in the cloud is 14% higher. The Montserrat cloud is much smaller than Spurr and is more sensitive to atmospheric moisture. It also was located in a moist tropical atmosphere. For the Montserrat example the new scheme shows larger differences, with the area of the volcanic cloud being about 5.5 times larger, the optical depth and effective radii of particles lower by 56% and 28%, and the total fine particle mass in the cloud increased by 53%. The new scheme can be automated and can contribute to more accurate remote volcanic ash detection. More tests are needed to find the best way to estimate the water vapor effects in real time.
Chertkov, Michael; Gabitov, Ildar
2004-03-02
The present invention provides methods and optical fibers for periodically pinning an actual (random) accumulated chromatic dispersion of an optical fiber to a predicted accumulated dispersion of the fiber through relatively simple modifications of fiber-optic manufacturing methods or retrofitting of existing fibers. If the pinning occurs with sufficient frequency (at a distance less than or are equal to a correlation scale), pulse degradation resulting from random chromatic dispersion is minimized. Alternatively, pinning may occur quasi-periodically, i.e., the pinning distance is distributed between approximately zero and approximately two to three times the correlation scale.
High-performance lighting evaluated by photobiological parameters.
Rebec, Katja Malovrh; Gunde, Marta Klanjšek
2014-08-10
The human reception of light includes image-forming and non-image-forming effects which are triggered by spectral distribution and intensity of light. Ideal lighting is similar to daylight, which could be evaluated by spectral or chromaticity match. LED-based and CFL-based lighting were analyzed here, proposed according to spectral and chromaticity match, respectively. The photobiological effects were expressed by effectiveness for blue light hazard, cirtopic activity, and photopic vision. Good spectral match provides light with more similar effects to those obtained by the chromaticity match. The new parameters are useful for better evaluation of complex human responses caused by lighting.
COMPARISON OF NONLINEAR DYNAMICS OPTIMIZATION METHODS FOR APS-U
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Y.; Borland, Michael
Many different objectives and genetic algorithms have been proposed for storage ring nonlinear dynamics performance optimization. These optimization objectives include nonlinear chromaticities and driving/detuning terms, on-momentum and off-momentum dynamic acceptance, chromatic detuning, local momentum acceptance, variation of transverse invariant, Touschek lifetime, etc. In this paper, the effectiveness of several different optimization methods and objectives are compared for the nonlinear beam dynamics optimization of the Advanced Photon Source upgrade (APS-U) lattice. The optimized solutions from these different methods are preliminarily compared in terms of the dynamic acceptance, local momentum acceptance, chromatic detuning, and other performance measures.
Exploiting chromatic aberration to spectrally encode depth in reflectance confocal microscopy
NASA Astrophysics Data System (ADS)
Carrasco-Zevallos, Oscar; Shelton, Ryan L.; Olsovsky, Cory; Saldua, Meagan; Applegate, Brian E.; Maitland, Kristen C.
2011-06-01
We present chromatic confocal microscopy as a technique to axially scan the sample by spectrally encoding depth information to avoid mechanical scanning of the lens or sample. We have achieved an 800 μm focal shift over a range of 680-1080 nm using a hyperchromat lens as the imaging lens. A more complex system that incorporates a water immersion objective to improve axial resolution was built and tested. We determined that increasing objective magnification decreases chromatic shift while improving axial resolution. Furthermore, collimating after the hyperchromat at longer wavelengths yields an increase in focal shift.
Werner, Annette
2014-11-01
Illumination in natural scenes changes at multiple temporal and spatial scales: slow changes in global illumination occur in the course of a day, and we encounter fast and localised illumination changes when visually exploring the non-uniform light field of three-dimensional scenes; in addition, very long-term chromatic variations may come from the environment, like for example seasonal changes. In this context, I consider the temporal and spatial properties of chromatic adaptation and discuss their functional significance for colour constancy in three-dimensional scenes. A process of fast spatial tuning in chromatic adaptation is proposed as a possible sensory mechanism for linking colour constancy to the spatial structure of a scene. The observed middlewavelength selectivity of this process is particularly suitable for adaptation to the mean chromaticity and the compensation of interreflections in natural scenes. Two types of sensory colour constancy are distinguished, based on the functional differences of their temporal and spatial scales: a slow type, operating at a global scale for the compensation of the ambient illumination; and a fast colour constancy, which is locally restricted and well suited to compensate region-specific variations in the light field of three dimensional scenes. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fruchter, Jonathan S.
In Situ Treatment of Chromate Contaminated Groundwater Jonathan S. Fruchter Pacific Northwest National Laboratory Abstract of paper published in Environmental Science and Technology, 2002 Although not as common as solvent or fuel products contamination, chromate (chromium (VI)) contamination of groundwater is relatively widespread. Chromate has a variety of industrial uses, including chrome plating, steel making, and use as a corrosion inhibitor, wood preservative, well-drilling fluid additive, biocide, and as a pigment in paints and primers. EPA has estimated that as many as 1300 sites in the United States may have groundwater contaminated with chromate. The paper discusses a number ofmore » approaches to in situ treatment of chromate contamination in groundwater aquifers. The approaches include various types of chemical treatments, biological treatments and natural attenuation. The strengths and weaknesses of each method are discussed and compared. Field examples of two types of chemical treatment, in situ redox manipulation and chemically enhanced pump and treat are presented. It is concluded that in situ methods show promise, but can be difficult to implement due to site-specific conditions and limited long-term experience with these methods. As more performance and cost data are acquired for the demonstrations that are ongoing, and continuing research increases our understanding of subsurface processes, in situ treatment methods for chromium (VI) contamination in groundwater should gain wider acceptance.« less
NASA Astrophysics Data System (ADS)
de Oliveira, Henrique Bortolaz; Wypych, Fernando
2016-11-01
Layered zinc hydroxide nitrate (ZnHN) and Zn/Ni layered double hydroxide salts were synthesized and used to remove chromate ions from solutions at pH 8.0. The materials were characterized by many instrumental techniques before and after chromate ion removal. ZnHN decomposed after contact with the chromate solution, whereas the layered structure of Zn/Ni hydroxide nitrate (Zn/NiHN) and Zn/Ni hydroxide acetate (Zn/NiHA) remained their layers intact after the topotactic anionic exchange reaction, only changing the basal distances. ZnHN, Zn/NiHN, and Zn/NiHA removed 210.1, 144.8, and 170.1 mg of CrO42-/g of material, respectively. Although the removal values obtained for Zn/NiHN and Zn/NiHA were smaller than the values predicted for the ideal formulas of the solids (194.3 and 192.4 mg of CrO42-/g of material, respectively), the measured capacities were higher than the values achieved with many materials reported in the literature. Kinetic experiments showed the removal reaction was fast. To facilitate the solid/liquid separation process after chromium removal, Zn/Ni layered double hydroxide salts with magnetic supports were also synthesized, and their ability to remove chromate was evaluated.
