Sample records for chromite ore processing

  1. Chromite Ore from the Transvaal Region of South Africa

    EPA Pesticide Factsheets

    In 2001, EPA finalized a rule to to delete both chromite ore mined in the Transvaal Region of South Africa and the unreacted ore component of the chromite ore processing residue (COPR) from TRI reporting requirements.

  2. Mineralogical and geochemical features of the alteration processes of magmatic ores in the Beni Bousera ultramafic massif (north Morocco)

    NASA Astrophysics Data System (ADS)

    Hajjar, Zaineb; Gervilla, Fernando; Essaifi, Abderrahim; Wafik, Amina

    2017-08-01

    The Beni Bousera ultramafic massif (Internal Rif, Morocco) is characterized by the presence of two types of small-scale magmatic mineralizations (i) a mineralization consisting mainly of chromite and Ni arsenides associated to orthopyroxene and cordierite (Cr-Ni ores), and (ii) a mineralization mainly composed of magmatic Fe-Ni-Cu sulfides containing variable amounts of graphite and chromite associated to phlogopite, clinopyroxène and plagioclase (S-G ores). Theses ores underwent High-T (450-550 °C) and Low-T (150-300 °C) alteration processes. The High-T alteration processes are tentatively related to intrusion of leucogranite dykes. They are preserved in the Galaros Cr-Ni ore deposit where nickeline is partly dissolved and transformed to maucherite, and orthopyroxene alters to phlogopite. Ni and Co were mobilized to the fluid phase, rising up their availability and promoting their diffusion into chromite and phlogopite, which have significantly higher contents in Ni and Co in phlogopite-rich ores than in orthopyroxene- and nickeline-rich ones. The Low-T alteration processes are related to serpentinization/weathering spatially associated with a regional shear zone. They affected both the Cr-Ni and S-G ores. In the Cr-Ni ores, Ni-arsenides were completely leached out while chromite is fractured within a matrix of chlorite, vermiculite and Ni-rich serpentine. In S-G ores, the silicates were altered into amphibole, Fe-rich chlorite and pectolite in clinopyroxene- and plagioclase-bearing ores while sulfides were completely leached out in phlogopite-bearing ores where iron oxides and hydroxides, and Fe-rich vermiculite were deposited. Chromite composition is not affected by the Low-T alteration processes.

  3. Stratiform chromite deposit model: Chapter E in Mineral deposit models for resource assessment

    USGS Publications Warehouse

    Schulte, Ruth F.; Taylor, Ryan D.; Piatak, Nadine M.; Seal, Robert R.

    2012-01-01

    Most environmental concerns associated with the mining and processing of chromite ore focus on the solubility of chromium and its oxidation state. Although trivalent chromium (Cr3+) is an essential micronutrient for humans, hexavalent chromium (Cr6+) is highly toxic. Chromium-bearing solid phases that occur in the chromite ore-processing residue, for example, can effect the geochemical behavior and oxidation state of chromium in the environment.

  4. TREATMENT OF HEXAVALENT CHROMIUM IN CHROMITE ORE PROCESSING SOLID WASTE USING A MIXED REDUCTANT SOLUTION OF FERROUS SULFATE AND SODIUM DITHIONITE

    EPA Science Inventory

    We developed a method for disseminating ferrous iron in the subsurface to enhance chemical reduction of hexavalent chromium (Cr(VI)) in a chromite ore processing solid waste derived from the production of ferrochrome alloy. The method utilizes ferrous sulfate (FeSO4) in combinati...

  5. A MIXED CHEMICAL REDUCTANT FOR TREATING HEXAVALENT CHROMIUM IN A CHROMITE ORE PROCESSING SOLID WASTE

    EPA Science Inventory

    We evaluated a method for delivering ferrous iron into the subsurface to enhance chemical reduction of Cr(VI) in a chromite ore processing solid waste (COPSW). The COPSW is characterized by high pH (8.5 -11.5), high Cr(VI) concentrations in the solid phase (up to 550 mg kg-1) and...

  6. Chromite deposits of the north-central Zambales Range, Luzon, Philippines

    USGS Publications Warehouse

    Rossman, D.L.

    1970-01-01

    Peridotite and gabbro form an intrusive complex which is exposed over an area about 35 km wide and 150 km long in the center of the Zambales Range of western Luzon. The Zambales Complex is remarkable for its total known resources, mined and still remaining, of about 15 million metric tons of chromite ore. Twenty percent of Free World production was obtained from this area between 1950 and the end of 1964; in 1960 production reached a high of 606,103 metric tons of refractory-grade ore, mostly from the Coto mine near Masinloc, and 128,426 metric tons of metallurgical ore from the Acoje mine. The United States imports 80 to 90 percent of its refractory-grade chromite from the Philippines, and its basic refractory technology has been designed upon the chemical and physical characteristics of Coto high-alumina chromite ore. Continuation of this pattern will depend upon discovery of additional ore reserves to replace those depleted by mining. The Zambales Ultramafic Complex is of the alpine type in which lenticular or podiform deposits of chromite lie in peridotite or dunite, mostly near Contacts with gabbroic rocks. Layered structures, foliation, and lineation commonly are well developed and transect boundaries between major rock units, including chromite deposits, at any angle. Accordingly, these structures cannot be used as guides in exploration and mining as they are used in stratiform complexes such as the Bushveld, where chromite layers extend for many miles. Probably 90 percent of the known deposits in the Zambales Complex are located in two belts in its northern part. One zone containing high-aluminua refractory-grade deposits extends northeast from the Coto mine and Chromite Reservation No. I along a peridotite contact with olivine gabbro, and another of high-chromium metallurgical grade chromite extends south through the Zambales and Acoje properties, and swings westward around the south side of Mount Lanai along a peridotite contact with norite. The textures of ores, association of chromite with dunite as gangue and as halos, and the transecting nature of the layering, foliation, and lineation in relation to chromite, are similar in all deposits regardless of composition of the chromite mineral itself. Textures in chromite ores, and structural relationships between chromite deposits and country rocks, show that layering and related foliation and lineation were formed or modified by flowage. Gabbro is believed to form the upper part of the Complex in general. Geophysical methods have been rather unsuccessful in finding chromite in the Zambales Complex. Gravity surveys, in order to be successful, must correct for all features influencing gravity except for the chromite itself. Too often the uncertainties in position of rock units and in knowledge of rock densities or position of hidden geologic features (dikes, zones of alteration) preclude the possibility of making adequate corrections. Magnetic surveys have failed to reveal any magnetic patterns attributable to the presence of chromite. Exploration for chromite should be guided by the knowledge that chromite occurs only in certain geologic environments. Thus because nearly all known chromite deposits in the Zambales Complex lie in peridotite near the gabbro contact, search for chromite should be concentrated there. Likewise it is evident from structural evidence presented here that there is little relation between layering and distribution of either major rock units or chromite deposits. Thus one is not justified in using the layered structure to predict either the position or attitude of major rock unit contacts, or presence or position of chromite deposits. In such a productive complex it is geologically certain that unknown deposits still remain undiscovered. The most promising areas for exploration are near known groups of large deposits like Acoje and Chromite Reservation No. 1. Underground drilling has been very successful in finding buried tabular

  7. Environmental status of groundwater affected by chromite ore processing residue (COPR) dumpsites during pre-monsoon and monsoon seasons.

    PubMed

    Matern, Katrin; Weigand, Harald; Singh, Abhas; Mansfeldt, Tim

    2017-02-01

    Chromite ore processing residue (COPR) is generated by the roasting of chromite ores for the extraction of chromium. Leaching of carcinogenic hexavalent chromium (Cr(VI)) from COPR dumpsites and contamination of groundwater is a key environmental risk. The objective of the study was to evaluate Cr(VI) contamination in groundwater in the vicinity of three COPR disposal sites in Uttar Pradesh, India, in the pre-monsoon and monsoon seasons. Groundwater samples (n = 57 pre-monsoon, n = 70 monsoon) were taken in 2014 and analyzed for Cr(VI) and relevant hydrochemical parameters. The site-specific ranges of Cr(VI) concentrations in groundwater were <0.005 to 34.8 mg L -1 (Rania), <0.005 to 115 mg L -1 (Chhiwali), and <0.005 to 2.0 mg L -1 (Godhrauli). Maximum levels of Cr(VI) were found close to the COPR dumpsites and significantly exceeded safe drinking water limits (0.05 mg L -1 ). No significant dependence of Cr(VI) concentration on monsoons was observed.

  8. Stratiform chromite deposit model

    USGS Publications Warehouse

    Schulte, Ruth F.; Taylor, Ryan D.; Piatak, Nadine M.; Seal, Robert R.

    2010-01-01

    Stratiform chromite deposits are of great economic importance, yet their origin and evolution remain highly debated. Layered igneous intrusions such as the Bushveld, Great Dyke, Kemi, and Stillwater Complexes, provide opportunities for studying magmatic differentiation processes and assimilation within the crust, as well as related ore-deposit formation. Chromite-rich seams within layered intrusions host the majority of the world's chromium reserves and may contain significant platinum-group-element (PGE) mineralization. This model of stratiform chromite deposits is part of an effort by the U.S. Geological Survey's Mineral Resources Program to update existing models and develop new descriptive mineral deposit models to supplement previously published models for use in mineral-resource and mineral-environmental assessments. The model focuses on features that may be common to all stratiform chromite deposits as a way to gain insight into the processes that gave rise to their emplacement and to the significant economic resources contained in them.

  9. Chemical and mineralogical characterization of chromite ore processing residue from two recent Indian disposal sites.

    PubMed

    Matern, Katrin; Kletti, Holger; Mansfeldt, Tim

    2016-07-01

    Chromite ore processing residue (COPR) is a hazardous waste. Nevertheless, deposition of COPR in uncontrolled surface landfills is still common practice in some countries. Whereas old (between at least 40 and 180 years) COPR from the temperate zone has been intensively investigated, information on COPR in other regions is restricted. Relatively young (<25 years) COPR samples obtained from two abandoned landfill sites in India were investigated by a modified total microwave digestion method, X-ray powder diffraction (XRPD), and scanning electron microscopy (SEM) in order to determine their chemical and mineralogical nature. By the use of microwave digestion with acid mixtures of HNO3, H3PO4, and HBF4 (5:3:2 vol), COPR was completely dissolved and element contents similar to those obtained by X-ray fluorescence were found. Total Cr contents of the two COPR accounted for 81 and 74 g kg(-1), of which 20 and 13% were present in the carcinogenic hexavalent form (CrVI). Apart from the common major mineral phases present in COPR reported earlier, a further Cr host mineral, grimaldiite [CrO(OH)], could be identified by XRPD and SEM. Additionally, well soluble Na2CrO4 was present. Improving the effectiveness of chromite ore processing and preventing the migration of Cr(VI) into water bodies are the main challenges when dealing with these COPR. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Mineral resource of the month: Chromium

    USGS Publications Warehouse

    Schulte, Ruth

    2018-01-01

    Although chromium is a metal, it does not occur naturally in metallic form. Chromium can be found in many minerals, but the only economically significant chromium-bearing mineral is chromite. Chromite has been mined from four different deposit types: stratiform chromite, podiform chromite, placer chromite, and laterite deposits. Most of the world's resources, however, are located in stratiform chromite deposits, such as the Bushveld Complex in South Africa. The economic potential of chromite resources depends on the thickness and continuity of the deposit and on the grade of the ore. Many of the major stratiform chromite deposits also contain economic levels of platinum, paladium, rhodium, osmium, iridium, and ruthenium.

  11. Problems of Determining the Content of Cr(VI) in Raw Materials and Materials Containing Chromite Ore.

    PubMed

    Stec, Katarzyna

    2017-11-02

    Materials made with chromite ore are widely applied in the industry metallurgy as well as in the foundry industry. The oxidation number of chromium in these materials is both (III) and (VI). Currently there are no procedures allowing proper determination of chrome in chromite ores and ore-containing materials. The analytical methods applied, which are dedicated to a very narrow range of materials, e.g., cement, and cannot be applied in the case of materials which, apart from trace amounts of Cr(VI), contain mainly compounds of Cr(III), Fe(III) as well as trace compounds of Cu(II), Ni(II) and V(V). In the work particular attention has been paid to the preparation of test samples and creating measurement conditions in which interferences from Cr(III) and Fe(III) spectral lines could be minimized. Two separate instrumental measurement techniques have been applied: Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP AES) and the spectrophotometric method using diphenylcarbazide.

  12. Kinetics of the reduction of bushveld complex chromite ore at 1416 °C

    NASA Astrophysics Data System (ADS)

    Soykan, O.; Eric, R. H.; King, R. P.

    1991-12-01

    The kinetics of the reduction of chromite ore from the LG-6 layer of the Bushveld Complex of the Transvaal in South Africa were studied at 1416 °C by the thermogravimetric analysis (TGA) technique. Spectroscopic graphite powder was employed as the reductant. The aim of this article is to present a kinetic model that satisfactorily describes the solid-state carbothermic reduction of chromite. A generalized rate model based on an ionic diffusion mechanism was developed. The model included the contribution of the interfacial area between partially reduced and unreduced zones in chromite particles and diffusion. The kinetic model described the process for degrees of reduction from 10 to 75 pet satisfactorily. It was observed that at a given particle size, the rate of reduction was controlled mainly by interfacial area up to about 40 pet reduction, after which the rate was dominated by diffusion. On the other hand, for a given degree of reduction, the contribution of the interfacial area to the rate increased, while that of diffusion decreased, with a decrease in the particle size. The value of the diffusion coefficient for the Fe2+ species at 1416 °C was calculated to be 2.63 x 10-2 cm2/s.

  13. Microbial leaching of chromite overburden from Sukinda mines, Orissa, India using Aspergillus niger

    NASA Astrophysics Data System (ADS)

    Biswas, Supratim; Samanta, Saikat; Dey, Rajib; Mukherjee, Siddhartha; Banerjee, Pataki C.

    2013-08-01

    Leaching of nickel and cobalt from two physical grades (S1, 125-190 μm, coarser and S3, 53-75 μm, finer) of chromite overburden was achieved by treating the overburden (2% pulp density) with 21-d culture filtrate of an Aspergillus niger strain grown in sucrose medium. Metal dissolution increases with ore roasting at 600°C and decreasing particle size due to the alteration of microstructural properties involving the conversion of goethite to hematite and the increase in surface area and porosity as evident from X-ray diffraction (XRD), thermogravimetry-differential thermal analysis (DT-TGA), and field emission scanning electron microscopy (FESEM). About 65% Ni and 59% Co were recovered from the roasted S3 ore employing bioleaching against 26.87% Ni and 31.3% Co using an equivalent amount of synthetic oxalic acid under identical conditions. The results suggest that other fungal metabolites in the culture filtrate played a positive role in the bioleaching process, making it an efficient green approach in Ni and Co recovery from lateritic chromite overburden.

  14. Platinum-group element abundance and distribution in chromite deposits of the Acoje Block, Zambales Ophiolite Complex, Philippines

    USGS Publications Warehouse

    Bacuta, G.C.; Kay, R.W.; Gibbs, A.K.; Lipin, B.R.

    1990-01-01

    Platinum-group elements (PGE) occur in ore-grade concentration in some of the chromite deposits related to the ultramafic section of the Acoje Block of the Zambales Ophiolite Complex. The deposits are of three types: Type 1 - associated with cumulate peridotites at the base of the crust; Type 2 - in dunite pods from the top 1 km of mantle harzburgite; and Type 3 - like Type 2, but in deeper levels of the harzburgite. Most of the deposites have chromite compositions that are high in Cr with Cr/(Cr + Al) (expressed as chromium index, Cr#) > 0.6; high-Al (Cr# Pd, thought to be characteristic of PGE-barren deposits) and positive slope (Ir < Pd, characteristic of PGE-rich deposits). Iridium, Ru and Os commonly occur as micron-size laurite (sulfide) inclusions in unfractured chromite. Laurite and native Os are also found as inclusions in interstitial sulfides. Platinum and Pd occur as alloy inclusions (and possibly as solid solution) in interstitial Ni-Cu sulfides and as tellurobismuthides in serpentine and altered sulfides. Variability of PGE distribution may be explained by alteration, crystal fractionation or partial melting processes. Alteration and metamorphism were ruled out, because PGE contents do not correlate with degree of serpentinization or the abundance and type (hydroxyl versus non-hydroxyl) of silicate inclusions in chromite. Preliminary Os isotopic data do not support crustal contamination as a source of the PGEs in the Acoje deposits. The anomalous PGE concentrations in Type 1 high-Cr chromite deposits are attributed to two stages of enrichment: an early enrichment of their mantle source from previous melting events and a later stage of sulfide segregation accompanying chromite crystallization. High-Al chromite deposits which crystallized from basalts derived from relatively low degrees of melting owe their low PGE content to partitioning of PGEs in sulfides and alloys that remain in the mantle. High-Cr deposits crystallized from melts that were previously enriched with PGEs during early melting events of their mantle source; Pt and Pd ore concentrations (ppm levels) are attained by segregation of magmatic sulfides. The Acoje deposits indicate that ophiolites are a potential economic source of the PGEs. ?? 1990.

  15. Podiform chromite deposits--database and grade and tonnage models

    USGS Publications Warehouse

    Mosier, Dan L.; Singer, Donald A.; Moring, Barry C.; Galloway, John P.

    2012-01-01

    Chromite ((Mg, Fe++)(Cr, Al, Fe+++)2O4) is the only source for the metallic element chromium, which is used in the metallurgical, chemical, and refractory industries. Podiform chromite deposits are small magmatic chromite bodies formed in the ultramafic section of an ophiolite complex in the oceanic crust. These deposits have been found in midoceanic ridge, off-ridge, and suprasubduction tectonic settings. Most podiform chromite deposits are found in dunite or peridotite near the contact of the cumulate and tectonite zones in ophiolites. We have identified 1,124 individual podiform chromite deposits, based on a 100-meter spatial rule, and have compiled them in a database. Of these, 619 deposits have been used to create three new grade and tonnage models for podiform chromite deposits. The major podiform chromite model has a median tonnage of 11,000 metric tons and a mean grade of 45 percent Cr2O3. The minor podiform chromite model has a median tonnage of 100 metric tons and a mean grade of 43 percent Cr2O3. The banded podiform chromite model has a median tonnage of 650 metric tons and a mean grade of 42 percent Cr2O3. Observed frequency distributions are also given for grades of rhodium, iridium, ruthenium, palladium, and platinum. In resource assessment applications, both major and minor podiform chromite models may be used for any ophiolite complex regardless of its tectonic setting or ophiolite zone. Expected sizes of undiscovered podiform chromite deposits, with respect to degree of deformation or ore-forming process, may determine which model is appropriate. The banded podiform chromite model may be applicable for ophiolites in both suprasubduction and midoceanic ridge settings.

  16. Trace-element fingerprints of chromite, magnetite and sulfides from the 3.1 Ga ultramafic-mafic rocks of the Nuggihalli greenstone belt, Western Dharwar craton (India)

    NASA Astrophysics Data System (ADS)

    Mukherjee, Ria; Mondal, Sisir K.; González-Jiménez, José M.; Griffin, William L.; Pearson, Norman J.; O'Reilly, Suzanne Y.

    2015-06-01

    The 3.1 Ga Nuggihalli greenstone belt in the Western Dharwar craton is comprised of chromitite-bearing sill-like ultramafic-mafic rocks that are surrounded by metavolcanic schists (compositionally komatiitic to komatiitic basalts) and a suite of tonalite-trondhjemite-granodiorite gneissic rocks. The sill-like plutonic unit consists of a succession of serpentinite (after dunite)-peridotite-pyroxenite and gabbro with bands of titaniferous magnetite ore. The chromitite ore-bodies (length ≈30-500 m; width ≈2-15 m) are hosted by the serpentinite-peridotite unit. Unaltered chromites from massive chromitites (>80 % modal chromite) of the Byrapur and Bhaktarhalli chromite mines in the greenstone belt are characterized by high Cr# (100Cr/(Cr + Al)) of 78-86 and moderate Mg# (100 Mg/(Mg + Fe2+)) of 45-55. In situ trace-element analysis (LA-ICPMS) of unaltered chromites indicates that the parental magma of the chromitite ore-bodies was a komatiite lacking nickel-sulfide mineralization. In the Ga/Fe3+# versus Ti/Fe3+# diagram, the Byrapur chromites plot in the field of suprasubduction zone (SSZ) chromites while those from Bhaktarhalli lie in the MOR field. The above results corroborate our previous results based on major-element characteristics of the chromites, where the calculated parental melt of the Byrapur chromites was komatiitic to komatiitic basalt, and the Bhaktarhalli chromite was derived from Archean high-Mg basalt. The major-element chromite data hinted at the possibility of a SSZ environment existing in the Archean. Altered and compositionally zoned chromite grains in our study show a decrease in Ga, V, Co, Zn, Mn and enrichments of Ni and Ti in the ferritchromit rims. Trace-element heterogeneity in the altered chromites is attributed to serpentinization. The trace-element patterns of magnetite from the massive magnetite bands in the greenstone belt are similar to those from magmatic Fe-Ti-V-rich magnetite bands in layered intrusions, and magnetites from andesitic melts, suggesting that magnetite crystallized from an evolved gabbroic melt. Enrichments of Ni, Co, Te, As and Bi in disseminated millerite and niccolite occurring within chromitites, and in disseminated bravoite within magnetites, reflect element mobility during serpentinization. Monosulfide solid solution inclusions within pyroxenes (altered to actinolite) in pyroxenite, and interstitial pyrites and chalcopyrites in magnetite, retain primary characteristics except for Fe-enrichment in chalcopyrite, probably due to sub-solidus re-equilibration with magnetite. Disseminated sulfides are depleted in platinum-group elements (PGE) due to late sulfide saturation and the PGE-depleted nature of the mantle source of the sill-like ultramafic-mafic plutonic rocks in the Nuggihalli greenstone belt.

  17. Chromite alteration processes within Vourinos ophiolite

    NASA Astrophysics Data System (ADS)

    Grieco, Giovanni; Merlini, Anna

    2012-09-01

    The renewed interest in chromite ore deposits is directly related to the increase in Cr price ruled by international market trends. Chromite, an accessory mineral in peridotites, is considered to be a petrogenetic indicator because its composition reflects the degree of partial melting that the mantle experienced while producing the chromium spinel-bearing rock (Burkhard in Geochim Cosmochim Acta 57:1297-1306, 1993). However, the understanding of chromite alteration and metamorphic modification is still controversial (e.g. Evans and Frost in Geochim Cosmochim Acta 39:959-972, 1975; Burkhard in Geochim Cosmochim Acta 57:1297-1306, 1993; Oze et al. in Am J Sci 304:67-101, 2004). Metamorphic alteration leads to major changes in chromite chemistry and to the growth of secondary phases such as ferritchromite and chlorite. In this study, we investigate the Vourinos complex chromitites (from the mines of Rizo, Aetoraches, Xerolivado and Potamia) with respect to textural and chemical analyses in order to highlight the most important trend of alteration related to chromite transformation. The present study has been partially funded by the Aliakmon project in collaboration between the Public Power Corporation of Greece and Institute of Geology and Mineral Exploration of Kozani.

  18. IN-SITU CR(VI) SOURCE AND PLUME TREATMENT USING A FERROUS IRON BASED REDUCTANT

    EPA Science Inventory

    A large volume of chromite ore processing residue (COPR) generated from ferrochrome production operations is present at the Macalloy Corporation Superfund site in Charleston, S.C. Groundwater hexavalent chromium (Cr(VI)) concentrations in the approximately 20 acre-foot COPR satu...

  19. IN-SITU CR(VI) SOURCE AND PLUME TREATMENT USING A FERROUS IRON-BASED REDUCTANT

    EPA Science Inventory

    A large volume of chromite ore processing residue (COPR) generated from ferrochrome production operations is present at the Macalloy Corporation Superfund site in Charleston, S.C. Groundwater hexavalent chromium (Cr(VI)) concentrations in the approximately 20 acre-foot COPR sat...

  20. Solidification/stabilization of chromite ore processing residue using alkali-activated composite cementitious materials.

    PubMed

    Huang, Xiao; Zhuang, RanLiang; Muhammad, Faheem; Yu, Lin; Shiau, YanChyuan; Li, Dongwei

    2017-02-01

    Chromite Ore Processing Residue (COPR) produced in chromium salt production process causes a great health and environmental risk with Cr(VI) leaching. The solidification/stabilization (S/S) of COPR using alkali-activated blast furnace slag (BFS) and fly ash (FA) based cementitious material was investigated in this study. The optimum percentage of BFS and FA for preparing the alkali-activated BFS-FA binder had been studied. COPR was used to replace the amount of BFS-FA or ordinary Portland cement (OPC) for the preparation of the cementitious materials, respectively. The immobilization effect of the alkali-activated BFS-FA binder on COPR was much better than that of OPC based cementitious material. The potential for reusing the final treatment product as a readily available construction material was evaluated. X-ray diffraction (XRD), Fourier transform infrared spectrometry (FTIR) and scanning electron microscope with energy dispersive spectrometer (SEM-EDS) analysis indicated that COPR had been effectively immobilized. The solidification mechanism is the combined effect of reduction, ion exchange, precipitation, adsorption and physical fixation in the alkali-activated composite cementitious material. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Application of Sequential Extractions and X-ray Absorption Spectroscopy to Determine the Speciation of Chromium in Northern New Jersey Marsh Soils Developed in Chromite ore Processing Residue (COPR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elzinga, E.; Cirmo, A

    2010-01-01

    The Cr speciation in marsh soils developed in weathering chromite ore processing residue (COPR) was characterized using sequential extractions and synchrotron microbeam and bulk X-ray absorption spectroscopic (XAS) analyses. The sequential extractions suggested substantial Cr associated with reducible and oxidizable soil components, and significant non-extractable residual Cr. Notable differences in Cr speciation estimates from three extraction schemes underscore the operationally defined nature of Cr speciation provided by these methods. Micro X-ray fluorescence maps and {mu}-XAS data indicated the presence of {micro}m-sized chromite particles scattered throughout the weathered COPR matrix. These particles derive from the original COPR material, and have relativelymore » high resistance towards weathering, and therefore persist even after prolonged leaching. Bulk XAS data further indicated Cr(III) incorporated in Fe(OH){sub 3}, and Cr(III) associated with organic matter. The low Cr contents of the weathered material (200-850 ppm) compared to unweathered COPR (20,000-60,000 ppm) point to substantial Cr leaching during COPR weathering, with partial repartitioning of released Cr into secondary Fe(OH){sub 3} phases and organics. The effects of anoxia on Cr speciation, and the potential of active COPR weathering releasing Cr(VI) deeper in the profile require further study.« less

  2. Pyrolysis Treatment of Chromite Ore Processing Residue by Biomass: Cellulose Pyrolysis and Cr(VI) Reduction Behavior.

    PubMed

    Zhang, Da-Lei; Zhang, Mei-Yi; Zhang, Chu-Hui; Sun, Ying-Jie; Sun, Xiao; Yuan, Xian-Zheng

    2016-03-15

    The pyrolysis treatment with biomass is a promising technology for the remediation of chromite-ore-processing residue (COPR). However, the mechanism of this process is still unclear. In this study, the behavior of pyrolysis reduction of Cr(VI) by cellulose, the main component of biomass, was elucidated. The results showed that the volatile fraction (VF) of cellulose, ie. gas and tar, was responsible for Cr(VI) reduction. All organic compounds, as well as CO and H2 in VF, potentially reduced Cr(VI). X-ray absorption near-edge structure (XANES) spectroscopy and extended X-ray absorption fine-structure (EXAFS) spectroscopy confirmed the reduction of Cr(VI) to Cr(III) and the formation of amorphous Cr2O3. The remnant Cr(VI) content in COPR can be reduced below the detection limit (2 mg/kg) by the reduction of COPR particle and extension of reaction time between VF and COPR. This study provided a deep insight on the co-pyrolysis of cellulose with Cr(VI) in COPR and an ideal approach by which to characterize and optimize the pyrolysis treatment for COPR by other organics.

  3. Biodegradation of the metallic carcinogen hexavalent chromium Cr(VI) by an indigenously isolated bacterial strain

    PubMed Central

    Mishra, Susmita

    2010-01-01

    Background: Hexavalent chromium [Cr(VI)], a potential mutagen and carcinogen, is regularly introduced into the environment through diverse anthropogenic activities, including electroplating, leather tanning, and pigment manufacturing. Human exposure to this toxic metal ion not only causes potential human health hazards but also affects other life forms. The World Health Organization, the International Agency for Research on Cancer, and the Environmental Protection Agency have determined that Cr(VI) compounds are known human carcinogens. The Sukinda valley in Jajpur District, Orissa, is known for its deposit of chromite ore, producing nearly 98% of the chromite ore in India and one of the prime open cast chromite ore mines in the world (CES, Orissa Newsletter). Materials and Methods: Our investigation involved microbial remediation of Cr(VI) without producing any byproduct. Bacterial cultures tolerating high concentrations of Cr were isolated from the soil sample collected from the chromite-contaminated sites of Sukinda, and their bioaccumulation properties were investigated. Strains capable of growing at 250 mg/L Cr(VI) were considered as Cr resistant. Results: The experimental investigation showed the maximum specific Cr uptake at pH 7 and temperature 30°C. At about 50 mg/L initial Cr(VI) concentrations, uptake of the selected potential strain exceeded 98% within 12 h of incubation. The bacterial isolate was identified by 16S rRNA sequencing as Brevebacterium casei. Conclusion: Results indicated promising approach for microbial remediation of effluents containing elevated levels of Cr(VI). PMID:20976016

  4. Decomposition mechanism of chromite in sulfuric acid-dichromic acid solution

    NASA Astrophysics Data System (ADS)

    Zhao, Qing; Liu, Cheng-jun; Li, Bao-kuan; Jiang, Mao-fa

    2017-12-01

    The sulfuric acid leaching process is regarded as a promising, cleaner method to prepare trivalent chromium products from chromite; however, the decomposition mechanism of the ore is poorly understood. In this work, binary spinels of Mg-Al, Mg-Fe, and Mg-Cr in the powdered and lump states were synthesized and used as raw materials to investigate the decomposition mechanism of chromite in sulfuric acid-dichromic acid solution. The leaching yields of metallic elements and the changes in morphology of the spinel were studied. The experimental results showed that the three spinels were stable in sulfuric acid solution and that dichromic acid had little influence on the decomposition behavior of the Mg-Al spinel and Mg-Fe spinel because Mg2+, Al3+, and Fe3+ in spinels cannot be oxidized by Cr6+. However, in the case of the Mg-Cr spinel, dichromic acid substantially promoted the decomposition efficiency and functioned as a catalyst. The decomposition mechanism of chromite in sulfuric acid-dichromic acid solution was illustrated on the basis of the findings of this study.

  5. Chromite and other mineral deposits in serpentine rocks of the Piedmont Upland, Maryland, Pennsylvania, and Delaware

    USGS Publications Warehouse

    Pearre, Nancy C.; Heyl, Allen V.

    1960-01-01

    The Piedmont Upland in Maryland, Pennsylvania, and Delaware is about 160 miles long and at the most 50 miles wide. Rocks that underlie the province are the Baltimore gneiss of Precambrian age and quartzite, gneiss, schist, marble, phyllite, and greenstone, which make up the Glenarm series of early Paleozoic (?) age. These are intruded by granitic, gabbroic, and ultramaflc igneous rocks. Most of the ultramaflc rocks, originally peridotite, pyroxenite, and dunite, have been partly or completely altered to serpentine and talc; they are all designated by the general term serpentine. The bodies of serpentine are commonly elongate and conformable with the enclosing rocks. Many have been extensively quarried for building, decorative, and crushed stone. In addition, chromite, titaniferous magnetite, rutile, talc and soapstone, amphibole asbestos, magnesite, sodium- rich feldspar (commercially known as soda spar), and corundum have been mined or prospected for in the serpentine. Both high-grade massive chromite and lower grade disseminated chromite occur in very irregular and unpredictable form in the serpentine, and placer deposits of chromite are in and near streams that drain areas underlain by serpentine. A group of unusual minerals, among them kammererite, are typical associates of high-grade massive chromite but are rare in lower grade deposits. Chromite was first discovered in the United States at Bare Hills, Md., around 1810. Between 1820 and 1850, additional deposits were discovered and mined in Maryland and Pennsylvania, including the largest deposit of massive chromite ever found in the United States the Wood deposit, in the State Line district. A second period of extensive chromite mining came during the late 1860's and early 1870's. Production figures are incomplete and conflicting. Estimates from the available data indicate that the aggregate production from 27 of 40 known mines before 1900 totaled between 250,000 and 280,000 tons of lode-chromite ore; information is lacking for the other 13. Placer deposits produced considerably more than 15,000 tons of chromite concentrates. Exploratory work in several of the mines and placer deposits during World War I produced about 1,500 long tons of chromite ore, 920 tons of which was sold.Most of the chromite from Maryland and Pennsylvania was used to manufacture chemical compounds, pigments, and dyes before metallurgical and refractory uses for chromite were developed. Available analyses of the ores indicate that they would satisfy modern requirements for chemical-grade chromite. With the exception of such deposits as the Line Pit and Red Pit mines, the chromite contains too much iron for the best metallurgical grade, but many would be satisfactory low-grade metallurgical chromite. Perhaps 30,000 to 50,000 tons of chromite concentrates that would range from 30 to 54 percent Cr2O3 could be obtained from placer deposits in the State Line and Soldiers Delight districts. A small tonnage of chromite remains in dumps at six of the old mines. Lode and placer deposits in the Philadelphia district, placers in Montgomery County, Md., and possible downward extensions of known ore bodies below the floors of high-grade mines now flooded have not been completely explored. Although other chromite deposits probably lie concealed at relatively shallow depths, no practical method of finding them has been developed.Small deposits of titaniferous iron ore in serpentine were mined for iron before 1900, but the titanium content troubled furnace operators. Ore bodies are similar in occurrence to chromite deposits; they are massive or disseminated and are found near the edges of serpentine intrusive rocks. The small size of the deposits and comparatively low titanium content limit their importance as a potential source of titanium. A single rutile deposit in Harford County, Md., has been prospected but not mined. Pockets in schistose chlorite rock, probably altered from pyroxenite, contain as much as 16 percent rutile and average 8 percent. Rutile-bearing rock has been proved to a depth of about 58 feet. Talc and soapstone deposits that have been worked in the State Line and Jarrettsville-Dublin districts are the result of steatitization of serpentine at its contact with intrusive sodium-rich pegmatites. Deposits in the Marriottsville and Philadelphia districts seem to be related to shear or crush zones in the serpentine, which served as channelways for steatitizing solutions. Massive soapstone was extensively used in the 19th century for furnace, fireplace, and stove linings and for washtubs and bathtubs. Every year from 1906 until 1960 talc and soapstone have been produced from one or more of the deposits in Maryland and Pennsylvania. Deposits near Dublin and Marriottsville, Md., have produced steadily for years and production continues. Lava-grade steatite from Dublin, Md., is manufactured into ceramic products for electrical and refractory purposes. Slip-fiber amphibole asbestos deposits were known in the area as early as 1837, but early production was limited. The product was used mostly for linings of safes, boiler covers, and paints. During World War I the demand for domestic asbestos for chemical filters led to further development of deposits in Maryland. Between 1916 and 1940 many small veins of good-quality tremolite and anthophyllite were mined, and the fiber was prepared for market at Woodlawn, Md. Only the upper parts of veins, softened by weathering, were usable. Because prospecting was reportedly fairly thorough and known deposits are said to be mined out, and because demand for amphibole asbestos is limited, the possibility of future asbestos production from the area seems small, except as a byproduct of talc quarrying. Magnesite from several mines in Pennsylvania and Maryland was much in demand between 1828 and 1871 for the manufacture of epsom salt. Exploratory work at the old Goat Hill mines in 1921 indicated that the product could not be profitably prepared for market at that time. Although reportedly high grade, the magnesite veins are thin and small in comparison with other domestic deposits.Sodium-rich feldspar and corundum deposits occur in pegmatites that are unusual because they characteristically contain little or no quartz and mica and because, insofar as known, they are confined to serpentine rocks. Many of the known deposits of sodium-rich feldspar commercial soda-spar are reportedly mined out. It is possible, however, that other commercial deposits will be found in the area. At various times from 1825 until about 1892 in Pennsylvania, corundum mined or found at the surface was used to meet a demand of the abrasives industry. The increased use of artificial abrasives has diminished the demand for natural corundum, and interest in the small, irregular Pennsylvania deposits is at present largely historical or mineralogical.

  6. IN SITU SOURCE TREATMENT OF CR(VI) USING A FE(II)-BASED REDUCTANT BLEND: LONG-TERM MONITORING AND EVALUATION

    EPA Science Inventory

    The long-term effectiveness of a FeSO4 + Na2S2O4 reductant solution blend for in situ saturated zone treatment of dissolved and solid phase Cr(VI) in a high pH chromite ore processing solid waste (COPSW) fill material was investigated. Two field pilot injection studies were cond...

  7. Superfund Record of Decision (EPA Region 9): Coalinga Asbestos Mine, Fresno County, CA. (Second remedial action), September 1990. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The 557-acre Coalinga Asbestos Mine site, a former asbestos processing area and chromite mine, comprises part of the Johns Manville Coalinga Asbestos Mill site in western Fresno County, California. This rural mountainous area is used primarily for recreational purposes. From 1962 to 1974, asbestos ore from several local mines was processed and sorted onsite, and the resulting asbestos mill tailings were periodically bulldozed into an intermittent stream channel. Subsequently, from 1975 to 1977, a chromite milling operation was conducted onsite. Tailings were often washed downstream during periods of stream flow, and the resuspension of asbestos fibers from the tailings intomore » the air produced a significant inhalation hazard. As a result of these activities, approximately 450,000 cubic yards of mill tailings and asbestos ore remain onsite within a large tailing pile. In 1980 and 1987, State investigations indicated that the site was contributing a significant amount of asbestos into the surface water. The site will be remediated as two Operable Units (OU). The Record of Decision (ROD) addresses the remedial action for OU2, the Johns Manville Coalinga Asbestos Mill Area. The primary contaminant of concern affecting the surface water is asbestos.« less

  8. Evolution of ore deposits on terrestrial planets

    NASA Astrophysics Data System (ADS)

    Burns, R. G.

    Ore deposits on terrestrial planets materialized after core formation, mantle evolution, crustal development, interactions of surface rocks with the hydrosphere and atmosphere, and, where life exists on a planet, the involvement of biological activity. Core formation removed most of the siderophilic and chalcophilic elements, leaving mantles depleted in many of the strategic and noble metals relative to their chondritic abundances. Basaltic magma derived from partial melting of the mantle transported to the surface several metals contained in immiscible silicate and sulfide melts. Magmatic ore deposits were formed during cooling, fractional crystallization and density stratification from the basaltic melts. Such ore deposits found in earth's Archean rocks were probably generated during early histories of all terrestrial planets and may be the only types of igneous ores on Mars. Where plate tectonic activity was prevalent on a terrestrial planet, temporal evolution of ore deposits took place. Repetitive episodes of subduction modified the chemical compositions of the crust and upper mantles, leading to porphyry copper and molybdenum ores in calc-alkaline igneous rocks and granite-hosted tin and tungsten deposits. Such plate tectonic-induced mineralization in relatively young igneous rocks on earth may also have produced hydrothermal ore deposits on Venus in addition to the massive sulfide and cumulate chromite ores associated with Venusian mafic igneous rock. Sedimentary ore deposits resulting from mechanical and chemical weathering in reducing atmospheres in Archean earth included placer deposits (e.g., uraninite, gold, pyrite ores). Chromite, ilmenite, and other dense unreactive minerals could also be present on channel floors and in valley networks on Mars, while banded iron formations might underlie the Martian northern plains regions. As oxygen evolved in earth's atmosphere, so too did oxide ores. By analogy, gossans above sulfide ores probably occur on Mars, but not submarine ferromanganese nodules and crusts which have precipitated in oxygenated seawater on earth.

  9. Evolution of ore deposits on terrestrial planets

    NASA Technical Reports Server (NTRS)

    Burns, R. G.

    1991-01-01

    Ore deposits on terrestrial planets materialized after core formation, mantle evolution, crustal development, interactions of surface rocks with the hydrosphere and atmosphere, and, where life exists on a planet, the involvement of biological activity. Core formation removed most of the siderophilic and chalcophilic elements, leaving mantles depleted in many of the strategic and noble metals relative to their chondritic abundances. Basaltic magma derived from partial melting of the mantle transported to the surface several metals contained in immiscible silicate and sulfide melts. Magmatic ore deposits were formed during cooling, fractional crystallization and density stratification from the basaltic melts. Such ore deposits found in earth's Archean rocks were probably generated during early histories of all terrestrial planets and may be the only types of igneous ores on Mars. Where plate tectonic activity was prevalent on a terrestrial planet, temporal evolution of ore deposits took place. Repetitive episodes of subduction modified the chemical compositions of the crust and upper mantles, leading to porphyry copper and molybdenum ores in calc-alkaline igneous rocks and granite-hosted tin and tungsten deposits. Such plate tectonic-induced mineralization in relatively young igneous rocks on earth may also have produced hydrothermal ore deposits on Venus in addition to the massive sulfide and cumulate chromite ores associated with Venusian mafic igneous rock. Sedimentary ore deposits resulting from mechanical and chemical weathering in reducing atmospheres in Archean earth included placer deposits (e.g., uraninite, gold, pyrite ores). Chromite, ilmenite, and other dense unreactive minerals could also be present on channel floors and in valley networks on Mars, while banded iron formations might underlie the Martian northern plains regions. As oxygen evolved in earth's atmosphere, so too did oxide ores. By analogy, gossans above sulfide ores probably occur on Mars, but not submarine ferromanganese nodules and crusts which have precipitated in oxygenated seawater on earth.

  10. Microstructural analyses of Cr(VI) speciation in chromite ore processing Residue (COPR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    CHRYSOCHOOU, MARIA; FAKRA, SIRINE C .; Marcus, Matthew A.

    2010-03-01

    The speciation and distribution of Cr(VI) in the solid phase was investigated for two types of chromite ore processing residue (COPR) found at two deposition sites in the United States: gray-black (GB) granular and hard brown (HB) cemented COPR. COPR chemistry and mineralogy were investigated using micro-X-ray absorption spectroscopy and micro-X-ray diffraction, complemented by laboratory analyses. GB COPR contained 30percent of its total Cr(VI) (6000 mg/kg) as large crystals(>20 ?m diameter) of a previously unreported Na-rich analog of calcium aluminum chromate hydrates. These Cr(VI)-rich phases are thought to be vulnerable to reductive and pH treatments. More than 50percent of themore » Cr(VI) was located within nodules, not easily accessible to dissolved reductants, and bound to Fe-rich hydrogarnet, hydrotalcite, and possibly brucite. These phases are stable over a large pH range, thus harder to dissolve. Brownmilleritewasalso likely associated with physical entrapment of Cr(VI) in the interior of nodules. HB COPR contained no Cr(VI)-rich phases; all Cr(VI) was diffuse within the nodules and absent from the cementing matrix, with hydrogarnet and hydrotalcite being the main Cr(VI) binding phases. Treatment ofHBCOPRis challenging in terms of dissolving the acidity-resistant, inaccessible Cr(VI) compounds; the same applies to ~;;50percent of Cr(VI) in GB COPR.« less

  11. KALMIOPSIS WILDERNESS, OREGON.

    USGS Publications Warehouse

    Page, Norman J; Miller, Michael S.

    1984-01-01

    Geologic, geochemical, geophysical field and laboratory, and mine and prospect studies conducted in the Kalmiopsis Wilderness, Oregon indicate that areas within and immediately adjacent to the wilderness have substantiated mineral-resource potential. The types of mineral resources which occur in these areas include massive sulfide deposits containing copper, zinc, lead, silver and gold; podiform chromite deposits; laterite deposits containing nickel, cobalt, and chromium; lode gold deposits; and placer gold deposits. Past production from existing mines is estimated to have been at least 7000 troy oz of gold, 4000 long tons of chromite, and few tens of tons of copper ore.

  12. Pilot scale treatment of chromite ore processing residue using sodium sulfide in single reduction and coupled reduction/stabilization processes.

    PubMed

    Velasco, Antonio; Ramírez, Martha; Hernández, Sergio; Schmidt, Winfried; Revah, Sergio

    2012-03-15

    Single Cr(VI) reduction and coupled reduction/stabilization (R/S) processes were evaluated at pilot scale to determine their effectiveness to treat chromite ore processing residue (COPR). Sodium sulfide was used as the reducing agent and cement, gypsum and lime were tested as the stabilizing agents. The pilot experiments were performed in a helical ribbon blender mixer with batches of 250 kg of COPR and mixing time up to 30 min. Na2S/Cr(VI) mass ratios of 4.6, 5.7 and 6.8 were evaluated in the single reduction process to treat COPR with Cr(VI) concentration of ≈4.2 g/kg. The R/S process was tested with a Na2S/Cr(VI) mass ratio of 5.7 and including stabilizing agents not exceeding 5% (w/w(COPR)), to treat COPR with a Cr(VI) content of ≈5.1g/kg. The single reduction process with a ratio of 6.8, reached Cr(VI) reduction efficiencies up to 97.6% in the first days, however these values decreased to around 93% after 380 days of storage. At this point the total Cr level was around 12.5 mg/L. Cr(VI) removal efficiencies exceeding 96.5% were reached and maintained during 380 days when the coupled R/S process was evaluated. Total Cr levels lower than 5 mg/l were attained at the initials days in all R/S batch tested, however after 380 days, concentrations below the regulatory limit were only found with gypsum (2%) as single agent and with a blend of cement (4%) and lime (1%). These results indicated that the coupled R/S process is an excellent alternative to stabilize COPR. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. The soda-ash roasting of chromite ore processing residue for the reclamation of chromium

    NASA Astrophysics Data System (ADS)

    Antony, M. P.; Tathavadkar, V. D.; Calvert, C. C.; Jha, A.

    2001-12-01

    Sodium chromate is produced via the soda-ash roasting of chromite ore with sodium carbonate. After the reaction, nearly 15 pct of the chromium oxide remains unreacted and ends up in the waste stream, for landfills. In recent years, the concern over environmental pollution from hexavalent chromium (Cr6+) from the waste residue has become a major problem for the chromium chemical industry. The main purpose of this investigation is to recover chromium oxide present in the waste residue as sodium chromate. Cr2O3 in the residue is distributed between the two spinel solid solutions, Mg(Al,Cr)2O4 and γ-Fe2O3. The residue from the sodium chromate production process was analyzed both physically and chemically. The compositions of the mineral phases were determined by X-ray diffraction (XRD), scanning electron microscopy (SEM), and electron probe microanalysis (EPMA). The influence of alkali addition on the overall reaction rate is examined. The kinetics of the chromium extraction reaction resulting from the residue of the soda-ash roasting process under an oxidizing atmosphere is also investigated. It is shown that the experimental results for the roasting reaction can be best described by the Ginstling and Brounshtein (GB) equation for diffusion-controlled kinetics. The apparent activation energy for the roasting reaction was calculated to be between 85 and 90 kJ·mol-1 in the temperature range 1223 to 1473 K. The kinetics of leaching of Cr3+ ions using the aqueous phase from the process residue is also studied by treating the waste into acid solutions with different concentrations.

  14. Detoxification and immobilization of chromite ore processing residue in spinel-based glass-ceramic.

    PubMed

    Liao, Chang-Zhong; Tang, Yuanyuan; Lee, Po-Heng; Liu, Chengshuai; Shih, Kaimin; Li, Fangbai

    2017-01-05

    A promising strategy for the detoxification and immobilization of chromite ore processing residue (COPR) in a spinel-based glass-ceramic matrix is reported in this study. In the search for a more chemically durable matrix for COPR, the most critical crystalline phase for Cr immobilization was found to be a spinel solid solution with a chemical composition of MgCr 1.32 Fe 0.19 Al 0.49 O 4 . Using Rietveld quantitative X-ray diffraction analysis, we identified this final product is with the phases of spinel (3.5wt.%), diopside (5.2wt.%), and some amorphous contents (91.2wt.%). The partitioning ratio of Cr reveals that about 77% of the Cr was incorporated into the more chemically durable spinel phase. The results of Cr K-edge X-ray absorption near-edge spectroscopy show that no Cr(VI) was observed after conversion of COPR into a glass-ceramic, which indicates successful detoxification of Cr(VI) into Cr(III) in the COPR-incorporated glass-ceramic. The leaching performances of Cr 2 O 3 and COPR-incorporated glass-ceramic were compared with a prolonged acid-leaching test, and the results demonstrate the superiority of the COPR-incorporated glass-ceramic matrix in the immobilization of Cr. The overall results suggest that the use of affordable additives has potential in more reliably immobilizing COPR with a spinel-based glass-ceramic for safer disposal of this hazardous waste. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. The Uitkomst intrusion and Nkomati Ni-Cu-Cr-PGE deposit, South Africa: trace element geochemistry, Nd isotopes and high-precision geochronology

    NASA Astrophysics Data System (ADS)

    Maier, W. D.; Prevec, S. A.; Scoates, J. S.; Wall, C. J.; Barnes, S.-J.; Gomwe, T.

    2018-01-01

    The Uitkomst intrusion is a tubular mafic-ultramafic layered body that hosts one of South Africa's largest Ni-Cu-Cr-PGE deposits, Nkomati. The sulphide ore occurs in the form of massive lenses in the immediate quartzitic footwall and as disseminations within peridotite. The chromite ore forms an up to ˜10-m-thick layer in the lower portion of the intrusion. Uitkomst has generally been interpreted as a magma conduit, possibly related to the Bushveld event. Here, we present a new high-precision U-Pb zircon date of 2057.64 ± 0.69 Ma that overlaps with the age of the Merensky Reef of the Bushveld Complex and thus demonstrates a coeval relationship between the intrusions. Based on incompatible trace elements as well as O- and Nd isotope data (ɛNd -4.5 to -6.2), we show that the Uitkomst parent magmas were contaminated with up to 20% Archean upper crust prior to emplacement, and with up to 15% dolomitic country rock during emplacement. Ore formation at Nkomati was critically aided by substantial devolatisation and removal of dolomitic floor rocks leading to hydrodynamic concentration of sulphide and chromite during slumping of crystal mushes into the trough-like centre of the subsiding intrusion and its footwall.

  16. Long-term stability of FeSO4 and H2SO4 treated chromite ore processing residue (COPR): Importance of H+ and SO42.

    PubMed

    Wang, Xin; Zhang, Jingdong; Wang, Linling; Chen, Jing; Hou, Huijie; Yang, Jiakuan; Lu, Xiaohua

    2017-01-05

    In this study, the long-term stability of Cr(VI) in the FeSO 4 and H 2 SO 4 (FeSO 4 -H 2 SO 4 ) treated chromite ore processing residue (COPR) after 400 curing days and the stabilization mechanisms were investigated. FeSO 4 -H 2 SO 4 treatment significantly reduced toxicity characteristic leaching procedure (TCLP) and synthetic precipitation leaching procedure (SPLP) Cr(VI) concentrations to lower than the regulatory limit of 1.5mgL -1 (HJ/T 301-2007, China EPA) even for the samples curing 400days, achieving an outstanding long-term stability. Our independent leaching tests revealed that H + and SO 4 2- have synergistic effect on promoting the release of Cr(VI), which would make Cr(VI) easier accessed by Fe(II) during stabilization. The contributions of H + and SO 4 2- to Cr(VI) release ratio were 25%-44% and 19%-38%, respectively, as 5mol H 2 SO 4 per kg COPR was used. X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and alkaline digestion analyses were also employed to interpret the possible stabilization mechanism. Cr(VI) released from COPR solid was reduced to Cr(III) by Fe(II), and then formed stable Fe x Cr (1-x) (OH) 3 precipitate. This study provides a facile and reliable scheme for COPR stabilization, and verifies the excellent long-term stability of the FeSO 4 -H 2 SO 4 treated COPR. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Assessment of ferrous chloride and Portland cement for the remediation of chromite ore processing residue.

    PubMed

    Jagupilla, Santhi C; Wazne, Mahmoud; Moon, Deok Hyun

    2015-10-01

    Chromite Ore Processing Residue (COPR) is an industrial waste containing up to 7% chromium (Cr) including up to 5% hexavalent chromium [Cr(VI)]. The remediation of COPR has been challenging due to the slow release of Cr(VI) from a clinker like material and thereby the incomplete detoxification of Cr(VI) by chemical reagents. The use of sulfur based reagents such as ferrous sulfate and calcium polysulfide to detoxify Cr(VI) has exasperated the swell potential of COPR upon treatment. This study investigated the use of ferrous chloride alone and in combination with Portland cement to address the detoxification of Cr(VI) in COPR and the potential swell of COPR. Chromium regulatory tests, X-ray powder diffraction (XRPD) analyses and X-ray absorption near edge structure (XANES) analyses were used to assess the treatment results. The treatment results indicated that Cr(VI) concentrations for the acid pretreated micronized COPR as measured by XANES analyses were below the New Jersey Department of Environmental Protection (NJDEP) standard of 20 mg kg(-1). The Toxicity characteristic leaching procedure (TCLP) Cr concentrations for all acid pretreated samples also were reduced below the TCLP regulatory limit of 5 mg L(-1). Moreover, the TCLP Cr concentration for the acid pretreated COPR with particle size ⩽0.010 mm were less than the universal treatment standard (UTS) of 0.6 mg L(-1). The treatment appears to have destabilized all COPR potential swell causing minerals. The unconfined compressive strength (UCS) for the treated samples increased significantly upon treatment with Portland cement. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. High-resolution analyses reveal structural diversity patterns of microbial communities in Chromite Ore Processing Residue (COPR) contaminated soils.

    PubMed

    Min, Xiaobo; Wang, Yangyang; Chai, Liyuan; Yang, Zhihui; Liao, Qi

    2017-09-01

    To explore how heavy metal contamination in Chromite Ore Processing Residue (COPR) disposal sites determine the dissimilarities of indigenous microbial communities, 16S rRNA gene MiSeq sequencing and advanced statistical methods were applied. 13 soil samples were collected from three COPR disposal sites in Mouding of southwestern, Shangnan of northwestern and Yima of central China. The results of analyses of variance (ANOVA), similarities (ANOSIM), and non-metric multidimensional scaling (NMDS) showed that the structural diversity of the microbial communities in the samples with high total chromium (Cr) content (more than 300 mg kg -1 ; High group) were significantly lesser than in the Low group (less than 90 mg kg -1 ) regardless of their geographical distribution. But their diversity had virtually rehabilitated under the pressures of long-term metal contamination. Furthermore, the similarity percentage (SIMPER) analysis indicated that the major dissimilarity contributors Micrococcaceae, Delftia, and Streptophyta, possibly having Cr(VI)-resistant and/or Cr(VI)-reducing capability, were dominant in the High group, while Ramlibacter and Gemmatimonas with potential resistances to other heavy metals were prevalent in the Low group. In addition, the multivariate regression tree (MRT), aggregated boosted tree (ABT), and Mantel test revealed that total Cr content affiliated with Cr(VI) was the principal factor shaping the dissimilarities between the soil microbial communities in the COPR sites. Our findings provide a deep insight of the influence of these heavy metals on the microbial communities in the COPR disposal sites and will facilitate bioremediation on such site. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. The first data on breithauptite in chromitite from the northern part of the Voykar-Synya ultramafic massif (Polar Urals)

    NASA Astrophysics Data System (ADS)

    Shaibekov, R. I.; Gaikovich, M. M.; Isaenko, S. I.; Shevchuk, S. S.

    2017-11-01

    This work presents the results of studying the mineral composition of chromite ores of the Khoila area. For the first time, nickel antimonide (breithauptite), including an Au-bearing type (with intergrowths and microinclusions of auricuprides) was found in the paragenesis with chromespinelides.

  20. Mobilization of Cr(VI) from chromite ore processing residue through acid treatment.

    PubMed

    Tinjum, James M; Benson, Craig H; Edil, Tuncer B

    2008-02-25

    Batch leaching studies on chromite ore processing residue (COPR) were performed using acids to investigate leaching of hexavalent chromium, Cr(VI), with respect to particle size, reaction time, and type of acid (HNO(3) and H(2)SO(4)). Aqueous Cr(VI) is maximized at approximately 0.04 mol Cr(VI) per kg of dry COPR at pH 7.6-8.1. Cr(VI) mobilized more slowly for larger particles, and the pH increased with time and increased more rapidly for smaller particles, suggesting that rate limitations occur in the solid phase. With H(2)SO(4), the pH stabilized at a higher value (8.8 for H(2)SO(4) vs. 8.0 for HNO(3)) and more rapidly (16 h vs. 30 h), and the differences in pH for different particle sizes were smaller. The acid neutralization capacity (ANC) of COPR is very large (8 mol HNO(3) per kg of dry COPR for a stable eluate pH of 7.5). Changes to the elemental and mineralogical composition and distribution in COPR particles after mixing with acid indicate that Cr(VI)-bearing solids dissolved. However, concentrations of Cr(VI) >2800 mg kg(-1) (>50% of the pre-treatment concentration) were still found after mixing with acid, regardless of the particle size, reaction time, or type of acid used. The residual Cr(VI) appears to be partially associated with poorly-ordered Fe and Al oxyhydroxides that precipitated in the interstitial areas of COPR particles. Remediation strategies that use HNO(3) or H(2)SO(4) to neutralize COPR or to maximize Cr(VI) in solution are likely to require extensive amounts of acid, may not mobilize all of the Cr(VI), and may require extended contact time, even under well-mixed conditions.

  1. ASTER, ALI and Hyperion sensors data for lithological mapping and ore minerals exploration.

    PubMed

    Beiranvand Pour, Amin; Hashim, Mazlan

    2014-01-01

    This paper provides a review of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Advanced Land Imager (ALI), and Hyperion data and applications of the data as a tool for ore minerals exploration, lithological and structural mapping. Spectral information extraction from ASTER, ALI, and Hyperion data has great ability to assist geologists in all disciplines to map the distribution and detect the rock units exposed at the earth's surface. The near coincidence of Earth Observing System (EOS)/Terra and Earth Observing One (EO-1) platforms allows acquiring ASTER, ALI, and Hyperion imagery of the same ground areas, resulting accurate information for geological mapping applications especially in the reconnaissance stages of hydrothermal copper and gold exploration, chromite, magnetite, massive sulfide and uranium ore deposits, mineral components of soils and structural interpretation at both regional and district scales. Shortwave length infrared and thermal infrared bands of ASTER have sufficient spectral resolution to map fundamental absorptions of hydroxyl mineral groups and silica and carbonate minerals for regional mapping purposes. Ferric-iron bearing minerals can be discriminated using six unique wavelength bands of ALI spanning the visible and near infrared. Hyperion visible and near infrared bands (0.4 to 1.0 μm) and shortwave infrared bands (0.9 to 2.5 μm) allowed to produce image maps of iron oxide minerals, hydroxyl-bearing minerals, sulfates and carbonates in association with hydrothermal alteration assemblages, respectively. The techniques and achievements reviewed in the present paper can further introduce the efficacy of ASTER, ALI, and Hyperion data for future mineral and lithological mapping and exploration of the porphyry copper, epithermal gold, chromite, magnetite, massive sulfide and uranium ore deposits especially in arid and semi-arid territory.

  2. The formation of ore mineral deposits on the Moon: A feasibility study

    NASA Technical Reports Server (NTRS)

    Taylor, Lawrence A.; Lu, Fengxiang

    1992-01-01

    Most of the ore deposits on Earth are the direct result of formation by hydrothermal solutions. Analogous mineral concentrations do not occur on the Moon, however, because of the absence of water. Stratified ore deposits form in layered instrusives on Earth due to fractional crystallization of magma and crystal settling of high-density minerals, particularly chromium in the mineral chromite. We have evaluated the possibility of such mineral deposition on the Moon, based upon considerations of 'particle settling velocities' in lunar vs. terrestrial magmas. A first approximation of Stoke's Law would seem to indicate that the lower lunar gravity (1/6 terrestrial) would result in slower crystal settling on the Moon. However, the viscosity of the silicate melt is the most important factor affecting the settling velocity. The viscosities of typical lunar basaltic melts are 10-100 times less than their terrestrial analogs. These lower viscosities result from two factors: (1) lunar basaltic melts are typically higher in FeO and lower in Al2O3, Na2O, and K2O than terrestrial melts; and (2) lunar igneous melts and phase equilibria tend to be 100-150 C higher than terrestrial, largely because of the general paucity of water and other volatile phases on the Moon. Therefore, particle settling velocities on the Moon are 5-10 times greater than those on Earth. It is highly probable that stratiform ore deposits similar to those on Earth exist on the Moon. The most likely ore minerals involved are chromite, ilmenite, and native FeNi metal. In addition, the greater settling velocities of periodotite in lunar magmas indicate that the buoyancy effects of the melt are less than on Earth. Consequently, the possibility is considerably less than on Earth of deep-seated volcanism transporting upper mantle/lower crustal xenoliths to the surface of the Moon, such as occurs in kimberlites on Earth.

  3. Spectral transformation of ASTER and Landsat TM bands for lithological mapping of Soghan ophiolite complex, south Iran

    NASA Astrophysics Data System (ADS)

    Pournamdari, Mohsen; Hashim, Mazlan; Pour, Amin Beiranvand

    2014-08-01

    Spectral transformation methods, including correlation coefficient (CC) and Optimum Index Factor (OIF), band ratio (BR) and principal component analysis (PCA) were applied to ASTER and Landsat TM bands for lithological mapping of Soghan ophiolitic complex in south of Iran. The results indicated that the methods used evidently showed superior outputs for detecting lithological units in ophiolitic complexes. CC and OIF methods were used to establish enhanced Red-Green-Blue (RGB) color combination bands for discriminating lithological units. A specialized band ratio (4/1, 4/5, 4/7 in RGB) was developed using ASTER bands to differentiate lithological units in ophiolitic complexes. The band ratio effectively detected serpentinite dunite as host rock of chromite ore deposits from surrounding lithological units in the study area. Principal component images derived from first three bands of ASTER and Landsat TM produced well results for lithological mapping applications. ASTER bands contain improved spectral characteristics and higher spatial resolution for detecting serpentinite dunite in ophiolitic complexes. The developed approach used in this study offers great potential for lithological mapping using ASTER and Landsat TM bands, which contributes in economic geology for prospecting chromite ore deposits associated with ophiolitic complexes.

  4. Komatiites and nickel sulfide ores of the Black Swan area, Yilgarn Craton, Western Australia. 3: Komatiite geochemistry, and implications for ore forming processes

    NASA Astrophysics Data System (ADS)

    Barnes, Stephen J.; Hill, Robin E. T.; Evans, Noreen J.

    2004-11-01

    The Black Swan komatiite sequence is a package of dominantly olivine-rich cumulates with lesser volumes of spinifex textured rocks, interpreted as a section through an extensive komatiite lava flow field. The sequence hosts a number of nickel sulfide orebodies, including the Silver Swan massive shoot and the Cygnet and Black Swan disseminated orebodies. A large body of whole rock analyses on komatiitic rocks from the Black Swan area has been filtered for metasomatic effects. With the exception of mobile elements such as Ca and alkalis, most samples retain residual igneous geochemistry, and can be modelled predominantly by fractionation and accumulation of olivine. Whole rock MgO FeO relationships imply a relatively restricted range of olivine compositions, more primitive than the olivine which would have been in equilibrium with the transporting komatiite lavas, and together with textural data indicate that much of the cumulus olivine in the sequence was transported. Flow top compositions show evidence for chromite saturation, but the cumulates are deficient in accumulated chromite. Chromite compositions are typical of those found in compound flow-facies komatiites, and are distinct from those in komatiitic dunite bodies. Incompatible trace element abundances show three superimposed influences: control by the relative proportion of olivine to liquid; a signature of crustal contamination and an overprint of metasomatic introduction of LREE, Zr and Th. This overprint is most evident in cumulates, and relatively insignificant in the spinifex rocks. Platinum and palladium behaved as incompatible elements and are negatively correlated with MgO. They show no evidence for wholesale depletion due to sulfide extraction, which was evidently restricted to specific lava tubes or pathways. The lack of correspondence between PGE depletion and contamination by siliceous material implies that contamination alone is insufficient to generate S-saturation and ore formation in the absence of sulfide in the assimilant. Contamination signatures in spinifex-textured rocks may be a guide to Ni-sulfide mineralisation, but are not entirely reliable in the absence of other evidence. The widespread vesicularity of the sequence may be attributable to assimilated water rather than to primary mantle-derived volatiles, and cannot be taken as evidence for primary volatile-rich magmas. The characteristic signature of the Black Swan Succession is the presence of highly localised disseminated sulfide within a sequence showing more widespread evidence for crustal contamination and interaction with its immediate substrate. This has important implications for the applicability of trace element geochemistry in exploration for komatiite-hosted nickel deposits.

  5. Remediation of hexavalent chromium contamination in chromite ore processing residue by sodium dithionite and sodium phosphate addition and its mechanism.

    PubMed

    Li, Yunyi; Cundy, Andrew B; Feng, Jingxuan; Fu, Hang; Wang, Xiaojing; Liu, Yangsheng

    2017-05-01

    Large amounts of chromite ore processing residue (COPR) wastes have been deposited in many countries worldwide, generating significant contamination issues from the highly mobile and toxic hexavalent chromium species (Cr(VI)). In this study, sodium dithionite (Na 2 S 2 O 4 ) was used to reduce Cr(VI) to Cr(III) in COPR containing high available Fe, and then sodium phosphate (Na 3 PO 4 ) was utilized to further immobilize Cr(III), via a two-step procedure (TSP). Remediation and immobilization processes and mechanisms were systematically investigated using batch experiments, sequential extraction studies, X-ray diffraction (XRD) and X-ray Photoelectron Spectroscopy (XPS). Results showed that Na 2 S 2 O 4 effectively reduced Cr(VI) to Cr(III), catalyzed by Fe(III). The subsequent addition of Na 3 PO 4 further immobilized Cr(III) by the formation of crystalline CrPO 4 ·6H 2 O. However, addition of Na 3 PO 4 simultaneously with Na 2 S 2 O 4 (via a one-step procedure, OSP) impeded Cr(VI) reduction due to the competitive reaction of Na 3 PO 4 and Na 2 S 2 O 4 with Fe(III). Thus, the remediation efficiency of the TSP was much higher than the corresponding OSP. Using an optimal dosage in the two-step procedure (Na 2 S 2 O 4 at a dosage of 12× the stoichiometric requirement for 15 days, and then Na 3 PO 4 in a molar ratio (i.e. Na 3 PO 4 : initial Cr(VI)) of 4:1 for another 15 days), the total dissolved Cr in the leachate determined via Toxicity Characteristic Leaching Procedure (TCLP Cr) testing of our samples was reduced to 3.8 mg/L (from an initial TCLP Cr of 112.2 mg/L, i.e. at >96% efficiency). Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Feature level fusion for enhanced geological mapping of ophiolile complex using ASTER and Landsat TM data

    NASA Astrophysics Data System (ADS)

    Pournamdari, M.; Hashim, M.

    2014-02-01

    Chromite ore deposit occurrence is related to ophiolite complexes as a part of the oceanic crust and provides a good opportunity for lithological mapping using remote sensing data. The main contribution of this paper is a novel approaches to discriminate different rock units associated with ophiolite complex using the Feature Level Fusion technique on ASTER and Landsat TM satellite data at regional scale. In addition this study has applied spectral transform approaches, consisting of Spectral Angle Mapper (SAM) to distinguish the concentration of high-potential areas of chromite and also for determining the boundary between different rock units. Results indicated both approaches show superior outputs compared to other methods and can produce a geological map for ophiolite complex rock units in the arid and the semi-arid region. The novel technique including feature level fusion and Spectral Angle Mapper (SAM) discriminated ophiolitic rock units and produced detailed geological maps of the study area. As a case study, Sikhoran ophiolite complex located in SE, Iran has been selected for image processing techniques. In conclusion, a suitable approach for lithological mapping of ophiolite complexes is demonstrated, this technique contributes meaningfully towards economic geology in terms of identifying new prospects.

  7. Mineral deposits of Central America, with a section on manganese deposits of Panama

    USGS Publications Warehouse

    Roberts, Ralph Jackson; Irving, Earl Montgomery; Simons, F.S.

    1957-01-01

    The mineral deposits of Central America were studied between 1942 and 1945, in cooperation with the United States Department of State and the Foreign Economic Administration. Emphasis was originally placed on the study of strategic-mineral deposits, especially of antimony, chromite, manganese, quartz, and mica, but deposits of other minerals that offered promise of significant future production were also studied. A brief appraisal of the base-metal deposits was made, and deposits of iron ore in Honduras and of lead and zinc ores in Guatemala were mapped. In addition, studies were made of the regional geology of some areas, data were collected from many sources, and a new map of the geology of Central America was compiled.

  8. Study on mechanisms of different sulfuric acid leaching technologies of chromite

    NASA Astrophysics Data System (ADS)

    Shi, Pei-yang; Liu, Cheng-jun; Zhao, Qing; Shi, Hao-nan

    2017-09-01

    The extraction of chromate from chromite via the sulfuric acid leaching process has strong potential for practical use because it is a simple and environmentally friendly process. This paper aims to study the sulfuric acid leaching process using chromite as a raw material via either microwave irradiation or in the presence of an oxidizing agent. The results show that the main phases in Pakistan chromite are ferrichromspinel, chrompicotite, hortonolite, and silicate embedded around the spinel phases. Compared with the process with an oxidizing agent, the process involving microwaves has a higher leaching efficiency. When the mass fraction of sulfuric acid was 80% and the leaching time was 20 min, the efficiency could exceed 85%. In addition, the mechanisms of these two technologies fundamentally differ. When the leaching was processed in the presence of an oxidizing agent, the silicate was leached first and then expanded. By contrast, in the case of leaching under microwave irradiation, the chromite was dissolved layer by layer and numerous cracks appeared at the particle surface because of thermal shock. In addition, the silicate phase shrunk instead of expanding.

  9. Distribution and PGE mineralization in the formation of chromitite in ophiolite complexes (Ospina-Kitoi Kharanur and ultrabasic massifs of Eastern Sayan, Sousern Siberia)

    NASA Astrophysics Data System (ADS)

    Kiseleva, Olga; Zhmodik, Sergei

    2015-04-01

    New study of PGE in restitic ultrabasic (Kharanur and Ospin-Kitoi) massifs from North and South branches (Dobretsov et al., 1985) of the ophiolite complexes in south-eastern part of the Eastern Sayan show their presence in chromitites of both branches belonging to the different geodynamic settings. Modern concepts model includes several mechanisms of podiform chromitite origin reflected in the chemistry of Cr-spinels (Arai, Yurimoto, 1994; Ballhaus, 1998; Uysal et al., 2009 et al.): 1) partial melting of upper mantle rocks, 2) mixing of primitive melts with melts enriched in SiO2, 3) melt-rock interaction. We estimated the types of interaction of mafic melts with mantle peridotites, with the formation of chromite bodies. For ore chrome spinelides from northern branch (Al2O3) melt = 8 - 14 wt%, (TiO2) melt = 0 - 0,4 wt%, (Fe/Mg) melt = 0,5 - 2,4; Southern branch (Al2O3) melt = 10 - 13 wt%, (TiO2) melt = 0,1 wt%, (Fe/Mg) melt = 0,3 - 1 (Kiseleva, 2014). There are two types of PGE distribution Os-Ir-Ru (I) and Pt-Pd (II). Type I chromitites (mid-Al#Cr-spinels) revealed only Os-Ir-Ru distributions; type II (low-Al#Cr spinelides) show both Os-Ir-Ru and (Pt-Pd) distributions (Kiseleva et al., 2012, 2014). PGE distribution in ultramafic peridotites and chromitites reflects PGE fractionation during partial melting (Barnes et al., 1985; Rehkämper et al., 1997). Processes bringing to extreme fractionation of PGE, may be associated with fluid-saturated supra subduction environment where melting degree near 20% and above is sufficient for the release of PGE from the mantle source (Dick, Bullen, 1984; Naldrett, 2010). Enrichment in PPGE together with a high content of IPGE in same chromite bodies is attributed to the second step of melting, and formation of S-enriched and saturated in PGE melts (Hamlyn, Keays, 1986; Prichard et al., 1996). For type I chromitites platinum group minerals (PGM) are presented by Os-Ir-Ru system. In type II chromitites PGM are represented by Os-Ir-Ru-Rh-Pt system. Solid solutions Os-Ir-Ru and formed in the upper mantle RuS2 conditions together with chromite. The (Os-Ir-Ru)AsS minerals are forming on postmagmatic stage under the influence of S, As-containing fluids Under the influence of mantle reduced fluids the remobilization of PGE during desulfurization and deserpentinization early of "primary" PGM takes place. Changes of the redox environment from reducing to oxidizing condition is followed by creation of PGE together with As, Sb, Sn, and nickel arsenides, ferrichromie, chrommagnetite. The latter association reflects the redistribution of chromite and platinum group metals and formation of new mineral associations within the ultramafic substrate in crustal conditions (Kiseleva, 2014). Kiseleva O.N. Chromitite and PGE mineralization in ophiolites south-eastern part of the East Sayan (Ospina-Kitoi and Kharanur massifs), Thesis of PHD dissertation, Novosibirsk, 2014 IPGG SB RAS, 15p. Kiseleva O.N., Zhmodik SM, Damdinov BB, Agafonov LV, Belyanin D.K. 2014 The composition and evolution of platinum group mineralization in chromite ores Ilchir ophiolite complex (Ospin-Kitoi and Kharanur massifs, Eastern Sayan). Geology and Geophysics 55, 333 - 349.

  10. Platinum-group minerals in the LG and MG chromitites of the eastern Bushveld Complex, South Africa

    NASA Astrophysics Data System (ADS)

    Oberthür, Thomas; Junge, Malte; Rudashevsky, Nikolay; de Meyer, Eveline; Gutter, Paul

    2016-01-01

    The chromitites of the Bushveld Complex in South Africa contain vast resources of platinum-group elements (PGE); however, except for the economic upper group (UG)-2 chromitite seam, information on the distribution of the PGE in the ores and on the mineralogical nature, assemblages, and proportions of platinum-group minerals (PGM) is essentially missing. In the present geochemical and mineralogical study, PGE concentrates originating from the lower group (LG)-6 and middle group (MG)-1/2 chromitites were investigated with the intention to fill this gap of knowledge. Chondrite-normalized PGE patterns of bulk rock and concentrates are characterized by a positive slope from Os to Rh, a slight drop to Pt, and an increase to Pd again. The pronounced similarities of the PGE patterns indicate similar primary processes of PGE concentration in the chromitites, namely "sulfide control" of the PGE mineralization, i.e., co-precipitation of chromite and sulfide. Further, the primary control of PGE concentration in chromitites appears to be dual in character: (i) base-level concentrations of IPGE (up to ˜500 ppb) hosted within chromite and (ii) co-precipitation of chromite and sulfide, the latter containing virtually the entire remaining PGE budget. Sulfides (chalcopyrite, pentlandite, and pyrite; pyrrhotite is largely missing) are scarce within the chromitites and occur mainly interstitial to chromite grains. Pd and Rh contents in pentlandite are low and erratic. Essentially, the whole PGE inventory of the ores occurs in the form of discrete PGM. The PGM are almost always associated with sulfides. The dominant PGM are various Pt-Pd-Rh sulfides (cooperite/braggite [(Pt,Pd)S] and malanite/cuprorhodsite [CuPt2S4]/[CuRh2S4]), laurite [RuS2], the main carrier of the IPGE (Os, Ir, Ru), sulfarsenides [(Rh,Pt,Ir)AsS], sperrylite [PtAs2], Pt-Fe alloys, and a large variety of mainly Pd-rich PGM. The LG and MG chromitites have many characteristics in common and define a general, "typical" PGM spectrum of Bushveld chromitites. This PGM assemblage is characterized by the predominance of PGE-sulfides including elevated proportions of malanite, variable proportions of (sulf) arsenides, and Pt-Fe alloys in conjunction with a paucity of (bismutho)tellurides. The formation of this specific PGM spectrum is related to the distinct chromitite environment and its depositional and post-depositional history, whereby desulfurization reactions have probably played an important role. The LG-6 samples have higher contents of PGE-sulfides, including extraordinary high proportions of malanite but low PGE-arsenide and PGE-sulfarsenide contents compared to the MG-1/2 samples. This indicates a higher availability of arsenic either in the stratigraphically higher MG-1/2 samples (compared to the LG-6) or regionally in the chromitites south of the Steelpoort lineament.

  11. Chromite in komatiites: 3D morphologies with implications for crystallization mechanisms

    NASA Astrophysics Data System (ADS)

    Godel, Bélinda; Barnes, Stephen J.; Gürer, Derya; Austin, Peter; Fiorentini, Marco L.

    2013-01-01

    High-resolution X-ray computed tomography has been carried out on a suite of komatiite samples representing a range of volcanic facies, chromite contents and degrees of alteration and metamorphism, to reveal the wide range of sizes, shapes and degrees of clustering that chromite grains display as a function of cooling history. Dendrites are spectacularly skeletal chromite grains formed during very rapid crystallization of supercooled melt in spinifex zones close to flow tops. At slower cooling rates in the interiors of thick flows, chromite forms predominantly euhedral grains. Large clusters (up to a dozen of grains) are characteristic of liquidus chromite, whereas fine dustings of mostly individual ~20-μm grains form by in situ crystallization from trapped intercumulus liquid. Chromite in coarse-grained olivine cumulates from komatiitic dunite bodies occurs in two forms: as clusters or chains of euhedral crystals, developing into "chicken-wire" texture where chromite is present in supra-cotectic proportions; and as strongly dendritic, semi-poikilitic grains. These dendritic grains are likely to have formed by rapid crescumulate growth from magma that was close to its liquidus temperature but supersaturated with chromite. In some cases, this process seems to have been favoured by nucleation of chromite on the margins of sulphide liquid blebs. This texture is a good evidence for the predominantly cumulus origin of oikocrysts and in situ origin of heteradcumulate textures. Our 3D textural analysis confirms that the morphology of chromite crystals is a distinctive indicator of crystallization environment even in highly altered rocks.

  12. Chromite oxidation by manganese oxides in subseafloor basalts and the presence of putative fossilized microorganisms.

    PubMed

    Ivarsson, Magnus; Broman, Curt; Holm, Nils G

    2011-06-03

    Chromite is a mineral with low solubility and is thus resistant to dissolution. The exception is when manganese oxides are available, since they are the only known naturally occurring oxidants for chromite. In the presence of Mn(IV) oxides, Cr(III) will oxidise to Cr(VI), which is more soluble than Cr(III), and thus easier to be removed. Here we report of chromite phenocrysts that are replaced by rhodochrosite (Mn(II) carbonate) in subseafloor basalts from the Koko Seamount, Pacific Ocean, that were drilled and collected during the Ocean Drilling Program (ODP) Leg 197. The mineral succession chromite-rhodochrosite-saponite in the phenocrysts is interpreted as the result of chromite oxidation by manganese oxides. Putative fossilized microorganisms are abundant in the rhodochrosite and we suggest that the oxidation of chromite has been mediated by microbial activity. It has previously been shown in soils and in laboratory experiments that chromium oxidation is indirectly mediated by microbial formation of manganese oxides. Here we suggest a similar process in subseafloor basalts.

  13. Chromite oxidation by manganese oxides in subseafloor basalts and the presence of putative fossilized microorganisms

    PubMed Central

    2011-01-01

    Chromite is a mineral with low solubility and is thus resistant to dissolution. The exception is when manganese oxides are available, since they are the only known naturally occurring oxidants for chromite. In the presence of Mn(IV) oxides, Cr(III) will oxidise to Cr(VI), which is more soluble than Cr(III), and thus easier to be removed. Here we report of chromite phenocrysts that are replaced by rhodochrosite (Mn(II) carbonate) in subseafloor basalts from the Koko Seamount, Pacific Ocean, that were drilled and collected during the Ocean Drilling Program (ODP) Leg 197. The mineral succession chromite-rhodochrosite-saponite in the phenocrysts is interpreted as the result of chromite oxidation by manganese oxides. Putative fossilized microorganisms are abundant in the rhodochrosite and we suggest that the oxidation of chromite has been mediated by microbial activity. It has previously been shown in soils and in laboratory experiments that chromium oxidation is indirectly mediated by microbial formation of manganese oxides. Here we suggest a similar process in subseafloor basalts. PMID:21639896

  14. Petrology of chromite in ureilites: Deconvolution of primary oxidation states and secondary reduction processes

    NASA Astrophysics Data System (ADS)

    Goodrich, Cyrena Anne; Harlow, George E.; Van Orman, James A.; Sutton, Stephen R.; Jercinovic, Michael J.; Mikouchi, Takashi

    2014-06-01

    Ureilites are ultramafic achondrites thought to be residues of partial melting on a carbon-rich asteroid. They show a trend of FeO-variation (olivine Fo from ∼74 to 95) that suggests variation in oxidation state. Whether this variation was established during high-temperature igneous processing on the ureilite parent body (UPB), or preserved from nebular precursors, is a subject of debate. The behavior of chromium in ureilites offers a way to assess redox conditions during their formation and address this issue, independent of Fo. We conducted a petrographic and mineral compositional study of occurrences of chromite (Cr-rich spinel) in ureilites, aimed at determining the origin of the chromite in each occurrence and using primary occurrences to constrain models of ureilite petrogenesis. Chromite was studied in LEW 88774 (Fo 74.2), NWA 766 (Fo 76.7), NWA 3109 (Fo 76.3), HaH 064 (Fo 77.5), LAP 03587 (Fo 74.9), CMS 04048 (Fo 76.4), LAP 02382 (Fo 78.6) and EET 96328 (Fo 85.2). Chromite occurs in LEW 88774 (∼5 vol.%), NWA 766 (<1 vol.%), NWA 3109 (<1 vol.%) and HaH 064 (<1 vol.%) as subhedral to anhedral grains comparable in size (∼30 μm to 1 mm) and/or textural setting to the major silicates (olivine and pyroxenes[s]) in each rock, indicating that it is a primary phase. The most FeO-rich chromites in these sample (rare grain cores or chadocrysts in silicates) are the most primitive compositions preserved (fe# = 0.55-0.6; Cr# varying from 0.65 to 0.72 among samples). They record olivine-chromite equilibration temperatures of ∼1040-1050 °C, reflecting subsolidus Fe/Mg reequilibration during slow cooling from ∼1200 to 1300 °C. All other chromite in these samples is reduced. Three types of zones are observed. (1) Inclusion-free interior zones showing reduction of FeO (fe# ∼0.4 → 0.28); (2) Outer zones showing further reduction of FeO (fe# ∼0.28 → 0.15) and containing abundant laths of eskolaite-corundum (Cr2O3-Al2O3); (3) Outermost zones showing extreme reduction of both FeO (fe# <0.15) and Cr2O3 (Cr# as low as 0.2). The grains are surrounded by rims of Si-Al-rich glass, graphite, Fe, Cr-carbides ([Fe,Cr]3C and [Fe,Cr]7C3), Cr-rich sulfides (daubréelite and brezinaite) and Cr-rich symplectic bands on adjacent silicates. Chromite is inferred to have been reduced by graphite, forming eskolaite-corundum and carbides as byproducts, during impact excavation. This event involved initial elevation of T (to 1300-1400 °C), followed by rapid decompression and drop in T (to <700 °C) at 1-20 °C/h. The kinetics of reduction of chromite is consistent with this scenario. The reduction was facilitated by silicate melt surrounding the chromites, which was partly generated by shock-melting of pyroxenes. Symplectic bands, consisting of fine-scale intergrowths of Ca-pyroxene, chromite and glass, formed by reaction between the Cr-enriched melt and adjacent silicates. Early chromite also occurs in a melt inclusion in olivine in HaH 064 and in a metallic spherule in olivine in LAP 02382. LAP 03587 and CMS 04048 contain ⩽μm-sized chromite + pyroxene symplectic exsolutions in olivine, indicating high Cr valence in the primary olivine. EET 96328 contains a round grain of chromite that could be a late-crystallizing phase. Tiny chromite grains in melt inclusions in EET 96328 formed in late, closed-system reactions. For 7 of the 8 ureilites we conclude that the relatively oxidizing conditions evidenced by the presence of primary or early chromite pertain to the period of high-T igneous processing. The observation that such conditions are recorded almost exclusively in low-Fo samples supports the interpretation that the ureilite FeO-variation was established during igneous processing on the UPB.

