Porous polymer packings have been used successfully in many applications of direct aqueous injection gas chromatography. The authors have expanded the use of aqueous injection to the quantitative analysis of 68 alcohols, acetates, ketones, ethers, sulfides, aldehydes, diols, dion...
A simple method for the quantitative determination of elemental sulfur on oxidized sulfide minerals is described. Extraction of elemental sulfur in perchloroethylene and subsequent analysis with high-performance liquid chromatography were used to ascertain the total elemental ...
ERIC Educational Resources Information Center
Sobel, Robert M.; Ballantine, David S.; Ryzhov, Victor
2005-01-01
Industrial application of gas chromatography-mass spectrometry (GC-MS) analysis is a powerful technique that could be used to elucidate components of a complex mixture while offering the benefits of high-precision quantitative analysis. The natural wintergreen oil is examined for its phenol concentration to determine the level of refining…
USDA-ARS?s Scientific Manuscript database
We developed a rapid method with ultra-performance liquid chromatography – tandem mass spectrometry (UPLC-MS/MS) for the qualitative and quantitative analysis of plant proanthocyanidins (PAs) directly from crude plant extracts. The method utilizes a range of cone voltages to achieve the depolymeriza...
Shak, S
1987-01-01
LTB4 and its omega-oxidation products may be rapidly, sensitively, and specifically quantitated by the methods of solid-phase extraction and reversed-phase high-performance liquid chromatography (HPLC), which are described in this chapter. Although other techniques, such as radioimmunoassay or gas chromatography-mass spectrometry, may be utilized for quantitative analysis of the lipoxygenase products of arachidonic acid, only the technique of reversed-phase HPLC can quantitate as many as 10 metabolites in a single analysis, without prior derivatization. In this chapter, we also reviewed the chromatographic theory which we utilized in order to optimize reversed-phase HPLC analysis of LTB4 and its omega-oxidation products. With this information and a gradient HPLC system, it is possible for any investigator to develop a powerful assay for the potent inflammatory mediator, LTB4, or for any other lipoxygenase product of arachidonic acid.
Loescher, Christine M; Morton, David W; Razic, Slavica; Agatonovic-Kustrin, Snezana
2014-09-01
Chromatography techniques such as HPTLC and HPLC are commonly used to produce a chemical fingerprint of a plant to allow identification and quantify the main constituents within the plant. The aims of this study were to compare HPTLC and HPLC, for qualitative and quantitative analysis of the major constituents of Calendula officinalis and to investigate the effect of different extraction techniques on the C. officinalis extract composition from different parts of the plant. The results found HPTLC to be effective for qualitative analysis, however, HPLC was found to be more accurate for quantitative analysis. A combination of the two methods may be useful in a quality control setting as it would allow rapid qualitative analysis of herbal material while maintaining accurate quantification of extract composition. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Owens, J; Hok, S; Alcaraz, A
Tetramethylenedisulfotetramine, commonly known as tetramine, is a highly neurotoxic rodenticide (human oral LD{sub 50} = 0.1 mg/kg) used in hundreds of deliberate food poisoning events in China. Here we describe a method for quantitation of tetramine spiked into beverages, including milk, juice, tea, cola, and water and cleaned up by C8 solid phase extraction and liquid-liquid extraction. Quantitation by high performance liquid chromatography tandem mass spectrometry (LC/MS/MS) was based upon fragmentation of m/z 347 to m/z 268. The method was validated by gas chromatography mass spectrometry (GC/MS) operated in SIM mode for ions m/z 212, 240, and 360. The limitmore » of quantitation was 0.10 {micro}g/mL by LC/MS/MS versus 0.15 {micro}g/mL for GC/MS. Fortifications of the beverages at 2.5 {micro}g/mL and 0.25 {micro}g/mL were recovered ranging from 73-128% by liquid-liquid extraction for GC/MS analysis, 13-96% by SPE and 10-101% by liquid-liquid extraction for LC/MS/MS analysis.« less
Bade, Richard; White, Jason M; Gerber, Cobus
2018-01-01
The combination of qualitative and quantitative bimonthly analysis of pharmaceuticals and illicit drugs using liquid chromatography coupled to mass spectrometry is presented. A liquid chromatography-quadrupole time of flight instrument equipped with Sequential Window Acquisition of all THeoretical fragment-ion spectra (SWATH) was used to qualitatively screen 346 compounds in influent wastewater from two wastewater treatment plants in South Australia over a 14-month period. A total of 100 compounds were confirmed and/or detected using this strategy, with 61 confirmed in all samples including antidepressants (amitriptyline, dothiepin, doxepin), antipsychotics (amisulpride, clozapine), illicit drugs (cocaine, methamphetamine, amphetamine, 3,4-methylenedioxymethamphetamine (MDMA)), and known drug adulterants (lidocaine and tetramisole). A subset of these compounds was also included in a quantitative method, analyzed on a liquid chromatography-triple quadrupole mass spectrometer. The use of illicit stimulants (methamphetamine) showed a clear decrease, levels of opioid analgesics (morphine and methadone) remained relatively stable, while the use of new psychoactive substances (methylenedioxypyrovalerone (MDPV) and Alpha PVP) varied with no visible trend. This work demonstrates the value that high-frequency sampling combined with quantitative and qualitative analysis can deliver. Graphical abstract Temporal analysis of licit and illicit drugs in South Australia.
Klimek-Turek, A; Sikora, M; Rybicki, M; Dzido, T H
2016-03-04
A new concept of using thin-layer chromatography to sample preparation for the quantitative determination of solute/s followed by instrumental techniques is presented Thin-layer chromatography (TLC) is used to completely separate acetaminophen and its internal standard from other components (matrix) and to form a single spot/zone containing them at the solvent front position (after the final stage of the thin-layer chromatogram development). The location of the analytes and internal standard in the solvent front zone allows their easy extraction followed by quantitation by HPLC. The exctraction procedure of the solute/s and internal standard can proceed from whole solute frontal zone or its part without lowering in accuracy of quantitative analysis. Copyright © 2016 Elsevier B.V. All rights reserved.
Identification and Quantitation of Potent Odorants in Spearmint Oils.
Kelley, Lauren E; Cadwallader, Keith R
2018-03-14
Potent odorants in Native spearmint, Scotch spearmint, and Macho mint oils were determined by the combined use of gas chromatography-olfactometry (GCO), gas chromatography-mass spectrometry (GC-MS), and aroma extract dilution analysis (AEDA). Of the 85 odorants detected, ( R)-(-)-carvone was the most potent odorant in all three spearmint oils. Additional predominant odorants in all spearmint oils included eugenol, ethyl ( S)-(+)-2-methylbutanoate, ( E)-β-damascenone, and (3 E,5 Z)-1,3,5-undecatriene. Forty-six compounds were quantitated using various methods, including 19 by gas chromatography with flame ionization detection (GC-FID), 20 by stable isotope dilution analysis (SIDA), and 14 by GCO dilution analysis. Concentrations were used to calculate the odor activity values (OAVs) for predominant odorants in the oils. Among the compounds quantitated, those with the highest OAVs were ( R)-(-)-carvone, 1,8-cineole, ( E, Z)-2,6-nonadienal, ( E)-β-damascenone, and (3 E,5 Z)-1,3,5-undecatriene.
Zonta, F; Stancher, B
1985-07-19
A high-performance liquid chromatographic method for determining phylloquinone (vitamin K1) in soy bean oils is described. Resolution of vitamin K1 from interfering peaks of the matrix was obtained after enzymatic digestion, extraction and liquid-solid chromatography on alumina. An isocratic reversed-phase chromatography with UV detection was used in the final stage. The quantitation was carried out by the standard addition method, and the recovery of the whole procedure was 88.2%.
Crews, Colin
2015-01-01
The principles and application of established and newer methods for the quantitative and semi-quantitative determination of ergot alkaloids in food, feed, plant materials and animal tissues are reviewed. The techniques of sampling, extraction, clean-up, detection, quantification and validation are described. The major procedures for ergot alkaloid analysis comprise liquid chromatography with tandem mass spectrometry (LC-MS/MS) and liquid chromatography with fluorescence detection (LC-FLD). Other methods based on immunoassays are under development and variations of these and minor techniques are available for specific purposes. PMID:26046699
Sel, Sabriye; Öztürk Er, Elif; Bakırdere, Sezgin
2017-12-01
A highly sensitive and simple diode-array high-performance liquid chromatography and liquid chromatography with quadrupole time-of-flight tandem mass spectrometry method was developed for the simultaneous determination of niacin and pyridoxine in pharmaceutical drugs, tap water, and wastewater samples. To determine the in vivo behavior of niacin and pyridoxine, analytes were subjected to simulated gastric conditions. The calibration plots of the diode-array high-performance liquid chromatography and liquid chromatography with quadrupole time-of-flight tandem mass spectrometry method showed good linearity over a wide concentration range with close to 1.0 correlation coefficients for both analytes. The limit of detection/limit of quantitation values for liquid chromatography quadrupole time-of-flight tandem mass spectrometry analysis were 1.98/6.59 and 1.3/4.4 μg/L for niacin and pyridoxine, respectively, while limit of detection/limit of quantitation values for niacin and pyridoxine in high-performance liquid chromatography analysis were 3.7/12.3 and 5.7/18.9 μg/L, respectively. Recovery studies were also performed to show the applicability of the developed methods, and percentage recovery values were found to be 90-105% in tap water and 94-97% in wastewater for both analytes. The method was also successfully applied for the qualitative and quantitative determination of niacin and pyridoxine in drug samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
ERIC Educational Resources Information Center
Hill, Devon W.; And Others
1988-01-01
Describes a laboratory technique for quantitative analysis of caffeine by an isotopic dilution method for coupled gas chromatography-mass spectroscopy. Discusses caffeine analysis and experimental methodology. Lists sample caffeine concentrations found in common products. (MVL)
Razavi, Morteza; Frick, Lauren E; LaMarr, William A; Pope, Matthew E; Miller, Christine A; Anderson, N Leigh; Pearson, Terry W
2012-12-07
We investigated the utility of an SPE-MS/MS platform in combination with a modified SISCAPA workflow for chromatography-free MRM analysis of proteotypic peptides in digested human plasma. This combination of SISCAPA and SPE-MS/MS technology allows sensitive, MRM-based quantification of peptides from plasma digests with a sample cycle time of ∼7 s, a 300-fold improvement over typical MRM analyses with analysis times of 30-40 min that use liquid chromatography upstream of MS. The optimized system includes capture and enrichment to near purity of target proteotypic peptides using rigorously selected, high affinity, antipeptide monoclonal antibodies and reduction of background peptides using a novel treatment of magnetic bead immunoadsorbents. Using this method, we have successfully quantitated LPS-binding protein and mesothelin (concentrations of ∼5000 ng/mL and ∼10 ng/mL, respectively) in human plasma. The method eliminates the need for upstream liquid-chromatography and can be multiplexed, thus facilitating quantitative analysis of proteins, including biomarkers, in large sample sets. The method is ideal for high-throughput biomarker validation after affinity enrichment and has the potential for applications in clinical laboratories.
ERIC Educational Resources Information Center
Xu, Xia; Veenstra, Timothy D.
2012-01-01
The list of physiological events in which sex steroids play a role continues to increase. To decipher the roles that sex steroids play in any condition requires high quality cohorts of samples and assays that provide highly accurate quantitative measures. Liquid and gas chromatography coupled with mass spectrometry (LC-MS and GC-MS) have…
Tao, Lingyan; Zhang, Qing; Wu, Yongjiang; Liu, Xuesong
2016-12-01
In this study, a fast and effective high-performance liquid chromatography method was developed to obtain a fingerprint chromatogram and quantitative analysis simultaneously of four indexes including gallic acid, chlorogenic acid, albiflorin and paeoniflorin of the traditional Chinese medicine Moluodan Concentrated Pill. The method was performed by using a Waters X-bridge C 18 reversed phase column on an Agilent 1200S high-performance liquid chromatography system coupled with diode array detection. The mobile phase of the high-performance liquid chromatography method was composed of 20 mmol/L phosphate solution and acetonitrile with a 1 mL/min eluent velocity, under a detection temperature of 30°C and a UV detection wavelength of 254 nm. After the methodology validation, 16 batches of Moluodan Concentrated Pill were analyzed by this high-performance liquid chromatography method and both qualitative and quantitative evaluation results were achieved by similarity analysis, principal component analysis and hierarchical cluster analysis. The results of these three chemometrics were in good agreement and all indicated that batch 10 and batch 16 showed significant differences with the other 14 batches. This suggested that the developed high-performance liquid chromatography method could be applied in the quality evaluation of Moluodan Concentrated Pill. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Poch, G K; Klette, K L; Anderson, C
2000-04-01
This paper compares the potential forensic application of two sensitive and rapid procedures (liquid chromatography-mass spectrometry and liquid chromatography-ion trap mass spectrometry) for the detection and quantitation of 2-oxo-3-hydroxy lysergic acid diethylamide (O-H-LSD) a major LSD metabolite. O-H-LSD calibration curves for both procedures were linear over the concentration range 0-8,000 pg/mL with correlation coefficients (r2) greater than 0.99. The observed limit of detection (LOD) and limit of quantitation (LOQ) for O-H-LSD in both procedures was 400 pg/mL. Sixty-eight human urine specimens that had previously been found to contain LSD by gas chromatography-mass spectrometry were reanalyzed by both procedures for LSD and O-H-LSD. These specimens contained a mean concentration of O-H-LSD approximately 16 times higher than the LSD concentration. Because both LC methods produce similar results, either procedure can be readily adapted to O-H-LSD analysis for use in high-volume drug-testing laboratories. In addition, the possibility of significantly increasing the LSD detection time window by targeting this major LSD metabolite for analysis may influence other drug-free workplace programs to test for LSD.
Beug, M W; Bigwood, J
1981-03-27
Rapid quantification of psilocybin and psilocin in extracts of wild mushrooms is accomplished by reversed-phase high-performance liquid chromatography with paired-ion reagents. Nine solvent systems and three solid supports are evaluated for their efficiency in separating psilocybin, psilocin and other components of crude mushroom extracts by thin-layer chromatography.
Guo, Yujie; Chen, Xi; Qi, Jin; Yu, Boyang
2016-07-01
A reliable method, combining qualitative analysis by high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry and quantitative assessment by high-performance liquid chromatography with photodiode array detection, has been developed to simultaneously analyze flavonoids and alkaloids in lotus leaf extracts. In the qualitative analysis, a total of 30 compounds, including 12 flavonoids, 16 alkaloids, and two proanthocyanidins, were identified. The fragmentation behaviors of four types of flavone glycoside and three types of alkaloid are summarized. The mass spectra of four representative components, quercetin 3-O-glucuronide, norcoclaurine, nuciferine, and neferine, are shown to illustrate their fragmentation pathways. Five pairs of isomers were detected and three of them were distinguished by comparing the elution order with reference substances and the mass spectrometry data with reported data. In the quantitative analysis, 30 lotus leaf samples from different regions were analyzed to investigate the proportion of eight representative compounds. Quercetin 3-O-glucuronide was found to be the predominant constituent of lotus leaf extracts. For further discrimination among the samples, hierarchical cluster analysis, and principal component analysis, based on the areas of the eight quantitative peaks, were carried out. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wu, Qi; Yuan, Huiming; Zhang, Lihua; Zhang, Yukui
2012-06-20
With the acceleration of proteome research, increasing attention has been paid to multidimensional liquid chromatography-mass spectrometry (MDLC-MS) due to its high peak capacity and separation efficiency. Recently, many efforts have been put to improve MDLC-based strategies including "top-down" and "bottom-up" to enable highly sensitive qualitative and quantitative analysis of proteins, as well as accelerate the whole analytical procedure. Integrated platforms with combination of sample pretreatment, multidimensional separations and identification were also developed to achieve high throughput and sensitive detection of proteomes, facilitating highly accurate and reproducible quantification. This review summarized the recent advances of such techniques and their applications in qualitative and quantitative analysis of proteomes. Copyright © 2012 Elsevier B.V. All rights reserved.
Wang, Tong; Wu, Hai-Long; Xie, Li-Xia; Zhu, Li; Liu, Zhi; Sun, Xiao-Dong; Xiao, Rong; Yu, Ru-Qin
2017-04-01
In this work, a smart chemometrics-enhanced strategy, high-performance liquid chromatography, and diode array detection coupled with second-order calibration method based on alternating trilinear decomposition algorithm was proposed to simultaneously quantify 12 polyphenols in different kinds of apple peel and pulp samples. The proposed strategy proved to be a powerful tool to solve the problems of coelution, unknown interferences, and chromatographic shifts in the process of high-performance liquid chromatography analysis, making it possible for the determination of 12 polyphenols in complex apple matrices within 10 min under simple conditions of elution. The average recoveries with standard deviations, and figures of merit including sensitivity, selectivity, limit of detection, and limit of quantitation were calculated to validate the accuracy of the proposed method. Compared to the quantitative analysis results from the classic high-performance liquid chromatography method, the statistical and graphical analysis showed that our proposed strategy obtained more reliable results. All results indicated that our proposed method used in the quantitative analysis of apple polyphenols was an accurate, fast, universal, simple, and green one, and it was expected to be developed as an attractive alternative method for simultaneous determination of multitargeted analytes in complex matrices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Polymer Analysis by Liquid Chromatography/Electrospray Ionization Time-of-Flight Mass Spectrometry.
Nielen, M W; Buijtenhuijs, F A
1999-05-01
Hyphenation of liquid chromatography (LC) techniques with electrospray ionization (ESI) orthogonal acceleration time-of-flight (oa-TOF) mass spectrometry (MS) provides both MS-based structural information and LC-based quantitative data in polymer analysis. In one experimental setup, three different LC modes are interfaced with MS: size-exclusion chromatography (SEC/MS), gradient polymer elution chromatography (GPEC/MS), and liquid chromatography at the critical point of adsorption (LCCC/MS). In SEC/MS, both absolute mass calibration of the SEC column based on the polymer itself and determination of monomers and end groups from the mass spectra are achieved. GPEC/MS shows detailed chemical heterogeneity of the polymer and the chemical composition distribution within oligomer groups. In LCCC/MS, the retention behavior is primarily governed by chemical heterogeneities, such as different end group functionalities, and quantitative end group calculations can be easily made. The potential of these methods and the benefit of time-of-flight analyzers in polymer analysis are discussed using SEC/MS of a polydisperse poly(methyl methacrylate) sample, GPEC/MS of dipropoxylated bisphenol A/adipic acid polyester resin, LCCC/MS of alkylated poly(ethylene glycol), and LCCC/MS of terephthalic acid/neopentyl glycol polyester resin.
ERIC Educational Resources Information Center
Delaney, Michael F.; And Others
1985-01-01
Describes a simple and reliable new quantitative analysis experiment using liquid chromatography for the determinaiton of caffeine, saccharin, and sodium benzoate in beverages. Background information, procedures used, and typical results obtained are provided. (JN)
With the objective of detecting and quantitating low concentrations of perfluorinated carboxylic acids (PFCAs), including perfluorinated octanoic acid (PFOA), in soils, we compared the analytical suitability of liquid chromatography columns containing three different stationary p...
Dinç, Erdal; Ertekin, Zehra Ceren; Büker, Eda
2016-09-01
Two-way and three-way calibration models were applied to ultra high performance liquid chromatography with photodiode array data with coeluted peaks in the same wavelength and time regions for the simultaneous quantitation of ciprofloxacin and ornidazole in tablets. The chromatographic data cube (tensor) was obtained by recording chromatographic spectra of the standard and sample solutions containing ciprofloxacin and ornidazole with sulfadiazine as an internal standard as a function of time and wavelength. Parallel factor analysis and trilinear partial least squares were used as three-way calibrations for the decomposition of the tensor, whereas three-way unfolded partial least squares was applied as a two-way calibration to the unfolded dataset obtained from the data array of ultra high performance liquid chromatography with photodiode array detection. The validity and ability of two-way and three-way analysis methods were tested by analyzing validation samples: synthetic mixture, interday and intraday samples, and standard addition samples. Results obtained from two-way and three-way calibrations were compared to those provided by traditional ultra high performance liquid chromatography. The proposed methods, parallel factor analysis, trilinear partial least squares, unfolded partial least squares, and traditional ultra high performance liquid chromatography were successfully applied to the quantitative estimation of the solid dosage form containing ciprofloxacin and ornidazole. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Badgett, Majors J.; Boyes, Barry; Orlando, Ron
2017-05-01
Peptides with deamidated asparagine residues and oxidized methionine residues are often not resolved sufficiently to allow quantitation of their native and modified forms using reversed phase (RP) chromatography. The accurate quantitation of these modifications is vital in protein biotherapeutic analysis because they can affect a protein's function, activity, and stability. We demonstrate here that hydrophilic interaction liquid chromatography (HILIC) adequately and predictably separates peptides with these modifications from their native counterparts. Furthermore, coefficients describing the extent of the hydrophilicity of these modifications have been derived and were incorporated into a previously made peptide retention prediction model that is capable of predicting the retention times of peptides with and without these modifications.
Badgett, Majors J; Boyes, Barry; Orlando, Ron
2017-05-01
Peptides with deamidated asparagine residues and oxidized methionine residues are often not resolved sufficiently to allow quantitation of their native and modified forms using reversed phase (RP) chromatography. The accurate quantitation of these modifications is vital in protein biotherapeutic analysis because they can affect a protein's function, activity, and stability. We demonstrate here that hydrophilic interaction liquid chromatography (HILIC) adequately and predictably separates peptides with these modifications from their native counterparts. Furthermore, coefficients describing the extent of the hydrophilicity of these modifications have been derived and were incorporated into a previously made peptide retention prediction model that is capable of predicting the retention times of peptides with and without these modifications. Graphical Abstract ᅟ.
Wong, Tin-Long; An, Ya-Qi; Yan, Bing-Chao; Yue, Rui-Qi; Zhang, Tian-Bo; Ho, Hing-Man; Ren, Tian-Jing; Fung, Hau-Yee; Ma, Dik-Lung; Leung, Chung-Hang; Liu, Zhong-Liang; Pu, Jian-Xin; Han, Quan-Bin; Sun, Han-Dong
2016-06-05
YinHuang drop pill (YHDP) is a new preparation, derived from the traditional YinHuang (YH) decoction. Since drop pills are one of the newly developed forms of Chinese patent drugs, not much research has been done regarding the quality and efficacy. This study aims to establish a comprehensive quantitative analysis of the chemical profile of YHDP. ultra high-performance liquid chromatography quadrupole time of flight mass spectrometry (UHPLC-Q-TOF-MS/MS) was used to identify 34 non-sugar small molecules including 15 flavonoids, 9 phenolic acids, 5 saponins, 1 iridoid, and 4 iridoid glycosides in YHDP samples, and 26 of them were quantitatively determined. Sugar composition of YHDP in terms of fructose, glucose and sucrose was examined via a high performance liquid chromatography-evaporative light scattering detector on an amide column (HPLC-NH2P-ELSD). Macromolecules were examined by high performance gel permeation chromatography coupled with ELSD (HPGPC-ELSD). The content of the drop pill's skeleton component PEG-4000 was also quantified via ultra-high performance liquid chromatography coupled with charged aerosol detector (UHPLC-CAD). The results showed that up to 73% (w/w) of YHDP could be quantitatively determined. Small molecules accounted for approximately 5%, PEG-4000 represented 68%, while no sugars or macromolecules were found. Furthermore, YHDP showed no significant differences in terms of daily dosage, compared to YinHuang granules and YinHuang oral liquid; however, it has a higher small molecules content compared to YinHuang lozenge. Copyright © 2016 Elsevier B.V. All rights reserved.
Mycotoxin analysis: an update.
Krska, Rudolf; Schubert-Ullrich, Patricia; Molinelli, Alexandra; Sulyok, Michael; MacDonald, Susan; Crews, Colin
2008-02-01
Mycotoxin contamination of cereals and related products used for feed can cause intoxication, especially in farm animals. Therefore, efficient analytical tools for the qualitative and quantitative analysis of toxic fungal metabolites in feed are required. Current methods usually include an extraction step, a clean-up step to reduce or eliminate unwanted co-extracted matrix components and a separation step with suitably specific detection ability. Quantitative methods of analysis for most mycotoxins use immunoaffinity clean-up with high-performance liquid chromatography (HPLC) separation in combination with UV and/or fluorescence detection. Screening of samples contaminated with mycotoxins is frequently performed by thin layer chromatography (TLC), which yields qualitative or semi-quantitative results. Nowadays, enzyme-linked immunosorbent assays (ELISA) are often used for rapid screening. A number of promising methods, such as fluorescence polarization immunoassays, dipsticks, and even newer methods such as biosensors and non-invasive techniques based on infrared spectroscopy, have shown great potential for mycotoxin analysis. Currently, there is a strong trend towards the use of multi-mycotoxin methods for the simultaneous analysis of several of the important Fusarium mycotoxins, which is best achieved by LC-MS/MS (liquid chromatography with tandem mass spectrometry). This review focuses on recent developments in the determination of mycotoxins with a special emphasis on LC-MS/MS and emerging rapid methods.
Quantitative mass spectrometry methods for pharmaceutical analysis
Loos, Glenn; Van Schepdael, Ann
2016-01-01
Quantitative pharmaceutical analysis is nowadays frequently executed using mass spectrometry. Electrospray ionization coupled to a (hybrid) triple quadrupole mass spectrometer is generally used in combination with solid-phase extraction and liquid chromatography. Furthermore, isotopically labelled standards are often used to correct for ion suppression. The challenges in producing sensitive but reliable quantitative data depend on the instrumentation, sample preparation and hyphenated techniques. In this contribution, different approaches to enhance the ionization efficiencies using modified source geometries and improved ion guidance are provided. Furthermore, possibilities to minimize, assess and correct for matrix interferences caused by co-eluting substances are described. With the focus on pharmaceuticals in the environment and bioanalysis, different separation techniques, trends in liquid chromatography and sample preparation methods to minimize matrix effects and increase sensitivity are discussed. Although highly sensitive methods are generally aimed for to provide automated multi-residue analysis, (less sensitive) miniaturized set-ups have a great potential due to their ability for in-field usage. This article is part of the themed issue ‘Quantitative mass spectrometry’. PMID:27644982
Field, Christopher R.; Lubrano, Adam; Woytowitz, Morgan; Giordano, Braden C.; Rose-Pehrsson, Susan L.
2014-01-01
The direct liquid deposition of solution standards onto sorbent-filled thermal desorption tubes is used for the quantitative analysis of trace explosive vapor samples. The direct liquid deposition method yields a higher fidelity between the analysis of vapor samples and the analysis of solution standards than using separate injection methods for vapors and solutions, i.e., samples collected on vapor collection tubes and standards prepared in solution vials. Additionally, the method can account for instrumentation losses, which makes it ideal for minimizing variability and quantitative trace chemical detection. Gas chromatography with an electron capture detector is an instrumentation configuration sensitive to nitro-energetics, such as TNT and RDX, due to their relatively high electron affinity. However, vapor quantitation of these compounds is difficult without viable vapor standards. Thus, we eliminate the requirement for vapor standards by combining the sensitivity of the instrumentation with a direct liquid deposition protocol to analyze trace explosive vapor samples. PMID:25145416
Field, Christopher R; Lubrano, Adam; Woytowitz, Morgan; Giordano, Braden C; Rose-Pehrsson, Susan L
2014-07-25
The direct liquid deposition of solution standards onto sorbent-filled thermal desorption tubes is used for the quantitative analysis of trace explosive vapor samples. The direct liquid deposition method yields a higher fidelity between the analysis of vapor samples and the analysis of solution standards than using separate injection methods for vapors and solutions, i.e., samples collected on vapor collection tubes and standards prepared in solution vials. Additionally, the method can account for instrumentation losses, which makes it ideal for minimizing variability and quantitative trace chemical detection. Gas chromatography with an electron capture detector is an instrumentation configuration sensitive to nitro-energetics, such as TNT and RDX, due to their relatively high electron affinity. However, vapor quantitation of these compounds is difficult without viable vapor standards. Thus, we eliminate the requirement for vapor standards by combining the sensitivity of the instrumentation with a direct liquid deposition protocol to analyze trace explosive vapor samples.
ERIC Educational Resources Information Center
Gosink, Thomas A.
1975-01-01
Gas chromatography can be used to quantitate various gases, complex organic molecules, metals, anions, and pesticides in the lab or in the field. Important advances in gas chromatography and how they directly apply to environmental analyses plus suggestions where they will be of importance to environmental chemists are discussed. (BT)
Qualitative and Quantitative Analyses of Glycogen in Human Milk.
Matsui-Yatsuhashi, Hiroko; Furuyashiki, Takashi; Takata, Hiroki; Ishida, Miyuki; Takumi, Hiroko; Kakutani, Ryo; Kamasaka, Hiroshi; Nagao, Saeko; Hirose, Junko; Kuriki, Takashi
2017-02-22
Identification as well as a detailed analysis of glycogen in human milk has not been shown yet. The present study confirmed that glycogen is contained in human milk by qualitative and quantitative analyses. High-performance anion exchange chromatography (HPAEC) and high-performance size exclusion chromatography with a multiangle laser light scattering detector (HPSEC-MALLS) were used for qualitative analysis of glycogen in human milk. Quantitative analysis was carried out by using samples obtained from the individual milks. The result revealed that the concentration of human milk glycogen varied depending on the mother's condition-such as the period postpartum and inflammation. The amounts of glycogen in human milk collected at 0 and 1-2 months postpartum were higher than in milk collected at 3-14 months postpartum. In the milk from mothers with severe mastitis, the concentration of glycogen was about 40 times higher than that in normal milk.
USDA-ARS?s Scientific Manuscript database
A quantitative answer cannot exist in an analysis without a qualitative component to give enough confidence that the result meets the analytical needs for the analysis (i.e. the result relates to the analyte and not something else). Just as a quantitative method must typically undergo an empirical ...
Chen, Shuang; Xu, Yan; Qian, Michael C
2013-11-27
The aroma profile of Chinese rice wine was investigated in this study. The volatile compounds in a traditional Chinese rice wine were extracted using Lichrolut EN and further separated by silica gel normal phase chromatography. Seventy-three aroma-active compounds were identified by gas chromatography-olfactometry (GC-O) and gas chromatography-mass spectrometry (GC-MS). In addition to acids, esters, and alcohols, benzaldehyde, vanillin, geosmin, and γ-nonalactone were identified to be potentially important to Chinse rice wine. The concentration of these aroma-active compounds in the Chinese rice wine was further quantitated by combination of four different methods, including headsapce-gas chromatography, solid phase microextraction-gas chromatography (SPME)-GC-MS, solid-phase extraction-GC-MS, and SPME-GC-pulsed flame photometric detection (PFPD). Quantitative results showed that 34 aroma compounds were at concentrations higher than their corresponding odor thresholds. On the basis of the odor activity values (OAVs), vanillin, dimethyl trisulfide, β-phenylethyl alcohol, guaiacol, geosmin, and benzaldehyde could be responsible for the unique aroma of Chinese rice wine. An aroma reconstitution model prepared by mixing 34 aroma compounds with OAVs > 1 in an odorless Chinese rice wine matrix showed a good similarity to the aroma of the original Chinese rice wine.
Gao, Meng; Wang, Yuesheng; Wei, Huizhen; Ouyang, Hui; He, Mingzhen; Zeng, Lianqing; Shen, Fengyun; Guo, Qiang; Rao, Yi
2014-06-01
A method was developed for the determination of amygdalin and its metabolite prunasin in rat plasma after intragastric administration of Maxing shigan decoction. The analytes were identified by ultra-high performance liquid chromatography-tandem quadrupole time of flight mass spectrometry and quantitatively determined by ultra-high performance liquid chromatography-tandem triple quadrupole mass spectrometry. After purified by liquid-liquid extraction, the qualitative analysis of amygdalin and prunasin in the plasma sample was performed on a Shim-pack XR-ODS III HPLC column (75 mm x 2.0 mm, 1.6 microm), using acetonitrile-0.1% (v/v) formic acid aqueous solution. The detection was performed on a Triple TOF 5600 quadrupole time of flight mass spectrometer. The quantitative analysis of amygdalin and prunasin in the plasma sample was performed by separation on an Agilent C18 HPLC column (50 mm x 2.1 mm, 1.7 microm), using acetonitrile-0.1% (v/v) formic acid aqueous solution. The detection was performed on an AB Q-TRAP 4500 triple quadrupole mass spectrometer utilizing electrospray ionization (ESI) interface operated in negative ion mode and multiple-reaction monitoring (MRM) mode. The qualitative analysis results showed that amygdalin and its metabolite prunasin were detected in the plasma sample. The quantitative analysis results showed that the linear range of amygdalin was 1.05-4 200 ng/mL with the correlation coefficient of 0.999 0 and the linear range of prunasin was 1.25-2 490 ng/mL with the correlation coefficient of 0.997 0. The method had a good precision with the relative standard deviations (RSDs) lower than 9.20% and the overall recoveries varied from 82.33% to 95.25%. The limits of detection (LODs) of amygdalin and prunasin were 0.50 ng/mL. With good reproducibility, the method is simple, fast and effective for the qualitative and quantitative analysis of the amygdalin and prunasin in plasma sample of rats which were administered by Maxing shigan decoction.
A high performance liquid chromatography (HPLC) method was developed to quantitatively determine phenolic compounds and their isomers in aqueous samples. The HPLC method can analyze a mixture of 15 contaminants in the same analytical run with an analysis time of 25 minutes. The...
A high performance liquid chromatography (HPLC) method was developed to quantitatively determine phenolic compounds and their isomers in aqueous samples. The HPLC method can analyze a mixture of 15 contaminants in the same analytical run with an analysis time of 25 minutes. The...
Application of gas chromatography to analysis of spirit-based alcoholic beverages.
Wiśniewska, Paulina; Śliwińska, Magdalena; Dymerski, Tomasz; Wardencki, Waldemar; Namieśnik, Jacek
2015-01-01
Spirit-based beverages are alcoholic drinks; their production processes are dependent on the type and origin of raw materials. The composition of this complex matrix is difficult to analyze, and scientists commonly choose gas chromatography techniques for this reason. With a wide selection of extraction methods and detectors it is possible to provide qualitative and quantitative analysis for many chemical compounds with various functional groups. This article describes different types of gas chromatography techniques and their most commonly used associated extraction techniques (e.g., LLE, SPME, SPE, SFE, and SBME) and detectors (MS, TOFMS, FID, ECD, NPD, AED, O or EPD). Additionally, brief characteristics of internationally popular spirit-based beverages and application of gas chromatography to the analysis of selected alcoholic drinks are presented.
Ding, Shujing; Dudley, Ed; Plummer, Sue; Tang, Jiandong; Newton, Russell P; Brenton, A Gareth
2006-01-01
A reversed-phase high-performance liquid chromatography/electrospray ionisation mass spectrometry (RP-HPLC/ESI-MS) method was developed and validated for the simultaneous determination of ten major active components in Ginkgo biloba extract (bilobalide, ginkgolides A, B, C, quercetin, kaempferol, isorhamnetin, rutin hydrate, quercetin-3-beta-D-glucoside and quercitrin hydrate) which have not been previously reported to be quantified in a single analysis. The ten components exhibit baseline separation in 50 min by C18 chromatography using a water/1:1 (v/v) methanol/acetonitrile gradient. Quantitation was performed using negative ESI-MS in selected ion monitoring (SIM) mode. Good reproducibility and recovery were obtained by this method. The sensitivity of both UV and different mass spectrometry modes (full scan, selected ion monitoring (SIM), and selected reaction monitoring (SRM)) were compared and both quantitation with and without internal standard were evaluated. The analysis of Ginkgo biloba commercial products showed remarkable variations in the rutin and quercetin content as well as the terpene lactone contents although all the products satisfy the conventional quality control method. Copyright 2006 John Wiley & Sons, Ltd.
Hori, Fumitaka; Harada, Yuji; Kuretake, Tatsumi; Uno, Shigeyasu
2016-01-01
A detection method of gold nanoparticles in chromatography paper has been developed for a simple, cost-effective and reliable quantitation of immunochromatographic strip test. The time courses of the solution resistance in chromatography paper with the gold nanoparticles solution are electrochemically measured by chrono-impedimetry. The dependence of the solution resistance on the concentration of gold nanoparticles has been successfully observed. The main factor to increase the solution resistance may be obstruction of the ion transport due to the presence of gold nanoparticles. The existence of gold nanoparticles with 1.92 × 10(9) particles/mL in an indistinctly-colored chromatography paper is also identified by a solution resistance measurement. This indicates that the solution resistance assay has the potential to lower the detection limit of the conventional qualitative assay.
Separation techniques: Chromatography
Coskun, Ozlem
2016-01-01
Chromatography is an important biophysical technique that enables the separation, identification, and purification of the components of a mixture for qualitative and quantitative analysis. Proteins can be purified based on characteristics such as size and shape, total charge, hydrophobic groups present on the surface, and binding capacity with the stationary phase. Four separation techniques based on molecular characteristics and interaction type use mechanisms of ion exchange, surface adsorption, partition, and size exclusion. Other chromatography techniques are based on the stationary bed, including column, thin layer, and paper chromatography. Column chromatography is one of the most common methods of protein purification. PMID:28058406
Optimizing separations in online comprehensive two‐dimensional liquid chromatography
Gargano, Andrea F.G.; Schoenmakers, Peter J.
2017-01-01
Abstract Online comprehensive two‐dimensional liquid chromatography has become an attractive option for the analysis of complex nonvolatile samples found in various fields (e.g. environmental studies, food, life, and polymer sciences). Two‐dimensional liquid chromatography complements the highly popular hyphenated systems that combine liquid chromatography with mass spectrometry. Two‐dimensional liquid chromatography is also applied to the analysis of samples that are not compatible with mass spectrometry (e.g. high‐molecular‐weight polymers), providing important information on the distribution of the sample components along chemical dimensions (molecular weight, charge, lipophilicity, stereochemistry, etc.). Also, in comparison with conventional one‐dimensional liquid chromatography, two‐dimensional liquid chromatography provides a greater separation power (peak capacity). Because of the additional selectivity and higher peak capacity, the combination of two‐dimensional liquid chromatography with mass spectrometry allows for simpler mixtures of compounds to be introduced in the ion source at any given time, improving quantitative analysis by reducing matrix effects. In this review, we summarize the rationale and principles of two‐dimensional liquid chromatography experiments, describe advantages and disadvantages of combining different selectivities and discuss strategies to improve the quality of two‐dimensional liquid chromatography separations. PMID:29027363
Hwang, Taeik; Noh, Eunyoung; Jeong, Ji Hye; Park, Sung-Kwan; Shin, Dongwoo; Kang, Hoil
2018-02-28
A sensitive and specific high-performance liquid chromatography-quadrupole time-of-flight-mass spectrometry (LC-QTOF-MS) method combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed for the determination of grayanotoxins I and III in dietary supplements and homemade wine. Grayanotoxins I and III were successfully extracted using solid-phase extraction cartridges, characterized by LC-QTOF-MS, and quantitated by LC-MS/MS. The LC-MS/MS calibration curves were linear over concentrations of 10-100 ng/mL (grayanotoxin I) and 20-400 ng/mL (grayanotoxin III). Grayanotoxins I and III were found in 51 foodstuffs, with quantitative determinations revealing total toxin concentrations of 18.4-101 000 ng/mL (grayanotoxin I) and 15.3-56 000 ng/mL (grayanotoxin III). The potential of the validated method was demonstrated by successful quantitative analysis of grayanotoxins I and III in dietary supplements and homemade wine; the method appears suitable for the routine detection of grayanotoxins I and III from Rhododendron brachycarpum.
Matrix effects break the LC behavior rule for analytes in LC-MS/MS analysis of biological samples
USDA-ARS?s Scientific Manuscript database
High-performance liquid chromatography (HPLC) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) are generally accepted as the preferred techniques for detecting and quantitating analytes of interest in biological matrices on the basis of the rule that one chemical compound yields one LC-...
Review on investigations of antisense oligonucleotides with the use of mass spectrometry.
Studzińska, Sylwia
2018-01-01
Antisense oligonucleotides have been investigated as potential drugs for years. They inhibit target gene or protein expression. The present review summarizes their modifications, modes of action, and applications of liquid chromatography coupled with mass spectrometry for qualitative and quantitative analysis of these compounds. The most recent reports on a given topic were given prominence, while some early studies were reviewed in order to provide a theoretical background. The present review covers the issues of using ion-exchange chromatography, ion-pair reversed-phase high performance liquid chromatography and hydrophilic interaction chromatography for the separation of antisense oligonucleotides. The application of mass spectrometry was described with regard to the ionization type used for the determination of these potential therapeutics. Moreover, the current approaches and applications of mass spectrometry for quantitative analysis of antisense oligonucleotides and their metabolites as well as their impurities during in vitro and in vivo studies were discussed. Finally, certain conclusions and perspectives on the determination of therapeutic oligonucleotides in various samples were briefly described. Copyright © 2017 Elsevier B.V. All rights reserved.
Keller, T; Schneider, A; Regenscheit, P; Dirnhofer, R; Rücker, T; Jaspers, J; Kisser, W
1999-01-11
A new method has been developed for the rapid analysis of psilocybin and/or psilocin in fungus material using ion mobility spectrometry. Quantitative analysis was performed by gas chromatography-mass spectrometry after a simple one-step extraction involving homogenization of the dried fruit bodies of fungi in chloroform and derivatization with MSTFA. The proposed methods resulted in rapid procedures useful in analyzing psychotropic fungi for psilocybin and psilocin.
Analysis of Biomass Sugars Using a Novel HPLC Method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agblevor, F. A.; Hames, B. R.; Schell, D.
The precise quantitative analysis of biomass sugars is a very important step in the conversion of biomass feedstocks to fuels and chemicals. However, the most accurate method of biomass sugar analysis is based on the gas chromatography analysis of derivatized sugars either as alditol acetates or trimethylsilanes. The derivatization method is time consuming but the alternative high-performance liquid chromatography (HPLC) method cannot resolve most sugars found in biomass hydrolysates. We have demonstrated for the first time that by careful manipulation of the HPLC mobile phase, biomass monomeric sugars (arabinose, xylose, fructose, glucose, mannose, and galactose) can be analyzed quantitatively andmore » there is excellent baseline resolution of all the sugars. This method was demonstrated for standard sugars, pretreated corn stover liquid and solid fractions. Our method can also be used to analyze dimeric sugars (cellobiose and sucrose).« less
USDA-ARS?s Scientific Manuscript database
A high resolution GC/MS with Selected Ion Monitor (SIM) method focusing on the characterization and quantitative analysis of ginkgolic acids (GAs) in Ginkgo biloba L. plant materials, extracts and commercial products was developed and validated. The method involved sample extraction with (1:1) meth...
Yi, YaXiong; Zhang, Yong; Ding, Yue; Lu, Lu; Zhang, Tong; Zhao, Yuan; Xu, XiaoJun; Zhang, YuXin
2016-11-01
J. Sep. Sci. 2016, 39, 4147-4157 DOI: 10.1002/jssc.201600284 Yinchenhao decoction (YCHD) is a famous Chinese herbal formula recorded in the Shang Han Lun which was prescribed by Zhongjing Zhang during 150-219 AD. A novel quantitative analysis method was developed, based on ultrahigh performance liquid chromatography coupled with a diode array detector for the simultaneous determination of 14 main active components in Yinchenhao decoction. Furthermore, the method has been applied for compositional difference analysis of the 14 components in eight normal extraction samples of Yinchenhao decoction, with the aid of hierarchical clustering analysis and similarity analysis. The present research could help hospital, factory and lab choose the best way to make Yinchenhao decoction with better efficacy. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Quantitative analysis of benzodiazepines in vitreous humor by high-performance liquid chromatography
Bazmi, Elham; Behnoush, Behnam; Akhgari, Maryam; Bahmanabadi, Leila
2016-01-01
Objective: Benzodiazepines are frequently screened drugs in emergency toxicology, drugs of abuse testing, and in forensic cases. As the variations of benzodiazepines concentrations in biological samples during bleeding, postmortem changes, and redistribution could be biasing forensic medicine examinations, hence selecting a suitable sample and a validated accurate method is essential for the quantitative analysis of these main drug categories. The aim of this study was to develop a valid method for the determination of four benzodiazepines (flurazepam, lorazepam, alprazolam, and diazepam) in vitreous humor using liquid–liquid extraction and high-performance liquid chromatography. Methods: Sample preparation was carried out using liquid–liquid extraction with n-hexane: ethyl acetate and subsequent detection by high-performance liquid chromatography method coupled to diode array detector. This method was applied to quantify benzodiazepines in 21 authentic vitreous humor samples. Linear curve for each drug was obtained within the range of 30–3000 ng/mL with coefficient of correlation higher than 0.99. Results: The limit of detection and quantitation were 30 and 100 ng/mL respectively for four drugs. The method showed an appropriate intra- and inter-day precision (coefficient of variation < 10%). Benzodiazepines recoveries were estimated to be over 80%. The method showed high selectivity; no additional peak due to interfering substances in samples was observed. Conclusion: The present method was selective, sensitive, accurate, and precise for the quantitative analysis of benzodiazepines in vitreous humor samples in forensic toxicology laboratory. PMID:27635251
NASA Technical Reports Server (NTRS)
Worstell, J. H.; Daniel, S. R.
1981-01-01
A method for the separation and analysis of tetralin hydroperoxide and its decomposition products by high pressure liquid chromatography has been developed. Elution with a single, mixed solvent from a micron-Porasil column was employed. Constant response factors (internal standard method) over large concentration ranges and reproducible retention parameters are reported.
Optimizing separations in online comprehensive two-dimensional liquid chromatography.
Pirok, Bob W J; Gargano, Andrea F G; Schoenmakers, Peter J
2018-01-01
Online comprehensive two-dimensional liquid chromatography has become an attractive option for the analysis of complex nonvolatile samples found in various fields (e.g. environmental studies, food, life, and polymer sciences). Two-dimensional liquid chromatography complements the highly popular hyphenated systems that combine liquid chromatography with mass spectrometry. Two-dimensional liquid chromatography is also applied to the analysis of samples that are not compatible with mass spectrometry (e.g. high-molecular-weight polymers), providing important information on the distribution of the sample components along chemical dimensions (molecular weight, charge, lipophilicity, stereochemistry, etc.). Also, in comparison with conventional one-dimensional liquid chromatography, two-dimensional liquid chromatography provides a greater separation power (peak capacity). Because of the additional selectivity and higher peak capacity, the combination of two-dimensional liquid chromatography with mass spectrometry allows for simpler mixtures of compounds to be introduced in the ion source at any given time, improving quantitative analysis by reducing matrix effects. In this review, we summarize the rationale and principles of two-dimensional liquid chromatography experiments, describe advantages and disadvantages of combining different selectivities and discuss strategies to improve the quality of two-dimensional liquid chromatography separations. © 2017 The Authors. Journal of Separation Science published by WILEY-VCH Verlag GmbH & Co. KGaA.
Goetz, H; Kuschel, M; Wulff, T; Sauber, C; Miller, C; Fisher, S; Woodward, C
2004-09-30
Protein analysis techniques are developing fast due to the growing number of proteins obtained by recombinant DNA techniques. In the present paper we compare selected techniques, which are used for protein sizing, quantitation and molecular weight determination: sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE), lab-on-a-chip or microfluidics technology (LoaC), size exclusion chromatography (SEC) and mass spectrometry (MS). We compare advantages and limitations of each technique in respect to different application areas, analysis time, protein sizing and quantitation performance.
Berendsen, Bjorn J A; Gerritsen, Henk W; Wegh, Robin S; Lameris, Steven; van Sebille, Ralph; Stolker, Alida A M; Nielen, Michel W F
2013-09-01
A comprehensive method for the quantitative residue analysis of trace levels of 22 ß-lactam antibiotics, including penicillins, cephalosporins, and carbapenems, in poultry muscle by liquid chromatography in combination with tandem mass spectrometric detection is reported. The samples analyzed for ß-lactam residues are hydrolyzed using piperidine in order to improve compound stability and to include the total residue content of the cephalosporin ceftifour. The reaction procedure was optimized using a full experimental design. Following detailed isotope labeling, tandem mass spectrometry studies and exact mass measurements using high-resolution mass spectrometry reaction schemes could be proposed for all ß-lactams studied. The main reaction occurring is the hydrolysis of the ß-lactam ring under formation of the piperidine substituted amide. For some ß-lactams, multiple isobaric hydrolysis reaction products are obtained, in accordance with expectations, but this did not hamper quantitative analysis. The final method was fully validated as a quantitative confirmatory residue analysis method according to Commission Decision 2002/657/EC and showed satisfactory quantitative performance for all compounds with trueness between 80 and 110% and within-laboratory reproducibility below 22% at target level, except for biapenem. For biapenem, the method proved to be suitable for qualitative analysis only.
Kadoum, A M
1968-07-01
A simple, aqueous acetonitrile partition cleanup method for analyses of some common organophosphorus insecticide residues is described. The procedure described is for cleanup and quantitative recovery of parathion, methyl parathion, diazinon, malathion and thimet from different extracts. Those insecticides in the purified extracts of ground water, grain, soil, plant and animal tissues can be detected quantitatively by gas chromatography with an electron capture-detector at 0.01 ppm. Cleanup is satisfactory for paper and thin-layer chromatography for further identification of individual insecticides in the extracts.
Analysis of arsenical metabolites in biological samples.
Hernandez-Zavala, Araceli; Drobna, Zuzana; Styblo, Miroslav; Thomas, David J
2009-11-01
Quantitation of iAs and its methylated metabolites in biological samples provides dosimetric information needed to understand dose-response relations. Here, methods are described for separation of inorganic and mono-, di-, and trimethylated arsenicals by thin layer chromatography. This method has been extensively used to track the metabolism of the radionuclide [(73)As] in a variety of in vitro assay systems. In addition, a hydride generation-cryotrapping-gas chromatography-atomic absorption spectrometric method is described for the quantitation of arsenicals in biological samples. This method uses pH-selective hydride generation to differentiate among arsenicals containing trivalent or pentavalent arsenic.
Prothmann, Jens; Sun, Mingzhe; Spégel, Peter; Sandahl, Margareta; Turner, Charlotta
2017-12-01
The conversion of lignin to potentially high-value low molecular weight compounds often results in complex mixtures of monomeric and oligomeric compounds. In this study, a method for the quantitative and qualitative analysis of 40 lignin-derived compounds using ultra-high-performance supercritical fluid chromatography coupled to quadrupole-time-of-flight mass spectrometry (UHPSFC/QTOF-MS) has been developed. Seven different columns were explored for maximum selectivity. Makeup solvent composition and ion source settings were optimised using a D-optimal design of experiment (DoE). Differently processed lignin samples were analysed and used for the method validation. The new UHPSFC/QTOF-MS method showed good separation of the 40 compounds within only 6-min retention time, and out of these, 36 showed high ionisation efficiency in negative electrospray ionisation mode. Graphical abstract A rapid and selective method for the quantitative and qualitative analysis of 40 lignin-derived compounds using ultra-high-performance supercritical fluid chromatography coupled to quadrupole-time-of-flight mass spectrometry (UHPSFC/QTOF-MS).
Quantitative Analysis of Urine Vapor and Breath by Gas-Liquid Partition Chromatography
Pauling, Linus; Robinson, Arthur B.; Teranishi, Roy; Cary, Paul
1971-01-01
When a human being is placed for several days on a completely defined diet, consisting almost entirely of small molecules that are absorbed from the stomach into the blood, intestinal flora disappear because of lack of nutrition. By this technique, the composition of body fluids can be made constant (standard deviation about 10%) after a few days, permitting significant quantitative analyses to be performed. A method of temperature-programmed gas-liquid partition chromatography has been developed for this purpose. It permits the quantitative determination of about 250 substances in a sample of breath, and of about 280 substances in a sample of urine vapor. The technique should be useful in the application of the principles of orthomolecular medicine. PMID:5289873
Quantitative analysis of urine vapor and breath by gas-liquid partition chromatography.
Pauling, L; Robinson, A B; Teranishi, R; Cary, P
1971-10-01
When a human being is placed for several days on a completely defined diet, consisting almost entirely of small molecules that are absorbed from the stomach into the blood, intestinal flora disappear because of lack of nutrition. By this technique, the composition of body fluids can be made constant (standard deviation about 10%) after a few days, permitting significant quantitative analyses to be performed. A method of temperature-programmed gas-liquid partition chromatography has been developed for this purpose. It permits the quantitative determination of about 250 substances in a sample of breath, and of about 280 substances in a sample of urine vapor. The technique should be useful in the application of the principles of orthomolecular medicine.
Savel'eva, N B; Bykovskaia, N Iu; Dikunets, M A; Bolotov, S L; Rodchenkov, G M
2010-01-01
The objective of this study was to demonstrate the possibility to use deuterated compounds as internal standards for the quantitative analysis of morphine by gas chromatography with mass-selective detection for the purpose of doping control. The paper is focused on the problems associated with the use of deuterated morphine-D3 as the internal standard. Quantitative characteristics of the calibration dependence thus documented are presented along with uncertainty values obtained in the measurements with the use of deuterated morphine-D6. An approach to the assessment of method bias associated with the application of morphine-D6 as the deuterated internal standard is described.
Moldoveanu, Serban; Scott, Wayne; Zhu, Jeff
2015-11-01
Bioactive botanicals contain natural compounds with specific biological activity, such as antibacterial, antioxidant, immune stimulating, and taste improving. A full characterization of the chemical composition of these botanicals is frequently necessary. A study of small carbohydrates from the plant materials of 18 bioactive botanicals is further described. The study presents the identification of the carbohydrate using a gas chromatographic-mass spectrometric analysis that allows detection of molecules as large as maltotetraose, after changing them into trimethylsilyl derivatives. A number of carbohydrates in the plant (fructose, glucose, mannose, sucrose, maltose, xylose, sorbitol, and myo-, chiro-, and scyllo-inositols) were quantitated using a novel liquid chromatography with tandem mass spectrometric technique. Both techniques involved new method developments. The gas chromatography with mass spectrometric analysis involved derivatization and separation on a Rxi(®)-5Sil MS column with H2 as a carrier gas. The liquid chromatographic separation was obtained using a hydrophilic interaction type column, YMC-PAC Polyamine II. The tandem mass spectrometer used an electrospray ionization source in multiple reaction monitoring positive ion mode with the detection of the adducts of the carbohydrates with Cs(+) ions. The validated quantitative procedure showed excellent precision and accuracy allowing the analysis in a wide range of concentrations of the analytes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Staples, Gregory O; Naimy, Hicham; Yin, Hongfeng; Kileen, Kevin; Kraiczek, Karsten; Costello, Catherine E; Zaia, Joseph
2010-01-15
Heparan sulfate (HS) and heparin are linear, heterogeneous carbohydrates of the glycosaminoglycan (GAG) family that are modified by N-acetylation, N-sulfation, O-sulfation, and uronic acid epimerization. HS interacts with growth factors in the extracellular matrix, thereby modulating signaling pathways that govern cell growth, development, differentiation, proliferation, and adhesion. High-performance liquid chromatography (HPLC)-chip-based hydrophilic interaction liquid chromatography/mass spectrometry has emerged as a method for analyzing the domain structure of GAGs. However, analysis of highly sulfated GAG structures decasaccharide or larger in size has been limited by spray instability in the negative-ion mode. This report demonstrates that addition of postcolumn makeup flow to the amide-HPLC-chip configuration permits robust and reproducible analysis of extended GAG domains (up to degree of polymerization 18) from HS and heparin. This platform provides quantitative information regarding the oligosaccharide profile, degree of sulfation, and nonreducing chain termini. It is expected that this technology will enable quantitative, comparative glycomics profiling of extended GAG oligosaccharide domains of functional interest.
Sankhalkar, Sangeeta; Vernekar, Vrunda
2016-01-01
Background: Number of secondary compounds is produced by plants as natural antioxidants. Moringa oleifera Lam. and Ocimum tenuiflorum L. are known for their wide applications in food and pharmaceutical industry. Objective: To compare phenolic and flavonoid content in M. oleifera Lam and O. tenuiflorum L. by quantitative and qualitative analysis. Materials and Methods: Phenolic and flavonoid content were studied spectrophotometrically and by paper chromatography in M. oleifera Lam. and O. tenuiflorum L. Results: Higher phenolic and flavonoid content were observed in Moringa leaf and flower. Ocimum flower showed higher phenolic content and low flavonoid in comparison to Moringa. Flavonoids such as biflavonyl, flavones, glycosylflavones, and kaempferol were identified by paper chromatography. Phytochemical analysis for flavonoid, tannins, saponins, alkaloids, reducing sugars, and anthraquinones were tested positive for Moringa and Ocimum leaf as well as flower. Conclusions: In the present study higher phenolic and flavonoid content, indicated the natural antioxidant nature of Moringa and Ocimum signifying their medicinal importance. SUMMARY Moringa oleifera Lam. and Ocimum tenuiflorum L. are widly grown in India and are known for their medicinal properties. Number of secondary metabolites like phenolics and flavonoids are known to be present in both the plants. The present study was conducted with an objective to qualitatively and quantitatively compare the phenolics and flavanoids in these two medicinally important plants.Quantitation of total phenolics and flavanoids was done by spectrophotometrically while qualitative analysis was perfomed by paper chromatography and by phytochemical tests. Our results have shown higher phenolics and flavanoid content in Moringa leaf and flower. However, higher phenolic content was absent in Ocimum flower compared to that of Moringa. Phytochemical analysis of various metabolites such as flavonoids, tanins, sapponins, alkaloids, anthraquinones revealed that both the plant extracts were rich sources of secondary metabolites and thus tested positive for the above tests. Various flavanoids and Phenolics were identified by paper chromatography based on their Rf values and significant colors. From the above study we conclude that Moringa and Ocimum are rich in natural antioxidants hence are potent source in pharmaceutical industry. PMID:26941531
Sankhalkar, Sangeeta; Vernekar, Vrunda
2016-01-01
Number of secondary compounds is produced by plants as natural antioxidants. Moringa oleifera Lam. and Ocimum tenuiflorum L. are known for their wide applications in food and pharmaceutical industry. To compare phenolic and flavonoid content in M. oleifera Lam and O. tenuiflorum L. by quantitative and qualitative analysis. Phenolic and flavonoid content were studied spectrophotometrically and by paper chromatography in M. oleifera Lam. and O. tenuiflorum L. Higher phenolic and flavonoid content were observed in Moringa leaf and flower. Ocimum flower showed higher phenolic content and low flavonoid in comparison to Moringa. Flavonoids such as biflavonyl, flavones, glycosylflavones, and kaempferol were identified by paper chromatography. Phytochemical analysis for flavonoid, tannins, saponins, alkaloids, reducing sugars, and anthraquinones were tested positive for Moringa and Ocimum leaf as well as flower. In the present study higher phenolic and flavonoid content, indicated the natural antioxidant nature of Moringa and Ocimum signifying their medicinal importance. Moringa oleifera Lam. and Ocimum tenuiflorum L. are widly grown in India and are known for their medicinal properties. Number of secondary metabolites like phenolics and flavonoids are known to be present in both the plants. The present study was conducted with an objective to qualitatively and quantitatively compare the phenolics and flavanoids in these two medicinally important plants.Quantitation of total phenolics and flavanoids was done by spectrophotometrically while qualitative analysis was perfomed by paper chromatography and by phytochemical tests. Our results have shown higher phenolics and flavanoid content in Moringa leaf and flower. However, higher phenolic content was absent in Ocimum flower compared to that of Moringa. Phytochemical analysis of various metabolites such as flavonoids, tanins, sapponins, alkaloids, anthraquinones revealed that both the plant extracts were rich sources of secondary metabolites and thus tested positive for the above tests. Various flavanoids and Phenolics were identified by paper chromatography based on their Rf values and significant colors. From the above study we conclude that Moringa and Ocimum are rich in natural antioxidants hence are potent source in pharmaceutical industry.
Chemical analysis of Panax quinquefolius (North American ginseng): A review.
Wang, Yaping; Choi, Hyung-Kyoon; Brinckmann, Josef A; Jiang, Xue; Huang, Linfang
2015-12-24
Panax quinquefolius (PQ) is one of the best-selling natural health products due to its proposed beneficial anti-aging, anti-cancer, anti-stress, anti-fatigue, and anxiolytic effects. In recent years, the quality of PQ has received considerable attention. Sensitive and accurate methods for qualitative and quantitative analyses of chemical constituents are necessary for the comprehensive quality control to ensure the safety and efficacy of PQ. This article reviews recent progress in the chemical analysis of PQ and its preparations. Numerous analytical techniques, including spectroscopy, thin-layer chromatography (TLC), gas chromatography (GC), high-performance liquid chromatography (HPLC), liquid chromatography/mass spectrometry (LC/MS), high-speed centrifugal partition chromatography (HSCPC), high-performance counter-current chromatography (HPCCC), nuclear magnetic resonance spectroscopy (NMR), and immunoassay, are described. Among these techniques, HPLC coupled with mass spectrometry (MS) is the most promising method for quality control. The challenges encountered in the chemical analysis of PQ are also briefly discussed, and the remaining questions regarding the quality control of PQ that require further investigation are highlighted. Copyright © 2015 Elsevier B.V. All rights reserved.
Wang, Huayin
2014-09-01
A new quantitative technique for the simultaneous quantification of the individual anthocyanins based on the pH differential method and high-performance liquid chromatography with diode array detection is proposed in this paper. The six individual anthocyanins (cyanidin 3-glucoside, cyanidin 3-rutinoside, petunidin 3-glucoside, petunidin 3-rutinoside, and malvidin 3-rutinoside) from mulberry (Morus rubra) and Liriope platyphylla were used for demonstration and validation. The elution of anthocyanins was performed using a C18 column with stepwise gradient elution and individual anthocyanins were identified by high-performance liquid chromatography with tandem mass spectrometry. Based on the pH differential method, the high-performance liquid chromatography peak areas of maximum and reference absorption wavelengths of anthocyanin extracts were conducted to quantify individual anthocyanins. The calibration curves for these anthocyanins were linear within the range of 10-5500 mg/L. The correlation coefficients (r(2)) all exceeded 0.9972, and the limits of detection were in the range of 1-4 mg/L at a signal-to-noise ratio ≥5 for these anthocyanins. The proposed quantitative analysis was reproducible with good accuracy of all individual anthocyanins ranging from 96.3 to 104.2% and relative recoveries were in the range 98.4-103.2%. The proposed technique is performed without anthocyanin standards and is a simple, rapid, accurate, and economical method to determine individual anthocyanin contents. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ferreira, Magda R. A.; Fernandes, Mônica T. M.; da Silva, Wliana A. V.; Bezerra, Isabelle C. F.; de Souza, Tatiane P.; Pimentel, Maria F.; Soares, Luiz A. L.
2016-01-01
Background: Libidibia ferrea (Mart. ex Tul.) L.P. Queiroz (Fabaceae) is a tree which is native to Brazil, widely known as “Jucá,” where its herbal derivatives are used in folk medicine with several therapeutic properties. The constituents, which have already been described in the fruit, are mainly hydrolysable tannins (gallic acid [GA] and ellagic acid [EA]). Objective: The aim of this study was to investigate the phenolic variability in the fruit of L. ferrea by ultraviolet/visible (UV/VIS) and chromatographic methods (high-performance liquid chromatography [HPLC]/high-performance thin layer chromatography [HPTLC]). Materials and Methods: Several samples were collected from different regions of Brazil and the qualitative (fingerprints by HPTLC and HPLC) and quantitative analysis (UV/VIS and HPLC) of polyphenols were performed. Results: The HPTLC and HPLC profiles allowed separation and identification of both major analytical markers: EA and GA. The chemical profiles were similar in a number of spots or peaks for the samples, but some differences could be observed in the intensity or area of the analytical markers for HPTLC or HPLC, respectively. Regarding the quantitative analysis, the polyphenolic content by UV/VIS ranged from 13.99 to 37.86 g% expressed as GA or from 10.75 to 29.09 g% expressed as EA. The contents of EA and GA by liquid chromatography-reversed phase (LC-RP) method ranged from 0.57 to 2.68 g% and from 0.54 to 3.23 g%, respectively. Conclusion: The chemical profiles obtained by HPTLC or HPLC, as well as the quantitative analysis by spectrophotometry or LC-RP method, were suitable for discrimination of each herbal sample and can be used as tools for the comparative analysis of the fruits from L. ferrea. SUMMARY The polyphenols of fruits of Libidibia ferrea can be quantified by UV/VIS and HPLCThe HPLC method was able to detect the gallic and ellagic acids in several samples of fruits of Libidibia ferreaThe phenolic profiles of fruits from Libidibia ferrea by HPTLC and HPLC were reproductible. Abbreviations used: HPTLC: high performance thin layer chromatography, HPLC: high performance liquid chromatography, UV-Vis: spectrophotometry PMID:27279721
Recent applications of gas chromatography with high-resolution mass spectrometry.
Špánik, Ivan; Machyňáková, Andrea
2018-01-01
Gas chromatography coupled to high-resolution mass spectrometry is a powerful analytical method that combines excellent separation power of gas chromatography with improved identification based on an accurate mass measurement. These features designate gas chromatography with high-resolution mass spectrometry as the first choice for identification and structure elucidation of unknown volatile and semi-volatile organic compounds. Gas chromatography with high-resolution mass spectrometry quantitative analyses was previously focused on the determination of dioxins and related compounds using magnetic sector type analyzers, a standing requirement of many international standards. The introduction of a quadrupole high-resolution time-of-flight mass analyzer broadened interest in this method and novel applications were developed, especially for multi-target screening purposes. This review is focused on the development and the most interesting applications of gas chromatography coupled to high-resolution mass spectrometry towards analysis of environmental matrices, biological fluids, and food safety since 2010. The main attention is paid to various approaches and applications of gas chromatography coupled to high-resolution mass spectrometry for non-target screening to identify contaminants and to characterize the chemical composition of environmental, food, and biological samples. The most interesting quantitative applications, where a significant contribution of gas chromatography with high-resolution mass spectrometry over the currently used methods is expected, will be discussed as well. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
USDA-ARS?s Scientific Manuscript database
Four aromatic compounds; oxyresveratrol (1), mulberroside A (2), cudraflavone C (3) and kuwanone J (4) were isolated from the stems of Morus rubra L. The quantitative determination of oxyresveratrol from M. rubra L., M. alba L. and related genera by high performance thin layer chromatography (HPTLC)...
Pan, Sheng; Rush, John; Peskind, Elaine R; Galasko, Douglas; Chung, Kathryn; Quinn, Joseph; Jankovic, Joseph; Leverenz, James B; Zabetian, Cyrus; Pan, Catherine; Wang, Yan; Oh, Jung Hun; Gao, Jean; Zhang, Jianpeng; Montine, Thomas; Zhang, Jing
2008-02-01
Targeted quantitative proteomics by mass spectrometry aims to selectively detect one or a panel of peptides/proteins in a complex sample and is particularly appealing for novel biomarker verification/validation because it does not require specific antibodies. Here, we demonstrated the application of targeted quantitative proteomics in searching, identifying, and quantifying selected peptides in human cerebrospinal spinal fluid (CSF) using a matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometer (MALDI TOF/TOF)-based platform. The approach involved two major components: the use of isotopic-labeled synthetic peptides as references for targeted identification and quantification and a highly selective mass spectrometric analysis based on the unique characteristics of the MALDI instrument. The platform provides high confidence for targeted peptide detection in a complex system and can potentially be developed into a high-throughput system. Using the liquid chromatography (LC) MALDI TOF/TOF platform and the complementary identification strategy, we were able to selectively identify and quantify a panel of targeted peptides in the whole proteome of CSF without prior depletion of abundant proteins. The effectiveness and robustness of the approach associated with different sample complexity, sample preparation strategies, as well as mass spectrometric quantification were evaluated. Other issues related to chromatography separation and the feasibility for high-throughput analysis were also discussed. Finally, we applied targeted quantitative proteomics to analyze a subset of previously identified candidate markers in CSF samples of patients with Parkinson's disease (PD) at different stages and Alzheimer's disease (AD) along with normal controls.
Fiore, D; Auger, F A; Drusano, G L; Dandu, V R; Lesko, L J
1984-01-01
A rapid, sensitive, and specific method of analysis for mezlocillin in serum and urine by high-pressure liquid chromatography is described. A solid-phase extraction column was used to remove interfering substances from samples before chromatography. Quantitation included the use of an internal standard, nafcillin. Mezlocillin was chromatographed with a phosphate buffer-acetonitrile (73:27) mobile phase and a C-18 reverse-phase column and detected at a wavelength of 220 nm. The assay had a sensitivity of 1.6 micrograms/ml and a linearity of up to 600 micrograms/ml and 16 mg/ml in serum and urine, respectively, with only 0.1 ml of sample. The interday and intraday coefficients of variation for replicate analyses of spiked serum and urine specimens were less than 6.5%. PMID:6517560
ERIC Educational Resources Information Center
Johnson, Bettie Obi; Burke, Fernanda M.; Harrison, Rebecca; Burdette, Samantha
2012-01-01
The measurement of trace levels of bisphenol A (BPA) leached out of household plastics using solid-phase microextraction (SPME) with gas chromatography-mass spectrometry (GC-MS) is reported here. BPA is an endocrine-disrupting compound used in the industrial manufacture of polycarbonate plastic bottles and epoxy resin can liners. This experiment…
Nicolotti, Luca; Cordero, Chiara; Cagliero, Cecilia; Liberto, Erica; Sgorbini, Barbara; Rubiolo, Patrizia; Bicchi, Carlo
2013-10-10
The study proposes an investigation strategy that simultaneously provides detailed profiling and quantitative fingerprinting of food volatiles, through a "comprehensive" analytical platform that includes sample preparation by Headspace Solid Phase Microextraction (HS-SPME), separation by two-dimensional comprehensive gas chromatography coupled with mass spectrometry detection (GC×GC-MS) and data processing using advanced fingerprinting approaches. Experiments were carried out on roasted hazelnuts and on Gianduja pastes (sugar, vegetable oil, hazelnuts, cocoa, nonfat dried milk, vanilla flavorings) and demonstrated that the information potential of each analysis can better be exploited if suitable quantitation methods are applied. Quantitation approaches through Multiple Headspace Extraction and Standard Addition were compared in terms of performance parameters (linearity, precision, accuracy, Limit of Detection and Limit of Quantitation) under headspace linearity conditions. The results on 19 key analytes, potent odorants, and technological markers, and more than 300 fingerprint components, were used for further processing to obtain information concerning the effect of the matrix on volatile release, and to produce an informative chemical blueprint for use in sensomics and flavoromics. The importance of quantitation approaches in headspace analysis of solid matrices of complex composition, and the advantages of MHE, are also critically discussed. Copyright © 2013 Elsevier B.V. All rights reserved.