NASA Astrophysics Data System (ADS)
Gambina, Federico
In this study, the corrosion protection provided by of a number of chromate and chromate-free coatings systems was characterized in detail. High-solids SrCrO4-pigmented epoxy primers applied to 2024 and 7075 substrates were subject to salt spray exposure testing for 30 days. Samples were removed periodically and an electrochemical impedance measurement (EIS) was made. Although none of the coatings tested showed visual evidence of corrosion, the total impedance of the samples decreased by as much as two orders of magnitude. An analysis of capacitance showed that the primer coatings rapidly took up water from the exposure environment, but the coating-metal remained passive despite the fact that it was wet. These results support the idea that chromate coatings protect by creating a chromate-rich electrolyte within the coating that is passivating to the underlying metal substrate. They also suggest that indications of metal substrate passivity found in the low-frequency capacitive reactance of the impedance spectra are a better indicator of corrosion protection than the total impedance. The low-frequency capacitive reactance from EIS measurements is also good at assessing the protectiveness of chromate-free coatings systems. Fifteen different coatings systems comprising high-solids, chromate-free primers and chromate-free conversion coatings were applied to 2024 and 7075 substrates. These coatings were subject to salt spray exposure and EIS measurements. All coatings were inferior to coating systems containing chromate, but changes in the capacitive reactance measured in EIS was shown to anticipate visual indications of coating failure. A predictive model based on neural networks was trained to recognize the pattern in the capacitive reactance in impedance spectra measured after 48 hours of exposure and make an estimate of remaining coating life. A sensitivity analysis was performed to prune the impedance inputs. As a result of this analysis, a very simple but highly predictive model was constructed that used low-frequency phase angle information extracted directly from EIS measurements to predict time to failure in salt spray up to 30 days of exposure. The exposure and EIS characterization of the chromate-free coatings systems enabled a ranking of the coatings systems in terms of corrosion protection provided. Coating systems were ranked according to several different methods described in the literature. Among the coatings evaluated, Deft 02GN084, a high solids, solvent-borne and Pr-containing primer coating showed best protection when used in conjunction with a number of different conversion coatings and surface pretreatments. Several different trivalent chromium conversion coatings and pretreatment were used. This general type of conversion coating appeared to provide better corrosion protection than other pretreatments whose functions were primarily surface cleaning or adhesion promotion.
Erratum: 2-Bromo-1-(4-methyl-phen-yl)-3-phenyl-prop-2-en-1-one. Corrigendum.
Fun, Hoong-Kun; Jebas, Samuel Robinson; Patil, P S; Karthikeyan, M S; Dharmaprakash, S M
2008-11-13
The chemical name in the title and the scheme of the paper by Fun, Jebas, Patil, Karthikeyan & Dharmaprakash [Acta Cryst. (2008), E64, o1559] are corrected.[This corrects the article DOI: 10.1107/S1600536808022289.].
Five-wave-packet quantum error correction based on continuous-variable cluster entanglement
Hao, Shuhong; Su, Xiaolong; Tian, Caixing; Xie, Changde; Peng, Kunchi
2015-01-01
Quantum error correction protects the quantum state against noise and decoherence in quantum communication and quantum computation, which enables one to perform fault-torrent quantum information processing. We experimentally demonstrate a quantum error correction scheme with a five-wave-packet code against a single stochastic error, the original theoretical model of which was firstly proposed by S. L. Braunstein and T. A. Walker. Five submodes of a continuous variable cluster entangled state of light are used for five encoding channels. Especially, in our encoding scheme the information of the input state is only distributed on three of the five channels and thus any error appearing in the remained two channels never affects the output state, i.e. the output quantum state is immune from the error in the two channels. The stochastic error on a single channel is corrected for both vacuum and squeezed input states and the achieved fidelities of the output states are beyond the corresponding classical limit. PMID:26498395
A Novel Grid SINS/DVL Integrated Navigation Algorithm for Marine Application
Kang, Yingyao; Zhao, Lin; Cheng, Jianhua; Fan, Xiaoliang
2018-01-01
Integrated navigation algorithms under the grid frame have been proposed based on the Kalman filter (KF) to solve the problem of navigation in some special regions. However, in the existing study of grid strapdown inertial navigation system (SINS)/Doppler velocity log (DVL) integrated navigation algorithms, the Earth models of the filter dynamic model and the SINS mechanization are not unified. Besides, traditional integrated systems with the KF based correction scheme are susceptible to measurement errors, which would decrease the accuracy and robustness of the system. In this paper, an adaptive robust Kalman filter (ARKF) based hybrid-correction grid SINS/DVL integrated navigation algorithm is designed with the unified reference ellipsoid Earth model to improve the navigation accuracy in middle-high latitude regions for marine application. Firstly, to unify the Earth models, the mechanization of grid SINS is introduced and the error equations are derived based on the same reference ellipsoid Earth model. Then, a more accurate grid SINS/DVL filter model is designed according to the new error equations. Finally, a hybrid-correction scheme based on the ARKF is proposed to resist the effect of measurement errors. Simulation and experiment results show that, compared with the traditional algorithms, the proposed navigation algorithm can effectively improve the navigation performance in middle-high latitude regions by the unified Earth models and the ARKF based hybrid-correction scheme. PMID:29373549
NASA Astrophysics Data System (ADS)
Yao, Weiguang; Merchant, Thomas E.; Farr, Jonathan B.
2016-10-01
The lateral homogeneity assumption is used in most analytical algorithms for proton dose, such as the pencil-beam algorithms and our simplified analytical random walk model. To improve the dose calculation in the distal fall-off region in heterogeneous media, we analyzed primary proton fluence near heterogeneous media and propose to calculate the lateral fluence with voxel-specific Gaussian distributions. The lateral fluence from a beamlet is no longer expressed by a single Gaussian for all the lateral voxels, but by a specific Gaussian for each lateral voxel. The voxel-specific Gaussian for the beamlet of interest is calculated by re-initializing the fluence deviation on an effective surface where the proton energies of the beamlet of interest and the beamlet passing the voxel are the same. The dose improvement from the correction scheme was demonstrated by the dose distributions in two sets of heterogeneous phantoms consisting of cortical bone, lung, and water and by evaluating distributions in example patients with a head-and-neck tumor and metal spinal implants. The dose distributions from Monte Carlo simulations were used as the reference. The correction scheme effectively improved the dose calculation accuracy in the distal fall-off region and increased the gamma test pass rate. The extra computation for the correction was about 20% of that for the original algorithm but is dependent upon patient geometry.
NASA Astrophysics Data System (ADS)
Chang, Chih-Yuan; Owen, Gerry; Pease, Roger Fabian W.; Kailath, Thomas
1992-07-01
Dose correction is commonly used to compensate for the proximity effect in electron lithography. The computation of the required dose modulation is usually carried out using 'self-consistent' algorithms that work by solving a large number of simultaneous linear equations. However, there are two major drawbacks: the resulting correction is not exact, and the computation time is excessively long. A computational scheme, as shown in Figure 1, has been devised to eliminate this problem by the deconvolution of the point spread function in the pattern domain. The method is iterative, based on a steepest descent algorithm. The scheme has been successfully tested on a simple pattern with a minimum feature size 0.5 micrometers , exposed on a MEBES tool at 10 KeV in 0.2 micrometers of PMMA resist on a silicon substrate.
Deterministic error correction for nonlocal spatial-polarization hyperentanglement
Li, Tao; Wang, Guan-Yu; Deng, Fu-Guo; Long, Gui-Lu
2016-01-01
Hyperentanglement is an effective quantum source for quantum communication network due to its high capacity, low loss rate, and its unusual character in teleportation of quantum particle fully. Here we present a deterministic error-correction scheme for nonlocal spatial-polarization hyperentangled photon pairs over collective-noise channels. In our scheme, the spatial-polarization hyperentanglement is first encoded into a spatial-defined time-bin entanglement with identical polarization before it is transmitted over collective-noise channels, which leads to the error rejection of the spatial entanglement during the transmission. The polarization noise affecting the polarization entanglement can be corrected with a proper one-step decoding procedure. The two parties in quantum communication can, in principle, obtain a nonlocal maximally entangled spatial-polarization hyperentanglement in a deterministic way, which makes our protocol more convenient than others in long-distance quantum communication. PMID:26861681
Deterministic error correction for nonlocal spatial-polarization hyperentanglement.