  15. Chromium speciation and fractionation in ground and surface waters in the vicinity of chromite ore processing residue disposal sites.

    PubMed

    Farmer, John G; Thomas, Rhodri P; Graham, Margaret C; Geelhoed, Jeanine S; Lumsdon, David G; Paterson, Edward

    2002-04-01

    Chromium concentrations of up to 91 mg l(-1) were found by ICP-OES for ground water from nine boreholes at four landfill sites in an area of S.E. Glasgow/S. Lanarkshire where high-lime chromite ore processing residue (COPR) from a local chemical works had been deposited from 1830 to 1968. Surface water concentrations of up to 6.7 mg l(-1) in a local tributary stream fell to 0.11 mg l(-1) in the River Clyde. Two independent techniques of complexation/colorimetry and speciated isotope dilution mass spectrometry (SIDMS) showed that Cr was predominantly (>90%) in hexavalent form (CrVI) as CrO4(2-), as anticipated at the high pH (7.5-12.5) of the sites. Some differences between the implied and directly determined concentrations of dissolved CrIII, however, appeared related to the total organic carbon (TOC) content. This was most significant for the ground water from one borehole that had the highest TOC concentration of 300 mg l(-1) and at which < 3% of Cr was in the form of CrVI. Subsequent ultrafiltration produced significant decreases in Cr concentration with decreasing size fractions, e.g. <0.45 microm, < 100 kDa, <30 kDa and < 1 kDa by the tangential-flow method. As this appeared related more to concentrations of humic substances than of TOC per se, horizontal bed gel electrophoresis of freeze-dried ultrafilter retentates was carried out to further characterise the CrIII-organic complex. This showed for the main Cr-containing fraction, 100 kDa-0.45 microm, that the Cr was associated with a dark brown band characteristic of organic (humic) matter. Comparison of gel electrophoresis and FTIR results for ultrafilter retentates of ground water from this borehole with those for a borehole at another site where CrVI predominated suggested the influence of carboxylate groups, both in reducing CrVI and in forming soluble CrIII-humic complexes. The implications of this for remediation strategies (especially those based on the addition of organic matter) designed to reduce highly mobile and carcinogenic Cr(VI)O4(2-) to the much less harmful CrIII as insoluble Cr(OH)3 are discussed.

  16. Chromium and disease: review of epidemiologic studies with particular reference to etiologic information provided by measures of exposure.

    PubMed Central

    Lees, P S

    1991-01-01

    Dozens of epidemiologic studies have been conducted since the late 1940s in an attempt to elucidate the relationship between exposure to chromium compounds and increased rates of certain cancers observed in several industries. The relationship between employment in industries producing chromium compounds from chromite ore and lung cancer has been well established in numerous studies. The relationship between exposure to certain chromium-based pigments and chromic acid and lung cancer, although not as strong, is fairly well accepted. The data concerning emissions from stainless-steel manufacturing and disease are contradictory. Although individual studies have indicated excesses of gastrointestinal and occasionally other cancers in these industries, results are not consistent and not universally accepted. There is general agreement that chromite ore does not have an associated risk of cancer. Although the chromium compound (or compounds) responsible for disease have yet to be identified, there is general agreement that hexavalent species are responsible for these diseases and that the trivalent species are not. Hypotheses about the carcinogenicity of specific chromium compounds generally relate to their solubility in body fluids. These hypotheses, however, have generally been produced as a result of toxicologic, not epidemiologic, investigation. Well-designed epidemiologic studies incorporating detailed assessments of worker exposures have the potential to help elucidate causality, identify specific carcinogenic compounds, and quantify risk in humans, eliminating the need to extrapolate from animal data. Although the need for exposure data crucial to this effort was identified in the earliest epidemiologic studies of chromium, such studies have not been conducted. As a result, little more is known today about the relationship between this chemical and disease in humans than was known 40 years ago. PMID:1935857

  17. Compositional variations in the Mesoarchean chromites of the Nuggihalli schist belt, Western Dharwar Craton (India): potential parental melts and implications for tectonic setting

    NASA Astrophysics Data System (ADS)

    Mukherjee, Ria; Mondal, Sisir K.; Rosing, Minik T.; Frei, Robert

    2010-12-01

    The chromite deposits in the Archean Nuggihalli schist belt are part of a layered ultramafic-mafic sequence within the Western Dharwar Craton of the Indian shield. The 3.1-Ga ultramafic-mafic units occur as sill-like intrusions within the volcano-sedimentary sequences of the Nuggihalli greenstone belt that are surrounded by the tonalite-trondhjemite-granodiorite (TTG) suite of rocks. The entire succession is exposed in the Tagdur mining district. The succession has been divided into the lower and the upper ultramafic units, separated by a middle gabbro unit. The ultramafic units comprise of deformed massive chromitite bodies that are hosted within chromite-bearing serpentinites. The chromitite bodies occur in the form of pods and elongated lenses (~60-500 m by ~15 m). Detailed electron microprobe studies reveal intense compositional variability of the chromite grains in silicate-rich chromitite (~50% modal chromite) and serpentinite (~2% modal chromite) throughout the entire ultramafic sequence. However, the primary composition of chromite is preserved in the massive chromitites (~60-75% modal chromite) from the Byrapur and the Bhaktarhalli mining district of the Nuggihalli schist belt. These are characterized by high Cr-ratios (Cr/(Cr + Al) = 0.78-0.86) and moderate Mg-ratios (Mg/(Mg + Fe2+) = 0.38-0.58). The compositional variability occurs due to sub-solidus re-equilibration in the accessory chromite in the serpentinite (Mg-ratio = 0.01-0.38; Cr-ratio = 0.02-0.99) and in silicate-rich chromitite (Mg-ratio = 0.06-0.48; Cr-ratio = 0.60-0.99). In the massive chromitites, the sub-solidus re-equilibration for chromite is less or absent. However, the re-equilibration is prominent in the co-existing interstitial and included olivine (Fo96-98) and pyroxene grains (Mg-numbers = 97-99). Compositional variability on the scale of a single chromite grain occurs in the form of zoning, and it is common in the accessory chromite grains in serpentinite and in the altered grains in chromitite. In the zoned grains, the composition of the core is modified and the rim is ferritchromit. In general, ferritchromit occurs as irregular patches along the grain boundaries and fractures of the zoned grains. In this case, ferritchromit formation is not very extensive. This indicates a secondary low temperature hydrothermal origin of ferritchromit during serpentinization. In some occurrences, the ferritchromit rim is very well developed, and only a small relict core appears to remain in the chromite grain. However, complete alteration of the chromite grains to ferritchromit without any remnant core is also present. The regular, well-developed and continuous occurrence of ferritchromit rims around the chromite grain boundaries, the complete alteration of the chromite grains and the modification of the core composition indicate the alteration in the Nuggihalli schist belt to be intense, pervasive and affected by later low-grade metamorphism. The primary composition of chromite has been used to compute the nature of the parental melt. The parental melt calculations indicate derivation from a high-Mg komatiitic basalt that is similar to the composition of the komatiitic rocks reported from the greenstone sequences of the Western Dharwar Craton. Tectonic discrimination diagrams using the primary composition of chromites indicate a supra-subduction zone setting (SSZ) for the Archean chromitites of Nuggihalli and derivation from a boninitic magma. The composition of the komatiitic basalts resembles those of boninites that occur in subduction zones and back-arc rift settings. Formation of the massive chromitites in Nuggihalli may be due to magma mixing process involving hydrous high-Mg magmas or may be related to intrusions of chromite crystal laden magma; however, there is little scope to test these models because the host rocks are highly altered, serpentinized and deformed. The present configurations of the chromitite bodies are related to the multistage deformation processes that are common in Archean greenstone belts.

  18. Platinum-bearing chromite layers are caused by pressure reduction during magma ascent.

    PubMed

    Latypov, Rais; Costin, Gelu; Chistyakova, Sofya; Hunt, Emma J; Mukherjee, Ria; Naldrett, Tony

    2018-01-31

    Platinum-bearing chromitites in mafic-ultramafic intrusions such as the Bushveld Complex are key repositories of strategically important metals for human society. Basaltic melts saturated in chromite alone are crucial to their generation, but the origin of such melts is controversial. One concept holds that they are produced by processes operating within the magma chamber, whereas another argues that melts entering the chamber were already saturated in chromite. Here we address the problem by examining the pressure-related changes in the topology of a Mg 2 SiO 4 -CaAl 2 Si 2 O 8 -SiO 2 -MgCr 2 O 4 quaternary system and by thermodynamic modelling of crystallisation sequences of basaltic melts at 1-10 kbar pressures. We show that basaltic melts located adjacent to a so-called chromite topological trough in deep-seated reservoirs become saturated in chromite alone upon their ascent towards the Earth's surface and subsequent cooling in shallow-level chambers. Large volumes of these chromite-only-saturated melts replenishing these chambers are responsible for monomineralic layers of massive chromitites with associated platinum-group elements.

  19. Biogenic nano-magnetite and nano-zero valent iron treatment of alkaline Cr(VI) leachate and chromite ore processing residue

    PubMed Central

    Watts, Mathew P.; Coker, Victoria S.; Parry, Stephen A.; Pattrick, Richard A.D.; Thomas, Russell A.P.; Kalin, Robert; Lloyd, Jonathan R.

    2015-01-01

    Highly reactive nano-scale biogenic magnetite (BnM), synthesized by the Fe(III)-reducing bacterium Geobacter sulfurreducens, was tested for the potential to remediate alkaline Cr(VI) contaminated waters associated with chromite ore processing residue (COPR). The performance of this biomaterial, targeting aqueous Cr(VI) removal, was compared to a synthetic alternative, nano-scale zero valent iron (nZVI). Samples of highly contaminated alkaline groundwater and COPR solid waste were obtained from a contaminated site in Glasgow, UK. During batch reactivity tests, Cr(VI) removal from groundwater was inhibited by ∼25% (BnM) and ∼50% (nZVI) when compared to the treatment of less chemically complex model pH 12 Cr(VI) solutions. In both the model Cr(VI) solutions and contaminated groundwater experiments the surface of the nanoparticles became passivated, preventing complete coupling of their available electrons to Cr(VI) reduction. To investigate this process, the surfaces of the reacted samples were analyzed by TEM-EDX, XAS and XPS, confirming Cr(VI) reduction to the less soluble Cr(III) on the nanoparticle surface. In groundwater reacted samples the presence of Ca, Si and S was also noted on the surface of the nanoparticles, and is likely responsible for earlier onset of passivation. Treatment of the solid COPR material in contact with water, by addition of increasing weight % of the nanoparticles, resulted in a decrease in aqueous Cr(VI) concentrations to below detection limits, via the addition of ⩾5% w/w BnM or ⩾1% w/w nZVI. XANES analysis of the Cr K edge, showed that the % Cr(VI) in the COPR dropped from 26% to a minimum of 4–7% by the addition of 5% w/w BnM or 2% w/w nZVI, with higher additions unable to reduce the remaining Cr(VI). The treated materials exhibited minimal re-mobilization of soluble Cr(VI) by re-equilibration with atmospheric oxygen, with the bulk of the Cr remaining in the solid fraction. Both nanoparticles exhibited a considerable capacity for the remediation of COPR related Cr(VI) contamination, with the synthetic nZVI demonstrating greater reactivity than the BnM. However, the biosynthesized BnM was also capable of significant Cr(VI) reduction and demonstrated a greater efficiency for the coupling of its electrons towards Cr(VI) reduction than the nZVI. PMID:26109747

  20. Biogenic nano-magnetite and nano-zero valent iron treatment of alkaline Cr(VI) leachate and chromite ore processing residue

    DOE PAGES

    Watts, Mathew P.; Coker, Victoria S.; Parry, Stephen A.; ...

    2014-12-11

    Highly reactive nano-scale biogenic magnetite (BnM), synthesized by the Fe(III)-reducing bacterium Geobacter sulfurreducens, was tested for the potential to remediate alkaline Cr(VI) contaminated waters associated with chromite ore processing residue (COPR). The performance of this biomaterial, targeting aqueous Cr(VI) removal, was compared to a synthetic alternative, nano-scale zero valent iron (nZVI). Samples of highly contaminated alkaline groundwater and COPR solid waste were obtained from a contaminated site in Glasgow, UK. During batch reactivity tests, Cr(VI) removal from groundwater was inhibited by ~25% (BnM) and ~50% (nZVI) when compared to the treatment of less chemically complex model pH 12 Cr(VI) solutions.more » In both the model Cr(VI) solutions and contaminated groundwater experiments the surface of the nanoparticles became passivated, preventing complete coupling of their available electrons to Cr(VI) reduction. To investigate this process, the surfaces of the reacted samples were analyzed by TEM-EDX, XAS and XPS, confirming Cr(VI) reduction to the less soluble Cr(III) on the nanoparticle surface. In groundwater reacted samples the presence of Ca, Si and S was also noted on the surface of the nanoparticles, and is likely responsible for earlier onset of passivation. Treatment of the solid COPR material in contact with water, by addition of increasing weight % of the nanoparticles, resulted in a decrease in aqueous Cr(VI) concentrations to below detection limits, via the addition of ≥5% w/w BnM or ≥1% w/w nZVI. XANES analysis of the Cr K edge, showed that the % Cr(VI) in the COPR dropped from 26% to a minimum of 4–7% by the addition of 5% w/w BnM or 2% w/w nZVI, with higher additions unable to reduce the remaining Cr(VI). The treated materials exhibited minimal re-mobilization of soluble Cr(VI) by re-equilibration with atmospheric oxygen, with the bulk of the Cr remaining in the solid fraction. Both nanoparticles exhibited a considerable capacity for the remediation of COPR related Cr(VI) contamination, with the synthetic nZVI demonstrating greater reactivity than the BnM. Furthermore, the biosynthesized BnM was also capable of significant Cr(VI) reduction and demonstrated a greater efficiency for the coupling of its electrons towards Cr(VI) reduction than the nZVI.« less

  1. Regularities of spatial association of major endogenous uranium deposits and kimberlitic dykes in the uranium ore regions of the Ukrainian Shield

    NASA Astrophysics Data System (ADS)

    Kalashnyk, Anna

    2015-04-01

    During exploration works we discovered the spatial association and proximity time formation of kimberlite dykes (ages are 1,815 and 1,900 Ga for phlogopite) and major industrial uranium deposits in carbonate-sodium metasomatites (age of the main uranium ore of an albititic formation is 1,85-1,70 Ga according to U-Pb method) in Kirovogradsky, Krivorozhsky and Alekseevsko-Lysogorskiy uranium ore regions of the Ukrainian Shield (UkrSh) [1]. In kimberlites of Kirovogradsky ore region uranium content reaches 18-20 g/t. Carbon dioxide is a major component in the formation of hydrothermal uranium deposits and the formation of the sodium in the process of generating the spectrum of alkaline ultrabasic magmas in the range from picritic to kimberlite and this is the connection between these disparate geochemical processes. For industrial uranium deposits in carbonate-sodium metasomatitics of the Kirovogradsky and Krivorozhsky uranium ore regions are characteristic of uranyl carbonate introduction of uranium, which causes correlation between CO2 content and U in range of "poor - ordinary - rich" uranium ore. In productive areas of uranium-ore fields of the Kirovogradsky ore region for phlogopite-carbonate veinlets of uranium ore albitites deep δ13C values (from -7.9 to -6.9o/oo) are characteristic. Isotope-geochemical investigation of albitites from Novokonstantynovskoe, Dokuchaevskoe, Partyzanskoe uranium deposits allowed obtaining direct evidence of the involvement of mantle material during formation of uranium albitites in Kirovogradsky ore region [2]. Petrological characteristics of kimberlites from uranium ore regions of the UkrSh (presence of nodules of dunite and harzburgite garnet in kimberlites, diamonds of peridotite paragenesis, chemical composition of indicator minerals of kimberlite, in particular Gruzskoy areas pyropes (Cr2O3 = 6,1-7,1%, MgO = 19,33-20,01%, CaO = 4,14-4,38 %, the content of knorringite component of most grains > 50mol%), chromites (Cr2O3 = 45,32-62,17%, MgO = 7,3-12,5%) allow us to estimate the depth of generation of kimberlite magmas more than 170-200 km. Ilmenites show two groups according to MgO, Cr2O3 and TiO2 content. Reconstructions of the mantle sections show also two intervals of pressures divided at 4.5 GPa, the upper part is highly metasomatized This high degree metasomatism is determined for almost all mantle columns. It is suggested that large-scale of uranium-bearing mantle fluids may be associated with the ancient degasation during the subduction which is highly enriched in U component . Analysis of the reasons for the marked association kimberlitic dykes and major industrial uranium deposits in carbonate-sodium metasomatic in the UkrSh led to the conclusion that hydrothermal uranium deposits are confined to the supply mantle fluid systems of mantle fault zones exercising brings sodium carbonate solutions enriched uranium from mantle sources. References: 1. Kalashnik A.A. New prognostic-evaluation criteria in technology prognosis of forming industrial endogenous uranium deposits of the Ukrainian Shield, 2014. Scientific proceedings of UkrSGRI, № 2, p. 27-54 (in Russian) 2. Stepanjuk L.M., Bondarenko S.V., Somka V.O. and other, 2012. Source of uranium and uranium-bearing sodium albitites for example of Dokuchaievskogo field of the Ingulsky megablock of the UkrSh: Abstracts of scientific conference "Theoretical issues and research practice metasomatic rocks and ores" (Kyiv, 14-16 March 2012), IGMOF, p.78-80. (in Ukrainian)

  2. Electron-microprobe study of chromitites associated with alpine ultramafic complexes and some genetic implications

    USGS Publications Warehouse

    Bird, M.L.

    1978-01-01

    Electron-microprobe and petrographic studies of alpine chromite deposits from around the world demonstrate that they are bimodal with respect to the chromic oxide content of their chromite. The two modes occur at 54 ? 4 and 37 ? 3 weight per cent chromic oxide corresponding to chromite designated as high-chromium and high-aluminum chromite respectively. The high-chromium chromite occurs exclusively with highly magnesian olivine (Fo92-97) and some interstitial diopside. The high-aluminum chromite is associated with more ferrous olivine (Fo88-92), diopside, enstatite, and feldspar. The plot of the mole ratios Cr/(Cr+Al+Fe3+) vs. Mg/(Mg+Fe2+) usually presented for alpine chromite is shown to have a high-chromium, high-iron to low-chromium, low-iron trend contrary to that shown by stratiform chromite. This trend is characteristic of alpine type chromite and is termed the alpine trend. However, a trend similar to that for startiform chromite is discernable on the graph for the high-chromium chromite data. This latter trend is well-developed at Red Mountain, Seldovia, Alaska. Analysis of the iron-magnesium distribution coefficient, Kd=(Fe/Mg)ol/(Fe/Mg)ch, between olivine and chromite shows that Kd for the high-chromium chromite from all ultramafic complexes has essentially the same constant value of .05 while the distribution coefficient for the high-aluminum chromite varies with composition of the chromite. These distribution coefficients are also characteristic of alpine-type chromites. The constant value for Kd for the high-chromium chromite and associated high-magnesium olivine in all alpine complexes suggests that they all crystallized under similar physico-chemical conditions. The two types of massive chromite and their associations of silicate minerals suggest the possibility of two populations with different origins. Recrystallization textures associated with the high-aluminum chromite together with field relationships between the gabbro and the chromite pods, suggest that the high-aluminum chromite was formed by metamorphic recrystallization of the ultramafic rocks and adjacent gabbro.

  3. Crystal-Chemical Correlations in Chromites from Kimberlitic and Non-Kimberlitic Sources.

    NASA Astrophysics Data System (ADS)

    Freckelton, C. N.; Flemming, R. L.

    2009-05-01

    This study explores the utility of micro X-ray diffraction (μXRD) as a tool for diamond exploration, as a compliment to current industry-standard techniques such as electron probe microanalysis (EPMA). Here we examine chromite. As one of the first phases to crystallize in mantle rocks, it is a useful indicator of upper mantle magmatic conditions in rocks that have been sampled by kimberlites. In addition, chromite does not alter easily from chemical and physical weathering processes. As such, chromite is a useful kimberlite indicator mineral in diamond exploration. We present correlations between crystal structure (unit cell) and chemical composition of chromite, (Fe,Mg)[Cr, Al]2O4, using correlated μXRD and EPMA data for 133 chromites from a three source locations: Two kimberlite sources and one non-kimberlitic source from an Archean granite/greenstone terrain. Quantitative analysis was performed using Electron Probe Microanalysis (EPMA) at Mineral Services, South Africa, prior to the loan of the samples. Randomly-oriented chromite grains, approximately 500 μm in diameter, were analyzed as previously mounted for EPMA. Micro X-ray-diffraction was performed using a Bruker D8-Discover Diffractometer, with θ-θ geometry, with CuKα radiation, operating at 40 kV and 40 mA, with nominal beam diameter of 500 μm. The data were collected in omega scan mode. Two dimensional General Area Detector Diffraction System (GADDS) images were collected for 20 minutes per image, and integrated to produce one-dimensional plots of intensity versus 2θ, for subsequent unit cell refinement using CELREF. Although all samples in this study were considered to be 'chromite', a plot of Cr/(Cr+Al) versus Fe2+/(Fe2++Mg) shows extensive substitution among four dominant members: chromite (FeCr2O4), magnesio-chromite (MgCr2O4), spinel (MgAl2O4), and hercynite (FeAl2O4), where Mg and Fe2+ substitute for one another on the tetrahedral site, and Cr and Al substitute for one another on the octahedral site. Our data are widely variable as compared to the field occupied by chromite inclusions in diamonds (high Cr and Mg (˜60 wt %) and very low Ti (˜0.40 wt %). Plots of the unit cell parameter, ao, versus composition demonstrate a decrease in unit cell size with increasing Al content (and corresponding decrease in Cr content), consistent with a smaller cation radius for Al versus Cr (Al=0.675 Å and Cr=0.905 Å). The trend in unit cell size is unlikely to be effected by Mg-Fe substitution because of the very small difference in their tetrahedral cation radii (Fe2+=0.835 Å and Mg=0.86 Å). Initial plots of composition versus unit cell parameter were clearly able to distinguish a difference between unit cell of kimberlitic chromites and non-kimberlitic chromites. The significantly higher Cr content in kimberlitic chromites (radius=0.905 Å), and correspondingly higher Al content in non-kimberlitic chromites (radius=0.675 Å), results in a striking bimodal distribution in unit cell parameter, ao, where kimberlitic chromites have a larger unit cell (> 8.3 Å) than non-kimberlitic chromites (< 8.3 Å). This preliminary data provides a useful starting point for screening minerals from naturally relevant chromite solid solutions using their corresponding unit cell parameters. Future work will examine which site substitutions (octahedral versus tetrahedral) are affecting the unit cell as well as the effect of cation order-disorder on unit cell parameters.

  4. The origin of chromitic chondrules and the volatility of Cr under a range of nebular conditions

    NASA Technical Reports Server (NTRS)

    Krot, Alexander; Ivanova, Marina A.; Wasson, John T.

    1993-01-01

    We characterize ten chromatic chondrules, two spinelian chondrules andd one spinel-bearing chondrule and summarize data for 120 chromitic inclusions discovered in an extensive survey of ordinary chondrites. Compositional and petrographic evidence suggests that chromitic chondrules and inclusions are closely related. The Cr/(Cr + Al) ratios in the spinal of these objects range from 0.5 to 0.9 and bulk Al2O3 contents are uniformly high (greater than 10 wt%, except for one with 8 wt%). No other elements having comparable solar abundances are so stongly enriched, and alkali feldspar and merrillite are more common than in normal chondrules. The Cr/Mg ratios in chromitic chondrules are 180-750 times the ratios in the bulk chondrite. With the possible exception of magnetic clumping of chromite in the presolar cloud, mechanical processes cannot account for this enrichment. Examination of nebular equilibrium processes shows that 50%-condensation temperatures of Cr at pH2/pH2O of 1500 are several tens of degrees below those of Mg as Mg2SiO4; the condensation of Cr is primarily as MgCr2O4 dissolved in MgAl2O4 at nebular pressures of 10(exp -4) atm or below. At pH2 = 10(exp -3) atm condesation as Cr in Fe-Ni is favored. Making the nebula much more oxidizing reduces the difference in condensation temperatures but Mg remains more refractory. We conclude that nebular equilibrium processes are not responsible for the enhanced Cr/Mg ratios. We propose that both Cr and Al became enriched in residues formed by incomplete evaporation of presolar lumps. We suggest that spinals remained as solid phases when the bulk of the silicates were incorporated into the evaporating melt; vaporization of Al and Cr were inhibited by the slow kinetics of diffusion. Subsequent melting and crystallization of these residues fractionated Cr from Al. The resulting materials constituted major components in the precursors of chromitic chondrules. Our model implies that chromitic chondrules and inclusions preserve the Cr isotopic record of presolar sources.

  5. Occurrence and mineral chemistry of chromite and related silicates from the Hongshishan mafic-ultramafic complex, NW China with petrogenetic implications

    NASA Astrophysics Data System (ADS)

    Ruan, Banxiao; Yu, Yingmin; Lv, Xinbiao; Feng, Jing; Wei, Wei; Wu, Chunming; Wang, Heng

    2017-10-01

    The Hongshishan mafic-ultramafic complex is located in the western Beishan Terrane, NW China, and hosts an economic Ni-Cu deposit. Chromite as accessory mineral from the complex is divided into three types based on its occurrence and morphology. Quantitative electron probe microanalysis (EPMA) have been conducted on the different types of chromites. Type 1 chromite occurs as inclusions within silicate minerals and has relatively homogeneous composition. Type 2 chromite occurs among serpentine, as interstitial phase. Type 3 chromite is zoned and exhibits a sudden change in compositions from core to rim. Type 1 chromite occurs in olivine gabbro and troctolite showing homogeneous composition. This chromite is more likely primary. Interstitial type 2 and zoned type 3 chromite has compositional variation from core to rim and is more likely modified. Abundant inclusions of orthopyroxene, phlogopite and hornblende occur within type 2 and type 3 chromites. The parental melt of type 1 chromite has an estimated composition of 14.5 wt% MgO, 12.3 wt% Al2O3 and 1.9 wt% TiO2 and is characterized by high temperature, picritic affinity, hydrous nature and high Mg and Ti contents. Compositions of chromite and clinopyroxene are distinct from those of Alaskan-type complexes and imply that the subduction-related environment is not reasonable. Post orogenic extension and the early Permian mantle plume are responsible for the emplacement of mafic-ultramafic complexes in the Beishan Terrane. The cores of zoned chromites are classified as ferrous chromite and the rims as ferrian chromite. The formation of ferrian rim involves reaction of ferrous chromite, forsterite and magnetite to produce ferrian chromite and chlorite, or alternaively, the rim can be simply envisioned as the result of external addition of magnetite in solution to the already formed ferrous chromite.

  6. The Effect of Carbonaceous Reductant Selection on Chromite Pre-reduction

    NASA Astrophysics Data System (ADS)

    Kleynhans, E. L. J.; Beukes, J. P.; Van Zyl, P. G.; Bunt, J. R.; Nkosi, N. S. B.; Venter, M.

    2017-04-01

    Ferrochrome (FeCr) production is an energy-intensive process. Currently, the pelletized chromite pre-reduction process, also referred to as solid-state reduction of chromite, is most likely the FeCr production process with the lowest specific electricity consumption, i.e., MWh/t FeCr produced. In this study, the effects of carbonaceous reductant selection on chromite pre-reduction and cured pellet strength were investigated. Multiple linear regression analysis was employed to evaluate the effect of reductant characteristics on the aforementioned two parameters. This yielded mathematical solutions that can be used by FeCr producers to select reductants more optimally in future. Additionally, the results indicated that hydrogen (H)- (24 pct) and volatile content (45.8 pct) were the most significant contributors for predicting variance in pre-reduction and compressive strength, respectively. The role of H within this context is postulated to be linked to the ability of a reductant to release H that can induce reduction. Therefore, contrary to the current operational selection criteria, the authors believe that thermally untreated reductants ( e.g., anthracite, as opposed to coke or char), with volatile contents close to the currently applied specification (to ensure pellet strength), would be optimal, since it would maximize H content that would enhance pre-reduction.

  7. Compaction of Chromite Cumulates applying a Centrifuging Piston-Cylinder

    NASA Astrophysics Data System (ADS)

    Manoochehri, S.; Schmidt, M. W.

    2012-12-01

    Stratiform accumulations of chromite cumulates, such as the UG2 chromitite layer in the Bushveld Complex, is a common feature in most of the large layered mafic intrusions. The time scales and mechanics of gravitationally driven crystal settling and compaction and the feasibility of these processes for the formation of such cumulate layers is investigated through a series of high temperature (1280-1300 °C) centrifuge-assisted experiments at 100-2000 g, 0.4-0.6 GPa. A mixture of natural chromite, with defined grain sizes (means of 5 μm, 13 μm, and 52 μm), and a melt with a composition thought to represent the parental magma of the Bushveld Complex, was first chemically and texturally equilibrated at static conditions and then centrifuged. Centrifugation leads to a single cumulate layer formed at the gravitational bottom of the capsule. This layer was analysed for porosity, mean grain size, size distribution and also travelling distance of chromite crystals. The experimentally observed mechanical settling velocity of chromite grains in a suspension with ~ 24 vol% crystals is calculated to be about half (~ 0.53) of the Stokes settling velocity, consistent with a sedimentation exponent n of 2.35±0.3. The settling leads to a porosity of about 52 % in the chromite layer. Formation times of chromite orthocumulates with initial crystal content in the melt of 1 % and grain sizes of 2 mm are thus around 0.6 m/day. To achieve more compacted chromite piles, centrifugation times and acceleration were increased. Within each experiment the crystal content of the cumulate layer increases downward almost linearly at least in the lower 2/3 of the cumulate pile. Although porosity in the lowermost segment of the chromite layer decreases with increasing effective stress integrated over time, the absolute decrease is smaller than for experiments with olivine (from a previous study). Formation times of a ½ meter single chromite layer with 70 vol% chromite, is calculated to be around 20 years whereas this value is around 0.4 years for olivine cumulates. When considering a natural outcrop of a layered intrusion with multiple layers of about 50 meters height, adcumulate formation time decreases to a few months. With increasing the effective stress integrated over time, applied during centrifugation, crystal size distribution histograms move slightly toward larger grain sizes, but looking at mean grain sizes, a narrow range of changes can be observed. Classic crystal size distribution profiles corrected for real 3D sizes (CSDCorrectin program) of the chromite grains in different experiments illustrate a collection of parallel log-linear trends at larger grain sizes with a very slight overturn at small grain sizes. This is in close agreement with the idealized CSD plots of adcumulus growth.

  8. Natural attenuation of Cr(VI) contaminated groundwater at two industrial sites in the eastern U.S.A.: A Cr isotope study

    NASA Astrophysics Data System (ADS)

    Novak, Martin; Hellerich, Lucas A.; Sebek, Ondrej; Andronikov, Alexandre; Chrastny, Vladislav; Curik, Jan; Stepanova, Marketa; Pacherova, Petra; Martinkova, Eva; Prechova, Eva; Veselovsky, Frantisek

    2017-04-01

    Hexavalent chromium [Cr(VI)], found in various compartments of the environment, has generated much interest due to its extreme toxicity and mobility. We studied natural attenuation of Cr(VI)-contaminated groundwater at one site in Connecticut (site A), and one site in New Jersey (site B), U.S.A. Shallow groundwater was contaminated by electroplating solutions at site A, and by water-soluble chromite ore-processing residues at site B. Site A had lower Cr(VI) concentrations of less than 1 mg L-1 in comparison to site B (200 mg L-1). Site A also had lower mean del53Cr values (1.4 per mil) than site B (2.9 per mil). Chromium isotope composition of the pollution sources (plating bath, ore) was known (del53Cr of 0.0 to 0.2 per mil). The positive Cr isotope shift from the pollution source Cr(VI) to groundwater Cr(VI) at both sites indicated that spontaneous Cr(VI) reduction to insoluble Cr(III) is under way. This process is removing toxicity from the groundwater. Del53Cr values of groundwater were strongly positively correlated with the concentration of dissolved organic carbon (DOC), but not with divalent Fe and Mn, indicating that DOC may be the main Cr-reducing agent. A Rayleigh model indicated that 30 and 57 % of the original contaminant may have been removed from the groundwater by natural attenuation at site A and B, respectively. Interestingly, del53Cr values of the residual Cr(VI) in the groundwater at site A decreased significantly over the past 15 years, during which the water is being extracted for chemical treatment. At present, older, less fractionated Cr(VI) may be extracted at site A.

  9. Effect of basicity on beneficiated chromite sand smelting process using submerged arc furnace

    NASA Astrophysics Data System (ADS)

    Nurjaman, F.; Subandrio, S.; Ferdian, D.; Suharno, Bambang

    2018-05-01

    Ferrochrome is an important alloy in stainless steel making due to its contribution to high strength and corrosion resistance. In this present study, ferrochrome was derived from Indonesian chromite sand with low-grade Cr/Fe ratio. In order to improve the ratio, beneficiation process such as pre-magnetic separation and reduction process at 1000°C for 60 minutes was required. The process followed by another magnetic separation, thus the Cr/Fe ratio was increased from 0.9 to 1.6. The reduction process used coconut shell charcoal as reductant and limestone as an additive. The beneficiated sand chromite was briquette using bentonite as a binder in 2 wt.% before it was smelted in a submerged electric arc furnace to produce ferrochrome. Basicity was controlled by the addition of limestone and it was varied from 0.4-1.6. Furthermore, the composition of ferrochrome was analyzed by using X-Ray Fluorescence. From this experiment, the result showed that chromium recovery and specific energy was decreased with the increasing of slag basicity.

  10. Occupational health assessment of chromite toxicity among Indian miners

    PubMed Central

    Das, Alok Prasad; Singh, Shikha

    2011-01-01

    Elevated concentration of hexavalent chromium pollution and contamination has contributed a major health hazard affecting more than 2 lakh mine workers and inhabitants residing in the Sukinda chromite mine of Odisha, India. Despite people suffering from several forms of ill health, physical and mental deformities, constant exposure to toxic wastes and chronic diseases as a result of chromite mining, there is a tragic gap in the availability of 'scientific’ studies and data on the health hazards of mining in India. Occupational Safety and Health Administration, Odisha State Pollution Control Board and the Odisha Voluntary Health Association data were used to compile the possible occupational health hazards, hexavalent chromium exposure and diseases among Sukinda chromite mines workers. Studies were reviewed to determine the routes of exposure and possible mechanism of chromium induced carcinogenicity among the workers. Our studies suggest all forms of hexavalent chromium are regarded as carcinogenic to workers however the most important routes of occupational exposure to Cr (VI) are inhalation and dermal contact. This review article outlines the physical, chemical, biological and psychosocial occupational health hazards of chromite mining and associated metallurgical processes to monitor the mining environment as well as the miners exposed to these toxicants to foster a safe work environment. The authors anticipate that the outcome of this manuscript will have an impact on Indian chromite mining industry that will subsequently bring about improvements in work conditions, develop intervention experiments in occupational health and safety programs. PMID:21808494

  11. Immobilization of chromate in hyperalkaline waste streams by green rusts and zero-valent iron.

    PubMed

    Rogers, Christine M; Burke, Ian T; Ahmed, Imad A M; Shaw, Samuel

    2014-01-01

    Zero-valent iron (ZVI) and green rusts can be used as reductants to convert chromium from soluble, highly toxic Cr(VI) to insoluble Cr(III). This study compared the reduction rates of Cr(VI) by ZVI and two carbonate green rust phases in alkaline/hyperalkaline solutions. Batch experiments were carried out with synthetic chromate solutions at pH 7.7-12.3 and a chromite ore processing residue (COPR) leachate (pH approximately 12.2). Green rust removes chromate from high pH solutions (pH 10-12.5) very rapidly (<400 s). Chromate reduction rates for both green rust phases were consistently higher than for ZVI throughout the pH range studied; the surface area normalized rate constants were two orders of magnitude higher in the COPR leachate solution at pH 12.2. The performances of both green rusts were unaffected by changes in pH. In contrast, ZVI exhibited a marked decline in reduction rate with increasing pH to become almost ineffective above pH12.

  12. Development of a standard reference material for Cr(vi) in contaminated soil

    USGS Publications Warehouse

    Nagourney, S.J.; Wilson, S.A.; Buckley, B.; Kingston, H.M.S.; Yang, S.-Y.; Long, S.E.

    2008-01-01

    Over the last several decades, considerable contamination by hexavalent chromium has resulted from the land disposal of Chromite Ore Processing Residue (COPR). COPR contains a number of hexavalent chromium-bearing compounds that were produced in high temperature industrial processes. Concern over the carcinogenic potential of this chromium species, and its environmental mobility, has resulted in efforts to remediate these waste sites. To provide support to analytical measurements of hexavalent chromium, a candidate National Institute of Standards and Technology (NIST) Standard Reference Material?? (SRM 2701), having a hexavalent chromium content of approximately 500 mg kg -1, has been developed using material collected from a waste site in Hudson County, New Jersey, USA. The collection, processing, preparation and preliminary physico-chemical characterization of the material are discussed. A two-phase multi-laboratory testing study was carried out to provide data on material homogeneity and to assess the stability of the material over the duration of the study. The study was designed to incorporate several United States Environmental Protection Agency (USEPA) determinative methods for hexavalent chromium, including Method 6800 which is based on speciated isotope dilution mass spectrometry (SIDMS), an approach which can account for chromium species inter-conversion during the extraction and measurement sequence. This journal is ?? The Royal Society of Chemistry 2008.

  13. Ruthenium in komatiitic chromite

    NASA Astrophysics Data System (ADS)

    Locmelis, Marek; Pearson, Norman J.; Barnes, Stephen J.; Fiorentini, Marco L.

    2011-07-01

    The distinction between Ru in solid solution and Ru-bearing inclusions is essential for the predictive modeling of platinum-group element (PGE) geochemistry in applications such as the lithogeochemical exploration for magmatic sulfide deposits in komatiites. This study investigates the role of chromite in the fractionation of Ru in ultramafic melts by analyzing chromite grains from sulfide-undersaturated komatiites and a komatiitic basalt from the Yilgarn Craton in Western Australia. In situ analysis using laser ablation ICP-MS yields uniform Ru concentrations in chromites both within-grain and on a sample scale, with concentrations between 220 and 540 ppb. All other platinum-group elements are below the detection limit of the laser ablation ICP-MS analysis. Carius tube digestion isotope dilution ICP-MS analysis of chromite concentrates confirms the accuracy of the in-situ method. Time resolved laser ablation ICP-MS analyses have identified the presence of sub-micron Ir-bearing inclusions in some chromite grains from the komatiitic basalt. However, Ru-bearing inclusions have not been recognized in the analyzed chromites and this combined with the in situ data suggests that Ru exists in solid solution in the crystal lattice of chromite. These results show that chromite can control the fractionation and concentration of Ru in ultramafic systems.

  14. Chromite from the Blue Ridge province of North Carolina.

    USGS Publications Warehouse

    Lipin, B.R.

    1984-01-01

    Chromite is found as ubiquitous accessory grains and occasional segregations within dunite bodies. Results of analysis of chromite textures and chemistry and estimation of equilibration T of olivine-chromite pairs are cited as evidence that the dunites are metamorphic rocks rather than primary mantle peridotites. They are considered to be disrupted fragments of ophiolites that were emplaced before or during the peak of Ordovician metamorphism which was responsible for dehydration of serpentine-bearing rocks and alteration of chromite compositions and textures.-M.S.

  15. Chromium valences in ureilite olivine and implications for ureilite petrogenesis

    NASA Astrophysics Data System (ADS)

    Goodrich, C. A.; Sutton, S. R.; Wirick, S.; Jercinovic, M. J.

    2013-12-01

    Ureilites are a group of ultramafic achondrites commonly thought to be residues of partial melting on a carbon-rich asteroid. They show a large variation in FeO content (olivine Fo values ranging from ∼74 to 95) that cannot be due to igneous fractionation and suggests instead variation in oxidation state. The presence of chromite in only a few of the most ferroan (Fo 75-76) samples appears to support such a model. MicroXANES analyses were used in this study to determine the valence states of Cr (previously unknown) in olivine cores of 11 main group ureilites. The goal of this work was to use a method that is independent of Fo to determine the oxidation conditions under which ureilites formed, in order to evaluate whether the ureilite FeO-variation is correlated with oxidation state, and whether it is nebular or planetary in origin. Two of the analyzed samples, LEW 88774 (Fo 74.2) and NWA 766 (Fo 76.7) contain primary chromite; two others, LAP 03587 (Fo 74.4) and CMS 04048 (Fo 76.2) contain sub-micrometer-sized exsolutions of chromite + Ca-rich pyroxene in olivine; and one, EET 96328 (Fo 85.2) contains an unusual chromite grain of uncertain origin. No chromite has been observed in the remaining six samples (Fo 77.4-92.3). Chromium in olivine in all eleven samples was found to be dominated by the divalent species, with valences ranging from 2.10 ± 0.02 (1σ) to 2.46 ± 0.04. The non-chromite-bearing ureilites have the most reduced Cr, with a weighted mean valence of 2.12 ± 0.01, i.e., Cr2+/Cr3+ = 7.33. All low-Fo chromite-bearing ureilites have more oxidized Cr, with valences ranging from 2.22 ± 0.03 to 2.46 ± 0.04. EET 96328, whose chromite grain we interpret as a late-crystallizing phase, yielded a reduced Cr valence of 2.15 ± 0.07, similar to the non-chromite-bearing samples. Based on the measured Cr valences, magmatic (1200-1300 °C) oxygen fugacities (fO2) of the non-chromite-bearing samples were estimated to be in the range IW-1.9 to IW-2.8 (assuming basaltic melt composition), consistent with fO2 values obtained by assuming olivine-silica-iron metal (OSI) equilibrium. For the primary chromite-bearing-ureilites, the corresponding fO2 were estimated (again, assuming basaltic melt composition) to be ∼IW to IW+1.0, i.e., several orders of magnitude more oxidizing than the conditions estimated for the chromite-free ureilites. In terms of Fo and Cr valence properties, ureilites appear to form two groups rather than a single “Cr-valence (or fO2) vs. Fo” trend. The chromite-bearing ureilites show little variation in Fo (∼74-76) but significant variation in Cr valence, while the non-chromite-bearing ureilites show significant variation in Fo (∼77-95) and little variation in Cr valence. These groups are unrelated to petrologic type (i.e., olivine-pigeonite, olivine-orthopyroxene, or augite-bearing). The chromite-bearing ureilites also have lower contents of Cr in olivine than most non-chromite-bearing ureilites, consistent with predictions based on Cr olivine/melt partitioning in spinel saturated vs. non-spinel-saturated systems. Under the assumption that at magmatic temperatures graphite-gas equilibria controlled fO2 at all depths on the ureilite parent body, we conclude: (1) that ureilite precursor materials having the Fo and Cr valence properties now observed in ureilites are unlikely to have been preserved during planetary processing; and (2) that the Fo and Cr valence properties now observed in ureilites are consistent with having been established by high-temperature carbon redox control over a range of depths on a plausible-sized ureilite parent body. The apparent limit on ureilite Fo values around 74-76 suggests that the precursor material(s) had bulk mg# ⩾ that of LL chondrites.

  16. Deep Ore-controlling Role Beneath the Collision-related Deposit Zone in South Tibetan Plateau, Preliminary Results Revealed by Magnetotelluric Data

    NASA Astrophysics Data System (ADS)

    Xie, C.; Jin, S.; Wei, W.; Ye, G.; Fang, Y.; Zhang, L.; Dong, H.; Yin, Y.

    2017-12-01

    The Tibetan plateau is the largest and most recent plateau orogenic belt in the world, and the south part is expected as the ongoing India-Eurasia continental collision zone. The collision-related deposit zones which are distributed in south plateau could be roughly divided into three parts: the porphyry deposit in the Gangdese magmatic belt, the chromite deposit along the Yarlung-Zangbo suture (YZS) and the prospective deposit along the gneiss domes in the Tethys Himalayan. The deep ore-controlling role of those deposit zones is still remain controversial. Previous magnetotelluric (MT) data deployed from Himalayan to Gangdese terrane were inverted using a three dimensional (3D) MT inversion algorithm ModEM. The results show that the resistivity cover layers above -10 km are distributed along the whole profiles, whereas small and sporadic conductors could be also imaged. The middle to lower crust beneath -25 km is imaged as large scale but discontinuous conductive zones which have a central resistivity less than 10 ohm·m. We suggest the middle to lower crustal conductors could be interpreted as partial melting. This hypothesis is supported by some previous geological and geochemical studies. The Metallogenesis and partial melting play an important role in promoting each other. For the metallogenesis, the high water content is one of the prominent factors, and could be released on breakdown of amphibole in eclogite and garnet amphibolite during melting. On the other hand, the increasing of the water content would probably advance partial melting. The results indicate that the deep process and magmatism beneath different deposit zones are probably varying. We studied the rheological characteristics from the perspective of subsurface electrical structures. We hope by comparative analysis, the process of `origins - migration -formation' for the system of deep `magma - rheology - deposition' would be better understood.

  17. Process Developed for Generating Ceramic Interconnects With Low Sintering Temperatures for Solid Oxide Fuel Cells

    NASA Technical Reports Server (NTRS)

    Zhong, Zhi-Min; Goldsby, Jon C.

    2005-01-01

    Solid oxide fuel cells (SOFCs) have been considered as premium future power generation devices because they have demonstrated high energy-conversion efficiency, high power density, and extremely low pollution, and have the flexibility of using hydrocarbon fuel. The Solid-State Energy Conversion Alliance (SECA) initiative, supported by the U.S. Department of Energy and private industries, is leading the development and commercialization of SOFCs for low-cost stationary and automotive markets. The targeted power density for the initiative is rather low, so that the SECA SOFC can be operated at a relatively low temperature (approx. 700 C) and inexpensive metallic interconnects can be utilized in the SOFC stack. As only NASA can, the agency is investigating SOFCs for aerospace applications. Considerable high power density is required for the applications. As a result, the NASA SOFC will be operated at a high temperature (approx. 900 C) and ceramic interconnects will be employed. Lanthanum chromite-based materials have emerged as a leading candidate for the ceramic interconnects. The interconnects are expected to co-sinter with zirconia electrolyte to mitigate the interface electric resistance and to simplify the processing procedure. Lanthanum chromites made by the traditional method are sintered at 1500 C or above. They react with zirconia electrolytes (which typically sinter between 1300 and 1400 C) at the sintering temperature of lanthanum chromites. It has been envisioned that lanthanum chromites with lower sintering temperatures can be co-fired with zirconia electrolyte. Nonstoichiometric lanthanum chromites can be sintered at lower temperatures, but they are unstable and react with zirconia electrolyte during co-sintering. NASA Glenn Research Center s Ceramics Branch investigated a glycine nitrate process to generate fine powder of the lanthanum-chromite-based materials. By simultaneously doping calcium on the lanthanum site, and cobalt and aluminum on the chromium site, we could sinter the materials below 1400 C. The doping concentrations were adjusted so that the thermal expansion coefficient matched that of the zirconia electrolyte. Also, the investigation was focused on stoichiometric compositions so that the materials would have better stability. Co-sintering and chemical compatibility with zirconia electrolyte were examined by X-ray diffraction, scanning electron microscopy, and energy dispersive spectroscopy (line scanning and dot map). The results showed that the materials bond well, but do not react, with zirconia electrolyte. The electric conductivity of the materials measured at 900 C in air was about 20 S/cm.

  18. In Brief: Assessing Afghanistan's mineral resources

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2007-12-01

    Afghanistan has significant amounts of undiscovered nonfuel mineral resources, with copper and iron ore having the most potential for extraction, according to a new U.S. Geological Survey (USGS) assessment. The assessment, done cooperatively with the Afghanistan Geological Survey of the Afghanistan Ministry of Mines, also found indications of significant deposits of colored stones and gemstones (including emeralds, rubies, and sapphires), gold, mercury, sulfur, chromite, and other resources. ``Mineral resource assessments provide government decision-makers and potential private investors with objective, unbiased information on where undiscovered mineral resources may be located, what kinds of resources are likely to occur, and how much of each mineral commodity may exist in them,'' said USGS director Mark Myers. The USGS, in cooperation with the Afghan government, released an oil and gas resources assessment in March 2006 and an earthquake hazards assessment in May 2007. For more information, visit the Web sites: http://afghanistan.cr.usgs.gov and http://www.bgs.ac.uk/afghanminerals/.

  19. Delineation of geochemical anomalies based on stream sediment data utilizing fractal modeling and staged factor analysis

    NASA Astrophysics Data System (ADS)

    Afzal, Peyman; Mirzaei, Misagh; Yousefi, Mahyar; Adib, Ahmad; Khalajmasoumi, Masoumeh; Zarifi, Afshar Zia; Foster, Patrick; Yasrebi, Amir Bijan

    2016-07-01

    Recognition of significant geochemical signatures and separation of geochemical anomalies from background are critical issues in interpretation of stream sediment data to define exploration targets. In this paper, we used staged factor analysis in conjunction with the concentration-number (C-N) fractal model to generate exploration targets for prospecting Cr and Fe mineralization in Balvard area, SE Iran. The results show coexistence of derived multi-element geochemical signatures of the deposit-type sought and ultramafic-mafic rocks in the NE and northern parts of the study area indicating significant chromite and iron ore prospects. In this regard, application of staged factor analysis and fractal modeling resulted in recognition of significant multi-element signatures that have a high spatial association with host lithological units of the deposit-type sought, and therefore, the generated targets are reliable for further prospecting of the deposit in the study area.

  20. Application of Fe-Ti oxide dissolution experiments to the petrogenesis of the Ekati Diamond Mine kimberlites, Northwest Territories, Canada

    NASA Astrophysics Data System (ADS)

    Kressall, R.; Fedortchouk, Y.; McCammon, C. A.

    2015-12-01

    Composition of kimberlites is ambiguous due to assimilation and fractional crystallization. We propose that the evolution history of minerals can be used to decipher the magmatic history of kimberlites. We use Fe-Ti oxides (chromite and ilmenite) from six kimberlites from the Ekati Diamond Mine and dissolution experiments to elucidate the petrogenesis of kimberlites. Experiments at 0.1 MPa and variable ƒO2s in a diopside-anorthite melt show that the dissolution rate of ilmenite is highly sensitive to ƒO2. No significant difference was observed in chromite. Zoning in chromite is related to the Fe-content and oxidation state of the melt. Experiments at 1 GPa explore the development of chromite surface resorption features in the system Ca-Mg-Si-H-C-O. Five kimberlites contain a low abundance of ilmenite, owing to a relatively high ƒO2, though ilmenite constituted 65% of oxide macocrysts in one kimberlite. Chromite compositions evolve from Mg-chromite to magnesio-ulvöspinel-magnetite (MUM) in all but one kimberlite where chromite evolves to a pleonaste composition perhaps as a result of rapid emplacement. The high abundance of MUM spinel and low abundance of ilmenite in the matrix could be related to the change in the stable Ti-phase with increasing ƒO2. Core compositions of macrocrysts vary for different mantle sources but rims converge to a composition slightly more oxidized and Mg-rich than chromite from depleted peridotite. Ilmenite commonly has rims composed of perovskite, titanite and MUM. We suggest a model where the kimberlite melt composition is controlled by the co-dissolution and co-precipitation of silicates (predominantly orthopyroxene and olivine) to explain chromite evolution in kimberlites. Resorption-related surface features on chromite macrocrysts show trigon protrusions-depressions on {111} faces and step-like features along the crystal edges resembling products of experiments in H2O fluid. We propose predominantly H2O magmatic fluid in Ekati kimberlites.

  1. Characterisation and Processing of Some Iron Ores of India

    NASA Astrophysics Data System (ADS)

    Krishna, S. J. G.; Patil, M. R.; Rudrappa, C.; Kumar, S. P.; Ravi, B. P.

    2013-10-01

    Lack of process characterization data of the ores based on the granulometry, texture, mineralogy, physical, chemical, properties, merits and limitations of process, market and local conditions may mislead the mineral processing entrepreneur. The proper implementation of process characterization and geotechnical map data will result in optimized sustainable utilization of resource by processing. A few case studies of process characterization of some Indian iron ores are dealt with. The tentative ascending order of process refractoriness of iron ores is massive hematite/magnetite < marine black iron oxide sands < laminated soft friable siliceous ore fines < massive banded magnetite quartzite < laminated soft friable clayey aluminous ore fines < massive banded hematite quartzite/jasper < massive clayey hydrated iron oxide ore < manganese bearing iron ores massive < Ti-V bearing magnetite magmatic ore < ferruginous cherty quartzite. Based on diagnostic process characterization, the ores have been classified and generic process have been adopted for some Indian iron ores.

  2. The structure of and origin of nodular chromite from the Troodos ophiolite, Cyprus, revealed using high-resolution X-ray computed tomography and electron backscatter diffraction

    NASA Astrophysics Data System (ADS)

    Prichard, H. M.; Barnes, S. J.; Godel, B.; Reddy, S. M.; Vukmanovic, Z.; Halfpenny, A.; Neary, C. R.; Fisher, P. C.

    2015-03-01

    Nodular chromite is a characteristic feature of ophiolitic podiform chromitite and there has been much debate about how it forms. Nodular chromite from the Troodos ophiolite in Cyprus is unusual in that it contains skeletal crystals enclosed within the centres of the nodules and interstitial to them. 3D imaging and electron backscatter diffraction have shown that the skeletal crystals within the nodules are single crystals that are surrounded by a rim of polycrystalline chromite. 3D analysis reveals that the skeletal crystals are partially or completely formed cage or hopper structures elongated along the < 111 > axis. The rim is composed of a patchwork of chromite grains that are truncated on the outer edge of the rim. The skeletal crystals formed first from a magma supersaturated in chromite and silicate minerals crystallised from melt trapped between the chromite skeletal crystal blades as they grew. The formation of skeletal crystals was followed by a crystallisation event which formed a silicate-poor rim of chromite grains around the skeletal crystals. These crystals show a weak preferred orientation related to the orientation of the core skeletal crystal implying that they formed by nucleation and growth on this core, and did not form by random mechanical aggregation. Patches of equilibrium adcumulate textures within the rim attest to in situ development of such textures. The nodules were subsequently exposed to chromite undersaturated magma resulting in dissolution, recorded by truncated grain boundaries in the rim and a smooth outer surface to the nodule. None of these stages of formation require a turbulent magma. Lastly the nodules impinged on each other causing local deformation at points of contact.

  3. Co-settling of Chromite and Sulfide Melt Droplets and Trace Element Partitioning between Sulfide and Silicate Melts

    NASA Astrophysics Data System (ADS)

    Manoochehri, S.; Schmidt, M. W.; Guenther, D.

    2013-12-01

    Gravitational settling of immiscible, dense sulfide melt droplets together with other cumulate phases such as chromite, combined with downward percolation of these droplets through a cumulate pile, is thought to be one of the possible processes leading to the formation of PGE rich sulfide deposits in layered mafic intrusions. Furthermore some chromitite seams in the Merensky Reef (Bushveld Complex) are considered to be acting as a filter or barrier for further downward percolation of sulfide melts into footwall layers. To investigate the feasibility of such mechanical processes and to study the partitioning behavior of 50 elements including transition metals and REEs (but not PGEs) between a silicate and a sulfide melt, two separate series of high temperature (1250-1380 °C) centrifuge-assisted experiments at 1000 g, 0.4-0.6 GPa were conducted. A synthetic silicate glass with a composition representative of the parental magma of the Bushveld Complex (~ 55 wt% SiO2) was mixed with pure FeS powder. For the first series of experiments, 15 or 25 wt% natural chromite with average grain sizes of ~ 5 or 31 μm were added to a mixture of silicate glass and FeS (10 wt%) adding 1 wt% water. For the second series, a mixture of the same glass and FeS was doped with 50 trace elements. These mixtures were first statically equilibrated and then centrifuged. In the first experimental series, sulfide melt droplets settled together with, but did not segregate from chromite grains even after centrifugation at 1000 g for 12 hours. A change in initial chromite grain size and proportions didn't have any effect on segregation. Without chromite, the starting mixture resulted in the formation of large sulfide melt pools together with finer droplets still disseminated through the silicate glass and both at the bottom of the capsule. The incomplete segregation of sulfide melt is interpreted as being due to high interfacial energies between sulfide and silicate melts/crystals which hinder both, the nucleation of newly formed sulfide droplets and the interconnectivity of separate droplets. The interfacial energies between sulfide melt and silicate or oxide crystals is even higher than for silicate melt, consequently in experiments with chromite, sulfide segregation is even more hindered. Partition coefficients of 50 elements between a sulfide and a silicate melt are determined as a function of differing temperature between 1250 - 1380 °C. As a proxy to investigate the bond strength of network modifier cations, the relation between the partition coefficients and ionic potentials of different groups of elements has been determined.

  4. Messengers from the deep: Fossil wadsleyite-chromite microstructures from the Mantle Transition Zone.

    PubMed

    Satsukawa, Takako; Griffin, William L; Piazolo, Sandra; O'Reilly, Suzanne Y

    2015-11-13

    Investigations of the Mantle Transition Zone (MTZ; 410-660 km deep) by deformation experiments and geophysical methods suggest that the MTZ has distinct rheological properties, but their exact cause is still unclear due to the lack of natural samples. Here we present the first direct evidence for crystal-plastic deformation by dislocation creep in the MTZ using a chromitite from the Luobusa peridotite (E. Tibet). Chromite grains show exsolution of diopside and SiO2, suggesting previous equilibration in the MTZ. Electron backscattered diffraction (EBSD) analysis reveals that olivine grains co-existing with exsolved phases inside chromite grains and occurring on chromite grain boundaries have a single pronounced crystallographic preferred orientation (CPO). This suggests that olivine preserves the CPO of a high-pressure polymorph (wadsleyite) before the high-pressure polymorph of chromite began to invert and exsolve. Chromite also shows a significant CPO. Thus, the fine-grained high-pressure phases were deformed by dislocation creep in the MTZ. Grain growth in inverted chromite produced an equilibrated microstructure during exhumation to the surface, masking at first sight its MTZ deformation history. These unique observations provide a window into the deep Earth, and constraints for interpreting geophysical signals and their geodynamic implications in a geologically robust context.

  5. 187Re - 187Os Nuclear Geochronometry: A New Dating Method Applied to Old Ores

    NASA Astrophysics Data System (ADS)

    Roller, Goetz

    2015-04-01

    187Re - 187Os nuclear geochronometry is a newly developed dating method especially (but not only) for PGE hosting magmatic ore deposits. It combines ideas of nuclear astrophysics with geochronology. For this, the concept of sudden nucleosynthesis [1-3] is used to calculate so-called nucleogeochronometric Rhenium-Osmium two-point-isochrone (TPI) ages. Here, the method is applied to the Sudbury Igneous Complex (SIC) and the Stillwater Complex (SC), using a set of two nuclear geochronometers. They are named the BARBERTON ( Re/Os = 0.849, 187Os/186Os = 10.04 ± 0.015 [4]) and the IVREA (Re/Os = 0.951, 187Os/186Os = 1.9360 ± 0.0015 [5]) nuclear geochronometer. Calculated TPI ages are consistent with results from Sm-Nd geochronology, a previously published Re-Os Molybdenum age of 2740 ± 80 Ma for the G-chromitite of the SC [6] and a Re-Os isochrone age of 1689 ± 160 Ma for the Strathcona ores of the SIC [7]. This leads to an alternative explanation of the peculiar and enigmatic 187Os/186Osi isotopic signatures reported from both ore deposits. For example, for a TPI age of 2717 ± 100 Ma the Ultramafic Series of the SC contains both extremely low (subchrondritic) 187Os/186Osi ratios (187Os/186Osi = 0.125 ± 0.067) and extremely radiogenic isotopic signatures (187Os/186Osi = 6.55 ± 1.7, [6]) in mineral separates (chromites) and whole rock samples, respectively. Within the Strathcona ores of the SIC, even more pronounced radiogenic 187Os/186Os initial ratios can be calculated for TPI ages between 1586 ± 63 Ma (187Os/186Osi = 8.998 ± 0.045) and 1733 ± 84 Ma (187Os/186Osi = 8.901 ± 0.059). These results are in line with the recalculated Re-Os isochrone age of 1689 ± 160 Ma (187Os/186Osi = 8.8 ± 2.3 [7]). In the light of nuclear geochronometry, the occurrence of such peculiar isotopic 187Os/186Osi signatures within one and the same lithological horizon are plausible if explained by mingling of the two nucleogeochronometric (BARBERTON and IVREA) reservoirs containing very old rapid (r) neutron-capture process signatures from (at least) two different events. In this scenario, intermediate 187Os/186Osi ratios are due to mixing, resulting from the interaction of the two ancient components. Since there is a striking agreement between the nucleogeochronometric TPI ages and the conventional isochrone and mineral ages for the SC and SIC, respectively, nuclear geochronometry may offer an enormous potential for exploration purposes in mining industry, especially if additional geochemical and petrologic cross-correlations are taken into account. Furthermore, there might be now a new and promising opportunity to understand the link between magmatic ore forming processes and global geodynamics. [1] Burbidge et al. (1957) Revs. Mod. Phys. 29, 547 - 650. [2] Cameron (1957), CRL-41, Atomic Energy of Canada Limited, Chalk River, Ontario. [3] Hoyle et al. (1960) ApJ 132, 565 - 590. [4] Birck et al. (1994) EPSL 124, 139-148. [5] Roller (1997), PhD Thesis, RKP N+T, Munich. [6] Marcantonio et al. (1993), GCA 57, 4029 - 4037. [7] Walker et al. (1991) EPSL 105, 416 - 429.

  6. Sediment-dispersed extraterrestrial chromite traces a major asteroid disruption event.

    PubMed

    Schmitz, Birger; Häggström, Therese; Tassinari, Mario

    2003-05-09

    Abundant extraterrestrial chromite grains from decomposed meteorites occur in middle Ordovician (480 million years ago) marine limestone over an area of approximately 250,000 square kilometers in southern Sweden. The chromite anomaly gives support for an increase of two orders of magnitude in the influx of meteorites to Earth during the mid-Ordovician, as previously indicated by fossil meteorites. Extraterrestrial chromite grains in mid-Ordovician limestone can be used to constrain in detail the temporal variations in flux of extraterrestrial matter after one of the largest asteroid disruption events in the asteroid belt in late solar-system history.

  7. Formation and modification of chromitites in the mantle

    NASA Astrophysics Data System (ADS)

    Arai, Shoji; Miura, Makoto

    2016-11-01

    Podiform chromitites have long supplied us with unrivaled information on various mantle processes, including the peridotite-magma reaction, deep-seated magmatic evolution, and mantle dynamics. The recent discovery of ultrahigh-pressure (UHP) chromitites not only sheds light on a different aspect of podiform chromitites, but also changes our understanding of the whole picture of podiform chromitite genesis. In addition, new evidence was recently presented for hydrothermal modification/formation chromite/chromitite in the mantle, which is a classical but innovative issue. In this context, we present here an urgently needed comprehensive review of podiform chromitites in the upper mantle. Wall-rock control on podiform chromitite genesis demonstrates that the peridotite-magma reaction at the upper mantle condition is an indispensable process. We may need a large system in the mantle, far larger than the size of outcrops or mining areas, to fulfill the Cr budget requirement for podiform chromitite genesis. The peridotite-magma reaction over a large area may form a melt enriched with Na and other incompatible elements, which mixes with a less evolved magma supplied from the depth to create chromite-oversaturated magma. The incompatible-element-rich magma trapped by the chromite mainly precipitates pargasite and aspidolite (Na analogue of phlogopite), which are stable under upper mantle conditions. Moderately depleted harzburgites, which contain chromite with a moderate Cr# (0.4-0.6) and a small amount of clinopyroxene, are the best reactants for the chromitite-forming reaction, and are the best hosts for podiform chromitites. Arc-type chromitites are dominant in ophiolites, but some are of the mid-ocean ridge type; chromitites may be common beneath the ocean floor, although it has not yet been explored for chromitite. The low-pressure (upper mantle) igneous chromitites were conveyed through mantle convection or subduction down to the mantle transition zone to form ultrahigh-pressure chromitites. Some of these reappear at the shallower mantle, and can coexist with newly formed low-pressure igneous chromitites. High-temperature hydrothermal fluids can dissolve and precipitate chromite, and hydrothermal chromitites (chromitites precipitated from aqueous fluids) are possibly formed within the mantle where the circulation of hydrous fluid is available, e.g., at the mantle wedge.

  8. Novel preparation of highly photocatalytically active copper chromite nanostructured material via a simple hydrothermal route

    PubMed Central

    Beshkar, Farshad; Zinatloo-Ajabshir, Sahar; Bagheri, Samira; Salavati-Niasari, Masoud

    2017-01-01

    Highly photocatalytically active copper chromite nanostructured material were prepared via a novel simple hydrothermal reaction between [Cu(en)2(H2O)2]Cl2 and [Cr(en)3]Cl3.3H2O at low temperature, without adding any pH regulator or external capping agent. The as-synthesized nanostructured copper chromite was analyzed by transmission electron microscopy (TEM), UV–vis diffuse reflectance spectroscopy, energy dispersive X-ray microanalysis (EDX), scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectroscopy. Results of the morphological investigation of the as-synthesized products illustrate that the shape and size of the copper chromite depended on the surfactant sort, reaction duration and temperature. Moreover, the photocatalytic behavior of as-obtained copper chromite was evaluated by photodegradation of acid blue 92 (anionic dye) as water pollutant. PMID:28582420

  9. Electrical properties of lanthanum chromite based ceramics in hydrogen and oxidizing atmospheres at high temperatures

    NASA Astrophysics Data System (ADS)

    Schmidt, V. H.

    1981-06-01

    Several results regarding the effect of hydrogen on lanthanum chromite were determined. Thermally-activated diffusion of hydrogen through La(Mg)CrO3 was found with a high activation energy. It was found that its electrical conductivity drops drastically, especially at low temperature, after exposure to hydrogen at high temperature. Also, the curvature of most of the conductivity plots, as well as the inability to observe the Hall effect, lends support to the proposal by Karim and Aldred that the small-polaron model which predicts thermally activated mobility is applicable to doped lanthanum chromite. From differential thermal analysis, an apparent absorption of hydrogen near 3000 C was noticed. Upon cooling the lanthanum chromite in hydrogen and subsequently reheating it in air, desorption occurred near 1700 C. The immediate purpose of this study was to determine whether hydrogen has a deleterious effect on lanthanum chromite in solid oxide fuel cells.

  10. Chromite and olivine in type II chondrules in carbonaceous and ordinary chondrites - Implications for thermal histories and group differences

    NASA Technical Reports Server (NTRS)

    Johnson, Craig A.; Prinz, Martin

    1991-01-01

    Unequilibrated chromite and olivine margin compositions in type II chondrules are noted to differ systematically among three of the chondrite groups, suggesting that type II liquids differed in composition among the groups. These differences may be interpreted as indicators of different chemical compositions of the precursor solids which underwent melting, or, perhaps, as differences in the extent to which immiscible metal sulfide droplets were lost during chondrule formation. Because zinc is detectable only in type II chromites which have undergone reequilibration, the high zinc contents reported for chondritic chromites in other studies probably reflect redistribution during thermal metamorphism.

  11. Chromian spinels in highly altered ultramafic rocks from the Sartohay ophiolitic mélange, Xinjiang, NW China

    NASA Astrophysics Data System (ADS)

    Qiu, Tian; Zhu, Yongfeng

    2018-06-01

    The Sartohay ophiolitic mélange is located in western Junggar (Xinjiang province, NW China), which is a major component of the core part of the Central Asian Orogenic Belt (CAOB). Chromian spinels in serpentinite, talc schist, carbonate-talc schist and listwaenite in Sartohay ophiolitic mélange retain primary compositions with Cr# of 0.39-0.65, Mg# = 0.48-0.67, and Fe3+# < 0.08. Chromian spinels in deformed listwaenite were initially transformed into Fe2+-rich chromite during shearing deformation followed by Fe3+-rich chromite at shallow levels. The Cr# and Fe3+# of Fe2+-rich chromite (Cr# = 0.59-0.86, Fe3+# = 0.01-0.12, Mg# = 0.35-0.61) and Fe3+-rich chromite (Cr# = 0.85-1.00, Fe3+# = 0.17-0.38, Mg# < 0.29) increase with decrease of Mg#. We propose a model to illustrate the evolution of chromian spinels in highly altered ultramafic rocks from the Sartohay ophiolitic mélange. Chromian spinels in serpentinite and talc schist were rimmed by Cr-magnetite, which was dissolved completely during transformation from serpentinite/talc schist to listwaenite. Chromian spinels were then transformed into Fe2+-rich chromite in shear zones, which characterized by high fluid/rock ratios. This Fe2+-rich chromite and/or chromian spinels could then be transformed into Fe3+-rich chromite in oxidizing conditions at shallow levels.

  12. Palladium, platinum, rhodium, iridium and ruthenium in chromite- rich rocks from the Samail ophiolite, Oman.

    USGS Publications Warehouse

    Page, N.J.; Pallister, J.S.; Brown, M.A.; Smewing, J.D.; Haffty, J.

    1982-01-01

    30 samples of chromitite and chromite-rich rocks from two stratigraphic sections, 250 km apart, through the basal ultramafic member of the Samail ophiolite were spectrographically analysed for platinum-group elements (PGE) and for Co, Cu, Ni and V. These data are reported as are Cr/(Cr + Al), Mg/(Mg + Fe) and wt.% TiO2 for most samples. The chromitite occurs as pods or lenses in rocks of mantle origin or as discontinuous layers at the base of the overlying cumulus sequence. PGE abundances in both sections are similar, with average contents in chromite-rich rocks: Pd 8 ppb, Pt 14 ppb, Rh 6 ppb, Ir 48 ppb and Ru 135 ppb. The PGE data, combined with major-element and petrographic data on the chromitite, suggest: 1) relatively larger Ir and Ru contents and highest total PGE in the middle part of each section; 2) PGE concentrations and ratios do not correlate with coexisting silicate and chromite abundances or chromite compositions; 3) Pd/PGE, on average, increases upward in each section; 4) Samail PGE concentrations, particularly Rh, Pt and Pd, are lower than the average values for chromite-rich rocks in stratiform intrusions. 2) suggests that PGEs occur in discrete alloy or sulphide phases rather than in the major oxides or silicates, and 4) suggests that chromite-rich rocks from the oceanic upper mantle are depleted in PGE with respect to chondrites. L.C.C.

  13. Prevalence and Risk Factors of Elevated Blood Lead in Children in Gold Ore Processing Communities, Zamfara, Nigeria, 2012.

    PubMed

    Kaufman, John A; Brown, Mary Jean; Umar-Tsafe, Nasir T; Adbullahi, Muhammad Bashir; Getso, Kabiru I; Kaita, Ibrahim M; Sule, Binta Bako; Ba'aba, Ahmed; Davis, Lora; Nguku, Patrick M; Sani-Gwarzo, Nasir

    2016-09-01

    In March 2010, Medecins Sans Frontieres/Doctors Without Borders detected an outbreak of acute lead poisoning in Zamfara State, northwestern Nigeria, linked to low-technology gold ore processing. The outbreak killed more than 400 children ≤5 years of age in the first half of 2010 and has left more than 2,000 children with permanent disabilities. The aims of this study were to estimate the statewide prevalence of children ≤5 years old with elevated blood lead levels (BLLs) in gold ore processing and non-ore-processing communities, and to identify factors associated with elevated blood lead levels in children. A representative, population-based study of ore processing and non-ore-processing villages was conducted throughout Zamfara in 2012. Blood samples from children, outdoor soil samples, indoor dust samples, and survey data on ore processing activities and other lead sources were collected from 383 children ≤5 years old in 383 family compounds across 56 villages. 17.2% of compounds reported that at least one member had processed ore in the preceding 12 months (95% confidence intervals (CI): 9.7, 24.7). The prevalence of BLLs ≥10 µg/dL in children ≤5 years old was 38.2% (95% CI: 26.5, 51.4) in compounds with members who processed ore and 22.3% (95% CI: 17.8, 27.7) in compounds where no one processed ore. Ore processing activities were associated with higher lead concentrations in soil, dust, and blood samples. Other factors associated with elevated BLL were a child's age and sex, breastfeeding, drinking water from a piped tap, and exposure to eye cosmetics. Childhood lead poisoning is widespread in Zamfara State in both ore processing and non-ore-processing settings, although it is more prevalent in ore processing areas. Although most children's BLLs were below the recommended level for chelation therapy, environmental remediation and use of safer ore processing practices are needed to prevent further exposures. Obtained. The study protocol was approved by the US Centers for Disease Control Institutional Review Board-A and the National Health Research Ethics Committee of Nigeria. The authors declare no competing financial interests.

  14. Multi-Criteria selection of technology for processing ore raw materials

    NASA Astrophysics Data System (ADS)

    Gorbatova, E. A.; Emelianenko, E. A.; Zaretckii, M. V.

    2017-10-01

    The development of Computer-Aided Process Planning (CAPP) for the Ore Beneficiation process is considered. The set of parameters to define the quality of the Ore Beneficiation process is identified. The ontological model of CAPP for the Ore Beneficiation process is described. The hybrid choice method of the most appropriate variant of the Ore Beneficiation process based on the Logical Conclusion Rules and the Fuzzy Multi-Criteria Decision Making (MCDM) approach is proposed.

  15. XPS and STEM studies of Allende acid insoluble residues

    NASA Technical Reports Server (NTRS)

    Housley, R. M.; Clarke, D. R.

    1980-01-01

    Data on Allende acid residues obtained both before and after etching with hot HNO3 are presented. X-ray photoelectron spectra show predominantly carbonaceous material plus Fe-deficient chromite in both cases. The HNO3 oxidizes the carbonaceous material to some extent. The small chromites in these residues have a wide range of compositions somewhat paralleling those observed in larger Allende chromites and in Murchison chromites, especially in the high Al contents; however, they are deficient in divalent cations, which makes them metastable and indicates that they must have formed at relatively low temperatures. It is suggested that they formed by precipitation of Cr(3+) and Fe(3+) from olivine at low temperature or during rapid cooling.

  16. Natural occurrence and synthesis of two new postspinel polymorphs of chromite.

    PubMed

    Chen, Ming; Shu, Jinfu; Mao, Ho-kwang; Xie, Xiande; Hemley, Russell J

    2003-12-09

    A high-pressure polymorph of chromite, the first natural sample with the calcium ferrite structure, has been discovered in the shock veins of the Suizhou meteorite. Synchrotron x-ray diffraction analyses reveal an orthorhombic CaFe2O4-type (CF) structure. The unit-cell parameters are a = 8.954(7) A, b = 2.986(2) A, c = 9.891(7) A, V = 264.5(4) A3 (Z = 4) with space group Pnma. The new phase has a density of 5.62 g/cm3, which is 9.4% denser than chromite-spinel. We performed laser-heated diamond anvil cell experiments to establish that chromite-spinel transforms to CF at 12.5 GPa and then to the recently discovered CaTi2O4-type (CT) structure above 20 GPa. With the ubiquitous presence of chromite, the CF and CT phases may be among the important index minerals for natural transition sequence and pressure and temperature conditions in mantle rocks, shock-metamorphosed terrestrial rocks, and meteorites.

  17. Electrical properties of lanthanum chromite based ceramics in hydrogen and oxidizing atmospheres at high temperatures. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, V.H.

    1981-06-01

    Several results regarding the effect of hydrogen on lanthanum chromite were determined. Thermally-activated diffusion of hydrogen through La(Mg)CrO/sub 3/ was found with a high activation energy. It was found that its electrical conductivity drops drastically, especially at low temperature, after exposure to hydrogen at high temperature. Also, the curvature of most of the conductivity plots, as well as the inability to observe the Hall effect, lends support to the proposal by Karim and Aldred that the small-polaron model which predicts thermally activated mobility is applicable to doped lanthanum chromite. From differential thermal analysis an apparent absorption of hydrogen near 300/supmore » 0/C was noticed. Upon cooling the lanthanum chromite in hydrogen and subsequently reheating it in air, desorption occurred near 170/sup 0/C. The immediate purpose of this study was to determine whether hydrogen has a deleterious effect on lanthanum chromite in solid oxide fuel cells.« less

  18. Prevalence and Risk Factors of Elevated Blood Lead in Children in Gold Ore Processing Communities, Zamfara, Nigeria, 2012

    PubMed Central

    Kaufman, John A.; Brown, Mary Jean; Umar-Tsafe, Nasir T.; Adbullahi, Muhammad Bashir; Getso, Kabiru I.; Kaita, Ibrahim M.; Sule, Binta Bako; Ba’aba, Ahmed; Davis, Lora; Nguku, Patrick M.; Sani-Gwarzo, Nasir

    2018-01-01

    Background In March 2010, Medecins Sans Frontieres/Doctors Without Borders detected an outbreak of acute lead poisoning in Zamfara State, northwestern Nigeria, linked to low-technology gold ore processing. The outbreak killed more than 400 children ≤5 years of age in the first half of 2010 and has left more than 2,000 children with permanent disabilities. Objectives The aims of this study were to estimate the statewide prevalence of children ≤5 years old with elevated blood lead levels (BLLs) in gold ore processing and non-ore-processing communities, and to identify factors associated with elevated blood lead levels in children. Methods A representative, population-based study of ore processing and non-ore-processing villages was conducted throughout Zamfara in 2012. Blood samples from children, outdoor soil samples, indoor dust samples, and survey data on ore processing activities and other lead sources were collected from 383 children ≤5 years old in 383 family compounds across 56 villages. Results 17.2% of compounds reported that at least one member had processed ore in the preceding 12 months (95% confidence intervals (CI): 9.7, 24.7). The prevalence of BLLs ≥10 µg/dL in children ≤5 years old was 38.2% (95% CI: 26.5, 51.4) in compounds with members who processed ore and 22.3% (95% CI: 17.8, 27.7) in compounds where no one processed ore. Ore processing activities were associated with higher lead concentrations in soil, dust, and blood samples. Other factors associated with elevated BLL were a child’s age and sex, breastfeeding, drinking water from a piped tap, and exposure to eye cosmetics. Conclusions Childhood lead poisoning is widespread in Zamfara State in both ore processing and non-ore-processing settings, although it is more prevalent in ore processing areas. Although most children’s BLLs were below the recommended level for chelation therapy, environmental remediation and use of safer ore processing practices are needed to prevent further exposures. Patient consent Obtained Ethics approval The study protocol was approved by the US Centers for Disease Control Institutional Review Board-A and the National Health Research Ethics Committee of Nigeria. Competing Interests The authors declare no competing financial interests. PMID:29416933

  19. Genesis of hexavalent chromium from natural sources in soil and groundwater.

    PubMed

    Oze, Christopher; Bird, Dennis K; Fendorf, Scott

    2007-04-17

    Naturally occurring Cr(VI) has recently been reported in ground and surface waters. Rock strata rich in Cr(III)-bearing minerals, in particular chromite, are universally found in these areas that occur near convergent plate margins. Here we report experiments demonstrating accelerated dissolution of chromite and subsequent oxidation of Cr(III) to aqueous Cr(VI) in the presence of birnessite, a common manganese mineral, explaining the generation of Cr(VI) by a Cr(III)-bearing mineral considered geochemically inert. Our results demonstrate that Cr(III) within ultramafic- and serpentinite-derived soils/sediments can be oxidized and dissolved through natural processes, leading to hazardous levels of aqueous Cr(VI) in surface and groundwater.

  20. Genesis of hexavalent chromium from natural sources in soil and groundwater

    PubMed Central

    Oze, Christopher; Bird, Dennis K.; Fendorf, Scott

    2007-01-01

    Naturally occurring Cr(VI) has recently been reported in ground and surface waters. Rock strata rich in Cr(III)-bearing minerals, in particular chromite, are universally found in these areas that occur near convergent plate margins. Here we report experiments demonstrating accelerated dissolution of chromite and subsequent oxidation of Cr(III) to aqueous Cr(VI) in the presence of birnessite, a common manganese mineral, explaining the generation of Cr(VI) by a Cr(III)-bearing mineral considered geochemically inert. Our results demonstrate that Cr(III) within ultramafic- and serpentinite-derived soils/sediments can be oxidized and dissolved through natural processes, leading to hazardous levels of aqueous Cr(VI) in surface and groundwater. PMID:17420454

  1. Intensive Variables in Primary Kimberlite Magmas (Lac de Gras, N.W.T., Canada) and Application for Diamond Preservation

    NASA Astrophysics Data System (ADS)

    Fedortchouk, Y.; Canil, D.; Carlson, J. A.