Quantitative analysis of seasonal variation in the amino acids in phloem sap of Salix alba L.
Leckstein, P M; Llewellyn, M
1975-01-01
Phloem sap of Salix alba L. was collected at monthly intervals between May and October. Amino acid analysis was carried out by ion exchange chromatography. The concentrations of individual amino acids are reported.
McIlhenny, Ethan H; Pipkin, Kelly E; Standish, Leanna J; Wechkin, Hope A; Strassman, Rick; Barker, Steven A
2009-12-18
A direct injection/liquid chromatography-electrospray ionization-tandem mass spectrometry procedure has been developed for the simultaneous quantitation of 11 compounds potentially found in the increasingly popular Amazonian botanical medicine and religious sacrament ayahuasca. The method utilizes a deuterated internal standard for quantitation and affords rapid detection of the alkaloids by a simple dilution assay, requiring no extraction procedures. Further, the method demonstrates a high degree of specificity for the compounds in question, as well as low limits of detection and quantitation despite using samples for analysis that had been diluted up to 200:1. This approach also appears to eliminate potential matrix effects. Method bias for each compound, examined over a range of concentrations, was also determined as was inter- and intra-assay variation. Its application to the analysis of three different ayahuasca preparations is also described. This method should prove useful in the study of ayahuasca in clinical and ethnobotanical research as well as in forensic examinations of ayahuasca preparations.
Rothenhöfer, Martin; Scherübl, Rosmarie; Bernhardt, Günther; Heilmann, Jörg; Buschauer, Armin
2012-07-27
Purified oligomers of hyalobiuronic acid are indispensable tools to elucidate the physiological and pathophysiological role of hyaluronan degradation by various hyaluronidase isoenzymes. Therefore, we established and validated a novel sensitive, convenient, rapid, and cost-effective high performance thin layer chromatography (HPTLC) method for the qualitative and quantitative analysis of small saturated hyaluronan oligosaccharides consisting of 2-4 hyalobiuronic acid moieties. The use of amino-modified silica as stationary phase allows a simple reagent-free in situ derivatization by heating, resulting in a very low limit of detection (7-19 pmol per band, depending on the analyzed saturated oligosaccharide). By this derivatization procedure for the first time densitometric quantification of the analytes could be performed by HPTLC. The validated method showed a quantification limit of 37-71 pmol per band and was proven to be superior in comparison to conventional detection of hyaluronan oligosaccharides. The analytes were identified by hyphenation of normal phase planar chromatography to mass spectrometry (TLC-MS) using electrospray ionization. As an alternative to sequential techniques such as high performance liquid chromatography (HPLC) and capillary electrophoresis (CE), the validated HPTLC quantification method can easily be automated and is applicable to the analysis of multiple samples in parallel. Copyright © 2012 Elsevier B.V. All rights reserved.
Yi, Lin; Ouyang, Yilan; Sun, Xue; Xu, Naiyu; Linhardt, Robert J; Zhang, Zhenqing
2015-12-04
Dextran, a family of natural polysaccharides, consists of an α (1→6) linked-glucose main (backbone) chain having a number of branches. The determination of the types and the quantities of branches in dextran is important in understanding its various biological roles. In this study, a hyphenated method using high-performance anion exchange chromatography (HPAEC) in parallel with pulsed amperometric detection (PAD) and mass spectrometry (MS) was applied to qualitative and quantitative analysis of dextran branches. A rotary cation-exchange cartridge array desalter was used for removal of salt from the HPAEC eluent making it MS compatible. MS and MS/MS were used to provide structural information on the enzymatically prepared dextran oligosaccharides. PAD provides quantitative data on the ratio of enzyme-resistant, branched dextran oligosaccharides. Both the types and degree of branching found in a variety of dextrans could be simultaneously determined online using this method. Copyright © 2015 Elsevier B.V. All rights reserved.
Ryan, C M; Yarmush, M L; Tompkins, R G
1992-04-01
Polyethylene glycol 3350 (PEG 3350) is useful as an orally administered probe to measure in vivo intestinal permeability to macromolecules. Previous methods to detect polyethylene glycol (PEG) excreted in the urine have been hampered by inherent inaccuracies associated with liquid-liquid extraction and turbidimetric analysis. For accurate quantitation by previous methods, radioactive labels were required. This paper describes a method to separate and quantitate PEG 3350 and PEG 400 in human urine that is independent of radioactive labels and is accurate in clinical practice. The method uses sized regenerated cellulose membranes and mixed ion-exchange resin for sample preparation and high-performance liquid chromatography with refractive index detection for analysis. The 24-h excretion for normal individuals after an oral dose of 40 g of PEG 3350 and 5 g of PEG 400 was 0.12 +/- 0.04% of the original dose of PEG 3350 and 26.3 +/- 5.1% of the original dose of PEG 400.
Takeda, Hiroaki; Izumi, Yoshihiro; Takahashi, Masatomo; Paxton, Thanai; Tamura, Shohei; Koike, Tomonari; Yu, Ying; Kato, Noriko; Nagase, Katsutoshi; Shiomi, Masashi; Bamba, Takeshi
2018-05-03
Lipidomics, the mass spectrometry-based comprehensive analysis of lipids, has attracted attention as an analytical approach to provide novel insight into lipid metabolism and to search for biomarkers. However, an ideal method for both comprehensive and quantitative analysis of lipids has not been fully developed. Herein, we have proposed a practical methodology for widely-targeted quantitative lipidome analysis using supercritical fluid chromatography fast-scanning triple-quadrupole mass spectrometry (SFC/QqQMS) and theoretically calculated a comprehensive lipid multiple reaction monitoring (MRM) library. Lipid classes can be separated by SFC with a normal phase diethylamine-bonded silica column with high-resolution, high-throughput, and good repeatability. Structural isomers of phospholipids can be monitored by mass spectrometric separation with fatty acyl-based MRM transitions. SFC/QqQMS analysis with an internal standard-dilution method offers quantitative information for both lipid class and individual lipid molecular species in the same lipid class. Additionally, data acquired using this method has advantages including reduction of misidentification and acceleration of data analysis. Using the SFC/QqQMS system, alteration of plasma lipid levels in myocardial infarction-prone rabbits to the supplementation of eicosapentaenoic acid was first observed. Our developed SFC/QqQMS method represents a potentially useful tool for in-depth studies focused on complex lipid metabolism and biomarker discovery. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.
Cho, Hyun-Deok; Kim, Unyong; Suh, Joon Hyuk; Eom, Han Young; Kim, Junghyun; Lee, Seul Gi; Choi, Yong Seok; Han, Sang Beom
2016-04-01
Analytical methods using high-performance liquid chromatography with diode array and tandem mass spectrometry detection were developed for the discrimination of the rhizomes of four Atractylodes medicinal plants: A. japonica, A. macrocephala, A. chinensis, and A. lancea. A quantitative study was performed, selecting five bioactive components, including atractylenolide I, II, III, eudesma-4(14),7(11)-dien-8-one and atractylodin, on twenty-six Atractylodes samples of various origins. Sample extraction was optimized to sonication with 80% methanol for 40 min at room temperature. High-performance liquid chromatography with diode array detection was established using a C18 column with a water/acetonitrile gradient system at a flow rate of 1.0 mL/min, and the detection wavelength was set at 236 nm. Liquid chromatography with tandem mass spectrometry was applied to certify the reliability of the quantitative results. The developed methods were validated by ensuring specificity, linearity, limit of quantification, accuracy, precision, recovery, robustness, and stability. Results showed that cangzhu contained higher amounts of atractylenolide I and atractylodin than baizhu, and especially atractylodin contents showed the greatest variation between baizhu and cangzhu. Multivariate statistical analysis, such as principal component analysis and hierarchical cluster analysis, were also employed for further classification of the Atractylodes plants. The established method was suitable for quality control of the Atractylodes plants. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
This report presents a comprehensive spectral analysis of common bacterial phospholipids using electrospray/mass spectrometry (ESI/MS) under both negative and positive ionization conditions. Phospholipids under positive ionization yield sodium-adduct molecular ions which are mos...
A methodology for the comparative evaluation of alternative bioseparation technologies.
Tran, Richard; Zhou, Yuhong; Lacki, Karol M; Titchener-Hooker, Nigel J
2008-01-01
Advances in upstream technologies and growing commercial demand have led to cell culture processes of ever larger volumes and expressing at higher product titers. This has increased the burden on downstream processing. Concerns regarding the capacity limitations of packed-bed chromatography have led process engineers to begin investigating new bioseparation techniques that may be considered as "alternatives" to chromatography, and which could potentially offer higher processing capacities but at a lower cost. With the wide range of alternatives, which are currently available, each with their own strengths and inherent limitations, coupled with the time pressures associated with process development, the challenge for process engineers is to determine which technologies are most worth investigating. This article presents a methodology based on a multiattribute decision making (MADM) analysis approach, utilizing both quantitative and qualitative data, which can be used to determine the "industrial attractiveness" of bioseparation technologies, accounting for trade-offs between their strengths and weaknesses. By including packed-bed chromatography in the analysis as a reference point, it was possible to determine the alternatives, which show the most promise for use in large-scale manufacturing processes. The results of this analysis show that although the majority of alternative techniques offer certain advantages over conventional packed-bed chromatography, their attractiveness overall means that currently none of these technologies may be considered as viable alternatives to chromatography. The methodology introduced in this study may be used to gain significant quantitative insight as to the key areas in which improvements are required for each technique, and thus may be used as a tool to aid in further technological development.
ERIC Educational Resources Information Center
Usher, Karyn M.; Simmons, Carolyn R.; Keating, Daniel W.; Rossi, Henry F., III
2015-01-01
Chemical separations are an important part of an undergraduate chemistry curriculum. Sophomore students often get experience with liquid-liquid extraction in organic chemistry classes, but liquid-liquid extraction is not as often introduced as a quantitative sample preparation method in honors general chemistry or quantitative analysis classes.…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gritsenko, Marina A.; Xu, Zhe; Liu, Tao
Comprehensive, quantitative information on abundances of proteins and their post-translational modifications (PTMs) can potentially provide novel biological insights into diseases pathogenesis and therapeutic intervention. Herein, we introduce a quantitative strategy utilizing isobaric stable isotope-labelling techniques combined with two-dimensional liquid chromatography-tandem mass spectrometry (2D-LC-MS/MS) for large-scale, deep quantitative proteome profiling of biological samples or clinical specimens such as tumor tissues. The workflow includes isobaric labeling of tryptic peptides for multiplexed and accurate quantitative analysis, basic reversed-phase LC fractionation and concatenation for reduced sample complexity, and nano-LC coupled to high resolution and high mass accuracy MS analysis for high confidence identification andmore » quantification of proteins. This proteomic analysis strategy has been successfully applied for in-depth quantitative proteomic analysis of tumor samples, and can also be used for integrated proteome and PTM characterization, as well as comprehensive quantitative proteomic analysis across samples from large clinical cohorts.« less
Gritsenko, Marina A; Xu, Zhe; Liu, Tao; Smith, Richard D
2016-01-01
Comprehensive, quantitative information on abundances of proteins and their posttranslational modifications (PTMs) can potentially provide novel biological insights into diseases pathogenesis and therapeutic intervention. Herein, we introduce a quantitative strategy utilizing isobaric stable isotope-labeling techniques combined with two-dimensional liquid chromatography-tandem mass spectrometry (2D-LC-MS/MS) for large-scale, deep quantitative proteome profiling of biological samples or clinical specimens such as tumor tissues. The workflow includes isobaric labeling of tryptic peptides for multiplexed and accurate quantitative analysis, basic reversed-phase LC fractionation and concatenation for reduced sample complexity, and nano-LC coupled to high resolution and high mass accuracy MS analysis for high confidence identification and quantification of proteins. This proteomic analysis strategy has been successfully applied for in-depth quantitative proteomic analysis of tumor samples and can also be used for integrated proteome and PTM characterization, as well as comprehensive quantitative proteomic analysis across samples from large clinical cohorts.
Pires, Adriana Elias; Honda, Neli Kiko; Cardoso, Cláudia Andréa Lima
2004-10-29
A method for sample preparation and analysis by high performance liquid chromatography with UV detection (HPLC-UV) has been developed for routine analysis of psoralen and bergapten, photosensitizing compounds, in oral solutions of phytomedicines employed in Brazil for some illnesses. The linearity, accuracy, the inter- and intra-day precision of the procedure were evaluated. Calibration curves for psoralen and bergapten were linear in the range of 1.0-600.0 microg ml(-1) and 1.0-400.0 microg ml(-1) respectively. The recoveries of the psoralens in the oral solutions analysed were 94.43-99.97%. The percentage coefficient of variation (CV) of the quantitative analysis of the psoralens in the products analysis was within 5%. In inter-equipment study was employed gas chromatography-flame ionization (CG-FID) detection.
Stable Isotope Quantitative N-Glycan Analysis by Liquid Separation Techniques and Mass Spectrometry.
Mittermayr, Stefan; Albrecht, Simone; Váradi, Csaba; Millán-Martín, Silvia; Bones, Jonathan
2017-01-01
Liquid phase separation analysis and subsequent quantitation remains a challenging task for protein-derived oligosaccharides due to their inherent structural complexity and diversity. Incomplete resolution or co-detection of multiple glycan species complicates peak area-based quantitation and associated statistical analysis when optical detection methods are used. The approach outlined herein describes the utilization of stable isotope variants of commonly used fluorescent tags that allow for mass-based glycan identification and relative quantitation following separation by liquid chromatography (LC) or capillary electrophoresis (CE). Comparability assessment of glycoprotein-derived oligosaccharides is performed by derivatization with commercially available isotope variants of 2-aminobenzoic acid or aniline and analysis by LC- and CE-mass spectrometry. Quantitative information is attained from the extracted ion chromatogram/electropherogram ratios generated from the light and heavy isotope clusters.
Establishment of analysis method for methane detection by gas chromatography
NASA Astrophysics Data System (ADS)
Liu, Xinyuan; Yang, Jie; Ye, Tianyi; Han, Zeyu
2018-02-01
The study focused on the establishment of analysis method for methane determination by gas chromatography. Methane was detected by hydrogen flame ionization detector, and the quantitative relationship was determined by working curve of y=2041.2x+2187 with correlation coefficient of 0.9979. The relative standard deviation of 2.60-6.33% and the recovery rate of 96.36%∼105.89% were obtained during the parallel determination of standard gas. This method was not quite suitable for biogas content analysis because methane content in biogas would be over the measurement range in this method.
Chemical Fingerprint Analysis and Quantitative Analysis of Rosa rugosa by UPLC-DAD.
Mansur, Sanawar; Abdulla, Rahima; Ayupbec, Amatjan; Aisa, Haji Akbar
2016-12-21
A method based on ultra performance liquid chromatography with a diode array detector (UPLC-DAD) was developed for quantitative analysis of five active compounds and chemical fingerprint analysis of Rosa rugosa . Ten batches of R. rugosa collected from different plantations in the Xinjiang region of China were used to establish the fingerprint. The feasibility and advantages of the used UPLC fingerprint were verified for its similarity evaluation by systematically comparing chromatograms with professional analytical software recommended by State Food and Drug Administration (SFDA) of China. In quantitative analysis, the five compounds showed good regression (R² = 0.9995) within the test ranges, and the recovery of the method was in the range of 94.2%-103.8%. The similarities of liquid chromatography fingerprints of 10 batches of R. rugosa were more than 0.981. The developed UPLC fingerprint method is simple, reliable, and validated for the quality control and identification of R. rugosa . Additionally, simultaneous quantification of five major bioactive ingredients in the R. rugosa samples was conducted to interpret the consistency of the quality test. The results indicated that the UPLC fingerprint, as a characteristic distinguishing method combining similarity evaluation and quantification analysis, can be successfully used to assess the quality and to identify the authenticity of R. rugosa .
Quality Analysis of Chlorogenic Acid and Hyperoside in Crataegi fructus
Weon, Jin Bae; Jung, Youn Sik; Ma, Choong Je
2016-01-01
Background: Crataegi fructus is a herbal medicine for strong stomach, sterilization, and alcohol detoxification. Chlorogenic acid and hyperoside are the major compounds in Crataegi fructus. Objective: In this study, we established novel high-performance liquid chromatography (HPLC)-diode array detection analysis method of chlorogenic acid and hyperoside for quality control of Crataegi fructus. Materials and Methods: HPLC analysis was achieved on a reverse-phase C18 column (5 μm, 4.6 mm × 250 mm) using water and acetonitrile as mobile phase with gradient system. The method was validated for linearity, precision, and accuracy. About 31 batches of Crataegi fructus samples collected from Korea and China were analyzed by using HPLC fingerprint of developed HPLC method. Then, the contents of chlorogenic acid and hyperoside were compared for quality evaluation of Crataegi fructus. Results: The results have shown that the average contents (w/w %) of chlorogenic acid and hyperoside in Crataegi fructus collected from Korea were 0.0438% and 0.0416%, respectively, and the average contents (w/w %) of 0.0399% and 0.0325%, respectively. Conclusion: In conclusion, established HPLC analysis method was stable and could provide efficient quality evaluation for monitoring of commercial Crataegi fructus. SUMMARY Quantitative analysis method of chlorogenic acid and hyperoside in Crataegi fructus is developed by high.performance liquid chromatography.(HPLC).diode array detectionEstablished HPLC analysis method is validated with linearity, precision, and accuracyThe developed method was successfully applied for quantitative analysis of Crataegi fructus sample collected from Korea and China. Abbreviations used: HPLC: High-performance liquid chromatography, GC: Gas chromatography, MS: Mass spectrometer, LOD: Limits of detection, LOQ: Limits of quantification, RSD: Relative standard deviation, RRT: Relative retention time, RPA: Relation peak area. PMID:27076744
León, Ileana R.; Schwämmle, Veit; Jensen, Ole N.; Sprenger, Richard R.
2013-01-01
The majority of mass spectrometry-based protein quantification studies uses peptide-centric analytical methods and thus strongly relies on efficient and unbiased protein digestion protocols for sample preparation. We present a novel objective approach to assess protein digestion efficiency using a combination of qualitative and quantitative liquid chromatography-tandem MS methods and statistical data analysis. In contrast to previous studies we employed both standard qualitative as well as data-independent quantitative workflows to systematically assess trypsin digestion efficiency and bias using mitochondrial protein fractions. We evaluated nine trypsin-based digestion protocols, based on standard in-solution or on spin filter-aided digestion, including new optimized protocols. We investigated various reagents for protein solubilization and denaturation (dodecyl sulfate, deoxycholate, urea), several trypsin digestion conditions (buffer, RapiGest, deoxycholate, urea), and two methods for removal of detergents before analysis of peptides (acid precipitation or phase separation with ethyl acetate). Our data-independent quantitative liquid chromatography-tandem MS workflow quantified over 3700 distinct peptides with 96% completeness between all protocols and replicates, with an average 40% protein sequence coverage and an average of 11 peptides identified per protein. Systematic quantitative and statistical analysis of physicochemical parameters demonstrated that deoxycholate-assisted in-solution digestion combined with phase transfer allows for efficient, unbiased generation and recovery of peptides from all protein classes, including membrane proteins. This deoxycholate-assisted protocol was also optimal for spin filter-aided digestions as compared with existing methods. PMID:23792921
Chemical Warfare Agent Operational Exposure Hazard Assessment Research: FY07 Report and Analysis
2010-07-01
of the nerve agents sarin, soman, cyclohexylsarin, VX, and Russian VX in human urine using isotope-dilution gas chromatography-tandem mass...Needham L.L.; Barr, D.B. Quantitation of organophosphorous nerve agent metabolites in human urine using isotope dilution gas chromatography-tandem mass... nerve agents , VX, GB, or GF, and to determine lethal percutaneous (PC) levels of VX. Calibration of Physiologically-based pharmacokinetic biomarkers
Ekeberg, Dag; Flaete, Per-Otto; Eikenes, Morten; Fongen, Monica; Naess-Andresen, Carl Fredrik
2006-03-24
A method for quantitative determination of extractives from heartwood of Scots pine (Pinus sylvestris L.) using gas chromatography (GC) with flame ionization detection (FID) was developed. The limit of detection (LOD) was 0.03 mg/g wood and the linear range (r = 0.9994) was up to 10 mg/g with accuracy within +/- 10% and precision of 18% relative standard deviation. The identification of the extractives was performed using gas chromatography combined with mass spectrometry (GC-MS). The yields of extraction by Soxhlet were tested for solid wood, small particles and fine powder. Small particles were chosen for further analysis. This treatment gave good yields of the most important extractives: pinosylvin, pinosylvin monomethyl ether, resin acids and free fatty acids. The method is used to demonstrate the variation of these extractives across stems and differences in north-south direction.
Miranda, Nahieh Toscano; Sequinel, Rodrigo; Hatanaka, Rafael Rodrigues; de Oliveira, José Eduardo; Flumignan, Danilo Luiz
2017-04-01
Benzene, toluene, ethylbenzene, and xylenes are some of the most hazardous constituents found in commercial gasoline samples; therefore, these components must be monitored to avoid toxicological problems. We propose a new routine method of ultrafast gas chromatography coupled to flame ionization detection for the direct determination of benzene, toluene, ethylbenzene, and xylenes in commercial gasoline. This method is based on external standard calibration to quantify each compound, including the validation step of the study of linearity, detection and quantification limits, precision, and accuracy. The time of analysis was less than 3.2 min, with quantitative statements regarding the separation and quantification of all compounds in commercial gasoline samples. Ultrafast gas chromatography is a promising alternative method to official analytical techniques. Government laboratories could consider using this method for quality control. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Verweij-van Wissen, C P W G M; Aarnoutse, R E; Burger, D M
2005-02-25
A reversed phase high performance liquid chromatography method was developed for the simultaneous quantitative determination of the nucleoside reverse transcriptase inhibitors (NRTIs) lamivudine, didanosine, stavudine, zidovudine and abacavir in plasma. The method involved solid-phase extraction with Oasis MAX cartridges from plasma, followed by high performance liquid chromatography with a SymmetryShield RP 18 column and ultraviolet detection set at a wavelength of 260 nm. The assay was validated over the concentration range of 0.015-5 mg/l for all five NRTIs. The average accuracies for the assay were 92-102%, inter- and intra-day coefficients of variation (CV) were <2.5% and extraction recoveries were higher than 97%. This method proved to be simple, accurate and precise, and is currently in use in our laboratory for the quantitative analysis of NRTIs in plasma.
Wang, Yun; Liu, Hui; Shen, Lifeng; Yao, Lan; Ma, Yinlian; Yu, Dingrong; Chen, Jianhong; Li, Puling; Chen, Ying; Zhang, Cun
2015-12-01
Gardeniae fructus is one of the most frequently used herbs in traditional Chinese medicine. In the present study, a process for the enrichment of six iridoid glycosides from Gardeniae fructus was developed using medium-pressure liquid chromatography combined with macroporous resin and reversed-phase chromatography. The purities of different fractions from Gardeniae fructus were assessed using quantitative high-performance liquid chromatography. After fractionation using HPD-100 column chromatography, a 30% ethanol fraction was selected based on high-performance liquid chromatography and liquid chromatography with mass spectrometry qualitative analysis to separate and purify. Based on the orientation analysis results, six compounds-deacetyl asperulosidic acid methyl ester, gardenoside, ixoroside, scandoside methyl ester, genipin-1-O-β-d-gentiobioside, and geniposide-were successfully isolated and purified in three to four combined steps from Gardeniae fructus. The purities of these compounds were found by high-performance liquid chromatography analysis to be 97.9, 98.1, 95.5, 96.3, 97.1, and 98.7%, respectively. Moreover, their structures were elucidated by NMR spectroscopy and liquid chromatography with tandem mass spectrometry. The separation process was highly efficient, rapid, and accurate, making it a potential approach for the large-scale production of iridoids in the laboratory and providing several marker compounds for quality control. This procedure may be meaningful for the purification of other natural products used in traditional Chinese medicine. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Reversed-phase high-performance liquid chromatography of sulfur mustard in water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raghuveeran, C.D.; Malhotra, R.C.; Dangi, R.S.
1993-01-01
A reversed-phase high-performance liquid chromatography method for the detection and quantitation of sulfur mustard (HD) in water is described with detection at 200 nm. The detection based on the solubility of HD in water revealed that extremely low quantities of HD (4 to 5 mg/L) only are soluble. Experience shows that water is still the medium of choice for the analysis of HD in water and aqueous effluents in spite of the minor handicap of its half-life of ca. 4 minutes, which only calls for speedy analysis.
Analytical methods for toxic gases from thermal degradation of polymers
NASA Technical Reports Server (NTRS)
Hsu, M.-T. S.
1977-01-01
Toxic gases evolved from the thermal oxidative degradation of synthetic or natural polymers in small laboratory chambers or in large scale fire tests are measured by several different analytical methods. Gas detector tubes are used for fast on-site detection of suspect toxic gases. The infrared spectroscopic method is an excellent qualitative and quantitative analysis for some toxic gases. Permanent gases such as carbon monoxide, carbon dioxide, methane and ethylene, can be quantitatively determined by gas chromatography. Highly toxic and corrosive gases such as nitrogen oxides, hydrogen cyanide, hydrogen fluoride, hydrogen chloride and sulfur dioxide should be passed into a scrubbing solution for subsequent analysis by either specific ion electrodes or spectrophotometric methods. Low-concentration toxic organic vapors can be concentrated in a cold trap and then analyzed by gas chromatography and mass spectrometry. The limitations of different methods are discussed.
Osago, Harumi; Shibata, Tomoko; Hara, Nobumasa; Kuwata, Suguru; Kono, Michihaya; Uchio, Yuji; Tsuchiya, Mikako
2014-12-15
We developed a method using liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) with a selected reaction monitoring (SRM) mode for simultaneous quantitative analysis of glycosaminoglycans (GAGs). Using one-shot analysis with our MS/MS method, we demonstrated the simultaneous quantification of a total of 23 variously sulfated disaccharides of four GAG classes (8 chondroitin/dermatan sulfates, 1 hyaluronic acid, 12 heparan sulfates, and 2 keratan sulfates) with a sensitivity of less than 0.5 pmol within 20 min. We showed the differences in the composition of GAG classes and the sulfation patterns between porcine articular cartilage and yellow ligament. In addition to the internal disaccharides described above, some saccharides derived from the nonreducing terminal were detected simultaneously. The simultaneous quantification of both internal and nonreducing terminal saccharides could be useful to estimate the chain length of GAGs. This method would help to establish comprehensive "GAGomic" analysis of biological tissues. Copyright © 2014 Elsevier Inc. All rights reserved.
Sun, Shihao; Wang, Hui; Xie, Jianping; Su, Yue
2016-01-01
Jujube extract is commonly used as a food additive and flavoring. The sensory properties of the extract, especially sweetness, are a critical factor determining the product quality and therefore affecting consumer acceptability. Small molecular carbohydrates make major contribution to the sweetness of the jujube extract, and their types and contents in the extract have direct influence on quality of the product. So, an appropriate qualitative and quantitative method for determination of the carbohydrates is vitally important for quality control of the product. High performance liquid chromatography-evaporative light scattering detection (HPLC-ELSD), liquid chromatography-electronic spay ionization tandem mass spectrometry (LC-ESI-MS/MS), and gas chromatography-mass spectrometry (GC-MS) methods have been developed and applied to determining small molecular carbohydrates in jujube extract, respectively. Eight sugars and alditols were identified from the extract, including rhamnose, xylitol, arabitol, fructose, glucose, inositol, sucrose, and maltose. Comparisons were carried out to investigate the performance of the methods. Although the methods have been found to perform satisfactorily, only three sugars (fructose, glucose and inositol) could be detected by all these methods. Meanwhile, a similar quantitative result for the three sugars can be obtained by the methods. Eight sugars and alditols in the jujube extract were determined by HPLC-ELSD, LC-ESI-MS/MS and GC-MS, respectively. The LC-ELSD method and the LC-ESI-MS/MS method with good precision and accuracy were suitable for quantitative analysis of carbohydrates in jujube extract; although the performance of the GC-MS method for quantitative analysis was inferior to the other methods, it has a wider scope in qualitative analysis. A multi-analysis technique should be adopted in order to obtain complete constituents of about the carbohydrates in jujube extract, and the methods should be employed according to the purpose of analysis.
Hinchliffe, Edward; Rudge, James; Reed, Paul
2016-07-01
Measurement of vitamin A (retinol) and E (alpha-tocopherol) in UK clinical laboratories is currently performed exclusively by high-performance liquid chromatography with ultraviolet detection. We investigated whether retinol and alpha-tocopherol could be measured simultaneously by liquid chromatography tandem mass spectrometry. Serum samples (100 μL) were extracted using Isolute + Supported Liquid Extraction plates. Chromatography was performed on a Phenomenex Kinetex Biphenyl 2.6 μm, 50 × 2.1 mm column, and liquid chromatography tandem mass spectrometry on a Waters Acquity TQD. Injection-to-injection time was 4.3 min. The assay was validated according to published guidelines. Patient samples were used to compare liquid chromatography tandem mass spectrometry and high-performance liquid chromatography with ultraviolet detection methods. For retinol and alpha-tocopherol, respectively, the assay was linear up to 6.0 and 80.0 μmol/L, and lower limit of quantification was 0.07 and 0.26 μmol/L. Intra and interassay imprecision were within desirable analytical specifications. Analysis of quality control material aligned to NIST SRM 968e, and relative spiked recovery from human serum, both yielded results within 15% of target values. Method comparison with high-performance liquid chromatography with ultraviolet detection methodology demonstrated a negative bias for retinol and alpha-tocopherol by the liquid chromatography tandem mass spectrometry method. Analysis of United Kingdom National External Quality Assurance Scheme samples yielded mean bias from the target value of +3.0% for retinol and -11.2% for alpha-tocopherol. We have developed a novel, high-throughput method for extraction of retinol and alpha-tocopherol from human serum followed by simultaneous quantitation by liquid chromatography tandem mass spectrometry. The method offers a rapid, sensitive, specific and cost-effective alternative to high-performance liquid chromatography with ultraviolet detection methodology, and is suitable for routine clinical monitoring of patients predisposed to fat-soluble vitamin malabsorption. © The Author(s) 2015.
Pesavento, James J; Bullock, Courtney R; LeDuc, Richard D; Mizzen, Craig A; Kelleher, Neil L
2008-05-30
Quantitative proteomics has focused heavily on correlating protein abundances, ratios, and dynamics by developing methods that are protein expression-centric (e.g. isotope coded affinity tag, isobaric tag for relative and absolute quantification, etc.). These methods effectively detect changes in protein abundance but fail to provide a comprehensive perspective of the diversity of proteins such as histones, which are regulated by post-translational modifications. Here, we report the characterization of modified forms of HeLa cell histone H4 with a dynamic range >10(4) using a strictly Top Down mass spectrometric approach coupled with two dimensions of liquid chromatography. This enhanced dynamic range enabled the precise characterization and quantitation of 42 forms uniquely modified by combinations of methylation and acetylation, including those with trimethylated Lys-20, monomethylated Arg-3, and the novel dimethylated Arg-3 (each <1% of all H4 forms). Quantitative analyses revealed distinct trends in acetylation site occupancy depending on Lys-20 methylation state. Because both modifications are dynamically regulated through the cell cycle, we simultaneously investigated acetylation and methylation kinetics through three cell cycle phases and used these data to statistically assess the robustness of our quantitative analysis. This work represents the most comprehensive analysis of histone H4 forms present in human cells reported to date.
[Gas chromatography in quantitative analysis of hydrocyanic acid and its salts in cadaveric blood].
Iablochkin, V D
2003-01-01
A direct gas chromatography method was designed for the quantitative determination of cyanides (prussic acid) in cadaveric blood. Its sensitivity is 0.05 mg/ml. The routine volatile products, including substances, which emerge due to putrefaction of organic matters, do not affect the accuracy and reproducibility of the method; the exception is H-propanol that was used as the internal standard. The method was used in legal chemical expertise related with acute cyanide poisoning (suicide) as well as with poisoning of products of combustion of nonmetals (foam-rubber). The absolute error does not exceed 10% with a mean quadratic deviation of 0.0029-0.0033 mg.
Method and apparatus for chromatographic quantitative analysis
Fritz, James S.; Gjerde, Douglas T.; Schmuckler, Gabriella
1981-06-09
An improved apparatus and method for the quantitative analysis of a solution containing a plurality of anion species by ion exchange chromatography which utilizes a single eluent and a single ion exchange bed which does not require periodic regeneration. The solution containing the anions is added to an anion exchange resin bed which is a low capacity macroreticular polystyrene-divinylbenzene resin containing quarternary ammonium functional groups, and is eluted therefrom with a dilute solution of a low electrical conductance organic acid salt. As each anion species is eluted from the bed, it is quantitatively sensed by conventional detection means such as a conductivity cell.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heyman, Heino M.; Zhang, Xing; Tang, Keqi
2016-02-16
Metabolomics is the quantitative analysis of all metabolites in a given sample. Due to the chemical complexity of the metabolome, optimal separations are required for comprehensive identification and quantification of sample constituents. This chapter provides an overview of both conventional and advanced separations methods in practice for reducing the complexity of metabolite extracts delivered to the mass spectrometer detector, and covers gas chromatography (GC), liquid chromatography (LC), capillary electrophoresis (CE), supercritical fluid chromatography (SFC) and ion mobility spectrometry (IMS) separation techniques coupled with mass spectrometry (MS) as both uni-dimensional and as multi-dimensional approaches.
Wang, Mei; Wang, Yan-Hong; Avula, Bharathi; Radwan, Mohamed M; Wanas, Amira S; Mehmedic, Zlatko; van Antwerp, John; ElSohly, Mahmoud A; Khan, Ikhlas A
2017-05-01
Ultra-high-performance supercritical fluid chromatography (UHPSFC) is an efficient analytical technique and has not been fully employed for the analysis of cannabis. Here, a novel method was developed for the analysis of 30 cannabis plant extracts and preparations using UHPSFC/PDA-MS. Nine of the most abundant cannabinoids, viz. CBD, ∆ 8 -THC, THCV, ∆ 9 -THC, CBN, CBG, THCA-A, CBDA, and CBGA, were quantitatively determined (RSDs < 6.9%). Unlike GC methods, no derivatization or decarboxylation was required prior to UHPSFC analysis. The UHPSFC chromatographic separation of cannabinoids displayed an inverse elution order compared to UHPLC. Combining with PDA-MS, this orthogonality is valuable for discrimination of cannabinoids in complex matrices. The developed method was validated, and the quantification results were compared with a standard UHPLC method. The RSDs of these two methods were within ±13.0%. Finally, chemometric analysis including principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) were used to differentiate between cannabis samples. © 2016 American Academy of Forensic Sciences.
Chen, Tao; Fan, Jun; Gao, Ruiqi; Wang, Tai; Yu, Ying; Zhang, Weiguang
2016-10-07
Chiral stationary phase-high performance liquid chromatography coupled with various detectors has been one of most commonly used methods for analysis and separation of chiral compounds over the past decades. Various detectors exhibit different characteristics in qualitative and quantitative studies under different chromatographic conditions. Herein, a comparative evaluation of HPLC coupled with ultraviolet, optical rotation, refractive index, and evaporative light scattering detectors has been conducted for qualitative and quantitative analyses of metalaxyl racemate. Effects of separation conditions on the peak area ratio between two enantiomers, including sample concentration, column temperature, mobile phase composition, as well as flow rate, have been investigated in detail. In addition, the limits of detection, the limits of quantitation, quantitative range and precision for these two enantiomers by using four detectors have been also studied. As indicated, the chromatographic separation conditions have been slight effects on ultraviolet and refractive index detections and the peak area ratio between two enantiomers remains almost unchanged, but the evaporative light scattering detection has been significantly affected by the above-mentioned chromatographic conditions and the corresponding peak area ratios varied greatly. Moreover, the limits of detection, the limits of quantitation, and the quantitative ranges of two enantiomers with UV detection were remarkably lower by 1-2 magnitudes than the others. Copyright © 2016 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Mei-Ratliff, Yuan
2012-01-01
Trace levels of oxytetracylcine spiked into commercial milk samples are extracted, cleaned up, and preconcentrated using a C[subscript 18] solid-phase extraction column. The extract is then analyzed by a high-performance liquid chromatography (HPLC) instrument equipped with a UV detector and a C[subscript 18] column (150 mm x 4.6 mm x 3.5 [mu]m).…
Furlong, E.T.; Vaught, D.G.; Merten, L.M.; Foreman, W.T.; Gates, Paul M.
1996-01-01
A method for the determination of 79 semivolatile organic compounds (SOCs) and 4 surrogate compounds in soils and bottom sediment is described. The SOCs are extracted from bottom sediment by solvent extraction, followed by partial isolation using high-performance gel permeation chromatography (GPC). The SOCs then are qualitatively identified and quantitative concentrations determined by capillary-column gas chromatography/mass spectrometry (GC/MS). This method also is designed for an optional simultaneous isolation of polychlorinated biphenyls (PCBs) and organochlorine (OC) insecticides, including toxaphene. When OCs and PCBs are determined, an additional alumina- over-silica column chromatography step follows GPC cleanup, and quantitation is by dual capillary- column gas chromatography with electron-capture detection (GC/ECD). Bottom-sediment samples are centrifuged to remove excess water and extracted overnight with dichloromethane. The extract is concentrated, centrifuged, and then filtered through a 0.2-micrometer polytetrafluoro-ethylene syringe filter. Two aliquots of the sample extract then are quantitatively injected onto two polystyrene- divinylbenzene GPC columns connected in series. The SOCs are eluted with dichloromethane, a fraction containing the SOCs is collected, and some coextracted interferences, including elemental sulfur, are separated and discarded. The SOC-containing GPC fraction then is analyzed by GC/MS. When desired, a second aliquot from GPC is further processed for OCs and PCBs by combined alumina-over-silica column chromatography. The two fractions produced in this cleanup then are analyzed by GC/ECD. This report fully describes and is limited to the determination of SOCs by GC/MS.
Fischer, Jochen; Haas, Torsten; Leppert, Jan; Lammers, Peter Schulze; Horner, Gerhard; Wüst, Matthias; Boeker, Peter
2014-09-01
Boar taint is a specific off-odour of boar meat products, known to be caused by at least three unpleasant odorants, with very low odour thresholds. Androstenone is a boar pheromone produced in the testes, whereas skatole and indole originate from the microbial breakdown of tryptophan in the intestinal tract. A new procedure, applying stable isotope dilution analysis (SIDA) and dynamic headspace-thermal desorption-gas chromatography/time-of-flight mass spectrometry (dynHS-TD-GC/TOFMS) for the simultaneous quantitation of these boar taint compounds in pig fat was elaborated and validated in this paper. The new method is characterised by a simple and solvent-free dynamic headspace sampling. The deuterated compounds d3-androstenone, d3-skatole and d6-indole were used as internal standards to eliminate matrix effects. The method validation performed revealed low limits of detection (LOD) and quantitation (LOQ) with high accuracy and precision, thus confirming the feasibility of the new dynHS-TD-GC/TOFMS approach for routine analysis. Copyright © 2014 Elsevier Ltd. All rights reserved.
Steingass, Christof B; Langen, Johannes; Carle, Reinhold; Schmarr, Hans-Georg
2015-02-01
Headspace solid phase microextraction and chirospecific gas chromatography-mass spectrometry in selected ion monitoring mode (HS-SPME-GC-SIM-MS) allowed quantitative determination of δ-lactones (δ-C8, δ-C10) and γ-lactones (γ-C6, γ-C8, γ-C10). A stable isotope dilution assay (SIDA) with d7-γ-decalactone as internal standard was used for quantitative analysis of pineapple lactones that was performed at three progressing post-harvest stages of fully ripe air-freighted and green-ripe sea-freighted fruits, covering the relevant shelf-life of the fruits. Fresh pineapples harvested at full maturity were characterised by γ-C6 of high enantiomeric purity remaining stable during the whole post-harvest period. In contrast, the enantiomeric purity of γ-C6 significantly decreased during post-harvest storage of sea-freighted pineapples. The biogenetical background and the potential of chirospecific analysis of lactones for authentication and quality evaluation of fresh pineapple fruits are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.
Aldeek, Fadi; Hsieh, Kevin C; Ugochukwu, Obiadada N; Gerard, Ghislain; Hammack, Walter
2018-05-23
We developed and validated a method for the extraction, identification, and quantitation of four nitrofuran metabolites, 3-amino-2-oxazolidinone (AOZ), 3-amino-5-morpholinomethyl-2-oxazolidinone (AMOZ), semicarbazide (SC), and 1-aminohydantoin (AHD), as well as chloramphenicol and florfenicol in a variety of seafood commodities. Samples were extracted by liquid-liquid extraction techniques, analyzed by ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS), and quantitated using commercially sourced, derivatized nitrofuran metabolites, with their isotopically labeled internal standards in-solvent. We obtained recoveries of 90-100% at various fortification levels. The limit of detection (LOD) was set at 0.25 ng/g for AMOZ and AOZ, 1 ng/g for AHD and SC, and 0.1 ng/g for the phenicols. Various extraction methods, standard stability, derivatization efficiency, and improvements to conventional quantitation techniques were also investigated. We successfully applied this method to the identification and quantitation of nitrofuran metabolites and phenicols in 102 imported seafood products. Our results revealed that four of the samples contained residues from banned veterinary drugs.
High-Pressure Liquid Chromatography: Quantitative Analysis of Chinese Herbal Medicine
ERIC Educational Resources Information Center
Chan, W. F.; Lin, C. W.
2007-01-01
An HPLC undergraduate experiment on the analysis of traditional Chinese medicine (TCM) has been developed. Two commonly used herbs ("glycyrrhizae radix" and "cinnamomi ramulus") are studied. Glycyrrhizin, cinnamic acid, and cinnamaldehyde are chosen as markers for the herbs. The dried herbs in their natural state and a TCM…
Taira, Kumiko; Fujioka, Kazutoshi; Aoyama, Yoshiko
2013-01-01
Neonicotinoid pesticides have been widely applied for the production of fruits and vegetables, and occasionally detected in conventionally grown produce. Thus oral exposure to neonicotinoid pesticides may exist in the general population; however, neonicotinoid metabolites in human body fluids have not been investigated comprehensively. The purpose of this study is the qualitative profiling and quantitative analysis of neonicotinoid metabolites in the human spot urine by liquid chromatography coupled with mass spectrometry (LC/MS). Human urine samples were collected from three patients suspected of subacute exposure to neonicotinoid pesticides. A qualitative profiling of urinary metabolites was performed using liquid chromatography/time-of-flight mass spectrometry (LC/TOFMS) with a database of nominal molecular weights of 57 known metabolites of three neonicotinoid pesticides (acetamiprid, Imidacloprid, and clothianidin), as well as the parent compounds. Then a quantitative analysis of selected urinary metabolites was performed using liquid chromatography/tandem mass spectrometry (LC/MS/MS) with a standard pesticide and metabolite, which were detected by the qualitative profiling. The result of qualitative profiling showed that seven metabolites, i.e. an acetamiprid metabolite, N-desmethyl-acetamiprid; three Imidacloprid metabolites, 5-hydroxy-Imidacloprid, 4,5-dihydroxy-imidacloprid, 4,5-dehydro-Imidacloprid; a common metabolite of acetamiprid and Imidacloprid, N-(6-chloronicotinoyl)-glycine; and two clothianidin metabolites, N-desmethyl-clothianidin, N-(2-(methylsulfanyl)thiazole-5-carboxyl)-glycine, as well as acetamiprid, were detected in the urine of three cases. The result of the quantitative analysis showed N-desmethyl-acetamiprid was determined in the urine of one case, which had been collected on the first visit, at a concentration of 3.2 ng/mL. This is the first report on the qualitative and quantitative detection of N-desmethyl-acetamiprid in the human urine. The results suggest that the one case with detection of N-desmethyl-acetamiprid was exposed to acetamiprid through the consumption of contaminated foods. Urinary N-desmethyl-acetamiprid, as well as 5-hydroxy-Imidacloprid and N-desmethyl-clothianidin, may be a good biomarker for neonicotinoid exposure in humans and warrants further investigation. PMID:24265808
Venkatramani, C J; Al-Sayah, Mohammad; Li, Guannan; Goel, Meenakshi; Girotti, James; Zang, Lisa; Wigman, Larry; Yehl, Peter; Chetwyn, Nik
2016-02-01
A new interface was designed to enable the coupling of reversed phase liquid chromatography (RPLC) and supercritical fluid chromatography (SFC). This online two-dimensional chromatographic system utilizing RPLC in the first dimension and SFC in the second was developed to achieve simultaneous achiral and chiral analysis of pharmaceutical compounds. The interface consists of an eight-port, dual-position switching valve with small volume C-18 trapping columns. The peaks of interest eluting from the first RPLC dimension column were effectively focused as sharp concentration pulses on small volume C-18 trapping column/s and then injected onto the second dimension SFC column. The first dimension RPLC separation provides the achiral purity result, and the second dimension SFC separation provides the chiral purity result (enantiomeric excess). The results are quantitative enabling simultaneous achiral, chiral analysis of compounds. The interface design and proof of concept demonstration are presented. Additionally, comparative studies to conventional SFC and case studies of the applications of 2D LC-SFC in pharmaceutical analysis is presented. Copyright © 2015 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Van Atta, Robert E.; Van Atta, R. Lewis
1980-01-01
Provides a gas chromatography experiment that exercises the quantitative technique of standard addition to the analysis for a minor component, methyl salicylate, in a commercial product, "wintergreen rubbing alcohol." (CS)
Ito, Shinya; Tsukada, Katsuo
2002-01-11
An evaluation of the feasibility of liquid chromatography-mass spectrometry (LC-MS) with atmospheric pressure ionization was made for quantitation of four diarrhetic shellfish poisoning toxins, okadaic acid, dinophysistoxin-1, pectenotoxin-6 and yessotoxin in scallops. When LC-MS was applied to the analysis of scallop extracts, large signal suppressions were observed due to coeluting substances from the column. To compensate for these matrix signal suppressions, the standard addition method was applied. First, the sample was analyzed and then the sample involving the addition of calibration standards is analyzed. Although this method requires two LC-MS runs per analysis, effective correction of quantitative errors was found.
Lemire, Sharon W; Ashley, David L; Calafat, Antonia M
2003-01-01
Nitrogen mustards are a public health concern because of their extreme vesicant properties and the possible exposure of workers during the destruction of chemical stockpiles. A sensitive, rapid, accurate, and precise analysis for the quantitation of ultratrace levels of N-ethyldiethanolamine (EDEA) and N-methyldiethanolamine (MDEA) in human urine as a means of assessing recent exposure to the nitrogen mustards bis(2-chloroethyl)ethylamine and bis(2-chloroethyl)methylamine, respectively, was developed. The method was based on solid-phase extraction, followed by analysis of the urine extract using isotope-dilution high-performance liquid chromatography-mass spectrometry with TurbolonSpray ionization and multiple-reaction monitoring. The method limits of detection were 0.41 ng/mL for EDEA and 0.96 ng/mL for MDEA in 1 mL of urine with coefficients of variation < 10% for both compounds.
De Paoli, Giorgia; Brandt, Simon D; Wallach, Jason; Archer, Roland P; Pounder, Derrick J
2013-06-01
Three psychoactive arylcyclohexylamines, advertised as "research chemicals," were obtained from an online retailer and characterized by gas chromatography ion trap electron and chemical ionization mass spectrometry, nuclear magnetic resonance spectroscopy and diode array detection. The three phencyclidines were identified as 2-(ethylamino)-2-(3-methoxyphenyl)cyclohexanone (methoxetamine), N-ethyl-1-(3-methoxyphenyl)cyclohexanamine and 1-[1-(3-methoxyphenyl)cyclohexyl]piperidine. A qualitative/quantitative method of analysis was developed and validated using liquid chromatography (HPLC) electrospray tandem mass spectrometry and ultraviolet (UV) detection for the determination of these compounds in blood, urine and vitreous humor. HPLC-UV proved to be a robust, accurate and precise method for the qualitative and quantitative analysis of these substances in biological fluids (0.16-5.0 mg/L), whereas the mass spectrometer was useful as a confirmatory tool.
Wan, Haibao; Umstot, Edward S; Szeto, Hazel H; Schiller, Peter W; Desiderio, Dominic M
2004-04-15
The synthetic opioid peptide analog Dmt-D-Arg-Phe-Lys-NH(2) ([Dmt(1)]DALDA; [Dmt= 2',6'-dimethyltyrosine) is a highly potent and selective mu opioid-receptor agonist. A very sensitive and robust capillary liquid chromatography/nanospray ion-trap (IT) mass spectrometry method has been developed to quantify [Dmt(1)]DALDA in ovine plasma, using deuterated [Dmt(1)]DALDA as the internal standard. The standard MS/MS spectra of d(0)- and d(5)-[Dmt(1)]DALDA were obtained, and the collision energy was experimentally optimized to 25%. The product ion [ M + 2H-NH(3)](2+) (m/z 312.2) was used to identify and to quantify the synthetic opioid peptide analog in ovine plasma samples. The MS/MS detection sensitivity for [Dmt(1)]DALDA was 625 amol. A calibration curve was constructed, and quantitative analysis was performed on a series of ovine plasma samples.
Pitkänen, Leena; Montoro Bustos, Antonio R; Murphy, Karen E; Winchester, Michael R; Striegel, André M
2017-08-18
The physicochemical characterization of nanoparticles (NPs) is of paramount importance for tailoring and optimizing the properties of these materials as well as for evaluating the environmental fate and impact of the NPs. Characterizing the size and chemical identity of disperse NP sample populations can be accomplished by coupling size-based separation methods to physical and chemical detection methods. Informed decisions regarding the NPs can only be made, however, if the separations themselves are quantitative, i.e., if all or most of the analyte elutes from the column within the course of the experiment. We undertake here the size-exclusion chromatographic characterization of Au NPs spanning a six-fold range in mean size. The main problem which has plagued the size-exclusion chromatography (SEC) analysis of Au NPs, namely lack of quantitation accountability due to generally poor NP recovery from the columns, is overcome by carefully matching eluent formulation with the appropriate stationary phase chemistry, and by the use of on-line inductively coupled plasma mass spectrometry (ICP-MS) detection. Here, for the first time, we demonstrate the quantitative analysis of Au NPs by SEC/ICP-MS, including the analysis of a ternary NP blend. The SEC separations are contrasted to HDC/ICP-MS (HDC: hydrodynamic chromatography) separations employing the same stationary phase chemistry. Additionally, analysis of Au NPs by HDC with on-line quasi-elastic light scattering (QELS) allowed for continuous determination of NP size across the chromatographic profiles, circumventing issues related to the shedding of fines from the SEC columns. The use of chemically homogeneous reference materials with well-defined size range allowed for better assessment of the accuracy and precision of the analyses, and for a more direct interpretation of results, than would be possible employing less rigorously characterized analytes. Published by Elsevier B.V.
Sun, Lirui; Jia, Longfei; Xie, Xing; Xie, Kaizhou; Wang, Jianfeng; Liu, Jianyu; Cui, Lulu; Zhang, Genxi; Dai, Guojun; Wang, Jinyu
2016-02-01
In this present study, we developed a simple, rapid and specific method for the quantitative analysis of the contents of amoxicillin (AMO), AMO metabolites and ampicillin (AMP) in eggs. This method uses a simple liquid-liquid extraction with acetonitrile followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The optimized method has been validated according to requirements defined by the European Union and Food and Drug Administration. Extraction recoveries of the target compounds from the egg at 5, 10 and 25 μg/kg were all higher than 80%, with relative standard deviations not exceeding 10.00%. The limits of quantification in eggs were below the maximum residue limits (MRLs). The decision limits (CCα) ranged between 11.1 and 11.5 μg/kg, while detection capabilities (CCβ) from 12.1 to 13.0 μg/kg. These values were very close to the corresponding MRLs. Finally, the new approach was successfully verified for the quantitative determination of these analytes in 40 commercial eggs from local supermarkets. Copyright © 2015 Elsevier Ltd. All rights reserved.
High Performance Liquid Chromatography of Vitamin A: A Quantitative Determination.
ERIC Educational Resources Information Center
Bohman, Ove; And Others
1982-01-01
Experimental procedures are provided for the quantitative determination of Vitamin A (retinol) in food products by analytical liquid chromatography. Standard addition and calibration curve extraction methods are outlined. (SK)
Deng, Yong; Chen, Ling-Xiao; Han, Bang-Xing; Wu, Ding-Tao; Cheong, Kit-Leong; Chen, Nai-Fu; Zhao, Jing; Li, Shao-Ping
2016-09-10
Qualitative and quantitative analysis of specific polysaccharides from ten batches of Dendrobium huoshanense were performed using high performance size exclusion chromatography coupled with multi-angle laser light scattering and refractive index detector (HPSEC-MALLS-RID), gas chromatography-mass spectrometry (GC-MS), nuclear magnetic resonance (NMR) and saccharide mapping based on polysaccharides analysis by using carbohydrate gel electrophoresis (PACE) and high performance thin layer chromatography (HPTLC). Results showed that molecular weights, the radius of gyrations, and contents of specific polysaccharides in D. huoshanense were ranging from 1.16×10(5) to 2.17×10(5)Da, 38.8 to 52.1nm, and 9.9% to 19.9%, respectively. Furthermore, the main monosaccharide compositions were Man and Glc. Indeed, the main glycosidic linkages were β-1,4-Manp and β-1,4-Glcp, and substituted with acetyl groups at O-2 and O-3 of 1,4-linked Manp. Moreover, results showed that PACE and HPTLC fingerprints of partial acidic and enzymatic hydrolysates of specific polysaccharides were similar, which are helpful to better understand the specific polysaccharides in D. huoshanense and beneficial to improve their quality control. These approaches could also be routinely used for quality control of polysaccharides in other medicinal plants. Copyright © 2016 Elsevier B.V. All rights reserved.
Zhang, Xin-Ke; Lan, Yi-Bin; Zhu, Bao-Qing; Xiang, Xiao-Feng; Duan, Chang-Qing; Shi, Ying
2018-01-01
Monosaccharides, organic acids and amino acids are the important flavour-related components in wines. The aim of this article is to develop and validate a method that could simultaneously analyse these compounds in wine based on silylation derivatisation and gas chromatography-mass spectrometry (GC-MS), and apply this method to the investigation of the changes of these compounds and speculate upon their related influences on Cabernet Sauvignon wine flavour during wine ageing. This work presented a new approach for wine analysis and provided more information concerning red wine ageing. This method could simultaneously quantitatively analyse 2 monosaccharides, 8 organic acids and 13 amino acids in wine. A validation experiment showed good linearity, sensitivity, reproducibility and recovery. Multiple derivatives of five amino acids have been found but their effects on quantitative analysis were negligible, except for methionine. The evolution pattern of each category was different, and we speculated that the corresponding mechanisms involving microorganism activities, physical interactions and chemical reactions had a great correlation with red wine flavours during ageing. Simultaneously quantitative analysis of monosaccharides, organic acids and amino acids in wine was feasible and reliable and this method has extensive application prospects. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Ouyang, Yilan; Zeng, Yangyang; Yi, Lin; Tang, Hong; Li, Duxin; Linhardt, Robert J; Zhang, Zhenqing
2017-11-03
Heparin, a highly sulfated glycosaminoglycan, has been used as a clinical anticoagulant over 80 years. Low molecular weight heparins (LMWHs), heparins partially depolymerized using different processes, are widely used as clinical anticoagulants. Qualitative molecular weight (MW) and quantitative mass content analysis are two important factors that contribute to LMWH quality control. Size exclusion chromatography (SEC), relying on multiple angle laser scattering (MALS)/refractive index (RI) detectors, has been developed for accurate analysis of heparin MW in the absence of standards. However, the cations, which ion-pair with the anionic polysaccharide chains of heparin and LMWHs, had not been considered in previous reports. In this study, SEC with MALS/RI and inductively coupled plasma/mass spectrometry detectors were used in a comprehensive analytical approach taking both anionic polysaccharide and ion-paired cations heparin products. This approach was also applied to quantitative analysis of heparin and LMWHs. Full profiles of MWs and mass recoveries for three commercial heparin/LMWH products, heparin sodium, enoxaparin sodium and nadroparin calcium, were obtained and all showed higher MWs than previously reported. This important improvement more precisely characterized the MW properties of heparin/LMWHs and potentially many other anionic polysaccharides. Copyright © 2017 Elsevier B.V. All rights reserved.
Bai, Cheng; Reilly, Charles C.; Wood, Bruce W.
2007-01-01
High-performance liquid chromatography (HPLC) analysis was used for identification of two problematic ureides, asparagine and citrulline. We report here a technique that takes advantage of the predictable delay in retention time of the co-asparagine/citrulline peak to enable both qualitative and quantitative analysis of asparagine and citrulline using the Platinum EPS reverse-phase C18 column (Alltech Associates). Asparagine alone is eluted earlier than citrulline alone, but when both of them are present in biological samples they may co-elute. HPLC retention times for asparagine and citrulline were influenced by other ureides in the mixture. We found that at various asparagines and citrulline ratios [= 3:1, 1:1, and 1:3; corresponding to 75:25, 50:50, and 25:75 (μMol ml−1/μMol ml−1)], the resulting peak exhibited different retention times. Adjustment of ureide ratios as internal standards enables peak identification and quantification. Both chemicals were quantified in xylem sap samples of pecan [Carya illinoinensis (Wangenh.) K. Koch] trees. Analysis revealed that tree nickel nutrition status affects relative concentrations of Urea Cycle intermediates, asparagine and citrulline, present in sap. Consequently, we concluded that the HPLC methods are presented to enable qualitative and quantitative analysis of these metabolically important ureides. PMID:19662174
Bai, Cheng; Reilly, Charles C; Wood, Bruce W
2007-03-28
High-performance liquid chromatography (HPLC) analysis was used for identification of two problematic ureides, asparagine and citrulline. We report here a technique that takes advantage of the predictable delay in retention time of the co-asparagine/citrulline peak to enable both qualitative and quantitative analysis of asparagine and citrulline using the Platinum EPS reverse-phase C18 column (Alltech Associates). Asparagine alone is eluted earlier than citrulline alone, but when both of them are present in biological samples they may co-elute. HPLC retention times for asparagine and citrulline were influenced by other ureides in the mixture. We found that at various asparagines and citrulline ratios [= 3:1, 1:1, and 1:3; corresponding to 75:25, 50:50, and 25:75 (microMol ml(-1)/microMol ml(-1))], the resulting peak exhibited different retention times. Adjustment of ureide ratios as internal standards enables peak identification and quantification. Both chemicals were quantified in xylem sap samples of pecan [Carya illinoinensis (Wangenh.) K. Koch] trees. Analysis revealed that tree nickel nutrition status affects relative concentrations of Urea Cycle intermediates, asparagine and citrulline, present in sap. Consequently, we concluded that the HPLC methods are presented to enable qualitative and quantitative analysis of these metabolically important ureides.
Glauser, Gaétan; Grund, Baptiste; Gassner, Anne-Laure; Menin, Laure; Henry, Hugues; Bromirski, Maciej; Schütz, Frédéric; McMullen, Justin; Rochat, Bertrand
2016-03-15
A paradigm shift is underway in the field of quantitative liquid chromatography-mass spectrometry (LC-MS) analysis thanks to the arrival of recent high-resolution mass spectrometers (HRMS). The capability of HRMS to perform sensitive and reliable quantifications of a large variety of analytes in HR-full scan mode is showing that it is now realistic to perform quantitative and qualitative analysis with the same instrument. Moreover, HR-full scan acquisition offers a global view of sample extracts and allows retrospective investigations as virtually all ionized compounds are detected with a high sensitivity. In time, the versatility of HRMS together with the increasing need for relative quantification of hundreds of endogenous metabolites should promote a shift from triple-quadrupole MS to HRMS. However, a current "pitfall" in quantitative LC-HRMS analysis is the lack of HRMS-specific guidance for validated quantitative analyses. Indeed, false positive and false negative HRMS detections are rare, albeit possible, if inadequate parameters are used. Here, we investigated two key parameters for the validation of LC-HRMS quantitative analyses: the mass accuracy (MA) and the mass-extraction-window (MEW) that is used to construct the extracted-ion-chromatograms. We propose MA-parameters, graphs, and equations to calculate rational MEW width for the validation of quantitative LC-HRMS methods. MA measurements were performed on four different LC-HRMS platforms. Experimentally determined MEW values ranged between 5.6 and 16.5 ppm and depended on the HRMS platform, its working environment, the calibration procedure, and the analyte considered. The proposed procedure provides a fit-for-purpose MEW determination and prevents false detections.
Navarrete, Andres; Avula, Bharathi; Joshi, Vaishali C; Ji, Xiuhong; Hersh, Paul; Khan, Ikhlas A
2006-01-01
Amphiptherygium adstringens (Anacardiaceae/Julianaceae), local name "cuachalalate," is used in folk medicine for the treatment of cholelithiasis, fevers, fresh wounds, hypercholesterolemia, gastritis, gastric ulcers, and cancer of the gastrointestinal tract. The development of column high-performance liquid chromatography-photodiode array detector (LC-PDA) and high-performance thin-layer chromatography (HPTLC)-densitometry methods for the determination of masticadienonic acid and 3-hydroxymasticadienonic acid in cuachalalate preparations is described in this paper. Good separation of the compounds could be achieved by both methods. Either might be preparable depending on the requirements. The LC separation was performed on a Phenomenex Synergi MAX-RP 80A reversed-phase column operated at 40 degrees C with detection at 215 nm. The plant materials were extracted with methanol by sonication. The triterpenes present in the plant material and commercial extracts were separated with an acetonitrile-water reagent alcohol isocratic system. The limit of detection was 0.1-0.2 microg/mL. The relative standard deviation values for the determination of triterpenes in plant extracts were less than 1.00%. This is the first report of an analytical method developed for the quantitative analysis of triterpenes from Amphiptherygium adstringens by LC-PDA and HPTLC. The stem bark showed higher amounts of triterpenes, and low amounts in root and stem root. The microscopic description of the crude drug of cuachalalate was also provided.
Role of Mass Spectrometry in Clinical Endocrinology.
Ketha, Siva S; Singh, Ravinder J; Ketha, Hemamalini
2017-09-01
The advent of mass spectrometry into the clinical laboratory has led to an improvement in clinical management of several endocrine diseases. Liquid chromatography tandem mass spectrometry found some of its first clinical applications in the diagnosis of inborn errors of metabolism, in quantitative steroid analysis, and in drug analysis laboratories. Mass spectrometry assays offer analytical sensitivity and specificity that is superior to immunoassays for many analytes. This article highlights several areas of clinical endocrinology that have witnessed the use of liquid chromatography tandem mass spectrometry to improve clinical outcomes. Copyright © 2017 Elsevier Inc. All rights reserved.
Zhai, Hong Lin; Zhai, Yue Yuan; Li, Pei Zhen; Tian, Yue Li
2013-01-21
A very simple approach to quantitative analysis is proposed based on the technology of digital image processing using three-dimensional (3D) spectra obtained by high-performance liquid chromatography coupled with a diode array detector (HPLC-DAD). As the region-based shape features of a grayscale image, Zernike moments with inherently invariance property were employed to establish the linear quantitative models. This approach was applied to the quantitative analysis of three compounds in mixed samples using 3D HPLC-DAD spectra, and three linear models were obtained, respectively. The correlation coefficients (R(2)) for training and test sets were more than 0.999, and the statistical parameters and strict validation supported the reliability of established models. The analytical results suggest that the Zernike moment selected by stepwise regression can be used in the quantitative analysis of target compounds. Our study provides a new idea for quantitative analysis using 3D spectra, which can be extended to the analysis of other 3D spectra obtained by different methods or instruments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Synovec, R.E.; Johnson, E.L.; Bahowick, T.J.
1990-08-01
This paper describes a new technique for data analysis in chromatography, based on taking the point-by-point ratio of sequential chromatograms that have been base line corrected. This ratio chromatogram provides a robust means for the identification and the quantitation of analytes. In addition, the appearance of an interferent is made highly visible, even when it coelutes with desired analytes. For quantitative analysis, the region of the ratio chromatogram corresponding to the pure elution of an analyte is identified and is used to calculate a ratio value equal to the ratio of concentrations of the analyte in sequential injections. For themore » ratio value calculation, a variance-weighted average is used, which compensates for the varying signal-to-noise ratio. This ratio value, or equivalently the percent change in concentration, is the basis of a chromatographic standard addition method and an algorithm to monitor analyte concentration in a process stream. In the case of overlapped peaks, a spiking procedure is used to calculate both the original concentration of an analyte and its signal contribution to the original chromatogram. Thus, quantitation and curve resolution may be performed simultaneously, without peak modeling or curve fitting. These concepts are demonstrated by using data from ion chromatography, but the technique should be applicable to all chromatographic techniques.« less
Study of the detectability of controlled substances on breath
DOT National Transportation Integrated Search
1975-07-01
The University of Missouri used high pressure liquid chromatography plus mass spectrometry for a quantitative analysis of marijuana metabolites in blood and breath. A breath collector was developed for road-side sampling of human breath and subsequen...
ERIC Educational Resources Information Center
Cantwell, Frederick F.; Brown, David W.
1981-01-01
Describes a three-hour liquid chromatography experiment involving rapid separation of colored compounds in glass columns packed with a nonpolar absorbent. Includes apparatus design, sample preparation, experimental procedures, and advantages for this determination. (SK)
Improved method and apparatus for chromatographic quantitative analysis
Fritz, J.S.; Gjerde, D.T.; Schmuckler, G.
An improved apparatus and method are described for the quantitative analysis of a solution containing a plurality of anion species by ion exchange chromatography which utilizes a single element and a single ion exchange bed which does not require periodic regeneration. The solution containing the anions is added to an anion exchange resin bed which is a low capacity macroreticular polystyrene-divinylbenzene resin containing quarternary ammonium functional groups, and is eluted therefrom with a dilute solution of a low electrical conductance organic acid salt. As each anion species is eluted from the bed, it is quantitatively sensed by conventional detection means such as a conductivity cell.
Group type analysis of asphalt by column liquid chromatography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, C.; Yang, J.; Xue, Y.
2008-07-01
An improved analysis method for characterization of asphalt was established. The method is based on column chromatography technique. The asphalts were separated into four groups: saturates, aromatics, resins, and asphaltenes, quantitatively. About 0.1 g of sample was required in each analysis. About 20 mL of n-heptanes was used to separate out saturates first. Then about 35 mL of n-heptanes/dichloromethane (.5, v/v) mixture was used to separate out aromatics. About 30 mL of dichloromethane/tetrahydrofuran (1/3, v/v) mixture was used to separate out resin. The quality of the separation was confirmed by infrared spectra (IR) and {sup 1}H NMR analysis. The modelmore » compounds, tetracosan for saturates, dibenz(o)anthracen for aromatics, and acetanilide for resins were used for verification. The IR and {sup 1}H NMR analysis of the prepared fractions from the column liquid chromatography were in good agreement that of pure reagents.« less
Chemoenzymatic method for glycomics: isolation, identification, and quantitation
Yang, Shuang; Rubin, Abigail; Eshghi, Shadi Toghi; Zhang, Hui
2015-01-01
Over the past decade, considerable progress has been made with respect to the analytical methods for analysis of glycans from biological sources. Regardless of the specific methods that are used, glycan analysis includes isolation, identification, and quantitation. Derivatization is indispensable to increase their identification. Derivatization of glycans can be performed by permethylation or carbodiimide coupling / esterification. By introducing a fluorophore or chromophore at their reducing end, glycans can be separated by electrophoresis or chromatography. The fluorogenically labeled glycans can be quantitated using fluorescent detection. The recently developed approaches using solid-phase such as glycoprotein immobilization for glycan extraction and on-tissue glycan mass spectrometry imaging demonstrate advantages over methods performed in solution. Derivatization of sialic acids is favorably implemented on the solid support using carbodiimide coupling, and the released glycans can be further modified at the reducing end or permethylated for quantitative analysis. In this review, methods for glycan isolation, identification, and quantitation are discussed. PMID:26390280
Xu, Jucai; Sun-Waterhouse, Dongxiao; Qiu, Chaoying; Zhao, Mouming; Sun, Baoguo; Lin, Lianzhu; Su, Guowan
2017-10-27
The need to improve the peak capacity of liquid chromatography motivates the development of two-dimensional analysis systems. This paper presented a fully automated stop-flow two-dimensional liquid chromatography system with size exclusion chromatography followed by reversed phase liquid chromatography (SEC×RPLC) to efficiently separate peptides. The effects of different stop-flow operational parameters (stop-flow time, peak parking position, number of stop-flow periods and column temperature) on band broadening in the first dimension (1 st D) SEC column were quantitatively evaluated by using commercial small proteins and peptides. Results showed that the effects of peak parking position and the number of stop-flow periods on band broadening were relatively small. Unlike stop-flow analysis of large molecules with a long running time, additional band broadening was evidently observed for small molecule analytes due to the relatively high effective diffusion coefficient (D eff ). Therefore, shorter analysis time and lower 1 st D column temperature were suggested for analyzing small molecules. The stop-flow two-dimensional liquid chromatography (2D-LC) system was further tested on peanut peptides and an evidently improved resolution was observed for both stop-flow heart-cutting and comprehensive 2D-LC analysis (in spite of additional band broadening in SEC). The stop-flow SEC×RPLC, especially heart-cutting analysis with shorter analysis time and higher 1 st D resolution for selected fractions, offers a promising approach for efficient analysis of complex samples. Copyright © 2017 Elsevier B.V. All rights reserved.