Li, Tao; Wang, Guan-Yu; Deng, Fu-Guo; Long, Gui-Lu
2016-02-10
Hyperentanglement is an effective quantum source for quantum communication network due to its high capacity, low loss rate, and its unusual character in teleportation of quantum particle fully. Here we present a deterministic error-correction scheme for nonlocal spatial-polarization hyperentangled photon pairs over collective-noise channels. In our scheme, the spatial-polarization hyperentanglement is first encoded into a spatial-defined time-bin entanglement with identical polarization before it is transmitted over collective-noise channels, which leads to the error rejection of the spatial entanglement during the transmission. The polarization noise affecting the polarization entanglement can be corrected with a proper one-step decoding procedure. The two parties in quantum communication can, in principle, obtain a nonlocal maximally entangled spatial-polarization hyperentanglement in a deterministic way, which makes our protocol more convenient than others in long-distance quantum communication.
NASA Astrophysics Data System (ADS)
Darazi, R.; Gouze, A.; Macq, B.
2009-01-01
Reproducing a natural and real scene as we see in the real world everyday is becoming more and more popular. Stereoscopic and multi-view techniques are used for this end. However due to the fact that more information are displayed requires supporting technologies such as digital compression to ensure the storage and transmission of the sequences. In this paper, a new scheme for stereo image coding is proposed. The original left and right images are jointly coded. The main idea is to optimally exploit the existing correlation between the two images. This is done by the design of an efficient transform that reduces the existing redundancy in the stereo image pair. This approach was inspired by Lifting Scheme (LS). The novelty in our work is that the prediction step is been replaced by an hybrid step that consists in disparity compensation followed by luminance correction and an optimized prediction step. The proposed scheme can be used for lossless and for lossy coding. Experimental results show improvement in terms of performance and complexity compared to recently proposed methods.
NASA Astrophysics Data System (ADS)
Piatkowski, Marian; Müthing, Steffen; Bastian, Peter
2018-03-01
In this paper we consider discontinuous Galerkin (DG) methods for the incompressible Navier-Stokes equations in the framework of projection methods. In particular we employ symmetric interior penalty DG methods within the second-order rotational incremental pressure correction scheme. The major focus of the paper is threefold: i) We propose a modified upwind scheme based on the Vijayasundaram numerical flux that has favourable properties in the context of DG. ii) We present a novel postprocessing technique in the Helmholtz projection step based on H (div) reconstruction of the pressure correction that is computed locally, is a projection in the discrete setting and ensures that the projected velocity satisfies the discrete continuity equation exactly. As a consequence it also provides local mass conservation of the projected velocity. iii) Numerical results demonstrate the properties of the scheme for different polynomial degrees applied to two-dimensional problems with known solution as well as large-scale three-dimensional problems. In particular we address second-order convergence in time of the splitting scheme as well as its long-time stability.
Investigation of television transmission using adaptive delta modulation principles
NASA Technical Reports Server (NTRS)
Schilling, D. L.
1976-01-01
The results are presented of a study on the use of the delta modulator as a digital encoder of television signals. The computer simulation of different delta modulators was studied in order to find a satisfactory delta modulator. After finding a suitable delta modulator algorithm via computer simulation, the results were analyzed and then implemented in hardware to study its ability to encode real time motion pictures from an NTSC format television camera. The effects of channel errors on the delta modulated video signal were tested along with several error correction algorithms via computer simulation. A very high speed delta modulator was built (out of ECL logic), incorporating the most promising of the correction schemes, so that it could be tested on real time motion pictures. Delta modulators were investigated which could achieve significant bandwidth reduction without regard to complexity or speed. The first scheme investigated was a real time frame to frame encoding scheme which required the assembly of fourteen, 131,000 bit long shift registers as well as a high speed delta modulator. The other schemes involved the computer simulation of two dimensional delta modulator algorithms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Lan, E-mail: chenglanster@gmail.com; Stopkowicz, Stella, E-mail: stella.stopkowicz@kjemi.uio.no; Gauss, Jürgen, E-mail: gauss@uni-mainz.de
A perturbative approach to compute second-order spin-orbit (SO) corrections to a spin-free Dirac-Coulomb Hartree-Fock (SFDC-HF) calculation is suggested. The proposed scheme treats the difference between the DC and SFDC Hamiltonian as perturbation and exploits analytic second-derivative techniques. In addition, a cost-effective scheme for incorporating relativistic effects in high-accuracy calculations is suggested consisting of a SFDC coupled-cluster treatment augmented by perturbative SO corrections obtained at the HF level. Benchmark calculations for the hydrogen halides HX, X = F-At as well as the coinage-metal fluorides CuF, AgF, and AuF demonstrate the accuracy of the proposed perturbative treatment of SO effects on energiesmore » and electrical properties in comparison with the more rigorous full DC treatment. Furthermore, we present, as an application of our scheme, results for the electrical properties of AuF and XeAuF.« less
Maly, Friedrich E; Fried, Roman; Spannagl, Michael
2014-01-01
INSTAND e.V. has provided Molecular Genetics Multi-Analyte EQA schemes since 2006. EQA participation and performance were assessed from 2006 - 2012. From 2006 to 2012, the number of analytes in the Multi-Analyte EQA schemes rose from 17 to 53. Total number of results returned rose from 168 in January 2006 to 824 in August 2012. The overall error rate was 1.40 +/- 0.84% (mean +/- SD, N = 24 EQA dates). From 2006 to 2012, no analyte was reported 100% correctly. Individual participant performance was analysed for one common analyte, Lactase (LCT) T-13910C. From 2006 to 2012, 114 laboratories participated in this EQA. Of these, 10 laboratories (8.8%) reported at least one wrong result during the whole observation period. All laboratories reported correct results after their failure incident. In spite of the low overall error rate, EQA will continue to be important for Molecular Genetics.
NASA Astrophysics Data System (ADS)
Wang, Liming; Qiao, Yaojun; Yu, Qian; Zhang, Wenbo
2016-04-01
We introduce a watermark non-binary low-density parity check code (NB-LDPC) scheme, which can estimate the time-varying noise variance by using prior information of watermark symbols, to improve the performance of NB-LDPC codes. And compared with the prior-art counterpart, the watermark scheme can bring about 0.25 dB improvement in net coding gain (NCG) at bit error rate (BER) of 1e-6 and 36.8-81% reduction of the iteration numbers. Obviously, the proposed scheme shows great potential in terms of error correction performance and decoding efficiency.
A concatenated coding scheme for error control
NASA Technical Reports Server (NTRS)
Lin, S.
1985-01-01
A concatenated coding scheme for error contol in data communications was analyzed. The inner code is used for both error correction and detection, however the outer code is used only for error detection. A retransmission is requested if either the inner code decoder fails to make a successful decoding or the outer code decoder detects the presence of errors after the inner code decoding. Probability of undetected error of the proposed scheme is derived. An efficient method for computing this probability is presented. Throughout efficiency of the proposed error control scheme incorporated with a selective repeat ARQ retransmission strategy is analyzed.