    2002-12-01

    Crystallization temperatures (T) and oxygen fugacity (fO2) are not well constrained for kimberlites. Knowledge of these intensive variables of kimberlite melt is important for understanding the origin and evolution of kimberlites and prediction of diamond preservation in the magma. Difficulties in interpreting the equilibrium mineral assemblages in kimberlites and the high degree of secondary alteration usually complicate use of mineral geothermometers and oxygen barometers. Some of Lac de Gras (N.W.T., Canada) kimberlites are extremely fresh and provide opportunity to apply mineral thermobarometers. The presence of numerous chromite inclusions in the rims of olivine phenocrysts allows application of the olivine-spinel thermometer and oxygen barometer to constrain T and fO2 of the melt. We performed T and fO2 calculations on samples from three kimberlite pipes - the Leslie, Aaron and Grizzly. The T obtained from olivine - chromite pairs for crystallization of olivine phenocryst rims are 1050° to 1100°C +/- 50°C (calculated at 1 GPa). Few olivine - chromite pairs from Leslie and Grizzly record higher temperatures of 1250° - 1350°C. The cores of olivine phenocrysts usually lack chromite inclusions and their crystallization T and fO2 could not be estimated. The fO2 recorded by coexisting olivine and chromite are +0.3 to 1.0 +/- 0.4 log units more oxidized than the nickel-nickel oxide (NNO) buffer. The established fO2 of kimberlites would require fO2 in their mantle source to be higher than that of cratonic mantle and oceanic lithosphere producing MORB's but comparable to the source of subduction-related magmas. The T and fO2 for the Lac de Gras kimberlites constrain the path of any mantle material entrained in these magmas in fO2-T-P space and provide limits on diamond destructive processes. Diamonds are not stable in kimberlite magma and are oxidized to CO2 or converted into graphite. The former process is more favorable for their preservation. The results of out thermo-barometric calculations show that at any pressure the Lac de Gras kimberlites were above the Graphite (Diamond)-CCO buffer. Diamonds entrained in these kimberlites were moved into stability field of CO2 without graphitization, favoring better preservation of diamonds.

  2. 40 CFR 440.100 - Applicability; description of the copper, lead, zinc, gold, silver, and molybdenum ores subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... process alone or in conjunction with other processes, for the beneficiation of copper, lead, zinc, gold, silver, or molybdenum ores, or any combination of these ores; (3) Mines and mills that use dump, heap, in-situ leach, or vat-leach processes to extract copper from ores or ore waste materials; and (4) Mills...

  3. 40 CFR 440.100 - Applicability; description of the copper, lead, zinc, gold, silver, and molybdenum ores subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... process alone or in conjunction with other processes, for the beneficiation of copper, lead, zinc, gold, silver, or molybdenum ores, or any combination of these ores; (3) Mines and mills that use dump, heap, in-situ leach, or vat-leach processes to extract copper from ores or ore waste materials; and (4) Mills...

  4. 40 CFR 440.100 - Applicability; description of the copper, lead, zinc, gold, silver, and molybdenum ores subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... process alone or in conjunction with other processes, for the beneficiation of copper, lead, zinc, gold, silver, or molybdenum ores, or any combination of these ores; (3) Mines and mills that use dump, heap, in-situ leach, or vat-leach processes to extract copper from ores or ore waste materials; and (4) Mills...

  5. Compositional and isotopic heterogeneities in the Neo-Tethyan upper mantle recorded by coexisting Al-rich and Cr-rich chromitites in the Purang peridotite massif, SW Tibet (China)

    NASA Astrophysics Data System (ADS)

    Xiong, Fahui; Yang, Jingsui; Xu, Xiangzhen; Kapsiotis, Argyrios; Hao, Xiaolin; Liu, Zhao

    2018-06-01

    The Purang harzburgite massif in SW Tibet (China) hosts abundant chrome ore deposits. Ores consist of 20 to >95% modal chromian spinel (Cr-spinel) with mylonitic fabric in imbricate shaped pods. The composition of Cr-spinel in these ores ranges from Al-rich [Cr#Sp or Cr/(Cr + Al) × 100 = 47.60-57.56] to Cr-rich (Cr#Sp: 62.55-79.57). Bulk platinum-group element (PGE) contents of chromitites are also highly variable ranging from 17.5 ppb to ∼2.5 ppm. Both metallurgical and refractory chromitites show a general enrichment in the IPGE (Os, Ir and Ru) with respect to the PPGE (Rh, Pt and Pd), resulting mostly in right-sloping primitive mantle (PM)-normalized PGE profiles. The platinum-group mineral (PGM) assemblages of both chromitite types are dominated by heterogeneously distributed, euhedral Os-bearing laurite inclusions in Cr-spinel. The Purang chromitites have quite inhomogeneous 187Os/188Os ratios (0.12289-0.13194) that are within the range of those reported for mantle-hosted chromitites from other peridotite massifs. Geochemical calculations demonstrate that the parental melts of high-Cr chromitites were boninitic, whereas those of high-Al chromitites had an arc-type tholeiitic affinity. Chromite crystallization was most likely stimulated by changes in magma compositions due to melt-peridotite interaction, leading to the establishment of a heterogeneous physicochemical environment during the early crystallization of the PGM. The highly variable PGE contents, inhomogeneous Os-isotopic compositions and varying Cr#Sp ratios of these chromitites imply a polygenetic origin for them from spatially distinct melt inputs. The generally low γOs values (<1) of chromitites indicate that their parental melts originated within different sections of a heterogeneously depleted mantle source region. These melts were most likely produced in the mantle wedge above a downgoing lithospheric slab.

  6. Idea of Identification of Copper Ore with the Use of Process Analyser Technology Sensors

    NASA Astrophysics Data System (ADS)

    Jurdziak, Leszek; Kaszuba, Damian; Kawalec, Witold; Król, Robert

    2016-10-01

    The Polish resources of the copper ore exploited by the KGHM S.A. underground mines are considered as one of the most complex in the world and - consequently - the most difficult to be processed. The ore consists of three lithology forms: dolomites, shales and sandstones but in different proportions which has a significant impact on the effectiveness of the grinding and flotation processes. The lithological composition of the ore is generally recognised in-situ but after being mined it is blended on its long way from various mining fields to the processing plant by the complex transportation system consisting of belt conveyors with numerous switching points, ore bunkers and shafts. Identification of the lithological composition of the ore being supplied to the processing plant should improve the adjustments of the ore processing machinery equipment aiming to decrease the specific processing (mainly grinding) energy consumption as well as increase the metal recovery. The novel idea of Process Analyser Technology (PAT) sensors - information carrying pellets, dropped into the transported or processed bulk material which can be read directly when needed - is investigated for various applications within the DISIRE project (a part of the SPIRE initiative, acting under the Horizon2020 framework program) and here is adopted for implementing the annotation the transported copper ore for the needs of ore processing plants control. The identification of the lithological composition of ore blended on its way to the processing plant can be achieved by an information system consisting of pellets that keep the information about the original location of the portions of conveyed ore, the digital, geological database keeping the data of in-situ lithology and the simulation models of the transportation system, necessary to evaluate the composition of the blended ore. The assumptions of the proposed solution and the plan of necessary in-situ tests (with the special respect to harsh environment of

  7. Process for recovering hydrocarbons from a diatomite-type ore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, B.W.

    1983-02-15

    A process for recovering hydrocarbons from a diatomite-type ore which comprises contacting the diatomite ore with a C/sub 4/-C/sub 10/ alcohol and thereafter contacting the diatomite ore-alcohol mixture with an aqueous alkaline solution to separate a hydrocarbon-alcohol phase and an alkaline aqueous phase containing the stripped diatomite ore. Thereafter, the alcohol is distilled off from the hydrocarbon phase and recycled back into the initial process.

  8. Boundaries of intergrowths between mineral individuals: A zone of secondary mineral formation in aggregates

    NASA Astrophysics Data System (ADS)

    Brodskaya, R. L.; Bil'Skaya, I. V.; Lyakhnitskaya, V. D.; Markovsky, B. A.; Sidorov, E. G.

    2007-12-01

    Intergrowth boundaries between mineral individuals in dunite of the Gal’moenan massif in Koryakia was studied in terms of crystal morphology, crystal optics, and ontogenesis. The results obtained allowed us to trace the staged formation of olivine and chromite and four generations of these minerals. Micro-and nanotopography of boundary surfaces between intergrown mineral individuals of different generations was examined with optic, electron, and atomic force microscopes. The boundaries between mineral individuals of different generations are distinguished by their microsculpture for both olivine and chromite grains. Both minerals demonstrate a compositional trend toward refinement from older to younger generations. The decrease in the iron mole fraction in olivine and chromite is accompanied by the crystallization of magnetite along weakened zones in olivine of the first generation and as outer rims around the chromite grains of the second generation observable under optic and electronic microscopes. The subsequent refinement of chromite results in the release of PGE from its lattice, as established by atomic power microscopy. The newly formed PGM are localized at the boundaries between mineral individuals and, thus, mark a special stage in the ontogenetic evolution of mineral aggregates. Further recrystallization is expressed in the spatial redistribution of grain boundaries and the formation of monomineralic intergrowth boundaries, i.e., the glomerogranular structure of rock and substructures of PGM, chromite, and olivine grains as intermediate types of organization of the granular assemblies in the form of reticulate, chain, and cellular structures and substructures of aggregates.

  9. Enhancing the stability of copper chromite catalysts for the selective hydrogenation of furfural with ALD overcoating (II) – Comparison between TiO2 and Al2O3 overcoatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Hongbo; Canlas, Christian; Kropf, A. Jeremy

    2015-01-01

    TiO2 atomic layer deposition (ALD) overcoatings were applied to copper chromite catalysts to increase the stability for 2-furfuraldehyde (“furfural”) hydrogenation. After overcoating, about 75% activity was preserved compared to neat copper chromite: much higher activity than an alumina ALD overcoated catalyst with a similar number of ALD cycles. The effects of ALD TiO2 on the active Cu nanoparticles were studied extensively using both in-situ TPR/isothermal-oxidation and in-situ furfural hydrogenation via Cu XAFS. The redox properties of Cu were modified only slightly by the TiO2 ALD overcoat. However, a subtle electronic interaction was observed between the TiO2 ALD layers and themore » Cu nanoparticles. With calcination at 500 °C the interaction between the TiO2 overcoat and the underlying catalyst is strong enough to inhibit migration and site blocking by chromite, but is sufficiently weaker than the interaction between the Al2O3 overcoat and copper chromite that it does not strongly inhibit the catalytic activity of the copper nanoparticles.« less

  10. Solvent extraction of diatomite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, W.

    1984-07-24

    There is provided a method of extracting hydrocarbons from a diatomite ore. The particle size of the ore is first reduced to form a processed ore. The processed ore is then mixed with a substantially irregular granular material to form an unstratified ore mixture having increased permeability to an extracting solvent. The unstratified ore mixture is then permeated with an extracting solvent to obtain a hydrocarbon-solvent stream from which hydrocarbons are subsequently separated. The irregular granular material may be sand.

  11. Chemistry of chromites from Arroio Grande Ophiolite (Dom Feliciano Belt, Brazil) and their possible connection with the Nama Group (Namibia)

    NASA Astrophysics Data System (ADS)

    Ramos, Rodrigo Chaves; Koester, Edinei; Porcher, Carla Cristine

    2017-12-01

    The present paper shows a mineral chemistry study in chromites found in serpentine-talc schists of the Arroio Grande Ophiolite, located in the southeastern Dom Feliciano Belt, near the Brazil/Uruguay border. Using electron microscope scanning and electron microprobe techniques, this study found a supra-subduction zone signature in the chromites, together with evidence of metasomatism. It corroborates previous hypothesis that suggested a supra-subduction zone origin for the protoliths of the Arroio Grande meta-igneous rocks and a metasomatic origin for the chromite-bearing magnesian schists. The studied chromites present high Cr# (0.65-0.77) and Fe2+# (0.88-0.95), low MgO (0.85-2.47 wt%) and TiO2 (0.01-0.19 wt%) and anomalous high concentration of ZnO (up to 1.97 wt%). The results were compared with chemical data from detrital chromites from the Schwarzrand and Fish River Subgroups of the Nama Group (Namibia), demonstrating that they are compositionally similar with those found in the latter. These chromites, in turn, are believed to have been derived from the oceanic Marmora Terrane (Gariep Belt) in the west (present-day coordinates). Taking into consideration that oceanic metamafites from both the latter and the Arroio Grande Ophiolite share common bulk-rock geochemical features (in this paper interpreted as fragments of the same paleo-ocean floor - the Marmora back-arc basin), it is possible to raise the hypothesis that detrital material derived from the studied ophiolite might also be found in Nama Group. It is reinforced by the fact that sediments (related to the Pelotas-Aiguá Batholith granitoids) derived from the easternmost Dom Feliciano Belt, i.e. the region where Arroio Grande Ophiolite is located, is found in both Schwarzrand and Fish River Subgroups. Thus, we suggest that Arroio Grande Ophiolite detrital sediments might also have contributed to the Nama Basin infilling during Late Ediacaran-Lower Cambrian.

  12. Crystallization of high-Ca chromium garnet upon interaction of serpentine, chromite, and Ca-bearing hydrous fluid

    NASA Astrophysics Data System (ADS)

    Chepurov, A. A.; Turkin, A. I.; Pokhilenko, N. P.

    2017-10-01

    The results of experimental modeling of the conditions of crystallization of high-Ca chromium garnets in the system serpentine-chromite-Ca-Cr-bearing hydrous fluid at a pressure of 5 GPa and temperature of 1300°C are reported. The mineral association including quantitatively predominant high-Mg olivine and diopside-rich clinopyroxene, bright-green garnet, and newly formed chrome spinel was formed. Garnet mostly crystallized around primary chromite grains and was characterized by a high concentration of CaO and Cr2O3. According to the chemical composition, garnets obtained are close to the uvarovite-pyrope varieties, which enter the composition of relatively rare natural paragenesis of garnet wehrlite. The experimental data obtained clearly show that high-Ca chromium garnets are formed in the reaction of chromite-bearing peridotite and Ca-rich fluid at high P-T parameters.

  13. Explosion-assisted preparation of dispersed gold-bearing different-grade ore for selective mining

    NASA Astrophysics Data System (ADS)

    Trubachev, AI; Zykov, NV

    2017-02-01

    It is found that there are transient zones (between quality and off-quality ore areas) with the respective content of useful component in an ore body, and a variant of explosive treatment of such zones before the selective mining is put forward. Practicability of two processing technologies is evaluated: processing of high-grade and low-grade ore from the transient zones and heap leaching of metals from the low-grade and impoverished ore. Open mining technology is conventional truck-and-shovel scheme, with distributed ore flows to processing plant and (or) to heap leaching, which generally enhances the mine efficiency.

  14. The Problem of Preconcentration of Uranium Ores by Physical Processes; LES PROBLEMES DE LA PRECONCENTRATION DES MINERAIS D'URANIUM PAR VOIE PHYSIQUE. LE TRIAGE ELECTRONIQUE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vuchot, L.; Ginocchio, A. et al.

    1959-10-31

    As uranium ores, like most other ores, are not definite substances which can be treated directly for the production of the metal, the ores must be concentrated. The common physical processes used for all ores, such as sieving, gravimetric separation, flotation, electromagnetic separation, and electrostatic separation, are applicable to the beneficiation of uranium. The radioactivity of uranium ores has led to a radiometric method for the concentration. This method is described in detail. As an example, the preconcentration of Forez ores is discussed. (J.S.R.)

  15. Intensification of the Reverse Cationic Flotation of Hematite Ores with Optimization of Process and Hydrodynamic Parameters of Flotation Cell

    NASA Astrophysics Data System (ADS)

    Poperechnikova, O. Yu; Filippov, L. O.; Shumskaya, E. N.; Filippova, I. V.

    2017-07-01

    The demand of high grade iron ore concentrates is a major issue due to the depletion of rich iron-bearing ores and high competitiveness in the iron ore market. Iron ore production is forced out to upgrade flowsheets to decrease the silica content in the pelettes. Different types of ore have different mineral composition and texture-structural features which require different mineral processing methods and technologies. The paper presents a comparative study of the cationic and anionic flotation routes to process a fine-grain oxidized iron ore. The modified carboxymethyl cellulose was found as the most efficient depressant in reverse cationic flotation. The results of flotation optimization of hematite ores using matrix of second-order center rotatable uniform design allowed to define the collector concentration, impeller rotation speed and air flowrate as the main flotation parameters impacting on the iron ore concentrate quality and iron recovery in a laboratory flotation machine. These parameters have been selected as independent during the experiments.

  16. 40 CFR 63.11640 - Am I subject to this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) National Emission Standards for Hazardous Air Pollutants: Gold Mine Ore Processing and Production Area... subject to this subpart if you own or operate a gold mine ore processing and production facility as... source. The affected sources are each collection of “ore pretreatment processes” at a gold mine ore...

  17. 40 CFR 63.11640 - Am I subject to this subpart?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) National Emission Standards for Hazardous Air Pollutants: Gold Mine Ore Processing and Production Area... subject to this subpart if you own or operate a gold mine ore processing and production facility as... source. The affected sources are each collection of “ore pretreatment processes” at a gold mine ore...

  18. 40 CFR 63.11640 - Am I subject to this subpart?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) National Emission Standards for Hazardous Air Pollutants: Gold Mine Ore Processing and Production Area... subject to this subpart if you own or operate a gold mine ore processing and production facility as... source. The affected sources are each collection of “ore pretreatment processes” at a gold mine ore...

  19. 40 CFR 63.11640 - Am I subject to this subpart?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) National Emission Standards for Hazardous Air Pollutants: Gold Mine Ore Processing and Production Area... subject to this subpart if you own or operate a gold mine ore processing and production facility as... source. The affected sources are each collection of “ore pretreatment processes” at a gold mine ore...

  20. 40 CFR 63.9582 - What parts of my plant does this subpart cover?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Taconite Iron Ore Processing... applies to each new and existing affected source at your taconite iron ore processing plant. (b) The affected sources are each new or existing ore crushing and handling operation, ore dryer, indurating...

  1. 40 CFR 63.9582 - What parts of my plant does this subpart cover?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Taconite Iron Ore Processing... applies to each new and existing affected source at your taconite iron ore processing plant. (b) The affected sources are each new or existing ore crushing and handling operation, ore dryer, indurating...

  2. 40 CFR 63.9582 - What parts of my plant does this subpart cover?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Taconite Iron Ore Processing... applies to each new and existing affected source at your taconite iron ore processing plant. (b) The affected sources are each new or existing ore crushing and handling operation, ore dryer, indurating...

  3. 40 CFR 63.9582 - What parts of my plant does this subpart cover?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Taconite Iron Ore Processing... applies to each new and existing affected source at your taconite iron ore processing plant. (b) The affected sources are each new or existing ore crushing and handling operation, ore dryer, indurating...

  4. 40 CFR 63.9582 - What parts of my plant does this subpart cover?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Taconite Iron Ore Processing... applies to each new and existing affected source at your taconite iron ore processing plant. (b) The affected sources are each new or existing ore crushing and handling operation, ore dryer, indurating...

  5. Understanding the residence of Co in ore minerals - towards the development of novel Co extraction strategies for laterite deposits

    NASA Astrophysics Data System (ADS)

    Dybowska, Agnieszka; Norman, Rachel; Schofield, Paul; Herrington, Richard

    2017-04-01

    Cobalt has unique properties highly valued for many applications essential to the green economy. It has been classified as a critical raw material due to the particularly high risk of supply shortage and its importance for the value chain. Despite low crustal abundance (25ppm), Co is concentrated by various geological processes to concentrations suitable for mining, however the majority of Co is recovered as a by-product of Cu and Ni processing in three principal geological settings: hydrothermal, magmatic and lateritic. Cobalt-rich laterites, which provide 20% of the world's Co, are mainly processed using energy-inefficient pyrometallurgical techniques or high-pressure acid leaching technologies often optimised for extraction of other elements, which can leave between 50 and 80% of the Co unrecovered. In order to develop more efficient Co extraction strategies, understanding the residence of Co in ore minerals is essential. To this end, we are undertaking a detailed mineralogical, chemical and atomistic-scale characterization of Co in samples from a range of laterite deposits. Bulk samples representative of the average ore material were sourced from a variety of undeveloped laterite deposits: Shevchenko (Kazakhstan), Acoje (Philippines), Nkamouna (Cameroon) and Piauí (Brazil). Bulk chemical and mineralogical characterisation was undertaken with ICP-OES/MS and XRD, followed by spatially resolved chemical and mineralogical imaging at the micron scale using µXRD, EPMA, SEM and synchrotron-based µXRF. The chemical state and local environment of Co were determined using X ray spectroscopy (μXANES and μEXAFS). The total concentrations of Co ranged from 630 to 2780 mg/kg. The ore mineral assemblage in the various samples includes goethite, maghemite, hematite, quartz, talc, serpentines, chlorites, smectites, kaolinite and chromites. Manganese oxide minerals are present but, due to their poor crystallinity and low concentration, are not routinely detectable with bulk XRD. These low abundance minerals, identified in the samples using Raman spectroscopy, µXRD and EPMA, proved however to be very important Co-hosting phases. Electron microscopy and µ-XRF mapping revealed a strong Mn and Co association in all samples but little correlation between Co and Fe. The important determinant of Co concentration is thus its association with Mn oxides, a variety of which have been found in the samples studied. For example, in Shevchenko laterite asbolane was identified with Co concentrations varying from 0.25 to 12.4 wt% (6.3 wt% on average). Goethite was found to carry only minor Co i.e. below 0.03 wt% or 0.1-0.2 wt%. In samples from the Nkamouna laterite Mn oxide minerals were found to contain Co ranging widely from below 1 wt% in tectomanganate phases such as hollandite and pyrolusite, 5.5% wt% in lithiophorite and up to 21 wt% in lithiophorite-asbolane intermediates. No Co or minor Co (<0.1 wt%) was detected in Fe oxides and oxy-hydroxides. XANES spectroscopy shows that Co is bound in a range of Mn oxide minerals as Co3+. The structural environment of Co in these minerals is very similar with Co in octahedral coordination. Analysis of the EXAFS data for asbolane shows an apparent high degree of structural order around Co which suggest that Co is present as clustered aggregates. Our results indicate that Co should be efficiently and selectively removed from the studied laterites by targeted solubilisation of Mn oxides, which can be achieved via, for example, microbially mediated reductive mineral dissolution.

  6. Holistic processing, contact, and the other-race effect in face recognition.

    PubMed

    Zhao, Mintao; Hayward, William G; Bülthoff, Isabelle

    2014-12-01

    Face recognition, holistic processing, and processing of configural and featural facial information are known to be influenced by face race, with better performance for own- than other-race faces. However, whether these various other-race effects (OREs) arise from the same underlying mechanisms or from different processes remains unclear. The present study addressed this question by measuring the OREs in a set of face recognition tasks, and testing whether these OREs are correlated with each other. Participants performed different tasks probing (1) face recognition, (2) holistic processing, (3) processing of configural information, and (4) processing of featural information for both own- and other-race faces. Their contact with other-race people was also assessed with a questionnaire. The results show significant OREs in tasks testing face memory and processing of configural information, but not in tasks testing either holistic processing or processing of featural information. Importantly, there was no cross-task correlation between any of the measured OREs. Moreover, the level of other-race contact predicted only the OREs obtained in tasks testing face memory and processing of configural information. These results indicate that these various cross-race differences originate from different aspects of face processing, in contrary to the view that the ORE in face recognition is due to cross-race differences in terms of holistic processing. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. 40 CFR 63.11651 - What definitions apply to this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... mine ore at gold mine ore processing and production facilities prior to the cyanide leaching process... are generated from leaching gold ore with a dilute cyanide solution. Quenching means a process in... the presence of steam, after the gold has been stripped from the carbon. Carbon processes with mercury...

  8. Photocatalytic degradation and photo-Fenton oxidation of Congo red dye pollutants in water using natural chromite—response surface optimization

    NASA Astrophysics Data System (ADS)

    Shaban, Mohamed; Abukhadra, Mostafa R.; Ibrahim, Suzan S.; Shahien, Mohamed. G.

    2017-12-01

    Refined natural Fe-chromite was characterized by XRD, FT-IR, reflected polarized microscope, XRF and UV spectrophotometer. Photocatalytic degradation and photo-Fenton oxidation of Congo red dye by Fe-chromite was investigated using 1 mL H2O2. The degradation of dye was studied as a function of illumination time, chromite mass, initial dye concentration, and pH. Fe-chromite acts as binary oxide system from chromium oxide and ferrous oxide. Thus, it exhibits photocatalytic properties under UV illumination and photo-Fenton oxidation after addition of H2O2. The degradation in the presence of H2O2 reached the equilibrium stage after 8 h (59.4%) but in the absence of H2O2 continued to 12 h (54.6%). Photocatalytic degradation results fitted well with zero, first order and second order kinetic model but it represented by second order rather than by the other models. While the photo-Fenton oxidation show medium fitting with the second order kinetic model only. The values of kinetic rate constants for the photo-Fenton oxidation were greater than those for the photocatalytic degradation. Thus, degradation of Congo red dye using chromite as catalyst is more efficient by photo-Fenton oxidation. Based on the response surface analysis, the predicted optimal conditions for maximum removal of Congo red dye by photocatalytic degradation (100%) were 12 mg/l, 0.14 g, 3, and 11 h for dye concentration, chromite mass, pH, and illumination time, respectively. Moreover, the optimum condition for photo-Fenton oxidation of dye (100%) is 13.5 mg/l, 0.10 g, 4, and 10 h, respectively.

  9. Dissolution Behavior of Mg from Magnesia-Chromite Refractory into Al-killed Molten Steel

    NASA Astrophysics Data System (ADS)

    Liu, Chunyang; Yagi, Motoki; Gao, Xu; Kim, Sun-Joong; Huang, Fuxiang; Ueda, Shigeru; Kitamura, Shin-ya

    2018-06-01

    Magnesia-chromite refractory materials are widely employed in steel production, and are considered a potential MgO source for the generation of MgO·Al2O3 spinel inclusions in steel melts. In this study, a square magnesia-chromite refractory rod was immersed into molten steel of various compositions held in an Al2O3 crucibles. As the immersion time was extended, Mg and Cr gradually dissolved from the magnesia-chromite refractory, and the Mg and Cr contents of the steel melts increased. However, it was found that the inclusions in the steel melts remained as almost pure Al2O3 because the Mg content of the steel melts was low, approximately 1 ppm. On the surface of the magnesia-chromite refractory, an MgO·Al2O3 spinel layer with a variable composition was formed, and the thickness of the MgO·Al2O3 spinel layer increased with the immersion time and the Al content of the steel melts. At the rod interface, the formed layer consisted of MgO-saturated MgO·Al2O3 spinel. The MgO content decreased along the thickness direction of the layer, and at the steel melts interface, the formed layer consisted of Al2O3-saturated MgO·Al2O3 spinel. Therefore, the low content of Mg in steel melts and the unchanged inclusions were because of the equilibrium between Al2O3-saturated MgO·Al2O3 layer and Al2O3. In addition, the effects of the Al and Cr contents of the steel melts on the dissolution of Mg from the magnesia-chromite refractory are insignificant.

  10. Reduction of Chromite in Liquid Fe-Cr-C-Si Alloys

    NASA Astrophysics Data System (ADS)

    Demir, Orhan; Eric, R. Hurman

    1994-08-01

    The kinetics and the mechanism of the reduction of chromite in Fe-Cr-C-Si alloys were studied in the temperature range of 1534 °C to 1702 °C under an inert argon atmosphere. The rotating cylinder technique was used. The melt consisted of 10 and 20 wt Pct chromium, the carbon content varied from 2.8 wt Pct to saturation, and the silicon content varied from 0 to 2 wt Pct. The rotational speed of the chromite cylinder ranged from 100 to 1000 rpm. The initial chromium to iron ratios of the melts varied between 0.11 and 0.26. In Fe-C melts, the effect of rotational speed on the reduction of chromite was very limited. Carbon saturation (5.4 wt Pct) of the alloy caused the reduction to increase 1.5 times over the reduction observed in the unsaturated (4.87 wt Pct) alloy at a given rotational speed. The addition of chromium to the carbon-saturated Fe-C alloy increased the reduction rate. The addition of silicon to the liquid phase increased the reduction rate drastically. The reduction of chromite in Fe-Cr-C melts is hindered because of the formation of, approximately, a 1.5-mm-thick M7C3-type carbide layer around the chromite cylinders. This carbide layer did not form when silicon was present in the melt. It was found that the reduction rate is controlled by the liquid-state mass transfer of oxygen. The calculated apparent activation energies for diffusion were 102.9 and 92.9 kJ/mol of oxygen in the Si-O and C-O systems, respectively.

  11. 40 CFR 440.140 - Applicability; description of the gold placer mine subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE... that produce gold or gold bearing ores from placer deposits; and (2) The beneficiation processes which... yards (cu yd) of ore per year, or to dredges which process less than 50,000 cu yd of ore per year, or to...

  12. 40 CFR 440.140 - Applicability; description of the gold placer mine subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE... that produce gold or gold bearing ores from placer deposits; and (2) The beneficiation processes which... yards (cu yd) of ore per year, or to dredges which process less than 50,000 cu yd of ore per year, or to...

  13. 40 CFR 440.140 - Applicability; description of the gold placer mine subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE... that produce gold or gold bearing ores from placer deposits; and (2) The beneficiation processes which... yards (cu yd) of ore per year, or to dredges which process less than 50,000 cu yd of ore per year, or to...

  14. An Exercise in X-Ray Diffraction Using the Polymorphic Transition of Nickel Chromite.

    ERIC Educational Resources Information Center

    Chipman, David W.

    1980-01-01

    Describes a laboratory experiment appropriate for a course in either x-ray crystallography or mineralogy. The experiment permits the direct observation of a polymorphic transition in nickel chromite without the use of a special heating stage or heating camera. (Author/GS)

  15. Chromite symplectites in Mg-suite troctolite 76535 as evidence for infiltration metasomatism of a lunar layered intrusion

    NASA Astrophysics Data System (ADS)

    Elardo, Stephen M.; McCubbin, Francis M.; Shearer, Charles K.

    2012-06-01

    Despite the very low chromium concentrations in its cumulus olivine (˜140 ppm), lunar troctolite 76535 contains large amounts of Cr sporadically, but highly concentrated, in symplectite assemblages consisting of Mg-Al-chromite and two pyroxenes. Previously proposed symplectite formation mechanisms include crystallization of trapped interstitial melt, diffusion of Cr from cumulus olivine, and/or remobilization of cumulus chromite grains. These mechanisms would imply that the highly Cr-depleted nature of Mg-suite parental magmas and their source materials inferred from cumulus olivine may be illusory. We have conducted a detailed petrologic and textural study of symplectites, as well as chromite veins, intercumulus assemblages, olivine-hosted melt inclusions and clinopyroxene-troilite veins in 76535 with the goals of constraining the origin of the symplectites, and the degree of Cr-depletion in Mg-suite magmas relative to other lunar basalts. Orthopyroxene and clinopyroxene in melt inclusions are depleted in Cr relative to their symplectite counterparts, averaging 900 and 1200 ppm vs. 7400 and 8100 ppm Cr2O3, respectively. Olivine in contact with symplectite assemblages may exhibit a diffusion profile of Cr going into olivine, whereas olivine boundaries away from symplectites show no diffusion profile. There is also a distinct lack of primary chromite as inclusions in cumulus phases and melt inclusions. Multiple textural observations, melt inclusion chemistry, and modeling of chromite-olivine equilibrium rule out previously proposed symplectite formation mechanisms, and strongly suggest that chromite was not a primary crystallization product of the 76535 parental magma. Accordingly, the post-cumulus addition of Cr and Fe is required to produce the symplectites. After considering multiple models, the addition of Cr and Fe to 76535 via infiltration metasomatism by an exogenous chromite-saturated melt is the model most consistent with multiple textural and geochemical observations. Failure of models that call upon Cr diffusion out of olivine grains imply that the observed Cr-depleted nature of olivine observed in many Mg-suite lithologies is a primary feature of the Cr-depleted nature of the Mg-suite parental magmas and their source materials. This substantial depletion of Cr in the magma relative to mare basalt magmas still requires a satisfactory explanation in order to be consistent with Mg-suite petrogenetic models and currently accepted bulk-Moon compositions. Additionally, if the intimate interaction of migrating melts with early lunar crustal lithologies was a widespread phenomenon after LMO solidification, it provides another mechanism by which to reset or delay closure of radiogenic isotopic systems and explain the Mg-suite-ferroan anorthosite age overlap.

  16. Paragenesis of multiple platinum-group mineral populations in Shetland ophiolite chromitite: 3D X-ray tomography and in situ Os isotopes

    NASA Astrophysics Data System (ADS)

    Prichard, H. M.; Barnes, Stephen J.; Dale, C. W.; Godel, B.; Fisher, P. C.; Nowell, G. M.

    2017-11-01

    Chromitite from the Harold's Grave locality in the mantle section of the Shetland ophiolite complex is extremely enriched in Ru, Os and Ir, at μg/g concentrations. High-resolution X-ray computed tomography on micro-cores from these chromitites was used to determine the location, size, distribution and morphology of the platinum-group minerals (PGM). There are five generations of PGM in these chromitites. Small (average 5 μm in equivalent sphere diameter, ESD) euhedral laurites, often with Os-Ir alloys, are totally enclosed in the chromite and are likely to have formed first by direct crystallisation from the magma as the chromite crystallised. Also within the chromitite there are clusters of larger (50 μm ESD) aligned elongate crystals of Pt-, Rh-, Ir-, Os- and Ru-bearing PGM that have different orientations in different chromite crystals. These may have formed either by exsolution, or by preferential nucleation of PGMs in boundary layers around particular growing chromite grains. Thirdly there is a generation of large (100 μm ESD) composite Os-Ir-Ru-rich PGM that are all interstitial to the chromite grains and sometimes form in clusters. It is proposed that Os, Ir and Ru in this generation were concentrated in base metal sulfide droplets that were then re-dissolved into a later sulfide-undersaturated magma, leaving PGM interstitial to the chromite grains. Fourthly there is a group of almost spherical large (80 μm ESD) laurites, hosting minor Os-Ir-Ru-rich PGM that form on the edge or enclosed in chromite grains occurring in a sheet crosscutting a chromitite layer. These may be hosted in an annealed late syn- or post magmatic fracture. Finally a few of the PGM have been deformed in localised shear zones through the chromitites. The vast majority of the PGM - including small PGM enclosed within chromite, larger interstitial PGM and elongate aligned PGM - have Os isotope compositions that give Re-depletion model ages approximately equal to the age of the ophiolite at ∼492 Ma. A number of other PGM - not confined to a single textural group - fall to more or less radiogenic values, with four PGM giving anomalously unradiogenic Os corresponding to an older age of ∼1050 Ma. The 187Os/188Os isotopic ratios for PGM from Cliff and Quoys, from the same ophiolite section, are somewhat more radiogenic than those at Harold's Grave. This may be due to a distinct mantle source history or possibly the assimilation of radiogenic crustal Os.

  17. 40 CFR 440.140 - Applicability; description of the gold placer mine subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Gold... gold bearing ores from placer deposits; and (2) The beneficiation processes which use gravity... applicable to any mines or beneficiation processes which process less than 1500 cubic yards (cu yd) of ore...

  18. Re-Os systematics of early proterozoic ferropicrites, Pechenga Complex, northwestern Russia: Evidence for ancient 187Os-enriched plumes

    NASA Astrophysics Data System (ADS)

    Walker, Richard J.; Morgan, John W.; Hanski, Eero J.; Smolkin, Valery F.

    1997-08-01

    The Re-Os isotopic systematics of various ferropicritic flows and sills of the Pechenga Complex, Russia, have been examined. During crystallization about 1.98 Ga ago, many of these bodies became highly differentiated. In addition, some of the larger igneous units are associated with major NiCu ore deposits. The melts that produced these rocks have been termed ferropicritic because of their high FeO and MgO contents. They are also enriched in light rare earth elements (LREEs), TiO 2, Zr, and many other incompatible trace elements. Previous studies have concluded that the ferropicrites were most likely derived from an Fe-rich mantle plume that had a complex history of long-term LREE depletion (initial ɛNd = + 1.4), but that also experienced a LREE enrichment event within 200 Ma of the generation of the rocks. Whole rock samples believed to be most representative of primary melt compositions indicate that initial melt concentrations of rhenium and osmium were approximately 1.1 ppb and 0.5 ppb, respectively. The high primary melt concentrations presumably made the osmium contained in the melts relatively immune to the effects of crustal contamination. Nonetheless, all ore-bearing intrusions examined show osmium isotopic evidence for crustal contamination. For example, the initial γOs for some primary magmatic sulfides from the Pilgujärvi intrusion average +46. Other ore-bearing intrusions, such as the Kammikivi sill, appear to have been similarly contaminated by crustal osmium during the injection of magma, with initial yo, values as high as +251. The seemingly high levels of crustal osmium may be attributed to the rapidly diminishing concentrations of osmium in the melts as the larger bodies differentiated, combined with localized in situ assimilation of the metasedimentary rocks that comprise the country rocks. The Re-Os systematics of some whole rock samples of both mineralized and sulfide-poor intrusions were affected by post-magmatic events, especially the greenschist grade metamorphism that impacted the rocks between about 1.7 and 1.8 Ga ago. The metamorphic effects are reflected in the recrystallization of many of the primary sulfides. As a consequence of this open-system behavior in many whole rock samples, the primary igneous Re-Os systematics of these rocks are best examined via analysis of magmatic phases such as chromite, olivine, clinopyroxene, and primary sulfides. Chromite and ilmenite+sulfide separates from two sulfide-poor lava flows, the Lammas and Keskitunturi, have characteristically low 187Re/ 188Os ( < l), and because of the limited age correction, precisely define the initial γOs of these systems to be +6.0±0.7. Because of the identical initial compositions of the two, spatially distinct lava flows, and the fact that these flows were extruded onto only slightly older volcanic rocks, we conclude that the +6.0 value reflects the composition of the mantle source and not minor crustal contamination. Although 187Os-enriched, plume-derived systems are common during the Phanerozoic, this is the earliest known evidence for the existence of long-term, Re-enriched mantle reservoirs. The most commonly invoked model to explain 187Os enrichments in Phanerozoic systems, oceanic crustal recycling, in this instance requires that very large proportions of oceanic crust were recycled into the mantle source and that the event was likely very ancient. Other options, such as core-mantle interaction and a stratified mantle, are also discussed.

  19. 40 CFR 63.9581 - Am I subject to this subpart?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) National Emission Standards for Hazardous Air Pollutants: Taconite Iron Ore Processing What This Subpart... taconite iron ore processing plant that is (or is part of) a major source of hazardous air pollutant (HAP) emissions on the first compliance date that applies to you. Your taconite iron ore processing plant is a...

  20. 40 CFR 63.9581 - Am I subject to this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) National Emission Standards for Hazardous Air Pollutants: Taconite Iron Ore Processing What This Subpart... taconite iron ore processing plant that is (or is part of) a major source of hazardous air pollutant (HAP) emissions on the first compliance date that applies to you. Your taconite iron ore processing plant is a...

  1. 40 CFR 63.9581 - Am I subject to this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) National Emission Standards for Hazardous Air Pollutants: Taconite Iron Ore Processing What This Subpart... taconite iron ore processing plant that is (or is part of) a major source of hazardous air pollutant (HAP) emissions on the first compliance date that applies to you. Your taconite iron ore processing plant is a...

  2. 40 CFR 63.9581 - Am I subject to this subpart?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) National Emission Standards for Hazardous Air Pollutants: Taconite Iron Ore Processing What This Subpart... taconite iron ore processing plant that is (or is part of) a major source of hazardous air pollutant (HAP) emissions on the first compliance date that applies to you. Your taconite iron ore processing plant is a...

  3. 40 CFR 63.9581 - Am I subject to this subpart?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) National Emission Standards for Hazardous Air Pollutants: Taconite Iron Ore Processing What This Subpart... taconite iron ore processing plant that is (or is part of) a major source of hazardous air pollutant (HAP) emissions on the first compliance date that applies to you. Your taconite iron ore processing plant is a...

  4. Archaean greenstone belts of Sierra Leone with comments on the stratigraphy and metallogeny

    NASA Astrophysics Data System (ADS)

    Umeji, A. C.

    Four belts of weakly metamorphosed volcano-sedimentary material, of about 2700 Ma, are enclosed by older granulites, gneisses and migmatites in the eastern part, and (i) a basal ultramafic unit followed by (ii) mafic to feldspathic differentiate and then (iii) a terminal sedimentary formation has been recognized in all the four belts and their average ratio is ultramafic: mafic (greenstone): sedimentary unit (2:5:3). The belts are linear and tightly folded along N-S to NE-SW axis which is also the regional grain of the structures in the older basement complex that engulfs them. Structural and geochronological evidences suggest that the deformation of these volcano-sedimentary supracrustals began during the Liberian tectonism ( c. 2700 Ma) and culminated at the beginning of the Eburnean (2200 Ma). Diapiric rise of K-rich younger Aechaean granites which sharphy trangressed all the earlier rocks and their structural trends, marked the last geotectonic event in the Archaean of this part of West Africa. Chromite cumulate and asbestiform deposits characterize the layered ultramafic unit. whilst gold and associated base metal sulphides which were derived from the volcanic units became hydrothermally concentrated close to the contact between the volcanic units and the overlying sediments, and also in the fault zones. Iron ore deposits are restricted to the sedimentary units where they occur as banded iron formation. It is only in the huge metasedimetary piles of the Sula-Kangari belt that deposits of iron ore occur in commercially viable quantities. The patterns of distribution, deformation and mineralization in these greenstone belts appear to fit closely into island arc model of plate tectonic theory.

  5. Fiber size and number in workers exposed to processed chrysotile asbestos, chrysotile miners, and the general population

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Churg, A.; Wiggs, B.

    1986-01-01

    We analyzed chrysotile and chrysotile-associated amphibole (largely tremolite) asbestos fibers in 21 workers exposed to various types of processed (milled) chrysotile ore, 20 long-term chrysotile miners, and 20 members of the general population (controls). Significantly greater amounts of both chrysotile and tremolite were found in processed-ore workers and miners than in controls. On average, the mean fiber lengths and aspect ratios for the mining and processed-ore-exposed workers were similar and were significantly greater than the values seen in the controls; within the processed-ore group, there was a marked variation in these parameters, and some workers appeared to be exposed tomore » fairly long, thin fibers. It was found empirically that the fiber size data, and to a lesser extent the concentration data, could be used to classify workers accurately into those with processed-ore exposure and controls. We conclude that fiber sizes in the lungs of processed-ore-exposed workers are similar to those of chrysotile miners and are considerably longer than those found in the general population; some processed-ore workers have longer fibers which might be responsible for higher disease incidences in certain working groups; tremolite accompanies chrysotile in a variable proportion of workers exposed to processed chrysotile products and might be important in the genesis of mesothelioma in such workers; and mineralogic analysis will usually detect exposure even when chrysotile has largely disappeared from lung tissue.« less

  6. Stochastic production phase design for an open pit mining complex with multiple processing streams

    NASA Astrophysics Data System (ADS)

    Asad, Mohammad Waqar Ali; Dimitrakopoulos, Roussos; van Eldert, Jeroen

    2014-08-01

    In a mining complex, the mine is a source of supply of valuable material (ore) to a number of processes that convert the raw ore to a saleable product or a metal concentrate for production of the refined metal. In this context, expected variation in metal content throughout the extent of the orebody defines the inherent uncertainty in the supply of ore, which impacts the subsequent ore and metal production targets. Traditional optimization methods for designing production phases and ultimate pit limit of an open pit mine not only ignore the uncertainty in metal content, but, in addition, commonly assume that the mine delivers ore to a single processing facility. A stochastic network flow approach is proposed that jointly integrates uncertainty in supply of ore and multiple ore destinations into the development of production phase design and ultimate pit limit. An application at a copper mine demonstrates the intricacies of the new approach. The case study shows a 14% higher discounted cash flow when compared to the traditional approach.

  7. 75 FR 28227 - National Emission Standards for Hazardous Air Pollutants: Gold Mine Ore Processing and Production...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-20

    ... published a proposed rule for mercury emissions from the gold mine ore processing and production area source... proposed rule (75 FR 22470). Several parties requested that EPA extend the comment period. EPA has granted...-AP48 National Emission Standards for Hazardous Air Pollutants: Gold Mine Ore Processing and Production...

  8. On prediction and discovery of lunar ores

    NASA Technical Reports Server (NTRS)

    Haskin, Larry A.; Colson, Russell O.; Vaniman, David

    1991-01-01

    Sampling of lunar material and remote geochemical, mineralogical, and photogeologic sensing of the lunar surface, while meager, provide first-cut information about lunar composition and geochemical separation processes. Knowledge of elemental abundances in known lunar materials indicates which common lunar materials might serve as ores if there is economic demand and if economical extraction processes can be developed, remote sensing can be used to extend the understanding of the Moon's major geochemical separations and to locate potential ore bodies. Observed geochemical processes might lead to ores of less abundant elements under extreme local conditions.

  9. Melt/mantle interaction and melt evolution in the Sartohay high-Al chromite deposits of the Dalabute ophiolite (NW China)

    NASA Astrophysics Data System (ADS)

    Zhou, M.-F.; Robinson, P. T.; Malpas, J.; Aitchison, J.; Sun, M.; Bai, W.-J.; Hu, X.-F.; Yang, J.-S.

    2001-06-01

    The Sartohay block of the Dalabute ophiolite consists chiefly of mantle harzburgite and lherzolite with minor dunite. These rocks host voluminous chromite deposits with lenticular or vein-like shapes. The podiform chromitites are associated with, and cross-cut by, numerous troctolite dykes. Chromite in the chromitites has Al 2O 3 (23-31 wt%), TiO 2 (0.29-0.44 wt%), and Cr 2O 3 contents (<45 wt%) with Cr#s [100Cr/(Cr+Al)] (<60), typical of high-Al chromite deposits. The host peridotites in Sartohay have been texturally and geochemically modified by magmas from which the high-Al chromitites and mafic dykes formed. Dunites commonly envelop the podiform chromite bodies and show transitional contacts with the peridotites. Some of the peridotites and chromitites contain plagioclase that crystallized from impregnated melts. The dunite locally grades into troctolite with increasing plagioclase contents. As a result of melt impregnation, peridotites and dunites show variable Ca and Al contents and LREE enrichment. The parental magma of the chromitites was likely tholeiitic in composition, derived from partial melting of the asthenospheric mantle in a rising diapir. The interaction between this magma and pre-existing lithospheric mantle, composed of depleted lherzolite, would have formed a more silicic, tholeiitic magma from which high-Al chromitites crystallized. During this interaction, harzburgite and dunite were depleted in modal pyroxene and enriched in some incompatible elements (such as Al, Ca and LREE) due to melt impregnation.

  10. Geology of the Zambales ophiolite, Luzon, Philippines

    USGS Publications Warehouse

    Rossman, D.L.; Castanada, G.C.; Bacuta, G.C.

    1989-01-01

    The Zambales ophiolite of western Luzon, Philippines, exposes a typical succession of basalt flows, diabasic dikes, gabbro and tectonized harzburgite. The age established by limiting strata is late Eocene. Lack of evidence of thrust faulting and the general domal disposition of the lithologie units indicate that the ophiolitic rocks are exposed by uplift. Highly complex internal layered structures within the complex are related to processes developed during formation of the ophiolite and the Zambales ophiolite may be one of the least disturbed (by emplacement) ophiolitic masses known. The exposed mass trends north and the upper surface plunges at low angles (a few degrees) to the north and south. The chemistry and composition of the rocks in the northwest part of the Zambales area (Acoje block) is distinct from that in the southeastern segment (Coto block). The Acoje block, according to Evans (1983) and Hawkins and Evans (1983), resembles (on a chemical basis) arc-tholeiite series rocks from intra-island arcs and the rocks in the Coto block are typical back-arc basin rock series. The present writer believes that the ophiolite composes a single genetic unit and that the changes in composition are the result of changes that took place during the initial formation. The gabbro probably formed below a spreading center in an elongate, in cross section, V-shaped, magma chamber. The gabbro is estimated by the writer to be less than 2 km thick and may be less than 1 km in places. Numerous erosional windows through the gabbro in the northern and eastern side of the Zambales area show that the gabbro remaining in those areas is likely to be only a few hundred meters thick. Harzburgite is exposed to a depth of about 800 m in the Bagsit River area and this may be the deepest part of the ophiolite accessible for study on which there is any control on depth. A transitional zone, about 200 m thick lying between the gabbro and harzburgite, is composed of serpentinized dunite. Commonly the dunite contains disseminated sulfide minerals and at the Acoje Mines, platinum-group elements. A compositional layering within the gabbro is in places cumulate in the lower part of the unit but may have formed by nucleation higher up on the relatively steep sides of the magma chamber. A widespread gneissic banding in the gabbro forms large mappable structures which are many times more complex than is the disposition of the major rock units. These structures are believed to be the result of extensive slumping in the magma chamber. The structure produced by the cumulate layering merges with the gneissic banding, commonly without discernible change in attitude. This tectonic layered structure crosses the gabbro-peridotite boundary at any angle without seeming to disturb the original rock distribution. At greater depths below the boundary (ca. 800 m), the harzburgite contains low dipping banding, which probably reflects the result of differential movement within the mantle. Chromite occurs almost exclusively in a zone that generally lies no more than 200-300 m below the gabbro-peridotite boundary. Refractory-grade chromite is found in this zone below the olivine gabbro in the Goto block and as low-grade metallurgical grade chromite below norite in the Acoje block. At Acoje Mines the chromite is present in layers in dunite, which the writer interprets as being distributed in a zone along the gently dipping (ca. 25??) gabbro-peridotite boundary. The steeply dipping (ca. 60-80 ?? ) individual layers lie en echelon along the boundary at an angle (ca. 50 ?? ) to the contact. At Coto the chromite forms large discontinuous masses in the lowest dunite and in the uppermost harzburgite. Except for the chromite present as layers at Acoje, the regional tectonic layering crosses the chromite deposits without structural deviation. The chromite deposits and associated peridotite may be cumulate in origin, but have been modified to such an extent that cumulate textures are gener

  11. Geology and economic potential for chromite in the Zhob Valley ultramafic rock complex, Hindubagh, Quetta division, West Pakistan

    USGS Publications Warehouse

    Rossman, D.L.; Ahmad, Zaki; Rahman, Hamidur

    1971-01-01

    The ultramafic rocks making up the Zhob Valley igneous complex have yielded small amounts of metallurgical-grade chromite since the early part of the century. From 1968-1970 a cooperative study undertaken by the Geological Survey of Pakistan and the U. S. Geological Survey, under the auspices of the Government of Pakistan and the Agency for International Development, evaluated the chromite potential of the Zhob Valley area and provided data for effective exploration. The Jung Tor Ghar ultramafic rock mass, covering an area of about 45 square miles, is a thrust-fault block completely surrounded and underlain (?) by sedimentary rocks as young as Late Cretaceous in age. The igneous rocks were thrust from the northwest along an east-trending, north-dipping fault in Late Cretaceous or Paleocene time and were peneplaned, dissected, and deeply laterized by mid-Eocene time. The ultramafic rocks consist of interlayered harzburgite and dunite and a cross-cutting dunite here called transgressive dunite. Layered structure passes without discernible deviation from the interlayered harzburgite-dunite through the transgressive dunite. The lowest rocks in the mass, composed mainly of transgressive dunite, grade upward into the interlayered rock about 3,000 feet above the fault block base. The upper transgressive dunites tend to form interconnecting linear networks and probably a few pipe-like structures. The transgressive dunite is thought to have formed by action of water derived from the underlying sedimentary rocks; the water heated by the hot ultramafic rock (at the time of emplacement) altered the pyroxene to olivine and talc, and, with lowering temperature, to serpentine. Other interpretations are possible. Virtually all the chromite in the Jung Tor Ghar lies in or immediately above the masses of transgressive dunite. This fact provides a key to chromite exploration: The most favorable zone for prospecting lies in the vicinity of the upper contacts of the transgressive dunite masses where they. are flatly dipping; if the transgressive dunite masses are steeply dipping or pipe-like, the chromite tends to be more centrally located. The Jung Tor Ghar is believed to contain enough unmined chromite at practical minable depths to equal or exceed that mined to date but the individual deposits are likely to be small.

  12. High-pressure behaviour of Cr-Fe-Mg-Al spinels: applications to diamond geobarometry

    NASA Astrophysics Data System (ADS)

    Periotto, Benedetta; Bruschini, Enrico; Nestola, Fabrizio; Lenaz, Davide; Princivalle, Francesco; Andreozzi, Giovanni B.; Bosi, Ferdinando

    2014-05-01

    Spinels belonging to the chromite - magnesiochromite - hercynite (FeCr2O4-MgCr2O4-FeAl2O4) system are among the most common inclusions found in diamonds (Stachel and Harris 2008). In particular, although FeCr2O4 and MgCr2O4 components sum to between 85 and 88% of spinels found in diamonds, hercynite FeAl2O4 plays a not negligible role in determining their thermo-elastic properties with concentrations reaching 7-9 % (other minor end-members like MgAl2O4, MgFe2O4 and Fe2O3 rarely reach 2-3% in total, see Lenaz et al. 2009). Recent studies were focused on the determination of the diamond formation pressure by the so-called "elastic method" (see for example Nestola et al. 2011 and references therein). It was demonstrated that accurate and precise thermo-elastic parameters are fundamental to minimize the uncertainty of formation pressure. In this work we have determined the equations of state at room temperature of three synthetic spinel end-members chromite - magnesiochromite - hercynite and one natural spinel crystal extracted from a diamond (from Udachnaya mine, Siberia, Russia) by single-crystal X-ray diffraction in situ at high-pressure. A diamond-anvil cell was mounted on a STADI IV diffractometer equipped with a point detector and motorized by SINGLE software (Angel and Finger 2011). The natural crystal was investigated to test (and possibly validate) the "empirical prediction model", capable to provide bulk modulus and its first pressure derivative only knowing the composition of the spinels found in diamonds. Such prediction model could be used to obtain pressure of formation for the diamond-spinel pair through the elastic method. Details and results will be discussed. The research was funded by the ERC Starting Grant to FN (grant agreement n° 307322). References Angel R.J., Finger L.W. (2011) SINGLE A program to control single-crystal diffractometers. Journal of Applied Crystallography, 44, 247-251. Lenaz D., Logvinova A.M., Princivalle F., Sobolev N. (2009) Structural parameters of chromite included in diamond and kimberlites from Siberia: a new tool for discriminating source. American Mineralogist, 94, 1067-1070. Nestola F., Nimis P., Ziberna L., Longo M., Marzoli A., Harris J.W., Manghnani M.H., Fedortchouk Y. (2011) First crystal-structure determination of olivine in diamond: composition and implications for provenance in the Earth's mantle. Earth and Planetary Science Letters, 305, 249-255. Stachel, T., and Harris, J.W. (2008) The origin of cratonic diamonds - constraints from mineral inclusions. Ore Geology Reviews, 34, 5-32.

  13. SEM, optical, and Moessbauer studies of submicrometer chromite in Allende

    NASA Technical Reports Server (NTRS)

    Housley, R. M.

    1982-01-01

    New scanning electron and optical microscope results are presented showing that sub-micrometer chromite is abundant along healed cracks and grain boundaries in Allende chondrule olivine. Some wider healed cracks also contain pentlandite and euhedral Ni3Fe grains. Also reported are Moessbauer measurements on Allende HF-HCl residues confirming a high Fe(+++)/Fe(++) ratio.

  14. Biomining: metal recovery from ores with microorganisms.

    PubMed

    Schippers, Axel; Hedrich, Sabrina; Vasters, Jürgen; Drobe, Malte; Sand, Wolfgang; Willscher, Sabine

    2014-01-01

    Biomining is an increasingly applied biotechnological procedure for processing of ores in the mining industry (biohydrometallurgy). Nowadays the production of copper from low-grade ores is the most important industrial application and a significant part of world copper production already originates from heap or dump/stockpile bioleaching. Conceptual differences exist between the industrial processes of bioleaching and biooxidation. Bioleaching is a conversion of an insoluble valuable metal into a soluble form by means of microorganisms. In biooxidation, on the other hand, gold is predominantly unlocked from refractory ores in large-scale stirred-tank biooxidation arrangements for further processing steps. In addition to copper and gold production, biomining is also used to produce cobalt, nickel, zinc, and uranium. Up to now, biomining has merely been used as a procedure in the processing of sulfide ores and uranium ore, but laboratory and pilot procedures already exist for the processing of silicate and oxide ores (e.g., laterites), for leaching of processing residues or mine waste dumps (mine tailings), as well as for the extraction of metals from industrial residues and waste (recycling). This chapter estimates the world production of copper, gold, and other metals by means of biomining and chemical leaching (bio-/hydrometallurgy) compared with metal production by pyrometallurgical procedures, and describes new developments in biomining. In addition, an overview is given about metal sulfide oxidizing microorganisms, fundamentals of biomining including bioleaching mechanisms and interface processes, as well as anaerobic bioleaching and bioleaching with heterotrophic microorganisms.

  15. Dephosphorization of High-Phosphorus Iron Ore Using Different Sources of Aspergillus niger Strains.

    PubMed

    Xiao, Chunqiao; Wu, Xiaoyan; Chi, Ruan

    2015-05-01

    High-phosphorus iron ore is traditionally dephosphorized by chemical process with inorganic acids. However, this process is not recommended nowadays because of its high cost and consequent environmental pollution. With the current tendency for development of a low-cost and eco-friendly process, dephosphorization of high-phosphorus iron ore through microbial process with three different sources of Aspergillus niger strains was studied in this study. Results show that the three strains of A. niger could grow well in the broth, and effectively remove phosphate from high-phosphorus iron ore during the experiments. Meanwhile, the total iron in the broth was also increased. Acidification of the broth seemed to be the major mechanism for the dephosphorization by these strains. High-pressure liquid chromatography analysis indicated that various organic acids were secreted in the broth, which caused a significant drop of the broth pH. Scanning electron microscopy of ore residues revealed that the high-phosphorus iron ore was obviously destroyed by the actions of these strains. Ore residues by energy-dispersive X-ray microanalysis and Fourier transform infrared spectroscopy indicated that the phosphate was obviously removed from the high-phosphorus iron ore. The optimization of the dephosphorization by these strains was also investigated, and the maximum percentages of phosphate removal were recorded at temperature 27-30 °C, initial pH 5.0-6.5, particle size 0.07-0.1 mm, and pulp density of 2-3% (w/v), respectively. The fungus A. niger was found to have good potential for the dephosphorization of high-phosphorus iron ore, and this microbial process seems to be economic and effective in the future industrial application.

  16. PROCESS FOR THE CONCENTRATION OF ORES CONTAINING GOLD AND URANIUM

    DOEpatents

    Gaudin, A.M.; Dasher, J.

    1958-06-10

    ABS>A process is described for concentrating certain low grade uranium and gold bearing ores, in which the gangue is mainly quartz. The production of the concentrate is accomplished by subjecting the crushed ore to a froth floatation process using a fatty acid as a collector in conjunction with a potassium amyl xanthate collector. Pine oil is used as the frothing agent.

  17. Silicophosphate Sorbents, Based on Ore-Processing Plants' Waste in Kazakhstan

    ERIC Educational Resources Information Center

    Kubekova, Sholpan N.; Kapralova, Viktoria I.; Telkov, Shamil A.

    2016-01-01

    The problem of ore-processing plants' waste and man-made mineral formations (MMF) disposal is very important for the Republic of Kazakhstan. The research of various ore types (gold, polymetallic, iron-bearing) MMF from a number of Kazakhstan's deposits using a complex physical and chemical methods showed, that the waste's main components are…

  18. Safety survey of Iran's mines and comparison to some other countries.

    PubMed

    Bagherpour, Raheb; Yarahmadi, Reza; Khademian, Amir; Almasi, Seied Najmedin

    2017-03-01

    The increasing development of mining activities in Iran makes it necessary to have a closer look at the safety issues. Analysis of different incidents and damages in mines can be helpful for the adoption of suitable approaches to prevent the incidents. In this study, safety statistics of Iran's mines in 2011 and 2012 were assessed and important incidents and injuries happening to employees for 12 different groups of minerals were evaluated and eventually compared to the situation of some other countries. According to the obtained results, the average incidence probability in Iran's mines was calculated to be 0.18 for 2011 and the incidence probability of coal, copper and iron ore mines was greater than others. The injury rate of Iran's mines was 106 and 164 out of 10,000 persons for 2011 and 2012, respectively, and the maximum values of injury rate belonged to coal, dimension stone and aggregate mines. Also, it turned out that the fatal rate per 100 tons of production had the highest values in chromite and coal mines. Besides, comparison of injury rate and the fatal rate in Iran and some countries showed that the safety situation in Iran's mines was in a fair condition.

  19. Petrology and geochemistry of meta-ultramafic rocks in the Paleozoic Granjeno Schist, northeastern Mexico: Remnants of Pangaea ocean floor

    NASA Astrophysics Data System (ADS)

    Torres-Sánchez, Sonia Alejandra; Augustsson, Carita; Jenchen, Uwe; Rafael Barboza-Gudiño, J.; Alemán Gallardo, Eduardo; Ramírez Fernández, Juan Alonso; Torres-Sánchez, Darío; Abratis, Michael

    2017-08-01

    The Granjeno Schist is a meta-volcanosedimentary upper Paleozoic complex in northeastern Mexico. We suggest different tectonic settings for metamorphism of its serpentinite and talc-bearing rocks based on petrographic and geochemical compositions. According to the REE ratios (LaN/YbN = 0.51 -20.0 and LaN/SmN = 0.72-9.1) and the enrichment in the highly incompatible elements Cs (0.1 ppm), U (2.8 ppm), and Zr (60 ppm) as well as depletion in Ba (1 - 15 ppm), Sr (1 -184 ppm), Pb (0.1 -14 ppm), and Ce (0.1 -1.9 ppm) the rocks have mid-ocean ridge and subduction zones characteristics. The serpentinite contains Al-chromite, ferrian chromite and magnetite. The Al-chromite is characterized by Cr# of 0.48 to 0.55 suggesting a MORB origin, and Cr# of 0.93 to 1.00 for the ferrian chromite indicates a prograde metamorphism. We propose at least two serpentinization stages of lithospheric mantle for the ultramafic rock of the Granjeno Schist, (1) a first in an ocean-floor environment at sub-greenschist to greenschist facies conditions and (2) later a serpentinization phase related to the progressive replacement of spinel by ferrian chromite and magnetite at greenschist to low amphibolite facies conditions during regional metamorphism. The second serpentinization phase took place in an active continental margin during the Pennsylvanian. We propose that the origin of the ultramafic rocks is related to an obduction and accretional event at the western margin of Pangea.

  20. Investigation of nanocrystalline zinc chromite obtained by two soft chemical routes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gingasu, Dana; Mindru, Ioana, E-mail: imandru@yahoo.com; Culita, Daniela C.

    2014-01-01

    Graphical abstract: - Highlights: • Two soft chemical routes to synthesize zinc chromites are described. • Glycine is used as chelating agent (precursor method) and fuel (solution combustion method). • The synthesized chromites have crystallite size in the range of 18–27 nm. • An antiferromagnetic (AFM) transition is observed at about T{sub N} ∼ 18 K. - Abstract: Zinc chromite (ZnCr{sub 2}O{sub 4}) nanocrystalline powders were obtained by two different chemical routes: the precursor method and the solution combustion method involving glycine-nitrates. The complex compound precursors, [ZnCr{sub 2}(NH{sub 2}CH{sub 2}COO){sub 8}]·9H{sub 2}O and [ZnCr{sub 2}(NH{sub 2}CH{sub 2}COOH){sub 4.5}]·(NO{sub 3}){sub 8}·6H{submore » 2}O, were characterized by chemical analysis, infrared spectroscopy (IR), ultraviolet–visible spectroscopy (UV–vis) and thermal analysis. The structure, morphology, surface chemistry and magnetic properties of ZnCr{sub 2}O{sub 4} powders were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), infrared and Raman spectroscopy (RS), ultraviolet–visible spectroscopy (UV–vis) and magnetic measurements. X-ray diffraction patterns indicated the chromite spinel phase with good crystallinity and an average crystallite size of approximately 18–27 nm. The band gap values ranged between 3.31 and 3.33 eV. The magnetic measurements indicated an antiferromagnetic transition at T{sub N} ∼ 17.5/18 K.« less

  1. Production of Titanium Metal by an Electrochemical Molten Salt Process

    NASA Astrophysics Data System (ADS)

    Fatollahi-Fard, Farzin

    Titanium production is a long and complicated process. What we often consider to be the standard method of primary titanium production (the Kroll process), involves many complex steps both before and after to make a useful product from titanium ore. Thus new methods of titanium production, especially electrochemical processes, which can utilize less-processed feedstocks have the potential to be both cheaper and less energy intensive than current titanium production processes. This project is investigating the use of lower-grade titanium ores with the electrochemical MER process for making titanium via a molten salt process. The experimental work carried out has investigated making the MER process feedstock (titanium oxycarbide) with natural titanium ores--such as rutile and ilmenite--and new ways of using the MER electrochemical reactor to "upgrade" titanium ores or the titanium oxycarbide feedstock. It is feasible to use the existing MER electrochemical reactor to both purify the titanium oxycarbide feedstock and produce titanium metal.

  2. Raman spectroscopic features of Al- Fe3+- poor magnesiochromite and Fe2+- Fe3+- rich ferrian chromite solid solutions

    NASA Astrophysics Data System (ADS)

    Kharbish, Sherif

    2018-04-01

    Naturally occurring Al- Fe3 +- poor magnesiochromite and Fe2+- Fe3 +- rich ferrian chromite solid solutions have been analyzed by micro-Raman spectroscopy. The results reflect a strong positive correlation between the Fe3 + # [Fe3+/(Fe3 ++Cr + Al)] and the positions of all Raman bands. A positive correlation of the Raman band positions with Mg# [Mg/(Mg + Fe2 +)] is less stringent. Raman spectra of magnesiochromite and ferrian chromite show seven and six bands, respectively, in the spectral region of 800 - 100 cm- 1. The most intense band in both minerals is identified as symmetric stretching vibrational mode, ν 1( A 1 g ). In the intermediate Raman-shift region (400-600 cm- 1), the significant bands are attributed to the ν 3( F 2 g ) > ν 4( F 2 g ) > ν 2( E g ) modes. The bands with the lowest Raman shifts (< 200 cm- 1) are assigned to F 2 g ( trans) translatory lattice modes. Extra bands in magnesiochromite (two bands) and in ferrian chromite (one weak band) are attributed to lowering in local symmetry and order/disorder effects.

  3. Characteristics of Crushing Energy and Fractal of Magnetite Ore under Uniaxial Compression

    NASA Astrophysics Data System (ADS)

    Gao, F.; Gan, D. Q.; Zhang, Y. B.

    2018-03-01

    The crushing mechanism of magnetite ore is a critical theoretical problem on the controlling of energy dissipation and machine crushing quality in ore material processing. Uniaxial crushing tests were carried out to research the deformation mechanism and the laws of the energy evolution, based on which the crushing mechanism of magnetite ore was explored. The compaction stage and plasticity and damage stage are two main compression deformation stages, the main transitional forms from inner damage to fracture are plastic deformation and stick-slip. In the process of crushing, plasticity and damage stage is the key link on energy absorption for that the specimen tends to saturate energy state approaching to the peak stress. The characteristics of specimen deformation and energy dissipation can synthetically reply the state of existed defects inner raw magnetite ore and the damage process during loading period. The fast releasing of elastic energy and the work done by the press machine commonly make raw magnetite ore thoroughly broken after peak stress. Magnetite ore fragments have statistical self-similarity and size threshold of fractal characteristics under uniaxial squeezing crushing. The larger ratio of releasable elastic energy and dissipation energy and the faster energy change rate is the better fractal properties and crushing quality magnetite ore has under uniaxial crushing.

  4. Long-Term Planning for Open Pits for Mining Sulphide-Oxide Ores in Order to Achieve Maximum Profit

    NASA Astrophysics Data System (ADS)

    Kržanović, Daniel; Conić, Vesna; Stevanović, Dejan; Kolonja, Božo; Vaduvesković, Jovan

    2017-12-01

    Profitable exploitation of mineralised material from the earth's crust is a complex and difficult task that depends on a comprehensive planning process. Answering the question of how to plan production depends on the geometry of the deposit, as well as the concentration, distribution, and type of minerals in it. The complex nature of mineral deposits largely determines the method of exploitation and profitability of mining operations. In addition to unit operating costs and metal prices, the optimal recovery of and achievement of maximum profit from deposits of sulphide-oxide ores also depend, to a significant extent, on the level of technological recovery achieved in the ore processing procedure. Therefore, in defining a long-term development strategy for open pits, special attention must be paid to the selection of an optimal procedure for ore processing in order to achieve the main objective: maximising the Net Present Value (NPV). The effect of using two different processes, flotation processing and hydrometallurgical methods (bioleaching acid leaching), on determining the ultimate pit is shown in the case of the Kraku Bugaresku-Cementacija sulphide-oxide ore deposit in eastern Serbia. Analysis shows that the application of hydrometallurgical methods of processing sulphide-oxide ore achieved an increase in NPV of 20.42%.

  5. NOVEL BINDERS AND METHODS FOR AGGLOMERATION OF ORE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S.K. Kawatra; T.C. Eisele; J.A. Gurtler

    2005-04-01

    Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not breakdown during processing. However, for many important metal extraction processes there are no binders known that will workmore » satisfactorily. Primary examples of this are copper heap leaching, where there are no binders that will work in the acidic environment encountered in this process. As a result, operators of many facilities see large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of a broad range of mineral agglomeration applications, particularly heap leaching.« less

  6. Novel Binders and Methods for Agglomeration of Ore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. K. Kawatra; T. C. Eisele; J. A. Gurtler

    2004-03-31

    Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not break down during processing. However, for many important metal extraction processes there are no binders known that willmore » work satisfactorily. A primary example of this is copper heap leaching, where there are no binders that will work in the acidic environment encountered in this process. As a result, operators of acidic heap-leach facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of other agglomeration applications, particularly advanced primary ironmaking.« less

  7. Experimenting With Ore: Creating the Taconite Process; flow chart of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Experimenting With Ore: Creating the Taconite Process; flow chart of process - Mines Experiment Station, University of Minnesota, Twin Cities Campus, 56 East River Road, Minneapolis, Hennepin County, MN

  8. Childhood lead poisoning associated with gold ore processing: a village-level investigation-Zamfara State, Nigeria, October-November 2010.

    PubMed

    Lo, Yi-Chun; Dooyema, Carrie A; Neri, Antonio; Durant, James; Jefferies, Taran; Medina-Marino, Andrew; de Ravello, Lori; Thoroughman, Douglas; Davis, Lora; Dankoli, Raymond S; Samson, Matthias Y; Ibrahim, Luka M; Okechukwu, Ossai; Umar-Tsafe, Nasir T; Dama, Alhassan H; Brown, Mary Jean

    2012-10-01

    During May-June 2010, a childhood lead poisoning outbreak related to gold ore processing was confirmed in two villages in Zamfara State, Nigeria. During June-September of that year, villages with suspected or confirmed childhood lead poisoning continued to be identified in Zamfara State. We investigated the extent of childhood lead poisoning [≥ 1 child with a blood lead level (BLL) ≥ 10 µg/dL] and lead contamination (≥ 1 soil/dust sample with a lead level > 400 parts per million) among villages in Zamfara State and identified villages that should be prioritized for urgent interventions. We used chain-referral sampling to identify villages of interest, defined as villages suspected of participation in gold ore processing during the previous 12 months. We interviewed villagers, determined BLLs among children < 5 years of age, and analyzed soil/dust from public areas and homes for lead. We identified 131 villages of interest and visited 74 (56%) villages in three local government areas. Fifty-four (77%) of 70 villages that completed the survey reported gold ore processing. Ore-processing villages were more likely to have ≥ 1 child < 5 years of age with lead poisoning (68% vs. 50%, p = 0.17) or death following convulsions (74% vs. 44%, p = 0.02). Soil/dust contamination and BLL ≥ 45 µg/dL were identified in ore-processing villages only [50% (p < 0.001) and 15% (p = 0.22), respectively]. The odds of childhood lead poisoning or lead contamination was 3.5 times as high in ore-processing villages than the other villages (95% confidence interval: 1.1, 11.3). Childhood lead poisoning and lead contamination were widespread in surveyed areas, particularly among villages that had processed ore recently. Urgent interventions are required to reduce lead exposure, morbidity, and mortality in affected communities.

  9. Childhood Lead Poisoning Associated with Gold Ore Processing: a Village-Level Investigation—Zamfara State, Nigeria, October–November 2010

    PubMed Central

    Lo, Yi-Chun; Dooyema, Carrie A.; Neri, Antonio; Durant, James; Jefferies, Taran; Medina-Marino, Andrew; de Ravello, Lori; Thoroughman, Douglas; Davis, Lora; Dankoli, Raymond S.; Samson, Matthias Y.; Ibrahim, Luka M.; Okechukwu, Ossai; Umar-Tsafe, Nasir T.; Dama, Alhassan H.

    2012-01-01

    Background: During May–June 2010, a childhood lead poisoning outbreak related to gold ore processing was confirmed in two villages in Zamfara State, Nigeria. During June–September of that year, villages with suspected or confirmed childhood lead poisoning continued to be identified in Zamfara State. Objectives: We investigated the extent of childhood lead poisoning [≥ 1 child with a blood lead level (BLL) ≥ 10 µg/dL] and lead contamination (≥ 1 soil/dust sample with a lead level > 400 parts per million) among villages in Zamfara State and identified villages that should be prioritized for urgent interventions. Methods: We used chain-referral sampling to identify villages of interest, defined as villages suspected of participation in gold ore processing during the previous 12 months. We interviewed villagers, determined BLLs among children < 5 years of age, and analyzed soil/dust from public areas and homes for lead. Results: We identified 131 villages of interest and visited 74 (56%) villages in three local government areas. Fifty-four (77%) of 70 villages that completed the survey reported gold ore processing. Ore-processing villages were more likely to have ≥ 1 child < 5 years of age with lead poisoning (68% vs. 50%, p = 0.17) or death following convulsions (74% vs. 44%, p = 0.02). Soil/dust contamination and BLL ≥ 45 µg/dL were identified in ore-processing villages only [50% (p < 0.001) and 15% (p = 0.22), respectively]. The odds of childhood lead poisoning or lead contamination was 3.5 times as high in ore-processing villages than the other villages (95% confidence interval: 1.1, 11.3). Conclusion: Childhood lead poisoning and lead contamination were widespread in surveyed areas, particularly among villages that had processed ore recently. Urgent interventions are required to reduce lead exposure, morbidity, and mortality in affected communities. PMID:22766030

  10. Comparative Planetary Mineralogy: Co, Ni Systematics in Chromite from Planetary Basalts

    NASA Technical Reports Server (NTRS)

    Karner, J. M.; Shearer, C. K.; Papike, J. J.; Righter,K.

    2005-01-01

    Spinel is a minor but important phase in planetary basalts because its variable composition often reflects basalt petrogenesis. For example, complicated zoning trends in spinel can give clues to melt evolution [1], and V concentrations in chromite lend insight into magma oxygen fugacity (fO2) conditions [2]. Nickel and Co are two elements that are commonly used as a measure of melt fractionation, and their partitioning between olivine and melt is fairly well understood. Less clear is their partitioning into spinel, although [3] has explored Ni and Co systematics in experimental charges. This study documents Ni and Co behavior in early crystallizing spinel (chromite) from several planetary basalts in an attempt to compare our results with [3], and also gain insight into basalt evolution on the three planets.

  11. Face format at encoding affects the other-race effect in face memory.

    PubMed

    Zhao, Mintao; Hayward, William G; Bülthoff, Isabelle

    2014-08-07

    Memory of own-race faces is generally better than memory of other-races faces. This other-race effect (ORE) in face memory has been attributed to differences in contact, holistic processing, and motivation to individuate faces. Since most studies demonstrate the ORE with participants learning and recognizing static, single-view faces, it remains unclear whether the ORE can be generalized to different face learning conditions. Using an old/new recognition task, we tested whether face format at encoding modulates the ORE. The results showed a significant ORE when participants learned static, single-view faces (Experiment 1). In contrast, the ORE disappeared when participants learned rigidly moving faces (Experiment 2). Moreover, learning faces displayed from four discrete views produced the same results as learning rigidly moving faces (Experiment 3). Contact with other-race faces was correlated with the magnitude of the ORE. Nonetheless, the absence of the ORE in Experiments 2 and 3 cannot be readily explained by either more frequent contact with other-race faces or stronger motivation to individuate them. These results demonstrate that the ORE is sensitive to face format at encoding, supporting the hypothesis that relative involvement of holistic and featural processing at encoding mediates the ORE observed in face memory. © 2014 ARVO.

  12. Enigma of lamprohyres

    NASA Astrophysics Data System (ADS)

    Vasyukova, Elena

    2013-04-01

    Till now lamprophyres are 'the camera obscure' in petrology. There is no the complete agreement about the origin, classification, genetic links and their role in the ore formation processes yet. Traditionally ca-alkaline lamprophyres associated with the diorites, syenites and granitoids. But modern studies show the geochronological, geochemical and isotopic evidences of the genetic links between lamprophyres and carbonatites (Woodard, 2010;.Coulson et al., 2003) and as a consequence the formation of REE-ore deposits. These authors explain the origin of lamprophyres and carbonatites by the different melting degrees of the metasomatised mantle. In this work we found another mechanism of their generation - the liquation of carbonate-silica melt. Within the area of Chuya complex (South-East Altai-North-West Mongolia) the lamphrophyric dykes are distributed irregularly and create the belts or series of bodies located next to the faults of different order. We studied about 30 dykes from three different areas (South Chuya, Yustyd, Aktash) and related rocks from the Tarakhata intrusion. Very similar rock and mineral composition, close time-space characteristics allow us to suggest their comagmatic nature. In the lamprophyres of South-Chuya area there are strong petrography evidences of liquation of carbonate-silicate melt during their evolution. The ocellar structures with the ocelli composed by the silicate mineral and inter globule material represented by carbonates with ore and other nonmetallic minerals. One of them is Ba-celestine which compiles the intergranular space, veinlets and pseudomorphoses after the silicates. It associates with the apatites, quartz, chlorite, carbonates (calcite and dolomite) and oxides (magnetite, goethite, chromite etc). The multi-element and rare-earth diagrams of all investigated rocks are equal in the form, at the position of HFSE minima, high La/Yb and Gd/Yb relations, except the Ba and Sr anomalies. In the graphs of the south-chuya area rocks, where Ba-celestine was found, marked Ba and Sr minima. Accordingly this fact Ba and Sr couldn't be brought into the system. And Ba-celestine is the residual sign of the segregated liquid, enriched in Ba, Sr, Ca ? P. 1. Rock, N. M. S., 1991. Lamprophyres. Blackie and Son Ltd, Glasgow and London, 285 pp. 2. J. Woodard Genesis and Emplacement of Carbonatites and Lamprophyres in the Svecophennian Domain, Academic Dissertation, University of Turku, Finland, 50 p., 2010 3. I.M.Coulson, K.M. Goodenough, N.J.G. Pearce, M.J. Leng Carbonatites and lamprophyres of the Gardar Province - a "window" to the sub-Gardar mantle? // Mineralogical Magazine, October 2003, Vol. 67(5), pp. 855-872. 4. McDonough, W.F. and Sun, S.-S. (1995). Composition of the Earth. Chemical Geology 120: 223-253. doi: 10.1016/0009-2541(94)00140-4.

  13. Exploration of gold occurrences in alteration zones at Dungash district, Southeastern Desert of Egypt using ASTER data and geochemical analyses

    NASA Astrophysics Data System (ADS)

    Salem, S. M.; El Sharkawi, M.; El-Alfy, Z.; Soliman, N. M.; Ahmed, S. E.

    2016-05-01

    The present study aims at exploration of new gold occurrences in the alteration zones at Dungash district. Processed ASTER images band ratios 7/6 × 4/6 and (7 + 9/8), field geology and mineralogical and geochemical data help characterize three types of alterations in three areas 1 to 3 that may be targeted for Au exploration. Area1 confined to the metavolcanics located in the SE of Dungash gold mine and revealed silicified and sericitized type alterations, composed of quartz, epidote, chlorite, biotite and opaque minerals mainly pyrite and chalcopyrite. Area2 occurs in the gabbro-diorite rocks at Abu Meraiwa area NE of Dungash gold mine, which are rich in kaolinite, illite, sericite, pyrite, arsenopyrite and chalcopyrite that record kaolinitized alteration. Area3 is hosted in carbonaceous listwaenized serpentinite thus indicating the role of listwaenitization type alteration in ore genesis. It is composed of calcite, chromite, pyrite, arsenopyrite, chalcopyrite and Ni-bearing sulphides. Au contents in area 1 range between 0.12 and 14.91 ppm, and between 6.1 and 16.3 ppm in area 2, while gold values in area 3 vary from <0.01 to 0.03 ppm. Dungash district is comprised of Pan-African assemblages of ophiolitic ultramafics thrusted over the island arc metavolcanics of dacitic- andesite composition. Gabbro-diorite rocks are intruded in the ultramafics and the acidic metavolcanics as well as diorite-quartz diorite suite intruded in the intermediate metavolcanics. Several acidic dykes, granitic dykes and quartz veins cut through the different rocks types.

  14. Nanocrystalline Iron-Ore-Based Catalysts for Fischer-Tropsch Synthesis.

    PubMed

    Yong, Seok; Park, Ji Chan; Lee, Ho-Tae; Yang, Jung-Il; Hong, SungJun; Jung, Heon; Chun, Dong Hyun

    2016-02-01

    Nanocrystalline iron ore particles were fabricated by a wet-milling process using an Ultra Apex Mill, after which they were used as raw materials of iron-based catalysts for low-temperature Fischer-Tropsch synthesis (FTS) below 280 degrees C, which usually requires catalysts with a high surface area, a large pore volume, and a small crystallite size. The wet-milling process using the Ultra Apex Mill effectively destroyed the initial crystallite structure of the natural iron ores of several tens to hundreds of nanometers in size, resulting in the generation of nanocrystalline iron ore particles with a high surface area and a large pore volume. The iron-ore-based catalysts prepared from the nanocrystalline iron ore particles effectively catalyzed the low-temperature FTS, displaying a high CO conversion (about 90%) and good C5+ hydrocarbon productivity (about 0.22 g/g(cat)(-h)). This demonstrates the feasibility of using the iron-ore-based catalysts as inexpensive and disposable catalysts for the low-temperature FTS.

  15. Blasting preparation for selective mining of complex structured ore deposition

    NASA Astrophysics Data System (ADS)

    Marinin, M. A.; Dolzhikov, V. V.

    2017-10-01

    Technological features of ore mining in the open pit development for processing of complex structured ore deposit of steeply falling occurrence have been considered. The technological schemes of ore bodies mining under different conditions of occurrence, consistency and capacity have been considered and offered in the paper. These technologies permit to reduce losses and dilution, but to increase the completeness and quality of mined ore. A method of subsequent selective excavation of ore bodies has been proposed. The method is based on the complex use of buffer-blasting technology for the muck mass and the principle of trim blasting at ore-rock junctions.