Wei, Fang; Hu, Na; Lv, Xin; Dong, Xu-Yan; Chen, Hong
2015-07-24
In this investigation, off-line comprehensive two-dimensional liquid chromatography-atmospheric pressure chemical ionization mass spectrometry using a single column has been applied for the identification and quantification of triacylglycerols in edible oils. A novel mixed-mode phenyl-hexyl chromatographic column was employed in this off-line two-dimensional separation system. The phenyl-hexyl column combined the features of traditional C18 and silver-ion columns, which could provide hydrophobic interactions with triacylglycerols under acetonitrile conditions and can offer π-π interactions with triacylglycerols under methanol conditions. When compared with traditional off-line comprehensive two-dimensional liquid chromatography employing two different chromatographic columns (C18 and silver-ion column) and using elution solvents comprised of two phases (reversed-phase/normal-phase) for triacylglycerols separation, the novel off-line comprehensive two-dimensional liquid chromatography using a single column can be achieved by simply altering the mobile phase between acetonitrile and methanol, which exhibited a much higher selectivity for the separation of triacylglycerols with great efficiency and rapid speed. In addition, an approach based on the use of response factor with atmospheric pressure chemical ionization mass spectrometry has been developed for triacylglycerols quantification. Due to the differences between saturated and unsaturated acyl chains, the use of response factors significantly improves the quantitation of triacylglycerols. This two-dimensional liquid chromatography-mass spectrometry system was successfully applied for the profiling of triacylglycerols in soybean oils, peanut oils and lord oils. A total of 68 triacylglycerols including 40 triacylglycerols in soybean oils, 50 triacylglycerols in peanut oils and 44 triacylglycerols in lord oils have been identified and quantified. The liquid chromatography-mass spectrometry data were analyzed using principal component analysis. The results of the principal component analysis enabled a clear identification of different plant oils. By using this two-dimensional liquid chromatography-mass spectrometry system coupled with principal component analysis, adulterated soybean oils with 5% added lord oil and peanut oils with 5% added soybean oil can be clearly identified. Copyright © 2015 Elsevier B.V. All rights reserved.
Guo, Xuemei; Long, Piaopiao; Meng, Qilu; Ho, Chi-Tang; Zhang, Liang
2018-04-25
Quantitative analysis and untargeted liquid chromatography mass spectrum (LC-MS) based metabolomics of different grades of Keemun black tea (KBT) were conducted. Quantitative analysis did not show tight correlation between tea grades and contents of polyphenols, but untargeted metabolomics analysis revealed that high-grades KBT were distinguished from the low-grades. S-plot and Variable Importance (VIP) analysis gave 28 marker compounds responsible for the discrimination of different grades of KBT. The inhibitory effects of KBT on α-amylase and α-glucosidase were positively correlated to tea grades, and the correlation coefficient between each marker compound and inhibitory rate were calculated. Thirteen compounds were positively related to the anti-glycemic activity, and theasinensin A, afzelechin gallate and kaempferol-glucoside were confirmed as grade-related bioactive marker compounds by chemical and bioassay in effective fractions. This study suggested that combinatory metabolomics and bioactivities assay provided a new strategy for the classification of tea grades. Copyright © 2017 Elsevier Ltd. All rights reserved.
Analysis of Perfluorinated Chemicals in Sludge: Method Development and Initial Results
A fast, rigorous method was developed to maximize the extraction efficacy for ten perfluorocarboxylic acids and perfluorooctanesulfonate from wastewater-treatment sludge and to quantitate using liquid chromatography, tandem-mass spectrometry (LC/MS/MS). First, organic solvents w...
Wang, Mei; Zhao, Jianping; Avula, Bharathi; Wang, Yan-Hong; Avonto, Cristina; Chittiboyina, Amar G; Wylie, Philip L; Parcher, Jon F; Khan, Ikhlas A
2014-12-17
A high-resolution gas chromatography/mass spectrometry (GC/MS) with selected ion monitor method focusing on the characterization and quantitative analysis of ginkgolic acids (GAs) in Ginkgo biloba L. plant materials, extracts, and commercial products was developed and validated. The method involved sample extraction with (1:1) methanol and 10% formic acid, liquid-liquid extraction with n-hexane, and derivatization with trimethylsulfonium hydroxide (TMSH). Separation of two saturated (C13:0 and C15:0) and six unsaturated ginkgolic acid methyl esters with different positional double bonds (C15:1 Δ8 and Δ10, C17:1 Δ8, Δ10, and Δ12, and C17:2) was achieved on a very polar (88% cyanopropyl) aryl-polysiloxane HP-88 capillary GC column. The double bond positions in the GAs were determined by ozonolysis. The developed GC/MS method was validated according to ICH guidelines, and the quantitation results were verified by comparison with a standard high-performance liquid chromatography method. Nineteen G. biloba authenticated and commercial plant samples and 21 dietary supplements purported to contain G. biloba leaf extracts were analyzed. Finally, the presence of the marker compounds, terpene trilactones and flavonol glycosides for Ginkgo biloba in the dietary supplements was determined by UHPLC/MS and used to confirm the presence of G. biloba leaf extracts in all of the botanical dietary supplements.
de Oliveira, Alberto; Silva, Claudinei A; Silva, Adalberto M; Tavares, Marina F M; Kato, Massuo J
2010-01-01
A large number of natural and synthetic compounds having butenolides as a core unit have been described and many of them display a wide range of biological activities. Butenolides from P. malacophyllum have presented potential antifungal activities but no specific, fast, and precise method has been developed for their determination. To develop a methodology based on micellar electrokinetic chromatography to determine butenolides in Piper species. The extracts were analysed in an uncoated fused-silica capillaries and for the micellar system 20 mmol/L SDS, 20% (v/v) acetonitrile (ACN) and 10 mmol/L STB aqueous buffer at pH 9.2 were used. The method was validated for precision, linearity, limit of detection (LOD) and limit of quantitation (LOQ) and the standard deviations were determined from the standard errors estimated by the regression line. A micellar electrokinetic chromatography (MEKC) method for determination of butenolides in extracts gave full resolution for 1 and 2. The analytical curve in the range 10.0-50.0 µg/mL (r(2) = 0.999) provided LOD and LOQ for 1 and 2 of 2.1/6.3 and 1.1/3.5 µg/mL, respectively. The RSD for migration times were 0.12 and 1.0% for peak area ratios with 100.0 ± 1.4% of recovery. A novel high-performance MEKC method developed for the analysis of butenolides 1 and 2 in leaf extracts of P. malacophyllum allowed their quantitative determined within an analysis time shorter than 5 min and the results indicated CE to be a feasible analytical technique for the quantitative determination of butenolides in Piper extracts. Copyright © 2010 John Wiley & Sons, Ltd.
Li, Austin C; Li, Yinghe; Guirguis, Micheal S; Caldwell, Robert G; Shou, Wilson Z
2007-01-04
A new analytical method is described here for the quantitation of anti-inflammatory drug cyclosporin A (CyA) in monkey and rat plasma. The method used tetrahydrofuran (THF)-water mobile phases to elute the analyte and internal standard, cyclosporin C (CyC). The gradient mobile phase program successfully eluted CyA into a sharp peak and therefore improved resolution between the analyte and possible interfering materials compared with previously reported analytical approaches, where CyA was eluted as a broad peak due to the rapid conversion between different conformers. The sharp peak resulted from this method facilitated the quantitative calculation as multiple smoothing and large number of bunching factors were not necessary. The chromatography in the new method was performed at 30 degrees C instead of 65-70 degrees C as reported previously. Other advantages of the method included simple and fast sample extraction-protein precipitation, direct injection of the extraction supernatant to column for analysis, and elimination of evaporation and reconstitution steps, which were needed in solid phase extraction or liquid-liquid extraction reported before. This method is amenable to high-throughput analysis with a total chromatographic run time of 3 min. This approach has been verified as sensitive, linear (0.977-4000 ng/mL), accurate and precise for the quantitation of CyA in monkey and rat plasma. However, compared with the usage of conventional mobile phases, the only drawback of this approach was the reduced detection response from the mass spectrometer that was possibly caused by poor desolvation in the ionization source. This is the first report to demonstrate the advantages of using THF-water mobile phases to elute CyA in liquid chromatography.
Papaemmanouil, Christina; Tsiafoulis, Constantinos G; Alivertis, Dimitrios; Tzamaloukas, Ouranios; Miltiadou, Despoina; Tzakos, Andreas G; Gerothanassis, Ioannis P
2015-06-10
We report a rapid, direct, and unequivocal spin-chromatographic separation and identification of minor components in the lipid fraction of milk and common dairy products with the use of selective one-dimensional (1D) total correlation spectroscopy (TOCSY) nuclear magnetic resonance (NMR) experiments. The method allows for the complete backbone spin-coupling network to be elucidated even in strongly overlapped regions and in the presence of major components from 4 × 10(2) to 3 × 10(3) stronger NMR signal intensities. The proposed spin-chromatography method does not require any derivatization steps for the lipid fraction, is selective with excellent resolution, is sensitive with quantitation capability, and compares favorably to two-dimensional (2D) TOCSY and gas chromatography-mass spectrometry (GC-MS) methods of analysis. The results of the present study demonstrated that the 1D TOCSY NMR spin-chromatography method can become a procedure of primary interest in food analysis and generally in complex mixture analysis.
Zhong, Wei-Fang; Tong, Wing-Sum; Zhou, Shan-Shan; Yip, Ka-Man; Li, Song-Lin; Zhao, Zhong-Zhen; Xu, Jun; Chen, Hu-Biao
2017-10-01
Bai-Hu-Tang (BHT), a classic traditional Chinese medicine (TCM) formula used for clearing heat and promoting body fluid, consists of four traditional Chinese medicines, i.e., Gypsum Fibrosum (Shigao), Anemarrhenae Rhizoma (Zhimu), Glycyrrhizae Radix et Rhizoma Praeparata cum Melle (Zhigancao), and nonglutinous rice (Jingmi). The chemical composition of BHT still remains largely elusive thus far. To qualitatively and quantitatively characterize secondary metabolites and carbohydrates in BHT, here a combination of analytical approaches using ultraperformance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry and ultraperformance liquid chromatography coupled with photodiode array detector was developed and validated. A total of 42 secondary metabolites in BHT were tentatively or definitely identified, of which 10 major chemicals were quantified by the extracting ion mode of quadrupole time-of-flight mass spectrometry. Meanwhile, polysaccharides, oligosaccharides, and monosaccharides in BHT were also characterized via sample pretreatment followed by sugar composition analysis. The quantitative results indicated that the determined chemicals accounted for 35.76% of the total extract of BHT, which demonstrated that the study could be instrumental in chemical dissection and quality control of BHT. The research deliverables not only laid the root for further chemical and biological evaluation of BHT, but also provided a comprehensive analytical strategy for chemical characterization of secondary metabolites and carbohydrates in traditional Chinese medicine formulas. Copyright © 2017. Published by Elsevier B.V.
Wagner, Rebecca; Wetzel, Stephanie J; Kern, John; Kingston, H M Skip
2012-02-01
The employment of chemical weapons by rogue states and/or terrorist organizations is an ongoing concern in the United States. The quantitative analysis of nerve agents must be rapid and reliable for use in the private and public sectors. Current methods describe a tedious and time-consuming derivatization for gas chromatography-mass spectrometry and liquid chromatography in tandem with mass spectrometry. Two solid-phase extraction (SPE) techniques for the analysis of glyphosate and methylphosphonic acid are described with the utilization of isotopically enriched analytes for quantitation via atmospheric pressure chemical ionization-quadrupole time-of-flight mass spectrometry (APCI-Q-TOF-MS) that does not require derivatization. Solid-phase extraction-isotope dilution mass spectrometry (SPE-IDMS) involves pre-equilibration of a naturally occurring sample with an isotopically enriched standard. The second extraction method, i-Spike, involves loading an isotopically enriched standard onto the SPE column before the naturally occurring sample. The sample and the spike are then co-eluted from the column enabling precise and accurate quantitation via IDMS. The SPE methods in conjunction with IDMS eliminate concerns of incomplete elution, matrix and sorbent effects, and MS drift. For accurate quantitation with IDMS, the isotopic contribution of all atoms in the target molecule must be statistically taken into account. This paper describes two newly developed sample preparation techniques for the analysis of nerve agent surrogates in drinking water as well as statistical probability analysis for proper molecular IDMS. The methods described in this paper demonstrate accurate molecular IDMS using APCI-Q-TOF-MS with limits of quantitation as low as 0.400 mg/kg for glyphosate and 0.031 mg/kg for methylphosphonic acid. Copyright © 2012 John Wiley & Sons, Ltd.
Sonoda, T; Ona, T; Yokoi, H; Ishida, Y; Ohtani, H; Tsuge, S
2001-11-15
Detailed quantitative analysis of lignin monomer composition comprising p-coumaryl, coniferyl, and sinapyl alcohol and p-coumaraldehyde, coniferaldehyde, and sinapaldehyde in plant has not been studied from every point mainly because of artifact formation during the lignin isolation procedure, partial loss of the lignin components inherent in the chemical degradative methods, and difficulty in the explanation of the complex spectra generally observed for the lignin components. Here we propose a new method to quantify lignin monomer composition in detail by pyrolysis-gas chromatography (Py-GC) using acetylated lignin samples. The lignin acetylation procedure would contribute to prevent secondary formation of cinnamaldehydes from the corresponding alcohol forms during pyrolysis, which are otherwise unavoidable in conventional Py-GC process to some extent. On the basis of the characteristic peaks on the pyrograms of the acetylated sample, lignin monomer compositions in various dehydrogenative polymers (DHP) as lignin model compounds were determined, taking even minor components such as cinnamaldehydes into consideration. The observed compositions by Py-GC were in good agreement with the supplied lignin monomer contents on DHP synthesis. The new Py-GC method combined with sample preacetylation allowed us an accurate quantitative analysis of detailed lignin monomer composition using a microgram order of extractive-free plant samples.
Dahl, Jeffrey H; van Breemen, Richard B
2010-09-15
A rapid liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay was developed for the measurement of urinary 8-iso-prostaglandin F(2alpha) (8-iso-PGF(2alpha)), a biomarker of lipid peroxidation. Because urine contains numerous F(2) prostaglandin isomers, each with identical mass and similar mass spectrometric fragmentation patterns, chromatographic separation of 8-iso-PGF(2alpha) from its isomers is necessary for its quantitative analysis using MS/MS. We were able to achieve this separation using an isocratic LC method with a run time of less than 9min, which is at least threefold faster than previous methods, while maintaining sensitivity, accuracy, precision, and reliability. The limits of detection and quantitation were 53 and 178pg/ml urine, respectively. We compared our method with a commercially available affinity purification and enzyme immunoassay kit and found both assays to be in agreement. Despite the high sensitivity of the enzyme immunoassay method, it is more expensive and has a narrower dynamic range than LC-MS/MS. Our method was optimized for rapid measurement of 8-iso-PGF(2alpha) in urine, and it is ideally suited for clinical sample analysis. 2010 Elsevier Inc. All rights reserved.
Sun, Mingzhe; Lidén, Gunnar; Sandahl, Margareta
2016-01-01
Traditional chromatographic methods for the analysis of lignin‐derived phenolic compounds in environmental samples are generally time consuming. In this work, an ultra‐high performance supercritical fluid chromatography method with a diode array detector for the analysis of major lignin‐derived phenolic compounds produced by alkaline cupric oxide oxidation was developed. In an analysis of a collection of 11 representative monomeric lignin phenolic compounds, all compounds were clearly separated within 6 min with excellent peak shapes, with a limit of detection of 0.5–2.5 μM, a limit of quantification of 2.5–5.0 μM, and a dynamic range of 5.0–2.0 mM (R 2 > 0.997). The new ultra‐high performance supercritical fluid chromatography method was also applied for the qualitative and quantitative analysis of lignin‐derived phenolic compounds obtained upon alkaline cupric oxide oxidation of a commercial humic acid. Ten out of the previous eleven model compounds could be quantified in the oxidized humic acid sample. The high separation power and short analysis time obtained demonstrate for the first time that supercritical fluid chromatography is a fast and reliable technique for the analysis of lignin‐derived phenols in complex environmental samples. PMID:27452148
ERIC Educational Resources Information Center
Valverde, Juan; This, Herve; Vignolle, Marc
2007-01-01
A simple method for the quantitative determination of photosynthetic pigments extracted from green beans using thin-layer chromatography is proposed. Various extraction methods are compared, and it is shown how a simple flatbed scanner and free software for image processing can give a quantitative determination of pigments. (Contains 5 figures.)
The development of a liquid chromatography‐mass spectrometry (LC‐MS)‐based strategy for the detection and quantitation of acrylamide and surfactant‐related compounds in aqueous complex environmental samples.
Yoshikawa, M; Murakami, T; Otuki, K; Yamahara, J; Matsuda, H
1999-01-01
As a part of our studies on the characterization of bioactive saponin constituents of horse chestnut trees, a quantitative method using high performance liquid chromatography (HPLC) has been developed for four principle saponin constituents, such as escins Ia, Ib, IIa, and IIb, isolated from the seeds of European horse chestnut trees (Aesculus hippocastanum L., Hippocastanaceae). As an application of this HPLC method, we examined the contents and compositions of these escins in the seeds of Japanese horse chestnut trees (A. turbinata BLUME) and in several commercial materials named as "beta-escin". Additionally, the distribution of escins in the Japanese horse chestnut trees was examined, and escins were found to be contained only in the seeds.
Determination of selected azaarenes in water by bonded-phase extraction and liquid chromatography
Steinheimer, T.R.; Ondrus, M.G.
1986-01-01
A method for the rapid and simple quantitative determination of quinoline, isoquinoline, and five selected three-ring azaarenes in water has been developed. The azaarene fraction is separated from its carbon analogues on n-octadecyl packing material by edition with acidified water/acetonitrile. Concentration as great as 1000-fold is achieved readily. Instrumental analysis involves high-speed liquid chromatography on flexible-walled, wide-bore columns with fluorescence and ultraviolet detection at several wavelengths employing filter photometers in series. Method-validation data is provided as azaarene recovery efficiency from fortified samples. Distilled water, river water, contaminated ground water, and secondary-treatment effluent have been tested. Recoveries at part-per-billion levels are nearly quantitative for the three-ring compounds, but they decrease for quinoline and isoquinoline. ?? 1986 American Chemical Society.
High-Performance Liquid Chromatography (HPLC)-Based Detection and Quantitation of Cellular c-di-GMP.
Petrova, Olga E; Sauer, Karin
2017-01-01
The modulation of c-di-GMP levels plays a vital role in the regulation of various processes in a wide array of bacterial species. Thus, investigation of c-di-GMP regulation requires reliable methods for the assessment of c-di-GMP levels and turnover. Reversed-phase high-performance liquid chromatography (RP-HPLC) analysis has become a commonly used approach to accomplish these goals. The following describes the extraction and HPLC-based detection and quantification of c-di-GMP from Pseudomonas aeruginosa samples, a procedure that is amenable to modifications for the analysis of c-di-GMP in other bacterial species.
Characterization of Low-Molecular-Weight Heparins by Strong Anion-Exchange Chromatography.
Sadowski, Radosław; Gadzała-Kopciuch, Renata; Kowalkowski, Tomasz; Widomski, Paweł; Jujeczka, Ludwik; Buszewski, Bogusław
2017-11-01
Currently, detailed structural characterization of low-molecular-weight heparin (LMWH) products is an analytical subject of great interest. In this work, we carried out a comprehensive structural analysis of LMWHs and applied a modified pharmacopeial method, as well as methods developed by other researchers, to the analysis of novel biosimilar LMWH products; and, for the first time, compared the qualitative and quantitative composition of commercially available drugs (enoxaparin, nadroparin, and dalteparin). For this purpose, we used strong anion-exchange (SAX) chromatography with spectrophotometric detection because this method is more helpful, easier, and faster than other separation techniques for the detailed disaccharide analysis of new LMWH drugs. In addition, we subjected the obtained results to statistical analysis (factor analysis, t-test, and Newman-Keuls post hoc test).
Uclés, A; Ulaszewska, M M; Hernando, M D; Ramos, M J; Herrera, S; García, E; Fernández-Alba, A R
2013-07-01
This work introduces a liquid chromatography-electrospray ionization-hybrid quadrupole/time-of-flight mass spectrometry (LC-ESI-QTOF-MS)-based method for qualitative and quantitative analysis of poly(amidoamine) (PAMAM) dendrimers of generations 0 to 3 in an aqueous matrix. The multiple charging of PAMAM dendrimers generated by means of ESI has provided key advantages in dendrimer identification by assignation of charge state through high resolution of isotopic clusters. Isotopic distribution in function of abundance of isotopes (12)C and (13)C yielded valuable and complementarity data for confident characterization. A mass accuracy below 3.8 ppm for the most abundant isotopes (diagnostic ions) provided unambiguous identification of PAMAM dendrimers. Validation of the LC-ESI-QTOF-MS method and matrix effect evaluation enabled reliable and reproducible quantification. The validation parameters, limits of quantification in the range of 0.012 to 1.73 μM, depending on the generation, good linear range (R > 0.996), repeatability (RSD < 13.4%), and reproducibility (RSD < 10.9%) demonstrated the suitability of the method for the quantification of dendrimers in aqueous matrices (water and wastewater). The added selectivity, achieved by multicharge phenomena, represents a clear advantage in screening aqueous mixtures due to the fact that the matrix had no significant effect on ionization, with what is evidenced by an absence of sensitivity loss in most generations of PAMAM dendrimers. Fig Liquid chromatography-electrospray ionization-hybrid quadrupole/time of flight mass spectrometry (LC-ESI-QTOF-MS) based method for qualitative and quantitative analysis of PAMAM dendrimers in aqueous matrix.
Lee, Chia-Fang; Paull, Tanya T; Person, Maria D
2013-10-04
Reactive oxygen species (ROS) play an important role in normal biological functions and pathological processes. ROS is one of the driving forces for oxidizing proteins, especially on cysteine thiols. The labile, transient, and dynamic nature of oxidative modifications poses enormous technical challenges for both accurate modification site determination and quantitation of cysteine thiols. The present study describes a mass spectrometry-based approach that allows effective discovery and quantification of irreversible cysteine modifications. The utilization of a long reverse phase column provides high-resolution chromatography to separate different forms of modified cysteine thiols from protein complexes or cell lysates. This Fourier transform mass spectrometry (FT-MS) approach enabled detection and quantitation of ataxia telangiectasia mutated (ATM) complex cysteine sulfoxidation states using Skyline MS1 filtering. When we applied the long column ultra high pressure liquid chromatography (UPLC)-MS/MS analysis, 61 and 44 peptides from cell lysates and cells were identified with cysteine modifications in response to in vitro and in vivo H2O2 oxidation, respectively. Long column ultra high pressure liquid chromatography pseudo selected reaction monitoring (UPLC-pSRM) was then developed to monitor the oxidative level of cysteine thiols in cell lysate under varying concentrations of H2O2 treatment. From UPLC-pSRM analysis, the dynamic conversion of sulfinic (S-O2H) and sulfonic acid (S-O3H) was observed within nucleoside diphosphate kinase (Nm23-H1) and heat shock 70 kDa protein 8 (Hsc70). These methods are suitable for proteome-wide studies, providing a highly sensitive, straightforward approach to identify proteins containing redox-sensitive cysteine thiols in biological systems.
Giménez, Estela; Balmaña, Meritxell; Figueras, Joan; Fort, Esther; de Bolós, Carme; Sanz-Nebot, Victòria; Peracaula, Rosa; Rizzi, Andreas
2015-03-25
In this work we demonstrate the potential of glycan reductive isotope labeling (GRIL) using [(12)C]- and [(13)C]-coded aniline and zwitterionic hydrophilic interaction capillary liquid chromatography electrospray mass spectrometry (μZIC-HILIC-ESI-MS) for relative quantitation of glycosylation variants in selected glycoproteins present in samples from cancer patients. Human α1-acid-glycoprotein (hAGP) is an acute phase serum glycoprotein whose glycosylation has been described to be altered in cancer and chronic inflammation. However, it is not clear yet whether some particular glycans in hAGP can be used as biomarker for differentiating between these two pathologies. In this work, hAGP was isolated by immunoaffinity chromatography (IAC) from serum samples of healthy individuals and from those suffering chronic pancreatitis and different stages of pancreatic cancer, respectively. After de-N-glycosylation, relative quantitation of the hAGP glycans was carried out using stable isotope labeling and μZIC-HILIC-ESI-MS analysis. First, protein denaturing conditions prior to PNGase F digestion were optimized to achieve quantitative digestion yields, and the reproducibility of the established methodology was evaluated with standard hAGP. Then, the proposed method was applied to the analysis of the clinical samples (control vs. pathological). Pancreatic cancer samples clearly showed an increase in the abundance of fucosylated glycans as the stage of the disease increases and this was unlike to samples from chronic pancreatitis. The results gained here indicate the mentioned glycan in hAGP as a candidate structure worth to be corroborated by an extended study including more clinical cases; especially those with chronic pancreatitis and initial stages of pancreatic cancer. Importantly, the results demonstrate that the presented methodology combining an enrichment of a target protein by IAC with isotope coded relative quantitation of N-glycans can be successfully used for targeted glycomics studies. The methodology is assumed being suitable as well for other such studies aimed at finding novel cancer associated glycoprotein biomarkers. Copyright © 2015 Elsevier B.V. All rights reserved.
Pauwels, Jochen; D'Autry, Ward; Van den Bossche, Larissa; Dewever, Cédric; Forier, Michel; Vandenwaeyenberg, Stephanie; Wolfs, Kris; Hoogmartens, Jos; Van Schepdael, Ann; Adams, Erwin
2012-02-23
Capsaicinoids, salicylic acid, methyl and ethyl salicylate, glycol monosalicylate, camphor and l-menthol are widely used in topical formulations to relieve local pain. For each separate compound or simple mixtures, quantitative analysis methods are reported. However, for a mixture containing all above mentioned active compounds, no assay methods were found. Due to the differing physicochemical characteristics, two methods were developed and optimized simultaneously. The non-volatile capsaicinoids, salicylic acid and glycol monosalicylate were analyzed with liquid chromatography following liquid-liquid extraction, whereas the volatile compounds were analyzed with static headspace-gas chromatography. For the latter method, liquid paraffin was selected as compatible dilution solvent. The optimized methods were validated in terms of specificity, linearity, accuracy and precision in a range of 80% to 120% of the expected concentrations. For both methods, peaks were well separated without interference of other compounds. Linear relationships were demonstrated with R² values higher than 0.996 for all compounds. Accuracy was assessed by performing replicate recovery experiments with spiked blank samples. Mean recovery values were all between 98% and 102%. Precision was checked at three levels: system repeatability, method precision and intermediate precision. Both methods were found to be acceptably precise at all three levels. Finally, the method was successfully applied to the analysis of some real samples (cutaneous sticks). Copyright © 2011 Elsevier B.V. All rights reserved.
Guan, Wenna; Zhao, Hui; Lu, Xuefeng; Wang, Cong; Yang, Menglong; Bai, Fali
2011-11-11
Simple and rapid quantitative determination of fatty-acid-based biofuels is greatly important for the study of genetic engineering progress for biofuels production by microalgae. Ideal biofuels produced from biological systems should be chemically similar to petroleum, like fatty-acid-based molecules including free fatty acids, fatty acid methyl esters, fatty acid ethyl esters, fatty alcohols and fatty alkanes. This study founded a gas chromatography-mass spectrometry (GC-MS) method for simultaneous quantification of seven free fatty acids, nine fatty acid methyl esters, five fatty acid ethyl esters, five fatty alcohols and three fatty alkanes produced by wild-type Synechocystis PCC 6803 and its genetically engineered strain. Data obtained from GC-MS analyses were quantified using internal standard peak area comparisons. The linearity, limit of detection (LOD) and precision (RSD) of the method were evaluated. The results demonstrated that fatty-acid-based biofuels can be directly determined by GC-MS without derivation. Therefore, rapid and reliable quantitative analysis of fatty-acid-based biofuels produced by wild-type and genetically engineered cyanobacteria can be achieved using the GC-MS method founded in this work. Copyright © 2011 Elsevier B.V. All rights reserved.
Zhu, H B; Su, C J; Tang, H F; Ruan, Z; Liu, D H; Wang, H; Qian, Y L
2017-10-20
Objective: To establish a method for rapid determination of 47 volatile organic compounds in the air of workplace using portable gas chromatography - mass spectrometer(GC - MS). Methods: The mixed standard gas with different concentration levels was made by using the static gas distribution method with the high purity nitrogen as dilution gas. The samples were injected into the GC - MS by a hand - held probe. Retention time and characteristic ion were used for qualitative analysis,and the internal standard method was usd for quantitation. Results: The 47 poisonous substances were separated and determined well. The linear range of this method was 0.2 - 16.0 mg/m(3),and the relative standard deviation of 45 volatile ovganic compounds was 3.8% - 15.8%. The average recovery was 79.3% - 119.0%. Conclusion: The method is simple,accurate,sensitive,has good separation effect,short analysis period, can be used for qualitative and quantitative analysis of volatile organic compounds in the workplace, and also supports the rapid identification and detection of occupational hazards.
ERIC Educational Resources Information Center
Silveira, Augustine, Jr.; And Others
1984-01-01
High performance liquid chromatography (HPLC) is used to separate and quantitate beta-carotene, chlorophyll a, and chlorophyll b originating from collard greens. Experimental procedures used and typical results obtained are discussed. (JN)
Sun, Jing; Song, Yue-Lin; Zhang, Jing; Huang, Zheng; Huo, Hui-Xia; Zheng, Jiao; Zhang, Qian; Zhao, Yun-Fang; Li, Jun; Tu, Peng-Fei
2015-04-08
Eggplant (Solanum melongena L.) is a famous edible and medicinal plant. Despite being widely cultivated and used, data on certain parts other than the fruit are limited. The present study focused on the qualitative and quantitative analysis of the chemical constituents, particularly phenylpropanoid amides (PAs), in eggplant. The mass fragmentation patterns of PAs were proposed using seven authentic compounds with the assistance of a hybrid ion trap time-of-flight mass spectrometer. Thirty-seven compounds (27 PAs and 10 others) were detected and plausibly assigned in the different parts of eggplant. Afterward, a reliable method based on liquid chromatography coupled with diode array detection was developed, validated, and applied for the simultaneous determination of seven PAs and three caffeoylquinic acids in 17 batches of eggplant roots with satisfactory accuracy, precision, and reproducibility, which could not only provide global chemical insight of eggplant but also offer a reliable tool for quality control.
Pavez, Carolina; Agosin, Eduardo; Steinhaus, Martin
2016-05-04
The sensory impact of thiols in Vitis vinifera 'Carmenere' red wines was evaluated. For this purpose, aroma extract dilution analysis was applied to the thiols isolated from a Carmenere red wine by affinity chromatography with a mercurated agarose gel. Results revealed the presence of four odorants, identified as 2-furanylmethanethiol, 3-sulfanylhexyl acetate, 3-sulfanyl-1-hexanol, and 2-methyl-3-sulfanyl-1-butanol, with the latter being described here for the first time in Carmenere red wines. Quantitation of the four thiols in the Carmenere wine screened by aroma extract dilution analysis and in three additional Carmenere wines by stable isotope dilution assays resulted in concentrations above the respective orthonasal odor detection threshold values. Triangle tests applied to wine model solutions with and without the addition of the four thiols showed significant differences, thus suggesting that the compounds do have the potential to influence the overall aroma of red wine.
Gonzalez, Aroa Garcia; Taraba, Lukáš; Hraníček, Jakub; Kozlík, Petr; Coufal, Pavel
2017-01-01
Dasatinib is a novel oral prescription drug proposed for treating adult patients with chronic myeloid leukemia. Three analytical methods, namely ultra high performance liquid chromatography, capillary zone electrophoresis, and sequential injection analysis, were developed, validated, and compared for determination of the drug in the tablet dosage form. The total analysis time of optimized ultra high performance liquid chromatography and capillary zone electrophoresis methods was 2.0 and 2.2 min, respectively. Direct ultraviolet detection with detection wavelength of 322 nm was employed in both cases. The optimized sequential injection analysis method was based on spectrophotometric detection of dasatinib after a simple colorimetric reaction with folin ciocalteau reagent forming a blue-colored complex with an absorbance maximum at 745 nm. The total analysis time was 2.5 min. The ultra high performance liquid chromatography method provided the lowest detection and quantitation limits and the most precise and accurate results. All three newly developed methods were demonstrated to be specific, linear, sensitive, precise, and accurate, providing results satisfactorily meeting the requirements of the pharmaceutical industry, and can be employed for the routine determination of the active pharmaceutical ingredient in the tablet dosage form. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mari, Angela; Montoro, Paola; Pizza, Cosimo; Piacente, Sonia
2012-11-01
A validated analytical method for the quantitative determination of seven chemical markers occurring in a hydroalcoholic extract of Vitex agnus-castus fruits by liquid chromatography electrospray triple quadrupole tandem mass spectrometry (LC/ESI/(QqQ)MSMS) is reported. To carry out a comparative study, five commercial food supplements corresponding to hydroalcoholic extracts of V. agnus-castus fruits were analysed under the same chromatographic conditions of the crude extract. Principal component analysis (PCA), based only on the variation of the amount of the seven chemical markers, was applied in order to find similarities between the hydroalcoholic extract and the food supplements. A second PCA analysis was carried out considering the whole spectroscopic data deriving from liquid chromatography electrospray linear ion trap mass spectrometry (LC/ESI/(LIT)MS) analysis. High similarity between the two PCA was observed, showing the possibility to select one of these two approaches for future applications in the field of comparative analysis of food supplements and quality control procedures. Copyright © 2012 Elsevier B.V. All rights reserved.
Peng, Zhangxiao; Zhang, Qian; Mao, Ziming; Wang, Jie; Liu, Chunying; Lin, Xuejing; Li, Xin; Ji, Weidan; Fan, Jianhui; Wang, Maorong; Su, Changqing
2017-11-15
Much evidence suggested that quantitative analysis of bile acids (BAs), lysophosphatidylcholines (LPCs), and polyunsaturated fatty acids (PUFAs) in biofluids may be very useful for diagnosis and prevention of hepatobiliary disease with a non-invasive manner. However, simultaneously fast analysis of these metabolites has been challenging for their huge differences of physicochemical properties and concentration levels in biofluids. In this study, we present a liquid chromatography-mass spectrometry method with a high throughput analytical cycle (10min) to fast and accurately quantify fifteen potential biomarkers (eight BAs, four LPCs and three PUFAs) of hepatobiliary disease. The accuracy for the fifteen analytes in plasma and urine matrices was 80.45%-118.99% and 84.55%-112.66%, respectively. The intra- and inter- precisions for the fifteen analytes in plasma and urine matrices were all less than 20% and the lower limit of quantification (LLOQ) of analytes is up to 0.0283-8.2172nmol/L. Therefore, this method is fast, sensitive and accurate for the quantitative analysis of BAs, LPCs and PUFAs in biofluids. Moreover, the stability and concentration differences of the analytes in plasma and serum were evaluated, and the results demonstrated that LPCs is stable, but PUFAs is very unstable in freeze and thaw cycles, and the concentrations of the analytes in serum were slightly higher than those in plasma. We suggested plasma may be a kind of better bio-sample than serum using for quantitative analysis of metabolites in blood, due to the characteristics of plasma are more close to blood than those of serum. Copyright © 2017 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
A liquid chromatography-mass spectrometry (LC/MS) method for simultaneous quantitation of seven ergot alkaloids (lysergic acid, ergonovine, ergovaline, ergocornine, ergotamine, ergocryptine and ergocrystine) in vascular tissue was developed and validated. Reverse-phase chromatography, coupled to an...
Fanali, Chiara; Dugo, Laura; D'Orazio, Giovanni; Lirangi, Melania; Dachà, Marina; Dugo, Paola; Mondello, Luigi
2011-01-01
Nano-LC and conventional HPLC techniques were applied for the analysis of anthocyanins present in commercial fruit juices using a capillary column of 100 μm id and a 2.1 mm id narrow-bore C(18) column. Analytes were detected by UV-Vis at 518 nm and ESI-ion trap MS with HPLC and nano-LC, respectively. Commercial blueberry juice (14 anthocyanins detected) was used to optimize chromatographic separation of analytes and other analysis parameters. Qualitative identification of anthocyanins was performed by comparing the recorded mass spectral data with those of published papers. The use of the same mobile phase composition in both techniques revealed that the miniaturized method exhibited shorter analysis time and higher sensitivity than narrow-bore chromatography. Good intra-day and day-to-day precision of retention time was obtained in both methods with values of RSD less than 3.4 and 0.8% for nano-LC and HPLC, respectively. Quantitative analysis was performed by external standard curve calibration of cyanidin-3-O-glucoside standard. Calibration curves were linear in the concentration ranges studied, 0.1-50 and 6-50 μg/mL for HPLC-UV/Vis and nano-LC-MS, respectively. LOD and LOQ values were good for both methods. In addition to commercial blueberry juice, qualitative and quantitative analysis of other juices (e.g. raspberry, sweet cherry and pomegranate) was performed. The optimized nano-LC-MS method allowed an easy and selective identification and quantification of anthocyanins in commercial fruit juices; it offered good results, shorter analysis time and reduced mobile phase volume with respect to narrow-bore HPLC. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gutteridge, C S; Norris, J R
1980-01-01
High-resolution pyrolysis gas-liquid chromatography was applied to three bacteria (Escherichia coli NCTC 9001, Pseudomonas putida (NCIB 9494, and Staphylococcus aureus NCTC 8532) grown under a variety of conditions. Changing the culture medium drastically altered the quantitative aspects of the pyrograms of all three organisms, but the effects of culture time and incubation temperature were less severe. Mathematical analysis of the relative peak heights showed that four peaks could be used to discriminate the three bacteria however they were cultured. PMID:6999989
Sfetsas, Themistoklis; Michailof, Chrysa; Lappas, Angelos; Li, Qiangyi; Kneale, Brian
2011-05-27
Pyrolysis oils have attracted a lot of interest, as they are liquid energy carriers and general sources of chemicals. In this work, gas chromatography with flame ionization detector (GC-FID) and two-dimensional gas chromatography with time-of-flight mass spectrometry (GC×GC-TOFMS) techniques were used to provide both qualitative and quantitative results of the analysis of three different pyrolysis oils. The chromatographic methods and parameters were optimized and solvent choice and separation restrictions are discussed. Pyrolysis oil samples were diluted in suitable organic solvent and were analyzed by GC×GC-TOFMS. An average of 300 compounds were detected and identified in all three samples using the ChromaToF (Leco) software. The deconvoluted spectra were compared with the NIST software library for correct matching. Group type classification was performed by use of the ChromaToF software. The quantification of 11 selected compounds was performed by means of a multiple-point external calibration curve. Afterwards, the pyrolysis oils were extracted with water, and the aqueous phase was analyzed both by GC-FID and, after proper change of solvent, by GC×GC-TOFMS. As previously, the selected compounds were quantified by both techniques, by means of multiple point external calibration curves. The parameters of the calibration curves were calculated by weighted linear regression analysis. The limit of detection, limit of quantitation and linearity range for each standard compound with each method are presented. The potency of GC×GC-TOFMS for an efficient mapping of the pyrolysis oil is undisputable, and the possibility of using it for quantification as well has been demonstrated. On the other hand, the GC-FID analysis provides reliable results that allow for a rapid screening of the pyrolysis oil. To the best of our knowledge, very few papers have been reported with quantification attempts on pyrolysis oil samples using GC×GC-TOFMS most of which make use of the internal standard method. This work provides the ground for further analysis of pyrolysis oils of diverse sources for a rational design of both their production and utilization process. Copyright © 2010 Elsevier B.V. All rights reserved.
Bishop, Michael Jason; Crow, Brian S; Kovalcik, Kasey D; George, Joe; Bralley, James A
2007-04-01
A rapid and accurate quantitative method was developed and validated for the analysis of four urinary organic acids with nitrogen containing functional groups, formiminoglutamic acid (FIGLU), pyroglutamic acid (PYRGLU), 5-hydroxyindoleacetic acid (5-HIAA), and 2-methylhippuric acid (2-METHIP) by liquid chromatography tandem mass spectrometry (LC/MS/MS). The chromatography was developed using a weak anion-exchange amino column that provided mixed-mode retention of the analytes. The elution gradient relied on changes in mobile phase pH over a concave gradient, without the use of counter-ions or concentrated salt buffers. A simple sample preparation was used, only requiring the dilution of urine prior to instrumental analysis. The method was validated based on linearity (r2>or=0.995), accuracy (85-115%), precision (C.V.<12%), sample preparation stability (
Gao, Hua-Jun; Chen, Ya-Jing; Zuo, Duo; Xiao, Ming-Ming; Li, Ying; Guo, Hua; Zhang, Ning; Chen, Rui-Bing
2015-01-01
Objective Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths. Novel serum biomarkers are required to increase the sensitivity and specificity of serum screening for early HCC diagnosis. This study employed a quantitative proteomic strategy to analyze the differential expression of serum glycoproteins between HCC and normal control serum samples. Methods Lectin affinity chromatography (LAC) was used to enrich glycoproteins from the serum samples. Quantitative mass spectrometric analysis combined with stable isotope dimethyl labeling and 2D liquid chromatography (LC) separations were performed to examine the differential levels of the detected proteins between HCC and control serum samples. Western blot was used to analyze the differential expression levels of the three serum proteins. Results A total of 2,280 protein groups were identified in the serum samples from HCC patients by using the 2D LC-MS/MS method. Up to 36 proteins were up-regulated in the HCC serum, whereas 19 proteins were down-regulated. Three differential glycoproteins, namely, fibrinogen gamma chain (FGG), FOS-like antigen 2 (FOSL2), and α-1,6-mannosylglycoprotein 6-β-N-acetylglucosaminyltransferase B (MGAT5B) were validated by Western blot. All these three proteins were up-regulated in the HCC serum samples. Conclusion A quantitative glycoproteomic method was established and proven useful to determine potential novel biomarkers for HCC. PMID:26487969
Comparison of methods for determining volatile compounds in cheese, milk, and whey powder
USDA-ARS?s Scientific Manuscript database
Solid phase microextraction (SPME) and gas chromatography-mass spectrometry (GC-MS) are commonly used for qualitative and quantitative analysis of volatile compounds in various dairy products, but selecting the proper procedures presents challenges. Heat is applied to drive volatiles from the samp...
Separation and quantitation of plant and insect carbohydrate isomers found on the surface of cotton
USDA-ARS?s Scientific Manuscript database
Cotton stickiness researchers have worked to create ion chromatography (IC) carbohydrate separation methods which allow for minimal analysis time and reduced operational costs. Researchers have also tried to correlate scientifically backed IC data with the available physical stickiness tests, such ...
Lanshoeft, Christian; Heudi, Olivier; Cianférani, Sarah
2016-05-15
The newly developed SMART Digest™ kit was applied for the sample preparation of human immunoglobulin G1 (hIgG1) in rat serum prior to qualitative and quantitative analyses by liquid chromatography tandem mass spectrometry (LC-MS/MS). The sequence coverages obtained for the light and heavy chains of hIgG1A were 50 and 76%, respectively. The calibration curve was linear from 1.00 to 1000 μg/ml for three of four generic peptides. Overall, the SMART Digest™ kit resulted in similar quantitative data (linearity, sensitivity, accuracy, and precision) compared with the pellet digestion protocol. However, the SMART Digest™ required only 2 h of sample preparation with fewer reagents. Copyright © 2016 Elsevier Inc. All rights reserved.
Kwak, A-Min; Lee, In-Kyoung; Lee, Sang-Yeop
2016-01-01
The culture filtrate of Lentinula edodes shows potent antimicrobial activity against the plant pathogenic bacteria Ralstonia solanacearum. Bioassay-guided fractionation was conducted using Diaion HP-20 column chromatography, and the insoluble active compound was not adsorbed on the resin. Further fractionation by high-performance liquid chromatography (HPLC) suggested that the active compounds were organic acids. Nine organic acids were detected in the culture filtrate of L. edodes; oxalic acid was the major component and exhibited antibacterial activity against nine different phytopathogenic bacteria. Quantitative analysis by HPLC revealed that the content of oxalic acid was higher in the water extract from spent mushroom substrate than in liquid culture. This suggests that the water extract of spent L. edodes substrate is an eco-friendly control agent for plant diseases. PMID:28154495
Kaale, Eliangiringa; Van Schepdael, Ann; Roets, Eugène; Hoogmartens, Jos
2002-11-07
A reversed-phase liquid chromatography (LC) method has been developed, optimised and validated for the separation and quantitation of capsaicin (CP) and dihydrocapsaicin (DHCP) in a topical cream formulation. Sample preparation involves liquid-liquid extraction prior to LC analysis. The method uses a Hypersil C(18) BDS, 5 micrometer, 250x4.6 mm I.D. column maintained at 35 degrees C. The mobile phase comprises methanol, water, acetonitrile (ACN) and acetic acid (47:42:10:1, v/v/v/v) at a flow rate of 1.0 ml/min. Robustness was evaluated by performing a central composite face-centred design (CCF) experiment. The method shows good selectivity, linearity, sensitivity and repeatability. The conditions allow the separation and quantitation of CP and DHCP without interference from the other substances contained in the cream.
Quantitation of acrylamide in food products by liquid chromatography/mass spectrometry.
Eberhart, B Loye; Ewald, Deborah K; Sanders, Robert A; Tallmadge, Daniel H; Zyzak, David V; Strothers, Melissa A
2005-01-01
A simple and inexpensive liquid chromatography/mass spectrometry (LC/MS) method was developed for the quantitation of acrylamide in various food products. The method involved spiking the isotope-substituted internal standard (1-C13 acrylamide) onto 6.00 g of the food product, adding 40 mL distilled/deionized water, and heating at 65 degrees C for 30 min. Afterwards, 10 mL ethylene dichloride was added and the mixture was homogenized for 30 s and centrifuged at 2700 x g for 30 min, and then 8 g supernatant was extracted with 10, 5, and 5 mL portions of ethyl acetate. The extracts were combined, dried with sodium sulfate, and concentrated to 100-200 microL. Acrylamide was determined by analysis of the final extract on a single quadrupole, bench-top mass spectrometer with electrospray ionization, using a 2 mm id C18 column and monitoring m/z = 72 (acrylamide) and m/z = 73 (internal standard). For difficult food matrixes, such as coffee and cocoa, a solid-phase extraction cleanup step was incorporated to improve both chromatography and column lifetime. The method had a limit of quantitation of 10 ppb, and coefficients of determination (r2) for calibration curves were typically better than 0.998. Acceptable spike recovery results were achieved in 11 different food matrixes. Precision in potato chip analyses was 5-8% (relative standard deviation). This method provides an LC/MS alternative to the current LC/MS/MS methods and derivatization gas chromatography/mass spectrometry methods, and is applicable to difficult food products such as coffee, cocoa, and high-salt foods.
Analysis of Urinary Metabolites of Nerve and Blister Chemical Warfare Agents
2014-08-01
of CWAs. The analysis methods use UHPLC-MS/MS in Multiple Reaction Monitoring ( MRM ) mode to enhance the selectivity and sensitivity of the method...Chromatography Mass Spectrometry LOD Limit Of Detection LOQ Limit of Quantitation MRM Multiple Reaction Monitoring MSMS Tandem mass...urine [1]. Those analysis methods use UHPLC- MS/MS in Multiple Reaction Monitoring ( MRM ) mode to enhance the selectivity and sensitivity of the method
Wu, Haifeng; Guo, Jian; Chen, Shilin; Liu, Xin; Zhou, Yan; Zhang, Xiaopo; Xu, Xudong
2013-01-01
Over the past few years, the applications of liquid chromatography coupled with mass spectrometry (LC-MS) in natural product analysis have been dramatically growing because of the increasingly improved separation and detection capabilities of LC-MS instruments. In particular, novel high-resolution hybrid instruments linked to ultra-high-performance LC and the hyphenations of LC-MS with other separation or analytical techniques greatly aid unequivocal identification and highly sensitive quantification of natural products at trace concentrations in complex matrices. With the aim of providing an up-to-date overview of LC-MS applications on the analysis of plant-derived compounds, papers published within the latest years (2007-2012) involving qualitative and quantitative analysis of phytochemical constituents and their metabolites are summarized in the present review. After briefly describing the general characteristics of natural products analysis, the most remarkable features of LC-MS and sample preparation techniques, the present paper mainly focuses on screening and characterization of phenols (including flavonoids), alkaloids, terpenoids, steroids, coumarins, lignans, and miscellaneous compounds in respective herbs and biological samples, as well as traditional Chinese medicine (TCM) prescriptions using tandem mass spectrometer. Chemical fingerprinting analysis using LC-MS is also described. Meanwhile, instrumental peculiarities and methodological details are accentuated. Copyright © 2012 Elsevier B.V. All rights reserved.
Stable isotope dimethyl labelling for quantitative proteomics and beyond
Hsu, Jue-Liang; Chen, Shu-Hui
2016-01-01
Stable-isotope reductive dimethylation, a cost-effective, simple, robust, reliable and easy-to- multiplex labelling method, is widely applied to quantitative proteomics using liquid chromatography-mass spectrometry. This review focuses on biological applications of stable-isotope dimethyl labelling for a large-scale comparative analysis of protein expression and post-translational modifications based on its unique properties of the labelling chemistry. Some other applications of the labelling method for sample preparation and mass spectrometry-based protein identification and characterization are also summarized. This article is part of the themed issue ‘Quantitative mass spectrometry’. PMID:27644970
Qualitative and quantitative studies of chemical composition of sandarac resin by GC-MS.
Kononenko, I; de Viguerie, L; Rochut, S; Walter, Ph
2017-01-01
The chemical composition of sandarac resin was investigated qualitatively and quantitatively by gas chromatography-mass spectrometry (GC-MS). Six compounds with labdane and pimarane skeletons were identified in the resin. The obtained mass spectra were interpreted and the mass spectrometric behaviour of these diterpenoids under EI conditions was described. Quantitative analysis by the method of internal standard revealed that identified diterpenoids represent only 10-30% of the analysed sample. The sandarac resin from different suppliers was analysed (from Kremer, Okhra, Color Rare, La Marchande de Couleurs, L'Atelier Montessori, Hevea). The analysis of different lumps of resins showed that the chemical composition differs from one lump to another, varying mainly in the relative distributions of the components.
Sun, Mingzhe; Lidén, Gunnar; Sandahl, Margareta; Turner, Charlotta
2016-08-01
Traditional chromatographic methods for the analysis of lignin-derived phenolic compounds in environmental samples are generally time consuming. In this work, an ultra-high performance supercritical fluid chromatography method with a diode array detector for the analysis of major lignin-derived phenolic compounds produced by alkaline cupric oxide oxidation was developed. In an analysis of a collection of 11 representative monomeric lignin phenolic compounds, all compounds were clearly separated within 6 min with excellent peak shapes, with a limit of detection of 0.5-2.5 μM, a limit of quantification of 2.5-5.0 μM, and a dynamic range of 5.0-2.0 mM (R(2) > 0.997). The new ultra-high performance supercritical fluid chromatography method was also applied for the qualitative and quantitative analysis of lignin-derived phenolic compounds obtained upon alkaline cupric oxide oxidation of a commercial humic acid. Ten out of the previous eleven model compounds could be quantified in the oxidized humic acid sample. The high separation power and short analysis time obtained demonstrate for the first time that supercritical fluid chromatography is a fast and reliable technique for the analysis of lignin-derived phenols in complex environmental samples. © 2016 The Authors, Journal of Separation Science Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yang, Y; Kapalavavi, B; Gujjar, L; Hadrous, S; Marple, R; Gamsky, C
2012-10-01
Several high-temperature liquid chromatography (HTLC) and subcritical water chromatography (SBWC) methods have been successfully developed in this study for separation and analysis of preservatives contained in Olay skincare creams. Efficient separation and quantitative analysis of preservatives have been achieved on four commercially available ZirChrom and Waters XBridge columns at temperatures ranging from 100 to 200°C. The quantification results obtained by both HTLC and SBWC methods developed for preservatives analysis are accurate and reproducible. A large number of replicate HTLC and SBWC runs also indicate no significant system building-up or interference for skincare cream analysis. Compared with traditional HPLC separation carried out at ambient temperature, the HTLC methods can save up to 90% methanol required in the HPLC mobile phase. However, the SBWC methods developed in this project completely eliminated the use of toxic organic solvents required in the HPLC mobile phase, thus saving a significant amount of money and making the environment greener. Although both homemade and commercial systems can accomplish SBWC separations, the SBWC methods using the commercial system for preservative analysis are recommended for industrial applications because they can be directly applied in industrial plant settings. © 2012 The Authors ICS © 2012 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
Lee, Der-Yen; Huang, Wei-Chieh; Gu, Ting-Jia; Chang, Geen-Dong
2018-06-01
Hydrogen sulfide (H 2 S), previously known as a toxic gas, is now recognized as a gasotransmitter along with nitric oxide and carbon monoxide. However, only few methods are available for quantitative determination of H 2 S in biological samples. 2-Iodoacetanilide (2-IAN), a thiol-reacting agent, has been used to tag the reduced cysteine residues of proteins for quantitative proteomics and for detection of cysteine oxidation modification. In this article, we proposed a new method for quantitative analyses of H 2 S and thiol metabolites using the procedure of pre-column 2-IAN derivatization coupled with liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS). 13 C 6 -Labeled and label-free 2-IAN efficiently react with H 2 S and thiol compounds at pH 9.5 and 65 °C. The derivatives exhibit excellent stability at alkaline conditions, high resolution on reverse phase liquid chromatography and great sensitivity for ESI-MS detection. The measurement of H 2 S, l-cysteine, glutathione, and DL-homocysteine derivatives was validated using 13 C 6 -labeled standard in LC-ESI-MS analyses and exhibited 10 nM-1 μM linear ranges for DL-homocysteine and glutathione and 1 nM-1 μM linear ranges for l-cysteine and H 2 S. In addition, the sequence of derivatization and extraction of metabolites is important in the quantification of thiol metabolites suggesting the presence of matrix effects. Most importantly, labeling with 2-IAN and 13 C 6 -2-IAN isotopologues could achieve quantitative and matched sample comparative analyses with minimal bias using our extraction and labeling procedures before LC-MS analysis. Copyright © 2018 Elsevier B.V. All rights reserved.
Comparison of methods for determining volatile compounds in milk, cheese, and whey powder
USDA-ARS?s Scientific Manuscript database
Solid phase microextraction (SPME) and gas chromatography-mass spectrometry (GC-MS) are commonly used for qualitative and quantitative analysis of volatile compounds in various dairy products, but conditions have to be adjusted for optimal SPME release while not generating new compounds that are abs...
Julka, Samir; Cortes, Hernan; Harfmann, Robert; Bell, Bruce; Schweizer-Theobaldt, Andreas; Pursch, Matthias; Mondello, Luigi; Maynard, Shawn; West, David
2009-06-01
A comprehensive multidimensional liquid chromatography system coupled to Electrospray Ionization-Mass Spectrometry (LCxLC-ESI-MS) was developed for detailed characterization and quantitation of solid epoxy resin components. The two orthogonal modes of separation selected were size exclusion chromatography (SEC) in the first dimension and liquid chromatography at critical conditions (LCCC) in the second dimension. Different components present in the solid epoxy resins were separated and quantitated for the first time based on the functional groups and molecular weight heterogeneity. Coupling LCxLC separations with mass spectrometry enabled the identification of components resolved in the two-dimensional space. Several different functional group families of compounds were separated and identified, including epoxy-epoxy and epoxy-alpha-glycol functional oligomers, and their individual molecular weight ranges were determined. Repeatability obtained ranged from 0.5% for the main product to 21% for oligomers at the 0.4% concentration level.
Lísa, Miroslav; Cífková, Eva; Khalikova, Maria; Ovčačíková, Magdaléna; Holčapek, Michal
2017-11-24
Lipidomic analysis of biological samples in a clinical research represents challenging task for analytical methods given by the large number of samples and their extreme complexity. In this work, we compare direct infusion (DI) and chromatography - mass spectrometry (MS) lipidomic approaches represented by three analytical methods in terms of comprehensiveness, sample throughput, and validation results for the lipidomic analysis of biological samples represented by tumor tissue, surrounding normal tissue, plasma, and erythrocytes of kidney cancer patients. Methods are compared in one laboratory using the identical analytical protocol to ensure comparable conditions. Ultrahigh-performance liquid chromatography/MS (UHPLC/MS) method in hydrophilic interaction liquid chromatography mode and DI-MS method are used for this comparison as the most widely used methods for the lipidomic analysis together with ultrahigh-performance supercritical fluid chromatography/MS (UHPSFC/MS) method showing promising results in metabolomics analyses. The nontargeted analysis of pooled samples is performed using all tested methods and 610 lipid species within 23 lipid classes are identified. DI method provides the most comprehensive results due to identification of some polar lipid classes, which are not identified by UHPLC and UHPSFC methods. On the other hand, UHPSFC method provides an excellent sensitivity for less polar lipid classes and the highest sample throughput within 10min method time. The sample consumption of DI method is 125 times higher than for other methods, while only 40μL of organic solvent is used for one sample analysis compared to 3.5mL and 4.9mL in case of UHPLC and UHPSFC methods, respectively. Methods are validated for the quantitative lipidomic analysis of plasma samples with one internal standard for each lipid class. Results show applicability of all tested methods for the lipidomic analysis of biological samples depending on the analysis requirements. Copyright © 2017 Elsevier B.V. All rights reserved.
Song, Zhiling; Hashi, Yuki; Sun, Hongyang; Liang, Yi; Lan, Yuexiang; Wang, Hong; Chen, Shizhong
2013-12-01
The flowers of Trollius species, named Jin Lianhua in Chinese, are widely used traditional Chinese herbs with vital biological activity that has been used for several decades in China to treat upper respiratory infections, pharyngitis, tonsillitis, and bronchitis. We developed a rapid and reliable method for simultaneous quantitative analysis of 19 flavonoids in trollflowers by using high-performance liquid chromatography (HPLC). Chromatography was performed on Inertsil ODS-3 C18 column, with gradient elution methanol-acetonitrile-water with 0.02% (v/v) formic acid. Content determination was used to evaluate the quality of commercial trollflowers from different regions in China, while three Trollius species (Trollius chinensis Bunge, Trollius ledebouri Reichb, Trollius buddae Schipcz) were explicitly distinguished by using hierarchical clustering analysis. The linearity, precision, accuracy, limit of detection, and limit of quantification were validated for the quantification method, which proved sensitive, accurate and reproducible indicating that the proposed approach was applicable for the routine analysis and quality control of trollflowers. © 2013.
Palmer, Kevin B; LaFon, William; Burford, Mark D
2017-09-22
Current analytical methodology for iodopropynyl butylcarbamate (IPBC) analysis focuses on the use of liquid chromatography and mass spectrometer (LC-MS), but the high instrumentation and operator investment required has resulted in the need for a cost effective alternative methodology. Past publications investigating gas chromatography with electron capture detector (GC-ECD) for IPBC quantitation proved largely unsuccessful, likely due to the preservatives limited thermal stability. The use of pulsed injection techniques commonly used for trace analysis of thermally labile pharmaceutical compounds was successfully adapted for IPBC analysis and utilizes the selectivity of GC-ECD analysis. System optimization and sample preparation improvements resulted in substantial performance and reproducibility gains. Cosmetic formulations preserved with IPBC (50-100ppm) were solvated in toluene/isopropyl alcohol and quantified over the 0.3-1.3μg/ml calibration range. The methodology was robust (relative standard deviation 4%), accurate (98% recovery), and sensitive (limit of detection 0.25ng/ml) for use in routine testing of cosmetic formulation preservation. Copyright © 2017 Elsevier B.V. All rights reserved.
Quantitative Determination of Caffeine in Beverages Using a Combined SPME-GC/MS Method
NASA Astrophysics Data System (ADS)
Pawliszyn, Janusz; Yang, Min J.; Orton, Maureen L.
1997-09-01
Solid-phase microextraction (SPME) combined with gas chromatography/mass spectrometry (GC/MS) has been applied to the analysis of various caffeinated beverages. Unlike the current methods, this technique is solvent free and requires no pH adjustments. The simplicity of the SPME-GC/MS method lends itself to a good undergraduate laboratory practice. This publication describes the analytical conditions and presents the data for determination of caffeine in coffee, tea, and coke. Quantitation by isotopic dilution is also illustrated.
Liquid Chromatography-Mass Spectrometry-based Quantitative Proteomics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Fang; Liu, Tao; Qian, Weijun
2011-07-22
Liquid chromatography-mass spectrometry (LC-MS)-based quantitative proteomics has become increasingly applied for a broad range of biological applications due to growing capabilities for broad proteome coverage and good accuracy in quantification. Herein, we review the current LC-MS-based quantification methods with respect to their advantages and limitations, and highlight their potential applications.
Millán Martín, Silvia; Delporte, Cédric; Farrell, Amy; Navas Iglesias, Natalia; McLoughlin, Niaobh; Bones, Jonathan
2015-03-07
A twoplex method using (12)C6 and (13)C6 stable isotope analogues (Δmass = 6 Da) of 2-aminobenzoic acid (2-AA) is described for quantitative analysis of N-glycans present on monoclonal antibodies and other glycoproteins using ultra performance liquid chromatography with sequential fluorescence and accurate mass tandem quadrupole time of flight (QToF) mass spectrometric detection.
Zhao, Ying-yong; Cheng, Xian-long; Zhang, Yongmin; Zhao, Ye; Lin, Rui-chao; Sun, Wen-ji
2010-02-01
Polyporus umbellatus is a widely used diuretic herbal medicine. In this study, a high-performance liquid chromatography coupled with atmospheric pressure chemical ionization-mass spectrometric detection (HPLC-APCI-MS) method was developed for qualitative and quantitative analysis of steroids, as well as for the quality control of Polyporus umbellatus. The selectivity, reproducibility and sensitivity were compared with HPLC with photodiode array detection and evaporative light scattering detection (ELSD). Selective ion monitoring in positive mode was used for qualitative and quantitative analysis of eight major components and beta-ecdysterone was used as the internal standard. Limits of detection and quantification fell in the ranges 7-21 and 18-63 ng/mL for the eight analytes with an injection of 10 microL samples, and all calibration curves showed good linear regression (r(2) > 0.9919) within the test range. The quantitative results demonstrated that samples from different localities showed different qualities. Advantages, in comparison with conventional HPLC-diode array detection and HPLC-ELSD, are that reliable identification of target compounds could be achieved by accurate mass measurements along with characteristic retention time, and the great enhancement in selectivity and sensitivity allows identification and quantification of low levels of constituents in complex Polyporus umbellatus matrixes. (c) 2009 John Wiley & Sons, Ltd.
Xue, Zhenzhen; Kotani, Akira; Yang, Bin; Hakamata, Hideki
2018-05-31
A two-channel liquid chromatography with electrochemical detection system (2LC-ECD) was newly designed for the simultaneous determination of magnolosides A, B, F, H, and L in the first channel and other magnolosides D and M in the second channel, respectively. Peak heights had linear relationships to the magnoloside concentrations in a range of 0.02-16 μmol/L for H, 0.01-12 μmol/L for A, 0.02-12 μmol/L for F and L, 0.01-8 μmol/L for B, 0.002-6 μmol/L for D, and 0.002-4 μmol/L for M, respectively. Seven magnolosides in magnoliae officinalis cortex (MOC) were determined by the 2LC-ECD, and the obtained quantitative profiles of magnolosides were applied to the discrimination between the MOC samples harvested from Hubei and Sichuan (called Chuan po) and from Zhejiang and Fujian (called Wen po). By principal component analysis (PCA) and supervised partial least squares discriminant analysis (PLS-DA) based on the quantitative profiles of the magnolosides, Chuan po were clearly discriminated from Wen po on the plots obtained from our multivariable analyses. Copyright © 2018 Elsevier B.V. All rights reserved.
Yu, Chen; Zhang, Qian; Xu, Peng-Yao; Bai, Yin; Shen, Wen-Bin; Di, Bin; Su, Meng-Xiang
2018-01-01
Quantitative nuclear magnetic resonance (qNMR) is a well-established technique in quantitative analysis. We presented a validated 1 H-qNMR method for assay of octreotide acetate, a kind of cyclic octopeptide. Deuterium oxide was used to remove the undesired exchangeable peaks, which was referred to as proton exchange, in order to make the quantitative signals isolated in the crowded spectrum of the peptide and ensure precise quantitative analysis. Gemcitabine hydrochloride was chosen as the suitable internal standard. Experimental conditions, including relaxation delay time, the numbers of scans, and pulse angle, were optimized first. Then method validation was carried out in terms of selectivity, stability, linearity, precision, and robustness. The assay result was compared with that by means of high performance liquid chromatography, which is provided by Chinese Pharmacopoeia. The statistical F test, Student's t test, and nonparametric test at 95% confidence level indicate that there was no significant difference between these two methods. qNMR is a simple and accurate quantitative tool with no need for specific corresponding reference standards. It has the potential of the quantitative analysis of other peptide drugs and standardization of the corresponding reference standards. Copyright © 2017 John Wiley & Sons, Ltd.
van der Put, Robert M F; de Haan, Alex; van den IJssel, Jan G M; Hamidi, Ahd; Beurret, Michel
2015-11-27
Due to the rapidly increasing introduction of Haemophilus influenzae type b (Hib) and other conjugate vaccines worldwide during the last decade, reliable and robust analytical methods are needed for the quantitative monitoring of intermediate samples generated during fermentation (upstream processing, USP) and purification (downstream processing, DSP) of polysaccharide vaccine components. This study describes the quantitative characterization of in-process control (IPC) samples generated during the fermentation and purification of the capsular polysaccharide (CPS), polyribosyl-ribitol-phosphate (PRP), derived from Hib. Reliable quantitative methods are necessary for all stages of production; otherwise accurate process monitoring and validation is not possible. Prior to the availability of high performance anion exchange chromatography methods, this polysaccharide was predominantly quantified either with immunochemical methods, or with the colorimetric orcinol method, which shows interference from fermentation medium components and reagents used during purification. Next to an improved high performance anion exchange chromatography-pulsed amperometric detection (HPAEC-PAD) method, using a modified gradient elution, both the orcinol assay and high performance size exclusion chromatography (HPSEC) analyses were evaluated. For DSP samples, it was found that the correlation between the results obtained by HPAEC-PAD specific quantification of the PRP monomeric repeat unit released by alkaline hydrolysis, and those from the orcinol method was high (R(2)=0.8762), and that it was lower between HPAEC-PAD and HPSEC results. Additionally, HPSEC analysis of USP samples yielded surprisingly comparable results to those obtained by HPAEC-PAD. In the early part of the fermentation, medium components interfered with the different types of analysis, but quantitative HPSEC data could still be obtained, although lacking the specificity of the HPAEC-PAD method. Thus, the HPAEC-PAD method has the advantage of giving a specific response compared to the orcinol assay and HPSEC, and does not show interference from various components that can be present in intermediate and purified PRP samples. Copyright © 2014 Elsevier Ltd. All rights reserved.
Keshishian, Hasmik; Burgess, Michael W; Specht, Harrison; Wallace, Luke; Clauser, Karl R; Gillette, Michael A; Carr, Steven A
2017-08-01
Proteomic characterization of blood plasma is of central importance to clinical proteomics and particularly to biomarker discovery studies. The vast dynamic range and high complexity of the plasma proteome have, however, proven to be serious challenges and have often led to unacceptable tradeoffs between depth of coverage and sample throughput. We present an optimized sample-processing pipeline for analysis of the human plasma proteome that provides greatly increased depth of detection, improved quantitative precision and much higher sample analysis throughput as compared with prior methods. The process includes abundant protein depletion, isobaric labeling at the peptide level for multiplexed relative quantification and ultra-high-performance liquid chromatography coupled to accurate-mass, high-resolution tandem mass spectrometry analysis of peptides fractionated off-line by basic pH reversed-phase (bRP) chromatography. The overall reproducibility of the process, including immunoaffinity depletion, is high, with a process replicate coefficient of variation (CV) of <12%. Using isobaric tags for relative and absolute quantitation (iTRAQ) 4-plex, >4,500 proteins are detected and quantified per patient sample on average, with two or more peptides per protein and starting from as little as 200 μl of plasma. The approach can be multiplexed up to 10-plex using tandem mass tags (TMT) reagents, further increasing throughput, albeit with some decrease in the number of proteins quantified. In addition, we provide a rapid protocol for analysis of nonfractionated depleted plasma samples analyzed in 10-plex. This provides ∼600 quantified proteins for each of the ten samples in ∼5 h of instrument time.
Shellie, Robert; Marriott, Philip; Morrison, Paul
2004-09-01
The use of gas chromatography (GC)-mass spectrometry (MS), GC-time-of-flight MS (TOFMS), comprehensive two-dimensional GC (GCxGC)-flame ionization detection (FID), and GCxGC-TOFMS is discussed for the characterization of the eight important representative components, including Z-alpha-santalol, epi-alpha-bisabolol, Z-alpha-trans-bergamotol, epi-beta-santalol, Z-beta-santalol, E,E-farnesol, Z-nuciferol, and Z-lanceol, in the oil of west Australian sandalwood (Santalum spicatum). Single-column GC-MS lacks the resolving power to separate all of the listed components as pure peaks and allow precise analytical measurement of individual component abundances. With enhanced peak resolution capabilities in GCxGC, these components are sufficiently well resolved to be quantitated using flame ionization detection, following initial characterization of components by using GCxGC-TOFMS.