Symmetric weak ternary quantum homomorphic encryption schemes
NASA Astrophysics Data System (ADS)
Wang, Yuqi; She, Kun; Luo, Qingbin; Yang, Fan; Zhao, Chao
2016-03-01
Based on a ternary quantum logic circuit, four symmetric weak ternary quantum homomorphic encryption (QHE) schemes were proposed. First, for a one-qutrit rotation gate, a QHE scheme was constructed. Second, in view of the synthesis of a general 3 × 3 unitary transformation, another one-qutrit QHE scheme was proposed. Third, according to the one-qutrit scheme, the two-qutrit QHE scheme about generalized controlled X (GCX(m,n)) gate was constructed and further generalized to the n-qutrit unitary matrix case. Finally, the security of these schemes was analyzed in two respects. It can be concluded that the attacker can correctly guess the encryption key with a maximum probability pk = 1/33n, thus it can better protect the privacy of users’ data. Moreover, these schemes can be well integrated into the future quantum remote server architecture, and thus the computational security of the users’ private quantum information can be well protected in a distributed computing environment.
Lee, Tian-Fu; Chang, I-Pin; Lin, Tsung-Hung; Wang, Ching-Cheng
2013-06-01
The integrated EPR information system supports convenient and rapid e-medicine services. A secure and efficient authentication scheme for the integrated EPR information system provides safeguarding patients' electronic patient records (EPRs) and helps health care workers and medical personnel to rapidly making correct clinical decisions. Recently, Wu et al. proposed an efficient password-based user authentication scheme using smart cards for the integrated EPR information system, and claimed that the proposed scheme could resist various malicious attacks. However, their scheme is still vulnerable to lost smart card and stolen verifier attacks. This investigation discusses these weaknesses and proposes a secure and efficient authentication scheme for the integrated EPR information system as alternative. Compared with related approaches, the proposed scheme not only retains a lower computational cost and does not require verifier tables for storing users' secrets, but also solves the security problems in previous schemes and withstands possible attacks.
Pridmore, Ralph W
2013-01-01
This paper relates major functions at the start and end of the color vision process. The process starts with three cone photoreceptors transducing light into electrical responses. Cone sensitivities were once expected to be Red Green Blue color matching functions (to mix colors) but microspectrometry proved otherwise: they instead peak in yellowish, greenish, and blueish hues. These physiological functions are an enigma, unmatched with any set of psychophysical (behavioral) functions. The end-result of the visual process is color sensation, whose essential percepts are unique (or pure) hues red, yellow, green, blue. Unique hues cannot be described by other hues, but can describe all other hues, e.g., that hue is reddish-blue. They are carried by four opponent chromatic response curves but the literature does not specify whether each curve represents a range of hues or only one hue (a unique) over its wavelength range. Here the latter is demonstrated, confirming that opponent chromatic responses define, and may be termed, unique hue chromatic responses. These psychophysical functions also are an enigma, unmatched with any physiological functions or basis. Here both enigmas are solved by demonstrating the three cone sensitivity curves and the three spectral chromatic response curves are almost identical sets (Pearson correlation coefficients r from 0.95-1.0) in peak wavelengths, curve shapes, math functions, and curve crossover wavelengths, though previously unrecognized due to presentation of curves in different formats, e.g., log, linear. (Red chromatic response curve is largely nonspectral and thus derives from two cones.) Close correlation combined with deterministic causation implies cones are the physiological basis of unique hues. This match of three physiological and three psychophysical functions is unique in color vision.
NASA Astrophysics Data System (ADS)
Iwai, Daiki; Suganami, Haruka; Hosoba, Minoru; Ohno, Kazuko; Emoto, Yutaka; Tabata, Yoshito; Matsui, Norihisa
2013-03-01
Color image consistency has not been accomplished yet except the Digital Imaging and Communication in Medicine (DICOM) Supplement 100 for implementing a color reproduction pipeline and device independent color spaces. Thus, most healthcare enterprises could not check monitor degradation routinely. To ensure color consistency in medical color imaging, monitor color calibration should be introduced. Using simple color calibration device . chromaticity of colors including typical color (Red, Green, Blue, Green and White) are measured as device independent profile connection space value called u'v' before and after calibration. In addition, clinical color images are displayed and visual differences are observed. In color calibration, monitor brightness level has to be set to quite lower value 80 cd/m2 according to sRGB standard. As Maximum brightness of most color monitors available currently for medical use have much higher brightness than 80 cd/m2, it is not seemed to be appropriate to use 80 cd/m2 level for calibration. Therefore, we propose that new brightness standard should be introduced while maintaining the color representation in clinical use. To evaluate effects of brightness to chromaticity experimentally, brightness level is changed in two monitors from 80 to 270cd/m2 and chromaticity value are compared with each brightness levels. As a result, there are no significant differences in chromaticity diagram when brightness levels are changed. In conclusion, chromaticity is close to theoretical value after color calibration. Moreover, chromaticity isn't moved when brightness is changed. The results indicate optimized reference brightness level for clinical use could be set at high brightness in current monitors .
Kaszycki, Paweł; Dubicka-Lisowska, Aleksandra; Augustynowicz, Joanna; Piwowarczyk, Barbara; Wesołowski, Wojciech
2018-03-01
Chromate-induced physiological stress in a water-submerged macrophyte Callitriche cophocarpa Sendtn. (water starwort) was tested at the proteomic level. The oxidative stress status of the plant treated with 1 mM Cr(VI) for 3 days revealed stimulation of peroxidases whereas catalase and superoxide dismutase activities were similar to the control levels. Employing two-dimensional electrophoresis, comparative proteomics enabled to detect five differentiating proteins subjected to identification with mass spectrometry followed by an NCBI database search. Cr(VI) incubation led to induction of light harvesting chlorophyll a/b binding protein with a concomitant decrease of accumulation of ribulose bisphosphate carboxylase (RuBisCO). The main finding was, however, the identification of an NAD(P)H-dependent dehydrogenase FQR1, detectable only in Cr(VI)-treated plants. The FQR1 flavoenzyme is known to be responsive to oxidative stress and to act as a detoxification protein by protecting the cells against oxidative damage. It exhibits the in vitro quinone reductase activity and is capable of catalyzing two-electron transfer from NAD(P)H to several substrates, presumably including Cr(VI). The enhanced accumulation of FQR1 was chromate-specific since other stressful conditions, such as salt, temperature, and oxidative stresses, all failed to induce the protein. Zymographic analysis of chromate-treated Callitriche shoots showed a novel enzymatic protein band whose activity was attributed to the newly identified enzyme. We suggest that Cr(VI) phytoremediation with C. cophocarpa can be promoted by chromate reductase activity produced by the induced quinone oxidoreductase which might take part in Cr(VI) → Cr(III) bioreduction process and thus enable the plant to cope with the chromate-generated oxidative stress.
Pridmore, Ralph W.