  16. The reduction mechanism of a natural chromite at 1416 °C

    NASA Astrophysics Data System (ADS)

    Soykan, O.; Eric, R. H.; King, R. P.

    1991-02-01

    The behavior of a natural chromite from the Bushveld Complex, Transvaal, South Africa, during reduction at 1416 °C by graphite was studied by means of thermogravimetric analysis, X-ray diffraction (XRD) analysis, energy-dispersive X-ray analysis (EDAX), and metallographic analysis. Experimental runs were allowed to proceed up to 120 minutes, resulting in 99 pct reduction. The specific objective of this study was to delineate the reduction mechanism of chromite by graphite. Zoning was observed in partially reduced chromites with degrees of reduction of up to about 70 pct. The inner cores were rich in iron, while the outer cores were depleted of iron. Energy-dispersive X-ray analysis revealed that Fe2+ and Cr3+ ions had diffused outward, whereas Cr2+, Al3+, and Mg2+ ions had diffused inward. The following mechanism of reduction, which is based on the assumption that the composition of the spinel phase remains stoichiometric with increasing degree of reduction, is proposed, (a) Initially, Fe3+ and Fe2+ ions at the surface of the chromite particle are reduced to the metallic state. This is followed immediately by the reduction of Cr3+ ions to the divalent state, (b) Cr2+ ions diffusing toward the center of the particle reduce the Fe3+ ions in the spinel under the surface of the particle to Fe2+ at the interface between the inner and outer cores. Fe2+ ions diffuse toward the surface, where they are reduced to metallic iron, (c) After the iron has been completely reduced, Cr3+ and any Cr2+ that is present are reduced to the metallic state, leaving an iron- and chromium-free spinel, MgAl2O4.

  17. Bacterio-electric leaching of metals

    DOEpatents

    Lazaroff, Norman; Dugan, Patrick R.

    1992-07-07

    The separation of cationic materials from an ore body is assisted by the application of an electric potential, and resulting current, to the ore body, in association with iron or sulphur oxidizing bacteria. The combined process induces migration of cationic metals to a cathode suspended within the ore body so that the cationic metal can be preferentially separated from the ore body.

  18. Bacterio-electric leaching of metals

    DOEpatents

    Lazaroff, Norman; Dugan, Patrick R.

    1992-01-01

    The separation of cationic materials from an ore body is assisted by the application of an electric potential, and resulting current, to the ore body, in association with iron or sulphur oxidizing bacteria. The combined process induces migration of cationic metals to a cathode suspended within the ore body so that the cationic metal can be preferentially separated from the ore body.

  19. Beneficiation and leaching study of a muti-Au carrier and low grade refractory gold ore

    NASA Astrophysics Data System (ADS)

    Li, W. J.; Song, Y. S.; Chen, Y.; Cai, L. L.; Zhou, G. Y.

    2017-09-01

    Detailed mineralogy and beneficiation and leaching study of a muti-Au carrier, low grade refractory gold ore from a beneficiation plant in Henan Province, China, was investigated. Mineral liberation analysis, scanning electron microscopy, element phase analysis and etc. by a mineral liberation analyser were used for mineralogical characterization study of this ore. The present work describes an experimental study on the effect of traditional parameters (such as grinding fineness and reagent regimes), middling processing method and flowsheet construction on the total recovery and the assay of the floatation concentrate. Two-step floatation and part of middling combined to the floatation tailing for gold leaching process resulted in high gold grade (g.t-1) and gold recovery (%) for this refractory gold ore. This process opens the possibilities of maximizing Au grade and recoveries in a muti-Au carrier and low grade refractory gold ore where low recoveries are common.

  20. Volatile products from the interaction of KCl(g) with Cr2O3 and LaCrO3 in oxidizing environments

    NASA Technical Reports Server (NTRS)

    Kohl, F. J.; Miller, R. A.; Stearns, C. A.; Fryburg, G. C.; Dillard, J. G.

    1977-01-01

    Cooled target collection techniques and high pressure mass spectrometric sampling were used to measure the relative rates of oxidative vaporization and to identify the volatile products emanating from samples of chromia and Mg-doped lanthanum chromite. The materials were exposed to partial pressures of KCl with and without H2O in one atmosphere of slowly flowing oxygen at elevated temperatures. Chromia and fresh samples of lanthanum chromite exhibited enhanced rates of oxidative vaporization upon exposure to these reactants. Mass spectrometric identification showed that the enhancements resulted from the heterogeneous formation of complex molecules of the type KCl sub 1,2,3 CrO3 and KOH sub l,2 CrO3. Lanthanum chromite that had undergone prolonged oxidative vaporization exhibited no enhanced oxidation upon exposure to the reactants.

  1. Laboratory Validation and Demonstrations of Non-Hexavalent Chromium Conversion Coatings for Steel Substrates (Briefing Charts)

    DTIC Science & Technology

    2011-02-01

    UNCLASSIFIED: Approved for public release; distribution unlimited. Laboratory Validation and Demonstrations of Non-Hexavalent Chromium Conversion...00-00-2011 4. TITLE AND SUBTITLE Laboratory Validation and Demonstrations of Non-Hexavalent Chromium Conversion Coatings for Steel Substrates 5a...Coatings for HHA • SurTec 650 - ChromitAL TCP - Trivalent Chrome Pretreatment Developed by NAVAIR for Aluminum. • Chemetall Oxsilan 9810/2 - Non-chrome

  2. The reduction mechanism of chromite in the presence of a silica flux

    NASA Astrophysics Data System (ADS)

    Weber, P.; Eric, R. H.

    1993-12-01

    The reduction behavior of a natural chromite from the Bushveld Complex of South Africa was studied at 1300 °C to 1500 °C. Reduction was by graphite in the presence of silica. Thermo-gravimetric analysis, X-ray diffraction (XRD) analysis, energy-dispersive X-ray analysis (EDAX), and metallographic analysis were the experimental techniques used. Silica affected the reduction at and above 1400 °C. A two-stage reduction mechanism was established. The first stage, up to a reduction level of about 40 pct, is primarily confined to iron metallization, and zoning is observed in partially reduced chromites. In this stage, silica does not interfere with the reduction, which proceeds by an outward diffusion of Fe2+ ions and an inward diffusion of Mg2+ and Cr2+ ions. The second stage is primarily confined to chromium metallization, and formation of a silicate slag alters the reduction mechanism. The slag phase agglomerates and even embeds partially reduced chromite particles. An ion-exchange reaction between the re-ducible cations (Cr3+ and Fe2+) in the spinel and the dissolved cations (Al3+ and Mg2+) in the slag allows further reduction. Once the reducible cations are dissolved in the slag phase, they are reduced to the metallic state at sites where there is contact with the reductant.

  3. NOVEL BINDERS AND METHODS FOR AGGLOMERATION OF ORE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S.K. Kawatra; T.C. Eisele; J.A. Gurtler

    2004-04-01

    Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not break down during processing. However, for many important metal extraction processes there are no binders known that willmore » work satisfactorily. Primary examples of this are copper heap leaching, where there are no binders that will work in the acidic environment encountered in this process, and advanced ironmaking processes, where binders must function satisfactorily over an extraordinarily large range of temperatures (from room temperature up to over 1200 C). As a result, operators of many facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of a broad range of mineral agglomeration applications, particularly heap leaching and advanced primary ironmaking.« less

  4. Methanol synthesis using a catalyst combination of alkali or alkaline earth salts and reduced copper chromite

    DOEpatents

    Tierney, J.W.; Wender, I.; Palekar, V.M.

    1995-01-24

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a catalyst combination comprising reduced copper chromite and basic alkali salts or alkaline earth salts. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100--160 C and the pressure range of 40--65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H[sub 2]/CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  5. Methanol synthesis using a catalyst combination of alkali or alkaline earth salts and reduced copper chromite

    DOEpatents

    Tierney, John W.; Wender, Irving; Palekar, Vishwesh M.

    1995-01-01

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a catalyst combination comprising reduced copper chromite and basic alkali salts or alkaline earth salts. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100.degree.-160.degree. C. and the pressure range of 40-65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H.sub.2 /CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  6. Methanol synthesis using a catalyst combination of alkali or alkaline earth salts and reduced copper chromite for methanol synthesis

    DOEpatents

    Tierney, John W.; Wender, Irving; Palekar, Vishwesh M.

    1993-01-01

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a catalyst combination comprising reduced copper chromite and basic alkali salts or alkaline earth salts. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100.degree.-160.degree. C. and the pressure range of 40-65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H.sub.2 /CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  7. Tourmaline as a recorder of ore-forming processes

    USGS Publications Warehouse

    Slack, John F.; Trumbull, Robert B.

    2011-01-01

    Tourmaline occurs in diverse types of hydrothermal mineral deposits and can be used to constrain the nature and evolution of ore-forming fl uids. Because of its broad range in composition and retention of chemical and isotopic signatures, tourmaline may be the only robust recorder of original mineralizing processes in some deposits. Microtextures and in situ analysis of compositional and isotopic variations in ore-related tourmaline provide valuable insights into hydrothermal systems in seafl oor, sedimentary, magmatic, and metamorphic environments. Deciphering the hydrothermal record in tourmaline also holds promise for aiding exploration programs in the search for new ore deposits.

  8. 40 CFR 63.9580 - What is the purpose of this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Taconite Iron Ore Processing What This... standards for hazardous air pollutants (NESHAP) for taconite iron ore processing. This subpart also...

  9. 40 CFR 63.9580 - What is the purpose of this subpart?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Taconite Iron Ore Processing What This... standards for hazardous air pollutants (NESHAP) for taconite iron ore processing. This subpart also...

  10. 40 CFR 63.9580 - What is the purpose of this subpart?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Taconite Iron Ore Processing What This... standards for hazardous air pollutants (NESHAP) for taconite iron ore processing. This subpart also...

  11. 40 CFR 63.9580 - What is the purpose of this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Taconite Iron Ore Processing What This... standards for hazardous air pollutants (NESHAP) for taconite iron ore processing. This subpart also...

  12. 40 CFR 63.9580 - What is the purpose of this subpart?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Taconite Iron Ore Processing What This... standards for hazardous air pollutants (NESHAP) for taconite iron ore processing. This subpart also...

  13. Technical Report on the Behavior of Trace Elements, Stable Isotopes, and Radiogenic Isotopes During the Processing of Uranium Ore to Uranium Ore Concentrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marks, N. E.; Borg, L. E.; Eppich, G. R.

    2015-07-09

    The goals of this SP-1 effort were to understand how isotopic and elemental signatures behave during mining, milling, and concentration and to identify analytes that might preserve geologic signatures of the protolith ores. The impurities that are preserved through the concentration process could provide useful forensic signatures and perhaps prove diagnostic of sample origin.

  14. Novel Binders and Methods for Agglomeration of Ore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. K. Kawatra; T. C. Eisele; K. A. Lewandowski

    2006-03-31

    Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not break down during processing. However, for many important metal extraction processes there are no binders known that willmore » work satisfactorily at a reasonable cost. A primary example of this is copper heap leaching, where there are no binders currently encountered in this acidic environment process. As a result, operators of many facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of a broad range of mineral agglomeration applications, particularly heap leaching. The active involvement of our industrial partners will help to ensure rapid commercialization of any agglomeration technologies developed by this project.« less

  15. Novel Binders and Methods for Agglomeration of Ore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. K. Kawatra; T. C. Eisele; J. A. Gurtler

    2005-09-30

    Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not break down during processing. However, for many important metal extraction processes there are no binders known that willmore » work satisfactorily at a reasonable cost. A primary example of this is copper heap leaching, where there are no binders currently encountered in this acidic environment process. As a result, operators of many facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of a broad range of mineral agglomeration applications, particularly heap leaching. The active involvement of our industrial partners will help to ensure rapid commercialization of any agglomeration technologies developed by this project.« less

  16. Comparative Planetary Mineralogy: V/(Cr+Al) Systematics in Chromites as an Indicator of Relative Oxygen Fugacity

    NASA Technical Reports Server (NTRS)

    Papike, J. J.; Kamer, J. M.; Shearer, C. K.

    2004-01-01

    As our contribution to the new "Oxygen in the Solar System" initiative of the Lunar and Planetary Institute and the NASA Cosmochemistry Program, we have been developing oxygen barometers based largely on behavior of V which can occur in four valence states V2+, V3+, V4+, and V5+, and record at least 8 orders of magnitude of fO2. Our first efforts in measuring these valence proportions were by XANES techniques in basaltic glasses from Earth, Moon, and Mars. We now address the behavior of V valence states in chromite in basalts from Earth, Moon, and Mars. We have been looking for a "V in chromite oxybarometer" that works with data collected by the electron microprobe and thus is readily accessible to a large segment of the planetary materials community. This paper describes very early results that will be refined over the next two years.

  17. Novel Binders and Methods for Agglomeration of Ore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. K. Kawatra; T. C. Eisele; K. A. Lewandowski

    2006-12-31

    Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not break down during processing. However, for many important metal extraction processes there are no binders known that willmore » work satisfactorily. Primary examples of this are copper heap leaching, where there are no binders that will work in the acidic environment encountered in this process, and advanced ironmaking processes, where binders must function satisfactorily over an extraordinarily large range of temperatures (from room temperature up to over 1200 C). As a result, operators of many facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of a broad range of mineral agglomeration applications, particularly heap leaching and advanced primary ironmaking. This project has identified several acid-resistant binders and agglomeration procedures that can be used for improving the energy efficiency of heap leaching, by preventing the ''ponding'' and ''channeling'' effects that currently cause reduced recovery and extended leaching cycle times. Methods have also been developed for iron ore processing which are intended to improve the performance of pellet binders, and have directly saved energy by increasing filtration rates of the pelletization feed by as much as 23%.« less

  18. Characterization of Sumbawa manganese ore and recovery of manganese sulfate as leaching products

    NASA Astrophysics Data System (ADS)

    Kusumaningrum, Retno; Rahmani, Siti Astari; Widayatno, Wahyu Bambang; Wismogroho, Agus Sukarto; Nugroho, Dwi Wahyu; Maulana, Syahrizal; Rochman, Nurul Taufiqu; Amal, M. Ikhlasul

    2018-05-01

    The aims of this research were to study the leaching process of manganese ore which originated from Sumbawa, Indonesia and its characterization. A high grade Indonesian manganese ore from Sumbawa, West of Nusa Tenggara was characterized by X-Ray Fluorescence (XRF). The result showed composition of 78.8 % Mn, 17.77% Fe and the rest were trace elements such as Si, Co, Ti, Zn, V and Zr contents. X-Ray Diffraction analysis showed that the manganese ore was consisted of pyrolusite (MnO2), rhodonite (MnSiO3), rhodochrosite (MnCO3) and hematite (Fe2O3). Manganese ore was also analyzed by thermal analysis to observe their thermal decomposition character. In this study, sulphuric acid (H2SO4, 6 M) was deployed as leaching agent. The leaching process was performed at 90 °C for two hours with the addition of NH4OH to control pH. Recovery percentage of leaching process yielded of 87 % Mn extracted. The crystallization process result at heating temperature of 200 °C was confirmed by XRD as manganese sulfate.

  19. Genesis of iron-apatite ores in Posht-e-Badam Block (Central Iran) using REE geochemistry

    NASA Astrophysics Data System (ADS)

    Mokhtari, Mir Ali Asghar; Zadeh, Ghader Hossein; Emami, Mohamad Hashem

    2013-06-01

    Rare earth elements in apatites of different ore types show characteristic patterns which are related to different modes of formation of the ores. Most of the apatite-bearing iron ores are associated with alkaline magmas with LREE/HREE fractionation varying from moderate to steep. Iron-apatite deposits in Posht-e-Badam Block (Central Iran) have a high concentration of REE (more than 1000 ppm up to 2.5%), and show a strong LREE/HREE ratio with a pronounced negative Eu anomaly. This REE pattern is typical of magmatic apatite and quiet distinct from sedimentary apatites (phosphorites) which have a low REE contents and Ce negative anomalies. On the other hand, they are comparable to the REE patterns of apatites in Kiruna-type iron ores in different parts of the world. The REE patterns of apatites, iron-apatite ores and iron ores are similar and only have different REE contents. This similarity indicates a genetic relation for these rocks. Most of the iron-apatite deposits in Central Iran have similar REE patterns too, which in turn show a genetic relation for all of these deposits. This similarity indicates a similar origin and processes in their genesis. There are some small intrusions around some of the iron-apatite deposits that are petrographically identified as syenite and gabbro. These intrusions also have REE patterns similar to that of iron-apatite ores. This demonstrates a genetic relation between these intrusions and iron-apatite ores. The REE patterns of apatites in different deposits of Posht-e-Badam Block iron-apatite ores show an affinity to alkaline to sub-alkaline magmas and rifting environment. The alkaline host rocks of Central Iran iron-apatite ores are clearly related to an extensional setting where rifting was important (SSE-NNW fault lines). A probable source for this large scale ore forming processes is relatively low partial melting of mantle rocks. The ores have originated by magmatic differentiation as a late phase in the volcanic cycle forming sub-surface injections or surface flows. These ores have formed during magmatism as immiscible liquids (silicate and Fe-P-rich magmatic liquids) which separated from strongly differentiated magmas aided by a large volatile and alkali element content. Separation of an iron oxide melt and the ensuing hydrothermal processes dominated by alkali metasomatism were both involved to different degrees in the formation of Posht-e-Badam Block iron-apatite deposits. We proposed that the separation of an iron oxide melt and the ensuing hydrothermal processes dominated by alkali metasomatism were both involved to different degrees in the formation of Posht-e-Badam Block iron-apatite deposits.

  20. Iron isotope fractionation during hydrothermal ore deposition and alteration

    NASA Astrophysics Data System (ADS)

    Markl, Gregor; von Blanckenburg, Friedhelm; Wagner, Thomas

    2006-06-01

    Iron isotopes fractionate during hydrothermal processes. Therefore, the Fe isotope composition of ore-forming minerals characterizes either iron sources or fluid histories. The former potentially serves to distinguish between sedimentary, magmatic or metamorphic iron sources, and the latter allows the reconstruction of precipitation and redox processes. These processes take place during ore formation or alteration. The aim of this contribution is to investigate the suitability of this new isotope method as a probe of ore-related processes. For this purpose 51 samples of iron ores and iron mineral separates from the Schwarzwald region, southwest Germany, were analyzed for their iron isotope composition using multicollector ICP-MS. Further, the ore-forming and ore-altering processes were quantitatively modeled using reaction path calculations. The Schwarzwald mining district hosts mineralizations that formed discontinuously over almost 300 Ma of hydrothermal activity. Primary hematite, siderite and sulfides formed from mixing of meteoric fluids with deeper crustal brines. Later, these minerals were partly dissolved and oxidized, and secondary hematite, goethite and iron arsenates were precipitated. Two types of alteration products formed: (1) primary and high-temperature secondary Fe minerals formed between 120 and 300 °C, and (2) low-temperature secondary Fe minerals formed under supergene conditions (<100 °C). Measured iron isotope compositions are variable and cover a range in δ56Fe between -2.3‰ and +1.3‰. Primary hematite ( δ56Fe: -0.5‰ to +0.5‰) precipitated by mixing oxidizing surface waters with a hydrothermal fluid that contained moderately light Fe ( δ56Fe: -0.5‰) leached from the crystalline basement. Occasional input of CO 2-rich waters resulted in precipitation of isotopically light siderite ( δ56Fe: -1.4 to -0.7‰). The difference between hematite and siderite is compatible with published Fe isotope fractionation factors. The observed range in isotopic compositions can be accounted for by variable fractions of Fe precipitating from the fluid. Therefore, both fluid processes and mass balance can be inferred from Fe isotopes. Supergene weathering of siderite by oxidizing surface waters led to replacement of isotopically light primary siderite by similarly light secondary hematite and goethite, respectively. Because this replacement entails quantitative transfer of iron from precursor mineral to product, no significant isotope fractionation is produced. Hence, Fe isotopes potentially serve to identify precursors in ore alteration products. Goethites from oolitic sedimentary iron ores were also analyzed. Their compositional range appears to indicate oxidative precipitation from relatively uniform Fe dissolved in coastal water. This comprehensive iron isotope study illustrates the potential of the new technique in deciphering ore formation and alteration processes. Isotope ratios are strongly dependent on and highly characteristic of fluid and precipitation histories. Therefore, they are less suitable to provide information on Fe sources. However, it will be possible to unravel the physico-chemical processes leading to the formation, dissolution and redeposition of ores in great detail.

  1. Rock Smelting of Copper Ores with Waste Heat Recovery

    NASA Astrophysics Data System (ADS)

    Norgate, Terry; Jahanshahi, Sharif; Haque, Nawshad

    It is generally recognised that the grades of metallic ores are falling globally. This trend can be expected to increase the life cycle-based energy requirement for primary metal production due to the additional amount of material that must be handled and treated in the mining and mineral processing stages of the metal production life cycle. Rock (or whole ore) smelting has been suggested as a possible alternative processing route for low grade ores with a potentially lower energy intensity and environmental impact than traditional processing routes. In this processing route, the beneficiation stage is eliminated along with its associated energy consumption and greenhouse gas emissions, but this is partially offset by the need for more solid material to be handled and heated up to smelting temperatures. A life cycle assessment study was carried out to assess the potential energy and greenhouse gas benefits of a conceptual flowsheet of the rock smelting process, using copper ore as an example. Recovery and utilisation of waste heat in the slag (via dry slag granulation) and offgas streams from the smelting step was also included in the study, with the waste heat being utilised either for thermal applications or electricity generation.

  2. Pressure increases, the for­mation of chromite seams, and the development of the ultramafic series in the Stillwater Complex, Montana

    USGS Publications Warehouse

    Lipin, Bruce R.

    1993-01-01

    This paper explores the hypothesis that chromite seams in the Stillwater Complex formed in response to periodic increases in total pressure in the chamber. Total pressure increased because of the positive δV of nucleation of CO2 bubbles in the melt and their subsequent rise through the magma chamber, during which the bubbles increased in volume by a factor of 4–6. By analogy with the pressure changes in the summit chambers of Kilauea and Krafla volcanoes, the maximum variation was 0⋅2–0⋅25 kbar, or 5–10% of the total pressure in the Stillwater chamber. An evaluation of the likelihood of fountaining and mixing of a new, primitive liquid that entered the chamber with the somewhat more evolved liquid already in the chamber is based upon calculations using observed and inferred velocities and flow rates of basaltic magmas moving through volcanic fissures. The calculations indicate that hot, dense magma would have oozed, rather than fountained into the chamber, and early mixing of the new and residual magmas that could have resulted in chromite crystallizing alone did not take place.Mixing was an important process in the Stillwater magma chamber, however. After the new magma in the chamber underwent ˜5% fractional crystallization, its composition, temperature, and density approached those of the overlying liquid in the chamber and the liquids then mixed. If this process occurred many times over the course of the development of the Ultramafic series, a thick column of magma with orthopyroxene on its liquidus would have been the result. Thus, the sequence of multiple injections, fractionation, and mixing with previously fractionated magma could have been the mechanism that produced the thick bronzite cumulate layer (the Bronzitite zone) above the cyclic units.

  3. The non-serpentine phases in serpentinites from the Braszowice-Brzeźnica Massif (SW Poland) as traces of magmatic processes within oceanic mantle

    NASA Astrophysics Data System (ADS)

    Wojtulek, Piotr; Puziewicz, Jacek; Ntaflos, Theodoros

    2016-04-01

    The Braszowice-Brzeźnica Massif - BBM (SW Poland) is a part of the Variscan Central-Sudetic Ophiolite. It is located at the southern termination of the Niemcza Shear Zone and consists of gabbros and serpentinites. The ultramafic rocks occurring in the BBM are (from E to W) serpentinites with abundant relics of olivine and tremolite, lizardite-chrysotile serpentinites and antigorite serpentinites. Clinopyroxene, olivine and zoned chromite grains were found in the central part of the BBM (Mnich Hill) within antigoritic serpentinites. The non-serpentine phases occur in the following microstructures: (1) olivine-chromite aggregates: olivine (Fo = 90.0-91.0) contains 0.35-0.44 wt.% NiO, elongated or amaeboidal chromite I (Cr# = 0.49-0.50, TiO2 = 0.14-0.15 wt.%) is rimmed by chromite II (Cr# = 0.98, TiO2 = 0.01 wt.%); (2) coarse and dismembered diopside grains (Cpx I, Mg# = 0.91-0.92) containing 0.70-0.80 wt.% TiO2, 3.0-4.0 wt.% Al2O3, 1.0-1.4 Cr2O3 and 0.3-0.5 wt.% Na2O; Cpx I is enriched in REE relative to primitive mantle, the REE pattern reveals HREE enrichment relative to LREE and negative Eu anomaly; (3) olivine-clinopyroxene aggregates: olivine (Fo = 90.4-91.3) contains 0.27-0.35 wt.% NiO, anhedral, often elongated clinopyroxene (Cpx II, Mg# = 0.91-0.92) has <0.1 wt.% TiO2, 3.00-4.00 wt.% Al2O3, 1.00-1.40 Cr2O3 and <0.20 wt.% Na2O, (4) magnetite-bearing olivine grains, locally in aggregates with minute clinopyroxene ones; olivine has variable Fo (86.0-96.0) and NiO concentration (0.02-0.55 wt.%), clinopyroxene (Cpx III, Mg# = 0.93-0.97) contains <0.40 wt.% Al2O3 and <0.20 Cr2O3. Cpx III rims also locally Cpx II. The non-serpentine phases from the BBM massif have various compositions and mode of occurrence, thus they record various crystallization events. Composition of chromite I is similar to primary chromite grains occurring in oceanic peridotites of the Romanche and Kurchatov F.Z. (Dick and Bullen, 1984), thus the olivine-chromite aggregates represent probably primary mantle phases. Cpx I contains similar amount of the Al2O3, Cr2O3 and Na2O to primary diopsides described from the Marie Celeste FZ and Indomed FZ (Johnson et al., 1990). REE pattern of the Cpx I suggests depletion in mobile trace elements due to melt extraction. Cpx II has Al2O3, Cr2O3 and TiO2 contents similar to those of diopside originated from the melt-percolation reactions, olivine coexisting with Cpx II crystallized probably in the same event. The Cpx III has Al, Cr and Na contents typical for secondary, metamorphic clinopyroxene. Magnetite-bearing olivine is similar to olivine crystallized at expense of serpentine+magnetite precursors, thus is has secondary, metamorphic origin. This abstract was prepared as a part of the project of the National Science Centre of Poland ("Evolution of serpentinic members of the Lower Silesia ophiolites", DEC-2012/07/N/ST10/03934). References Dick, H.J.B., Bullen, T., 1984. Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contributions to Mineralogy and Petrology 86, 54-76. Johnson K.T.M., Dick H.J.B., Shimizu N., 1990. Melting in the Oceanic Upper Mantle - an ion microprobe study of Diopsides in Abyssal Peridotites. Journal of Geophysical Research 95, 2661-2678.

  4. PROCESS FOR THE RECOVERY OF METALS FROM HIGH-LIME CARNOTITE ORES

    DOEpatents

    Grinstead, R.R.

    1959-01-20

    A process is presented for recovering uranium values from a high-lime carnotite ore comprising contacting the ore dispersed in a finely divided state with a concentrated mineral acid, adding an industrial orgnnic solvent containing alkyl ontho or pyro phosphoric acids, alkyl phosphates or alkyl phosphonates so as to effect an organic phase into which the metal value is leached and then recovering the metal value from the organic phase.

  5. Effective Processing of the Iron Ores

    NASA Astrophysics Data System (ADS)

    Kuskov, Vadim; Kuskova, Yana; Udovitsky, Vladimir

    2017-11-01

    Effective technology for a complex wasteless processing of the iron ores has been designed and includes three main components (plats): comminution plant, briquette plant, pigment plant. The comminution is done per energy effective technology. Using of briquetting for ores clotting enables the costs cut and brings to a higher level of environmental safety of the process. Briquette formation can be done as a regular pressing, as an extrusion. Developed technology allows to produce high quality competitively products for metallurgy industry and red iron oxide pigments. The whole production line impacts the environment in a minimal manner.

  6. Minerals and melt inclusions as keys to understanding magma reservoir processes during formation of volcanic and plutonic mafic-ultramafic complexes in the Maimecha Kotui Province (Polar Siberia)

    NASA Astrophysics Data System (ADS)

    Simonov, Vladimir; Vasiliev, Yurii; Kotlyarov, Alexey; Stupakov, Sergey

    2016-04-01

    Magmatic complexes in the Maimecha Kotui Province (Polar Siberia) attract attention of researchers because they contain ultramafic volcanic rocks - meimechites, being products of crystallization of the ultrabasic deep mantle melts (Sobolev et al., 1991, 2009, 2011; Ryabchikov et al., 2002; Vasiliev, Gora, 2014). Effusive meimechites together with intrusive dunites of the Guli massif form ancient (253-246 Ma) volcanic and plutonic association, in which also pyroxenites and alkaline rocks are situated. Conditions of formation of this association were established with the help of minerals and melt inclusions study. The cumulative structure of the Guli massif dunites consists of rather large (2-4 mm) olivine crystals and dividing them zones (0.5-0.7 mm), filled with fine grains of clinopyroxenes and ore minerals (magnetite, ilmenite and chromite). The extended forms of well faceted pyroxene crystals testify to their fast growth from melt between cumulative olivines. Thus, crystallization of clinopyroxenes and ore minerals leads to formation between olivines ore pyroxenites, which are presented in the Guli massif by independent bodies. Analysis of olivine, Cr-spinel and clinopyroxene compositions testify to similarity of conditions of the Guli massif dunites crystallization on the one hand with formation of platinum-bearing Uralian-Alaskan-type mafic-ultramafic complexes and with another - show participation of meimechite magma. Major element composition of melt inclusions in Cr-spinel has shown that dunites of the Guli massif were crystallized with participation of subalkaline picrite magmatic systems, that are relative to melts, responsible of formation of platinum-bearing mafic-ultramafic complexes and meimechites. Peculiarities of trace and rare-earth elements distribution in melt inclusions in Cr-spinel of dunites are actually similar to inclusions in olivine of meimechites. Overall, data on composition of inclusions directly testify to formation of considered dunites from ultrabasic melt close to meimechite magma. The affinity of melts, forming dunites and meimechites, is confirmed by computer simulations, shown high crystallization temperature of olivines from dunites (1590-1415°C) (Simonov et al., 2014, 2015), actually coinciding with data on olivines from meimechite - 1600-1420°C (Sobolev et al., 1991, 2009). A part of this ultrabasic melts was crystallized in the magma chambers (with formation of cumulative dunites) and another part - came up to a surface with formation of effusive meimechites. Presence in Cr-spinels from Guli massif dunites melt inclusions with rather large (up to 50 μm) well faceted olivine crystals, situated in the quenching fine-grained association of minerals (clinopyroxene, feldspar and nepheline), testifies to change of a quiet mode of crystallization by sharp falling of parameters of magma during olivine cumulation in the magma chamber, that resulted in appearance of alkaline rocks. As a whole, minerals and melt inclusions study testify to formation of volcanic and plutonic complexes in the Maimecha Kotui Province (Polar Siberia) as a result of evolution of primary deep mantle ultrabasic melts (similar by its chemical composition to meimechites) during cumulative processes in the magma chambers.

  7. Conditional estimates of the number of podiform chromite deposits

    USGS Publications Warehouse

    Singer, D.A.

    1994-01-01

    A desirable guide for estimating the number of undiscovered mineral deposits is the number of known deposits per unit area from another well-explored permissive terrain. An analysis of the distribution of 805 podiform chromite deposits among ultramafic rocks in 12 subareas of Oregon and 27 counties of California is used to examine and extend this guide. The average number of deposits in this sample of 39 areas is 0.225 deposits per km2 of ultramafic rock; the frequency distribution is significantly skewed to the right. Probabilistic estimates can be made by using the observation that the lognormal distribution fits the distribution of deposits per unit area. A further improvement in the estimates is available by using the relationship between the area of ultramafic rock and the number of deposits. The number (N) of exposed podiform chromite deposits can be estimated by the following relationship: log10(N)=-0.194+0.577 log10(area of ultramafic rock). The slope is significantly different from both 0.0 and 1.0. Because the slope is less than 1.0, the ratio of deposits to area of permissive rock is a biased estimator when the area of ultramafic rock is different from the median 93 km2. Unbiased estimates of the number of podiform chromite deposits can be made with the regression equation and 80 percent confidence limits presented herein. ?? 1994 Oxford University Press.

  8. Fact Sheet - Final Air Toxics Rule for Gold Mine Ore Processing and Production

    EPA Pesticide Factsheets

    Fact sheet summarizing main points of National Emissions Standards for Hazardous Air Pollutants for gold ore processing and production facilities, the seventh largest source of mercury air emission in the United States.

  9. Chromium Recycling in the United States in 1998

    USGS Publications Warehouse

    Papp, John F.

    2001-01-01

    The purpose of this report is to illustrate the extent to which chromium was recycled in the United States in 1998 and to identify chromium-recycling trends. The major use of chromium was in the metallurgical industry to make stainless steel; substantially less chromium was used in the refractory and chemical industries. In this study, the only chromium recycling reported was that which was a part of stainless steel scrap reuse. In 1998, 20 percent of the U.S. apparent consumption of chromium was secondary (from recycling); the remaining 80 percent was based on net chromium commodity imports and stock adjustments. Chromite ore was not mined in the United States in 1998. In 1998, 75,300 metric tons (t) of chromium contained in old scrap was consumed in the United States; it was valued at $66.4 million. Old scrap generated contained 132,000 t of chromium. The old scrap recycling efficiency was 87 percent, and the recycling rate was 20 percent. About 18,000 t of chromium in old scrap was unrecovered. New scrap consumed contained 28,600 t of chromium, which yielded a new-to-old-scrap ratio of 28:72. U.S. chromium-bearing stainless steel scrap net exports were valued at $154 million and were estimated to have contained 41,000 t of chromium.

  10. Sustainable Mineral-Intensive Growth in Odisha, India

    NASA Astrophysics Data System (ADS)

    Nayak, S.

    2012-04-01

    The focus of the work is to highlight the present environmental and social impacts of extensive mining on the health of the common people of Odisha. The mining activities have created havoc impact to the environment and social life of the state. Odisha has huge deposits of ores and minerals of chromite, nickel, bauxite, iron, coal, copper, manganese, graphite, vanadium etc. The mining activities have encouraged rapid urbanization and at the same time have altered the topography of these areas and extensively degraded the forest land. For long term sustainable development of the society, it is necessary to take a balanced and integrated approach towards environmental protection and economic advancement. Industries should aim at achieving their goals, through a system of permits based on best available techniques, which gives emphasis on integrated prevention and control of consumption of energy and water as well as pollution of water, air and soil. The rapid industrial growth has brought promising opportunities for economic development and poverty reduction in Odisha but at the same time has caused extensive environmental degradation. The best management practices to deal with environmental and social impacts on mineral-intensive growth are suggested in this work. In addition to lean technology, economic implications of the introduction of environmental technologies for mining activities are also discussed.

  11. Zirconium and hafnium

    USGS Publications Warehouse

    Jones, James V.; Piatak, Nadine M.; Bedinger, George M.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Zirconium and hafnium are corrosion-resistant metals that are widely used in the chemical and nuclear industries. Most zirconium is consumed in the form of the main ore mineral zircon (ZrSiO4, or as zirconium oxide or other zirconium chemicals. Zirconium and hafnium are both refractory lithophile elements that have nearly identical charge, ionic radii, and ionic potentials. As a result, their geochemical behavior is generally similar. Both elements are classified as incompatible because they have physical and crystallochemical properties that exclude them from the crystal lattices of most rock-forming minerals. Zircon and another, less common, ore mineral, baddeleyite (ZrO2), form primarily as accessory minerals in igneous rocks. The presence and abundance of these ore minerals in igneous rocks are largely controlled by the element concentrations in the magma source and by the processes of melt generation and evolution. The world’s largest primary deposits of zirconium and hafnium are associated with alkaline igneous rocks, and, in one locality on the Kola Peninsula of Murmanskaya Oblast, Russia, baddeleyite is recovered as a byproduct of apatite and magnetite mining. Otherwise, there are few primary igneous deposits of zirconium- and hafnium-bearing minerals with economic value at present. The main ore deposits worldwide are heavy-mineral sands produced by the weathering and erosion of preexisting rocks and the concentration of zircon and other economically important heavy minerals, such as ilmenite and rutile (for titanium), chromite (for chromium), and monazite (for rare-earth elements) in sedimentary systems, particularly in coastal environments. In coastal deposits, heavy-mineral enrichment occurs where sediment is repeatedly reworked by wind, waves, currents, and tidal processes. The resulting heavy-mineral-sand deposits, called placers or paleoplacers, preferentially form at relatively low latitudes on passive continental margins and supply 100 percent of the world’s zircon. Zircon makes up a relatively small percentage of the economic heavy minerals in most deposits and is produced primarily as a byproduct of heavy-mineral-sand mining for titanium minerals.From 2003 to 2012, world zirconium mineral concentrates production increased by more than 40 percent, and Australia and South Africa were the leading producers. Global consumption of zirconium mineral concentrates generally increased during the same time period, largely as a result of increased demand in developing economies in Asia and the Middle East. Global demand weakened in 2012, causing a decrease in world production of zirconium mineral concentrates and delaying the development of several new mining projects. Global consumption is expected to increase in the future, however, as demand from the ceramics, chemicals, and metals industries increases (driven by renewed growth in developing economies) and demand for zirconium and hafnium metal increases (driven by the construction and operation of new nuclear powerplants).The behaviors of zirconium and hafnium in the environment are very similar to one another in that most zirconium- and hafnium-bearing minerals have limited solubility and reactivity. Anthropogenic sources of zirconium, and likely hafnium, are from industrial zirconium-containing byproducts and emissions from the processing of sponge zirconium, and exposure to the general population from these sources is small. Zirconium and hafnium are likely not essential to human health and generally are considered to be of low toxicity to humans. The main exposure risks are associated with industrial inhalation and dermal exposure. Because of the low solubility of zirconium and hafnium, ecological health concerns in the aquatic environment and in soils are minimal. Heavy-mineral-sand mining may lead to increased erosion rates when the mining is managed improperly. In addition, surface mining requires removal of the overlying organic soil layer and produces waste material that includes tailings and slimes. The soil removal and mining activity disturbs the surrounding ecosystem and alters the character of the landscape. Dry mineral separation processes create high amounts of airborne dust, whereas wet mineral separation processes do not. In operations that restore the landscape to pre-mining conditions, the volume of waste and the impact on the landscape may be relatively temporary.

  12. 40 CFR 440.104 - New source performance standards (NSPS).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., in-situ leach or vat-leach processes to extract copper from ores or ore waste materials. The Agency... Molybdenum Ores Subcategory § 440.104 New source performance standards (NSPS). Except as provided in subpart... technology (BADT): (a) The concentration of pollutants discharged in mine drainage from mines that produce...

  13. 40 CFR 440.104 - New source performance standards (NSPS).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., in-situ leach or vat-leach processes to extract copper from ores or ore waste materials. The Agency... Molybdenum Ores Subcategory § 440.104 New source performance standards (NSPS). Except as provided in subpart... technology (BADT): (a) The concentration of pollutants discharged in mine drainage from mines that produce...

  14. Typology of mafic-ultramafic complexes in Hoggar, Algeria: Implications for PGE, chromite and base-metal sulphide mineralisation

    NASA Astrophysics Data System (ADS)

    Augé, Thierry; Joubert, Marc; Bailly, Laurent

    2012-02-01

    With the aims to bring new information about the typology and mineral potential of mafic-ultramafic complexes of the Hoggar, detailed petrological and chemical characterisation were performed on serpentinite bands and layered intrusions. The serpentinite bands locally contain pods, layers and disseminations of chromite showing all the characteristics (mode of occurrence, composition, nature and composition of silicate inclusions, etc.) of an "ophiolite" chromite. Some chromite concentrations in the serpentinite bands also contain inclusions of platinum-group minerals (described for the first time in the Hoggar) such as ruarsite (RuAsS), an Os, Ru, Ir alloy, and complex Os, Ir, Ru sulfarsenides and arsenides. The serpentinite probably corresponds to remnants of oceanic lithosphere—more specifically from the upper part of the mantle sequence, generally where chromitite pods are most abundant, and the basal part of the cumulate series with stratiform chromite concentrations—and marks suture zones; the rest of the oceanic crust has not been preserved. Considering the typology of the serpentinites bands, their potential for precious- and base-metals is suspected to be low. Of the two layered mafic-ultramafic intrusions that were studied, the In Tedeini intrusion has a wehrlite core intruded by olivine gabbronorite and surrounded by an olivine gabbro aureole; three orthocumulate units, containing disseminated magmatic base-metal sulphides and with a plagioclase composition varying around An 58.1 and An 63.3, that could have been derived from a single magma. The East Laouni intrusion has a basal unit of olivine gabbronorite with specific silicate oxide intergrowths, and an upper unit of more differentiated gabbro, both units containing disseminated magmatic Ni-Cu sulphides indicative of early sulphide immiscibility; the mineral composition of these two cumulate units indicates that they also could have been derived from a single magmatic episode. The characteristic of the two intrusions appears very favourable for the presence of a significant Ni-Cu-(PGE) sulphide mineralisation.

  15. Chemical analysis of extracting transition metal oxides from polymetallic ore by sulphate process

    NASA Astrophysics Data System (ADS)

    Enkh-Uyanga, Otgon-Uul; Munkhtsetseg, Baatar; Urangoo, Urtnasan; Tserendulam, Enkhtur; Agiimaa, Davaadorj

    2017-06-01

    In this research work we attempt to improve the purity of polymetallic ores in Mongolia whilst developing practical applications of its refinement processes and this paper presents the results of chemical research of extracting transition metal titanium oxides, ferrous oxide and rare earth oxides from polymetallic ore. Thereby, chemical and mineral analysis of polymetallic ore is carried out basis of responses to the support process at various degrees of water whereas transition metal sulphates solubility differ. As a result of sulphate and resulphurization process we have extracted anatase with 62.5 percent titanium dioxide and brookite mineral with 89.6 percent of titanium dioxide as well as mineral with 83.8 percent of ferrous oxide hematite and rare earth oxides with 57.6 percent of cerium oxide. These oxides are identified under various conditions in the thermal processing. The morphology structure and chemical content compound of the mineral has been verified as a result of the XRF, XRD, SEM-EDX analysis.

  16. Gas-to-particle conversion in the particle precipitation-aided chemical vapor deposition process II. Synthesis of the perovskite oxide yttrium chromite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dieten, V.E.J. van; Dekker, J.P.; Hurkmans, E.J.

    1993-11-01

    In the particle precipitation-aided chemical vapor deposition process, an aerosol is formed in the gas phase at elevated temperatures. The particles are deposited on a cooled substrate. Coherent layers with a controlled porosity can be obtained by a simultaneous heterogeneous reaction, which interconnects the deposited particles. The synthesis of submicrometer powder of the perovskite oxide yttrium chromite (YCrO[sub 3]) by gas to particle conversion, which is the first step of the PP-CVD process, has been investigated, and preliminary results are shown. The powders have been synthesized using yttrium trichloride vapor (YCl[sub 3]), chromium trichloride vapor (CrCl[sub 3]), and steam andmore » oxygen as reactants. The influence of the input molar ratio of the elements on the composition and characteristics of the powders has been investigated. Phase composition has been determined by X-ray diffraction (XRD). The powders have been characterized by transmission electron microscopy (TEM) and sedimentation field flow fractionation (SF[sup 3]). At a reaction temperature of 1283 K the powders consist of the chromium sesquioxide (Cr[sub 2]O[sub 3]), or a mixture of Cr[sub 2]O[sub 3] and YCrO[sub 3]. At stoichiometeric input amounts of metal chlorides and steam the formation of YCrO[sub 3] seems to be favored. 19 refs., 6 figs., 3 tabs.« less

  17. Mineralogy, composition and PGM of chromitites from Pefki, Pindos ophiolite complex (NW Greece): evidence for progressively elevated fAs conditions in the upper mantle sequence

    NASA Astrophysics Data System (ADS)

    Kapsiotis, Argirios; Grammatikopoulos, Tassos A.; Tsikouras, Basilios; Hatzipanagiotou, Konstantin; Zaccarini, Federica; Garuti, Giorgio

    2011-01-01

    The Pindos ophiolite complex, located in the northwestern part of continental Greece, hosts various chromite deposits of both metallurgical (high-Cr) and refractory (high-Al) type. The Pefki chromitites are banded and sub-concordant to the surrounding serpentinized dunites. The Cr# [Cr/(Cr + Al)] of magnesiochromite varies between 0.75 and 0.79. The total PGE grade ranges from 105.9 up to 300.0 ppb. IPGE are higher than PPGE, typical of mantle hosted ophiolitic chromitites. The PGM assemblage in chromitites comprises anduoite, ruarsite, laurite, irarsite, sperrylite, hollingworthite, Os-Ru-Ir alloys including osmium and rutheniridosmine, Ru-bearing oxides, braggite, paolovite, platarsite, cooperite, vysotskite, and palladodymite. Iridarsenite and omeiite were also observed as exsolutions in other PGM. Rare electrum and native Ag are recovered in concentrates. This PGM assemblage is of great petrogenetic importance because it is significantly different from that commonly observed in podiform mantle-hosted and banded crustal-hosted ophiolitic chromitites. PGE chalcogenides of As and S are primary, and possibly crystallized directly from a progressively enriched in As boninitic melt before or during magnesiochromite precipitation. The presence of Ru-bearing oxides implies simultaneous desulfurization and dearsenication processes. Chemically zoned laurite and composite paolovite-electrum intergrowths are indicative of the relatively high mobility of certain PGE at low temperatures under locally oxidizing conditions. The PGM assemblage and chemistry, in conjunction with geological and petrologic data of the studied chromitites, indicate that it is characteristic of chromitites found within or close to the petrologic Moho. Furthermore, the strikingly different PGM assemblages between the high-Cr chromitites within the Pindos massif is suggestive of non-homogeneous group of ores.

  18. Earth Observations taken by the Expedition 25 crew

    NASA Image and Video Library

    2010-09-30

    ISS025-E-005538 (30 Sept. 2010) --- The Great Dyke of Zimbabwe, Africa is featured in this image photographed by an Expedition 25 crew member on the International Space Station. The Great Dyke of Zimbabwe is a prominent geological feature that extends for over 550 kilometers, varying from 3-12 kilometers in width across the center of the country northeast – southwest; the southern end of the Dyke is illustrated in this view. The Dyke (or Dike in American English) is a layered mafic intrusion of igneous, metal-bearing rock that has been dated using uranium-lead isotopes to approximately 2.5 billion years in age, according to scientists. It intrudes even older rocks of the African craton, or core of oldest rocks forming the continent; in cross section, the Great Dyke looks somewhat triangular or keel-shaped suggesting to geologists that it rose along deep faults associated with extension of the African crust. Layered mafic intrusions are usually associated with economically important metals such as chromium, nickel, copper, platinum, titanium, iron, vanadium and tin. Chromium, in the form of the mineral chromite and platinum are particularly abundant in the Great Dyke and actively mined. Younger faults have offset sections of the Dyke along its length – two of the most obvious faults in the image are indicated, with arrows showing the relative directions of offset relative to the main trend of the intrusion. While the Great Dyke and its metal ores are products of geologic processes operating in the deep past, more recent events have also left their mark on the landscape as illustrated by two large fire burn scars which are visible at top center.

  19. Treatment of Alkaline Cr(VI)-Contaminated Leachate with an Alkaliphilic Metal-Reducing Bacterium.

    PubMed

    Watts, Mathew P; Khijniak, Tatiana V; Boothman, Christopher; Lloyd, Jonathan R

    2015-08-15

    Chromium in its toxic Cr(VI) valence state is a common contaminant particularly associated with alkaline environments. A well-publicized case of this occurred in Glasgow, United Kingdom, where poorly controlled disposal of a cementitious industrial by-product, chromite ore processing residue (COPR), has resulted in extensive contamination by Cr(VI)-contaminated alkaline leachates. In the search for viable bioremediation treatments for Cr(VI), a variety of bacteria that are capable of reduction of the toxic and highly soluble Cr(VI) to the relatively nontoxic and less mobile Cr(III) oxidation state, predominantly under circumneutral pH conditions, have been isolated. Recently, however, alkaliphilic bacteria that have the potential to reduce Cr(VI) under alkaline conditions have been identified. This study focuses on the application of a metal-reducing bacterium to the remediation of alkaline Cr(VI)-contaminated leachates from COPR. This bacterium, belonging to the Halomonas genus, was found to exhibit growth concomitant to Cr(VI) reduction under alkaline conditions (pH 10). Bacterial cells were able to rapidly remove high concentrations of aqueous Cr(VI) (2.5 mM) under anaerobic conditions, up to a starting pH of 11. Cr(VI) reduction rates were controlled by pH, with slower removal observed at pH 11, compared to pH 10, while no removal was observed at pH 12. The reduction of aqueous Cr(VI) resulted in the precipitation of Cr(III) biominerals, which were characterized using transmission electron microscopy and energy-dispersive X-ray analysis (TEM-EDX) and X-ray photoelectron spectroscopy (XPS). The effectiveness of this haloalkaliphilic bacterium for Cr(VI) reduction at high pH suggests potential for its use as an in situ treatment of COPR and other alkaline Cr(VI)-contaminated environments. Copyright © 2015, Watts et al.

  20. Ilmenite exsolution schemes in Apollo-17 high-Ti basalts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaniman, D.; Heiken, G.; Muhich, T.

    1990-01-01

    Combined electron microprobe and scanning electron microscope (SEM) x-ray image analyses are used to obtain semiquantitative data on the relations between ilmenite grains and their exsolved chromite and rutile. Comparisons of these data for ilmenites in four Apollo-17 high-Ti basalts with a database of electron microprobe analyses from the literature indicates that Cr expulsion from ilmenite can be as important as Fe{sup 2+} reduction in causing subsolidus exsolution of chromite and rutile from ilmenite. 12 refs., 4 figs., 5 tabs.

  1. Process and apparatus for solvent extraction of oil from oil-containing diatomite ore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karnofsky, G. B.

    1980-12-16

    A process for solvent extraction of oil from oil bearing diatomite ore and an apparatus for use therewith, wherein the ore is extracted by countercurrent decantation with a hydrocarbon solvent, solvent is recovered from the extract by multiple effect evaporation followed by stripping, and the spent diatomite is contacted with water to displace a major portion of the solvent therefrom, and solvent is recovered from the aqueous slurry of the spent diatomite by stripping with steam at superatmospheric pressure.

  2. Microbial solubilization of phosphate

    DOEpatents

    Rogers, R.D.; Wolfram, J.H.

    1993-10-26

    A process is provided for solubilizing phosphate from phosphate containing ore by treatment with microorganisms which comprises forming an aqueous mixture of phosphate ore, microorganisms operable for solubilizing phosphate from the phosphate ore and maintaining the aqueous mixture for a period of time and under conditions operable to effect the microbial solubilization process. An aqueous solution containing soluble phosphorus can be separated from the reacted mixture by precipitation, solvent extraction, selective membrane, exchange resin or gravity methods to recover phosphate from the aqueous solution. 6 figures.

  3. Microbial solubilization of phosphate

    DOEpatents

    Rogers, Robert D.; Wolfram, James H.

    1993-01-01

    A process is provided for solubilizing phosphate from phosphate containing ore by treatment with microorganisms which comprises forming an aqueous mixture of phosphate ore, microorganisms operable for solubilizing phosphate from the phosphate ore and maintaining the aqueous mixture for a period of time and under conditions operable to effect the microbial solubilization process. An aqueous solution containing soluble phosphorous can be separated from the reacted mixture by precipitation, solvent extraction, selective membrane, exchange resin or gravity methods to recover phosphate from the aqueous solution.

  4. Effects of reduction temperature to Ni and Fe content and the morphology of agglomerate of reduced laterite limonitic nickel ore by coal-bed method

    NASA Astrophysics Data System (ADS)

    Abdul, Fakhreza; Pintowantoro, Sungging; Kawigraha, Adji; Nursidiq, Ahlidin

    2018-04-01

    As the current drop of nickel sulfide ore on earth, the attention to nickel laterite ore processing was inscreased in order to fulfill the future nickel demand needs. This research aims to optimized the process of nickel laterite ore extraction using coal bed method. This research was conducted by reducing low grade nickel laterite ore (limonitic) with nickel content of 1.25 %. The reduction process was carried out using CO gas which formed by the reaction of coal and dolomite. The Briquette of nickel ore, coal, Na2SO4 mixtures incorporated in the crucible with bed, then reduced for 6 hours at the temperature of 1200 °C. 1400 °C, and 1400 °C. The result of the research shown that the highest increase of Ni content and Ni recovery value was in the reduction temperature of 1400 °C with the increase of 3.44 %, and the recovery value of Ni equal to 86.75 %. While the highest increase of Fe content and Fe recovery value, respectively, was in the reduction temperature of 1300 °C with the increase of 22.67 % and 1200 °C with Fe recovery value of 89.41 %.

  5. Bio-mineralization and potential biogeochemical processes in bauxite deposits: genetic and ore quality significance

    NASA Astrophysics Data System (ADS)

    Laskou, Magdalini; Economou-Eliopoulos, Maria

    2013-08-01

    The Parnassos-Ghiona bauxite deposit in Greece of karst type is the 11th largest bauxite producer in the world. The mineralogical, major and trace-element contents and δ18O, δ12C, δ34S isotopic compositions of bauxite ores from this deposit and associated limestone provide valuable evidence for their origin and biogeochemical processes resulting in the beneficiation of low grade bauxite ores. The organic matter as thin coal layers, overlying the bauxite deposits, within limestone itself (negative δ12C isotopic values) and the negative δ34S values in sulfides within bauxite ores point to the existence of the appropriate circumstances for Fe bio-leaching and bio-mineralization. Furthermore, a consortium of microorganisms of varying morphological forms (filament-like and spherical to lenticular at an average size of 2 μm), either as fossils or presently living and producing enzymes, is a powerful factor to catalyze the redox reactions, expedite the rates of metal extraction and provide alternative pathways for metal leaching processes resulting in the beneficiation of bauxite ore.

  6. The effect of smelting time and composition of palm kernel shell charcoal reductant toward extractive Pomalaa nickel laterite ore in mini electric arc furnace

    NASA Astrophysics Data System (ADS)

    Sihotang, Iqbal Huda; Supriyatna, Yayat Iman; Ismail, Ika; Sulistijono

    2018-04-01

    Indonesia is a country that is rich in natural resources. Being a third country which has a nickel laterite ore in the world after New Caledonia and Philippines. However, the processing of nickel laterite ore to increase its levels in Indonesia is still lacking. In the processing of nickel laterite ore into metal, it can be processed by pyrometallurgy method that typically use coal as a reductant. However, coal is a non-renewable energy and have high enough levels of pollution. One potentially replace is the biomass, that is a renewable energy. Palm kernel shell are biomass that can be used as a reductant because it has a fairly high fix carbon content. This research aims to make nickel laterite ores become metal using palm kernel shell charcoal as reductant in mini electric arc furnace. The result show that the best smelting time of this research is 60 minutes with the best composition of the reductant is 2,000 gram.

  7. Kinetic study of nickel laterite reduction roasting by palm kernel shell charcoal

    NASA Astrophysics Data System (ADS)

    Sugiarto, E.; Putera, A. D. P.; Petrus, H. T. B. M.

    2017-05-01

    Demand to process nickel-bearing laterite ore increase as continuous depletion of high-grade nickel-bearing sulfide ore takes place. Due to its common nickel association with iron, processing nickel laterite ore into nickel pig iron (NPI) has been developed by some industries. However, to achieve satisfying nickel recoveries, the process needs massive high-grade metallurgical coke consumption. Concerning on the sustainability of coke supply and positive carbon emission, reduction of nickel laterite ore using biomass-based reductor was being studied.In this study, saprolitic nickel laterite ore was being reduced by palm kernel shell charcoal at several temperatures (800-1000 °C). Variation of biomass-laterite composition was also conducted to study the reduction mechanism. X-ray diffraction and gravimetry analysis were applied to justify the phenomenon and predict kinetic model of the reduction. Results of this study provide information that palm kernel shell charcoal has similar reducing result compared with the conventional method. Reduction, however, was carried out by carbon monoxide rather than solid carbon. Regarding kinetics, Ginstling-Brouhnstein kinetic model provides satisfying results to predict the reduction phenomenon.

  8. Contingency plans for chromium utilization. Publication NMAB-335

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The United States depends entirely on foreign sources for the critical material, chromium, making it very vulnerable to supply disruptions. The effectiveness of programs such as stockpiling, conservation, and research and development for substitutes to reduce the impact of disruption of imports of chromite and ferrochromium are discussed. Alternatives for decreasing chromium consumption also are identified for chromium-containing materials in the areas of design, processing, and substitution.

  9. 75 FR 22469 - National Emission Standards for Hazardous Air Pollutants: Gold Mine Ore Processing and Production...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-28

    ... the lower TRI reporting threshold for mercury that went into effect about that time. Following this... roasting temperatures, which readily volatilize available mercury from the ore. The mercury concentrations... temperatures. Dry grinding of the ore prior to roasting is primarily a source of particulate matter (PM...

  10. 40 CFR 63.9621 - What test methods and other procedures must I use to demonstrate initial compliance with the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) National Emission Standards for Hazardous Air Pollutants: Taconite Iron Ore Processing Initial Compliance... section. (b) For each ore crushing and handling affected source and each finished pellet handling affected... each ore crushing and handling affected source and each finished pellet handling affected source, you...

  11. Diamonds in ophiolitic mantle rocks and podiform chromitites: An unsolved mystery

    NASA Astrophysics Data System (ADS)

    Yang, J.; Zhang, Z.; Xu, X.; Ba, D.; Bai, W.; Fabg, Q.; Meng, F.; Chen, S.; Robinson, P. T.; Dobrzhinetskaya, L.

    2009-05-01

    In recent years ultrahigh pressure minerals, such as diamond and coesite, and other unusual minerals were discovered in chromitites of the Luobusa ophiolite in Tibet, and 4 new minerals have been approved by the CNMMN. These results have raised many questionsWhat are the occurrences of the diamonds, what is the source of their carbon and how were they formed? What is the origin of the chromites hosting the diamonds and at what depth did they form? What is the genetic relationship between the diamonds and the host chromitites? In what geological, geophysical and geochemical environments can the diamonds be formed and how are they preserved? The UHP minerals from Luobusa are controversial because they have not been found in situ and because ophiolites are currently believed to form at shallow levels above oceanic spreading centers in suprasubduction zone environments. More detailed study and experimental work are needed to understand the origin and significance of these unusual minerals and investigations of other ophiolites are needed to determine if such minerals occur elsewhere To approach these problems, we have collected two one-ton samples of harzburgite hosting chromitite orebodies in the Luobusa ophiolite in Tibet. The harzburgite samples were taken close to chromitite orebody 31, from which the diamonds, coesite and other unusual minerals were recovered. We processed these two samples in the same manner as the chromitites and discovered numerous diamonds and more than 50 other mineral species. These preliminary results show that the minerals in the harzburgites are similar to those in the chromitites, suggesting a genetic relationship between them. To determine if such UHP and unusual minerals occur elsewhere, we collected about 1.5 t of chromitite from two orebodies in an ultramafic body in the Polar Urals. Thus far, more than 60 different mineral species have been separated from these ores. The most exciting discovery is the common occurrence of diamond, a typical UHP mineral in the Luobusa chromitites. Other minerals include: (1) native elements: Cr, W, Ni, Co, Si, Al and Ta; (2) carbides: SiC and WC; (3) alloys: Cr-Fe, Si-Al-Fe, Ni-Cu, Ag-Au, Ag-Sn, Fe-Si, Fe-P, and Ag-Zn-Sn; (4) oxides: NiCrFe, PbSn, REE, rutile and Si-bearing rutile, ilmenite, corundum, chromite, MgO, and SnO2; (5) silicates: kyanite, pseudomorphs of octahedral olivine, zircon, garnet, feldspar, and quartz,; (6) sulfides of Fe, Ni, Cu, Mo, Pb, Ab, AsFe, FeNi, CuZn, and CoFeNi; and (7) iron groups: native Fe, FeO, and Fe2O3. These minerals are very similar in composition and structure to those reported from the Luobusa chromitites.

  12. 75 FR 22838 - Notice of Availability of the Draft Environmental Impact Statement for the Genesis Project...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-30

    ... necessary haul roads and access roads, and process 60 million tons of gold-bearing ore. The proposed project... of mercury associated with processing the 60 million tons of ore; (3) The impacts of 12 additional...

  13. Spade: An H Chondrite Impact-melt Breccia that Experienced Post-shock Annealing

    NASA Technical Reports Server (NTRS)

    Rubin, Alan E.; Jones, Rhian H.

    2006-01-01

    The low modal abundances of relict chondrules (1.8 Vol%) and of coarse (i.e. >= 2200 micron-size) isolated mafic silicate grains (1.8 Vol%) in Spade relative to mean H6 chondrites (11.4 and 9.8 vol%, respectively) show Spade to be a rock that has experienced a significant degree of melting. Various petrographic features (e.g., chromite-plagioclase assemblages, chromite veinlets, silicate darkening) indicate that melting was caused by shock. Plagioclase was melted during the shock event and flowed so that it partially to completely surrounded nearby mafic silicate grains. During crystallization, plagioclase developed igneous zoning. Low-Ca pyroxene that crystallized from the melt (or equilibrated with the melt at high temperatures) acquired relatively high amounts of CaO. Metallic Fe-Ni cooled rapidly below the Fe-Ni solws and transformed into martensite. Subsequent reheating of the rock caused transformation of martensite into abundant duplex plessite. Ambiguities exist in the shock stage assignment of Spade. The extensive silicate darkening, the occurrence of chromite-plagioclase assemblages, and the impact-melted characteristics of Spade are consistent with shock stage S6. Low shock (stage S2) is indicated by the undulose extinction and lack of planar fractures in olivine. This suggests that Spade reached a maximum prior shock level equivalent to stage S6 and then experienced post-shock annealing (probably to stage Sl). These events were followed by a less intense impact that produced the undulose extinction in the olivine, characteristic of shock stage S2. Annealing could have occurred if Spade were emplaced near impact melts beneath the crater floor or deposited in close proximity to hot debris within an ejecta blanket. Spade firmly establishes the case for post-shock annealing. This may have been a common process on ordinary chondrites (OC) asteroids.

  14. High- and low-Cr chromitite and dunite in a Tibetan ophiolite: evolution from mature subduction system to incipient forearc in the Neo-Tethyan Ocean

    NASA Astrophysics Data System (ADS)

    Xiong, Qing; Henry, Hadrien; Griffin, William L.; Zheng, Jian-Ping; Satsukawa, Takako; Pearson, Norman J.; O'Reilly, Suzanne Y.

    2017-06-01

    The microstructures, major- and trace-element compositions of minerals and electron backscattered diffraction (EBSD) maps of high- and low-Cr# [spinel Cr# = Cr3+/(Cr3+ + Al3+)] chromitites and dunites from the Zedang ophiolite in the Yarlung Zangbo Suture (South Tibet) have been used to reveal their genesis and the related geodynamic processes in the Neo-Tethyan Ocean. The high-Cr# (0.77-0.80) chromitites (with or without diopside exsolution) have chromite compositions consistent with initial crystallization by interaction between boninitic magmas, harzburgite and reaction-produced magmas in a shallow, mature mantle wedge. Some high-Cr# chromitites show crystal-plastic deformation and grain growth on previous chromite relics that have exsolved needles of diopside. These features are similar to those of the Luobusa high-Cr# chromitites, possibly recycled from the deep upper mantle in a mature subduction system. In contrast, mineralogical, chemical and EBSD features of the Zedang low-Cr# (0.49-0.67) chromitites and dunites and the silicate inclusions in chromite indicate that they formed by rapid interaction between forearc basaltic magmas (MORB-like but with rare subduction input) and the Zedang harzburgites in a dynamically extended, incipient forearc lithosphere. The evidence implies that the high-Cr# chromitites were produced or emplaced in an earlier mature arc (possibly Jurassic), while the low-Cr# associations formed in an incipient forearc during the initiation of a new episode of Neo-Tethyan subduction at 130-120 Ma. This two-episode subduction model can provide a new explanation for the coexistence of high- and low-Cr# chromitites in the same volume of ophiolitic mantle.

  15. A geochemical assessment of possible lunar ore formation

    NASA Technical Reports Server (NTRS)

    Haskin, Larry A.; Colson, Russell O.; Vaniman, David

    1991-01-01

    The Moon apparently formed without appreciable water or other relatively volatile materials. Interior concentrations of water or other volatile substances appear to be extremely low. On Earth, water is important to the genesis of nearly all types of ores. Thus, some have reasoned that only abundant elements would occur in ore concentrations. The definition and recognition of ores on the Moon challenge the imaginations and the terrestrial perceptions of ore bodies. Lunar ores included solar-wind soaked soils, which contain abundant but dilute H, C, N, and noble gases (including He-3). Oxygen must be mined; soils contain approximately 45 percent (wt). Mainstream processes of rock formation concentrated Si, Mg, Al, Fe, and Ca, and possibly Ti and Cr. The highland surface contains approximately 70 percent (wt) feldspar (mainly CaAl2Si2O8), which can be separated from some highland soils. Small fragments of dunite were collected; dunite may occur in walls and central peaks of some craters. Theoretical extensions of observations of lunar samples suggest that the Moon may have produced ores of trace elements. Some small fragments have trace-element concentrations 10(exp 4) times higher than the lunar average, indicating that effective geochemical separations occurred; processes included fractional crystallization, silicate immiscibility, vaporization and condensation, and sulfide metamorphism. Operations of these processes acting on indigenous materials and on meteoritic material in the regolith could have produced ores. Infalling carbonaceous meteorites and comets have added water and hydrocarbons that may have been cold-trapped. Vesicles in basalts, pyroclastic beads, and reported transient events suggest gag emission from the lunar interior; such gas might concentrate and transport rare elements. Large impacts may disperse ores or produce them through deposition of heat at depth and by vaporization and subsequent condensation. The main problem in assessing lunar resources is the ignorance about the largely unexplored Moon.

  16. Elucidation of structural, vibrational and dielectric properties of transition metal (Co2+) doped spinel Mg-Zn chromites

    NASA Astrophysics Data System (ADS)

    Choudhary, Pankaj; Varshney, Dinesh

    2018-05-01

    Co2+ doped Mg-Zn spinel chromite compositions Mg0.5Zn0.5-xCoxCr2O4 (0.0 ≤ x ≤ 0.5) have been synthesized by the high-temperature solid state method. Synchrotron and X-ray diffraction (XRD) studies show single-phase crystalline nature. The structural analysis is validated by Rietveld refinement confirms the cubic structure with space group Fd3m. Crystallite size is estimated from Synchrotron XRD which was found to be 30-34 nm. Energy dispersive analysis confirms stoichiometric Mg0.5Zn0.5-xCoxCr2O4 composition. Average crystallite size distribution is estimated from imaging software (Image - J) of SEM is in the range of 100-250 nm. Raman spectroscopy reveals four active phonon modes, and a pronounced red shift is due to enhanced Co2+ concentration. Increased Co2+ concentration in Mg-Zn chromites shows a prominent narrowing of band gap from 3.46 to 2.97 eV. The dielectric response is attributed to the interfacial polarization, and the electrical modulus study supports non-Debye type of dielectric relaxation. Ohmic junctions (minimum potential drop) at electrode interface are active at lower levels of doping (x < 0.2) give rise to a low-frequency semicircle as evidenced from the complex impedance analysis. The low dielectric loss and high ac conductivity of Co2+ doped Mg-Zn spinel chromites are suitable for power transformer applications at high frequencies.

  17. China's emergence as the world's leading iron-ore-consuming country

    USGS Publications Warehouse

    Kirk, W.S.

    2004-01-01

    China has become the leading iron ore consuming nation, and, based on recent steel production capacity increases and plans for more, its consumption will almost certainly to continue to grow. China's iron ore industry, however, faces a number of problems. China's iron ore is low-grade, expensive to process, and its mines are being depleted. For many Chinese steelmakers, particularly in the coastal regions, the delivered cost of domestic iron ore, is more than the delivered cost of foreign ore. Thus China's iron ore imports are expected to increase. As China's growth continues, it will almost certainly surpass Japan to become the leading iron ore importing country as well. Without China's increasing appetite for iron ore, the world iron ore market would be flat or declining. China's recent imports largely offset the slump in demand in North America and Europe. China is regarded by the iron ore industry as the growth sector for the next decade. Although Chinese imports are expected to continue their rapid increase and imports in other Asian countries are expected to continue growing, there appears to be enough greenfield and expansion projects to meet future demand for iron ore worldwide. Present suppliers of iron ore, Australia, Brazil, India, and South Africa, will probably be the chief beneficiaries of China's increasing consumption of iron ore. How long China can continue its extraordinary growth is the primary issue for the future of the iron ore industry. Based on the number and size of planned blast furnaces it appears that China's growth could continue for several more years. ?? 2004 Taylor and Francis.

  18. PROCESS OF EXTRACTING URANIUM AND RADIUM FROM ORES

    DOEpatents

    Sawyer, C.W.; Handley, R.W.

    1959-07-14

    A process is presented for extracting uranium and radium values from a uranium ore which comprises leaching the ore with a ferric chloride solution at an elevated temperature of above 50 deg C and at a pH less than 4; separating the ore residue from the leaching solution by filtration; precipitating the excess ferric iron present at a pH of less than 5 by adding CaCO/sub 3/ to the filtrate; separating the precipitate by filtration; precipitating the uranium present in the filtrate at a Ph less than 6 by adding BaCO/sub 3/ to the filtrate; separating the precipitate by filtration; and precipitating the radium present in the filtrate by adding H/sub 2/SO/sub 4/ to the filtrate.

  19. Rock-magnetism and ore microscopy of the magnetite-apatite ore deposit from Cerro de Mercado, Mexico

    NASA Astrophysics Data System (ADS)

    Alva-Valdivia, L. M.; Goguitchaichvili, A.; Urrutia-Fucugauchi, J.; Caballero-Miranda, C.; Vivallo, W.

    2001-03-01

    Rock-magnetic and microscopic studies of the iron ores and associated igneous rocks in the Cerro de Mercado, Mexico, were carried out to determine the magnetic mineralogy and origin of natural remanent magnetization (NRM), related to the thermo-chemical processes due to hydrothermalism. Chemical remanent magnetization (CRM) seems to be present in most of investigated ore and wall rock samples, replacing completely or partially an original thermoremanent magnetization (TRM). Magnetite (or Ti-poor titanomagnetite) and hematite are commonly found in the ores. Although hematite may carry a stable CRM, no secondary components are detected above 580°, which probably attests that oxidation occurred soon enough after the extrusion and cooling of the ore-bearing magma. NRM polarities for most of the studied units are reverse. There is some scatter in the cleaned remanence directions of the ores, which may result from physical movement of the ores during faulting or mining, or from perturbation of the ambient field during remanence acquisition by inhomogeneous internal fields within these strongly magnetic ore deposits. The microscopy study under reflected light shows that the magnetic carriers are mainly titanomagnetite, with significant amounts of ilmenite-hematite minerals, and goethite-limonite resulting from alteration processes. Magmatic titanomagnetites, which are found in igneous rocks, show trellis, sandwich, and composite textures, which are compatible with high temperature (deuteric) oxy-exsolution processes. Hydrothermal alteration in ore deposits is mainly indicated by martitization in oxide minerals. Grain sizes range from a few microns to >100 mm, and possible magnetic state from single to multidomain, in agreement with hysteresis measurements. Thermal spectra, continuous susceptibility measurements, and IRM (isothermal remanent magnetization) acquisition suggest a predominance of spinels as magnetic carriers, most probably titanomagnetites with low-Ti content. For quantitative modeling of the aeromagnetic anomalies, we used data on bulk susceptibility and natural remanent intensity for quantifying the relative contributions of induced and remanent magnetization components and allow a better control of the geometry of source bodies. The position and geometry of this magnetic source are shown as an ENE-striking tabular body, steeply inclined (75°) to the south.

  20. Recycling of crustal materials through study of ultrahigh-pressure minerals in collisional orogens, ophiolites, and mantle xenoliths: A review

    NASA Astrophysics Data System (ADS)

    Liou, Juhn G.; Tsujimori, Tatsuki; Yang, Jingsui; Zhang, R. Y.; Ernst, W. G.

    2014-12-01

    Newly recognized occurrences of ultrahigh-pressure (UHP) minerals including diamonds in ultrahigh-temperature (UHT) felsic granulites of orogenic belts, in chromitites associated with ophiolitic complexes, and in mantle xenoliths suggest the recycling of crustal materials through deep subduction, mantle upwelling, and return to the Earth's surface. This circulation process is supported by crust-derived mineral inclusions in deep-seated zircons, chromites, and diamonds from collision-type orogens, from eclogitic xenoliths in kimberlites, and from chromitities of several Alpine-Himalayan and Polar Ural ophiolites; some of these minerals contain low-atomic number elements typified by crustal isotopic signatures. Ophiolite-type diamonds in placer deposits and as inclusions in chromitites together with numerous highly reduced minerals and alloys appear to have formed near the mantle transition zone. In addition to ringwoodite and inferred stishovite, a number of nanometric minerals have been identified as inclusions employing state-of-the-art analytical tools. Reconstitution of now-exsolved precursor UHP phases and recognition of subtle decompression microstructures produced during exhumation reflect earlier UHP conditions. For example, Tibetan chromites containing exsolution lamellae of coesite + diopside suggest that the original chromitites formed at P > 9-10 GPa at depths of >250-300 km. The precursor phase most likely had a Ca-ferrite or a Ca-titanite structure; both are polymorphs of chromite and (at 2000 °C) would have formed at minimum pressures of P > 12.5 or 20 GPa respectively. Some podiform chromitites and host peridotites contain rare minerals of undoubted crustal origin, including zircon, feldspars, garnet, kyanite, andalusite, quartz, and rutile; the zircons possess much older U-Pb ages than the time of ophiolite formation. These UHP mineral-bearing chromitite hosts evidently had a deep-seated evolution prior to extensional mantle upwelling and partial melting at shallow depths to form the overlying ophiolite complexes. These new findings together with stable isotopic and inclusion characteristics of diamonds provide compelling evidence for profound underflow of both oceanic and continental lithosphere, recycling of surface 'organic' carbon into the lower mantle, and ascent to the Earth's surface through mantle upwelling. Intensified study of UHP granulite-facies lower crustal basement and ophiolitic chromitites should allow a better understanding of the geodynamics of subduction and crustal cycling.

  1. Chromium isotope variations (δ53/52Cr) in mantle-derived sources and their weathering products: Implications for environmental studies and the evolution of δ53/52Cr in the Earth’s mantle over geologic time

    NASA Astrophysics Data System (ADS)

    Farkaš, Juraj; Chrastný, Vladislav; Novák, Martin; Čadkova, Eva; Pašava, Jan; Chakrabarti, Ramananda; Jacobsen, Stein B.; Ackerman, Lukáš; Bullen, Thomas D.

    2013-12-01

    Here we report chromium isotope compositions, expressed as δ53/52Cr in per mil (‰) relative to NIST 979, measured in selected Cr-rich minerals and rocks formed by the primary magmatic as well as the secondary metamorphic and weathering processes. The main objectives of this study were: (i) to further constrain the isotope composition of the Earth’s mantle Cr inventory and its possible variation during geological history, based on the analysis of globally distributed and stratigraphically constrained mantle-derived chromites; and (ii) to investigate the magnitude and systematics of Cr isotope fractionation during oxidative weathering and secondary alteration (i.e., hydration, serpentinization) of the magmatic Cr sources. Specifically, we analyzed δ53/52Cr in a set of globally distributed mantle-derived chromites (FeMgCr2O4, n = 30) collected from various locations in Europe, Asia, Africa and South America, and our results confirm that a chromite-hosted Earth’s mantle Cr inventory is uniform at -0.079 ± 0.129‰ (2SD), which we named here as a ‘canonical’ mantle δ53/52Cr signature. Furthermore our dataset of stratigraphically constrained chromites, whose crystallization ages cover most of the Earth’s geological history, indicate that the bulk Cr isotope composition of the chromite-hosted mantle inventory has remained uniform, within about ±0.100‰, since at least the Early Archean times (∼3500 million years ago, Ma). To investigate the systematics of Cr isotope fractionation associated with alteration processes we analyzed a number of secondary Cr-rich minerals and variably altered ultramafic rocks (i.e., serpentinized harzburgites, lherzolites) that revealed large positive δ53/52Cr anomalies that are systematically shifted to higher values with an increasing degree of alteration and serpentinization. The degree of aqueous alteration and serpentinization was quantified by the abundances of fluid-mobile (Rb, K) elements, and by the Loss On Ignition (LOI) parameter, which determines the amount of structurally bound water (OH/H2O) present in secondary hydrated minerals like serpentine. Overall, we observed that altered ultramafic rocks that yielded the highest LOI values, and the lowest amounts of fluid mobile elements, also yielded the heaviest δ53/52Cr signatures. Therefore, we conclude that secondary alteration (i.e., hydration, serpentinization) of ultramafic rocks in near-surface oxidative environments tend to shift the bulk Cr isotope composition of the weathered products to isotopically heavier values, pointing to a dynamic redox cycling of Cr in the Earth’s crustal and near-surface environments. Hence, if validated by future studies, this would suggest that Cr isotopes could be used to trace the recycling of altered oceanic lithosphere through subduction zones, and to detect the sources of dehydrated and previously serpentinized oceanic crust carrying ‘heavy’ δ53/52Cr signatures in island arc systems. Finally, the fact that the geogenic Cr sources may locally exhibit anomalous (non-canonical) δ53/52Cr signatures has also implications for environmental studies that use δ53/52Cr as a tracer to quantify the amount of the hexavalent Cr reduction in waters.

  2. BLENDING LOW ENRICHED URANIUM WITH DEPLETED URANIUM TO CREATE A SOURCE MATERIAL ORE THAT CAN BE PROCESSED FOR THE RECOVERY OF YELLOWCAKE AT A CONVENTIONAL URANIUM MILL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schutt, Stephen M.; Hochstein, Ron F.; Frydenlund, David C.

    2003-02-27

    Throughout the United States Department of Energy (DOE) complex, there are a number of streams of low enriched uranium (LEU) that contain various trace contaminants. These surplus nuclear materials require processing in order to meet commercial fuel cycle specifications. To date, they have not been designated as waste for disposal at the DOE's Nevada Test Site (NTS). Currently, with no commercial outlet available, the DOE is evaluating treatment and disposal as the ultimate disposition path for these materials. This paper will describe an innovative program that will provide a solution to DOE that will allow disposition of these materials atmore » a cost that will be competitive with treatment and disposal at the NTS, while at the same time recycling the material to recover a valuable energy resource (yellowcake) for reintroduction into the commercial nuclear fuel cycle. International Uranium (USA) Corporation (IUSA) and Nuclear Fuel Services, Inc. (NFS) have entered into a commercial relationship to pursue the development of this program. The program involves the design of a process and construction of a plant at NFS' site in Erwin, Tennessee, for the blending of contaminated LEU with depleted uranium (DU) to produce a uranium source material ore (USM Ore{trademark}). The USM Ore{trademark} will then be further processed at IUC's White Mesa Mill, located near Blanding, Utah, to produce conventional yellowcake, which can be delivered to conversion facilities, in the same manner as yellowcake that is produced from natural ores or other alternate feed materials. The primary source of feed for the business will be the significant sources of trace contaminated materials within the DOE complex. NFS has developed a dry blending process (DRYSM Process) to blend the surplus LEU material with DU at its Part 70 licensed facility, to produce USM Ore{trademark} with a U235 content within the range of U235 concentrations for source material. By reducing the U235 content to source material levels in this manner, the material will be suitable for processing at a conventional uranium mill under its existing Part 40 license to remove contaminants and enable the product to re-enter the commercial fuel cycle. The tailings from processing the USM Ore{trademark} at the mill will be permanently disposed of in the mill's tailings impoundment as 11e.(2) byproduct material. Blending LEU with DU to make a uranium source material ore that can be returned to the nuclear fuel cycle for processing to produce yellowcake, has never been accomplished before. This program will allow DOE to disposition its surplus LEU and DU in a cost effective manner, and at the same time provide for the recovery of valuable energy resources that would be lost through processing and disposal of the materials. This paper will discuss the nature of the surplus LEU and DU materials, the manner in which the LEU will be blended with DU to form a uranium source material ore, and the legal means by which this blending can be accomplished at a facility licensed under 10 CFR Part 70 to produce ore that can be processed at a conventional uranium mill licensed under 10 CFR Part 40.« less

  3. Process and apparatus for solvent extraction of oil from oil-containing diatomite ore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karnofsky, G.B.

    1979-09-11

    A process is described for solvent extraction of oil-bearing diatomite ore. An apparatus is provided for use therewith, wherein the ore is extracted by countercurrent decantation with a hydrocarbon solvent. The solvent is recovered from the extract by multiple effect evaporation followed by stripping, and the spent diatomite is contacted with water to displace a major portion of the solvent therefrom. The solvent is recovered from the aqueous slurry of the spent diatomite by stripping with steam at superatmospheric pressure. 17 claims.

  4. DISSOLUTION AND ANALYSIS OF YELLOWCAKE COMPONENTS FOR FINGERPRINTING UOC SOURCES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hexel, Cole R; Bostick, Debra A; Kennedy, Angel K

    2012-01-01

    There are a number of chemical and physical parameters that might be used to help elucidate the ore body from which uranium ore concentrate (UOC) was derived. It is the variation in the concentration and isotopic composition of these components that can provide information as to the identity of the ore body from which the UOC was mined and the type of subsequent processing that has been undertaken. Oak Ridge National Laboratory (ORNL) in collaboration with Lawrence Livermore and Los Alamos National Laboratories is surveying ore characteristics of yellowcake samples from known geologic origin. The data sets are being incorporatedmore » into a national database to help in sourcing interdicted material, as well as aid in safeguards and nonproliferation activities. Geologic age and attributes from chemical processing are site-specific. Isotopic abundances of lead, neodymium, and strontium provide insight into the provenance of geologic location of ore material. Variations in lead isotopes are due to the radioactive decay of uranium in the ore. Likewise, neodymium isotopic abundances are skewed due to the radiogenic decay of samarium. Rubidium decay similarly alters the isotopic signature of strontium isotopic composition in ores. This paper will discuss the chemical processing of yellowcake performed at ORNL. Variations in lead, neodymium, and strontium isotopic abundances are being analyzed in UOC from two geologic sources. Chemical separation and instrumental protocols will be summarized. The data will be correlated with chemical signatures (such as elemental composition, uranium, carbon, and nitrogen isotopic content) to demonstrate the utility of principal component and cluster analyses to aid in the determination of UOC provenance.« less

  5. Dielectric properties and activation behavior of gadolinium doped nanocrystalline yttrium chromite

    NASA Astrophysics Data System (ADS)

    Sinha, R.; Basu, S.; Meikap, A. K.