Herrera, Michael; Ding, Haiqing; McClanahan, Robert; Owens, Jane G; Hunter, Robert P
2007-09-15
A highly sensitive and quantitative LC/MS/MS assay for the determination of tilmicosin in serum has been developed and validated. For sample preparation, 0.2 mL of canine serum was extracted with 3 mL of methyl tert-butyl ether. The organic layer was transferred to a new vessel and dried under nitrogen. The sample was then reconstituted for analysis by high performance liquid chromatography-tandem mass spectrometry. A Phenomenex Luna C8(2) analytical column was used for the chromatographic separation. The eluent was subsequently introduced to the mass spectrometer by electrospray ionization. A single range was validated for 50-5000 ng/mL for support of toxicokinetic studies. The inter-day relative error (inaccuracy) for the LLOQ samples ranged from -5.5% to 0.3%. The inter-day relative standard deviations (imprecision) at the respective LLOQ levels were < or =10.1%.
Kong, Xianghong; He, Qiang; Yue, Aishan; Wu, Shuangmin; Li, Jianhua
2010-06-01
An ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/ MS) method was developed for the determination of arbutin in apple juice concentrate. Samples were diluted with water, then cleaned-up with a PS-DVB column. Quantitation was carried out using an external standard method. UPLC was performed on an Eclipse Plus C, column (100 mm x 2.1 mm, 1.8 microm) using a gradient solvent system (methanol-water). MS/MS was performed with multiple reaction monitoring (MRM) mode. The detection limit of arbutin was 0.02 mg/L. The method showed good linear relationship at the range of 0.04-2.0 mg/L. The recoveries ranged from 75.2% to 102.7% with relative standard deviations (RSDs) less than 8.9%. The method is simple, fast and sensitive. It's suitable for quantitative and qualitative analysis of arbutin in apple juice concentrate.
Chemmalil, Letha; Suravajjala, Sreekanth; See, Kate; Jordan, Eric; Furtado, Marsha; Sun, Chong; Hosselet, Stephen
2015-01-01
This paper describes a novel approach for the quantitation of nonderivatized sialic acid in glycoproteins, separated by hydrophilic interaction chromatography, and detection by Nano Quantity Analyte Detector (NQAD). The detection technique of NQAD is based on measuring change in the size of dry aerosol and converting the particle count rate into chromatographic output signal. NQAD detector is suitable for the detection of sialic acid, which lacks sufficiently active chromophore or fluorophore. The water condensation particle counting technology allows the analyte to be enlarged using water vapor to provide highest sensitivity. Derivatization-free analysis of glycoproteins using HPLC/NQAD method with PolyGLYCOPLEX™ amide column is well correlated with HPLC method with precolumn derivatization using 1, 2-diamino-4, 5-methylenedioxybenzene (DMB) as well as the Dionex-based high-pH anion-exchange chromatography (or ion chromatography) with pulsed amperometric detection (HPAEC-PAD). With the elimination of derivatization step, HPLC/NQAD method is more efficient than HPLC/DMB method. HPLC/NQAD method is more reproducible than HPAEC-PAD method as HPAEC-PAD method suffers high variability because of electrode fouling during analysis. Overall, HPLC/NQAD method offers broad linear dynamic range as well as excellent precision, accuracy, repeatability, reliability, and ease of use, with acceptable comparability to the commonly used HPAEC-PAD and HPLC/DMB methods. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
Kim, Hyo Seon; Chun, Jin Mi; Kwon, Bo-In; Lee, A-Reum; Kim, Ho Kyoung; Lee, A Yeong
2016-10-01
Ultra-performance convergence chromatography, which integrates the advantages of supercritical fluid chromatography and ultra high performance liquid chromatography technologies, is an environmentally friendly analytical method that uses dramatically reduced amounts of organic solvents. An ultra-performance convergence chromatography method was developed and validated for the quantification of decursinol angelate and decursin in Angelica gigas using a CSH Fluoro-Phenyl column (2.1 mm × 150 mm, 1.7 μm) with a run time of 4 min. The method had an improved resolution and a shorter analysis time in comparison to the conventional high-performance liquid chromatography method. This method was validated in terms of linearity, precision, and accuracy. The limits of detection were 0.005 and 0.004 μg/mL for decursinol angelate and decursin, respectively, while the limits of quantitation were 0.014 and 0.012 μg/mL, respectively. The two components showed good regression (correlation coefficient (r 2 ) > 0.999), excellent precision (RSD < 2.28%), and acceptable recoveries (99.75-102.62%). The proposed method can be used to efficiently separate, characterize, and quantify decursinol angelate and decursin in Angelica gigas and its related medicinal materials or preparations, with the advantages of a shorter analysis time, greater sensitivity, and better environmental compatibility. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Santhana Lakshmi, Karunanidhi; Lakshmi, Sivasubramanian
2012-01-01
A Simple high-performance thin layer chromatography (HPTLC) method for separation and quantitative analysis of losartan potassium, amlodipine, and hydrochlorothiazide in bulk and in pharmaceutical formulations has been established and validated. After extraction with methanol, sample and standard solutions were applied to silica gel plates and developed with chloroform : methanol : acetone : formic acid 7.5 : 1.3 : 0.5 : 0.03 (v/v/v/v) as mobile phase. Zones were scanned densitometrically at 254 nm. The R f values of amlodipine besylate, hydrochlorothiazide, and losartan potassium were 0.35, 0.57, and 0.74, respectively. Calibration plots were linear in the ranges 500–3000 ng per spot for losartan potassium, amlodipine and hydrochlorothiazide, the correlation coefficients, r, were 0.998, 0.998, and 0.999, respectively. The suitability of this method for quantitative determination of these compounds was by validation in accordance with the requirements of pharmaceutical regulatory standards. The method can be used for routine analysis of these drugs in bulk and in formulation. PMID:22567550
Hurtado-Gaitán, Elías; Sellés-Marchart, Susana; Martínez-Márquez, Ascensión; Samper-Herrero, Antonio; Bru-Martínez, Roque
2017-03-07
Grapevine stilbenes are a family of polyphenols which derive from trans -resveratrol having antifungal and antimicrobial properties, thus being considered as phytoalexins. In addition to their diverse bioactive properties in animal models, they highlight a strong potential in human health maintenance and promotion. Due to this relevance, highly-specific qualitative and quantitative methods of analysis are necessary to accurately analyze stilbenes in different matrices derived from grapevine. Here, we developed a rapid, sensitive, and specific analysis method using ultra-high-performance liquid chromatography coupled to triple-quadrupole mass spectrometry (UHPLC-QqQ) in MRM mode to detect and quantify five grapevine stilbenes, trans -resveratrol, trans -piceid, trans -piceatannol, trans -pterostilbene, and trans -ε-viniferin, whose interest in relation to human health is continuously growing. The method was optimized to minimize in-source fragmentation of piceid and to avoid co-elution of cis -piceid and trans -resveratrol, as both are detected with resveratrol transitions. The applicability of the developed method of stilbene analysis was tested successfully in different complex matrices including cellular extracts of Vitis vinifera cell cultures, reaction media of biotransformation assays, and red wine.
Ehling, Stefan; Reddy, Todime M
2014-02-19
A simple, rugged, quantitative, and confirmatory method based on liquid chromatography-mass spectrometry was developed and comprehensively validated for the analysis of the leucine metabolites β-hydroxy-β-methylbutyric acid (HMB) and α-hydroxyisocaproic acid (HICA) in bovine whole milk and yogurt. Mean accuracy (90-110% for HMB and 85-115% for HICA) and total precision (<10% RSD in most cases, except for <20% RSD for HMB at the limit of quantitation) at four concentration levels across three validation runs have been determined. Limits of quantitation for HMB and HICA in whole milk were 20 and 5 μg/L, respectively. Measured concentrations of HMB and HICA were <20-29 and 32-37 μg/L, respectively, in bovine whole milk and <5 and 3.0-15.2 mg/L, respectively, in yogurt. These concentrations are insufficient by large margins to deliver any musculoskeletal benefits, and fortification of milk and dairy products with HMB and/or HICA appears to be justified.
MacMahon, Shaun; Begley, Timothy H; Diachenko, Gregory W
2013-05-22
A method was developed and validated for the detection of fatty acid diesters of 2-monochloropropanediol (2-MCPD) and 3-monochloropropanediol (3-MCPD) in edible oils. These analytes are potentially carcinogenic chemical contaminants formed during edible oil processing. After separation from oil matrices using a two-step solid-phase extraction (SPE) procedure, the target compounds are quantitated using liquid chromatography-tandem mass spectrometry (LC-MS/MS) with electrospray ionization (ESI). The first chromatographic conditions have been developed that separate intact diesters of 2-MCPD and 3-MCPD, allowing for their individual quantitation. The method has been validated for 28 3-MCPD diesters of lauric, myristic, palmitic, linolenic, linoleic, oleic, and stearic acids in coconut, olive, and palm oils, as well as 3 2-MCPD diesters, using an external calibration curve. The range of average recoveries and relative standard deviations (RSDs) across the three oil matrices at three spiking concentrations are 88-118% (2-16% RSD) with maximum limits of quantitation of 30 ng/g (ppb).
Recent advances and applications of gas chromatography vacuum ultraviolet spectroscopy.
Santos, Inês C; Schug, Kevin A
2017-01-01
The vacuum ultraviolet spectrophotometer was developed recently as an alternative to existing gas chromatography detectors. This detector measures the absorption of gas-phase chemical species in the range of 120-240 nm, where all chemical compounds present unique absorption spectra. Therefore, qualitative analysis can be performed and quantification follows standard Beer-Lambert law principles. Different fields of application, such as petrochemical, food, and environmental analysis have been explored. Commonly demonstrated is the capability for facile deconvolution of co-eluting analytes. The concept of additive absorption for co-eluting analytes has also been advanced for classification and speciation of complex mixtures using a data treatment procedure termed time interval deconvolution. Furthermore, pseudo-absolute quantitation can be performed for system diagnosis, as well as potentially calibrationless quantitation. In this manuscript an overview of these features, the vacuum ultraviolet spectrophotometer instrumentation, and performance capabilities are given. A discussion of the applications of the vacuum ultraviolet detector is provided by describing and discussing the papers published thus far since 2014. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Oellig, Claudia; Brändle, Klara; Schwack, Wolfgang
2018-07-13
Mono- and diacylglycerol (MAG and DAG) emulsifiers, also known as food additive E 471, are widely used to adjust techno-functional properties in various foods. Besides MAGs and DAGs, E 471 emulsifiers additionally comprise different amounts of triacylglycerols (TAGs) and free fatty acids (FFAs). MAGs, DAGs, TAGs and FFAs are generally determined by high-performance liquid chromatography (HPLC) or gas chromatography (GC) coupled to mass selective detection, analyzing the individual representatives of the lipid classes. In this work we present a rapid and sensitive method for the determination of MAGs, DAGs, TAGs and FFAs in E 471 emulsifiers by high-performance thin-layer chromatography with fluorescence detection (HPTLC-FLD), including a response factor system for quantitation. Samples were simply dissolved and diluted with t-butyl methyl ether before a two-fold development was performed on primuline pre-impregnated LiChrospher silica gel plates with diethyl ether and n-pentane/n-hexane/diethyl ether (52:20:28, v/v/v) as the mobile phases to 18 and 75 mm, respectively. For quantitation, the plate was scanned in the fluorescence mode at UV 366/>400 nm, when the cumulative signal for each lipid class was used. Calibration was done with 1,2-distearin and amounts of lipid classes were calculated with response factors and expressed as monostearin, distearin, tristearin and stearic acid. Limits of detection and quantitation were 1 and 4 ng/zone, respectively, for 1,2-distearin. Thus, the HPTLC-FLD approach represents a simple, rapid and convenient screening alternative to HPLC and GC analysis of the individual compounds. Visual detection additionally enables an easy characterization and the direct comparison of emulsifiers through the lipid class pattern, when utilized as a fingerprint. Copyright © 2018 Elsevier B.V. All rights reserved.
Liu, Sifei; Zhang, Guangrui; Qiu, Ying; Wang, Xiaobo; Guo, Lihan; Zhao, Yanxin; Tong, Meng; Wei, Lan; Sun, Lixin
2016-12-01
In this study, we aimed to establish a comprehensive and practical quality evaluation system for Shenmaidihuang pills. A simple and reliable high-performance liquid chromatography coupled with photodiode array detection method was developed both for fingerprint analysis and quantitative determination. In fingerprint analysis, relative retention time and relative peak area were used to identify the common peaks in 18 samples for investigation. Twenty one peaks were selected as the common peaks to evaluate the similarities of 18 Shenmaidihuang pills samples with different manufacture dates. Furthermore, similarity analysis was applied to evaluate the similarity of samples. Hierarchical cluster analysis and principal component analysis were also performed to evaluate the variation of Shenmaidihuang pills. In quantitative analysis, linear regressions, injection precisions, recovery, repeatability and sample stability were all tested and good results were obtained to simultaneously determine the seven identified compounds, namely, 5-hydroxymethylfurfural, morroniside, loganin, paeonol, paeoniflorin, psoralen, isopsoralen in Shenmaidihuang pills. The contents of some analytes in different batches of samples indicated significant difference, especially for 5-hydroxymethylfurfural. So, it was concluded that the chromatographic fingerprint method obtained by high-performance liquid chromatography coupled with photodiode array detection associated with multiple compounds determination is a powerful and meaningful tool to comprehensively conduct the quality control of Shenmaidihuang pills. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Jović, Ozren; Smolić, Tomislav; Primožič, Ines; Hrenar, Tomica
2016-04-19
The aim of this study was to investigate the feasibility of FTIR-ATR spectroscopy coupled with the multivariate numerical methodology for qualitative and quantitative analysis of binary and ternary edible oil mixtures. Four pure oils (extra virgin olive oil, high oleic sunflower oil, rapeseed oil, and sunflower oil), as well as their 54 binary and 108 ternary mixtures, were analyzed using FTIR-ATR spectroscopy in combination with principal component and discriminant analysis, partial least-squares, and principal component regression. It was found that the composition of all 166 samples can be excellently represented using only the first three principal components describing 98.29% of total variance in the selected spectral range (3035-2989, 1170-1140, 1120-1100, 1093-1047, and 930-890 cm(-1)). Factor scores in 3D space spanned by these three principal components form a tetrahedral-like arrangement: pure oils being at the vertices, binary mixtures at the edges, and ternary mixtures on the faces of a tetrahedron. To confirm the validity of results, we applied several cross-validation methods. Quantitative analysis was performed by minimization of root-mean-square error of cross-validation values regarding the spectral range, derivative order, and choice of method (partial least-squares or principal component regression), which resulted in excellent predictions for test sets (R(2) > 0.99 in all cases). Additionally, experimentally more demanding gas chromatography analysis of fatty acid content was carried out for all specimens, confirming the results obtained by FTIR-ATR coupled with principal component analysis. However, FTIR-ATR provided a considerably better model for prediction of mixture composition than gas chromatography, especially for high oleic sunflower oil.
Determination of patulin in commercial apple juice by micellar electrokinetic chromatography.
Murillo, M; González-Peñas, E; Amézqueta, S
2008-01-01
A novel and validated micellar electrokinetic capillary chromatography (MEKC) method using ultraviolet detection (UV) has been applied to the quantitative analysis of patulin (PAT) in commercial apple juice. Patulin was extracted from samples with an ethylacetate solution. The micellar electrokinetic capillary chromatography (MECK) parameters studied for method optimization were buffer composition, voltage, temperature, and a separation between PAT and 5-hydroxymethylfurfural (HMF) (main interference in apple juice PAT analysis) peaks until reaching baseline. The method passes a series of validation tests including selectivity, linearity, limit of detection and quantification (0.7 and 2.5 microgL(-1), respectively), precision (within and between-day variability) and recovery (80.2% RSD=4%), accuracy, and robustness. This method was successfully applied to the measurement of 20 apple juice samples obtained from different supermarkets. One hundred percent of the samples were contaminated with a level greater than the limit of detection, with mean and median values of 41.3 and 35.7 microgL(-1), respectively.
Xiao, Zuobing; Li, Jing; Niu, Yunwei; Liu, Qiang; Liu, Junhua
2017-10-01
Rose oil is much too expensive but very popular. It's well known that the flower oil's aroma profile hasn't been intensively investigated. In order to verify the aroma profile of rose oil, the synthetic blend of odorants was prepared and then compared with the original rose oil using electronic nose analysis (ENA) combined with quantitative descriptive analysis (QDA). The odorants from rose oils were screened out by Gas Chromatography-Olfactometry/aroma extract dilution analysis (GC-O/AEDA) combined with odour activity value (OAV). Both ENA and QDA indicated the recombination model derived from OAV and GC-O/AEDA closely resembled the original rose oil. The experiment results show that rose oxide, linalool, α-pinene, β-pinene, nonanal, heptanal citronellal, phenyl ethyl alcohol, benzyl alcohol, eugenol, methyl eugenol, β-citronellol, hexyl acetate, β-ionone, nerol, etc. are very important constituent to rose oil aroma profile.
Wu, Xiaofang; Ding, Wenjing; Zhong, Jiasheng; Wan, Jinzhi; Xie, Zhiyong
2013-06-01
An effective and comprehensive method was developed for the simultaneous analysis of phenolic compounds in the dried exudate of Aloe barbadensis Mill by liquid chromatography-mass spectrometry-ion trap-time-of-flight (LCMS-IT-TOF) and high performance liquid chromatography-diode array detector (HPLC-DAD). Qualitative analysis of all the compounds presented in A. barbadensis Mill was performed on LCMS-IT-TOF, and the diagnostic fragmentation patterns of different types of phenolic compounds (chromones, phenyl pyrones, naphthalene derivative, anthrones and anthraquinones) were discussed on the basis of ESI-IT-TOF MS of components in A. barbadensis Mill and eleven authentic standards. Under the optimal HPLC-DAD chromatographic conditions, quantification of 11 typical phenolic compounds in 15 batches of A. barbadensis Mill was achieved on an Agilent TC-C18 column using gradient elution with a solvent system of methanol and water at a flow rate of 1.0mLmin(-1) and detected at 230nm. All calibration curves exhibited good linear relationship (r(2)>0.9991). The relative standard deviation values for intraday precision were less than 2% with accuracies between 98.21% and 104.57%. The recoveries of the eleven analytes ranged from 97.53 to 105.00% with RSDs less than 2%. This is the first simultaneous characterization and quantitative determination of multiple phenolic compounds in A. barbadensis Mill from locally grown cultivars in China by LCMS-IT-TOF and HPLC-DAD, which can be applied to standardize the quality of A. barbadensis Mill and the future design of nutraceutical and cosmetic preparations. Copyright © 2013 Elsevier B.V. All rights reserved.
De Carvalho, Thays C; Tosato, Flavia; Souza, Lindamara M; Santos, Heloa; Merlo, Bianca B; Ortiz, Rafael S; Rodrigues, Rayza R T; Filgueiras, Paulo R; França, Hildegardo S; Augusti, Rodinei; Romão, Wanderson; Vaz, Boniek G
2016-05-01
Thin layer chromatography (TLC) is a simple and inexpensive type of chromatography that is extensively used in forensic laboratories for drugs of abuse analysis. In this work, TLC is optimized to analyze cocaine and its adulterants (caffeine, benzocaine, lidocaine and phenacetin) in which the sensitivity (visual determination of LOD from 0.5 to 14mgmL(-1)) and the selectivity (from the study of three different eluents: CHCl3:CH3OH:HCOOHglacial (75:20:5v%), (C2H5)2O:CHCl3 (50:50v%) and CH3OH:NH4OH (100:1.5v%)) were evaluated. Aiming to improve these figures of merit, the TLC spots were identified and quantified (linearity with R(2)>0.98) by the paper spray ionization mass spectrometry (PS-MS), reaching now lower LOD values (>1.0μgmL(-1)). The method developed in this work open up perspective of enhancing the reliability of traditional and routine TLC analysis employed in the criminal expertise units. Higher sensitivity, selectivity and rapidity can be provided in forensic reports, besides the possibility of quantitative analysis. Due to the great simplicity, the PS(+)-MS technique can also be coupled directly to other separation techniques such as the paper chromatography and can still be used in analyses of LSD blotter, documents and synthetic drugs. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Quality Assessments of Long-Term Quantitative Proteomic Analysis of Breast Cancer Xenograft Tissues
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Jian-Ying; Chen, Lijun; Zhang, Bai
The identification of protein biomarkers requires large-scale analysis of human specimens to achieve statistical significance. In this study, we evaluated the long-term reproducibility of an iTRAQ (isobaric tags for relative and absolute quantification) based quantitative proteomics strategy using one channel for universal normalization across all samples. A total of 307 liquid chromatography tandem mass spectrometric (LC-MS/MS) analyses were completed, generating 107 one-dimensional (1D) LC-MS/MS datasets and 8 offline two-dimensional (2D) LC-MS/MS datasets (25 fractions for each set) for human-in-mouse breast cancer xenograft tissues representative of basal and luminal subtypes. Such large-scale studies require the implementation of robust metrics to assessmore » the contributions of technical and biological variability in the qualitative and quantitative data. Accordingly, we developed a quantification confidence score based on the quality of each peptide-spectrum match (PSM) to remove quantification outliers from each analysis. After combining confidence score filtering and statistical analysis, reproducible protein identification and quantitative results were achieved from LC-MS/MS datasets collected over a 16 month period.« less
Bynum, Nichole D; Moore, Katherine N; Grabenauer, Megan
2014-10-01
Many forensic laboratories experience backlogs due to increased drug-related cases. Laser diode thermal desorption (LDTD) has demonstrated its applicability in other scientific areas by providing data comparable with instrumentation, such as liquid chromatography-tandem mass spectrometry, in less time. LDTD-MS-MS was used to validate 48 compounds in drug-free human urine and blood for screening or quantitative analysis. Carryover, interference, limit of detection, limit of quantitation, matrix effect, linearity, precision and accuracy and stability were evaluated. Quantitative analysis indicated that LDTD-MS-MS produced precise and accurate results with the average overall within-run precision in urine and blood represented by a %CV <14.0 and <7.0, respectively. The accuracy for all drugs in urine ranged from 88.9 to 104.5% and 91.9 to 107.1% in blood. Overall, LDTD has the potential for use in forensic toxicology but before it can be successfully implemented that there are some challenges that must be addressed. Although the advantages of the LDTD system include minimal maintenance and rapid analysis (∼10 s per sample) which makes it ideal for high-throughput forensic laboratories, a major disadvantage is its inability or difficulty analyzing isomers and isobars due to the lack of chromatography without the use of high-resolution MS; therefore, it would be best implemented as a screening technique. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Hu, Zhixiong; Cheng, Peng; Guo, Mingli; Zhang, Weinong; Qi, Yutang
2013-07-10
A novel approach of periodate oxidation coupled with high-performance liquid chromatography (HPLC)-fluorescence detection (FLD) for the quantitative determination of 3-chloro-1,2-propanediol (3-MCPD) has been established. The essence of this approach lies in the production of chloroacetaldehyde by the oxidization cleavage of 3-MCPD with sodium periodate and the HPLC analysis of chloroacetaldehyde monitored by an FLD detector after fluorescence derivatization with adenine. The experimental parameters relating to the efficiency of the derivative reaction such as concentration of adenine, chloroacetaldehyde reaction temperature, and time were studied. Under the optimized conditions, the proposed method can provide high sensitivity, good linearity (r(2) = 0.999), and repeatability (percent relative standard deviations between 2.57% and 3.44%), the limits of detection and quantification were 0.36 and 1.20 ng/mL, respectively, and the recoveries obtained for water samples were in the range 93.39-97.39%. This method has been successfully applied to the analysis of real water samples. Also this method has been successfully used for the analysis of vegetable oil samples after pretreatment with liquid-liquid extraction; the recoveries obtained by a spiking experiment with soybean oil ranged from 96.27% to 102.42%. In comparison with gas chromatography or gas chromatography-mass spectrometry, the proposed method can provide the advantages of simple instrumental requirement, easy operation, low cost, and high efficiency, thus making this approach another good choice for the sensitive determination of 3-MCPD.
Zacs, D; Bartkevics, V
2015-10-22
A new analytical method was established and validated for the analysis of 27 brominated flame retardants (BFRs), including so called "emerging" and "novel" BFRs (EBFRs and NBFRs) in fish samples. High performance liquid chromatography (HPLC) coupled to Orbitrap mass spectrometry (Orbitrap-MS) employing atmospheric pressure photoionization (APPI) interface operated in negative mode was used for the identification/quantitation of contaminants. HPLC-Orbitrap-MS analysis provided a fast separation of selected analytes within 14 min, thus demonstrating a high throughput processing of samples. The developed methodology was tested by intralaboratory validation in terms of recovery, repeatability, linear calibration ranges, instrumental and method limits of quantitation (i-LOQ and m-LOQ), and where possible, trueness was verified by analysis of certified reference materials (CRMs). Recoveries of analytes were between 80 and 119%, while the repeatability in terms of relative standard deviations (RSDs) was in the range from 1.2 to 15.5%. The measured values for both analyzed CRMs agreed with the provided consensus values, revealing the recovery of reference concentrations in 72-119% range. The elaborated method met the sensitivity criterion according to Commission Recommendation 2014/118/EU on monitoring of BFRs in food products for majority of the compounds. The concentrations of polybrominated diphenyl ethers (PBDEs) in real samples determined by HPLC-APPI-Orbitrap-MS method and validated gas chromatography-high-resolution mass spectrometry (GC-HRMS) method were found to be in a good agreement. Copyright © 2015 Elsevier B.V. All rights reserved.
Rastogi, L.; Dash, K.; Arunachalam, J.
2013-01-01
The quantitative analysis of glutathione (GSH) is important in different fields like medicine, biology, and biotechnology. Accurate quantitative measurements of this analyte have been hampered by the lack of well characterized reference standards. The proposed procedure is intended to provide an accurate and definitive method for the quantitation of GSH for reference measurements. Measurement of the stoichiometrically existing sulfur content in purified GSH offers an approach for its quantitation and calibration through an appropriate characterized reference material (CRM) for sulfur would provide a methodology for the certification of GSH quantity, that is traceable to SI (International system of units). The inductively coupled plasma optical emission spectrometry (ICP-OES) approach negates the need for any sample digestion. The sulfur content of the purified GSH is quantitatively converted into sulfate ions by microwave-assisted UV digestion in the presence of hydrogen peroxide prior to ion chromatography (IC) measurements. The measurement of sulfur by ICP-OES and IC (as sulfate) using the “high performance” methodology could be useful for characterizing primary calibration standards and certified reference materials with low uncertainties. The relative expanded uncertainties (% U) expressed at 95% confidence interval for ICP-OES analyses varied from 0.1% to 0.3%, while in the case of IC, they were between 0.2% and 1.2%. The described methods are more suitable for characterizing primary calibration standards and certifying reference materials of GSH, than for routine measurements. PMID:29403814
Xie, Yuan-yuan; Xiao, Xue; Luo, Juan-min; Fu, Chan; Wang, Qiao-wei; Wang, Yi-ming; Liang, Qiong-lin; Luo, Guo-an
2014-06-01
The present study aims to describe and exemplify an integrated strategy of the combination of qualitative and quantitative characterization of a multicomponent mixture for the quality control of traditional Chinese medicine injections with the example of Danhong injection (DHI). The standardized chemical profile of DHI has been established based on liquid chromatography with diode array detection. High-performance liquid chromatography coupled with time-of-flight mass spectrometry and high-performance liquid chromatography with electrospray multistage tandem ion-trap mass spectrometry have been developed to identify the major constituents in DHI. The structures of 26 compounds including nucleotides, phenolic acids, and flavonoid glycosides were identified or tentatively characterized. Meanwhile, the simultaneous determination of seven marker constituents, including uridine, adenosine, danshensu, protocatechuic aldehyde, p-coumaric acid, rosmarinic acid, and salvianolic acid B, in DHI was performed by multiwavelength detection based on high-performance liquid chromatography with diode array detection. The integrated qualitative and quantitative characterization strategy provided an effective and reliable pattern for the comprehensive and systematic characterization of the complex traditional Chinese medicine system. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Woo, A H; Lindsay, R C
1980-07-01
A rapid quantiative method was developed for routine analysis of the major, even carbon-numbered free fatty acids in butter and cream. Free fatty acids were isolated directly from intact samples by a modified silicic acid-potassium hydroxide arrestant column and were separated by gas chromatography with a 1.8 m x 2 mm inner diameter glass column packed with 10% neopentyl glycol adipate on 80/100 Chromosorb W. Purified, formic acid-saturated carrier gas was required for minimal peak tailing and extended column life. The accuracy and reproducibility of the mmethod was established through quantitative recovery studies of free fatty acid mixtures, free fatty acids added to butter, and replicate analysis of butter and cream samples.
Li, Kuiyong; Fan, Yunpeng; Wang, Hui; Fu, Qing; Jin, Yu; Liang, Xinmiao
2015-05-10
In a previous research, an alkaloid fraction and 18 alkaloid compounds were prepared from Piper longum L. by series of purification process. In this paper, a qualitative and quantitative analysis method using ultra-high performance liquid chromatography-diode array detector-mass spectrometry (UHPLC-DAD-MS) was developed to evaluate the alkaloid fraction. Qualitative analysis of the alkaloid fraction was firstly completed by UHPLC-DAD method and 18 amide alkaloid compounds were identified. A further qualitative analysis of the alkaloid fraction was accomplished by UHPLC-MS/MS method. Another 25 amide alkaloids were identified according to their characteristic ions and neutral losses. At last, a quantitative method for the alkaloid fraction was established using four marker compounds including piperine, pipernonatine, guineensine and N-isobutyl-2E,4E-octadecadienamide. After the validation of this method, the contents of above four marker compounds in the alkaloid fraction were 57.5mg/g, 65.6mg/g, 17.7mg/g and 23.9mg/g, respectively. Moreover, the relative response factors of other three compounds to piperine were calculated. A comparative study between external standard quantification and relative response factor quantification proved no remarkable difference. UHPLC-DAD-MS method was demonstrated to be a powerful tool for the characterization of the alkaloid fraction from P. longum L. and the result proved that the quality of alkaloid fraction was efficiently improved after appropriate purification. Copyright © 2015. Published by Elsevier B.V.
Chen, Pei; Jin, Hong-Yu; Sun, Lei; Ma, Shuang-Cheng
2016-09-01
Multi-source analysis of traditional Chinese medicine is key to ensuring its safety and efficacy. Compared with traditional experimental differentiation, chemometric analysis is a simpler strategy to identify traditional Chinese medicines. Multi-component analysis plays an increasingly vital role in the quality control of traditional Chinese medicines. A novel strategy, based on chemometric analysis and quantitative analysis of multiple components, was proposed to easily and effectively control the quality of traditional Chinese medicines such as Chonglou. Ultra high performance liquid chromatography was more convenient and efficient. Five species of Chonglou were distinguished by chemometric analysis and nine saponins, including Chonglou saponins I, II, V, VI, VII, D, and H, as well as dioscin and gracillin, were determined in 18 min. The method is feasible and credible, and enables to improve quality control of traditional Chinese medicines and natural products. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tan, Hui Peng; Wan, Tow Shi; Min, Christina Liew Shu; Osborne, Murray; Ng, Khim Hui
2014-03-14
A selectable one-dimensional ((1)D) or two-dimensional ((2)D) gas chromatography-mass spectrometry (GC-MS) system coupled with flame ionization detector (FID) and olfactory detection port (ODP) was employed in this study to analyze perfume oil and fragrance in shower gel. A split/splitless (SSL) injector and a programmable temperature vaporization (PTV) injector are connected via a 2-way splitter of capillary flow technology (CFT) in this selectable (1)D/(2)D GC-MS/FID/ODP system to facilitate liquid sample injections and thermal desorption (TD) for stir bar sorptive extraction (SBSE) technique, respectively. The dual-linked injectors set-up enable the use of two different injector ports (one at a time) in single sequence run without having to relocate the (1)D capillary column from one inlet to another. Target analytes were separated in (1)D GC-MS/FID/ODP and followed by further separation of co-elution mixture from (1)D in (2)D GC-MS/FID/ODP in single injection without any instrumental reconfiguration. A (1)D/(2)D quantitative analysis method was developed and validated for its repeatability - tR; calculated linear retention indices (LRI); response ratio in both MS and FID signal, limit of detection (LOD), limit of quantitation (LOQ), as well as linearity over a concentration range. The method was successfully applied in quantitative analysis of perfume solution at different concentration level (RSD≤0.01%, n=5) and shower gel spiked with perfume at different dosages (RSD≤0.04%, n=5) with good recovery (96-103% for SSL injection; 94-107% for stir bar sorptive extraction-thermal desorption (SBSE-TD). Copyright © 2014 Elsevier B.V. All rights reserved.
The methods of formaldehyde emission testing of engine: A review
NASA Astrophysics Data System (ADS)
Zhang, Chunhui; Geng, Peng; Cao, Erming; Wei, Lijiang
2015-12-01
A number of measurements have been provided to detect formaldehyde in the atmosphere, but there are no clear unified standards in engine exhaust. Nowadays, formaldehyde, an unregulated emission from methanol engine, has been attracting increasing attention by researchers. This paper presents the detection techniques for formaldehyde emitted from the engines applied in recent market, introducing the approaches in terms of unregulated emission tests of formaldehyde, which involved gas chromatography, liquid chromatography, chromatography-mass spectrometry, chromatography-spectrum, Fourier infrared spectroscopy and spectrophotometry. The author also introduces the comparison regarding to the advantages of the existing detection techniques based on the principle, to compare with engine exhaust sampling method, the treatment in advance of detection, obtaining approaches accessing to the qualitative and quantitative analysis of chromatograms or spectra. The accuratest result obtained was chromatography though it cannot be used continuously. It also can be utilized to develop high requirements of emissions and other regulations. Fourier infrared spectroscopy has the advantage of continuous detection for a variety of unregulated emissions and can be applied to the bench in variable condition. However, its accuracy is not as good as chromatography. As the conclusion, a detection technique is chosen based on different requirements.
NASA Astrophysics Data System (ADS)
Hardee, John R.; Long, John; Otts, Julie
2002-05-01
A senior-level undergraduate laboratory experiment that demonstrates the use of solid-phase microextraction (SPME) and capillary gas chromatography-mass spectrometry (GC-MS) was developed for the quantitative determination of bromoform in swimming pool water. Bromoform was extracted by SPME from the headspace of vials containing sodium chloride-saturated swimming pool water. Bromoform concentrations were determined from comparisons of peak areas on a student-generated calibration curve. Students compared results to OSHA water and air exposure limits for bromoform.
Klink, Dennis; Schmitz, Oliver Johannes
2016-01-05
Atmospheric-pressure laser ionization mass spectrometry (APLI-MS) is a powerful method for the analysis of polycyclic aromatic hydrocarbon (PAH) molecules, which are ionized in a selective and highly sensitive way via resonance-enhanced multiphoton ionization. APLI was presented in 2005 and has been hyphenated successfully to chromatographic separation techniques like high performance liquid chromatography (HPLC) and gas chromatography (GC). In order to expand the portfolio of chromatographic couplings to APLI, a new hyphenation setup of APLI and supercritical-fluid chromatography (SFC) was constructed and aim of this work. Here, we demonstrate the first hyphenation of SFC and APLI in a simple designed way with respect to different optimization steps to ensure a sensitive analysis. The new setup permits qualitative and quantitative determination of native and also more polar PAH molecules. As a result of the altered ambient characteristics within the source enclosure, the quantification of 1-hydroxypyrene (1-HP) in human urine is possible without prior derivatization. The limit of detection for 1-HP by SFC-APLI-TOF(MS) was found to be 0.5 μg L(-1), which is lower than the 1-HP concentrations found in exposed persons.
Singh, Bhupinder; Lokhandae, Rama S; Dwivedi, Ashish; Sharma, Sandeep; Dubey, Naveen
2014-04-01
A validated ultra-performance liquid chromatography mass spectrometric method (UPLC-MS/MS) was used for the simultaneous quantitation of candesartan (CN) and hydrochlorothiazide (HCT) in human plasma. The analysis was performed on UPLC-MS/MS system using turbo ion spray interface. Negative ions were measured in multiple reaction monitoring (MRM) mode. The analytes were extracted using a liquid-liquid extraction (LLE) method by using 0.1 mL of plasma volume. The lower limit of quantitation for CN and HCT was 1.00 ng/mL whereas the upper limit of quantitation was 499.15 ng/mL and 601.61 ng/mL for CN and HCT respectively. CN d 4 and HCT- 13 Cd 2 were used as the internal standards for CN and HCT respectively. The chromatography was achieved within 2.0 min run time using a C18 Phenomenex, Gemini NX (100 mm×4.6 mm, 5 µm) column with organic mixture:buffer solution (80:20, v/v) at a flow rate of 0.800 mL/min. The method has been successfully applied to establish the bioequivalence of candesartan cilexetil (CNC) and HCT immediate release tablets with reference product in human subjects.
Wang, Ji; Zhou, Chuang; Zhang, Wei; Yao, Jun; Lu, Haojie; Dong, Qiongzhu; Zhou, Haijun; Qin, Lunxiu
2014-01-15
The complexity of protein glycosylation makes it difficult to characterize glycosylation patterns on a proteomic scale. In this study, we developed an integrated strategy for comparatively analyzing N-glycosylation/glycoproteins quantitatively from complex biological samples in a high-throughput manner. This strategy entailed separating and enriching glycopeptides/glycoproteins using lectin affinity chromatography, and then tandem labeling them with 18O/16O to generate a mass shift of 6 Da between the paired glycopeptides, and finally analyzing them with liquid chromatography-mass spectrometry (LC-MS) and the automatic quantitative method we developed based on Mascot Distiller. The accuracy and repeatability of this strategy were first verified using standard glycoproteins; linearity was maintained within a range of 1:10-10:1. The peptide concentration ratios obtained by the self-build quantitative method were similar to both the manually calculated and theoretical values, with a standard deviation (SD) of 0.023-0.186 for glycopeptides. The feasibility of the strategy was further confirmed with serum from hepatocellular carcinoma (HCC) patients and healthy individuals; the expression of 44 glycopeptides and 30 glycoproteins were significantly different between HCC patient and control serum. This strategy is accurate, repeatable, and efficient, and may be a useful tool for identification of disease-related N-glycosylation/glycoprotein changes.
USDA-ARS?s Scientific Manuscript database
High performance liquid chromatography of dabsyl derivatives of amino acids was employed for quantification of physiological amino acids in selected fruits and vegetables. This method was found to be particularly useful because the dabsyl derivatives of glutamine and citrulline were sufficiently se...
ERIC Educational Resources Information Center
Buckley, Heather L.; Beck, Annelise R.; Mulvihill, Martin J.; Douskey, Michelle C.
2013-01-01
Several principles of green chemistry are introduced through this experiment designed for use in the undergraduate analytical chemistry laboratory. An established experiment of liquid CO2 extraction of D-limonene has been adapted to include a quantitative analysis by gas chromatography. This facilitates drop-in incorporation of an exciting…
Silica Coated Paper Substrate for Paper-Spray Analysis of Therapeutic Drugs in Dried Blood Spots
Zhang, Zhiping; Xu, Wei; Manicke, Nicholas E.; Cooks, R. Graham; Ouyang, Zheng
2011-01-01
Paper spray is a newly developed ambient ionization method that has been applied for direct qualitative and quantitative analysis of biological samples. The properties of the paper substrate and spray solution have a significant impact on the release of chemical compounds from complex sample matrices, the diffusion of the analytes through the substrate, and the formation of ions for mass spectrometry analysis. In this study, a commercially available silica-coated paper was explored in an attempt to improve the analysis of therapeutic drugs in dried blood spots (DBS). The dichloromethane/isopropanol solvent has been identified as an optimal spray solvent for the analysis. The comparison was made with paper spray using chromatography paper as substrate with methanol/water as solvent for the analysis of verapamil, citalopram, amitriptyline, lidocaine and sunitinib in dried blood spots. It has been demonstrated the efficiency of recovery of the analytes was notably improved with the silica coated paper and the limit of quantitation (LOQ) for the drug analysis was 0.1 ng mL−1 using a commercial triple quadrupole mass spectrometer. The use of silica paper substrate also resulted in a sensitivity improvement of 5-50 fold in comparison with chromatography papers, including the Whatmann ET31 paper used for blood card. Analysis using a handheld miniature mass spectrometer Mini 11 gave LOQs of 10~20 ng mL−1 for the tested drugs, which is sufficient to cover the therapeutic ranges of these drugs. PMID:22145627
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhandari, Deepak; Van Berkel, Gary J
2012-01-01
The use of flow-injection electrospray ionization tandem mass spectrometry for rapid and high-throughput mass spectral analysis of selected B-vitamins, viz. B1, B2, B3, B5, and B6, in nutritional formulations was demonstrated. A simple and rapid (~5 min) in-tube sample preparation was performed by adding extraction solvent to a powdered sample aliquot followed by agitation, centrifugation, and filtration to recover an extract for analysis. Automated flow injection introduced 1 L of the extracts directly into the mass spectrometer ion source without chromatographic separation. Sample-to-sample analysis time was 60 s representing significant improvement over conventional liquid chromatography approaches which typically require 25-45more » min, and often require more significant sample preparation procedures. Quantitative capabilities of the flow-injection analysis were tested using the method of standard additions and NIST standard reference material (SRM 3280) multivitamin/multielement tablets. The quantity determined for each B-vitamin in SRM 3280 was within the statistical range provided for the respective certified values. The same sample preparation and analysis approach was also applied to two different commercial vitamin supplement tablets and proved to be successful in the quantification of the selected B-vitamins as evidenced by an agreement with the labels values and the results obtained using isotope dilution liquid chromatography/mass spectrometry.« less
Yamamoto, Shinya; Bamba, Takeshi; Sano, Atsushi; Kodama, Yukako; Imamura, Miho; Obata, Akio; Fukusaki, Eiichiro
2012-08-01
Soy sauces, produced from different ingredients and brewing processes, have variations in components and quality. Therefore, it is extremely important to comprehend the relationship between components and the sensory attributes of soy sauces. The current study sought to perform metabolite profiling in order to devise a method of assessing the attributes of soy sauces. Quantitative descriptive analysis (QDA) data for 24 soy sauce samples were obtained from well selected sensory panelists. Metabolite profiles primarily concerning low-molecular-weight hydrophilic components were based on gas chromatography with time-of-flightmass spectrometry (GC/TOFMS). QDA data for soy sauces were accurately predicted by projection to latent structure (PLS), with metabolite profiles serving as explanatory variables and QDA data set serving as a response variable. Moreover, analysis of correlation between matrices of metabolite profiles and QDA data indicated contributing compounds that were highly correlated with QDA data. Especially, it was indicated that sugars are important components of the tastes of soy sauces. This new approach which combines metabolite profiling with QDA is applicable to analysis of sensory attributes of food as a result of the complex interaction between its components. This approach is effective to search important compounds that contribute to the attributes. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Kopec, Rachel E; Schweiggert, Ralf M; Riedl, Ken M; Carle, Reinhold; Schwartz, Steven J
2013-06-30
Bioavailability of essential lipophilic micronutrients and carotenoids is of utmost interest for human health, as the consumption of these compounds may help alleviate major nutritional deficiencies, cardiovascular disease, and cancer. High-performance liquid chromatography/photo-diode array detection (HPLC-PDA) and high-performance liquid chromatography/tandem mass spectrometry (HPLC/MS/MS) were compared for the quantitative analysis of α- and β-carotene, β-cryptoxanthin, lutein, lycopene, α-tocopherol, phylloquinone, and several retinyl esters from chylomicron-containing triglyceride rich lipoprotein (TRL) fractions of human plasma obtained from two clinical trials. After selecting an efficient extraction method for the analytes, both the HPLC/PDA and the HPLC/MS/MS methods were developed and several parameters validated using an HP 1200 series HPLC system interfaced with a HP 1200 series diode-array detector (Agilent Technologies, Santa Clara, CA, USA) and a QTRAP 5500 (AB Sciex, Foster City, CA, USA) via an atmospheric pressure chemical ionization (APCI) probe operated in positive ion mode. For lycopene, α- and β-carotene, HPLC/MS/MS was up to 37 times more sensitive than HPLC-PDA. PDA detection was shown to be up to 8 times more sensitive for lutein. MS/MS signals were enhanced by matrix components for lutein and β-cryptoxanthin, as determined by referencing to the matrix-independent PDA signal. In contrast, matrix suppression was observed for retinyl palmitate, α-carotene, and β-carotene. Both detectors showed similar suitability for α-tocopherol, lycopene and retinyl palmitate (representing ~73% of total retinyl esters). MS/MS exclusively allowed the quantitation of minor retinyl esters, phylloquinone, and (Z)-lycopene isomers. HPLC/MS/MS was more sensitive than HPLC-PDA for six of the eight analytes and represents a powerful tool for the analysis of chylomicron samples and potentially other biological samples of limited sample size. When internal standards are available for the target carotenoid, employing MS/MS detection may reduce the necessary blood sample volume, which is particularly advantageous for minimizing risk and discomfort to human subjects during clinical studies. Copyright © 2013 John Wiley & Sons, Ltd.
Kopec, Rachel E.; Schweiggert, Ralf M.; Riedl, Ken M.; Carle, Reinhold; Schwartz, Steven J.
2013-01-01
Rationale Bioavailability of essential lipophilic micronutrients and carotenoids is of utmost interest for human health, as the consumption of these compounds may help alleviate major nutritional deficiencies, cardiovascular disease, and cancer. High-performance liquid chromatography/photo-diode array detection (HPLC-PDA) and high-performance liquid chromatography/tandem mass spectrometry (HPLC/MS/MS) were compared for the quantitative analysis of α- and β-carotene, β-cryptoxanthin, lutein, lycopene, α-tocopherol, phylloquinone, and several retinyl esters from chylomicron-containing triglyceride rich lipoprotein (TRL) fractions of human plasma obtained from two clinical trials. Methods After selecting an efficient extraction method for the analytes, both the HPLC/PDA and the HPLC/MS/MS methods were developed and several parameters validated using an HP 1200 series HPLC system interfaced with a HP 1200 series diode-array detector (Agilent Technologies, Santa Clara, CA, USA) and a QTRAP 5500 (AB Sciex, Foster City, CA, USA) via an atmospheric pressure chemical ionization (APCI) probe operated in positive ion mode. Results For lycopene, α- and β-carotene, HPLC/MS/MS was up to 37 times more sensitive than HPLC-PDA. PDA detection was shown to be up to 8 times more sensitive for lutein. MS/MS signals were enhanced by matrix components for lutein and β-cryptoxanthin, as determined by referencing to the matrix-independent PDA signal. In contrast, matrix suppression was observed for retinyl palmitate, α-carotene, and β-carotene. Both detectors showed similar suitability for α-tocopherol, lycopene and retinyl palmitate (representing ~73% of total retinyl esters). MS/MS exclusively allowed the quantitation of minor retinyl esters, phylloquinone, and (Z)-lycopene isomers. Conclusions HPLC/MS/MS was more sensitive than HPLC-PDA for six of the eight analytes and represents a powerful tool for the analysis of chylomicron samples and potentially other biological samples of limited sample size. When internal standards are available for the target carotenoid, employing MS/MS detection may reduce the necessary blood sample volume, which is particularly advantageous for minimizing risk and discomfort to human subjects during clinical studies. PMID:23681818
Milton, Martin J T; Wang, Jian
2003-01-01
A new isotope dilution mass spectrometry (IDMS) method for high-accuracy quantitative analysis of gases has been developed and validated by the analysis of standard mixtures of carbon dioxide in nitrogen. The method does not require certified isotopic reference materials and does not require direct measurements of the highly enriched spike. The relative uncertainty of the method is shown to be 0.2%. Reproduced with the permission of Her Majesty's Stationery Office. Copyright Crown copyright 2003.
Liu, Cui-Ting; Zhang, Min; Yan, Ping; Liu, Hai-Chan; Liu, Xing-Yun; Zhan, Ruo-Ting
2016-01-01
Zhengtian pills (ZTPs) are traditional Chinese medicine (TCM) which have been commonly used to treat headaches. Volatile components of ZTPs extracted by ethyl acetate with an ultrasonic method were analyzed by gas chromatography mass spectrometry (GC-MS). Twenty-two components were identified, accounting for 78.884% of the total components of volatile oil. The three main volatile components including protocatechuic acid, ferulic acid, and ligustilide were simultaneously determined using ultra-high performance liquid chromatography coupled with diode array detection (UHPLC-DAD). Baseline separation was achieved on an XB-C18 column with linear gradient elution of methanol-0.2% acetic acid aqueous solution. The UHPLC-DAD method provided good linearity (R (2) ≥ 0.9992), precision (RSD < 3%), accuracy (100.68-102.69%), and robustness. The UHPLC-DAD/GC-MS method was successfully utilized to analyze volatile components, protocatechuic acid, ferulic acid, and ligustilide, in 13 batches of ZTPs, which is suitable for discrimination and quality assessment of ZTPs.
Srivastava, A; Tripathi, A K; Pandey, R; Verma, R K; Gupta, M M
2006-10-01
A sensitive and reproducible reversed-phase high-performance liquid chromatography (HPLC) method using photodiode array detection is established for the simultaneous quantitation of important root alkaloids of Rauvolfia serpentina, namely, reserpine, ajmaline, and ajmalicine. A Chromolith Performance RP-18e column (100 x 4.6-mm i.d.) and a binary gradient mobile phase composed of 0.01 M (pH 3.5) phosphate buffer (NaH(2)PO(4)) containing 0.5% glacial acetic acid and acetonitrile are used. Analysis is run at a flow rate of 1.0 mL/min with the detector operated at a wavelength of 254 nm. The calibration curves are linear over a concentration range of 1-20 microg/mL (r = 1.000) for all the alkaloids. The various other aspects of analysis (i.e., peak purity, similarity, recovery, and repeatability) are also validated. For the three components, the recoveries are found to be 98.27%, 97.03%, and 98.38%, respectively. The limits of detection are 6, 4, and 8 microg/mL for ajmaline, ajmalicine, and reserpine, respectively, and the limits of quantitation are 19, 12, and 23 microg/mL for ajmaline, ajmalicine, and reserpine, respectively. The developed method is simple, reproducible, and easy to operate. It is useful for the evaluation of R. serpentina.
Quantitative mass spectrometric analysis of glycoproteins combined with enrichment methods.
Ahn, Yeong Hee; Kim, Jin Young; Yoo, Jong Shin
2015-01-01
Mass spectrometry (MS) has been a core technology for high sensitive and high-throughput analysis of the enriched glycoproteome in aspects of quantitative assays as well as qualitative profiling of glycoproteins. Because it has been widely recognized that aberrant glycosylation in a glycoprotein may involve in progression of a certain disease, the development of efficient analysis tool for the aberrant glycoproteins is very important for deep understanding about pathological function of the glycoprotein and new biomarker development. This review first describes the protein glycosylation-targeting enrichment technologies mainly employing solid-phase extraction methods such as hydrizide-capturing, lectin-specific capturing, and affinity separation techniques based on porous graphitized carbon, hydrophilic interaction chromatography, or immobilized boronic acid. Second, MS-based quantitative analysis strategies coupled with the protein glycosylation-targeting enrichment technologies, by using a label-free MS, stable isotope-labeling, or targeted multiple reaction monitoring (MRM) MS, are summarized with recent published studies. © 2014 The Authors. Mass Spectrometry Reviews Published by Wiley Periodicals, Inc.
Ishii, A; Seno, H; Suzuki, O; Hattori, H; Kumazawa, T
1997-01-01
A simple and sensitive method for determination of N,N-dimethyltryptamine (DMT) by gas chromatography (GC) with surface ionization detection (SID) is presented. Whole blood or urine, containing DMT and gramine (internal standard), was subjected to solid-phase extraction with a Sep-Pak C18 cartridge before analysis by GC-SID. The calibration curve was linear in the DMT range of 1.25-20 ng/mL blood or urine. The detection limit of DMT was about 0.5 ng/mL (10 pg on-column). The recovery of both DMT and gramine spiked in biological fluids was above 86%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, R.E.
This report describes the analysis of carbonxyl-terminated butadiene (CTB), carboxyl-terminated butadiene/acrylonitrile (CTBN), and a CTBN adduct prepared by reaction with Epon 828. Data from gel permeation chromatography, nuclear magnetic resonance spectroscopy, high performance liquid chromatography, and ion chromatography are presented and discussed. Quantitative methods based on carbon-13 and proton NMR for analyzing CTBN are described. Proton NMR was found to be useful in identifying lots that have an abnormal amount of CTBN protons. One such lot exhibited a phase separation of a polybutadiene impurity. Carbon-13 NMR was found to be capable of determining nitrile content directly. Carbon-13 NMR had amore » relative standard deviation of 8.3% and a proton NMR of 3.9%. Proton NMR was found to be useful in identifying lots that have 5% more CTBN protons than other lots. 3 refs., 11 figs., 4 tabs.« less
Valero, E; Sanz, J; Martínez-Castro, I
2001-06-01
Direct thermal desorption (DTD) has been used as a technique for extracting volatile components of cheese as a preliminary step to their gas chromatographic (GC) analysis. In this study, it is applied to different cheese varieties: Camembert, blue, Chaumes, and La Serena. Volatiles are also extracted using other techniques such as simultaneous distillation-extraction and dynamic headspace. Separation and identification of the cheese components are carried out by GC-mass spectrometry. Approximately 100 compounds are detected in the examined cheeses. The described results show that DTD is fast, simple, and easy to automate; requires only a small amount of sample (approximately 50 mg); and affords quantitative information about the main groups of compounds present in cheeses.
NASA Astrophysics Data System (ADS)
Witter, A. E.; Klinger, D. M.; Fan, X.; Lam, M.; Mathers, D. T.; Mabury, S. A.
2002-10-01
The forensic analysis of cocaine on currencies was optimized using a fractional, two-level experimental design that compared methanol and HCl extraction, SPE versus heptane pre-concentration, and extracted versus total ion chromatography. Subsequent student-initiated questions about levels of cocaine on U.S. and world currencies helped make connections to societal issues while teaching method optimization and chromatography. A significant correlation was found between the levels of cocaine and the age of the bills. Levels of cocaine on various world currencies followed expected drug-trafficking patterns with the highest levels found in the most developed countries.
Takemoto, Jody K; Remsberg, Connie M; Yáñez, Jaime A; Vega-Villa, Karina R; Davies, Neal M
2008-11-01
A stereospecific method for analysis of sakuranetin was developed. Separation was accomplished using a Chiralpak AD-RH column with UV (ultraviolet) detection at 288 nm. The stereospecific linear calibration curves ranged from 0.5 to 100 microg/mL. The mean extraction efficiency was >98%. Precision of the assay was <12% (relative standard deviation (R.S.D.)%), and within 10% at the limit of quantitation (0.5 microg/mL). Bias of the assay was lower than 10%, and within 5% at the limit of quantitation. The assay was applied successfully to pharmacokinetic quantification in rats, and the stereospecific quantification in oranges, grapefruit juice, and matico (Piper aduncum L.).
Sun, Zeyu; Hamilton, Karyn L.; Reardon, Kenneth F.
2014-01-01
We evaluated a sequential elution protocol from immobilized metal affinity chromatography (SIMAC) employing gallium-based immobilized metal affinity chromatography (IMAC) in conjunction with titanium-dioxide-based metal oxide affinity chromatography (MOAC). The quantitative performance of this SIMAC enrichment approach, assessed in terms of repeatability, dynamic range, and linearity, was evaluated using a mixture composed of tryptic peptides from caseins, bovine serum albumin, and phosphopeptide standards. While our data demonstrate the overall consistent performance of the SIMAC approach under various loading conditions, the results also revealed that the method had limited repeatability and linearity for most phosphopeptides tested, and different phosphopeptides were found to have different linear ranges. These data suggest that, unless additional strategies are used, SIMAC should be regarded as a semi-quantitative method when used in large-scale phosphoproteomics studies in complex backgrounds. PMID:24096195
Sullards, M. Cameron; Liu, Ying; Chen, Yanfeng; Merrill, Alfred H.
2011-01-01
Sphingolipids are a highly diverse category of molecules that serve not only as components of biological structures but also as regulators of numerous cell functions. Because so many of the structural features of sphingolipids give rise to their biological activity, there is a need for comprehensive or “sphingolipidomic” methods for identification and quantitation of as many individual subspecies as possible. This review defines sphingolipids as a class, briefly discusses classical methods for their analysis, and focuses primarily on liquid chromatography tandem mass spectrometry (LC-MS/MS) and tissue imaging mass spectrometry (TIMS). Recently, a set of evolving and expanding methods have been developed and rigorously validated for the extraction, identification, separation, and quantitation of sphingolipids by LC-MS/MS. Quantitation of these biomolecules is made possible via the use of an internal standard cocktail. The compounds that can be readily analyzed are free long-chain (sphingoid) bases, sphingoid base 1-phosphates, and more complex species such as ceramides, ceramide 1-phosphates, sphingomyelins, mono- and di-hexosylceramides sulfatides, and novel compounds such as the 1-deoxy- and 1-(deoxymethyl)-sphingoid bases and their N-acyl-derivatives. These methods can be altered slightly to separate and quantitate isomeric species such as glucosyl/galactosylceramide. Because these techniques require the extraction of sphingolipids from their native environment, any information regarding their localization in histological slices is lost. Therefore, this review also describes methods for TIMS. This technique has been shown to be a powerful tool to determine the localization of individual molecular species of sphingolipids directly from tissue slices. PMID:21749933
Sokol, Elena; Ulven, Trond; Færgeman, Nils J; Ejsing, Christer S
2015-06-01
Here we present a workflow for in-depth analysis of milk lipids that combines gas chromatography (GC) for fatty acid (FA) profiling and a shotgun lipidomics routine termed MS/MS ALL for structural characterization of molecular lipid species. To evaluate the performance of the workflow we performed a comparative lipid analysis of human milk, cow milk, and Lacprodan® PL-20, a phospholipid-enriched milk protein concentrate for infant formula. The GC analysis showed that human milk and Lacprodan have a similar FA profile with higher levels of unsaturated FAs as compared to cow milk. In-depth lipidomic analysis by MS/MS ALL revealed that each type of milk sample comprised distinct composition of molecular lipid species. Lipid class composition showed that the human and cow milk contain a higher proportion of triacylglycerols (TAGs) as compared to Lacprodan. Notably, the MS/MS ALL analysis demonstrated that the similar FA profile of human milk and Lacprodan determined by GC analysis is attributed to the composition of individual TAG species in human milk and glycerophospholipid species in Lacprodan. Moreover, the analysis of TAG molecules in Lacprodan and cow milk showed a high proportion of short-chain FAs that could not be monitored by GC analysis. The results presented here show that complementary GC and MS/MS ALL analysis is a powerful approach for characterization of molecular lipid species in milk and milk products. : Milk lipid analysis is routinely performed using gas chromatography. This method reports the total fatty acid composition of all milk lipids, but provides no structural or quantitative information about individual lipid molecules in milk or milk products. Here we present a workflow that integrates gas chromatography for fatty acid profiling and a shotgun lipidomics routine termed MS/MS ALL for structural analysis and quantification of molecular lipid species. We demonstrate the efficacy of this complementary workflow by a comparative analysis of molecular lipid species in human milk, cow milk, and a milk-based supplement used for infant formula.
Sokol, Elena; Ulven, Trond; Færgeman, Nils J; Ejsing, Christer S
2015-01-01
Here we present a workflow for in-depth analysis of milk lipids that combines gas chromatography (GC) for fatty acid (FA) profiling and a shotgun lipidomics routine termed MS/MSALL for structural characterization of molecular lipid species. To evaluate the performance of the workflow we performed a comparative lipid analysis of human milk, cow milk, and Lacprodan® PL-20, a phospholipid-enriched milk protein concentrate for infant formula. The GC analysis showed that human milk and Lacprodan have a similar FA profile with higher levels of unsaturated FAs as compared to cow milk. In-depth lipidomic analysis by MS/MSALL revealed that each type of milk sample comprised distinct composition of molecular lipid species. Lipid class composition showed that the human and cow milk contain a higher proportion of triacylglycerols (TAGs) as compared to Lacprodan. Notably, the MS/MSALL analysis demonstrated that the similar FA profile of human milk and Lacprodan determined by GC analysis is attributed to the composition of individual TAG species in human milk and glycerophospholipid species in Lacprodan. Moreover, the analysis of TAG molecules in Lacprodan and cow milk showed a high proportion of short-chain FAs that could not be monitored by GC analysis. The results presented here show that complementary GC and MS/MSALL analysis is a powerful approach for characterization of molecular lipid species in milk and milk products. Practical applications : Milk lipid analysis is routinely performed using gas chromatography. This method reports the total fatty acid composition of all milk lipids, but provides no structural or quantitative information about individual lipid molecules in milk or milk products. Here we present a workflow that integrates gas chromatography for fatty acid profiling and a shotgun lipidomics routine termed MS/MSALL for structural analysis and quantification of molecular lipid species. We demonstrate the efficacy of this complementary workflow by a comparative analysis of molecular lipid species in human milk, cow milk, and a milk-based supplement used for infant formula. PMID:26089741
Ford, Michael J; Deibel, Michael A; Tomkins, Bruce A; Van Berkel, Gary J
2005-07-15
Quantitative determination of caffeine on reversed-phase C8 thin-layer chromatography plates using a surface sampling electrospray ionization system with tandem mass spectrometry detection is reported. The thin-layer chromatography/electrospray tandem mass spectrometry method employed a deuterium-labeled caffeine internal standard and selected reaction monitoring detection. Up to nine parallel caffeine bands on a single plate were sampled in a single surface scanning experiment requiring 35 min at a surface scan rate of 44 mum/s. A reversed-phase HPLC/UV caffeine assay was developed in parallel to assess the mass spectrometry method performance. Limits of detection for the HPLC/UV and thin-layer chromatography/electrospray tandem mass spectrometry methods determined from the calibration curve statistics were 0.20 ng injected (0.50 muL) and 1.0 ng spotted on the plate, respectively. Spike recoveries with standards and real samples ranged between 97 and 106% for both methods. The caffeine content of three diet soft drinks (Diet Coke, Diet Cherry Coke, Diet Pepsi) and three diet sport drinks (Diet Turbo Tea, Speed Stack Grape, Speed Stack Fruit Punch) was measured. The HPLC/UV and mass spectrometry determinations were in general agreement, and these values were consistent with the quoted values for two of the three diet colas. In the case of Diet Cherry Coke and the diet sports drinks, the determined caffeine amounts using both methods were consistently higher (by approximately 8% or more) than the literature values.
Duan, Xiaotao; Zhong, Dafang; Chen, Xiaoyan
2008-06-01
Houttuynin (decanoyl acetaldehyde), a beta-dicarbonyl compound, is the major antibacterial constituent in the volatile oil of Houttuynina cordata Thunb. In the present work, detection of houttuynin in human plasma based on the chemical derivatization with 2,4-dinitrophenylhydrazine (DNPH) coupled with liquid chromatography/tandem mass spectrometry was described. The primary reaction products between the beta-dicarbonyl compound and DNPH in aqueous phase were identified as heterocyclic structures, of which the mass spectrometric ionization and fragmentation behavior were characterized with the aid of high-resolution multistage mass spectral analysis. For quantification, houttuynin and internal standard (IS, benzophenone) in plasma were firstly converted to their DNPH derivatives without sample purification, then extracted from human plasma with n-hexane and detected by liquid chromatography tandem mass spectrometry performed in selected reaction monitoring (SRM) mode. This method allowed for a lower limit of quantification (LLOQ) of 1.0 ng/ml using 100-microl plasma. The validation results showed high accuracy (%bias < 2.1) and precision (%CV < 7.2) at broad linear dynamic range (1.0-5000 ng/ml). The simple and quantitative derivatization coupled with tandem mass spectrometric analysis facilitates a sensitive and robust method for the determination of plasma houttuynin in pharmacokinetic studies.
Bieri, Stefan; Ilias, Yara; Bicchi, Carlo; Veuthey, Jean-Luc; Christen, Philippe
2006-04-21
An effective combination of focused microwave-assisted extraction (FMAE) with solid-phase microextraction (SPME) prior to gas chromatography (GC) is described for the selective extraction and quantitative analysis of cocaine from coca leaves (Erythroxylum coca). This approach required switching from an organic extraction solvent to an aqueous medium more compatible with SPME liquid sampling. SPME was performed in the direct immersion mode with a universal 100 microm polydimethylsiloxane (PDMS) coated fibre. Parameters influencing this extraction step, such as solution pH, sampling time and temperature are discussed. Furthermore, the overall extraction process takes into account the stability of cocaine in alkaline aqueous solutions at different temperatures. Cocaine degradation rate was determined by capillary electrophoresis using the short end injection procedure. In the selected extraction conditions, less than 5% of cocaine was degraded after 60 min. From a qualitative point of view, a significant gain in selectivity was obtained with the incorporation of SPME in the extraction procedure. As a consequence of SPME clean-up, shorter columns could be used and analysis time was reduced to 6 min compared to 35 min with conventional GC. Quantitative results led to a cocaine content of 0.70 +/- 0.04% in dry leaves (RSD <5%) which agreed with previous investigations.
NASA Astrophysics Data System (ADS)
Hermawan, D.; Suwandri; Sulaeman, U.; Istiqomah, A.; Aboul-Enein, H. Y.
2017-02-01
A simple high performance liquid chromatography (HPLC) method has been developed in this study for the analysis of miconazole, an antifungal drug, in powder sample. The optimized HPLC system using C8 column was achieved using mobile phase composition containing methanol:water (85:15, v/v), a flow rate of 0.8 mL/min, and UV detection at 220 nm. The calibration graph was linear in the range from 10 to 50 mg/L with r 2 of 0.9983. The limit of detection (LOD) and limit of quantitation (LOQ) obtained were 2.24 mg/L and 7.47 mg/L, respectively. The present HPLC method is applicable for the determination of miconazole in the powder sample with a recovery of 101.28 % (RSD = 0.96%, n = 3). The developed HPLC method provides short analysis time, high reproducibility and high sensitivity.
An approach to the systematic analysis of urinary steroids
Menini, E.; Norymberski, J. K.
1965-01-01
1. Human urine, its extracts, extracts of urine pretreated with enzyme preparations containing β-glucuronidase and steroid sulphatase or β-glucuronidase alone, and products derived from the specific solvolysis of urinary steroid sulphates, were submitted to the following sequence of operations: reduction with borohydride; oxidation with a glycol-cleaving agent (bismuthate or periodate); separation of the products into ketones and others; oxidation of each fraction with tert.-butyl chromate, resolution of the end products by means of paper chromatography or gas–liquid chromatography or both. 2. Qualitative experiments indicated the kind of information the method and some of its modifications can provide. Quantitative experiments were restricted to the direct treatment of urine by the basic procedure outlined. It was partly shown and partly argued that the quantitative results were probably as informative about the composition of the major neutral urinary steroids (and certainly about their presumptive secretory precursors) as those obtained by a number of established analytical procedures. 3. A possible extension of the scope of the reported method was indicated. 4. A simple technique was introduced for the quantitative deposition of a solid sample on to a gas–liquid-chromatographic column. PMID:14333557
Huan, Tao; Li, Liang
2015-07-21
Generating precise and accurate quantitative information on metabolomic changes in comparative samples is important for metabolomics research where technical variations in the metabolomic data should be minimized in order to reveal biological changes. We report a method and software program, IsoMS-Quant, for extracting quantitative information from a metabolomic data set generated by chemical isotope labeling (CIL) liquid chromatography mass spectrometry (LC-MS). Unlike previous work of relying on mass spectral peak ratio of the highest intensity peak pair to measure relative quantity difference of a differentially labeled metabolite, this new program reconstructs the chromatographic peaks of the light- and heavy-labeled metabolite pair and then calculates the ratio of their peak areas to represent the relative concentration difference in two comparative samples. Using chromatographic peaks to perform relative quantification is shown to be more precise and accurate. IsoMS-Quant is integrated with IsoMS for picking peak pairs and Zero-fill for retrieving missing peak pairs in the initial peak pairs table generated by IsoMS to form a complete tool for processing CIL LC-MS data. This program can be freely downloaded from the www.MyCompoundID.org web site for noncommercial use.
Hetrick, Evan M; Kramer, Timothy T; Risley, Donald S
2017-03-17
Based on a column-screening exercise, a column ranking system was developed for sample mixtures containing any combination of 26 sugar and sugar alcohol analytes using 16 polar stationary phases in the HILIC mode with acetonitrile/water or acetone/water mobile phases. Each analyte was evaluated on the HILIC columns with gradient elution and the subsequent chromatography data was compiled into a statistical software package where any subset of the analytes can be selected and the columns are then ranked by the greatest separation. Since these analytes lack chromophores, aerosol-based detectors, including an evaporative light scattering detector (ELSD) and a charged aerosol detector (CAD) were employed for qualitative and quantitative detection. Example qualitative applications are provided to illustrate the practicality and efficiency of this HILIC column ranking. Furthermore, the design-space approach was used as a starting point for a quantitative method for the trace analysis of glucose in trehalose samples in a complex matrix. Knowledge gained from evaluating the design-space led to rapid development of a capable method as demonstrated through validation of the following parameters: specificity, accuracy, precision, linearity, limit of quantitation, limit of detection, and range. Copyright © 2017 Elsevier B.V. All rights reserved.