2013-01-01
This paper relates major functions at the start and end of the color vision process. The process starts with three cone photoreceptors transducing light into electrical responses. Cone sensitivities were once expected to be Red Green Blue color matching functions (to mix colors) but microspectrometry proved otherwise: they instead peak in yellowish, greenish, and blueish hues. These physiological functions are an enigma, unmatched with any set of psychophysical (behavioral) functions. The end-result of the visual process is color sensation, whose essential percepts are unique (or pure) hues red, yellow, green, blue. Unique hues cannot be described by other hues, but can describe all other hues, e.g., that hue is reddish-blue. They are carried by four opponent chromatic response curves but the literature does not specify whether each curve represents a range of hues or only one hue (a unique) over its wavelength range. Here the latter is demonstrated, confirming that opponent chromatic responses define, and may be termed, unique hue chromatic responses. These psychophysical functions also are an enigma, unmatched with any physiological functions or basis. Here both enigmas are solved by demonstrating the three cone sensitivity curves and the three spectral chromatic response curves are almost identical sets (Pearson correlation coefficients r from 0.95–1.0) in peak wavelengths, curve shapes, math functions, and curve crossover wavelengths, though previously unrecognized due to presentation of curves in different formats, e.g., log, linear. (Red chromatic response curve is largely nonspectral and thus derives from two cones.) Close correlation combined with deterministic causation implies cones are the physiological basis of unique hues. This match of three physiological and three psychophysical functions is unique in color vision. PMID:24204755
NASA Astrophysics Data System (ADS)
Wang, Gaili; Wong, Wai-Kin; Hong, Yang; Liu, Liping; Dong, Jili; Xue, Ming
2015-03-01
The primary objective of this study is to improve the performance of deterministic high resolution rainfall forecasts caused by severe storms by merging an extrapolation radar-based scheme with a storm-scale Numerical Weather Prediction (NWP) model. Effectiveness of Multi-scale Tracking and Forecasting Radar Echoes (MTaRE) model was compared with that of a storm-scale NWP model named Advanced Regional Prediction System (ARPS) for forecasting a violent tornado event that developed over parts of western and much of central Oklahoma on May 24, 2011. Then the bias corrections were performed to improve the forecast accuracy of ARPS forecasts. Finally, the corrected ARPS forecast and radar-based extrapolation were optimally merged by using a hyperbolic tangent weight scheme. The comparison of forecast skill between MTaRE and ARPS in high spatial resolution of 0.01° × 0.01° and high temporal resolution of 5 min showed that MTaRE outperformed ARPS in terms of index of agreement and mean absolute error (MAE). MTaRE had a better Critical Success Index (CSI) for less than 20-min lead times and was comparable to ARPS for 20- to 50-min lead times, while ARPS had a better CSI for more than 50-min lead times. Bias correction significantly improved ARPS forecasts in terms of MAE and index of agreement, although the CSI of corrected ARPS forecasts was similar to that of the uncorrected ARPS forecasts. Moreover, optimally merging results using hyperbolic tangent weight scheme further improved the forecast accuracy and became more stable.
Elucidation of molecular kinetic schemes from macroscopic traces using system identification
González-Maeso, Javier; Sealfon, Stuart C.; Galocha-Iragüen, Belén; Brezina, Vladimir
2017-01-01
Overall cellular responses to biologically-relevant stimuli are mediated by networks of simpler lower-level processes. Although information about some of these processes can now be obtained by visualizing and recording events at the molecular level, this is still possible only in especially favorable cases. Therefore the development of methods to extract the dynamics and relationships between the different lower-level (microscopic) processes from the overall (macroscopic) response remains a crucial challenge in the understanding of many aspects of physiology. Here we have devised a hybrid computational-analytical method to accomplish this task, the SYStems-based MOLecular kinetic scheme Extractor (SYSMOLE). SYSMOLE utilizes system-identification input-output analysis to obtain a transfer function between the stimulus and the overall cellular response in the Laplace-transformed domain. It then derives a Markov-chain state molecular kinetic scheme uniquely associated with the transfer function by means of a classification procedure and an analytical step that imposes general biological constraints. We first tested SYSMOLE with synthetic data and evaluated its performance in terms of its rate of convergence to the correct molecular kinetic scheme and its robustness to noise. We then examined its performance on real experimental traces by analyzing macroscopic calcium-current traces elicited by membrane depolarization. SYSMOLE derived the correct, previously known molecular kinetic scheme describing the activation and inactivation of the underlying calcium channels and correctly identified the accepted mechanism of action of nifedipine, a calcium-channel blocker clinically used in patients with cardiovascular disease. Finally, we applied SYSMOLE to study the pharmacology of a new class of glutamate antipsychotic drugs and their crosstalk mechanism through a heteromeric complex of G protein-coupled receptors. Our results indicate that our methodology can be successfully applied to accurately derive molecular kinetic schemes from experimental macroscopic traces, and we anticipate that it may be useful in the study of a wide variety of biological systems. PMID:28192423
Chromatic energy filter and characterization of laser-accelerated proton beams for particle therapy
NASA Astrophysics Data System (ADS)
Hofmann, Ingo; Meyer-ter-Vehn, Jürgen; Yan, Xueqing; Al-Omari, Husam
2012-07-01
The application of laser accelerated protons or ions for particle therapy has to cope with relatively large energy and angular spreads as well as possibly significant random fluctuations. We suggest a method for combined focusing and energy selection, which is an effective alternative to the commonly considered dispersive energy selection by magnetic dipoles. Our method is based on the chromatic effect of a magnetic solenoid (or any other energy dependent focusing device) in combination with an aperture to select a certain energy width defined by the aperture radius. It is applied to an initial 6D phase space distribution of protons following the simulation output from a Radiation Pressure Acceleration model. Analytical formula for the selection aperture and chromatic emittance are confirmed by simulation results using the TRACEWIN code. The energy selection is supported by properly placed scattering targets to remove the imprint of the chromatic effect on the beam and to enable well-controlled and shot-to-shot reproducible energy and transverse density profiles.
Sudden acquired retinal degeneration syndrome in western Canada: 93 cases.
Leis, Marina L; Lucyshyn, Danica; Bauer, Bianca S; Grahn, Bruce H; Sandmeyer, Lynne S
2017-11-01
This study reviewed clinical data from dogs diagnosed with sudden acquired retinal degeneration syndrome (SARDS) in western Canada. Medical records from the Western College of Veterinary Medicine from 2002 to 2016 showed that 93 cases of SARDS were diagnosed based on presentation for sudden blindness and a bilaterally extinguished electroretinogram. The most common pure breeds were the miniature schnauzer, dachshund, and pug. The mean age at diagnosis was 8.1 years and males and females were equally affected. Most of the dogs were presented with normal non-chromatic, but abnormal chromatic pupillary light reflexes. The incidence of retinal degeneration as detected via ophthalmoscopy increased over time after SARDS diagnosis. Polyuria, polydipsia, polyphagia, weight gain, elevated liver enzyme values, isosthenuria, and proteinuria were common clinical and laboratory findings. Chromatic pupillary light reflex testing may be more valuable than non-chromatic pupillary light testing in detecting pupil response abnormalities in dogs with SARDS, although electroretinography remains the definitive diagnostic test.
Sudden acquired retinal degeneration syndrome in western Canada: 93 cases
Leis, Marina L.; Lucyshyn, Danica; Bauer, Bianca S.; Grahn, Bruce H.; Sandmeyer, Lynne S.