    2018-04-01

    Gadolinium doped Yttrium Chromite nanoparticles are synthesized following sol-gel method. The formation of the nanoparticles are confirmed by XRD and TEM measurements. Dielectric permittivity and dielectric loss are estimated within the temperature range 298K to 523K and in the frequency range 20 Hz to 1 MHz. Dielectric permittivity follows the power law ɛ'(f) ∝ Tm. It is observed that the temperature exponent m increases with the decreasing frequency. The temperature variation of resistivity shows that the samples have semiconducting behavior. The activation energy is also measured.

  6. The impact of bacteria of circulating water on apatite-nepheline ore flotation.

    PubMed

    Evdokimova, G A; Gershenkop, A Sh; Fokina, N V

    2012-01-01

    A new phenomenon has been identified and studied-the impact of bacteria on the benefication process of non-sulphide ores using circulating water supply-a case study of apatite-nepheline ore. It is shown that bacteria deteriorate the floatability of apatite due to their interaction with active centres of calcium-containing minerals and intense flocculation, resulting in a decrease of the flotation process selectivity thus deteriorating the quality of concentrate. Based on the comparative analysis of primary sequences of 16S rRNA genes, there have been identified dominating bacteria species, recovered from the circulating water used at apatite-nepheline concentrating mills, and their phylogenetic position has been determined. All the bacteria were related to γ-Proteobacteria, including the Acinetobacter species, Pseudomonas alcaliphila, Ps. plecoglossicida, Stenotrophomonas rhizophila. A method of non-sulphide ores flotation has been developed with consideration of the bacterial factor. It consists in use of small concentrations of sodium hypochlorite, which inhibits the development of bacteria in the flotation of apatite-nepheline ores.

  7. Recovery of magnetite from low grade banded magnetite quartzite (BMQ) ore

    NASA Astrophysics Data System (ADS)

    Tripathy, Alok; Bagchi, Subhankar; Rao, Danda Srinivas; Nayak, Bijaya Ketana; Rout, Prashanta Kumar; Biswal, Surendra Kumar

    2018-04-01

    There has been a steady increase of iron ore demand in the last few decades. This growing demand could be countered by use of low grade iron ore after beneficiation. Banded iron formations (BIF) are one of the resources of such low grade iron ores. Banded magnetite quartzite (BMQ) is one such BIF and a source of iron phase mineral in the form of magnetite. In the present study a low grade BMQ ore containing around 25.47% Fe was beneficiated for recovery of magnetite. XRD study shows that quartz, magnetite, hematite, and goethite are the major minerals phases present in the low grade BMQ sample. Unit operations such as crushing, scrubbing, grinding, and magnetic separations were used for recovering magnetite. Based on the large scale beneficiation studies the process flowsheet has been developed for enrichment of magnetite. It was found that with the help of developed process flowsheet it is possible to enrich Fe value up to 65.14% in the concentrate with a yield of 24.59%.

  8. PROCESS OF RECOVERING URANIUM FROM ITS ORES

    DOEpatents

    Galvanek, P. Jr.

    1959-02-24

    A process is presented for recovering uranium from its ores. The crushed ore is mixed with 5 to 10% of sulfuric acid and added water to about 5 to 30% of the weight of the ore. This pugged material is cured for 2 to 3 hours at 100 to 110 deg C and then cooled. The cooled mass is nitrate-conditioned by mixing with a solution equivalent to 35 pounds of ammunium nitrate and 300 pounds of water per ton of ore. The resulting pulp containing 70% or more solids is treated by upflow percolation with a 5% solution of tributyl phosphate in kerosene at a rate equivalent to a residence time of about one hour to extract the solubilized uranium. The uranium is recovered from the pregnant organic liquid by counter-current washing with water. The organic extractant may be recycled. The uranium is removed from the water solution by treating with ammonia to precipitate ammonium diuranate. The filtrate from the last step may be recycled for the nitrate-conditioning treatment.

  9. Hydrogen Plasma Processing of Iron Ore

    NASA Astrophysics Data System (ADS)

    Sabat, Kali Charan; Murphy, Anthony B.

    2017-06-01

    Iron is currently produced by carbothermic reduction of oxide ores. This is a multiple-stage process that requires large-scale equipment and high capital investment, and produces large amounts of CO2. An alternative to carbothermic reduction is reduction using a hydrogen plasma, which comprises vibrationally excited molecular, atomic, and ionic states of hydrogen, all of which can reduce iron oxides, even at low temperatures. Besides the thermodynamic and kinetic advantages of a hydrogen plasma, the byproduct of the reaction is water, which does not pose any environmental problems. A review of the theory and practice of iron ore reduction using a hydrogen plasma is presented. The thermodynamic and kinetic aspects are considered, with molecular, atomic and ionic hydrogen considered separately. The importance of vibrationally excited hydrogen molecules in overcoming the activation energy barriers, and in transferring energy to the iron oxide, is emphasized. Both thermal and nonthermal plasmas are considered. The thermophysical properties of hydrogen and argon-hydrogen plasmas are discussed, and their influence on the constriction and flow in the of arc plasmas is considered. The published R&D on hydrogen plasma reduction of iron oxide is reviewed, with both the reduction of molten iron ore and in-flight reduction of iron ore particles being considered. Finally, the technical and economic feasibility of the process are discussed. It is shown that hydrogen plasma processing requires less energy than carbothermic reduction, mainly because pelletization, sintering, and cokemaking are not required. Moreover, the formation of the greenhouse gas CO2 as a byproduct is avoided. In-flight reduction has the potential for a throughput at least equivalent to the blast furnace process. It is concluded that hydrogen plasma reduction of iron ore is a potentially attractive alternative to standard methods.

  10. Dzhida Ore District: Geology, Structural and Metallogenic Regionalization, Genetic Types of Ore Deposits, Geodynamic Conditions of Their Formation, Forecast, and Outlook for Development

    NASA Astrophysics Data System (ADS)

    Gordienko, I. V.; Gorokhovsky, D. V.; Smirnova, O. K.; Lantseva, V. S.; Badmatsyrenova, R. A.; Orsoev, D. A.

    2018-01-01

    Based on complex structural, rheological, and metallogenic studies, taking into account the results of earlier subject-specific, prospecting, mapping, and exploration works, it has been established that the geological structure of the district was caused by the ensimatic evolution of the Vendian-Early Paleozoic Dzhida island-arc system, in which oceanic and island-arc complexes served as a melanocratic basement for Late Paleozoic-Mesozoic active within-plate (riftogenic) processes, which gave rise to the formation of ore deposits and occurrences of strategic mineral commodities (Mo, W, Au, Pt, Ag, and rare elements, including REE). Mantle plumes and flows of deep-seated transmagmatic solutions (ore-forming fluids) played a critical role in these processes, the significance of which increases in upper crustal swarms of dikes and fault systems. The forecasts and development prospects of the Dzhida ore district envisage the expansion of geological prospecting and exploration, scientific research, and technological testing of ore for insight into strategic mineral commodities, as well as reanimation of mining within the areas of the Dzhida's large territorial and industrial complex (TIC) in eastern Siberia.

  11. Diamond and Unusual Minerals Discovered from the Chromitite in Polar Ural: A First Report

    NASA Astrophysics Data System (ADS)

    Yang, J.; Bai, W.; Fang, Q.; Meng, F.; Chen, S.; Zhang, Z.

    2007-12-01

    Ultrahigh pressure (UHP) minerals, such as diamond, coesite, and pseudomorphs of octahedral olivine, and as well as about 80 other mineral species have been recovered from podiform chromitites of the Luobusa ophiolite, southern Tibet, and a new mineral, Luobusaite (Fe0.82Si2), has been approved recently by CNMMN. The UHP minerals from Luobusa are controversial because they have not found in situ and because ophiolites are currently believed to form at shallow levels above oceanic spreading centers. More detailed study and experimental work are needed to understand the origin and significance of these unusual minerals and investigations of other ophiolites are needed to determine if such minerals occur elsewhere. For this purpose, we collected about 1500 kg of chromitite from two orebodies in an ultramafic body in the Polar Urals. Thus far, more than 60 different mineral species have been separated from these ores. The most exciting discovery is the common occurrence of diamond, a typical UHP mineral in the Luobusa chromitites. Diamonds from Ural chromitite are clear, colorless, well-developed crystals with octahedral morphology, generally 0.2-0.3 mm in size. Attached with the diamonds and perhaps also occurring as inclusions within them are many minerals as chromite, MnNiCrFe alloy, native Si and Ta, corundum, zircon, feldspar, garnet, moissanite, confirming their natural origin and suggesting a long residence time in the mantle. Other mineral group include: (1) native elements: Cr, W, Ni, Co, Si, Al and Ta; (2) carbides: SiC and WC; (3) alloys: Cr-Fe, Si-Al-Fe, Ni-Cu, Ag-Au, Ag-Sn, Fe-Si, Fe-P, and Ag-Zn-Sn; (4) oxides: NiCrFe, PbSn, REE, rutile and Si- bearing rutile, ilmenite, corundum, chromite, MgO, and SnO2; (5) silicates: kyanite, pseudomorphs of octahedral olivine, zircon, garnet, feldspar, and quartz,; (6) sulfides of Fe, Ni, Cu, Mo, Pb, Ab, AsFe, FeNi, CuZn, and CoFeNi; and (7) iron groups: native Fe, FeO, and Fe2O3. These minerals are very similar in composition and structure to those reported from the Luobusa chromitites. For examples, some spherules of native iron contain spherical inclusions of FeO, exactly like comparable grains in the Luobusa sample.

  12. Microbial reduction of iron ore

    DOEpatents

    Hoffmann, M.R.; Arnold, R.G.; Stephanopoulos, G.

    1989-11-14

    A process is provided for reducing iron ore by treatment with microorganisms which comprises forming an aqueous mixture of iron ore, microorganisms operable for reducing the ferric iron of the iron ore to ferrous iron, and a substrate operable as an energy source for the microbial reduction; and maintaining the aqueous mixture for a period of time and under conditions operable to effect the reduction of the ore. Preferably the microorganism is Pseudomonas sp. 200 and the reduction conducted anaerobically with a domestic wastewater as the substrate. An aqueous solution containing soluble ferrous iron can be separated from the reacted mixture, treated with a base to precipitate ferrous hydroxide which can then be recovered as a concentrated slurry. 11 figs.

  13. Microbial reduction of iron ore

    DOEpatents

    Hoffmann, Michael R.; Arnold, Robert G.; Stephanopoulos, Gregory

    1989-01-01

    A process is provided for reducing iron ore by treatment with microorganisms which comprises forming an aqueous mixture of iron ore, microorganisms operable for reducing the ferric iron of the iron ore to ferrous iron, and a substrate operable as an energy source for the microbial reduction; and maintaining the aqueous mixture for a period of time and under conditions operable to effect the reduction of the ore. Preferably the microorganism is Pseudomonas sp. 200 and the reduction conducted anaerobically with a domestic wastewater as the substrate. An aqueous solution containing soluble ferrous iron can be separated from the reacted mixture, treated with a base to precipitate ferrous hydroxide which can then be recovered as a concentrated slurry.

  14. Precipitation of lead-zinc ores in the Mississippi Valley-type deposit at Treves, Cevennes region of southern France

    USGS Publications Warehouse

    Leach, D.; Macquar, J.-C.; Lagneau, V.; Leventhal, J.; Emsbo, P.; Premo, W.

    2006-01-01

    The Trèves zinc–lead deposit is one of several Mississippi Valley-type (MVT) deposits in the Cévennes region of southern France. Fluid inclusion studies show that the ore was deposited at temperatures between approximately 80 and 150°C from a brine that derived its salinity mainly from the evaporation of seawater past halite saturation. Lead isotope studies suggest that the metals were extracted from local basement rocks. Sulfur isotope data and studies of organic matter indicate that the reduced sulfur in the ores was derived from the reduction of Mesozoic marine sulfate by thermochemical sulfate reduction or bacterially mediated processes at a different time or place from ore deposition. The large range of δ34S values determined for the minerals in the deposit (12.2–19.2‰ for barite, 3.8–13.8‰ for sphalerite and galena, and 8.7 to −21.2‰ for pyrite), are best explained by the mixing of fluids containing different sources of sulfur. Geochemical reaction path calculations, based on quantitative fluid inclusion data and constrained by field observations, were used to evaluate possible precipitation mechanisms. The most important precipitation mechanism was probably the mixing of fluids containing different metal and reduced sulfur contents. Cooling, dilution, and changes in pH of the ore fluid probably played a minor role in the precipitation of ores. The optimum results that produced the most metal sulfide deposition with the least amount of fluid was the mixing of a fluid containing low amounts of reduced sulfur with a sulfur-rich, metal poor fluid. In this scenario, large amounts of sphalerite and galena are precipitated, together with smaller quantities of pyrite precipitated and dolomite dissolved. The relative amounts of metal precipitated and dolomite dissolved in this scenario agree with field observations that show only minor dolomite dissolution during ore deposition. The modeling results demonstrate the important control of the reduced sulfur concentration on the Zn and Pb transport capacity of the ore fluid and the volumes of fluid required to form the deposit. The studies of the Trèves ores provide insights into the ore-forming processes of a typical MVT deposit in the Cévennes region. However, the extent to which these processes can be extrapolated to other MVT deposits in the Cévennes region is problematic. Nevertheless, the evidence for the extensive migration of fluids in the basement and sedimentary cover rocks in the Cévennes region suggests that the ore forming processes for the Trèves deposit must be considered equally viable possibilities for the numerous fault-controlled and mineralogically similar MVT deposits in the Cévennes region.

  15. Respiratory health of workers exposed to low levels of chromium in stainless steel production.

    PubMed Central

    Huvinen, M; Uitti, J; Zitting, A; Roto, P; Virkola, K; Kuikka, P; Laippala, P; Aitio, A

    1996-01-01

    OBJECTIVES: To determine whether occupational exposure to chromite, trivalent chromium, or hexavalent chromium causes respiratory diseases, an excess of respiratory symptoms, a decrease in pulmonary function, or signs of pneumoconiosis among workers in an integrated chain of stainless steel production. METHODS: This cross sectional study was carried out in 1993 and the inclusion criterion was a minimum of eight years of employment in the same production department. A self administered questionnaire was collected, and spirometry, measurement of diffusing capacity, chest radiography, and laboratory tests were carried out by a mobile research unit. RESULTS: There were 221 workers in the exposure groups and 95 in the control group. The average duration of employment was 18 years. No significant differences in the odds ratios (ORs) of the symptoms were found between the exposure and the control groups. In a logistic regression analysis age and smoking significantly explained the occurrence of most of the respiratory symptoms. The smokers in the chromite group had significantly lower forced vital capacity (FVC), forced expiratory volume in one second (FEV1), and diffusing capacity than the corresponding values of the control group. The analysis of variance between study groups, smoking, and exposure time, without modelling for interactions, showed that the chromite group had lower values for FVC, FEV1, and diffusing capacity than the other groups. The occurrence of small opacities was more frequent on the chest radiographs of the workers in the chromite group. CONCLUSIONS: An average exposure time of 18 years in ferrochromium and stainless steel production and exposure to dusts containing low concentrations of hexavalent or trivalent chromium do not lead to any respiratory changes detectable by lung function tests or radiography nor to any increase in symptoms of respiratory diseases. The lung function values were lower and the occurrence of radiological findings was more frequent among the workers from the chromite mine than among the controls. The difference was partly caused by differences in age and smoking habits, but evidently also partly by higher exposures more than two decades ago or by the fibrous components of the dust. PMID:9038797

  16. Mineral resource potential map of the Mount Eddy and Castle Crags Roadless Areas, Shasta, Siskiyou, and Trinity counties, California

    USGS Publications Warehouse

    Peterson, Jocelyn A.; Caress, Mary E.; Denton, David K.; Spear, James M.

    1983-01-01

    Although ultramafic terranes such as that underlying the Mount Eddy and Castle Crags Roadless Areas may contain chromite, nickel, platinum-group metals, cobalt, and asbestos, there are no significant identified concentrations of these resources within the roadless areas. Platinum-group metals were sought but not detected in stream-sediment concentrates, although this does not rule out their possible occurrence. Nickel and cobalt did not occur in anomalous amounts although slightly higher nickel values in the northern part of the Mount Eddy Roadless Area may indicate low-grade mineralization within small dunite bodies, if the nickel occurs in sulfide phases rather than in olivine. The region has been examined on the surface for chromite and asbestos. Although both minerals are ubiquitous there is probably only a low potential for asbestos on the basis of the small size of veins at the surface. Only a few small areas of chromite were noted in the Mount Eddy Roadless Area; without subsurface data, however, any dunite body must be considered to have potential for chromite. The geochemical data for boron, barium, and mercury plus abundant quartz veining in gabbro and hornblende diorite suggest pervasive hydrothermal alteration, which could have formed mercury or vein gold deposits. Sand and gravel deposits occur in the Castle Crags Roadless Area but they cannot compete with superior deposits closer to markets. At a borrow pit northwest of the Mount Eddy Roadless Area, sheared serpentinite is quarried for road metal; similar rock occurs in the roadless area; however, better material is more readily available elsewhere.

  17. Sorption of noble gases by solids, with reference to meteorites. II - Chromite and carbon. III - Sulfides, spinels, and other substances; on the origin of planetary gases

    NASA Technical Reports Server (NTRS)

    Yang, J.; Anders, E.

    1982-01-01

    The trapping of noble gases by chromite and carbon, two putative carriers of primordial noble gases in meteorites, was studied by synthesizing 19 samples in a Ne-Ar-Kr-Xe atmosphere at 440-720 K. Noble gas contents are found to approximately obey Henry's Law, but only slight correlations are found with composition, surface area, or adsorption temperature. Geometric mean distribution coefficients for bulk samples and HCl residues in 10 cu cm STP/g atm are: Xe 100, Kr 15, Ar 3.5, and Ne 0.62. Elemental fractionation data support the suggestion of Lewis et al. (1977) that chromite and carbon in C2 and C3 chondrites were formed by the reaction: Fe, Cr + 4CO yields (Fe, Cr)3O4 + 4C + carbides. In contrast to meteoritic minerals, the synthetic specimens show no isotopic fractionation of noble gases. In a subsequent study, attention is given to the cases of sulfides and spinels, on the way to consideration of the origin of planetary gases. Sulfides showed three distinctive trends relative to chromite or magnetite. The elemental fractionation pattern of Ar, Kr and Xe in meteorites, terrestrial rocks and planets resembles the adsorption patterns on the carbons, spinels, sulfides, and other solids studied. The high release temperature of meteoritic noble gases may be explained by transformation of the physisorbed or chemisorbed gas. The ready loss of meteoritic heavy gases on surficial oxidation is consistent with adsorption, as is the high abundance.

  18. Mineralogical and geochemical characteristics of the Noamundi-Koira basin iron ore deposits (India)

    NASA Astrophysics Data System (ADS)

    Mirza, Azimuddin; Alvi, Shabbar Habib; Ilbeyli, Nurdane

    2015-04-01

    India is one of the richest sources of iron ore deposits in the world; and one of them is located in the Noamundi-Koira basin, Singhbhum-Orissa craton. The geological comparative studies of banded iron formation (BIF) and associated iron ores of Noamundi-Koira iron ore deposits, belonging to the iron ore group in eastern India, focus on the study of mineralogy and major elemental compositions along with the geological evaluation of different iron ores. The basement of the Singhbhum-Orissa craton is metasedimentary rocks which can be traced in a broadly elliptical pattern of granitoids, surrounded by metasediments and metavolcanics of Greenstone Belt association. The Singhbhum granitoid is intrusive into these old rocks and to younger, mid Archaean metasediments, including iron formations, schists and metaquartzites and siliciclastics of the Precambrian Iron Ore Group (Saha et al., 1994; Sharma, 1994). The iron ore of Noamundi-Koira can be divided into seven categories (Van Schalkwyk and Beukes 1986). They are massive, hard laminated, soft laminated, martite-goethite, powdery blue dust and lateritic ore. Although it is more or less accepted that the parent rock of iron ore is banded hematite jasper (BHJ), the presence of disseminated martite in BHJ suggests that the magnetite of protore was converted to martite. In the study area, possible genesis of high-grade hematite ore could have occurred in two steps. In the first stage, shallow, meteoric fluids affect primary, unaltered BIF by simultaneously oxidizing magnetite to martite and replacing quartz with hydrous iron oxides. In the second stage of supergene processes, deep burial upgrades the hydrous iron oxides to microplaty hematite. Removal of silica from BIF and successive precipitation of iron resulted in the formation of martite- goethite ore. Soft laminated ores were formed where precipitation of iron was partial or absent. The leached out space remains with time and the interstitial space is generally filled with kaolinite and gibbsite, which make it low grade. Massive iron ores are devoid of any lamination and usually associated with BHJ and lower shale. The thickness of the massive ore layer varies with the location. The massive iron ore grades in to well-developed bedded BHJ in depth. Blue dust occurs in association with BHJ as pockets and layers. Although blue dust and friable ore are both powdery ores, and subjected to variable degree of deformation, leading to the formation of folding, faulting and joints of complex nature produce favourable channels. Percolating water play an important role in the formation of blue dust and the subterranean solution offers the necessary acidic environment for leaching of quartz from the BHJ. The dissolution of silica and other alkalis are responsible for the formation of blue dust. The friable and powdery ore on the other hand are formed by soft laminated ore. As it is formed from the soft laminated ore, its alumina content remains high similar to soft laminated ore compaired to blue dust. Mineralogy study suggests that magnetite was the principal iron oxide mineral, now a relict phase whose depositional history is preserved in BHJ, where it remains in the form of martite. The platy hematite is mainly the product of martite. The different types of iron ores are intricately related with the BHJ. Hard laminated ores, martite-goethite ore and soft laminated ore are resultant of desilicification process through the action of hydrothermal fluids. Geochemistry of banded iron-formations of the Noamundi-Koira iron ore deposits shows that they are detritus-free chemical precipitates. The mineralogical and geochemical data suggest that the hard laminated, massive, soft laminated ores and blue dust had a genetic lineage from BIF's aided with certain input from hydrothermal activity. The comparative study of major elemental composition of the basin samples and while plotting a binary diagram, it shows a relation between major oxides against iron oxides, in which iron oxides is taken as a reference oxide (Mirza, 2011). On the other hand, by plotting a binary diagram between chemical index of alteration (CIA) and other oxides while taking the samples of lower, middle and upper shales. It reflects an immobility and mobility of ions during partial and complete weathering processes (Mirza, 2011). Geochemical data indicate that BIF are in general detritus free chemical precipitates. Fe2O3 content of BHJ are varies in between 36.6% to 65.04%. In hard laminated ore, Fe2O3 content varies from 93.8% to 96.38%, Soft laminated ore varies from 83.64% to 89.5% and laterite ore varies from 53.5% to 79.11%. Fe2O3 content in Martite- Goethite ore varies from 86.38% to 89.42% and blue dust having 90.74% to 95.86% and all other oxides like SiO2, Al2O3, CaO, MgO, K2O, Na2O are decreases. Major part of the iron could have been added to the bottom sea water by hydrothermal solutions derived from hydrothermally active anoxic marine environments. The presence of intacalated tuffaceous shales pointing towards the genesis of iron, which could have leached from sea floor by volcanogenic process. Iron and silica of BIF were provided by the hydrothermal solutions emplaced at the vent sites situated at the Archean-Mid Oceanic Ridges. References: Mirza A (2011). Major element geochemistry of iron ore deposits in Noamundi-Koira basin of Singhbhum-Orissa craton (India). MSc thesis, Aligarh Muslim University, India. Saha AK (1994). Crustal evolution of Singhbhum, North Orissa, Eastern India; Geol. Soc. India Memoir 27 341. Sharma M, Basu AR and Ray SL (1994). Sm-Nd isotopic and geochemical study of the Archaean tonalite-amphibolite association from the eastern Indian craton. Contrib. Mineral Petrol. 117:45-55. Van Schalkwyk J and Beukes N J (1986). The Sishen iron ore deposit, Griqualand West; In: Mineral deposits of Southern Africa (eds) Annhaeusser C R and Maske S S, Geological Society of South Africa, Johannesburg, 931-956.

  19. Possible lunar ores

    NASA Technical Reports Server (NTRS)

    Gillett, Stephen L.

    1991-01-01

    Despite the conventional wisdom that there are no lunar ores, geochemical considerations suggest that local concentrations of useful rare elements exist on the Moon in spite of its extreme dryness. The Moon underwent protracted igneous activity in its history, and certain magmatic processes can concentrate incompatible elements even if anhydrous. Such processes include: (1) separation of a magma into immiscible liquid phases (depending on composition, these could be silicate-silicate, silicate-oxide, silicate-sulfide, or silicate-salt); (2) cumulate deposits in layered igneous intrusions; and (3) concentrations of rare, refractory, lithophile elements (e.g., Be, Li, Zr) in highly differentiated, silica-rich magmas, as in the lunar granites. Terrestrial mining experience indicates that the single most important characteristic of a potential ore is its concentration of the desire element. The utility of a planet as a resource base is that the welter of interacting processes over geologic time can concentrate rare element automatically. This advantage is squandered if adequate exploration for ores is not first carried out.

  20. Purification of trona ores by conditioning with an oil-in-water emulsion

    DOEpatents

    Miller, J. D.; Wang, Xuming; Li, Minhua

    2009-04-14

    The present invention is a trona concentrate and a process for floating gangue material from trona ore that comprises forming an emulsion, conditioning the trona ore at a high solids content in a saturated trona suspension, and then floating and removing the gangue material. The process for separating trona from gangue materials in trona ore can include emulsifying an oil in an aqueous solution to form an oil-in-water emulsion. A saturated trona suspension having a high solids content can also be formed having trona of a desired particle size. The undissolved trona in the saturated suspension can be conditioned by mixing the saturated suspension and the oil-in-water emulsion to form a conditioning solid suspension of trona and gangue material. A gas can be injected through the conditioning solid suspension to float the gangue material. Thus, the floated gangue material can be readily separated from the trona to form a purified trona concentrate without requirements of additional heat or other expensive processing steps.

  1. 40 CFR 440.148 - Best Management Practices (BMP).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Gold Placer Mine... control: The amount of new water allowed to enter the plant site for use in ore processing shall be...

  2. 40 CFR 440.148 - Best Management Practices (BMP).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Gold Placer Mine... control: The amount of new water allowed to enter the plant site for use in ore processing shall be...

  3. 40 CFR 440.148 - Best Management Practices (BMP).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Gold Placer Mine... control: The amount of new water allowed to enter the plant site for use in ore processing shall be...

  4. The Resin-in-pulp Process and Its Application to Ores from Brosses "BRS 10"; LE PROCEDE "RESIN IN PULP" ET SON APPLICATION AUX MINERAIS DES BROSSES "BRS 10"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kremer, M.

    1959-03-01

    The resin-in-pulp process is a technical variant of the recovery process of uranium in dilute solution by means of ion exchange resins. An anion resin, XE 123, of a welldefined grain size is placed in direct contact with the pulp produced by sulfuric acid attack on ore with a low uranium content. This process is of particular value in the treatment of pulps that cannot be filtered or decanted, such as those obtained with ore from Brosses. The preparation of the pulp, the elution of the uranium, and its fixation, as well as the various factors encountered in these operations,more » are discussed. (auth)« less

  5. Investigation of sulphur isotope variation due to different processes applied during uranium ore concentrate production.

    PubMed

    Krajkó, Judit; Varga, Zsolt; Wallenius, Maria; Mayer, Klaus; Konings, Rudy

    The applicability and limitations of sulphur isotope ratio as a nuclear forensic signature have been studied. The typically applied leaching methods in uranium mining processes were simulated for five uranium ore samples and the n ( 34 S)/ n ( 32 S) ratios were measured. The sulphur isotope ratio variation during uranium ore concentrate (UOC) production was also followed using two real-life sample sets obtained from industrial UOC production facilities. Once the major source of sulphur is revealed, its appropriate application for origin assessment can be established. Our results confirm the previous assumption that process reagents have a significant effect on the n ( 34 S)/ n ( 32 S) ratio, thus the sulphur isotope ratio is in most cases a process-related signature.

  6. Processing of metal and oxygen from lunar deposits

    NASA Technical Reports Server (NTRS)

    Acton, Constance F.

    1992-01-01

    On the moon, some whole rocks may be ores for abundant elements, such as oxygen, but beneficiation will be important if metallic elements are sought from raw lunar dirt. In the extraction process, a beneficiated metallic ore, such as an oxide, sulfide, carbonate, or silicate mineral, is converted to reduced metal. A variety of plausible processing technologies, which includes recovery of meteoritic iron, and processing of lunar ilmenite, are described in this report.

  7. Thermodynamic Analysis of the Selective Reduction of a Nickeliferous Limonitic Laterite Ore by Hydrogen

    NASA Astrophysics Data System (ADS)

    Elliott, R.; Pickles, C. A.

    2017-09-01

    Nickeliferous limonitic laterite ores are becoming increasingly attractive as a source of metallic nickel as the costs associated with recovering nickel from the sulphide ores increase. Unlike the sulphide ores, however, the laterite ores are not amenable to concentration by conventional mineral processing techniques such as froth flotation. One potential concentrating method would be the pyrometallurgical solid state reduction of the nickeliferous limonitic ores at relatively low temperatures, followed by beneficiation via magnetic separation. A number of reductants can be utilized in the reduction step, and in this research, a thermodynamic model has been developed to investigate the reduction of a nickeliferous limonitic laterite by hydrogen. The nickel recovery to the ferronickel phase was predicted to be greater than 95 % at temperatures of 673-873 K. Reductant additions above the stoichiometric requirement resulted in high recoveries over a wider temperature range, but the nickel grade of the ferronickel decreased.

  8. Nonlinear metallogeny and the depths of the earth

    NASA Astrophysics Data System (ADS)

    Shcheglov, A. D.; Govorov, I. N.

    This book is concerned with the basic relations regarding a new approach in the field of knowledge of metallogenesis, taking into account the complex character of the mutual dependence between ore deposits, the structure of the earth's crust, and depth relations. The principles of nonlinear metallogeny are examined, giving attention to the development of the metallogenic science during the past few years, the formation of the concept 'nonlinear metallogeny', the main aspects of nonlinear metallogeny, the origin of the ore deposits and the characteristics of ore formations in the mantle, the parallel manifestation of ore-forming processes in the crust, sedimentary-hydrothermal ore formations and their place in nonlinear metallogeny, and various types of rock and ore formations. The structure, composition, and metalliferous characteristics found at various depth zones of the tectonosphere are discussed along with the geochemical and metallogenic heterogeneity in the mantle. General questions of nonlinear metallogeny are also investigated.

  9. Nitrogen Isotopic Disequilibrium in the Cape York III A Iron

    NASA Astrophysics Data System (ADS)

    Zipfel, J.; Kim, Y.; Marti, K.

    1995-09-01

    Cape York is a medium octahedrite of the class III A, which is presumed to have been formed by fractional crystallization of an asteroidal metal core (1). Within the Cape York kamacite-taenite matrix abundant troilite nodules are found. From their elongated form it has been suggested that immiscible S-rich liquids were trapped under the influence of a gravity field. Some of these nodules contain chromite grains, preferentially at the bottom of the troilite/metal boundary (2,3). Minor phases within the troilite are sulfides, phosphates, silica and copper. Carlsbergite (CrN) is exclusively found within the metal matrix. The nitrogen isotopic composition in metal of Cape York was analyzed by several workers and found to be enriched in 14N (delta^(15)N -32.3 to -94.8 per mil) with concentrations varying from 7 to 37 ppm. The large range of N concentrations may reflect artifacts due to experimental difficulties (4), but also might be attributed to varying amounts of CrN within the metal separates. The N in troilite (delta^(15)N -3.8+/-1.2 per mil) was found to be heavier than that observed in metal (4). In one temperature step (1100 degrees C) during stepwise release, nitrogen with a delta^(15)N of -32 per mil was measured, indicating inclusions of an isotopically distinct phase in troilite. In order to trace the nature of the inclusion we determined the N isotopic composition first in a small pilot sample and then in a larger (23.93mg) chromite separate. The latter was stepwise heated at temperatures between 400 and 1000 degrees C, and the release of sample N started at 700 degrees C (delta^(15)N -9.6+/-2.4 per mil). The lightest N component was measured in the 1000 degrees C step with delta^(15)N -56.4+/-13.0 per mil and the average N composition is obtained as delta^(15)N -25.8 per mil. This result supports earlier evidence that nitrogen is isotopically not equilibrated between chromite, surrounding troilite and metal matrix. Possible processes which could lead to a disequilibrium as observed in Cape York include (a) survival of primary isotopic heterogeneities; (b) N loss during secondary processes, e.g., metamorphic heating and shock deformation: (a) Graphite grains within metal of the Acapulco meteorite were identified as carrier of isotopically distinct N and C components and were interpreted as surviving (possibly presolar) grains unaffected by the igneous alteration of the bulk meteorite (5). Obviously such grains exchanged N isotopically with metal and chromite, but not with sulfides and silicates, as these do not carry the light N of metal and chromite (6). The mechanism of this exchange is, however, unclear. No graphite has been observed so far in Cape York. Yet, isotopic heterogeneities in the precursor material of Cape York can not be excluded. During melting of the parent asteroid one would expect homogenization of the nitrogen isotopes. Since chromite and metal crystallize at high temperatures, a probable exchange of N between the S-rich melt and a distinct N reservoir at lower temperature might explain the disequilibrium. (b) Troilite nodules in Cape York indicate a small degree of shock deformation (2,3,5). One might argue that some N was lost and the residue fractionated during this event. However, 107Ag/109Ag ratios from metal and troilite correlate with Pd/Ag ratios, which is not the case in severely shocked magmatic irons (7). In addition, similar isotopic N fractionations are found in the "magmatic" Acapulco meteorite, which shows no indication of shock deformation. Therefore, secondary loss of N preferentially from troilite can be excluded. References: [1] Haak H. and Scott E. (1993) GCA, 57, 3457-3472. [2] Buchwald V. (1975) Handbook of Iron Meteorites, Vols. 1_3, Univ. of California and Arizona State Univ., Berkeley. [3] Kracher A et al. (1977) Geochem. J., 11, 207-217. [4] Murty S. and Marti K. (1994) GCA, 58, 1841-1848. [5] El Goresy A. et al. (1995) Nature, 373, 496-499. [6] Kim Y. et al. (1992) LPS XXIII, 691-692. [7] Teshima J. et al. (1986) GCA, 50, 2073-2087.

  10. Safeguards on uranium ore concentrate? the impact of modern mining and milling process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Francis, Stephen

    2013-07-01

    Increased purity in uranium ore concentrate not only raises the question as to whether Safeguards should be applied to the entirety of uranium conversion facilities, but also as to whether some degree of coverage should be moved back to uranium ore concentrate production at uranium mining and milling facilities. This paper looks at uranium ore concentrate production across the globe and explores the extent to which increased purity is evident and the underlying reasons. Potential issues this increase in purity raises for IAEA's strategy on the Starting Point of Safeguards are also discussed.

  11. Application of the radioisotope excited X-ray fluorescence technique in charge optimization during thermite smelting of Fe-Ni, Fe-cr, and Fe-Ti alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, I.G.; Joseph, D.; Lal, M.

    1995-10-01

    A wide range of ferroalloys are used to facilitate the addition of different alloying elements to molten steel. High-carbon ferroalloys are produced on a tonnage basis by carbothermic smelting in an electric furnace, and an aluminothermic route is generally adopted for small scale production of low-carbon varieties. The physicochemical principles of carbothermy and aluminothermy have been well documented in the literature. However, limited technical data are reported on the production of individual ferroalloys of low-carbon varieties from their selected resources. The authors demonstrate her the application of an energy dispersive X-ray fluorescence (EDXRF) technique in meeting the analytical requirements ofmore » a thermite smelting campaign, carried out with the aim of preparing low-carbon-low-nitrogen Fe-Ni, Fe-Cr, and Fe-Ti alloys from indigenously available nickel bearing spent catalyst, mineral chromite, and ilmenite/rutile, respectively. They have chosen the EDXRF technique to meet the analytical requirements because of its capability to analyze samples of ore, minerals, a metal, and alloys in different forms, such as powder, sponge, as-smelted, or as-cast, to obtain rapid multielement analyses with ease. Rapid analyses of thermite feed and product by this technique have aided in the appropriate alterations of the charge constitutents to obtain optimum charge consumption.« less

  12. The action of macrosounds on graphite ore and derived products

    NASA Technical Reports Server (NTRS)

    Bradeteanu, C.; Dragan, O.

    1974-01-01

    A suspension of graphite ore, floated graphite, and the gangue left over from flotation were subjected to the action of macrosounds under determinant conditions. The following was found: (1) The graphite ore undergoes an efficient settling action. (2) The floated graphite is strongly crushed down to the dimensions of colloidal graphite. (3) The gangue left over from flotation can be further processed to recuperate graphite from its nuclei.

  13. Chemical and Sr isotopic characterization of North America uranium ores: Nuclear forensic applications

    DOE PAGES

    Balboni, Enrica; Jones, Nina; Spano, Tyler; ...

    2016-08-31

    This study reports major, minor, and trace element data and Sr isotope ratios for 11 uranium ore (uraninite, UO 2+x) samples and one processed uranium ore concentrate (UOC) from various U.S. deposits. The uraninite investigated represent ores formed via different modes of mineralization (e.g., high- and low-temperature) and within various geological contexts, which include magmatic pegmatites, metamorphic rocks, sandstone-hosted, and roll front deposits. In situ trace element data obtained by laser ablation-ICP-MS and bulk sample Sr isotopic ratios for uraninite samples investigated here indicate distinct signatures that are highly dependent on the mode of mineralization and host rock geology. Relativemore » to their high-temperature counterparts, low-temperature uranium ores record high U/Th ratios (>1000), low total rare earth element (REE) abundances (<1 wt%), high contents (>300 ppm) of first row transition metals (Sc, Ti, V, Cr, Mn, Co, Ni), and radiogenic 87Sr/ 86Sr ratios (>0.7200). Comparison of chondrite normalized REE patterns between uraninite and corresponding processed UOC from the same locality indicates identical patterns at different absolute concentrations. Lastly, this result ultimately confirms the importance of establishing geochemical signatures of raw, uranium ore materials for attribution purposes in the forensic analysis of intercepted nuclear materials.« less

  14. Chemical and Sr isotopic characterization of North America uranium ores: Nuclear forensic applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balboni, Enrica; Jones, Nina; Spano, Tyler

    This study reports major, minor, and trace element data and Sr isotope ratios for 11 uranium ore (uraninite, UO 2+x) samples and one processed uranium ore concentrate (UOC) from various U.S. deposits. The uraninite investigated represent ores formed via different modes of mineralization (e.g., high- and low-temperature) and within various geological contexts, which include magmatic pegmatites, metamorphic rocks, sandstone-hosted, and roll front deposits. In situ trace element data obtained by laser ablation-ICP-MS and bulk sample Sr isotopic ratios for uraninite samples investigated here indicate distinct signatures that are highly dependent on the mode of mineralization and host rock geology. Relativemore » to their high-temperature counterparts, low-temperature uranium ores record high U/Th ratios (>1000), low total rare earth element (REE) abundances (<1 wt%), high contents (>300 ppm) of first row transition metals (Sc, Ti, V, Cr, Mn, Co, Ni), and radiogenic 87Sr/ 86Sr ratios (>0.7200). Comparison of chondrite normalized REE patterns between uraninite and corresponding processed UOC from the same locality indicates identical patterns at different absolute concentrations. Lastly, this result ultimately confirms the importance of establishing geochemical signatures of raw, uranium ore materials for attribution purposes in the forensic analysis of intercepted nuclear materials.« less

  15. Cyanide hazards to plants and animals from gold mining and related water issues

    USGS Publications Warehouse

    Eisler, R.; Wiemeyer, Stanley N.

    2004-01-01

    Highly toxic sodium cyanide (NaCN) is used by the international mining community to extract gold and other precious metals through milling of high-grade ores and heap leaching of low-grade ores (Korte et al. 2000). The process to concentrate gold using cyanide was developed in Scotland in 1887 and was used almost immediately in the Witwatersrand gold fields of the Republic of South Africa. Heap leaching with cyanide was proposed by the U.S. Bureau of Mines in 1969 as a means of extracting gold from low-grade ores. The gold industry adopted the technique in the 1970s, soon making heap leaching the dominant technology in gold extraction (Da Rosa and Lyon 1997). The heap leach and milling processes, which involve dewatering of gold-bearing ores, spraying of dilute cyanide solutions on extremely large heaps of ores containing low concentrations of gold, or the milling of ores with the use of cyanide and subsequent recovery of the gold-cyanide complex, have created a number of serious environmental problems affecting wildlife and water management. In this account, we review the history of cyanide use in gold mining with emphasis on heap leach gold mining, cyanide hazards to plants and animals, water management issues associated with gold mining, and proposed mitigation and research needs.

  16. Hemimorphite Ores: A Review of Processing Technologies for Zinc Extraction

    NASA Astrophysics Data System (ADS)

    Chen, Ailiang; Li, Mengchun; Qian, Zhen; Ma, Yutian; Che, Jianyong; Ma, Yalin

    2016-10-01

    With the gradual depletion of zinc sulfide ores, exploration of zinc oxide ores is becoming more and more important. Hemimorphite is a major zinc oxide ore, attracting much attention in the field of zinc metallurgy although it is not the major zinc mineral. This paper presents a critical review of the treatment for extraction of zinc with emphasis on flotation, pyrometallurgical and hydrometallurgical methods based on the properties of hemimorphite. The three-dimensional framework structure of hemimorphite with complex linkage of its structural units lead to difficult desilicification before extracting zinc in the many metallurgical technologies. It is found that the flotation method is generally effective in enriching zinc minerals from hemimorphite ores into a high-grade concentrate for recovery of zinc. Pure zinc can be produced from hemimorphite or/and willemite with a reducing reagent, like methane or carbon. Leaching reagents, such as acid and alkali, can break the complex structure of hemimorphite to release zinc in the leached solution without generation of silica gel in the hydrometallurgical process. For optimal zinc extraction, combing flotation with pyrometallurgical or hydrometallurgical methods may be required.

  17. Microwave enhanced recovery of nickel-copper ore: communition and floatability aspects.

    PubMed

    Henda, R; Hermas, A; Gedye, R; Islam, M R

    2005-01-01

    A study describing the effect of microwave radiation, at a frequency of 2450 MHz, on the processes of communication and flotation of a complex sulphide nickel-copper ore is presented. Ore communication has been investigated under standard radiation-free conditions and after ore treatment in a radiated environment as a function of ore size, exposure time to radiation, and microwave power. The findings show that communication is tremendously improved by microwave radiation with values of the relative work index as low as 23% at a microwave power of 1.406 kW and after 10 s of exposure time. Communication is affected by exposure time and microwave power in a nontrivial manner. In terms of ore floatability, the experimental tests have been carried out on a sample of 75 microm in size under different exposure times. The results show that both ore concentrate recoveries and grades of nickel and copper are significantly enhanced after microwave treatment of the ore with relative increases in recovered concentrate, grade of nickel, and grade of copper of 26 wt%, 15 wt%, and 27%, respectively, at a microwave power of 1330 kW and after 30 s of exposure time.

  18. Selective Removal of Iron from Low-Grade Ti Ore by Reacting with Calcium Chloride

    NASA Astrophysics Data System (ADS)

    Kang, Jungshin; Okabe, Toru H.

    2017-02-01

    Recently, titanium metal production by molten salt electrolysis using CaCl2 as molten salt and TiO2 or rutile (94 to 96 pct TiO2) as feedstock has been drawing attention. However, when a low-grade Ti ore (mainly FeTiO3) is used as feedstock, removal of iron (Fe) from the ore is indispensable. In this study, the influence of reaction temperature, reaction time, particle size of the ore, and source country for the ore on the removal of iron by selective chlorination using CaCl2 was assessed. Experimental results showed that the mass percent of iron in the ore decreased from 49.7 to 1.79 pct under certain conditions by selective removal of iron as FeCl2. As a result, high-grade CaTiO3 was produced when the ore particles smaller than 74 µm reacted with CaCl2 at 1240 K (967 °C) for 8 to 10 hours. Therefore, this study demonstrates that the removal of iron from the ore is feasible through the selective chlorination process using CaCl2 by optimizing the variables.

  19. 40 CFR 440.30 - Applicability; description of the uranium, radium and vanadium ores subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... vanadium ores are produced; and (b) mills using the acid leach, alkaline leach, or combined acid and alkaline leach process for the extraction of uranium, radium and vanadium. Only vanadium byproduct...

  20. 40 CFR 440.30 - Applicability; description of the uranium, radium and vanadium ores subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... vanadium ores are produced; and (b) mills using the acid leach, alkaline leach, or combined acid and alkaline leach process for the extraction of uranium, radium and vanadium. Only vanadium byproduct...

  1. 40 CFR 440.30 - Applicability; description of the uranium, radium and vanadium ores subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... vanadium ores are produced; and (b) mills using the acid leach, alkaline leach, or combined acid and alkaline leach process for the extraction of uranium, radium and vanadium. Only vanadium byproduct...

  2. 40 CFR 440.148 - Best Management Practices (BMP).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Gold Placer Mine Subcategory § 440.148...: The amount of new water allowed to enter the plant site for use in ore processing shall be limited to...

  3. Beneficiation of the gold bearing ore by gravity and flotation

    NASA Astrophysics Data System (ADS)

    Gül, Alim; Kangal, Olgaç; Sirkeci, Ayhan A.; Önal, Güven

    2012-02-01

    Gold concentration usually consists of gravity separation, flotation, cyanidation, or the combination of these processes. The choice among these processes depends on the mineralogical characterization and gold content of the ore. Recently, the recovery of gold using gravity methods has gained attention because of low cost and environmentally friendly operations. In this study, gold pre-concentrates were produced by the stepwise gravity separation and flotation techniques. The Knelson concentrator and conventional flotation were employed for the recovery of gold. Gold bearing ore samples were taken from Gümüşhane Region, northern east part of Turkey. As a result of stepwise Knelson concentration experiments, a gold concentrate assaying around 620 g/t is produced with 41.4wt% recovery. On the other hand, a gold concentrate about 82 g/t is obtained with 89.9wt% recovery from a gold ore assaying 6 g/t Au by direct flotation.

  4. Biomining-biotechnologies for extracting and recovering metals from ores and waste materials.

    PubMed

    Johnson, D Barrie

    2014-12-01

    The abilities of acidophilic chemolithotrophic bacteria and archaea to accelerate the oxidative dissolution of sulfide minerals have been harnessed in the development and application of a biotechnology for extracting metals from sulfidic ores and concentrates. Biomining is currently used primarily to leach copper sulfides and as an oxidative pretreatment for refractory gold ores, though it is also used to recover other base metals, such as cobalt, nickel and zinc. Recent developments have included using acidophiles to process electronic wastes, to extract metals from oxidized ores, and to selectively recover metals from process waters and waste streams. This review describes the microorganisms and mechanisms involved in commercial biomining operations, how the technology has developed over the past 50 years, and discusses the challenges and opportunities for mineral biotechnologies in the 21st century. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Thermodynamics of ultra-sonic cavitation bubbles in flotation ore processes

    NASA Astrophysics Data System (ADS)

    Royer, J. J.; Monnin, N.; Pailot-Bonnetat, N.; Filippov, L. O.; Filippova, I. V.; Lyubimova, T.

    2017-07-01

    Ultra-sonic enhanced flotation ore process is a more efficient technique for ore recovery than classical flotation method. A classical simplified analytical Navier-Stokes model is used to predict the effect of the ultrasonic waves on the cavitations bubble behaviour. Then, a thermodynamics approach estimates the temperature and pressure inside a bubble, and investigates the energy exchanges between flotation liquid and gas bubbles. Several gas models (including ideal gas, Soave-Redlich-Kwong, and Peng-Robinson) assuming polytropic transformations (from isothermal to adiabatic) are used to predict the evolution of the internal pressure and temperature inside the bubble during the ultrasonic treatment, together with the energy and heat exchanges between the gas and the surrounding fluid. Numerical simulation illustrates the suggest theory. If the theory is verified experimentally, it predicts an increase of the temperature and pressure inside the bubbles. Preliminary ultrasonic flotation results performed on a potash ore seem to confirm the theory.

  6. Resource potential for commodities in addition to Uranium in sandstone-hosted deposits: Chapter 13

    USGS Publications Warehouse

    Breit, George N.

    2016-01-01

    Sandstone-hosted deposits mined primarily for their uranium content also have been a source of vanadium and modest amounts of copper. Processing of these ores has also recovered small amounts of molybdenum, rhenium, rare earth elements, scandium, and selenium. These deposits share a generally common origin, but variations in the source of metals, composition of ore-forming solutions, and geologic history result in complex variability in deposit composition. This heterogeneity is evident regionally within the same host rock, as well as within districts. Future recovery of elements associated with uranium in these deposits will be strongly dependent on mining and ore-processing methods.

  7. Individual Differences in Holistic Processing Predict the Own-Race Advantage in Recognition Memory

    PubMed Central

    DeGutis, Joseph; Mercado, Rogelio J.; Wilmer, Jeremy; Rosenblatt, Andrew

    2013-01-01

    Individuals are consistently better at recognizing own-race faces compared to other-race faces (other-race effect, ORE). One popular hypothesis is that this recognition memory ORE is caused by differential own- and other-race holistic processing, the simultaneous integration of part and configural face information into a coherent whole. Holistic processing may create a more rich, detailed memory representation of own-race faces compared to other-race faces. Despite several studies showing that own-race faces are processed more holistically than other-race faces, studies have yet to link the holistic processing ORE and the recognition memory ORE. In the current study, we sought to use a more valid method of analyzing individual differences in holistic processing by using regression to statistically remove the influence of the control condition (part trials in the part-whole task) from the condition of interest (whole trials in the part-whole task). We also employed regression to separately examine the two components of the ORE: own-race advantage (regressing other-race from own-race performance) and other-race decrement (regressing own-race from other-race performance). First, we demonstrated that own-race faces were processed more holistically than other-race faces, particularly the eye region. Notably, using regression, we showed a significant association between the own-race advantage in recognition memory and the own-race advantage in holistic processing and that these associations were weaker when examining the other-race decrement. We also demonstrated that performance on own- and other-race faces across all of our tasks was highly correlated, suggesting that the differences we found between own- and other-race faces are quantitative rather than qualitative. Together, this suggests that own- and other-race faces recruit largely similar mechanisms, that own-race faces more thoroughly engage holistic processing, and that this greater engagement of holistic processing is significantly associated with the own-race advantage in recognition memory. PMID:23593119

  8. Individual differences in holistic processing predict the own-race advantage in recognition memory.

    PubMed

    Degutis, Joseph; Mercado, Rogelio J; Wilmer, Jeremy; Rosenblatt, Andrew

    2013-01-01

    Individuals are consistently better at recognizing own-race faces compared to other-race faces (other-race effect, ORE). One popular hypothesis is that this recognition memory ORE is caused by differential own- and other-race holistic processing, the simultaneous integration of part and configural face information into a coherent whole. Holistic processing may create a more rich, detailed memory representation of own-race faces compared to other-race faces. Despite several studies showing that own-race faces are processed more holistically than other-race faces, studies have yet to link the holistic processing ORE and the recognition memory ORE. In the current study, we sought to use a more valid method of analyzing individual differences in holistic processing by using regression to statistically remove the influence of the control condition (part trials in the part-whole task) from the condition of interest (whole trials in the part-whole task). We also employed regression to separately examine the two components of the ORE: own-race advantage (regressing other-race from own-race performance) and other-race decrement (regressing own-race from other-race performance). First, we demonstrated that own-race faces were processed more holistically than other-race faces, particularly the eye region. Notably, using regression, we showed a significant association between the own-race advantage in recognition memory and the own-race advantage in holistic processing and that these associations were weaker when examining the other-race decrement. We also demonstrated that performance on own- and other-race faces across all of our tasks was highly correlated, suggesting that the differences we found between own- and other-race faces are quantitative rather than qualitative. Together, this suggests that own- and other-race faces recruit largely similar mechanisms, that own-race faces more thoroughly engage holistic processing, and that this greater engagement of holistic processing is significantly associated with the own-race advantage in recognition memory.

  9. Application of indigenous sulfur-oxidizing bacteria from municipal wastewater to selectively bioleach phosphorus from high-phosphorus iron ore: effect of particle size.

    PubMed

    Shen, Shaobo; Rao, Ruirui; Wang, Jincao

    2013-01-01

    The effects of ore particle size on selectively bioleaching phosphorus (P) from high-phosphorus iron ore were studied. The average contents of P and Fe in the iron ore were 1.06 and 47.90% (w/w), respectively. The particle sizes of the ores used ranged from 58 to 3350 microm. It was found that the indigenous sulfur-oxidizing bacteria from municipal wastewater could grow well in the slurries of solid high-phosphorus iron ore and municipal wastewater. The minimum bioleaching pH reached for the current work was 0.33. The P content in bioleached iron ore reduced slightly with decreasing particle size, while the removal percentage of Fe decreased appreciably with decreasing particle size. The optimal particle size fraction was 58-75 microm, because the P content in bioleached iron ore reached a minimum of 0.16% (w/w), the removal percentage of P attained a maximum of 86.7%, while the removal percentage of Fe dropped to a minimum of 1.3% and the Fe content in bioleached iron ore was a maximum of 56.4% (w/w) in this case. The iron ores thus obtained were suitable to be used in the iron-making process. The removal percentage of ore solid decreased with decreasing particle size at particle size range of 106-3350 microm. The possible reasons resulting in above phenomena were explored in the current work. It was inferred that the particle sizes of the iron ore used in this work have no significant effect on the viability of the sulfur-oxidizing bacteria.

  10. Sedimentary exhalative nickel-molybdenum ores in south China

    USGS Publications Warehouse

    Lott, D.A.; Coveney, R.M.; Murowchick, J.B.; Grauch, R.I.

    1999-01-01

    Unique bedded Ni-Mo ores hosted by black shales were discovered in localized paleobasins along the Yangzte platform of southern China in 1971. Textural evidence and radiometric dates imply ore formation during sedimentation of black shales that grade into readily combustible beds, termed stone coals, which contain 10 to 15 percent organic carbon. Studies of 427 fluid inclusions indicate extreme variation in hydrothermal brine salinities that were contained by Proterozoic dolostones underlying the ore zone in Hunan and Guizhou. Variations of fluid inclusion salinities, which range from 0.1 to 21.6 wt percent NaCl equiv, are attributed to differences in the compositions of brines in strata underlying the ore bed, complicated by the presence of seawater and dilute fluids that represent condensates of vapors generated by boiling of mineralizing fluids or Cambrian meteoric water. The complex processes of ore deposition led to scattered homogenization temperatures ranging from 100??to 187??C within the Hunan ore zone and from 65??to 183??C within the Guizhou ore zone. While living organisms probably did not directly accumulate metals in situ in sufficient amounts to explain the unusually high grades of the deposits, sulfur isotope ratios indicate that bacteria, now preserved as abundant microfossils, provided sufficient sulfide for the ores by reduction of seawater sulfate. Such microbiota may have depended on vent fluids and transported organic matter for key nutrients and are consistent with a sedex origin for the ores. Vent fluids interacted with organic remains, including rounded fragments of microbial mats that were likely transported to the site of ore deposition by the action of waves and bottom currents prior to replacement by ore minerals.

  11. Biotechnology for the extractive metals industries

    NASA Astrophysics Data System (ADS)

    Brierley, James A.

    1990-01-01

    Biotechnology is an alternative process for the extraction of metals, the beneficiation of ores, and the recovery of metals from aqueous systems. Currently, microbial-based processes are used for leaching copper and uranium, enhancing the recovery of gold from refractory ores, and treating industrial wastewater to recover metal values. Future developments, emanating from fundamental and applied research and advances through genetic engineering, are expected to increase the use and efficiency of these biotechnological processes.

  12. Numerical Study of the Reduction Process in an Oxygen Blast Furnace

    NASA Astrophysics Data System (ADS)

    Zhang, Zongliang; Meng, Jiale; Guo, Lei; Guo, Zhancheng

    2016-02-01

    Based on computational fluid dynamics, chemical reaction kinetics, principles of transfer in metallurgy, and other principles, a multi-fluid model for a traditional blast furnace was established. The furnace conditions were simulated with this multi-fluid mathematical model, and the model was verified with the comparison of calculation and measurement. Then a multi-fluid model for an oxygen blast furnace in the gasifier-full oxygen blast furnace process was established based on this traditional blast furnace model. With the established multi-fluid model for an oxygen blast furnace, the basic characteristics of iron ore reduction process in the oxygen blast furnace were summarized, including the changing process of the iron ore reduction degree and the compositions of the burden, etc. The study found that compared to the traditional blast furnace, the magnetite reserve zone in the furnace shaft under oxygen blast furnace condition was significantly reduced, which is conducive to the efficient operation of blast furnace. In order to optimize the oxygen blast furnace design and operating parameters, the iron ore reduction process in the oxygen blast furnace was researched under different shaft tuyere positions, different recycling gas temperatures, and different allocation ratios of recycling gas between the hearth tuyere and the shaft tuyere. The results indicate that these three factors all have a substantial impact on the ore reduction process in the oxygen blast furnace. Moderate shaft tuyere position, high recycling gas temperature, and high recycling gas allocation ratio between hearth and shaft could significantly promote the reduction of iron ore, reduce the scope of the magnetite reserve zone, and improve the performance of oxygen blast furnace. Based on the above findings, the recommendations for improvement of the oxygen blast furnace design and operation were proposed.

  13. Water leaching of titanium from ore flotation residue.

    PubMed

    Jaworska, Malgorzata M; Guibal, Eric

    2003-01-01

    Copper ore tailings were tested for the stability of titanium submitted to water leaching in three different reactor systems (agitated vessel, bioreactor and percolated fixed-bed column). For each of these systems, titanium extraction did not exceed 1% of the available metal. Biomass removed from ore residue adsorbed a small part of the titanium with sorption capacities below 20-30 mg g(-1), but most of this biomass was sequestered in the ore residue. Oxygen and carbon dioxide concentrations were monitored and changes in concentration correlated with bacteria development at the initial stage of the process and to fungal development in the latter stages.

  14. Atomic-absorption determination of rhodium in chromite concentrates

    USGS Publications Warehouse

    Schnepfe, M.M.; Grimaldi, F.S.

    1969-01-01

    Rhodium is determined in chromite concentrates by atomic absorption after concentration either by co-precipitation with tellurium formed by the reduction of tellurite with tin(II) chloride or by fire assay into a gold bead. Interelement interferences in the atomic-absorption determination are removed by buffering the solutions with lanthanum sulphate (lanthanum concentration 1%). Substantial amounts of Ag, Al, Au, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ho, Hg, K, La, Mg, Mn, Mo, Na, Ni, Pb, Te, Ti, V, Y, Zn and platinum metals can be tolerated. A lower limit of approximately 0.07 ppm Rh can be determined in a 3-g sample. ?? 1969.

  15. Development and understanding of La0.85Sr0.15Cr1-xNixO3-δ anodes for La5.6WO11.4-δ-based Proton Conducting Solid Oxide Fuel Cells

    NASA Astrophysics Data System (ADS)

    Solís, Cecilia; Navarrete, Laura; Balaguer, María; Serra, José M.

    2014-07-01

    Porous electrodes based on the system La0.85Sr0.15Cr1-xNixO3-δ (x = 0.1 and 0.2) have been investigated as anodes for proton conducting solid oxide fuel cells based on the La5.6WO11.4-δ (LWO) electrolyte material. The microstructure of the anodes was optimized by varying both the starting powder morphology and the final anode sintering temperature. Two different electrode thicknesses were studied, i.e. 15 and 30 μm. The importance of the catalytic role of Ni was also studied by using different concentrations of Ni (10% and 20%) in the chromite and by tuning the Ni particle sizes through the control of the reduction temperature. Additionally, a ceramic-ceramic (cer-cer) composite electrode comprising a physical mixture of the optimized chromite and LWO phase was also considered. Finally, a kinetics study and modeling based on Langmuir-Hinshelwood mechanism was carried out in order to quantitatively describe the rate of dissociative adsorption of H2 on the Ni particles spread on the chromite surface.

  16. Review of Manganese Processing for Production of TRIP/TWIP Steels, Part 2: Reduction Studies

    NASA Astrophysics Data System (ADS)

    Elliott, R.; Coley, K.; Mostaghel, S.; Barati, M.

    2018-02-01

    Production of ultrahigh-manganese steels is expected to result in significant increase in demand for low-carbon (LC) ferromanganese (FeMn) and silicomanganese (SiMn). Current manganese processing techniques are energy intensive and typically yield a high-carbon product. The present work therefore reviews available literature regarding carbothermic reduction of Mn oxides and ores, with the objective of identifying opportunities for future process development to mitigate the cost of LC FeMn and SiMn. In general, there is consensus that carbothermic reduction of Mn oxides and ores is limited by gasification of carbon. Conditions which enhance or bypass this step (e.g., by application of CH4) show higher rates of reduction at lower temperatures. This phenomenon has potential application in solid-state reduction of Mn ore. Other avenues for process development include optimization of the prereduction step in conventional FeMn production and metallothermic reduction as a secondary reduction step.

  17. Mining and beneficiation of lunar ores

    NASA Technical Reports Server (NTRS)

    Bunch, T. E.; Williams, R. J.; Mckay, D. S.; Giles, D.

    1979-01-01

    The beneficiation of lunar plagioclase and ilmenite ores to feedstock grade permits a rapid growth of the space manufacturing economy by maximizing the production rate of metals and oxygen. A beneficiation scheme based on electrostatic and magnetic separation is preferred over conventional schemes, but such a scheme cannot be completely modeled because beneficiation processes are empirical and because some properties of lunar minerals have not been measured. To meet anticipated shipping and processing needs, the peak lunar mining rate will exceed 1000 tons/hr by the fifth year of operation. Such capabilities will be best obtained by automated mining vehicles and conveyor systems rather than trucks. It may be possible to extract about 40 kg of volatiles (60 percent H2O) by thermally processing the less than 20 micron ilmenite concentrate extracted from 130 tons of ilmenite ore. A thermodynamic analysis of an extraction process is presented.

  18. Investigation of the environmental impacts of naturally occurring radionuclides in the processing of sulfide ores for gold using gamma spectrometry.

    PubMed

    Gbadago, J K; Faanhof, A; Darko, E O; Schandorf, C

    2011-09-01

    The possible environmental impacts of naturally occurring radionuclides on workers and a critical community, as a result of milling and processing sulfide ores for gold by a mining company at Bogoso in the western region of Ghana, have been investigated using gamma spectroscopy. Indicative doses for the workers during sulfide ore processing were calculated from the activity concentrations measured at both physical and chemical processing stages. The dose rate, annual effective dose equivalent, radium equivalent activity, external and internal hazard indices, and radioactivity level index for tailings, for the de-silted sediments of run-off from the vicinity of the tailings dam through the critical community, and for the soils of the critical community's basic schools were calculated and found to be lower than their respective permissible limits. The environmental impact of the radionuclides is therefore expected to be low in this mining environment.

  19. Time-Variant Reliability Analysis for Rubber O-Ring Seal Considering Both Material Degradation and Random Load

    PubMed Central

    Liao, Baopeng; Yan, Meichen; Zhang, Weifang; Zhou, Kun

    2017-01-01

    Due to the increase in working hours, the reliability of rubber O-ring seals used in hydraulic systems of transfer machines will change. While traditional methods can only analyze one of the material properties or seal properties, the failure of the O-ring is caused by these two factors together. In this paper, two factors are mainly analyzed: the degradation of material properties and load randomization by processing technology. Firstly, the two factors are defined in terms of material failure and seal failure, before the experimental methods of rubber materials are studied. Following this, the time-variant material properties through experiments and load distribution by monitoring the processing can be obtained. Thirdly, compressive stress and contact stress have been calculated, which was combined with the reliability model to acquire the time-variant reliability for the O-ring. Finally, the life prediction and effect of oil pressure were discussed, then compared with the actual situation. The results show a lifetime of 12 months for the O-ring calculated in this paper, and compared with the replacement records from the maintenance workshop, the result is credible. PMID:29053597

  20. EXTRACTION OF URANIUM

    DOEpatents

    Kesler, R.D.; Rabb, D.D.

    1959-07-28

    An improved process is presented for recovering uranium from a carnotite ore. In the improved process U/sub 2/O/sub 5/ is added to the comminuted ore along with the usual amount of NaCl prior to roasting. The amount of U/sub 2/O/ sub 5/ is dependent on the amount of free calcium oxide and the uranium in the ore. Specifically, the desirable amount of U/sub 2/O/sub 5/ is 3.2% for each 1% of CaO, and 5 to 6% for each 1% of uranium. The mixture is roasted at about 1560 deg C for about 30 min and then leached with a 3 to 9% aqueous solution of sodium carbonate.

  1. Late Eocene 3He and Ir anomalies associated with ordinary chondritic spinels

    NASA Astrophysics Data System (ADS)

    Boschi, Samuele; Schmitz, Birger; Heck, Philipp R.; Cronholm, Anders; Defouilloy, Céline; Kita, Noriko T.; Monechi, Simonetta; Montanari, Alessandro; Rout, Surya S.; Terfelt, Fredrik

    2017-05-01

    During the late Eocene there was an enigmatic enhancement in the flux of extraterrestrial material to Earth. Evidence comes from sedimentary 3He records indicating an increased flux of interplanetary dust during ca. 2 Myr, as well as two very large impact structures, Popigai (100 km diameter) and Chesapeake Bay (40-85 km), that formed within 10-20 kyr at the peak of the 3He delivery. The Massignano section in Italy has one of the best sedimentary records of these events, including a well-defined 3He record, an Ir-rich ejecta bed related to the Popigai impact event, and two smaller Ir anomalies. Recently we showed that the Popigai ejecta is associated with a significant enrichment of chromite grains (>63 μm) with an H-chondritic elemental composition (17 grains in 100 kg of rock). Most likely these grains are unmelted fragments from the impactor. Slightly higher up (ca. 20 cm) in the section, where a small Ir anomaly possibly related to the Chesapeake Bay impact has been measured, we found a weak enrichment in L-chondritic grains (8 grains in 208 kg of rock). Here we report an extended data set increasing the total amount of sediment dissolved in acid and searched for extraterrestrial chromite grains from 658 to 1168 kg. In altogether 760 kg of background sediment from 17 levels over 14 m of strata outside the interval corresponding to the Popigai and Chesapeake Bay impacts, we only found 2 extraterrestrial chromite grains. Both grains have L-chondritic compositions and were found in a 100 kg sample from the ca. 10.25 m level in the section where the second of the smaller Ir anomalies has been reported. A correlation appears to exist between Ir, 3He and chromite from ordinary chondrites. We also report oxygen three-isotope measurements of the extraterrestrial chromite grains associated with the Popigai ejecta and confirm an H-chondritic composition. The new results strengthen our scenario that the upper Eocene 3He and Ir enrichments originate from the asteroid belt rather than the Oort cloud as originally proposed when the 3He anomaly was discovered. The generally low background concentrations of extraterrestrial chromite through the section speak against any major single asteroid breakup event such as in the mid-Ordovician after the break-up of the L-chondrite parent body. Instead the data reconcile with a small, possibly a factor of 2-3, increase in the flux of extraterrestrial material to Earth, but of both H- and L-chondritic composition. We also report the composition of all the 2310 terrestrial chrome spinel grains recovered, and show that their chemical composition indicates a dominantly regional ophiolitic source. Four anomalous chrome spinel grains with high Ti and V concentrations were found in the Popigai ejecta. These grains originate from Siberian Traps basalts in the Popigai crater at the time of impact.

  2. Developmental Origins of the Other-Race Effect

    PubMed Central

    Anzures, Gizelle; Quinn, Paul C.; Pascalis, Olivier; Slater, Alan M.; Tanaka, James W.; Lee, Kang

    2013-01-01

    The other-race effect (ORE) in face recognition refers to better recognition memory for faces of one’s own race than faces of another race—a common phenomenon among individuals living in primarily mono-racial societies. In this article, we review findings suggesting that early visual and sociocultural experiences shape one’s processing of familiar and unfamiliar race classes and give rise to the ORE within the 1st year of life. However, despite its early development, the ORE can be prevented, attenuated, and even reversed given experience with a novel race class. Social implications of the ORE are discussed in relation to development of race-based preferences for social partners and racial prejudices. PMID:24049246

  3. Static Thermochemical Model of COREX Melter Gasifier

    NASA Astrophysics Data System (ADS)

    Srishilan, C.; Shukla, Ajay Kumar

    2018-02-01

    COREX is one of the commercial smelting reduction processes. It uses the finer size ore and semi-soft coal instead of metallurgical coke to produce hot metal from iron ore. The use of top gas with high calorific value as a by-product export gas makes the process economical and green. The predictive thermochemical model of the COREX process presented here enables rapid computation of process parameters such as (1) required amount of ore, coal, and flux; (2) amount of slag and gas generated; and (3) gas compositions (based on the raw material and desired hot metal quality). The model helps in predicting the variations in process parameters with respect to the (1) degree of metallization and (2) post-combustion ratio for given raw material conditions. In general reduction in coal, flux, and oxygen, the requirement is concomitant with an increase in the degree of metallization and post-combustion ratio. The model reported here has been benchmarked using industrial data obtained from the JSW Steel Plant, India.

  4. A Comparison of the Greenhouse Impacts of Magnesium Produced By Electrolytic and Pidgeon Processes

    NASA Astrophysics Data System (ADS)

    Ramakrishnan, Subramania; Koltun, Paul

    With a focus on the global warming impact, this paper deals with the cradle-to-gate life cycle study of the following two practical production systems for producing magnesium ingots: (i) Magnesite ore is processed using the Australian Magnesium process to produce anhydrous magnesium chloride, which is then electrolysed to produce magnesium; and (ii) Dolomite ore is calcined to produce magnesium oxide, which is then thermally reduced with ferrosilicon using the Pidgeon process, based on the current practice used in China for magnesium production

  5. Recovery of Manganese Ore Tailings by High-Gradient Magnetic Separation and Hydrometallurgical Method

    NASA Astrophysics Data System (ADS)

    Zhang, Xiufeng; Tan, Xiumin; Yi, Yuejun; Liu, Weizao; Li, Chun

    2017-11-01

    With the depletion of high-grade manganese ores, Mn ore tailings are considered valuable secondary resources. In this study, a process combining high-gradient magnetic separation (HGMS) with hydrometallurgical methods is proposed to recycle fine-grained Mn tailings. The Mn tailings were treated by HGMS at 12,500 G to obtain a Mn concentrate of 30% Mn with the recovery efficiency of 64%. The Mn concentrate could be used in the ferromanganese industry. To recover Mn further, the nonmagnetic fraction was leached by SO2 in an H2SO4 solution. Hydrogen peroxide was added to the leachate to oxidize Fe2+ to Fe3+, and the solution pH was adjusted to 5.0-5.5 with ammonia to remove Al, Fe, and Si impurities. The purified solution was reacted with NH4HCO3, and a saleable product of MnCO3 with 97.9% purity was obtained. The combined process can be applied to Mn recovery from finely dispersed weakly magnetic Mn ores or tailings.

  6. ALKALINE CARBONATE LEACHING PROCESS FOR URANIUM EXTRACTION

    DOEpatents

    Thunaes, A.; Brown, E.A.; Rabbitts, A.T.

    1957-11-12

    A process for the leaching of uranium from high carbonate ores is presented. According to the process, the ore is leached at a temperature of about 200 deg C and a pressure of about 200 p.s.i.g. with a solution containing alkali carbonate, alkali permanganate, and bicarbonate ion, the bicarbonate ion functionlng to prevent premature formation of alkali hydroxide and consequent precipitation of a diuranate. After the leaching is complete, the uranium present is recovered by precipitation with NaOH.

  7. Getty Oil Company Diatomite project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zuber, I.L.

    1984-09-01

    The feasibility of using Diatomite as a synthetic fuels feedstock is discussed. The asphaltic outcropping near McKittrick, California are evidence of oil bearing deposits. Two different processes have been taken to the pilot plant stage to evaluate the viability of recovering oil from the Diatomite ore. One approach was the retorting process which was developed by Lurgi. The other process is based on a totally different concept of solvent extracting the oil from the ore. The operation and performance of the pilot plants are described.

  8. SOLVENT EXTRACTION PROCESS FOR URANIUM RECOVERY

    DOEpatents

    Clark, H.M.; Duffey, D.

    1958-06-17

    A process is described for extracting uranium from uranium ore, wherein the uranium is substantially free from molybdenum contamination. In a solvent extraction process for recovering uranium, uranium and molybdenum ions are extracted from the ore with ether under high acidity conditions. The ether phase is then stripped with water at a lower controiled acidity, resaturated with salting materials such as sodium nitrate, and reextracted with the separation of the molybdenum from the uranium without interference from other metals that have been previously extracted.

  9. Possibilities of magnetotelluric methods in geophysical exploration for ore minerals

    NASA Astrophysics Data System (ADS)

    Varentsov M., Iv.; Kulikov, V. A.; Yakovlev, A. G.; Yakovlev, D. V.

    2013-05-01

    In the past decade, the applications of magnetotelluric method in the electric prospecting for ore bodies have been rapidly progressing. In the present work, we summarize the first results on this way. We discuss the specificity of the geoelectrical models in the problems of mining prospecting for ore bodies. The state-of-the-art capabilities of the method, which rely on the synchronous observation systems and the procedure of joint inversion of magnetotelluric and magnetovariational responses, are considered in the context of ore mineral exploration. The results of modeling a typical mining audio-magnetotelluric survey for ore minerals are presented. On the basis of these simulations and the data provided by in-situ soundings, the efficient approaches to the processing, analysis, and inversion of these data are discussed and illustrated. The future trends in magnetotellurics as applied to the mining prospecting are analyzed.

  10. [Biooxidation of gold-bearing sulfide ore and subsequent biological treatment of cyanidation residues].

    PubMed

    Kanaev, A T; Bulaev, A G; Semenchenko, G V; Kanaeva, Z K; Shilmanova, A A

    2016-01-01

    The percolation biooxidation parameters of ore from the Bakyrchik deposit were studied. An investigation of the technological parameters (such as the concentration of leaching agents, irrigation intensity, and pauses at various stages of the leaching) revealed the optimal mode for precious metal extraction. The stages of the ore processing were biooxidation, gold extraction by cyanidation or thiosulfate leaching, and biological destruction of cyanide. The gold and silver recovery rates by cyanidation were 64.0 and 57.3%, respectively. The gold and silver recovery rates by thiosulfate leaching were 64.0 and 57.3%, respectively. Gold and silver recovery rates from unoxidized ore (control experiment) by cyanidation were 20.9 and 26.8%, respectively. Thiosulfate leaching of unoxidized ore allowed the extraction of 38.8 and 24.2% of the gold and silver, respectively. Cyanidation residues were treated with bacteria of the genus Alcaligenes in order to destruct cyanide.

  11. Mössbauer analysis of BIOX treatment of ores at Wiluna gold mine, Western Australia

    NASA Astrophysics Data System (ADS)

    Gagliardi, F. M.; Cashion, J. D.

    2013-04-01

    Mössbauer phase analysis of samples taken from nine stages of the bacterial oxidation processing of gold ore at the Wiluna Gold Mine followed the transformation of the arsenopyrite/pyrite minerals. The principal end-stage phases were szomolnokite, ferric oxyhydroxides, ferric arsenates, jarosite and incompletely transformed pyrite, with higher hydrates of ferrous sulphate being created and then dehydrating to szomolnokite during the processing.

  12. Gold ores related to shear zones, West Santa Comba-Fervenza Area (Galicia, NW Spain): A mineralogical study

    NASA Astrophysics Data System (ADS)

    Castroviejo, R.

    1990-12-01

    Recent research has discovered high-grade Au ores in NNE-SSW trending shear zones in metamorphic proterozoic and palaeozoic terranes, some 40 km NW of Santiago de Compostela (NW Spain). The orebodies are bound to late-stage Hercynian structures, mainly due to brittle deformation, which are superimposed on earlier ductile shear zones, cutting through various catazonal lithologies, including ortho- and paragneisses, amphibolites, eclogites, and granites. Ore mineralogy, alteration, and ore textures define a frame whose main features are common to all prospects in the area. Main minerals are arsenopyrite and pyrite — accompanied by quartz, adularia, sericite, ± (tourmaline, chlorite, carbonates, graphite), as main gangue minerals -with subordinate amounts of boulangerite, bismuthinite, kobellite, jamesonite, chalcopyrite, marcasite, galena, sphalerite, rutile, titanite, scheelite, beryl, fluorite, and minor native gold, electrum, native bismuth, fahlore, pyrrhotite, mackinawite, etc., defining a meso-catathermal paragenesis. Detailed microscopic study allows the author to propose a general descriptive scheme of textural classification for this type of ore. Most of the ores fill open spaces or veins, seal cracks or cement breccias; disseminated ores with replacement features related to alteration (mainly silicification, sericitization, and adularization) are also observed. Intensive and repeated cataclasis is a common feature of many ores, suggesting successive events of brittle deformation, hydrothermal flow, and ore precipitation. Gold may be transported and accumulated in any of these events, but tends to be concentrated in later ones. The origin of the gold ores is explained in terms of hydrothermal discharge, associated with mainly brittle deformation and possibly related to granitic magmas, in the global tectonic frame of crustal evolution of West Galicia. The mineralogical and textural study suggests some criteria which will be of practical value for exploration and for ore processing. Ore grades can be improved by flotation of arsenopyrite. Non-conventional methods, such as pressure or bacterial leaching, may subsequently obtain a residue enriched in gold.

  13. Water requirements of the iron and steel industry

    USGS Publications Warehouse

    Walling, Faulkner B.; Otts, Louis Ethelbert

    1967-01-01

    Twenty-nine steel plants surveyed during 1957 and 1958 withdrew from various sources about 1,400 billion gallons of water annually and produced 40.8 million tons of ingot steel. This is equivalent to about 34,000 gallons of water per ton of steel. Fifteen iron ore mines and fifteen ore concentration plants together withdrew annually about 89,000 million gallons to produce 15 million tons of iron ore concentrate, or 5,900 gallons per ton of concentrate. About 97 percent of the water used in the steel plants came from surface sources, 2.2 percent was reclaimed sewage, and 1.2 percent was ground water. Steel plants supplied about 96 percent of their own water requirements, although only three plants used self-supplied water exclusively. Water used by the iron ore mines and concentration plants was also predominantly self supplied from surface source. Water use in the iron and steel industry varied widely and depended on the availability of water, age and condition of plants and equipment, kinds of processes, and plant operating procedures. Gross water use in integrated steel plants ranged from 11,200 to 110,000 gallons per ton of steel ingots, and in steel processing plants it ranged from 4,180 to 26,700 gallons per ton. Water reuse also varied widely from 0 to 18 times in integrated steel plants and from 0 to 44 times in steel processing plants. Availability of water seemed to be the principal factor in determining the rate of reuse. Of the units within steel plants, a typical (median) blast furnace required 20,500 gallons of water per ton of pig iron. At the 1956-60 average rate of pig iron consumption, this amounts to about 13,000 gallons per ton of steel ingots or about 40 percent of that required by a typical integrated steel plant 33,200 gallons per ton. Different processes of iron ore concentration are devised specifically for the various kinds of ore. These processes result in a wide range of water use from 124 to 11,300 gallons of water per ton of iron ore concentrate. Water use in concentration plants is related to the physical state of the ore. The data in this report indicate that grain size of the ore is the most important factor; the very fine grained taconite and jasper required the greatest amount of water. Reuse was not widely practiced in the iron ore industry.Consumption of water by integrated steel plants ranged from 0 to 2,010 gallons per ton of ingot steel and by steel processing plants from 120 to 3,420 gallons per ton. Consumption by a typical integrated steel plant was 681 gallons per ton of ingot steel, about 1.8 percent of the intake and about 1 percent of the gross water use. Consumption by a typical steel processing plant was 646 gallons per ton, 18 percent of the intake, and 3.2 percent of the gross water use. The quality of available water was found not to be a critical factor in choosing the location of steel plants, although changes in equipment and in operating procedures are necessary when poor-quality water is used. The use of saline water having a concentration of dissolved solids as much as 10,400 ppm (parts per million) was reported. This very saline water was used for cooling furnaces and for quenching slag. In operations such as rolling steel in which the water comes into contact with the steel being processed, better quality water is used, although water containing as much as 3,410 ppm dissolved solids has been used for this purpose. Treatment of water for use in the iron and steel industry was not widely practiced. Disinfection and treatment for scale and corrosion control were the most frequently used treatment methods.

  14. The role of metasomatism in the balance of halogens in ore-forming process at porphyry Cu-Mo deposits

    NASA Astrophysics Data System (ADS)

    Berzina, A. N.

    2009-04-01

    Volatile components play an important role in the evolution of ore-magmatic systems and their ore potential. Of special interest are fluorine and chlorine compounds that principally control the transportation of ore elements by the fluid in a magmatic process and under high-temperature hydrothermal conditions. Study of the evolution of fluorine-chlorine activity in the ore-forming process and their source is usually based on analysis of their magmatic history, whereas the additional source of fluorine and chlorine released during metasomatic alteration of rocks hosting mineralization is poorly discussed in the existing literature. Based on microprobe data on Cl and F abundances in halogen-containing minerals (biotite, amphibole, apatite, titanite) in intrusive rocks and their hydrothermally altered varieties, the role of metasomatic processes in the balance of volatiles in the ore-forming system is discussed by the example of porphyry Cu-Mo deposits of Siberia (Russia) and Mongolia. Two groups of the deposits are considered: copper-molybdenum (Erdenetiin Ovoo, Mongolia and Aksug, Russia) with prevailing propylitic and phyllic alteration and molybdenum-copper (Sora, Russia), with predominant potassic alteration. All types of hydrothermal alterations have led to drastic decrease in Cl contents in metasomatic minerals as compared with halogen-containing magmatic minerals. All studied deposits (particularly those where propylitic and phyllic alteration were developed) show a nearly complete chlorine removal from altered halogen-containing rock-forming minerals (biotite and amphibole). The Cl content in amphibole decreases several times at the stage of replacement with actinolite in the process of propylitization. In the later chlorites (ripidolite and brunsvigite) that replace amphibole, actinolite, and biotite, chlorine is not detected by microprobe (detection limit 0.01-0.02% Cl). Chlorine was also not detected in white micas (muscovite-phengite series) in quartz-sericite alteration zones. No Cl-bearing minerals were revealed in ore-metasomatic assemblages with the exception of extremely low Cl contents in secondary biotite and very rare low-Cl apatite in the early potassic alteration zone. In contrast, fluorine concentrates in chlorites and white micas; however, the F content in them is commonly lower than in dark minerals, especially in biotite from altered rocks. The highest F contents are typical of biotites related to potassic alteration (K-feldspar + biotite + quartz assemblage). For example, the F content at the Sora deposit ranges from 2.5-2.7 wt.% in the metasomatic biotite to 0.44-1.63 wt.% in the rock-forming biotite of host granitoids. At this deposit, fluorite is a major mineral of the ore-metasomatic assemblage. The Mo-rich Sora deposit drastically differs from the Cu-rich Erdenetiin Ovoo and Aksug deposits by extremely low (0.02-0.08 wt.%) Cl contents in dark minerals from all of the host rocks. The considerable quantity of chlorine released as a result of large-scale propylitic and phyllic alteration from halogen-bearing dark minerals at Cu-rich deposits considerably affected the general Cl budget in the ore-metasomatic system. This could significantly promote the generation of Cl-rich (up to 50-70 wt.% NaCl-equiv.) ore-forming solutions at such deposits. At the Sora deposit characterized by less concentrated ore-bearing solutions (12-20 wt.% NaCl-equiv.), the metasomatic alteration of host rocks was not accompanied by an appreciable removal of Cl. At the studied deposits, huge volumes of enclosing rocks were involved in metasomatism. The large amounts of halogens released during the metasomatic alteration of host rocks might have significantly influenced the balance of volatiles in the ore forming system, including the increase in the salinity of hydrothermal solutions.