Mezcua, Milagros; Ferrer, Carmen; García-Reyes, Juan F; Martínez-Bueno, María Jesús; Albarracín, Micaela; Claret, María; Fernández-Alba, Amadeo R
2008-05-01
In this work, two analytical methods based on liquid chromatography coupled to electrospray time-of-flight mass spectrometry (LC/ESI-TOFMS) and tandem mass spectrometry (LC/ESI-MS/MS) are described for the identification, confirmation and quantitation of three insecticides non-authorized in the European Union (nitenpyram, isocarbophos and isofenphos-methyl) but detected in recent monitoring programmes in pepper samples. The proposed methodologies involved a sample extraction procedure using liquid-liquid partition with acetonitrile followed by a cleanup step based on dispersive solid-phase extraction. Recovery studies performed on peppers spiked at different fortification levels (10 and 50 microg kg(-1)) yielded average recoveries in the range 76-100% with relative standard deviation (RSD) (%) values below 10%. Identification, confirmation and quantitation were carried out by LC/TOFMS and LC/MS/MS using a hybrid triple quadrupole linear ion trap (QqLIT) instrument in multiple-reaction monitoring (MRM) mode. The obtained limits of quantitation (LOQs) were in the range 0.1-5 microg kg(-1), depending on each individual technique. Finally, the proposed methods were successfully applied to the analysis of suspected pepper samples. Copyright (c) 2008 John Wiley & Sons, Ltd.
Sun, Xiaoxiang; Zhang, Liting; Cao, Yaqi; Gu, Qinying; Yang, Huan; Tam, James P.
2016-01-01
Background: Toona sinensis (A. Juss.) Roemer is an endemic species of Toona genus native to Asian area. Its dried leaves are applied in the treatment of many diseases; however, few investigations have been reported for the quantitative analysis and comparison of major bioactive flavonol glycosides in the leaves harvested from various origins. Objective: To quantitatively analyze four major flavonol glycosides including rutinoside, quercetin-3-O-β-D-glucoside, quercetin-3-O-α-L-rhamnoside, and kaempferol-3-O-α-L-rhamnoside in the leaves from different production sites and classify them according to the content of these glycosides. Materials and Methods: A high-performance liquid chromatography-diode array detector (HPLC-DAD) method for their simultaneous determination was developed and validated for linearity, precision, accuracy, stability, and repeatability. Moreover, the method established was then employed to explore the difference in the content of these four glycosides in raw materials. Finally, a hierarchical clustering analysis was performed to classify 11 voucher specimens. Results: The separation was performed on a Waters XBridge Shield RP18 column (150 mm × 4.6 mm, 3.5 μm) kept at 35°C, and acetonitrile and H2O containing 0.30% trifluoroacetic acid as mobile phase was driven at 1.0 mL/min during the analysis. Ten microliters of solution were injected and 254 nm was selected to monitor the separation. A strong linear relationship between the peak area and concentration of four analytes was observed. And, the method was also validated to be repeatable, stable, precise, and accurate. Conclusion: An efficient and reliable HPLC-DAD method was established and applied in the assays for the samples from 11 origins successfully. Moreover, the content of those flavonol glycosides varied much among different batches, and the flavonoids could be considered as biomarkers to control the quality of Chinese Toon. SUMMARY Four major flavonol glycosides in the leaves of Toona sinensis were determined by HPLC-DAD and their contents were compared among various origins by HCA. Abbreviations used: HPLC-DAD: High-performance liquid chromatography-diode array detector, HCA: Hierarchical clustering analysis, MS: Mass spectrometry, RSD: Relative standard deviation. PMID:27279719
Ma, Yue; Tang, Ke; Xu, Yan; Li, Ji-Ming
2017-01-18
The key aroma compounds of Chinese Vidal icewine were characterized by means of gas chromatography-olfactometry (GC-O) coupled with mass spectrometry (MS) on polar and nonpolar columns, and their flavor dilution (FD) factors were determined by aroma extract dilution analysis (AEDA). A total of 59 odor-active aroma compounds in three ranks of Vidal icewines were identified, and 28 odorants (FD ≥ 9) were further quantitated for aroma reconstitution and omission tests. β-Damascenone showed the highest FD value of 2187 in all icewines. Methional and furaneol were first observed as important odorants in Vidal icewine. Aroma recombination experiments revealed a good similarity containing the 28 important aromas. Omission tests corroborated the significant contribution of β-damascenone and the entire group of esters. Besides, 4-hydroxy-2,5-dimethyl-3(2H)-furanone (furaneol) and 3-(methylthio)-1-propanal (methional) also had significant effects on icewine character, especially on apricot, caramel, and tropical fruit characteristics.
Jiang, Yan; Fan, Guifang; Du, Ran; Li, Peipei; Jiang, Li
2015-08-01
A high performance liquid chromatographic method was established for the determination of metabolites (sugars, organic acids and alcohols) in microbial consortium fermentation broth from cellulose. Sulfate was first added in the samples to precipitate calcium ions in microbial consortium culture medium and lower the pH of the solution to avoid the dissociation of organic acids, then the filtrates were effectively separated using high performance liquid chromatography. Cellobiose, glucose, ethanol, butanol, glycerol, acetic acid and butyric acid were quantitatively analyzed. The detection limits were in the range of 0.10-2.00 mg/L. The linear correlation coefficients were greater than 0.999 6 in the range of 0.020 to 1.000 g/L. The recoveries were in the range of 85.41%-115.60% with the relative standard deviations of 0.22% -4.62% (n = 6). This method is accurate for the quantitative analysis of the alcohols, organic acids and saccharides in microbial consortium fermentation broth from cellulose.
Xie, Wei-Qi; Gong, Yi-Xian; Yu, Kong-Xian
2017-08-18
This work investigates a new reaction headspace gas chromatographic (HS-GC) technique for efficient quantifying average valence of manganese (Mn) in manganese oxides. This method is on the basis of the oxidation reaction between manganese oxides and sodium oxalate under the acidic condition. The carbon dioxide (CO 2 ) formed from the oxidation reaction can be quantitatively analyzed by headspace gas chromatography. The data showed that the reaction in the closed headspace vial can be completed in 20min at 80°C. The relative standard deviation of this reaction HS-GC method in the precision testing was within 1.08%, the relative differences between the new method and the reference method (titration method) were no more than 5.71%. The new HS-GC method is automated, efficient, and can be a reliable tool for the quantitative analysis of average valence of manganese in the manganese oxide related research and applications. Copyright © 2017 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Monofluoroacetate (MFA) is a potent toxin that occurs in over 50 plant species in Africa, Australia, and South America and is responsible for significant livestock deaths in these regions. A gas chromatography–mass spectrometry (GC-MS) method for the analysis of MFA in plants based on the derivatiza...
USDA-ARS?s Scientific Manuscript database
Monofluoroacetate (MFA) is a potent toxin that occurs in over 50 plant species in Africa, Australia, and South America and is responsible for significant livestock deaths in these regions. A gas chromatography–mass spectrometry (GC-MS) method for the analysis of MFA in plants based on the derivatiz...
USDA-ARS?s Scientific Manuscript database
An extensive study of the metabolism of the type-A trichothecene mycotoxins HT-2 toxin and T-2 toxin in barley using liquid chromatography coupled to high resolution mass spectrometry (LC-HRMS) is reported. A recently developed untargeted approach based on stable isotopic labelling, LC-Orbitrap-MS a...
Haghi, Ghasem; Arshi, Rohollah; Safaei, Alireza
2008-02-27
A high-performance liquid chromatography (HPLC) method for the qualitative and quantitative analysis of allantoin in silk and seed of Zea mays has been developed. Allantoin separation in crude extract was achieved using a C 18 column and phosphate buffer solution (pH 3.0) as a mobile phase at ambient temperature at a flow rate of 1.0 mL/min and detected at 210 nm. The results showed that the amount of allantoin in samples was between 14 and 271 mg/100 g of dry plant material. A comprehensive validation of the method including sensitivity, linearity, repeatability, and recovery was conducted. The calibration curve was linear over the range of 0.2-200 microg/mL with a correlation coefficient of r2>0.999. Limit of detection (LOD, S/N=3) and limit of quantification (LOQ) values of the allantoin were 0.05 and 0.2 microg/mL (1.0 and 4.0 ng) respectively. The relative standard deviation (RSD) value of the repeatability was reported within 1.2%. The average recovery of allantoin added to samples was 100.6% with RSD of 1.5%.
Zhe, Gao; Ying-Chun, Wang; Yan-Xu, Chang
2016-01-01
Using high-performance liquid chromatography coupled with diode array detection and electrospray ionization tandem mass spectrometry (HPLC-DAD-MSn) method, qualitative and quantitative analysis of flavonoids of stems, leaves, fruits and seeds, and anthocyanidin of fresh fruits in Nitraria tangutorum were performed. A total of 14 flavonoid components were identified from the seeds of N. tangutorum including three quercetin derivatives, three kaempferol derivatives, and eight isorhamnetin derivatives. A total of 12, 10, and 7 flavonoid components were identified from leaves, stems, and fruits of N. tangutorum, respectively; all were present in seeds also. The total content of flavonoids in leaves was the highest, up to 42.43 mg/g·dry weight. A total of 12 anthocyanidin components were identified from the fresh fruits of N. tangutorum, belonging to five anthocyanidin. The total content of anthocyanidin in fresh fruits was up to 45.83 mg/100 g· fresh weight, of which the acylated anthocyanidin accounted for 65.7%. The HPLC-DAD-MS(n) method can be operated easily, rapidly, and accurately, and is feasible for qualitative and quantitative analysis of flavone glycosides in N. tangutorum.
Ye, Z.; Weinberg, H.S.; Meyer, M.T.
2007-01-01
A multirun analytical method has been developed and validated for trace determination of 24 antibiotics including 7 sulfonamides, 3 macrolides, 7 quinolones, 6 tetracyclines, and trimethoprim in chlorine-disinfected drinking water using a single solid-phase extraction method coupled to liquid chromatography with positive electrospray tandem mass spectrometry detection. The analytes were extracted by a hydrophilic-lipophilic balanced resin and eluted with acidified methanol (0.1% formic acid), resulting in analyte recoveries generally above 90%. The limits of quantitation were mostly below 10 ng/L in drinking water. Since the concentrated sample matrix typically caused ion suppression during electrospray ionization, the method of standard addition was used for quantitation. Chlorine residuals in drinking water can react with some antibiotics, but ascorbic acid was found to be an effective chlorine quenching agent without affecting the analysis and stability of the antibiotics in water. A preliminary occurrence study using this method revealed the presence of some antibiotics in drinking waters, including sulfamethoxazole (3.0-3.4 ng/L), macrolides (1.4-4.9 ng/L), and quinolones (1.2-4.0 ng/L). ?? 2007 American Chemical Society.
Hong, Bo; Li, Wenjing; Song, Aihua; Zhao, Chunjie
2013-01-01
Rauvolfia verticillata (Lour.) Baill. (also called Luofumu in Chinese) is commonly used in traditional Chinese medicine for lowering blood pressure. In this study, a high-performance liquid chromatography assay using ultraviolet detection is described for the simultaneous measurement of the five bioactive indole alkaloids (sarpagine, yohimbine, ajmaline, ajmalicine and reserpine) in Rauvolfia. The detection of all five compounds was conducted at 280 nm. In quantitative analysis, the five compounds showed good regressions (R(2) > 0.9988) within the test ranges, and the recovery of the method was in the range of 90.4-101.4%. In addition, a simple gas chromatography mass method using a DB-1 silica capillary column (30 m × 0.25 mm i.d., 0.25 µm) is described for the identification of the highly volatile compounds in Rauvolfia. In qualitative analysis, more than 39 compounds were assayed and identified using the mass function and the National Institute of Standards and Technology database search system. The results demonstrated that the combination of quantitative and qualitative analyses offered an efficient way to evaluate the quality and consistency of Rauvolfia verticillata.
Zhang, J S; Guan, J; Yang, F Q; Liu, H G; Cheng, X J; Li, S P
2008-11-04
The rhizomes of Curcuma phaeocaulis, Curcuma kwangsiensis, Curcuma wenyujin and Curcuma longa are used as Ezhu or Jianghuang in traditional Chinese medicine for a long time. Due to their similar morphological characters, it is difficult to distinguish their origins of raw materials used in clinic. In this study, a simple, rapid and reliable twice development TLC method was developed for qualitative and quantitative analysis of the four species of Curcuma rhizomes. The chromatography was performed on silica gel 60F(254) plate with chloroform-methanol-formic acid (80:4:0.8, v/v/v) and petroleum ether-ethyl acetate (90:10, v/v) as mobile phase for twice development. The TLC markers were colorized with 1% vanillin-H(2)SO(4) solution. The four species of Curcuma were easily discriminated based on their characteristic TLC profiles, and simultaneous quantification of eight compounds, including bisdemethoxycurcumin, demethoxycurcumin, curcumine, curcumenol, curcumol, curdione, furanodienone and curzerene, in Curcuma were also performed densitometrically at lambda(scan)=518nm and lambda(reference)=800 nm. The investigated compounds had good linearity (r(2)>0.9905) within test ranges. Therefore, the developed TLC method can be used for quality control of Curcuma rhizomes.
Cao, Wan; Ye, Li-Hong; Cao, Jun; Xu, Jing-Jing; Peng, Li-Qing; Zhu, Qiong-Yao; Zhang, Qian-Yun; Hu, Shuai-Shuai
2015-08-07
An analytical procedure based on miniaturized solid phase extraction (SPE) and ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry was developed and validated for determination of six flavanones in Citrus fruits. The mesoporous molecular sieve SBA-15 as a solid sorbent was characterised by Fourier transform-infrared spectroscopy and scanning electron microscopy. Additionally, compared with reported extraction techniques, the mesoporous SBA-15 based SPE method possessed the advantages of shorter analysis time and higher sensitivity. Furthermore, considering the different nature of the tested compounds, all of the parameters, including the SBA-15 amount, solution pH, elution solvent, and the sorbent type, were investigated in detail. Under the optimum condition, the instrumental detection and quantitation limits calculated were less than 4.26 and 14.29ngmL(-1), respectively. The recoveries obtained for all the analytes were ranging from 89.22% to 103.46%. The experimental results suggested that SBA-15 was a promising material for the purification and enrichment of target flavanones from complex citrus fruit samples. Copyright © 2015 Elsevier B.V. All rights reserved.
Che, Jinjing; Meng, Qingfang; Chen, Zhihang; Hou, Yunan; Shan, Chengqi; Cheng, Yuanguo
2010-03-11
A sensitive method for measuring sifuvirtide, a novel HIV fusion inhibitor peptide drug in HIV-1(+) human plasma by liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed. The plasma samples were treated by solvent/detergent (S/D) method to inactivate viral activity before analysis. After protein precipitation sifuvirtide was determined by LC-MS/MS. A structure analog was used as internal standard (IS). The mass spectrometer was operated in positive ion and multiple reaction monitoring mode with transitions m/z 946.3-->159.0 for sifuvirtide and 951.7-->159.2 for IS. The intra-day precision ranged from 2.74% to 7.57% with accuracy from 91.63% to 102.53%. The inter-day precision ranged from 2.65% to 3.58% and the accuracy from 95.53% to 105.28%. Stability studies showed that sifuvirtide was stable both during the assay procedure and long-term storage. The lower limit of quantitation (LLOQ) was 9.75ngml(-1). The method was used for analyzing samples from phase IIa clinical study of sifuvirtide in China. Copyright 2009 Elsevier B.V. All rights reserved.
Beach, Connor A; Krumm, Christoph; Spanjers, Charles S; Maduskar, Saurabh; Jones, Andrew J; Dauenhauer, Paul J
2016-03-07
Analysis of trace compounds, such as pesticides and other contaminants, within consumer products, fuels, and the environment requires quantification of increasingly complex mixtures of difficult-to-quantify compounds. Many compounds of interest are non-volatile and exhibit poor response in current gas chromatography and flame ionization systems. Here we show the reaction of trimethylsilylated chemical analytes to methane using a quantitative carbon detector (QCD; the Polyarc™ reactor) within a gas chromatograph (GC), thereby enabling enhanced detection (up to 10×) of highly functionalized compounds including carbohydrates, acids, drugs, flavorants, and pesticides. Analysis of a complex mixture of compounds shows that the GC-QCD method exhibits faster and more accurate analysis of complex mixtures commonly encountered in everyday products and the environment.
NASA Technical Reports Server (NTRS)
Rounds, M. A.; Nielsen, S. S.; Mitchell, C. A. (Principal Investigator)
1993-01-01
The use of gradient anion-exchange HPLC, with a simple post-column detection system, is described for the separation of myo-inositol phosphates, including "phytic acid" (myo-inositol hexaphosphate). Hexa-, penta-, tetra-, tri- and diphosphate members of this homologous series are clearly resolved within 30 min. This method should facilitate analysis and quantitation of "phytic acid" and other inositol phosphates in plant, food, and soil samples.
Wang, Lu; Tian, Xiaofei; Wei, Wenhao; Chen, Gong; Wu, Zhenqiang
2016-10-01
Guava leaves are used in traditional herbal teas as antidiabetic therapies. Flavonoids are the main active of Guava leaves and have many physiological functions. However, the flavonoid compositions and activities of Guava leaves could change due to microbial fermentation. A high-performance liquid chromatography time-of-flight electrospray ionization mass spectrometry method was applied to identify the varieties of the flavonoids in Guava leaves before and after fermentation. High-performance liquid chromatography, hierarchical cluster analysis and principal component analysis were used to quantitatively determine the changes in flavonoid compositions and evaluate the consistency and quality of Guava leaves. Monascus anka Saccharomyces cerevisiae fermented Guava leaves contained 2.32- and 4.06-fold more total flavonoids and quercetin, respectively, than natural Guava leaves. The flavonoid compounds of the natural Guava leaves had similarities ranging from 0.837 to 0.927. The flavonoid compounds from the Monascus anka S. cerevisiae fermented Guava leaves had similarities higher than 0.993. This indicated that the quality consistency of the fermented Guava leaves was better than that of the natural Guava leaves. High-performance liquid chromatography fingerprinting and chemometric analysis are promising methods for evaluating the degree of fermentation of Guava leaves based on quality consistency, which could be used in assessing flavonoid compounds for the production of fermented Guava leaves. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rodriguez, Estrella Sanz; Poynter, Sam; Curran, Mark; Haddad, Paul R; Shellie, Robert A; Nesterenko, Pavel N; Paull, Brett
2015-08-28
Preservation of ionic species within Antarctic ice yields a unique proxy record of the Earth's climate history. Studies have been focused until now on two proxies: the ionic components of sea salt aerosol and methanesulfonic acid. Measurement of the all of the major ionic species in ice core samples is typically carried out by ion chromatography. Former methods, whilst providing suitable detection limits, have been based upon off-column preconcentration techniques, requiring larger sample volumes, with potential for sample contamination and/or carryover. Here, a new capillary ion chromatography based analytical method has been developed for quantitative analysis of limited volume Antarctic ice core samples. The developed analytical protocol applies capillary ion chromatography (with suppressed conductivity detection) and direct on-column sample injection and focusing, thus eliminating the requirement for off-column sample preconcentration. This limits the total sample volume needed to 300μL per analysis, allowing for triplicate sample analysis with <1mL of sample. This new approach provides a reliable and robust analytical method for the simultaneous determination of organic and inorganic anions, including fluoride, methanesulfonate, chloride, sulfate and nitrate anions. Application to composite ice-core samples is demonstrated, with coupling of the capillary ion chromatograph to high resolution mass spectrometry used to confirm the presence and purity of the observed methanesulfonate peak. Copyright © 2015 Elsevier B.V. All rights reserved.
Triebl, Alexander; Trötzmüller, Martin; Hartler, Jürgen; Stojakovic, Tatjana; Köfeler, Harald C
2018-01-01
An improved approach for selective and sensitive identification and quantitation of lipid molecular species using reversed phase chromatography coupled to high resolution mass spectrometry was developed. The method is applicable to a wide variety of biological matrices using a simple liquid-liquid extraction procedure. Together, this approach combines three selectivity criteria: Reversed phase chromatography separates lipids according to their acyl chain length and degree of unsaturation and is capable of resolving positional isomers of lysophospholipids, as well as structural isomers of diacyl phospholipids and glycerolipids. Orbitrap mass spectrometry delivers the elemental composition of both positive and negative ions with high mass accuracy. Finally, automatically generated tandem mass spectra provide structural insight into numerous glycerolipids, phospholipids, and sphingolipids within a single run. Method validation resulted in a linearity range of more than four orders of magnitude, good values for accuracy and precision at biologically relevant concentration levels, and limits of quantitation of a few femtomoles on column. Hundreds of lipid molecular species were detected and quantified in three different biological matrices, which cover well the wide variety and complexity of various model organisms in lipidomic research. Together with a reliable software package, this method is a prime choice for global lipidomic analysis of even the most complex biological samples. PMID:28415015
Triebl, Alexander; Trötzmüller, Martin; Hartler, Jürgen; Stojakovic, Tatjana; Köfeler, Harald C
2017-05-15
An improved approach for selective and sensitive identification and quantitation of lipid molecular species using reversed phase chromatography coupled to high resolution mass spectrometry was developed. The method is applicable to a wide variety of biological matrices using a simple liquid-liquid extraction procedure. Together, this approach combines multiple selectivity criteria: Reversed phase chromatography separates lipids according to their acyl chain length and degree of unsaturation and is capable of resolving positional isomers of lysophospholipids, as well as structural isomers of diacyl phospholipids and glycerolipids. Orbitrap mass spectrometry delivers the elemental composition of both positive and negative ions with high mass accuracy. Finally, automatically generated tandem mass spectra provide structural insight into numerous glycerolipids, phospholipids, and sphingolipids within a single run. Calibration showed linearity ranges of more than four orders of magnitude, good values for accuracy and precision at biologically relevant concentration levels, and limits of quantitation of a few femtomoles on column. Hundreds of lipid molecular species were detected and quantified in three different biological matrices, which cover well the wide variety and complexity of various model organisms in lipidomic research. Together with a software package, this method is a prime choice for global lipidomic analysis of even the most complex biological samples. Copyright © 2017 Elsevier B.V. All rights reserved.
Percy, Andrew J; Yang, Juncong; Chambers, Andrew G; Borchers, Christoph H
2016-01-01
Absolute quantitative strategies are emerging as a powerful and preferable means of deriving concentrations in biological samples for systems biology applications. Method development is driven by the need to establish new-and validate current-protein biomarkers of high-to-low abundance for clinical utility. In this chapter, we describe a methodology involving two-dimensional (2D) reversed-phase liquid chromatography (RPLC), operated under alkaline and acidic pH conditions, combined with multiple reaction monitoring (MRM)-mass spectrometry (MS) (also called selected reaction monitoring (SRM)-MS) and a complex mixture of stable isotope-labeled standard (SIS) peptides, to quantify a broad and diverse panel of 253 proteins in human blood plasma. The quantitation range spans 8 orders of magnitude-from 15 mg/mL (for vitamin D-binding protein) to 450 pg/mL (for protein S100-B)-and includes 31 low-abundance proteins (defined as being <10 ng/mL) of potential disease relevance. The method is designed to assess candidates at the discovery and/or verification phases of the biomarker pipeline and can be adapted to examine smaller or alternate panels of proteins for higher sample throughput. Also detailed here is the application of our recently developed software tool-Qualis-SIS-for protein quantitation (via regression analysis of standard curves) and quality assessment of the resulting data. Overall, this chapter provides the blueprint for the replication of this quantitative proteomic method by proteomic scientists of all skill levels.
Al Feteisi, Hajar; Achour, Brahim; Rostami-Hodjegan, Amin; Barber, Jill
2015-01-01
Drug-metabolizing enzymes and transporters play an important role in drug absorption, distribution, metabolism and excretion and, consequently, they influence drug efficacy and toxicity. Quantification of drug-metabolizing enzymes and transporters in various tissues is therefore essential for comprehensive elucidation of drug absorption, distribution, metabolism and excretion. Recent advances in liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) have improved the quantification of pharmacologically relevant proteins. This report presents an overview of mass spectrometry-based methods currently used for the quantification of drug-metabolizing enzymes and drug transporters, mainly focusing on applications and cost associated with various quantitative strategies based on stable isotope-labeled standards (absolute quantification peptide standards, quantification concatemers, protein standards for absolute quantification) and label-free analysis. In mass spectrometry, there is no simple relationship between signal intensity and analyte concentration. Proteomic strategies are therefore complex and several factors need to be considered when selecting the most appropriate method for an intended application, including the number of proteins and samples. Quantitative strategies require appropriate mass spectrometry platforms, yet choice is often limited by the availability of appropriate instrumentation. Quantitative proteomics research requires specialist practical skills and there is a pressing need to dedicate more effort and investment to training personnel in this area. Large-scale multicenter collaborations are also needed to standardize quantitative strategies in order to improve physiologically based pharmacokinetic models.
HPTLC Fingerprint Analysis: A Quality Control for Authentication of Herbal Phytochemicals
NASA Astrophysics Data System (ADS)
Ram, Mauji; Abdin, M. Z.; Khan, M. A.; Jha, Prabhakar
Authentication and consistent quality are the basic requirement for Indian traditional medicine (TIM), Chinese traditional herbal medicine (TCHM), and their commercial products, regardless of the kind of research conducted to modernize the TIM and TCHM. The complexities of TIM and TCHM challenge the current official quality control mode, for which only a few biochemical markers were selected for identification and quantitative assay. Referring too many unknown factors existed in TIM and TCHM, it is impossible and unnecessary to pinpoint qualitatively and quantitatively every single component contained in the herbal drug. Chromatographic fingerprint is a rational option to meet the need for more effective and powerful quality assessment to TIM and TCHM. The optimized chromatographic fingerprint is not only an alternative analytical tool for authentication, but also an approach to express the various pattern of chemical ingredients distribution in the herbal drugs and preserve such "database" for further multifaced sustainable studies. Analytical separation techniques, for example, high-performance liquid chromatography (HPLC), gas chromatography (GC) and mass spectrometry (MS) were among the most popular methods of choice used for quality control of raw material and finished herbal product. Fingerprint analysis approach using high-performance thin-layer chromatography (HPTLC) has become the most potent tool for quality control of herbal medicines because of its simplicity and reliability. It can serve as a tool for identification, authentication, and quality control of herbal drugs. In this chapter, attempts are being made to expand the use of HPTLC and at the same time create interest among prospective researcher in herbal analysis. The developed method can be used as a quality control tool for rapid authentication from a wide variety of herbal samples. Some examples demonstrated the role of fingerprinting in quality control and assessment.
Fagerquist, Clifton K; Lightfield, Alan R; Lehotay, Steven J
2005-03-01
A simple, rapid, rugged, sensitive, and specific method for the confirmation and quantitation of 10 beta-lactam antibiotics in fortified and incurred bovine kidney tissue has been developed. The method uses a simple solvent extraction, dispersive solid-phase extraction (dispersive-SPE) cleanup, and liquid chromatography-tandem mass spectrometry (LC/MS/MS) for confirmation and quantitation. Dispersive-SPE greatly simplifies and accelerates sample cleanup and improves overall recoveries compared with conventional SPE cleanup. The beta-lactam antibiotics tested were as follows: deacetylcephapirin (an antimicrobial metabolite of cephapirin), amoxicillin, desfuroylceftiofur cysteine disulfide (DCCD, an antimicrobial metabolite of ceftiofur), ampicillin, cefazolin, penicillin G, oxacillin, cloxacillin, naficillin, and dicloxacillin. Average recoveries of fortified samples were 70% or better for all beta-lactams except DCCD, which had an average recovery of 58%. The LC/MS/MS method was able to demonstrate quantitative recoveries at established tolerance levels and provide confirmatory data for unambiguous analyte identification. The method was also tested on 30 incurred bovine kidney samples obtained from the USDA Food Safety and Inspection Service, which had previously tested the samples using the approved semiquantitative microbial assay. The results from the quantitative LC/MS/MS analysis were in general agreement with the microbial assay for 23 samples although the LC/MS/MS method was superior in that it could specifically identify which beta-lactam was present and quantitate its concentration, whereas the microbial assay could only identify the type of beta-lactam present and report a concentration with respect to the microbial inhibition of a penicillin G standard. In addition, for 6 of the 23 samples, LC/MS/MS analysis detected a penicillin and a cephalosporin beta-lactam, whereas the microbial assay detected only a penicillin beta-lactam. For samples that do not fall into the "general agreement" category, the most serious discrepancy involves two samples where the LC/MS/MS method detected a violative level of a cephalosporin beta-lactam (deacetylcephapirin) in the first sample and a possibly violative level of desfuroylceftiofur in the second, whereas the microbial assay identified the two samples as having only violative levels of a penicillin beta-lactam.
Analysis of street drugs in seized material without primary reference standards.
Laks, Suvi; Pelander, Anna; Vuori, Erkki; Ali-Tolppa, Elisa; Sippola, Erkki; Ojanperä, Ilkka
2004-12-15
A novel approach was used to analyze street drugs in seized material without primary reference standards. Identification was performed by liquid chromatography/time-of-flight mass spectrometry (LC/TOFMS), essentially based on accurate mass determination using a target library of 735 exact monoisotopic masses. Quantification was carried out by liquid chromatography/chemiluminescence nitrogen detection (LC/CLND) with a single secondary standard (caffeine), utilizing the detector's equimolar response to nitrogen. Sample preparation comprised dilution, first with methanol and further with the LC mobile phase. Altogether 21 seized drug samples were analyzed blind by the present method, and results were compared to accredited reference methods utilizing identification by gas chromatography/mass spectrometry and quantification by gas chromatography or liquid chromatography. The 31 drug findings by LC/TOFMS comprised 19 different drugs-of-abuse, byproducts, and adulterants, including amphetamine and tryptamine designer drugs, with one unresolved pair of compounds having an identical mass. By the reference methods, 27 findings could be confirmed, and among the four unconfirmed findings, only 1 apparent false positive was found. In the quantitative analysis of 11 amphetamine, heroin, and cocaine findings, mean relative difference between the results of LC/CLND and the reference methods was 11% (range 4.2-21%), without any observable bias. Mean relative standard deviation for three parallel LC/CLND results was 6%. Results suggest that the present combination of LC/TOFMS and LC/CLND offers a simple solution for the analysis of scheduled and designer drugs in seized material, independent of the availability of primary reference standards.
Jiao, Heng; Shang, Xiaohui; Dong, Qi; Wang, Shuang; Liu, Xiaoyu; Zheng, Heng; Lu, Xiaoling
2015-01-01
As a source of potent anti-inflammatory traditional medicines, the quantitative chromatographic fingerprints of sea urchin shell polysaccharides were well established via pre-column derivatization high performance liquid chromatography (HPLC) analysis. Based on the quantitative results, the content of fucose and glucose could be used as preliminary distinguishing indicators among three sea urchin shell species. Besides, the anti-inflammatory activities of the polysaccharides from sea urchin shells and their gonads were also determined. The gonad polysaccharide of Anthocidaris crassispina showed the most potent anti-inflammatory activity among all samples tested. PMID:26389925
Jiao, Heng; Shang, Xiaohui; Dong, Qi; Wang, Shuang; Liu, Xiaoyu; Zheng, Heng; Lu, Xiaoling
2015-09-16
As a source of potent anti-inflammatory traditional medicines, the quantitative chromatographic fingerprints of sea urchin shell polysaccharides were well established via pre-column derivatization high performance liquid chromatography (HPLC) analysis. Based on the quantitative results, the content of fucose and glucose could be used as preliminary distinguishing indicators among three sea urchin shell species. Besides, the anti-inflammatory activities of the polysaccharides from sea urchin shells and their gonads were also determined. The gonad polysaccharide of Anthocidaris crassispina showed the most potent anti-inflammatory activity among all samples tested.
Jeffrey, Brandon; Kuzhiyil, Najeeb; de Leon, Natalia; Lübberstedt, Thomas
2016-01-01
Fast pyrolysis has been identified as one of the biorenewable conversion platforms that could be a part of an alternative energy future, but it has not yet received the same attention as cellulosic ethanol in the analysis of genetic inheritance within potential feedstocks such as maize. Ten bio-oil compounds were measured via pyrolysis/gas chromatography-mass spectrometry (Py/GC-MS) in maize cobs. 184 recombinant inbred lines (RILs) of the intermated B73 x Mo17 (IBM) Syn4 population were analyzed in two environments, using 1339 markers, for quantitative trait locus (QTL) mapping. QTL mapping was performed using composite interval mapping with significance thresholds established by 1000 permutations at α = 0.05. 50 QTL were found in total across those ten traits with R2 values ranging from 1.7 to 5.8%, indicating a complex quantitative inheritance of these traits.
Escudero, Ana; Campo, Eva; Fariña, Laura; Cacho, Juan; Ferreira, Vicente
2007-05-30
The aroma profile of five premium red wines has been studied by sensory descriptive analysis, quantitative gas chromatography-olfactometry (GC-O), and chemical quantitative analysis. The most relevant findings have been confirmed by sensory analysis. Forty-five odorants, including the most intense, were identified. At least 37 odorants can be found at concentrations above their odor threshold. A satisfactory agreement between GC-O and quantitative data was obtained in most cases. Isobutyl-2-methoxypyrazine, (E)-whiskey lactone, and guaiacol were responsible for the veggie, woody, and toasted characters of the wines, respectively. The sweet-caramel notes are related to the presence of at least five compounds with flowery and sweet notes. The phenolic character can be similarly related to the presence of 12 volatile phenols. The berry fruit note of these wines is related to the additive effect of nine fruity esters. Ethanol exerts a strong suppression effect on fruitiness, whereas norisoprenoids and dimethyl sulfide enhance fruity notes.
Miao, Qing; Kong, Weijun; Zhao, Xiangsheng; Yang, Shihai; Yang, Meihua
2015-01-01
Analytical methods for quantitative analysis and chemical fingerprinting of volatile oils from Alpinia oxyphylla were established. The volatile oils were prepared by hydrodistillation, and the yields were between 0.82% and 1.33%. The developed gas chromatography-flame ionization detection (GC-FID) method showed good specificity, linearity, reproducibility, stability and recovery, and could be used satisfactorily for quantitative analysis. The results showed that the volatile oils contained 2.31-77.30 μL/mL p-cymene and 12.38-99.34 mg/mL nootkatone. A GC-FID fingerprinting method was established, and the profiles were analyzed using chemometrics. GC-MS was used to identify the principal compounds in the GC-FID profiles. The profiles of almost all the samples were consistent and stable. The harvesting time and source were major factors that affected the profile, while the volatile oil yield and the nootkatone content had minor secondary effects. Copyright © 2014 Elsevier B.V. All rights reserved.
Hamelin, Elizabeth I.; Schulze, Nicholas D.; Shaner, Rebecca L.; Coleman, Rebecca M.; Lawrence, Richard J.; Crow, Brian S.; Jakubowski, E. M.; Johnson, Rudolph C.
2015-01-01
Although nerve agent use is prohibited, concerns remain for human exposure to nerve agents during decommissioning, research, and warfare. Exposure can be detected through the analysis of the hydrolysis products in urine as well as blood. An analytical method to detect exposure to five nerve agents, including VX, VR (Russian VX), GB (sarin), GD (soman) and GF (cyclosarin), through the analysis of the hydrolysis products, which are the primary metabolites, in serum has been developed and characterized. This method uses solid phase extraction coupled with high performance liquid chromatography for separation and isotopic dilution tandem mass spectrometry for detection. An uncommon buffer of ammonium fluoride was used to enhance ionization and improve sensitivity when coupled with hydrophilic interaction liquid chromatography resulting in detection limits from 0.3–0.5 ng/mL. The assessment of two quality control samples demonstrated high accuracy (101–105%) and high precision (5–8%) for the detection of these five nerve agent hydrolysis products in serum. PMID:24633507
Harju, Kirsi; Rapinoja, Marja-Leena; Avondet, Marc-André; Arnold, Werner; Schär, Martin; Burrell, Stephen; Luginbühl, Werner; Vanninen, Paula
2015-01-01
Saxitoxin (STX) and some selected paralytic shellfish poisoning (PSP) analogues in mussel samples were identified and quantified with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Sample extraction and purification methods of mussel sample were optimized for LC-MS/MS analysis. The developed method was applied to the analysis of the homogenized mussel samples in the proficiency test (PT) within the EQuATox project (Establishment of Quality Assurance for the Detection of Biological Toxins of Potential Bioterrorism Risk). Ten laboratories from eight countries participated in the STX PT. Identification of PSP toxins in naturally contaminated mussel samples was performed by comparison of product ion spectra and retention times with those of reference standards. The quantitative results were obtained with LC-MS/MS by spiking reference standards in toxic mussel extracts. The results were within the z-score of ±1 when compared to the results measured with the official AOAC (Association of Official Analytical Chemists) method 2005.06, pre-column oxidation high-performance liquid chromatography with fluorescence detection (HPLC-FLD). PMID:26610567
Takegawa, Yasuhiro; Araki, Kayo; Fujitani, Naoki; Furukawa, Jun-ichi; Sugiyama, Hiroaki; Sakai, Hideaki; Shinohara, Yasuro
2011-12-15
Glycosaminoglycans (GAGs) play important roles in cell adhesion and growth, maintenance of extracellular matrix (ECM) integrity, and signal transduction. To fully understand the biological functions of GAGs, there is a growing need for sensitive, rapid, and quantitative analysis of GAGs. The present work describes a novel analytical technique that enables high throughput cellular/tissue glycosaminoglycomics for all three families of uronic acid-containing GAGs, hyaluronan (HA), chondroitin sulfate (CS)/dermatan sulfate (DS), and heparan sulfate (HS). A one-pot purification and labeling procedure for GAG Δ-disaccharides was established by chemo-selective ligation of disaccharides onto high density hydrazide beads (glycoblotting) and subsequent labeling by fluorescence. The 17 most common disaccharides (eight comprising HS, eight CS/DS, and one comprising HA) could be separated with a single chromatography for the first time by employing a zwitter-ionic type of hydrophilic-interaction chromatography column. These novel analytical techniques were able to precisely characterize the glycosaminoglycome in various cell types including embryonal carcinoma cells and ocular epithelial tissues (cornea, conjunctiva, and limbus).
Tush, Daniel; Loftin, Keith A.; Meyer, Michael T.
2013-01-01
Little is known about the occurrence, fate, and effects of the ancillary additives in pesticide formulations. Polyoxyethylene tallow amine (POEA) is a non-ionic surfactant used in many glyphosate formulations, a widely applied herbicide both in agricultural and urban environments. POEA has not been previously well characterized, but has been shown to be toxic to various aquatic organisms. Characterization of technical mixtures using ultra-high performance liquid chromatography (UHPLC) and mass spectrometry shows POEA is a complex combination of homologs of different aliphatic moieties and ranges of ethoxylate units. Tandem mass spectrometry experiments indicate that POEA homologs generate no product ions readily suitable for quantitative analysis due to poor sensitivity. A comparison of multiple high performance liquid chromatography (HPLC) and UHPLC analytical columns indicates that the stationary phase is more important in column selection than other parameters for the separation of POEA. Analysis of several agricultural and household glyphosate formulations confirms that POEA is a common ingredient but ethoxylate distributions among formulations vary.
NASA Astrophysics Data System (ADS)
Weber, Waldemar; Wagner, Ralf; Streipert, Benjamin; Kraft, Vadim; Winter, Martin; Nowak, Sascha
2016-02-01
The electrochemical aging of commercial non-aqueous lithium hexafluorophosphate (LiPF6)/organic carbonate solvent based lithium ion battery electrolyte has been investigated in view of the formation of ionic and non-ionic alkylated phosphates. Subject was a solvent mixture of ethylene carbonate/ethyl methyl carbonate EC:EMC (1:1, by wt.) with 1 M LiPF6 (LP50 Selectilyte™, BASF). The analysis was carried out by ion chromatography coupled with electrospray ionization mass spectrometry (ESI-MS) for ionic compounds and (headspace) gas chromatography mass spectrometry ((HS)-GC-MS) for non-ionic compounds. The electrochemical aging was performed by galvanostatic charge/discharge cycling and potentiostatic experiments with LiNi0.5Mn1.5O4 (LMNO) as cathode material at increased cut-off potentials (>4.5 V vs. Li/Li+). A strong dependence of the formation of organophosphates on the applied electrode potential was observed and investigated by quantitative analysis of the formed phosphates. In addition, new possible ;fingerprint; compounds for describing the electrolyte status were investigated and compared to existing compounds.
Yuan, Yu-feng; Tao, Zhan-hua; Wang, Xue; Li, Yong-qing; Liu, Jun-xian
2012-03-01
The pigments from Rhodotorula glutinis were separated by using thin layer chromatography, and the result showed that Rhodotorula glutinis cells could synthesize at least three kinds of pigments, which were beta-carotene, torulene, and torularhodin. The Raman spectra based on the three pigments were acquired, and original spectra were preprocessed by background elimination, baseline correction, and three-point-smoothing, then the averaged spectra from different pigments were investigated, and the result indicated that Raman shift which represents C-C bond was different, and the wave number of beta-carotene demonstrated the largest deviation, finally torulene and torularhodin in Rhodotorula glutinis had more content than beta-carotene. Quantitative analysis of Raman peak height ratio revealed that peak height ratio of pigments showed little difference, which could be used as parameters for further research on living cells, providing reference content of pigments. The above results suggest that Raman spectroscopy combined with thin layer chromatography can be applied to analyze pigments from Rhodotorula glutinis, provides abundant information about pigments, and serves as an effective method to study pigments.
Zhao, Pengtao; Gao, Jinxin; Qian, Michael; Li, Hua
2017-06-24
The key aroma compounds and the organoleptic quality of two Chinese Syrah wines from the Yunnan Shangri-La region and Ningxia Helan mountain region were characterized. The most important eighty aroma-active compounds were identified by Gas Chromatography-Olfactometry. In both Syrah samples, ethyl 2-methylpropanoate, ethyl 3-methylbutanoate, 3-methylbutyl acetate, 2- and 3-methyl-1-butanol, ethyl hexanoate, ethyl octanoate, 2-phenethyl acetate, methional, 3-methylbutanoic acid, hexanoic acid, octanoic acid, β -damascenone, guaiacol, 2-phenylethanol, trans -whiskylactone, 4-ethylguaiacol, eugenol, 4-ethylphenol, and sotolon were detected to have the highest odor intensities. In the chemical analysis, 72 compounds were quantitated by Stir Bar Sorptive Extraction combined with Gas Chromatography Mass Spectrometry. Based on the Odor Activity Value (OAV), the aromas were reconstituted by combining aroma compounds in the synthetic wine, and sensory descriptive analysis was used to verify the chemical data. Fatty acid ethyl esters, acetate esters, and β -damascenone were found with higher OAVs in the more fruity-smelling sample of Helan Mountain rather than Shangri-La.
Yan, Yongqiu; Lu, Yu; Jiang, Shiping; Jiang, Yu; Tong, Yingpeng; Zuo, Limin; Yang, Jun; Gong, Feng; Zhang, Ling; Wang, Ping
2018-01-01
Noni juice has been extensively used as folk medicine for the treatment of arthritis, infections, analgesic, colds, cancers, and diabetes by Polynesians for many years. Due to the lack of standard scientific evaluation methods, various kinds of commercial Noni juice with different quality and price were available on the market. To establish a sensitive, reliable, and accurate high-performance liquid chromatography with electrospray ionization triple quadrupole mass spectrometry (HPLC-ESI-MS/MS) method for separation, identification, and simultaneous quantitative analysis of bioactive constituents in Noni juice. The analytes and eight batches of commercially available samples from different origins were separated and analyzed by the HPLC-ESI-MS/MS method on an Agilent ZORBAX SB-C 18 (150 mm × 4.6 mm i.d., 5 μm) column using a gradient elution of acetonitrile-methanol-0.05% glacial acetic acid in water (v/v) at a constant flow rate of 0.5 mL/min. Seven components were identification and all of the assay parameters were within the required limits. Components were within the correlation coefficient values ( R 2 ≥ 0.9993) at the concentration ranges tested. The precision of the assay method was <0.91% and the repeatability between 1.36% and 3.31%. The accuracy varied from 96.40% to 103.02% and the relative standard deviations of stability were <3.91%. Samples from the same origin showed similar content while different origins showed significant different result. The developed methods would provide a reliable basis and be useful in the establishment of a rational quality control standard of Noni juice. Separation, identification, and simultaneous quantitative analysis method of seven bioactive constituents in Noni juice is originally developed by high-performance liquid chromatography with electrospray ionization triple quadrupole mass spectrometryThe presented method was successfully applied to the quality control of eight batches of commercially available samples of Noni juiceThis method is simple, sensitive, reliable, accurate, and efficient method with strong specificity, good precision, and high recovery rate and provides a reliable basis for quality control of Noni juice. Abbreviations used: HPLC-ESI-MS/MS: High-performance liquid chromatography with electrospray ionization triple quadrupole mass spectrometry, LOD: Limit of detection, LOQ: Limit of quantitation, S/N: Signal-to-noise ratio, RSD: Relative standard deviations, DP: Declustering potential, CE: Collision energy, MRM: Multiple reaction monitoring, RT: Retention time.
Yan, Yongqiu; Lu, Yu; Jiang, Shiping; Jiang, Yu; Tong, Yingpeng; Zuo, Limin; Yang, Jun; Gong, Feng; Zhang, Ling; Wang, Ping
2018-01-01
Background: Noni juice has been extensively used as folk medicine for the treatment of arthritis, infections, analgesic, colds, cancers, and diabetes by Polynesians for many years. Due to the lack of standard scientific evaluation methods, various kinds of commercial Noni juice with different quality and price were available on the market. Objective: To establish a sensitive, reliable, and accurate high-performance liquid chromatography with electrospray ionization triple quadrupole mass spectrometry (HPLC-ESI-MS/MS) method for separation, identification, and simultaneous quantitative analysis of bioactive constituents in Noni juice. Materials and Methods: The analytes and eight batches of commercially available samples from different origins were separated and analyzed by the HPLC-ESI-MS/MS method on an Agilent ZORBAX SB-C18 (150 mm × 4.6 mm i.d., 5 μm) column using a gradient elution of acetonitrile-methanol-0.05% glacial acetic acid in water (v/v) at a constant flow rate of 0.5 mL/min. Results: Seven components were identification and all of the assay parameters were within the required limits. Components were within the correlation coefficient values (R2 ≥ 0.9993) at the concentration ranges tested. The precision of the assay method was <0.91% and the repeatability between 1.36% and 3.31%. The accuracy varied from 96.40% to 103.02% and the relative standard deviations of stability were <3.91%. Samples from the same origin showed similar content while different origins showed significant different result. Conclusions: The developed methods would provide a reliable basis and be useful in the establishment of a rational quality control standard of Noni juice. SUMMARY Separation, identification, and simultaneous quantitative analysis method of seven bioactive constituents in Noni juice is originally developed by high-performance liquid chromatography with electrospray ionization triple quadrupole mass spectrometryThe presented method was successfully applied to the quality control of eight batches of commercially available samples of Noni juiceThis method is simple, sensitive, reliable, accurate, and efficient method with strong specificity, good precision, and high recovery rate and provides a reliable basis for quality control of Noni juice. Abbreviations used: HPLC-ESI-MS/MS: High-performance liquid chromatography with electrospray ionization triple quadrupole mass spectrometry, LOD: Limit of detection, LOQ: Limit of quantitation, S/N: Signal-to-noise ratio, RSD: Relative standard deviations, DP: Declustering potential, CE: Collision energy, MRM: Multiple reaction monitoring, RT: Retention time. PMID:29576704
Schroyer, B.R.; Capel, P.D.
1996-01-01
A high-performance liquid Chromatography (HPLC) method is presented for the for the fast, quantitative analysis of the target analytes in water and in low organic-carbon, sandy soils that are known to be contaminated with the parent herbicides. Speed and ease of sample preparation was prioritized above minimizing detection limits. Soil samples were extracted using 80:20 methanol:water (volume:volume). Water samples (50 ??L) were injected directly into the HPLC without prior preparation. Method quantification limits for soil samples (10 g dry weight) and water samples ranged from 20 to 110 ng/g and from 20 to 110 ??g/L for atrazine and its transformation products and from 80 to 320 ng/g and from 80 to 320 ??g/L for alachlor and its transformation products, respectively.
Qiao, Xue; He, Wen-ni; Xiang, Cheng; Han, Jian; Wu, Li-jun; Guo, De-an; Ye, Min
2011-01-01
Spirodela polyrrhiza (L.) Schleid. is a traditional Chinese herbal medicine for the treatment of influenza. Despite its wide use in Chinese medicine, no report on quality control of this herb is available so far. To establish qualitative and quantitative analytical methods by high-performance liquid chromatography (HPLC) coupled with mass spectrometry (MS) for the quality control of S. polyrrhiza. The methanol extract of S. polyrrhiza was analysed by HPLC/ESI-MS(n). Flavonoids were identified by comparing with reference standards or according to their MS(n) (n = 2-4) fragmentation behaviours. Based on LC/MS data, a standardised HPLC fingerprint was established by analysing 15 batches of commercial herbal samples. Furthermore, quantitative analysis was conducted by determining five major flavonoids, namely luteolin 8-C-glucoside, apigenin 8-C-glucoside, luteolin 7-O-glucoside, apigenin 7-O-glucoside and luteolin. A total of 18 flavonoids were identified by LC/MS, and 14 of them were reported from this herb for the first time. The HPLC fingerprints contained 10 common peaks, and could differentiate good quality batches from counterfeits. The total contents of five major flavonoids in S. polyrrhiza varied significantly from 4.28 to 19.87 mg/g. Qualitative LC/MS and quantitative HPLC analytical methods were established for the comprehensive quality control of S. polyrrhiza. Copyright © 2011 John Wiley & Sons, Ltd.
2014-01-01
Background The complexity of protein glycosylation makes it difficult to characterize glycosylation patterns on a proteomic scale. In this study, we developed an integrated strategy for comparatively analyzing N-glycosylation/glycoproteins quantitatively from complex biological samples in a high-throughput manner. This strategy entailed separating and enriching glycopeptides/glycoproteins using lectin affinity chromatography, and then tandem labeling them with 18O/16O to generate a mass shift of 6 Da between the paired glycopeptides, and finally analyzing them with liquid chromatography-mass spectrometry (LC-MS) and the automatic quantitative method we developed based on Mascot Distiller. Results The accuracy and repeatability of this strategy were first verified using standard glycoproteins; linearity was maintained within a range of 1:10–10:1. The peptide concentration ratios obtained by the self-build quantitative method were similar to both the manually calculated and theoretical values, with a standard deviation (SD) of 0.023–0.186 for glycopeptides. The feasibility of the strategy was further confirmed with serum from hepatocellular carcinoma (HCC) patients and healthy individuals; the expression of 44 glycopeptides and 30 glycoproteins were significantly different between HCC patient and control serum. Conclusions This strategy is accurate, repeatable, and efficient, and may be a useful tool for identification of disease-related N-glycosylation/glycoprotein changes. PMID:24428921
Bielawski, D; Ostrea, E; Posecion, N; Corrion, M; Seagraves, J
2005-01-01
A solid phase extraction method was developed to isolate multiple classes of parent pesticides from meconium. A methanolic/hydrochloric acid methyl ester derivatization with liquid-liquid extraction technique was also developed for the analysis of metabolites. Identification and quantitation was by electron impact gas chromatography-mass spectrometry. For the parent compounds and metabolites, recoveries in spiked meconium ranged between 72-109%, with coefficients of variation ranging from 1.55-16.92% and limits of detection between 0.01-4.15 μg g(-1). Meconium samples obtained from infants in the Philippines were assayed using these methods, and propoxur, cypermethrin, pretilachlor, malathion, 4,4'-dichlorodiphenyltrichloroethylene, bioallethrin, and cyfluthrin were detected.
Shao, Xi; Lv, Lishuang; Parks, Tiffany; Wu, Hou; Ho, Chi-Tang; Sang, Shengmin
2010-01-01
For the first time, a sensitive reversed-phase HPLC electrochemical array method has been developed for the quantitative analysis of eight major ginger components ([6]-, [8]-, and [10]-gingerol, [6]-, [8]-, and [10]-shogaol, [6]-paradol, and [1]-dehydrogingerdione) in eleven ginger-containing commercial products. This method was valid with unrivaled sensitivity as low as 7.3 – 20.2 pg of limit of detection and a range of 14.5 to 40.4 pg of limit of quantification. Using this method, we quantified the levels of eight ginger components in eleven different commercial products. Our results found that both levels and ratios among the eight compounds vary greatly in commercial products. PMID:21090746
Brooijmans, T; Okhuijsen, R; Oerlemans, I; Schoenmakers, P J; Peters, R
2018-05-14
Pyrolysis - gas chromatography - (PyGC) is a common method to analyse the composition of natural and synthetic resins. The analysis of acid functionality in, for example, waterborne polyacrylates and polyurethanes polymers has proven to be difficult due to solubility issues, inter- and intramolecular interaction effects, lack of detectability in chromatographic analysis, and lack of thermal stability. Conventional analytical techniques, such as PyGC, cannot be used for the direct detection and identification of acidic monomers, due to thermal rearrangements that take place during pyrolysis. To circumvent this, the carboxylic acid groups are protected prior to thermal treatment by reaction with 2-bromoacetophenone. Reaction conditions are investigated and optimised wrt. conversion measurements. The aproach is applied to waterborne polyacryalates and the results are discussed. This approach enables identification and (semi)quantitative analysis of different acid functionalities in waterborne polymers by PyGC. Copyright © 2018 Elsevier B.V. All rights reserved.
Analysis of biodiesel by high performance liquid chromatography using refractive index detector.
Syed, Mahin Basha
2017-01-01
High-performance liquid chromatography (HPLC) was used for the determination of compounds occurring during the production of biodiesel from karanja and jatropha oil. Methanol was used for fast monitoring of conversion of karanja and jatropha oil triacylglycerols to fatty acid methyl esters and for quantitation of residual triacylglycerols (TGs), in the final biodiesel product. The individual sample compounds were identified using HPLC. Analysis of fatty acid methyl esters (FAMES) in blends of biodiesel by HPLC using a refractive index and a UV detector at 238 nm. Individual triacylglycerols, diacylglycerols, monoacylglycerols and methyl esters of oleic, linoleic and linolenic acids and free fatty acids were separated within 40 min. Hence HPLC was found to be best for the analysis of biodiesel. Analysis of biodiesel by HPLC using RID detector. Estimation of amount of FAMES in biodiesel. Individual triacylglycerols, diacylglycerols, monoacylglycerols and methyl esters of oleic, linoleic and linolenic acids and free fatty acids were separated within 40 min.
Determination of Vinyl Chloride at ug/l. Level in Water by Gas Chromatography
ERIC Educational Resources Information Center
Bellar, Thomas A.; And Others
1976-01-01
A quantitative method for the determination of vinyl chloride in water is presented. Vinyl chloride is transfered to the gas phase by bubbling inert gas through the water. After concentration on silica gel or Carbosieve-B, determination is by gas chromatography. Confirmation of vinyl chloride is by gas chromatography-mass spectrometry. (Author/BT)
Schmitz-Afonso, I.; Loyo-Rosales, J.E.; de la Paz Aviles, M.; Rattner, B.A.; Rice, C.P.
2003-01-01
A quantitative method for the simultaneous determination of octylphenol, nonylphenol and the corresponding ethoxylates (1 to 5) in biota is presented. Extraction methods were developed for egg and fish matrices based on accelerated solvent extraction followed by a solid-phase extraction cleanup, using octadecylsilica or aminopropyl cartridges. Identification and quantitation were accomplished by liquid chromatography-electrospray tandem mass spectrometry (LC-MS-MS) and compared to the traditional liquid chromatography with fluorescence spectroscopy detection. LC-MS-MS provides high sensitivity and specificity required for these complex matrices and an accurate quantitation with the use of 13C-labeled internal standards. Quantitation limits by LC-MS-MS ranged from 4 to 12 ng/g in eggs, and from 6 to 22 ng/g in fish samples. These methods were successfully applied to osprey eggs from the Chesapeake Bay and fish from the Great Lakes area. Total levels found in osprey egg samples were up to 18 ng/g wet mass and as high as 8.2 ug/g wet mass in the fish samples.
Yi, YaXiong; Zhang, Yong; Ding, Yue; Lu, Lu; Zhang, Tong; Zhao, Yuan; Xu, XiaoJun; Zhang, YuXin
2016-11-01
We developed a novel quantitative analysis method based on ultra high performance liquid chromatography coupled with diode array detection for the simultaneous determination of the 14 main active components in Yinchenhao decoction. All components were separated on an Agilent SB-C18 column by using a gradient solvent system of acetonitrile/0.1% phosphoric acid solution at a flow rate of 0.4 mL/min for 35 min. Subsequently, linearity, precision, repeatability, and accuracy tests were implemented to validate the method. Furthermore, the method has been applied for compositional difference analysis of 14 components in eight normal-extraction Yinchenhao decoction samples, accompanied by hierarchical clustering analysis and similarity analysis. The result that all samples were divided into three groups based on different contents of components demonstrated that extraction methods of decocting, refluxing, ultrasonication and extraction solvents of water or ethanol affected component differentiation, and should be related to its clinical applications. The results also indicated that the sample prepared by patients in the family by using water extraction employing a casserole was almost same to that prepared using a stainless-steel kettle, which is mostly used in pharmaceutical factories. This research would help patients to select the best and most convenient method for preparing Yinchenhao decoction. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Quantitation of flavonoid constituents in citrus fruits.
Kawaii, S; Tomono, Y; Katase, E; Ogawa, K; Yano, M
1999-09-01
Twenty-four flavonoids have been determined in 66 Citrus species and near-citrus relatives, grown in the same field and year, by means of reversed phase high-performance liquid chromatography analysis. Statistical methods have been applied to find relations among the species. The F ratios of 21 flavonoids obtained by applying ANOVA analysis are significant, indicating that a classification of the species using these variables is reasonable to pursue. Principal component analysis revealed that the distributions of Citrus species belonging to different classes were largely in accordance with Tanaka's classification system.
Siddiqui, Masoom Raza; Wabaidur, Saikh Mohammad; Khan, Moonis Ali; ALOthman, Zeid A; Rafiquee, M Z A; Alqadami, Ayoub Abdullah
2018-01-01
Quantitative assessment of nitrite (NO 2 - ) anion was performed using a newly developed high throughput ultra performance liquid chromatography-mass spectrometric (UPLC-MS) method. The nitrite determination with the proposed method using micellar mobile phase was unknown. Selected ion reaction mode using negative electrospray ionization was adopted for the identification and quantitative analysis of nitrite. The chromatographic separation was performed using BEH C-18 column and a micellar mobile phase consisted of sodium dodecyl sulphate and acetonitrile in ratio 30:70 was used. The elution of nitrite anion was accomplished in less than 1 min. Under the optimal analysis conditions, the linearity of the developed method was checked in the concentration range of 0.5-20 mg kg -1 NO 2 - with an excellent correlation coefficient of 0.996. The precisions of the method with relative standard deviation <2% was observed when standard at concentration of 1 mg kg -1 was used. The limit of detection and limit of quantitation of the developed mass spectrometric method was found to be 0.114 and 0.346 mg kg -1 , respectively. The developed UPLC/MS method was applied to quantify this anion in processed meats and poultries from various super market of Saudi Arabia (Riyadh region). The recoveries of the nitrite in the various samples were found in the range of 100.03-103.5%.
Moulder, Robert; Filén, Jan-Jonas; Salmi, Jussi; Katajamaa, Mikko; Nevalainen, Olli S; Oresic, Matej; Aittokallio, Tero; Lahesmaa, Riitta; Nyman, Tuula A
2005-07-01
The options available for processing quantitative data from isotope coded affinity tag (ICAT) experiments have mostly been confined to software specific to the instrument of acquisition. However, recent developments with data format conversion have subsequently increased such processing opportunities. In the present study, data sets from ICAT experiments, analysed with liquid chromatography/tandem mass spectrometry (MS/MS), using an Applied Biosystems QSTAR Pulsar quadrupole-TOF mass spectrometer, were processed in triplicate using separate mass spectrometry software packages. The programs Pro ICAT, Spectrum Mill and SEQUEST with XPRESS were employed. Attention was paid towards the extent of common identification and agreement of quantitative results, with additional interest in the flexibility and productivity of these programs. The comparisons were made with data from the analysis of a specifically prepared test mixture, nine proteins at a range of relative concentration ratios from 0.1 to 10 (light to heavy labelled forms), as a known control, and data selected from an ICAT study involving the measurement of cytokine induced protein expression in human lymphoblasts, as an applied example. Dissimilarities were detected in peptide identification that reflected how the associated scoring parameters favoured information from the MS/MS data sets. Accordingly, there were differences in the numbers of peptides and protein identifications, although from these it was apparent that both confirmatory and complementary information was present. In the quantitative results from the three programs, no statistically significant differences were observed.
Wheelan, P; Zirrolli, J A; Clay, K L
1992-01-01
A method has been developed for the analysis of derivatized diradylglycerols obtained from glycerophosphocholine (GPC) of transformed murine bone marrow-derived mast cells that provided high performance liquid chromatography (HPLC) separation of GPC subclasses and molecular species separation with on-line quantitation using UV detection. In addition, the derivatized diradylglycerol species were unequivocably identified by continuous flow fast-atom bombardment mass spectrometry. GPC was initially isolated by thin-layer chromatography (TLC), the phosphocholine group was hydrolyzed, and the resultant diradylglycerol was derivatized with 7-[(chlorocarbonyl)-methoxy]-4-methylcoumarin (CMMC). After separation of the derivatized subclasses by normal phase HPLC, the individual molecular species of the alkylacyl and diacyl subclasses were quantitated and collected during a subsequent reverse phase HPLC step. With an extinction coefficient of 14,700 l mol-1 cm-1 at a wavelength detection of 320 nm, the CMMC derivatives afforded sensitive UV detection (100 pmol) and quantitation of the molecular species. Continuous flow fast-atom bombardment mass spectrometry of the alkylacyl CMMC derivatives yielded abundant [MH]+ ions and a single fragment ion formed by loss of alkylketene from the sn-2 acyl group, [MH-(R = C = O)]+. No fragmentation of the sn-1 alkyl chain was observed. Diacyl derivatives also produced abundant [MH]+ ions plus two fragment ions arising from loss of RCOOH from each of the acyl substituents and two fragment ions from the loss of alkyketene from each acyl group. Individual molecular species substituents were assigned from these ions.
Photoelectrochemical detection of benzaldehyde in foodstuffs
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaCourse, W.R.; Krull, I.S.
Photoelectrochemical detection (PED) coupled with high performance liquid chromatography was used to quantitatively determine benzaldehyde in extracts, beverages, and foodstuffs. Photoelectrochemical detection is responsive to alkyl and aryl ketones and aldehydes and offers the advantages of 2-3 orders of magnitude linearity, 5-1-ng limits of detection, and a high degree of selectivity without chemical derivatization. This is the first application of the PED to sample analysis.
Cordero, Chiara; Kiefl, Johannes; Schieberle, Peter; Reichenbach, Stephen E; Bicchi, Carlo
2015-01-01
Modern omics disciplines dealing with food flavor focus the analytical efforts on the elucidation of sensory-active compounds, including all possible stimuli of multimodal perception (aroma, taste, texture, etc.) by means of a comprehensive, integrated treatment of sample constituents, such as physicochemical properties, concentration in the matrix, and sensory properties (odor/taste quality, perception threshold). Such analyses require detailed profiling of known bioactive components as well as advanced fingerprinting techniques to catalog sample constituents comprehensively, quantitatively, and comparably across samples. Multidimensional analytical platforms support comprehensive investigations required for flavor analysis by combining information on analytes' identities, physicochemical behaviors (volatility, polarity, partition coefficient, and solubility), concentration, and odor quality. Unlike other omics, flavor metabolomics and sensomics include the final output of the biological phenomenon (i.e., sensory perceptions) as an additional analytical dimension, which is specifically and exclusively triggered by the chemicals analyzed. However, advanced omics platforms, which are multidimensional by definition, pose challenging issues not only in terms of coupling with detection systems and sample preparation, but also in terms of data elaboration and processing. The large number of variables collected during each analytical run provides a high level of information, but requires appropriate strategies to exploit fully this potential. This review focuses on advances in comprehensive two-dimensional gas chromatography and analytical platforms combining two-dimensional gas chromatography with olfactometry, chemometrics, and quantitative assays for food sensory analysis to assess the quality of a given product. We review instrumental advances and couplings, automation in sample preparation, data elaboration, and a selection of applications.
Goda, Ryoya; Kobayashi, Nobuhiro
2012-05-01
To evaluate the usefulness of the peptide adsorption-controlled liquid chromatography-tandem mass spectrometry (PAC-LC-MS/MS) for reproducible measurement of peptides in biological fluids, simultaneous quantitation of amyloid β 1-38, 1-40, 1-42 and 1-43 peptides (Aβ38, Aβ40, Aβ42 and Aβ43) in dog cerebrospinal fluid (CSF) was tried. Each stable isotope labeled Aβ was used as the internal standard to minimize the influence of CSF matrix on the reproducible Aβ quantitation. To reduce a loss of Aβ during the pretreatment procedures, the dog CSF diluted by water-acetic acid-methanol (2:6:1, v/v/v) was loaded on PAC-LC-MS/MS directly. Quantification of the Aβ in the diluted dog CSF was carried out using multiple reaction monitoring (MRM) mode. The [M+5H(5+)] and b(5+) ion fragment of each peptide were chosen as the precursor and product ions for MRM transitions of each peptide. The calibration curves were drawn from Aβ standard calibration solutions using PAC-LC-MS/MS. Analysis of dog CSF samples suggests that the basal concentration of Aβ38, Aβ40, Aβ42 and Aβ43 in dog CSF is approximately 300, 900, 200 and 30 pM, respectively. This is the first time Aβ concentrations in dog CSF have been reported. Additionally, the evaluation of intra- and inter-day reproducibility of analysis of Aβ standard solution, the freeze-thaw stability and the room temperature stability of Aβ standard solution suggest that the PAC-LC-MS/MS method enables reproducible Aβ quantitation. Copyright © 2012 Elsevier B.V. All rights reserved.
Zhao, Ying-Yong; Zhao, Ye; Zhang, Yong-Min; Lin, Rui-Chao; Sun, Wen-Ji
2009-06-01
Polyporus umbellatus is a widely used anti-aldosteronic diuretic in Traditional Chinese medicine (TCM). A new, sensitive and selective high-performance liquid chromatography-fluorescence detector (HPLC-FLD) and high-performance liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry (HPLC-APCI-MS/MS) method for quantitative and qualitative determination of ergosta-4,6,8(14),22-tetraen-3-one(ergone), which is the main diuretic component, was provided for quality control of P. umbellatus crude drug. The ergone in the ethanolic extract of P. umbellatus was unambiguously characterized by HPLC-APCI, and further confirmed by comparing with a standard compound. The trace ergone was detected by the sensitive and selective HPLC-FLD. Linearity (r2 > 0.9998) and recoveries of low, medium and high concentration (100.5%, 100.2% and 100.4%) were consistent with the experimental criteria. The limit of detection (LOD) of ergone was around 0.2 microg/mL. Our results indicated that the content of ergone in P. umbellatus varied significantly from habitat to habitat with contents ranging from 2.13 +/- 0.02 to 59.17 +/- 0.05 microg/g. Comparison among HPLC-FLD and HPLC-UV or HPLC-APCI-MS/MS demonstrated that the HPLC-FLD and HPLC-APCI-MS/MS methods gave similar quantitative results for the selected herb samples, the HPLC-UV methods gave lower quantitative results than HPLC-FLD and HPLC-APCI-MS/MS methods. The established new HPLC-FLD method has the advantages of being rapid, simple, selective and sensitive, and could be used for the routine analysis of P. umbellatus crude drug.
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeRosier, R.; Waterland, L.R.
1986-02-01
This report is a compendium of detailed test sampling and analysis data obtained in field tests of a watertube industrial boiler burning a coal/water slurry (CWS). Test data reported include preliminary stack test data, boiler operating data, and complete flue-gas emission results. Flue-gas emission measurements included continuous monitoring for criteria pollutants; onsite gas chromatography (GC) for volatile hydrocarbons (Cl-C6); Methods 5/8 sampling for particulate, SO/sub 2/, and SO/sub 3/ emissions; source assessment sampling system (SASS) for total organics in two boiling point ranges (100 to 300 C and > 300 C), organic compound category information using infrared spectrometry (IR), liquidmore » column (LC) chromatography separation, and low-resolution mass spectrometry (LRMS), specific quantitation of the semivolatile organic priority pollutants using gas chromatography/mass spectrometry (GC/MS), and trace-element emissions using spark-source mass spectrometry (SSMS) and atomic absorption spectroscopy (AAS); N/sub 2/O emissions by gas chromatography/electron-capture detector (GC/ECD); and biological assay testing of SASS and ash-stream samples.« less
Fischedick, Justin Thomas; Hazekamp, Arno; Erkelens, Tjalling; Choi, Young Hae; Verpoorte, Rob
2010-12-01
Cannabis sativa L. is an important medicinal plant. In order to develop cannabis plant material as a medicinal product quality control and clear chemotaxonomic discrimination between varieties is a necessity. Therefore in this study 11 cannabis varieties were grown under the same environmental conditions. Chemical analysis of cannabis plant material used a gas chromatography flame ionization detection method that was validated for quantitative analysis of cannabis monoterpenoids, sesquiterpenoids, and cannabinoids. Quantitative data was analyzed using principal component analysis to determine which compounds are most important in discriminating cannabis varieties. In total 36 compounds were identified and quantified in the 11 varieties. Using principal component analysis each cannabis variety could be chemically discriminated. This methodology is useful for both chemotaxonomic discrimination of cannabis varieties and quality control of plant material. Copyright © 2010 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ford, Michael J; Deibel, Michael A.; Tomkins, Bruce A
Quantitative determination of caffeine on reversed-phase C8 thin-layer chromatography plates using a surface sampling electrospray ionization system with tandem mass spectrometry detection is reported. The thin-layer chromatography/electrospray tandem mass spectrometry method employed a deuterium-labeled caffeine internal standard and selected reaction monitoring detection. Up to nine parallel caffeine bands on a single plate were sampled in a single surface scanning experiment requiring 35 min at a surface scan rate of 44 {mu}m/s. A reversed-phase HPLC/UV caffeine assay was developed in parallel to assess the mass spectrometry method performance. Limits of detection for the HPLC/UV and thin-layer chromatography/electrospray tandem mass spectrometry methodsmore » determined from the calibration curve statistics were 0.20 ng injected (0.50 {mu}L) and 1.0 ng spotted on the plate, respectively. Spike recoveries with standards and real samples ranged between 97 and 106% for both methods. The caffeine content of three diet soft drinks (Diet Coke, Diet Cherry Coke, Diet Pepsi) and three diet sport drinks (Diet Turbo Tea, Speed Stack Grape, Speed Stack Fruit Punch) was measured. The HPLC/UV and mass spectrometry determinations were in general agreement, and these values were consistent with the quoted values for two of the three diet colas. In the case of Diet Cherry Coke and the diet sports drinks, the determined caffeine amounts using both methods were consistently higher (by 8% or more) than the literature values.« less
Yang, Guang; Zhao, Xin; Wen, Jun; Zhou, Tingting; Fan, Guorong
2017-04-01
An analytical approach including fingerprint, quantitative analysis and rapid screening of anti-oxidative components was established and successfully applied for the comprehensive quality control of Rhizoma Smilacis Glabrae (RSG), a well-known Traditional Chinese Medicine with the homology of medicine and food. Thirteen components were tentatively identified based on their retention behavior, UV absorption and MS fragmentation patterns. Chemometric analysis based on coulmetric array data was performed to evaluate the similarity and variation between fifteen batches. Eight discriminating components were quantified using single-compound calibration. The unit responses of those components in coulmetric array detection were calculated and compared with those of several compounds reported to possess antioxidant activity, and four of them were tentatively identified as main contributors to the total anti-oxidative activity. The main advantage of the proposed approach was that it realized simultaneous fingerprint, quantitative analysis and screening of anti-oxidative components, providing comprehensive information for quality assessment of RSG. Copyright © 2017 Elsevier B.V. All rights reserved.