2017-01-01
This study reviewed clinical data from dogs diagnosed with sudden acquired retinal degeneration syndrome (SARDS) in western Canada. Medical records from the Western College of Veterinary Medicine from 2002 to 2016 showed that 93 cases of SARDS were diagnosed based on presentation for sudden blindness and a bilaterally extinguished electroretinogram. The most common pure breeds were the miniature schnauzer, dachshund, and pug. The mean age at diagnosis was 8.1 years and males and females were equally affected. Most of the dogs were presented with normal non-chromatic, but abnormal chromatic pupillary light reflexes. The incidence of retinal degeneration as detected via ophthalmoscopy increased over time after SARDS diagnosis. Polyuria, polydipsia, polyphagia, weight gain, elevated liver enzyme values, isosthenuria, and proteinuria were common clinical and laboratory findings. Chromatic pupillary light reflex testing may be more valuable than non-chromatic pupillary light testing in detecting pupil response abnormalities in dogs with SARDS, although electroretinography remains the definitive diagnostic test. PMID:29089658
Stereoscopic depth perception varies with hues
NASA Astrophysics Data System (ADS)
Chen, Zaiqing; Shi, Junsheng; Tai, Yonghang; Yun, Lijun
2012-09-01
The contribution of color information to stereopsis is controversial, and whether the stereoscopic depth perception varies with chromaticity is ambiguous. This study examined the changes in depth perception caused by hue variations. Based on the fact that a greater disparity range indicates more efficient stereoscopic perception, the effect of hue variations on depth perception was evaluated through the disparity range with random-dot stereogram stimuli. The disparity range was obtained by constant-stimulus method for eight chromaticity points sampled from the CIE 1931 chromaticity diagram. Eight sample points include four main color hues: red, yellow, green, and blue at two levels of chroma. The results show that the disparity range for the yellow hue is greater than the red hue, the latter being greater than the blue hue and the disparity range for green hue is smallest. We conclude that the perceived depth is not the same for different hues for a given size of disparity. We suggest that the stereoscopic depth perception can vary with chromaticity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kupavskii, A B; Raigorodskii, A M
2013-10-31
We investigate in detail some properties of distance graphs constructed on the integer lattice. Such graphs find wide applications in problems of combinatorial geometry, in particular, such graphs were employed to answer Borsuk's question in the negative and to obtain exponential estimates for the chromatic number of the space. This work is devoted to the study of the number of cliques and the chromatic number of such graphs under certain conditions. Constructions of sequences of distance graphs are given, in which the graphs have unit length edges and contain a large number of triangles that lie on a sphere of radius 1/√3more » (which is the minimum possible). At the same time, the chromatic numbers of the graphs depend exponentially on their dimension. The results of this work strengthen and generalize some of the results obtained in a series of papers devoted to related issues. Bibliography: 29 titles.« less
Molybdate Coatings for Protecting Aluminum Against Corrosion
NASA Technical Reports Server (NTRS)
Calle, Luz Marina; MacDowell, Louis G.
2005-01-01
Conversion coatings that comprise mixtures of molybdates and several additives have been subjected to a variety of tests to evaluate their effectiveness in protecting aluminum and alloys of aluminum against corrosion. Molybdate conversion coatings are under consideration as replacements for chromate conversion coatings, which have been used for more than 70 years. The chromate coatings are highly effective in protecting aluminum and its alloys against corrosion but are also toxic and carcinogenic. Hexavalent molybdenum and, hence, molybdates containing hexavalent molybdenum, have received attention recently as replacements for chromates because molybdates mimic chromates in a variety of applications but exhibit significantly lower toxicity. The tests were performed on six proprietary formulations of molybdate conversion coatings, denoted formulations A through F, on panels of aluminum alloy 2024-T3. A bare alloy panel was also included in the tests. The tests included electrochemical impedance spectroscopy (EIS), measurements of corrosion potentials, scanning electron microscopy (SEM) with energy-dispersive spectroscopy (EDS), and x-ray photoelectron spectroscopy (XPS).
Visual evoked potential assessment of the effects of glaucoma on visual subsystems.
Greenstein, V C; Seliger, S; Zemon, V; Ritch, R
1998-06-01
The purpose of this study is to test the hypothesis that glaucoma leads to selective deficits in parallel pathways or channels. Sweep VEPs were obtained to isolated-check stimuli that were modulated sinusoidally in either isoluminant chromatic contrast or in positive and negative luminance contrast. Response functions were obtained from 14 control subjects, 15 patients with open-angle glaucoma, and seven glaucoma suspects. For all three groups of subjects we found characteristic differences between the VEP response functions to isoluminant chromatic contrast stimuli and to luminance contrast stimuli. The isoluminant chromatic stimulus conditions appeared to favor activity of the P-pathway, whereas the luminance contrast stimuli at low depths of modulation favored M-pathway activity. VEP responses for patients with OAG were significantly reduced for chromatic contrast and luminance contrast conditions, whereas VEP responses for glaucoma suspects were significantly reduced only for the 15-Hz positive luminance contrast condition. Our results suggest that both M- and P-pathways are affected by glaucoma.
Chromaticity of color perception and object color knowledge.
Hsu, Nina S; Frankland, Steven M; Thompson-Schill, Sharon L
2012-01-01
Sensorimotor theories of semantic memory require overlap between conceptual and perceptual representations. One source of evidence for such overlap comes from neuroimaging reports of co-activation during memory retrieval and perception; for example, regions involved in color perception (i.e., regions that respond more to colored than grayscale stimuli) are activated by retrieval of object color. One unanswered question from these studies is whether distinctions that are observed during perception are likewise observed during memory retrieval. That is, are regions defined by a chromaticity effect in perception similarly modulated by the chromaticity of remembered objects (e.g., lemons more than coal)? Subjects performed color perception and color retrieval tasks while undergoing fMRI. We observed increased activation during both perception and memory retrieval of chromatic compared to achromatic stimuli in overlapping areas of the left lingual gyrus, but not in dorsal or anterior regions activated during color perception. These results support sensorimotor theories but suggest important distinctions within the conceptual system. Copyright © 2011 Elsevier Ltd. All rights reserved.
Amino-functionalized MCM-41 and MCM-48 for the removal of chromate and arsenate.
Benhamou, A; Basly, J P; Baudu, M; Derriche, Z; Hamacha, R
2013-08-15
The aim of the present work was to investigate the efficiency of three amino-functionalized (hexadecylamine, dodecylamine, and dimethyldodecylamine) mesoporous silicas (MCM-41 and MCM-48) toward the adsorption of arsenate and chromate. Hexadecylamine-functionalized materials were characterized; BET surface areas, pore volumes, and sizes decreased with the functionalization, whereas XRD patterns show that the hexagonal structure of MCM-41 and the cubic structure of MCM-48 were not modified. The zeta potential decreases with pH and the highest arsenate and chromate removal was observed at the lowest pHs. Adsorption of chromium and arsenate was significantly enhanced after functionalization and amino-functionalized MCM-41 adsorb larger amounts of arsenate when compared to expanded MCM-48 materials. Chromate sorption capacities increased with the chain length and the larger capacities were obtained with hexadecylamine-functionalized mesoporous silicas. Mesoporous silicas modified by dimethyldodecylamine exhibited the higher arsenate sorption capacities. Copyright © 2013 Elsevier Inc. All rights reserved.