  15. Fluid inclusion gas chemistry as a potential minerals exploration tool: Case studies from Creede, CO, Jerritt Canyon, NV, Coeur d'Alene district, ID and MT, southern Alaska mesothermal veins, and mid-continent MVT's

    USGS Publications Warehouse

    Landis, G.P.; Hofstra, A.H.

    1991-01-01

    Recent advances in instrumentation now permit quantitative analysis of gas species from individual fluid inclusions. Fluid inclusion gas data can be applied to minerals exploration empirically to establish chemical (gas composition) signatures of the ore fluids, and conceptually through the development of genetic models of ore formation from a framework of integrated geologic, geochemical, and isotopic investigations. Case studies of fluid inclusion gas chemistry from ore deposits representing a spectrum of ore-forming processes and environments are presented to illustrate both the empirical and conceptual approaches. We consider epithermal silver-gold deposits of Creede, Colorado, Carlin-type sediment-hosted disseminated gold deposits of Jerritt Canyon, Nevada, metamorphic silver-base-metal veins of the Coeur d'Alene district, Idaho and Montana, gold-quartz veins in accreted terranes of southern Alaska, and the mid-continent base-metal sulfide deposits of Mississippi Valley-Type (MVT's). Variations in gas chemistry determine the redox state of the ore fluids, provide compositional input for gas geothermometers, characterize ore fluid chemistry (e.g., CH4CO2, H2SSO2, CO2/H2S, organic-rich fluids, gas-rich and gas-poor fluids), identify magmatic, meteoric, metamorphic, shallow and deep basin fluids in ore systems, locate upwelling plumes of magmatic-derived volatiles, zones of boiling and volatile separation, interfaces between contrasting fluids, and important zones of fluid mixing. Present techniques are immediately applicable to exploration programsas empirical studies that monitor fluid inclusion gas threshold concentration levels, presence or absence of certain gases, or changes in gas ratios. We suggest that the greater contribution of fluid inclusion gas analysis is in the integrated and comprehensive chemical dimension that gas data impart to genetic models, and in the exploration concepts based on processes and environments of ore formation derived from these genetic models. ?? 1991.

  16. Discrimination of iron ore deposits of granulite terrain of Southern Peninsular India using ASTER data

    NASA Astrophysics Data System (ADS)

    Rajendran, Sankaran; Thirunavukkarasu, A.; Balamurugan, G.; Shankar, K.

    2011-04-01

    This work describes a new image processing technique for discriminating iron ores (magnetite quartzite deposits) and associated lithology in high-grade granulite region of Salem, Southern Peninsular India using visible, near-infrared and short wave infrared reflectance data of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). Image spectra show that the magnetite quartzite and associated lithology of garnetiferrous pyroxene granulite, hornblende biotite gneiss, amphibolite, dunite, and pegmatite have absorption features around spectral bands 1, 3, 5, and 7. ASTER band ratios ((1 + 3)/2, (3 + 5)/4, (5 + 7)/6) in RGB are constructed by summing the bands representing the shoulders of absorption features as a numerator, and the band located nearest the absorption feature as a denominator to map iron ores and band ratios ((2 + 4)/3, (5 + 7)/6, (7 + 9)/8) in RGB for associated lithology. The results show that ASTER band ratios ((1 + 3)/2, (3 + 5)/4, (5 + 7)/6) in a Red-Green-Blue (RGB) color combination identifies the iron ores much better than previously published ASTER band ratios analysis. A Principal Component Analysis (PCA) is applied to reduce redundant information in highly correlated bands. PCA (3, 2, and 1 for iron ores and 5, 4, 2 for granulite rock) in RGB enabled the discrimination between the iron ores and garnetiferrous pyroxene granulite rock. Thus, this image processing technique is very much suitable for discriminating the different types of rocks of granulite region. As outcome of the present work, the geology map of Salem region is provided based on the interpretation of ASTER image results and field verification work. It is recommended that the proposed methods have great potential for mapping of iron ores and associated lithology of granulite region with similar rock units of granulite regions of Southern Peninsular India. This work also demonstrates the ability of ASTER's to provide information on iron ores, which is valuable for mineral prospecting and exploration activities.

  17. Fluid inclusion characteristics and geological significance of the Dajinshan W-Sn polymetallic deposit in Yunfu, Guangdong Province

    NASA Astrophysics Data System (ADS)

    Yu, Zhangfa; Chen, Maohong; Zhao, Haijie

    2015-05-01

    The Dajinshan tungsten-tin polymetallic deposit is a quartz-vein-type ore deposit located in Western Guangdong Province. The ore bodies show a fairly simple shape and mainly occur as tungsten-tin polymetallic-bearing sulfide quartz veins, including quartz vein, quartz-greisens, and sulfide quartz veins, and their distribution is spatially related to Dajinshan granitoids. The formation of the deposit experienced three stages: a wolframite-molybdenite-quartz stage, a wolframite-cassiterite-sulfide-quartz stage, and a fluorite-calcite-carbonate stage. Based on detailed petrographic observations, we conducted microthermometric and Raman microspectroscopic studies of fluid inclusions formed at different ore-forming stages in the Dajinshan tungsten-tin polymetallic deposit, identifying four dominant types of fluid inclusions: aqueous two-phase inclusions, CO2-bearing inclusions, solid or daughter mineral-bearing inclusions, and gas-rich inclusions. The gas compositions of ore-forming fluids in the Dajinshan tungsten-tin polymetallic deposit are mostly CO2, CH4, and H2O. The hydrogen, oxygen, and sulfur isotopic data imply that the ore-forming fluids in the Dajinshan tungsten-tin polymetallic deposit were mainly derived from magmatic fluids, mixed with meteoric water in the ore-formation process. These results indicate that the fluid mixing and boiling led to the decomposition of the metal complex in ore-forming fluids and ore deposition.

  18. Extraction of reduced alteration information based on Aster data: a case study of the Bashibulake uranium ore district

    NASA Astrophysics Data System (ADS)

    Ye, Fa-wang; Liu, De-chang

    2008-12-01

    Practices of sandstone-type uranium exploration in recent years in China indicate that the uranium mineralization alteration information is of great importance for selecting a new uranium target or prospecting in outer area of the known uranium ore district. Taking a case study of BASHIBULAKE uranium ore district, this paper mainly presents the technical minds and methods of extracting the reduced alteration information by oil and gas in BASHIBULAKE ore district using ASTER data. First, the regional geological setting and study status in BASHIBULAKE uranium ore district are introduced in brief. Then, the spectral characteristics of altered sandstone and un-altered sandstone in BASHIBULAKE ore district are analyzed deeply. Based on the spectral analysis, two technical minds to extract the remote sensing reduced alteration information are proposed, and the un-mixing method is introduced to process ASTER data to extract the reduced alteration information in BASHIBULAKE ore district. From the enhanced images, three remote sensing anomaly zones are discovered, and their geological and prospecting significances are further made sure by taking the advantages of multi-bands in SWIR of ASTER data. Finally, the distribution and intensity of the reduced alteration information in Cretaceous system and its relationship with the genesis of uranium deposit are discussed, the specific suggestions for uranium prospecting orientation in outer of BASHIBULAKE ore district are also proposed.

  19. Culturable microorganisms associated with Sishen iron ore and their potential roles in biobeneficiation.

    PubMed

    Adeleke, Rasheed; Cloete, T E; Khasa, D P

    2012-03-01

    With one of the largest iron ore deposits in the world, South Africa is recognised to be among the top ten biggest exporters of iron ore. Increasing demand and consumption of this mineral triggered search for processing technologies, which can be utilised to "purify" the low-grade iron ore minerals that contain high levels of unwanted potassium (K) and phosphorus (P). This study investigated a potential biological method that can be further developed for the full biobeneficiation of low-grade iron ore minerals. Twenty-three bacterial strains that belong to Proteobacteria, Firmicutes, Bacteroidetes and Actinobateria were isolated from the iron ore minerals and identified with sequence homology and phylogenetic methods. The abilities of these isolates to lower the pH of the growth medium and solubilisation of tricalcium phosphate were used to screen them as potential mineral solubilisers. Eight isolates were successfully screened with this method and utilised in shake flask experiments using iron ore minerals as sources of K and P. The shake flask experiments revealed that all eight isolates have potentials to produce organic acids that aided the solubilisation of the iron ore minerals. In addition, all eight isolates produced high concentrations of gluconic acid followed by relatively lower concentrations of acetic, citric and propanoic acid. Scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) analyses also indicated extracellular polymeric substances could play a role in mineral solubilisation.

  20. Recovery of manganese from manganese oxide ores in the EDTA solution

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Wang, Shuai; Cao, Zhan-fang; Zhong, Hong

    2018-04-01

    A new process has been experimentally and theoretically established for the recovery of manganese from manganese oxide ores, mainly including the reductive leaching of manganese by ethylenediaminetetraacetic acid (EDTA), EDTA recovery, and manganese electrolysis. The experimental conditions for this process were investigated. Moderate leaching environment by EDTA with the pH in the range of 5-6 is of benefit to leach manganese from some manganese oxide ores with high-content impurities, such as iron and aluminum. Most of EDTA can be recovered by acidification. A small amount of the residual EDTA in the electrolyte can prevent the generation of anode mud. In addition, trimanganese tetroxide (Mn3O4) can be obtained by the roasting of the EDTA-Mn crystallized product.

  1. Characterization of the fine fraction of the argon oxygen decarburization with lance (AOD-L) sludge generated by the stainless steelmaking industry.

    PubMed

    Majuste, Daniel; Mansur, Marcelo Borges

    2008-05-01

    The argon oxygen decarburization with lance (AOD-L) sludge generated by the stainless steelmaking industry is a hazardous waste due to the presence of chromium. While its coarse fraction is usually recycled into the own industrial process, the fine fraction is normally disposed in landfills. Techniques such as briquetting or magnetic separation were found to be inadequate to treat it for reuse purposes. So, in this work, the fine fraction of the AOD-L sludge was characterized aiming to find alternative methods to treat it. This sludge consists of a fine powder (mean diameter of 1 microm) containing 34 +/- 2% (w/w) of iron, 10.2 +/- 0.9% (w/w) of chromium and 1.4 +/- 0.1% (w/w) of nickel. The main crystalline phases identified in this study were chromite (FeCr(2)O(4)), magnetite (Fe(3)O(4)), hematite (Fe(2)O(3)) and calcite (CaCO(3)). In the digestion tests, the addition of HClO(4) has favored the dissolution of chromite which is a very stable oxide in aqueous media. Nickel was found in very fine particles, probably in the metallic form or associated with iron and oxygen. The sludge was classified as hazardous waste, so its disposal in landfills should be avoided.

  2. Sodium cyanide hazards to fish and other wildlife from gold mining operations

    USGS Publications Warehouse

    Eisler, R.; Clark, D.R.; Wiemeyer, Stanley N.; Henny, C.J.; Azcue, Jose M.

    1999-01-01

    Highly toxic sodium cyanide (NaCN) is used increasingly by the international mining community to extract gold and other precious metals through milling of high grade ores and heap leaching of low grade ores. Of the 98 million kg cyanide (CN) consumed in North America in 1989, about 80% was used in gold mining (Knudson 1990). In Canada, more than 90% of the mined gold is extracted from ores with the cyanidation process. This process consists of leaching gold from the ore as a gold-cyanide complex, and gold being recovered by precipitation (Simovic and Snodgrass 1985). Milling and heap leaching require cycling of millions of liters of alkaline water containing high concentrations of potentially toxic NaCN, free cyanide, and metal cyanide complexes that are frequently accessible to wildlife. Some milling operations result in tailings ponds of 150 ha and larger. Heap leach operations that spray or drip cyanide solution onto the flattened top of the ore heap require solution processing ponds of about 1 ha in surface area. Although not intentional or desired, puddles of various sizes may occur on the top of heaps where the highest concentrations of NaCN are found. Exposed solution recovery channels are usually constructed at the base of leach heaps. All of these cyanidecontaining water bodies are hazardous to wildlife if not properly managed (Henny et al. 1994). In this account we emphasize hazards of cyanide from mining operations to fish and wildlife species and proposed mitigation to protect them.

  3. A mineralogical perspective on the recovery of platinum group elements from Merensky Reef and UG2 at the Two Rivers mine on the Eastern limb of the Bushveld Complex in South Africa

    NASA Astrophysics Data System (ADS)

    Rose, Derek H.; Viljoen, K. S.; Mulaba-Bafubiandi, Antoine

    2018-06-01

    Published studies dealing with the process mineralogy of Pt mines on the Bushveld Complex is generally limited to the Western Bushveld. The recognition by mine management that another resource, in addition to the Upper Group 2 (UG2) reef currently being mined at the Two Rivers platinum mine (TRP), is urgently required in order to extend the life of mine, presented an opportunity to conduct such a study on the Eastern Limb of the Bushveld Complex. A process mineralogical investigation was undertaken on ore from the Merensky Reef (MR) and the UG2 at TRP. This was conducted on a suite of geological samples (channel samples) collected from the underground workings, as well as metallurgical samples obtained from the rougher circuits at the concentrator plant during the processing of MR and UG2 ore. The geological and metallurgical samples were analysed for bulk composition and quantitative mineralogy, while the geological samples were also subjected to laboratory-scale milling and flotation tests. This study shows that, although mineralogically distinct, the MR and UG2 behave similarly in terms of metallurgical performance. This holds promise for the proposed blending of MR and UG2 ores at TRP. An evaluation of the bulk rock (ore) Pt/Pd ratio as a possible indicator of the level of hydrothermal alteration of the ore, demonstrates that this may be of use in predicting recovery plant performance.

  4. [Spectral characteristics and implications of quartz from Heliao lead-zinc polymetallic ore district in the south of Qinzhou-Hangzhou joint belt].

    PubMed

    Lü, Wen-Chao; Yang, Zhi-Jun; Zhou, Yong-Zhang; Li, Hong-Zhong; Zeng, Xiang-Qing; Chen, Qing; Liang, Jin; Zeng, Chang-Yu

    2013-05-01

    The XRD, FTIR and Raman spectrum were employed to study the characters of quartz from three types of rock samples, which are mineralized rock sample, near ore body rock sample and far away from ore body rock sample in Heliao lead-zinc polymetallic ore district. The research shows that the quartz in the mineralized rock and far away from ore body rock is pure, while the quartz in near ore body rock contains a small amount of impurities. But such small amounts of impurities did not cause apparent change in the quartz lattice parameters. From far away from ore body rock-->near ore body rock-->mineralized rock, the crystallinity and order degree of quartz are higher and higher. And the quartz in the mineralized rock has a trend to change into low symmetry quartz. It's a unique to mineralized rock that the quartz's absorption peak at 1 050 cm(-1) was split into two strongest ones. It can be used as the signs of whether exists mineralization. The cause for the quartz microstructure changes may be related to the activities of late mineralized hydrothermal fluids. Late hydrothermal influence was very weak to the quartz far away from ore body rock. And through the impact of the multi-stage hydrothermal effect, the quartz in mineralized rock may be purified by recrystallization and structural adjustment. However the quartz in near ore body rock didn't have enough hydrothermal influence, so it's not pure. Genealogy research technology is a useful technique for in-depth exploration of study area mineralization process and metallogenic regularity.

  5. The Compaction of Ultramafic Cumulates in Layered Intrusions - Time and Length Scales (Invited)

    NASA Astrophysics Data System (ADS)

    Schmidt, M. W.; Manoochehri, S.

    2013-12-01

    Many large mafic intrusions have thick series of mostly ultramafic cumulates composed of dense cumulus minerals (chromite, olivine, pyroxenes) precipitated from low viscosity (roughly basaltic) liquids. To understand the time and length scales involved, the crystal settling and compaction process was simulated through centrifuge-assisted experiments of olivine or chromite in basaltic melt. Experiments were performed in a centrifuging piston cylinder at 200-1500 g, 1200-1300 C, 0.5-1.1 GPa on previously annealed and texturally equilibrated samples. The mechanical settling of the dense olivine or chromite suspensions occurs at 1/6 and 1/2 the speed of simple Stokes settling. The porosity (φm ) of orthocumulates resulting from gravitational settling is 50-55 %, pile up times for natural grain sizes result to 0.1-10 m/day. Hence, gravitational deposition (including re-deposition) of crystals may take place within years, i.e. almost instantaneously with progressing crystallization. After (re-)deposition, grains rest on each other. Further (chemical) compaction occurs through pressure dissolution at grain contacts, olivine or chromite re-precipitates where in contact with melt. Concomitantly excess liquid is expulsed from the cumulate layer. Centrifugation let to porosities as low as 30.3 vol% for olivine. The crystal content at the bottom of the experimentally compacted cumulate is 1-φm ~ log(Δρ h a t), where Δρ = crystal-melt density difference, h = crystal layer thickness, a = acceleration and t = time. Compaction is hence proportional to effective stress integrated over time indicating that pressure dissolution is the dominant mechanism. Notably, chromite crystals compact only about half as fast as olivine crystals. The compaction limit, i.e. the lowermost porosity to be reached, is calculated by equating the lithostatic and hydraulic pressure gradients in the cumulate and results to 3-5 % porosity for the experiments. Crystal size distribution curves and a growth exponent n of 3.1(3) (for olivine) indicate that diffusion controlled Ostwald ripening is the dominant crystal growth mechanism. The experimentally calibrated compaction relationship, combined with a linear scaling for grain size as appropriate for reaction-controlled pressure solution creep, allows calculation of formation times of natural adcumulates. A single layer of olivine adcumulate of 1/2 m thickness with 70-75 vol% olivine at the base (as observed in Rhum), would have typical formation times of 0.4-3 yrs for grain sizes of 2-10 mm, comparing favourably with characteristic cooling times of sills. If a >20 m thick series of cumulate layers pressurizes a base layer with the porosity still filled by a melt, then compaction proceeds to the compaction limit within a few years. To understand the thickness of a simultaneously compacting (layered) crystal pile, (paleo)-porosity gradients determined from incompatible trace elements can be employed when combined with modelled characteristic cooling times. In layered mafic intrusions where cumulates are deposited from a large magma chamber, compaction zones of several tens to hundreds of meter may form adcumulates with porosities in the order of 5%. In conclusion, gravitation driven chemical compaction is feasible for dense mafic minerals in basaltic magmas, in particular in large layered intrusions. The limiting factor appears to be rather the supply of crystals then the time necessary for compaction.

  6. Integrate metalogenic database with GIS geological project (deposite Au-Ag Far East Russia). WEB-GIS approach.

    NASA Astrophysics Data System (ADS)

    Kucharenko, Evgeniy; Asavin, Alex

    2015-04-01

    Resource depletion has forced us to search for new ore deposit and reanalyze old mineral deposits. This is the main aim of metallogenic studies. Synthesis information about features resources work out deposit and emerging fields will play a key role in future. Development of metallogeny databases is one of the most difficult tasks for Earth sciences. Database needs to enter a large number of parameters describing the object of study - mine or ore occurrence. Majority of these parameters belong to different areas of geological knowledge. It can be ore mineralogy, geochemistry, lithology of host rocks, tectonic characteristics ore-controlling structures, geochemical parameters of ore processes, geochronological data on age of geological formations and processes of ore formation and some others. However, the cartographic materials of various scales apart from diverse documentation and numerical information are of a great importance. The adopted framework for the analysis of large-scale metallogeny has several levels: 1. The ore body (usually 1: 50000, 1: 100000) 2. The ore field, the field (1: 200000) 3. The ore cluster (1: 500000) Researchers can vary scheme and scale values, but fundamentally three levels of scale describing the location and geological structures controlling the placement of ore are included at least. Attention should be pay to the system of description the ore deposit. It is necessary to create the universal scheme for development of metallogeny information systems and set up the universal algorithm of ore deposit description. There is its own order of importance of used features and a form of description for each type of deposits and ore and genetic group and ore element. Lack of definition in the classification of a particular metallogenic object makes the choice of algorithm description justified quite weakly. It is quite notable that available features which used for description of different deposit (even of the same genetic group) are not of the same type or detailed enough. Waste deposit usually takes as a reference object with the most complete description in opposite to the recently discovered deposit not enough studied and with quite limited list of information indicators. There are following most actual tasks for information metallogeny system: 1. Search summarizing the characteristics of different objects 2. Select the most informative group of features 3. Show the links of groups of signs and analyze it as far as genesis of deposits. The actual task's list could be continued but it is enough to start. Essentially mentioned problems put us in a situation when deposit's metallogenic database is not available. There is only limited number of typical databases (for certain types of minerals) characterized nothing more than name of the fields and basic indicators of its economic importance (stocks, component content, ore types). The additional information: the age of host rock or ores or geochemistry features of some geological objects uses quite rarely. There is no systematic data for all objects in the database. Database of carbonatite deposits is the most well-developed. It should be also mentioned some works [Woolley & Kjarsgaard 2009; Bagdasarov et al.,2001; Burmistrov et al., 2008]. Unfortunately, such important characteristics as geological maps are not included there as

  7. A summary of laboratory testing performed to characterize and select an elastomeric O-ring material to be used in the redesigned solid rocket motors of the space transportation system

    NASA Technical Reports Server (NTRS)

    Turner, J. E.

    1993-01-01

    An elastomeric O-ring material is used in the joints of the redesigned solid motors (RSRM's) of the National Space Transportation System (NSTS). The selection of the O-ring material used in the RSRM's was a very thorough process that included efforts by NASA's Marshall Space Flight Center and the Langley Research Center, and the Thiokol Corporation. One of the efforts performed at MSFC was an extensive in-house laboratory test regime to screen potential O-ring materials and ultimately to characterize the elastomeric material that was chosen to be used in the RSRM's. The laboratory tests performed at MSFC are summarized.

  8. Effect of Organic Manures on the Growth of Cymbopogon citratus and Chrysopogon zizanioides for the Phytoremediation of Chromite-Asbestos Mine Waste: A Pot Scale Experiment.

    PubMed

    Kumar, Adarsh; Maiti, Subodh Kumar

    2015-01-01

    The abandoned chromite-asbestos mines are located in the Roro hills, West Singhbhum, Jharkhand, India, where mining operation ceased in 1983, and since then these mines are causing environmental pollution. The present study was planned to phytoremediate these metalloid and metal contaminated mine waste by using two aromatic grasses, Cymbopogon citratus and Chrysopogon zizanioides by applying different proportions of amendments (chicken manure, farmyard manure and garden soil). Mine waste has neutral pH, low electrical conductivity and organic carbon with higher concentration of total metals (Cr and Ni) as compared to soil. Application of manures resulted significant improvements of mine waste characteristics and plant growth, reduction in the availability of total extractable toxic metals (Cr, Ni) and increase in Mn, Zn and Cu concentration in the substrate. The maximum growth and biomass production for C. citratus and C. zizanioides were found in T-IV combination comprising of mine waste (90%), chicken manure (2.5%), farmyard manure (2.5%) and garden soil (5%). Addition of T-IV combination also resulted in low Cr and Ni accumulation in roots and reduction in translocation to shoots. Study indicates that C. citratus and C. zizanioides can be used for phytostabilization of abandoned chromite-asbestos mine waste with amendments.

  9. Development of a Chemical Process for Production of Cesium Chloride from a Canadian Pollucite Ore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parsons, H. W.; Vezina, J. A.; Simard, R.

    1963-01-01

    A chemical process was developed for the production of a high-purity cesium chioride from a pollucite (cesium aluminum silicate) ore from the Manitoba deposit of Chemalloy Minerais Ltd. The history of the deposit, and the present and possible future uses of cesium are briefly reviewed. Laboratory and piiot plant investigations on this ore have shown that a cyclic sulphuric acid leach followed by fractional crystallization will produce a rubidiumfree cesium alum, which can be converted to cesium chloride by thermal decomposition and ion exchange. On the basis of these findings it is concluded that the process is applicable to themore » tonnage production of cesium chloride. Reagent consumption was found to be 3.3 sulphuric acid and 0.3 lb hydrochloric acid per pound of cesium extracted. Overall extraction of cesium was 95 to 96%. (auth)« less

  10. Manganese biomining: A review.

    PubMed

    Das, A P; Sukla, L B; Pradhan, N; Nayak, S

    2011-08-01

    Biomining comprises of processing and extraction of metal from their ores and concentrates using microbial techniques. Currently this is used by the mining industry to extract copper, uranium and gold from low grade ores but not for low grade manganese ore in industrial scale. The study of microbial genomes, metabolites and regulatory pathways provide novel insights to the metabolism of bioleaching microorganisms and their synergistic action during bioleaching operations. This will promote understanding of the universal regulatory responses that the biomining microbial community uses to adapt to their changing environment leading to high metal recovery. Possibility exists of findings ways to imitate the entire process during industrial manganese biomining endeavor. This paper reviews the current status of manganese biomining research operations around the world, identifies factors that drive the selection of biomining as a processing technology, describes challenges in exploiting these innovations, and concludes with a discussion of Mn biomining's future. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Loparite, a rare-earth ore (Ce, Na, Sr, Ca)(Ti, Nb, Ta, Fe+3)O3

    USGS Publications Warehouse

    Hedrick, James B.; Sinha, Shyama P.; Kosynkin, Valery D.

    1997-01-01

    The mineral loparite (Ce, NA, Sr, Ca)(Ti, Nb, Ta, Fe+3)O3 is the principal ore of the light-group rare-earth elements (LREE) in Russia. The complex oxide has a perovskite (ABO3) structure with coupled substitutions, polymorphism, defect chemistry and a tendency to become metamict. The A site generally contains weakly bonded, easily exchanged cations of the LREE, Na and Ca. The B site generally contains smaller, highly charged cations of Ti, Nb or Fe+3. Mine production is from Russia's Kola Peninsula. Ore is beneficiated to produce a 95% loparite concentrate containing 30% rare-earth oxides. Loparite concentrate is refined by either a chlorination process or acid decomposition process to recover rare-earths, titanium, niobium and tantalum. Rare-earths are separated by solvent extraction and selective precipitation/dissolution. The concentrate is processed at plants in Russia, Estonia and Kazakstan.

  12. Electrostatic beneficiation of ores on the moon surface

    NASA Technical Reports Server (NTRS)

    Inculet, I. I.; Criswell, D. R.

    1979-01-01

    The feasibility of the electrostatic beneficiation of lunar ores is studied. It is shown that the lunar environment with its sustained high vacuum, low temperature, and low acceleration of gravity, is suitable for the use of the electrostatic technique with magnetic as well as nonmagnetic ores. Only an initial coarse screening will be required prior to processing, as the lunar soil is already in fine particulate form. The low temperature and the absence of water suggest the use of tribo-electrification for the electric charging of lunar soils.

  13. The Popigai impact ejecta layer in the Monte Vaccaro section, Piobbico, Italy

    NASA Astrophysics Data System (ADS)

    Boschi, S.; Schmitz, B.; Terfelt, F.

    2017-12-01

    Previously the ejecta from the impact creating the ca. 100 km large Popigai crater in Siberia has been found in Late Eocene sediments in the Massignano section, near Ancona in Italy. Here the ejecta layer is associated with an iridium anomaly, shocked quartz, and abundant clinopyroxene-bearing spherules weathered to so called pancake spherules. Recently we showed that the ejecta is also associated with an enrichment of H-chondritic chromite grains (>63 μm), possibly representing unmelted fragments of the impactor (Boschi et al., 2017). Here we report the first discovery of the Popigai ejecta at another locality in Italy. We found the ejecta in the Monte Vaccaro section, 90 km northwest of Ancona, at the same biostratigraphic level as in the Massignano section. The ejecta layer contains shocked quartz, abundant pancake spherules and an iridium anomaly, just like at Massignano. We measure peak Ir concentrations of 686 ppt, a factor of three higher than the Ir anomaly in the Massignano section. The limestone across the ejecta in the Monte Vaccaro section contains fewer terrestrial spinel grains than at Massignano, making searches for extraterrestrial chromite grains also in size fractions <63 μm feasible. Grains in the size fractions 32-63 μm generally tend to be a factor 10-30 more common than >63 μm grains. The smaller the size fraction of a sedimentary extraterrestrial chromite residue that can be studied, the more statistically robust inferences can be made. The preliminary results for grains in the 32-63 μm fraction from the Monte Vaccaro section indicate a more complex scenario than that based on the >63 μm fraction of chromites recovered from the Massignano section. ReferencesBoschi, S., Schmitz, B., Heck, P.R., Cronholm, A., Defouilloy, C., Kita, N. T.,Monechi, S., Montanari, A., Rout, S. S., Terfelt, F., 2017. Late Eocene 3He and Ir anomalies associated with ordinary chondritic spinels. Geochim. Cosmochim. Acta 204, 205-218.

  14. Mineralogy and origin of stichtite in chromite-bearing serpentinites

    NASA Astrophysics Data System (ADS)

    Ashwal, Lewis D.; Cairncross, Bruce

    Stichtite, a rare (14 known localities worldwide) hydrated carbonate-hydroxide of Mg and Cr with ideal formula Mg6Cr2 (OH)16 CO3 . 4H2O, occurs exclusively in Cr-rich serpentinites of ophiolites or greenstone belts. Physical properties (hardness=1.5-2, specific gravity=2.16-2.2, perfect basal [0001] cleavage, grain size commonly < 100 μm) resemble talc, but the mineral has an attractive purple to lilac color; chemical analyses demonstrate it to be a non-silicate. Stichtite generally occurs as irregular to rounded masses (< 1 cm - 30 cm across) and as veinlets (< 1 mm - > 2 cm wide) within serpentinite. Macroscopic and microscopic textures, such as crosscutting veinlets and stringers, demonstrate that stichtite formation invariably post-dated serpentinization. In some specimens stichtite surrounds relict grains of Cr-rich spinel; in others stichtite has completely replaced euhedral or subhedral chromites. Chemical analyses of stichtites reveal substantial substitution of Al and Fe3+ for Cr in specimens from many localities, reflecting a possible compositional continuum between stichtite and rhombohedral polymorphs hydrotalcite (Mg6Al2 (OH)16 CO3 . 4H2O) and pyroaurite (Mg6Fe2 (OH)16 CO3 . 4H2O). We report the first electron microprobe analyses of stichtites from seven localities, and summarize all available published chemical data. Stichtites very likely inherited part of their trivalent cation chemistry from precursor Cr-rich spinels, but stichtite growth apparently post-dated characteristic ``ferritchromit'' alteration, as demonstrated by the depletion of Al and enrichment in Fe3+ in stichtite relative to primary chromite core compositions. Stichtite appears to form by reaction between serpentine and altered chromite, during addition of substantial fluid, either as separate H2O and CO2 phases, or as a mixed volatile phase. Such reactions must involve removal of substantial SiO2, possibly by transport and remote deposition of silica by throughgoing aqueous and carbonic fluid.

  15. Effect of temperature in the selective reduction process of limonite nickel ore

    NASA Astrophysics Data System (ADS)

    Mayangsari, W.; Febriana, Eni; Prasetyo, A. B.

    2018-05-01

    Temperature is the main factor for the reduction process that influence to reduction degree, phase and morphology transformation. In order to determine these effects which is caused by reduction temperature, this study was conducted. Limoniticnickel ore was prepared by drying and size reduction. A part of prepared limonitewas characterized with XRF to determine the chemical composition. The other part was mixed with reducing agent and CaSO4 to produce pellet. A series of selective reduction processes were conducted to the pellet by using graphite crucible in the muffle furnace carbolite at 800° - 1100°C for 60 minutes. Reduced ore characterized by using XRD and SEM analysis. Based on the result study, weight loss and reduction degree increase as temperature raised along with CaSO4 addition. Moreover, it caused decomposition and transformation to the metallic phase of kamacite and iron up to 7.51% and 41.44% respectively in the reduction process at 1100°C for 60 minutes. Furthermore, particle size growth as metallic phase content increased.

  16. The extractive metallurgy of gold

    NASA Astrophysics Data System (ADS)

    Kongolo, K.; Mwema, M. D.

    1998-12-01

    Mössbauer spectroscopy has been successfully used in investigation of the gold compounds present in ores and the gold species which occur during the process metallurgy of this metal. This paper is a survey of the basic recovery methods and techniques used in extractive metallurgy of gold. Process fundamentals on mineral processing, ore leaching, zinc dust cementation, adsorption on activated carbon, electrowinning and refining are examined. The recovery of gold as a by-product of the copper industry is also described. Alternative processing methods are indicated in order to shed light on new interesting research topics where Mössbauer spectroscopy could be applied.

  17. URANIUM RECOVERY PROCESS

    DOEpatents

    Yeager, J.H.

    1958-08-12

    In the prior art processing of uranium ores, the ore is flrst digested with nitric acid and filtered, and the uranium values are then extracted tom the filtrate by contacting with an organic solvent. The insoluble residue has been processed separately in order to recover any uranium which it might contain. The improvement consists in contacting a slurry, composed of both solution and residue, with the organic solvent prior to filtration. Tbe result is that uranium values contained in the residue are extracted along with the uranium values contained th the solution in one step.

  18. Composition and origin of Early Cambrian Tiantaishan phosphorite-Mn carbonate ores, Shaanxi Province, China

    USGS Publications Warehouse

    Hein, J.R.; Fan, D.; Ye, J.; Liu, T.; Yeh, H.-W.

    1999-01-01

    The Tiantaishan phosphorite-Mn carbonate ores occur in the Early Cambrian Tananpo Formation in complexly folded and faulted rocks located in southern Shaanxi Province. About 65 x 106 tonnes of 17% P2O5 ore reserves exist and Mn-ore reserves are about 8.3 x 106 tonnes of +18% Mn. The stratigraphic sequence in ascending order consists of black phyllite, black to gray phosphorite ore, black phyllite, rhodochrostone ore, Mn mixed-carbonates, and dolostone. Data are presented from microprobe mineral chemistry, whole-rock chemistry, stable isotopes of carbonates, X-ray mineralogy, petrographic and SEM observations, and statistical analysis of chemical data. The dominant ore-forming minerals are hydroxy- and carbonate fluorapatite and Ca rhodochrosite, with Mg kutnahorite and dolomite comprising the Mn mixed-carbonate section. Pyrite occurs in all rock types and alabandite (MnS) occurs throughout the rhodochrostone section. The mean P2O5 content of phosphorite is 31% and argillaceous phosphorite is 16%, while the mean MnO content of rhodochrostone ore is 37%. Phosphorite ores are massive, spheroidal, laminated, and banded, while rhodochrostone ores have oolitic, spheroidal, and granular fabrics. The most distinguishing characteristics of the ores are high total organic carbon (TOC) contents (mean 8.4%) in the phosphorite and high P2O5 contents (mean 2.7%) in the rhodochrostone ore. The atypically high TOC contents in the Tiantaishan phosphorite probably result from very strong productivity leading to high sedimentation rates accompanied by weak reworking of sediments; poor utilization of the organic matter by bacteria; and/or partial replacement of bacterial or algal mats by the apatite. The depositional setting of the ores was the margin of an epicontinental seaway created as a direct consequence of global processes that included break-up of a supercontinent, formation of narrow seaways, creation of extensive continental shelves, overturn of stagnant, metal-rich deep-ocean waters, and marine transgression. Water depth increased from deposition of the black phyllite sequence through deposition of the Mn mixed-carbonate sequence, then shallowed again during deposition of the overlying dolostone sequence. Bottom waters were mostly dysoxic to suboxic, but fluctuated from oxic to anoxic. Productivity was high during deposition of the black phyllite sequence, increased during precipitation of phosphorite, and then decreased to moderate levels during precipitation of rhodochrostone ores. Biosilica contributions occur in each lithology, but are greatest in rhodochrostone. Changes in sedimentation were determined by changes in water depth, productivity, upwelling, sea-level change, and ventilation of the depositional basin. The source of the phosphorus was organic matter produced in great quantities during deposition of the black phyllite and phosphorite sequences in a zone of coastal upwelling. Organic matter accumulation was rapid. Globally, Mn was supplied by overturn of stagnant, metal-rich deep-ocean waters, which were redistributed to areas of coastal upwelling and seaways; that process may have been initiated by latest Proterozoic glaciations which would have promoted density stratification and accumulation and storage of metals. Regionally, Mn was supplied by terrigenous input into the shallow seaway and hydrothermal input into the deeper water parts of that seaway. Locally, Mn sources included leaching and transport of metals from the sediment column. Manganese was stored locally in low-oxygen (not anoxic) seawater prior to Mn-ore formation. The source of the carbon in the Mn carbonates and dolostones was predominantly seawater bicarbonate and secondarily CO2 derived from the oxidation of organic matter in the bacterially mediated diagenetic zone of sulfate reduction.

  19. Improving the engineering-and-economical performance of ore-thermal electric furnaces in the smelting of silicomanganese

    NASA Astrophysics Data System (ADS)

    Kondrashov, V. P.; Pogrebisskiy, M. Ya; Lykov, A. G.; Rabinovich, V. L.; Bulgakov, A. S.

    2018-02-01

    Ways of increase of ore-heating electric furnaces, used for production of silicomanganese, engineering-and-economical performance are analyzed. Questions of data of the electric, thermal and technological modes of the furnace functioning collecting and processing for use in operation of an advanced control system of the furnace providing increase in technical and economic efficiency of technological process and an adaptability to quality of burden stock are considered.

  20. Scandium recovery from slags after oxidized nickel ore processing

    NASA Astrophysics Data System (ADS)

    Smyshlyaev, Denis; Botalov, Maxim; Bunkov, Grigory; Rychkov, Vladimir; Kirillov, Evgeny; Kirillov, Sergey; Semenishchev, Vladimir

    2017-09-01

    One of the possible sources of scandium production - waste (slags) from processing of oxidized nickel ores, has been considered in present research work. The hydrometallurgical method has been selected as the primary for scandium extraction. Different reagents for leaching of scandium, such as sulfuric acid, various carbonate salts and fluorides, have been tested. Sulfuric acid has been recognized as an optimal leaching reagent. Sulfuric acid concentration of 100 g L-1 allowed recovering up to 97 % of scandium.

  1. Sources of Minor and Rare-Earth Elements in Hydrothermal Edifices of Near-Continental Rifts with Sedimentary Cover: Evidence from the Guaymas Basin, Southern Trough

    NASA Astrophysics Data System (ADS)

    Lein, A. Yu.; Dara, O. M.; Bogdanova, O. Yu.; Novikov, G. V.; Ulyanova, N. V.; Lisitsyn, A. P.

    2018-03-01

    The mineralogy and geochemistry of a fragment of an active hydrothermal edifice from the Hydrothermal Hill of the Southern Trough valley of the Guaymas Basin in the Gulf of California were studied. The sample was collected from a depth of 1995 m by the Pisces manned submersible on cruise 12 of the R/V Akademik Mstislav Keldysh, Institute of Oceanology, Russian Academy of Sciences. The fragment and the edifice itself consists of two accrete pipes: ore (pyrrhotite) and barren (carbonate) combined in a single edifice by an outer barite-opal zone. The ore edifice is located in the rift zone of the Guaymas Basin with a thick sedimentary cover and is depleted in metals in comparison with ores from rift zones of the open ocean, which are not blocked by sedimentary deposits. This is explained by loss of metals at the boundary between hot sills and sedimentary rocks and by the processes of interaction of hydrothermal solutions with sedimentary deposits. The sedimentary series faciitates long-term preservation of endogenous heat and the ore formation process. Ore edifices of the Guaymas Basin are mostly composed of pyrrhotite, have a specific set of major elements, microelements and REEs, and contain naphthenic hydrocarbons. They may be search signs of hidden polymetallic deposits, considered to be the roots of ore occurrences localized under the surface of the bottom in young active rifts with high spreading and sedimentation rates, i.e., in near-continental areas of rifts of the humid zone with avalanche sedimentation.

  2. CATALYZED OXIDATION OF URANIUM IN CARBONATE SOLUTIONS

    DOEpatents

    Clifford, W.E.

    1962-05-29

    A process is given wherein carbonate solutions are employed to leach uranium from ores and the like containing lower valent uranium species by utilizing catalytic amounts of copper in the presence of ammonia therein and simultaneously supplying an oxidizing agent thereto. The catalysis accelerates rate of dissolution and increases recovery of uranium from the ore. (AEC)

  3. 40 CFR 440.34 - New source performance standards (NSPS).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... underground, that produce uranium ore, excluding mines using in situ leach methods, shall not exceed: Effluent... leach process for the extraction of uranium or from mines and mills using in situ leach methods. The... Vanadium Ores Subcategory § 440.34 New source performance standards (NSPS). Except as provided in subpart L...

  4. 40 CFR 440.34 - New source performance standards (NSPS).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... underground, that produce uranium ore, excluding mines using in situ leach methods, shall not exceed: Effluent... leach process for the extraction of uranium or from mines and mills using in situ leach methods. The... Vanadium Ores Subcategory § 440.34 New source performance standards (NSPS). Except as provided in subpart L...

  5. 40 CFR 440.34 - New source performance standards (NSPS).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... underground, that produce uranium ore, excluding mines using in situ leach methods, shall not exceed: Effluent... leach process for the extraction of uranium or from mines and mills using in situ leach methods. The... Vanadium Ores Subcategory § 440.34 New source performance standards (NSPS). Except as provided in subpart L...

  6. 40 CFR 440.104 - New source performance standards (NSPS).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., in-situ leach or vat-leach processes to extract copper from ores or ore waste materials. The Agency... provided in subpart L of this part any new source subject to this subsection must achieve the following... demonstrated technology (BADT): (a) The concentration of pollutants discharged in mine drainage from mines that...

  7. 40 CFR 440.104 - New source performance standards (NSPS).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., in-situ leach or vat-leach processes to extract copper from ores or ore waste materials. The Agency... provided in subpart L of this part any new source subject to this subsection must achieve the following... demonstrated technology (BADT): (a) The concentration of pollutants discharged in mine drainage from mines that...

  8. Biogenic non-crystalline U(IV) revealed as major component in uranium ore deposits

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Amrita; Campbell, Kate M.; Kelly, Shelly D.; Roebbert, Yvonne; Weyer, Stefan; Bernier-Latmani, Rizlan; Borch, Thomas

    2017-06-01

    Historically, it is believed that crystalline uraninite, produced via the abiotic reduction of hexavalent uranium (U(VI)) is the dominant reduced U species formed in low-temperature uranium roll-front ore deposits. Here we show that non-crystalline U(IV) generated through biologically mediated U(VI) reduction is the predominant U(IV) species in an undisturbed U roll-front ore deposit in Wyoming, USA. Characterization of U species revealed that the majority (~58-89%) of U is bound as U(IV) to C-containing organic functional groups or inorganic carbonate, while uraninite and U(VI) represent only minor components. The uranium deposit exhibited mostly 238U-enriched isotope signatures, consistent with largely biotic reduction of U(VI) to U(IV). This finding implies that biogenic processes are more important to uranium ore genesis than previously understood. The predominance of a relatively labile form of U(IV) also provides an opportunity for a more economical and environmentally benign mining process, as well as the design of more effective post-mining restoration strategies and human health-risk assessment.

  9. Biogenic non-crystalline U(IV) revealed as major component in uranium ore deposits

    PubMed Central

    Bhattacharyya, Amrita; Campbell, Kate M.; Kelly, Shelly D.; Roebbert, Yvonne; Weyer, Stefan; Bernier-Latmani, Rizlan; Borch, Thomas

    2017-01-01

    Historically, it is believed that crystalline uraninite, produced via the abiotic reduction of hexavalent uranium (U(VI)) is the dominant reduced U species formed in low-temperature uranium roll-front ore deposits. Here we show that non-crystalline U(IV) generated through biologically mediated U(VI) reduction is the predominant U(IV) species in an undisturbed U roll-front ore deposit in Wyoming, USA. Characterization of U species revealed that the majority (∼58-89%) of U is bound as U(IV) to C-containing organic functional groups or inorganic carbonate, while uraninite and U(VI) represent only minor components. The uranium deposit exhibited mostly 238U-enriched isotope signatures, consistent with largely biotic reduction of U(VI) to U(IV). This finding implies that biogenic processes are more important to uranium ore genesis than previously understood. The predominance of a relatively labile form of U(IV) also provides an opportunity for a more economical and environmentally benign mining process, as well as the design of more effective post-mining restoration strategies and human health-risk assessment. PMID:28569759

  10. Biogenic non-crystalline U (IV) revealed as major component in uranium ore deposits

    DOE PAGES

    Bhattacharyya, Amrita; Campbell, Kate M.; Kelly, Shelly D.; ...

    2017-06-01

    Historically, it is believed that crystalline uraninite, produced via the abiotic reduction of hexavalent uranium (U (VI)) is the dominant reduced U species formed in low-temperature uranium roll-front ore deposits. Here we show that non-crystalline U (IV) generated through biologically mediated U (VI) reduction is the predominant U (IV) species in an undisturbed U roll-front ore deposit in Wyoming, USA. Characterization of U species revealed that the majority (~58-89%) of U is bound as U (IV) to C-containing organic functional groups or inorganic carbonate, while uraninite and U (VI) represent only minor components. The uranium deposit exhibited mostly 238U-enriched isotopemore » signatures, consistent with largely biotic reduction of U (VI) to U (IV). This finding implies that biogenic processes are more important to uranium ore genesis than previously understood. The predominance of a relatively labile form of U (IV) also provides an opportunity for a more economical and environmentally benign mining process, as well as the design of more effective post-mining restoration strategies and human health-risk assessment.« less

  11. Biogenic non-crystalline U(IV) revealed as major component in uranium ore deposits.

    PubMed

    Bhattacharyya, Amrita; Campbell, Kate M; Kelly, Shelly D; Roebbert, Yvonne; Weyer, Stefan; Bernier-Latmani, Rizlan; Borch, Thomas

    2017-06-01

    Historically, it is believed that crystalline uraninite, produced via the abiotic reduction of hexavalent uranium (U (VI) ) is the dominant reduced U species formed in low-temperature uranium roll-front ore deposits. Here we show that non-crystalline U (IV)  generated through biologically mediated U (VI)  reduction is the predominant U (IV)  species in an undisturbed U roll-front ore deposit in Wyoming, USA. Characterization of U species revealed that the majority (∼58-89%) of U is bound as U (IV) to C-containing organic functional groups or inorganic carbonate, while uraninite and U (VI) represent only minor components. The uranium deposit exhibited mostly 238 U-enriched isotope signatures, consistent with largely biotic reduction of U (VI) to U (IV) . This finding implies that biogenic processes are more important to uranium ore genesis than previously understood. The predominance of a relatively labile form of U (IV) also provides an opportunity for a more economical and environmentally benign mining process, as well as the design of more effective post-mining restoration strategies and human health-risk assessment.

  12. Biogenic non-crystalline U (IV) revealed as major component in uranium ore deposits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharyya, Amrita; Campbell, Kate M.; Kelly, Shelly D.

    Historically, it is believed that crystalline uraninite, produced via the abiotic reduction of hexavalent uranium (U (VI)) is the dominant reduced U species formed in low-temperature uranium roll-front ore deposits. Here we show that non-crystalline U (IV) generated through biologically mediated U (VI) reduction is the predominant U (IV) species in an undisturbed U roll-front ore deposit in Wyoming, USA. Characterization of U species revealed that the majority (~58-89%) of U is bound as U (IV) to C-containing organic functional groups or inorganic carbonate, while uraninite and U (VI) represent only minor components. The uranium deposit exhibited mostly 238U-enriched isotopemore » signatures, consistent with largely biotic reduction of U (VI) to U (IV). This finding implies that biogenic processes are more important to uranium ore genesis than previously understood. The predominance of a relatively labile form of U (IV) also provides an opportunity for a more economical and environmentally benign mining process, as well as the design of more effective post-mining restoration strategies and human health-risk assessment.« less

  13. Biogenic non-crystalline U(IV) revealed as major component in uranium ore deposits

    USGS Publications Warehouse

    Bhattacharyya, Amrita; Campbell, Kate M.; Kelly, Shelly; Roebbert, Yvonne; Weyer, Stefan; Bernier-Latmani, Rizlan; Borch, Thomas

    2017-01-01

    Historically, it is believed that crystalline uraninite, produced via the abiotic reduction of hexavalent uranium (U(VI)) is the dominant reduced U species formed in low-temperature uranium roll-front ore deposits. Here we show that non-crystalline U(IV) generated through biologically mediated U(VI) reduction is the predominant U(IV) species in an undisturbed U roll-front ore deposit in Wyoming, USA. Characterization of U species revealed that the majority (∼58-89%) of U is bound as U(IV)to C-containing organic functional groups or inorganic carbonate, while uraninite and U(VI) represent only minor components. The uranium deposit exhibited mostly 238U-enriched isotope signatures, consistent with largely biotic reduction of U(VI) to U(IV). This finding implies that biogenic processes are more important to uranium ore genesis than previously understood. The predominance of a relatively labile form of U(IV) also provides an opportunity for a more economical and environmentally benign mining process, as well as the design of more effective post-mining restoration strategies and human health-risk assessment.

  14. A study of bauxite tailing quality improvement by reverse flotation

    NASA Astrophysics Data System (ADS)

    Wulandari, W.; Purwasasmita, M.; Sanwani, E.; Malatsih, W.; Fadilla, F.

    2018-01-01

    The pre-treatment of bauxite ore from Tayan, West Kalimantan includes washing and screening fine bauxite particles (-2mm) prior as the feed to the Bayer process for producing alumina. These fine particles are believed to have high content of silica which is detrimental to the process. This washed bauxite tailing still has a significant amount of alumina content. Previous research has indicated that bauxite ore can be upgraded by applying reverse flotation method to reduce its silica content in the ore. Therefore, this study is aimed to utilize reverse flotation method to recover alumina content from washed bauxite tailing. The reverse flotation experiments were carried out at pH of 6 and 8; while the particle sizes were varied at - 140+270 mesh and -270 mesh, using a batch and circuit configuration. The result of this study shows that the batch reverse flotation can recover alumina in the tailing up to 81.4%, however the silica content is still significant. The complexity of silica-alumina minerals in the tailing prevents a complete separation of the ores by only using reverse flotation.

  15. Porphyry-copper ore shells form at stable pressure-temperature fronts within dynamic fluid plumes.

    PubMed

    Weis, P; Driesner, T; Heinrich, C A

    2012-12-21

    Porphyry-type ore deposits are major resources of copper and gold, precipitated from fluids expelled by crustal magma chambers. The metals are typically concentrated in confined ore shells within vertically extensive vein networks, formed through hydraulic fracturing of rock by ascending fluids. Numerical modeling shows that dynamic permeability responses to magmatic fluid expulsion can stabilize a front of metal precipitation at the boundary between lithostatically pressured up-flow of hot magmatic fluids and hydrostatically pressured convection of cooler meteoric fluids. The balance between focused heat advection and lateral cooling controls the most important economic characteristics, including size, shape, and ore grade. This self-sustaining process may extend to epithermal gold deposits, venting at active volcanoes, and regions with the potential for geothermal energy production.

  16. Porphyry-Copper Ore Shells Form at Stable Pressure-Temperature Fronts Within Dynamic Fluid Plumes

    NASA Astrophysics Data System (ADS)

    Weis, P.; Driesner, T.; Heinrich, C. A.

    2012-12-01

    Porphyry-type ore deposits are major resources of copper and gold, precipitated from fluids expelled by crustal magma chambers. The metals are typically concentrated in confined ore shells within vertically extensive vein networks, formed through hydraulic fracturing of rock by ascending fluids. Numerical modeling shows that dynamic permeability responses to magmatic fluid expulsion can stabilize a front of metal precipitation at the boundary between lithostatically pressured up-flow of hot magmatic fluids and hydrostatically pressured convection of cooler meteoric fluids. The balance between focused heat advection and lateral cooling controls the most important economic characteristics, including size, shape, and ore grade. This self-sustaining process may extend to epithermal gold deposits, venting at active volcanoes, and regions with the potential for geothermal energy production.

  17. Ore genesis dating: implication of Sm-Nd method using sulfide minerals for mafic-ultramafic layered intrusions of Fennoscandian Shield

    NASA Astrophysics Data System (ADS)

    Serov, Pavel; Bayanova, Tamara; Steshenko, Ekaterina; Ekimova, Nadezhda

    2015-04-01

    The main method of dating the ore process was the Re-Os method of sulfides (Luck, Allegre, 1983; Walker et. al., 1991). However, studies of Re-Os systematics of sulfide minerals do not always give the correct ages and showing the disturbances of the Re-Os systematics. At the same time, Sm-Nd age of sulfides in good agreement with the U-Pb dating on zircon and baddeleyite and suggests that the Sm-Nd system of sulfides is more resistant to secondary alteration processes. Our studies have shown that along with rock-forming, ore minerals (sulfides) can be used to determine the ore genesis time of industrially important geological sites, since exactly with the sulfides the industry Pt-Pd mineralization is closely connected. In to Sm-Nd measurements steadily introduce new minerals-geochronometers (i.e. titanite, burbancite, eudialite etc.). Of these, sulfides of PGE-bearing layered intrusions are quite important in terms of dating the process of ore origin. Studying the REE distribution in the sulfides of MOR hydrothermal sources has shown possible REE presence in the sulfide lattice (Rimskaya-Korsakova et. al., 2003). These are difficult to carry out because the concentrations of Sm and Nd isotopes in sulfides are much lower than those in chondrites (Rimskaya-Korsakova et. al., 2003). In (Kong et. al., 2000) sulfides from two metamorphosed chondrites were studied by instrumental neutron activation analysis (INAA) and ion probe. As shown, the level of REE in the sulfide phase determined by the ion probe is quite similar to that obtained by INAA. Although the concentrations of REE in the enstatite and the Fe, Si, Cr-rich inclusions are comparable to those in sulfide, estimates based on mass balance calculations show that the silicate inclusions would not noticeably contribute to the REE budget in sulfides (Kong et. al., 2000). For the first time in Russian geochemistry laboratories using sulfide and rock-forming minerals and WR in Sm-Nd method have been dated impregnated and brecciform ores of the following objects - Pilguyarvi Cu-Ni deposits, Pechenga (1965±87 Ma); impregnated (2433±83 Ma) and redeposited (1903±24 Ma) ores of Ahmavaara intrusion (Finland); Kolvitsa massif metagabbro (1990±92 Ma, which reflect the age of Sm-Nd system closure in sulfide minerals); olivine orthopyroxenites of Sopcha 'Ore bed' (2442±59 Ma); ore gabbronorites of Penikat PGE-bearing layered intrusion (2426±38 Ma (Ekimova et.al., 2011); Pt-Pd gabbro-pegmatite ores (2476± 41 Ma, which agrees well with the U-Pb zircon age - 2470±9 Ma (Bayanova, 2004) and gabbronorites (2483±86 Ma) of PGE Kievey deposit and Fedorova Tundra metagabbroids (2494±54 Ma); Monchetundra gabbronorites - 2489±49 Ma. All investigations are devoted to memory of academician RAS, professor F. Mitrofanov (Russia), he was a leader of scientific school for geology, geochemistry and metallogenesis of ore deposits. The studies were supported by the RFBR 13-05-00493, OFI-M 13-05-12055, Department of Earth Sciences RAS (programs 2 and 4), IGCP-599.

  18. New understanding on separation of Mn and Fe from ferruginous manganese ores by the magnetic reduction roasting process

    NASA Astrophysics Data System (ADS)

    Liu, Bingbing; Zhang, Yuanbo; Wang, Juan; Wang, Jia; Su, Zijian; Li, Guanghui; Jiang, Tao

    2018-06-01

    Magnetic reduction roasting followed by magnetic separation process is reported as a simple route to realize separation of Mn and Fe from ferruginous manganese ores (Fe-Mn ores). However, the separation and recovery of Mn and Fe oxides are not very effective. This work clarified the underlying reason for the poor separation and also proposed some suggestions for the magnetic reduction process. In this work, the effect of temperature on the magnetic reduction roasting - magnetic separation of Fe-Mn ore was investigated firstly. Then the reduction behaviors of MnO2-Fe2O3 system and MnO2-Fe2O3-10 wt.%SiO2 system under 10 vol.% CO-90 vol.% CO2 at 600-1000 °C were investigated by XRD, XPS, SEM-EDS, VSM, DSC and thermodynamics analyses. Reduction and separation tests showed that higher reduction temperature was beneficial to the recovery of iron while it's not in favor of the recovery of manganese when the temperature was over 800 °C. The formation of composite oxide MnxFe3-xO4 with strong magnetism between the interface of the MnO2 and Fe2O3 particles leaded to the poor separation of iron and manganese. In addition, the formation mechanism of MnxFe3-xO4 from MnO2 and Fe2O3 as well as the interface reaction reduced under 10 vol.% CO was discussed in this study. Finally, some suggestions were recommended for the magnetic reduction roasting for utilizing the Fe-Mn ores effectively.

  19. Reducing acid leaching of manganiferous ore: effect of the iron removal operation on solid waste disposal.

    PubMed

    De Michelis, Ida; Ferella, Francesco; Beolchini, Francesca; Vegliò, Francesco

    2009-01-01

    The process of reducing acid leaching of manganiferous ore is aimed at the extraction of manganese from low grade manganese ores. This work is focused on the iron removal operation. The following items have been considered in order to investigate the effect of the main operating conditions on solid waste disposal and on the process costs: (i) type and quantity of the base agent used for iron precipitation, (ii) effective need of leaching waste separation prior to the iron removal operation, (iii) presence of a second leaching stage with the roasted ore, which might also act as a preliminary iron removal step, and (iv) effect of tailings washing on the solid waste classification. Different base compounds have been tested, including CaO, CaCO3, NaOH, and Na2CO3. The latter gave the best results concerning both the precipitation process kinetics and the reagent consumption. The filtration of the liquor leach prior to iron removal was not necessary, implying significant savings in capital costs. A reduction of chemical consumption and an increase of manganese concentration in the solution were obtained by introducing secondary leaching tests with the previously roasted ore; this additional step was introduced without a significant decrease of global manganese extraction yield. Finally, toxicity characteristic leaching procedure (TCLP) tests carried out on the leaching solid waste showed: (i) a reduction of arsenic mobility in the presence of iron precipitates, and (ii) the need for a washing step in order to produce a waste that is classifiable as not dangerous, taking into consideration the existing Environmental National Laws.

  20. Mechanism of sodium chloride in promoting reduction of high-magnesium low-nickel oxide ore

    PubMed Central

    Zhou, Shiwei; Wei, Yonggang; Li, Bo; Wang, Hua; Ma, Baozhong; Wang, Chengyan

    2016-01-01

    Sodium chloride has been proved that it is an effective promoter for the reduction of high-magnesium, low-nickel oxide ore. The aim of current work is to clarify the promotion behavior of sodium chloride in the roasting reduction process. The influence of moisture on the reduction of ore in the presence of sodium chloride is studied to get clear comprehension of promotion process. In the presence of moisture, the HCl is produced by pyrohydrolysis of sodium chloride for chlorinating nickel and iron oxides, moreover, interactions between metallic oxides and sodium chloride are also a way for chlorination at high temperature (>802 °C); subsequently, the metal chloride would be reduced by reductant. In the absence of moisture, the magnetic separation results show that the recoveries of iron and nickel have a significant increase; moreover, olivine structure would be destroyed gradually with the increase of roasting temperature in the action of sodium chloride, and the sodium chloride existed in high-magnesium, low-nickel oxide ore could make the NiO isolate from NiO-bearing minerals. The NiO reacts with Fe2O3 at high temperature to form NiFe2O4, which is conductive to the formation of Ni-Fe alloy during the reduction process. PMID:27374991

  1. Mechanism of sodium chloride in promoting reduction of high-magnesium low-nickel oxide ore.

    PubMed

    Zhou, Shiwei; Wei, Yonggang; Li, Bo; Wang, Hua; Ma, Baozhong; Wang, Chengyan

    2016-07-04

    Sodium chloride has been proved that it is an effective promoter for the reduction of high-magnesium, low-nickel oxide ore. The aim of current work is to clarify the promotion behavior of sodium chloride in the roasting reduction process. The influence of moisture on the reduction of ore in the presence of sodium chloride is studied to get clear comprehension of promotion process. In the presence of moisture, the HCl is produced by pyrohydrolysis of sodium chloride for chlorinating nickel and iron oxides, moreover, interactions between metallic oxides and sodium chloride are also a way for chlorination at high temperature (>802 °C); subsequently, the metal chloride would be reduced by reductant. In the absence of moisture, the magnetic separation results show that the recoveries of iron and nickel have a significant increase; moreover, olivine structure would be destroyed gradually with the increase of roasting temperature in the action of sodium chloride, and the sodium chloride existed in high-magnesium, low-nickel oxide ore could make the NiO isolate from NiO-bearing minerals. The NiO reacts with Fe2O3 at high temperature to form NiFe2O4, which is conductive to the formation of Ni-Fe alloy during the reduction process.

  2. Internal structures and dating of non-sulphide Zn deposits using rock magnetism: insights from the Moroccan High Atlas

    NASA Astrophysics Data System (ADS)

    Charles, Nicolas; Choulet, Flavien; Sizaret, Stanislas; Chen, Yan; Barbanson, Luc; Ennaciri, Aomar; Badra, Lakhlifi; Branquet, Yannick

    2016-01-01

    The renewal of interest in Zn-Pb non-sulphide ores has been induced by mineral processing improvement and leads to new exploration and mining projects in the world. Although the mineralogy is often precisely known, and despite several studies linking ore deposition to regional tectonics, absolute dating of non-sulphide stages is rare and structure of ore bodies was largely disregarded. Geochronological data from non-sulphide ores are essential to timely constrain alteration episodes and to insert supergene ore genesis in the climate and tectonic evolution of the metallogenic province. The access to internal organization of ore could reveal post-mineralization episodes related to supergene evolution. Thus, a rock magnetism study combining anisotropy of magnetic susceptibility (AMS) and palaeomagnetism was performed on four non-sulphide deposits from the Moroccan High Atlas. AMS generally shows similar horizontal magnetic fabrics for ores and the clayey and carbonaceous internal sediments filling karstic cavities. The palaeomagnetic directions of ores and internal sediments are compatible, and the calculated poles are consistent with the last 30 Ma of the Africa apparent polar wander path, with an upper age at 0.78 Ma. The proposed three-step scenario is placed within the evolution of the Moroccan High Atlas belt. Deposition of primary sulphides is contemporaneous with opening of the Tethyan and Atlantic oceans. During the Tertiary, intracontinental deformation gave rise to the High Atlas fold-and-thrust belt and to regional uplift. Finally, Zn-Pb sulphides hosted in carbonates experienced oxidation under an arid climate to form karst-related Zn-Pb non-sulphide ores. These promising results pave the way for an efficient method to constrain the internal fabrics and age of Zn supergene deposits.

  3. Restructuring the Uranium Mining Industry in Romania: Actual Situation and Prospects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Georgescu, P.D.; Petrescu, S.T.; Iuhas, T.F.

    2002-07-01

    Uranium prospecting in Romania has started some 50 years ago, when a bilateral agreement between Romania and the former Soviet Union had been concluded and a joint Romanian-Soviet enterprise was created. The production started in 1952 by the opening of some deposits from western Transylvania (Bihor and Ciudanovita). From 1962 the production has continued only with Romanian participation on the ore deposit Avram Iancu and from 1985 on the deposits from Eastern Carpathians (Crucea and Botusana). Starting with 1978 the extracted ores have been completely processed in the Uranium Ore Processing Plant from Feldioara, Brasov. Complying with the initial stipulationsmore » of the Nuclear National Program launched at the beginning of the 1980's, the construction of a nuclear power station in Cernavoda has started in Romania, using natural uranium and heavy water (CANDU type), having five units of 650 MW installed capacity. After 1989 this initial Nuclear National Program was revised and the construction of the first unit (number 1) was finalized and put in operation in 1996. In 2001 the works at the unit number 2 were resumed, having the year 2005 as the scheduled activating date. The future of the other 3 units, being in different construction phases, hasn't been clearly decided. Taking into consideration the exhaustion degree of some ore deposits and from the prospect of exploiting other ore deposits, the uranium industry will be subject of an ample restructuring process. This process includes workings of modernization of the mines in operation and of the processing plant, increasing the profitableness, lowering of the production costs by closing out and ecological rehabilitation of some areas affected by mining works and even new openings of some uraniferous exploitations. This paper presents the actual situation and the prospects of uranium mining industry on the base of some new technical and economical strategic concepts in accordance with the actual Romanian Program for Nuclear Energetics. (authors)« less

  4. Application of Odor Sensors to Ore Sorting and Mill Feed Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael G. Nelson

    2005-08-01

    Control of the feed provided to mineral processing facilities is a continuing challenge. Much effort is currently being devoted to overcoming these problems. These projects are usually described under the general headings of Mine-to-Mill Integration or Mine-Mill Optimization. It should be possible to combine the knowledge of ore type, mineralogy, and other characteristics (located in the mine modeling system), with the advanced capabilities of state-of-the-art mill control systems, to achieve an improved level of control in mineral processing that will allow optimization of the mill processes on an almost real-time basis. This is not happening because mill feed it ismore » often treated as a uniform material, when in reality it varies in composition and characteristics. An investigation was conducted to assess the suitability of odor sensors for maintaining traceability in ore production and processing. Commercially available sensors are now used in food processing, environmental monitoring, and other applications and can detect the presence of very small amounts (0.1-500 ppm) of some molecules. An assortment of such molecules could be used to ''tag'' blocks of ore as they are mined, according to their respective characteristics. Then, as the ore came into the mill, an array of ''electronic noses'' could be used to assess its characteristics in real time. It was found that the Cyranose 320{trademark}, a commercially available odor sensor, can easily distinguish among samples of rock marked with almond, cinnamon, citronella, lemon, and orange oils. Further, the sensor could detect mixtures of rocks marked with various combinations of these oils. Treatment of mixtures of galena and silica with odorant compounds showed no detrimental effects on flotation response in laboratory tests. Additional work is recommended to determine how this concept can be extended to the marking of large volumes of materials.« less

  5. Copper Deposits in Sedimentary and Volcanogenic Rocks

    USGS Publications Warehouse

    Tourtelot, Elizabeth B.; Vine, James David

    1976-01-01

    Copper deposits occur in sedimentary and volcanogenic rocks within a wide variety of geologic environments where there may be little or no evidence of hydrothermal alteration. Some deposits may be hypogene and have a deep-seated source for the ore fluids, but because of rapid cooling and dilution during syngenetic deposition on the ocean floor, the resulting deposits are not associated with hydrothermal alteration. Many of these deposits are formed at or near major tectonic features on the Earth's crust, including plate boundaries, rift valleys, and island arcs. The resulting ore bodies may be stratabound and either massive or disseminated. Other deposits form in rocks deposited in shallow-marine, deltaic, and nonmarine environments by the movement and reaction of interstratal brines whose metal content is derived from buried sedimentary and volcanic rocks. Some of the world's largest copper deposits were probably formed in this manner. This process we regard as diagenetic, but some would regard it as syngenetic, if the ore metals are derived from disseminated metal in the host-rock sequence, and others would regard the process as epigenetic, if there is demonstrable evidence of ore cutting across bedding. Because the oxidation associated with diagenetic red beds releases copper to ground-water solutions, red rocks and copper deposits are commonly associated. However, the ultimate size, shape, and mineral zoning of a deposit result from local conditions at the site of deposition - a logjam in fluvial channel sandstone may result in an irregular tabular body of limited size; a petroleum-water interface in an oil pool may result in a copper deposit limited by the size and shape of the petroleum reservoir; a persistent thin bed of black shale may result in a copper deposit the size and shape of that single bed. The process of supergene enrichment has been largely overlooked in descriptions of copper deposits in sedimentary rocks. However, supergene processes may be involved during erosion of any primary ore body and its ultimate displacement and redeposition as a secondary deposit. Bleached sandstone at the surface may indicate significant ore deposits near the water table.

  6. New data on the substantial composition of Kalba rare metal deposits

    NASA Astrophysics Data System (ADS)

    Oitseva, T. A.; Dyachkov, B. A.; Vladimirov, A. G.; Kuzmina, O. N.; Ageeva, O. V.

    2017-12-01

    Geotectonic position, features of the geological structure and rare metal specialization of the Kalba-Narym granitoid belt formed in the Hercynian cycle in the postcollision (orogenic) geodynamic situation are considered. A geological-genetic model for the formation of the leading type of rare-metal pegmatite deposits (Ta, Nb, Be, Li, etc.) is presented. They are spatially and genetically related mainly to the granitoids of the 1st phase of the Kalba complex, P1 (Bakennoye, Jubilee, Belaya Gora, etc.). The rhythmically pulsating orientation of the process of pegmatite formation with the introduction of ore-bearing fluids (H2O, F, B, Cl, Ta, Nb, Be, etc.) is emphasized from the intracamera focus of a semi-closed magmatic system. The preferred location of ore pegmatite veins in granitoids of moderate basicity occupying an intermediate position in the petrochemical composition between normal granites and granodiorites geochemically specialized in Li, Rb, Cs, Sn, Nb, Ta. The leading ore-controlling role of the latitudinal deep faults of the ancient site in the distribution of rare-metal ore fields and deposits (Ognevsk-Bakennoye, Asubulak, Belogorsk, etc.) is determined. There is a zonal structure of pegmatite veins, a gradual development of mineral complexes from the graphic and oligoclase-microcline (non-ore) to microcline-albite and color albite-spodumene (ore). The mineralization of pegmatite veins is determined by the degree of intensity of the manifestation in them of metasomatic processes (microclinization, alibitization, greisenization, spodumenization, tourmalinization, etc.) and the identification of the main ore minerals (tantalite-columbite, cassiterite, spodumene and beryl). The diversity of the material composition of rare-metal pegmatites containing many unique minerals (cleavelandite, lepidolite, ambligonite, color tourmaline, spodumene, pollucite, etc.) is reflected, which brings them closer to the pegmatite deposits of foreign countries (Koktogai, Bernik Lake, etc.). New results of the investigation of the material composition of ore-bearing granites, pegmatites and typomorphic minerals using electron microscopy reflecting the distribution of rare-earth, rare-metal, chalcophile and other elements in them are presented. Indicators of rare metal ore formation are rock-forming minerals of granites (quartz, microcline, biotite, muscovite), ore and associated minerals (cleavelandite, lepidolite, cassiterite, etc.). The most informative minerals include mica (muscovite, giltbertite, lepidolite), colored tourmalines and beryls of different composition and color. Identified typomorphic minerals and geochemical elements-indicators of rare metal pegmatite formation are considered as a leading search criterion in assessing the prospects of the territory of East Kazakhstan.

  7. Physicochemical characteristics of aerosol particles generated during the milling of beryllium silicate ores: implications for risk assessment.

    PubMed

    Stefaniak, Aleksandr B; Chipera, Steve J; Day, Gregory A; Sabey, Phil; Dickerson, Robert M; Sbarra, Deborah C; Duling, Mathew G; Lawrence, Robert B; Stanton, Marcia L; Scripsick, Ronald C

    2008-01-01

    Inhalation of beryllium dusts generated during milling of ores and cutting of beryl-containing gemstones is associated with development of beryllium sensitization and low prevalence of chronic beryllium disease (CBD). Inhalation of beryllium aerosols generated during primary beryllium production and machining of the metal, alloys, and ceramics are associated with sensitization and high rates of CBD, despite similar airborne beryllium mass concentrations among these industries. Understanding the physicochemical properties of exposure aerosols may help to understand the differential immunopathologic mechanisms of sensitization and CBD and lead to more biologically relevant exposure standards. Properties of aerosols generated during the industrial milling of bertrandite and beryl ores were evaluated. Airborne beryllium mass concentrations among work areas ranged from 0.001 microg/m(3) (beryl ore grinding) to 2.1 microg/m(3) (beryl ore crushing). Respirable mass fractions of airborne beryllium-containing particles were < 20% in low-energy input operation areas (ore crushing, hydroxide product drumming) and > 80% in high-energy input areas (beryl melting, beryl grinding). Particle specific surface area decreased with processing from feedstock ores to drumming final product beryllium hydroxide. Among work areas, beryllium was identified in three crystalline forms: beryl, poorly crystalline beryllium oxide, and beryllium hydroxide. In comparison to aerosols generated by high-CBD risk primary production processes, aerosol particles encountered during milling had similar mass concentrations, generally lower number concentrations and surface area, and contained no identifiable highly crystalline beryllium oxide. One possible explanation for the apparent low prevalence of CBD among workers exposed to beryllium mineral dusts may be that characteristics of the exposure material do not contribute to the development of lung burdens sufficient for progression from sensitization to CBD. In comparison to high-CBD risk exposures where the chemical nature of aerosol particles may confer higher bioavailability, respirable ore dusts likely confer considerably less. While finished product beryllium hydroxide particles may confer bioavailability similar to that of high-CBD risk aerosols, physical exposure factors (i.e., large particle sizes) may limit development of alveolar lung burdens.

  8. Technological pretreatment of the synchysite non-oxidized ore

    NASA Astrophysics Data System (ADS)

    Munkhtsetseg, B.; Burmaa, G.

    2013-06-01

    Mongolia has rich deposits of rare, precious, and poly-metallic ores. Nowadays, it is important to research separation of rare earth elements oxides concentrates from the ores, analyze their unique physical chemical characteristics, and purified it. Our investigation on raw materials focuses on rare earth non-oxidized ores. Main mineral in this rock sample is Synchysite (LnCa(CO3)2F. We did technological and thermal pretreatment: direct sulphurization (H2SO4), sulphurization with subsequent roasting (800°C+H2SO4), sulphurization prior to roasting (H2SO4+650°C). Sulphurization method based on dissolution of rare earth mineral into sulfuric acid (93%) according to the reaction. The amount of rare earth element oxides is almost 10 times greater (29.16%) after direct sulphurization process, almost 8 times greater (21.14%) after sulphurization with subsequent roasting, and almost 20 times greater (44.62%) after sulphurization prior to roasting process. After those technological pretreatment raw material's micro elements Thorium and Uranium contents are reduced as follows: H2SO4>800°C+H2SO4>H2SO4+650°C. These results show that cerium group rare earth elements have very good solubility in water at +2°C temperature and decreasing micro elements content uranium and thorium good pretreatment condition is prior to roasting (H2SO4+650°C) of synchysite non-oxidized ore.

  9. Ore-forming fluid system of bauxite in WZD area of northern Guizhou province, China

    NASA Astrophysics Data System (ADS)

    Cui, Tao

    2017-12-01

    The ore-forming fluid system of bauxite in Wuchuan-Zheng,an-Daozhen (short for WZD) Area of northern Guizhou Province was studied from the perspective of deposit formation mechanism. It was discovered that ore-forming fluids were mainly effective for transporting and leaching during the formation of bauxite. The means of transport mainly included colloidal transport, suspended transport and gravity flow transport. In the course of their leaching, fluids had a range of chemical reactions, as a result of which elements such as silicon and iron migrated downwards. In this process, properties of fluids changed as well.

  10. The role of magmas in the formation of hydrothermal ore deposits

    USGS Publications Warehouse

    Hedenquist, Jeffrey W.; Lowenstern, Jacob B.

    1994-01-01

    Magmatic fluids, both vapour and hypersaline liquid, are a primary source of many components in hydrothermal ore deposits formed in volcanic arcs. These components, including metals and their ligands, become concentrated in magmas in various ways from various sources, including subducted oceanic crust. Leaching of rocks also contributes components to the hydrothermal fluid—a process enhanced where acid magmatic vapours are absorbed by deeply circulating meteoric waters. Advances in understanding the hydrothermal systems that formed these ore deposits have come from the study of their active equivalents, represented at the surface by hot springs and volcanic fumaroles.

  11. Sulfide minerals as new Sm-Nd geochronometers for ore genesis dating of mafic-ultramafic layered intrusions

    NASA Astrophysics Data System (ADS)

    Serov, Pavel; Ekimova, Nadezhda; Bayanova, Tamara

    2014-05-01

    The main method of dating the ore process was the Re-Os method of sulfides (Luck, Allegre, 1983; Walker et. al., 1991). However, studies of Re-Os systematics of sulfide minerals do not always give the correct ages and showing the disturbances of the Re-Os systematics. At the same time, Sm-Nd age of sulfides in good agreement with the U-Pb dating on zircon and baddeleyite and suggests that the Sm-Nd system of sulfides is more resistant to secondary alteration processes. Our studies have shown that along with rock-forming, ore minerals (sulfides) can be used to determine the ore genesis time of industrially important geological sites, since exactly with the sulfides the industry Pt-Pd mineralization is closely connected. The Sm-Nd investigations steadily employ new minerals-geochronometers. Of these, sulfides of PGE-bearing layered intrusions are quite important in terms of dating the process of ore origin. Studying the REE distribution in the sulfides of MOR hydrothermal sources has shown possible REE presence in the sulfide lattice (Rimskaya-Korsakova et. al., 2003). These are difficult to carry out because the concentrations of Sm and Nd isotopes in sulfides are much lower than chondrites (Rimskaya-Korsakova et. al., 2003). For the first time in Russia with sulfide and rock-forming minerals and WR in Sm-Nd method have been dated impregnated and brecciform ores of the following objects: Pilguyarvi Cu-Ni deposits, Pechenga (1965±87 Ma); impregnated (2433±83 Ma) and redeposited (1903±24 Ma) ores of Ahmavaara intrusion (Finland); ore gabbronorites of Penikat PGE-bearing layered intrusion (2426±38 Ma (Ekimova et.al., 2011); Pt-Pd gabbro-pegmatite ores (2476± 41 Ma, which agrees with the U-Pb zircon age - 2470±9 Ma (Bayanova, 2004) and gabbronorites (2483±86 Ma) of PGE Kievei deposit and Fedorova Tundra metagabbroids (2494±54 Ma); Monchetundra gabbronorites - 2489±49 Ma. In (Kong et. al., 2000) sulfides from two metamorphosed chondrites studied by instrumental neutron activation analysis (INAA) and ion probe. As shown, the level of REE in the sulfide phase determined by the ion probe is quite similar to that obtained by INAA. Although the concentrations of REE in the enstatite and the Fe, Si, Cr-rich inclusions are comparable to those in sulfide, estimates based on mass balance calculations show that the silicate inclusions would not noticeably contribute to the REE budget in sulfides (Kong et. al., 2000). These studies were supported by the RFBR 13-05-00493, OFI-M 13-05-12055, State Earth Division Program #4 and IGCP-599.

  12. Simulation of geochemical processes responsible for the formation of the Zhezqazghan deposit

    NASA Astrophysics Data System (ADS)

    Ryzhenko, B. N.; Cherkasova, E. V.

    2014-05-01

    Physicochemical computer simulation of water-rock systems at a temperature of 25-150°C and under a pressure of up to 600 bar has been carried out for quantitative description of the mineralization formation conditions at sandstone- and shale-hosted copper deposits. The simulation is based on geological and geochemical information concerning the Zhezqazghan deposit and considers (i) a source of ore matter, (ii) composition of the fluid that transfers ore matter to the ore formation zone, and (iii) factors of ore concentration. It has been shown that extraction of copper from minerals of rocks and its accumulation in aqueous solution are optimal at a high mass ratio of rock to water (R/W > 10), Eh of +200 to -100 mV, and an obligatory content of chloride ions in the aqueous phase. The averaged ore-bearing fluid Cl95SO44//Ca50(Na + K)30Mg19 (eq %), pH ˜ 4, mineralization of up to 400 g/L, is formed by the interaction of red sandstone beds with a sedimentogenic brine (a product of metamorphism of seawater in carbonate rocks enriched in organic matter). The ore concentration proceeds in the course of cooling from 150 to 50°C during filtration of ore-bearing fluid through red sandstone beds in the rock-water system thermodynamically opened with respect to the reductive components.

  13. Potential for cobalt recovery from lateritic ores in Europe

    NASA Astrophysics Data System (ADS)

    Herrington, R.

    2012-04-01

    Cobalt is one of the 'critical metals' identified under the EU Raw Materials Initiative. Annually the global mine production of cobalt is around 55,000 tonnes,with Europe's industries consuming around 30% of that figure. Currently Europe produces around 27 tonnes of cobalt from mines in Finland although new capacity is planned. Co-bearing nickel laterite ores being mined in Greece, Macedonia and Kosovo where the cobalt is currently not being recovered (ores have typical analyses of 0.055% Co and >1% Ni,). These ores are currently treated directly in pyrometallurgical plants to recover the contained nickel and this process means there is no separate cobalt product produced. Hydrometallurgical treatment of mineralogically suitable laterite ores can recover the cobalt; for example Cuba recovers 3,500 tonnes of cobalt from its laterite mining operations, which are of a similar scale to the current European operations. Implementation of hydrometallurgical techniques is in its infancy in Europe with one deposit in Turkey planning to use atmospheric heap leaching to recover nickel and copper from oxide-dominated ores. More widespread implementation of these methods to mineralogically suitable ore types could unlock the highly significant undeveloped resources (with metal contents >0.04% Co and >1% Ni), which have been defined throughout the Balkans eastwards into Turkey. At a conservative estimate, this region has the potential to supply up to 30% of the EU cobalt requirements.

  14. Bog iron formation in the Nassawango Creek watershed, Maryland, USA

    USGS Publications Warehouse

    Bricker, O.P.; Newell, Wayne L.; Simon, N.S.; ,

    2004-01-01

    The Nassawango bog ores in the modern environment for surficial geochemical processes were studied. The formation of Nassawango bog ores was suggested to be due to inorganic oxidation when groundwater rich in ferrous iron emerges into the oxic, surficial environment. It was suggested that the process, providing a phosphorus sink, may be an unrecognized benefit for mitigating nutrient loading from agricultural lands. It is found that without the effect of iron fixing bacteria, bog deposites could not form at significant rates.