QUANTITATIVE MASS SPECTROMETRIC ANALYSIS OF GLYCOPROTEINS COMBINED WITH ENRICHMENT METHODS
Ahn, Yeong Hee; Kim, Jin Young; Yoo, Jong Shin
2015-01-01
Mass spectrometry (MS) has been a core technology for high sensitive and high-throughput analysis of the enriched glycoproteome in aspects of quantitative assays as well as qualitative profiling of glycoproteins. Because it has been widely recognized that aberrant glycosylation in a glycoprotein may involve in progression of a certain disease, the development of efficient analysis tool for the aberrant glycoproteins is very important for deep understanding about pathological function of the glycoprotein and new biomarker development. This review first describes the protein glycosylation-targeting enrichment technologies mainly employing solid-phase extraction methods such as hydrizide-capturing, lectin-specific capturing, and affinity separation techniques based on porous graphitized carbon, hydrophilic interaction chromatography, or immobilized boronic acid. Second, MS-based quantitative analysis strategies coupled with the protein glycosylation-targeting enrichment technologies, by using a label-free MS, stable isotope-labeling, or targeted multiple reaction monitoring (MRM) MS, are summarized with recent published studies. © 2014 The Authors. Mass Spectrometry Reviews Published by Wiley Periodicals, Inc. Rapid Commun. Mass Spec Rev 34:148–165, 2015. PMID:24889823
Mass spectrometric based approaches in urine metabolomics and biomarker discovery.
Khamis, Mona M; Adamko, Darryl J; El-Aneed, Anas
2017-03-01
Urine metabolomics has recently emerged as a prominent field for the discovery of non-invasive biomarkers that can detect subtle metabolic discrepancies in response to a specific disease or therapeutic intervention. Urine, compared to other biofluids, is characterized by its ease of collection, richness in metabolites and its ability to reflect imbalances of all biochemical pathways within the body. Following urine collection for metabolomic analysis, samples must be immediately frozen to quench any biogenic and/or non-biogenic chemical reactions. According to the aim of the experiment; sample preparation can vary from simple procedures such as filtration to more specific extraction protocols such as liquid-liquid extraction. Due to the lack of comprehensive studies on urine metabolome stability, higher storage temperatures (i.e. 4°C) and repetitive freeze-thaw cycles should be avoided. To date, among all analytical techniques, mass spectrometry (MS) provides the best sensitivity, selectivity and identification capabilities to analyze the majority of the metabolite composition in the urine. Combined with the qualitative and quantitative capabilities of MS, and due to the continuous improvements in its related technologies (i.e. ultra high-performance liquid chromatography [UPLC] and hydrophilic interaction liquid chromatography [HILIC]), liquid chromatography (LC)-MS is unequivocally the most utilized and the most informative analytical tool employed in urine metabolomics. Furthermore, differential isotope tagging techniques has provided a solution to ion suppression from urine matrix thus allowing for quantitative analysis. In addition to LC-MS, other MS-based technologies have been utilized in urine metabolomics. These include direct injection (infusion)-MS, capillary electrophoresis-MS and gas chromatography-MS. In this article, the current progresses of different MS-based techniques in exploring the urine metabolome as well as the recent findings in providing potentially diagnostic urinary biomarkers are discussed. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 36:115-134, 2017. © 2015 Wiley Periodicals, Inc.
Boka, Vasiliki-Ioanna; Argyropoulou, Aikaterini; Gikas, Evangelos; Angelis, Apostolis; Aligiannis, Nektarios; Skaltsounis, Alexios-Leandros
2015-11-01
A high-performance thin-layer chromatographic methodology was developed and validated for the isolation and quantitative determination of oleuropein in two extracts of Olea europaea leaves. OLE_A was a crude acetone extract, while OLE_AA was its defatted residue. Initially, high-performance thin-layer chromatography was employed for the purification process of oleuropein with fast centrifugal partition chromatography, replacing high-performance liquid-chromatography, in the stage of the determination of the distribution coefficient and the retention volume. A densitometric method was developed for the determination of the distribution coefficients, KC = CS/CM. The total concentrations of the target compound in the stationary phase (CS) and in the mobile phase (CM) were calculated by the area measured in the high-performance thin-layer chromatogram. The estimated Kc was also used for the calculation of the retention volume, VR, with a chromatographic retention equation. The obtained data were successfully applied for the purification of oleuropein and the experimental results confirmed the theoretical predictions, indicating that high-performance thin-layer chromatography could be an important counterpart in the phytochemical study of natural products. The isolated oleuropein (purity > 95%) was subsequently used for the estimation of its content in each extract with a simple, sensitive and accurate high-performance thin-layer chromatography method. The best fit calibration curve from 1.0 µg/track to 6.0 µg/track of oleuropein was polynomial and the quantification was achieved by UV detection at λ 240 nm. The method was validated giving rise to an efficient and high-throughput procedure, with the relative standard deviation % of repeatability and intermediate precision not exceeding 4.9% and accuracy between 92% and 98% (recovery rates). Moreover, the method was validated for robustness, limit of quantitation, and limit of detection. The amount of oleuropein for OLE_A, OLE_AA, and an aqueous extract of olive leaves was estimated to be 35.5% ± 2.7, 51.5% ± 1.4, and 12.5% ± 0.12, respectively. Statistical analysis proved that the method is repeatable and selective, and can be effectively applied for the estimation of oleuropein in olive leaves' extracts, and could potentially replace high-performance liquid chromatography methodologies developed so far. Thus, the phytochemical investigation of oleuropein could be based on high-performance thin-layer chromatography coupled with separation processes, such as fast centrifugal partition chromatography, showing efficacy and credibility. Georg Thieme Verlag KG Stuttgart · New York.
Achour, Brahim; Dantonio, Alyssa; Niosi, Mark; Novak, Jonathan J; Al-Majdoub, Zubida M; Goosen, Theunis C; Rostami-Hodjegan, Amin; Barber, Jill
2018-06-01
Quantitative proteomic methods require optimization at several stages, including sample preparation, liquid chromatography-tandem mass spectrometry (LC-MS/MS), and data analysis, with the final analysis stage being less widely appreciated by end-users. Previously reported measurement of eight uridine-5'-diphospho-glucuronosyltransferases (UGT) generated by two laboratories [using stable isotope-labeled (SIL) peptides or quantitative concatemer (QconCAT)] reflected significant disparity between proteomic methods. Initial analysis of QconCAT data showed lack of correlation with catalytic activity for several UGTs (1A4, 1A6, 1A9, 2B15) and moderate correlations for UGTs 1A1, 1A3, and 2B7 ( R s = 0.40-0.79, P < 0.05; R 2 = 0.30); good correlations were demonstrated between cytochrome P450 activities and abundances measured in the same experiments. Consequently, a systematic review of data analysis, starting from unprocessed LC-MS/MS data, was undertaken, with the aim of improving accuracy, defined by correlation against activity. Three main criteria were found to be important: choice of monitored peptides and fragments, correction for isotope-label incorporation, and abundance normalization using fractional protein mass. Upon optimization, abundance-activity correlations improved significantly for six UGTs ( R s = 0.53-0.87, P < 0.01; R 2 = 0.48-0.73); UGT1A9 showed moderate correlation ( R s = 0.47, P = 0.02; R 2 = 0.34). No spurious abundance-activity relationships were identified. However, methods remained suboptimal for UGT1A3 and UGT1A9; here hydrophobicity of standard peptides is believed to be limiting. This commentary provides a detailed data analysis strategy and indicates, using examples, the significance of systematic data processing following acquisition. The proposed strategy offers significant improvement on existing guidelines applicable to clinically relevant proteins quantified using QconCAT. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.
Du, Gang; Zhao, Haiyu; Song, Yuelin; Zhang, Qingwen; Wang, Yitao
2011-10-01
A high-performance liquid chromatography (HPLC) coupled with triple quadrupole mass spectrometry (MS/MS) method was developed for rapid determination of 13 isoflavones in Radix puerariae. A novel shell-type column, namely Kinetex core-shell C(18) column (50 mm×2.1 mm id, 2.6 μm), and gradient elution were used during the analysis. The chromatographic peaks of 13 investigated compounds were identified by comparing their retention time and MS data with the related reference compounds. Multiple-reaction monitoring (MRM) was employed for the quantitative analysis with negative ionization mode. All calibration curves showed good linearity (r(2)>0.9990) within test ranges. The LOD and LOQ were lower than 0.017 and 0.873 μg/mL on column, respectively. The intra- and inter-day precisions for 13 analytes were <1.17 and 2.17%, respectively, and the recoveries were 93.1-104.4%. The validated method was applied for quantitative analysis of 13 isoflavones in 7 species of Radix puerariae. The result demonstrated that HPLC-MS/MS system with Kinetex column could be a promising analytical tool for the determination of isoflavones in traditional Chinese medicines, which is helpful for comprehensive evaluation of quality of R. puerariae. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Comprehensive Analysis of the Gas- and Particle-Phase Products of VOC Oxidation
NASA Astrophysics Data System (ADS)
Bakker-Arkema, J.; Ziemann, P. J.
2017-12-01
Controlled environmental chamber studies are important for determining atmospheric reaction mechanisms and gas and aerosol products formed in the oxidation of volatile organic compounds (VOCs). Such information is necessary for developing detailed chemical models for use in predicting the atmospheric fate of VOCs and also secondary organic aerosol (SOA) formation. However, complete characterization of atmospheric oxidation reactions, including gas- and particle-phase product yields, and reaction branching ratios, are difficult to achieve. In this work, we investigated the reactions of terminal and internal alkenes with OH radicals in the presence of NOx in an attempt to fully characterize the chemistry of these systems while minimizing and accounting for the inherent uncertainties associated with environmental chamber experiments. Gas-phase products (aldehydes formed by alkoxy radical decomposition) and particle-phase products (alkyl nitrates, β-hydroxynitrates, dihydroxynitrates, 1,4-hydroxynitrates, 1,4-hydroxycarbonyls, and dihydroxycarbonyls) formed through pathways involving addition of OH to the C=C double bond as well as H-atom abstraction were identified and quantified using a suite of analytical techniques. Particle-phase products were analyzed in real time with a thermal desorption particle beam mass spectrometer; and off-line by collection onto filters, extraction, and subsequent analysis of functional groups by derivatization-spectrophotometric methods developed in our lab. Derivatized products were also separated by liquid chromatography for molecular quantitation by UV absorbance and identification using chemical ionization-ion trap mass spectrometry. Gas phase aldehydes were analyzed off-line by collection onto Tenax and a 5-channel denuder with subsequent analysis by gas chromatography, or by collection onto DNPH-coated cartridges and subsequent analysis by liquid chromatography. The full product identification and quantitation, with careful minimization of uncertainties for the various components of the experiment and analyses, demonstrates our capability to comprehensively and accurately analyze the complex chemical composition of products formed in the oxidation of organic compounds in laboratory chamber studies.
Guan, Yong-mei; Jin, Chen; Zhu, Wei-feng; Yang, Ming
2018-01-01
Fermented Cordyceps sinensis, the succedaneum of Cordyceps sinensis which is extracted and separated from Cordyceps sinensis by artificial fermentation, is commonly used in eastern Asia in clinical treatments due to its health benefit. In this paper, a new strategy for differentiating and comprehensively evaluating the quality of products of fermented Cordyceps sinensis has been established, based on high-performance liquid chromatography (HPLC) fingerprint analysis combined with similar analysis (SA), hierarchical cluster analysis (HCA), and the quantitative analysis of multicomponents by single marker (QAMS). Ten common peaks were collected and analysed using SA, HCA, and QAMS. These methods indicated that 30 fermented Cordyceps sinensis samples could be categorized into two groups by HCA. Five peaks were identified as uracil, uridine, adenine, guanosine, and adenosine, and according to the results from the diode array detector, which can be used to confirm peak purity, the purities of these compounds were greater than 990. Adenosine was chosen as the internal reference substance. The relative correction factors (RCF) between adenosine and the other four nucleosides were calculated and investigated using the QAMS method. Meanwhile, the accuracy of the QAMS method was confirmed by comparing the results of that method with those of an external standard method with cosines of the angles between the groups. No significant difference between the two methods was observed. In conclusion, the method established herein was efficient, successful in identifying the products of fermented Cordyceps sinensis, and scientifically valid to be applicable in the systematic quality control of fermented Cordyceps sinensis products. PMID:29850373
Chen, Li-Hua; Wu, Yao; Guan, Yong-Mei; Jin, Chen; Zhu, Wei-Feng; Yang, Ming
2018-01-01
Fermented Cordyceps sinensis , the succedaneum of Cordyceps sinensis which is extracted and separated from Cordyceps sinensis by artificial fermentation, is commonly used in eastern Asia in clinical treatments due to its health benefit. In this paper, a new strategy for differentiating and comprehensively evaluating the quality of products of fermented Cordyceps sinensis has been established, based on high-performance liquid chromatography (HPLC) fingerprint analysis combined with similar analysis (SA), hierarchical cluster analysis (HCA), and the quantitative analysis of multicomponents by single marker (QAMS). Ten common peaks were collected and analysed using SA, HCA, and QAMS. These methods indicated that 30 fermented Cordyceps sinensis samples could be categorized into two groups by HCA. Five peaks were identified as uracil, uridine, adenine, guanosine, and adenosine, and according to the results from the diode array detector, which can be used to confirm peak purity, the purities of these compounds were greater than 990. Adenosine was chosen as the internal reference substance. The relative correction factors (RCF) between adenosine and the other four nucleosides were calculated and investigated using the QAMS method. Meanwhile, the accuracy of the QAMS method was confirmed by comparing the results of that method with those of an external standard method with cosines of the angles between the groups. No significant difference between the two methods was observed. In conclusion, the method established herein was efficient, successful in identifying the products of fermented Cordyceps sinensis , and scientifically valid to be applicable in the systematic quality control of fermented Cordyceps sinensis products.
Khan, Shaheer; Liu, Jenkuei; Szabo, Zoltan; Kunnummal, Baburaj; Han, Xiaorui; Ouyang, Yilan; Linhardt, Robert J; Xia, Qiangwei
2018-06-15
N-linked glycan analysis of recombinant therapeutic proteins, such as monoclonal antibodies, Fc-fusion proteins, and antibody-drug conjugates, provides valuable information regarding protein therapeutics glycosylation profile. Both qualitative identification and quantitative analysis of N-linked glycans on recombinant therapeutic proteins are critical analytical tasks in the biopharma industry during the development of a biotherapeutic. Currently, such analyses are mainly carried out using capillary electrophoresis/laser-induced fluorescence (CE/LIF), liquid chromatography/fluorescence (LC/FLR), and liquid chromatography/fluorescence/mass spectrometry (LC/FLR/MS) technologies. N-linked glycans are first released from glycoproteins by enzymatic digestion, then labeled with fluorescence dyes for subsequent CE or LC separation, and LIF or MS detection. Here we present an on-line CE/LIF/MS N-glycan analysis workflow that incorporates the fluorescent Teal™ dye and an electrokinetic pump-based nanospray sheath liquid capillary electrophoresis/mass spectrometry (CE/MS) ion source. Electrophoresis running buffer systems using ammonium acetate and ammonium hydroxide were developed for the negative ion mode CE/MS analysis of fluorescence-labeled N-linked glycans. Results show that on-line CE/LIF/MS analysis can be readily achieved using this versatile CE/MS ion source on common CE/MS instrument platforms. This on-line CE/LIF/MS method using Teal™ fluorescent dye and electrokinetic pump-based nanospray sheath liquid CE/MS coupling technology holds promise for on-line quantitation and identification of N-linked glycans on recombinant therapeutic proteins. Copyright © 2018 John Wiley & Sons, Ltd.
Li, Haijing; Zhang, Xiangwen
2017-08-08
As coking precursors, aromatic hydrocarbons have an effect on the cracking stability of fuels. A method for identifying and quantitating aromatics in the supercritical cracking products of jet fuel was established by comprehensive two-dimensional gas chromatography coupled with mass spectrometry (GC×GC-MS). The effects of main chromatographic conditions such as initial oven temperature and modulation period on the separation of supercritical cracking products were studied. The method has good separation ability for polycyclic aromatic hydrocarbons (PAH) isomers. A total of 27 aromatics, including monocyclic aromatic hydrocarbons, bicyclic aromatic hydrocarbons, tricyclic aromatic hydrocarbons, tetracyclic aromatic hydrocarbons, etc., were identified based on standard mass spectra, the retention times of standards and literature reports. Moreover, the corresponding quantitative determination was achieved by external standard method of GC×GC-FID. The results showed that the contents of aromatics increased with the increase of gas yield. When gas yield reached 22%, the bicyclic aromatic hydrocarbons began to produce, and their contents increased exponentially with the increase of gas yield. Compared with the traditional GC-MS, the method has better separation and qualitative ability, and can be applied to the separation of complex samples and qualitative and quantitative analyses of cracking products.
NASA Astrophysics Data System (ADS)
Khundzhua, D. A.; Patsaeva, S. V.; Trubetskoj, O. A.; Trubetskaya, O. E.
2017-01-01
The spectral and optical properties of the fractionated components of dissolved organic matter (DOM) of three freshwater lakes in Karelia were studied using reversed-phase high-performance liquid chromatography (RP-HPLC) with online detection of fluorescence and absorption spectra. It is shown that the DOM fractions are qualitatively similar, but differ quantitatively in the ratio of components and consist of at least three types of fluorophores: (1) hydrophilic "humic-like" fluorophore(s) with the emission maximum in the region of 420 nm and an absorption band at 260-270 nm; (2) hydrophobic "humic-like" fluorophore(s) with the emission maximum at approximately 450 nm that has no characteristic absorption maxima in the region from 220 to 400 nm; and (3) a "protein-like" fluorophore with the emission maximum in the region of 340-350 nm, which is typical of proteins and peptides containing tryptophan.
Comparative analysis of essential oil components of two Pinus species from Taibai Mountain in China.
Zhang, Yuan; Wang, Zhezhi
2010-08-01
Gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) were used to compare between the essential oil components from needles of Pinus armandii Franch versus P. tabulaeformis Carr., growing on the same site at Taibai Mountain, China. Under optimum extraction and analysis conditions, 65 and 66 constituents each were identified in P. armandii and P. tabulaeformis, which accounted for 87.9% and 87.1%, respectively, of their oils. Based on their terpene compositions, we concluded that these species belong to a high-caryophyllene chemotype, with sesquiterpenes comprising 54.4% to 54.8% of the total contents. We also determined minor qualitative and major quantitative variations in some compounds. Compared with that from P. tabulaeformis, P. armandii oil had more gamma-muurolene (7.5%), terpinolene (5.8%), and longifolene (5.7%). In contrast, alpha-pinene (8.6%) and caryophyllene oxide (7.4%) were the dominant compounds in P. tabulaeformis.
Pérez, M I Bailón; Rodríguez, L Cuadros; Cruces-Blanco, C
2007-01-17
The potential of micellar electrokinetic capillary chromatography (MEKC) for analyzing nine beta-lactams antibiotics (cloxacillin, dicloxacillin, oxacillin, penicillin G, penicillin V, ampicillin, nafcillin, piperacillin, amoxicillin) in different pharmaceutical preparations, have been demonstrated. An experimental design strategy has been applied to optimize the main variables: pH and buffer concentration, concentration of the micellar medium, separation voltage and capillary temperature. Borate buffer (26mM) at pH 8.5 containing 100mM sodium dodecyl sulphate (SDS) was used as the background electrolyte. The method was validated. Linearity, limit of detection and quantitation and precision were established for each compound. The analysis of some of the beta-lactams in Orbenin capsules, Britapen tables and in Veterin-Micipen injectable, all used in human and veterinary medicine, have demonstrated the applicability of these technique for quality control in the pharmaceutical industry.
Queiroz, R H; Lanchote, V L; Bonato, P S; Tozato, E; de Carvalho, D; Gomes, M A; Cerdeira, A L
1999-06-01
A simple, rapid and quantitative bioassay method was compared to a gas chromatography/mass spectrometry (GC/MS) procedure for the analysis of ametryn in surface and groundwater. This method was based on the activity of ametryn in inhibiting the growth of the primary root and shoot of germinating letuce, Lactuca sativa L. seed. The procedure was sensitive to 0.01 microgram/l and was applicable from this concentration up to 0.6 microgram/l. Initial surface sterilization of the seed, selection of pregerminated seed of certain root lengths and special equipment are not necessary. So, we concluded that the sensitivity of the bioassay method is compatible with the chromatographic method (GC-MS). However, the study of the correlation between methods suggests that the bioassay should be used only as a screening technique for the evaluation of ametryn residues in water.
Hammerstone, J F; Lazarus, S A; Mitchell, A E; Rucker, R; Schmitz, H H
1999-02-01
Monomeric and oligomeric procyanidins present in cocoa and chocolate were separated and identified using a modified normal-phase high-performance liquid chromatography (HPLC) method coupled with on-line mass spectrometry (MS) analysis using an atmospheric pressure ionization electrospray chamber. The chromatographic separation was achieved using a silica stationary phase in combination with a gradient ascending in polarity. This qualitative report confirms the presence of a complex series of procyanidins in raw cocoa and certain chocolates using HPLC/MS techniques. Although both cocoa and chocolate contained monomeric and oligomeric procyanidin units 2-10, only use of negative mode provided MS data for the higher oligomers (i.e., >pentamer). Application of this method for qualitative analysis of proanthocyanidins in other food products and confirmation of this method as a reliable quantitative tool for determining levels of procyanidins in cocoa, chocolate, and other food products are currently being investigated.
Sarkissian, Garry
2007-09-01
Automobile tire marks can routinely be found at the scenes of crime, particularly hit-and-run accidents and are left on road surfaces because of sudden braking or the wheels spinning. The tire marks are left due to the friction between the tire rubber and the solid road surface, and do not always demonstrate the tire tread pattern. However, the tire mark will contain traces of the tire. In this study, Pyrolysis Gas Chromatography/Mass Spectrometry was used to analyze 12 tires from different manufacturer's and their traces collected after braking incidents. Tire marks were left on a conglomerate road surface with sudden braking. The samples were pyrolysed without removal of contaminant in a micro-furnace type pyrolyser. Quantitative and qualitative analysis were performed on all the samples. All 12 samples were distinguished from each other. Each of the tire traces were identified as coming from there original source.
Pan, Xiaoping; Zhang, Baohong; Tian, Kang; Jones, Lindsey E; Liu, Jun; Anderson, Todd A; Wang, Jia-Sheng; Cobb, George P
2006-01-01
A quantitative liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) method was developed for the analysis of the explosive, octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX). In negative ionization mode, HMX forms an acetate adduct ion [M + CH(3)COO](-), m/z 355, in the presence of a small amount of acetic acid in the mobile phase. The ESI collision-induced dissociation (CID) spectrum of m/z 355 was acquired and the transitions m/z 355 --> 147 and m/z 355 --> 174 were chosen for the determination of HMX in samples. Using this quantification technique, the method detection limit was 1.57 microg/L and good linearity was achieved in the range 5-500 microg/L. This method will help to unambiguously analyze environmentally relevant concentrations of HMX. Copyright (c) 2006 John Wiley & Sons, Ltd.
Choo, Yuen May; Ng, Mei Han; Ma, Ah Ngan; Chuah, Cheng Hock; Hashim, Mohd Ali
2005-04-01
The application of supercritical fluid chromatography (SFC) coupled with a UV variable-wavelength detector to isolate the minor components (carotenes, vitamin E, sterols, and squalene) in crude palm oil (CPO) and the residual oil from palm-pressed fiber is reported. SFC is a good technique for the isolation and analysis of these compounds from the sources mentioned. The carotenes, vitamin E, sterols, and squalene were isolated in less than 20 min. The individual vitamin E isomers present in palm oil were also isolated into their respective components, alpha-tocopherol, alpha-tocotrienol, gamma-tocopherol, gamma-tocotrienol, and delta-tocotrienol. Calibration of all the minor components of palm as well as the individual components of palm vitamin E was carried out and was found to be comparable to those analyzed by other established analytical methods.
MASS SPECTROMETRY OF FATTY ALDEHYDES
Berdyshev, Evgeny V.
2011-01-01
Fatty aldehydes are important components of the cellular lipidome. Significant interest has been developed towards the analysis of the short chain α,β-unsaturated and hydroxylated aldehydes formed as a result of oxidation of polyunsaturated fatty acids. Multiple gas chromatography-mass spectrometry (GC/MS) and subsequently liquid chromatography-mass spectrometry (LC/MS) approaches have been developed to identify and quantify short-chain as well as long-chain fatty aldehydes. Due to the ability to non-enzymaticaly form Schiff bases with amino groups of proteins, lipids, and with DNA guanidine, free aldehydes are viewed as a marker or metric of fatty acid oxidation and not the part of intracellular signaling pathways which has significantly limited the overall attention this group of molecules have received. This review provides an overview of current GC/MS and LC/MS approaches of fatty aldehyde analysis as well as discusses technical challenges standing in the way of free fatty aldehyde quantitation. PMID:21930240
López-Bascón, María Asunción; Calderón-Santiago, Mónica; Priego-Capote, Feliciano
2016-11-02
A novel class of endogenous mammalian lipids endowed with antidiabetic and anti-inflammatory properties has been recently discovered. These are fatty acid esters of hydroxy fatty acids (FAHFAs) formed by condensation between a hydroxy fatty acid and a fatty acid. FAHFAs are present in human serum and tissues at low nanomolar concentrations. Therefore, high sensitivity and selectivity profiling analysis of these compounds in clinical samples is demanded. An automated qualitative and quantitative method based on on-line coupling between solid phase extraction and liquid chromatography-tandem mass spectrometry has been here developed for determination of FAHFAs in serum with the required sensitivity and selectivity. Matrix effects were evaluated by preparation of calibration models in serum and methanol. Recovery factors ranged between 73.8 and 100% in serum. The within-day variability ranged from 7.1 to 13.8%, and the between-days variability varied from 9.3 to 21.6%, which are quite acceptable values taking into account the low concentration levels at which the target analytes are found. The method has been applied to a cohort of human serum samples to estimate the concentrations profiles as a function of the glycaemic state and obesity. Statistical analysis revealed three FAHFAs with levels significantly different depending on the glycaemic state or the body mass index. This automated method could be implemented in high-throughput analysis with minimum user assistance. Copyright © 2016 Elsevier B.V. All rights reserved.
Chen, Liangmian; Kotani, Akira; Kusu, Fumiyo; Wang, Zhimin; Zhu, Jingjing; Hakamata, Hideki
2015-01-01
For the determination of seven caffeoylquinic acids [neochlorogenic acid (NcA), cryptochlorogenic acid (CcA), chlorogenic acid (CA), caffeic acid (CfA), isochlorogenic acid A (Ic A), isochlorogenic acid B (Ic B), isochlorogenic acid C (Ic C)] and two flavonoids [luteolin 7-O-glucoside (LtG) and luteolin (Lt)], a three-channel liquid chromatography with electrochemical detection (LC-3ECD) method was established. Chromatographic peak heights were proportional to each concentration, ranging from 2.5 to 100 ng/mL for NcA, CA, CcA, and CfA, and ranging from 2.5 to 250 ng/mL for LtG, Ic B, Ic A, Ic C, and Lt, respectively. The present LC-3ECD method was applied to the quantitative analysis of caffeoylquinic acids and flavonoids in four cultivars of Chrysanthemum morifolium flowers and their sulfur-fumigated products. It was found that 60% of LtG and more than 47% of caffeoylquinic acids were lost during the sulfur fumigation processing. Sulfur fumigation showed a destructive effect on the C. morifolium flowers. In addition, principle component analyses (PCA) were performed using the results of the quantitative analysis of caffeoylquinic acids and flavonoids to compare the "sameness" and "differences" of these analytes in C. morifolium flowers and the sulfur-fumigated products. PCA score plots showed that the four cultivars of C. morifolium flowers were clearly classified into four groups, and that significant differences were also found between the non-fumigated C. morifolium flowers and the sulfur-fumigated products. Therefore, it was demonstrated that the present LC-3ECD method coupled with PCA is applicable to the variation analysis of different C. morifolium flower samples.
Jia, Weina; Wang, Chunhua; Wang, Yuefei; Pan, Guixiang; Jiang, Miaomiao; Li, Zheng; Zhu, Yan
2015-01-01
Lianhua-Qingwen capsule (LQC) is a commonly used Chinese medical preparation to treat viral influenza and especially played a very important role in the fight against severe acute respiratory syndrome (SARS) in 2002-2003 in China. In this paper, a rapid ultraperformance liquid chromatography coupled with diode-array detector and quadrupole time-of-flight mass spectrometry (UPLC-DAD-QTOF-MS) method was established for qualitative and quantitative analysis of the major constituents of LQC. A total of 61 compounds including flavonoids, phenylpropanoids, anthraquinones, triterpenoids, iridoids, and other types of compounds were unambiguously or tentatively identified by comparing the retention times and accurate mass measurement with reference compounds or literature data. Among them, twelve representative compounds were further quantified as chemical markers in quantitative analysis, including salidroside, chlorogenic acid, forsythoside E, cryptochlorogenic acid, amygdalin, sweroside, hyperin, rutin, forsythoside A, phillyrin, rhein, and glycyrrhizic acid. The UPLC-DAD method was evaluated with linearity, limit of detection (LOD), limit of quantification (LOQ), precision, stability, repeatability, and recovery tests. The results showed that the developed quantitative method was linear, sensitive, and precise for the quality control of LQC. PMID:25654135
Wang, Peng; Liu, Donghui; Gu, Xu; Jiang, Shuren; Zhou, Zhiqiang
2008-01-01
Methods for the enantiomeric quantitative determination of 3 chiral pesticides, paclobutrazol, myclobutanil, and uniconazole, and their residues in soil and water are reported. An effective chiral high-performance liquid chromatographic (HPLC)-UV method using an amylose-tris(3,5-dimethylphenylcarbamate; AD) column was developed for resolving the enantiomers and quantitative determination. The enantiomers were identified by a circular dichroism detector. Validation involved complete resolution of each of the 2 enantiomers, plus determination of linearity, precision, and limit of detection (LOD). The pesticide enantiomers were isolated by solvent extraction from soil and C18 solid-phase extraction from water. The 2 enantiomers of the 3 pesticides could be completely separated on the AD column using n-hexane isopropanol mobile phase. The linearity and precision results indicated that the method was reliable for the quantitative analysis of the enantiomers. LODs were 0.025, 0.05, and 0.05 mg/kg for each enantiomer of paclobutrazol, myclobutanil, and uniconazole, respectively. Recovery and precision data showed that the pretreatment procedures were satisfactory for enantiomer extraction and cleanup. This method can be used for optical purity determination of technical material and analysis of environmental residues.
Dettmer, Katja; Stevens, Axel P; Fagerer, Stephan R; Kaspar, Hannelore; Oefner, Peter J
2012-01-01
Two mass spectrometry-based methods for the quantitative analysis of free amino acids are described. The first method uses propyl chloroformate/propanol derivatization and gas chromatography-quadrupole mass spectrometry (GC-qMS) analysis in single-ion monitoring mode. Derivatization is carried out directly in aqueous samples, thereby allowing automation of the entire procedure, including addition of reagents, extraction, and injection into the GC-MS. The method delivers the quantification of 26 amino acids. The isobaric tagging for relative and absolute quantification (iTRAQ) method employs the labeling of amino acids with isobaric iTRAQ tags. The tags contain two different cleavable reporter ions, one for the sample and one for the standard, which are detected by fragmentation in a tandem mass spectrometer. Reversed-phase liquid chromatography of the labeled amino acids is performed prior to mass spectrometric analysis to separate isobaric amino acids. The commercial iTRAQ kit allows for the analysis of 42 physiological amino acids with a respective isotope-labeled standard for each of these 42 amino acids.
Agatonovic-Kustrin, S; Loescher, Christine M
2013-10-10
Calendula officinalis, commonly known Marigold, has been traditionally used for its anti-inflammatory effects. The aim of this study was to investigate the capacity of an artificial neural network (ANN) to analyse thin layer chromatography (TLC) chromatograms as fingerprint patterns for quantitative estimation of chlorogenic acid, caffeic acid and rutin in Calendula plant extracts. By applying samples with different weight ratios of marker compounds to the system, a database of chromatograms was constructed. A hundred and one signal intensities in each of the HPTLC chromatograms were correlated to the amounts of applied chlorogenic acid, caffeic acid, and rutin using an ANN. The developed ANN correlation was used to quantify the amounts of 3 marker compounds in calendula plant extracts. The minimum quantifiable level (MQL) of 610, 190 and 940 ng and the limit of detection (LD) of 183, 57 and 282 ng were established for chlorogenic, caffeic acid and rutin, respectively. A novel method for quality control of herbal products, based on HPTLC separation, high resolution digital plate imaging and ANN data analysis has been developed. The proposed method can be adopted for routine evaluation of the phytochemical variability in calendula extracts. Copyright © 2013 Elsevier B.V. All rights reserved.
Wang, Ping; Ding, Xiaojing; Li, Yun; Yang, Yuanyuan
2012-01-01
A new method for the simultaneous quantitation of 11 preservatives-imidazolidinyl urea, benzyl alcohol, dehydroacetic acid, sorbic acid, phenoxyethanol, benzoic acid, salicylic acid, and four parabens (methyl, ethyl, propyl, and butyl)-in cosmetics by micellar electrokinetic capillary chromatography was established and validated. The separation was performed using an uncoated fused-silica capillary (50 pm id x 60.2 cm, effective length 50 cm) with a running buffer consisting of 15 mmol/L sodium tetraborate, 60 mmol/L boric acid, and 100 mmol/L sodium dodecyl sulfate. A 1:10 dilution of the running buffer was used as the sample buffer to extract the cosmetic samples. The key factors, such as the concentration and pH of the running and sample buffers, which influence quantitative analysis of the above 11 preservatives in cosmetic samples, were investigated in detail. The linear ranges of the calibration curves for imidazolidinyl urea and the other 10 preservatives were 50-1000 and 10-200 mg/L, respectively. The correlation coefficients of the standard curves were all higher than 0.999. The recoveries at the concentrations studied ranged from 93.0 to 102.7%. RSDs were all less than 5%. The new method with simple sample pretreatment met the needs for routine analysis of the 11 preservatives in cosmetics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haroldsen, P.E.; Gaskell, S.J.; Weintraub, S.T.
1991-04-01
One approach to the quantitative analysis of platelet activating factor (PAF, 1-O-alkyl-2-acetyl-sn-glycerol-3-phosphocholine; also referred to as AGEPC, alkyl glyceryl ether phosphocholine) is hydrolytic removal of the phosphocholine group and conversion to an electron-capturing derivative for gas chromatography-negative ion mass spectrometry. (2H3)Acetyl-AGEPC has been commonly employed as an internal standard. When 1-hexadecyl-2-(2H3)acetyl glycerol (obtained by enzymatic hydrolysis of (2H3)-C16:0 AGEPC) is treated with pentafluorobenzoyl chloride at 120 degrees C, the resulting 3-pentafluorobenzoate derivative shows extensive loss of the deuterium label. This exchange is evidently acid-catalyzed since derivatization of 1-hexadecyl-2-acetyl glycerol under the same conditions in the presence of a trace ofmore » 2HCl results in the incorporation of up to three deuterium atoms. Isotope exchange can be avoided if the reaction is carried out at low temperature in the presence of base. Direct derivatization of (2H3)-C16:0 AGEPC by treatment with pentafluorobenzoyl chloride or heptafluorobutyric anhydride also results in loss of the deuterium label. The use of (13C2)-C16:0 AGEPC as an internal standard is recommended for rigorous quantitative analysis.« less
Verkoelen, C F; Romijn, J C; Schroeder, F H; van Schalkwijk, W P; Splinter, T A
1988-04-08
A rapid and simple method, originally described by Redmond and Tseng [J. Chromatogr., 170 (1979) 479] was applied to the analysis of di- and polyamines in cultured human tumour cells and human tumour xenografts. Optimization of the procedures and evaluation of the characteristic features of the assay are described. The (modified) procedure employs precolumn derivatization with benzoyl chloride, extraction of the derivatives by chloroform, separation by reversed-phase high-performance liquid chromatography under isocratic conditions and detection by ultraviolet absorbance measurement at 229 nm. The complete analysis was accomplished within 10 min per sample. The detection limit was ca. 1 pmol. The intra- and inter-assay coefficients of variation were 2.5-4.4% and 3.4-13.1%, respectively. The presence of well known inhibitors of polyamine biosynthesis, such as DL-alpha-difluoromethylornithine and methylglyoxal bis(guanylhydrazone), did not interfere with the assay, and disturbance by cyclohexylamine could be avoided by changing the polarity of the mobile phase. The method proved to be very suitable because it is rapid, simple, requires a minimum of sample pretreatment, and still provides sufficient sensitivity to quantitate polyamines in relatively small amounts of cells (10(5) cells) or tumour tissues (less than 1 mg), even after treatment with inhibitors of polyamine biosynthesis.
Lindsey, M.E.; Meyer, M.; Thurman, E.M.
2001-01-01
A method has been developed for the trace analysis of two classes of antimicrobials consisting of six sulfonamides (SAs) and five tetracyclines (TCs), which commonly are used for veterinary purposes and agricultural feed additives and are suspected to leach into ground and surface water. The method used solid-phase extraction and liquid chromatography/mass spectrometry (LC/MS) with positive ion electrospray. The unique combination of a metal chelation agent (Na2EDTA) with a macroporous copolymer resulted in quantitative recoveries by solid-phase extraction (mean recovery, 98 ?? 12%) at submicrogram-per-liter concentrations. An ammonium formate/formic acid buffer with a methanol/water gradient was used to separate the antimicrobials and to optimize the signal intensity. Mass spectral fragmentation and ionization characteristics were determined for each class of compounds for unequivocal identification. For all SAs, a characteristic m/z 156 ion representing the sulfanilyl fragment was identified. TCs exhibited neutral losses of 17 amu resulting from the loss of ammonia and 35 amu from the subsequent loss of water. Unusual matrix effects were seen only for TCs in this first survey of groundwater and surface water samples from sites around the United States, requiring that TCs be quantitated using the method of standard additions.
Yang, Zong-Lin; Li, Hui; Wang, Bing; Liu, Shu-Ying
2016-02-15
Neurotransmitters (NTs) and their metabolites are known to play an essential role in maintaining various physiological functions in nervous system. However, there are many difficulties in the detection of NTs together with their metabolites in biological samples. A new method for NTs and their metabolites detection by high performance liquid chromatography coupled with Q Exactive hybrid quadruple-orbitrap high-resolution accurate mass spectrometry (HPLC-HRMS) was established in this paper. This method was a great development of the applying of Q Exactive MS in the quantitative analysis. This method enabled a rapid quantification of ten compounds within 18min. Good linearity was obtained with a correlation coefficient above 0.99. The concentration range of the limit of detection (LOD) and the limit of quantitation (LOQ) level were 0.0008-0.05nmol/mL and 0.002-25.0nmol/mL respectively. Precisions (relative standard deviation, RSD) of this method were at 0.36-12.70%. Recovery ranges were between 81.83% and 118.04%. Concentrations of these compounds in mouse hypothalamus were detected by Q Exactive LC-MS technology with this method. Copyright © 2016 Elsevier B.V. All rights reserved.
Hintikka, Laura; Haapala, Markus; Kuuranne, Tiia; Leinonen, Antti; Kostiainen, Risto
2013-10-18
A gas chromatography-microchip atmospheric pressure photoionization-tandem mass spectrometry (GC-μAPPI-MS/MS) method was developed for the analysis of anabolic androgenic steroids in urine as their trimethylsilyl derivatives. The method utilizes a heated nebulizer microchip in atmospheric pressure photoionization mode (μAPPI) with chlorobenzene as dopant, which provides high ionization efficiency by producing abundant radical cations with minimal fragmentation. The performance of GC-μAPPI-MS/MS was evaluated with respect to repeatability, linearity, linear range, and limit of detection (LOD). The results confirmed the potential of the method for doping control analysis of anabolic steroids. Repeatability (RSD<10%), linearity (R(2)≥0.996) and sensitivity (LODs 0.05-0.1ng/mL) were acceptable. Quantitative performance of the method was tested and compared with that of conventional GC-electron ionization-MS, and the results were in good agreement. Copyright © 2013 Elsevier B.V. All rights reserved.
Ben Brahim, Samia; Amanpour, Asghar; Chtourou, Fatma; Kelebek, Hasim; Selli, Serkan; Bouaziz, Mohamed
2018-03-21
Gas chromatography-mass spectrometry-olfactometry was used for the analysis of volatile compounds and key odorants of three less studied Tunisian olive oil cultivars for the first time. A total of 42 aroma compounds were identified and quantified in extra virgin olive oils. The present study revealed that the most dominant volatiles in olive oil samples qualitatively and quantitatively were aldehydes and alcohols, followed by terpenes and esters. Indeed, chemometric analysis has shown a correlation between chemical compounds and sensory properties. The determination of aroma-active compounds of olive oil samples was carried out using aroma extract dilution analysis. A total of 15 aroma-active compounds were detected in the aromatic extract of extra virgin olive oil, of which 14 were identified. On the basis of the flavor dilution (FD) factor, the most potent aromatic active compound was hexanal (FD = 512) in Fakhari olive oil, (FD = 256) in Touffehi oils, and (FD = 128) in Jemri olive oil.
Remane, Daniela; Wissenbach, Dirk K; Peters, Frank T
2016-09-01
Liquid chromatography (LC) coupled to mass spectrometry (MS) or tandem mass spectrometry (MS/MS) is a well-established and widely used technique in clinical and forensic toxicology as well as doping control especially for quantitative analysis. In recent years, many applications for so-called multi-target screening and/or quantification of drugs, poisons, and or their metabolites in biological matrices have been developed. Such methods have proven particularly useful for analysis of so-called new psychoactive substances that have appeared on recreational drug markets throughout the world. Moreover, the evolvement of high resolution MS techniques and the development of data-independent detection modes have opened new possibilities for applications of LC-(MS/MS) in systematic toxicological screening analysis in the so called general unknown setting. The present paper will provide an overview and discuss these recent developments focusing on the literature published after 2010. Copyright © 2016 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
High-Throughput Quantitative Lipidomics Analysis of Nonesterified Fatty Acids in Plasma by LC-MS.
Christinat, Nicolas; Morin-Rivron, Delphine; Masoodi, Mojgan
2017-01-01
Nonesterified fatty acids are important biological molecules which have multiple functions such as energy storage, gene regulation, or cell signaling. Comprehensive profiling of nonesterified fatty acids in biofluids can facilitate studying and understanding their roles in biological systems. For these reasons, we have developed and validated a high-throughput, nontargeted lipidomics method coupling liquid chromatography to high-resolution mass spectrometry for quantitative analysis of nonesterified fatty acids. Sufficient chromatographic separation is achieved to separate positional isomers such as polyunsaturated and branched-chain species and quantify a wide range of nonesterified fatty acids in human plasma samples. However, this method is not limited only to these fatty acid species and offers the possibility to perform untargeted screening of additional nonesterified fatty acid species.
Mirzoian, Armen; Mabud, Abdul
2006-01-01
A procedure to analyze ethyl carbamate (EC) by gas chromatography/mass spectrometry was optimized and validated. Deuterated EC (d5-EC) was added to the samples as an internal standard followed by extraction with polystyrene crosslinked polystyrene cartridges using minimal volumes of ethyl acetate. The EC response was measured in selective ion monitoring (SIM) mode and found to be linear in the range between the limit of quantitation (10 micro/L) and 1000 microg/L. EC recoveries varied from 92 to 112%, with the average value of 100 +/- 8%. The procedure compared well (r2 = 0.9970) with the existing AOAC Official Method with the added benefits of minimal solvent usage and reduced matrix interferences.
Chen, Zhidan; Coy, Stephen L; Pannkuk, Evan L; Laiakis, Evagelia C; Fornace, Albert J; Vouros, Paul
2018-05-07
High-throughput methods to assess radiation exposure are a priority due to concerns that include nuclear power accidents, the spread of nuclear weapon capability, and the risk of terrorist attacks. Metabolomics, the assessment of small molecules in an easily accessible sample, is the most recent method to be applied for the identification of biomarkers of the biological radiation response with a useful dose-response profile. Profiling for biomarker identification is frequently done using an LC-MS platform which has limited throughput due to the time-consuming nature of chromatography. We present here a chromatography-free simplified method for quantitative analysis of seven metabolites in urine with radiation dose-response using urine samples provided from the Pannkuk et al. (2015) study of long-term (7-day) radiation response in nonhuman primates (NHP). The stable isotope dilution (SID) analytical method consists of sample preparation by strong cation exchange-solid phase extraction (SCX-SPE) to remove interferences and concentrate the metabolites of interest, followed by differential mobility spectrometry (DMS) ion filtration to select the ion of interest and reduce chemical background, followed by mass spectrometry (overall SID-SPE-DMS-MS). Since no chromatography is used, calibration curves were prepared rapidly, in under 2 h (including SPE) for six simultaneously analyzed radiation biomarkers. The seventh, creatinine, was measured separately after 2500× dilution. Creatinine plays a dual role, measuring kidney glomerular filtration rate (GFR), and indicating kidney damage at high doses. The current quantitative method using SID-SPE-DMS-MS provides throughput which is 7.5 to 30 times higher than that of LC-MS and provides a path to pre-clinical radiation dose estimation. Graphical Abstract.
Li, Li; Brown, Jaclyn L; Toske, Steven G
2018-04-06
The analysis of organic impurities plays an important role in the impurity profiling of methamphetamine, which in turn provides valuable information about methamphetamine manufacturing, in particular its synthetic route, chemicals, and precursors used. Ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) is ideally suited for this purpose due to its excellent sensitivity, selectivity, and wide linear range in multiple reaction monitoring (MRM) mode. In this study, a dilute-and-shoot UHPLC-MS/MS method was developed for the simultaneous identification and quantitation of 23 organic manufacturing impurities in illicit methamphetamine. The developed method was validated in terms of stability, limit of detection (LOD), lower limit of quantification (LLOQ), accuracy, and precision. More than 100 illicitly prepared methamphetamine samples were analyzed. Due to its ability to detect ephedrine/pseudoephedrine and its high sensitivity for critical target markers (eg, chloro-pseudoephedrine, N-cyclohexylamphetamine, and compounds B and P), more impurities and precursor/pre-precursors were identified and quantified versus the current procedure by gas chromatography-mass spectrometry (GC-MS). Consequently, more samples could be classified by their synthetic routes. However, the UHPLC-MS/MS method has difficulty in detecting neutral and untargeted emerging manufacturing impurities and can therefore only serve as a complement to the current method. Despite this deficiency, the quantitative information acquired by the presented UHPLC-MS/MS methodology increased the sample discrimination power, thereby enhancing the capacity of methamphetamine profiling program (MPP) to conduct sample-sample comparisons. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.
NASA Astrophysics Data System (ADS)
Chen, Zhidan; Coy, Stephen L.; Pannkuk, Evan L.; Laiakis, Evagelia C.; Fornace, Albert J.; Vouros, Paul
2018-05-01
High-throughput methods to assess radiation exposure are a priority due to concerns that include nuclear power accidents, the spread of nuclear weapon capability, and the risk of terrorist attacks. Metabolomics, the assessment of small molecules in an easily accessible sample, is the most recent method to be applied for the identification of biomarkers of the biological radiation response with a useful dose-response profile. Profiling for biomarker identification is frequently done using an LC-MS platform which has limited throughput due to the time-consuming nature of chromatography. We present here a chromatography-free simplified method for quantitative analysis of seven metabolites in urine with radiation dose-response using urine samples provided from the Pannkuk et al. (2015) study of long-term (7-day) radiation response in nonhuman primates (NHP). The stable isotope dilution (SID) analytical method consists of sample preparation by strong cation exchange-solid phase extraction (SCX-SPE) to remove interferences and concentrate the metabolites of interest, followed by differential mobility spectrometry (DMS) ion filtration to select the ion of interest and reduce chemical background, followed by mass spectrometry (overall SID-SPE-DMS-MS). Since no chromatography is used, calibration curves were prepared rapidly, in under 2 h (including SPE) for six simultaneously analyzed radiation biomarkers. The seventh, creatinine, was measured separately after 2500× dilution. Creatinine plays a dual role, measuring kidney glomerular filtration rate (GFR), and indicating kidney damage at high doses. The current quantitative method using SID-SPE-DMS-MS provides throughput which is 7.5 to 30 times higher than that of LC-MS and provides a path to pre-clinical radiation dose estimation. [Figure not available: see fulltext.
Zhou, Xiaotong; Meng, Xiangjun; Cheng, Longmei; Su, Chong; Sun, Yantong; Sun, Lingxia; Tang, Zhaohui; Fawcett, John Paul; Yang, Yan; Gu, Jingkai
2017-05-16
Polyethylene glycols (PEGs) are synthetic polymers composed of repeating ethylene oxide subunits. They display excellent biocompatibility and are widely used as pharmaceutical excipients. To fully understand the biological fate of PEGs requires accurate and sensitive analytical methods for their quantitation. Application of conventional liquid chromatography-tandem mass spectrometry (LC-MS/MS) is difficult because PEGs have polydisperse molecular weights (MWs) and tend to produce multicharged ions in-source resulting in innumerable precursor ions. As a result, multiple reaction monitoring (MRM) fails to scan all ion pairs so that information on the fate of unselected ions is missed. This Article addresses this problem by application of liquid chromatography-triple-quadrupole/time-of-flight mass spectrometry (LC-Q-TOF MS) based on the MS ALL technique. This technique performs information-independent acquisition by allowing all PEG precursor ions to enter the collision cell (Q2). In-quadrupole collision-induced dissociation (CID) in Q2 then effectively generates several fragments from all PEGs due to the high collision energy (CE). A particular PEG product ion (m/z 133.08592) was found to be common to all linear PEGs and allowed their total quantitation in rat plasma with high sensitivity, excellent linearity and reproducibility. Assay validation showed the method was linear for all linear PEGs over the concentration range 0.05-5.0 μg/mL. The assay was successfully applied to the pharmacokinetic study in rat involving intravenous administration of linear PEG 600, PEG 4000, and PEG 20000. It is anticipated the method will have wide ranging applications and stimulate the development of assays for other pharmaceutical polymers in the future.
Ocfentanil overdose fatality in the recreational drug scene.
Coopman, Vera; Cordonnier, Jan; De Leeuw, Marc; Cirimele, Vincent
2016-09-01
This paper describes the first reported death involving ocfentanil, a potent synthetic opioid and structure analogue of fentanyl abused as a new psychoactive substance in the recreational drug scene. A 17-year-old man with a history of illegal substance abuse was found dead in his home after snorting a brown powder purchased over the internet with bitcoins. Acetaminophen, caffeine and ocfentanil were identified in the powder by gas chromatography mass spectrometry and reversed-phase liquid chromatography with diode array detector. Quantitation of ocfentanil in biological samples was performed using a target analysis based on liquid-liquid extraction and ultra performance liquid chromatography tandem mass spectrometry. In the femoral blood taken at the external body examination, the following concentrations were measured: ocfentanil 15.3μg/L, acetaminophen 45mg/L and caffeine 0.23mg/L. Tissues sampled at autopsy were analyzed to study the distribution of ocfentanil. The comprehensive systematic toxicological analysis on the post-mortem blood and tissue samples was negative for other compounds. Based on circumstantial evidence, autopsy findings and the results of the toxicological analysis, the medical examiner concluded that the cause of death was an acute intoxication with ocfentanil. The manner of death was assumed to be accidental after snorting the powder. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Bennett, Raffeal; Olesik, Susan V
2017-04-01
Enhanced fluidity liquid chromatography using the hydrophilic interaction retention mechanism (EFLC-HILIC) is studied as an alternative separation mode for analyzing oligosaccharides and other sugars. These carbohydrates, which are important for the study of foods and biological systems, are difficult to comprehensively profile and either require a non-green, expensive solvent (i.e. acetonitrile) or derivatization of the analytes at the expense of time, sample loss, and loss of quantitative information. These difficulties arise from the diverse isomerism, mutarotation, and lack of a useable chromophore/fluorophore for spectroscopic detection. Enhanced fluidity liquid chromatography is an alternative separation method that involves the use of conventional polar solvents, such as methanol/water mixtures, as the primary mobile phase component and liquid carbon dioxide (CO 2 ) as the modifier in subcritical conditions. The addition of liquid CO 2 enhances diffusivity and decreases viscosity while maintaining mixture polarity, which typically results in reduced time of analysis and higher efficiency. This work illustrates an optimized EFLC-HILIC separation of a test mixture of oligosaccharides and simple sugars with a resolution greater than 1.3 and an analysis time decrease of over 35% compared to a conventional HPLC HILIC-mode analysis using acetonitrile/water mobile phases. Copyright © 2017 Elsevier B.V. All rights reserved.
Olofsson, Madelen A; Bylund, Dan
2015-10-01
A liquid chromatography with electrospray ionization mass spectrometry method was developed to quantitatively and qualitatively analyze 13 hydroxamate siderophores (ferrichrome, ferrirubin, ferrirhodin, ferrichrysin, ferricrocin, ferrioxamine B, D1 , E and G, neocoprogen I and II, coprogen and triacetylfusarinine C). Samples were preconcentrated on-line by a switch-valve setup prior to analyte separation on a Kinetex C18 column. Gradient elution was performed using a mixture of an ammonium formate buffer and acetonitrile. Total analysis time including column conditioning was 20.5 min. Analytes were fragmented by applying collision-induced dissociation, enabling structural identification by tandem mass spectrometry. Limit of detection values for the selected ion monitoring method ranged from 71 pM to 1.5 nM with corresponding values of two to nine times higher for the multiple reaction monitoring method. The liquid chromatography with mass spectrometry method resulted in a robust and sensitive quantification of hydroxamate siderophores as indicated by retention time stability, linearity, sensitivity, precision and recovery. The analytical error of the methods, assessed through random-order, duplicate analysis of soil samples extracted with a mixture of 10 mM phosphate buffer and methanol, appears negligible in relation to between-sample variations. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Medić-Šarić, Marica; Rastija, Vesna; Bojić, Mirza; Maleš, Željan
2009-01-01
In the last decade we have been working on standardization of propolis extract and determination of active constituents of wine those are rich in polyphenolics and have nutritional as well as therapeutic value. Here we are summarizing our results and providing overview on systematic approach how to analyse natural products rich in flavonoids and phenolic acids. Chromatographic methods (thin layer chromatography and high performance liquid chromatography) were used for identification, quantification, and characterization of individual flavonoid or phenolic acid. Total content of active constituents and antioxidant activity were determined by spectrophotometry. Pharmacokinetic parameters were determined by high performance liquid chromatography and using appropriate software. Quantitative structure-activity relationship study of antioxidant activity was conducted, as well as assessment of prolonged propolis supplementation on antioxidative status of organism. Thin layer chromatography-densitometry has been proven as quick and reliable method for standard analysis of propolis and wine; the best mobile phase being chloroform – methanol – formic acid (98–100%) in ratio 44 : 3.5 : 2.5 (v/v). Higher number of polyphenolics was determined by high performance liquid chromatography; 15 compared to 9 by thin layer chromatography. Interactions in situ with acetylsalicylic acid were detected with most of polyphenolics analysed. Plasma protein binding and blood-barrier penetration was greatest for flavone. The interactions with human serum albumin have been grater than 95% for all flavonoids analysed. The prolonged propolis consumption increased superoxide dismutase activity. The necessity of standardization of natural products and their registration as functional nutraceuticals demand easy, quick and inexpensive methods of analysis. In this work we provided overview of analytical part for polyphenolics that could be used as data for possible registration of final products either as functional food or medicinal product. This feature introduces the readers to the authors' research through a concise overview of the selected topic. Reference to important work from others in the field is included. PMID:19624827
Boyle, Rebecca R; McLean, Stuart; Brandon, Sue; Pass, Georgia J; Davies, Noel W
2002-11-25
We have developed two solid-phase microextraction (SPME) methods, coupled with gas chromatography, for quantitatively analysing the major Eucalyptus leaf terpene, 1,8-cineole, in both expired air and blood from the common brushtail possum (Trichosurus vulpecula). In-line SPME sampling (5 min at 20 degrees C room temperature) of excurrent air from an expiratory chamber containing a possum dosed orally with 1,8-cineole (50 mg/kg) allowed real-time semi-quantitative measurements reflecting 1,8-cineole blood concentrations. Headspace SPME using 50 microl whole blood collected from possums dosed orally with 1,8-cineole (30 mg/kg) resulted in excellent sensitivity (quantitation limit 1 ng/ml) and reproducibility. Blood concentrations ranged between 1 and 1380 ng/ml. Calibration curves were prepared for two concentration ranges (0.05-10 and 10-400 ng/50 microl) for the analysis of blood concentrations. Both calibration curves were linear (r(2)=0.999 and 0.994, respectively) and the equations for the two concentration ranges were consistent. Copyright 2002 Elsevier Science B.V.
Wang, Du; Zhang, Zhaowei; Li, Peiwu; Zhang, Qi; Zhang, Wen
2016-07-14
Rapid and quantitative sensing of aflatoxin B1 with high sensitivity and specificity has drawn increased attention of studies investigating soybean sauce. A sensitive and rapid quantitative immunochromatographic sensing method was developed for the detection of aflatoxin B1 based on time-resolved fluorescence. It combines the advantages of time-resolved fluorescent sensing and immunochromatography. The dynamic range of a competitive and portable immunoassay was 0.3-10.0 µg·kg(-1), with a limit of detection (LOD) of 0.1 µg·kg(-1) and recoveries of 87.2%-114.3%, within 10 min. The results showed good correlation (R² > 0.99) between time-resolved fluorescent immunochromatographic strip test and high performance liquid chromatography (HPLC). Soybean sauce samples analyzed using time-resolved fluorescent immunochromatographic strip test revealed that 64.2% of samples contained aflatoxin B1 at levels ranging from 0.31 to 12.5 µg·kg(-1). The strip test is a rapid, sensitive, quantitative, and cost-effective on-site screening technique in food safety analysis.
Burdick, J D; Boni, R L; Fochtman, F W
1997-05-01
A simple solid phase extraction (SPE) technique combined with gas chromatography-mass spectrometry (GC/MS) operated in selected ion monitoring (SIM) mode is described for quantitation of cocaine and cocaethylene in small samples (250 microliters) of rat whole blood. Use of (N-[2H3C])-cocaine and (N-[2H3C])-cocaethylene internal standards resulted in high sensitivity and selectivity for this analytical method. Analysis was performed using a Hewlett-Packard 5890 GC equipped with a 7673A Automatic Liquid Sampler linked to a Hewlett-Packard 5972 Mass Selective Detector. Separation of analytes was accomplished on a cross-linked methyl silicone gum capillary column (Ultra 1: 12m x 0.2mm (i.d.) x 0.33 microns). Linearity was established over a wide range of concentrations (5.0-2000.0 ng ml-1) with good precision. Limits of detection (LOD) were 1.0 and 2.0 ng ml-1 for cocaine and cocaethylene, respectively. This analytical method was designed for use in pharmacokinetic experiments studying the formation of cocaethylene following ethanol pretreatment in rats administered cocaine.
Bouali, Intidhar; Trabelsi, Hajer; Herchi, Wahid; Martine, Lucy; Albouchi, Ali; Bouzaien, Ghaith; Sifi, Samira; Boukhchina, Sadok; Berdeaux, Olivier
2014-12-01
Changes in 4-desmethylsterol, 4-monomethylsterol, 4,4-dimethylsterol and phytostanol composition were quantitatively and qualitatively investigated during the ripening of three varieties of Tunisian-grown pecan nuts (Mahan, Moore and Burkett). These components have many health benefits, especially in lowering LDL-cholesterol and preventing heart disease. The phytosterol composition of whole pecan kernel was quantified by Gas Chromatography-Flame Ionisation Detection (GC-FID) and identified by Gas Chromatography-Mass Spectrometry (GC-MS). Fifteen phytosterols and one phytostanol were quantified. The greatest amount of phytosterols (2852.5mg/100g of oil) was detected in Mahan variety at 20 weeks after the flowering date (WAFD). Moore had the highest level of phytostanols (7.3mg/100g of oil) at 20 WAFD. Phytosterol and phytostanol contents showed a steep decrease during pecan nut development. Results from the quantitative characterisation of pecan nut oils revealed that β-sitosterol, Δ5-avenasterol, and campesterol were the most abundant phytosterol compounds at all ripening stages. Copyright © 2014 Elsevier Ltd. All rights reserved.
Bartosińska, E; Buszewska-Forajta, M; Siluk, D
2016-08-05
Tocopherols and tocotrienols, widely described as vitamin E derivatives, have been proven to take part in a number of important biological functions. Among them, antioxidant properties had been investigated and documented in the literature. Since tocochromanols have revealed their plausible beneficial impact on several pathological processes, such as cancerogenesis or cognitive impairment diseases, there is a growing interest in quantitative determination of these compounds in biological fluids, tissues and plant organs. However, due to vitamin E chemical features, such as lipophilic and non-polar characteristics, quantitative determination of the compounds seems to be problematic. In this paper we present current analytical approaches in tocopherols and tocotrienols determination in biological and food matrices with the use of chromatographic techniques, especially gas chromatography (GC) and high performance liquid chromatography (HPLC) coupled with mass spectrometry. Derivatization techniques applied for GC-MS analysis in the case of tocol derivatives, especially silylation and acylation, are described. Significant attention is paid to ionization process of tocopherols and tocotrienols. Copyright © 2016 Elsevier B.V. All rights reserved.
Hindle, Ralph; Noestheden, Matthew; Peru, Kerry; Headley, John
2013-04-19
This study details the development of a routine method for quantitative analysis of oil sands naphthenic acids, which are a complex class of compounds found naturally and as contaminants in oil sands process waters from Alberta's Athabasca region. Expanding beyond classical naphthenic acids (CnH2n-zO2), those compounds conforming to the formula CnH2n-zOx (where 2≥x≤4) were examined in commercial naphthenic acid and environmental water samples. HPLC facilitated a five-fold reduction in ion suppression when compared to the more commonly used flow injection analysis. A comparison of 39 model naphthenic acids revealed significant variability in response factors, demonstrating the necessity of using naphthenic acid mixtures for quantitation, rather than model compounds. It was also demonstrated that naphthenic acidic heterogeneity (commercial and environmental) necessitates establishing a single NA mix as the standard against which all quantitation is performed. The authors present the first ISO17025 accredited method for the analysis of naphthenic acids in water using HPLC high resolution accurate mass time-of-flight mass spectrometry. The method detection limit was 1mg/L total oxy-naphthenic acids (Sigma technical mix). Copyright © 2013 Elsevier B.V. All rights reserved.
Akgul Kalkan, Esin; Sahiner, Mehtap; Ulker Cakir, Dilek; Alpaslan, Duygu; Yilmaz, Selehattin
2016-01-01
Using high-performance liquid chromatography (HPLC) and 2,4-dinitrophenylhydrazine (2,4-DNPH) as a derivatizing reagent, an analytical method was developed for the quantitative determination of acetone in human blood. The determination was carried out at 365 nm using an ultraviolet-visible (UV-Vis) diode array detector (DAD). For acetone as its 2,4-dinitrophenylhydrazone derivative, a good separation was achieved with a ThermoAcclaim C18 column (15 cm × 4.6 mm × 3 μm) at retention time (t R) 12.10 min and flowrate of 1 mL min−1 using a (methanol/acetonitrile) water elution gradient. The methodology is simple, rapid, sensitive, and of low cost, exhibits good reproducibility, and allows the analysis of acetone in biological fluids. A calibration curve was obtained for acetone using its standard solutions in acetonitrile. Quantitative analysis of acetone in human blood was successfully carried out using this calibration graph. The applied method was validated in parameters of linearity, limit of detection and quantification, accuracy, and precision. We also present acetone as a useful tool for the HPLC-based metabolomic investigation of endogenous metabolism and quantitative clinical diagnostic analysis. PMID:27298750
Song, Mi; Chen, Zeng-Ping; Chen, Yao; Jin, Jing-Wen
2014-07-01
Liquid chromatography-mass spectrometry assays suffer from signal instability caused by the gradual fouling of the ion source, vacuum instability, aging of the ion multiplier, etc. To address this issue, in this contribution, an internal standard was added into the mobile phase. The internal standard was therefore ionized and detected together with the analytes of interest by the mass spectrometer to ensure that variations in measurement conditions and/or instrument have similar effects on the signal contributions of both the analytes of interest and the internal standard. Subsequently, based on the unique strategy of adding internal standard in mobile phase, a multiplicative effects model was developed for quantitative LC-MS assays and tested on a proof of concept model system: the determination of amino acids in water by LC-MS. The experimental results demonstrated that the proposed method could efficiently mitigate the detrimental effects of continuous signal variation, and achieved quantitative results with average relative predictive error values in the range of 8.0-15.0%, which were much more accurate than the corresponding results of conventional internal standard method based on the peak height ratio and partial least squares method (their average relative predictive error values were as high as 66.3% and 64.8%, respectively). Therefore, it is expected that the proposed method can be developed and extended in quantitative LC-MS analysis of more complex systems. Copyright © 2014 Elsevier B.V. All rights reserved.
Han, Miaomiao; Tian, Ying; Li, Zhen; Chen, Yiqiang; Yang, Wenjun; Zhang, Liying
2017-12-01
Chromium picolinate is one of the important Cr 3+ resources and is widely used in animal production. A convenient, reliable and rapid liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated for the quantitative determination of chromium picolinate in animal feeds. Feed samples were extracted with acetonitrile and subsequently cleaned up by solid phase extraction cartridges Supelclean™ LC-18. Chromium picolinate was efficiently separated with a Waters ACQUITY UPLC ® BEH C18 column, ionized with electrospray ion source in positive mode (ESI + ), and quantitatively determined by tandem mass spectrometry in multiple reaction monitoring mode. Standard calibration curve of chromium picolinate in the concentration range from 0.5 to 1000ng/mL was obtained with good linearity correlation coefficient (R 2 =0.9982). Average recoveries ranged from 95.37%∼105.54%, as detected by spiking 0.02∼640mg/kg of chromium picolinate in complete feed, concentrated feed and premix. Intra-day and inter-day coefficient of variation were 0.59%∼6.67% and 2.36%∼6.97%, respectively. The limits of quantitation were 0.02mg/kg, 0.025mg/kg, and 2mg/kg for complete feed, concentrated feed, and premix, respectively. Actual sample analysis indicated that the developed method can be an effective tool to monitoring CrPic content in animal feed. Copyright © 2017. Published by Elsevier B.V.
Li, Yong-Wei; Qi, Jin; Wen-Zhang; Zhou, Shui-Ping; Yan-Wu; Yu, Bo-Yang
2014-07-01
Liriope muscari (Decne.) L. H. Bailey is a well-known traditional Chinese medicine used for treating cough and insomnia. There are few reports on the quality evaluation of this herb partly because the major steroid saponins are not readily identified by UV detectors and are not easily isolated due to the existence of many similar isomers. In this study, a qualitative and quantitative method was developed to analyze the major components in L. muscari (Decne.) L. H. Bailey roots. Sixteen components were deduced and identified primarily by the information obtained from ultra high performance liquid chromatography with ion-trap time-of-flight mass spectrometry. The method demonstrated the desired specificity, linearity, stability, precision, and accuracy for simultaneous determination of 15 constituents (13 steroidal glycosides, 25(R)-ruscogenin, and pentylbenzoate) in 26 samples from different origins. The fingerprint was established, and the evaluation was achieved using similarity analysis and principal component analysis of 15 fingerprint peaks from 26 samples by ultra high performance liquid chromatography. The results from similarity analysis were consistent with those of principal component analysis. All results suggest that the established method could be applied effectively to the determination of multi-ingredients and fingerprint analysis of steroid saponins for quality assessment and control of L. muscari (Decne.) L. H. Bailey. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhang, Wei-Dong; Wang, Ying; Wang, Qing; Yang, Wan-Jun; Gu, Yi; Wang, Rong; Song, Xiao-Mei; Wang, Xiao-Juan
2012-08-01
A sensitive and reliable ultra-high performance liquid chromatography-electrospray ionization-tandem mass spectrometry has been developed and partially validated to evaluate the quality of Semen Cassiae (Cassia obtusifolia L.) through simultaneous determination of 11 anthraquinones and two naphtha-γ-pyrone compounds. The analysis was achieved on a Poroshell 120 EC-C(18) column (100 mm × 2.1 mm, 2.7 μm; Agilent, Palo Alto, CA, USA) with gradient elution using a mobile phase that consisted of acetonitrile-water (30 mM ammonium acetate) at a flow rate of 0.4 mL/min. For quantitative analysis, all calibration curves showed perfect linear regression (r(2) > 0.99) within the testing range. This method was also validated with respect to precision and accuracy, and was successfully applied to quantify the 13 components in nine batches of Semen Cassiae samples from different areas. The performance of developed method was compared with that of conventional high-performance liquid chromatography method. The significant advantages of the former include high-speed chromatographic separation, four times faster than high-performance liquid chromatography with conventional columns, and great enhancement in sensitivity. This developed method provided a new basis for overall assessment on quality of Semen Cassiae. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zimmerman, L.R.; Hostetler, K.A.; Thurman, E.M.