Non-toric extended depth of focus contact lenses for astigmatism and presbyopia correction
NASA Astrophysics Data System (ADS)
Ben Yaish, Shai; Zlotnik, Alex; Yehezkel, Oren; Lahav-Yacouel, Karen; Belkin, Michael; Zalevsky, Zeev
2010-02-01
Purpose: Testing whether the extended depth of focus technology embedded on non-toric contact lenses is a suitable treatment for both astigmatism and presbyopia. Methods: The extended depth of focus pattern consisting of microndepth concentric grooves was engraved on a surface of a mono-focal soft contact lens. These grooves create an interference pattern extending the focus from a point to a length of about 1mm providing a 3.00D extension in the depth of focus. The extension in the depth of focus provides high quality focused imaging capabilities from near through intermediate and up to far ranges. Due to the angular symmetry of the engraved pattern the extension in the depth of focus can also resolve regular as well as irregular astigmatism aberrations. Results: The contact lens was tested on a group of 8 astigmatic and 13 subjects with presbyopia. Average correction of 0.70D for astigmatism and 1.50D for presbyopia was demonstrated. Conclusions: The extended depth of focus technology in a non-toric contact lens corrects simultaneously astigmatism and presbyopia. The proposed solution is based upon interference rather than diffraction effects and thus it is characterized by high energetic efficiency to the retina plane as well as reduced chromatic aberrations.
Fast ray-tracing of human eye optics on Graphics Processing Units.
Wei, Qi; Patkar, Saket; Pai, Dinesh K
2014-05-01
We present a new technique for simulating retinal image formation by tracing a large number of rays from objects in three dimensions as they pass through the optic apparatus of the eye to objects. Simulating human optics is useful for understanding basic questions of vision science and for studying vision defects and their corrections. Because of the complexity of computing such simulations accurately, most previous efforts used simplified analytical models of the normal eye. This makes them less effective in modeling vision disorders associated with abnormal shapes of the ocular structures which are hard to be precisely represented by analytical surfaces. We have developed a computer simulator that can simulate ocular structures of arbitrary shapes, for instance represented by polygon meshes. Topographic and geometric measurements of the cornea, lens, and retina from keratometer or medical imaging data can be integrated for individualized examination. We utilize parallel processing using modern Graphics Processing Units (GPUs) to efficiently compute retinal images by tracing millions of rays. A stable retinal image can be generated within minutes. We simulated depth-of-field, accommodation, chromatic aberrations, as well as astigmatism and correction. We also show application of the technique in patient specific vision correction by incorporating geometric models of the orbit reconstructed from clinical medical images. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Ganglion Cell Loss and Age-Related Visual Loss: A Cortical Pooling Analysis
SCHMIDT, LAURA A.; LY-SCHROEDER, EMILY; SWANSON, WILLIAM H.
2006-01-01
Purpose To evaluate the ability of the cortical pooling model to predict the effects of random, mild ganglion cell loss, we compared the predictions of the model with the age-related loss and variability in achromatic and chromatic contrast sensitivity. Methods The relative sensitivity to small (0.5°) and large (3.0°) stimuli was compared in older (mean = 67 years, n = 27) and younger (mean = 23 years, n = 32) adults. Contrast sensitivity for modulations along the luminance, equiluminant L-cone, and equiluminant S-cone axes was assessed at the fovea and at four peripheral locations (12°). Results When the stimuli were large, threshold measurements obtained from all participants were reliable and well within the range of modulations along the chromatic axes that could be produced by the phosphors of the CRT. For the large stimuli, neither long- nor short-term variability increased as a function of age. Increasing the size of the stimulus did not decrease the magnitude of the age-related losses when the stimulus was chromatic, and visual losses observed with large chromatic stimuli were not different from those obtained with small achromatic stimuli. Moreover, chromatic contrast sensitivity assessments identified significant visual losses in four individuals who were not identified by achromatic contrast sensitivity assessments and only missed identifying one individual with significant losses in achromatic contrast sensitivity. Conclusions The declines in achromatic and chromatic sensitivity as a function of age (0.4 – 0.7 dB per decade) were similar to those obtained in previous studies of achromatic and chromatic perimetry and are consistent with the loss of retinal ganglion cells reported in histologic studies. The results of this study are consistent with the predictions the cortical pooling model makes for both variability and contrast sensitivity. These findings emphasize that selective visual impairments do not necessarily reflect preferential damage to a single ganglion cell class and that it is important to include the influence of higher cortical processing when quantifying the relation between ganglion cells and visual function. PMID:16840870
1992-01-01
multiversioning scheme for this purpose was presented in [9]. The scheme guarantees that high level methods would read down object states at lower levels that...order given by fork-stamp, and terminated writing versions with timestamp WStamp. Such a history is needed to implement the multiversioning scheme...recovery protocol for multiversion schedulers and show that this protocol is both correct and secure. The behavior of the recovery protocol depends
NASA Technical Reports Server (NTRS)
Huynh, H. T.; Wang, Z. J.; Vincent, P. E.
2013-01-01
Popular high-order schemes with compact stencils for Computational Fluid Dynamics (CFD) include Discontinuous Galerkin (DG), Spectral Difference (SD), and Spectral Volume (SV) methods. The recently proposed Flux Reconstruction (FR) approach or Correction Procedure using Reconstruction (CPR) is based on a differential formulation and provides a unifying framework for these high-order schemes. Here we present a brief review of recent developments for the FR/CPR schemes as well as some pacing items.
NASA Astrophysics Data System (ADS)
Somogyi, Gábor
2013-04-01
We finish the definition of a subtraction scheme for computing NNLO corrections to QCD jet cross sections. In particular, we perform the integration of the soft-type contributions to the doubly unresolved counterterms via the method of Mellin-Barnes representations. With these final ingredients in place, the definition of the scheme is complete and the computation of fully differential rates for electron-positron annihilation into two and three jets at NNLO accuracy becomes feasible.
NASA Astrophysics Data System (ADS)
Chakraborty, Swarnendu Kumar; Goswami, Rajat Subhra; Bhunia, Chandan Tilak; Bhunia, Abhinandan
2016-06-01
Aggressive packet combining (APC) scheme is well-established in literature. Several modifications were studied earlier for improving throughput. In this paper, three new modifications of APC are proposed. The performance of proposed modified APC is studied by simulation and is reported here. A hybrid scheme is proposed here for getting higher throughput and also the disjoint factor is compared among conventional APC with proposed schemes for getting higher throughput.
In vivo imaging of retinal pigment epithelium cells in age related macular degeneration
Rossi, Ethan A.; Rangel-Fonseca, Piero; Parkins, Keith; Fischer, William; Latchney, Lisa R.; Folwell, Margaret A.; Williams, David R.; Dubra, Alfredo; Chung, Mina M.
2013-01-01
Morgan and colleagues demonstrated that the RPE cell mosaic can be resolved in the living human eye non-invasively by imaging the short-wavelength autofluorescence using an adaptive optics (AO) ophthalmoscope. This method, based on the assumption that all subjects have the same longitudinal chromatic aberration (LCA) correction, has proved difficult to use in diseased eyes, and in particular those affected by age-related macular degeneration (AMD). In this work, we improve Morgan’s method by accounting for chromatic aberration variations by optimizing the confocal aperture axial and transverse placement through an automated iterative maximization of image intensity. The increase in image intensity after algorithmic aperture placement varied depending upon patient and aperture position prior to optimization but increases as large as a factor of 10 were observed. When using a confocal aperture of 3.4 Airy disks in diameter, images were obtained using retinal radiant exposures of less than 2.44 J/cm2, which is ~22 times below the current ANSI maximum permissible exposure. RPE cell morphologies that were strikingly similar to those seen in postmortem histological studies were observed in AMD eyes, even in areas where the pattern of fluorescence appeared normal in commercial fundus autofluorescence (FAF) images. This new method can be used to study RPE morphology in AMD and other diseases, providing a powerful tool for understanding disease pathogenesis and progression, and offering a new means to assess the efficacy of treatments designed to restore RPE health. PMID:24298413
DOT National Transportation Integrated Search
2000-09-01
Timber bridge components are treated with chromated copper arsenate type C (CCA), pentachlorophenol or creosote to preserve the life of the structure from a few years to many decades, resulting in reduced transportation infrastructure costs and incre...