  15. Enrichment Wastes' Processing of Manganiferous Ores with the Use of Mechanochemical Methods

    ERIC Educational Resources Information Center

    Kubekova, Sholpan N.; Kapralova, Viktoria I.; Ibraimova, Gulnur T.; Batyrbayeva, Aigul A.

    2016-01-01

    The aim of the research is the study of the chemical and phase composition of enrichment wastes of manganiferous ore in Ushkatyn-III deposit and the synthesis of new materials by mechanochemical activation and subsequent heat treatment of the mechanical activation products. The use of XFA, infrared spectroscopy and electron probe microanalysis…

  16. The Other-Race Effect in Infancy: Evidence Using a Morphing Technique

    ERIC Educational Resources Information Center

    Hayden, Angela; Bhatt, Ramesh S.; Joseph, Jane E.; Tanaka, James W.

    2007-01-01

    Human adults are more accurate at discriminating faces from their own race than faces from another race. This "other-race effect" (ORE) has been characterized as a reflection of face processing specialization arising from differential experience with own-race faces. We examined whether 3.5-month-old infants exhibit ORE using morphed faces on which…

  17. The Role of Experience during Childhood in Shaping the Other-Race Effect

    ERIC Educational Resources Information Center

    de Heering, Adelaide; de Liedekerke, Claire; Deboni, Malorie; Rossion, Bruno

    2010-01-01

    It is well known that adults' face recognition is characterized by an "other-race effect" (ORE; see Meissner & Brigham, 2001), but few studies have investigated this ORE during the development of the face processing system. Here we examined the role of experience with other-race faces during childhood by testing a group of 6- to…

  18. Training with Own-Race Faces Can Improve Processing of Other-Race Faces: Evidence from Developmental Prosopagnosia

    ERIC Educational Resources Information Center

    DeGutis, Joseph; DeNicola, Cristopher; Zink, Tyler; McGlinchey, Regina; Milberg, William

    2011-01-01

    Faces of one's own race are discriminated and recognized more accurately than faces of an other race (other-race effect--ORE). Studies have employed several methods to enhance individuation and recognition of other-race faces and reduce the ORE, including intensive perceptual training with other-race faces and explicitly instructing participants…

  19. Effect of temperature on porosity of iron ore sinter with biochar derived from EFB

    NASA Astrophysics Data System (ADS)

    Purwanto, H.; Rozhan, A. N.; Zakiyuddin, A.; Mohamad, A. S.

    2018-01-01

    In this research, the replacement of fossil fuel energy (coke) with oil palm empty fruit bunch as a potential energy in sintering of iron ore was investigated. Carbon derived biomass has been produced by using oil palm empty fruit bunch by heat treatment process. In the present investigation, sintering process was carried out by heating the mixed iron ore and biochar at various temperatures. The apparent density and porosity for iron sinter show a significant increase and gradual decrement as the temperature increase, respectively. The porosity of iron sinter shows a gradual decrement from 950 °C to 1050 °C but up to 1150 °C it shows a significant decrement about 44%. Inferring to the micrograph, the agglomeration and assimilation of sinter at high temperature is better compared with low sintering temperature.

  20. Enhancement of Au-Ag-Te contents in tellurium-bearing ore minerals via bioleaching

    NASA Astrophysics Data System (ADS)

    Choi, Nag-Choul; Cho, Kang Hee; Kim, Bong Ju; Lee, Soonjae; Park, Cheon Young

    2018-03-01

    The purpose of this study was to enhance the content of valuable metals, such as Au, Ag, and Te, in tellurium-bearing minerals via bioleaching. The ore samples composed of invisible Au and Au paragenesis minerals (such as pyrite, chalcopyrite, sphalerite and galena) in combination with tellurium-bearing minerals (hessite, sylvanite and Tellurobismuthite) were studied. Indigenous microbes from mine drainage were isolated and identified as Acidithiobacillus ferrooxidans, which were used in bioleaching after adaption to copper. The effect of the microbial adaption on the bioleaching performance was then compared with the results produced by the non-adaptive process. The microbial adaption enhanced the Au-Ag-Te contents in biological leaching of tellurium-bearing ore minerals. This suggests that bioleaching with adapted microbes can be used both as a pretreatment and in the main recovery processes of valuable metals.

  1. Experimental research on the behavior of the pneumatic transport of fine-grained iron

    NASA Astrophysics Data System (ADS)

    Andrei, V.; Hritac, M.; Constantin, N.; Dobrescu, C.

    2017-01-01

    Mixed injection of fine-grained iron ore and pulverized coal in the furnace, involves determining the behavior of these materials during pneumatic transport in a dense state through the pipe and setting possibilities for adjusting the flow rate of material transported with the corresponding values of the process. Parameters of the pneumatic transport were determined for the main types of iron ore and chalk used in Arcelor Mittal Galati. Outside the intended purpose of injecting iron ore and flux, it was considered also the experimental check of the possibility for injecting ilmenite in the furnace for crucible protection purpose. The possibility of injecting cinder mill into the furnace was also considered. Injecting cinder could be taken into account for the recycling of ferrous waste in the furnace, also as additive for intensifying the combustion process around the tuyeres.

  2. Raman Spectroscopic Characterisation of Australian Banded Iron Formation and Iron Ore

    NASA Astrophysics Data System (ADS)

    Wells, M. A.; Ramanaidou, E. R.

    2012-04-01

    In Australia and world-wide over the past 5-10 years, declining reserves of premium, high-grade (>64% Fe), low-P bearing iron ore, have seen iron ore producers increase their utilisation of lower Fe-grade, higher P/Al/Si ore. In Australia, the channel iron deposits (CID), bedded iron deposits (BID) and, more recently, BIF-derived magnetite iron deposits (MID) have seen increased usage driven mainly by the increased demand from Chinese steel mills (Ramanaidou and Wells, 2011). Efficient exploitation and processing of these lower-grade iron ores requires a detailed understanding of their iron oxide and gangue mineralogy and geochemistry. The common Fe-bearing minerals (e.g., hematite, magnetite, goethite and kenomagnetite) in these deposits, as well as gangue minerals such as quartz and carbonates, are all strongly Raman active (e.g., de Faria et al., 1997). Their distinct Raman spectra enable them to be easily detected and mapped in situ in either unprepared material or samples prepared as polished blocks. In this paper, using representative examples of Australian CID ore, martite-goethite bedded iron deposit (BID) ore and banded iron formation (BIF) examined as polished blocks, we present a range of Raman spectra of the key iron ore minerals, and discuss how Raman spectroscopy can be applied to characterising iron ore mineralogy. Raman imaging micrographs, obtained using a StreamLine Plus Raman imaging system, clearly identified the main Fe-oxide and gangue components in the CID, BID and BIF samples when compared to optical micrographs. Raman analysis enabled the unequivocal identification of diamond in the CID ore as a contaminant from the polishing paste used to prepare the sample, and confirmed the presence of hematite in the BID ore in the form of martite, which can be morphologically similar to magnetite and, thus, difficult to otherwise distinguish. Image analysis of Raman mineral maps could be used to quantify mineral abundance based on the number of 'pixels' identified for each phase normalised to the total number of 'pixels' for each area scanned. Shifts in the main phonon lines of goethite and hematite mapped in the CID samples examined were used to estimate the Al substitution in these phases (e.g., Ramanaidou et al. 1996) which were consistent with electron microprobe data. The Raman data demonstrated the Al-free nature of hematite (0.5 mol% Al) and showed that goethite in the CID cortex was more Al-rich (10 mol%) than goethite in the CID matrix (3 mol% Al). Shifts in the excitation bands of carbonate mapped in the BIF sample were well related to the Mg content of Fe-carbonate, based on the work of Rividi et al. (2010) and confirmed by in situ spot analysis using energy dispersive spectroscopy (EDS) and scanning electron microscopy (SEM). This data confirmed the first world-wide occurrence of a high Mg-bearing siderite (pistomesite) in BIF. Detailed, in situ characterisation of the iron oxide and gangue mineralogy of iron ore deposits as provided by Raman spectroscopy provides a step change to current characterisation methods. Understanding and defining their mineralogy and geochemistry is critical in developing strategies to best manage and process existing BID and CID ores, as well as the newly emerging MID ores.

  3. Mare basalt magma source region and mare basalt magma genesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Binder, A.B.

    1982-11-15

    Given the available data, we find that the wide range of mare basaltic material characteristics can be explained by a model in which: (1) The mare basalt magma source region lies between the crust-mantle boundary and a maximum depth of 200 km and consists of a relatively uniform peridotite containing 73--80% olivine, 11--14% pyroxene, 4--8% plagioclase, 0.2--9% ilmenite and 1--1.5% chromite. (2) The source region consists of two or more density-graded rhythmic bands, whose compositions grade from that of the very low TiO/sub 2/ magma source regions (0.2% ilmenite) to that of the very high TiO/sub 2/ magma source regionsmore » (9% ilmenite). These density-graded bands are proposed to have formed as co-crystallizing olivine, pyroxene, plagioclase, ilmenite, and chromite settled out of a convecting magma (which was also parental to the crust) in which these crystals were suspended. Since the settling rates of the different minerals were governed by Stoke's law, the heavier minerals settled out more rapidly and therefore earlier than the lighter minerals. Thus the crystal assemblages deposited nearest the descending side of each convection cell were enriched in heavy ilmenite and chromite with respect to lighter olivine and pyroxene and very much lighter plagioclase. The reverse being the case for those units deposited near the ascending sides of the convection cells.« less

  4. Study on copper kinetics in processing sulphide ore mixed with copper and zinc with sulfuric acid leaching under pressure

    NASA Astrophysics Data System (ADS)

    Wen-bo, LUO; Ji-kun, WANG; Yin, GAN

    2018-01-01

    Sulphide ore mixed with copper and zinc is processed with pressure acid leaching. Research is conducted on the copper kinetic. The stirring rate is set at 600 rpm which could eliminate the influence of external diffusions. Research is conducted on the factors affecting the copper leaching kinetic are temperature, pressure, concentration of sulfuric acid, particle size. The result shows that the apparent activity energy is 50.7 KJ/mol. We could determine that the copper leaching process is shrinking core model of chemical reaction control and work out the leaching equation.

  5. Kinetic energy of Ps formed by Ore mechanism in Ar gas

    NASA Astrophysics Data System (ADS)

    Sano, Yosuke; Kino, Yasushi; Oka, Toshitaka; Sekine, Tsutomu

    2015-06-01

    In order to investigate kinetic energy of positronium(Ps) formed by Ore mechanism, we performed positron annihilation age-momentum correlation (AMOC) measurements in Argas for 5.0 MPa and 7.5 MPa at room temperature. From the time dependence of Doppler broadening of para-Ps (p-Ps) self-annihilation gramma-ray component, we observed Ps slowing down process. Using a simple slowing down model, we obtained the initial kinetic energy of Ps formed by Ore mechanism and Ps-Armomentum transfer cross section. The initial kinetic energy was 3.9 eV which was higher than the kinetic energy of Ps formed at the upper limit of Ore gap. The momentum transfer cross section was 0.019 ± 0.010 nm2 in between 1 eV and 3.9 eV, and was close to the theoretical calculation.

  6. Coal-oil gold agglomeration assisted flotation to recover gold from refractory ore

    NASA Astrophysics Data System (ADS)

    Otsuki, A.; Yue, C.

    2017-07-01

    This study aimed to investigate the applicability of coal-oil gold agglomeration (CGA) assisted flotation to recover gold from a refractory ore. The ore with the grade of 2-5 g/t was tested with the CGA-flotation process in six different size fractions from 38 to 300 urn using different collector types and dosages. In addition, the flotation without CGA was performed under the same condition for comparison. The results showed that the higher gold grade and recovery were achieved by applying the CGA-flotation, compared with the flotation without CGA. More than 20-60 times grade increase from the head grade was obtained with CGA-flotation. The elemental analysis of gold and sulphur explained their relationship with gold recovery. The results well indicated the applicability of CGA to upgrade the refractory gold ore.

  7. Recovery of Vanadium from Magnetite Ore Using Direct Acid Leaching: Optimization of Parameters by Plackett-Burman and Response Surface Methodologies

    NASA Astrophysics Data System (ADS)

    Nejad, Davood Ghoddocy; Khanchi, Ali Reza; Taghizadeh, Majid

    2018-06-01

    Recovery of vanadium from magnetite ore by direct acid leaching is discussed. The proposed process, which employs a mixture of nitric and sulfuric acids, avoids pyrometallurgical treatments since such treatment consumes a high amount of energy. To determine the optimum conditions of vanadium recovery, the leaching process is optimized through Plackett-Burman (P-B) design and response surface methodology (RSM). In this respect, temperature (80-95°C), liquid to solid ratio (L/S) (3-10 mL g-1), sulfuric acid concentration (3-6 M), nitric acid concentration (5-10 vol.%) and time (4-8 h) are considered as the independent variables. According to the P-B approach, temperature and acid concentrations are, respectively, the most effective parameters in the leaching process. These parameters are optimized using RSM to maximize recovery of vanadium by direct acid leaching. In this way, 86.7% of vanadium can be extracted from magnetic ore.

  8. Recovery of Vanadium from Magnetite Ore Using Direct Acid Leaching: Optimization of Parameters by Plackett-Burman and Response Surface Methodologies

    NASA Astrophysics Data System (ADS)

    Nejad, Davood Ghoddocy; Khanchi, Ali Reza; Taghizadeh, Majid

    2018-03-01

    Recovery of vanadium from magnetite ore by direct acid leaching is discussed. The proposed process, which employs a mixture of nitric and sulfuric acids, avoids pyrometallurgical treatments since such treatment consumes a high amount of energy. To determine the optimum conditions of vanadium recovery, the leaching process is optimized through Plackett-Burman (P-B) design and response surface methodology (RSM). In this respect, temperature (80-95°C), liquid to solid ratio (L/S) (3-10 mL g-1), sulfuric acid concentration (3-6 M), nitric acid concentration (5-10 vol.%) and time (4-8 h) are considered as the independent variables. According to the P-B approach, temperature and acid concentrations are, respectively, the most effective parameters in the leaching process. These parameters are optimized using RSM to maximize recovery of vanadium by direct acid leaching. In this way, 86.7% of vanadium can be extracted from magnetic ore.

  9. Mineral chemistry and geochemistry of ophiolitic metaultramafics from Um Halham and Fawakhir, Central Eastern Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Abdel-Karim, Abdel-Aal M.; Ali, Shehata; El-Shafei, Shaimaa A.

    2018-03-01

    This study is focused on ophiolitic metaultramafics from Um Halham and Fawakhir, Central Eastern Desert of Egypt. The rocks include serpentinized peridotites, serpentinites together with talc- and quartz-carbonates. The primary spinel relict is Al-chromite [Cr# > 60], which is replaced by Cr-magnetite during metamorphism. The high Cr# of Al-chromites resembles supra-subduction zone (SSZ) peridotites and suggests derivation from the deeper portion of the mantle section with boninitic affinity. These mantle rocks equilibrated with boninitic melt have been generated by high melting degrees. The estimated melting degrees ( 19-24%) lie within the range of SSZ peridotites. The high Cr# of spinel and Fo content of olivine together with the narrow compositional range suggest a mantle residual origin. Serpentinized peridotite and serpentinites have low Al2O3/SiO2 ratios (mostly < 0.03) like fore-arc mantle wedge serpentinites and further indicate that their mantle protolith had experienced partial melting before serpentinization process. Moreover, they have very low Nb, Ta, Zr and Hf concentrations along with sub-chondritic Nb/Ta (0.3-16) and Zr/Hf (mostly 1-20) ratios further confirming that their mantle source was depleted by earlier melting extraction event. The high chondrite normalized (La/Sm)N ratios (average 10) reflect input of subduction-related slab melts/fluids into their mantle source.

  10. Characterization of corrosion scale formed on stainless steel delivery pipe for reclaimed water treatment.

    PubMed

    Cui, Yong; Liu, Shuming; Smith, Kate; Yu, Kanghua; Hu, Hongying; Jiang, Wei; Li, Yuhong

    2016-01-01

    To reveal corrosion behavior of stainless steel delivery pipe used in reclaimed water treatment, this research focused on the morphological, mineralogical and chemical characteristics of stainless steel corrosion scale and corroded passive film. Corrosion scale and coupon samples were taken from a type 304 pipe delivering reclaimed water to a clear well in service for more than 12 years. Stainless steel corrosion scales and four representative pipe coupons were investigated using mineralogy and material science research methods. The results showed corrosion scale was predominantly composed of goethite, lepidocrocite, hematite, magnetite, ferrous oxide, siderite, chrome green and chromite, the same as that of corroded pipe coupons. Hence, corrosion scale can be identified as podiform chromite deposit. The loss of chromium in passive film is a critical phenomenon when stainless steel passive film is damaged by localized corrosion. This may provide key insights toward improving a better comprehension of the formation of stainless steel corrosion scale and the process of localized corrosion. The localized corrosion behavior of stainless steel is directly connected with reclaimed water quality parameters such as residual chlorine, DO, Cl(-) and SO4(2-). In particular, when a certain amount of residual chlorine in reclaimed water is present as an oxidant, ferric iron is the main chemical state of iron minerals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Cobalt doped lanthanum chromite material suitable for high temperature use

    DOEpatents

    Ruka, Roswell J.

    1986-01-01

    A high temperature, solid electrolyte electrochemical cell, subject to thermal cycling temperatures of between about 25.degree. C. and about 1200.degree. C., capable of electronic interconnection to at least one other electrochemical cell and capable of operating in an environment containing oxygen and a fuel, is made; where the cell has a first and second electrode with solid electrolyte between them, where an improved interconnect material is applied along a portion of a supporting electrode; where the interconnect is made of a chemically modified lanthanum chromite, containing cobalt as the important additive, which interconnect allows for adjustment of the thermal expansion of the interconnect material to more nearly match that of other cell components, such as zirconia electrolyte, and is stable in oxygen containing atmospheres such as air and in fuel environments.

  12. Origins of chromite and magnetite in sedimentary rocks deposited in a shallow water environment in the 3.2 Ga Moodies Group, South Africa

    NASA Astrophysics Data System (ADS)

    Otake, T.; Sakamoto, Y.; Itoh, S.; Yurimoto, H.; Kakegawa, T.

    2012-12-01

    *Otake, T. totake@eng.hokudai.ac.jp Div. of Sustainable Resources Engineering, Hokkaido Univ., Sapporo, Japan Sakamoto, Y. yu.sakamoto12@gmail.com Dep. of Earth Science, Tohoku Univ., Sendai, Japan Itoh, S. sitoh@ep.sci.hokudai.ac.jp Dep. of Natural History Sciences, Hokkaido Univ., Sapporo, Japan Yurimoto. H. yuri@ep.sci.hokudai.ac.jp Dep. of Natural History Sciences, Hokkaido Univ., Sapporo, Japan Kakegawa, T. kakegawa@m.tohoku.ac.jp Dep. of Earth Science, Tohoku Univ., Sendai, Japan Geochemical data from ferruginous chemical sedimentary rocks (e.g., Banded Iron Formation: BIF) have been used to reconstruct the surface environments of early Earth. However, only a few studies have investigated the geochemical characteristics of BIFs deposited in a shallow water environment during the Archean, which may have differed from those deposited in a deep water environment. Therefore, we investigated geological, petrographic and geochemical characteristics of ferruginous rocks deposited in a shallow water environment in the Moodies group, in the Barberton Greenstone Belt, South Africa. We obtained ferruginous rock samples in the Moodies group from both an outcrop and underground gold mine, and compared the characteristics of these samples. The 70 sedimentary rock samples were divided into groups based on the dominant Fe minerals they contain: Hematite-rich jaspilite (HM group), Magnetite-rich iron formation/shale/sandstone (MT group), and Siderite-rich sandstone (SD group). Samples in the HM group are predominantly composed of fine-grained quartz (< 20 μm) and hematite (< 5 μm), which are interpreted to be chemical precipitates. Samples in the MT group contain quartz, magnetite, siderite, ankerite, chlorite, biotite and chromite. The grain size of magnetite is much larger (20-150 μm) than that of hematite in the HM group. The magnetite is interpreted as a secondary mineral transformed from hematite during early diagenesis. Results of in situ oxygen isotope analysis by SIMS showed that magnetite in the Moodies group has similar δ18O values to those in the least metamorphosed BIFs. All chromite observed in the MT group is overgrown by magnetite. Samples in the SD group contain quartz, siderite, chlorite, biotite, and chromite; the chromite is included in Mg-rich siderite or silicate minerals (e.g., chlorite and biotite). Oxygen isotope compositions indicate that chromite in both the MT and SD groups, was hydrothermally altered. Results of geochemical analyses of the bulk outcrop samples showed that FeTotal/Ti and Cr/Ti ratios of outcrop samples increase concordantly in the ferruginous zone, particularly in the MT group. The Cr/Ti ratios of the underground samples also increase with increasing the Fetotal/Ti ratios. On the other hand, Th/U ratios of both the outcrop and underground samples decrease with increasing FeTotal/Ti ratios. The correlations of Fetotal/Ti ratios with U/Th and Cr/Ti ratios indicate that dissolved Cr and U species in the ocean were coprecipitated with ferric (hydr)oxides during the formation of ferruginous rocks of the Moodies Group. These results suggest that Cr and U were chemically mobile, possibly as oxidized species, in the Earth's surface environment at ~3.2 Ga.

  13. Reducing acid leaching of manganiferous ore: Effect of the iron removal operation on solid waste disposal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Michelis, Ida; Ferella, Francesco; Beolchini, Francesca

    2009-01-15

    The process of reducing acid leaching of manganiferous ore is aimed at the extraction of manganese from low grade manganese ores. This work is focused on the iron removal operation. The following items have been considered in order to investigate the effect of the main operating conditions on solid waste disposal and on the process costs: (i) type and quantity of the base agent used for iron precipitation, (ii) effective need of leaching waste separation prior to the iron removal operation, (iii) presence of a second leaching stage with the roasted ore, which might also act as a preliminary ironmore » removal step, and (iv) effect of tailings washing on the solid waste classification. Different base compounds have been tested, including CaO, CaCO{sub 3}, NaOH, and Na{sub 2}CO{sub 3}. The latter gave the best results concerning both the precipitation process kinetics and the reagent consumption. The filtration of the liquor leach prior to iron removal was not necessary, implying significant savings in capital costs. A reduction of chemical consumption and an increase of manganese concentration in the solution were obtained by introducing secondary leaching tests with the previously roasted ore; this additional step was introduced without a significant decrease of global manganese extraction yield. Finally, toxicity characteristic leaching procedure (TCLP) tests carried out on the leaching solid waste showed: (i) a reduction of arsenic mobility in the presence of iron precipitates, and (ii) the need for a washing step in order to produce a waste that is classifiable as not dangerous, taking into consideration the existing Environmental National Laws.« less

  14. Experimental Study on the Coupling Mechanism of Early-strength Backfill and Rock

    NASA Astrophysics Data System (ADS)

    Wang, Mingxu

    2017-11-01

    In order to study the interaction mechanism between the ore rock and backfill at the early stage, paraffin is chosen as the cementing agent. Based on the damage mechanics and fractal theory, the interaction mechanism between the ore rock and backfill is characterized by the relevant tests on the complex of proportioned ore rock and backfill with resistance strain gauge, crack propagation, microscopic imaging and AE. The experimental results showed that: 1) Through the axial loading test, compared with the early strength of the cemented filling and paraffin mechanical deformation characteristics, the stress and strain curves of the two had a common linear deformation law, while in the early strength of the filling elastic capacity strong, with a certain degree of resilience. 2) The bearing capacity of the backfill was weak, but the deformation ability was strong. During the bearing process, the deformation of the upper load was mainly caused by the ore rock, which leaded to the damage of the rock. 3) The distribution of AE points during the co-carrying of the filling and the ore rock was monitored by the acoustic emission instrument. The damage occurred mainly in the contact zone between the backfill and the ore rock zone. The corresponding AE point distribution also validated the crack happening.

  15. Separation of thorium ions from wolframite and scandium concentrates using graphene oxide.

    PubMed

    Jankovský, Ondřej; Sedmidubský, David; Šimek, Petr; Klímová, Kateřina; Bouša, Daniel; Boothroyd, Chris; Macková, Anna; Sofer, Zdeněk

    2015-10-14

    The separation of rare metals from the ores and commercially available compounds is an important issue due to the need of their high purity in advanced materials and devices. Important examples of two highly important elements that co-exist in the ores are scandium and thorium. Scandium containing ores and consequently also commercially available scandium compounds often contain traces of thorium which is very difficult to separate. We used graphene oxide for the selective sorption of thorium ions from scandium and thorium mixtures originating from the mined ores as well as from commercially available scandium salts. Our results showed that graphene oxide has an extreme affinity towards thorium ions. After the sorption process the graphene oxide contained over 20 wt% of thorium while the amount of scandium sorbed on GO was very low. This phenomenon of high sorption selectivity of graphene oxide can be applied in industry for the purification of various chemicals containing scandium and for separation of thorium containing mixtures. Alternatively, this methodology can be used for preconcentration of thorium from low-grade ores and its further use in the new generation of nuclear reactors.

  16. 40 CFR 440.103 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... that use dump, heap, in situ leach or vat-leach processes to extract copper from ores or ore waste... achievable (BAT). Except as provided in subpart L of this part and 40 CFR 125.30 through 125.32, any existing... achievable (BAT): (a) The concentration of pollutants discharged in mine drainage from mines that produce...

  17. 40 CFR 440.103 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... that use dump, heap, in situ leach or vat-leach processes to extract copper from ores or ore waste... economically achievable (BAT). Except as provided in subpart L of this part and 40 CFR 125.30 through 125.32... economically achievable (BAT): (a) The concentration of pollutants discharged in mine drainage from mines that...

  18. 40 CFR 440.100 - Applicability; description of the copper, lead, zinc, gold, silver, and molybdenum ores subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... any combination of these ores; (3) Mines and mills that use dump, heap, in-situ leach, or vat-leach... operations other than placer deposits; (2) Mills that use the froth-flotation process alone or in conjunction... not apply to discharges from the Quartz Hill Molybdenum Project in the Tongass National Forest, Alaska...

  19. 40 CFR 440.100 - Applicability; description of the copper, lead, zinc, gold, silver, and molybdenum ores subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... any combination of these ores; (3) Mines and mills that use dump, heap, in-situ leach, or vat-leach... operations other than placer deposits; (2) Mills that use the froth-flotation process alone or in conjunction... not apply to discharges from the Quartz Hill Molybdenum Project in the Tongass National Forest, Alaska...

  20. 40 CFR 440.103 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... that use dump, heap, in situ leach or vat-leach processes to extract copper from ores or ore waste... economically achievable (BAT). Except as provided in subpart L of this part and 40 CFR 125.30 through 125.32... economically achievable (BAT): (a) The concentration of pollutants discharged in mine drainage from mines that...

  1. 40 CFR 440.103 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... that use dump, heap, in situ leach or vat-leach processes to extract copper from ores or ore waste... achievable (BAT). Except as provided in subpart L of this part and 40 CFR 125.30 through 125.32, any existing... achievable (BAT): (a) The concentration of pollutants discharged in mine drainage from mines that produce...

  2. Upgrading nickel content of limonite nickel ore through pelletization, selective reduction and magnetic separation

    NASA Astrophysics Data System (ADS)

    Mayangsari, W.; Prasetyo, A. B.; Prasetiyo, Puguh

    2018-04-01

    Limonite nickel ore has potency to utilize as raw material for ferronickel or nickel matte, since it has low grade nickel content, thus process development is needed to find the acceptable process for upgrading nickel. The aim of this research is to determine upgrading of Ni content as result of selective reduction of limonite nickel pellet continued by magnetic separation as effect of temperature and time reduction as well as coal and CaSO4 addition. There are four steps to perform this research, such as preparation including characterization of raw ore and pelletization, selective reduction, magnetic separation and characterization of products by using AAS, XRD and SEM. Based on the result study, pellet form can upgrade 77.78% higher than powder form. Upgrading of Ni and Fe content was up to 3fold and 1.5fold respectively from raw ore used when reduced at 1100°C for 60 minutes with composition of coal and CaSO4, both 10%. The excess of CaSO4 addition caused fayalite formation. Moreover, S2 from CaSO4 also support to reach low melting point and enlardge particle size of metal formed.

  3. Geology and ore deposits of the Mahd Adh Dhahab District, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Luce, Robert W.; Bagdady, Abdulaziz; Roberts, Ralph Jackson

    1976-01-01

    The principal ore minerals are pyrite, chalcopyrite, sphalerite, galena, and minor tetrahedrite, argentite, and native gold and silver. The gold and silver occurs finely disseminated in the veins and in the altered selvages of the veins. Widespread potassic and propylitic alteration accompanied the ore-forming processes. Potassium feldspar was introduced during an early stage of vein formation. Isotopic analyses of lead in vein potassium feldspar and galena yield a model age of about 900-1050 million years with the possibility of the original lead source having been remobilized about 600 million years ago. Chlorite and carbonate are also prominent vein minerals.

  4. Impact of Dust from Ore Processing Facilities on Rain Water Collection Tanks in a Tropical Environment—The Obvious Source “Ain’t Necessarily So”

    PubMed Central

    Gulson, Brian; Korsch, Michael; Bradshaw, Anthony

    2016-01-01

    Concerns have been expressed that dust from the minerals processing facilities at Karumba Queensland Australia have resulted in elevated lead (Pb) concentrations in rain water tanks. The ores derived from the Century mine some 304 km from the port. High precision Pb isotopic measurements on environmental samples have been undertaken to evaluate the source of Pb in rainwaters and acid digests from roof wipes and gutter wipes. There does not appear to be any relationship between sample location and the processing facility but samples from the area subject to the prevailing winds show the highest contribution of Century Pb. All gutter wipes (82 to 1270 µg Pb/wipe) have contributions of Century ore ranging from 87% to 96%. The contribution of Century ore to five roof wipes (22 to 88 µg Pb/wipe) ranges from 89% to 97% and in the other two samples there is a mix of Century and Broken Hill Pb. Three of the seven rainwater have contributions of Century ore Pb ranging from 33% to 75%. Two of the other four rainwater samples have the highest water Pb concentrations of 88 and 100 µg/L and their isotopic data show Broken Hill Pb contributions ranging from 77% to 80%. The source of the Broken Hill Pb is probably from the galvanized roofing material and/or brass fittings in the rainwater tanks. The discrimination between various sources is only detectable using high precision 204Pb-based isotopic ratios and not the now common inductively coupled plasma mass spectrometry (ICP-MS ) data presentations of the higher abundance isotopes 208Pb, 207Pb and 206Pb. Isotopic results for the waters demonstrate that apportioning blame where there is an obvious point source may not always be the correct conclusion. Nevertheless the isotopic data for the gutter wipes indicates that there was widespread contamination from the processing facilities throughout the town. PMID:26907319

  5. Impact of Dust from Ore Processing Facilities on Rain Water Collection Tanks in a Tropical Environment--The Obvious Source "Ain't Necessarily So".

    PubMed

    Gulson, Brian; Korsch, Michael; Bradshaw, Anthony

    2016-02-22

    Concerns have been expressed that dust from the minerals processing facilities at Karumba Queensland Australia have resulted in elevated lead (Pb) concentrations in rain water tanks. The ores derived from the Century mine some 304 km from the port. High precision Pb isotopic measurements on environmental samples have been undertaken to evaluate the source of Pb in rainwaters and acid digests from roof wipes and gutter wipes. There does not appear to be any relationship between sample location and the processing facility but samples from the area subject to the prevailing winds show the highest contribution of Century Pb. All gutter wipes (82 to 1270 µg Pb/wipe) have contributions of Century ore ranging from 87% to 96%. The contribution of Century ore to five roof wipes (22 to 88 µg Pb/wipe) ranges from 89% to 97% and in the other two samples there is a mix of Century and Broken Hill Pb. Three of the seven rainwater have contributions of Century ore Pb ranging from 33% to 75%. Two of the other four rainwater samples have the highest water Pb concentrations of 88 and 100 µg/L and their isotopic data show Broken Hill Pb contributions ranging from 77% to 80%. The source of the Broken Hill Pb is probably from the galvanized roofing material and/or brass fittings in the rainwater tanks. The discrimination between various sources is only detectable using high precision (204)Pb-based isotopic ratios and not the now common inductively coupled plasma mass spectrometry (ICP-MS ) data presentations of the higher abundance isotopes (208)Pb, (207)Pb and (206)Pb. Isotopic results for the waters demonstrate that apportioning blame where there is an obvious point source may not always be the correct conclusion. Nevertheless the isotopic data for the gutter wipes indicates that there was widespread contamination from the processing facilities throughout the town.

  6. Carbothermic Reduction of Nickeliferous Laterite Ores for Nickel Pig Iron Production in China: A Review

    NASA Astrophysics Data System (ADS)

    Rao, Mingjun; Li, Guanghui; Jiang, Tao; Luo, Jun; Zhang, Yuanbo; Fan, Xiaohui

    2013-11-01

    Both the consumption and production of crude stainless steel in China rank first in the world. In 2011, the nickel production in China amounted to 446 kilotons, with the proportion of electrolytic nickel and nickel pig iron (NPI) registering 41.5% and 56.5%, respectively. NPI is a low-cost feedstock for stainless steel production when used as a substitute for electrolytic nickel. The existing commercial NPI production processes such as blast furnace smelting, rotary kiln-electric furnace smelting, and Krupp-Renn (Nipon Yakin Oheyama) processes are discussed. As low-temperature (below 1300°C) reduction of nickeliferous laterite ores followed by magnetic separation could provide an alternative avenue without smelting at high temperature (~1500°C) for producing ferronickel with low cost, the fundamentals and recent developments of the low-temperature reduction of nickeliferous laterite ores are reviewed.

  7. Applied technology for mine waste water decontamination in the uranium ores extraction from Romania

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bejenaru, C.; Filip, G.; Vacariu, V.T.

    1996-12-31

    The exploitation of uranium ores in Romania is carried out in underground mines. In all exploited uranium deposits, mine waste waters results and will still result after the closure of uranium ore extraction activity. The mine waters are radioactively contaminated with uranium and its decay products being a hazard both for underground waters as for the environment. This paper present the results of research work carried out by authors for uranium elimination from waste waters as the problems involved during the exploitation process of the existent equipment as its maintenance in good experimental conditions. The main waste water characteristics aremore » discussed: solids as suspension, uranium, radium, mineral salts, pH, etc. The moist suitable way to eliminate uranium from mine waste waters is the ion exchange process based on ion exchangers in fluidized bed. A flowsheet is given with main advantages resulted.« less

  8. Model parameter estimations from residual gravity anomalies due to simple-shaped sources using Differential Evolution Algorithm

    NASA Astrophysics Data System (ADS)

    Ekinci, Yunus Levent; Balkaya, Çağlayan; Göktürkler, Gökhan; Turan, Seçil

    2016-06-01

    An efficient approach to estimate model parameters from residual gravity data based on differential evolution (DE), a stochastic vector-based metaheuristic algorithm, has been presented. We have showed the applicability and effectiveness of this algorithm on both synthetic and field anomalies. According to our knowledge, this is a first attempt of applying DE for the parameter estimations of residual gravity anomalies due to isolated causative sources embedded in the subsurface. The model parameters dealt with here are the amplitude coefficient (A), the depth and exact origin of causative source (zo and xo, respectively) and the shape factors (q and ƞ). The error energy maps generated for some parameter pairs have successfully revealed the nature of the parameter estimation problem under consideration. Noise-free and noisy synthetic single gravity anomalies have been evaluated with success via DE/best/1/bin, which is a widely used strategy in DE. Additionally some complicated gravity anomalies caused by multiple source bodies have been considered, and the results obtained have showed the efficiency of the algorithm. Then using the strategy applied in synthetic examples some field anomalies observed for various mineral explorations such as a chromite deposit (Camaguey district, Cuba), a manganese deposit (Nagpur, India) and a base metal sulphide deposit (Quebec, Canada) have been considered to estimate the model parameters of the ore bodies. Applications have exhibited that the obtained results such as the depths and shapes of the ore bodies are quite consistent with those published in the literature. Uncertainty in the solutions obtained from DE algorithm has been also investigated by Metropolis-Hastings (M-H) sampling algorithm based on simulated annealing without cooling schedule. Based on the resulting histogram reconstructions of both synthetic and field data examples the algorithm has provided reliable parameter estimations being within the sampling limits of M-H sampler. Although it is not a common inversion technique in geophysics, it can be stated that DE algorithm is worth to get more interest for parameter estimations from potential field data in geophysics considering its good accuracy, less computational cost (in the present problem) and the fact that a well-constructed initial guess is not required to reach the global minimum.

  9. Manipulation of a Senescence-Associated Gene Improves Fleshy Fruit Yield1[OPEN

    PubMed Central

    Gramegna, Giovanna; Trench, Bruna A.; Alves, Frederico R.R.; Silva, Eder M.; Silva, Geraldo F.F.; Thirumalaikumar, Venkatesh P.; Lupi, Alessandra C.D.; Demarco, Diego; Nogueira, Fabio T.S.; Freschi, Luciano

    2017-01-01

    Senescence is the process that marks the end of a leaf’s lifespan. As it progresses, the massive macromolecular catabolism dismantles the chloroplasts and, consequently, decreases the photosynthetic capacity of these organs. Thus, senescence manipulation is a strategy to improve plant yield by extending the leaf’s photosynthetically active window of time. However, it remains to be addressed if this approach can improve fleshy fruit production and nutritional quality. One way to delay senescence initiation is by regulating key transcription factors (TFs) involved in triggering this process, such as the NAC TF ORESARA1 (ORE1). Here, three senescence-related NAC TFs from tomato (Solanum lycopersicum) were identified, namely SlORE1S02, SlORE1S03, and SlORE1S06. All three genes were shown to be responsive to senescence-inducing stimuli and posttranscriptionally regulated by the microRNA miR164. Moreover, the encoded proteins interacted physically with the chloroplast maintenance-related TF SlGLKs. This characterization led to the selection of a putative tomato ORE1 as target gene for RNA interference knockdown. Transgenic lines showed delayed senescence and enhanced carbon assimilation that, ultimately, increased the number of fruits and their total soluble solid content. Additionally, the fruit nutraceutical composition was enhanced. In conclusion, these data provide robust evidence that the manipulation of leaf senescence is an effective strategy for yield improvement in fleshy fruit-bearing species. PMID:28710129

  10. Respiratory health effects of long-term exposure to different chromium species in stainless steel production.

    PubMed

    Huvinen, M; Uitti, J; Oksa, P; Palmroos, P; Laippala, P

    2002-06-01

    The aim of this study was to determine whether occupational exposure to chromite, trivalent chromium (Cr(3+)) or hexavalent chromium (Cr(6+)) causes respiratory diseases, an excess of respiratory symptoms, a decrease in pulmonary function or signs of pneumoconiosis among workers in stainless steel production. Altogether, 203 exposed workers and 81 referents with an average employment of 23 years were investigated for indicators of respiratory health on two occasions, in 1993 and in 1998. Data collection with a self-administered questionnaire, flow volume spirometry, measurement of diffusing capacity, chest radiography and laboratory tests were carried out by a mobile research unit. Exposure to different chromium species and other metals was monitored regularly and studied separately. No adverse respiratory health effects were observed in the group exposed to Cr(6+), either in comparison with the control group in the first cross-sectional study or during the additional 5 year follow-up. Among the Cr (3+) exposed people, the production of phlegm, shortness of breath and breathlessness on exertion were significantly more frequent than in the control group, but the frequency of the symptoms did not increase during the follow-up; no differences were observed in the lung function tests and the radiographic findings did not progress. In the chromite group, the prevalence of breathlessness on exertion was higher than in the control group. However, in the follow-up, the occurrence of symptoms did not differ from 1993 to 1998. In the first study, most parameters of lung function were lower among the smokers in the chromite group than among the smoking controls, but in 1998 the difference was less marked. An average exposure time of 23 years in modern ferrochromium and stainless steel production and low exposure to dusts and fumes containing Cr(6+), Cr(3+), nickel and molybdenum do not lead to respiratory changes detectable by lung function tests or radiography. The workers exposed to Cr(3+) had more respiratory symptoms than those in the control group. The workers in the chromite mine had lower lung function test results than the control group due to earlier exposure to higher dust concentrations.

  11. Linking precious metal enrichment and halogen cycling in mafic magmatic systems: insights from the Rum layered intrusion, NW Scotland

    NASA Astrophysics Data System (ADS)

    Kelly, A. P.; O'Driscoll, B.; Clay, P. L.; Burgess, R.

    2017-12-01

    Layered intrusions host the world's largest known concentrations of the platinum-group elements (PGE). Emphasis has been attached to the role of halogen-bearing fluids in concentrating the precious metals, but whether this occurs at the magmatic stage, or via subsequent metasomatism, is actively debated. One obstacle to progress has been the analytical difficulty of measuring low abundances of the halogens in the cumulate products of layered intrusions. To elucidate the importance of the halogens in facilitating PGE-mineralisation, as well as fingerprint halogen provenance and assess the importance of halogen cycling in mafic magma systems more generally, a suite of samples encompassing different stages of activity of the Palaeogene Rum layered intrusion was investigated. Halogen abundances were measured by neutron irradiation noble gas mass spectrometric analysis, permitting the detection of relatively low (ppm-ppb) abundances of Cl, Br and I in mg-sized samples. The samples include PGE-enriched chromite seams, various cumulates (e.g., peridotites), picrites (approximating the Rum parental magma), and pegmatites representing volatile-rich melts that circulated the intrusion at a late-stage in its solidification history. The new data reveal that PGE-bearing chromite seams contain relatively low Cl concentrations (2-3 ppm), with high molar ratios of Br/Cl and I/Cl (0.005 and 0.009, respectively). The picrites and cumulates have Br/Cl and I/Cl ratios close to sub-continental lithospheric mantle values of approximately 0.0013 and 0.00002, respectively, and thus likely reflect the Rum magma source region. A positive correlation between Cl and Br signifies comparable partitioning behaviour in all samples. However, I is more variable, displaying a positive correlation with Cl for more primitive samples (e.g. picrite and peridotite), and seemingly decoupling from Br and Cl in chromite seams and pegmatites. The relative enrichment of I over Cl in the chromite seams points to the local involvement of an organic-rich sedimentary assimilant and potentially represents an important trigger for PGE-mineralisation. Similarly high I/Cl signatures in some of the late-stage pegmatites suggest that fluids with this distinctive composition circulated the cooling Rum intrusion for a protracted period of time.

  12. Colloidal and physical transport textures exhibited by electrum and naumannite in bonanza epithermal veins from western USA, and their significance

    USGS Publications Warehouse

    Saunders, James A.; Vikre, Peter G.; Unger, Derick L.; Beasley, Lee

    2010-01-01

    It is reasonably clear that disequilibrium or “far-from equilibrium” conditions lead to the formation of silica colloids and their deposition in many epithermal deposits. This implies ore-forming solutions had elevated concentrations of dissolved silica, well in excess of amorphous silica saturation. We have previously demonstrated that such colloidal silica particles were deposited in epithermal veins as silica gels and opal, which may later progress along a path to crystallize into more thermodynamically favored (less-soluble) silica phases such as quartz and chalcedony. Also, in some deposits, amorphous silica is co-deposited with precious-metal minerals, such as electrum in the banded super-bonanza ores of the Sleeper deposit (NV). Ore-mineral textures from some western USA bonanza epithermal ores indicate that two precious-metal phases (electrum and naumannite, Ag2Se) form colloidal particles that are transported by ore-forming fluids and are deposited either by aggregation (by sticking to other precious metal-particles) to make dendrites, or are deposited on the “lee” side of protrusion along vein walls (or perhaps by both processes). We can infer by analogy to silica that this also implies that ore-forming solutions contained elevated (supersaturated) dissolved concentrations of both gold and silver that formed colloidal particles under disequilibrium (often chaotic) conditions. Thus physical transport and deposition textures seem to indicate the presence of strongly precious-metal-enriched ore forming fluids, which led to (not surprisingly) the bonanza grades of these remarkable ores. What causes such a precious-metal-rich solution is debatable, but that is the subject of our continued investigations.

  13. Metallogeny by Trans-magmatic Fluids—Theoretical Analysis and Field Evidence

    NASA Astrophysics Data System (ADS)

    Luo, Zhaohua; Mo, Xuanxue; Lu, Xinxiang; Chen, Bihe; Ke, Shan; Hou, Zengqian; Jiang, Wan

    This paper is aimed at introducing and developing the principle of Metallogenic Theory through Trans-magmatic Fluids (MTTF) proposed by the Russian Kozhinskii's school. Some fundamental problems of metallogeny are discussed on geodynamic bases. In this theory, the trans-magmatic fluid is interpreted as a moving fluid passing through magma which is not yet consolidated. The intensive wallrock alteration of most of hydrothermal ore systems suggests that large scale fluid flow accompanies metallogenesis. However, geological observations and experiments imply a very limited solubility of fluids in magmas. In addition, the close relationship between small igneous bodies and large ore systems together with the difficulty of fluids that from the wallrocks might enter a magmatic body, which is under high pressure and temperature, need also to be considered. Those ore-bearing fluids that originate from a deep fluid system, are independent of magmas. Experiments show rapid increases of the solubility of ore-forming elements or their compounds in hydrothermal fluids. Therefore, the essential prerequisites for mineralization are (1) large volumes of deep ore-bearing fluids with high concentration of metals, and (2) the large amounts of metal accumulation depend on the rapid ascent of the deep ore-bearing fluid. Magmas are the favorable medium for the ascending fluids, because these magmas provide conditions that prevent re-equilibrium between the fluid and the wallrocks at different deep levels. The fluids in turn, may provide the driving force for the rapid ascent of magmas. Therefore, the two systems act together to account for the close relationship between magmatism and metallogeny. According to this theory, the scale and location of an ore-forming process are decided by (1) the volumetric ratio of the magma and the fluid systems, (2) the ascending rate of the ore-bearing fluid, (3) the boundary conditions for metal accumulation and (4) the segregation of the fluid from the magma. The field investigations of copper-bearing Melanocratic Macrogranular Enclaves (MME) in the Qushui massif, Gangdise belt are very helpful for understanding of source, transport and precipitation of ore-forming materials. In this example, it can be seen that fluid-rich MMEs is the source of the ore-forming element copper. Copper is transported out from MMEs by the fluid, following dispersal in the granitic magma. The copper-bearing fluid is then transferred through the magma and induced to deposit mineralization elsewhere. These processes have been noted when comparing the metallogenic features in both MME in the Qushui massif and the porphyry copper deposits in Yulong, eastern Tibet. It is obvious that MTTF is a very important theory for metallogeny of endogenic deposits. Using this theory, many paradoxes in metallogenesis can be interpreted in easier manner.

  14. Development of Technology for Enrichment of Silver Containing Ores

    NASA Astrophysics Data System (ADS)

    Shekiladze, Asmati; Kavtelashvili, Otari; Bagnashvili, Mamuka

    2016-10-01

    The progress of Georgian economics is substantially associated with a development of new deposits of mineral resources. Among them is the David-Gareji deposit where at present the intensive searching geological works are performed. The work goal involves the elaboration of the technology for processing of silver-containing quartz-barite ores. Without its development the mining of more valuable gold-polymetallic ores is impossible. Because of ore complexity silver and barite are considered in a common technological aspect. The investigations were carried out on the representative samples of quartz-barite ores containing 78-88 g/ton of silver and 27-29 % of silver is a nugget in the form of the simple sulphides and chlorides. The ore is characterized by fine coalescence of barite and ore-generating minerals. Non-ferrous metals haven't any industrial value because of their very low content. Therefore, for the processing of the ores under study the direct selective scheme of flotation enrichment was chosen and the formula of optimal reagent regime was elaborated. Potassium xanthogenate is used as a collector for flotation of silver minerals and pine oil- as a foaming agent. The effect of the pulp - pH and medium temperature on silver flotation was studied. It was established that the silver is actively floats in neutral medium. For barite flotation the various collectors were tested: sulfidezid cotton oil-soap stock, soaps of fatty acids and alkyl sulphates of C12 - C16 row, among the “Baritol” is the most efficient one. Depression of the barren rock was carried out by liquid glass in alkaline medium. The effect of pulp pH on barite flotation has been investigated. The best results were obtained at pH=8.5. The increase of the pulp alkalinity has no essential effect on the indexes of the barite enrichment. Conditional concentrate of the barite is obtained by two fold purification of the main flotation concentrate by the addition of the liquid glass to the re-purification operations. On the basis of laboratory investigations for silver-containing ores of David-Gareji deposit the technological scheme is recommended which implies the ore milling to 82 % class -074 mm, flotation of the silver minerals and the barite flotation from the tails of this operation by two-fold re-purification of the rough concentrate. The optimal parameters of the receipt of the reagent regime are: potassium butylxantogenate and pine oil-in the silver flotation; sodium carbonate, liquid glass, “Baritol”- in the barite main flotation and liquid glass in the repurification operations. Silver concentrate containing 680 g/ton of silver by extraction of 92.21% and barite concentrate, content - 92.11%, extraction - 81.85% are obtained.

  15. Use of structural geology in exploration for and mining of sedimentary rock-hosted Au deposits

    USGS Publications Warehouse

    Peters, Stephen G.

    2001-01-01

    Structural geology is an important component in regional-, district- and orebody-scale exploration and development of sedimentary rock-hosted Au deposits.Identification of timing of important structural events in an ore district allows analysis and classification of fluid conduits and construction of genetic models for ore formation.The most practical uses of structural geology deal with measurement and definition of various elements that comprise orebodies, which can then be directly applied to ore-reserve estimation,ground control,grade control, safety issues,and mine planning.District- and regional-scale structural studies are directly applicable to long-term strategic planning,economic analysis,and land ownership. Orebodies in sedimentary rock-hosted Au deposits are discrete, hypogene, epigenetic masses usually hosted in a fault zone,breccia mass, or lithologic bed or unit. These attributes allow structural geology to be directly applied to the mining and exploration of sedimentary rock-hosted Au deposits. Internal constituents in orebodies reflect unique episodes relating to ore formation.The main internal constituents in orebodies are ore minerals, gangue, and alteration minerals that usually are mixed with one another in complex patterns, the relations among which may be used to interpret the processes of orebody formation and control.Controls of orebody location and shape usually are due to structural dilatant zones caused by changes in attitude, splays, lithologic contacts,and intersections of the host conduit or unit.In addition,conceptual parameters such as district fabric,predictable distances, and stacking also are used to understand the geometry of orebodies.Controls in ore districts and location and geometry of orebodies in ore districts can be predicted to various degrees by using a number of qualitative concepts such as internal and external orebody plunges,district plunge, district stacking, conduit classification, geochemical, geobarometric and geothermal gradients, and tectonic warps. These concepts have practical and empirical application in most mining districts where they are of use in the exploration for ore, but are of such broad and general application that they may not represent known or inferred ore formation processes. Close spatial relation among some sedimentary rock- hosted Au deposits and their host structures suggests that the structures and the orebodies are genetically linked because they may have shared the same developmental history. Examples of probable syn-deformational genesis and structural control of sedimentary rock-hosted Au deposits are in the large Betze deposit in the Carlin trend, Nevada and in the Lannigou, Jinlongshan, and Maanqiao Au deposits, China.

  16. REM-containing silicate concentrates

    NASA Astrophysics Data System (ADS)

    Pavlov, V. F.; Shabanova, O. V.; Pavlov, I. V.; Pavlov, M. V.; Shabanov, A. V.

    2016-01-01

    A new method of advanced complex processing of ores containing rare-earth elements (REE) is proposed to obtain porous X-ray amorphous aluminosilicate material with a stable chemical composition which concentrates oxides of rare-earth metals (REM). The ferromanganese oxide ores of Chuktukon deposit (Krasnoyarsk Region, RF) were used for the experiment. The obtained aluminosilicate material is appropriate for treatment with 5 - 15% solutions of mineral acids to leach REM.

  17. Rhenium, Molybdenum, Tungsten - Prospects for Production and Industrial Applications

    DTIC Science & Technology

    1998-06-18

    concentrates from unique complex copper -containing porphyry deposit of the Almalyk region. The ore containing over 10 associated valuable constituents is...L.I.Ruzin, M .F.Sherem etyev ............................................... 71 Recovery of rhenium as by-product of treatment of molybdenite and copper ...for processing copper -molybdenum ores from "Erdenet- Ovoo" deposit S.Davaanyam, I.Sh.Sataev, Zh.Baatarkhuu, A.M.Desyatov, M.I.Khersonsky

  18. Cobalt doped lanthanum chromite material suitable for high temperature use

    DOEpatents

    Ruka, R.J.

    1986-12-23

    A high temperature, solid electrolyte electrochemical cell, subject to thermal cycling temperatures of between about 25 C and about 1,200 C, capable of electronic interconnection to at least one other electrochemical cell and capable of operating in an environment containing oxygen and a fuel, is made; where the cell has a first and second electrode with solid electrolyte between them, where an improved interconnect material is applied along a portion of a supporting electrode; where the interconnect is made of a chemically modified lanthanum chromite, containing cobalt as the important additive, which interconnect allows for adjustment of the thermal expansion of the interconnect material to more nearly match that of other cell components, such as zirconia electrolyte, and is stable in oxygen containing atmospheres such as air and in fuel environments. 2 figs.

  19. Orthopyroxene oikocrysts in the MG1 chromitite layer of the Bushveld Complex: implications for cumulate formation and recrystallisation

    NASA Astrophysics Data System (ADS)

    Kaufmann, Felix E. D.; Vukmanovic, Zoja; Holness, Marian B.; Hecht, Lutz

    2018-02-01

    Two typical mineral textures of the MG 1 chromitite of the Bushveld Complex, South Africa, were observed; one characterised by abundant orthopyroxene oikocrysts, and the other by coarse-grained granular chromitite with only minor amounts of interstitial material. Oikocrysts form elongate clusters of several crystals aligned parallel to the layering, and typically have subhedral, almost chromite-free, core zones containing remnants of olivine. The core zones are surrounded by poikilitic aureoles overgrowing euhedral to subhedral chromite chadacrysts. Chromite grains show no preferred crystal orientation, whereas orthopyroxene grains forming clusters commonly share the same crystallographic orientation. Oikocryst core zones have lower Mg# and higher concentrations of incompatible trace elements compared to their poikilitic aureoles. Core zones are relatively enriched in REE compared to a postulated parental magma (B1) and did not crystallise in equilibrium with the surrounding minerals, whereas the composition of the poikilitic orthopyroxene is consistent with growth from the B1 magma. These observations cannot be explained by the classic cumulus and post-cumulus models of oikocryst formation. Instead, we suggest that the oikocryst core zones in the MG1 chromitite layer formed by peritectic replacement of olivine primocrysts by reaction with an upwards-percolating melt enriched in incompatible trace elements. Poikilitic overgrowth on oikocryst core zones occurred in equilibrium with a basaltic melt of B1 composition near the magma-crystal mush interface. Finally, adcumulus crystallisation followed by grain growth resulted in the surrounding granular chromitite.

  20. REE Mineralization in Kiruna-type Magnetite-Apatite Ore Deposits: Magmatism and Metasomatism

    NASA Astrophysics Data System (ADS)

    Harlov, D. E.

    2015-12-01

    Magnetite-apatite ore bodies of the Kiruna type occur worldwide and are generally associated with volcanic rocks or volcanism. They also show strong evidence of extensive metasomatism over a wide P-T range. Notable examples include the Kiirunavaara ore body, northern Sweden (Harlov et al., 2002, Chem. Geol., 191, 47-72); the Grängesberg ore body, central Sweden (Jonsson et al., 2010, NGF abstracts, vol 1, 88-89); the Mineville ore body, Adirondacks, New York, USA (McKeown and Klemc, 1956, U.S. Geol Sur Bull (1956), pp. 9-23); the Pea Ridge ore body, SE Missouri, USA (Kerr, 1998, MS Thesis, Univ. Windsor, Windsor, Ontario, Canada 113 pp); the Jurassic Marcona ore body in south-central Peru (Chen et al., 2010, Econ Geol, 105, 1441-1456); and a collection of ore bodies from the Bafq Region, central Iran (Daliran et al., 2010, Geol. Assoc. Canada, Short Course Notes, v. 20, p.147-159). In these ore bodies, low Th and U monazite, xenotime, allanite, REE carbonates, and/or REE fluorides are commonly associated with the apatite as inclusions, rim grains, or as independent grains in the surrounding mineral matrix. High contrast BSE imaging, coupled with EMPA and LA-ICPMS, indicates that the apatite has experienced fluid-induced alteration in the form of (Y+REE) + Na + Si + Cl depletion implying that it served as the source for the (Y+REE) (e.g. Kiirunavaara, northern Sweden; Harlov et al., 2002). Formation of monazite and xenotime associated with fluorapatite, as inclusions or rim grains, has experimentally been demonstrated to originate from the fluorapatite as the result of fluid-aided, coupled dissolution-reprecipitation processes (Harlov et al., 2005, Contrib. Mineral. Petrol. 150, 268-286). This is explains the low Th and U content of the monazite and xenotime. Fluid sources could range from 700-900 °C, residual, acidic (HCl, H2HSO4) grain boundary fluids, remaining after the last stages of ore body crystallization, to later stage, cooler (< 600 °C) (H2O-CO2-(Na,K)Cl) fluids originating in the surrounding country rock or as fluids associated with metamorphic events such as regional albitization or actinolization. The abundance of (Y+REE)-bearing minerals in these deposits suggests that in addition to being mined for their Fe ore, they could also be economically mined for (Y+REE) as well.

  1. [The characteristics of type I, III collagen and LN in pulmonary fibrosis induced by uranium ore dust in rats].

    PubMed

    Hu, Ying-chun; Luo, Zhen-hua; Yuan, Xing-jiang; Yang, Li-ping; Wang, Shou-feng; Li, Guang-yue; He, Xing-peng

    2011-02-01

    To explore the characteristics of LN and type I, III collagen in pulmonary fibrosis induced by uranium ore dust in rats. 60 adult Wistar rats were divided randomly into two groups, control group (30 rats) and uranium ore dust group (30 rats). Non-exposed intratracheal instillation method was used. Uranium ore dust group was exposed 20 mg/ml uranium ore dust suspension 1ml per rat, meanwhile control group was exposed normal saline 1ml per rat. Post-exposed the 7, 14, 21, 30 and 60 d, 6 rats in each group were killed randomly, lung tissue were collected. The pathological changes in lung tissue were observed by microscope using HE staining, the collagen I and III in lungs were observed by polarizing microscope using Biebrich scarlet staining. The expression of LN protein in lung tissue was observed by immunohistochemistry-SP. During lung fibrosis, a large amount of the proliferated I and III collagen in lungs were observed. Post-exposure to uranium ore dust, the characteristics in proliferated collagen in lungs were type I collagen deposited in lung interstitium mainly in the early stage. The area percentage of collagen I and III was increased significantly at 7, 14, 21, 30 and 60d in the experimental group as compared with that in the control group (P < 0.05 or P < 0.01). The over expression of LN in the lung tissue were observed. The expression of LN was distributed in the lung tissue as thickening of the linear or cluster. The integral optical density of LN was increased significantly at 21, 30 and 60 d in the experimental group as compared with that in the control group (P < 0.05 or P < 0.01). After exposure to uranium ore dust, the characteristics in proliferated collagen in lungs are the type of I collagen deposited in lung interstitium mainly in the early stage, while the type of III collagen increase significantly at the later period. The overexpression of LN exists in the process of pulmonary fibrosis. It suggests that LN has a role effect in the process of pulmonary fibrosis.

  2. Yttrium recovery from primary and secondary sources: A review of main hydrometallurgical processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Innocenzi, Valentina, E-mail: valentina.innocenzi1@univaq.it; De Michelis, Ida; Kopacek, Bernd

    2014-07-15

    Highlights: • Review of the main hydrometallurgical processes to recover yttrium. • Recovery of yttrium from primary sources. • Recovery of yttrium from e-waste and other types of waste. - Abstract: Yttrium is important rare earths (REs) used in numerous fields, mainly in the phosphor powders for low-energy lighting. The uses of these elements, especially for high-tech products are increased in recent years and combined with the scarcity of the resources and the environmental impact of the technologies to extract them from ores make the recycling waste, that contain Y and other RE, a priority. The present review summarized themore » main hydrometallurgical technologies to extract Y from ores, contaminated solutions, WEEE and generic wastes. Before to discuss the works about the treatment of wastes, the processes to retrieval Y from ores are discussed, since the processes are similar and derived from those already developed for the extraction from primary sources. Particular attention was given to the recovery of Y from WEEE because the recycle of them is important not only for economical point of view, considering its value, but also for environmental impact that this could be generated if not properly disposal.« less

  3. Metals Recovery from Artificial Ore in Case of Printed Circuit Boards, Using Plasmatron Plasma Reactor

    PubMed Central

    Szałatkiewicz, Jakub

    2016-01-01

    This paper presents the investigation of metals production form artificial ore, which consists of printed circuit board (PCB) waste, processed in plasmatron plasma reactor. A test setup was designed and built that enabled research of plasma processing of PCB waste of more than 700 kg/day scale. The designed plasma process is presented and discussed. The process in tests consumed 2 kWh/kg of processed waste. Investigation of the process products is presented with their elemental analyses of metals and slag. The average recovery of metals in presented experiments is 76%. Metals recovered include: Ag, Au, Pd, Cu, Sn, Pb, and others. The chosen process parameters are presented: energy consumption, throughput, process temperatures, and air consumption. Presented technology allows processing of variable and hard-to-process printed circuit board waste that can reach up to 100% of the input mass. PMID:28773804

  4. Metals Recovery from Artificial Ore in Case of Printed Circuit Boards, Using Plasmatron Plasma Reactor.

    PubMed

    Szałatkiewicz, Jakub

    2016-08-10

    This paper presents the investigation of metals production form artificial ore, which consists of printed circuit board (PCB) waste, processed in plasmatron plasma reactor. A test setup was designed and built that enabled research of plasma processing of PCB waste of more than 700 kg/day scale. The designed plasma process is presented and discussed. The process in tests consumed 2 kWh/kg of processed waste. Investigation of the process products is presented with their elemental analyses of metals and slag. The average recovery of metals in presented experiments is 76%. Metals recovered include: Ag, Au, Pd, Cu, Sn, Pb, and others. The chosen process parameters are presented: energy consumption, throughput, process temperatures, and air consumption. Presented technology allows processing of variable and hard-to-process printed circuit board waste that can reach up to 100% of the input mass.

  5. Evaluation and development of integrated technology of rare metal concentrate production in high-level ore processing at Zashikhinsk deposit

    NASA Astrophysics Data System (ADS)

    Khokhulya, MS; Mukhina, TN; Ivanova, V. A.; Mitrofanova, G. V.; Fomin, A. V.; Sokolov, VD

    2017-02-01

    The authors discuss material constitution of columbite ore sample and recommend optimized pretreatment modes to obtain ball milling products at the maximum dissociation of ore minerals in aggregates. A concentration technology is proposed, with division of material into two flows -0.315 mm and -0.2 mm in sizes, generated in the milling and screening cycles and subjected to gravity-magnetic and magnetic-gravity treatment, respectively. It is shown that the technology ensures production of both tantalum-niobium and zircon concentrates. It has become possible to additionally recover rare metal components Nb2O5 and ZrO2 from tailings through flotation.

  6. Modeling the formation of porphyry-copper ores

    USGS Publications Warehouse

    Ingebritsen, Steven E.

    2012-01-01

    Porphyry-copper ore systems, the source of much of the world's copper and molybdenum, form when metal-bearing fluids are expelled from shallow, degassing magmas. On page 1613 of this issue, Weis et al. (1) demonstrate that self-organizing processes focus metal deposition. Specifically, their simulation studies indicate that ores develop as consequences of dynamic variations in rock permeability driven by injection of volatile species from rising magmas. Scenarios with a static permeability structure could not reproduce key field observations, whereas dynamic permeability responses to magmatic-fluid injection localized a metal-precipitation front where enrichment by a factor of 103 could be achieved [for an overview of their numerical-simulation model CSMP++, see (2)].

  7. Effects of High Pressure ORE Grinding on the Efficiency of Flotation Operations

    NASA Astrophysics Data System (ADS)

    Saramak, Daniel; Krawczykowska, Aldona; Młynarczykowska, Anna

    2014-10-01

    This article discusses issues related to the impact of the high pressure comminution process on the efficiency of the copper ore flotation operations. HPGR technology improves the efficiency of mineral resource enrichment through a better liberation of useful components from waste rock as well as more efficient comminution of the material. Research programme included the run of a laboratory flotation process for HPGR crushing products at different levels of operating pressures and moisture content. The test results showed that products of the high-pressure grinding rolls achieved better recoveries in flotation processes and showed a higher grade of useful components in the flotation concentrate, in comparison to the ball mill products. Upgrading curves have also been marked in the following arrangement: the content of useful component in concentrate the floatation recovery. All upgrading curves for HPGR products had a more favourable course in comparison to the curves of conventionally grinded ore. The results also indicate that various values of flotation recoveries have been obtained depending on the machine operating parameters (i.e. the operating pressure), and selected feed properties (moisture).

  8. Can Nitrogen be a Candidate for the Fe-Core Formation?

    NASA Astrophysics Data System (ADS)

    Dobrzhinetskaya, L.; Wirth, R.; Yang, J.; Weber, P.; Hutcheon, I.; Green, H. W.

    2008-12-01

    Among the light elements that have been added to mineral physics experiments concerning the Fe-rich core of the Earth, nitrogen is less favorable. In general, this is because metal-nitrides are thought to be rare within Earth. However this may not be because they are rare, but because nitrogen is difficult to detect by conventional electron microprobe analysis unless one is specifically looking for it. Theoretically, metal-nitrides could be equally considered as potential candidates for the light element in the core, not only because nitrogen forms strong metallic bonds, but also because metal-nitrides are common constituents of many iron meteorites. Some Fe-nitrides are found to be stable at extreme pressures and temperatures corresponding to Earth's core in both diamond anvil cell and shock experiments (Adler and Williams, 2005; Sekine et al., 2007). We have discovered a metal-nitride phase, TiN (osbornite) within a mantle mineralogical assemblage, opening a new opportunity to understand the history of Earth's core formation. The TiN was found in the mantle section of an unmetamorphosed Tibetan ophiolite, a fragment of former mid-ocean spreading center, which now marks the tectonic boundary between Asia and India. The osbornite occurs as inclusions in coesite pseudomorphic after stishovite, in association with FeTi alloy, native Fe, TiO2 II, cubic BN and diamond included in Os-Ir alloy, all from a massive chromitite ore body enclosed within harzburgite (Yang et al., 2007; Dobrzhinetskaya et al., 2007). The chromite also exhibits coesite and diopside exsolution lamellae (Yamamoto et al., 2007) that might suggest the calcium-ferrite polymorph of chromite as a precursor decompressed during upwelling. Measurements of δ15N with a Cameca 50 NanoSIMS using the same Focused Ion Beam foils prepared and used for earlier TEM studies suggest that the Tibetan osbornite is characterized by negative δ15N (-10 ‰). The δ15N results from the Tibetan osbornite are somewhat more negative than the most commonly measured value for Earth's uppermost mantle (δ15N = -3 to -5 ‰), and they are clearly different from the δ15N of shallow reservoirs. The latter include atmosphere, ocean, and crust having values of delta δ15N -- 0 - +5 ‰ for the atmosphere and ocean and +5 - +12 ‰.) for the crustal rocks and sediments. We conclude that the Tibetan osbornite contains mantle N, perhaps from an old and/or deep mantle reservoir. Apropos of the suggestion of N in the core, we point out that most iron meteorites have extremely negative δ15N values of -60 ‰ or more, hence it is conceivable that part of the N signal in our materials comes from a leaky core.

  9. The physical hydrogeology of ore deposits

    USGS Publications Warehouse

    Ingebritsen, Steven E.; Appold, M.S.

    2012-01-01

    Hydrothermal ore deposits represent a convergence of fluid flow, thermal energy, and solute flux that is hydrogeologically unusual. From the hydrogeologic perspective, hydrothermal ore deposition represents a complex coupled-flow problem—sufficiently complex that physically rigorous description of the coupled thermal (T), hydraulic (H), mechanical (M), and chemical (C) processes (THMC modeling) continues to challenge our computational ability. Though research into these coupled behaviors has found only a limited subset to be quantitatively tractable, it has yielded valuable insights into the workings of hydrothermal systems in a wide range of geologic environments including sedimentary, metamorphic, and magmatic. Examples of these insights include the quantification of likely driving mechanisms, rates and paths of fluid flow, ore-mineral precipitation mechanisms, longevity of hydrothermal systems, mechanisms by which hydrothermal fluids acquire their temperature and composition, and the controlling influence of permeability and other rock properties on hydrothermal fluid behavior. In this communication we review some of the fundamental theory needed to characterize the physical hydrogeology of hydrothermal systems and discuss how this theory has been applied in studies of Mississippi Valley-type, tabular uranium, porphyry, epithermal, and mid-ocean ridge ore-forming systems. A key limitation in the computational state-of-the-art is the inability to describe fluid flow and transport fully in the many ore systems that show evidence of repeated shear or tensional failure with associated dynamic variations in permeability. However, we discuss global-scale compilations that suggest some numerical constraints on both mean and dynamically enhanced crustal permeability. Principles of physical hydrogeology can be powerful tools for investigating hydrothermal ore formation and are becoming increasingly accessible with ongoing advances in modeling software.

  10. Iron-ore resources of the United States including Alaska and Puerto Rico, 1955

    USGS Publications Warehouse

    Carr, Martha S.; Dutton, Carl E.

    1959-01-01

    The importance of iron ore, the basic raw material of steel, as a fundamental mineral, resource is shown by the fact that about 100 million long tons of steel is used annually in the economy of the United States, as compared with a combined total of about 5 million long tons of copper, lead, zinc, and aluminum. Satisfying this annual demand for steel requires about 110 million tons of iron ore and 70 million tons of scrap iron and steel. The average annual consumption of iron ore in the United States from 1951 to 1955, inclusive, was about 110 million long tons, which is about twice the annual average from 1900 to 1930. Production of iron ore in the United States in this 5-year period averaged approximately 100 million long tons annually, divided by regions as follows (in percent): Lake Superior, 84.1; southeastern, 6.7; western, 6.7; northeastern, 1.4; and central and gulf, 1.1. Mining of iron ore began in the American Colonies about 1619, and for 225 years it was limited to eastern United States where fuel and markets were readily available. Production of iron ore from the Lake Superior region began in 1846; the region became the leading domestic source by 1890, and the Mesabi range in Minnesota has been the world's most productive area since 1896. Proximity of raw materials, water transportation, and markets has resulted in centralization of the country's iron and steel industry in the lower Great Lakes area. Increased imports of iron ore being delivered to eastern United States as well as demands for steel in nearby markets have given impetus to expansion in the steel-making capacity in this area. The four chief iron-ore minerals - hematite, liminite, magnetite, and siderite - are widely distributed but only locally form deposits of sufficient tonnage and grade to be commercially valuable at the present time. The iron content of these minerals, of which hematite is the most important, ranges from 48 percent in siderite to 72 percent in magnetite, but as these minerals are associated with other rock-forming minerals, the iron content of marketable ore has a lower range from 30 to 67 percent.Chemical constituents other than iron also are important in determining the marketability of iron ore. Although some iron ores can be used in the blast furnace as mined, others must first be improved either chemically by reduction of undesirable constituents, or physically by aggregation. Phosphorus and sulfur particularly are common deleterious elements; excessive silica is also undesirable but within certain limits can be controlled by additional flux. Lime and magnesia are beneficial in specified amounts because of their fluxing qualities, and a small amount of alumina improves the fluidity of slag. Manganese is especially desirable as a deoxidizing and desulfurizing agent. Titanium, chromium, and nickel must also be considered in the use of ore containing these elements.The principal iron-ore deposits in the United States have been formed by three processes. Hematite-bearing bedded deposits such as those at Birmingham, Ala., are marine sedimentary rocks which, except for weathering along the outcrop, have remained practically unaltered since deposition. Deposits of the Lake Superior region, also in sedimentary strata, originally had a slightly lower iron content than those at-Birmingham, but ore bodies of hematite and limonite were formed by removal of other constituents in solution after deposition of the beds, with a relative increase of iron content in the material remaining. Limestone adjacent to igneous intrusions has been replaced by magnetite deposits at Cornwall, Pa., and by hematite-magnetite deposits near Cedar City, Utah. Magnetite deposits in New Jersey and in the Adirondack Mountains of New York are generally believed to have been formed by replacement of grains of other minerals in metamorphic rocks. Iron-ore resources are made up of reserves of iron ore, material usable under existing economic and technologic conditions; and potential ore, material likely to become usable under more favorable conditions. The tonnage and grade of material of combined reserves and potential ore in each of the deposits known or believed to contain at least 200,000 long tons of iron-ore resources are tabulated in this report, and numerous sources of additional information are given in a selected bibliography. The total domestic iron-ore resources are estimated at approximately 75,000 million long tons of crude ore. About 10,000 million tons of the resources is reserves of crude ore that will probably yield 5,500 million tons of concentrates and direct-shipping ore. About 65,000 million tons is potential ore and may yield 25,000 million tons of concentrates and some direct-shipping ore.

  11. Nitrile/Buna N Material Failure Assessment for an O-Ring used on the Gaseous Hydrogen Flow Control Valve (FCV) of the Space Shuttle Main Engine

    NASA Technical Reports Server (NTRS)

    Wingard, Doug

    2006-01-01

    After the rollout of Space Shuttle Discovery in April 2005 in preparation for return-to-flight, there was a failure of the Orbiter (OV-103) helium signature leak test in the gaseous hydrogen (GH2) system. Leakage was attributed to the Flow Control Valve (FCV) in Main Engine 3. The FCV determined to be the source of the leak for OV-103 is designated as LV-58. The nitrile/Buna N rubber O-ring seal was removed from LV-58, and failure analysis indicated radial cracks providing leak paths in one quadrant. Cracks were eventually found in 6 of 9 FCV O-rings among the three Shuttle Orbiters, though none were as severe as those for LV-58, OV-103. Testing by EM10 at MSFC on all 9 FCV O- rings included: laser dimensional, Shore A hardness and properties from a dynamic mechanical analyzer (DMA) and an Instron tensile machine. The following test data was obtained on the cracked quadrant of the LV-58, OV-103 O-ring: (1) the estimated compression set was only 9.5%, compared to none for the rest of the O-ring; (2) Shore A hardness for the O.D. was higher by almost 4 durometer points than for the rest of the O-ring; and (3) DMA data showed that the storage/elastic modulus E was almost 25% lower than for the rest of the O-ring. Of the 8 FCV O-rings tested on an Instron, 4 yielded tensile strengths that were below the MIL spec requirement of 1350 psi-a likely influence of rubber cracking. Comparisons were made between values of modulus determined by DNA (elastic) and Instron (Young s). Each nitrile/Buna N O-ring used in the FCV conforms to the MIL-P-25732C specification. A number of such O-rings taken from shelf storage at MSFC and Kennedy Space Center (KSC) were used to generate a reference curve of DMA glass transition temperature (Tg) vs. shelf storage time ranging from 8 to 26 years. A similar reference curve of TGA onset temperature (of rubber weight loss) vs. shelf storage time was also generated. The DMA and TGA data for the used FCV O-rings were compared to the reference curves. Correlations were also made between the DMA modulus (at 22 C) and Shore A hardness for all 9 of the FCV O-rings used among the three Shuttle Orbiters. The radial cracking in the FCV O-rings was determined to be due to ozone attack, as nitrile/Buna N rubber is susceptible to such attack. Nitrile/Buna N material under MIL-P25732C should be used in a hydraulic fluid environment to help protect it from cracking. However, the FCV O-rings were used in an air only environment. The FCV design has as much as a 9-mil gap that allows the O.D. of the O-ring to be directly exposed to ozone, pressurized air and some elevated temperatures, accelerating the weathering process that leads to O-ring cracking. Space Shuttle flights will likely not continue past 2010. Therefore, Shuttle management decided to continue using the nitrile/Buna N material for the FCVs, but have each O-ring replaced after 3 years to minimize any chances for crack initiation.

  12. Shale-oil-recovery systems incorporating ore beneficiation. Final report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiss, M.A.; Klumpar, I.V.; Peterson, C.R.

    This study analyzed the recovery of oil from oil shale by use of proposed systems which incorporate beneficiation of the shale ore (that is concentration of the kerogen before the oil-recovery step). The objective was to identify systems which could be more attractive than conventional surface retorting of ore. No experimental work was carried out. The systems analyzed consisted of beneficiation methods which could increase kerogen concentrations by at least four-fold. Potentially attractive low-enrichment methods such as density separation were not examined. The technical alternatives considered were bounded by the secondary crusher as input and raw shale oil as output.more » A sequence of ball milling, froth flotation, and retorting concentrate is not attractive for Western shales compared to conventional ore retorting; transporting the concentrate to another location for retorting reduces air emissions in the ore region but cost reduction is questionable. The high capital and energy cost s results largely from the ball milling step which is very inefficient. Major improvements in comminution seem achievable through research and such improvements, plus confirmation of other assumptions, could make high-enrichment beneficiation competitive with conventional processing. 27 figures, 23 tables.« less

  13. Effect of rare earth Ce on the far infrared radiation property of iron ore tailings ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jie; Institute of Power Source and Ecomaterials Science, Hebei University of Technology, Tianjin 300130; Meng, Junping, E-mail: srlj158@sina.com

    2015-06-15

    Highlights: • Detailed process proposed for preparation of iron ore tailings ceramics. • Replace natural minerals with iron ore tailings as raw materials for preparing functional ceramics. • Impact mechanism of Ce on far infrared ceramics, as well as its optimum addition amounts can be obtained. • Propose a new perspective on considering the mechanism of far infrared radiation. - Abstract: A kind of far infrared radiation ceramics was prepared by using iron ore tailings, CaCO{sub 3} and SiO{sub 2} as main raw materials, and Ce as additive. The result of Fourier transform infrared spectroscopy showed that the sample exhibitsmore » excellent radiation value of 0.914 when doping 7 wt.% Ce. Ce{sup 4+} dissolved into iron diopside and formed interstitial solid solution with it sintered at 1150 °C. The oxidation of Fe{sup 2+} to Fe{sup 3+} caused by Ce{sup 4+} led to a decrease of crystallite sizes and enhancement of Mg–O and Fe–O vibration in iron diopside, which consequently improved the far infrared radiation properties of iron ore tailings ceramics.« less

  14. The influence of geomorphology on the role of women at artisanal and small-scale mine sites

    USGS Publications Warehouse

    Malpeli, Katherine C.; Chirico, Peter G.

    2013-01-01

    The geologic and geomorphic expressions of a mineral deposit determine its location, size, and accessibility, characteristics which in turn greatly influence the success of artisans mining the deposit. Despite this critical information, which can be garnered through studying the surficial physical expression of a deposit, the geologic and geomorphic sciences have been largely overlooked in artisanal mining-related research. This study demonstrates that a correlation exists between the roles of female miners at artisanal diamond and gold mining sites in western and central Africa and the physical expression of the deposits. Typically, women perform ore processing and ancillary roles at mine sites. On occasion, however, women participate in the extraction process itself. Women were found to participate in the extraction of ore only when a deposit had a thin overburden layer, thus rendering the mineralized ore more accessible. When deposits required a significant degree of manual labour to access the ore due to thick overburden layers, women were typically relegated to other roles. The identification of this link encourages the establishment of an alternative research avenue in which the physical and social sciences merge to better inform policymakers, so that the most appropriate artisanal mining assistance programs can be developed and implemented.

  15. Potential Aquifer Vulnerability in Regions Down-Gradient from ...

    EPA Pesticide Factsheets

    Sandstone-hosted roll-front uranium ore deposits originate when U(VI) dissolved in groundwater is reduced and precipitated as insoluble U(IV) minerals. Groundwater redox geochemistry, aqueous complexation, and solute migration are instrumental in leaching uranium from source rocks and transporting it in low concentrations to a chemical redox interface where it is deposited in an ore zone typically containing the uranium minerals uraninite, pitchblende, and/or coffinite; various iron sulfides; native selenium; clays; and calcite. In situ recovery (ISR) of these uranium ores is a process of contacting the uranium mineral deposit with leaching (lixiviant) fluids via injection of the lixiviant into wells drilled into the subsurface aquifer that hosts uranium ore, while other extraction wells pump the dissolved uranium after dissolution of the uranium minerals. Environmental concerns during and after ISR include water quality impacts from: 1) potential excursions of leaching solutions away from the injection zone into down-dip, underlying, or overlying aquifers; 2) potential migration of uranium and its decay products (e.g., Ra, Rn, Pb); and, 3) potential migration of redox-sensitive trace metals (e.g., Fe, Mn, Mo, Se, V), metalloids (e.g., As), and anions (e.g., sulfate). This review describes the geochemical processes that control roll-front uranium transport and fate in groundwater systems, identifies potential aquifer vulnerabilities to ISR operations, identifies

  16. Optimization of staged bioleaching of low-grade chalcopyrite ore in the presence and absence of chloride in the irrigating lixiviant: ANFIS simulation.

    PubMed

    Vakylabad, Ali Behrad; Schaffie, Mahin; Naseri, Ali; Ranjbar, Mohammad; Manafi, Zahra

    2016-07-01

    In this investigation, copper was bioleached from a low-grade chalcopyrite ore using a chloride-containing lixiviant. In this regard, firstly, the composition of the bacterial culture media was designed to control the cost in commercial application. The bacterial culture used in this process was acclimated to the presence of chloride in the lixiviant. Practically speaking, the modified culture helped the bio-heap-leaching system operate in the chloridic media. Compared to the copper recovery from the low-grade chalcopyrite by bioleaching in the absence of chloride, bioleaching in the presence of chloride resulted in improved copper recovery. The composition of the lixiviant used in this study was a modification with respect to the basal salts in 9 K medium to optimize the leaching process. When leaching the ore in columns, 76.81 % Cu (based on solid residues of bioleaching operation) was recovered by staged leaching with lixiviant containing 34.22 mM NaCl. The quantitative findings were supported by SEM/EDS observations, X-ray elemental mapping, and mineralogical analysis of the ore before and after leaching. Finally, Adaptive neuro-fuzzy inference system (ANFIS) was used to simulate the operational parameters affecting the bioleaching operation in chloride-sulfate system.

  17. Effects of the addition of municipal solid waste incineration fly ash on the behavior of polychlorinated dibenzo-p-dioxins and furans in the iron ore sintering process.