2000-01-01
Analytical methods using high-performance liquid chromatography-diode array detection (HPLC-DAD) and high-performance liquid chromatography/mass spectrometry (HPLC/MS) were developed for the analysis of the following chloroacetanilide herbicide metabolites in water: acetochlor ethanesulfonic acid (ESA), acetochlor oxanilic acid (OXA), alachlor ESA, alachlor OXA, metolachlor ESA, and metolachlor OXA. Good precision and accuracy were demonstrated for both the HPLC-DAD and HPLC/MS methods in reagent water, surface water, and ground water. The mean HPLC-DAD recoveries of the chloroacetanilide herbicide metabolites from water samples spiked at 0.25, 0.50, and 2.0 mg/L (micrograms per liter) ranged from 84 to 112 percent, with relative standard deviations of 18 percent or less. The mean HPLC/MS recoveries of the metabolites from water samples spiked at 0.05, 0.20, and 2.0 mg/L ranged from 81 to 125 percent, with relative standard deviations of 20 percent or less. The limit of quantitation (LOQ) for all metabolites using the HPLC-DAD method was 0.20 mg/L, whereas the LOQ using the HPLC/MS method was 0.05 mg/L. These metabolite-determination methods are valuable for acquiring information about water quality and the fate and transport of the parent chloroacetanilide herbicides in water.
Tan, Peng; Zhang, Hai-Zhu; Zhang, Ding-Kun; Wu, Shan-Na; Niu, Ming; Wang, Jia-Bo; Xiao, Xiao-He
2017-07-01
This study attempts to evaluate the quality of Chinese formula granules by combined use of multi-component simultaneous quantitative analysis and bioassay. The rhubarb dispensing granules were used as the model drug for demonstrative study. The ultra-high performance liquid chromatography (UPLC) method was adopted for simultaneously quantitative determination of the 10 anthraquinone derivatives (such as aloe emodin-8-O-β-D-glucoside) in rhubarb dispensing granules; purgative biopotency of different batches of rhubarb dispensing granules was determined based on compound diphenoxylate tablets-induced mouse constipation model; blood activating biopotency of different batches of rhubarb dispensing granules was determined based on in vitro rat antiplatelet aggregation model; SPSS 22.0 statistical software was used for correlation analysis between 10 anthraquinone derivatives and purgative biopotency, blood activating biopotency. The results of multi-components simultaneous quantitative analysisshowed that there was a great difference in chemical characterizationand certain differences inpurgative biopotency and blood activating biopotency among 10 batches of rhubarb dispensing granules. The correlation analysis showed that the intensity of purgative biopotency was significantly correlated with the content of conjugated anthraquinone glycosides (P<0.01), and the intensity of blood activating biopotency was significantly correlated with the content of free anthraquinone (P<0.01). In summary, the combined use of multi-component simultaneous quantitative analysis and bioassay can achieve objective quantification and more comprehensive reflection on overall quality difference among different batches of rhubarb dispensing granules. Copyright© by the Chinese Pharmaceutical Association.
Leng, Jiapeng; Zhu, Dong; Wu, Duojiao; Zhu, Tongyu; Zhao, Ningwei; Guo, Yinlong
2012-11-15
Peptidomics analysis of human serum is challenging due to the low abundance of serum peptides and interference from the complex matrix. This study analyzed the differentially expressed (DE) low molecular weight peptides in human serum integrating a DMPITC-based N-terminal isotope labeling technique with nano-liquid chromatography and matrix-assisted laser desorption/ionization mass spectrometry (nano-LC/MALDI-MS). The workflow introduced a [d(6)]-4,6-dimethoxypyrimidine-2-isothiocyanate (DMPITC)-labeled mixture of aliquots from test samples as the internal standard. The spiked [d(0)]-DMPITC-labeled samples were separated by nano-LC then spotted on the MALDI target. Both quantitative and qualitative studies for serum peptides were achieved based on the isotope-labeled peaks. The DMPITC labeling technique combined with nano-LC/MALDI-MS not only minimized the errors in peptide quantitation, but also allowed convenient recognition of the labeled peptides due to the 6 Da mass difference. The data showed that the entire research procedure as well as the subsequent data analysis method were effective, reproducible, and sensitive for the analysis of DE serum peptides. This study successfully established a research model for DE serum peptides using DMPITC-based N-terminal isotope labeling and nano-LC/MALDI-MS. Application of the DMPITC-based N-terminal labeling technique is expected to provide a promising tool for the investigation of peptides in vivo, especially for the analysis of DE peptides under different biological conditions. Copyright © 2012 John Wiley & Sons, Ltd.
Quantitative TLC-Image Analysis of Urinary Creatinine Using Iodine Staining and RGB Values.
Kerr, Emily; West, Caroline; Kradtap Hartwell, Supaporn
2016-04-01
Digital image analysis of the separation results of colorless analytes on thin-layer chromatography (TLC) plates usually involves using specially tailored software to analyze the images generated from either a UV scanner or UV lamp station with a digital camera or a densitometer. Here, a low-cost alternative setup for quantitative TLC-digital image analysis is demonstrated using a universal staining reagent (iodine vapor), an office scanner and a commonly available software (Microsoft Paint) for analysis of red, green and blue colors (RGB values). Urinary creatinine is used as a model analyte to represent a sample in complicated biological matrices. Separation was carried out on a silica gel plate using a butanol-NH4OH-H2O (40 : 10 : 50, v/v) mobile phase with a 6-cm solvent front. It is important that the TLC plate be stained evenly and with sufficient staining time. Staining the TLC plate in a 23.4 × 18.8 × 6.8 cm chamber containing about 70 g iodine crystals yielded comparable results for the staining times of 30-60 min. The Green value offered the best results in the linear working range (0.0810-0.9260 mg/mL) and precision (2.03% RSD, n = 10). The detection limit was found to be 0.24 µg per 3 µL spot. Urinary creatinine concentrations determined by TLC-digital image analysis using the green value calibration graph agree well with results obtained from high-pressure liquid chromatography (HPLC). © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Lipid Informed Quantitation and Identification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kevin Crowell, PNNL
2014-07-21
LIQUID (Lipid Informed Quantitation and Identification) is a software program that has been developed to enable users to conduct both informed and high-throughput global liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based lipidomics analysis. This newly designed desktop application can quickly identify and quantify lipids from LC-MS/MS datasets while providing a friendly graphical user interface for users to fully explore the data. Informed data analysis simply involves the user specifying an electrospray ionization mode, lipid common name (i.e. PE(16:0/18:2)), and associated charge carrier. A stemplot of the isotopic profile and a line plot of the extracted ion chromatogram are also provided to showmore » the MS-level evidence of the identified lipid. In addition to plots, other information such as intensity, mass measurement error, and elution time are also provided. Typically, a global analysis for 15,000 lipid targets« less
Yu, Yong-Jie; Wu, Hai-Long; Fu, Hai-Yan; Zhao, Juan; Li, Yuan-Na; Li, Shu-Fang; Kang, Chao; Yu, Ru-Qin
2013-08-09
Chromatographic background drift correction has been an important field of research in chromatographic analysis. In the present work, orthogonal spectral space projection for background drift correction of three-dimensional chromatographic data was described in detail and combined with parallel factor analysis (PARAFAC) to resolve overlapped chromatographic peaks and obtain the second-order advantage. This strategy was verified by simulated chromatographic data and afforded significant improvement in quantitative results. Finally, this strategy was successfully utilized to quantify eleven antibiotics in tap water samples. Compared with the traditional methodology of introducing excessive factors for the PARAFAC model to eliminate the effect of background drift, clear improvement in the quantitative performance of PARAFAC was observed after background drift correction by orthogonal spectral space projection. Copyright © 2013 Elsevier B.V. All rights reserved.
Riley, Stephanie M; Ahoor, Danika C; Regnery, Julia; Cath, Tzahi Y
2018-02-01
Dissolved organic matter (DOM) present in oil and gas (O&G) produced water and fracturing flowback was characterized and quantified by multiple analytical techniques throughout a hybrid biological-physical treatment process. Quantitative and qualitative analysis of DOM by liquid chromatography - organic carbon detection (LC-OCD), liquid chromatography-high-resolution mass spectrometry (LC-HRMS), gas chromatography-mass spectrometry (GC-MS), and 3D fluorescence spectroscopy, demonstrated increasing removal of all groups of DOM throughout the treatment train, with most removal occurring during biological pretreatment and some subsequent removal achieved during membrane treatment. Parallel factor analysis (PARAFAC) further validated these results and identified five fluorescent components, including DOM described as humic acids, fulvic acids, proteins, and aromatics. Tryptophan-like compounds bound by complexation to humics/fulvics were most difficult to remove biologically, while aromatics (particularly low molecular weight neutrals) were more challenging to remove with membranes. Strong correlation among PARAFAC, LC-OCD, LC-HRMS, and GC-MS suggests that PARAFAC can be a quick, affordable, and accurate tool for evaluating the presence or removal of specific DOM groups in O&G wastewater. Copyright © 2017 Elsevier B.V. All rights reserved.
Lecoeur, Marie; Decaudin, Bertrand; Guillotin, Yoann; Sautou, Valérie; Vaccher, Claude
2015-10-23
Recently, interest in supercritical fluid chromatography (SFC) has increased due to its high throughput and the development of new system improving chromatographic performances. However, most papers dealt with fundamental studies and chiral applications and only few works described validation process of SFC method. Likewise, evaporative light scattering detection (ELSD) has been widely employed in liquid chromatography but only a few recent works presented its quantitative performances hyphenated with SFC apparatus. The present paper discusses about the quantitative performances of SFC-ELSD compared to HPLC-ELSD, for the determination of plasticizers (ATBC, DEHA, DEHT and TOTM) in PVC tubing used as medical devices. After the development of HPLC-ELSD, both methods were evaluated based on the total error approach using accuracy profile. The results show that HPLC-ELSD was more precise than SFC-ELSD but lower limits of quantitation were obtained by SFC. Hence, HPLC was validated in the ± 10% acceptance limits whereas SFC lacks of accuracy to quantify plasticizers. Finally, both methods were used to determine the composition of plasticized-PVC medical devices. Results demonstrated that SFC and HPLC both hyphenated with ELSD provided similar results. Copyright © 2015 Elsevier B.V. All rights reserved.
Xu, Liyuan; Gao, Haoshi; Li, Liangxing; Li, Yinnong; Wang, Liuyun; Gao, Chongkai; Li, Ning
2016-12-23
The effective permeability coefficient is of theoretical and practical importance in evaluation of the bioavailability of drug candidates. However, most methods currently used to measure this coefficient are expensive and time-consuming. In this paper, we addressed these problems by proposing a new measurement method which is based on the microemulsion liquid chromatography. First, the parallel artificial membrane permeability assays model was used to determine the effective permeability of drug so that quantitative retention-activity relationships could be established, which were used to optimize the microemulsion liquid chromatography. The most effective microemulsion system used a mobile phase of 6.0% (w/w) Brij35, 6.6% (w/w) butanol, 0.8% (w/w) octanol, and 86.6% (w/w) phosphate buffer (pH 7.4). Next, support vector machine and back-propagation neural networks are employed to develop a quantitative retention-activity relationships model associated with the optimal microemulsion system, and used to improve the prediction ability. Finally, an adequate correlation between experimental value and predicted value is computed to verify the performance of the optimal model. The results indicate that the microemulsion liquid chromatography can serve as a possible alternative to the PAMPA method for determination of high-throughput permeability and simulation of biological processes. Copyright © 2016. Published by Elsevier B.V.
[Sample preparation and bioanalysis in mass spectrometry].
Bourgogne, Emmanuel; Wagner, Michel
2015-01-01
The quantitative analysis of compounds of clinical interest of low molecular weight (<1000 Da) in biological fluids is currently in most cases performed by liquid chromatography-mass spectrometry (LC-MS). Analysis of these compounds in biological fluids (plasma, urine, saliva, hair...) is a difficult task requiring a sample preparation. Sample preparation is a crucial part of chemical/biological analysis and in a sense is considered the bottleneck of the whole analytical process. The main objectives of sample preparation are the removal of potential interferences, analyte preconcentration, and converting (if needed) the analyte into a more suitable form for detection or separation. Without chromatographic separation, endogenous compounds, co-eluted products may affect a quantitative method in mass spectrometry performance. This work focuses on three distinct parts. First, quantitative bioanalysis will be defined, different matrices and sample preparation techniques currently used in bioanalysis by mass spectrometry of/for small molecules of clinical interest in biological fluids. In a second step the goals of sample preparation will be described. Finally, in a third step, sample preparation strategies will be made either directly ("dilute and shoot") or after precipitation.
Liu, Fang; Ma, Ni; He, Chengwei; Hu, Yuanjia; Li, Peng; Chen, Meiwan; Su, Huanxing; Wan, Jian-Bo
2018-04-01
Panax notoginseng leaves (PNL) exhibit extensive activities, but few analytical methods have been established to exclusively determine the dammarane triterpene saponins in PNL. Ultra-performance liquid chromatography coupled with time-of-flight mass spectrometry (UPLC/Q-TOF MS) and HPLC-UV methods were developed for the qualitative and quantitative analysis of ginsenosides in PNL, respectively. Extraction conditions, including solvents and extraction methods, were optimized, which showed that ginsenosides Rc and Rb3, the main components of PNL, are transformed to notoginsenosides Fe and Fd, respectively, in the presence of water, by removing a glucose residue from position C-3 via possible enzymatic hydrolysis. A total of 57 saponins were identified in the methanolic extract of PNL by UPLC/Q-TOF MS. Among them, 19 components were unambiguously characterized by their reference substances. Additionally, seven saponins of PNL-ginsenosides Rb1, Rc, Rb2, and Rb3, and notoginsenosides Fc, Fe, and Fd-were quantified using the HPLC-UV method after extraction with methanol. The separation of analytes, particularly the separation of notoginsenoside Fc and ginsenoside Rc, was achieved on a Zorbax ODS C8 column at a temperature of 35°C. This developed HPLC-UV method provides an adequate linearity ( r 2 > 0.999), repeatability (relative standard deviation, RSD < 2.98%), and inter- and intraday variations (RSD < 4.40%) with recovery (98.7-106.1%) of seven saponins concerned. This validated method was also conducted to determine seven components in 10 batches of PNL. These findings are beneficial to the quality control of PNL and its relevant products.
Donkuru, McDonald; Michel, Deborah; Awad, Hanan; Katselis, George; El-Aneed, Anas
2016-05-13
Diquaternary gemini surfactants have successfully been used to form lipid-based nanoparticles that are able to compact, protect, and deliver genetic materials into cells. However, what happens to the gemini surfactants after they have released their therapeutic cargo is unknown. Such knowledge is critical to assess the quality, safety, and efficacy of gemini surfactant nanoparticles. We have developed a simple and rapid liquid chromatography electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) method for the quantitative determination of various structures of gemini surfactants in cells. Hydrophilic interaction liquid chromatography (HILIC) was employed allowing for a short simple isocratic run of only 4min. The lower limit of detection (LLOD) was 3ng/mL. The method was valid to 18 structures of gemini surfactants belonging to two different structural families. A full method validation was performed for two lead compounds according to USFDA guidelines. The HILIC-MS/MS method was compatible with the physicochemical properties of gemini surfactants that bear a permanent positive charge with both hydrophilic and hydrophobic elements within their molecular structure. In addition, an effective liquid-liquid extraction method (98% recovery) was employed surpassing previously used extraction methods. The analysis of nanoparticle-treated cells showed an initial rise in the analyte intracellular concentration followed by a maximum and a somewhat more gradual decrease of the intracellular concentration. The observed intracellular depletion of the gemini surfactants may be attributable to their bio-transformation into metabolites and exocytosis from the host cells. Obtained cellular data showed a pattern that grants additional investigations, evaluating metabolite formation and assessing the subcellular distribution of tested compounds. Copyright © 2016 Elsevier B.V. All rights reserved.
Xu, Xiuli; Zhao, Haixiang; Li, Li; Liu, Hanxia; Ren, Heling; Zhong, Weike
2012-03-01
A gas chromatography-mass spectrometry (GC-MS) method was developed for the determination of 40 pesticides in fruits. The effects of adding analyte protectants were evaluated for compensating matrix effects and the impacts on the quantitative results. A new combination of analyte protectants - Polyethylene Glycol 400 (PEG 400) and olive oil combination, which can be dissolved in acetone, was used for the quantitative analysis. The pesticides were extracted from fruit samples with acetonitrile and the extracts were cleaned up using micro-solid phase extraction. A GC-MS method in selective ion monitoring (SIM) mode coupled with large volume injection was finally developed. Using the newly developed analyte protectant combination of PEG 400 and olive oil, a good linearity was obtained in the range of 1 - 200 microg/L with coefficients better than 0.99, and the detection limits were between 0.1 - 3.0 microg/L. The mean recoveries of the pesticides were 75% - 119% with the relative standard deviation values less than 16.6% except for dimethoate. The performance of the analyte protectants was compared with matrix-matched standards calibration curves in terms of quantitative accuracy. The results showed that the method of adding analyte protectants can replace the matrix-matched standard calibration, and can also reduce the sample pretreatment. When the devel- oped method was used for the analysis of apple, peache, orange, banana, grape and other fruit samples, a good matrix compensation effect was achieved, and thus effectively reduced the bad effects of the water-soluble agents to the gas chromatographic column.
Mulet, Carmen T; Arroyo-Mora, Luis E; Leon, Lorena A; Gnagy, Elizabeth; DeCaprio, Anthony P
2018-06-20
Methylphenidate (MPH), which is metabolized into ritalinic acid (RA), is an amphetamine derivative largely used in the treatment of attention-deficit hyperactivity disorder, a neurological condition commonly diagnosed in early childhood. Ensuring that patients comply with clinical treatment is crucial and compliance is generally monitored in blood or urine specimens which, especially in the case of children, can be challenging to obtain on a repetitive basis. Here we report validation of a specific, non-invasive, and rapid dilute-and-shoot analytical method for the detection and quantitation of MPH and RA in oral fluid (OF). The method is based on liquid chromatography coupled to triple quadrupole MS with electrospray ionization utilizing dynamic MRM mode. Subject OF specimens were collected using a Quantisal™ device, processed, and diluted for analysis with seven-point quadratic calibration curves (weighting of 1/x) using MPH-d 9 and (±)-threo-RA-d 10 as internal standards. QC samples and diluted specimens showed intra- and inter-day bias and imprecision values no greater than ±12%. The LOD and LOQ for MPH were 0.1 and 0.5 ng/mL, respectively, and 0.2 ng/mL and 0.5 ng/mL for RA, respectively, indicating the validity of the method for identification and confirmation at low concentrations. Selectivity was specific for the analytes of interest and matrix effects were minimized through the use of internal standard based quantitation. Copyright © 2018 Elsevier B.V. All rights reserved.
Rugged LC-MS/MS survey analysis for acrylamide in foods.
Roach, John A G; Andrzejewski, Denis; Gay, Martha L; Nortrup, David; Musser, Steven M
2003-12-17
The described liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the detection of acrylamide in food entails aqueous room temperature extraction, SPE cleanup, and analysis by LC-MS/MS. The method is applicable to a wide variety of foods. [(13)C(3)]acrylamide is the internal standard. The limit of quantitation is 10 ppb (microg/kg). Data were obtained in duplicate from >450 products representing >35 different food types. The variability in analyte levels in certain food types suggests that it may be possible to reduce acrylamide levels in those foods.
Pinilla, V; Luu, B
1999-08-01
The water-soluble crude extract prepared from Imperata cylindrica (Beauv.) was investigated for its immunomodulating activity. A set of polysaccharides with high molecular weights has been isolated by fractionation using gel filtration and anion-exchange chromatography. Each step of purification was monitored by bioassays. The presence of six monosaccharides has been established by chemical analysis. Quantitative analysis showed that the ratio of these monosaccharides differed from one polysaccharide to another. The crude extract as well as some of the purified polysaccharides enhance the proliferation of murine splenocytes.
Reiffsteck, A; Dehennin, L; Scholler, R
1982-11-01
Estrone, 2-methoxyestrone and estradiol-17 beta have been definitely identified in seminal plasma of man, bull, boar and stallion by high resolution gas chromatography associated with selective monitoring of characteristic ions of suitable derivatives. Quantitative estimations were performed by isotope dilution with deuterated analogues and by monitoring molecular ions of trimethylsilyl ethers of labelled and unlabelled compounds. Concentrations of unconjugated and total estrogens are reported together with the statistical evaluation of accuracy and precision.
Peifer, Susanne; Schneider, Konstantin; Nürenberg, Gudrun; Volmer, Dietrich A; Heinzle, Elmar
2012-11-01
Intermediates of the purine biosynthesis pathway play key roles in cellular metabolism including nucleic acid synthesis and signal mediation. In addition, they are also of major interest to the biotechnological industry as several intermediates either possess flavor-enhancing characteristics or are applied in medical therapy. In this study, we have developed an analytical method for quantitation of 12 intermediates from the purine biosynthesis pathway including important nucleotides and their corresponding nucleosides and nucleobases. The approach comprised a single-step acidic extraction/quenching procedure, followed by quantitative electrospray LC-MS/MS analysis. The assay was validated in terms of accuracy, precision, reproducibility, and applicability for complex biological matrices. The method was subsequently applied for determination of free intracellular pool sizes of purine biosynthetic pathway intermediates in the two Gram-positive bacteria Corynebacterium glutamicum and Corynebacterium ammoniagenes. Importantly, no ion pair reagents were applied in this approach as usually required for liquid chromatography analysis of large classes of diverse metabolites.
Napolitano, José G.; Gödecke, Tanja; Lankin, David C.; Jaki, Birgit U.; McAlpine, James B.; Chen, Shao-Nong; Pauli, Guido F.
2013-01-01
The development of analytical methods for parallel characterization of multiple phytoconstituents is essential to advance the quality control of herbal products. While chemical standardization is commonly carried out by targeted analysis using gas or liquid chromatography-based methods, more universal approaches based on quantitative 1H NMR (qHNMR) measurements are being used increasingly in the multi-targeted assessment of these complex mixtures. The present study describes the development of a 1D qHNMR-based method for simultaneous identification and quantification of green tea constituents. This approach utilizes computer-assisted 1H iterative Full Spin Analysis (HiFSA) and enables rapid profiling of seven catechins in commercial green tea extracts. The qHNMR results were cross-validated against quantitative profiles obtained with an orthogonal LC-MS/MS method. The relative strengths and weaknesses of both approaches are discussed, with special emphasis on the role of identical reference standards in qualitative and quantitative analyses. PMID:23870106
Quantitative Aging Pattern in Mouse Urine Vapor as Measured by Gas-Liquid Chromatography
NASA Technical Reports Server (NTRS)
Robinson, Arthur B.; Dirren, Henri; Sheets, Alan; Miquel, Jaime; Lundgren, Paul R.
1975-01-01
We have discovered a quantitative aging pattern in mouse urine vapor. The diagnostic power of the pattern has been found to be high. We hope that this pattern will eventually allow quantitative estimates of physiological age and some insight into the biochemistry of aging.
Vo Duy, S; Besteiro, S; Berry, L; Perigaud, C; Bressolle, F; Vial, H J; Lefebvre-Tournier, I
2012-08-20
Plasmodium falciparum is the causative agent of malaria, a deadly infectious disease for which treatments are scarce and drug-resistant parasites are now increasingly found. A comprehensive method of identifying and quantifying metabolites of this intracellular parasite could expand the arsenal of tools to understand its biology, and be used to develop new treatments against the disease. Here, we present two methods based on liquid chromatography tandem mass spectrometry for reliable measurement of water-soluble metabolites involved in phospholipid biosynthesis, as well as several other metabolites that reflect the metabolic status of the parasite including amino acids, carboxylic acids, energy-related carbohydrates, and nucleotides. A total of 35 compounds was quantified. In the first method, polar compounds were retained by hydrophilic interaction chromatography (amino column) and detected in negative mode using succinic acid-(13)C(4) and fluorovaline as internal standards. In the second method, separations were carried out using reverse phase (C18) ion-pair liquid chromatography, with heptafluorobutyric acid as a volatile ion pairing reagent in positive detection mode, using d(9)-choline and 4-aminobutanol as internal standards. Standard curves were performed in P. falciparum-infected and uninfected red blood cells using standard addition method (r(2)>0.99). The intra- and inter-day accuracy and precision as well as the extraction recovery of each compound were determined. The lower limit of quantitation varied from 50pmol to 100fmol/3×10(7)cells. These methods were validated and successfully applied to determine intracellular concentrations of metabolites from uninfected host RBCs and isolated Plasmodium parasites. Copyright © 2012 Elsevier B.V. All rights reserved.
Schalk, Kathrin; Koehler, Peter; Scherf, Katharina Anne
2018-01-01
Celiac disease (CD) is an inflammatory disorder of the upper small intestine caused by the ingestion of storage proteins (prolamins and glutelins) from wheat, barley, rye, and, in rare cases, oats. CD patients need to follow a gluten-free diet by consuming gluten-free products with gluten contents of less than 20 mg/kg. Currently, the recommended method for the quantitative determination of gluten is an enzyme-linked immunosorbent assay (ELISA) based on the R5 monoclonal antibody. Because the R5 ELISA mostly detects the prolamin fraction of gluten, a new independent method is required to detect prolamins as well as glutelins. This paper presents the development of a method to quantitate 16 wheat marker peptides derived from all wheat gluten protein types by liquid chromatography tandem mass spectrometry (LC-MS/MS) in the multiple reaction monitoring mode. The quantitation of each marker peptide in the chymotryptic digest of a defined amount of the respective reference wheat protein type resulted in peptide-specific yields. This enabled the conversion of peptide into protein type concentrations. Gluten contents were expressed as sum of all determined protein type concentrations. This new method was applied to quantitate gluten in wheat starches and compared to R5 ELISA and gel-permeation high-performance liquid chromatography with fluorescence detection (GP-HPLC-FLD), which resulted in a strong correlation between LC-MS/MS and the other two methods.
González-Curbelo, Miguel Ángel; Lehotay, Steven J; Hernández-Borges, Javier; Rodríguez-Delgado, Miguel Ángel
2014-09-05
The "quick, easy, cheap, effective, rugged, and safe" (QuEChERS) approach to sample preparation is widely applied in pesticide residue analysis, but the use of magnesium sulfate and other nonvolatile compounds for salting out in the method is not ideal for mass spectrometry. In this study, we developed and evaluated three new different versions of the QuEChERS method using more volatile salts (ammonium chloride and ammonium formate and acetate buffers) to induce phase separation and extraction of 43 representative pesticide analytes of different classes. Fast low-pressure gas chromatography tandem mass spectrometry (LPGC-MS/MS) and liquid chromatography (LC)-MS/MS were used for analysis. The QuEChERS AOAC Official Method 2007.01 was also tested for comparison purposes. Of the studied methods, formate buffering using 7.5g of ammonium formate and 15mL of 5% (v/v) formic acid in acetonitrile for the extraction of 15g of sample (5g for wheat grain) provided the best performance and practical considerations. Method validation was carried out with and without the use of dispersive solid-phase extraction for cleanup, and no significant differences were observed for the majority of pesticides. The method was demonstrated in quantitative analysis for GC- and LC-amenable pesticides in 4 representative food matrices (apple, lemon, lettuce, and wheat grain). With the typical exceptions of certain pH-dependent and labile pesticides, 90-110% recoveries and <10% RSD were obtained. Detection limits were mostly <5ng/g, which met the general need to determine pesticide concentrations as low as 10ng/g for monitoring purposes in food applications. Published by Elsevier B.V.
Critical conditions of polymer adsorption and chromatography on non-porous substrates.
Cimino, Richard T; Rasmussen, Christopher J; Brun, Yefim; Neimark, Alexander V
2016-07-15
We present a novel thermodynamic theory and Monte Carlo simulation model for adsorption of macromolecules to solid surfaces that is applied for calculating the chain partition during separation on chromatographic columns packed with non-porous particles. We show that similarly to polymer separation on porous substrates, it is possible to attain three chromatographic modes: size exclusion chromatography at very weak or no adsorption, liquid adsorption chromatography when adsorption effects prevail, and liquid chromatography at critical conditions that occurs at the critical point of adsorption. The main attention is paid to the analysis of the critical conditions, at which the retention is chain length independent. The theoretical results are verified with specially designed experiments on isocratic separation of linear polystyrenes on a column packed with non-porous particles at various solvent compositions. Without invoking any adjustable parameters related to the column and particle geometry, we describe quantitatively the observed transition between the size exclusion and adsorption separation regimes upon the variation of solvent composition, with the intermediate mode occurring at a well-defined critical point of adsorption. A relationship is established between the experimental solvent composition and the effective adsorption potential used in model simulations. Copyright © 2016 Elsevier Inc. All rights reserved.
Hou, Xiang-Mei; Zhang, Lei; Yue, Hong-Shui; Ju, Ai-Chun; Ye, Zheng-Liang
2016-07-01
To study and establish a monitoring method for macroporous resin column chromatography process of salvianolic acids by using near infrared spectroscopy (NIR) as a process analytical technology (PAT).The multivariate statistical process control (MSPC) model was developed based on 7 normal operation batches, and 2 test batches (including one normal operation batch and one abnormal operation batch) were used to verify the monitoring performance of this model. The results showed that MSPC model had a good monitoring ability for the column chromatography process. Meanwhile, NIR quantitative calibration model was established for three key quality indexes (rosmarinic acid, lithospermic acid and salvianolic acid B) by using partial least squares (PLS) algorithm. The verification results demonstrated that this model had satisfactory prediction performance. The combined application of the above two models could effectively achieve real-time monitoring for macroporous resin column chromatography process of salvianolic acids, and can be used to conduct on-line analysis of key quality indexes. This established process monitoring method could provide reference for the development of process analytical technology for traditional Chinese medicines manufacturing. Copyright© by the Chinese Pharmaceutical Association.
Turak, Fatma; Güzel, Remziye; Dinç, Erdal
2017-04-01
A new reversed-phase ultraperformance liquid chromatography method with a photodiode array detector was developed for the quantification of ascorbic acid (AA) and caffeine (CAF) in 11 different commercial drinks consisting of one energy drink and 10 ice tea drinks. Separation of the analyzed AA and CAF with an internal standard, caffeic acid, was performed on a Waters BEH C 18 column (100 mm × 2.1 mm, 1.7 μm i.d.), using a mobile phase consisting of acetonitrile and 0.2M H 3 PO 4 (11:89, v/v) with a flow rate of 0.25 mL/min and an injection volume of 1.0 μL. Calibration graphs for AA and CAF were computed from the peak area ratio of AA/internal standard and CAF/internal standard detected at 244.0 nm and 273.6 nm, respectively. The developed reversed-phase ultraperformance liquid chromatography method was validated by analyzing standard addition samples. The proposed reversed-phase ultraperformance liquid chromatography method gave us successful results for the quantitative analysis of commercial drinks containing AA and CAF substances. Copyright © 2016. Published by Elsevier B.V.
Li, Fangbing; Wang, Hui; Xin, Huaxia; Cai, Jianfeng; Fu, Qing; Jin, Yu
2016-12-01
Purified standards of xylooligosaccharides (XOSs) (DP2-6) were first prepared from a mixture of XOSs using solid phase extraction (SPE), followed by semi-preparative liquid chromatography both under hydrophilic interaction liquid chromatography (HILIC) modes. Then, an accurate quantitative analysis method based on hydrophilic interaction liquid chromatography-evaporative light scattering detection (HILIC-ELSD) was developed and validated for simultaneous determination of xylose (X1), xylobiose (X2), xylotriose (X3), xylotetraose (X4), xylopentaose (X5), and xylohexaose (X6). This developed HILIC-ELSD method was applied to the comparison of different hydrolysis methods for xylans and assessment of XOSs contents from different agricultural wastes. The result indicated that enzymatic hydrolysis was preferable with fewer by-products and high XOSs yield. The XOSs yield (48.40%) from sugarcane bagasse xylan was the highest, showing conversions of 11.21g X2, 12.75g X3, 4.54g X4, 13.31g X5, and 6.78g X6 from 100g xylan. Copyright © 2016 Elsevier Ltd. All rights reserved.
This method is applicable to the identification and quantitation of perchlorate in raw and finished drinking waters. The approach used is ion chromatography with suppressed conductivity and electrospray ionization mass spectrometry (IC-ESI/MS)
Mallow carotenoids determined by high-performance liquid chromatography
USDA-ARS?s Scientific Manuscript database
Mallow (corchorus olitorius) is a green vegetable, which is widely consumed either fresh or dry by Middle East population. This study was carried out to determine the contents of major carotenoids quantitatively in mallow, by using a High Performance Liquid Chromatography (HPLC) equipped with a Bis...
Arase, Shuntaro; Horie, Kanta; Kato, Takashi; Noda, Akira; Mito, Yasuhiro; Takahashi, Masatoshi; Yanagisawa, Toshinobu
2016-10-21
Multivariate curve resolution-alternating least squares (MCR-ALS) method was investigated for its potential to accelerate pharmaceutical research and development. The fast and efficient separation of complex mixtures consisting of multiple components, including impurities as well as major drug substances, remains a challenging application for liquid chromatography in the field of pharmaceutical analysis. In this paper we suggest an integrated analysis algorithm functioning on a matrix of data generated from HPLC coupled with photo-diode array detector (HPLC-PDA) and consisting of the mathematical program for the developed multivariate curve resolution method using an expectation maximization (EM) algorithm with a bidirectional exponentially modified Gaussian (BEMG) model function as a constraint for chromatograms and numerous PDA spectra aligned with time axis. The algorithm provided less than ±1.0% error between true and separated peak area values at resolution (R s ) of 0.6 using simulation data for a three-component mixture with an elution order of a/b/c with similarity (a/b)=0.8410, (b/c)=0.9123 and (a/c)=0.9809 of spectra at peak apex. This software concept provides fast and robust separation analysis even when method development efforts fail to achieve complete separation of the target peaks. Additionally, this approach is potentially applicable to peak deconvolution, allowing quantitative analysis of co-eluted compounds having exactly the same molecular weight. This is complementary to the use of LC-MS to perform quantitative analysis on co-eluted compounds using selected ions to differentiate the proportion of response attributable to each compound. Copyright © 2016 Elsevier B.V. All rights reserved.
Nie, Honggang; Li, Xianjiang; Hua, Zhendong; Pan, Wei; Bai, Yanping; Fu, Xiaofang
2016-08-01
With the amounts and types of new psychoactive substances (NPSs) increasing rapidly in recent years, an excellent high-throughput method for the analysis of these compounds is urgently needed. In this article, a rapid screening method and a quantitative analysis method for 11 NPSs are described and compared, respectively. A simple direct analysis in real time mass spectrometry (DART-MS) method was developed for the analysis of 11 NPSs including three categories of these substances present on the global market such as four cathinones, one phenylethylamine, and six synthetic cannabinoids. In order to analyze these compounds quantitatively with better accuracy and sensitivity, another rapid analytical method with a low limit of detection (LOD) was also developed using liquid chromatography/electrospray ionization quadrupole time-of-flight mass spectrometry (LC/QTOFMS). The 11 NPSs could be determined within 0.5 min by DART-MS. Furthermore, they could also be separated and determined within 5 min by the LC/QTOFMS method. The two methods both showed good linearity with correlation coefficients (r(2) ) higher than 0.99. The LODs for all these target NPSs by DART-MS and LC/QTOFMS ranged from 5 to 40 ng mL(-1) and 0.1 to 1 ng mL(-1) , respectively. Confiscated samples, named as "music vanilla" and "bath salt", and 11 spiked samples were firstly screened by DART-MS and then determined by LC/QTOFMS. The identification of NPSs in confiscated materials was successfully achieved, and the proposed analytical methodology could offer rapid screening and accurate analysis results. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Determination of carbohydrates in medicinal plants--comparison between TLC, mf-MELDI-MS and GC-MS.
Qureshi, Muhammad Nasimullah; Stecher, Guenther; Sultana, Tahira; Abel, Gudrun; Popp, Michael; Bonn, Guenther K
2011-01-01
Quality control in the pharmaceutical and phytopharmaceutical industries requires fast and reliable methods for the analysis of raw materials and final products. This study evaluates different analytical approaches in order to recognise the most suitable technique for the analysis of carbohydrates in herbal drug preparations. The specific focus of the study is on thin-layer chromatography (TLC), gas chromatography (GC), and a newly developed mass spectrometric method, i.e. matrix free material enhanced laser desorption/ionisation time of flight mass spectrometry (mf-MELDI-MS). Samples employed in the study were standards and microwave-assisted water extracts from Quercus. TLC analysis proved the presence of mono-, di- and trisaccharides within the biological sample and hinted at the existence of an unknown carbohydrate of higher oligomerisation degree. After evaluation of different derivatisation techniques, GC-MS confirmed data obtained via TLC for mono- to trisaccharides, delivering additionally quantified values under a considerable amount of time. A carbohydrate of higher oligomerisation degree could not be found. The application of mf-MELDI-MS further confirmed the presence of carbohydrates up to trisaccharides, also hinting at the presence of a form of tetrasaccharide. Besides this information, mf-MELDI-MS delivered further data about other substances present in the extract. Quantitative determination resulted in 1.750, 1.736 and 0.336 mg/mL for glucose, sucrose and raffinose respectively. Evaluation of all three techniques employed, clearly proved the heightened performance of mf-MELDI-MS for the qualitative analysis of complex mixtures, as targets do not need modification and analysis requires only a few minutes. In addition, GC-MS is suitable for quantitative analysis. Copyright © 2011 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Ambati, Chandra Shekar R.; Yuan, Furong; Abu-Elheiga, Lutfi A.; Zhang, Yiqing; Shetty, Vivekananda
2017-05-01
Malonic acid (MA), methylmalonic acid (MMA), and ethylmalonic acid (EMA) metabolites are implicated in various non-cancer disorders that are associated with inborn-error metabolism. In this study, we have slightly modified the published 3-nitrophenylhydrazine (3NPH) derivatization method and applied it to derivatize MA, MMA, and EMA to their hydrazone derivatives, which were amenable for liquid chromatography- mass spectrometry (LC-MS) quantitation. 3NPH was used to derivatize MA, MMA, and EMA, and multiple reaction monitoring (MRM) transitions of the corresponding derivatives were determined by product-ion experiments. Data normalization and absolute quantitation were achieved by using 3NPH derivatized isotopic labeled compounds 13C2-MA, MMA-D3, and EMA-D3. The detection limits were found to be at nanomolar concentrations and a good linearity was achieved from nanomolar to millimolar concentrations. As a proof of concept study, we have investigated the levels of malonic acids in mouse plasma with malonyl-CoA decarboxylase deficiency (MCD-D), and we have successfully applied 3NPH method to identify and quantitate all three malonic acids in wild type (WT) and MCD-D plasma with high accuracy. The results of this method were compared with that of underivatized malonic acid standards experiments that were performed using hydrophilic interaction liquid chromatography (HILIC)-MRM. Compared with HILIC method, 3NPH derivatization strategy was found to be very efficient to identify these molecules as it greatly improved the sensitivity, quantitation accuracy, as well as peak shape and resolution. Furthermore, there was no matrix effect in LC-MS analysis and the derivatized metabolites were found to be very stable for longer time.
[Development of methods for determining acrylamide in food products by gas-liquid chromatography].
Bessonov, V V; Malinkin, A D; Perederiaev, O I; Bogachuk, M N; Volkovich, S V; Medvedev, Iu V
2011-01-01
The method of determination of acrylamide in various food (milk powder, potato chips, instant coffee) by gas-liquid chromatography after pre-bromination was developed. Studies have shown the possibility of using bromination of acrylamide to give it the necessary properties for better extraction, purification and detection. Also revealed the possibility of qualitative and quantitative determine a acrylamide in food by gas-liquid chromatography with detection by electron capture detector.
Schalk, Kathrin; Koehler, Peter; Scherf, Katharina Anne
2018-04-04
Celiac disease is triggered by the ingestion of gluten from wheat, barley, rye, and possibly oats. Gluten is quantitated by DNA-based methods or enzyme-linked immunosorbent assays (ELISAs). ELISAs mostly detect the prolamin fraction and potentially over- or underestimate gluten contents. Therefore, a new independent method is required to comprehensively detect gluten. A targeted liquid chromatography-tandem mass spectrometry method was developed to quantitate seven barley, seven rye, and three oat marker peptides derived from each gluten protein fraction (prolamin and glutelin) and type (barley, B-, C-, D-, and γ-hordeins; rye, γ-75k-, γ-40k-, ω-, and HMW-secalins). The quantitation of each marker peptide in the chymotryptic digest of a defined amount of the respective reference gluten protein type resulted in peptide-specific yields, which enabled the conversion of peptide into protein concentrations. This method was applied to quantitate gluten in samples from the brewing process, in raw materials for sourdough fermentation, and in dried sourdoughs.
Hintersteiner, Ingrid; Himmelsbach, Markus; Buchberger, Wolfgang W
2015-02-01
In recent years, the development of reliable methods for the quantitation of microplastics in different samples, including evaluating the particles' adverse effects in the marine environment, has become a great concern. Because polyolefins are the most prevalent type of polymer in personal-care products containing microplastics, this study presents a novel approach for their quantitation. The method is suitable for aqueous and hydrocarbon-based products, and includes a rapid sample clean-up involving twofold density separation and a subsequent quantitation with high-temperature gel-permeation chromatography. In contrast with previous procedures, both errors caused by weighing after insufficient separation of plastics and matrix and time-consuming visual sorting are avoided. In addition to reliable quantitative results, in this investigation a comprehensive characterization of the polymer particles isolated from the product matrix, covering size, shape, molecular weight distribution and stabilization, is provided. Results for seven different personal-care products are presented. Recoveries of this method were in the range of 92-96 %.
Zhao, Lu; Wen, E; Upur, Halmuart; Tian, Shuge
2017-01-01
Sea buckthorn ( Hippophae rhamnoides L.) as a traditional Chinese medicinal plant has various uses in Xinjiang. A reversed-phase rapid-resolution liquid-chromatography method with diode array detector was developed for simultaneous determination of protocatechuic acid, rutin, quercetin, kaempferol, and isorhamnetin in the pulp and seed of sea buckthorn, a widely used traditional Chinese medicine for promoting metabolism and treating scurvy and other diseases. Compounds were separated on an Agilent ZORBAX SB-C18 column (4.6 mm × 250 mm, 5 μm; USA) with gradient elution using methanol and 0.4% phosphoric acid (v/v) at 1.0 mL/min. Detection wavelength was set at 280 nm. The fruits of wild sea buckthorn were collected from Wushi County in Aksu, Xinjiang Province. The RSD of precision test of the five compounds were in the range of 0.60-2.22%, and the average recoveries ranged from 97.36% to 101.19%. Good linearity between specific chromatographic peak and component qualities were observed in the investigated ranges for all the analytes ( R 2 > 0.9997). The proposed method was successfully applied to determine the levels of five active components in sea buckthorn samples from Aksu in Xinjiang. The proposed method is simple, fast, sensitive, accurate, and suitable for quantitative assessment of the pulp and seed of sea buckthorn. Quantitative analysis method of protocatechuic acid, rutin, quercetin, kaempferol, and isorhamnetin in the extract of sea buckthorn pulp and seed is developed by high-performance liquid chromatography (HPLC) diode array detection.This method is simple and accurate; has strong specificity, good precision, and high recovery rate; and provides a reliable basis for further development of the substances in the pulp and seed of sea buckthorn.The method is widely used for content determination of active ingredients or physiologically active components in traditional Chinese medicine and its preparation Abbreviation used: PR: protocatechuic acid, RU: rutin, QU: quercetin, KA: kaempferol, IS: isorhamnetin, HPLC: high-performance liquid chromatography, HPLC-DAD: high performance liquid chromatographydiode array detector, LOD: linearity and limit of detection, LOQ: limit of quantitation, RSD: relative standard deviation.
Su, Meng-xiang; Zhou, Wen-di; Lan, Juan; Di, Bin; Hang, Tai-jun
2015-03-01
A simultaneous determination method based on liquid chromatography coupled with time-of-flight mass spectrometry was developed for the analysis of 11 bioactive constituents in tripterygium glycosides tablets, an immune and inflammatory prescription used in China. The analysis was fully optimized on a 1.8 μm particle size C18 column with linear gradient elution, permitting good separation of the 11 analytes and two internal standards in 21 min. The quantitation of each target constituent was carried out using the narrow window extracted ion chromatograms with a ±l0 ppm extraction window, yielding good linearity (r(2) > 0.996) with a linear range of 10-1000 ng/mL. The limits of quantitation were low ranging from 0.25 to 5.02 ng/mL for the 11 analytes, and the precisions and repeatability were better than 1.6 and 5.3%, respectively. The acceptable recoveries obtained were in the range of 93.4-107.4%. This proposed method was successfully applied to quantify the 11 bioactive constituents in commercial samples produced by nine pharmaceutical manufacturers to profile the quality of these preparations. The overall results demonstrate that the contents of the 11 bioactive constituents in different samples were in great diversity, therefore, the quality, clinical safety, and efficacy of this drug needs further research and evaluation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Stojanovic, Anja; Lämmerhofer, Michael; Kogelnig, Daniel; Schiesel, Simone; Sturm, Martin; Galanski, Markus; Krachler, Regina; Keppler, Bernhard K; Lindner, Wolfgang
2008-10-31
Several hydrophobic ionic liquids (ILs) based on long-chain aliphatic ammonium- and phosphonium cations and selected aromatic anions were analyzed by reversed-phase high-performance liquid chromatography (RP-HPLC) employing trifluoroacetic acid as ion-pairing additive to the acetonitrile-containing mobile phase and adopting a step-gradient elution mode. The coupling of charged aerosol detection (CAD) for the non-chromophoric aliphatic cations with diode array detection (DAD) for the aromatic anions allowed their simultaneous analysis in a set of new ILs derived from either tricaprylmethylammonium chloride (Aliquat 336) and trihexyltetradecylphosphonium chloride as precursors. Aliquat 336 is a mix of ammonium cations with distinct aliphatic chain lengths. In the course of the studies it turned out that CAD generates an identical detection response for all the distinct aliphatic cations. Due to lack of single component standards of the individual Aliquat 336 cation species, a unified calibration function was established for the quantitative analysis of the quaternary ammonium cations of the ILs. The developed method was validated according to ICH guidelines, which confirmed the validity of the unified calibration. The application of the method revealed molar ratios of cation to anion close to 1 indicating a quantitative exchange of the chloride ions of the precursors by the various aromatic anions in the course of the synthesis of new ILs. Anomalies of CAD observed for the detection of some aromatic anions (thiosalicylate and benzoate) are discussed.
A new technique for collection, concentration and determination of gaseous tropospheric formaldehyde
NASA Astrophysics Data System (ADS)
Cofer, Wesley R.; Edahl, Robert A.
This article describes an improved technique for making in situ measurements of gaseous tropospheric formaldehyde (CH 2O). The new technique is based on nebulization/reflux principles that have proved very effective in quantitatively scrubbing water soluble trace gases (e.g. CH 2O) into aqueous mediums, which are subsequently analyzed. Atmospheric formaldehyde extractions and analyses have been performed with the nebulization/reflux concentrator using an acidified dinitrophenylhydrazine solution that indicate that quantitative analysis of CH 2O at global background levels (˜ 0.1 ppbv) is feasible with 20-min extractions. Analysis of CH 2O, once concentrated, is accomplished using high performance liquid chromatography (HPLC) with ultraviolet photometric detection. The CH 2O-hydrazone derivative, produced by the reaction of 2,4-dinitrophenylhydrazine in H 2SO 4 acidified aqueous solution, is detected as CH 2O.
A new technique for collection, concentration and determination of gaseous tropospheric formaldehyde
NASA Technical Reports Server (NTRS)
Cofer, W. R., III; Edahl, R. A., Jr.
1986-01-01
This article describes an improved technique for making in situ measurements of gaseous tropospheric formaldehyde (CH2O). The new technique is based on nebulization/reflux principles that have proved very effective in quantitatively scrubbing water soluble trace gases (e.g., CH2O) into aqueous mediums, which are subsequently analyzed. Atmospheric formaldehyde extractions and analyses have been performed with the nebulization/reflux concentrator using an acidified dinitrophenylhydrazine solution that indicate that quantitative analysis of CH2O at global background levels (about 0.1 ppbv) is feasible with 20-min extractions. Analysis of CH2O, once concentrated, is accomplished using high performance liquid chromatography with ultraviolet photometric detection. The CH2O-hydrazone derivative, produced by the reaction of 2,4-dinitrophenylhydrazine in H2SO4 acidified aqueous solution, is detected as CH2O.
Quantitation of Indoleacetic Acid Conjugates in Bean Seeds by Direct Tissue Hydrolysis 1
Bialek, Krystyna; Cohen, Jerry D.
1989-01-01
Gas chromatography-selected ion monitoring-mass spectral analysis using [13C6]indole-3-acetic acid (IAA) as an internal standard provides an effective means for quantitation of IAA liberated during direct strong basic hydrolysis of bean (Phaseolus vulgaris L.) seed powder, provided that extra precautions are undertaken to exclude oxygen from the reaction vial. Direct seed powder hydrolysis revealed that the major portion of amide IAA conjugates in bean seeds are not extractable by aqueous acetone, the solvent used commonly for IAA conjugate extraction from seeds and other plant tissues. Strong basic hydrolysis of plant tissue can be used to provide new information on IAA content. Images Figure 1 PMID:16666783
Tess, D A; Cole, R O; Toler, S M
1995-12-15
A simple and highly sensitive reversed-phase fluorimetric HPLC method for the quantitation of droloxifene from rat, monkey, and human plasma as well as human serum is described. This assay employs solid-phase extraction and has a dynamic range of 25 to 10,000 pg/ml. Sample extraction (efficiencies > 86%) was accomplished using a benzenesulfonic acid (SCX) column with water and methanol rinses. Droloxifene and internal standard were eluted with 1 ml of 3.5% (v/v) ammonium hydroxide (30%) in methanol. Samples were quantitated using post-column UV-photochemical cyclization coupled with fluorimetric detection with excitation and emission wavelengths of 260 nm and 375 nm, respectively. Relative ease of sample extraction and short run times allow for the analysis of approximately 100 samples per day.
Affinity Proteomics for Fast, Sensitive, Quantitative Analysis of Proteins in Plasma.
O'Grady, John P; Meyer, Kevin W; Poe, Derrick N
2017-01-01
The improving efficacy of many biological therapeutics and identification of low-level biomarkers are driving the analytical proteomics community to deal with extremely high levels of sample complexity relative to their analytes. Many protein quantitation and biomarker validation procedures utilize an immunoaffinity enrichment step to purify the sample and maximize the sensitivity of the corresponding liquid chromatography tandem mass spectrometry measurements. In order to generate surrogate peptides with better mass spectrometric properties, protein enrichment is followed by a proteolytic cleavage step. This is often a time-consuming multistep process. Presented here is a workflow which enables rapid protein enrichment and proteolytic cleavage to be performed in a single, easy-to-use reactor. Using this strategy Klotho, a low-abundance biomarker found in plasma, can be accurately quantitated using a protocol that takes under 5 h from start to finish.
Rapid Quantitative Determination of Squalene in Shark Liver Oils by Raman and IR Spectroscopy.
Hall, David W; Marshall, Susan N; Gordon, Keith C; Killeen, Daniel P
2016-01-01
Squalene is sourced predominantly from shark liver oils and to a lesser extent from plants such as olives. It is used for the production of surfactants, dyes, sunscreen, and cosmetics. The economic value of shark liver oil is directly related to the squalene content, which in turn is highly variable and species-dependent. Presented here is a validated gas chromatography-mass spectrometry analysis method for the quantitation of squalene in shark liver oils, with an accuracy of 99.0 %, precision of 0.23 % (standard deviation), and linearity of >0.999. The method has been used to measure the squalene concentration of 16 commercial shark liver oils. These reference squalene concentrations were related to infrared (IR) and Raman spectra of the same oils using partial least squares regression. The resultant models were suitable for the rapid quantitation of squalene in shark liver oils, with cross-validation r (2) values of >0.98 and root mean square errors of validation of ≤4.3 % w/w. Independent test set validation of these models found mean absolute deviations of the 4.9 and 1.0 % w/w for the IR and Raman models, respectively. Both techniques were more accurate than results obtained by an industrial refractive index analysis method, which is used for rapid, cheap quantitation of squalene in shark liver oils. In particular, the Raman partial least squares regression was suited to quantitative squalene analysis. The intense and highly characteristic Raman bands of squalene made quantitative analysis possible irrespective of the lipid matrix.
Quantitation of acrylamide in foods by high-resolution mass spectrometry.
Troise, Antonio Dario; Fiore, Alberto; Fogliano, Vincenzo
2014-01-08
Acrylamide detection still represents one of the hottest topics in food chemistry. Solid phase cleanup coupled to liquid chromatography separation and tandem mass spectrometry detection along with GC-MS detection are nowadays the gold standard procedure for acrylamide quantitation thanks to high reproducibility, good recovery, and low relative standard deviation. High-resolution mass spectrometry (HRMS) is particularly suitable for the detection of low molecular weight amides, and it can provide some analytical advantages over other MS techniques. In this paper a liquid chromatography (LC) method for acrylamide determination using HRMS detection was developed and compared to LC coupled to tandem mass spectrometry. The procedure applied a simplified extraction, no cleanup steps, and a 4 min chromatography. It proved to be solid and robust with an acrylamide mass accuracy of 0.7 ppm, a limit of detection of 2.65 ppb, and a limit of quantitation of 5 ppb. The method was tested on four acrylamide-containing foods: cookies, French fries, ground coffee, and brewed coffee. Results were perfectly in line with those obtained by LC-MS/MS.
ERIC Educational Resources Information Center
Craig, Douglas B.
2005-01-01
A laboratory exercise used in the senior biochemistry course at the University of Winnipeg for three years is discussed. It combines liquid chromatography and absorbance spectroscopy and also allows the students to produce a quantitative result within a single three-hour period.
Quantitation of monomers in poly(glyerol-co-diacid) gels using gas chromatography
USDA-ARS?s Scientific Manuscript database
The validation of a gas chromatography (GC) method developed to quantify amounts of starting material from the synthesis of hyperbranched polymers made from glycerol and either succinic acid, glutaric acid, or azelaic acid is described. The GC response to concentration was linear for all starting r...
ERIC Educational Resources Information Center
Bidlingmeyer, Brian A.; Warren, F. Vincent, Jr.
1984-01-01
Background information, materials needed, laboratory procedures, and typical results are provided for five high performance liquid chromatography experiments (three isocratic and two step gradient separations). Suggestions for further experimentation are also provided, including quantitative determinations and separation of charged solutes. (JN)
Analytical methods for determining perfluorochemicals (PFCs) and fluorotelomer alcohols (FTOHs) in plants using liquid chromatography/tandem mass spectrometry (LC/MS/MS) and gas chromatography/mass spectrometry (GC/MS) were developed, and applied to quantify a suite of analytes i...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-15
... using capillary gas liquid chromatography (GLC) with flame ionization detector (FID). Contact: Andrew...) purification. Detection and quantitation are conducted by gas chromatograph equipped with nitrogen phosphorus... pressure liquid chromatography/triple stage quadrupole mass spectrometry (LC/MS/MS) using the stable...
Caes, Benjamin R.; Van Oosbree, Thomas R.; Lu, Fachuang; Ralph, John; Maravelias, Christos T.
2015-01-01
Simulated moving bed chromatography, a continuous separation method, enables the nearly quantitative recovery of sugar products and ionic liquid solvent from chemical hydrolysates of biomass. The ensuing sugars support microbial growth, and the residual lignin from the process is intact. PMID:23939991
Fischedick, Justin T
2017-01-01
Introduction: With laws changing around the world regarding the legal status of Cannabis sativa (cannabis) it is important to develop objective classification systems that help explain the chemical variation found among various cultivars. Currently cannabis cultivars are named using obscure and inconsistent nomenclature. Terpenoids, responsible for the aroma of cannabis, are a useful group of compounds for distinguishing cannabis cultivars with similar cannabinoid content. Methods: In this study we analyzed terpenoid content of cannabis samples obtained from a single medical cannabis dispensary in California over the course of a year. Terpenoids were quantified by gas chromatography with flame ionization detection and peak identification was confirmed with gas chromatography mass spectrometry. Quantitative data from 16 major terpenoids were analyzed using hierarchical clustering analysis (HCA), principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), and orthogonal partial least squares discriminant analysis (OPLS-DA). Results: A total of 233 samples representing 30 cultivars were used to develop a classification scheme based on quantitative data, HCA, PCA, and OPLS-DA. Initially cultivars were divided into five major groups, which were subdivided into 13 classes based on differences in terpenoid profile. Different classification models were compared with PLS-DA and found to perform best when many representative samples of a particular class were included. Conclusion: A hierarchy of terpenoid chemotypes was observed in the data set. Some cultivars fit into distinct chemotypes, whereas others seemed to represent a continuum of chemotypes. This study has demonstrated an approach to classifying cannabis cultivars based on terpenoid profile.
Mroczek, Tomasz
2016-09-10
Recently launched thin-layer chromatography-mass spectrometry (TLC-MS) interface enabling extraction of compounds directly from TLC plates into MS ion source was unusually extended into two-dimensional thin-layer chromatography/high performance liquid chromatography (2D, TLC/HPLC) system by its a direct connection to a rapid resolution 50×2.1mm, I.D. C18 column compartment followed by detection by diode array (DAD) and electrospray ionisation time-of-flight mass spectrometry (ESI-TOF-MS). In this way, even not separated bands of complicated mixtures of natural compounds could be analysed structurally, only within 1-2min after development of TLC plates. In comparison to typically applied TLC-MS interface, no ion suppression for acidic mobile phases was observed. Also, substantial increase in ESI-TOF-MS sensitivities and quality of spectra, were noticed. It has been utilised in combination with TLC- based bioautographic approaches of acetylcholinesterase (AChE) inhibitors, However, it can be also applied in any other procedures related to bioactivity (e.g. 2,2-Diphenyl-1-picryl-hydrazyl-DPPH screen test for radicals). This system has been also used for determination of half maximal inhibitory concentration (IC50 values) of the active inhibitor-galanthamine, as an example. Moreover, AChE inhibitory potencies of some of purified plant extracts, never studied before, have been quantitatively measured. This is first report of usage such the 2D TLC/HPLC/MS system both for qualitative and quantitative evaluation of cholinesterase inhibitors in biological matrices. Copyright © 2016 Elsevier B.V. All rights reserved.
Nestola, Marco; Thellmann, Andrea
2015-01-01
An online normal-phase liquid chromatography-gas chromatography-mass spectrometry (HPLC-GC-MS) method was developed for the determination of vitamins D2 and D3 in selected food matrices. Transfer of the sample from HPLC to GC was realized by large volume on-column injection; detection was performed with a time-of-flight mass spectrometer (TOF-MS). Typical GC problems in the determination of vitamin D such as sample degradation or sensitivity issues, previously reported in the literature, were not observed. Determination of total vitamin D content was done by quantitation of its pyro isomer based on an isotopically labelled internal standard (ISTD). Extracted ion traces of analyte and ISTD showed cross-contribution, but non-linearity of the calibration curve was not determined inside the chosen calibration range by selection of appropriate quantifier ions. Absolute limits of detection (LOD) and quantitation (LOQ) for vitamins D2 and D3 were calculated as approximately 50 and 150 pg, respectively. Repeatability with internal standard correction was below 2 %. Good agreement between quantitative results of an established high-performance liquid chromatography with UV detection (HPLC-UV) method and HPLC-GC-MS was found. Sterol-enriched margarine was subjected to HPLC-GC-MS and HPLC-MS/MS for comparison, because HPLC-UV showed strong matrix interferences. HPLC-GC-MS produced comparable results with less manual sample cleanup. In summary, online hyphenation of HPLC and GC allowed a minimization in manual sample preparation with an increase of sample throughput.
Yang, Min; Wang, Guang Ji; Wang, Su Jun; Li, Xiao Tian; Xu, Yu Ping; Wang, Song Pei; Xiang, Jing De; Pan, Shang Ren; Cao, Guo Xian; Ye, Wen Cai
2005-01-01
23-Hydroxybetulinic acid is a newly isolated derivative of betulinic acid. The agent exhibits potential anti-tumor activity and functions in this regard via apoptosis. In support of pharmacokinetic and toxicological evaluations, a new assay based on liquid chromatography/mass spectrometry (LC/MS) was developed for the quantitative analysis of 23-hydroxybetulinic acid. Sample preparation consisted of extraction of the plasma by the addition of methylene chloride followed by centrifugation. Aliquots of the supernatant were analyzed using an isocratic reversed-phase high-performance liquid chromatography (HPLC) system coupled to a negative ion electrospray mass spectrometer. Molecules of 23-hydroxybetulinic acid and the internal standard limonin were detected using selected ion monitoring at m/z 471 and 469, respectively. The limit of detection of 23-hydroxybetulinic acid was 0.05 pg (0.11 fmol) injected on-column (10 pg/mL, 5 microL injection volume), and the limit of quantitation was 10 pg (21.19 fmol, 2 ng/mL, 5 muL injection volume). 23-Hydroxybetulinic acid was stable in plasma samples at -20 degrees C for at least 3 weeks. The intra-day and inter-day coefficients of variation of the assay were 3.0 and 4.8%, respectively. The utility of the assay was demonstrated by measuring 23-hydroxybetulinicacid in mouse plasma following intragastric administration (IG) in vivo. Pharmacokinetic parameters were calculated using the 3P97 pharmacokinetic software package. A two-compartment, first-order model was selected for pharmacokinetic modeling. The result showed that after IG of 200 mg/kg 23-hydroxybetulinic acid, the plasma concentrations reached peaks at 2 h with C(max) of 3.1 microg/mL. The 200 mg/kg 23-hydroxybetulinic acid suspension IG doses were found to have long elimination half-lives of 25.6 h and low bioavailability of 2.3%. No interference was noted due to endogenous substances. These analytical methods should be of value in future studies related to the development and characterization of 23-hydroxybetulinic acid. Copyright 2005 John Wiley & Sons, Ltd.
Wang, Jun; Kliks, Michael M; Jun, Soojin; Jackson, Mel; Li, Qing X
2010-03-01
Quantitative analysis of glucose, fructose, sucrose, and maltose in different geographic origin honey samples in the world using the Fourier transform infrared (FTIR) spectroscopy and chemometrics such as partial least squares (PLS) and principal component regression was studied. The calibration series consisted of 45 standard mixtures, which were made up of glucose, fructose, sucrose, and maltose. There were distinct peak variations of all sugar mixtures in the spectral "fingerprint" region between 1500 and 800 cm(-1). The calibration model was successfully validated using 7 synthetic blend sets of sugars. The PLS 2nd-derivative model showed the highest degree of prediction accuracy with a highest R(2) value of 0.999. Along with the canonical variate analysis, the calibration model further validated by high-performance liquid chromatography measurements for commercial honey samples demonstrates that FTIR can qualitatively and quantitatively determine the presence of glucose, fructose, sucrose, and maltose in multiple regional honey samples.
NASA Astrophysics Data System (ADS)
Boes, Kelsey S.; Roberts, Michael S.; Vinueza, Nelson R.
2018-03-01
Complex mixture analysis is a costly and time-consuming task facing researchers with foci as varied as food science and fuel analysis. When faced with the task of quantifying oxygen-rich bio-oil molecules in a complex diesel mixture, we asked whether complex mixtures could be qualitatively and quantitatively analyzed on a single mass spectrometer with mid-range resolving power without the use of lengthy separations. To answer this question, we developed and evaluated a quantitation method that eliminated chromatography steps and expanded the use of quadrupole-time-of-flight mass spectrometry from primarily qualitative to quantitative as well. To account for mixture complexity, the method employed an ionization dopant, targeted tandem mass spectrometry, and an internal standard. This combination of three techniques achieved reliable quantitation of oxygen-rich eugenol in diesel from 300 to 2500 ng/mL with sufficient linearity (R2 = 0.97 ± 0.01) and excellent accuracy (percent error = 0% ± 5). To understand the limitations of the method, it was compared to quantitation attained on a triple quadrupole mass spectrometer, the gold standard for quantitation. The triple quadrupole quantified eugenol from 50 to 2500 ng/mL with stronger linearity (R2 = 0.996 ± 0.003) than the quadrupole-time-of-flight and comparable accuracy (percent error = 4% ± 5). This demonstrates that a quadrupole-time-of-flight can be used for not only qualitative analysis but also targeted quantitation of oxygen-rich lignin molecules in complex mixtures without extensive sample preparation. The rapid and cost-effective method presented here offers new possibilities for bio-oil research, including: (1) allowing for bio-oil studies that demand repetitive analysis as process parameters are changed and (2) making this research accessible to more laboratories. [Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Boes, Kelsey S.; Roberts, Michael S.; Vinueza, Nelson R.
2017-12-01
Complex mixture analysis is a costly and time-consuming task facing researchers with foci as varied as food science and fuel analysis. When faced with the task of quantifying oxygen-rich bio-oil molecules in a complex diesel mixture, we asked whether complex mixtures could be qualitatively and quantitatively analyzed on a single mass spectrometer with mid-range resolving power without the use of lengthy separations. To answer this question, we developed and evaluated a quantitation method that eliminated chromatography steps and expanded the use of quadrupole-time-of-flight mass spectrometry from primarily qualitative to quantitative as well. To account for mixture complexity, the method employed an ionization dopant, targeted tandem mass spectrometry, and an internal standard. This combination of three techniques achieved reliable quantitation of oxygen-rich eugenol in diesel from 300 to 2500 ng/mL with sufficient linearity (R2 = 0.97 ± 0.01) and excellent accuracy (percent error = 0% ± 5). To understand the limitations of the method, it was compared to quantitation attained on a triple quadrupole mass spectrometer, the gold standard for quantitation. The triple quadrupole quantified eugenol from 50 to 2500 ng/mL with stronger linearity (R2 = 0.996 ± 0.003) than the quadrupole-time-of-flight and comparable accuracy (percent error = 4% ± 5). This demonstrates that a quadrupole-time-of-flight can be used for not only qualitative analysis but also targeted quantitation of oxygen-rich lignin molecules in complex mixtures without extensive sample preparation. The rapid and cost-effective method presented here offers new possibilities for bio-oil research, including: (1) allowing for bio-oil studies that demand repetitive analysis as process parameters are changed and (2) making this research accessible to more laboratories. [Figure not available: see fulltext.
Boes, Kelsey S; Roberts, Michael S; Vinueza, Nelson R
2018-03-01
Complex mixture analysis is a costly and time-consuming task facing researchers with foci as varied as food science and fuel analysis. When faced with the task of quantifying oxygen-rich bio-oil molecules in a complex diesel mixture, we asked whether complex mixtures could be qualitatively and quantitatively analyzed on a single mass spectrometer with mid-range resolving power without the use of lengthy separations. To answer this question, we developed and evaluated a quantitation method that eliminated chromatography steps and expanded the use of quadrupole-time-of-flight mass spectrometry from primarily qualitative to quantitative as well. To account for mixture complexity, the method employed an ionization dopant, targeted tandem mass spectrometry, and an internal standard. This combination of three techniques achieved reliable quantitation of oxygen-rich eugenol in diesel from 300 to 2500 ng/mL with sufficient linearity (R 2 = 0.97 ± 0.01) and excellent accuracy (percent error = 0% ± 5). To understand the limitations of the method, it was compared to quantitation attained on a triple quadrupole mass spectrometer, the gold standard for quantitation. The triple quadrupole quantified eugenol from 50 to 2500 ng/mL with stronger linearity (R 2 = 0.996 ± 0.003) than the quadrupole-time-of-flight and comparable accuracy (percent error = 4% ± 5). This demonstrates that a quadrupole-time-of-flight can be used for not only qualitative analysis but also targeted quantitation of oxygen-rich lignin molecules in complex mixtures without extensive sample preparation. The rapid and cost-effective method presented here offers new possibilities for bio-oil research, including: (1) allowing for bio-oil studies that demand repetitive analysis as process parameters are changed and (2) making this research accessible to more laboratories. Graphical Abstract ᅟ.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ford, Michael J; Deibel, Michael A.; Tomkins, Bruce A
Quantitative determination of caffeine on reversed-phase C8 thin-layer chromatography plates using a surface sampling electrospray ionization system with tandem mass spectrometry detection is reported. The thin-layer chromatography/electrospray tandem mass spectrometry method employed a deuterium-labeled caffeine internal standard and selected reaction monitoring detection. Up to nine parallel caffeine bands on a single plate were sampled in a single surface scanning experiment requiring 35 min at a surface scan rate of 44 {mu}m/s. A reversed-phase HPLC/UV caffeine assay was developed in parallel to assess the mass spectrometry method performance. Limits of detection for the HPLC/UV and thin-layer chromatography/electrospray tandem mass spectrometry methodsmore » determined from the calibration curve statistics were 0.20 ng injected (0.50 {mu}L) and 1.0 ng spotted on the plate, respectively. Spike recoveries with standards and real samples ranged between 97 and 106% for both methods. The caffeine content of three diet soft drinks (Diet Coke, Diet Cherry Coke, Diet Pepsi) and three diet sport drinks (Diet Turbo Tea, Speed Stack Grape, Speed Stack Fruit Punch) was measured. The HPLC/UV and mass spectrometry determinations were in general agreement, and these values were consistent with the quoted values for two of the three diet colas. In the case of Diet Cherry Coke and the diet sports drinks, the determined caffeine amounts using both methods were consistently higher (by 8% or more) than the literature values.« less
Cífková, Eva; Holčapek, Michal; Lísa, Miroslav; Ovčačíková, Magdaléna; Lyčka, Antonín; Lynen, Frédéric; Sandra, Pat
2012-11-20
The identification and quantitation of a wide range of lipids in complex biological samples is an essential requirement for the lipidomic studies. High-performance liquid chromatography-mass spectrometry (HPLC/MS) has the highest potential to obtain detailed information on the whole lipidome, but the reliable quantitation of multiple lipid classes is still a challenging task. In this work, we describe a new method for the nontargeted quantitation of polar lipid classes separated by hydrophilic interaction liquid chromatography (HILIC) followed by positive-ion electrospray ionization mass spectrometry (ESI-MS) using a single internal lipid standard to which all class specific response factors (RFs) are related to. The developed method enables the nontargeted quantitation of lipid classes and molecules inside these classes in contrast to the conventional targeted quantitation, which is based on predefined selected reaction monitoring (SRM) transitions for selected lipids only. In the nontargeted quantitation method described here, concentrations of lipid classes are obtained by the peak integration in HILIC chromatograms multiplied by their RFs related to the single internal standard (i.e., sphingosyl PE, d17:1/12:0) used as common reference for all polar lipid classes. The accuracy, reproducibility and robustness of the method have been checked by various means: (1) the comparison with conventional lipidomic quantitation using SRM scans on a triple quadrupole (QqQ) mass analyzer, (2) (31)P nuclear magnetic resonance (NMR) quantitation of the total lipid extract, (3) method robustness test using subsequent measurements by three different persons, (4) method transfer to different HPLC/MS systems using different chromatographic conditions, and (5) comparison with previously published results for identical samples, especially human reference plasma from the National Institute of Standards and Technology (NIST human plasma). Results on human plasma, egg yolk and porcine liver extracts are presented and discussed.