Concerns have been raised regarding the safety of young children contacting arsenic and chromium residues while playing on and around Chromated Copper Arsenate (CCA) treated wood playground structures and decks. Although CCA registrants voluntarily canceled treated wood for re...
Lessons Learned in Technology Transition (Briefing Charts)
2011-02-01
recertification • Environmental regulations • Federal clean air act • OSHA and EPA requirements – Cadmium, hexavalent chromium, VOC reduction • ReaCH Copyright...Efforts • Non-Chromated Exterior System Non-chromated conversion coat and primer • Non- Chrome for other areas • Chemical topcoat reactivation Future
Ščančar, Janez; Berlinger, Balázs; Thomassen, Yngvar; Milačič, Radmila
2015-09-01
A novel analytical procedure was developed for the simultaneous speciation analysis of chromate, molybdate, tungstate and vanadate by anion-exchange high performance liquid chromatography hyphenated to inductively coupled plasma mass spectrometry (HPLC-ICP-MS). Linear gradient elution from 100% water to 100% 0.7 M NaCl was applied for chromatographic separation of metal species. In standard aqueous solution at neutral pH molybdate, tungstate and vanadate exist in several aqueous species, while chromate is present as a single CrO4(2-) species. Consequently, only chromate can be separated from this solution in a sharp chromatographic peak. For obtaining sharp chromatographic peaks for molybdate, tungstate and vanadate, the pH of aqueous standard solutions was raised to 12. At highly alkaline conditions single CrO4(2-), MoO4(2-) and WO4(2-) are present and were eluted in sharp chromatographic peaks, while VO4(3-) species, which predominates at pH 12 was eluted in slightly broaden peak. In a mixture of aqueous standard solutions (pH 12) chromate, molybdate, tungstate and vanadate were eluted at retention times from 380 to 420 s, 320 to 370 s, 300 to 350 s and 240 to 360 s, respectively. Eluted species were simultaneously detected on-line by ICP-MS recording m/z 52, 95, 182 and 51. The developed procedure was successfully applied to the analysis of leachable concentrations of chromate, molybdate, tungstate and vanadate in alkaline extracts (2% NaOH+3% Na2CO3) of manual metal arc (MMA) welding fumes loaded on filters. Good repeatability and reproducibility of measurement (RSD±3.0%) for the investigated species were obtained in both aqueous standard solutions (pH 12) and in alkaline extracts of welding fumes. Low limits of detection (LODs) were found for chromate (0.02 ng Cr mL(-1)), molybdate (0.1 ng Mo mL(-1)), tungstate (0.1 ng W mL(-1)) and vanadate (0.2 ng V mL(-1)). The accuracy of analytical procedure for the determination of chromate was checked by analysis of CRM 545, Cr(VI) in welding dust loaded on a filter. Good agreement between determined and reported certified values was obtained. For molybdate, tungstate and vanadate the assessment of accuracy was performed by spiking welding fume filters. Good recoveries for all investigated species (98-101%) confirmed the accuracy of the analytical procedure. Copyright © 2015 Elsevier B.V. All rights reserved.
Neuronal Mechanism for Compensation of Longitudinal Chromatic Aberration-Derived Algorithm.
Barkan, Yuval; Spitzer, Hedva
2018-01-01
The human visual system faces many challenges, among them the need to overcome the imperfections of its optics, which degrade the retinal image. One of the most dominant limitations is longitudinal chromatic aberration (LCA), which causes short wavelengths (blue light) to be focused in front of the retina with consequent blurring of the retinal chromatic image. The perceived visual appearance, however, does not display such chromatic distortions. The intriguing question, therefore, is how the perceived visual appearance of a sharp and clear chromatic image is achieved despite the imperfections of the ocular optics. To address this issue, we propose a neural mechanism and computational model, based on the unique properties of the S -cone pathway. The model suggests that the visual system overcomes LCA through two known properties of the S channel: (1) omitting the contribution of the S channel from the high-spatial resolution pathway (utilizing only the L and M channels). (b) Having large and coextensive receptive fields that correspond to the small bistratified cells. Here, we use computational simulations of our model on real images to show how integrating these two basic principles can provide a significant compensation for LCA. Further support for the proposed neuronal mechanism is given by the ability of the model to predict an enigmatic visual phenomenon of large color shifts as part of the assimilation effect.
Neuronal Mechanism for Compensation of Longitudinal Chromatic Aberration-Derived Algorithm
Barkan, Yuval; Spitzer, Hedva
2018-01-01
The human visual system faces many challenges, among them the need to overcome the imperfections of its optics, which degrade the retinal image. One of the most dominant limitations is longitudinal chromatic aberration (LCA), which causes short wavelengths (blue light) to be focused in front of the retina with consequent blurring of the retinal chromatic image. The perceived visual appearance, however, does not display such chromatic distortions. The intriguing question, therefore, is how the perceived visual appearance of a sharp and clear chromatic image is achieved despite the imperfections of the ocular optics. To address this issue, we propose a neural mechanism and computational model, based on the unique properties of the S-cone pathway. The model suggests that the visual system overcomes LCA through two known properties of the S channel: (1) omitting the contribution of the S channel from the high-spatial resolution pathway (utilizing only the L and M channels). (b) Having large and coextensive receptive fields that correspond to the small bistratified cells. Here, we use computational simulations of our model on real images to show how integrating these two basic principles can provide a significant compensation for LCA. Further support for the proposed neuronal mechanism is given by the ability of the model to predict an enigmatic visual phenomenon of large color shifts as part of the assimilation effect. PMID:29527525
Chromatic response of polydiacetylene vesicle induced by the permeation of methotrexate.
Shin, Min Jae; Kim, Ye Jin; Kim, Jong-Duk
2015-07-07
The noble vesicular system of polydiacetylene showed a red shift using two types of detecting systems. One of the systems involves the absorption of target materials from the outer side of the vesicle, and the other system involves the permeation through the vesicular layers from within the vesicle. The chromatic mixed vesicles of N-(2-aminoethyl)pentacosa-10,12-diynamide (AEPCDA) and dimethyldioctadecylammonium chloride (DODAC) were fabricated by sonication, followed by polymerization by UV irradiation. The stability of monomeric vesicles was observed to increase with the polymerization of the vesicles. Methotrexate was used as a target material. The polymerized mixed vesicles having a blue color were exposed to a concentration gradient of methotrexate, and a red shift was observed indicating the adsorption of methotrexate on the polydiacetylene bilayer. In order to check the chromatic change by the permeation of methotrexate, we separated the vesicle portion, which contained methotrexate inside the vesicle, and checked chromatic change during the permeation of methotrexate through the vesicle. The red shift apparently indicates the disturbance in the bilayer induced by the permeation of methotrexate. The maximum contrast of color appeared at the equal molar ratio of AEPCDA and DODAC, indicating that the formation of flexible and deformable vesicular layers is important for red shift. Therefore, it is hypothesized that the system can be applicable for the chromatic detection of the permeation of methotrexate through the polydiacetylene layer.