    PubMed

    Min, Yi; Liu, Chengjun; Shi, Peiyang; Qin, Chongda; Feng, Yutao; Liu, Baichen

    2018-04-11

    Raw materials were co-sintered with municipal solid waste incineration (MSWI) fly ash through iron ore sintering to promote the safe treatment and utilization of MSWI fly ash. To assess the feasibility of this co-sintering method, in this study, the effects of the addition of MSWI fly ash on the formation and emission of polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs) were estimated via iron ore sintering pot experiments. During co-sintering, most of the PCDD/Fs in the added MSWI fly ash were decomposed and transformed into PCDD/Fs associated with iron sintering, and the concentrations of lower- and mid-chlorinated congeners increased. As there was a sufficient chlorine source and the sintering bed permeability was decreased by the addition of MSWI fly ash, the PCDD/F concentration in the exhaust gas increased. The mass emission of PCDD/Fs decreased; however, the emission of toxic PCDD/Fs increased beyond the total emissions from the independent MSW incineration and iron ore sintering processes due to the transformation of PCDD/F congeners. The co-sintering may be an important solution after technological improvements in the flue gas cleaning system and PCDD/F formation inhibition procedures. Copyright © 2018. Published by Elsevier Ltd.

  18. The enhancing of Au-Ag-Te content in tellurium-bearing ore mineral by bio-oxidation-leaching

    NASA Astrophysics Data System (ADS)

    Kim, PyeongMan; Kim, HyunSoo; Myung, EunJi; Kim, YoonJung; Lee, YongBum; Park*, CheonYoung

    2015-04-01

    The purpose of this study is to enhance the content of valuable metals such as Au-Ag-Te in tellurium-bearing minerals by bio-oxidation-leaching. It was confirmed that pyrite, chalcopyrite, sphalerite and galena were produced together with tellurium-bearing minerals including hessite, sylvanite and tellurobismuthite from ore minerals and concentrates through microscopic observation and SEM/EDS analysis. In a bio-oxidation-leaching experiment, with regard to Au, Ag, Te, Cu and Fe, the changes in the amount of leaching and the content of leaching residues were compared and analyzed with each other depending on the adaptation of an indigenous microbe identified as Acidithiobacillus ferrooxidans. As a result of the experiment, the Au-Ag-Te content in tellurium-bearing ore mineral was enhanced in the order of physical oxidation leaching, physical/non-adaptive bio-oxidation-leaching and physical/adaptive biological leaching. It suggests that the bio-oxidation-leaching using microbes adapted in tellurium-bearing ore mineral can be used as a pre-treatment and a main process in a recovery process of valuable metals. "This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education(NRF-2013R1A1A2004898)"

  19. VOLATILE CHLORIDE PROCESS FOR THE RECOVERY OF METAL VALUES

    DOEpatents

    Hanley, W.R.

    1959-01-01

    A process is presented for recovering uranium, iron, and aluminum from centain shale type ores which contain uranium in minute quantities. The ore is heated wiih a chlorinating agent. such as chlorine, to form a volatilized stream of metal chlorides. The chloride stream is then passed through granular alumina which preferentially absorbs the volatile uranium chloride and from which the uranium may later be recovered. The remaining volatilized chlorides, chiefly those of iron and aluminum, are further treated to recover chlorine gas for recycle, and to recover ferric oxide and aluminum oxide as valuable by-products.

  20. Mapping the Oman Ophiolite using TM data

    NASA Technical Reports Server (NTRS)

    Abrams, Michael

    1987-01-01

    Ophiolite terrains, considered to be the onland occurrences of oceanic crust, host a number of types of mineral deposits: volcanogenic massive sulfides, podiform chromite, and asbestos. Thematic Mapper data for the Semail Ophiolite in Oman were used to separate and map ultramafic lithologies hosting these deposits, including identification of the components of the extrusive volcanic sequence, mapping of serpentinization due to various tectonic processes, and direct identification of gossans. Thematic Mapper data were found to be extremely effective for mapping in this terrain due to the excellent spatial resolution and the presence of spectral bands which allow separation of the pertinent mineralogically caused spectral features associated with the rock types of interest.

  1. Titanium minerals of placer deposits as a source for new materials

    NASA Astrophysics Data System (ADS)

    Kotova, Olga; Ponaryadov, Alexey

    2015-04-01

    Heavy mineral deposits are a source of the economic important element titanium, which is contained in ilmenite and leucoxene. The mineral composition of placer titanium ore and localization pattern of ore minerals determine their processing and enriching technologies. New data on the mineralogy of titanium ores from modern coastal-marine placer in Stradbroke Island, Eastern Australia, and Pizhma paleoplacer in Middle Timan, Russia, and materials on their basis are presented. The samples were studied by the following methods: optical-mineralogical (stereomicroscope MBS-10, polarizing microscope POLAM L-311), semiquantitative x-ray phase analysis (x-ray difractometer X'Pert PRO MPD). Besides microprobe (VEGA 3 TESCAN) and x-ray fluorescent analysis (XRF-1800 Shimadzu) were used. By the mineralogical composition ores of the both deposits are complex: enriched by valuable minerals. Apart from main ore concentrates it is possible to obtain accompanying nonmetallic products. This will increase the efficiency of deposit exploitation. Ilmenite dominates in ore sands of Stradbroke Island, and leucoxene dominates in the ores of the Pizhma titanium deposit. Australian ilmenite and its altered varieties are mainly characterized by a very high MnO content (from 5.24 to 11.08 %). The irregular distribution of iron oxides, titanium and manganese in the altered ilmenite was shown in the paper. E.g., in the areas of substitution of ilmenite by pseudorutile the concentrations of the given elements are greatly various due to various ratios of basic components in each grain. Their ratios are equal in the area of rutile evolution. Moreover, the high content of gold, diamonds and also rare earth elements (REE) and rare metals (their forms are not determined) were studied. We found native copper on the surface of minerals composing titanium-bearing sandstones of the Pizhma placer. According to the technological features of rocks (density and magnetic) studied placers are close. The obtained results of physical studies, mineral composition features, morphostructural characteristics and degree of alteration of titanium minerals from the placers specify a high potential of physical methods of processing (gravitational and magnetic separation, flotation) and possible application of combined methods of processing. Production of pigment titanium dioxide for further production of titanium white, paper, plastics etc is the usual application area of titanium concentrates. Titanium dioxide of high chemical purity is used to produce optically transparent glass, fiber optics, electronics (iPad), piezoceramics, in medical and food industry. We designed photocatalysts based on leucoxene from Pizhma placer. The results showed that the photocatalysts based on rutile, synthesized from leucoxene from Pizhma deposit, can be applied to decay phenols in water.

  2. Sulfur, carbon, hydrogen, and oxygen isotope geochemistry of the Idaho cobalt belt

    USGS Publications Warehouse

    Johnson, Craig A.; Bookstrom, Arthur A.; Slack, John F.

    2012-01-01

    Cobalt-copper ± gold deposits of the Idaho cobalt belt, including the deposits of the Blackbird district, have been analyzed for their sulfur, carbon, hydrogen, and oxygen isotope compositions to improve the understanding of ore formation. Previous genetic hypotheses have ranged widely, linking the ores to the sedimentary or diagenetic history of the host Mesoproterozoic sedimentary rocks, to Mesoproterozoic or Cretaceous magmatism, or to metamorphic shearing. The δ34S values are nearly uniform throughout the Blackbird dis- trict, with a mean value for cobaltite (CoAsS, the main cobalt mineral) of 8.0 ± 0.4‰ (n = 19). The data suggest that (1) sulfur was derived at least partly from sedimentary sources, (2) redox reactions involving sulfur were probably unimportant for ore deposition, and (3) the sulfur was probably transported to sites of ore for- mation as H2S. Hydrogen and oxygen isotope compositions of the ore-forming fluid, which are calculated from analyses of biotite-rich wall rocks and tourmaline, do not uniquely identify the source of the fluid; plausible sources include formation waters, metamorphic waters, and mixtures of magmatic and isotopically heavy meteoric waters. The calculated compositions are a poor match for the modified seawaters that form vol- canogenic massive sulfide (VMS) deposits. Carbon and oxygen isotope compositions of siderite, a mineral that is widespread, although sparse, at Blackbird, suggest formation from mixtures of sedimentary organic carbon and magmatic-metamorphic carbon. The isotopic compositions of calcite in alkaline dike rocks of uncertain age are consistent with a magmatic origin. Several lines of evidence suggest that siderite postdated the emplacement of cobalt and copper, so its significance for the ore-forming event is uncertain. From the stable isotope perspective, the mineral deposits of the Idaho cobalt belt contrast with typical VMS and sedimentary exhalative deposits. They show characteristics of deposit types that form in deeper environments and could be related to metamorphic processes or magmatic processes, although the isotopic evidence for magmatic components is relatively weak.

  3. Novel Binders and Methods for Agglomeration of Ore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. K. Kawatra; T. C. Eisele; K. A. Lewandowski

    2006-09-30

    Heap leaching is one of the methods being used to recover metal from low grade ore deposits. The main problem faced during heap leaching is the migration of fine grained particles through the heap, forming impermeable beds which result in poor solution flow. The poor solution flow leads to less contact between the leach solution and the ore, resulting in low recovery rates. Agglomeration of ore into coarse, porous masses prevents fine particles from migrating and clogging the spaces and channels between the larger ore particles. Currently, there is one facility in the United States which uses agglomeration. This operationmore » agglomerates their ore using leach solution (raffinate), but is still experiencing undesirable metal recovery from the heaps due to agglomerate breakdown. The use of a binder, in addition to the leach solution, during agglomeration would help to produce stronger agglomerates that did not break down during processing. However, there are no known binders that will work satisfactorily in the acidic environment of a heap, at a reasonable cost. As a result, operators of many facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. Increasing copper recovery in heap leaching by the use of binders and agglomeration would result in a significant decrease in the amount of energy consumed. Assuming that 70% of all the leaching heaps would convert to using agglomeration technology, as much as 1.64*10{sup 12} BTU per year would be able to be saved if a 25% increase in copper recovery was experienced, which is equivalent to saving approximately 18% of the energy currently being used in leaching heaps. For every week a leach cycle was decreased, a savings of as much as 1.23*10{sup 11} BTU per week would result. This project has identified several acid-resistant binders and agglomeration procedures. These binders and experimental procedures will be able to be used for use in improving the energy efficiency of heap leaching.« less

  4. Complete zircon and chromite digestion by sintering of granite, rhyolite, andesite and harzburgite rock reference materials for geochronological purposes

    NASA Astrophysics Data System (ADS)

    Bokhari, Syed Nadeem H.; Meisel, Thomas

    2014-05-01

    Zircon (ZrSiO4) is a common accessory mineral in nature that occurs in a wide variety of sedimentary, igneous, and metamorphic rocks. Zircon has the ability to retain substantial chemical and isotopic information that are used in range of geochemical and geo- chronological investigations. Sample digestion of such rock types is a limiting factor due to the chemical inertness of zircon (ZrSiO4) tourmaline, chromite, barite, monazite, sphene, xenotime etc. as the accuracy of results relies mainly on recovery of analytes from these minerals. Dissolution by wet acid digestions are often incomplete and high blank and total dissolved solids (TDS) contents with alkali fusions lead to an underestimation of analyte concentrations. Hence an effective analytical procedure, that successfully dissolves refractory minerals such as zircon is needed to be employed for reliable analytical results. Na2O2 digestion [1] was applied in characterisation of granite (G-3), rhyolite (MRH), andesite (MGL-AND) and harzburgite (MUH-1) powdered reference material with solution based ICP-MS analysis. In this study we undertake a systematic evaluation of decomposition time and sample:Na2O2 ratio and test portion size after minimising effect of all other constraints that makes homogeneity ambiguous. In recovering zircon and chromite 100 mg test portion was mixed with different amounts of Na2O2 i.e. 100-600 mg. Impact of decomposition time was observed by systematically increasing heating time from 30-45 minutes to 90-120 minutes at 480°C. Different test portion sizes 100-500 mg of samples were digested to control variance of inhomogeneity. An improved recovery of zirconium in zircon in granite (G-3), rhyolite MRH), andesite (MGL-AND) and chromite in harzburgite (MUH-1) was obtained by increasing heating time (2h) at 480°C and by keeping (1:6) ratio of sample:Na2O2. Through this work it has been established that due to presence of zircon and chromite, decomposition time and sample:Na2O2 ratio has to be increased for an accurate content determination and complete release of analytes for geochronological studies. Larger test portion size reduces the heterogeneity issues in granites in particular [2]. No significant blanks issues were observed and interferences were controlled using QQQ MS mode of ICP-MS. References [1] Meisel, T., N. Schöner, et al. (2002). "Determination of Rare Earth Elements, Y, Th, Zr, Hf, Nb and Ta in Geological Reference Materials G-2, G-3, SCo-1 and WGB-1 by Sodium Peroxide Sintering and Inductively Coupled Plasma-Mass Spectrometry." Geostandards Newsletter 26(1): 53-61. [2] Bokhari SNH., Meisel T (2013) "The Determination of Homogeneity of Geological Reference Material" Mineralogical Magazine, 77(5): 731.

  5. The Role of Spinel Minerals in Lunar Magma Evolution

    NASA Astrophysics Data System (ADS)

    Taylor, L. A.; Head, J. W.; Pieters, C. M.; Sunshine, J. M.; Staid, M.; Isaacson, P.; Petro, N. E.

    2009-12-01

    The Moon Mineralogy Mapper (M3), a NASA guest instrument on Chandrayaan-1, India’s first mission to the Moon, was designed to map the surface mineralogy of the Moon using reflected solar radiation at visible and near-infrared wavelengths, which contain highly diagnostic absorptions due to minerals. The M3 spectrometer has discovered several new and unexpected aspects of the geology and petrology of the Moon, some involving specific oxide phases. Spinel minerals, with the general formula, AB2O4, present clues as to the oxygen fugacity, the nature of magmatic systems, and their evolution, particularly during the early stages of crystallization. On the Moon, with its total lack of Fe3+ and minerals such as magnetite, observed spinels range between spinel, MgAl2O4; hercynite, FeAl2O4; Chromite, FeCr2O4; and ulvöspinel, Fe(FeTi)2O4. They manifest themselves in three distinctly different igneous rock types: highlands rocks of anorthosites/troctolites, gabbro-norites; mare basalts with various TiO2 contents; and basaltic pyroclastic volcanic glasses. Although spinels occur as minor minerals in the Apollo collection, unique rock types dominated by Mg-spinel (with olivine and pyroxene abundances below detection limits, assumed to be ~5%) have been identified by M3 on the Moon. Because the spinel-bearing rocks detected by M3 have no signature of a significant olivine component, they must be dominated by plagioclase and spinel. Pink Mg-spinels typically occur as a minor phase in troctolites (plagioclase + olivine), a highland rock formed after the initial Ferroan Anorthosite (FAN) crust, presumably by serial magmatism deep within the crust, with intrusion upward. FANs were formed by floatation of plagioclase in the lunar magma ocean (LMO), whereas spinels would sink due to their much higher density. Thus, a plagioclase-rich rock type with a strong Mg-spinel spectral signature would have to be part of later highland intrusives. The excess Mg-spinel could be the product of crystal settling in an anorthositic magma chamber, much like in anorthositic layered intrusives on Earth. On the Moon, this would be a cumulate spinel anorthosite, never before seen in remote sensing or in the lunar sample collection. Virtually all types of mare basalt melts have chromite at or near the liquidus, closely associated with olivine or low-Ca pyroxene. During crystallization, the chromite becomes more Ti-rich, typically with nearly continuous solid-solution zonation outward to ulvöspinel. Pyroclastic orange/black glass on the Moon typically contains dendritic crystallites of ilmenite and olivine, a product of the rich-TiO2 content of the fire-fountain melt. However, other pyroclastic melt compositions, with high-Cr and low-Ti contents, have chromite on the liquidus, which could result in dendrites of chromite and olivine in the volcanic glass. Here again, M3 is seeing spinel-dominated materials, this time in close association with pyroclastic deposits.

  6. Ore Reserve Estimation of Saprolite Nickel Using Inverse Distance Method in PIT Block 3A Banggai Area Central Sulawesi

    NASA Astrophysics Data System (ADS)

    Khaidir Noor, Muhammad

    2018-03-01

    Reserve estimation is one of important work in evaluating a mining project. It is estimation of the quality and quantity of the presence of minerals have economic value. Reserve calculation method plays an important role in determining the efficiency in commercial exploration of a deposit. This study was intended to calculate ore reserves contained in the study area especially Pit Block 3A. Nickel ore reserve was estimated by using detailed exploration data, processing by using Surpac 6.2 by Inverse Distance Weight: Squared Power estimation method. Ore estimation result obtained from 30 drilling data was 76453.5 ton of Saprolite with density of 1.5 ton/m3 and COG (Cut Off Grade) Ni ≥ 1.6 %, while overburden data was 112,570.8 tons with waste rock density of 1.2 ton/m3 . Striping Ratio (SR) was 1.47 : 1 smaller than Stripping Ratio ( SR ) were set of 1.60 : 1.

  7. Comprehensive recovery of gold and base-metal sulfide minerals from a low-grade refractory ore

    NASA Astrophysics Data System (ADS)

    Li, Wen-juan; Liu, Shuang; Song, Yong-sheng; Wen, Jian-kang; Zhou, Gui-ying; Chen, Yong

    2016-12-01

    The comprehensive recovery of small amounts of valuable minerals such as gold and base-metal sulfide minerals from a low-grade refractory ore was investigated. The following treatment strategy was applied to a sample of this ore: gold flotation-gold concentrate leaching-lead and zinc flotation from the gold concentrate leaching residue. Closed-circuit trials of gold flotation yielded a gold concentrate that assayed at 40.23 g·t-1 Au with a recovery of 86.25%. The gold concentrate leaching rate was 98.76%. Two variants of lead-zinc flotation from the residue—preferential flotation of lead and zinc and bulk flotation of lead and zinc—were tested using the middling processing method. Foam from the reflotation was returned to the lead rougher flotation or lead-zinc bulk flotation, whereas middlings from reflotation were discarded. Sulfur concentrate was a byproduct. The combined strategy of flotation, leaching, and flotation is recommended for the treatment of this kind of ore.

  8. The control of H2S in biogas using iron ores as in situ desulfurizers during anaerobic digestion process.

    PubMed

    Zhou, Qiying; Jiang, Xia; Li, Xi; Jiang, Wenju

    2016-09-01

    In this study, five kinds of iron ores, limonite, hematite, manganese ore, magnetite and lava rock, were used as the in situ desulfurizers in the anaerobic digestion reactors to investigate their effects on controlling H2S in biogas. The results show that the addition of the five iron ores could significantly control the content of H2S in biogas, with the best performance for limonite. As limonite dosages increase (10-60 g/L), the contents of H2S in biogas were evidently decreased in the digesters with different initial sulfate concentrations (0-1000 mg/L). After the anaerobic digestion, the removed sulfur was mostly deposited on the surface of limonite. A possible mechanism of H2S control in biogas by limonite was proposed preliminarily, including adsorption, FeS precipitation, and Fe (III) oxidation. The results demonstrated that limonite was a promising in situ desulfurizer for controlling H2S in biogas with low cost and high efficiency.

  9. Effect of moisture content on the flowability of crushed ores

    NASA Astrophysics Data System (ADS)

    Cabrejos, Francisco

    2017-06-01

    In many mining and industrial processes where large quantities of non-degrading bulk materials such as crushed ores are handled, silos, hoppers, stockpiles and chutes are widely used because they are economical and reliable (if properly designed and operated). However, they are not free of trouble and may experience flow problems such as arching, ratholing, erratic flow, limited storage capacity, limited discharge flow rate, caking, segregation and/or flooding. Moisture content and fine particles significantly affect the flowability of most ores, increasing their cohesive strength and turning them more prone to these problems. The purpose of this article is to highlight a proven, scientific method that can be utilized to ensure reliable storage, flow and discharge of bulk solids in these equipment based on Jenike's flow-of-solids theory and laboratory testing. Knowledge of the flow properties of the material handled provides a design basis to ensure mass flow, avoid arching and prevent the formation of "ratholes". The effect of an increase in water content of the ore is discussed with experimental results.

  10. Recovery of Iron from Hematite-Rich Diasporic-Type Bauxite Ore

    NASA Astrophysics Data System (ADS)

    Jiang, Tao; Li, Zhuoxuan; Yang, Lin; Li, Guanghui; Zhang, Yuanbo; Zeng, Jinghua

    A technique has been proposed for recovering iron from hematite-rich diasporic-type bauxite ore in this study. Direct reduction roasting followed by low intensity wet magnetic separation process was carried out. The parameters including reduction temperature and time, sodium salts, grinding conditions and magnetic field intensity for separation of iron were determined. The optimum process parameters as follows: roasting temperature of 1050 °C, time of 60 min, sodium salts involving sodium sulfate, borax, sodium carbonate with dosages of 10 wt%, 2 wt%, 35 wt% respectively, and magnetic field intensity of 1000 Gs with fineness of pulp reached 92.75% passing -0.074mm. Under the optimal conditions, an iron concentrate containing 88.17% total iron grade and iron recovery of 92.51% was obtained, 4.55% total iron grade in tailings. This novel technique provide a potential route for utilizing hematiterich diasporic bauxite ore, recovering iron resource firstly, and extracting alumina from magnetic separation tailings further.

  11. UNDERGROUND URANIUM MINING ON COLORADO PLATEAU

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dare, W.L.

    1958-10-31

    The size and continuity of the Chinie ore bodies in the Big Indian district, Utah, have permitted mine operators in plan a more integrated development and mining system using larger and more specialized equipment. Thick ore and firm backs at the south end of the district than permitted room and pillar mining, using large drill jumbos send diesel-powered haulage equipment. The Gismo loader and draw-chute system has proved efficient. Driving the haulage- way below the stope level is an advantage when pillars are recovered. To the north, thinner ore with weaker backs favor retreat systems and smaller equipment. Here, themore » ore bodies are delineated by a grid system of drifts, send the ore recovered by panel, longwall, or similar mining methods, retreating toward the principal entry. Labor productivity ranges from 8 to 21 tons per man-shift, send direct mining send development costs, excluding initial development, ranges from 75 to 51 per ton. A unique system of mine development is in the Temple Mountain district, Utah, where the shallow Chinie deposits are mined through 36- inch diameter calyx drill holes. Using small diesel-powered ore buggies and bucket hoisting, ore in produced from the two largest mines at a rate of 4.1 tons per man-shift, at a direci cost of 15 a ton. Ambrosia Lake deposits range from 5 to 80 feet thick and occur from 350 to 1,000 feet below the surface. These mines are in development stages. Open, retreat, and top-slice sloping is planned. Adequate ventilation is essential in uranium mining since sufficient air must be coursed through the workings to maintain airborne radioactive concentration at tolerance levels send dilute exhaust gases where diesel-powered equipment is used. Uranium miners have found that radiometric scannning is a quick and efficient method for checking ths grade of the ore produced and in process of development. (auth)« less

  12. Geochemical and mineralogical composition of bog iron ore as a resource for prehistoric iron production - A case study of the Widawa catchment area in Eastern Silesia, Poland

    NASA Astrophysics Data System (ADS)

    Thelemann, Michael; Bebermeier, Wiebke; Hoelzmann, Philipp

    2016-04-01

    Spreading from the Near East in the declining Bronze Age from the 2nd millennium BCE onwards, the technique of iron smelting reached Eastern Silesia, Poland, in approximately the 2nd century BCE (pre-Roman Iron Age). At this time the region of the Widawa catchment area was inhabited by the Przeworsk culture. While the older moraine landscape of the study area lacks ores from geological rock formations, bog iron ores were relatively widespread and, due to their comparatively easy accessibility, were commonly exploited for early iron production. In this poster the mineralogical and elemental composition of local bog iron ore deposits and iron slag finds, as a by-product of the smelting process, are investigated. The crystalline mineralogical composition of local bog iron ores is dominated by quartz (SiO2) and goethite (α FeO(OH)), in contrast to slag samples in which fayalite (Fe2SiO4), wüstite (FeO) and quartz, with traces of goethite, represent the main minerals. Ores and slags are both characterized by notable hematite (Fe2O3), magnetite (Fe3O4) and maghemite (γ-Fe2O3) contents. Analyzed bog iron ore samples show iron contents of up to 64.9 mass% Fe2O3 (45.4 mass% Fe), whereas the iron contents of bloomery slags vary between 48.7 and 72.0 mass% FeO (37.9 and 56.0 mass% Fe). A principal component analysis of the element contents, which were quantified by portable energy-dispersive X-ray fluorescence spectrometry (p-ED-XRF), indicates local variations in the elemental composition. Our results show that bog iron ores are relatively widely distributed with spatially varying iron contents along the Widawa floodplain but present-day formation conditions (e.g. different ground-water levels) are negatively affected by modern land-use practices, such as agriculture and melioration measures.

  13. Biomining with bacteriophage: selectivity of displayed peptides for naturally occurring sphalerite and chalcopyrite.

    PubMed

    Curtis, Susan B; Hewitt, Jeff; Macgillivray, Ross T A; Dunbar, W Scott

    2009-02-01

    During mineral processing, concentrates of sulfide minerals of economic interest are formed by froth flotation of fine ore particles. The method works well but recovery and selectivity can be poor for ores with complex mineralogy. There is considerable interest in methods that improve the selectivity of this process while avoiding the high costs of using flotation chemicals. Here we show the first application of phage biotechnology to the processing of economically important minerals in ore slurries. A random heptapeptide library was screened for peptide sequences that bind selectively to the minerals sphalerite (ZnS) and chalcopyrite (CuFeS2). After several rounds of enrichment, cloned phage containing the surface peptide loops KPLLMGS and QPKGPKQ bound specifically to sphalerite. Phage containing the peptide loop TPTTYKV bound to both sphalerite and chalcopyrite. By using an enzyme-linked immunosorbant assay (ELISA), the phage was characterized as strong binders compared to wild-type phage. Specificity of binding was confirmed by immunochemical visualization of phage bound to mineral particles but not to silica (a waste mineral) or pyrite. The current study focused primarily on the isolation of ZnS-specific phage that could be utilized in the separation of sphalerite from silica. At mining sites where sphalerite and chalcopyrite are not found together in natural ores, the separation of sphalerite from silica would be an appropriate enrichment step. At mining sites where sphalerite and chalcopyrite do occur together, more specific phage would be required. This bacteriophage has the potential to be used in a more selective method of mineral separation and to be the basis for advanced methods of mineral processing.

  14. Lake Superior, Duluth, MN

    NASA Technical Reports Server (NTRS)

    1973-01-01

    This view shows the west end of Lake Superior and Duluth, MN (47.0N, 91.0W). Portions of Minnesota, Michigan and Ontario, Canada are in the scene. The Duluth metropolitan area is at the west end of the lake. The discoloration plume in the water at Duluth is the result of tailings from the iron ore smelters that process the iron ore from the nearby open pit mines seen near the upper left corner of the photo.

  15. Reagents and fractions impact on sulphide ore heap bioleaching at Smolnik mine

    NASA Astrophysics Data System (ADS)

    Oros, L. M.; Zavada, J.

    2017-10-01

    Mine Smolnik is one of the oldest sulphide ore mines in Europe and it is also an important part of bioleaching development. This paper follows previous attempts to extract residual metals from nearby heaps via variations in bioleaching reagents with regard to recent findings and needs in the related industry. Furthermore, economic and process relations between reagents and chosen heap fractions were also investigated in this case study.

  16. Fast counting electronics for neutron coincidence counting

    DOEpatents

    Swansen, James E.

    1987-01-01

    An amplifier-discriminator is tailored to output a very short pulse upon an above-threshold input from a detector which may be a .sup.3 He detector. The short pulse output is stretched and energizes a light emitting diode (LED) to provide a visual output of operation and pulse detection. The short pulse is further fed to a digital section for processing and possible ORing with other like generated pulses. Finally, the output (or ORed output ) is fed to a derandomizing buffer which converts the rapidly and randomly occurring pulses into synchronized and periodically spaced-apart pulses for the accurate counting thereof. Provision is also made for the internal and external disabling of each individual channel of amplifier-discriminators in an ORed plurality of same.

  17. Fast counting electronics for neutron coincidence counting

    DOEpatents

    Swansen, J.E.

    1985-03-05

    An amplifier-discriminator is tailored to output a very short pulse upon an above-threshold input from a detector which may be a /sup 3/He detector. The short pulse output is stretched and energizes a light emitting diode (LED) to provide a visual output of operation and pulse detection. The short pulse is further fed to a digital section for processing and possible ORing with other like generated pulses. Finally, the output (or ORed output) is fed to a derandomizing buffer which converts the rapidly and randomly occurring pulses into synchronized and periodically spaced-apart pulses for the accurate counting thereof. Provision is also made for the internal and external disabling of each individual channel of amplifier-discriminators in an ORed plurality of same.

  18. Lunar vertical-shaft mining system

    NASA Technical Reports Server (NTRS)

    Introne, Steven D. (Editor); Krause, Roy; Williams, Erik; Baskette, Keith; Martich, Frederick; Weaver, Brad; Meve, Jeff; Alexander, Kyle; Dailey, Ron; White, Matt

    1994-01-01

    This report proposes a method that will allow lunar vertical-shaft mining. Lunar mining allows the exploitation of mineral resources imbedded within the surface. The proposed lunar vertical-shaft mining system is comprised of five subsystems: structure, materials handling, drilling, mining, and planning. The structure provides support for the exploration and mining equipment in the lunar environment. The materials handling subsystem moves mined material outside the structure and mining and drilling equipment inside the structure. The drilling process bores into the surface for the purpose of collecting soil samples, inserting transducer probes, or locating ore deposits. Once the ore deposits are discovered and pinpointed, mining operations bring the ore to the surface. The final subsystem is planning, which involves the construction of the mining structure.

  19. Study of the Dry Processing of Uranium Ores; ETUDE DES TRAITEMENTS DE MINERAIS D'URANIUM PAR VOIE SECHE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guillet, H.

    1959-02-01

    A description is given of direct fluorination of preconcentrated uranium ores in order to obtain the hexafluoride. After normal sulfuric acid treatment of the ore to eliminate silica, the uranium is precipitated by lime to obtain either impure calcium uranate of medium grade, or containing around 10% of uranium. This concentrate is dried in an inert atmosphere and then treated with a current of elementary fluorine. The uranium hexafluoride formed is condensed at the outlet of the reaction vessel and may be used either for reduction to tetrafluoride and the subsequent manufacture of uranium metal or as the initial productmore » in a diffusion plant. (auth)« less

  20. Photosynthetically mediated Zn removal from the water column in High Ore Creek, Montana

    USGS Publications Warehouse

    Morris, Jeffrey M.; Meyer, Joseph S.

    2006-01-01

    We collected cobbles covered in biofilm from High Ore Creek, Montana, placed them in 12 transparent PVC plastic chambers, and exposed the chambers to four treatments: Sunlight, Sunlight-occluded, DCMU (photosynthesis inhibited), and Formalin. Total aqueous zinc (Zn) concentrations in the Sunlight treatment decreased during the 4-h experiment and were significantly lower (P ≤ 0.05) than in the other three treatments, in which the total aqueous Zn concentrations did not decrease significantly. Therefore, we believe photosynthesis in the biofilm played a role in causing total aqueous Zn concentrations in the Sunlight treatment to decrease, and we believe a similar process contributes to diel Zn cycling in High Ore Creek and some other metals-contaminated streams.

  1. The Effect of Initial Irrigation Conditions on Heap Leaching Efficiency

    NASA Astrophysics Data System (ADS)

    Briseño Arellano, A. D.; Milczarek, M.; Yao, M.; Brusseau, M. L. L.

    2017-12-01

    Heap leaching is an unsaturated flow metal recovery process, in which mined ore is irrigated with a lixiviant to dissolve metal contained in the ore. The metal is then extracted from solution. Large scale operations involve stacking ore to depths of 6 to 18 meters on pads that may be hundreds of hectares in area. Heterogeneities within the stacked ore can lead to uneven wetting and the formation of preferential flow pathways, which reduces solution contact and lowers metal recovery. Furthermore, mineral dissolution can cause alteration of the porous media structure and loss of ore permeability. Many mine operators believe that slow initial irrigation rates help minimize permeability loss and increase metal recovery rates. However, this phenomenon has not been studied in detail. Experiments were conducted to investigate the effect of varying initial irrigation rates on leach ore stability. These were conducted with large columns (1.5 m high, 0.5 m in diameter) packed with crushed ore samples that are known to have permeability constraints. The columns were highly instrumented to assess potential changes in material properties both spatially and temporally. Water content was measured with three different methods: capacitance soil moisture sensors placed at 20-cm intervals; a neutron probe to periodically log every 30 cm from four different directions; and electrical resistivity sensors to create a 2-dimensional tomography profile of water content over time. Tensiometers were paired with the soil moisture sensors to measure matric suction and characterize moisture retention characteristics. A non-reactive tracer was used to characterize advective-dispersive transport under unsaturated conditions. A dye solution was introduced at the end of each experiment to map preferential pathways. Continuous monitoring of settling at the surface assisted in measuring consolidation and loss in permeability.

  2. Contrasting hydrological processes of meteoric water incursion during magmatic-hydrothermal ore deposition: An oxygen isotope study by ion microprobe

    NASA Astrophysics Data System (ADS)

    Fekete, Szandra; Weis, Philipp; Driesner, Thomas; Bouvier, Anne-Sophie; Baumgartner, Lukas; Heinrich, Christoph A.

    2016-10-01

    Meteoric water convection has long been recognized as an efficient means to cool magmatic intrusions in the Earth's upper crust. This interplay between magmatic and hydrothermal activity thus exerts a primary control on the structure and evolution of volcanic, geothermal and ore-forming systems. Incursion of meteoric water into magmatic-hydrothermal systems has been linked to tin ore deposition in granitic plutons. In contrast, evidence from porphyry copper ore deposits suggests that crystallizing subvolcanic magma bodies are only affected by meteoric water incursion in peripheral zones and during late post-ore stages. We apply high-resolution secondary ion mass spectrometry (SIMS) to analyze oxygen isotope ratios of individual growth zones in vein quartz crystals, imaged by cathodo-luminescence microscopy (SEM-CL). Existing microthermometric information from fluid inclusions enables calculation of the oxygen isotope composition of the fluid from which the quartz precipitated, constraining the relative timing of meteoric water input into these two different settings. Our results confirm that incursion of meteoric water directly contributes to cooling of shallow granitic plutons and plays a key role in concurrent tin mineralization. By contrast, data from two porphyry copper deposits suggest that downward circulating meteoric water is counteracted by up-flowing hot magmatic fluids. Our data show that porphyry copper ore deposition occurs close to a magmatic-meteoric water interface, rather than in a purely magmatic fluid plume, confirming recent hydrological modeling. On a larger scale, the expulsion of magmatic fluids against the meteoric water interface can shield plutons from rapid convective cooling, which may aid the build-up of large magma chambers required for porphyry copper ore formation.

  3. Fluid evolution and ore genesis of the Dalingshang deposit, Dahutang W-Cu ore field, northern Jiangxi Province, South China

    NASA Astrophysics Data System (ADS)

    Peng, Ning-Jun; Jiang, Shao-Yong; Xiong, Suo-Fei; Pi, Dao-Hui

    2018-02-01

    The Dalingshang W-Cu deposit is located in the North section of the Dahutang ore field, northern Jiangxi Province, South China. Vein- and breccia-style tungsten-copper mineralization is genetically associated with Mesozoic S-type granitic rocks. Infrared and conventional microthermometric studies of both gangue and ore minerals show that the homogenization temperatures for primary fluid inclusions in wolframite ( 340 °C) are similar to those in scheelite ( 330 °C), but about 40 °C higher than those of apatite ( 300 °C) and generally 70 °C higher than those in coexisting quartz ( 270 °C). Laser Raman analysis identifies CH4 and N2 without CO2 in fluid inclusions in scheelite and coexisting quartz, while fluid inclusions in quartz of the sulfide stage have variable CO2 content. The ore-forming fluids overall are characterized by high- to medium-temperature, low-salinity, CH4, N2, and/or CO2-bearing aqueous fluids. Chalcopyrite, muscovite, and sphalerite are the most abundant solids recognized in fluid inclusions from different ores. The H-O-S-Pb isotope compositions favor a dominantly magmatic origin for ores and fluids, while some depleted δ34S values (- 14.4 to - 0.9‰) of sulfides from the sulfide stage are most likely produced by an increase of oxygen fugacity, possibly caused by inflow of oxidized meteoric waters. The microthermometric data also indicate that a simple cooling process formed early scheelite and wolframite. However, increasing involvement of meteoric waters and fluid mixing may trigger a successive deposition of base metal sulfides. Fluid-rock interaction was critical for scheelite mineralization as indicated by in-situ LA-ICP-MS analysis of trace elements in scheelite.

  4. Physical and chemical controls on ore shoots - insights from 3D modeling of an orogenic gold deposit

    NASA Astrophysics Data System (ADS)

    Vollgger, S. A.; Tomkins, A. G.; Micklethwaite, S.; Cruden, A. R.; Wilson, C. J. L.

    2016-12-01

    Many ore deposits have irregular grade distributions with localized elongate and well-mineralized rock volumes commonly referred to as ore shoots. The chemical and physical processes that control ore shoot formation are rarely understood, although transient episodes of elevated permeability are thought to be important within the brittle and brittle-ductile crust, due to faulting and fracturing associated with earthquake-aftershock sequences or earthquake swarms. We present data from an orogenic gold deposit in Australia where the bulk of the gold is contained in abundant fine arsenopyrite crystals associated with a fault-vein network within tight upright folds. The deposit-scale fault network is connected to a deeper network of thrust faults (tens of kilometers long). Using 3D implicit modeling of geochemical data, based on radial basis functions, gold grades and gold-arsenic element ratios were interpolated and related to major faults, vein networks and late intrusions. Additionally, downhole bedding measurements were used to model first order (mine-scale) fold structures. The results show that ore shoot plunges are not parallel with mine-scale or regional fold plunges, and that bedding parallel faults related to flexural slip folding play a pivotal role on ore shoot attitudes. 3D fault slip and dilation tendency analysis indicate that fault reactivation and formation of linking faults are associated with large volumes of high-grade ore. We suggest slip events on the large-scale thrust network allowed mineralizing fluids to rapidly migrate over large distances and become supersaturated in elements such as gold, promoting widespread precipitation and high nucleation densities of arsenopyrite upon fluid-rock interaction at trap sites within the deposit.

  5. Challenges facing the North American iron ore industry

    USGS Publications Warehouse

    Jorgenson, J.D.

    2005-01-01

    During the 20th century, the iron ore mining industries of Canada and the United States passed through several periods of transformation. The beginning of the 21st century has seen yet another period of transformation, with the economic failure of a number of steel companies, the acquisition of their facilities by more viable steelmakers, and the consolidation of control within the North American iron ore industry. Changes in Canadian and United States iron ore production and the market control structure involved are analysed. The consolidation of ownership, formation of foreign joint ventures within Nordi America, planned divestitures of upstream activities by steelmakers, and industry changes made to ensure availability of feedstocks will be reviewed. The ttaditional isolation of the Canadian and United States iron ore operations and their strong linkage to downstream steel production will be discussed in the context of a changing global economy. Management-labour conflicts that have taken place and agreements made during 2000 through 2004 will be discussed in the context of the economic environment leading up to these agreements. Cooperative agreements between competing Canadian and United States companies to resolve client needs in processing and blending will be examined. A joint industry-government project designed to use new technology to produce direct reduced iron nuggets of 96 - 98 per cent iron content using non-coking coals will also be assessed. Changes in iron ore transportation methods, ownership and infrastructure will be reviewed for both rail and inland waterway transport between Canadian and United States companies. A brief analysis of social and environmental issues relating to sustainable development of the Canadian-United States iron ore industry will be included.

  6. 40 CFR 61.52 - Emission standard.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... standard. (a) Emissions to the atmosphere from mercury ore processing facilities and mercury cell chlor... atmosphere from sludge incineration plants, sludge drying plants, or a combination of these that process...

  7. 40 CFR 61.52 - Emission standard.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... standard. (a) Emissions to the atmosphere from mercury ore processing facilities and mercury cell chlor... atmosphere from sludge incineration plants, sludge drying plants, or a combination of these that process...

  8. 40 CFR 61.52 - Emission standard.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... standard. (a) Emissions to the atmosphere from mercury ore processing facilities and mercury cell chlor... atmosphere from sludge incineration plants, sludge drying plants, or a combination of these that process...

  9. 40 CFR 61.52 - Emission standard.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... standard. (a) Emissions to the atmosphere from mercury ore processing facilities and mercury cell chlor... atmosphere from sludge incineration plants, sludge drying plants, or a combination of these that process...

  10. Fe-U-PGE-Au-Ag-Cu Deposits of the Udokan-Chiney Region (East Siberia, Russia)

    NASA Astrophysics Data System (ADS)

    Gongalskiy, B.; Krivolutskaya, N.; Murashov, K.; Nistratov, S.; Gryazev, S.

    2012-04-01

    Introduction. Cupriferous sandstones-shales and magmatic copper-nickel deposits mark out the western and southern boundaries of the Siberian Craton accordingly. Of special interest are the Paleoproterozoic deposits of the Udokan-Chiney mining district (Gongalskiy, Krivolutskaya, 2008). Copper reserves and resources of this region are estimated at more than 50 Mt. Half of them is concentrated at the unique Udokan Deposit and the second half is distributed among sedimentary (Unkur, Pravoingamakitskoye, Sakinskoye, Krasnoye, Burpala) and magmatic deposits of the Chiney (Rudnoye, Verkhnechineyskoye, Kontaktovoye), Luktur and Maylav massifs. Results. It was established that the ores are characterized by similarity in chemical composition (main, major and rare elements that are Ag, Au, PGE) and mineral assemblages with varying proportions. It is important to emphasize that Fe role in mineralization was previously ignored. Meanwhile the Udokan deposit contains 10 Mt of magnetite metacrystals so as chalcocite ores may contain up to 50% magnetite too. It has been recently found that the Chiney titanomagnetite ores comprise commercially significant uranium and rare-earth metal concentrations (Makaryev et al., 2011). Thus the Udokan-Chiney region comprises Cu, Fe, Ti, V, U, REE, Ag, Au, PGE. These deposits differ from similar objects, the Olympic Dam in particular, by a much smaller content of fluid-bearing minerals. Copper mineralization at the Udokan is represented by chalcocite-bornite ores. They occur as ore beds conformable with sedimentary structures or as cross-cutting veins. The central zones of the former are often brecciated. They are rimmed by fine magnetite, bornite, and chalcocite dissemination. Bornite-chalcopyrite and chalcopyrite-pyrite veins are known at the lower levels of the Udokan ore bed. Such ore compositions are predominant in other ore deposits in sedimentary rocks (Pravoingamakitskoye, Unkur) and have a hydrothermal origin. Silver grades are up to 370 g/t in grab samples (Gongalskiy et al., 2008a). The long-lived Udokan-Chiney ore-magmatic has small areal extent of explosive rocks and breccias (n*10 m) with massive sulfide veins (chalcopyrite, pyrrhotite) which are similar to Sudbury offset dikes. While the same vertical zones at the Rudnoye deposit have been confirmed over 0.5 km downward from the lower contact of the Chiney massif. Conclusions. Multielement and similar mineralogical composition ores of different deposits in the Udokan-Chiney area reflect long evolution of ore processes in very movable block of the crust. Observed combination of magmatic, sedimentary and partially hydrothermal deposits is a result of the telescoping of a wide range of metals into a limited area.

  11. The Preparation and Characterization of Materials.

    ERIC Educational Resources Information Center

    Wold, Aaron

    1980-01-01

    Presents several examples illustrating different aspects of materials problems, including problems associated with solid-solid reactions, sintering and crystal growth, characterization of materials, preparation and characterization of stoichiometric ferrites and chromites, copper-sulfur systems, growth of single crystals by chemical vapor…

  12. Peridotite-suite dominated mineral inclusions in diamonds from Kelsey Lake Mine, Colorado U.S.A.

    NASA Astrophysics Data System (ADS)

    Schulze, D. J.; Coopersmith, H. G.

    2005-12-01

    Thirty silicate and oxide inclusions large enough for in situ WDS electron microprobe analysis were exposed by grinding/polishing of 16 diamonds from the Kelsey Lake Mine in the Colorado-Wyoming State Line kimberlite district. Three garnets in two stones belong to the eclogite (E) suite, and 18 olivines, three Mg-chromites and six Cr-pyropes in the other 14 stones belong to the peridotite (P) suite. The peridotite-dominated population is in stark contrast to the other suites studied in the State Line district. The reported inclusion population from George Creek is completely eclogitic and that of the Sloan pipe is overwhelmingly eclogitic, with only a minor, relatively Fe-rich peridotite component. Multiple inclusions are common in single stones, with 12 olivines (of uniform composition) exposed in one example. Kelsey Lake olivine inclusions are magnesian (17 of 18 grains in 9 stones are in the range Fo 92.7-93.1), typical of P-suite stones worldwide, but unlike the more Fe-rich Sloan olivine suite (13 of 14 in the range Fo 91.3-92.2). Mg-chromites (wt percent MgO = 12.8-13.8, wt percent Cr2O3 = 61.4-66.6) are in the lower MgO range of diamond inclusion chromites worldwide. Six Cr-pyropes in four stones have moderately low calcium contents (wt percent CaO = 3.5-4.5) but are very Cr-rich (wt percent Cr2O3 = 10.5-16.7). An olivine-garnet pair in one stone yields a Mg-Fe exchange temperature of 895 degrees C, possibly indicating disequilibrium, whereas an olivine-chromite pair yields an Mg-Fe exchange temperature of 1035 degrees C, cool but reasonable for equilibration within the diamond stability field. Comparison with diamond inclusion minerals worldwide reveals that the Kesley Lake suite is most similar to those from the Slave Craton in Canada, especially in terms of Cr-pyrope compositions. Both suites are somewhat less depleted than suites from southern Africa or Siberian kimberlites. By analogy with the Slave P-suite diamonds of Archean age and a Proterozoic eclogitic component in the Slave mantle, the mixed diamond inclusion populations from the State Line district may support models in which blocks of Archean mantle survive buried beneath Proterozoic continental crust, mixed with eclogitic regimes emplaced by Proterozoic subduction.

  13. A regional-scale study of chromium and nickel in soils of northern California, USA

    USGS Publications Warehouse

    Morrison, J.M.; Goldhaber, M.B.; Lee, L.; Holloway, J.M.; Wanty, R.B.; Wolf, R.E.; Ranville, J.F.

    2009-01-01

    A soil geochemical survey was conducted in a 27,000-km2 study area of northern California that includes the Sierra Nevada Mountains, the Sacramento Valley, and the northern Coast Range. The results show that soil geochemistry in the Sacramento Valley is controlled primarily by the transport and weathering of parent material from the Coast Range to the west and the Sierra Nevada to the east. Chemically and mineralogically distinctive ultramafic (UM) rocks (e.g. serpentinite) outcrop extensively in the Coast Range and Sierra Nevada. These rocks and the soils derived from them have elevated concentrations of Cr and Ni. Surface soil samples derived from UM rocks of the Sierra Nevada and Coast Range contain 1700-10,000 mg/kg Cr and 1300-3900 mg/kg Ni. Valley soils west of the Sacramento River contain 80-1420 mg/kg Cr and 65-224 mg/kg Ni, reflecting significant contributions from UM sources in the Coast Range. Valley soils on the east side contain 30-370 mg/kg Cr and 16-110 mg/kg Ni. Lower Cr and Ni concentrations on the east side of the valley are the result of greater dilution by granitic sources of the Sierra Nevada. Chromium occurs naturally in the Cr(III) and Cr(VI) oxidation states. Trivalent Cr is a non-toxic micronutrient, but Cr(VI) is a highly soluble toxin and carcinogen. X-ray diffraction and scanning electron microscopy of soils with an UM parent show Cr primarily occurs within chromite and other mixed-composition spinels (Al, Mg, Fe, Cr). Chromite contains Cr(III) and is highly refractory with respect to weathering. Comparison of a 4-acid digestion (HNO3, HCl, HF, HClO4), which only partially dissolves chromite, and total digestion by lithium metaborate (LiBO3) fusion, indicates a lower proportion of chromite-bound Cr in valley soils relative to UM source soils. Groundwater on the west side of the Sacramento Valley has particularly high concentrations of dissolved Cr ranging up to 50 ??g L-1 and averaging 16.4 ??g L-1. This suggests redistribution of Cr during weathering and oxidation of Cr(III)-bearing minerals. It is concluded that regional-scale transport and weathering of ultramafic-derived constituents have resulted in enrichment of Cr and Ni in the Sacramento Valley and a partial change in the residence of Cr.

  14. Continuous Steelmaking Directly from Ore

    NASA Astrophysics Data System (ADS)

    Warner, Noel A.

    2014-12-01

    In-line continuous processing of high-grade hematite ore (crushed ore or fines) with a pure hydrogen reductant is assessed. An appraisal is made of the rate controlling mechanisms involved in the reduction of a pure layer of molten wustite being transported by floating on a molten carrier iron carbon-free medium at temperatures just in excess of the iron melting point. Published research clearly indicates that under these conditions the kinetics are principally controlled by molecular gaseous diffusion. Thus, the rate is essentially not influenced by total gas pressure above 1 atmosphere. Accordingly, on safety grounds it is recommended that high pressure should not be used for hydrogen steelmaking in the future, but the operation should be conducted close to atmospheric pressure with low pressure steam encapsulation of the plant items involved. Using hydrogen as the reductant means that sub-surface nucleation of CO bubbles cannot disrupt continuous processing. The operation is then no different to processing a normal liquid phase. The off-gases from the reduction zone of a melt circulation loop are super-clean and only contaminated with iron vapor. Accordingly, the best available technology becomes available for energy conservation without risk of non-fusible solids deposition. The net result is that the energy requirements are expected to be superior to other potential processes.

  15. A case–control study of mesothelioma in Minnesota iron ore (taconite) miners

    PubMed Central

    Lambert, Christine S; Alexander, Bruce H; Ramachandran, Gurumurthy; MacLehose, Richard F; Nelson, Heather H; Ryan, Andrew D; Mandel, Jeffrey H

    2018-01-01

    Objectives An excess of mesothelioma has been observed in iron ore miners in Northeastern Minnesota. Mining and processing of taconite iron ore generate exposures that include elongate mineral particles (EMPs) of amphibole and non-amphibole origin. We conducted a nested case–control study of mesothelioma in a cohort of 68 737 iron ore miners (haematite and taconite ore miners) to evaluate the association between mesothelioma, employment and EMP exposures from taconite mining. Methods Mesothelioma cases (N=80) were identified through the Minnesota Cancer Surveillance System (MCSS) and death certificates. Four controls of similar age were selected for each case with 315 controls ultimately eligible for inclusion. Mesothelioma risk was evaluated by estimating rate ratios and 95% CIs with conditional logistic regression in relation to duration of taconite industry employment and cumulative EMP exposure [(EMP/cc)×years], defined by the National Institute for Occupational Safety and Health (NIOSH) 7400 method. Models were adjusted for employment in haematite mining and potential exposure to commercial asbestos products used in the industry. Results All mesothelioma cases were male and 57 of the cases had work experience in the taconite industry. Mesothelioma was associated with the number of years employed in the taconite industry (RR=1.03, 95% CI 1.00 to 1.06) and cumulative EMP exposure (RR=1.10, 95% CI 0.97 to –1.24). No association was observed with employment in haematite mining. Conclusions These results support an association between mesothelioma and employment duration and possibly EMP exposure in taconite mining and processing. The type of EMP was not determined. The potential role of commercial asbestos cannot be entirely ruled out. PMID:26655961

  16. Ultrafine particles derived from mineral processing: A case study of the Pb-Zn sulfide ore with emphasis on lead-bearing colloids.

    PubMed

    Mikhlin, Yuri; Vorobyev, Sergey; Romanchenko, Alexander; Karasev, Sergey; Karacharov, Anton; Zharkov, Sergey

    2016-03-01

    Although mining and mineral processing industry is a vast source of heavy metal pollutants, the formation and behavior of micrometer- and nanometer-sized particles and their aqueous colloids entered the environment from the technological media has received insufficient attention to date. Here, the yield and characteristics of ultrafine mineral entities produced by routine grinding of the Pb-Zn sulfide ore (Gorevskoe ore deposit, Russia) were studied using laser diffraction analysis (LDA), dynamic light scattering (DLS) and zeta potential measurement, microscopy, X-ray photoelectron spectroscopy, with most attention given to toxic lead species. It was revealed, in particular, that the fraction of particles less that 1 μm in the ground ore typical reaches 0.4 vol. %. The aquatic particles in supernatants were micrometer size aggregates with increased content of zinc, sulfur, calcium as compared with the bulk ore concentrations. The hydrodynamic diameter of the colloidal species decreased with time, with their zeta potentials remaining about -12 mV. The colloids produced from galena were composed of 20-50 nm PbS nanoparticles associated with lead sulfate and thiosulfate, while the surface oxidation products at precipitated galena were largely lead oxyhydroxides. The size and zeta potential of the lead-bearing colloids decreased with time down to about 100 nm and from -15 mV to -30 mV, respectively. And, conversely, lead sulfide nanoparticles were mobilized before the aggregates during redispersion of the precipitates in fresh portions of water. The potential environmental impact of the metal-bearing colloids, which is due to the large-scale production and relative stability, is discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. A case-control study of mesothelioma in Minnesota iron ore (taconite) miners.

    PubMed

    Lambert, Christine S; Alexander, Bruce H; Ramachandran, Gurumurthy; MacLehose, Richard F; Nelson, Heather H; Ryan, Andrew D; Mandel, Jeffrey H

    2016-02-01

    An excess of mesothelioma has been observed in iron ore miners in Northeastern Minnesota. Mining and processing of taconite iron ore generate exposures that include elongate mineral particles (EMPs) of amphibole and non-amphibole origin. We conducted a nested case-control study of mesothelioma in a cohort of 68,737 iron ore miners (haematite and taconite ore miners) to evaluate the association between mesothelioma, employment and EMP exposures from taconite mining. Mesothelioma cases (N=80) were identified through the Minnesota Cancer Surveillance System (MCSS) and death certificates. Four controls of similar age were selected for each case with 315 controls ultimately eligible for inclusion. Mesothelioma risk was evaluated by estimating rate ratios and 95% CIs with conditional logistic regression in relation to duration of taconite industry employment and cumulative EMP exposure [(EMP/cc)×years], defined by the National Institute for Occupational Safety and Health (NIOSH) 7400 method. Models were adjusted for employment in haematite mining and potential exposure to commercial asbestos products used in the industry. All mesothelioma cases were male and 57 of the cases had work experience in the taconite industry. Mesothelioma was associated with the number of years employed in the taconite industry (RR=1.03, 95% CI 1.00 to 1.06) and cumulative EMP exposure (RR=1.10, 95% CI 0.97 to -1.24). No association was observed with employment in haematite mining. These results support an association between mesothelioma and employment duration and possibly EMP exposure in taconite mining and processing. The type of EMP was not determined. The potential role of commercial asbestos cannot be entirely ruled out. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  18. Lunar oxygen and metal for use in near-earth space - Magma electrolysis

    NASA Technical Reports Server (NTRS)

    Colson, Russell O.; Haskin, Larry A.

    1990-01-01

    The unique conditions on the moon, such as vacuum, absence of many reagents common on the earth, and presence of very nontraditional 'ores', suggest that a unique and nontraditional process for extracting materials from the ores may prove the most practical. An investigation has begun into unfluxed silicate electrolysis as a method for extracting oxygen, Fe, and Si from lunar regolith. The advantages of the process include simplicity of concept, absence of need to supply reagents from the earth, and low power and mass requirements for the processing plant. Disadvantages include the need for uninterrupted high temperature and the highly corrosive nature of the high-temperature silicate melts, which has made identifying suitable electrode and container materials difficult.

  19. Development and application of biotechnologies in the metal mining industry.

    PubMed

    Johnson, D Barrie

    2013-11-01

    Metal mining faces a number of significant economic and environmental challenges in the twenty-first century for which established and emerging biotechnologies may, at least in part, provide the answers. Bioprocessing of mineral ores and concentrates is already used in variously engineered formats to extract base (e.g., copper, cobalt, and nickel) and precious (gold and silver) metals in mines throughout the world, though it remains a niche technology. However, current projections of an increasing future need to use low-grade primary metal ores, to reprocess mine wastes, and to develop in situ leaching technologies to extract metals from deep-buried ore bodies, all of which are economically more amenable to bioprocessing than conventional approaches (e.g., pyrometallurgy), would suggest that biomining will become more extensively utilized in the future. Recent research has also shown that bioleaching could be used to process a far wider range of metal ores (e.g., oxidized ores) than has previously been the case. Biotechnologies are also being developed to control mine-related pollution, including securing mine wastes (rocks and tailings) by using "ecological engineering" approaches, and also to remediate and recover metals from waste waters, such as acid mine drainage. This article reviews the current status of biotechnologies within the mining sector and considers how these may be developed and applied in future years.

  20. Seaching for a Silver Lining: Using Pb Isotopes to Constrain the Source of Argentiferous Galena at La Isabela

    NASA Astrophysics Data System (ADS)

    Thibodeau, A. M.; Killick, D. J.; Ruiz, J.; Chesley, J. T.; Baker, M.

    2005-12-01

    This study investigates the smelting and refining of argentiferous galena at La Isabela, Dominican Republic (1493-1498), the town founded by Columbus on his second voyage to the Americas. Archaeologists recovered approximately 100 kilograms of galena and 200 kilograms of metallurgical slag near the remains of a crude furnace unearthed at the site (Deagan and Cruxent 2002). The purpose of this study was to determine if these remains are evidence that members of Columbus's fleet prospected for silver during his second expedition. Samples of ore and slag were examined as metallographic polished sections, and petrographic thin sections by optical and scanning electron microscopes. The composition of the ore and slag allows us to infer these ores were processed in a two-stage procedure to produce silver metal and a lead silicate slag. Electron microprobe analysis of galena indicates highly variable but low Ag content (50 ppm), which may account for the fact some of the ore was left unprocessed. Lead isotope analysis by multi-collector ICP-MS indicates that the galena likely came from a single source and was not mined within the Caribbean. Instead, the isotopic signature of these ores is consistent with an Old World source, possibly in the Linares-La Carolina Pb-Zn vein field of southwestern Spain.

  1. Geodynamic and climate controls in the formation of Mio-Pliocene world-class oxidized cobalt and manganese ores in the Katanga province, DR Congo

    NASA Astrophysics Data System (ADS)

    Decrée, Sophie; Deloule, Étienne; Ruffet, Gilles; Dewaele, Stijn; Mees, Florias; Marignac, Christian; Yans, Johan; de Putter, Thierry

    2010-10-01

    The Katanga province, Democratic Republic of Congo, hosts world-class cobalt deposits accounting for ~50% of the world reserves. They originated from sediment-hosted stratiform copper and cobalt sulfide deposits within Neoproterozoic metasedimentary rocks. Heterogenite, the main oxidized cobalt mineral, is concentrated as “cobalt caps” along the top of silicified dolomite inselbergs. The supergene cobalt enrichment process is part of a regional process of residual ore formation that also forms world-class “manganese cap” deposits in western Katanga, i.e., the “black earths” that are exploited by both industrial and artisanal mining. Here, we provide constraints on the genesis and the timing of these deposits. Ar-Ar analyses of oxidized Mn ore and in situ U-Pb SIMS measurements of heterogenite yield Mio-Pliocene ages. The Ar-Ar ages suggest a multi-phase process, starting in the Late Miocene (10-5 Ma), when the metal-rich substratum was exposed to the action of meteoric fluids, due to major regional uplift. Further oxidation took place in the Pliocene (3.7-2.3 Ma) and formed most of the observed deposits under humid conditions: Co- and Mn-caps on metal-rich substrata, and coeval Fe laterites on barren areas. These deposits formed prior to the regional shift toward more arid conditions in Central Africa. Arid conditions still prevailed during the Quaternary and resulted in erosion and valley incision, which dismantled the metal-bearing caps and led to ore accumulation in valleys and along foot slopes.

  2. Lithologic and structural controls of limestone-hosted Pb-Zn-Ag mineralization in Chihuahua, Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lofquist, D.J.; Ruiz, J.

    1985-01-01

    The state of Chihuahua contains some of the most important limestone-hosted ore deposits in Mexico. The best example are Santa Eulalia and Naica which together have produced 53 million tons or ore averaging 7.7% Pb, 6.4% Zn, and 280 g/ton Ag. These deposits occur as mantos and chimneys often accompanied by calc-silicates. Among the most critical questions in this type of deposit is the control that the limestone-host exerts on the mineralizing process. Here the authors present the first detailed data on the stratigraphic and lithologic character of the limestone-hosts at Naica and Santa Eulalia. All ore at Naica andmore » Santa Eulalia is hosted by micrites, biomicrites and biosparites indicative of generally quiet marine deposition. The authors work suggests that the western edge of the this trough might be a low angle, east dipping ramp which extends below the Sierra Madre Occidental. The primary permeability of the limestone that hosts Naica and Santa Eulalia is in the micro to nanodarcy range. The effective permeability has been augmented by 3 or 4 stages of micro-fracturing. Most of the ore is controlled by these fractures and by felsic dikes, which in cases are mostly endoskarn. Stylolites also appear to have exerted a control on the mineralizing process. Numerous instances of alteration and recrystallization confined to one side of a horizontal stylolite have been noted. At Santa Eulalia, horizontal stylolites have controlled the emplacement of massive sulfide mantos, suggesting that the mineralizing process was rather passive.« less

  3. An Overview of Process Monitoring Related to the Production of Uranium Ore Concentrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGinnis, Brent

    2014-04-01

    Uranium ore concentrate (UOC) in various chemical forms, is a high-value commodity in the commercial nuclear market, is a potential target for illicit acquisition, by both State and non-State actors. With the global expansion of uranium production capacity, control of UOC is emerging as a potentially weak link in the nuclear supply chain. Its protection, control and management thus pose a key challenge for the international community, including States, regulatory authorities and industry. This report evaluates current process monitoring practice and makes recommendations for utilization of existing or new techniques for managing the inventory and tracking this material.

  4. A report on the medieval mining and ore processing complex: Zilan valley, Van, Turkey.

    NASA Astrophysics Data System (ADS)

    Ateş, Yusuf; Kılıη, Sinan

    Literature has records of the use of obsidian that shows the existence of a knowledge base on raw material resources around Lake Van extending to very ancient times. Against this background, very little information can be obtained from literature about accurate location of historical mining activities in the region today. An ancient mining and processing complex, located northwest of the city of Van (Turkey) has been discovered by chance in 2007. The purpose of this article is to describe this historical mining area. The site contains mining structures such as shafts and galleries, and heaves of stone chips indicating some ore enrichment activities taking place there. The XRD and chemical analyses show the samples taken from the ore vein are rich in Manganese (Mn) and Barium (Ba), and it is concluded that the Zilan Valley Mining and Processing Complex was for Pyrolusite (MnO2), Barium or both. The site is being described for the first time in the literature and offers an opportunity to fulfill the gap in literature regarding mining history. The discovery and the description of the site would also have implications in a wide multidisciplinary scientific community, including metallurgy, archeology, and world heritage.

  5. The Contributions Regarding the Use of Microwave to Obtain Modeling Gypsum for Phonic-Absorbent Construction and Orthopedic Materials

    NASA Astrophysics Data System (ADS)

    Pop, P. A.; Ungur, P. A.; Caraban, A.; Marcu, F.

    2009-11-01

    The paper has presented some experiments realized at "Congips" Co. Oradea and University of Oradea, regarding of increase machining efficiency and quality for modeling gypsum plaster by using of microwave energy to gypsum ore roast. The elaboration process of microwave energy for modeling gypsum plaster has done on electromagnetic waves properties and specific properties for dielectric materials. Microwaves are radiations of electromagnetic waveform nature, determine by pulsations of electrical-E) and magnetically-H components of electromagnetic wave in interdependence with Maxwell equations. The gypsum ore is calcium sulphate dehydrate (CaSO4ṡ2H2O) using at modeling gypsum plaster fabrication, which is calcium sulphate hemihydrate (CaSO4ṡ1/2H2O), that has behavior of dielectric with losses. The gypsum ore getting in microwave field, in conditions of predictable pressure and temperature has transformed in modeling gypsum plaster, by quick lost of a part from crystallization water. The processing time is very short, which due to a great productivity and machining efficiency, finally of low process cost. All of these recommend continuing the research at pilot station level.

  6. Biocatalytic and chemical leaching of a low-grade nickel laterite ore

    NASA Astrophysics Data System (ADS)

    Ciftci, Hasan; Atik, Suleyman; Gurbuz, Fatma

    2018-04-01

    Nickel and cobalt recovery from a low-grade nickel laterite ore, supplied from Çaldağ deposit (Manisa, Turkey) were investigated by bio and chemical leaching processes. The fungus, Aspergillus niger was used for biocatalytic leaching experiments. The effects of parameters (solid ratio and sucrose concentration) on the biocatalytic leaching of the ore were initially tested in flasks to obtain the optimum conditions for the A. niger. Then chemical leaching was applied as a comparison to bioleaching, using organic acids (citric, oxalic, acetic and gluconic acids) as well as a mixture of acids. According the results, the maximum dissolution yield of nickel, cobalt and iron were detected respectively as 95.3%, 74.3% and 50.0% by biocatalytic processes which containing 25% (w/v) sucrose and 1% (w/v) solids. The increase in the solid ratio adversely influenced the biocatalytic activity of A. niger. Finally, further tests in reactors (v = 1 and 10 L) were performed using the optimum conditions from the flask tests. The difference in metals recovery between biocatalytic and chemical leaching was significantly important. Bioleaching produced higher Ni and Co extractions (34.3-75.6%) than chemical process.

  7. Four magnetite generations in the Precambrian Varena Iron Ore deposit, SE Lithuania, as a result of rock-fluid interactions

    NASA Astrophysics Data System (ADS)

    Skridlaite, Grazina; Prusinskiene, Sabina; Siliauskas, Laurynas

    2017-04-01

    Iron ores in Precambrian crystalline basement of the Varena area, SE Lithuania, were discovered during the detail geological-geophysical exploration in 1982-1992. They are covered with 210-500 m thick sediments. The Varena Iron Ore deposit (VIOD) may yield from 71 to 219.6 million tons of iron ore according to different economic evaluations (Marfin, 1996). They were assumed to be of metasomatic and hydrothermal origin, however several other hypotheses explaining the VIOZ origin, e.g. as a layered mafic or carbonatite intrusions were also suggested. Magnetites of the VIOD were thoroughly investigated by the Cameca SX100 microprobe at the Warsaw University and by the Quanta 250 Energy Dispersive Spectroscopy (EDS) at the Nature Research Centre in Vilnius, Lithuania. Four generations of magnetite were distinguished in the studied serpentine-magnetite ores (D8 drilling) and were compared with the earlier studied and reference magnetites. The earliest, spinel inclusion-rich magnetite cores (Mag-1) have the highest trace element contents (in wt%): Si (0.032), Al (0.167-0.248), Mg (0.340-0.405), Ti (0.215-0.254), V (0.090-0.138) etc. They might have formed during an early metamorphism and/or related skarn formation. Voluminous second magnetite (Mag-2) replacing olivine, pyroxenes, spinel and other skarn minerals at c. 540o C (Magnetite-Ilmenite geothermometer) has much lower trace element abundances, probably washed out by hydrothermal fluids. The latest magnetites (Mag-3 and Mag-4) overgrow the earlier ones and occur near or within the sulfide veins (Mag-4). As was observed from microtextures, the Mag-3 and Mag-4 have originated from the late thermal reworking by dissolution-reprecipitation processes. To imply an origin of the studied magnetites, they were compared to the earlier studied magmatic-metamorphic (1058 drilling), presumably skarn (982 drilling) magnetites from the studied area and plotted in the major magnetite ore type fields according to Dupuis and Beaudoin (2011). They have similar trace element abundances as skarn magnetites, e.g. are in general Ti-poor. The Mag-1 is more than twice richer in Mg than the porphyry and Kiruna type iron ores. A slight enrichment in Al, Ti and V because of spinel and ilmenite inclusions may have caused the earliest Mag-1 to resemble the porphyry type ores, while the secondary Mag-2 has Al, Ca and Mn contents as low as the Kiruna type ores. Thus, we can consider that fluid-rock interactions have strongly affected chemical compositions of the studied magnetites. Even though there are no precise age constructions for the metamorphic, metasomatic and hydrothermal iron ore formation process, they likely started later than 1.80 Ga (metamorphism of the host rocks; Bogdanova et al., 2015) and lasted until c. 1.50 Ga, when the rocks were intruded by the within-plate AMCG magmatic bodies. Bogdanova, S., Gorbatschev, R., Skridlaite, G., Soesoo, A., Taran, L., Kurlovich, D., 2015. Precambrian Research, 259, 5-33. Dupuis, C., Beaudoin, G., 2011. Mineral Deposita 46, 319-335. Marfinas, S., 1996. Report on the results of the evaluation of the Varena Iron Ore deposit, 2nd book, Vilnius.

  8. Abandoned Mine Lands

    EPA Pesticide Factsheets

    Abandoned Mine Lands are those lands, waters, and surrounding watersheds where extraction, beneficiation, or processing of ores and minerals (excluding coal) has occurred. These lands also include areas where mining or processing activity is inactive.

  9. PROCESS FOR THE RECOVERY OF URANIUM FROM PHOSPHATIC ORE

    DOEpatents

    Long, R.L.

    1959-04-14

    A proccss is described for the recovery of uranium from phosphatic products derived from phosphatic ores. It has been discovered that certain alkyl phosphatic, derivatives can be employed in a direct solvent extraction operation to recover uranium from solid products, such as superphosphates, without first dissolving such solids. The organic extractants found suitable include alkyl derivatives of phosphoric, pyrophosphoric, phosof the derivative contains from 4 to 7 carbon atoms. A diluent such as kerosene is also used.

  10. Minerals Price Increases and Volatility: Causes and Consequences

    DTIC Science & Technology

    2008-10-03

    goods , used to make final products, rose 8%. Both rates are triple those at this time [in 2007].8 A 2008 report for Lehman Brothers, a New York-based...products, which are the most widely used intermediate goods produced from iron ore (all ferrous scrap was originally processed from iron ore). Some...prices, even though demand for final goods using steel products was not nearly so robust. The clearest example is in sheet steel, which, in the first

  11. Liquid-Oxygen-Compatible Cement for Gaskets

    NASA Technical Reports Server (NTRS)

    Elmore, N. L.; Neale, B. C.

    1984-01-01

    Fluorelastomer and metal bonded reliably by new procedure. To cure fluoroelastomer cement, metal plate/gasket assembly placed in vacuum bag evacuated to minimum vacuum of 27 inches (69 cm) of mercury. Vacuum maintained throughout heating process and until assembly returns to ambient room temperature. Used to seal gaskets and O-rings or used to splice layers of elastomer to form non-standard sized O-rings. Another possible use is to apply protective, liquid-oxygen-compatible coating to metal parts.

  12. The isotopic composition of ore lead of the Creede mining district and vicinity, San Juan Mountains, Colorado: Text of a talk presented at the San Juan Mountains symposium to honor Thomas A. Steven; Rocky Mountain Section meeting of the Geological Society of America, May 2, 1987, Boulder, Colorado

    USGS Publications Warehouse

    Foley, N.K.; Barton, P.B.; Bethke, P.M.; Doe, B.R.

    1988-01-01

    Recent work allows us to extend the results of Doe et al. and to consider alternative processes to explain the widespread homogeneity and radiogenic nature of the ore lead: 1) David Matty (pers. commun., 1986) has shown that some minor volcanic units in the area have unusually radiogneic lead values; magmas comparable in composition to the units are a possible, though improbable, source of the ore lead. 2) The uniformity of the isotopic values of galenas may have resulted from homogenization during an extensive potassium-metasomatic event that predated the ores; this possibility is being tested in an on-going study of feldspars from metasomatized and unmetasomatized rocks. 3) Recent regional studies suggest the possibility of a prevolcanic, NNW-trending graben system filled by clastic sediments derived from the Precambrian basement, a process that would have an homogenizing effect on the lead isotopes. This interpretation implies importation, deep within the Creede hydrologic system, of fluids from remote sources. These alternatives show that the Pbisotope systematics may have a profound impact on the interpretation of the Creede hydrothermal system, and that further study is warranted.

  13. Comprehensive Utilization of Iron and Phosphorus from High-Phosphorus Refractory Iron Ore

    NASA Astrophysics Data System (ADS)

    Sun, Yongsheng; Zhang, Qi; Han, Yuexin; Gao, Peng; Li, Guofeng

    2018-02-01

    An innovative process of coal-based reduction followed by magnetic separation and dephosphorization was developed to simultaneously recover iron and phosphorus from one typical high-phosphorus refractory iron ore. The experimental results showed that the iron minerals in iron ore were reduced to metallic iron during the coal-based reduction and the phosphorus was enriched in the metallic iron phase. The CaO-SiO2-FeO-Al2O3 slag system was used in the dephosphorization of metallic iron. A hot metal of 99.17% Fe and 0.10% P was produced with Fe recovery of 84.41%. Meanwhile, a dephosphorization slag of 5.72% P was obtained with P recovery of 67.23%. The contents of impurities in hot metal were very low, and it could be used as feedstock for steelmaking after a secondary refining. Phosphorus in the dephosphorization slag mainly existed in the form of a 5CaO·P2O5·SiO2 solid solution where the P2O5 content is 13.10%. At a slag particle size of 20.7 μm (90% passing), 94.54% of the P2O5 could be solubilized in citric acid, indicating the slag met the feedstock requirements in phosphate fertilizer production. Consequently, the proposed process achieved simultaneous Fe and P recovery, paving the way to comprehensive utilization of high-phosphorus refractory iron ore.

  14. Introduction to Rocket Propulsion

    DTIC Science & Technology

    1991-12-01

    such as epoxies, MAPO (a trifunctional aziridinyl phosphine oxide), MT-4, various isocyanates, such a TDI, HDI, IPDI, and polyols such as trimethylol...propane (2) Burning rate catalysts, such as copper chromite (or chromate), ferrocene , and several less migratory derivatives of this organic iron

  15. Molybdenum isotope fractionation during acid leaching of a granitic uranium ore

    NASA Astrophysics Data System (ADS)

    Migeon, Valérie; Bourdon, Bernard; Pili, Eric; Fitoussi, Caroline

    2018-06-01

    As an attempt to prevent illicit trafficking of nuclear materials, it is critical to identify the origin and transformation of uranium materials from the nuclear fuel cycle based on chemical and isotope tracers. The potential of molybdenum (Mo) isotopes as tracers is considered in this study. We focused on leaching, the first industrial process used to release uranium from ores, which is also known to extract Mo depending on chemical conditions. Batch experiments were performed in the laboratory with pH ranging from 0.3 to 5.5 in sulfuric acid. In order to span a large range in uranium and molybdenum yields, oxidizers such as nitric acid, hydrogen peroxide and manganese dioxide were also added. An enrichment in heavy Mo isotopes is produced in the solution during leaching of a granitic uranium ore, when Mo recovery is not quantitative. At least two Mo reservoirs were identified in the ore: ∼40% as Mo oxides soluble in water or sulfuric acid, and ∼40% of Mo hosted in sulfides soluble in nitric acid or hydrogen peroxide. At pH > 1.8, adsorption and/or precipitation processes induce a decrease in Mo yields with time correlated with large Mo isotope fractionations. Quantitative models were used to evaluate the relative importance of the processes involved in Mo isotope fractionation: dissolution, adsorption, desorption, precipitation, polymerization and depolymerization. Model best fits are obtained when combining the effects of dissolution/precipitation, and adsorption/desorption onto secondary minerals. These processes are inferred to produce an equilibrium isotope fractionation, with an enrichment in heavy Mo isotopes in the liquid phase and in light isotopes in the solid phase. Quantification of Mo isotope fractionation resulting from uranium leaching is thus a promising tool to trace the origin and transformation of nuclear materials. Our observations of Mo leaching are also consistent with observations of natural Mo isotope fractionation taking place during chemical weathering in terrestrial environments where the role of secondary processes such as adsorption is significant.

  16. Transient gestational exposure to drinking water containing excess hexavalent chromium modifies insulin signaling in liver and skeletal muscle of rat progeny.

    PubMed

    Shobana, Navaneethabalakrishnan; Aruldhas, Mariajoseph Michael; Tochhawng, Lalmuankimi; Loganathan, Ayyalu; Balaji, Sadhasivam; Kumar, Mani Kathiresh; Banu, Liaquat Alikhan Sheerin; Navin, Ajit Kumar; Mayilvanan, Chinnaiyan; Ilangovan, Ramachandran; Balasubramanian, Karundevi

    2017-11-01

    Chromium (Cr), an essential micronutrient potentiates insulin action, whereas excess hexavalent Cr (CrVI) acts as an endocrine disruptor. Pregnant mothers living in areas abutting industries using the metal and chromite ore dumps are exposed to ground water contaminated with Cr. Nevertheless, the impact of prenatal exposure to excess CrVI on insulin signaling in the progeny remains obscure. We tested the hypothesis "transient gestational exposure to drinking water containing excess CrVI may modify insulin signaling during postnatal life". Pregnant Wistar rats were given drinking water containing 50, 100 and 200 ppm CrVI (K 2 Cr 2 O 7 ) from gestational day 9-14 encompassing the period of organogenesis; the male progenies were tested at postnatal day 60. Neither fasting blood glucose nor oral glucose tolerance was altered in CrVI treated progeny. Nevertheless, western blot detection pointed out attenuated expression level of insulin receptor (IR), its downstream signaling molecules (IRS-1, pIRS-1 Tyr632 , Akt and pAkt Ser473 ) and organ specific glucose transporters (GLUT2 in liver and GLUT4 in gastrocnemius muscle), along with a significant increase in serum insulin level in male progenies exposed to CrVI. While 14 C-2-deoxy glucose uptake increased in the liver, the same decreased in the skeletal muscle whereas, 14 C-glucose oxidation recorded a consistent decrease in both tissues of CrVI exposed rats. These findings support our hypothesis and suggest that transient gestational exposure to excess CrVI may affect insulin signaling and glucose oxidation in the progeny, predictably rendering them vulnerable to insulin resistance. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Geological structure and ore mineralization of the South Sopchinsky and Gabbro-10 massifs and the Moroshkovoe Lake target, Monchegorsk area, Kola Peninsula, Russia

    NASA Astrophysics Data System (ADS)

    Pripachkin, Pavel V.; Rundkvist, Tatyana V.; Miroshnikova, Yana A.; Chernyavsky, Alexey V.; Borisenko, Elena S.

    2016-12-01

    The South Sopchinsky massif (SSM), Gabbro-10 (G-10) massif, and Moroshkovoe Lake (ML) target Monchegorsk area, Kola Peninsula, are located at the junction of the Monchepluton and Monchetundra layered intrusions. The intrusions were studied in detail as they are targets for platinum-group element (PGE) mineralization. The rocks in these targets comprise medium- to coarse-grained mesocratic to leucocratic gabbronorites, medium-grained mesocratic to melanocratic norites and pyroxenites, and various veins mainly comprising norite, plagioclase-amphibole-magnetite rocks, and quartz-magnetite rocks. The veins contain Ni-Cu-PGE mineralization associated with magnetite and chromite. In all targets, the contacts between gabbronorite and norite-pyroxenite are undulating, and the presence of magmatic (intrusive) breccias suggests that these rocks formed through mingling of two distinct magmatic pulses. In places, the gabbronorites clearly crosscut the modal layering of the norites and pyroxenites. Trace element data indicate that the gabbronorites have similar compositions to rocks of the upper part of the Monchetundra intrusion, whereas the norites and pyroxenites resemble rocks from the lower to intermediate stratigraphic levels of the Monchepluton, such as in the Nude-Poaz and Sopcha massifs. Sulfide mineralization in the studied targets principally consists of secondary bornite, millerite, and chalcopyrite. In contrast, the primary sulfide assemblage within the layered sequence of the adjacent Monchepluton is characterized by pentlandite, chalcopyrite, and pyrrhotite. Therefore, the mineralization in the studied targets is interpreted to be of a contact style. We argue that the studied area represents the contact zone between gabbronorites of the Monchetundra intrusion and norites and pyroxenites of the Monchepluton. In addition, the rocks were overprinted by postmagmatic veining and remobilization of contact style sulfide and PGE mineralization.

  18. Stress and Sealing Performance Analysis of Containment Vessel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    WU, TSU-TE

    2005-05-24

    This paper presents a numerical technique for analyzing the containment vessel subjected to the combined loading of closure-bolt torque and internal pressure. The detailed stress distributions in the O-rings generated by both the torque load and the internal pressure can be evaluated by using this method. Consequently, the sealing performance of the O-rings can be determined. The material of the O-rings can be represented by any available constitutive equation for hyperelastic material. In the numerical calculation of this paper, the form of the Mooney-Rivlin strain energy potential is used. The technique treats both the preloading process of bolt tightening andmore » the application of internal pressure as slow dynamic loads. Consequently, the problem can be evaluated using explicit numerical integration scheme.« less

  19. Comparison of selective flocculation of low grade goethitic iron ore fines using natural and synthetic polymers and a graft copolymer

    NASA Astrophysics Data System (ADS)

    Tudu, Kichakeswari; Pal, Sagar; Mandre, N. R.

    2018-05-01

    This study aims to beneficiate low grade goethitic iron ore fines using a selective flocculation process. Selective flocculation studies were conducted using different polymers such as starch amylopectin (AP), poly acrylic acid (PAA), and a graft copolymer (AP-g-PAA). The obtained results were analyzed; they indicate the enhancement of the iron ore grade from 58.49% to 67.52% using AP-g-PAA with a recovery of 95.08%. In addition, 64.45% Fe with a recovery of 88.79% was obtained using AP. Similarly, using PAA, the grade increased to 63.46% Fe with a recovery of 82.10%. The findings are also supported by characterizing concentrates using X-ray diffraction (XRD) and electron probe microanalysis (EPMA) techniques.

  20. The Structure of Reclaiming Warehouse of Minerals at Open-Cut Mines with the Use Combined Transport

    NASA Astrophysics Data System (ADS)

    Ikonnikov, D. A.; Kovshov, S. V.

    2017-07-01

    In the article performed an analysis of ore reclaiming and overloading point characteristics at modern opencast mines. Ore reclaiming represents the most effective way of stability support of power-intensive and expensive technological dressing process, and, consequently, of maintenance of the optimal production and set-up parameters of extraction and quality of finished product. The paper proposed the construction of the warehouse describing the technology of its creation. Equipment used for the warehouse described in detail. All stages of development and operation was shown. Advantages and disadvantages of using mechanical shovel excavator and hydraulic excavator “backdigger” as a reloading and reclaiming equipment was compared. Ore reclaiming and overloading point construction at cyclical and continuous method of mining using a hydraulic excavator “backdigger” was proposed.

Top