Stephens, A D; Colah, R; Fucharoen, S; Hoyer, J; Keren, D; McFarlane, A; Perrett, D; Wild, B J
2015-10-01
Automated high performance liquid chromatography and Capillary electrophoresis are used to quantitate the proportion of Hemoglobin A2 (HbA2 ) in blood samples order to enable screening and diagnosis of carriers of β-thalassemia. Since there is only a very small difference in HbA2 levels between people who are carriers and people who are not carriers such analyses need to be both precise and accurate. This paper examines the different parameters of such equipment and discusses how they should be assessed. © 2015 John Wiley & Sons Ltd.
Paper SERS chromatography for detection of trace analytes in complex samples
NASA Astrophysics Data System (ADS)
Yu, Wei W.; White, Ian M.
2013-05-01
We report the application of paper SERS substrates for the detection of trace quantities of multiple analytes in a complex sample in the form of paper chromatography. Paper chromatography facilitates the separation of different analytes from a complex sample into distinct sections in the chromatogram, which can then be uniquely identified using SERS. As an example, the separation and quantitative detection of heroin in a highly fluorescent mixture is demonstrated. Paper SERS chromatography has obvious applications, including law enforcement, food safety, and border protection, and facilitates the rapid detection of chemical and biological threats at the point of sample.
Pretorius, Carel J; McWhinney, Brett C; Sipinkoski, Bilyana; Wilce, Alice; Cox, David; McWhinney, Avis; Ungerer, Jacobus P J
2018-03-01
We optimized a quantitative amino acid method with pre-column derivatization, norvaline (nva) internal standard and reverse phase ultra-performance liquid chromatography by replacing the ultraviolet detector with a single quadrupole mass spectrometer (MS nva ). We used 13 C 15 N isotopically labeled amino acid internal standards and a C18 column with 1.6μm particles to optimize the chromatography and to confirm separation of isobaric compounds (MS lis ). We compared the analytical performance of MS nva with MS lis and the original method (UV nva ) with clinical samples. The chromatography time per sample of MS nva was 8min, detection capabilities were <1μmol/L for most components, intermediate imprecisions at low concentrations were <10% and there was negligible carryover. MS nva was linear up to a total amino acid concentration in a sample of approximately 9500μmol/L. The agreements between most individual amino acids were satisfactory compared to UV nva with the latter prone to outliers and suboptimal quantitation of urinary arginine, aspartate, glutamate and methionine. MS nva reliably detected argnininosuccinate, β-alanine, citrulline and cysteine-s-sulfate. MS nva resulted in a more than fivefold increase in operational efficiency with accurate detection of amino acids and metabolic intermediates in clinical samples. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.
Liquid chromatographic separation of terpenoid pigments in foods and food products.
Cserháti, T; Forgács, E
2001-11-30
The newest achievements in the use of various liquid chromatographic techniques such as adsorption and reversed-phase thin-layer chromatography and HPLC employed for the separation and quantitative determination of terpenoid-based color substances in foods and food products are reviewed. The techniques applied for the analysis of individual pigments and pigments classes are surveyed and critically evaluated. Future trends in the separation and identification of pigments in foods and food products are delineated.
Liao, Hsiao-Wei; Chen, Guan-Yuan; Wu, Ming-Shiang; Liao, Wei-Chih; Lin, Ching-Hung; Kuo, Ching-Hua
2017-02-03
Quantitative metabolomics has become much more important in clinical research in recent years. Individual differences in matrix effects (MEs) and the injection order effect are two major factors that reduce the quantification accuracy in liquid chromatography-electrospray ionization-mass spectrometry-based (LC-ESI-MS) metabolomics studies. This study proposed a postcolumn infused-internal standard (PCI-IS) combined with a matrix normalization factor (MNF) strategy to improve the analytical accuracy of quantitative metabolomics. The PCI-IS combined with the MNF method was applied for a targeted metabolomics study of amino acids (AAs). D8-Phenylalanine was used as the PCI-IS, and it was postcolumn-infused into the ESI interface for calibration purposes. The MNF was used to bridge the AA response in a standard solution with the plasma samples. The MEs caused signal changes that were corrected by dividing the AA signal intensities by the PCI-IS intensities after adjustment with the MNF. After the method validation, we evaluated the method applicability for breast cancer research using 100 plasma samples. The quantification results revealed that the 11 tested AAs exhibit an accuracy between 88.2 and 110.7%. The principal component analysis score plot revealed that the injection order effect can be successfully removed, and most of the within-group variation of the tested AAs decreased after the PCI-IS correction. Finally, targeted metabolomics studies on the AAs showed that tryptophan was expressed more in malignant patients than in the benign group. We anticipate that a similar approach can be applied to other endogenous metabolites to facilitate quantitative metabolomics studies.
Heinig, Uwe; Scholz, Susanne; Dahm, Pia; Grabowy, Udo; Jennewein, Stefan
2010-08-01
Classical approaches to strain improvement and metabolic engineering rely on rapid qualitative and quantitative analyses of the metabolites of interest. As an analytical tool, mass spectrometry (MS) has proven to be efficient and nearly universally applicable for timely screening of metabolites. Furthermore, gas chromatography (GC)/MS- and liquid chromatography (LC)/MS-based metabolite screens can often be adapted to high-throughput formats. We recently engineered a Saccharomyces cerevisiae strain to produce taxa-4(5),11(12)-diene, the first pathway-committing biosynthetic intermediate for the anticancer drug Taxol, through the heterologous and homologous expression of several genes related to isoprenoid biosynthesis. To date, GC/MS- and LC/MS-based high-throughput methods have been inherently difficult to adapt to the screening of isoprenoid-producing microbial strains due to the need for extensive sample preparation of these often highly lipophilic compounds. In the current work, we examined different approaches to the high-throughput analysis of taxa-4(5),11(12)-diene biosynthesizing yeast strains in a 96-deep-well format. Carbon plasma coating of standard 96-deep-well polypropylene plates allowed us to circumvent the inherent solvent instability of commonly used deep-well plates. In addition, efficient adsorption of the target isoprenoid product by the coated plates allowed rapid and simple qualitative and quantitative analyses of the individual cultures. Copyright 2010 Elsevier Inc. All rights reserved.
Yang, Yinjun; Sun, Xinguang; Liu, Jinjun; Kang, Liping; Chen, Sibao; Ma, Baiping; Guo, Baolin
2016-09-30
A simple, accurate and reliable high performance liquid chromatography coupled with photodiode array detection (HPLC-DAD) method was developed and then successfully applied for simultaneous quantitative analysis of eight compounds, including chlorogenic acid ( 1 ), ( R / S )-flavanomarein ( 2 ), butin-7- O -β-d-glucopyranoside ( 3 ), isookanin ( 4 ), taxifolin ( 5 ), 5,7,3',5'-tetrahydroxyflavanone-7- O -β-d-glucopyranoside ( 6 ), marein ( 7 ) and okanin ( 8 ), in 23 batches of snow chrysanthemum of different seed provenance and from various habitats. The results showed total contents of the eight compounds in the samples with seed provenance from Keliyang (Xinjiang, China), are higher than in samples from the other five provenances by 52.47%, 15.53%, 19.78%, 21.17% and 5.06%, respectively, which demonstrated that provenance has a great influence on the constituents in snow chrysanthemum. Meanwhile, an ultra performance liquid chromatography coupled with electrospray ionization and quadrupole time-of-flight-mass spectrometry (UPLC-ESI-QTOF-MS) was also employed to rapidly separate and identify flavonoids and phenolic acids in snow chrysanthemum from Keliyang. As a result, a total of 30 constituents, including 26 flavonoids and four phenolic acids, were identified or tentatively identified based on the exact mass information, the fragmentation characteristics, and retention times of eight reference standards. This work may provide an efficient approach to comprehensively evaluate the quality of snow chrysanthemum.
Tanuja, Penmatsa; Venugopal, Namburi; Sashidhar, Rao Beedu
2007-01-01
A simple thin-layer chromatography-digital image-based analytical method has been developed for the quantitation of the botanical pesticide, azadirachtin. The method was validated by analyzing azadirachtin in the spiked food matrixes and processed commercial pesticide formulations, using acidified vanillin reagent as a postchromatographic derivatizing agent. The separated azadirachtin was clearly identified as a green spot. The Rf value was found to be 0.55, which was similar to that of a reference standard. A standard calibration plot was established using a reference standard, based on the linear regression analysis [r2 = 0.996; y = 371.43 + (634.82)x]. The sensitivity of the method was found to be 0.875 microg azadirachtin. Spiking studies conducted at the 1 ppm (microg/g) level in various agricultural matrixes, such as brinjal, tomato, coffee, and cotton seeds, revealed the recoveries of azadirachtin in the range of 67-92%. Azadirachtin content of commercial neem formulations analyzed by the method was in the range of 190-1825 ppm (microg/mL). Further, the present method was compared with an immunoanalytical method enzyme-linked immonosorbent assay developed earlier in our laboratory. Statistical comparison of the 2 methods, using Fischer's F-test, indicated no significant difference in variance, suggesting that both methods are comparable.
Mottier, Pascal; Khong, Seu-Ping; Gremaud, Eric; Richoz, Janique; Delatour, Thierry; Goldmann, Till; Guy, Philippe A
2005-03-04
A confirmatory method based on isotope dilution liquid chromatography-tandem mass spectrometry (LC-MS/MS) has been developed for the low-level determination of residues of four nitrofuran veterinary drugs in meat, e.g., furazolidone, furaltadone, nitrofurantoin, and nitrofurazone. The procedure entails an acid-catalysed release of protein-bound metabolites, followed by their in situ conversion into the 2-nitrobenzaldehyde (NBA) imine-type derivatives. Liquid-liquid extraction and clean-up on a polymeric solid phase extraction cartridge are then performed before LC-MS/MS analysis by positive electrospray ionisation (ESI) applying multiple reaction monitoring of three transition reactions for each compound. Reliable quantitation is obtained by using one deuterated analogue per analyte (d4-NBA derivative) as internal standard (IS). Validation of the method in chicken meat was conducted following the European Union (EU) criteria for the analysis of veterinary drug residues in foods. The decision limits (CCalpha) were 0.11-0.21 microg/kg, and the detection capabilities (CCbeta) 0.19-0.36 microg/kg, thus below the minimum required performance limit (MRPL) set at 1 microg/kg by the EU. The method is robust and suitable for routine quality control operations, and more than 200 sample injections were performed without excessive pollution of the mass spectrometer or loss of LC column performance.
NASA Astrophysics Data System (ADS)
Kim, Yong-Hyun; Kim, Ki-Hyun
2016-07-01
A multitude of analytical systems are needed to analyze diverse odorants with various functionalities. In this study, an experimental method was developed to assess the maximum covering range of odorants using a single experimental setup consisting of a thermal desorber-gas chromatography-mass spectrometry system. To this end, a total of 20 offensive odorants (aldehyde, ketone, ester, alcohol, aromatic, sulfide, amine, and carboxyl) were selected and tested by a single system. The analytical results of standards and environmental samples were evaluated in a number of respects. In the analysis of the standards, all targets were quantified via Carbopack (C + B + X) tube sampling while operating the thermal desorber at -25 °C. The method detection limits of 18 targets (exception of 2 out of the 20 targets: acetaldehyde and methanethiol) were excellent (mean 0.04 ± 0.03 ppb) in terms of their odor threshold values (74.7 ± 140 ~ 624 ± 1,729 ppb). The analysis of organic fertilizer plant samples at a pig farm (slurry treatment facility, compost facility, and ambient air) confirmed the presence of 18 odorants from 0.03 ppb (dimethyldisulfide, ambient sample) to 522 ppb (methyl ethyl ketone, slurry treatment facility). As such, our method allowed simultaneous quantitation of most key odorants with sufficient reliability and sensitivity.
Helmi, Zead; Al Azzam, Khaldun Mohammad; Tsymbalista, Yuliya; Ghazleh, Refat Abo; Shaibah, Hassan; Aboul-Enein, Hassan
2014-12-01
To investigate, for the first time, the chemical composition of essential oil of the tubers and leaves of Jerusalem artichoke (Helianthus tuberosus L.), a species of sunflower native to eastern North America, growing in Ukraine. A hydrodistillation apparatus was used for the extraction of volatile components and then it was analysed by gas chromatography equipped with a split-splitless injector (split ratio, 1:50) and flame ionization detector (FID). The oil was analyzed under linear temperature programming applied at 4°C/min from 50°C - 340°C. Temperatures of the injector and FID detector were maintained at 280°C and 300°C, respectively. The chemical analysis of the oil was carried out using gas chromatography coupled to mass spectrometry (GC-MS), to determine the chemical composition of the volatile fraction. The essential oils content ranged from 0.00019 to 0.03486 and 0.00011 to 0.00205 (g/100g), in leaves and tubers, respectively. The qualitative and quantitative analysis led to the identification of 17 components in both species samples. The major component found in leaves and tubers was (-)-β-bisabolene with 70.7% and 63.1%, respectively. Essential oil profile of Jerusalem artichoke species showed significant differences between leaves and tubers species. Additionally, the leaves of Jerusalem artichoke are a promising source of natural β-bisabolene.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, Adam
2015-01-01
This thesis presents work on advancements and applications of methodology for the analysis of biological samples using mass spectrometry. Included in this work are improvements to chemical cross-linking mass spectrometry (CXMS) for the study of protein structures and mass spectrometry imaging and quantitative analysis to study plant metabolites. Applications include using matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) to further explore metabolic heterogeneity in plant tissues and chemical interactions at the interface between plants and pests. Additional work was focused on developing liquid chromatography-mass spectrometry (LC-MS) methods to investigate metabolites associated with plant-pest interactions.
Schalk, Kathrin; Koehler, Peter
2018-01-01
Celiac disease (CD) is an inflammatory disorder of the upper small intestine caused by the ingestion of storage proteins (prolamins and glutelins) from wheat, barley, rye, and, in rare cases, oats. CD patients need to follow a gluten-free diet by consuming gluten-free products with gluten contents of less than 20 mg/kg. Currently, the recommended method for the quantitative determination of gluten is an enzyme-linked immunosorbent assay (ELISA) based on the R5 monoclonal antibody. Because the R5 ELISA mostly detects the prolamin fraction of gluten, a new independent method is required to detect prolamins as well as glutelins. This paper presents the development of a method to quantitate 16 wheat marker peptides derived from all wheat gluten protein types by liquid chromatography tandem mass spectrometry (LC-MS/MS) in the multiple reaction monitoring mode. The quantitation of each marker peptide in the chymotryptic digest of a defined amount of the respective reference wheat protein type resulted in peptide-specific yields. This enabled the conversion of peptide into protein type concentrations. Gluten contents were expressed as sum of all determined protein type concentrations. This new method was applied to quantitate gluten in wheat starches and compared to R5 ELISA and gel-permeation high-performance liquid chromatography with fluorescence detection (GP-HPLC-FLD), which resulted in a strong correlation between LC-MS/MS and the other two methods. PMID:29425234
Wang, Jin; Cao, Xianshuang; Ferchaud, Vanessa; Qi, Yadong; Jiang, Hao; Tang, Feng; Yue, Yongde; Chin, Kit L
2016-06-01
The leaves of Hibiscus sabdariffa L. have been used as traditional folk medicines for treating high blood pressure and fever. There are many accessions of H. sabdariffa L. throughout the world. To assess the chemical variations of 31 different accessions of H. sabdariffa L., fingerprinting analysis and quantitation of major flavonoids were performed by high-performance liquid chromatography (HPLC). The HPLC method was validated for linearity, sensitivity, precision, repeatability and accuracy. A quadrupole-time-of-flight mass spectrometry (Q-TOF-MS) was applied for the characterization of major compounds. A total of 9 compounds were identified, including 6 flavonoids and 3 phenolic acids. In the fingerprint analysis, similarity analysis (SA) and principal component analysis (PCA) were used to differentiate the 31 accessions of H. sabdariffa L. Based on the results of PCA and SA, the samples No. 15 and 19 appeared much different from the main group. The total content of five flavonoids varied greatly among different accessions, ranging from 3.35 to 23.30 mg/g. Rutin was found to be the dominant compound and the content of rutin could contribute to chemical variations among different accessions. This study was helpful to understand the chemical variations between different accessions of H. sabdariffa L., which could be used for quality control. © 2015 The Authors Biomedical Chromatography Published by John Wiley & Sons Ltd. © 2015 The Authors Biomedical Chromatography Published by John Wiley & Sons Ltd.
Li, Jie; Zhang, Ji; Jin, Hang; Wang, Yuan-Zhong; Huang, Heng-Yu
2017-01-01
Millions of people are killed by viral hepatitis every year in the world, whereas many relevant medicines are too expensive to purchase. Swertia mileensis , a medicinal plant for hepatitis in the system of traditional Chinese medicine, has been vanishing gradually because of overexploitation. To find substitutes of S. mileensis and reduce the cost of purchasing drugs for hepatitis patients, the similarity of phytochemical constituents between S. mileensis and other three Swertia species was compared. Both ultra high performance liquid chromatographies and ultraviolet-vis fingerprints of four Swertia species were developed. Methanol extracts of the stems and leaves were used as samples to establish the fingerprint. The calibration curve was drawn for quantitative analysis of swertiamarin. The data of ultra high performance liquid chromatographies were evaluated statistically using similarity analysis and principal component analysis. The result shows a significant difference at area of 204-290 nm in the ultraviolet fingerprint. Swertiamarin, the only one common peak, was defined in chromatographic fingerprints of four Swertia species. The quantitative analysis suggested that the highest concentration of swertiamarin is in S. davidii . The similarity indexes between different samples were almost under 0.60. In the principal component analysis, separate points not only represent the distinction among different species, but also perform chemical discrepancies in content between stems and leaves of one same species. S. angustifolia , S. davidii , and S. punicea are not suitable as substitutes of S. mileensis because of their remarkable differences in entirety and local part. In order to address issues about substitutes and high cost of purchasing drugs, more studies need to undertake. The UHPLC fingerprint method indicated the significant difference on chemical ingredients in four plants from Swertia .Swertiamarin is the unique common compounds for four plants, which exist are in leaves of S. davidii with the highest content.The obvious diversity in four plants was displayed from comprehensive point of view though similarity assay and PCA analysis.The UV fingerprint method offsets the defect that the UHPLC fingerprint reflected messages of secoiridoid glycosides only. Abbreviation used: UHPLC: Ultra high performance liquid chromatography, UV-vis: Ultraviolet-vis, HBV: Anti-hepatitis virus, DNA: Deoxyribonucleic acid, PCA: Principal component analysis, D-GaIN: D-Galactosamine, BCG: Bacille Calmette-Guerin, LPS: Lipopolysaccharide.
Li, Jie; Zhang, Ji; Jin, Hang; Wang, Yuan-Zhong; Huang, Heng-Yu
2017-01-01
Background: Millions of people are killed by viral hepatitis every year in the world, whereas many relevant medicines are too expensive to purchase. Swertia mileensis, a medicinal plant for hepatitis in the system of traditional Chinese medicine, has been vanishing gradually because of overexploitation. Objective: To find substitutes of S. mileensis and reduce the cost of purchasing drugs for hepatitis patients, the similarity of phytochemical constituents between S. mileensis and other three Swertia species was compared. Materials and Methods: Both ultra high performance liquid chromatographies and ultraviolet-vis fingerprints of four Swertia species were developed. Methanol extracts of the stems and leaves were used as samples to establish the fingerprint. The calibration curve was drawn for quantitative analysis of swertiamarin. The data of ultra high performance liquid chromatographies were evaluated statistically using similarity analysis and principal component analysis. Results: The result shows a significant difference at area of 204–290 nm in the ultraviolet fingerprint. Swertiamarin, the only one common peak, was defined in chromatographic fingerprints of four Swertia species. The quantitative analysis suggested that the highest concentration of swertiamarin is in S. davidii. The similarity indexes between different samples were almost under 0.60. In the principal component analysis, separate points not only represent the distinction among different species, but also perform chemical discrepancies in content between stems and leaves of one same species. Conclusions: S. angustifolia, S. davidii, and S. punicea are not suitable as substitutes of S. mileensis because of their remarkable differences in entirety and local part. In order to address issues about substitutes and high cost of purchasing drugs, more studies need to undertake. SUMMARY The UHPLC fingerprint method indicated the significant difference on chemical ingredients in four plants from Swertia.Swertiamarin is the unique common compounds for four plants, which exist are in leaves of S. davidii with the highest content.The obvious diversity in four plants was displayed from comprehensive point of view though similarity assay and PCA analysis.The UV fingerprint method offsets the defect that the UHPLC fingerprint reflected messages of secoiridoid glycosides only. Abbreviation used: UHPLC: Ultra high performance liquid chromatography, UV-vis: Ultraviolet-vis, HBV: Anti-hepatitis virus, DNA: Deoxyribonucleic acid, PCA: Principal component analysis, D-GaIN: D-Galactosamine, BCG: Bacille Calmette-Guerin, LPS: Lipopolysaccharide PMID:28216877
Giménez, Estela; Sanz-Nebot, Victòria; Rizzi, Andreas
2013-09-01
Glycan reductive isotope labeling (GRIL) using [(12)C]- and [(13)C]-coded aniline was used for relative quantitation of N-glycans. In a first step, the labeling method by reductive amination was optimized for this reagent. It could be demonstrated that selecting aniline as limiting reactant and using the reductant in excess is critical for achieving high derivatization yields (over 95 %) and good reproducibility (relative standard deviations ∼1-5 % for major and ∼5-10 % for minor N-glycans). In a second step, zwitterionic-hydrophilic interaction liquid chromatography in capillary columns coupled to electrospray mass spectrometry with time-of-flight analyzer (μZIC-HILIC-ESI-TOF-MS) was applied for the analysis of labeled N-glycans released from intact glycoproteins. Ovalbumin, bovine α1-acid-glycoprotein and bovine fetuin were used as test glycoproteins to establish and evaluate the methodology. Excellent separation of isomeric N-glycans and reproducible quantitation via the extracted ion chromatograms indicate a great potential of the proposed methodology for glycoproteomic analysis and for reliable relative quantitation of glycosylation variants in biological samples.
Kafle, Amol; Klaene, Joshua; Hall, Adam B; Glick, James; Coy, Stephen L; Vouros, Paul
2013-07-15
There is continued interest in exploring new analytical technologies for the detection and quantitation of DNA adducts, biomarkers which provide direct evidence of exposure and genetic damage in cells. With the goal of reducing clean-up steps and improving sample throughput, a Differential Mobility Spectrometry/Mass Spectrometry (DMS/MS) platform has been introduced for adduct analysis. A DMS/MS platform has been utilized for the analysis of dG-ABP, the deoxyguanosine adduct of the bladder carcinogen 4-aminobiphenyl (4-ABP). After optimization of the DMS parameters, each sample was analyzed in just 30 s following a simple protein precipitation step of the digested DNA. A detection limit of one modification in 10^6 nucleosides has been achieved using only 2 µg of DNA. A brief comparison (quantitative and qualitative) with liquid chromatography/mass spectrometry is also presented highlighting the advantages of using the DMS/MS method as a high-throughput platform. The data presented demonstrate the successful application of a DMS/MS/MS platform for the rapid quantitation of DNA adducts using, as a model analyte, the deoxyguanosine adduct of the bladder carcinogen 4-aminobiphenyl. Copyright © 2013 John Wiley & Sons, Ltd.
Cantú, Ricardo; Shoemaker, Jody A; Kelty, Catherine A; Wymer, Larry J; Behymer, Thomas D; Dufour, Alfred P; Magnuson, Matthew L
2017-08-22
The use of cyanuric acid as a biomarker for ingestion of swimming pool water may lead to quantitative knowledge of the volume of water ingested during swimming, contributing to a better understanding of disease resulting from ingestion of environmental contaminants. When swimming pool water containing chlorinated cyanurates is inadvertently ingested, cyanuric acid is excreted quantitatively within 24 h as a urinary biomarker of ingestion. Because the volume of water ingested can be quantitatively estimated by calculation from the concentration of cyanuric acid in 24 h urine samples, a procedure for preservation, cleanup, and analysis of cyanuric acid was developed to meet the logistical demands of large scale studies. From a practical stand point, urine collected from swimmers cannot be analyzed immediately, given requirements of sample collection, shipping, handling, etc. Thus, to maintain quality control to allow confidence in the results, it is necessary to preserve the samples in a manner that ensures as quantitative analysis as possible. The preservation and clean-up of cyanuric acid in urine is complicated because typical approaches often are incompatible with the keto-enol tautomerization of cyanuric acid, interfering with cyanuric acid sample preparation, chromatography, and detection. Therefore, this paper presents a novel integration of sample preservation, clean-up, chromatography, and detection to determine cyanuric acid in 24 h urine samples. Fortification of urine with cyanuric acid (0.3-3.0 mg/L) demonstrated accuracy (86-93% recovery) and high reproducibility (RSD < 7%). Holding time studies in unpreserved urine suggested sufficient cyanuric acid stability for sample collection procedures, while longer holding times suggested instability of the unpreserved urine. Preserved urine exhibited a loss of around 0.5% after 22 days at refrigerated storage conditions of 4 °C. Published by Elsevier B.V.
Upon the opportunity to apply ART2 Neural Network for clusterization of biodiesel fuels
NASA Astrophysics Data System (ADS)
Petkov, T.; Mustafa, Z.; Sotirov, S.; Milina, R.; Moskovkina, M.
2016-03-01
A chemometric approach using artificial neural network for clusterization of biodiesels was developed. It is based on artificial ART2 neural network. Gas chromatography (GC) and Gas Chromatography - mass spectrometry (GC-MS) were used for quantitative and qualitative analysis of biodiesels, produced from different feedstocks, and FAME (fatty acid methyl esters) profiles were determined. Totally 96 analytical results for 7 different classes of biofuel plants: sunflower, rapeseed, corn, soybean, palm, peanut, "unknown" were used as objects. The analysis of biodiesels showed the content of five major FAME (C16:0, C18:0, C18:1, C18:2, C18:3) and those components were used like inputs in the model. After training with 6 samples, for which the origin was known, ANN was verified and tested with ninety "unknown" samples. The present research demonstrated the successful application of neural network for recognition of biodiesels according to their feedstock which give information upon their properties and handling.
Böttcher, Christoph; von Roepenack-Lahaye, Edda; Schmidt, Jürgen; Clemens, Stephan; Scheel, Dierk
2009-04-01
Total phenolic choline ester fractions prepared from seeds of Arabidopsis thaliana and Brassica napus were analyzed by capillary LC/ESI-QTOF-MS and direct infusion ESI-FTICR-MS. In addition to the dominating sinapoylcholine, 30 phenolic choline esters could be identified based on accurate mass measurements, interpretation of collision-induced dissociation (CID) mass spectra, and synthesis of selected representatives. The compounds identified so far include substituted hydroxycinnamoyl- and hydroxybenzoylcholines, respective monohexosides as well as oxidative coupling products of phenolic choline esters and monolignols. Phenolic choline esters are well separable by reversed-phase liquid chromatography and sensitively detectable using electrospray ionization mass spectrometry in positive ion mode. CID mass spectra obtained from molecular ions facilitate the characterization of both the type and substitution pattern of such compounds. Therefore, LC/ESI-MS/MS represents a valuable tool for comprehensive qualitative and quantitative analysis of this compound class. Copyright (c) 2009 John Wiley & Sons, Ltd.
Analysis of the extracts of Isatis tinctoria by new analytical approaches of HPLC, MS and NMR.
Zhou, Jue; Qu, Fan
2011-01-01
The methods of extraction, separation and analysis of alkaloids and indole glucosinolates (GLs) ofIsatis tinctoria were reviewed. Different analytical approaches such as High-pressure Liquid Chromatography (HPLC), Liquid Chromatography with Electrospray Ionization Mass Spectrometry (LC/ESI/MS), Electrospray Ionization Time-Of-Flight Mass Spectrometry (ESI-TOF-MS), and Nuclear Magnetic Resonance (NMR) were used to validate and identity of these constituents. These methods provide rapid separation, identification and quantitative measurements of alkaloids and GLs of Isatis tinctoria. By connection with different detectors to HPLC such as PDA, ELSD, ESI- and APCI-MS in positive and negative ion modes, complicated compounds could be detected with at least two independent detection modes. The molecular formula can be derived in a second step of ESI-TOF-MS data. But for some constituents, UV and MS cannot provide sufficient structure identification. After peak purification, NMR by semi-preparative HPLC can be used as a complementary method.
Aizpurua-Olaizola, Oier; Omar, Jone; Navarro, Patricia; Olivares, Maitane; Etxebarria, Nestor; Usobiaga, Aresatz
2014-11-01
High performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) has been successfully applied to cannabis plant extracts in order to identify cannabinoid compounds after their quantitative isolation by means of supercritical fluid extraction (SFE). MS conditions were optimized by means of a central composite design (CCD) approach, and the analysis method was fully validated. Six major cannabinoids [tetrahydrocannabinolic acid (THCA), tetrahydrocannabinol (THC), cannabidiol (CBD), tetrahydrocannabivarin (THCV), cannabigerol (CBG), and cannabinol (CBN)] were quantified (RSD < 10%), and seven more cannabinoids were identified and verified by means of a liquid chromatograph coupled to a quadrupole-time-of-flight (Q-ToF) detector. Finally, based on the distribution of the analyzed cannabinoids in 30 Cannabis sativa L. plant varieties and the principal component analysis (PCA) of the resulting data, a clear difference was observed between outdoor and indoor grown plants, which was attributed to a higher concentration of THC, CBN, and CBD in outdoor grown plants.
Ehling, Stefan; Reddy, Todime M
2015-12-09
A straightforward analytical method based on derivatization with fluorenylmethyloxycarbonyl chloride and liquid chromatography-mass spectrometry has been developed for the analysis of residues of glyphosate and aminomethylphosphonic acid (AMPA) in a suite of nutritional ingredients derived from soybean, corn, and sugar beet and also in cow's milk and human breast milk. Accuracy and intermediate precision were 91-116% and <10% RSD, respectively, in soy protein isolate. Limits of quantitation were 0.05 and 0.005 μg/g in powdered and liquid samples, respectively. Glyphosate and AMPA were quantified at 0.105 and 0.210 μg/g (soy protein isolate) and 0.850 and 2.71 μg/g (soy protein concentrate, both derived from genetically modified soybean), respectively. Residues were not detected in soy milk, soybean oil, corn oil, maltodextrin, sucrose, cow's milk, whole milk powder, or human breast milk. The method is proposed as a convenient tool for the survey of glyphosate and AMPA in the ingredient supply chain.
NASA Technical Reports Server (NTRS)
Valentine, J. L.; Bryant, P. J.
1975-01-01
Analysis of human breath is a nonintrusive method to monitor both endogenous and exogenous chemicals found in the body. Several technologies were investigated and developed which are applicable to monitoring some organic molecules important in both physiological and pathological states. Two methods were developed for enriching the organic molecules exhaled in the breath of humans. One device is based on a respiratory face mask fitted with a polyethylene foam wafer; while the other device is a cryogenic trap utilizing an organic solvent. Using laboratory workers as controls, two organic molecules which occurred in the enriched breath of all subjects were tentatively identified as lactic acid and contisol. Both of these substances occurred in breath in sufficient amounts that the conventional method of gas-liquid chromatography was adequate for detection and quantification. To detect and quantitate trace amounts of chemicals in breath, another type of technology was developed in which analysis was conducted using high pressure liquid chromatography and mass spectrometry.
Wang, Zhangjie; Li, Daoyuan; Sun, Xiaojun; Bai, Xue; Jin, Lan; Chi, Lianli
2014-04-15
Low molecular weight heparins (LMWHs) are important artificial preparations from heparin polysaccharide and are widely used as anticoagulant drugs. To analyze the structure and composition of LMWHs, identification and quantitation of their natural and modified building blocks are indispensable. We have established a novel reversed-phase high-performance liquid chromatography-diode array detection-electrospray ionization-mass spectrometry approach for compositional analysis of LMWHs. After being exhaustively digested and labeled with 2-aminoacridone, the structural motifs constructing LMWHs, including 17 components from dalteparin and 15 components from enoxaparin, were well separated, identified, and quantified. Besides the eight natural heparin disaccharides, many characteristic structures from dalteparin and enoxaparin, such as modified structures from the reducing end and nonreducing end, 3-O-sulfated tetrasaccharides, and trisaccharides, have been unambiguously identified based on their retention time and mass spectra. Compared with the traditional heparin compositional analysis methods, the approach described here is not only robust but also comprehensive because it is capable of identifying and quantifying nearly all components from lyase digests of LMWHs. Copyright © 2014 Elsevier Inc. All rights reserved.
Shin, Yongho; Lee, Jonghwa; Lee, Jiho; Lee, Junghak; Kim, Eunhye; Liu, Kwang-Hyeon; Lee, Hye Suk; Kim, Jeong-Han
2018-04-04
A screening method for simultaneous analysis of 379 pesticides in human serum was developed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Electrospray ionization with positive/negative switching mode of LC-MS/MS was adopted, and scheduled multiple reaction monitoring for each target compound was established. The limit of quantitation was 10 ng/mL for 94.5% of the total pesticides, and the correlation coefficients of calibration were ≥0.990 for 93.9% of the pesticides. For the sample preparation, scaled-down QuEChERS were used. Serum (100 μL) was extracted with acetonitrile (400 μL), partitioned with magnesium sulfate (40 mg) and sodium chloride (10 mg), and the upper layer was used for analysis without further cleanup steps. For the accuracy and precision tests, most of the pesticides showed excellent results in intra- and interday conditions. In the recovery tests at 10, 50, and 250 ng/mL, 85.8-91.8% of all target compounds satisfied the recovery range of 70-120% (relative standard deviation ≤20%).
Tokuoka, Masafumi; Honda, Chihiro; Totsuka, Akira; Shindo, Hitoshi; Hosaka, Masaru
2017-08-01
A traditional Japanese alcoholic beverage, sake, contains several oligosaccharides, which are associated with the taste of sake; however, little is known about the specific molecular species and concentrations of oligosaccharides in sake. Here, we developed an analytical method using hydrophilic interaction liquid chromatography-time-of-flight/mass spectrometry (HILIC-TOF/MS) which successfully detects the oligosaccharides in sake. A series of oligosaccharides with successive degree of polymerization (DP) values up to 18 were identified in sake for the first time, which we have named sake oligosaccharides (SAOs). The concentrations of the SAOs with DP = 3-8 were estimated to be in the range of 200-2000 ppm. Quantitative analysis of 6 different sake samples for SAOs with DP=2-8 and the other saccharides showed that the amount of each SAO differs significantly among the sake samples. Enzymatic digestion analysis suggested that the SAOs are probably branched maltooligosaccharides in structure, which are resistant to β-amylase. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Method 525.3 is an analytical method that uses solid phase extraction (SPE) and gas chromatography/mass spectrometry (GC/MS) for the identification and quantitation of 125 selected semi-volatile organic chemicals in drinking water.
In this presentation the analytical instrumentation and procedures necessary to qualitatively and quantitatively determine low levels of perchlorate (ClO4-) in drinking waters using ion chromatography with electrolytic conductivity suppression, electrospray ionization mass spec...
Cao, Di; Wang, Qing; Jin, Jing; Qiu, Maosong; Zhou, Lian; Zhou, Xinghong; Li, Hui; Zhao, Zhongxiang
2018-03-01
Ilex pubescens Hook et Arn mainly contains triterpenoids that possess antithrombotic, anti-inflammatory and analgesic effects. Quantitative and qualitative analyses of the triterpenoids in I. pubescens can be useful for determining the authenticity and quality of raw materials and guiding its clinical preparation. To establish a method for rapid and comprehensive analysis of triterpenoids in I. pubescens using ultra-high-performance liquid chromatography coupled to electrospray ionisation and quadrupole time-of-flight-mass spectrometry (UPLC-ESI-QTOF-MS), which will also be applied to evaluate the contents of nine triterpenoids among root, root heartwood and root bark of I. pubescens to judge the value of the root bark to avoid wastage. UPLC-ESI-QTOF-MS data from the extracts of I. pubescens in negative mode were analysed using Peakview and Masterview software that provided molecular weight, mass errors, isotope pattern fit and MS/MS fragments for the identification of triterpenoids. The quantification of nine investigated compounds of I. pubescens was accomplished using MultiQuant software. A total of 33 triterpenoids, five phenolic acids, two lignans and a flavonol were characterised in only 14 min. The total content of the nine compounds in the root bark was generally slightly higher than that of the root and root heartwood, which has not been reported before. The developed UPLC-ESI-QTOF-MS method was proven to be rapid and comprehensive for simultaneous qualitative and quantitative analyses of the characteristic triterpenoids in I. pubescens. The results may provide a basis for holistic quality control and metabolic studies of I. pubescens, as well as serve as a reference for the analysis of other Ilex plants. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Hényková, Eva; Vránová, Hana Přikrylová; Amakorová, Petra; Pospíšil, Tomáš; Žukauskaitė, Asta; Vlčková, Magdaléna; Urbánek, Lubor; Novák, Ondřej; Mareš, Jan; Kaňovský, Petr; Strnad, Miroslav
2016-03-11
Many compounds related to L-tryptophan (L-TRP) have interesting biological or pharmacological activity, and their abnormal neurotransmission seems to be linked to a wide range of neurodegenerative and psychiatric diseases. A high-throughput method based on ultra-high performance liquid chromatography connected to electrospray tandem mass spectrometry (UHPLC-ESI-MS/MS) was developed for the quantitative analysis of L-TRP and 16 of its metabolites in human serum and cerebrospinal fluid (CSF), representing both major and minor routes of L-TRP catabolism. The combination of a fast LC gradient with selective tandem mass spectrometry enabled accurate analysis of almost 100 samples in 24h. The standard isotope dilution method was used for quantitative determination. The method's lower limits of quantification for serum and cerebrospinal fluid ranged from 0.05 to 15nmol/L and 0.3 to 45nmol/L, respectively. Analytical recoveries ranged from 10.4 to 218.1% for serum and 22.1 to 370.0% for CSF. The method's accuracy ranged from 82.4 to 128.5% for serum matrix and 90.7 to 127.7% for CSF matrix. All intra- and inter-day coefficients of variation were below 15%. These results demonstrate that the new method is capable of quantifying endogenous serum and CSF levels of a heterogeneous group of compounds spanning a wide range of concentrations. The method was used to determine the physiological levels of target analytes in serum and CSF samples from 18 individuals, demonstrating its reliability and potential usefulness in large-scale epidemiological studies. Copyright © 2016 Elsevier B.V. All rights reserved.
TAO, YI; LI, WENKUI; LIANG, WENZHONG; VAN BREEMEN, RICHARD B.
2009-01-01
Dietary supplements containing preparations of ginger roots/rhizomes (Zingiber officinale Roscoe) are being used by consumers, and clinical trials using ginger dietary supplements have been carried out to evaluate their anti-inflammatory or anti-emetic properties with inconsistent results. Chemical standardization of these products is needed for quality control and to facilitate the design of clinical trials and the evaluation of data from these studies. To address this issue, methods based on liquid chromatography-tandem mass spectrometry (LC-MS-MS) were developed for the detection, characterization and quantitative analysis of gingerol-related compounds in botanical dietary supplements containing ginger roots/rhizomes. During negative ion electrospray with collision induced-dissociation, the cleavage of the C4-C5 bond with a neutral loss of 194 u and benzylic cleavage leading to the neutral loss of 136 u were found to be class characteristic fragmentation patterns of the pharmacologically active gingerols or shogaols, respectively. Based on these results, an assay using LC-MS-MS with neutral loss scanning (loss of 194 u or 136 u) was developed that is suitable for the fingerprinting of ginger dietary supplements based on the selective detection of gingerols, shogaols, paradols, and gingerdiones. In addition, a quantitative assay based on LC-MS-MS with selected reaction monitoring was developed for the quantitative analysis of 6-gingerol, 8-gingerol, 10-gingerol, 6-shogaol, 8-shogaol, and 10-shogaol in ginger dietary supplements. After method validation, the quantities of these compounds in three commercially available ginger dietary supplements were determined. This assay showed excellent sensitivity, accuracy and precision and may be used to address the need for quality control and standardization of ginger dietary supplements. PMID:19817455
Vane, F M; Stoltenborg, J K; Buggé, C J
1982-02-12
A high-performance liquid chromatography (HPLC) method for the quantitation of 13-cis-retinoic acid (13-cis-RA) and its major metabolite, 4-oxo-13-cis-RA, in human blood has been developed. The method includes extraction of 1 ml of blood with diethyl ether at pH 6 and the analysis of the extract by reversed-phase HPLC with solvent programming and detection at 365 nm. The quantitation ranges for 13-cis-RA and 4-oxo-13-cis-RA are 10--2000 and 50--2000 ng/ml of blood, respectively. The method also provides estimates of the concentrations of all-trans-RA and 4-oxo-all-trans-RA. The mean intra- and inter-assay variabilities for all four compounds were 6% or less. The method separates 13-cis-RA and 4-oxo-13-cis-RA from 9-cis-RA, all-trans-RA, 4-oxo-all-trans-RA, and some other possible metabolites, such as hydroxy and epoxy retinoic acids. The method has been successfully applied to the analyses of over 1200 blood samples from four 13-cis-RA clinical studies.
Lubrano, Adam L; Andrews, Benjamin; Hammond, Mark; Collins, Greg E; Rose-Pehrsson, Susan
2016-01-15
A novel analytical method has been developed for the quantitation of trace levels of ammonia in the headspace of ammonium nitrate (AN) using derivatized solid phase microextraction (SPME) fibers with gas chromatography mass spectrometry (GC-MS). Ammonia is difficult to detect via direct injection into a GC-MS because of its low molecular weight and extreme polarity. To circumvent this issue, ammonia was derivatized directly onto a SPME fiber by the reaction of butyl chloroformate coated fibers with the ammonia to form butyl carbamate. A derivatized externally sampled internal standard (dESIS) method based upon the reactivity of diethylamine with unreacted butyl chloroformate on the SPME fiber to form butyl diethylcarbamate was established for the reproducible quantification of ammonia concentration. Both of these compounds are easily detectable and separable via GC-MS. The optimized method was then used to quantitate the vapor concentration of ammonia in the headspace of two commonly used improvised explosive device (IED) materials, ammonium nitrate fuel oil (ANFO) and ammonium nitrate aluminum powder (Ammonal), as well as identify the presence of additional fuel components within the headspace. Published by Elsevier B.V.
Guo, Hongyue; Riter, Leah S; Wujcik, Chad E; Armstrong, Daniel W
2016-04-22
A novel method based on high performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS) was developed for the sensitive determination of glyphosate and its major degradation product, AMPA in environmental water samples. The method involves the use of MS compatible mobile phases (0.1% formic acid in water and acetonitrile) for HPLC and direct analysis of water samples without sample derivatization. The method has been validated in different types of water matrices (drinking, surface and groundwater) by accuracy and precision studies with samples spiked at 0.1, 7.5 and 90 ppb. All mean accuracy values ranged from 85% to 112% for glyphosate and AMPA using both primary and secondary quantitative ion transitions (RSD ≤ 10%). Moreover, both primary and secondary ion transitions for glyphosate and AMPA can achieve the quantitation limits at 0.1 ppb. The linear dynamic range of the calibration curves were from 0.1 to 100 ppb for each analyte at each ion transitions with correlation coefficient higher than 0.997. Copyright © 2016 Elsevier B.V. All rights reserved.
Raju, K V S N; Pavan Kumar, K S R; Siva Krishna, N; Madhava Reddy, P; Sreenivas, N; Kumar Sharma, Hemant; Himabindu, G; Annapurna, N
2016-01-01
A capillary gas chromatography method with a short run time, using a flame ionization detector, has been developed for the quantitative determination of trace level analysis of mesityl oxide and diacetone alcohol in the atazanavir sulfate drug substance. The chromatographic method was achieved on a fused silica capillary column coated with 5% diphenyl and 95% dimethyl polysiloxane stationary phase (Rtx-5, 30 m x 0.53 mm x 5.0 µm). The run time was 20 min employing programmed temperature with a split mode (1:5) and was validated for specificity, sensitivity, precision, linearity, and accuracy. The detection and quantitation limits obtained for mesityl oxide and diacetone alcohol were 5 µg/g and 10 µg/g, respectively, for both of the analytes. The method was found to be linear in the range between 10 µg/g and 150 µg/g with a correlation coefficient greater than 0.999, and the average recoveries obtained in atazanavir sulfate were between 102.0% and 103.7%, respectively, for mesityl oxide and diacetone alcohol. The developed method was found to be robust and rugged. The detailed experimental results are discussed in this research paper.
Chang, Chia-Yu; Chung, Wu-Hsun; Ding, Wang-Hsien
2016-01-01
The rapid screening of trace levels of short-chain chlorinated paraffins in various aqueous samples was performed by a simple and reliable procedure based on vortex-assisted liquid-liquid microextraction combined with gas chromatography and electron capture negative ionization mass spectrometry. The optimal vortex-assisted liquid-liquid microextraction conditions for 20 mL water sample were as follows: extractant 400 μL of dichloromethane; vortex extraction time of 1 min at 2500 × g; centrifugation of 3 min at 5000 × g; and no ionic strength adjustment. Under the optimum conditions, the limit of quantitation was 0.05 μg/L. Precision, as indicated by relative standard deviations, was less than 9% for both intra- and inter-day analysis. Accuracy, expressed as the mean extraction recovery, was above 91%. The vortex-assisted liquid-liquid microextraction with gas chromatography and electron capture negative ionization mass spectrometry method was successfully applied to quantitatively extract short-chain chlorinated paraffins from samples of river water and the effluent of a wastewater treatment plant, and the concentrations ranged from 0.8 to 1.6 μg/L. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Burnum-Johnson, Kristin E.; Nie, Song; Casey, Cameron P.; Monroe, Matthew E.; Orton, Daniel J.; Ibrahim, Yehia M.; Gritsenko, Marina A.; Clauss, Therese R. W.; Shukla, Anil K.; Moore, Ronald J.; Purvine, Samuel O.; Shi, Tujin; Qian, Weijun; Liu, Tao; Baker, Erin S.; Smith, Richard D.
2016-01-01
Current proteomic approaches include both broad discovery measurements and quantitative targeted analyses. In many cases, discovery measurements are initially used to identify potentially important proteins (e.g. candidate biomarkers) and then targeted studies are employed to quantify a limited number of selected proteins. Both approaches, however, suffer from limitations. Discovery measurements aim to sample the whole proteome but have lower sensitivity, accuracy, and quantitation precision than targeted approaches, whereas targeted measurements are significantly more sensitive but only sample a limited portion of the proteome. Herein, we describe a new approach that performs both discovery and targeted monitoring (DTM) in a single analysis by combining liquid chromatography, ion mobility spectrometry and mass spectrometry (LC-IMS-MS). In DTM, heavy labeled target peptides are spiked into tryptic digests and both the labeled and unlabeled peptides are detected using LC-IMS-MS instrumentation. Compared with the broad LC-MS discovery measurements, DTM yields greater peptide/protein coverage and detects lower abundance species. DTM also achieved detection limits similar to selected reaction monitoring (SRM) indicating its potential for combined high quality discovery and targeted analyses, which is a significant step toward the convergence of discovery and targeted approaches. PMID:27670688
Ding, W H; Liu, C H; Yeh, S P
2000-10-27
This work presents a modified method to analyze chlorophenoxy acid herbicides in water samples. The herbicides 2,4-D (2,4-dichlorophenoxyacetic acid). Silvex (2,4,5-trichlorophenoxypropionic acid) and 2,4,5-T (2,4,5-trichlorophenoxyacetic acid) were used to evaluate the method. The method involves extraction of samples by a graphitized carbon black cartridge, and on-line derivatization in the GC injection port using a large-volume (10-20 microl) direct sample introduction (DSI) device with tetraalkylammonium salts. The analytes were then identified and quantitated by ion-trap gas chromatography-mass spectrometry. The large-volume DSI injection-port derivatization technique provides sensitivity, fast and reproducible results for chlorophenoxy acid herbicides residues, to quantitation at 0.1 to 0.2 microg/l in 500-ml water samples. An enhanced characteristic mass chromatogram of molecular ions of butylated chlorophenoxy acid herbicides with a significant chlorine isotope pattern by electron impact ionization MS allows us to determine herbicides residues at trace levels in aqueous samples. Recovery of the herbicide residues in spiked various water samples ranged from 70 to 99% while RSDs ranged from 1 to 13%.
Di Sabatino, Marcello; Di Pietra, Anna Maria; Benfenati, Luigi; Di Simone, Bruno
2007-01-01
A liquid chromatography (LC) method is described for the simultaneous determination of 10 commonly used sulfonamide drug residues in meat. The 10 sulfonamide drugs of interest were sulfadiazine, sulfathiazole, sulfamerazine, sulfadimidine, sulfamethizole, sulfamonomethoxine, sulfachloropyridazine, sulfadoxine, sulfadimethoxine, and sulfaquinoxaline. The residues were extracted with acetone-chloroform (1 + 1). Sulfonamides were quantitatively retained in the extracting solution and afterwards eluted from a cation-exchanger solid-phase extraction cartridge with a solution of methanol-aqueous ammonia. The solution was dried, reconstituted with 5 mL methanol and filtered before analysis by LC-ultraviolet using a C18 column with a mobile phase gradient of potassium dihydrogen phosphate buffer, pH 2.5, and methanol-acetonitrile (30 + 70, v/v). The method was applied to cattle, swine, chicken, and sheep muscle tissues. The validation was performed with a fortified cattle meat sample at level of 100 ppb, which is the administrative maximum residue limit for sulfonamides in the European Union. The limit of quantitation for all sulfonamides was between 3 and 14 ppb. Recovery was evaluated for different meat matrixes. The mean recovery values were between 66.3% for pork meat samples and 71.5% for cattle meat samples.
Li, Peiwu; Zhang, Zhaowei; Hu, Xiaofeng; Zhang, Qi
2013-01-01
Mass spectrometric techniques are essential for advanced research in food safety and environmental monitoring. These fields are important for securing the health of humans and animals, and for ensuring environmental security. Mycotoxins, toxic secondary metabolites of filamentous fungi, are major contaminants of agricultural products, food and feed, biological samples, and the environment as a whole. Mycotoxins can cause cancers, nephritic and hepatic diseases, various hemorrhagic syndromes, and immune and neurological disorders. Mycotoxin-contaminated food and feed can provoke trade conflicts, resulting in massive economic losses. Risk assessment of mycotoxin contamination for humans and animals generally depends on clear identification and reliable quantitation in diversified matrices. Pioneering work on mycotoxin quantitation using mass spectrometry (MS) was performed in the early 1970s. Now, unambiguous confirmation and quantitation of mycotoxins can be readily achieved with a variety hyphenated techniques that combine chromatographic separation with MS, including liquid chromatography (LC) or gas chromatography (GC). With the advent of atmospheric pressure ionization, LC-MS has become a routine technique. Recently, the co-occurrence of multiple mycotoxins in the same sample has drawn an increasing amount of attention. Thus, modern analyses must be able to detect and quantitate multiple mycotoxins in a single run. Improvements in tandem MS techniques have been made to achieve this purpose. This review describes the advanced research that has been done regarding mycotoxin determination using hyphenated chromatographic-MS techniques, but is not a full-circle survey of all the literature published on this topic. The present work provides an overview of the various hyphenated chromatographic-MS-based strategies that have been applied to mycotoxin analysis, with a focus on recent developments. The use of chromatographic-MS to measure levels of mycotoxins, including aflatoxins, ochratoxins, patulin, trichothecenes, zearalenone, and fumonisins, is discussed in detail. Both free and masked mycotoxins are included in this review due to different methods of sample preparation. Techniques are described in terms of sample preparation, internal standards, LC/ultra performance LC (UPLC) optimization, and applications and survey. Several future hyphenated MS techniques are discussed as well, including multidimensional chromatography-MS, capillary electrophoresis-MS, and surface plasmon resonance array-MS. © 2013 Wiley Periodicals, Inc.
Sass, J O; Endres, W
1997-08-01
Much evidence supports the hypothesis that mild or moderate hyperhomocysteinaemia represents an important and independent risk factor for occlusive vascular diseases. Therefore, the accurate and reliable determination of total plasma homocysteine has gained major importance for risk assessment. Furthermore, it can help in the detection of folate and vitamin B12 deficiency. This has prompted us to develop a sensitive gas chromatography-mass spectrometry (GC-MS) method in order to quantify total homocysteine in human plasma. Prior to chromatography, reduced homocysteine was released from disulfide bonds by incubation with excess dithiothreitol and converted into its N(O,S)-propoxycarbonyl propyl ester by derivatization with n-propyl chloroformate. Aminoethylcysteine served as internal standard. The method proved to be highly linear over the entire concentration range examined (corresponding to 0-266 microM homocysteine) and showed intra-assay and inter-assay variation (relative standard deviations) of approximately 5 and 5-10%, respectively. External quality control by comparison with duplicate analysis performed on a HPLC-based system revealed satisfactory correlation. The newly developed GC-MS based method provides simple, reliable and fast quantification of total homocysteine and requires only inexpensive chemicals, which are easy to obtain.
Murugaiyan, Jayaseelan; Eravci, Murat; Weise, Christoph; Roesler, Uwe
2017-06-01
Here, we provide the dataset associated with our research article 'label-free quantitative proteomic analysis of harmless and pathogenic strains of infectious microalgae, Prototheca spp.' (Murugaiyan et al., 2017) [1]. This dataset describes liquid chromatography-mass spectrometry (LC-MS)-based protein identification and quantification of a non-infectious strain, Prototheca zopfii genotype 1 and two strains associated with severe and mild infections, respectively, P. zopfii genotype 2 and Prototheca blaschkeae . Protein identification and label-free quantification was carried out by analysing MS raw data using the MaxQuant-Andromeda software suit. The expressional level differences of the identified proteins among the strains were computed using Perseus software and the results were presented in [1]. This DiB provides the MaxQuant output file and raw data deposited in the PRIDE repository with the dataset identifier PXD005305.
Liu, Shu-Yu; Hu, Chang-Qin
2007-10-17
This study introduces the general method of quantitative nuclear magnetic resonance (qNMR) for the calibration of reference standards of macrolide antibiotics. Several qNMR experimental conditions were optimized including delay, which is an important parameter of quantification. Three kinds of macrolide antibiotics were used to validate the accuracy of the qNMR method by comparison with the results obtained by the high performance liquid chromatography (HPLC) method. The purities of five common reference standards of macrolide antibiotics were measured by the 1H qNMR method and the mass balance method, respectively. The analysis results of the two methods were compared. The qNMR is quick and simple to use. In a new medicine research and development process, qNMR provides a new and reliable method for purity analysis of the reference standard.
Wang, Shu-Ping; Liao, Chiou-Shyi
2004-10-08
The abnormal organic acids in urine are closely related with physiological metabolism. To determinate the low-molecular-mass metabolites in human biological fluids, although there were some previous reports by both of capillary electrophoresis and ion-exchange high-performance liquid chromatography, but it was rarely found by reverse phase of liquid chromatography using ion pair reagent. The objective of this study was aimed to suggest and compare two methods, an additional chromatographic method-ion-pair chromatography (IPC) and a sharp capillary zone electrophoresis (CZE), to determinate organic acids, acting as the abnormal metabolic markers, namely uric acid, orotic acid, pyruvic acid, alpha-ketoglutaric acid, fumaric acid, and hippuric acid. The proposed method of IPC possessed both the extreme stability for column and the good results of reproducibility, linearity and detection limit. The optimum mobile phase was 22% methanol and 10 mM tetra-n-butyl ammonium hydrogen sulfate (pH 4) by gradient elution. As well as the optimum condition of CZE was 5% acetonitrile and 0.5 mM CTAB in phosphate buffer. From the results, CZE showed better recovery and sharp lucid electropherogram. Finally, the two proposed analytical methods were applied to assay human urine with direct and spiked analysis. CZE showed good potency to overcome the sample-to sample variation with standard deviation less than 10%. By comparison results of urinary spiked analysis between IPC and CZE by statistical paired t-test, the results were evaluated no significant difference under P < 0.05. The quantitative linearity of both methods was fitted in application of clinical biological analysis even with 50-fold dilution.
Ojanperä, Suvi; Rasanen, Ilpo; Sistonen, Johanna; Pelander, Anna; Vuori, Erkki; Ojanperä, Ilkka
2007-08-01
Lack of availability of reference standards for drug metabolites, newly released drugs, and illicit drugs hinders the analysis of these substances in biologic samples. To counter this problem, an approach is presented here for quantitative drug analysis in plasma without primary reference standards by liquid chromatography-chemiluminescence nitrogen detection (LC-CLND). To demonstrate the feasibility of the method, metabolic ratios of the opioid drug tramadol were determined in the setting of a pharmacogenetic study. Four volunteers were given a single 100-mg oral dose of tramadol, and a blood sample was collected from each subject 1 hour later. Tramadol, O-desmethyltramadol, and nortramadol were determined in plasma by LC-CLND without reference standards and by a gas chromatography-mass spectrometry reference method. In contrast to previous CLND studies lacking an extraction step, a liquid-liquid extraction system was created for 5-mL plasma samples using n-butyl chloride-isopropyl alcohol (98 + 2) at pH 10. Extraction recovery estimation was based on model compounds chosen according to their similar physicochemical characteristics (retention time, pKa, logD). Instrument calibration was performed with a single secondary standard (caffeine) using the equimolar response of the detector to nitrogen. The mean differences between the results of the LC-CLND and gas chromatography-mass spectrometry methods for tramadol, O-desmethyltramadol, and nortramadol were 8%, 32%, and 19%, respectively. The sensitivity of LC-CLND was sufficient for therapeutic concentrations of tramadol and metabolites. A good correlation was obtained between genotype, expressed by the number of functional genes, and the plasma metabolite ratios. This experiment suggests that a recovery-corrected LC-CLND analysis produces sufficiently accurate results to be useful in a clinical context, particularly in instances in which reference standards are not readily accessible.
Analysis of penicillin G in milk by liquid chromatography.
Boison, J O; Keng, L J; MacNeil, J D
1994-01-01
A liquid chromatographic (LC) method that was previously developed for penicillin G residues in animal tissues has been adapted to milk and milk products. After protein precipitation with sodium tungstate, samples are applied to a C18 solid-phase extraction cartridge, from which penicillin is eluted, derivatized with 1,2,4-triazole-mercuric chloride solution, and analyzed by isocratic liquid chromatography (LC) on a C18 column with UV detection at 325 nm. Quantitation is done with reference to penicillin V as an internal standard. Penicillin G recoveries were determined to be > 70% on standards fortified at 3-60 ppb. Accuracy approached 100% using the penicillin V internal standard. The detection limit for penicillin G residues was 3 ppb in fluid milk. Samples may be confirmed by thermospray/LC at concentrations approaching the detection limit of the UV method.
Comparison of critical methods developed for fatty acid analysis: A review.
Wu, Zhuona; Zhang, Qi; Li, Ning; Pu, Yiqiong; Wang, Bing; Zhang, Tong
2017-01-01
Fatty acids are important nutritional substances and metabolites in living organisms. These acids are abundant in Chinese herbs, such as Brucea javanica, Notopterygium forbesii, Isatis tinctoria, Astragalus membranaceus, and Aconitum szechenyianum. This review illustrates the types of fatty acids and their significant roles in the human body. Many analytical methods are used for the qualitative and quantitative evaluation of fatty acids. Some of the methods used to analyze fatty acids in more than 30 kinds of plants, drugs, and other samples are presented in this paper. These analytical methods include gas chromatography, liquid chromatography, near-infrared spectroscopy, and NMR spectroscopy. The advantages and disadvantages of these techniques are described and compared. This review provides a valuable reference for establishing methods for fatty acid determination. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sensitive, Selective Test For Hydrazines
NASA Technical Reports Server (NTRS)
Roundbehler, David; Macdonald, Stephen
1993-01-01
Derivatives of hydrazines formed, then subjected to gas chromatography and detected via chemiluminescence. In method of detecting and quantifying hydrazine vapors, vapors reacted with dinitro compound to enhance sensitivity and selectivity. Hydrazine (HZ), monomethyl hydrazine, (MMH), and unsymmetrical dimethylhydrazine (UDMH) analyzed quantitatively and qualitatively, either alone or in mixtures. Vapors collected and reacted with 2,4-dinitrobenzaldehyde, (DNB), making it possible to concentrate hydrazine in derivative form, thereby increasing sensitivity to low initial concentrations. Increases selectivity because only those constituents of sample reacting with DNB concentrated for analysis.
Partial Analysis of Insta-Foam
NASA Technical Reports Server (NTRS)
Chou, L. W.
1983-01-01
Insta-Foam, used as a thermal insulator for the non-critical area of the external tank during the prelaunch phase to minimize icing, is a two-component system. Component A has polyisocyanates, blowing agents, and stabilizers; Component B has the polyols, catalysts, blowing agents, stabilizers and fire retardant. The blowing agents are Freon 11 and Freon 12, the stabilizers are silicone surfactants, the catalysts are tertiary amines, and the fire retardant is tri-(beta-chloro-isopropyl) phosphate (PCF). High performance liquid chromatography (HPLC) was quantitatively identified polyols and PFC.
2013-03-01
ratio ranges obtained for the six standards. Twelve samples were analyzed to demonstrate the efficiency of the extraction procedure. Drug and internal...frozen (−70 ◦C). Refrigerated samples were tested after 2 months of storage ; frozen samples were tested for up to 1 year from stor- age date. The...freeze–thaw stability was evaluated by analyzing three subject samples with known drug concentrations and two quality control samples at concentrations
Hallier, Arnaud; Prost, Carole; Serot, Thierry
2005-09-07
Volatile compounds of cooked fillets of Silurus glanis reared under two conditions occurring in France were studied. They were extracted by dynamic headspace, identified by gas chromatography/mass spectrometry, and quantified by gas chromatography-flame ionization detection. Odor active volatile compounds were characterized by gas chromatography-olfactometry. Sixty volatile compounds were detected in dynamic headspace extracts, among which 33 were odor active. Rearing conditions affected their estimated concentrations and their odor intensities, but very few qualitative differences were exhibited (only seven volatile compounds were concerned). A good correlation between quantitative and olfactometric results is shown. 2-Methylisoborneol and (E)-2-hexenal were less represented in OUTDOOR extracts, while 2-butanone was less represented in INDOOR extracts. In addition, olfactometric results can be closely related to those previously obtained by sensory analysis. Boiled potato sensory odor of the silurus cooked fillets can be related to (Z)-4-heptenal and methional, and buttery odor can be related to 2,3-butanedione, an unknown compound (RI = 1010), and 2,3-pentadione.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castaldini, C.; Waterland, L.R.; Lips, H.I.
1986-02-01
The report is a compendium of detailed test sampling and analysis data obtained in field tests of an enhanced-oil-recovery steam generator (EOR steamer) equipped with a MHI PM low-NOx crude oil burner. Test data reported include equipment calibration records, steamer operating data, and complete flue-gas emission results. Flue-gas emission measurements included continuous monitoring for criteria pollutants; onsite gas chromatography (GC) for volatile hydrocarbons (Cl-C6); Methods 5/8 sampling for particulate and SO/sub 2/ and SO/sub 3/ emissions; source assessment sampling system (SASS) for total organics in two boiling-point ranges (100 to 300 C and greater than or equal to 300 C),more » organic compound category information using infrared spectrometry (IR), and specific quantitation of the semivolatile organic priority pollutants using gas chromatography/mass spectrometry (GC/MS); Andersen impactor train measurements of emitted particle-size distribution; and N/sub 2/O emissions by gas chromatography/electron-capture detector (GC/ECD).« less
Peng, Shunü; Wang, Qiuquan; Fang, Lanlan; Guo, Shanyong; Zeng, Zhouhua; Lin, Zhuguang
2014-01-01
A gas chromatography-mass spectrometry (GC-MS) method was established for the simultaneous determination of nine typical preservatives (pyrimethanil, chlorothalonil, chlorpyrifos, triadimefon, thiabendazole, imazalil, myclobutanil, iprodione, prochloraz) in fruits. The fruit samples were subjected to ultrasonic extraction with hexane/ethyl acetate (1/1, v/v), and followed by purification using diatomite column chromatography with hexane/ethyl acetate (1/3, v/v) eluant. Qualitative and quantitative analysis of the nine preservatives were performed on the GC-MS at full-scan (SCAN) and selected ion monitoring (SIM) modes, in which triphenylphosphate was used as the internal standard. The detection limits obtained for the nine preservatives were ranged from 0.10 microg/kg to 2.16 microg/kg. The average recoveries were in the range of 75.3% to 128% at the spiked levels of 50, 100 and 200 microg/kg with the relative standard deviations (RSDs) of 1.57% to 11.6% (n = 5). The results showed that the developed method is sensitive and accurate for the determination of the nine preservatives in fruits.
Pan, Xiaohong; Julian, Thomas; Augsburger, Larry
2006-02-10
Differential scanning calorimetry (DSC) and X-ray powder diffractometry (XRPD) methods were developed for the quantitative analysis of the crystallinity of indomethacin (IMC) in IMC and silica gel (SG) binary system. The DSC calibration curve exhibited better linearity than that of XRPD. No phase transformation occurred in the IMC-SG mixtures during DSC measurement. The major sources of error in DSC measurements were inhomogeneous mixing and sampling. Analyzing the amount of IMC in the mixtures using high-performance liquid chromatography (HPLC) could reduce the sampling error. DSC demonstrated greater sensitivity and had less variation in measurement than XRPD in quantifying crystalline IMC in the IMC-SG binary system.
Detection system for a gas chromatograph
Hayes, John M.; Small, Gerald J.
1984-01-01
A method and apparatus are described for the quantitative analysis of vaporizable compounds, and in particular of polycyclic aromatic hydrocarbons which may be induced to fluoresce. The sample to be analyzed is injected into a gas chromatography column and is eluted through a narrow orifice into a vacuum chamber. The free expansion of the eluted sample into the vacuum chamber creates a supersonic molecular beam in which the sample molecules are cooled to the extent that the excited vibrational and rotational levels are substantially depopulated. The cooled molecules, when induced to fluoresce by laser excitation, give greatly simplified spectra suitable for analytical purposes. The laser induced fluorimetry provides great selectivity, and the gas chromatograph provides quantitative transfer of the sample to the molecular beam.
Pape, B E; Cary, P L; Clay, L C; Godolphin, W
1983-01-01
Pentobarbital serum concentrations associated with a high-dose therapeutic regimen were determined using EMIT immunoassay reagents. Replicate analyses of serum controls resulted in a within-assay coefficient of variation of 5.0% and a between-assay coefficient of variation of 10%. Regression analysis of 44 serum samples analyzed by this technique (y) and a reference procedure (x) were y = 0.98x + 3.6 (r = 0.98; x = ultraviolet spectroscopy) and y = 1.04x + 2.4 (r = 0.96; x = high-performance liquid chromatography). Clinical evaluation of the results indicates the immunoassay is sufficiently sensitive and selective for pentobarbital to allow accurate quantitation within the therapeutic range associated with high-dose therapy.
Bellon, L; Maloney, L; Zinnen, S P; Sandberg, J A; Johnson, K E
2000-08-01
Versatile bioanalytical assays to detect chemically stabilized hammerhead ribozyme and putative ribozyme metabolites from plasma are described. The extraction protocols presented are based on serial solid-phase extractions performed on a 96-well plate format and are compatible with either IEX-HPLC or CGE back-end analysis. A validation of both assays confirmed that both the HPLC and the CGE methods possess the required linearity, accuracy, and precision to accurately measure concentrations of hammerhead ribozyme extracted from plasma. These methods should be of general use to detect and quantitate ribozymes from other biological fluids such as serum and urine. Copyright 2000 Academic Press.